xref: /linux/fs/btrfs/extent-tree.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 /*
55  * Declare a helper function to detect underflow of various space info members
56  */
57 #define DECLARE_SPACE_INFO_UPDATE(name)					\
58 static inline void update_##name(struct btrfs_space_info *sinfo,	\
59 				 s64 bytes)				\
60 {									\
61 	if (bytes < 0 && sinfo->name < -bytes) {			\
62 		WARN_ON(1);						\
63 		sinfo->name = 0;					\
64 		return;							\
65 	}								\
66 	sinfo->name += bytes;						\
67 }
68 
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
71 
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73 			       struct btrfs_delayed_ref_node *node, u64 parent,
74 			       u64 root_objectid, u64 owner_objectid,
75 			       u64 owner_offset, int refs_to_drop,
76 			       struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 				    struct extent_buffer *leaf,
79 				    struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81 				      u64 parent, u64 root_objectid,
82 				      u64 flags, u64 owner, u64 offset,
83 				      struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85 				     struct btrfs_delayed_ref_node *node,
86 				     struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 			       u64 num_bytes);
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 				     struct btrfs_space_info *space_info,
98 				     u64 num_bytes);
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 				     struct btrfs_space_info *space_info,
101 				     u64 num_bytes);
102 
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 	smp_mb();
107 	return cache->cached == BTRFS_CACHE_FINISHED ||
108 		cache->cached == BTRFS_CACHE_ERROR;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * If not empty, someone is still holding mutex of
129 		 * full_stripe_lock, which can only be released by caller.
130 		 * And it will definitely cause use-after-free when caller
131 		 * tries to release full stripe lock.
132 		 *
133 		 * No better way to resolve, but only to warn.
134 		 */
135 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136 		kfree(cache->free_space_ctl);
137 		kfree(cache);
138 	}
139 }
140 
141 /*
142  * this adds the block group to the fs_info rb tree for the block group
143  * cache
144  */
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146 				struct btrfs_block_group_cache *block_group)
147 {
148 	struct rb_node **p;
149 	struct rb_node *parent = NULL;
150 	struct btrfs_block_group_cache *cache;
151 
152 	spin_lock(&info->block_group_cache_lock);
153 	p = &info->block_group_cache_tree.rb_node;
154 
155 	while (*p) {
156 		parent = *p;
157 		cache = rb_entry(parent, struct btrfs_block_group_cache,
158 				 cache_node);
159 		if (block_group->key.objectid < cache->key.objectid) {
160 			p = &(*p)->rb_left;
161 		} else if (block_group->key.objectid > cache->key.objectid) {
162 			p = &(*p)->rb_right;
163 		} else {
164 			spin_unlock(&info->block_group_cache_lock);
165 			return -EEXIST;
166 		}
167 	}
168 
169 	rb_link_node(&block_group->cache_node, parent, p);
170 	rb_insert_color(&block_group->cache_node,
171 			&info->block_group_cache_tree);
172 
173 	if (info->first_logical_byte > block_group->key.objectid)
174 		info->first_logical_byte = block_group->key.objectid;
175 
176 	spin_unlock(&info->block_group_cache_lock);
177 
178 	return 0;
179 }
180 
181 /*
182  * This will return the block group at or after bytenr if contains is 0, else
183  * it will return the block group that contains the bytenr
184  */
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 			      int contains)
188 {
189 	struct btrfs_block_group_cache *cache, *ret = NULL;
190 	struct rb_node *n;
191 	u64 end, start;
192 
193 	spin_lock(&info->block_group_cache_lock);
194 	n = info->block_group_cache_tree.rb_node;
195 
196 	while (n) {
197 		cache = rb_entry(n, struct btrfs_block_group_cache,
198 				 cache_node);
199 		end = cache->key.objectid + cache->key.offset - 1;
200 		start = cache->key.objectid;
201 
202 		if (bytenr < start) {
203 			if (!contains && (!ret || start < ret->key.objectid))
204 				ret = cache;
205 			n = n->rb_left;
206 		} else if (bytenr > start) {
207 			if (contains && bytenr <= end) {
208 				ret = cache;
209 				break;
210 			}
211 			n = n->rb_right;
212 		} else {
213 			ret = cache;
214 			break;
215 		}
216 	}
217 	if (ret) {
218 		btrfs_get_block_group(ret);
219 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 			info->first_logical_byte = ret->key.objectid;
221 	}
222 	spin_unlock(&info->block_group_cache_lock);
223 
224 	return ret;
225 }
226 
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228 			       u64 start, u64 num_bytes)
229 {
230 	u64 end = start + num_bytes - 1;
231 	set_extent_bits(&fs_info->freed_extents[0],
232 			start, end, EXTENT_UPTODATE);
233 	set_extent_bits(&fs_info->freed_extents[1],
234 			start, end, EXTENT_UPTODATE);
235 	return 0;
236 }
237 
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
239 {
240 	struct btrfs_fs_info *fs_info = cache->fs_info;
241 	u64 start, end;
242 
243 	start = cache->key.objectid;
244 	end = start + cache->key.offset - 1;
245 
246 	clear_extent_bits(&fs_info->freed_extents[0],
247 			  start, end, EXTENT_UPTODATE);
248 	clear_extent_bits(&fs_info->freed_extents[1],
249 			  start, end, EXTENT_UPTODATE);
250 }
251 
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
253 {
254 	struct btrfs_fs_info *fs_info = cache->fs_info;
255 	u64 bytenr;
256 	u64 *logical;
257 	int stripe_len;
258 	int i, nr, ret;
259 
260 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 		cache->bytes_super += stripe_len;
263 		ret = add_excluded_extent(fs_info, cache->key.objectid,
264 					  stripe_len);
265 		if (ret)
266 			return ret;
267 	}
268 
269 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 		bytenr = btrfs_sb_offset(i);
271 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272 				       bytenr, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(fs_info, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (!cache->caching_ctl) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	ctl = cache->caching_ctl;
321 	refcount_inc(&ctl->count);
322 	spin_unlock(&cache->lock);
323 	return ctl;
324 }
325 
326 static void put_caching_control(struct btrfs_caching_control *ctl)
327 {
328 	if (refcount_dec_and_test(&ctl->count))
329 		kfree(ctl);
330 }
331 
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 {
335 	struct btrfs_fs_info *fs_info = block_group->fs_info;
336 	u64 start = block_group->key.objectid;
337 	u64 len = block_group->key.offset;
338 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339 		fs_info->nodesize : fs_info->sectorsize;
340 	u64 step = chunk << 1;
341 
342 	while (len > chunk) {
343 		btrfs_remove_free_space(block_group, start, chunk);
344 		start += step;
345 		if (len < step)
346 			len = 0;
347 		else
348 			len -= step;
349 	}
350 }
351 #endif
352 
353 /*
354  * this is only called by cache_block_group, since we could have freed extents
355  * we need to check the pinned_extents for any extents that can't be used yet
356  * since their free space will be released as soon as the transaction commits.
357  */
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
359 		       u64 start, u64 end)
360 {
361 	struct btrfs_fs_info *info = block_group->fs_info;
362 	u64 extent_start, extent_end, size, total_added = 0;
363 	int ret;
364 
365 	while (start < end) {
366 		ret = find_first_extent_bit(info->pinned_extents, start,
367 					    &extent_start, &extent_end,
368 					    EXTENT_DIRTY | EXTENT_UPTODATE,
369 					    NULL);
370 		if (ret)
371 			break;
372 
373 		if (extent_start <= start) {
374 			start = extent_end + 1;
375 		} else if (extent_start > start && extent_start < end) {
376 			size = extent_start - start;
377 			total_added += size;
378 			ret = btrfs_add_free_space(block_group, start,
379 						   size);
380 			BUG_ON(ret); /* -ENOMEM or logic error */
381 			start = extent_end + 1;
382 		} else {
383 			break;
384 		}
385 	}
386 
387 	if (start < end) {
388 		size = end - start;
389 		total_added += size;
390 		ret = btrfs_add_free_space(block_group, start, size);
391 		BUG_ON(ret); /* -ENOMEM or logic error */
392 	}
393 
394 	return total_added;
395 }
396 
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
398 {
399 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 	struct btrfs_fs_info *fs_info = block_group->fs_info;
401 	struct btrfs_root *extent_root = fs_info->extent_root;
402 	struct btrfs_path *path;
403 	struct extent_buffer *leaf;
404 	struct btrfs_key key;
405 	u64 total_found = 0;
406 	u64 last = 0;
407 	u32 nritems;
408 	int ret;
409 	bool wakeup = true;
410 
411 	path = btrfs_alloc_path();
412 	if (!path)
413 		return -ENOMEM;
414 
415 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
416 
417 #ifdef CONFIG_BTRFS_DEBUG
418 	/*
419 	 * If we're fragmenting we don't want to make anybody think we can
420 	 * allocate from this block group until we've had a chance to fragment
421 	 * the free space.
422 	 */
423 	if (btrfs_should_fragment_free_space(block_group))
424 		wakeup = false;
425 #endif
426 	/*
427 	 * We don't want to deadlock with somebody trying to allocate a new
428 	 * extent for the extent root while also trying to search the extent
429 	 * root to add free space.  So we skip locking and search the commit
430 	 * root, since its read-only
431 	 */
432 	path->skip_locking = 1;
433 	path->search_commit_root = 1;
434 	path->reada = READA_FORWARD;
435 
436 	key.objectid = last;
437 	key.offset = 0;
438 	key.type = BTRFS_EXTENT_ITEM_KEY;
439 
440 next:
441 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
442 	if (ret < 0)
443 		goto out;
444 
445 	leaf = path->nodes[0];
446 	nritems = btrfs_header_nritems(leaf);
447 
448 	while (1) {
449 		if (btrfs_fs_closing(fs_info) > 1) {
450 			last = (u64)-1;
451 			break;
452 		}
453 
454 		if (path->slots[0] < nritems) {
455 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 		} else {
457 			ret = find_next_key(path, 0, &key);
458 			if (ret)
459 				break;
460 
461 			if (need_resched() ||
462 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
463 				if (wakeup)
464 					caching_ctl->progress = last;
465 				btrfs_release_path(path);
466 				up_read(&fs_info->commit_root_sem);
467 				mutex_unlock(&caching_ctl->mutex);
468 				cond_resched();
469 				mutex_lock(&caching_ctl->mutex);
470 				down_read(&fs_info->commit_root_sem);
471 				goto next;
472 			}
473 
474 			ret = btrfs_next_leaf(extent_root, path);
475 			if (ret < 0)
476 				goto out;
477 			if (ret)
478 				break;
479 			leaf = path->nodes[0];
480 			nritems = btrfs_header_nritems(leaf);
481 			continue;
482 		}
483 
484 		if (key.objectid < last) {
485 			key.objectid = last;
486 			key.offset = 0;
487 			key.type = BTRFS_EXTENT_ITEM_KEY;
488 
489 			if (wakeup)
490 				caching_ctl->progress = last;
491 			btrfs_release_path(path);
492 			goto next;
493 		}
494 
495 		if (key.objectid < block_group->key.objectid) {
496 			path->slots[0]++;
497 			continue;
498 		}
499 
500 		if (key.objectid >= block_group->key.objectid +
501 		    block_group->key.offset)
502 			break;
503 
504 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 		    key.type == BTRFS_METADATA_ITEM_KEY) {
506 			total_found += add_new_free_space(block_group, last,
507 							  key.objectid);
508 			if (key.type == BTRFS_METADATA_ITEM_KEY)
509 				last = key.objectid +
510 					fs_info->nodesize;
511 			else
512 				last = key.objectid + key.offset;
513 
514 			if (total_found > CACHING_CTL_WAKE_UP) {
515 				total_found = 0;
516 				if (wakeup)
517 					wake_up(&caching_ctl->wait);
518 			}
519 		}
520 		path->slots[0]++;
521 	}
522 	ret = 0;
523 
524 	total_found += add_new_free_space(block_group, last,
525 					  block_group->key.objectid +
526 					  block_group->key.offset);
527 	caching_ctl->progress = (u64)-1;
528 
529 out:
530 	btrfs_free_path(path);
531 	return ret;
532 }
533 
534 static noinline void caching_thread(struct btrfs_work *work)
535 {
536 	struct btrfs_block_group_cache *block_group;
537 	struct btrfs_fs_info *fs_info;
538 	struct btrfs_caching_control *caching_ctl;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 
545 	mutex_lock(&caching_ctl->mutex);
546 	down_read(&fs_info->commit_root_sem);
547 
548 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 		ret = load_free_space_tree(caching_ctl);
550 	else
551 		ret = load_extent_tree_free(caching_ctl);
552 
553 	spin_lock(&block_group->lock);
554 	block_group->caching_ctl = NULL;
555 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 	spin_unlock(&block_group->lock);
557 
558 #ifdef CONFIG_BTRFS_DEBUG
559 	if (btrfs_should_fragment_free_space(block_group)) {
560 		u64 bytes_used;
561 
562 		spin_lock(&block_group->space_info->lock);
563 		spin_lock(&block_group->lock);
564 		bytes_used = block_group->key.offset -
565 			btrfs_block_group_used(&block_group->item);
566 		block_group->space_info->bytes_used += bytes_used >> 1;
567 		spin_unlock(&block_group->lock);
568 		spin_unlock(&block_group->space_info->lock);
569 		fragment_free_space(block_group);
570 	}
571 #endif
572 
573 	caching_ctl->progress = (u64)-1;
574 
575 	up_read(&fs_info->commit_root_sem);
576 	free_excluded_extents(block_group);
577 	mutex_unlock(&caching_ctl->mutex);
578 
579 	wake_up(&caching_ctl->wait);
580 
581 	put_caching_control(caching_ctl);
582 	btrfs_put_block_group(block_group);
583 }
584 
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586 			     int load_cache_only)
587 {
588 	DEFINE_WAIT(wait);
589 	struct btrfs_fs_info *fs_info = cache->fs_info;
590 	struct btrfs_caching_control *caching_ctl;
591 	int ret = 0;
592 
593 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594 	if (!caching_ctl)
595 		return -ENOMEM;
596 
597 	INIT_LIST_HEAD(&caching_ctl->list);
598 	mutex_init(&caching_ctl->mutex);
599 	init_waitqueue_head(&caching_ctl->wait);
600 	caching_ctl->block_group = cache;
601 	caching_ctl->progress = cache->key.objectid;
602 	refcount_set(&caching_ctl->count, 1);
603 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 			caching_thread, NULL, NULL);
605 
606 	spin_lock(&cache->lock);
607 	/*
608 	 * This should be a rare occasion, but this could happen I think in the
609 	 * case where one thread starts to load the space cache info, and then
610 	 * some other thread starts a transaction commit which tries to do an
611 	 * allocation while the other thread is still loading the space cache
612 	 * info.  The previous loop should have kept us from choosing this block
613 	 * group, but if we've moved to the state where we will wait on caching
614 	 * block groups we need to first check if we're doing a fast load here,
615 	 * so we can wait for it to finish, otherwise we could end up allocating
616 	 * from a block group who's cache gets evicted for one reason or
617 	 * another.
618 	 */
619 	while (cache->cached == BTRFS_CACHE_FAST) {
620 		struct btrfs_caching_control *ctl;
621 
622 		ctl = cache->caching_ctl;
623 		refcount_inc(&ctl->count);
624 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 		spin_unlock(&cache->lock);
626 
627 		schedule();
628 
629 		finish_wait(&ctl->wait, &wait);
630 		put_caching_control(ctl);
631 		spin_lock(&cache->lock);
632 	}
633 
634 	if (cache->cached != BTRFS_CACHE_NO) {
635 		spin_unlock(&cache->lock);
636 		kfree(caching_ctl);
637 		return 0;
638 	}
639 	WARN_ON(cache->caching_ctl);
640 	cache->caching_ctl = caching_ctl;
641 	cache->cached = BTRFS_CACHE_FAST;
642 	spin_unlock(&cache->lock);
643 
644 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645 		mutex_lock(&caching_ctl->mutex);
646 		ret = load_free_space_cache(cache);
647 
648 		spin_lock(&cache->lock);
649 		if (ret == 1) {
650 			cache->caching_ctl = NULL;
651 			cache->cached = BTRFS_CACHE_FINISHED;
652 			cache->last_byte_to_unpin = (u64)-1;
653 			caching_ctl->progress = (u64)-1;
654 		} else {
655 			if (load_cache_only) {
656 				cache->caching_ctl = NULL;
657 				cache->cached = BTRFS_CACHE_NO;
658 			} else {
659 				cache->cached = BTRFS_CACHE_STARTED;
660 				cache->has_caching_ctl = 1;
661 			}
662 		}
663 		spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665 		if (ret == 1 &&
666 		    btrfs_should_fragment_free_space(cache)) {
667 			u64 bytes_used;
668 
669 			spin_lock(&cache->space_info->lock);
670 			spin_lock(&cache->lock);
671 			bytes_used = cache->key.offset -
672 				btrfs_block_group_used(&cache->item);
673 			cache->space_info->bytes_used += bytes_used >> 1;
674 			spin_unlock(&cache->lock);
675 			spin_unlock(&cache->space_info->lock);
676 			fragment_free_space(cache);
677 		}
678 #endif
679 		mutex_unlock(&caching_ctl->mutex);
680 
681 		wake_up(&caching_ctl->wait);
682 		if (ret == 1) {
683 			put_caching_control(caching_ctl);
684 			free_excluded_extents(cache);
685 			return 0;
686 		}
687 	} else {
688 		/*
689 		 * We're either using the free space tree or no caching at all.
690 		 * Set cached to the appropriate value and wakeup any waiters.
691 		 */
692 		spin_lock(&cache->lock);
693 		if (load_cache_only) {
694 			cache->caching_ctl = NULL;
695 			cache->cached = BTRFS_CACHE_NO;
696 		} else {
697 			cache->cached = BTRFS_CACHE_STARTED;
698 			cache->has_caching_ctl = 1;
699 		}
700 		spin_unlock(&cache->lock);
701 		wake_up(&caching_ctl->wait);
702 	}
703 
704 	if (load_cache_only) {
705 		put_caching_control(caching_ctl);
706 		return 0;
707 	}
708 
709 	down_write(&fs_info->commit_root_sem);
710 	refcount_inc(&caching_ctl->count);
711 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 	up_write(&fs_info->commit_root_sem);
713 
714 	btrfs_get_block_group(cache);
715 
716 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717 
718 	return ret;
719 }
720 
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727 	return block_group_cache_tree_search(info, bytenr, 0);
728 }
729 
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 						 struct btrfs_fs_info *info,
735 						 u64 bytenr)
736 {
737 	return block_group_cache_tree_search(info, bytenr, 1);
738 }
739 
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 						  u64 flags)
742 {
743 	struct list_head *head = &info->space_info;
744 	struct btrfs_space_info *found;
745 
746 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(found, head, list) {
750 		if (found->flags & flags) {
751 			rcu_read_unlock();
752 			return found;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return NULL;
757 }
758 
759 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
760 			     struct btrfs_ref *ref, int sign)
761 {
762 	struct btrfs_space_info *space_info;
763 	s64 num_bytes;
764 	u64 flags;
765 
766 	ASSERT(sign == 1 || sign == -1);
767 	num_bytes = sign * ref->len;
768 	if (ref->type == BTRFS_REF_METADATA) {
769 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
770 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
771 		else
772 			flags = BTRFS_BLOCK_GROUP_METADATA;
773 	} else {
774 		flags = BTRFS_BLOCK_GROUP_DATA;
775 	}
776 
777 	space_info = __find_space_info(fs_info, flags);
778 	ASSERT(space_info);
779 	percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
780 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
781 }
782 
783 /*
784  * after adding space to the filesystem, we need to clear the full flags
785  * on all the space infos.
786  */
787 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
788 {
789 	struct list_head *head = &info->space_info;
790 	struct btrfs_space_info *found;
791 
792 	rcu_read_lock();
793 	list_for_each_entry_rcu(found, head, list)
794 		found->full = 0;
795 	rcu_read_unlock();
796 }
797 
798 /* simple helper to search for an existing data extent at a given offset */
799 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
800 {
801 	int ret;
802 	struct btrfs_key key;
803 	struct btrfs_path *path;
804 
805 	path = btrfs_alloc_path();
806 	if (!path)
807 		return -ENOMEM;
808 
809 	key.objectid = start;
810 	key.offset = len;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
813 	btrfs_free_path(path);
814 	return ret;
815 }
816 
817 /*
818  * helper function to lookup reference count and flags of a tree block.
819  *
820  * the head node for delayed ref is used to store the sum of all the
821  * reference count modifications queued up in the rbtree. the head
822  * node may also store the extent flags to set. This way you can check
823  * to see what the reference count and extent flags would be if all of
824  * the delayed refs are not processed.
825  */
826 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
827 			     struct btrfs_fs_info *fs_info, u64 bytenr,
828 			     u64 offset, int metadata, u64 *refs, u64 *flags)
829 {
830 	struct btrfs_delayed_ref_head *head;
831 	struct btrfs_delayed_ref_root *delayed_refs;
832 	struct btrfs_path *path;
833 	struct btrfs_extent_item *ei;
834 	struct extent_buffer *leaf;
835 	struct btrfs_key key;
836 	u32 item_size;
837 	u64 num_refs;
838 	u64 extent_flags;
839 	int ret;
840 
841 	/*
842 	 * If we don't have skinny metadata, don't bother doing anything
843 	 * different
844 	 */
845 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
846 		offset = fs_info->nodesize;
847 		metadata = 0;
848 	}
849 
850 	path = btrfs_alloc_path();
851 	if (!path)
852 		return -ENOMEM;
853 
854 	if (!trans) {
855 		path->skip_locking = 1;
856 		path->search_commit_root = 1;
857 	}
858 
859 search_again:
860 	key.objectid = bytenr;
861 	key.offset = offset;
862 	if (metadata)
863 		key.type = BTRFS_METADATA_ITEM_KEY;
864 	else
865 		key.type = BTRFS_EXTENT_ITEM_KEY;
866 
867 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
868 	if (ret < 0)
869 		goto out_free;
870 
871 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
872 		if (path->slots[0]) {
873 			path->slots[0]--;
874 			btrfs_item_key_to_cpu(path->nodes[0], &key,
875 					      path->slots[0]);
876 			if (key.objectid == bytenr &&
877 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
878 			    key.offset == fs_info->nodesize)
879 				ret = 0;
880 		}
881 	}
882 
883 	if (ret == 0) {
884 		leaf = path->nodes[0];
885 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
886 		if (item_size >= sizeof(*ei)) {
887 			ei = btrfs_item_ptr(leaf, path->slots[0],
888 					    struct btrfs_extent_item);
889 			num_refs = btrfs_extent_refs(leaf, ei);
890 			extent_flags = btrfs_extent_flags(leaf, ei);
891 		} else {
892 			ret = -EINVAL;
893 			btrfs_print_v0_err(fs_info);
894 			if (trans)
895 				btrfs_abort_transaction(trans, ret);
896 			else
897 				btrfs_handle_fs_error(fs_info, ret, NULL);
898 
899 			goto out_free;
900 		}
901 
902 		BUG_ON(num_refs == 0);
903 	} else {
904 		num_refs = 0;
905 		extent_flags = 0;
906 		ret = 0;
907 	}
908 
909 	if (!trans)
910 		goto out;
911 
912 	delayed_refs = &trans->transaction->delayed_refs;
913 	spin_lock(&delayed_refs->lock);
914 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
915 	if (head) {
916 		if (!mutex_trylock(&head->mutex)) {
917 			refcount_inc(&head->refs);
918 			spin_unlock(&delayed_refs->lock);
919 
920 			btrfs_release_path(path);
921 
922 			/*
923 			 * Mutex was contended, block until it's released and try
924 			 * again
925 			 */
926 			mutex_lock(&head->mutex);
927 			mutex_unlock(&head->mutex);
928 			btrfs_put_delayed_ref_head(head);
929 			goto search_again;
930 		}
931 		spin_lock(&head->lock);
932 		if (head->extent_op && head->extent_op->update_flags)
933 			extent_flags |= head->extent_op->flags_to_set;
934 		else
935 			BUG_ON(num_refs == 0);
936 
937 		num_refs += head->ref_mod;
938 		spin_unlock(&head->lock);
939 		mutex_unlock(&head->mutex);
940 	}
941 	spin_unlock(&delayed_refs->lock);
942 out:
943 	WARN_ON(num_refs == 0);
944 	if (refs)
945 		*refs = num_refs;
946 	if (flags)
947 		*flags = extent_flags;
948 out_free:
949 	btrfs_free_path(path);
950 	return ret;
951 }
952 
953 /*
954  * Back reference rules.  Back refs have three main goals:
955  *
956  * 1) differentiate between all holders of references to an extent so that
957  *    when a reference is dropped we can make sure it was a valid reference
958  *    before freeing the extent.
959  *
960  * 2) Provide enough information to quickly find the holders of an extent
961  *    if we notice a given block is corrupted or bad.
962  *
963  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
964  *    maintenance.  This is actually the same as #2, but with a slightly
965  *    different use case.
966  *
967  * There are two kinds of back refs. The implicit back refs is optimized
968  * for pointers in non-shared tree blocks. For a given pointer in a block,
969  * back refs of this kind provide information about the block's owner tree
970  * and the pointer's key. These information allow us to find the block by
971  * b-tree searching. The full back refs is for pointers in tree blocks not
972  * referenced by their owner trees. The location of tree block is recorded
973  * in the back refs. Actually the full back refs is generic, and can be
974  * used in all cases the implicit back refs is used. The major shortcoming
975  * of the full back refs is its overhead. Every time a tree block gets
976  * COWed, we have to update back refs entry for all pointers in it.
977  *
978  * For a newly allocated tree block, we use implicit back refs for
979  * pointers in it. This means most tree related operations only involve
980  * implicit back refs. For a tree block created in old transaction, the
981  * only way to drop a reference to it is COW it. So we can detect the
982  * event that tree block loses its owner tree's reference and do the
983  * back refs conversion.
984  *
985  * When a tree block is COWed through a tree, there are four cases:
986  *
987  * The reference count of the block is one and the tree is the block's
988  * owner tree. Nothing to do in this case.
989  *
990  * The reference count of the block is one and the tree is not the
991  * block's owner tree. In this case, full back refs is used for pointers
992  * in the block. Remove these full back refs, add implicit back refs for
993  * every pointers in the new block.
994  *
995  * The reference count of the block is greater than one and the tree is
996  * the block's owner tree. In this case, implicit back refs is used for
997  * pointers in the block. Add full back refs for every pointers in the
998  * block, increase lower level extents' reference counts. The original
999  * implicit back refs are entailed to the new block.
1000  *
1001  * The reference count of the block is greater than one and the tree is
1002  * not the block's owner tree. Add implicit back refs for every pointer in
1003  * the new block, increase lower level extents' reference count.
1004  *
1005  * Back Reference Key composing:
1006  *
1007  * The key objectid corresponds to the first byte in the extent,
1008  * The key type is used to differentiate between types of back refs.
1009  * There are different meanings of the key offset for different types
1010  * of back refs.
1011  *
1012  * File extents can be referenced by:
1013  *
1014  * - multiple snapshots, subvolumes, or different generations in one subvol
1015  * - different files inside a single subvolume
1016  * - different offsets inside a file (bookend extents in file.c)
1017  *
1018  * The extent ref structure for the implicit back refs has fields for:
1019  *
1020  * - Objectid of the subvolume root
1021  * - objectid of the file holding the reference
1022  * - original offset in the file
1023  * - how many bookend extents
1024  *
1025  * The key offset for the implicit back refs is hash of the first
1026  * three fields.
1027  *
1028  * The extent ref structure for the full back refs has field for:
1029  *
1030  * - number of pointers in the tree leaf
1031  *
1032  * The key offset for the implicit back refs is the first byte of
1033  * the tree leaf
1034  *
1035  * When a file extent is allocated, The implicit back refs is used.
1036  * the fields are filled in:
1037  *
1038  *     (root_key.objectid, inode objectid, offset in file, 1)
1039  *
1040  * When a file extent is removed file truncation, we find the
1041  * corresponding implicit back refs and check the following fields:
1042  *
1043  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1044  *
1045  * Btree extents can be referenced by:
1046  *
1047  * - Different subvolumes
1048  *
1049  * Both the implicit back refs and the full back refs for tree blocks
1050  * only consist of key. The key offset for the implicit back refs is
1051  * objectid of block's owner tree. The key offset for the full back refs
1052  * is the first byte of parent block.
1053  *
1054  * When implicit back refs is used, information about the lowest key and
1055  * level of the tree block are required. These information are stored in
1056  * tree block info structure.
1057  */
1058 
1059 /*
1060  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1061  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1062  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1063  */
1064 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1065 				     struct btrfs_extent_inline_ref *iref,
1066 				     enum btrfs_inline_ref_type is_data)
1067 {
1068 	int type = btrfs_extent_inline_ref_type(eb, iref);
1069 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1070 
1071 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1072 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1073 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1074 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1075 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1076 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1077 				return type;
1078 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1079 				ASSERT(eb->fs_info);
1080 				/*
1081 				 * Every shared one has parent tree
1082 				 * block, which must be aligned to
1083 				 * nodesize.
1084 				 */
1085 				if (offset &&
1086 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1087 					return type;
1088 			}
1089 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1090 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1091 				return type;
1092 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1093 				ASSERT(eb->fs_info);
1094 				/*
1095 				 * Every shared one has parent tree
1096 				 * block, which must be aligned to
1097 				 * nodesize.
1098 				 */
1099 				if (offset &&
1100 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1101 					return type;
1102 			}
1103 		} else {
1104 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1105 			return type;
1106 		}
1107 	}
1108 
1109 	btrfs_print_leaf((struct extent_buffer *)eb);
1110 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1111 		  eb->start, type);
1112 	WARN_ON(1);
1113 
1114 	return BTRFS_REF_TYPE_INVALID;
1115 }
1116 
1117 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1118 {
1119 	u32 high_crc = ~(u32)0;
1120 	u32 low_crc = ~(u32)0;
1121 	__le64 lenum;
1122 
1123 	lenum = cpu_to_le64(root_objectid);
1124 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1125 	lenum = cpu_to_le64(owner);
1126 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1127 	lenum = cpu_to_le64(offset);
1128 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1129 
1130 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1131 }
1132 
1133 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1134 				     struct btrfs_extent_data_ref *ref)
1135 {
1136 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1137 				    btrfs_extent_data_ref_objectid(leaf, ref),
1138 				    btrfs_extent_data_ref_offset(leaf, ref));
1139 }
1140 
1141 static int match_extent_data_ref(struct extent_buffer *leaf,
1142 				 struct btrfs_extent_data_ref *ref,
1143 				 u64 root_objectid, u64 owner, u64 offset)
1144 {
1145 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1146 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1147 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1148 		return 0;
1149 	return 1;
1150 }
1151 
1152 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1153 					   struct btrfs_path *path,
1154 					   u64 bytenr, u64 parent,
1155 					   u64 root_objectid,
1156 					   u64 owner, u64 offset)
1157 {
1158 	struct btrfs_root *root = trans->fs_info->extent_root;
1159 	struct btrfs_key key;
1160 	struct btrfs_extent_data_ref *ref;
1161 	struct extent_buffer *leaf;
1162 	u32 nritems;
1163 	int ret;
1164 	int recow;
1165 	int err = -ENOENT;
1166 
1167 	key.objectid = bytenr;
1168 	if (parent) {
1169 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1170 		key.offset = parent;
1171 	} else {
1172 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1173 		key.offset = hash_extent_data_ref(root_objectid,
1174 						  owner, offset);
1175 	}
1176 again:
1177 	recow = 0;
1178 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179 	if (ret < 0) {
1180 		err = ret;
1181 		goto fail;
1182 	}
1183 
1184 	if (parent) {
1185 		if (!ret)
1186 			return 0;
1187 		goto fail;
1188 	}
1189 
1190 	leaf = path->nodes[0];
1191 	nritems = btrfs_header_nritems(leaf);
1192 	while (1) {
1193 		if (path->slots[0] >= nritems) {
1194 			ret = btrfs_next_leaf(root, path);
1195 			if (ret < 0)
1196 				err = ret;
1197 			if (ret)
1198 				goto fail;
1199 
1200 			leaf = path->nodes[0];
1201 			nritems = btrfs_header_nritems(leaf);
1202 			recow = 1;
1203 		}
1204 
1205 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1206 		if (key.objectid != bytenr ||
1207 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1208 			goto fail;
1209 
1210 		ref = btrfs_item_ptr(leaf, path->slots[0],
1211 				     struct btrfs_extent_data_ref);
1212 
1213 		if (match_extent_data_ref(leaf, ref, root_objectid,
1214 					  owner, offset)) {
1215 			if (recow) {
1216 				btrfs_release_path(path);
1217 				goto again;
1218 			}
1219 			err = 0;
1220 			break;
1221 		}
1222 		path->slots[0]++;
1223 	}
1224 fail:
1225 	return err;
1226 }
1227 
1228 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1229 					   struct btrfs_path *path,
1230 					   u64 bytenr, u64 parent,
1231 					   u64 root_objectid, u64 owner,
1232 					   u64 offset, int refs_to_add)
1233 {
1234 	struct btrfs_root *root = trans->fs_info->extent_root;
1235 	struct btrfs_key key;
1236 	struct extent_buffer *leaf;
1237 	u32 size;
1238 	u32 num_refs;
1239 	int ret;
1240 
1241 	key.objectid = bytenr;
1242 	if (parent) {
1243 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1244 		key.offset = parent;
1245 		size = sizeof(struct btrfs_shared_data_ref);
1246 	} else {
1247 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1248 		key.offset = hash_extent_data_ref(root_objectid,
1249 						  owner, offset);
1250 		size = sizeof(struct btrfs_extent_data_ref);
1251 	}
1252 
1253 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1254 	if (ret && ret != -EEXIST)
1255 		goto fail;
1256 
1257 	leaf = path->nodes[0];
1258 	if (parent) {
1259 		struct btrfs_shared_data_ref *ref;
1260 		ref = btrfs_item_ptr(leaf, path->slots[0],
1261 				     struct btrfs_shared_data_ref);
1262 		if (ret == 0) {
1263 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1264 		} else {
1265 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1266 			num_refs += refs_to_add;
1267 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1268 		}
1269 	} else {
1270 		struct btrfs_extent_data_ref *ref;
1271 		while (ret == -EEXIST) {
1272 			ref = btrfs_item_ptr(leaf, path->slots[0],
1273 					     struct btrfs_extent_data_ref);
1274 			if (match_extent_data_ref(leaf, ref, root_objectid,
1275 						  owner, offset))
1276 				break;
1277 			btrfs_release_path(path);
1278 			key.offset++;
1279 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1280 						      size);
1281 			if (ret && ret != -EEXIST)
1282 				goto fail;
1283 
1284 			leaf = path->nodes[0];
1285 		}
1286 		ref = btrfs_item_ptr(leaf, path->slots[0],
1287 				     struct btrfs_extent_data_ref);
1288 		if (ret == 0) {
1289 			btrfs_set_extent_data_ref_root(leaf, ref,
1290 						       root_objectid);
1291 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1292 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1293 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1294 		} else {
1295 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1296 			num_refs += refs_to_add;
1297 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1298 		}
1299 	}
1300 	btrfs_mark_buffer_dirty(leaf);
1301 	ret = 0;
1302 fail:
1303 	btrfs_release_path(path);
1304 	return ret;
1305 }
1306 
1307 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1308 					   struct btrfs_path *path,
1309 					   int refs_to_drop, int *last_ref)
1310 {
1311 	struct btrfs_key key;
1312 	struct btrfs_extent_data_ref *ref1 = NULL;
1313 	struct btrfs_shared_data_ref *ref2 = NULL;
1314 	struct extent_buffer *leaf;
1315 	u32 num_refs = 0;
1316 	int ret = 0;
1317 
1318 	leaf = path->nodes[0];
1319 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1320 
1321 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1322 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1323 				      struct btrfs_extent_data_ref);
1324 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1325 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1326 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1327 				      struct btrfs_shared_data_ref);
1328 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1329 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1330 		btrfs_print_v0_err(trans->fs_info);
1331 		btrfs_abort_transaction(trans, -EINVAL);
1332 		return -EINVAL;
1333 	} else {
1334 		BUG();
1335 	}
1336 
1337 	BUG_ON(num_refs < refs_to_drop);
1338 	num_refs -= refs_to_drop;
1339 
1340 	if (num_refs == 0) {
1341 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1342 		*last_ref = 1;
1343 	} else {
1344 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1345 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1346 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1347 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1348 		btrfs_mark_buffer_dirty(leaf);
1349 	}
1350 	return ret;
1351 }
1352 
1353 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1354 					  struct btrfs_extent_inline_ref *iref)
1355 {
1356 	struct btrfs_key key;
1357 	struct extent_buffer *leaf;
1358 	struct btrfs_extent_data_ref *ref1;
1359 	struct btrfs_shared_data_ref *ref2;
1360 	u32 num_refs = 0;
1361 	int type;
1362 
1363 	leaf = path->nodes[0];
1364 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1365 
1366 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1367 	if (iref) {
1368 		/*
1369 		 * If type is invalid, we should have bailed out earlier than
1370 		 * this call.
1371 		 */
1372 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1373 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1374 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1375 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1376 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1377 		} else {
1378 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1379 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1380 		}
1381 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1382 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1383 				      struct btrfs_extent_data_ref);
1384 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1385 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1386 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1387 				      struct btrfs_shared_data_ref);
1388 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1389 	} else {
1390 		WARN_ON(1);
1391 	}
1392 	return num_refs;
1393 }
1394 
1395 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_root *root = trans->fs_info->extent_root;
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1414 	if (ret > 0)
1415 		ret = -ENOENT;
1416 	return ret;
1417 }
1418 
1419 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1420 					  struct btrfs_path *path,
1421 					  u64 bytenr, u64 parent,
1422 					  u64 root_objectid)
1423 {
1424 	struct btrfs_key key;
1425 	int ret;
1426 
1427 	key.objectid = bytenr;
1428 	if (parent) {
1429 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 		key.offset = parent;
1431 	} else {
1432 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1433 		key.offset = root_objectid;
1434 	}
1435 
1436 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1437 				      path, &key, 0);
1438 	btrfs_release_path(path);
1439 	return ret;
1440 }
1441 
1442 static inline int extent_ref_type(u64 parent, u64 owner)
1443 {
1444 	int type;
1445 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1446 		if (parent > 0)
1447 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1448 		else
1449 			type = BTRFS_TREE_BLOCK_REF_KEY;
1450 	} else {
1451 		if (parent > 0)
1452 			type = BTRFS_SHARED_DATA_REF_KEY;
1453 		else
1454 			type = BTRFS_EXTENT_DATA_REF_KEY;
1455 	}
1456 	return type;
1457 }
1458 
1459 static int find_next_key(struct btrfs_path *path, int level,
1460 			 struct btrfs_key *key)
1461 
1462 {
1463 	for (; level < BTRFS_MAX_LEVEL; level++) {
1464 		if (!path->nodes[level])
1465 			break;
1466 		if (path->slots[level] + 1 >=
1467 		    btrfs_header_nritems(path->nodes[level]))
1468 			continue;
1469 		if (level == 0)
1470 			btrfs_item_key_to_cpu(path->nodes[level], key,
1471 					      path->slots[level] + 1);
1472 		else
1473 			btrfs_node_key_to_cpu(path->nodes[level], key,
1474 					      path->slots[level] + 1);
1475 		return 0;
1476 	}
1477 	return 1;
1478 }
1479 
1480 /*
1481  * look for inline back ref. if back ref is found, *ref_ret is set
1482  * to the address of inline back ref, and 0 is returned.
1483  *
1484  * if back ref isn't found, *ref_ret is set to the address where it
1485  * should be inserted, and -ENOENT is returned.
1486  *
1487  * if insert is true and there are too many inline back refs, the path
1488  * points to the extent item, and -EAGAIN is returned.
1489  *
1490  * NOTE: inline back refs are ordered in the same way that back ref
1491  *	 items in the tree are ordered.
1492  */
1493 static noinline_for_stack
1494 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1495 				 struct btrfs_path *path,
1496 				 struct btrfs_extent_inline_ref **ref_ret,
1497 				 u64 bytenr, u64 num_bytes,
1498 				 u64 parent, u64 root_objectid,
1499 				 u64 owner, u64 offset, int insert)
1500 {
1501 	struct btrfs_fs_info *fs_info = trans->fs_info;
1502 	struct btrfs_root *root = fs_info->extent_root;
1503 	struct btrfs_key key;
1504 	struct extent_buffer *leaf;
1505 	struct btrfs_extent_item *ei;
1506 	struct btrfs_extent_inline_ref *iref;
1507 	u64 flags;
1508 	u64 item_size;
1509 	unsigned long ptr;
1510 	unsigned long end;
1511 	int extra_size;
1512 	int type;
1513 	int want;
1514 	int ret;
1515 	int err = 0;
1516 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1517 	int needed;
1518 
1519 	key.objectid = bytenr;
1520 	key.type = BTRFS_EXTENT_ITEM_KEY;
1521 	key.offset = num_bytes;
1522 
1523 	want = extent_ref_type(parent, owner);
1524 	if (insert) {
1525 		extra_size = btrfs_extent_inline_ref_size(want);
1526 		path->keep_locks = 1;
1527 	} else
1528 		extra_size = -1;
1529 
1530 	/*
1531 	 * Owner is our level, so we can just add one to get the level for the
1532 	 * block we are interested in.
1533 	 */
1534 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1535 		key.type = BTRFS_METADATA_ITEM_KEY;
1536 		key.offset = owner;
1537 	}
1538 
1539 again:
1540 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1541 	if (ret < 0) {
1542 		err = ret;
1543 		goto out;
1544 	}
1545 
1546 	/*
1547 	 * We may be a newly converted file system which still has the old fat
1548 	 * extent entries for metadata, so try and see if we have one of those.
1549 	 */
1550 	if (ret > 0 && skinny_metadata) {
1551 		skinny_metadata = false;
1552 		if (path->slots[0]) {
1553 			path->slots[0]--;
1554 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1555 					      path->slots[0]);
1556 			if (key.objectid == bytenr &&
1557 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1558 			    key.offset == num_bytes)
1559 				ret = 0;
1560 		}
1561 		if (ret) {
1562 			key.objectid = bytenr;
1563 			key.type = BTRFS_EXTENT_ITEM_KEY;
1564 			key.offset = num_bytes;
1565 			btrfs_release_path(path);
1566 			goto again;
1567 		}
1568 	}
1569 
1570 	if (ret && !insert) {
1571 		err = -ENOENT;
1572 		goto out;
1573 	} else if (WARN_ON(ret)) {
1574 		err = -EIO;
1575 		goto out;
1576 	}
1577 
1578 	leaf = path->nodes[0];
1579 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1580 	if (unlikely(item_size < sizeof(*ei))) {
1581 		err = -EINVAL;
1582 		btrfs_print_v0_err(fs_info);
1583 		btrfs_abort_transaction(trans, err);
1584 		goto out;
1585 	}
1586 
1587 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1588 	flags = btrfs_extent_flags(leaf, ei);
1589 
1590 	ptr = (unsigned long)(ei + 1);
1591 	end = (unsigned long)ei + item_size;
1592 
1593 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1594 		ptr += sizeof(struct btrfs_tree_block_info);
1595 		BUG_ON(ptr > end);
1596 	}
1597 
1598 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1599 		needed = BTRFS_REF_TYPE_DATA;
1600 	else
1601 		needed = BTRFS_REF_TYPE_BLOCK;
1602 
1603 	err = -ENOENT;
1604 	while (1) {
1605 		if (ptr >= end) {
1606 			WARN_ON(ptr > end);
1607 			break;
1608 		}
1609 		iref = (struct btrfs_extent_inline_ref *)ptr;
1610 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1611 		if (type == BTRFS_REF_TYPE_INVALID) {
1612 			err = -EUCLEAN;
1613 			goto out;
1614 		}
1615 
1616 		if (want < type)
1617 			break;
1618 		if (want > type) {
1619 			ptr += btrfs_extent_inline_ref_size(type);
1620 			continue;
1621 		}
1622 
1623 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1624 			struct btrfs_extent_data_ref *dref;
1625 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1626 			if (match_extent_data_ref(leaf, dref, root_objectid,
1627 						  owner, offset)) {
1628 				err = 0;
1629 				break;
1630 			}
1631 			if (hash_extent_data_ref_item(leaf, dref) <
1632 			    hash_extent_data_ref(root_objectid, owner, offset))
1633 				break;
1634 		} else {
1635 			u64 ref_offset;
1636 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1637 			if (parent > 0) {
1638 				if (parent == ref_offset) {
1639 					err = 0;
1640 					break;
1641 				}
1642 				if (ref_offset < parent)
1643 					break;
1644 			} else {
1645 				if (root_objectid == ref_offset) {
1646 					err = 0;
1647 					break;
1648 				}
1649 				if (ref_offset < root_objectid)
1650 					break;
1651 			}
1652 		}
1653 		ptr += btrfs_extent_inline_ref_size(type);
1654 	}
1655 	if (err == -ENOENT && insert) {
1656 		if (item_size + extra_size >=
1657 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1658 			err = -EAGAIN;
1659 			goto out;
1660 		}
1661 		/*
1662 		 * To add new inline back ref, we have to make sure
1663 		 * there is no corresponding back ref item.
1664 		 * For simplicity, we just do not add new inline back
1665 		 * ref if there is any kind of item for this block
1666 		 */
1667 		if (find_next_key(path, 0, &key) == 0 &&
1668 		    key.objectid == bytenr &&
1669 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1670 			err = -EAGAIN;
1671 			goto out;
1672 		}
1673 	}
1674 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1675 out:
1676 	if (insert) {
1677 		path->keep_locks = 0;
1678 		btrfs_unlock_up_safe(path, 1);
1679 	}
1680 	return err;
1681 }
1682 
1683 /*
1684  * helper to add new inline back ref
1685  */
1686 static noinline_for_stack
1687 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1688 				 struct btrfs_path *path,
1689 				 struct btrfs_extent_inline_ref *iref,
1690 				 u64 parent, u64 root_objectid,
1691 				 u64 owner, u64 offset, int refs_to_add,
1692 				 struct btrfs_delayed_extent_op *extent_op)
1693 {
1694 	struct extent_buffer *leaf;
1695 	struct btrfs_extent_item *ei;
1696 	unsigned long ptr;
1697 	unsigned long end;
1698 	unsigned long item_offset;
1699 	u64 refs;
1700 	int size;
1701 	int type;
1702 
1703 	leaf = path->nodes[0];
1704 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1705 	item_offset = (unsigned long)iref - (unsigned long)ei;
1706 
1707 	type = extent_ref_type(parent, owner);
1708 	size = btrfs_extent_inline_ref_size(type);
1709 
1710 	btrfs_extend_item(path, size);
1711 
1712 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 	refs = btrfs_extent_refs(leaf, ei);
1714 	refs += refs_to_add;
1715 	btrfs_set_extent_refs(leaf, ei, refs);
1716 	if (extent_op)
1717 		__run_delayed_extent_op(extent_op, leaf, ei);
1718 
1719 	ptr = (unsigned long)ei + item_offset;
1720 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1721 	if (ptr < end - size)
1722 		memmove_extent_buffer(leaf, ptr + size, ptr,
1723 				      end - size - ptr);
1724 
1725 	iref = (struct btrfs_extent_inline_ref *)ptr;
1726 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1727 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1728 		struct btrfs_extent_data_ref *dref;
1729 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1730 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1731 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1732 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1733 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1734 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1735 		struct btrfs_shared_data_ref *sref;
1736 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1737 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1738 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1740 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1741 	} else {
1742 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1743 	}
1744 	btrfs_mark_buffer_dirty(leaf);
1745 }
1746 
1747 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1748 				 struct btrfs_path *path,
1749 				 struct btrfs_extent_inline_ref **ref_ret,
1750 				 u64 bytenr, u64 num_bytes, u64 parent,
1751 				 u64 root_objectid, u64 owner, u64 offset)
1752 {
1753 	int ret;
1754 
1755 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1756 					   num_bytes, parent, root_objectid,
1757 					   owner, offset, 0);
1758 	if (ret != -ENOENT)
1759 		return ret;
1760 
1761 	btrfs_release_path(path);
1762 	*ref_ret = NULL;
1763 
1764 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1765 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1766 					    root_objectid);
1767 	} else {
1768 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1769 					     root_objectid, owner, offset);
1770 	}
1771 	return ret;
1772 }
1773 
1774 /*
1775  * helper to update/remove inline back ref
1776  */
1777 static noinline_for_stack
1778 void update_inline_extent_backref(struct btrfs_path *path,
1779 				  struct btrfs_extent_inline_ref *iref,
1780 				  int refs_to_mod,
1781 				  struct btrfs_delayed_extent_op *extent_op,
1782 				  int *last_ref)
1783 {
1784 	struct extent_buffer *leaf = path->nodes[0];
1785 	struct btrfs_extent_item *ei;
1786 	struct btrfs_extent_data_ref *dref = NULL;
1787 	struct btrfs_shared_data_ref *sref = NULL;
1788 	unsigned long ptr;
1789 	unsigned long end;
1790 	u32 item_size;
1791 	int size;
1792 	int type;
1793 	u64 refs;
1794 
1795 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1796 	refs = btrfs_extent_refs(leaf, ei);
1797 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1798 	refs += refs_to_mod;
1799 	btrfs_set_extent_refs(leaf, ei, refs);
1800 	if (extent_op)
1801 		__run_delayed_extent_op(extent_op, leaf, ei);
1802 
1803 	/*
1804 	 * If type is invalid, we should have bailed out after
1805 	 * lookup_inline_extent_backref().
1806 	 */
1807 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1808 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1809 
1810 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1811 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1812 		refs = btrfs_extent_data_ref_count(leaf, dref);
1813 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1814 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1815 		refs = btrfs_shared_data_ref_count(leaf, sref);
1816 	} else {
1817 		refs = 1;
1818 		BUG_ON(refs_to_mod != -1);
1819 	}
1820 
1821 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1822 	refs += refs_to_mod;
1823 
1824 	if (refs > 0) {
1825 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1826 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1827 		else
1828 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1829 	} else {
1830 		*last_ref = 1;
1831 		size =  btrfs_extent_inline_ref_size(type);
1832 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1833 		ptr = (unsigned long)iref;
1834 		end = (unsigned long)ei + item_size;
1835 		if (ptr + size < end)
1836 			memmove_extent_buffer(leaf, ptr, ptr + size,
1837 					      end - ptr - size);
1838 		item_size -= size;
1839 		btrfs_truncate_item(path, item_size, 1);
1840 	}
1841 	btrfs_mark_buffer_dirty(leaf);
1842 }
1843 
1844 static noinline_for_stack
1845 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_path *path,
1847 				 u64 bytenr, u64 num_bytes, u64 parent,
1848 				 u64 root_objectid, u64 owner,
1849 				 u64 offset, int refs_to_add,
1850 				 struct btrfs_delayed_extent_op *extent_op)
1851 {
1852 	struct btrfs_extent_inline_ref *iref;
1853 	int ret;
1854 
1855 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1856 					   num_bytes, parent, root_objectid,
1857 					   owner, offset, 1);
1858 	if (ret == 0) {
1859 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1860 		update_inline_extent_backref(path, iref, refs_to_add,
1861 					     extent_op, NULL);
1862 	} else if (ret == -ENOENT) {
1863 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1864 					    root_objectid, owner, offset,
1865 					    refs_to_add, extent_op);
1866 		ret = 0;
1867 	}
1868 	return ret;
1869 }
1870 
1871 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1872 				 struct btrfs_path *path,
1873 				 u64 bytenr, u64 parent, u64 root_objectid,
1874 				 u64 owner, u64 offset, int refs_to_add)
1875 {
1876 	int ret;
1877 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1878 		BUG_ON(refs_to_add != 1);
1879 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1880 					    root_objectid);
1881 	} else {
1882 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1883 					     root_objectid, owner, offset,
1884 					     refs_to_add);
1885 	}
1886 	return ret;
1887 }
1888 
1889 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1890 				 struct btrfs_path *path,
1891 				 struct btrfs_extent_inline_ref *iref,
1892 				 int refs_to_drop, int is_data, int *last_ref)
1893 {
1894 	int ret = 0;
1895 
1896 	BUG_ON(!is_data && refs_to_drop != 1);
1897 	if (iref) {
1898 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1899 					     last_ref);
1900 	} else if (is_data) {
1901 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1902 					     last_ref);
1903 	} else {
1904 		*last_ref = 1;
1905 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1906 	}
1907 	return ret;
1908 }
1909 
1910 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1911 			       u64 *discarded_bytes)
1912 {
1913 	int j, ret = 0;
1914 	u64 bytes_left, end;
1915 	u64 aligned_start = ALIGN(start, 1 << 9);
1916 
1917 	if (WARN_ON(start != aligned_start)) {
1918 		len -= aligned_start - start;
1919 		len = round_down(len, 1 << 9);
1920 		start = aligned_start;
1921 	}
1922 
1923 	*discarded_bytes = 0;
1924 
1925 	if (!len)
1926 		return 0;
1927 
1928 	end = start + len;
1929 	bytes_left = len;
1930 
1931 	/* Skip any superblocks on this device. */
1932 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1933 		u64 sb_start = btrfs_sb_offset(j);
1934 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1935 		u64 size = sb_start - start;
1936 
1937 		if (!in_range(sb_start, start, bytes_left) &&
1938 		    !in_range(sb_end, start, bytes_left) &&
1939 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1940 			continue;
1941 
1942 		/*
1943 		 * Superblock spans beginning of range.  Adjust start and
1944 		 * try again.
1945 		 */
1946 		if (sb_start <= start) {
1947 			start += sb_end - start;
1948 			if (start > end) {
1949 				bytes_left = 0;
1950 				break;
1951 			}
1952 			bytes_left = end - start;
1953 			continue;
1954 		}
1955 
1956 		if (size) {
1957 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1958 						   GFP_NOFS, 0);
1959 			if (!ret)
1960 				*discarded_bytes += size;
1961 			else if (ret != -EOPNOTSUPP)
1962 				return ret;
1963 		}
1964 
1965 		start = sb_end;
1966 		if (start > end) {
1967 			bytes_left = 0;
1968 			break;
1969 		}
1970 		bytes_left = end - start;
1971 	}
1972 
1973 	if (bytes_left) {
1974 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1975 					   GFP_NOFS, 0);
1976 		if (!ret)
1977 			*discarded_bytes += bytes_left;
1978 	}
1979 	return ret;
1980 }
1981 
1982 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1983 			 u64 num_bytes, u64 *actual_bytes)
1984 {
1985 	int ret;
1986 	u64 discarded_bytes = 0;
1987 	struct btrfs_bio *bbio = NULL;
1988 
1989 
1990 	/*
1991 	 * Avoid races with device replace and make sure our bbio has devices
1992 	 * associated to its stripes that don't go away while we are discarding.
1993 	 */
1994 	btrfs_bio_counter_inc_blocked(fs_info);
1995 	/* Tell the block device(s) that the sectors can be discarded */
1996 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1997 			      &bbio, 0);
1998 	/* Error condition is -ENOMEM */
1999 	if (!ret) {
2000 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2001 		int i;
2002 
2003 
2004 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2005 			u64 bytes;
2006 			struct request_queue *req_q;
2007 
2008 			if (!stripe->dev->bdev) {
2009 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2010 				continue;
2011 			}
2012 			req_q = bdev_get_queue(stripe->dev->bdev);
2013 			if (!blk_queue_discard(req_q))
2014 				continue;
2015 
2016 			ret = btrfs_issue_discard(stripe->dev->bdev,
2017 						  stripe->physical,
2018 						  stripe->length,
2019 						  &bytes);
2020 			if (!ret)
2021 				discarded_bytes += bytes;
2022 			else if (ret != -EOPNOTSUPP)
2023 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2024 
2025 			/*
2026 			 * Just in case we get back EOPNOTSUPP for some reason,
2027 			 * just ignore the return value so we don't screw up
2028 			 * people calling discard_extent.
2029 			 */
2030 			ret = 0;
2031 		}
2032 		btrfs_put_bbio(bbio);
2033 	}
2034 	btrfs_bio_counter_dec(fs_info);
2035 
2036 	if (actual_bytes)
2037 		*actual_bytes = discarded_bytes;
2038 
2039 
2040 	if (ret == -EOPNOTSUPP)
2041 		ret = 0;
2042 	return ret;
2043 }
2044 
2045 /* Can return -ENOMEM */
2046 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2047 			 struct btrfs_ref *generic_ref)
2048 {
2049 	struct btrfs_fs_info *fs_info = trans->fs_info;
2050 	int old_ref_mod, new_ref_mod;
2051 	int ret;
2052 
2053 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
2054 	       generic_ref->action);
2055 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
2056 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
2057 
2058 	if (generic_ref->type == BTRFS_REF_METADATA)
2059 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
2060 				NULL, &old_ref_mod, &new_ref_mod);
2061 	else
2062 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
2063 						 &old_ref_mod, &new_ref_mod);
2064 
2065 	btrfs_ref_tree_mod(fs_info, generic_ref);
2066 
2067 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2068 		add_pinned_bytes(fs_info, generic_ref, -1);
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * __btrfs_inc_extent_ref - insert backreference for a given extent
2075  *
2076  * @trans:	    Handle of transaction
2077  *
2078  * @node:	    The delayed ref node used to get the bytenr/length for
2079  *		    extent whose references are incremented.
2080  *
2081  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2082  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2083  *		    bytenr of the parent block. Since new extents are always
2084  *		    created with indirect references, this will only be the case
2085  *		    when relocating a shared extent. In that case, root_objectid
2086  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2087  *		    be 0
2088  *
2089  * @root_objectid:  The id of the root where this modification has originated,
2090  *		    this can be either one of the well-known metadata trees or
2091  *		    the subvolume id which references this extent.
2092  *
2093  * @owner:	    For data extents it is the inode number of the owning file.
2094  *		    For metadata extents this parameter holds the level in the
2095  *		    tree of the extent.
2096  *
2097  * @offset:	    For metadata extents the offset is ignored and is currently
2098  *		    always passed as 0. For data extents it is the fileoffset
2099  *		    this extent belongs to.
2100  *
2101  * @refs_to_add     Number of references to add
2102  *
2103  * @extent_op       Pointer to a structure, holding information necessary when
2104  *                  updating a tree block's flags
2105  *
2106  */
2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 				  struct btrfs_delayed_ref_node *node,
2109 				  u64 parent, u64 root_objectid,
2110 				  u64 owner, u64 offset, int refs_to_add,
2111 				  struct btrfs_delayed_extent_op *extent_op)
2112 {
2113 	struct btrfs_path *path;
2114 	struct extent_buffer *leaf;
2115 	struct btrfs_extent_item *item;
2116 	struct btrfs_key key;
2117 	u64 bytenr = node->bytenr;
2118 	u64 num_bytes = node->num_bytes;
2119 	u64 refs;
2120 	int ret;
2121 
2122 	path = btrfs_alloc_path();
2123 	if (!path)
2124 		return -ENOMEM;
2125 
2126 	path->reada = READA_FORWARD;
2127 	path->leave_spinning = 1;
2128 	/* this will setup the path even if it fails to insert the back ref */
2129 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2130 					   parent, root_objectid, owner,
2131 					   offset, refs_to_add, extent_op);
2132 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2133 		goto out;
2134 
2135 	/*
2136 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2137 	 * inline extent ref, so just update the reference count and add a
2138 	 * normal backref.
2139 	 */
2140 	leaf = path->nodes[0];
2141 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2142 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2143 	refs = btrfs_extent_refs(leaf, item);
2144 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2145 	if (extent_op)
2146 		__run_delayed_extent_op(extent_op, leaf, item);
2147 
2148 	btrfs_mark_buffer_dirty(leaf);
2149 	btrfs_release_path(path);
2150 
2151 	path->reada = READA_FORWARD;
2152 	path->leave_spinning = 1;
2153 	/* now insert the actual backref */
2154 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2155 				    owner, offset, refs_to_add);
2156 	if (ret)
2157 		btrfs_abort_transaction(trans, ret);
2158 out:
2159 	btrfs_free_path(path);
2160 	return ret;
2161 }
2162 
2163 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 				struct btrfs_delayed_ref_node *node,
2165 				struct btrfs_delayed_extent_op *extent_op,
2166 				int insert_reserved)
2167 {
2168 	int ret = 0;
2169 	struct btrfs_delayed_data_ref *ref;
2170 	struct btrfs_key ins;
2171 	u64 parent = 0;
2172 	u64 ref_root = 0;
2173 	u64 flags = 0;
2174 
2175 	ins.objectid = node->bytenr;
2176 	ins.offset = node->num_bytes;
2177 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2178 
2179 	ref = btrfs_delayed_node_to_data_ref(node);
2180 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2181 
2182 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 		parent = ref->parent;
2184 	ref_root = ref->root;
2185 
2186 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187 		if (extent_op)
2188 			flags |= extent_op->flags_to_set;
2189 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2190 						 flags, ref->objectid,
2191 						 ref->offset, &ins,
2192 						 node->ref_mod);
2193 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2195 					     ref->objectid, ref->offset,
2196 					     node->ref_mod, extent_op);
2197 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2198 		ret = __btrfs_free_extent(trans, node, parent,
2199 					  ref_root, ref->objectid,
2200 					  ref->offset, node->ref_mod,
2201 					  extent_op);
2202 	} else {
2203 		BUG();
2204 	}
2205 	return ret;
2206 }
2207 
2208 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209 				    struct extent_buffer *leaf,
2210 				    struct btrfs_extent_item *ei)
2211 {
2212 	u64 flags = btrfs_extent_flags(leaf, ei);
2213 	if (extent_op->update_flags) {
2214 		flags |= extent_op->flags_to_set;
2215 		btrfs_set_extent_flags(leaf, ei, flags);
2216 	}
2217 
2218 	if (extent_op->update_key) {
2219 		struct btrfs_tree_block_info *bi;
2220 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2222 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223 	}
2224 }
2225 
2226 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2227 				 struct btrfs_delayed_ref_head *head,
2228 				 struct btrfs_delayed_extent_op *extent_op)
2229 {
2230 	struct btrfs_fs_info *fs_info = trans->fs_info;
2231 	struct btrfs_key key;
2232 	struct btrfs_path *path;
2233 	struct btrfs_extent_item *ei;
2234 	struct extent_buffer *leaf;
2235 	u32 item_size;
2236 	int ret;
2237 	int err = 0;
2238 	int metadata = !extent_op->is_data;
2239 
2240 	if (trans->aborted)
2241 		return 0;
2242 
2243 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2244 		metadata = 0;
2245 
2246 	path = btrfs_alloc_path();
2247 	if (!path)
2248 		return -ENOMEM;
2249 
2250 	key.objectid = head->bytenr;
2251 
2252 	if (metadata) {
2253 		key.type = BTRFS_METADATA_ITEM_KEY;
2254 		key.offset = extent_op->level;
2255 	} else {
2256 		key.type = BTRFS_EXTENT_ITEM_KEY;
2257 		key.offset = head->num_bytes;
2258 	}
2259 
2260 again:
2261 	path->reada = READA_FORWARD;
2262 	path->leave_spinning = 1;
2263 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2264 	if (ret < 0) {
2265 		err = ret;
2266 		goto out;
2267 	}
2268 	if (ret > 0) {
2269 		if (metadata) {
2270 			if (path->slots[0] > 0) {
2271 				path->slots[0]--;
2272 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2273 						      path->slots[0]);
2274 				if (key.objectid == head->bytenr &&
2275 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2276 				    key.offset == head->num_bytes)
2277 					ret = 0;
2278 			}
2279 			if (ret > 0) {
2280 				btrfs_release_path(path);
2281 				metadata = 0;
2282 
2283 				key.objectid = head->bytenr;
2284 				key.offset = head->num_bytes;
2285 				key.type = BTRFS_EXTENT_ITEM_KEY;
2286 				goto again;
2287 			}
2288 		} else {
2289 			err = -EIO;
2290 			goto out;
2291 		}
2292 	}
2293 
2294 	leaf = path->nodes[0];
2295 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2296 
2297 	if (unlikely(item_size < sizeof(*ei))) {
2298 		err = -EINVAL;
2299 		btrfs_print_v0_err(fs_info);
2300 		btrfs_abort_transaction(trans, err);
2301 		goto out;
2302 	}
2303 
2304 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305 	__run_delayed_extent_op(extent_op, leaf, ei);
2306 
2307 	btrfs_mark_buffer_dirty(leaf);
2308 out:
2309 	btrfs_free_path(path);
2310 	return err;
2311 }
2312 
2313 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2314 				struct btrfs_delayed_ref_node *node,
2315 				struct btrfs_delayed_extent_op *extent_op,
2316 				int insert_reserved)
2317 {
2318 	int ret = 0;
2319 	struct btrfs_delayed_tree_ref *ref;
2320 	u64 parent = 0;
2321 	u64 ref_root = 0;
2322 
2323 	ref = btrfs_delayed_node_to_tree_ref(node);
2324 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2325 
2326 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2327 		parent = ref->parent;
2328 	ref_root = ref->root;
2329 
2330 	if (node->ref_mod != 1) {
2331 		btrfs_err(trans->fs_info,
2332 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2333 			  node->bytenr, node->ref_mod, node->action, ref_root,
2334 			  parent);
2335 		return -EIO;
2336 	}
2337 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2338 		BUG_ON(!extent_op || !extent_op->update_flags);
2339 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2340 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2341 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2342 					     ref->level, 0, 1, extent_op);
2343 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2344 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2345 					  ref->level, 0, 1, extent_op);
2346 	} else {
2347 		BUG();
2348 	}
2349 	return ret;
2350 }
2351 
2352 /* helper function to actually process a single delayed ref entry */
2353 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2354 			       struct btrfs_delayed_ref_node *node,
2355 			       struct btrfs_delayed_extent_op *extent_op,
2356 			       int insert_reserved)
2357 {
2358 	int ret = 0;
2359 
2360 	if (trans->aborted) {
2361 		if (insert_reserved)
2362 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2363 					 node->num_bytes, 1);
2364 		return 0;
2365 	}
2366 
2367 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2368 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2369 		ret = run_delayed_tree_ref(trans, node, extent_op,
2370 					   insert_reserved);
2371 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2372 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2373 		ret = run_delayed_data_ref(trans, node, extent_op,
2374 					   insert_reserved);
2375 	else
2376 		BUG();
2377 	if (ret && insert_reserved)
2378 		btrfs_pin_extent(trans->fs_info, node->bytenr,
2379 				 node->num_bytes, 1);
2380 	return ret;
2381 }
2382 
2383 static inline struct btrfs_delayed_ref_node *
2384 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2385 {
2386 	struct btrfs_delayed_ref_node *ref;
2387 
2388 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2389 		return NULL;
2390 
2391 	/*
2392 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2393 	 * This is to prevent a ref count from going down to zero, which deletes
2394 	 * the extent item from the extent tree, when there still are references
2395 	 * to add, which would fail because they would not find the extent item.
2396 	 */
2397 	if (!list_empty(&head->ref_add_list))
2398 		return list_first_entry(&head->ref_add_list,
2399 				struct btrfs_delayed_ref_node, add_list);
2400 
2401 	ref = rb_entry(rb_first_cached(&head->ref_tree),
2402 		       struct btrfs_delayed_ref_node, ref_node);
2403 	ASSERT(list_empty(&ref->add_list));
2404 	return ref;
2405 }
2406 
2407 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2408 				      struct btrfs_delayed_ref_head *head)
2409 {
2410 	spin_lock(&delayed_refs->lock);
2411 	head->processing = 0;
2412 	delayed_refs->num_heads_ready++;
2413 	spin_unlock(&delayed_refs->lock);
2414 	btrfs_delayed_ref_unlock(head);
2415 }
2416 
2417 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2418 				struct btrfs_delayed_ref_head *head)
2419 {
2420 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2421 
2422 	if (!extent_op)
2423 		return NULL;
2424 
2425 	if (head->must_insert_reserved) {
2426 		head->extent_op = NULL;
2427 		btrfs_free_delayed_extent_op(extent_op);
2428 		return NULL;
2429 	}
2430 	return extent_op;
2431 }
2432 
2433 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2434 				     struct btrfs_delayed_ref_head *head)
2435 {
2436 	struct btrfs_delayed_extent_op *extent_op;
2437 	int ret;
2438 
2439 	extent_op = cleanup_extent_op(head);
2440 	if (!extent_op)
2441 		return 0;
2442 	head->extent_op = NULL;
2443 	spin_unlock(&head->lock);
2444 	ret = run_delayed_extent_op(trans, head, extent_op);
2445 	btrfs_free_delayed_extent_op(extent_op);
2446 	return ret ? ret : 1;
2447 }
2448 
2449 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2450 				  struct btrfs_delayed_ref_root *delayed_refs,
2451 				  struct btrfs_delayed_ref_head *head)
2452 {
2453 	int nr_items = 1;	/* Dropping this ref head update. */
2454 
2455 	if (head->total_ref_mod < 0) {
2456 		struct btrfs_space_info *space_info;
2457 		u64 flags;
2458 
2459 		if (head->is_data)
2460 			flags = BTRFS_BLOCK_GROUP_DATA;
2461 		else if (head->is_system)
2462 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2463 		else
2464 			flags = BTRFS_BLOCK_GROUP_METADATA;
2465 		space_info = __find_space_info(fs_info, flags);
2466 		ASSERT(space_info);
2467 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2468 				   -head->num_bytes,
2469 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2470 
2471 		/*
2472 		 * We had csum deletions accounted for in our delayed refs rsv,
2473 		 * we need to drop the csum leaves for this update from our
2474 		 * delayed_refs_rsv.
2475 		 */
2476 		if (head->is_data) {
2477 			spin_lock(&delayed_refs->lock);
2478 			delayed_refs->pending_csums -= head->num_bytes;
2479 			spin_unlock(&delayed_refs->lock);
2480 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2481 				head->num_bytes);
2482 		}
2483 	}
2484 
2485 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2486 }
2487 
2488 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2489 			    struct btrfs_delayed_ref_head *head)
2490 {
2491 
2492 	struct btrfs_fs_info *fs_info = trans->fs_info;
2493 	struct btrfs_delayed_ref_root *delayed_refs;
2494 	int ret;
2495 
2496 	delayed_refs = &trans->transaction->delayed_refs;
2497 
2498 	ret = run_and_cleanup_extent_op(trans, head);
2499 	if (ret < 0) {
2500 		unselect_delayed_ref_head(delayed_refs, head);
2501 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2502 		return ret;
2503 	} else if (ret) {
2504 		return ret;
2505 	}
2506 
2507 	/*
2508 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2509 	 * and then re-check to make sure nobody got added.
2510 	 */
2511 	spin_unlock(&head->lock);
2512 	spin_lock(&delayed_refs->lock);
2513 	spin_lock(&head->lock);
2514 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2515 		spin_unlock(&head->lock);
2516 		spin_unlock(&delayed_refs->lock);
2517 		return 1;
2518 	}
2519 	btrfs_delete_ref_head(delayed_refs, head);
2520 	spin_unlock(&head->lock);
2521 	spin_unlock(&delayed_refs->lock);
2522 
2523 	if (head->must_insert_reserved) {
2524 		btrfs_pin_extent(fs_info, head->bytenr,
2525 				 head->num_bytes, 1);
2526 		if (head->is_data) {
2527 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2528 					      head->num_bytes);
2529 		}
2530 	}
2531 
2532 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2533 
2534 	trace_run_delayed_ref_head(fs_info, head, 0);
2535 	btrfs_delayed_ref_unlock(head);
2536 	btrfs_put_delayed_ref_head(head);
2537 	return 0;
2538 }
2539 
2540 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2541 					struct btrfs_trans_handle *trans)
2542 {
2543 	struct btrfs_delayed_ref_root *delayed_refs =
2544 		&trans->transaction->delayed_refs;
2545 	struct btrfs_delayed_ref_head *head = NULL;
2546 	int ret;
2547 
2548 	spin_lock(&delayed_refs->lock);
2549 	head = btrfs_select_ref_head(delayed_refs);
2550 	if (!head) {
2551 		spin_unlock(&delayed_refs->lock);
2552 		return head;
2553 	}
2554 
2555 	/*
2556 	 * Grab the lock that says we are going to process all the refs for
2557 	 * this head
2558 	 */
2559 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
2560 	spin_unlock(&delayed_refs->lock);
2561 
2562 	/*
2563 	 * We may have dropped the spin lock to get the head mutex lock, and
2564 	 * that might have given someone else time to free the head.  If that's
2565 	 * true, it has been removed from our list and we can move on.
2566 	 */
2567 	if (ret == -EAGAIN)
2568 		head = ERR_PTR(-EAGAIN);
2569 
2570 	return head;
2571 }
2572 
2573 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2574 				    struct btrfs_delayed_ref_head *locked_ref,
2575 				    unsigned long *run_refs)
2576 {
2577 	struct btrfs_fs_info *fs_info = trans->fs_info;
2578 	struct btrfs_delayed_ref_root *delayed_refs;
2579 	struct btrfs_delayed_extent_op *extent_op;
2580 	struct btrfs_delayed_ref_node *ref;
2581 	int must_insert_reserved = 0;
2582 	int ret;
2583 
2584 	delayed_refs = &trans->transaction->delayed_refs;
2585 
2586 	lockdep_assert_held(&locked_ref->mutex);
2587 	lockdep_assert_held(&locked_ref->lock);
2588 
2589 	while ((ref = select_delayed_ref(locked_ref))) {
2590 		if (ref->seq &&
2591 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2592 			spin_unlock(&locked_ref->lock);
2593 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2594 			return -EAGAIN;
2595 		}
2596 
2597 		(*run_refs)++;
2598 		ref->in_tree = 0;
2599 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2600 		RB_CLEAR_NODE(&ref->ref_node);
2601 		if (!list_empty(&ref->add_list))
2602 			list_del(&ref->add_list);
2603 		/*
2604 		 * When we play the delayed ref, also correct the ref_mod on
2605 		 * head
2606 		 */
2607 		switch (ref->action) {
2608 		case BTRFS_ADD_DELAYED_REF:
2609 		case BTRFS_ADD_DELAYED_EXTENT:
2610 			locked_ref->ref_mod -= ref->ref_mod;
2611 			break;
2612 		case BTRFS_DROP_DELAYED_REF:
2613 			locked_ref->ref_mod += ref->ref_mod;
2614 			break;
2615 		default:
2616 			WARN_ON(1);
2617 		}
2618 		atomic_dec(&delayed_refs->num_entries);
2619 
2620 		/*
2621 		 * Record the must_insert_reserved flag before we drop the
2622 		 * spin lock.
2623 		 */
2624 		must_insert_reserved = locked_ref->must_insert_reserved;
2625 		locked_ref->must_insert_reserved = 0;
2626 
2627 		extent_op = locked_ref->extent_op;
2628 		locked_ref->extent_op = NULL;
2629 		spin_unlock(&locked_ref->lock);
2630 
2631 		ret = run_one_delayed_ref(trans, ref, extent_op,
2632 					  must_insert_reserved);
2633 
2634 		btrfs_free_delayed_extent_op(extent_op);
2635 		if (ret) {
2636 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2637 			btrfs_put_delayed_ref(ref);
2638 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2639 				    ret);
2640 			return ret;
2641 		}
2642 
2643 		btrfs_put_delayed_ref(ref);
2644 		cond_resched();
2645 
2646 		spin_lock(&locked_ref->lock);
2647 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 /*
2654  * Returns 0 on success or if called with an already aborted transaction.
2655  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2656  */
2657 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2658 					     unsigned long nr)
2659 {
2660 	struct btrfs_fs_info *fs_info = trans->fs_info;
2661 	struct btrfs_delayed_ref_root *delayed_refs;
2662 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2663 	ktime_t start = ktime_get();
2664 	int ret;
2665 	unsigned long count = 0;
2666 	unsigned long actual_count = 0;
2667 
2668 	delayed_refs = &trans->transaction->delayed_refs;
2669 	do {
2670 		if (!locked_ref) {
2671 			locked_ref = btrfs_obtain_ref_head(trans);
2672 			if (IS_ERR_OR_NULL(locked_ref)) {
2673 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2674 					continue;
2675 				} else {
2676 					break;
2677 				}
2678 			}
2679 			count++;
2680 		}
2681 		/*
2682 		 * We need to try and merge add/drops of the same ref since we
2683 		 * can run into issues with relocate dropping the implicit ref
2684 		 * and then it being added back again before the drop can
2685 		 * finish.  If we merged anything we need to re-loop so we can
2686 		 * get a good ref.
2687 		 * Or we can get node references of the same type that weren't
2688 		 * merged when created due to bumps in the tree mod seq, and
2689 		 * we need to merge them to prevent adding an inline extent
2690 		 * backref before dropping it (triggering a BUG_ON at
2691 		 * insert_inline_extent_backref()).
2692 		 */
2693 		spin_lock(&locked_ref->lock);
2694 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2695 
2696 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2697 						      &actual_count);
2698 		if (ret < 0 && ret != -EAGAIN) {
2699 			/*
2700 			 * Error, btrfs_run_delayed_refs_for_head already
2701 			 * unlocked everything so just bail out
2702 			 */
2703 			return ret;
2704 		} else if (!ret) {
2705 			/*
2706 			 * Success, perform the usual cleanup of a processed
2707 			 * head
2708 			 */
2709 			ret = cleanup_ref_head(trans, locked_ref);
2710 			if (ret > 0 ) {
2711 				/* We dropped our lock, we need to loop. */
2712 				ret = 0;
2713 				continue;
2714 			} else if (ret) {
2715 				return ret;
2716 			}
2717 		}
2718 
2719 		/*
2720 		 * Either success case or btrfs_run_delayed_refs_for_head
2721 		 * returned -EAGAIN, meaning we need to select another head
2722 		 */
2723 
2724 		locked_ref = NULL;
2725 		cond_resched();
2726 	} while ((nr != -1 && count < nr) || locked_ref);
2727 
2728 	/*
2729 	 * We don't want to include ref heads since we can have empty ref heads
2730 	 * and those will drastically skew our runtime down since we just do
2731 	 * accounting, no actual extent tree updates.
2732 	 */
2733 	if (actual_count > 0) {
2734 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2735 		u64 avg;
2736 
2737 		/*
2738 		 * We weigh the current average higher than our current runtime
2739 		 * to avoid large swings in the average.
2740 		 */
2741 		spin_lock(&delayed_refs->lock);
2742 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2743 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2744 		spin_unlock(&delayed_refs->lock);
2745 	}
2746 	return 0;
2747 }
2748 
2749 #ifdef SCRAMBLE_DELAYED_REFS
2750 /*
2751  * Normally delayed refs get processed in ascending bytenr order. This
2752  * correlates in most cases to the order added. To expose dependencies on this
2753  * order, we start to process the tree in the middle instead of the beginning
2754  */
2755 static u64 find_middle(struct rb_root *root)
2756 {
2757 	struct rb_node *n = root->rb_node;
2758 	struct btrfs_delayed_ref_node *entry;
2759 	int alt = 1;
2760 	u64 middle;
2761 	u64 first = 0, last = 0;
2762 
2763 	n = rb_first(root);
2764 	if (n) {
2765 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2766 		first = entry->bytenr;
2767 	}
2768 	n = rb_last(root);
2769 	if (n) {
2770 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2771 		last = entry->bytenr;
2772 	}
2773 	n = root->rb_node;
2774 
2775 	while (n) {
2776 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2777 		WARN_ON(!entry->in_tree);
2778 
2779 		middle = entry->bytenr;
2780 
2781 		if (alt)
2782 			n = n->rb_left;
2783 		else
2784 			n = n->rb_right;
2785 
2786 		alt = 1 - alt;
2787 	}
2788 	return middle;
2789 }
2790 #endif
2791 
2792 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2793 {
2794 	u64 num_bytes;
2795 
2796 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2797 			     sizeof(struct btrfs_extent_inline_ref));
2798 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2799 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2800 
2801 	/*
2802 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2803 	 * closer to what we're really going to want to use.
2804 	 */
2805 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2806 }
2807 
2808 /*
2809  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2810  * would require to store the csums for that many bytes.
2811  */
2812 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2813 {
2814 	u64 csum_size;
2815 	u64 num_csums_per_leaf;
2816 	u64 num_csums;
2817 
2818 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2819 	num_csums_per_leaf = div64_u64(csum_size,
2820 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2821 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2822 	num_csums += num_csums_per_leaf - 1;
2823 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2824 	return num_csums;
2825 }
2826 
2827 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2828 {
2829 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2830 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2831 	bool ret = false;
2832 	u64 reserved;
2833 
2834 	spin_lock(&global_rsv->lock);
2835 	reserved = global_rsv->reserved;
2836 	spin_unlock(&global_rsv->lock);
2837 
2838 	/*
2839 	 * Since the global reserve is just kind of magic we don't really want
2840 	 * to rely on it to save our bacon, so if our size is more than the
2841 	 * delayed_refs_rsv and the global rsv then it's time to think about
2842 	 * bailing.
2843 	 */
2844 	spin_lock(&delayed_refs_rsv->lock);
2845 	reserved += delayed_refs_rsv->reserved;
2846 	if (delayed_refs_rsv->size >= reserved)
2847 		ret = true;
2848 	spin_unlock(&delayed_refs_rsv->lock);
2849 	return ret;
2850 }
2851 
2852 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2853 {
2854 	u64 num_entries =
2855 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2856 	u64 avg_runtime;
2857 	u64 val;
2858 
2859 	smp_mb();
2860 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2861 	val = num_entries * avg_runtime;
2862 	if (val >= NSEC_PER_SEC)
2863 		return 1;
2864 	if (val >= NSEC_PER_SEC / 2)
2865 		return 2;
2866 
2867 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
2868 }
2869 
2870 /*
2871  * this starts processing the delayed reference count updates and
2872  * extent insertions we have queued up so far.  count can be
2873  * 0, which means to process everything in the tree at the start
2874  * of the run (but not newly added entries), or it can be some target
2875  * number you'd like to process.
2876  *
2877  * Returns 0 on success or if called with an aborted transaction
2878  * Returns <0 on error and aborts the transaction
2879  */
2880 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2881 			   unsigned long count)
2882 {
2883 	struct btrfs_fs_info *fs_info = trans->fs_info;
2884 	struct rb_node *node;
2885 	struct btrfs_delayed_ref_root *delayed_refs;
2886 	struct btrfs_delayed_ref_head *head;
2887 	int ret;
2888 	int run_all = count == (unsigned long)-1;
2889 
2890 	/* We'll clean this up in btrfs_cleanup_transaction */
2891 	if (trans->aborted)
2892 		return 0;
2893 
2894 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2895 		return 0;
2896 
2897 	delayed_refs = &trans->transaction->delayed_refs;
2898 	if (count == 0)
2899 		count = atomic_read(&delayed_refs->num_entries) * 2;
2900 
2901 again:
2902 #ifdef SCRAMBLE_DELAYED_REFS
2903 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2904 #endif
2905 	ret = __btrfs_run_delayed_refs(trans, count);
2906 	if (ret < 0) {
2907 		btrfs_abort_transaction(trans, ret);
2908 		return ret;
2909 	}
2910 
2911 	if (run_all) {
2912 		btrfs_create_pending_block_groups(trans);
2913 
2914 		spin_lock(&delayed_refs->lock);
2915 		node = rb_first_cached(&delayed_refs->href_root);
2916 		if (!node) {
2917 			spin_unlock(&delayed_refs->lock);
2918 			goto out;
2919 		}
2920 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2921 				href_node);
2922 		refcount_inc(&head->refs);
2923 		spin_unlock(&delayed_refs->lock);
2924 
2925 		/* Mutex was contended, block until it's released and retry. */
2926 		mutex_lock(&head->mutex);
2927 		mutex_unlock(&head->mutex);
2928 
2929 		btrfs_put_delayed_ref_head(head);
2930 		cond_resched();
2931 		goto again;
2932 	}
2933 out:
2934 	return 0;
2935 }
2936 
2937 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2938 				u64 bytenr, u64 num_bytes, u64 flags,
2939 				int level, int is_data)
2940 {
2941 	struct btrfs_delayed_extent_op *extent_op;
2942 	int ret;
2943 
2944 	extent_op = btrfs_alloc_delayed_extent_op();
2945 	if (!extent_op)
2946 		return -ENOMEM;
2947 
2948 	extent_op->flags_to_set = flags;
2949 	extent_op->update_flags = true;
2950 	extent_op->update_key = false;
2951 	extent_op->is_data = is_data ? true : false;
2952 	extent_op->level = level;
2953 
2954 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2955 	if (ret)
2956 		btrfs_free_delayed_extent_op(extent_op);
2957 	return ret;
2958 }
2959 
2960 static noinline int check_delayed_ref(struct btrfs_root *root,
2961 				      struct btrfs_path *path,
2962 				      u64 objectid, u64 offset, u64 bytenr)
2963 {
2964 	struct btrfs_delayed_ref_head *head;
2965 	struct btrfs_delayed_ref_node *ref;
2966 	struct btrfs_delayed_data_ref *data_ref;
2967 	struct btrfs_delayed_ref_root *delayed_refs;
2968 	struct btrfs_transaction *cur_trans;
2969 	struct rb_node *node;
2970 	int ret = 0;
2971 
2972 	spin_lock(&root->fs_info->trans_lock);
2973 	cur_trans = root->fs_info->running_transaction;
2974 	if (cur_trans)
2975 		refcount_inc(&cur_trans->use_count);
2976 	spin_unlock(&root->fs_info->trans_lock);
2977 	if (!cur_trans)
2978 		return 0;
2979 
2980 	delayed_refs = &cur_trans->delayed_refs;
2981 	spin_lock(&delayed_refs->lock);
2982 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2983 	if (!head) {
2984 		spin_unlock(&delayed_refs->lock);
2985 		btrfs_put_transaction(cur_trans);
2986 		return 0;
2987 	}
2988 
2989 	if (!mutex_trylock(&head->mutex)) {
2990 		refcount_inc(&head->refs);
2991 		spin_unlock(&delayed_refs->lock);
2992 
2993 		btrfs_release_path(path);
2994 
2995 		/*
2996 		 * Mutex was contended, block until it's released and let
2997 		 * caller try again
2998 		 */
2999 		mutex_lock(&head->mutex);
3000 		mutex_unlock(&head->mutex);
3001 		btrfs_put_delayed_ref_head(head);
3002 		btrfs_put_transaction(cur_trans);
3003 		return -EAGAIN;
3004 	}
3005 	spin_unlock(&delayed_refs->lock);
3006 
3007 	spin_lock(&head->lock);
3008 	/*
3009 	 * XXX: We should replace this with a proper search function in the
3010 	 * future.
3011 	 */
3012 	for (node = rb_first_cached(&head->ref_tree); node;
3013 	     node = rb_next(node)) {
3014 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3015 		/* If it's a shared ref we know a cross reference exists */
3016 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3017 			ret = 1;
3018 			break;
3019 		}
3020 
3021 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3022 
3023 		/*
3024 		 * If our ref doesn't match the one we're currently looking at
3025 		 * then we have a cross reference.
3026 		 */
3027 		if (data_ref->root != root->root_key.objectid ||
3028 		    data_ref->objectid != objectid ||
3029 		    data_ref->offset != offset) {
3030 			ret = 1;
3031 			break;
3032 		}
3033 	}
3034 	spin_unlock(&head->lock);
3035 	mutex_unlock(&head->mutex);
3036 	btrfs_put_transaction(cur_trans);
3037 	return ret;
3038 }
3039 
3040 static noinline int check_committed_ref(struct btrfs_root *root,
3041 					struct btrfs_path *path,
3042 					u64 objectid, u64 offset, u64 bytenr)
3043 {
3044 	struct btrfs_fs_info *fs_info = root->fs_info;
3045 	struct btrfs_root *extent_root = fs_info->extent_root;
3046 	struct extent_buffer *leaf;
3047 	struct btrfs_extent_data_ref *ref;
3048 	struct btrfs_extent_inline_ref *iref;
3049 	struct btrfs_extent_item *ei;
3050 	struct btrfs_key key;
3051 	u32 item_size;
3052 	int type;
3053 	int ret;
3054 
3055 	key.objectid = bytenr;
3056 	key.offset = (u64)-1;
3057 	key.type = BTRFS_EXTENT_ITEM_KEY;
3058 
3059 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3060 	if (ret < 0)
3061 		goto out;
3062 	BUG_ON(ret == 0); /* Corruption */
3063 
3064 	ret = -ENOENT;
3065 	if (path->slots[0] == 0)
3066 		goto out;
3067 
3068 	path->slots[0]--;
3069 	leaf = path->nodes[0];
3070 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3071 
3072 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3073 		goto out;
3074 
3075 	ret = 1;
3076 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3077 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3078 
3079 	if (item_size != sizeof(*ei) +
3080 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3081 		goto out;
3082 
3083 	if (btrfs_extent_generation(leaf, ei) <=
3084 	    btrfs_root_last_snapshot(&root->root_item))
3085 		goto out;
3086 
3087 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3088 
3089 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3090 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3091 		goto out;
3092 
3093 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3094 	if (btrfs_extent_refs(leaf, ei) !=
3095 	    btrfs_extent_data_ref_count(leaf, ref) ||
3096 	    btrfs_extent_data_ref_root(leaf, ref) !=
3097 	    root->root_key.objectid ||
3098 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3099 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3100 		goto out;
3101 
3102 	ret = 0;
3103 out:
3104 	return ret;
3105 }
3106 
3107 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3108 			  u64 bytenr)
3109 {
3110 	struct btrfs_path *path;
3111 	int ret;
3112 
3113 	path = btrfs_alloc_path();
3114 	if (!path)
3115 		return -ENOMEM;
3116 
3117 	do {
3118 		ret = check_committed_ref(root, path, objectid,
3119 					  offset, bytenr);
3120 		if (ret && ret != -ENOENT)
3121 			goto out;
3122 
3123 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3124 	} while (ret == -EAGAIN);
3125 
3126 out:
3127 	btrfs_free_path(path);
3128 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3129 		WARN_ON(ret > 0);
3130 	return ret;
3131 }
3132 
3133 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3134 			   struct btrfs_root *root,
3135 			   struct extent_buffer *buf,
3136 			   int full_backref, int inc)
3137 {
3138 	struct btrfs_fs_info *fs_info = root->fs_info;
3139 	u64 bytenr;
3140 	u64 num_bytes;
3141 	u64 parent;
3142 	u64 ref_root;
3143 	u32 nritems;
3144 	struct btrfs_key key;
3145 	struct btrfs_file_extent_item *fi;
3146 	struct btrfs_ref generic_ref = { 0 };
3147 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
3148 	int i;
3149 	int action;
3150 	int level;
3151 	int ret = 0;
3152 
3153 	if (btrfs_is_testing(fs_info))
3154 		return 0;
3155 
3156 	ref_root = btrfs_header_owner(buf);
3157 	nritems = btrfs_header_nritems(buf);
3158 	level = btrfs_header_level(buf);
3159 
3160 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3161 		return 0;
3162 
3163 	if (full_backref)
3164 		parent = buf->start;
3165 	else
3166 		parent = 0;
3167 	if (inc)
3168 		action = BTRFS_ADD_DELAYED_REF;
3169 	else
3170 		action = BTRFS_DROP_DELAYED_REF;
3171 
3172 	for (i = 0; i < nritems; i++) {
3173 		if (level == 0) {
3174 			btrfs_item_key_to_cpu(buf, &key, i);
3175 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3176 				continue;
3177 			fi = btrfs_item_ptr(buf, i,
3178 					    struct btrfs_file_extent_item);
3179 			if (btrfs_file_extent_type(buf, fi) ==
3180 			    BTRFS_FILE_EXTENT_INLINE)
3181 				continue;
3182 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3183 			if (bytenr == 0)
3184 				continue;
3185 
3186 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3187 			key.offset -= btrfs_file_extent_offset(buf, fi);
3188 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
3189 					       num_bytes, parent);
3190 			generic_ref.real_root = root->root_key.objectid;
3191 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3192 					    key.offset);
3193 			generic_ref.skip_qgroup = for_reloc;
3194 			if (inc)
3195 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
3196 			else
3197 				ret = btrfs_free_extent(trans, &generic_ref);
3198 			if (ret)
3199 				goto fail;
3200 		} else {
3201 			bytenr = btrfs_node_blockptr(buf, i);
3202 			num_bytes = fs_info->nodesize;
3203 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
3204 					       num_bytes, parent);
3205 			generic_ref.real_root = root->root_key.objectid;
3206 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3207 			generic_ref.skip_qgroup = for_reloc;
3208 			if (inc)
3209 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
3210 			else
3211 				ret = btrfs_free_extent(trans, &generic_ref);
3212 			if (ret)
3213 				goto fail;
3214 		}
3215 	}
3216 	return 0;
3217 fail:
3218 	return ret;
3219 }
3220 
3221 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3222 		  struct extent_buffer *buf, int full_backref)
3223 {
3224 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3225 }
3226 
3227 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3228 		  struct extent_buffer *buf, int full_backref)
3229 {
3230 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3231 }
3232 
3233 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3234 				 struct btrfs_path *path,
3235 				 struct btrfs_block_group_cache *cache)
3236 {
3237 	struct btrfs_fs_info *fs_info = trans->fs_info;
3238 	int ret;
3239 	struct btrfs_root *extent_root = fs_info->extent_root;
3240 	unsigned long bi;
3241 	struct extent_buffer *leaf;
3242 
3243 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3244 	if (ret) {
3245 		if (ret > 0)
3246 			ret = -ENOENT;
3247 		goto fail;
3248 	}
3249 
3250 	leaf = path->nodes[0];
3251 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3252 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3253 	btrfs_mark_buffer_dirty(leaf);
3254 fail:
3255 	btrfs_release_path(path);
3256 	return ret;
3257 
3258 }
3259 
3260 static struct btrfs_block_group_cache *next_block_group(
3261 		struct btrfs_block_group_cache *cache)
3262 {
3263 	struct btrfs_fs_info *fs_info = cache->fs_info;
3264 	struct rb_node *node;
3265 
3266 	spin_lock(&fs_info->block_group_cache_lock);
3267 
3268 	/* If our block group was removed, we need a full search. */
3269 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3270 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3271 
3272 		spin_unlock(&fs_info->block_group_cache_lock);
3273 		btrfs_put_block_group(cache);
3274 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3275 	}
3276 	node = rb_next(&cache->cache_node);
3277 	btrfs_put_block_group(cache);
3278 	if (node) {
3279 		cache = rb_entry(node, struct btrfs_block_group_cache,
3280 				 cache_node);
3281 		btrfs_get_block_group(cache);
3282 	} else
3283 		cache = NULL;
3284 	spin_unlock(&fs_info->block_group_cache_lock);
3285 	return cache;
3286 }
3287 
3288 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3289 			    struct btrfs_trans_handle *trans,
3290 			    struct btrfs_path *path)
3291 {
3292 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3293 	struct btrfs_root *root = fs_info->tree_root;
3294 	struct inode *inode = NULL;
3295 	struct extent_changeset *data_reserved = NULL;
3296 	u64 alloc_hint = 0;
3297 	int dcs = BTRFS_DC_ERROR;
3298 	u64 num_pages = 0;
3299 	int retries = 0;
3300 	int ret = 0;
3301 
3302 	/*
3303 	 * If this block group is smaller than 100 megs don't bother caching the
3304 	 * block group.
3305 	 */
3306 	if (block_group->key.offset < (100 * SZ_1M)) {
3307 		spin_lock(&block_group->lock);
3308 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3309 		spin_unlock(&block_group->lock);
3310 		return 0;
3311 	}
3312 
3313 	if (trans->aborted)
3314 		return 0;
3315 again:
3316 	inode = lookup_free_space_inode(block_group, path);
3317 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3318 		ret = PTR_ERR(inode);
3319 		btrfs_release_path(path);
3320 		goto out;
3321 	}
3322 
3323 	if (IS_ERR(inode)) {
3324 		BUG_ON(retries);
3325 		retries++;
3326 
3327 		if (block_group->ro)
3328 			goto out_free;
3329 
3330 		ret = create_free_space_inode(trans, block_group, path);
3331 		if (ret)
3332 			goto out_free;
3333 		goto again;
3334 	}
3335 
3336 	/*
3337 	 * We want to set the generation to 0, that way if anything goes wrong
3338 	 * from here on out we know not to trust this cache when we load up next
3339 	 * time.
3340 	 */
3341 	BTRFS_I(inode)->generation = 0;
3342 	ret = btrfs_update_inode(trans, root, inode);
3343 	if (ret) {
3344 		/*
3345 		 * So theoretically we could recover from this, simply set the
3346 		 * super cache generation to 0 so we know to invalidate the
3347 		 * cache, but then we'd have to keep track of the block groups
3348 		 * that fail this way so we know we _have_ to reset this cache
3349 		 * before the next commit or risk reading stale cache.  So to
3350 		 * limit our exposure to horrible edge cases lets just abort the
3351 		 * transaction, this only happens in really bad situations
3352 		 * anyway.
3353 		 */
3354 		btrfs_abort_transaction(trans, ret);
3355 		goto out_put;
3356 	}
3357 	WARN_ON(ret);
3358 
3359 	/* We've already setup this transaction, go ahead and exit */
3360 	if (block_group->cache_generation == trans->transid &&
3361 	    i_size_read(inode)) {
3362 		dcs = BTRFS_DC_SETUP;
3363 		goto out_put;
3364 	}
3365 
3366 	if (i_size_read(inode) > 0) {
3367 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3368 					&fs_info->global_block_rsv);
3369 		if (ret)
3370 			goto out_put;
3371 
3372 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3373 		if (ret)
3374 			goto out_put;
3375 	}
3376 
3377 	spin_lock(&block_group->lock);
3378 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3379 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3380 		/*
3381 		 * don't bother trying to write stuff out _if_
3382 		 * a) we're not cached,
3383 		 * b) we're with nospace_cache mount option,
3384 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3385 		 */
3386 		dcs = BTRFS_DC_WRITTEN;
3387 		spin_unlock(&block_group->lock);
3388 		goto out_put;
3389 	}
3390 	spin_unlock(&block_group->lock);
3391 
3392 	/*
3393 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3394 	 * skip doing the setup, we've already cleared the cache so we're safe.
3395 	 */
3396 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3397 		ret = -ENOSPC;
3398 		goto out_put;
3399 	}
3400 
3401 	/*
3402 	 * Try to preallocate enough space based on how big the block group is.
3403 	 * Keep in mind this has to include any pinned space which could end up
3404 	 * taking up quite a bit since it's not folded into the other space
3405 	 * cache.
3406 	 */
3407 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3408 	if (!num_pages)
3409 		num_pages = 1;
3410 
3411 	num_pages *= 16;
3412 	num_pages *= PAGE_SIZE;
3413 
3414 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3415 	if (ret)
3416 		goto out_put;
3417 
3418 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3419 					      num_pages, num_pages,
3420 					      &alloc_hint);
3421 	/*
3422 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3423 	 * of metadata or split extents when writing the cache out, which means
3424 	 * we can enospc if we are heavily fragmented in addition to just normal
3425 	 * out of space conditions.  So if we hit this just skip setting up any
3426 	 * other block groups for this transaction, maybe we'll unpin enough
3427 	 * space the next time around.
3428 	 */
3429 	if (!ret)
3430 		dcs = BTRFS_DC_SETUP;
3431 	else if (ret == -ENOSPC)
3432 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3433 
3434 out_put:
3435 	iput(inode);
3436 out_free:
3437 	btrfs_release_path(path);
3438 out:
3439 	spin_lock(&block_group->lock);
3440 	if (!ret && dcs == BTRFS_DC_SETUP)
3441 		block_group->cache_generation = trans->transid;
3442 	block_group->disk_cache_state = dcs;
3443 	spin_unlock(&block_group->lock);
3444 
3445 	extent_changeset_free(data_reserved);
3446 	return ret;
3447 }
3448 
3449 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3450 {
3451 	struct btrfs_fs_info *fs_info = trans->fs_info;
3452 	struct btrfs_block_group_cache *cache, *tmp;
3453 	struct btrfs_transaction *cur_trans = trans->transaction;
3454 	struct btrfs_path *path;
3455 
3456 	if (list_empty(&cur_trans->dirty_bgs) ||
3457 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3458 		return 0;
3459 
3460 	path = btrfs_alloc_path();
3461 	if (!path)
3462 		return -ENOMEM;
3463 
3464 	/* Could add new block groups, use _safe just in case */
3465 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3466 				 dirty_list) {
3467 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3468 			cache_save_setup(cache, trans, path);
3469 	}
3470 
3471 	btrfs_free_path(path);
3472 	return 0;
3473 }
3474 
3475 /*
3476  * transaction commit does final block group cache writeback during a
3477  * critical section where nothing is allowed to change the FS.  This is
3478  * required in order for the cache to actually match the block group,
3479  * but can introduce a lot of latency into the commit.
3480  *
3481  * So, btrfs_start_dirty_block_groups is here to kick off block group
3482  * cache IO.  There's a chance we'll have to redo some of it if the
3483  * block group changes again during the commit, but it greatly reduces
3484  * the commit latency by getting rid of the easy block groups while
3485  * we're still allowing others to join the commit.
3486  */
3487 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3488 {
3489 	struct btrfs_fs_info *fs_info = trans->fs_info;
3490 	struct btrfs_block_group_cache *cache;
3491 	struct btrfs_transaction *cur_trans = trans->transaction;
3492 	int ret = 0;
3493 	int should_put;
3494 	struct btrfs_path *path = NULL;
3495 	LIST_HEAD(dirty);
3496 	struct list_head *io = &cur_trans->io_bgs;
3497 	int num_started = 0;
3498 	int loops = 0;
3499 
3500 	spin_lock(&cur_trans->dirty_bgs_lock);
3501 	if (list_empty(&cur_trans->dirty_bgs)) {
3502 		spin_unlock(&cur_trans->dirty_bgs_lock);
3503 		return 0;
3504 	}
3505 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3506 	spin_unlock(&cur_trans->dirty_bgs_lock);
3507 
3508 again:
3509 	/*
3510 	 * make sure all the block groups on our dirty list actually
3511 	 * exist
3512 	 */
3513 	btrfs_create_pending_block_groups(trans);
3514 
3515 	if (!path) {
3516 		path = btrfs_alloc_path();
3517 		if (!path)
3518 			return -ENOMEM;
3519 	}
3520 
3521 	/*
3522 	 * cache_write_mutex is here only to save us from balance or automatic
3523 	 * removal of empty block groups deleting this block group while we are
3524 	 * writing out the cache
3525 	 */
3526 	mutex_lock(&trans->transaction->cache_write_mutex);
3527 	while (!list_empty(&dirty)) {
3528 		bool drop_reserve = true;
3529 
3530 		cache = list_first_entry(&dirty,
3531 					 struct btrfs_block_group_cache,
3532 					 dirty_list);
3533 		/*
3534 		 * this can happen if something re-dirties a block
3535 		 * group that is already under IO.  Just wait for it to
3536 		 * finish and then do it all again
3537 		 */
3538 		if (!list_empty(&cache->io_list)) {
3539 			list_del_init(&cache->io_list);
3540 			btrfs_wait_cache_io(trans, cache, path);
3541 			btrfs_put_block_group(cache);
3542 		}
3543 
3544 
3545 		/*
3546 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3547 		 * if it should update the cache_state.  Don't delete
3548 		 * until after we wait.
3549 		 *
3550 		 * Since we're not running in the commit critical section
3551 		 * we need the dirty_bgs_lock to protect from update_block_group
3552 		 */
3553 		spin_lock(&cur_trans->dirty_bgs_lock);
3554 		list_del_init(&cache->dirty_list);
3555 		spin_unlock(&cur_trans->dirty_bgs_lock);
3556 
3557 		should_put = 1;
3558 
3559 		cache_save_setup(cache, trans, path);
3560 
3561 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3562 			cache->io_ctl.inode = NULL;
3563 			ret = btrfs_write_out_cache(trans, cache, path);
3564 			if (ret == 0 && cache->io_ctl.inode) {
3565 				num_started++;
3566 				should_put = 0;
3567 
3568 				/*
3569 				 * The cache_write_mutex is protecting the
3570 				 * io_list, also refer to the definition of
3571 				 * btrfs_transaction::io_bgs for more details
3572 				 */
3573 				list_add_tail(&cache->io_list, io);
3574 			} else {
3575 				/*
3576 				 * if we failed to write the cache, the
3577 				 * generation will be bad and life goes on
3578 				 */
3579 				ret = 0;
3580 			}
3581 		}
3582 		if (!ret) {
3583 			ret = write_one_cache_group(trans, path, cache);
3584 			/*
3585 			 * Our block group might still be attached to the list
3586 			 * of new block groups in the transaction handle of some
3587 			 * other task (struct btrfs_trans_handle->new_bgs). This
3588 			 * means its block group item isn't yet in the extent
3589 			 * tree. If this happens ignore the error, as we will
3590 			 * try again later in the critical section of the
3591 			 * transaction commit.
3592 			 */
3593 			if (ret == -ENOENT) {
3594 				ret = 0;
3595 				spin_lock(&cur_trans->dirty_bgs_lock);
3596 				if (list_empty(&cache->dirty_list)) {
3597 					list_add_tail(&cache->dirty_list,
3598 						      &cur_trans->dirty_bgs);
3599 					btrfs_get_block_group(cache);
3600 					drop_reserve = false;
3601 				}
3602 				spin_unlock(&cur_trans->dirty_bgs_lock);
3603 			} else if (ret) {
3604 				btrfs_abort_transaction(trans, ret);
3605 			}
3606 		}
3607 
3608 		/* if it's not on the io list, we need to put the block group */
3609 		if (should_put)
3610 			btrfs_put_block_group(cache);
3611 		if (drop_reserve)
3612 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3613 
3614 		if (ret)
3615 			break;
3616 
3617 		/*
3618 		 * Avoid blocking other tasks for too long. It might even save
3619 		 * us from writing caches for block groups that are going to be
3620 		 * removed.
3621 		 */
3622 		mutex_unlock(&trans->transaction->cache_write_mutex);
3623 		mutex_lock(&trans->transaction->cache_write_mutex);
3624 	}
3625 	mutex_unlock(&trans->transaction->cache_write_mutex);
3626 
3627 	/*
3628 	 * go through delayed refs for all the stuff we've just kicked off
3629 	 * and then loop back (just once)
3630 	 */
3631 	ret = btrfs_run_delayed_refs(trans, 0);
3632 	if (!ret && loops == 0) {
3633 		loops++;
3634 		spin_lock(&cur_trans->dirty_bgs_lock);
3635 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3636 		/*
3637 		 * dirty_bgs_lock protects us from concurrent block group
3638 		 * deletes too (not just cache_write_mutex).
3639 		 */
3640 		if (!list_empty(&dirty)) {
3641 			spin_unlock(&cur_trans->dirty_bgs_lock);
3642 			goto again;
3643 		}
3644 		spin_unlock(&cur_trans->dirty_bgs_lock);
3645 	} else if (ret < 0) {
3646 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3647 	}
3648 
3649 	btrfs_free_path(path);
3650 	return ret;
3651 }
3652 
3653 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3654 {
3655 	struct btrfs_fs_info *fs_info = trans->fs_info;
3656 	struct btrfs_block_group_cache *cache;
3657 	struct btrfs_transaction *cur_trans = trans->transaction;
3658 	int ret = 0;
3659 	int should_put;
3660 	struct btrfs_path *path;
3661 	struct list_head *io = &cur_trans->io_bgs;
3662 	int num_started = 0;
3663 
3664 	path = btrfs_alloc_path();
3665 	if (!path)
3666 		return -ENOMEM;
3667 
3668 	/*
3669 	 * Even though we are in the critical section of the transaction commit,
3670 	 * we can still have concurrent tasks adding elements to this
3671 	 * transaction's list of dirty block groups. These tasks correspond to
3672 	 * endio free space workers started when writeback finishes for a
3673 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3674 	 * allocate new block groups as a result of COWing nodes of the root
3675 	 * tree when updating the free space inode. The writeback for the space
3676 	 * caches is triggered by an earlier call to
3677 	 * btrfs_start_dirty_block_groups() and iterations of the following
3678 	 * loop.
3679 	 * Also we want to do the cache_save_setup first and then run the
3680 	 * delayed refs to make sure we have the best chance at doing this all
3681 	 * in one shot.
3682 	 */
3683 	spin_lock(&cur_trans->dirty_bgs_lock);
3684 	while (!list_empty(&cur_trans->dirty_bgs)) {
3685 		cache = list_first_entry(&cur_trans->dirty_bgs,
3686 					 struct btrfs_block_group_cache,
3687 					 dirty_list);
3688 
3689 		/*
3690 		 * this can happen if cache_save_setup re-dirties a block
3691 		 * group that is already under IO.  Just wait for it to
3692 		 * finish and then do it all again
3693 		 */
3694 		if (!list_empty(&cache->io_list)) {
3695 			spin_unlock(&cur_trans->dirty_bgs_lock);
3696 			list_del_init(&cache->io_list);
3697 			btrfs_wait_cache_io(trans, cache, path);
3698 			btrfs_put_block_group(cache);
3699 			spin_lock(&cur_trans->dirty_bgs_lock);
3700 		}
3701 
3702 		/*
3703 		 * don't remove from the dirty list until after we've waited
3704 		 * on any pending IO
3705 		 */
3706 		list_del_init(&cache->dirty_list);
3707 		spin_unlock(&cur_trans->dirty_bgs_lock);
3708 		should_put = 1;
3709 
3710 		cache_save_setup(cache, trans, path);
3711 
3712 		if (!ret)
3713 			ret = btrfs_run_delayed_refs(trans,
3714 						     (unsigned long) -1);
3715 
3716 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3717 			cache->io_ctl.inode = NULL;
3718 			ret = btrfs_write_out_cache(trans, cache, path);
3719 			if (ret == 0 && cache->io_ctl.inode) {
3720 				num_started++;
3721 				should_put = 0;
3722 				list_add_tail(&cache->io_list, io);
3723 			} else {
3724 				/*
3725 				 * if we failed to write the cache, the
3726 				 * generation will be bad and life goes on
3727 				 */
3728 				ret = 0;
3729 			}
3730 		}
3731 		if (!ret) {
3732 			ret = write_one_cache_group(trans, path, cache);
3733 			/*
3734 			 * One of the free space endio workers might have
3735 			 * created a new block group while updating a free space
3736 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3737 			 * and hasn't released its transaction handle yet, in
3738 			 * which case the new block group is still attached to
3739 			 * its transaction handle and its creation has not
3740 			 * finished yet (no block group item in the extent tree
3741 			 * yet, etc). If this is the case, wait for all free
3742 			 * space endio workers to finish and retry. This is a
3743 			 * a very rare case so no need for a more efficient and
3744 			 * complex approach.
3745 			 */
3746 			if (ret == -ENOENT) {
3747 				wait_event(cur_trans->writer_wait,
3748 				   atomic_read(&cur_trans->num_writers) == 1);
3749 				ret = write_one_cache_group(trans, path, cache);
3750 			}
3751 			if (ret)
3752 				btrfs_abort_transaction(trans, ret);
3753 		}
3754 
3755 		/* if its not on the io list, we need to put the block group */
3756 		if (should_put)
3757 			btrfs_put_block_group(cache);
3758 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3759 		spin_lock(&cur_trans->dirty_bgs_lock);
3760 	}
3761 	spin_unlock(&cur_trans->dirty_bgs_lock);
3762 
3763 	/*
3764 	 * Refer to the definition of io_bgs member for details why it's safe
3765 	 * to use it without any locking
3766 	 */
3767 	while (!list_empty(io)) {
3768 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3769 					 io_list);
3770 		list_del_init(&cache->io_list);
3771 		btrfs_wait_cache_io(trans, cache, path);
3772 		btrfs_put_block_group(cache);
3773 	}
3774 
3775 	btrfs_free_path(path);
3776 	return ret;
3777 }
3778 
3779 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3780 {
3781 	struct btrfs_block_group_cache *block_group;
3782 	int readonly = 0;
3783 
3784 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3785 	if (!block_group || block_group->ro)
3786 		readonly = 1;
3787 	if (block_group)
3788 		btrfs_put_block_group(block_group);
3789 	return readonly;
3790 }
3791 
3792 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3793 {
3794 	struct btrfs_block_group_cache *bg;
3795 	bool ret = true;
3796 
3797 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3798 	if (!bg)
3799 		return false;
3800 
3801 	spin_lock(&bg->lock);
3802 	if (bg->ro)
3803 		ret = false;
3804 	else
3805 		atomic_inc(&bg->nocow_writers);
3806 	spin_unlock(&bg->lock);
3807 
3808 	/* no put on block group, done by btrfs_dec_nocow_writers */
3809 	if (!ret)
3810 		btrfs_put_block_group(bg);
3811 
3812 	return ret;
3813 
3814 }
3815 
3816 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3817 {
3818 	struct btrfs_block_group_cache *bg;
3819 
3820 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3821 	ASSERT(bg);
3822 	if (atomic_dec_and_test(&bg->nocow_writers))
3823 		wake_up_var(&bg->nocow_writers);
3824 	/*
3825 	 * Once for our lookup and once for the lookup done by a previous call
3826 	 * to btrfs_inc_nocow_writers()
3827 	 */
3828 	btrfs_put_block_group(bg);
3829 	btrfs_put_block_group(bg);
3830 }
3831 
3832 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3833 {
3834 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3835 }
3836 
3837 static const char *alloc_name(u64 flags)
3838 {
3839 	switch (flags) {
3840 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3841 		return "mixed";
3842 	case BTRFS_BLOCK_GROUP_METADATA:
3843 		return "metadata";
3844 	case BTRFS_BLOCK_GROUP_DATA:
3845 		return "data";
3846 	case BTRFS_BLOCK_GROUP_SYSTEM:
3847 		return "system";
3848 	default:
3849 		WARN_ON(1);
3850 		return "invalid-combination";
3851 	};
3852 }
3853 
3854 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3855 {
3856 
3857 	struct btrfs_space_info *space_info;
3858 	int i;
3859 	int ret;
3860 
3861 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3862 	if (!space_info)
3863 		return -ENOMEM;
3864 
3865 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3866 				 GFP_KERNEL);
3867 	if (ret) {
3868 		kfree(space_info);
3869 		return ret;
3870 	}
3871 
3872 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3873 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3874 	init_rwsem(&space_info->groups_sem);
3875 	spin_lock_init(&space_info->lock);
3876 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3877 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3878 	init_waitqueue_head(&space_info->wait);
3879 	INIT_LIST_HEAD(&space_info->ro_bgs);
3880 	INIT_LIST_HEAD(&space_info->tickets);
3881 	INIT_LIST_HEAD(&space_info->priority_tickets);
3882 
3883 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3884 				    info->space_info_kobj, "%s",
3885 				    alloc_name(space_info->flags));
3886 	if (ret) {
3887 		kobject_put(&space_info->kobj);
3888 		return ret;
3889 	}
3890 
3891 	list_add_rcu(&space_info->list, &info->space_info);
3892 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3893 		info->data_sinfo = space_info;
3894 
3895 	return ret;
3896 }
3897 
3898 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3899 			     u64 total_bytes, u64 bytes_used,
3900 			     u64 bytes_readonly,
3901 			     struct btrfs_space_info **space_info)
3902 {
3903 	struct btrfs_space_info *found;
3904 	int factor;
3905 
3906 	factor = btrfs_bg_type_to_factor(flags);
3907 
3908 	found = __find_space_info(info, flags);
3909 	ASSERT(found);
3910 	spin_lock(&found->lock);
3911 	found->total_bytes += total_bytes;
3912 	found->disk_total += total_bytes * factor;
3913 	found->bytes_used += bytes_used;
3914 	found->disk_used += bytes_used * factor;
3915 	found->bytes_readonly += bytes_readonly;
3916 	if (total_bytes > 0)
3917 		found->full = 0;
3918 	space_info_add_new_bytes(info, found, total_bytes -
3919 				 bytes_used - bytes_readonly);
3920 	spin_unlock(&found->lock);
3921 	*space_info = found;
3922 }
3923 
3924 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3925 {
3926 	u64 extra_flags = chunk_to_extended(flags) &
3927 				BTRFS_EXTENDED_PROFILE_MASK;
3928 
3929 	write_seqlock(&fs_info->profiles_lock);
3930 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3931 		fs_info->avail_data_alloc_bits |= extra_flags;
3932 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3933 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3934 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3935 		fs_info->avail_system_alloc_bits |= extra_flags;
3936 	write_sequnlock(&fs_info->profiles_lock);
3937 }
3938 
3939 /*
3940  * returns target flags in extended format or 0 if restripe for this
3941  * chunk_type is not in progress
3942  *
3943  * should be called with balance_lock held
3944  */
3945 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3946 {
3947 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3948 	u64 target = 0;
3949 
3950 	if (!bctl)
3951 		return 0;
3952 
3953 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3954 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3955 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3956 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3957 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3958 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3959 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3960 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3961 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3962 	}
3963 
3964 	return target;
3965 }
3966 
3967 /*
3968  * @flags: available profiles in extended format (see ctree.h)
3969  *
3970  * Returns reduced profile in chunk format.  If profile changing is in
3971  * progress (either running or paused) picks the target profile (if it's
3972  * already available), otherwise falls back to plain reducing.
3973  */
3974 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
3975 {
3976 	u64 num_devices = fs_info->fs_devices->rw_devices;
3977 	u64 target;
3978 	u64 raid_type;
3979 	u64 allowed = 0;
3980 
3981 	/*
3982 	 * see if restripe for this chunk_type is in progress, if so
3983 	 * try to reduce to the target profile
3984 	 */
3985 	spin_lock(&fs_info->balance_lock);
3986 	target = get_restripe_target(fs_info, flags);
3987 	if (target) {
3988 		/* pick target profile only if it's already available */
3989 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3990 			spin_unlock(&fs_info->balance_lock);
3991 			return extended_to_chunk(target);
3992 		}
3993 	}
3994 	spin_unlock(&fs_info->balance_lock);
3995 
3996 	/* First, mask out the RAID levels which aren't possible */
3997 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3998 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3999 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4000 	}
4001 	allowed &= flags;
4002 
4003 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4004 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4005 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4006 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4007 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4008 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4009 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4010 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4011 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4012 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4013 
4014 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4015 
4016 	return extended_to_chunk(flags | allowed);
4017 }
4018 
4019 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4020 {
4021 	unsigned seq;
4022 	u64 flags;
4023 
4024 	do {
4025 		flags = orig_flags;
4026 		seq = read_seqbegin(&fs_info->profiles_lock);
4027 
4028 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4029 			flags |= fs_info->avail_data_alloc_bits;
4030 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4031 			flags |= fs_info->avail_system_alloc_bits;
4032 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4033 			flags |= fs_info->avail_metadata_alloc_bits;
4034 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4035 
4036 	return btrfs_reduce_alloc_profile(fs_info, flags);
4037 }
4038 
4039 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4040 {
4041 	struct btrfs_fs_info *fs_info = root->fs_info;
4042 	u64 flags;
4043 	u64 ret;
4044 
4045 	if (data)
4046 		flags = BTRFS_BLOCK_GROUP_DATA;
4047 	else if (root == fs_info->chunk_root)
4048 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4049 	else
4050 		flags = BTRFS_BLOCK_GROUP_METADATA;
4051 
4052 	ret = get_alloc_profile(fs_info, flags);
4053 	return ret;
4054 }
4055 
4056 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4057 {
4058 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4059 }
4060 
4061 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4062 {
4063 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4064 }
4065 
4066 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4067 {
4068 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4069 }
4070 
4071 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4072 				 bool may_use_included)
4073 {
4074 	ASSERT(s_info);
4075 	return s_info->bytes_used + s_info->bytes_reserved +
4076 		s_info->bytes_pinned + s_info->bytes_readonly +
4077 		(may_use_included ? s_info->bytes_may_use : 0);
4078 }
4079 
4080 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4081 {
4082 	struct btrfs_root *root = inode->root;
4083 	struct btrfs_fs_info *fs_info = root->fs_info;
4084 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4085 	u64 used;
4086 	int ret = 0;
4087 	int need_commit = 2;
4088 	int have_pinned_space;
4089 
4090 	/* make sure bytes are sectorsize aligned */
4091 	bytes = ALIGN(bytes, fs_info->sectorsize);
4092 
4093 	if (btrfs_is_free_space_inode(inode)) {
4094 		need_commit = 0;
4095 		ASSERT(current->journal_info);
4096 	}
4097 
4098 again:
4099 	/* make sure we have enough space to handle the data first */
4100 	spin_lock(&data_sinfo->lock);
4101 	used = btrfs_space_info_used(data_sinfo, true);
4102 
4103 	if (used + bytes > data_sinfo->total_bytes) {
4104 		struct btrfs_trans_handle *trans;
4105 
4106 		/*
4107 		 * if we don't have enough free bytes in this space then we need
4108 		 * to alloc a new chunk.
4109 		 */
4110 		if (!data_sinfo->full) {
4111 			u64 alloc_target;
4112 
4113 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4114 			spin_unlock(&data_sinfo->lock);
4115 
4116 			alloc_target = btrfs_data_alloc_profile(fs_info);
4117 			/*
4118 			 * It is ugly that we don't call nolock join
4119 			 * transaction for the free space inode case here.
4120 			 * But it is safe because we only do the data space
4121 			 * reservation for the free space cache in the
4122 			 * transaction context, the common join transaction
4123 			 * just increase the counter of the current transaction
4124 			 * handler, doesn't try to acquire the trans_lock of
4125 			 * the fs.
4126 			 */
4127 			trans = btrfs_join_transaction(root);
4128 			if (IS_ERR(trans))
4129 				return PTR_ERR(trans);
4130 
4131 			ret = do_chunk_alloc(trans, alloc_target,
4132 					     CHUNK_ALLOC_NO_FORCE);
4133 			btrfs_end_transaction(trans);
4134 			if (ret < 0) {
4135 				if (ret != -ENOSPC)
4136 					return ret;
4137 				else {
4138 					have_pinned_space = 1;
4139 					goto commit_trans;
4140 				}
4141 			}
4142 
4143 			goto again;
4144 		}
4145 
4146 		/*
4147 		 * If we don't have enough pinned space to deal with this
4148 		 * allocation, and no removed chunk in current transaction,
4149 		 * don't bother committing the transaction.
4150 		 */
4151 		have_pinned_space = __percpu_counter_compare(
4152 			&data_sinfo->total_bytes_pinned,
4153 			used + bytes - data_sinfo->total_bytes,
4154 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
4155 		spin_unlock(&data_sinfo->lock);
4156 
4157 		/* commit the current transaction and try again */
4158 commit_trans:
4159 		if (need_commit) {
4160 			need_commit--;
4161 
4162 			if (need_commit > 0) {
4163 				btrfs_start_delalloc_roots(fs_info, -1);
4164 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4165 							 (u64)-1);
4166 			}
4167 
4168 			trans = btrfs_join_transaction(root);
4169 			if (IS_ERR(trans))
4170 				return PTR_ERR(trans);
4171 			if (have_pinned_space >= 0 ||
4172 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4173 				     &trans->transaction->flags) ||
4174 			    need_commit > 0) {
4175 				ret = btrfs_commit_transaction(trans);
4176 				if (ret)
4177 					return ret;
4178 				/*
4179 				 * The cleaner kthread might still be doing iput
4180 				 * operations. Wait for it to finish so that
4181 				 * more space is released.  We don't need to
4182 				 * explicitly run the delayed iputs here because
4183 				 * the commit_transaction would have woken up
4184 				 * the cleaner.
4185 				 */
4186 				ret = btrfs_wait_on_delayed_iputs(fs_info);
4187 				if (ret)
4188 					return ret;
4189 				goto again;
4190 			} else {
4191 				btrfs_end_transaction(trans);
4192 			}
4193 		}
4194 
4195 		trace_btrfs_space_reservation(fs_info,
4196 					      "space_info:enospc",
4197 					      data_sinfo->flags, bytes, 1);
4198 		return -ENOSPC;
4199 	}
4200 	update_bytes_may_use(data_sinfo, bytes);
4201 	trace_btrfs_space_reservation(fs_info, "space_info",
4202 				      data_sinfo->flags, bytes, 1);
4203 	spin_unlock(&data_sinfo->lock);
4204 
4205 	return 0;
4206 }
4207 
4208 int btrfs_check_data_free_space(struct inode *inode,
4209 			struct extent_changeset **reserved, u64 start, u64 len)
4210 {
4211 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4212 	int ret;
4213 
4214 	/* align the range */
4215 	len = round_up(start + len, fs_info->sectorsize) -
4216 	      round_down(start, fs_info->sectorsize);
4217 	start = round_down(start, fs_info->sectorsize);
4218 
4219 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4220 	if (ret < 0)
4221 		return ret;
4222 
4223 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4224 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4225 	if (ret < 0)
4226 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4227 	else
4228 		ret = 0;
4229 	return ret;
4230 }
4231 
4232 /*
4233  * Called if we need to clear a data reservation for this inode
4234  * Normally in a error case.
4235  *
4236  * This one will *NOT* use accurate qgroup reserved space API, just for case
4237  * which we can't sleep and is sure it won't affect qgroup reserved space.
4238  * Like clear_bit_hook().
4239  */
4240 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4241 					    u64 len)
4242 {
4243 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4244 	struct btrfs_space_info *data_sinfo;
4245 
4246 	/* Make sure the range is aligned to sectorsize */
4247 	len = round_up(start + len, fs_info->sectorsize) -
4248 	      round_down(start, fs_info->sectorsize);
4249 	start = round_down(start, fs_info->sectorsize);
4250 
4251 	data_sinfo = fs_info->data_sinfo;
4252 	spin_lock(&data_sinfo->lock);
4253 	update_bytes_may_use(data_sinfo, -len);
4254 	trace_btrfs_space_reservation(fs_info, "space_info",
4255 				      data_sinfo->flags, len, 0);
4256 	spin_unlock(&data_sinfo->lock);
4257 }
4258 
4259 /*
4260  * Called if we need to clear a data reservation for this inode
4261  * Normally in a error case.
4262  *
4263  * This one will handle the per-inode data rsv map for accurate reserved
4264  * space framework.
4265  */
4266 void btrfs_free_reserved_data_space(struct inode *inode,
4267 			struct extent_changeset *reserved, u64 start, u64 len)
4268 {
4269 	struct btrfs_root *root = BTRFS_I(inode)->root;
4270 
4271 	/* Make sure the range is aligned to sectorsize */
4272 	len = round_up(start + len, root->fs_info->sectorsize) -
4273 	      round_down(start, root->fs_info->sectorsize);
4274 	start = round_down(start, root->fs_info->sectorsize);
4275 
4276 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4277 	btrfs_qgroup_free_data(inode, reserved, start, len);
4278 }
4279 
4280 static void force_metadata_allocation(struct btrfs_fs_info *info)
4281 {
4282 	struct list_head *head = &info->space_info;
4283 	struct btrfs_space_info *found;
4284 
4285 	rcu_read_lock();
4286 	list_for_each_entry_rcu(found, head, list) {
4287 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4288 			found->force_alloc = CHUNK_ALLOC_FORCE;
4289 	}
4290 	rcu_read_unlock();
4291 }
4292 
4293 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4294 {
4295 	return (global->size << 1);
4296 }
4297 
4298 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4299 			      struct btrfs_space_info *sinfo, int force)
4300 {
4301 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4302 	u64 thresh;
4303 
4304 	if (force == CHUNK_ALLOC_FORCE)
4305 		return 1;
4306 
4307 	/*
4308 	 * in limited mode, we want to have some free space up to
4309 	 * about 1% of the FS size.
4310 	 */
4311 	if (force == CHUNK_ALLOC_LIMITED) {
4312 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4313 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4314 
4315 		if (sinfo->total_bytes - bytes_used < thresh)
4316 			return 1;
4317 	}
4318 
4319 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4320 		return 0;
4321 	return 1;
4322 }
4323 
4324 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4325 {
4326 	u64 num_dev;
4327 
4328 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4329 		    BTRFS_BLOCK_GROUP_RAID0 |
4330 		    BTRFS_BLOCK_GROUP_RAID5 |
4331 		    BTRFS_BLOCK_GROUP_RAID6))
4332 		num_dev = fs_info->fs_devices->rw_devices;
4333 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4334 		num_dev = 2;
4335 	else
4336 		num_dev = 1;	/* DUP or single */
4337 
4338 	return num_dev;
4339 }
4340 
4341 /*
4342  * If @is_allocation is true, reserve space in the system space info necessary
4343  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4344  * removing a chunk.
4345  */
4346 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4347 {
4348 	struct btrfs_fs_info *fs_info = trans->fs_info;
4349 	struct btrfs_space_info *info;
4350 	u64 left;
4351 	u64 thresh;
4352 	int ret = 0;
4353 	u64 num_devs;
4354 
4355 	/*
4356 	 * Needed because we can end up allocating a system chunk and for an
4357 	 * atomic and race free space reservation in the chunk block reserve.
4358 	 */
4359 	lockdep_assert_held(&fs_info->chunk_mutex);
4360 
4361 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4362 	spin_lock(&info->lock);
4363 	left = info->total_bytes - btrfs_space_info_used(info, true);
4364 	spin_unlock(&info->lock);
4365 
4366 	num_devs = get_profile_num_devs(fs_info, type);
4367 
4368 	/* num_devs device items to update and 1 chunk item to add or remove */
4369 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4370 		btrfs_calc_trans_metadata_size(fs_info, 1);
4371 
4372 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4373 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4374 			   left, thresh, type);
4375 		dump_space_info(fs_info, info, 0, 0);
4376 	}
4377 
4378 	if (left < thresh) {
4379 		u64 flags = btrfs_system_alloc_profile(fs_info);
4380 
4381 		/*
4382 		 * Ignore failure to create system chunk. We might end up not
4383 		 * needing it, as we might not need to COW all nodes/leafs from
4384 		 * the paths we visit in the chunk tree (they were already COWed
4385 		 * or created in the current transaction for example).
4386 		 */
4387 		ret = btrfs_alloc_chunk(trans, flags);
4388 	}
4389 
4390 	if (!ret) {
4391 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4392 					  &fs_info->chunk_block_rsv,
4393 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4394 		if (!ret)
4395 			trans->chunk_bytes_reserved += thresh;
4396 	}
4397 }
4398 
4399 /*
4400  * If force is CHUNK_ALLOC_FORCE:
4401  *    - return 1 if it successfully allocates a chunk,
4402  *    - return errors including -ENOSPC otherwise.
4403  * If force is NOT CHUNK_ALLOC_FORCE:
4404  *    - return 0 if it doesn't need to allocate a new chunk,
4405  *    - return 1 if it successfully allocates a chunk,
4406  *    - return errors including -ENOSPC otherwise.
4407  */
4408 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4409 			  int force)
4410 {
4411 	struct btrfs_fs_info *fs_info = trans->fs_info;
4412 	struct btrfs_space_info *space_info;
4413 	bool wait_for_alloc = false;
4414 	bool should_alloc = false;
4415 	int ret = 0;
4416 
4417 	/* Don't re-enter if we're already allocating a chunk */
4418 	if (trans->allocating_chunk)
4419 		return -ENOSPC;
4420 
4421 	space_info = __find_space_info(fs_info, flags);
4422 	ASSERT(space_info);
4423 
4424 	do {
4425 		spin_lock(&space_info->lock);
4426 		if (force < space_info->force_alloc)
4427 			force = space_info->force_alloc;
4428 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4429 		if (space_info->full) {
4430 			/* No more free physical space */
4431 			if (should_alloc)
4432 				ret = -ENOSPC;
4433 			else
4434 				ret = 0;
4435 			spin_unlock(&space_info->lock);
4436 			return ret;
4437 		} else if (!should_alloc) {
4438 			spin_unlock(&space_info->lock);
4439 			return 0;
4440 		} else if (space_info->chunk_alloc) {
4441 			/*
4442 			 * Someone is already allocating, so we need to block
4443 			 * until this someone is finished and then loop to
4444 			 * recheck if we should continue with our allocation
4445 			 * attempt.
4446 			 */
4447 			wait_for_alloc = true;
4448 			spin_unlock(&space_info->lock);
4449 			mutex_lock(&fs_info->chunk_mutex);
4450 			mutex_unlock(&fs_info->chunk_mutex);
4451 		} else {
4452 			/* Proceed with allocation */
4453 			space_info->chunk_alloc = 1;
4454 			wait_for_alloc = false;
4455 			spin_unlock(&space_info->lock);
4456 		}
4457 
4458 		cond_resched();
4459 	} while (wait_for_alloc);
4460 
4461 	mutex_lock(&fs_info->chunk_mutex);
4462 	trans->allocating_chunk = true;
4463 
4464 	/*
4465 	 * If we have mixed data/metadata chunks we want to make sure we keep
4466 	 * allocating mixed chunks instead of individual chunks.
4467 	 */
4468 	if (btrfs_mixed_space_info(space_info))
4469 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4470 
4471 	/*
4472 	 * if we're doing a data chunk, go ahead and make sure that
4473 	 * we keep a reasonable number of metadata chunks allocated in the
4474 	 * FS as well.
4475 	 */
4476 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4477 		fs_info->data_chunk_allocations++;
4478 		if (!(fs_info->data_chunk_allocations %
4479 		      fs_info->metadata_ratio))
4480 			force_metadata_allocation(fs_info);
4481 	}
4482 
4483 	/*
4484 	 * Check if we have enough space in SYSTEM chunk because we may need
4485 	 * to update devices.
4486 	 */
4487 	check_system_chunk(trans, flags);
4488 
4489 	ret = btrfs_alloc_chunk(trans, flags);
4490 	trans->allocating_chunk = false;
4491 
4492 	spin_lock(&space_info->lock);
4493 	if (ret < 0) {
4494 		if (ret == -ENOSPC)
4495 			space_info->full = 1;
4496 		else
4497 			goto out;
4498 	} else {
4499 		ret = 1;
4500 		space_info->max_extent_size = 0;
4501 	}
4502 
4503 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4504 out:
4505 	space_info->chunk_alloc = 0;
4506 	spin_unlock(&space_info->lock);
4507 	mutex_unlock(&fs_info->chunk_mutex);
4508 	/*
4509 	 * When we allocate a new chunk we reserve space in the chunk block
4510 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4511 	 * add new nodes/leafs to it if we end up needing to do it when
4512 	 * inserting the chunk item and updating device items as part of the
4513 	 * second phase of chunk allocation, performed by
4514 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4515 	 * large number of new block groups to create in our transaction
4516 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4517 	 * in extreme cases - like having a single transaction create many new
4518 	 * block groups when starting to write out the free space caches of all
4519 	 * the block groups that were made dirty during the lifetime of the
4520 	 * transaction.
4521 	 */
4522 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4523 		btrfs_create_pending_block_groups(trans);
4524 
4525 	return ret;
4526 }
4527 
4528 static int can_overcommit(struct btrfs_fs_info *fs_info,
4529 			  struct btrfs_space_info *space_info, u64 bytes,
4530 			  enum btrfs_reserve_flush_enum flush,
4531 			  bool system_chunk)
4532 {
4533 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4534 	u64 profile;
4535 	u64 space_size;
4536 	u64 avail;
4537 	u64 used;
4538 	int factor;
4539 
4540 	/* Don't overcommit when in mixed mode. */
4541 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4542 		return 0;
4543 
4544 	if (system_chunk)
4545 		profile = btrfs_system_alloc_profile(fs_info);
4546 	else
4547 		profile = btrfs_metadata_alloc_profile(fs_info);
4548 
4549 	used = btrfs_space_info_used(space_info, false);
4550 
4551 	/*
4552 	 * We only want to allow over committing if we have lots of actual space
4553 	 * free, but if we don't have enough space to handle the global reserve
4554 	 * space then we could end up having a real enospc problem when trying
4555 	 * to allocate a chunk or some other such important allocation.
4556 	 */
4557 	spin_lock(&global_rsv->lock);
4558 	space_size = calc_global_rsv_need_space(global_rsv);
4559 	spin_unlock(&global_rsv->lock);
4560 	if (used + space_size >= space_info->total_bytes)
4561 		return 0;
4562 
4563 	used += space_info->bytes_may_use;
4564 
4565 	avail = atomic64_read(&fs_info->free_chunk_space);
4566 
4567 	/*
4568 	 * If we have dup, raid1 or raid10 then only half of the free
4569 	 * space is actually usable.  For raid56, the space info used
4570 	 * doesn't include the parity drive, so we don't have to
4571 	 * change the math
4572 	 */
4573 	factor = btrfs_bg_type_to_factor(profile);
4574 	avail = div_u64(avail, factor);
4575 
4576 	/*
4577 	 * If we aren't flushing all things, let us overcommit up to
4578 	 * 1/2th of the space. If we can flush, don't let us overcommit
4579 	 * too much, let it overcommit up to 1/8 of the space.
4580 	 */
4581 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4582 		avail >>= 3;
4583 	else
4584 		avail >>= 1;
4585 
4586 	if (used + bytes < space_info->total_bytes + avail)
4587 		return 1;
4588 	return 0;
4589 }
4590 
4591 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4592 					 unsigned long nr_pages, int nr_items)
4593 {
4594 	struct super_block *sb = fs_info->sb;
4595 
4596 	if (down_read_trylock(&sb->s_umount)) {
4597 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4598 		up_read(&sb->s_umount);
4599 	} else {
4600 		/*
4601 		 * We needn't worry the filesystem going from r/w to r/o though
4602 		 * we don't acquire ->s_umount mutex, because the filesystem
4603 		 * should guarantee the delalloc inodes list be empty after
4604 		 * the filesystem is readonly(all dirty pages are written to
4605 		 * the disk).
4606 		 */
4607 		btrfs_start_delalloc_roots(fs_info, nr_items);
4608 		if (!current->journal_info)
4609 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4610 	}
4611 }
4612 
4613 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4614 					u64 to_reclaim)
4615 {
4616 	u64 bytes;
4617 	u64 nr;
4618 
4619 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4620 	nr = div64_u64(to_reclaim, bytes);
4621 	if (!nr)
4622 		nr = 1;
4623 	return nr;
4624 }
4625 
4626 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4627 
4628 /*
4629  * shrink metadata reservation for delalloc
4630  */
4631 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4632 			    u64 orig, bool wait_ordered)
4633 {
4634 	struct btrfs_space_info *space_info;
4635 	struct btrfs_trans_handle *trans;
4636 	u64 delalloc_bytes;
4637 	u64 dio_bytes;
4638 	u64 async_pages;
4639 	u64 items;
4640 	long time_left;
4641 	unsigned long nr_pages;
4642 	int loops;
4643 
4644 	/* Calc the number of the pages we need flush for space reservation */
4645 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4646 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4647 
4648 	trans = (struct btrfs_trans_handle *)current->journal_info;
4649 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4650 
4651 	delalloc_bytes = percpu_counter_sum_positive(
4652 						&fs_info->delalloc_bytes);
4653 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4654 	if (delalloc_bytes == 0 && dio_bytes == 0) {
4655 		if (trans)
4656 			return;
4657 		if (wait_ordered)
4658 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4659 		return;
4660 	}
4661 
4662 	/*
4663 	 * If we are doing more ordered than delalloc we need to just wait on
4664 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
4665 	 * that likely won't give us the space back we need.
4666 	 */
4667 	if (dio_bytes > delalloc_bytes)
4668 		wait_ordered = true;
4669 
4670 	loops = 0;
4671 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
4672 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4673 
4674 		/*
4675 		 * Triggers inode writeback for up to nr_pages. This will invoke
4676 		 * ->writepages callback and trigger delalloc filling
4677 		 *  (btrfs_run_delalloc_range()).
4678 		 */
4679 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4680 
4681 		/*
4682 		 * We need to wait for the compressed pages to start before
4683 		 * we continue.
4684 		 */
4685 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
4686 		if (!async_pages)
4687 			goto skip_async;
4688 
4689 		/*
4690 		 * Calculate how many compressed pages we want to be written
4691 		 * before we continue. I.e if there are more async pages than we
4692 		 * require wait_event will wait until nr_pages are written.
4693 		 */
4694 		if (async_pages <= nr_pages)
4695 			async_pages = 0;
4696 		else
4697 			async_pages -= nr_pages;
4698 
4699 		wait_event(fs_info->async_submit_wait,
4700 			   atomic_read(&fs_info->async_delalloc_pages) <=
4701 			   (int)async_pages);
4702 skip_async:
4703 		spin_lock(&space_info->lock);
4704 		if (list_empty(&space_info->tickets) &&
4705 		    list_empty(&space_info->priority_tickets)) {
4706 			spin_unlock(&space_info->lock);
4707 			break;
4708 		}
4709 		spin_unlock(&space_info->lock);
4710 
4711 		loops++;
4712 		if (wait_ordered && !trans) {
4713 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4714 		} else {
4715 			time_left = schedule_timeout_killable(1);
4716 			if (time_left)
4717 				break;
4718 		}
4719 		delalloc_bytes = percpu_counter_sum_positive(
4720 						&fs_info->delalloc_bytes);
4721 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
4722 	}
4723 }
4724 
4725 struct reserve_ticket {
4726 	u64 orig_bytes;
4727 	u64 bytes;
4728 	int error;
4729 	struct list_head list;
4730 	wait_queue_head_t wait;
4731 };
4732 
4733 /**
4734  * maybe_commit_transaction - possibly commit the transaction if its ok to
4735  * @root - the root we're allocating for
4736  * @bytes - the number of bytes we want to reserve
4737  * @force - force the commit
4738  *
4739  * This will check to make sure that committing the transaction will actually
4740  * get us somewhere and then commit the transaction if it does.  Otherwise it
4741  * will return -ENOSPC.
4742  */
4743 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4744 				  struct btrfs_space_info *space_info)
4745 {
4746 	struct reserve_ticket *ticket = NULL;
4747 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4748 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4749 	struct btrfs_trans_handle *trans;
4750 	u64 bytes_needed;
4751 	u64 reclaim_bytes = 0;
4752 
4753 	trans = (struct btrfs_trans_handle *)current->journal_info;
4754 	if (trans)
4755 		return -EAGAIN;
4756 
4757 	spin_lock(&space_info->lock);
4758 	if (!list_empty(&space_info->priority_tickets))
4759 		ticket = list_first_entry(&space_info->priority_tickets,
4760 					  struct reserve_ticket, list);
4761 	else if (!list_empty(&space_info->tickets))
4762 		ticket = list_first_entry(&space_info->tickets,
4763 					  struct reserve_ticket, list);
4764 	bytes_needed = (ticket) ? ticket->bytes : 0;
4765 	spin_unlock(&space_info->lock);
4766 
4767 	if (!bytes_needed)
4768 		return 0;
4769 
4770 	trans = btrfs_join_transaction(fs_info->extent_root);
4771 	if (IS_ERR(trans))
4772 		return PTR_ERR(trans);
4773 
4774 	/*
4775 	 * See if there is enough pinned space to make this reservation, or if
4776 	 * we have block groups that are going to be freed, allowing us to
4777 	 * possibly do a chunk allocation the next loop through.
4778 	 */
4779 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4780 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
4781 				     bytes_needed,
4782 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4783 		goto commit;
4784 
4785 	/*
4786 	 * See if there is some space in the delayed insertion reservation for
4787 	 * this reservation.
4788 	 */
4789 	if (space_info != delayed_rsv->space_info)
4790 		goto enospc;
4791 
4792 	spin_lock(&delayed_rsv->lock);
4793 	reclaim_bytes += delayed_rsv->reserved;
4794 	spin_unlock(&delayed_rsv->lock);
4795 
4796 	spin_lock(&delayed_refs_rsv->lock);
4797 	reclaim_bytes += delayed_refs_rsv->reserved;
4798 	spin_unlock(&delayed_refs_rsv->lock);
4799 	if (reclaim_bytes >= bytes_needed)
4800 		goto commit;
4801 	bytes_needed -= reclaim_bytes;
4802 
4803 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4804 				   bytes_needed,
4805 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4806 		goto enospc;
4807 
4808 commit:
4809 	return btrfs_commit_transaction(trans);
4810 enospc:
4811 	btrfs_end_transaction(trans);
4812 	return -ENOSPC;
4813 }
4814 
4815 /*
4816  * Try to flush some data based on policy set by @state. This is only advisory
4817  * and may fail for various reasons. The caller is supposed to examine the
4818  * state of @space_info to detect the outcome.
4819  */
4820 static void flush_space(struct btrfs_fs_info *fs_info,
4821 		       struct btrfs_space_info *space_info, u64 num_bytes,
4822 		       int state)
4823 {
4824 	struct btrfs_root *root = fs_info->extent_root;
4825 	struct btrfs_trans_handle *trans;
4826 	int nr;
4827 	int ret = 0;
4828 
4829 	switch (state) {
4830 	case FLUSH_DELAYED_ITEMS_NR:
4831 	case FLUSH_DELAYED_ITEMS:
4832 		if (state == FLUSH_DELAYED_ITEMS_NR)
4833 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4834 		else
4835 			nr = -1;
4836 
4837 		trans = btrfs_join_transaction(root);
4838 		if (IS_ERR(trans)) {
4839 			ret = PTR_ERR(trans);
4840 			break;
4841 		}
4842 		ret = btrfs_run_delayed_items_nr(trans, nr);
4843 		btrfs_end_transaction(trans);
4844 		break;
4845 	case FLUSH_DELALLOC:
4846 	case FLUSH_DELALLOC_WAIT:
4847 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4848 				state == FLUSH_DELALLOC_WAIT);
4849 		break;
4850 	case FLUSH_DELAYED_REFS_NR:
4851 	case FLUSH_DELAYED_REFS:
4852 		trans = btrfs_join_transaction(root);
4853 		if (IS_ERR(trans)) {
4854 			ret = PTR_ERR(trans);
4855 			break;
4856 		}
4857 		if (state == FLUSH_DELAYED_REFS_NR)
4858 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
4859 		else
4860 			nr = 0;
4861 		btrfs_run_delayed_refs(trans, nr);
4862 		btrfs_end_transaction(trans);
4863 		break;
4864 	case ALLOC_CHUNK:
4865 	case ALLOC_CHUNK_FORCE:
4866 		trans = btrfs_join_transaction(root);
4867 		if (IS_ERR(trans)) {
4868 			ret = PTR_ERR(trans);
4869 			break;
4870 		}
4871 		ret = do_chunk_alloc(trans,
4872 				     btrfs_metadata_alloc_profile(fs_info),
4873 				     (state == ALLOC_CHUNK) ?
4874 				      CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
4875 		btrfs_end_transaction(trans);
4876 		if (ret > 0 || ret == -ENOSPC)
4877 			ret = 0;
4878 		break;
4879 	case COMMIT_TRANS:
4880 		/*
4881 		 * If we have pending delayed iputs then we could free up a
4882 		 * bunch of pinned space, so make sure we run the iputs before
4883 		 * we do our pinned bytes check below.
4884 		 */
4885 		btrfs_run_delayed_iputs(fs_info);
4886 		btrfs_wait_on_delayed_iputs(fs_info);
4887 
4888 		ret = may_commit_transaction(fs_info, space_info);
4889 		break;
4890 	default:
4891 		ret = -ENOSPC;
4892 		break;
4893 	}
4894 
4895 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4896 				ret);
4897 	return;
4898 }
4899 
4900 static inline u64
4901 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4902 				 struct btrfs_space_info *space_info,
4903 				 bool system_chunk)
4904 {
4905 	struct reserve_ticket *ticket;
4906 	u64 used;
4907 	u64 expected;
4908 	u64 to_reclaim = 0;
4909 
4910 	list_for_each_entry(ticket, &space_info->tickets, list)
4911 		to_reclaim += ticket->bytes;
4912 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4913 		to_reclaim += ticket->bytes;
4914 	if (to_reclaim)
4915 		return to_reclaim;
4916 
4917 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4918 	if (can_overcommit(fs_info, space_info, to_reclaim,
4919 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4920 		return 0;
4921 
4922 	used = btrfs_space_info_used(space_info, true);
4923 
4924 	if (can_overcommit(fs_info, space_info, SZ_1M,
4925 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4926 		expected = div_factor_fine(space_info->total_bytes, 95);
4927 	else
4928 		expected = div_factor_fine(space_info->total_bytes, 90);
4929 
4930 	if (used > expected)
4931 		to_reclaim = used - expected;
4932 	else
4933 		to_reclaim = 0;
4934 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4935 				     space_info->bytes_reserved);
4936 	return to_reclaim;
4937 }
4938 
4939 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4940 					struct btrfs_space_info *space_info,
4941 					u64 used, bool system_chunk)
4942 {
4943 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4944 
4945 	/* If we're just plain full then async reclaim just slows us down. */
4946 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4947 		return 0;
4948 
4949 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4950 					      system_chunk))
4951 		return 0;
4952 
4953 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4954 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4955 }
4956 
4957 static bool wake_all_tickets(struct list_head *head)
4958 {
4959 	struct reserve_ticket *ticket;
4960 
4961 	while (!list_empty(head)) {
4962 		ticket = list_first_entry(head, struct reserve_ticket, list);
4963 		list_del_init(&ticket->list);
4964 		ticket->error = -ENOSPC;
4965 		wake_up(&ticket->wait);
4966 		if (ticket->bytes != ticket->orig_bytes)
4967 			return true;
4968 	}
4969 	return false;
4970 }
4971 
4972 /*
4973  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4974  * will loop and continuously try to flush as long as we are making progress.
4975  * We count progress as clearing off tickets each time we have to loop.
4976  */
4977 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4978 {
4979 	struct btrfs_fs_info *fs_info;
4980 	struct btrfs_space_info *space_info;
4981 	u64 to_reclaim;
4982 	int flush_state;
4983 	int commit_cycles = 0;
4984 	u64 last_tickets_id;
4985 
4986 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4987 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4988 
4989 	spin_lock(&space_info->lock);
4990 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4991 						      false);
4992 	if (!to_reclaim) {
4993 		space_info->flush = 0;
4994 		spin_unlock(&space_info->lock);
4995 		return;
4996 	}
4997 	last_tickets_id = space_info->tickets_id;
4998 	spin_unlock(&space_info->lock);
4999 
5000 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5001 	do {
5002 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5003 		spin_lock(&space_info->lock);
5004 		if (list_empty(&space_info->tickets)) {
5005 			space_info->flush = 0;
5006 			spin_unlock(&space_info->lock);
5007 			return;
5008 		}
5009 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5010 							      space_info,
5011 							      false);
5012 		if (last_tickets_id == space_info->tickets_id) {
5013 			flush_state++;
5014 		} else {
5015 			last_tickets_id = space_info->tickets_id;
5016 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5017 			if (commit_cycles)
5018 				commit_cycles--;
5019 		}
5020 
5021 		/*
5022 		 * We don't want to force a chunk allocation until we've tried
5023 		 * pretty hard to reclaim space.  Think of the case where we
5024 		 * freed up a bunch of space and so have a lot of pinned space
5025 		 * to reclaim.  We would rather use that than possibly create a
5026 		 * underutilized metadata chunk.  So if this is our first run
5027 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5028 		 * commit the transaction.  If nothing has changed the next go
5029 		 * around then we can force a chunk allocation.
5030 		 */
5031 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5032 			flush_state++;
5033 
5034 		if (flush_state > COMMIT_TRANS) {
5035 			commit_cycles++;
5036 			if (commit_cycles > 2) {
5037 				if (wake_all_tickets(&space_info->tickets)) {
5038 					flush_state = FLUSH_DELAYED_ITEMS_NR;
5039 					commit_cycles--;
5040 				} else {
5041 					space_info->flush = 0;
5042 				}
5043 			} else {
5044 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5045 			}
5046 		}
5047 		spin_unlock(&space_info->lock);
5048 	} while (flush_state <= COMMIT_TRANS);
5049 }
5050 
5051 void btrfs_init_async_reclaim_work(struct work_struct *work)
5052 {
5053 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5054 }
5055 
5056 static const enum btrfs_flush_state priority_flush_states[] = {
5057 	FLUSH_DELAYED_ITEMS_NR,
5058 	FLUSH_DELAYED_ITEMS,
5059 	ALLOC_CHUNK,
5060 };
5061 
5062 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5063 					    struct btrfs_space_info *space_info,
5064 					    struct reserve_ticket *ticket)
5065 {
5066 	u64 to_reclaim;
5067 	int flush_state;
5068 
5069 	spin_lock(&space_info->lock);
5070 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5071 						      false);
5072 	if (!to_reclaim) {
5073 		spin_unlock(&space_info->lock);
5074 		return;
5075 	}
5076 	spin_unlock(&space_info->lock);
5077 
5078 	flush_state = 0;
5079 	do {
5080 		flush_space(fs_info, space_info, to_reclaim,
5081 			    priority_flush_states[flush_state]);
5082 		flush_state++;
5083 		spin_lock(&space_info->lock);
5084 		if (ticket->bytes == 0) {
5085 			spin_unlock(&space_info->lock);
5086 			return;
5087 		}
5088 		spin_unlock(&space_info->lock);
5089 	} while (flush_state < ARRAY_SIZE(priority_flush_states));
5090 }
5091 
5092 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5093 			       struct btrfs_space_info *space_info,
5094 			       struct reserve_ticket *ticket)
5095 
5096 {
5097 	DEFINE_WAIT(wait);
5098 	u64 reclaim_bytes = 0;
5099 	int ret = 0;
5100 
5101 	spin_lock(&space_info->lock);
5102 	while (ticket->bytes > 0 && ticket->error == 0) {
5103 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5104 		if (ret) {
5105 			ret = -EINTR;
5106 			break;
5107 		}
5108 		spin_unlock(&space_info->lock);
5109 
5110 		schedule();
5111 
5112 		finish_wait(&ticket->wait, &wait);
5113 		spin_lock(&space_info->lock);
5114 	}
5115 	if (!ret)
5116 		ret = ticket->error;
5117 	if (!list_empty(&ticket->list))
5118 		list_del_init(&ticket->list);
5119 	if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5120 		reclaim_bytes = ticket->orig_bytes - ticket->bytes;
5121 	spin_unlock(&space_info->lock);
5122 
5123 	if (reclaim_bytes)
5124 		space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5125 	return ret;
5126 }
5127 
5128 /**
5129  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5130  * @root - the root we're allocating for
5131  * @space_info - the space info we want to allocate from
5132  * @orig_bytes - the number of bytes we want
5133  * @flush - whether or not we can flush to make our reservation
5134  *
5135  * This will reserve orig_bytes number of bytes from the space info associated
5136  * with the block_rsv.  If there is not enough space it will make an attempt to
5137  * flush out space to make room.  It will do this by flushing delalloc if
5138  * possible or committing the transaction.  If flush is 0 then no attempts to
5139  * regain reservations will be made and this will fail if there is not enough
5140  * space already.
5141  */
5142 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5143 				    struct btrfs_space_info *space_info,
5144 				    u64 orig_bytes,
5145 				    enum btrfs_reserve_flush_enum flush,
5146 				    bool system_chunk)
5147 {
5148 	struct reserve_ticket ticket;
5149 	u64 used;
5150 	u64 reclaim_bytes = 0;
5151 	int ret = 0;
5152 
5153 	ASSERT(orig_bytes);
5154 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5155 
5156 	spin_lock(&space_info->lock);
5157 	ret = -ENOSPC;
5158 	used = btrfs_space_info_used(space_info, true);
5159 
5160 	/*
5161 	 * If we have enough space then hooray, make our reservation and carry
5162 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5163 	 * If not things get more complicated.
5164 	 */
5165 	if (used + orig_bytes <= space_info->total_bytes) {
5166 		update_bytes_may_use(space_info, orig_bytes);
5167 		trace_btrfs_space_reservation(fs_info, "space_info",
5168 					      space_info->flags, orig_bytes, 1);
5169 		ret = 0;
5170 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5171 				  system_chunk)) {
5172 		update_bytes_may_use(space_info, orig_bytes);
5173 		trace_btrfs_space_reservation(fs_info, "space_info",
5174 					      space_info->flags, orig_bytes, 1);
5175 		ret = 0;
5176 	}
5177 
5178 	/*
5179 	 * If we couldn't make a reservation then setup our reservation ticket
5180 	 * and kick the async worker if it's not already running.
5181 	 *
5182 	 * If we are a priority flusher then we just need to add our ticket to
5183 	 * the list and we will do our own flushing further down.
5184 	 */
5185 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5186 		ticket.orig_bytes = orig_bytes;
5187 		ticket.bytes = orig_bytes;
5188 		ticket.error = 0;
5189 		init_waitqueue_head(&ticket.wait);
5190 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5191 			list_add_tail(&ticket.list, &space_info->tickets);
5192 			if (!space_info->flush) {
5193 				space_info->flush = 1;
5194 				trace_btrfs_trigger_flush(fs_info,
5195 							  space_info->flags,
5196 							  orig_bytes, flush,
5197 							  "enospc");
5198 				queue_work(system_unbound_wq,
5199 					   &fs_info->async_reclaim_work);
5200 			}
5201 		} else {
5202 			list_add_tail(&ticket.list,
5203 				      &space_info->priority_tickets);
5204 		}
5205 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5206 		used += orig_bytes;
5207 		/*
5208 		 * We will do the space reservation dance during log replay,
5209 		 * which means we won't have fs_info->fs_root set, so don't do
5210 		 * the async reclaim as we will panic.
5211 		 */
5212 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5213 		    need_do_async_reclaim(fs_info, space_info,
5214 					  used, system_chunk) &&
5215 		    !work_busy(&fs_info->async_reclaim_work)) {
5216 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5217 						  orig_bytes, flush, "preempt");
5218 			queue_work(system_unbound_wq,
5219 				   &fs_info->async_reclaim_work);
5220 		}
5221 	}
5222 	spin_unlock(&space_info->lock);
5223 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5224 		return ret;
5225 
5226 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5227 		return wait_reserve_ticket(fs_info, space_info, &ticket);
5228 
5229 	ret = 0;
5230 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5231 	spin_lock(&space_info->lock);
5232 	if (ticket.bytes) {
5233 		if (ticket.bytes < orig_bytes)
5234 			reclaim_bytes = orig_bytes - ticket.bytes;
5235 		list_del_init(&ticket.list);
5236 		ret = -ENOSPC;
5237 	}
5238 	spin_unlock(&space_info->lock);
5239 
5240 	if (reclaim_bytes)
5241 		space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5242 	ASSERT(list_empty(&ticket.list));
5243 	return ret;
5244 }
5245 
5246 /**
5247  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5248  * @root - the root we're allocating for
5249  * @block_rsv - the block_rsv we're allocating for
5250  * @orig_bytes - the number of bytes we want
5251  * @flush - whether or not we can flush to make our reservation
5252  *
5253  * This will reserve orig_bytes number of bytes from the space info associated
5254  * with the block_rsv.  If there is not enough space it will make an attempt to
5255  * flush out space to make room.  It will do this by flushing delalloc if
5256  * possible or committing the transaction.  If flush is 0 then no attempts to
5257  * regain reservations will be made and this will fail if there is not enough
5258  * space already.
5259  */
5260 static int reserve_metadata_bytes(struct btrfs_root *root,
5261 				  struct btrfs_block_rsv *block_rsv,
5262 				  u64 orig_bytes,
5263 				  enum btrfs_reserve_flush_enum flush)
5264 {
5265 	struct btrfs_fs_info *fs_info = root->fs_info;
5266 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5267 	int ret;
5268 	bool system_chunk = (root == fs_info->chunk_root);
5269 
5270 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5271 				       orig_bytes, flush, system_chunk);
5272 	if (ret == -ENOSPC &&
5273 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5274 		if (block_rsv != global_rsv &&
5275 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5276 			ret = 0;
5277 	}
5278 	if (ret == -ENOSPC) {
5279 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5280 					      block_rsv->space_info->flags,
5281 					      orig_bytes, 1);
5282 
5283 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5284 			dump_space_info(fs_info, block_rsv->space_info,
5285 					orig_bytes, 0);
5286 	}
5287 	return ret;
5288 }
5289 
5290 static struct btrfs_block_rsv *get_block_rsv(
5291 					const struct btrfs_trans_handle *trans,
5292 					const struct btrfs_root *root)
5293 {
5294 	struct btrfs_fs_info *fs_info = root->fs_info;
5295 	struct btrfs_block_rsv *block_rsv = NULL;
5296 
5297 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5298 	    (root == fs_info->csum_root && trans->adding_csums) ||
5299 	    (root == fs_info->uuid_root))
5300 		block_rsv = trans->block_rsv;
5301 
5302 	if (!block_rsv)
5303 		block_rsv = root->block_rsv;
5304 
5305 	if (!block_rsv)
5306 		block_rsv = &fs_info->empty_block_rsv;
5307 
5308 	return block_rsv;
5309 }
5310 
5311 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5312 			       u64 num_bytes)
5313 {
5314 	int ret = -ENOSPC;
5315 	spin_lock(&block_rsv->lock);
5316 	if (block_rsv->reserved >= num_bytes) {
5317 		block_rsv->reserved -= num_bytes;
5318 		if (block_rsv->reserved < block_rsv->size)
5319 			block_rsv->full = 0;
5320 		ret = 0;
5321 	}
5322 	spin_unlock(&block_rsv->lock);
5323 	return ret;
5324 }
5325 
5326 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5327 				u64 num_bytes, bool update_size)
5328 {
5329 	spin_lock(&block_rsv->lock);
5330 	block_rsv->reserved += num_bytes;
5331 	if (update_size)
5332 		block_rsv->size += num_bytes;
5333 	else if (block_rsv->reserved >= block_rsv->size)
5334 		block_rsv->full = 1;
5335 	spin_unlock(&block_rsv->lock);
5336 }
5337 
5338 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5339 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5340 			     int min_factor)
5341 {
5342 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5343 	u64 min_bytes;
5344 
5345 	if (global_rsv->space_info != dest->space_info)
5346 		return -ENOSPC;
5347 
5348 	spin_lock(&global_rsv->lock);
5349 	min_bytes = div_factor(global_rsv->size, min_factor);
5350 	if (global_rsv->reserved < min_bytes + num_bytes) {
5351 		spin_unlock(&global_rsv->lock);
5352 		return -ENOSPC;
5353 	}
5354 	global_rsv->reserved -= num_bytes;
5355 	if (global_rsv->reserved < global_rsv->size)
5356 		global_rsv->full = 0;
5357 	spin_unlock(&global_rsv->lock);
5358 
5359 	block_rsv_add_bytes(dest, num_bytes, true);
5360 	return 0;
5361 }
5362 
5363 /**
5364  * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5365  * @fs_info - the fs info for our fs.
5366  * @src - the source block rsv to transfer from.
5367  * @num_bytes - the number of bytes to transfer.
5368  *
5369  * This transfers up to the num_bytes amount from the src rsv to the
5370  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
5371  */
5372 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5373 				       struct btrfs_block_rsv *src,
5374 				       u64 num_bytes)
5375 {
5376 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5377 	u64 to_free = 0;
5378 
5379 	spin_lock(&src->lock);
5380 	src->reserved -= num_bytes;
5381 	src->size -= num_bytes;
5382 	spin_unlock(&src->lock);
5383 
5384 	spin_lock(&delayed_refs_rsv->lock);
5385 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5386 		u64 delta = delayed_refs_rsv->size -
5387 			delayed_refs_rsv->reserved;
5388 		if (num_bytes > delta) {
5389 			to_free = num_bytes - delta;
5390 			num_bytes = delta;
5391 		}
5392 	} else {
5393 		to_free = num_bytes;
5394 		num_bytes = 0;
5395 	}
5396 
5397 	if (num_bytes)
5398 		delayed_refs_rsv->reserved += num_bytes;
5399 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5400 		delayed_refs_rsv->full = 1;
5401 	spin_unlock(&delayed_refs_rsv->lock);
5402 
5403 	if (num_bytes)
5404 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5405 					      0, num_bytes, 1);
5406 	if (to_free)
5407 		space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5408 					 to_free);
5409 }
5410 
5411 /**
5412  * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5413  * @fs_info - the fs_info for our fs.
5414  * @flush - control how we can flush for this reservation.
5415  *
5416  * This will refill the delayed block_rsv up to 1 items size worth of space and
5417  * will return -ENOSPC if we can't make the reservation.
5418  */
5419 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5420 				  enum btrfs_reserve_flush_enum flush)
5421 {
5422 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5423 	u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5424 	u64 num_bytes = 0;
5425 	int ret = -ENOSPC;
5426 
5427 	spin_lock(&block_rsv->lock);
5428 	if (block_rsv->reserved < block_rsv->size) {
5429 		num_bytes = block_rsv->size - block_rsv->reserved;
5430 		num_bytes = min(num_bytes, limit);
5431 	}
5432 	spin_unlock(&block_rsv->lock);
5433 
5434 	if (!num_bytes)
5435 		return 0;
5436 
5437 	ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5438 				     num_bytes, flush);
5439 	if (ret)
5440 		return ret;
5441 	block_rsv_add_bytes(block_rsv, num_bytes, 0);
5442 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5443 				      0, num_bytes, 1);
5444 	return 0;
5445 }
5446 
5447 /*
5448  * This is for space we already have accounted in space_info->bytes_may_use, so
5449  * basically when we're returning space from block_rsv's.
5450  */
5451 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5452 				     struct btrfs_space_info *space_info,
5453 				     u64 num_bytes)
5454 {
5455 	struct reserve_ticket *ticket;
5456 	struct list_head *head;
5457 	u64 used;
5458 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5459 	bool check_overcommit = false;
5460 
5461 	spin_lock(&space_info->lock);
5462 	head = &space_info->priority_tickets;
5463 
5464 	/*
5465 	 * If we are over our limit then we need to check and see if we can
5466 	 * overcommit, and if we can't then we just need to free up our space
5467 	 * and not satisfy any requests.
5468 	 */
5469 	used = btrfs_space_info_used(space_info, true);
5470 	if (used - num_bytes >= space_info->total_bytes)
5471 		check_overcommit = true;
5472 again:
5473 	while (!list_empty(head) && num_bytes) {
5474 		ticket = list_first_entry(head, struct reserve_ticket,
5475 					  list);
5476 		/*
5477 		 * We use 0 bytes because this space is already reserved, so
5478 		 * adding the ticket space would be a double count.
5479 		 */
5480 		if (check_overcommit &&
5481 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5482 			break;
5483 		if (num_bytes >= ticket->bytes) {
5484 			list_del_init(&ticket->list);
5485 			num_bytes -= ticket->bytes;
5486 			ticket->bytes = 0;
5487 			space_info->tickets_id++;
5488 			wake_up(&ticket->wait);
5489 		} else {
5490 			ticket->bytes -= num_bytes;
5491 			num_bytes = 0;
5492 		}
5493 	}
5494 
5495 	if (num_bytes && head == &space_info->priority_tickets) {
5496 		head = &space_info->tickets;
5497 		flush = BTRFS_RESERVE_FLUSH_ALL;
5498 		goto again;
5499 	}
5500 	update_bytes_may_use(space_info, -num_bytes);
5501 	trace_btrfs_space_reservation(fs_info, "space_info",
5502 				      space_info->flags, num_bytes, 0);
5503 	spin_unlock(&space_info->lock);
5504 }
5505 
5506 /*
5507  * This is for newly allocated space that isn't accounted in
5508  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5509  * we use this helper.
5510  */
5511 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5512 				     struct btrfs_space_info *space_info,
5513 				     u64 num_bytes)
5514 {
5515 	struct reserve_ticket *ticket;
5516 	struct list_head *head = &space_info->priority_tickets;
5517 
5518 again:
5519 	while (!list_empty(head) && num_bytes) {
5520 		ticket = list_first_entry(head, struct reserve_ticket,
5521 					  list);
5522 		if (num_bytes >= ticket->bytes) {
5523 			trace_btrfs_space_reservation(fs_info, "space_info",
5524 						      space_info->flags,
5525 						      ticket->bytes, 1);
5526 			list_del_init(&ticket->list);
5527 			num_bytes -= ticket->bytes;
5528 			update_bytes_may_use(space_info, ticket->bytes);
5529 			ticket->bytes = 0;
5530 			space_info->tickets_id++;
5531 			wake_up(&ticket->wait);
5532 		} else {
5533 			trace_btrfs_space_reservation(fs_info, "space_info",
5534 						      space_info->flags,
5535 						      num_bytes, 1);
5536 			update_bytes_may_use(space_info, num_bytes);
5537 			ticket->bytes -= num_bytes;
5538 			num_bytes = 0;
5539 		}
5540 	}
5541 
5542 	if (num_bytes && head == &space_info->priority_tickets) {
5543 		head = &space_info->tickets;
5544 		goto again;
5545 	}
5546 }
5547 
5548 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5549 				    struct btrfs_block_rsv *block_rsv,
5550 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5551 				    u64 *qgroup_to_release_ret)
5552 {
5553 	struct btrfs_space_info *space_info = block_rsv->space_info;
5554 	u64 qgroup_to_release = 0;
5555 	u64 ret;
5556 
5557 	spin_lock(&block_rsv->lock);
5558 	if (num_bytes == (u64)-1) {
5559 		num_bytes = block_rsv->size;
5560 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5561 	}
5562 	block_rsv->size -= num_bytes;
5563 	if (block_rsv->reserved >= block_rsv->size) {
5564 		num_bytes = block_rsv->reserved - block_rsv->size;
5565 		block_rsv->reserved = block_rsv->size;
5566 		block_rsv->full = 1;
5567 	} else {
5568 		num_bytes = 0;
5569 	}
5570 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5571 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5572 				    block_rsv->qgroup_rsv_size;
5573 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5574 	} else {
5575 		qgroup_to_release = 0;
5576 	}
5577 	spin_unlock(&block_rsv->lock);
5578 
5579 	ret = num_bytes;
5580 	if (num_bytes > 0) {
5581 		if (dest) {
5582 			spin_lock(&dest->lock);
5583 			if (!dest->full) {
5584 				u64 bytes_to_add;
5585 
5586 				bytes_to_add = dest->size - dest->reserved;
5587 				bytes_to_add = min(num_bytes, bytes_to_add);
5588 				dest->reserved += bytes_to_add;
5589 				if (dest->reserved >= dest->size)
5590 					dest->full = 1;
5591 				num_bytes -= bytes_to_add;
5592 			}
5593 			spin_unlock(&dest->lock);
5594 		}
5595 		if (num_bytes)
5596 			space_info_add_old_bytes(fs_info, space_info,
5597 						 num_bytes);
5598 	}
5599 	if (qgroup_to_release_ret)
5600 		*qgroup_to_release_ret = qgroup_to_release;
5601 	return ret;
5602 }
5603 
5604 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5605 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5606 			    bool update_size)
5607 {
5608 	int ret;
5609 
5610 	ret = block_rsv_use_bytes(src, num_bytes);
5611 	if (ret)
5612 		return ret;
5613 
5614 	block_rsv_add_bytes(dst, num_bytes, update_size);
5615 	return 0;
5616 }
5617 
5618 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5619 {
5620 	memset(rsv, 0, sizeof(*rsv));
5621 	spin_lock_init(&rsv->lock);
5622 	rsv->type = type;
5623 }
5624 
5625 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5626 				   struct btrfs_block_rsv *rsv,
5627 				   unsigned short type)
5628 {
5629 	btrfs_init_block_rsv(rsv, type);
5630 	rsv->space_info = __find_space_info(fs_info,
5631 					    BTRFS_BLOCK_GROUP_METADATA);
5632 }
5633 
5634 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5635 					      unsigned short type)
5636 {
5637 	struct btrfs_block_rsv *block_rsv;
5638 
5639 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5640 	if (!block_rsv)
5641 		return NULL;
5642 
5643 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5644 	return block_rsv;
5645 }
5646 
5647 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5648 			  struct btrfs_block_rsv *rsv)
5649 {
5650 	if (!rsv)
5651 		return;
5652 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5653 	kfree(rsv);
5654 }
5655 
5656 int btrfs_block_rsv_add(struct btrfs_root *root,
5657 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5658 			enum btrfs_reserve_flush_enum flush)
5659 {
5660 	int ret;
5661 
5662 	if (num_bytes == 0)
5663 		return 0;
5664 
5665 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5666 	if (!ret)
5667 		block_rsv_add_bytes(block_rsv, num_bytes, true);
5668 
5669 	return ret;
5670 }
5671 
5672 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5673 {
5674 	u64 num_bytes = 0;
5675 	int ret = -ENOSPC;
5676 
5677 	if (!block_rsv)
5678 		return 0;
5679 
5680 	spin_lock(&block_rsv->lock);
5681 	num_bytes = div_factor(block_rsv->size, min_factor);
5682 	if (block_rsv->reserved >= num_bytes)
5683 		ret = 0;
5684 	spin_unlock(&block_rsv->lock);
5685 
5686 	return ret;
5687 }
5688 
5689 int btrfs_block_rsv_refill(struct btrfs_root *root,
5690 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5691 			   enum btrfs_reserve_flush_enum flush)
5692 {
5693 	u64 num_bytes = 0;
5694 	int ret = -ENOSPC;
5695 
5696 	if (!block_rsv)
5697 		return 0;
5698 
5699 	spin_lock(&block_rsv->lock);
5700 	num_bytes = min_reserved;
5701 	if (block_rsv->reserved >= num_bytes)
5702 		ret = 0;
5703 	else
5704 		num_bytes -= block_rsv->reserved;
5705 	spin_unlock(&block_rsv->lock);
5706 
5707 	if (!ret)
5708 		return 0;
5709 
5710 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5711 	if (!ret) {
5712 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5713 		return 0;
5714 	}
5715 
5716 	return ret;
5717 }
5718 
5719 static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5720 				     struct btrfs_block_rsv *block_rsv,
5721 				     u64 num_bytes, u64 *qgroup_to_release)
5722 {
5723 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5724 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5725 	struct btrfs_block_rsv *target = delayed_rsv;
5726 
5727 	if (target->full || target == block_rsv)
5728 		target = global_rsv;
5729 
5730 	if (block_rsv->space_info != target->space_info)
5731 		target = NULL;
5732 
5733 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5734 				       qgroup_to_release);
5735 }
5736 
5737 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5738 			     struct btrfs_block_rsv *block_rsv,
5739 			     u64 num_bytes)
5740 {
5741 	__btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5742 }
5743 
5744 /**
5745  * btrfs_inode_rsv_release - release any excessive reservation.
5746  * @inode - the inode we need to release from.
5747  * @qgroup_free - free or convert qgroup meta.
5748  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5749  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5750  *   @qgroup_free is true for error handling, and false for normal release.
5751  *
5752  * This is the same as btrfs_block_rsv_release, except that it handles the
5753  * tracepoint for the reservation.
5754  */
5755 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5756 {
5757 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5758 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5759 	u64 released = 0;
5760 	u64 qgroup_to_release = 0;
5761 
5762 	/*
5763 	 * Since we statically set the block_rsv->size we just want to say we
5764 	 * are releasing 0 bytes, and then we'll just get the reservation over
5765 	 * the size free'd.
5766 	 */
5767 	released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5768 					     &qgroup_to_release);
5769 	if (released > 0)
5770 		trace_btrfs_space_reservation(fs_info, "delalloc",
5771 					      btrfs_ino(inode), released, 0);
5772 	if (qgroup_free)
5773 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5774 	else
5775 		btrfs_qgroup_convert_reserved_meta(inode->root,
5776 						   qgroup_to_release);
5777 }
5778 
5779 /**
5780  * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5781  * @fs_info - the fs_info for our fs.
5782  * @nr - the number of items to drop.
5783  *
5784  * This drops the delayed ref head's count from the delayed refs rsv and frees
5785  * any excess reservation we had.
5786  */
5787 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5788 {
5789 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5790 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5791 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5792 	u64 released = 0;
5793 
5794 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5795 					   num_bytes, NULL);
5796 	if (released)
5797 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5798 					      0, released, 0);
5799 }
5800 
5801 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5802 {
5803 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5804 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5805 	u64 num_bytes;
5806 
5807 	/*
5808 	 * The global block rsv is based on the size of the extent tree, the
5809 	 * checksum tree and the root tree.  If the fs is empty we want to set
5810 	 * it to a minimal amount for safety.
5811 	 */
5812 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5813 		btrfs_root_used(&fs_info->csum_root->root_item) +
5814 		btrfs_root_used(&fs_info->tree_root->root_item);
5815 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5816 
5817 	spin_lock(&sinfo->lock);
5818 	spin_lock(&block_rsv->lock);
5819 
5820 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5821 
5822 	if (block_rsv->reserved < block_rsv->size) {
5823 		num_bytes = btrfs_space_info_used(sinfo, true);
5824 		if (sinfo->total_bytes > num_bytes) {
5825 			num_bytes = sinfo->total_bytes - num_bytes;
5826 			num_bytes = min(num_bytes,
5827 					block_rsv->size - block_rsv->reserved);
5828 			block_rsv->reserved += num_bytes;
5829 			update_bytes_may_use(sinfo, num_bytes);
5830 			trace_btrfs_space_reservation(fs_info, "space_info",
5831 						      sinfo->flags, num_bytes,
5832 						      1);
5833 		}
5834 	} else if (block_rsv->reserved > block_rsv->size) {
5835 		num_bytes = block_rsv->reserved - block_rsv->size;
5836 		update_bytes_may_use(sinfo, -num_bytes);
5837 		trace_btrfs_space_reservation(fs_info, "space_info",
5838 				      sinfo->flags, num_bytes, 0);
5839 		block_rsv->reserved = block_rsv->size;
5840 	}
5841 
5842 	if (block_rsv->reserved == block_rsv->size)
5843 		block_rsv->full = 1;
5844 	else
5845 		block_rsv->full = 0;
5846 
5847 	spin_unlock(&block_rsv->lock);
5848 	spin_unlock(&sinfo->lock);
5849 }
5850 
5851 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5852 {
5853 	struct btrfs_space_info *space_info;
5854 
5855 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5856 	fs_info->chunk_block_rsv.space_info = space_info;
5857 
5858 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5859 	fs_info->global_block_rsv.space_info = space_info;
5860 	fs_info->trans_block_rsv.space_info = space_info;
5861 	fs_info->empty_block_rsv.space_info = space_info;
5862 	fs_info->delayed_block_rsv.space_info = space_info;
5863 	fs_info->delayed_refs_rsv.space_info = space_info;
5864 
5865 	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5866 	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
5867 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5868 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5869 	if (fs_info->quota_root)
5870 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5871 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5872 
5873 	update_global_block_rsv(fs_info);
5874 }
5875 
5876 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5877 {
5878 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5879 				(u64)-1, NULL);
5880 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5881 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5882 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5883 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5884 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5885 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5886 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5887 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
5888 }
5889 
5890 /*
5891  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5892  * @trans - the trans that may have generated delayed refs
5893  *
5894  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5895  * it'll calculate the additional size and add it to the delayed_refs_rsv.
5896  */
5897 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5898 {
5899 	struct btrfs_fs_info *fs_info = trans->fs_info;
5900 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5901 	u64 num_bytes;
5902 
5903 	if (!trans->delayed_ref_updates)
5904 		return;
5905 
5906 	num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5907 						   trans->delayed_ref_updates);
5908 	spin_lock(&delayed_rsv->lock);
5909 	delayed_rsv->size += num_bytes;
5910 	delayed_rsv->full = 0;
5911 	spin_unlock(&delayed_rsv->lock);
5912 	trans->delayed_ref_updates = 0;
5913 }
5914 
5915 /*
5916  * To be called after all the new block groups attached to the transaction
5917  * handle have been created (btrfs_create_pending_block_groups()).
5918  */
5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920 {
5921 	struct btrfs_fs_info *fs_info = trans->fs_info;
5922 
5923 	if (!trans->chunk_bytes_reserved)
5924 		return;
5925 
5926 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927 
5928 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929 				trans->chunk_bytes_reserved, NULL);
5930 	trans->chunk_bytes_reserved = 0;
5931 }
5932 
5933 /*
5934  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935  * root: the root of the parent directory
5936  * rsv: block reservation
5937  * items: the number of items that we need do reservation
5938  * use_global_rsv: allow fallback to the global block reservation
5939  *
5940  * This function is used to reserve the space for snapshot/subvolume
5941  * creation and deletion. Those operations are different with the
5942  * common file/directory operations, they change two fs/file trees
5943  * and root tree, the number of items that the qgroup reserves is
5944  * different with the free space reservation. So we can not use
5945  * the space reservation mechanism in start_transaction().
5946  */
5947 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5948 				     struct btrfs_block_rsv *rsv, int items,
5949 				     bool use_global_rsv)
5950 {
5951 	u64 qgroup_num_bytes = 0;
5952 	u64 num_bytes;
5953 	int ret;
5954 	struct btrfs_fs_info *fs_info = root->fs_info;
5955 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5956 
5957 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5958 		/* One for parent inode, two for dir entries */
5959 		qgroup_num_bytes = 3 * fs_info->nodesize;
5960 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
5961 				qgroup_num_bytes, true);
5962 		if (ret)
5963 			return ret;
5964 	}
5965 
5966 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5967 	rsv->space_info = __find_space_info(fs_info,
5968 					    BTRFS_BLOCK_GROUP_METADATA);
5969 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5970 				  BTRFS_RESERVE_FLUSH_ALL);
5971 
5972 	if (ret == -ENOSPC && use_global_rsv)
5973 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
5974 
5975 	if (ret && qgroup_num_bytes)
5976 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5977 
5978 	return ret;
5979 }
5980 
5981 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5982 				      struct btrfs_block_rsv *rsv)
5983 {
5984 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5985 }
5986 
5987 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5988 						 struct btrfs_inode *inode)
5989 {
5990 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5991 	u64 reserve_size = 0;
5992 	u64 qgroup_rsv_size = 0;
5993 	u64 csum_leaves;
5994 	unsigned outstanding_extents;
5995 
5996 	lockdep_assert_held(&inode->lock);
5997 	outstanding_extents = inode->outstanding_extents;
5998 	if (outstanding_extents)
5999 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6000 						outstanding_extents + 1);
6001 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6002 						 inode->csum_bytes);
6003 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6004 						       csum_leaves);
6005 	/*
6006 	 * For qgroup rsv, the calculation is very simple:
6007 	 * account one nodesize for each outstanding extent
6008 	 *
6009 	 * This is overestimating in most cases.
6010 	 */
6011 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
6012 
6013 	spin_lock(&block_rsv->lock);
6014 	block_rsv->size = reserve_size;
6015 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6016 	spin_unlock(&block_rsv->lock);
6017 }
6018 
6019 static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
6020 				    u64 num_bytes, u64 *meta_reserve,
6021 				    u64 *qgroup_reserve)
6022 {
6023 	u64 nr_extents = count_max_extents(num_bytes);
6024 	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
6025 
6026 	/* We add one for the inode update at finish ordered time */
6027 	*meta_reserve = btrfs_calc_trans_metadata_size(fs_info,
6028 						nr_extents + csum_leaves + 1);
6029 	*qgroup_reserve = nr_extents * fs_info->nodesize;
6030 }
6031 
6032 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6033 {
6034 	struct btrfs_root *root = inode->root;
6035 	struct btrfs_fs_info *fs_info = root->fs_info;
6036 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6037 	u64 meta_reserve, qgroup_reserve;
6038 	unsigned nr_extents;
6039 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6040 	int ret = 0;
6041 	bool delalloc_lock = true;
6042 
6043 	/* If we are a free space inode we need to not flush since we will be in
6044 	 * the middle of a transaction commit.  We also don't need the delalloc
6045 	 * mutex since we won't race with anybody.  We need this mostly to make
6046 	 * lockdep shut its filthy mouth.
6047 	 *
6048 	 * If we have a transaction open (can happen if we call truncate_block
6049 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6050 	 */
6051 	if (btrfs_is_free_space_inode(inode)) {
6052 		flush = BTRFS_RESERVE_NO_FLUSH;
6053 		delalloc_lock = false;
6054 	} else {
6055 		if (current->journal_info)
6056 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6057 
6058 		if (btrfs_transaction_in_commit(fs_info))
6059 			schedule_timeout(1);
6060 	}
6061 
6062 	if (delalloc_lock)
6063 		mutex_lock(&inode->delalloc_mutex);
6064 
6065 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6066 
6067 	/*
6068 	 * We always want to do it this way, every other way is wrong and ends
6069 	 * in tears.  Pre-reserving the amount we are going to add will always
6070 	 * be the right way, because otherwise if we have enough parallelism we
6071 	 * could end up with thousands of inodes all holding little bits of
6072 	 * reservations they were able to make previously and the only way to
6073 	 * reclaim that space is to ENOSPC out the operations and clear
6074 	 * everything out and try again, which is bad.  This way we just
6075 	 * over-reserve slightly, and clean up the mess when we are done.
6076 	 */
6077 	calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
6078 				&qgroup_reserve);
6079 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
6080 	if (ret)
6081 		goto out_fail;
6082 	ret = reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
6083 	if (ret)
6084 		goto out_qgroup;
6085 
6086 	/*
6087 	 * Now we need to update our outstanding extents and csum bytes _first_
6088 	 * and then add the reservation to the block_rsv.  This keeps us from
6089 	 * racing with an ordered completion or some such that would think it
6090 	 * needs to free the reservation we just made.
6091 	 */
6092 	spin_lock(&inode->lock);
6093 	nr_extents = count_max_extents(num_bytes);
6094 	btrfs_mod_outstanding_extents(inode, nr_extents);
6095 	inode->csum_bytes += num_bytes;
6096 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6097 	spin_unlock(&inode->lock);
6098 
6099 	/* Now we can safely add our space to our block rsv */
6100 	block_rsv_add_bytes(block_rsv, meta_reserve, false);
6101 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6102 				      btrfs_ino(inode), meta_reserve, 1);
6103 
6104 	spin_lock(&block_rsv->lock);
6105 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
6106 	spin_unlock(&block_rsv->lock);
6107 
6108 	if (delalloc_lock)
6109 		mutex_unlock(&inode->delalloc_mutex);
6110 	return 0;
6111 out_qgroup:
6112 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
6113 out_fail:
6114 	btrfs_inode_rsv_release(inode, true);
6115 	if (delalloc_lock)
6116 		mutex_unlock(&inode->delalloc_mutex);
6117 	return ret;
6118 }
6119 
6120 /**
6121  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6122  * @inode: the inode to release the reservation for.
6123  * @num_bytes: the number of bytes we are releasing.
6124  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6125  *
6126  * This will release the metadata reservation for an inode.  This can be called
6127  * once we complete IO for a given set of bytes to release their metadata
6128  * reservations, or on error for the same reason.
6129  */
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6131 				     bool qgroup_free)
6132 {
6133 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6134 
6135 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6136 	spin_lock(&inode->lock);
6137 	inode->csum_bytes -= num_bytes;
6138 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6139 	spin_unlock(&inode->lock);
6140 
6141 	if (btrfs_is_testing(fs_info))
6142 		return;
6143 
6144 	btrfs_inode_rsv_release(inode, qgroup_free);
6145 }
6146 
6147 /**
6148  * btrfs_delalloc_release_extents - release our outstanding_extents
6149  * @inode: the inode to balance the reservation for.
6150  * @num_bytes: the number of bytes we originally reserved with
6151  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6152  *
6153  * When we reserve space we increase outstanding_extents for the extents we may
6154  * add.  Once we've set the range as delalloc or created our ordered extents we
6155  * have outstanding_extents to track the real usage, so we use this to free our
6156  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6157  * with btrfs_delalloc_reserve_metadata.
6158  */
6159 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6160 				    bool qgroup_free)
6161 {
6162 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6163 	unsigned num_extents;
6164 
6165 	spin_lock(&inode->lock);
6166 	num_extents = count_max_extents(num_bytes);
6167 	btrfs_mod_outstanding_extents(inode, -num_extents);
6168 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6169 	spin_unlock(&inode->lock);
6170 
6171 	if (btrfs_is_testing(fs_info))
6172 		return;
6173 
6174 	btrfs_inode_rsv_release(inode, qgroup_free);
6175 }
6176 
6177 /**
6178  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6179  * delalloc
6180  * @inode: inode we're writing to
6181  * @start: start range we are writing to
6182  * @len: how long the range we are writing to
6183  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6184  * 	      current reservation.
6185  *
6186  * This will do the following things
6187  *
6188  * o reserve space in data space info for num bytes
6189  *   and reserve precious corresponding qgroup space
6190  *   (Done in check_data_free_space)
6191  *
6192  * o reserve space for metadata space, based on the number of outstanding
6193  *   extents and how much csums will be needed
6194  *   also reserve metadata space in a per root over-reserve method.
6195  * o add to the inodes->delalloc_bytes
6196  * o add it to the fs_info's delalloc inodes list.
6197  *   (Above 3 all done in delalloc_reserve_metadata)
6198  *
6199  * Return 0 for success
6200  * Return <0 for error(-ENOSPC or -EQUOT)
6201  */
6202 int btrfs_delalloc_reserve_space(struct inode *inode,
6203 			struct extent_changeset **reserved, u64 start, u64 len)
6204 {
6205 	int ret;
6206 
6207 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6208 	if (ret < 0)
6209 		return ret;
6210 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6211 	if (ret < 0)
6212 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6213 	return ret;
6214 }
6215 
6216 /**
6217  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6218  * @inode: inode we're releasing space for
6219  * @start: start position of the space already reserved
6220  * @len: the len of the space already reserved
6221  * @release_bytes: the len of the space we consumed or didn't use
6222  *
6223  * This function will release the metadata space that was not used and will
6224  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6225  * list if there are no delalloc bytes left.
6226  * Also it will handle the qgroup reserved space.
6227  */
6228 void btrfs_delalloc_release_space(struct inode *inode,
6229 				  struct extent_changeset *reserved,
6230 				  u64 start, u64 len, bool qgroup_free)
6231 {
6232 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6233 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6234 }
6235 
6236 static int update_block_group(struct btrfs_trans_handle *trans,
6237 			      u64 bytenr, u64 num_bytes, int alloc)
6238 {
6239 	struct btrfs_fs_info *info = trans->fs_info;
6240 	struct btrfs_block_group_cache *cache = NULL;
6241 	u64 total = num_bytes;
6242 	u64 old_val;
6243 	u64 byte_in_group;
6244 	int factor;
6245 	int ret = 0;
6246 
6247 	/* block accounting for super block */
6248 	spin_lock(&info->delalloc_root_lock);
6249 	old_val = btrfs_super_bytes_used(info->super_copy);
6250 	if (alloc)
6251 		old_val += num_bytes;
6252 	else
6253 		old_val -= num_bytes;
6254 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6255 	spin_unlock(&info->delalloc_root_lock);
6256 
6257 	while (total) {
6258 		cache = btrfs_lookup_block_group(info, bytenr);
6259 		if (!cache) {
6260 			ret = -ENOENT;
6261 			break;
6262 		}
6263 		factor = btrfs_bg_type_to_factor(cache->flags);
6264 
6265 		/*
6266 		 * If this block group has free space cache written out, we
6267 		 * need to make sure to load it if we are removing space.  This
6268 		 * is because we need the unpinning stage to actually add the
6269 		 * space back to the block group, otherwise we will leak space.
6270 		 */
6271 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6272 			cache_block_group(cache, 1);
6273 
6274 		byte_in_group = bytenr - cache->key.objectid;
6275 		WARN_ON(byte_in_group > cache->key.offset);
6276 
6277 		spin_lock(&cache->space_info->lock);
6278 		spin_lock(&cache->lock);
6279 
6280 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6281 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6282 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6283 
6284 		old_val = btrfs_block_group_used(&cache->item);
6285 		num_bytes = min(total, cache->key.offset - byte_in_group);
6286 		if (alloc) {
6287 			old_val += num_bytes;
6288 			btrfs_set_block_group_used(&cache->item, old_val);
6289 			cache->reserved -= num_bytes;
6290 			cache->space_info->bytes_reserved -= num_bytes;
6291 			cache->space_info->bytes_used += num_bytes;
6292 			cache->space_info->disk_used += num_bytes * factor;
6293 			spin_unlock(&cache->lock);
6294 			spin_unlock(&cache->space_info->lock);
6295 		} else {
6296 			old_val -= num_bytes;
6297 			btrfs_set_block_group_used(&cache->item, old_val);
6298 			cache->pinned += num_bytes;
6299 			update_bytes_pinned(cache->space_info, num_bytes);
6300 			cache->space_info->bytes_used -= num_bytes;
6301 			cache->space_info->disk_used -= num_bytes * factor;
6302 			spin_unlock(&cache->lock);
6303 			spin_unlock(&cache->space_info->lock);
6304 
6305 			trace_btrfs_space_reservation(info, "pinned",
6306 						      cache->space_info->flags,
6307 						      num_bytes, 1);
6308 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6309 					   num_bytes,
6310 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
6311 			set_extent_dirty(info->pinned_extents,
6312 					 bytenr, bytenr + num_bytes - 1,
6313 					 GFP_NOFS | __GFP_NOFAIL);
6314 		}
6315 
6316 		spin_lock(&trans->transaction->dirty_bgs_lock);
6317 		if (list_empty(&cache->dirty_list)) {
6318 			list_add_tail(&cache->dirty_list,
6319 				      &trans->transaction->dirty_bgs);
6320 			trans->delayed_ref_updates++;
6321 			btrfs_get_block_group(cache);
6322 		}
6323 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6324 
6325 		/*
6326 		 * No longer have used bytes in this block group, queue it for
6327 		 * deletion. We do this after adding the block group to the
6328 		 * dirty list to avoid races between cleaner kthread and space
6329 		 * cache writeout.
6330 		 */
6331 		if (!alloc && old_val == 0)
6332 			btrfs_mark_bg_unused(cache);
6333 
6334 		btrfs_put_block_group(cache);
6335 		total -= num_bytes;
6336 		bytenr += num_bytes;
6337 	}
6338 
6339 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
6340 	btrfs_update_delayed_refs_rsv(trans);
6341 	return ret;
6342 }
6343 
6344 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6345 {
6346 	struct btrfs_block_group_cache *cache;
6347 	u64 bytenr;
6348 
6349 	spin_lock(&fs_info->block_group_cache_lock);
6350 	bytenr = fs_info->first_logical_byte;
6351 	spin_unlock(&fs_info->block_group_cache_lock);
6352 
6353 	if (bytenr < (u64)-1)
6354 		return bytenr;
6355 
6356 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6357 	if (!cache)
6358 		return 0;
6359 
6360 	bytenr = cache->key.objectid;
6361 	btrfs_put_block_group(cache);
6362 
6363 	return bytenr;
6364 }
6365 
6366 static int pin_down_extent(struct btrfs_block_group_cache *cache,
6367 			   u64 bytenr, u64 num_bytes, int reserved)
6368 {
6369 	struct btrfs_fs_info *fs_info = cache->fs_info;
6370 
6371 	spin_lock(&cache->space_info->lock);
6372 	spin_lock(&cache->lock);
6373 	cache->pinned += num_bytes;
6374 	update_bytes_pinned(cache->space_info, num_bytes);
6375 	if (reserved) {
6376 		cache->reserved -= num_bytes;
6377 		cache->space_info->bytes_reserved -= num_bytes;
6378 	}
6379 	spin_unlock(&cache->lock);
6380 	spin_unlock(&cache->space_info->lock);
6381 
6382 	trace_btrfs_space_reservation(fs_info, "pinned",
6383 				      cache->space_info->flags, num_bytes, 1);
6384 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6385 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6386 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6387 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388 	return 0;
6389 }
6390 
6391 /*
6392  * this function must be called within transaction
6393  */
6394 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6395 		     u64 bytenr, u64 num_bytes, int reserved)
6396 {
6397 	struct btrfs_block_group_cache *cache;
6398 
6399 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6400 	BUG_ON(!cache); /* Logic error */
6401 
6402 	pin_down_extent(cache, bytenr, num_bytes, reserved);
6403 
6404 	btrfs_put_block_group(cache);
6405 	return 0;
6406 }
6407 
6408 /*
6409  * this function must be called within transaction
6410  */
6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6412 				    u64 bytenr, u64 num_bytes)
6413 {
6414 	struct btrfs_block_group_cache *cache;
6415 	int ret;
6416 
6417 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6418 	if (!cache)
6419 		return -EINVAL;
6420 
6421 	/*
6422 	 * pull in the free space cache (if any) so that our pin
6423 	 * removes the free space from the cache.  We have load_only set
6424 	 * to one because the slow code to read in the free extents does check
6425 	 * the pinned extents.
6426 	 */
6427 	cache_block_group(cache, 1);
6428 
6429 	pin_down_extent(cache, bytenr, num_bytes, 0);
6430 
6431 	/* remove us from the free space cache (if we're there at all) */
6432 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6433 	btrfs_put_block_group(cache);
6434 	return ret;
6435 }
6436 
6437 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438 				   u64 start, u64 num_bytes)
6439 {
6440 	int ret;
6441 	struct btrfs_block_group_cache *block_group;
6442 	struct btrfs_caching_control *caching_ctl;
6443 
6444 	block_group = btrfs_lookup_block_group(fs_info, start);
6445 	if (!block_group)
6446 		return -EINVAL;
6447 
6448 	cache_block_group(block_group, 0);
6449 	caching_ctl = get_caching_control(block_group);
6450 
6451 	if (!caching_ctl) {
6452 		/* Logic error */
6453 		BUG_ON(!block_group_cache_done(block_group));
6454 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455 	} else {
6456 		mutex_lock(&caching_ctl->mutex);
6457 
6458 		if (start >= caching_ctl->progress) {
6459 			ret = add_excluded_extent(fs_info, start, num_bytes);
6460 		} else if (start + num_bytes <= caching_ctl->progress) {
6461 			ret = btrfs_remove_free_space(block_group,
6462 						      start, num_bytes);
6463 		} else {
6464 			num_bytes = caching_ctl->progress - start;
6465 			ret = btrfs_remove_free_space(block_group,
6466 						      start, num_bytes);
6467 			if (ret)
6468 				goto out_lock;
6469 
6470 			num_bytes = (start + num_bytes) -
6471 				caching_ctl->progress;
6472 			start = caching_ctl->progress;
6473 			ret = add_excluded_extent(fs_info, start, num_bytes);
6474 		}
6475 out_lock:
6476 		mutex_unlock(&caching_ctl->mutex);
6477 		put_caching_control(caching_ctl);
6478 	}
6479 	btrfs_put_block_group(block_group);
6480 	return ret;
6481 }
6482 
6483 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
6484 {
6485 	struct btrfs_fs_info *fs_info = eb->fs_info;
6486 	struct btrfs_file_extent_item *item;
6487 	struct btrfs_key key;
6488 	int found_type;
6489 	int i;
6490 	int ret = 0;
6491 
6492 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6493 		return 0;
6494 
6495 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6496 		btrfs_item_key_to_cpu(eb, &key, i);
6497 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6498 			continue;
6499 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6500 		found_type = btrfs_file_extent_type(eb, item);
6501 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6502 			continue;
6503 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6504 			continue;
6505 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6506 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6507 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6508 		if (ret)
6509 			break;
6510 	}
6511 
6512 	return ret;
6513 }
6514 
6515 static void
6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517 {
6518 	atomic_inc(&bg->reservations);
6519 }
6520 
6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522 					const u64 start)
6523 {
6524 	struct btrfs_block_group_cache *bg;
6525 
6526 	bg = btrfs_lookup_block_group(fs_info, start);
6527 	ASSERT(bg);
6528 	if (atomic_dec_and_test(&bg->reservations))
6529 		wake_up_var(&bg->reservations);
6530 	btrfs_put_block_group(bg);
6531 }
6532 
6533 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6534 {
6535 	struct btrfs_space_info *space_info = bg->space_info;
6536 
6537 	ASSERT(bg->ro);
6538 
6539 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6540 		return;
6541 
6542 	/*
6543 	 * Our block group is read only but before we set it to read only,
6544 	 * some task might have had allocated an extent from it already, but it
6545 	 * has not yet created a respective ordered extent (and added it to a
6546 	 * root's list of ordered extents).
6547 	 * Therefore wait for any task currently allocating extents, since the
6548 	 * block group's reservations counter is incremented while a read lock
6549 	 * on the groups' semaphore is held and decremented after releasing
6550 	 * the read access on that semaphore and creating the ordered extent.
6551 	 */
6552 	down_write(&space_info->groups_sem);
6553 	up_write(&space_info->groups_sem);
6554 
6555 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6556 }
6557 
6558 /**
6559  * btrfs_add_reserved_bytes - update the block_group and space info counters
6560  * @cache:	The cache we are manipulating
6561  * @ram_bytes:  The number of bytes of file content, and will be same to
6562  *              @num_bytes except for the compress path.
6563  * @num_bytes:	The number of bytes in question
6564  * @delalloc:   The blocks are allocated for the delalloc write
6565  *
6566  * This is called by the allocator when it reserves space. If this is a
6567  * reservation and the block group has become read only we cannot make the
6568  * reservation and return -EAGAIN, otherwise this function always succeeds.
6569  */
6570 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6571 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6572 {
6573 	struct btrfs_space_info *space_info = cache->space_info;
6574 	int ret = 0;
6575 
6576 	spin_lock(&space_info->lock);
6577 	spin_lock(&cache->lock);
6578 	if (cache->ro) {
6579 		ret = -EAGAIN;
6580 	} else {
6581 		cache->reserved += num_bytes;
6582 		space_info->bytes_reserved += num_bytes;
6583 		update_bytes_may_use(space_info, -ram_bytes);
6584 		if (delalloc)
6585 			cache->delalloc_bytes += num_bytes;
6586 	}
6587 	spin_unlock(&cache->lock);
6588 	spin_unlock(&space_info->lock);
6589 	return ret;
6590 }
6591 
6592 /**
6593  * btrfs_free_reserved_bytes - update the block_group and space info counters
6594  * @cache:      The cache we are manipulating
6595  * @num_bytes:  The number of bytes in question
6596  * @delalloc:   The blocks are allocated for the delalloc write
6597  *
6598  * This is called by somebody who is freeing space that was never actually used
6599  * on disk.  For example if you reserve some space for a new leaf in transaction
6600  * A and before transaction A commits you free that leaf, you call this with
6601  * reserve set to 0 in order to clear the reservation.
6602  */
6603 
6604 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6605 				      u64 num_bytes, int delalloc)
6606 {
6607 	struct btrfs_space_info *space_info = cache->space_info;
6608 
6609 	spin_lock(&space_info->lock);
6610 	spin_lock(&cache->lock);
6611 	if (cache->ro)
6612 		space_info->bytes_readonly += num_bytes;
6613 	cache->reserved -= num_bytes;
6614 	space_info->bytes_reserved -= num_bytes;
6615 	space_info->max_extent_size = 0;
6616 
6617 	if (delalloc)
6618 		cache->delalloc_bytes -= num_bytes;
6619 	spin_unlock(&cache->lock);
6620 	spin_unlock(&space_info->lock);
6621 }
6622 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6623 {
6624 	struct btrfs_caching_control *next;
6625 	struct btrfs_caching_control *caching_ctl;
6626 	struct btrfs_block_group_cache *cache;
6627 
6628 	down_write(&fs_info->commit_root_sem);
6629 
6630 	list_for_each_entry_safe(caching_ctl, next,
6631 				 &fs_info->caching_block_groups, list) {
6632 		cache = caching_ctl->block_group;
6633 		if (block_group_cache_done(cache)) {
6634 			cache->last_byte_to_unpin = (u64)-1;
6635 			list_del_init(&caching_ctl->list);
6636 			put_caching_control(caching_ctl);
6637 		} else {
6638 			cache->last_byte_to_unpin = caching_ctl->progress;
6639 		}
6640 	}
6641 
6642 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6643 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6644 	else
6645 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6646 
6647 	up_write(&fs_info->commit_root_sem);
6648 
6649 	update_global_block_rsv(fs_info);
6650 }
6651 
6652 /*
6653  * Returns the free cluster for the given space info and sets empty_cluster to
6654  * what it should be based on the mount options.
6655  */
6656 static struct btrfs_free_cluster *
6657 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6658 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6659 {
6660 	struct btrfs_free_cluster *ret = NULL;
6661 
6662 	*empty_cluster = 0;
6663 	if (btrfs_mixed_space_info(space_info))
6664 		return ret;
6665 
6666 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6667 		ret = &fs_info->meta_alloc_cluster;
6668 		if (btrfs_test_opt(fs_info, SSD))
6669 			*empty_cluster = SZ_2M;
6670 		else
6671 			*empty_cluster = SZ_64K;
6672 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6673 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6674 		*empty_cluster = SZ_2M;
6675 		ret = &fs_info->data_alloc_cluster;
6676 	}
6677 
6678 	return ret;
6679 }
6680 
6681 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6682 			      u64 start, u64 end,
6683 			      const bool return_free_space)
6684 {
6685 	struct btrfs_block_group_cache *cache = NULL;
6686 	struct btrfs_space_info *space_info;
6687 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6688 	struct btrfs_free_cluster *cluster = NULL;
6689 	u64 len;
6690 	u64 total_unpinned = 0;
6691 	u64 empty_cluster = 0;
6692 	bool readonly;
6693 
6694 	while (start <= end) {
6695 		readonly = false;
6696 		if (!cache ||
6697 		    start >= cache->key.objectid + cache->key.offset) {
6698 			if (cache)
6699 				btrfs_put_block_group(cache);
6700 			total_unpinned = 0;
6701 			cache = btrfs_lookup_block_group(fs_info, start);
6702 			BUG_ON(!cache); /* Logic error */
6703 
6704 			cluster = fetch_cluster_info(fs_info,
6705 						     cache->space_info,
6706 						     &empty_cluster);
6707 			empty_cluster <<= 1;
6708 		}
6709 
6710 		len = cache->key.objectid + cache->key.offset - start;
6711 		len = min(len, end + 1 - start);
6712 
6713 		if (start < cache->last_byte_to_unpin) {
6714 			len = min(len, cache->last_byte_to_unpin - start);
6715 			if (return_free_space)
6716 				btrfs_add_free_space(cache, start, len);
6717 		}
6718 
6719 		start += len;
6720 		total_unpinned += len;
6721 		space_info = cache->space_info;
6722 
6723 		/*
6724 		 * If this space cluster has been marked as fragmented and we've
6725 		 * unpinned enough in this block group to potentially allow a
6726 		 * cluster to be created inside of it go ahead and clear the
6727 		 * fragmented check.
6728 		 */
6729 		if (cluster && cluster->fragmented &&
6730 		    total_unpinned > empty_cluster) {
6731 			spin_lock(&cluster->lock);
6732 			cluster->fragmented = 0;
6733 			spin_unlock(&cluster->lock);
6734 		}
6735 
6736 		spin_lock(&space_info->lock);
6737 		spin_lock(&cache->lock);
6738 		cache->pinned -= len;
6739 		update_bytes_pinned(space_info, -len);
6740 
6741 		trace_btrfs_space_reservation(fs_info, "pinned",
6742 					      space_info->flags, len, 0);
6743 		space_info->max_extent_size = 0;
6744 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
6745 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6746 		if (cache->ro) {
6747 			space_info->bytes_readonly += len;
6748 			readonly = true;
6749 		}
6750 		spin_unlock(&cache->lock);
6751 		if (!readonly && return_free_space &&
6752 		    global_rsv->space_info == space_info) {
6753 			u64 to_add = len;
6754 
6755 			spin_lock(&global_rsv->lock);
6756 			if (!global_rsv->full) {
6757 				to_add = min(len, global_rsv->size -
6758 					     global_rsv->reserved);
6759 				global_rsv->reserved += to_add;
6760 				update_bytes_may_use(space_info, to_add);
6761 				if (global_rsv->reserved >= global_rsv->size)
6762 					global_rsv->full = 1;
6763 				trace_btrfs_space_reservation(fs_info,
6764 							      "space_info",
6765 							      space_info->flags,
6766 							      to_add, 1);
6767 				len -= to_add;
6768 			}
6769 			spin_unlock(&global_rsv->lock);
6770 			/* Add to any tickets we may have */
6771 			if (len)
6772 				space_info_add_new_bytes(fs_info, space_info,
6773 							 len);
6774 		}
6775 		spin_unlock(&space_info->lock);
6776 	}
6777 
6778 	if (cache)
6779 		btrfs_put_block_group(cache);
6780 	return 0;
6781 }
6782 
6783 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6784 {
6785 	struct btrfs_fs_info *fs_info = trans->fs_info;
6786 	struct btrfs_block_group_cache *block_group, *tmp;
6787 	struct list_head *deleted_bgs;
6788 	struct extent_io_tree *unpin;
6789 	u64 start;
6790 	u64 end;
6791 	int ret;
6792 
6793 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6794 		unpin = &fs_info->freed_extents[1];
6795 	else
6796 		unpin = &fs_info->freed_extents[0];
6797 
6798 	while (!trans->aborted) {
6799 		struct extent_state *cached_state = NULL;
6800 
6801 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6802 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6803 					    EXTENT_DIRTY, &cached_state);
6804 		if (ret) {
6805 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6806 			break;
6807 		}
6808 
6809 		if (btrfs_test_opt(fs_info, DISCARD))
6810 			ret = btrfs_discard_extent(fs_info, start,
6811 						   end + 1 - start, NULL);
6812 
6813 		clear_extent_dirty(unpin, start, end, &cached_state);
6814 		unpin_extent_range(fs_info, start, end, true);
6815 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6816 		free_extent_state(cached_state);
6817 		cond_resched();
6818 	}
6819 
6820 	/*
6821 	 * Transaction is finished.  We don't need the lock anymore.  We
6822 	 * do need to clean up the block groups in case of a transaction
6823 	 * abort.
6824 	 */
6825 	deleted_bgs = &trans->transaction->deleted_bgs;
6826 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827 		u64 trimmed = 0;
6828 
6829 		ret = -EROFS;
6830 		if (!trans->aborted)
6831 			ret = btrfs_discard_extent(fs_info,
6832 						   block_group->key.objectid,
6833 						   block_group->key.offset,
6834 						   &trimmed);
6835 
6836 		list_del_init(&block_group->bg_list);
6837 		btrfs_put_block_group_trimming(block_group);
6838 		btrfs_put_block_group(block_group);
6839 
6840 		if (ret) {
6841 			const char *errstr = btrfs_decode_error(ret);
6842 			btrfs_warn(fs_info,
6843 			   "discard failed while removing blockgroup: errno=%d %s",
6844 				   ret, errstr);
6845 		}
6846 	}
6847 
6848 	return 0;
6849 }
6850 
6851 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6852 			       struct btrfs_delayed_ref_node *node, u64 parent,
6853 			       u64 root_objectid, u64 owner_objectid,
6854 			       u64 owner_offset, int refs_to_drop,
6855 			       struct btrfs_delayed_extent_op *extent_op)
6856 {
6857 	struct btrfs_fs_info *info = trans->fs_info;
6858 	struct btrfs_key key;
6859 	struct btrfs_path *path;
6860 	struct btrfs_root *extent_root = info->extent_root;
6861 	struct extent_buffer *leaf;
6862 	struct btrfs_extent_item *ei;
6863 	struct btrfs_extent_inline_ref *iref;
6864 	int ret;
6865 	int is_data;
6866 	int extent_slot = 0;
6867 	int found_extent = 0;
6868 	int num_to_del = 1;
6869 	u32 item_size;
6870 	u64 refs;
6871 	u64 bytenr = node->bytenr;
6872 	u64 num_bytes = node->num_bytes;
6873 	int last_ref = 0;
6874 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6875 
6876 	path = btrfs_alloc_path();
6877 	if (!path)
6878 		return -ENOMEM;
6879 
6880 	path->reada = READA_FORWARD;
6881 	path->leave_spinning = 1;
6882 
6883 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884 	BUG_ON(!is_data && refs_to_drop != 1);
6885 
6886 	if (is_data)
6887 		skinny_metadata = false;
6888 
6889 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6890 				    parent, root_objectid, owner_objectid,
6891 				    owner_offset);
6892 	if (ret == 0) {
6893 		extent_slot = path->slots[0];
6894 		while (extent_slot >= 0) {
6895 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6896 					      extent_slot);
6897 			if (key.objectid != bytenr)
6898 				break;
6899 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6900 			    key.offset == num_bytes) {
6901 				found_extent = 1;
6902 				break;
6903 			}
6904 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6905 			    key.offset == owner_objectid) {
6906 				found_extent = 1;
6907 				break;
6908 			}
6909 			if (path->slots[0] - extent_slot > 5)
6910 				break;
6911 			extent_slot--;
6912 		}
6913 
6914 		if (!found_extent) {
6915 			BUG_ON(iref);
6916 			ret = remove_extent_backref(trans, path, NULL,
6917 						    refs_to_drop,
6918 						    is_data, &last_ref);
6919 			if (ret) {
6920 				btrfs_abort_transaction(trans, ret);
6921 				goto out;
6922 			}
6923 			btrfs_release_path(path);
6924 			path->leave_spinning = 1;
6925 
6926 			key.objectid = bytenr;
6927 			key.type = BTRFS_EXTENT_ITEM_KEY;
6928 			key.offset = num_bytes;
6929 
6930 			if (!is_data && skinny_metadata) {
6931 				key.type = BTRFS_METADATA_ITEM_KEY;
6932 				key.offset = owner_objectid;
6933 			}
6934 
6935 			ret = btrfs_search_slot(trans, extent_root,
6936 						&key, path, -1, 1);
6937 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6938 				/*
6939 				 * Couldn't find our skinny metadata item,
6940 				 * see if we have ye olde extent item.
6941 				 */
6942 				path->slots[0]--;
6943 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6944 						      path->slots[0]);
6945 				if (key.objectid == bytenr &&
6946 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6947 				    key.offset == num_bytes)
6948 					ret = 0;
6949 			}
6950 
6951 			if (ret > 0 && skinny_metadata) {
6952 				skinny_metadata = false;
6953 				key.objectid = bytenr;
6954 				key.type = BTRFS_EXTENT_ITEM_KEY;
6955 				key.offset = num_bytes;
6956 				btrfs_release_path(path);
6957 				ret = btrfs_search_slot(trans, extent_root,
6958 							&key, path, -1, 1);
6959 			}
6960 
6961 			if (ret) {
6962 				btrfs_err(info,
6963 					  "umm, got %d back from search, was looking for %llu",
6964 					  ret, bytenr);
6965 				if (ret > 0)
6966 					btrfs_print_leaf(path->nodes[0]);
6967 			}
6968 			if (ret < 0) {
6969 				btrfs_abort_transaction(trans, ret);
6970 				goto out;
6971 			}
6972 			extent_slot = path->slots[0];
6973 		}
6974 	} else if (WARN_ON(ret == -ENOENT)) {
6975 		btrfs_print_leaf(path->nodes[0]);
6976 		btrfs_err(info,
6977 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6978 			bytenr, parent, root_objectid, owner_objectid,
6979 			owner_offset);
6980 		btrfs_abort_transaction(trans, ret);
6981 		goto out;
6982 	} else {
6983 		btrfs_abort_transaction(trans, ret);
6984 		goto out;
6985 	}
6986 
6987 	leaf = path->nodes[0];
6988 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6989 	if (unlikely(item_size < sizeof(*ei))) {
6990 		ret = -EINVAL;
6991 		btrfs_print_v0_err(info);
6992 		btrfs_abort_transaction(trans, ret);
6993 		goto out;
6994 	}
6995 	ei = btrfs_item_ptr(leaf, extent_slot,
6996 			    struct btrfs_extent_item);
6997 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6999 		struct btrfs_tree_block_info *bi;
7000 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7002 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7003 	}
7004 
7005 	refs = btrfs_extent_refs(leaf, ei);
7006 	if (refs < refs_to_drop) {
7007 		btrfs_err(info,
7008 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7009 			  refs_to_drop, refs, bytenr);
7010 		ret = -EINVAL;
7011 		btrfs_abort_transaction(trans, ret);
7012 		goto out;
7013 	}
7014 	refs -= refs_to_drop;
7015 
7016 	if (refs > 0) {
7017 		if (extent_op)
7018 			__run_delayed_extent_op(extent_op, leaf, ei);
7019 		/*
7020 		 * In the case of inline back ref, reference count will
7021 		 * be updated by remove_extent_backref
7022 		 */
7023 		if (iref) {
7024 			BUG_ON(!found_extent);
7025 		} else {
7026 			btrfs_set_extent_refs(leaf, ei, refs);
7027 			btrfs_mark_buffer_dirty(leaf);
7028 		}
7029 		if (found_extent) {
7030 			ret = remove_extent_backref(trans, path, iref,
7031 						    refs_to_drop, is_data,
7032 						    &last_ref);
7033 			if (ret) {
7034 				btrfs_abort_transaction(trans, ret);
7035 				goto out;
7036 			}
7037 		}
7038 	} else {
7039 		if (found_extent) {
7040 			BUG_ON(is_data && refs_to_drop !=
7041 			       extent_data_ref_count(path, iref));
7042 			if (iref) {
7043 				BUG_ON(path->slots[0] != extent_slot);
7044 			} else {
7045 				BUG_ON(path->slots[0] != extent_slot + 1);
7046 				path->slots[0] = extent_slot;
7047 				num_to_del = 2;
7048 			}
7049 		}
7050 
7051 		last_ref = 1;
7052 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7053 				      num_to_del);
7054 		if (ret) {
7055 			btrfs_abort_transaction(trans, ret);
7056 			goto out;
7057 		}
7058 		btrfs_release_path(path);
7059 
7060 		if (is_data) {
7061 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7062 			if (ret) {
7063 				btrfs_abort_transaction(trans, ret);
7064 				goto out;
7065 			}
7066 		}
7067 
7068 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7069 		if (ret) {
7070 			btrfs_abort_transaction(trans, ret);
7071 			goto out;
7072 		}
7073 
7074 		ret = update_block_group(trans, bytenr, num_bytes, 0);
7075 		if (ret) {
7076 			btrfs_abort_transaction(trans, ret);
7077 			goto out;
7078 		}
7079 	}
7080 	btrfs_release_path(path);
7081 
7082 out:
7083 	btrfs_free_path(path);
7084 	return ret;
7085 }
7086 
7087 /*
7088  * when we free an block, it is possible (and likely) that we free the last
7089  * delayed ref for that extent as well.  This searches the delayed ref tree for
7090  * a given extent, and if there are no other delayed refs to be processed, it
7091  * removes it from the tree.
7092  */
7093 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7094 				      u64 bytenr)
7095 {
7096 	struct btrfs_delayed_ref_head *head;
7097 	struct btrfs_delayed_ref_root *delayed_refs;
7098 	int ret = 0;
7099 
7100 	delayed_refs = &trans->transaction->delayed_refs;
7101 	spin_lock(&delayed_refs->lock);
7102 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7103 	if (!head)
7104 		goto out_delayed_unlock;
7105 
7106 	spin_lock(&head->lock);
7107 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7108 		goto out;
7109 
7110 	if (cleanup_extent_op(head) != NULL)
7111 		goto out;
7112 
7113 	/*
7114 	 * waiting for the lock here would deadlock.  If someone else has it
7115 	 * locked they are already in the process of dropping it anyway
7116 	 */
7117 	if (!mutex_trylock(&head->mutex))
7118 		goto out;
7119 
7120 	btrfs_delete_ref_head(delayed_refs, head);
7121 	head->processing = 0;
7122 
7123 	spin_unlock(&head->lock);
7124 	spin_unlock(&delayed_refs->lock);
7125 
7126 	BUG_ON(head->extent_op);
7127 	if (head->must_insert_reserved)
7128 		ret = 1;
7129 
7130 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
7131 	mutex_unlock(&head->mutex);
7132 	btrfs_put_delayed_ref_head(head);
7133 	return ret;
7134 out:
7135 	spin_unlock(&head->lock);
7136 
7137 out_delayed_unlock:
7138 	spin_unlock(&delayed_refs->lock);
7139 	return 0;
7140 }
7141 
7142 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7143 			   struct btrfs_root *root,
7144 			   struct extent_buffer *buf,
7145 			   u64 parent, int last_ref)
7146 {
7147 	struct btrfs_fs_info *fs_info = root->fs_info;
7148 	struct btrfs_ref generic_ref = { 0 };
7149 	int pin = 1;
7150 	int ret;
7151 
7152 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7153 			       buf->start, buf->len, parent);
7154 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7155 			    root->root_key.objectid);
7156 
7157 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7158 		int old_ref_mod, new_ref_mod;
7159 
7160 		btrfs_ref_tree_mod(fs_info, &generic_ref);
7161 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
7162 						 &old_ref_mod, &new_ref_mod);
7163 		BUG_ON(ret); /* -ENOMEM */
7164 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7165 	}
7166 
7167 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7168 		struct btrfs_block_group_cache *cache;
7169 
7170 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7171 			ret = check_ref_cleanup(trans, buf->start);
7172 			if (!ret)
7173 				goto out;
7174 		}
7175 
7176 		pin = 0;
7177 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7178 
7179 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7180 			pin_down_extent(cache, buf->start, buf->len, 1);
7181 			btrfs_put_block_group(cache);
7182 			goto out;
7183 		}
7184 
7185 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7186 
7187 		btrfs_add_free_space(cache, buf->start, buf->len);
7188 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7189 		btrfs_put_block_group(cache);
7190 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7191 	}
7192 out:
7193 	if (pin)
7194 		add_pinned_bytes(fs_info, &generic_ref, 1);
7195 
7196 	if (last_ref) {
7197 		/*
7198 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7199 		 * matter anymore.
7200 		 */
7201 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7202 	}
7203 }
7204 
7205 /* Can return -ENOMEM */
7206 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
7207 {
7208 	struct btrfs_fs_info *fs_info = trans->fs_info;
7209 	int old_ref_mod, new_ref_mod;
7210 	int ret;
7211 
7212 	if (btrfs_is_testing(fs_info))
7213 		return 0;
7214 
7215 	/*
7216 	 * tree log blocks never actually go into the extent allocation
7217 	 * tree, just update pinning info and exit early.
7218 	 */
7219 	if ((ref->type == BTRFS_REF_METADATA &&
7220 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7221 	    (ref->type == BTRFS_REF_DATA &&
7222 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
7223 		/* unlocks the pinned mutex */
7224 		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
7225 		old_ref_mod = new_ref_mod = 0;
7226 		ret = 0;
7227 	} else if (ref->type == BTRFS_REF_METADATA) {
7228 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
7229 						 &old_ref_mod, &new_ref_mod);
7230 	} else {
7231 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
7232 						 &old_ref_mod, &new_ref_mod);
7233 	}
7234 
7235 	if (!((ref->type == BTRFS_REF_METADATA &&
7236 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7237 	      (ref->type == BTRFS_REF_DATA &&
7238 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
7239 		btrfs_ref_tree_mod(fs_info, ref);
7240 
7241 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7242 		add_pinned_bytes(fs_info, ref, 1);
7243 
7244 	return ret;
7245 }
7246 
7247 /*
7248  * when we wait for progress in the block group caching, its because
7249  * our allocation attempt failed at least once.  So, we must sleep
7250  * and let some progress happen before we try again.
7251  *
7252  * This function will sleep at least once waiting for new free space to
7253  * show up, and then it will check the block group free space numbers
7254  * for our min num_bytes.  Another option is to have it go ahead
7255  * and look in the rbtree for a free extent of a given size, but this
7256  * is a good start.
7257  *
7258  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7259  * any of the information in this block group.
7260  */
7261 static noinline void
7262 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7263 				u64 num_bytes)
7264 {
7265 	struct btrfs_caching_control *caching_ctl;
7266 
7267 	caching_ctl = get_caching_control(cache);
7268 	if (!caching_ctl)
7269 		return;
7270 
7271 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7272 		   (cache->free_space_ctl->free_space >= num_bytes));
7273 
7274 	put_caching_control(caching_ctl);
7275 }
7276 
7277 static noinline int
7278 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7279 {
7280 	struct btrfs_caching_control *caching_ctl;
7281 	int ret = 0;
7282 
7283 	caching_ctl = get_caching_control(cache);
7284 	if (!caching_ctl)
7285 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7286 
7287 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7288 	if (cache->cached == BTRFS_CACHE_ERROR)
7289 		ret = -EIO;
7290 	put_caching_control(caching_ctl);
7291 	return ret;
7292 }
7293 
7294 enum btrfs_loop_type {
7295 	LOOP_CACHING_NOWAIT = 0,
7296 	LOOP_CACHING_WAIT = 1,
7297 	LOOP_ALLOC_CHUNK = 2,
7298 	LOOP_NO_EMPTY_SIZE = 3,
7299 };
7300 
7301 static inline void
7302 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7303 		       int delalloc)
7304 {
7305 	if (delalloc)
7306 		down_read(&cache->data_rwsem);
7307 }
7308 
7309 static inline void
7310 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7311 		       int delalloc)
7312 {
7313 	btrfs_get_block_group(cache);
7314 	if (delalloc)
7315 		down_read(&cache->data_rwsem);
7316 }
7317 
7318 static struct btrfs_block_group_cache *
7319 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7320 		   struct btrfs_free_cluster *cluster,
7321 		   int delalloc)
7322 {
7323 	struct btrfs_block_group_cache *used_bg = NULL;
7324 
7325 	spin_lock(&cluster->refill_lock);
7326 	while (1) {
7327 		used_bg = cluster->block_group;
7328 		if (!used_bg)
7329 			return NULL;
7330 
7331 		if (used_bg == block_group)
7332 			return used_bg;
7333 
7334 		btrfs_get_block_group(used_bg);
7335 
7336 		if (!delalloc)
7337 			return used_bg;
7338 
7339 		if (down_read_trylock(&used_bg->data_rwsem))
7340 			return used_bg;
7341 
7342 		spin_unlock(&cluster->refill_lock);
7343 
7344 		/* We should only have one-level nested. */
7345 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7346 
7347 		spin_lock(&cluster->refill_lock);
7348 		if (used_bg == cluster->block_group)
7349 			return used_bg;
7350 
7351 		up_read(&used_bg->data_rwsem);
7352 		btrfs_put_block_group(used_bg);
7353 	}
7354 }
7355 
7356 static inline void
7357 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7358 			 int delalloc)
7359 {
7360 	if (delalloc)
7361 		up_read(&cache->data_rwsem);
7362 	btrfs_put_block_group(cache);
7363 }
7364 
7365 /*
7366  * Structure used internally for find_free_extent() function.  Wraps needed
7367  * parameters.
7368  */
7369 struct find_free_extent_ctl {
7370 	/* Basic allocation info */
7371 	u64 ram_bytes;
7372 	u64 num_bytes;
7373 	u64 empty_size;
7374 	u64 flags;
7375 	int delalloc;
7376 
7377 	/* Where to start the search inside the bg */
7378 	u64 search_start;
7379 
7380 	/* For clustered allocation */
7381 	u64 empty_cluster;
7382 
7383 	bool have_caching_bg;
7384 	bool orig_have_caching_bg;
7385 
7386 	/* RAID index, converted from flags */
7387 	int index;
7388 
7389 	/*
7390 	 * Current loop number, check find_free_extent_update_loop() for details
7391 	 */
7392 	int loop;
7393 
7394 	/*
7395 	 * Whether we're refilling a cluster, if true we need to re-search
7396 	 * current block group but don't try to refill the cluster again.
7397 	 */
7398 	bool retry_clustered;
7399 
7400 	/*
7401 	 * Whether we're updating free space cache, if true we need to re-search
7402 	 * current block group but don't try updating free space cache again.
7403 	 */
7404 	bool retry_unclustered;
7405 
7406 	/* If current block group is cached */
7407 	int cached;
7408 
7409 	/* Max contiguous hole found */
7410 	u64 max_extent_size;
7411 
7412 	/* Total free space from free space cache, not always contiguous */
7413 	u64 total_free_space;
7414 
7415 	/* Found result */
7416 	u64 found_offset;
7417 };
7418 
7419 
7420 /*
7421  * Helper function for find_free_extent().
7422  *
7423  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7424  * Return -EAGAIN to inform caller that we need to re-search this block group
7425  * Return >0 to inform caller that we find nothing
7426  * Return 0 means we have found a location and set ffe_ctl->found_offset.
7427  */
7428 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7429 		struct btrfs_free_cluster *last_ptr,
7430 		struct find_free_extent_ctl *ffe_ctl,
7431 		struct btrfs_block_group_cache **cluster_bg_ret)
7432 {
7433 	struct btrfs_block_group_cache *cluster_bg;
7434 	u64 aligned_cluster;
7435 	u64 offset;
7436 	int ret;
7437 
7438 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7439 	if (!cluster_bg)
7440 		goto refill_cluster;
7441 	if (cluster_bg != bg && (cluster_bg->ro ||
7442 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
7443 		goto release_cluster;
7444 
7445 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7446 			ffe_ctl->num_bytes, cluster_bg->key.objectid,
7447 			&ffe_ctl->max_extent_size);
7448 	if (offset) {
7449 		/* We have a block, we're done */
7450 		spin_unlock(&last_ptr->refill_lock);
7451 		trace_btrfs_reserve_extent_cluster(cluster_bg,
7452 				ffe_ctl->search_start, ffe_ctl->num_bytes);
7453 		*cluster_bg_ret = cluster_bg;
7454 		ffe_ctl->found_offset = offset;
7455 		return 0;
7456 	}
7457 	WARN_ON(last_ptr->block_group != cluster_bg);
7458 
7459 release_cluster:
7460 	/*
7461 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7462 	 * lets just skip it and let the allocator find whatever block it can
7463 	 * find. If we reach this point, we will have tried the cluster
7464 	 * allocator plenty of times and not have found anything, so we are
7465 	 * likely way too fragmented for the clustering stuff to find anything.
7466 	 *
7467 	 * However, if the cluster is taken from the current block group,
7468 	 * release the cluster first, so that we stand a better chance of
7469 	 * succeeding in the unclustered allocation.
7470 	 */
7471 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7472 		spin_unlock(&last_ptr->refill_lock);
7473 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7474 		return -ENOENT;
7475 	}
7476 
7477 	/* This cluster didn't work out, free it and start over */
7478 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7479 
7480 	if (cluster_bg != bg)
7481 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7482 
7483 refill_cluster:
7484 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7485 		spin_unlock(&last_ptr->refill_lock);
7486 		return -ENOENT;
7487 	}
7488 
7489 	aligned_cluster = max_t(u64,
7490 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7491 			bg->full_stripe_len);
7492 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7493 			ffe_ctl->num_bytes, aligned_cluster);
7494 	if (ret == 0) {
7495 		/* Now pull our allocation out of this cluster */
7496 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
7497 				ffe_ctl->num_bytes, ffe_ctl->search_start,
7498 				&ffe_ctl->max_extent_size);
7499 		if (offset) {
7500 			/* We found one, proceed */
7501 			spin_unlock(&last_ptr->refill_lock);
7502 			trace_btrfs_reserve_extent_cluster(bg,
7503 					ffe_ctl->search_start,
7504 					ffe_ctl->num_bytes);
7505 			ffe_ctl->found_offset = offset;
7506 			return 0;
7507 		}
7508 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7509 		   !ffe_ctl->retry_clustered) {
7510 		spin_unlock(&last_ptr->refill_lock);
7511 
7512 		ffe_ctl->retry_clustered = true;
7513 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7514 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7515 		return -EAGAIN;
7516 	}
7517 	/*
7518 	 * At this point we either didn't find a cluster or we weren't able to
7519 	 * allocate a block from our cluster.  Free the cluster we've been
7520 	 * trying to use, and go to the next block group.
7521 	 */
7522 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7523 	spin_unlock(&last_ptr->refill_lock);
7524 	return 1;
7525 }
7526 
7527 /*
7528  * Return >0 to inform caller that we find nothing
7529  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7530  * Return -EAGAIN to inform caller that we need to re-search this block group
7531  */
7532 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7533 		struct btrfs_free_cluster *last_ptr,
7534 		struct find_free_extent_ctl *ffe_ctl)
7535 {
7536 	u64 offset;
7537 
7538 	/*
7539 	 * We are doing an unclustered allocation, set the fragmented flag so
7540 	 * we don't bother trying to setup a cluster again until we get more
7541 	 * space.
7542 	 */
7543 	if (unlikely(last_ptr)) {
7544 		spin_lock(&last_ptr->lock);
7545 		last_ptr->fragmented = 1;
7546 		spin_unlock(&last_ptr->lock);
7547 	}
7548 	if (ffe_ctl->cached) {
7549 		struct btrfs_free_space_ctl *free_space_ctl;
7550 
7551 		free_space_ctl = bg->free_space_ctl;
7552 		spin_lock(&free_space_ctl->tree_lock);
7553 		if (free_space_ctl->free_space <
7554 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7555 		    ffe_ctl->empty_size) {
7556 			ffe_ctl->total_free_space = max_t(u64,
7557 					ffe_ctl->total_free_space,
7558 					free_space_ctl->free_space);
7559 			spin_unlock(&free_space_ctl->tree_lock);
7560 			return 1;
7561 		}
7562 		spin_unlock(&free_space_ctl->tree_lock);
7563 	}
7564 
7565 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7566 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
7567 			&ffe_ctl->max_extent_size);
7568 
7569 	/*
7570 	 * If we didn't find a chunk, and we haven't failed on this block group
7571 	 * before, and this block group is in the middle of caching and we are
7572 	 * ok with waiting, then go ahead and wait for progress to be made, and
7573 	 * set @retry_unclustered to true.
7574 	 *
7575 	 * If @retry_unclustered is true then we've already waited on this
7576 	 * block group once and should move on to the next block group.
7577 	 */
7578 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7579 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7580 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7581 						ffe_ctl->empty_size);
7582 		ffe_ctl->retry_unclustered = true;
7583 		return -EAGAIN;
7584 	} else if (!offset) {
7585 		return 1;
7586 	}
7587 	ffe_ctl->found_offset = offset;
7588 	return 0;
7589 }
7590 
7591 /*
7592  * Return >0 means caller needs to re-search for free extent
7593  * Return 0 means we have the needed free extent.
7594  * Return <0 means we failed to locate any free extent.
7595  */
7596 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7597 					struct btrfs_free_cluster *last_ptr,
7598 					struct btrfs_key *ins,
7599 					struct find_free_extent_ctl *ffe_ctl,
7600 					int full_search, bool use_cluster)
7601 {
7602 	struct btrfs_root *root = fs_info->extent_root;
7603 	int ret;
7604 
7605 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7606 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7607 		ffe_ctl->orig_have_caching_bg = true;
7608 
7609 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7610 	    ffe_ctl->have_caching_bg)
7611 		return 1;
7612 
7613 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7614 		return 1;
7615 
7616 	if (ins->objectid) {
7617 		if (!use_cluster && last_ptr) {
7618 			spin_lock(&last_ptr->lock);
7619 			last_ptr->window_start = ins->objectid;
7620 			spin_unlock(&last_ptr->lock);
7621 		}
7622 		return 0;
7623 	}
7624 
7625 	/*
7626 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7627 	 *			caching kthreads as we move along
7628 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7629 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7630 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7631 	 *		       again
7632 	 */
7633 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7634 		ffe_ctl->index = 0;
7635 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7636 			/*
7637 			 * We want to skip the LOOP_CACHING_WAIT step if we
7638 			 * don't have any uncached bgs and we've already done a
7639 			 * full search through.
7640 			 */
7641 			if (ffe_ctl->orig_have_caching_bg || !full_search)
7642 				ffe_ctl->loop = LOOP_CACHING_WAIT;
7643 			else
7644 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7645 		} else {
7646 			ffe_ctl->loop++;
7647 		}
7648 
7649 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7650 			struct btrfs_trans_handle *trans;
7651 			int exist = 0;
7652 
7653 			trans = current->journal_info;
7654 			if (trans)
7655 				exist = 1;
7656 			else
7657 				trans = btrfs_join_transaction(root);
7658 
7659 			if (IS_ERR(trans)) {
7660 				ret = PTR_ERR(trans);
7661 				return ret;
7662 			}
7663 
7664 			ret = do_chunk_alloc(trans, ffe_ctl->flags,
7665 					     CHUNK_ALLOC_FORCE);
7666 
7667 			/*
7668 			 * If we can't allocate a new chunk we've already looped
7669 			 * through at least once, move on to the NO_EMPTY_SIZE
7670 			 * case.
7671 			 */
7672 			if (ret == -ENOSPC)
7673 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7674 
7675 			/* Do not bail out on ENOSPC since we can do more. */
7676 			if (ret < 0 && ret != -ENOSPC)
7677 				btrfs_abort_transaction(trans, ret);
7678 			else
7679 				ret = 0;
7680 			if (!exist)
7681 				btrfs_end_transaction(trans);
7682 			if (ret)
7683 				return ret;
7684 		}
7685 
7686 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7687 			/*
7688 			 * Don't loop again if we already have no empty_size and
7689 			 * no empty_cluster.
7690 			 */
7691 			if (ffe_ctl->empty_size == 0 &&
7692 			    ffe_ctl->empty_cluster == 0)
7693 				return -ENOSPC;
7694 			ffe_ctl->empty_size = 0;
7695 			ffe_ctl->empty_cluster = 0;
7696 		}
7697 		return 1;
7698 	}
7699 	return -ENOSPC;
7700 }
7701 
7702 /*
7703  * walks the btree of allocated extents and find a hole of a given size.
7704  * The key ins is changed to record the hole:
7705  * ins->objectid == start position
7706  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7707  * ins->offset == the size of the hole.
7708  * Any available blocks before search_start are skipped.
7709  *
7710  * If there is no suitable free space, we will record the max size of
7711  * the free space extent currently.
7712  *
7713  * The overall logic and call chain:
7714  *
7715  * find_free_extent()
7716  * |- Iterate through all block groups
7717  * |  |- Get a valid block group
7718  * |  |- Try to do clustered allocation in that block group
7719  * |  |- Try to do unclustered allocation in that block group
7720  * |  |- Check if the result is valid
7721  * |  |  |- If valid, then exit
7722  * |  |- Jump to next block group
7723  * |
7724  * |- Push harder to find free extents
7725  *    |- If not found, re-iterate all block groups
7726  */
7727 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7728 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7729 				u64 hint_byte, struct btrfs_key *ins,
7730 				u64 flags, int delalloc)
7731 {
7732 	int ret = 0;
7733 	struct btrfs_free_cluster *last_ptr = NULL;
7734 	struct btrfs_block_group_cache *block_group = NULL;
7735 	struct find_free_extent_ctl ffe_ctl = {0};
7736 	struct btrfs_space_info *space_info;
7737 	bool use_cluster = true;
7738 	bool full_search = false;
7739 
7740 	WARN_ON(num_bytes < fs_info->sectorsize);
7741 
7742 	ffe_ctl.ram_bytes = ram_bytes;
7743 	ffe_ctl.num_bytes = num_bytes;
7744 	ffe_ctl.empty_size = empty_size;
7745 	ffe_ctl.flags = flags;
7746 	ffe_ctl.search_start = 0;
7747 	ffe_ctl.retry_clustered = false;
7748 	ffe_ctl.retry_unclustered = false;
7749 	ffe_ctl.delalloc = delalloc;
7750 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7751 	ffe_ctl.have_caching_bg = false;
7752 	ffe_ctl.orig_have_caching_bg = false;
7753 	ffe_ctl.found_offset = 0;
7754 
7755 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7756 	ins->objectid = 0;
7757 	ins->offset = 0;
7758 
7759 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7760 
7761 	space_info = __find_space_info(fs_info, flags);
7762 	if (!space_info) {
7763 		btrfs_err(fs_info, "No space info for %llu", flags);
7764 		return -ENOSPC;
7765 	}
7766 
7767 	/*
7768 	 * If our free space is heavily fragmented we may not be able to make
7769 	 * big contiguous allocations, so instead of doing the expensive search
7770 	 * for free space, simply return ENOSPC with our max_extent_size so we
7771 	 * can go ahead and search for a more manageable chunk.
7772 	 *
7773 	 * If our max_extent_size is large enough for our allocation simply
7774 	 * disable clustering since we will likely not be able to find enough
7775 	 * space to create a cluster and induce latency trying.
7776 	 */
7777 	if (unlikely(space_info->max_extent_size)) {
7778 		spin_lock(&space_info->lock);
7779 		if (space_info->max_extent_size &&
7780 		    num_bytes > space_info->max_extent_size) {
7781 			ins->offset = space_info->max_extent_size;
7782 			spin_unlock(&space_info->lock);
7783 			return -ENOSPC;
7784 		} else if (space_info->max_extent_size) {
7785 			use_cluster = false;
7786 		}
7787 		spin_unlock(&space_info->lock);
7788 	}
7789 
7790 	last_ptr = fetch_cluster_info(fs_info, space_info,
7791 				      &ffe_ctl.empty_cluster);
7792 	if (last_ptr) {
7793 		spin_lock(&last_ptr->lock);
7794 		if (last_ptr->block_group)
7795 			hint_byte = last_ptr->window_start;
7796 		if (last_ptr->fragmented) {
7797 			/*
7798 			 * We still set window_start so we can keep track of the
7799 			 * last place we found an allocation to try and save
7800 			 * some time.
7801 			 */
7802 			hint_byte = last_ptr->window_start;
7803 			use_cluster = false;
7804 		}
7805 		spin_unlock(&last_ptr->lock);
7806 	}
7807 
7808 	ffe_ctl.search_start = max(ffe_ctl.search_start,
7809 				   first_logical_byte(fs_info, 0));
7810 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7811 	if (ffe_ctl.search_start == hint_byte) {
7812 		block_group = btrfs_lookup_block_group(fs_info,
7813 						       ffe_ctl.search_start);
7814 		/*
7815 		 * we don't want to use the block group if it doesn't match our
7816 		 * allocation bits, or if its not cached.
7817 		 *
7818 		 * However if we are re-searching with an ideal block group
7819 		 * picked out then we don't care that the block group is cached.
7820 		 */
7821 		if (block_group && block_group_bits(block_group, flags) &&
7822 		    block_group->cached != BTRFS_CACHE_NO) {
7823 			down_read(&space_info->groups_sem);
7824 			if (list_empty(&block_group->list) ||
7825 			    block_group->ro) {
7826 				/*
7827 				 * someone is removing this block group,
7828 				 * we can't jump into the have_block_group
7829 				 * target because our list pointers are not
7830 				 * valid
7831 				 */
7832 				btrfs_put_block_group(block_group);
7833 				up_read(&space_info->groups_sem);
7834 			} else {
7835 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7836 						block_group->flags);
7837 				btrfs_lock_block_group(block_group, delalloc);
7838 				goto have_block_group;
7839 			}
7840 		} else if (block_group) {
7841 			btrfs_put_block_group(block_group);
7842 		}
7843 	}
7844 search:
7845 	ffe_ctl.have_caching_bg = false;
7846 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7847 	    ffe_ctl.index == 0)
7848 		full_search = true;
7849 	down_read(&space_info->groups_sem);
7850 	list_for_each_entry(block_group,
7851 			    &space_info->block_groups[ffe_ctl.index], list) {
7852 		/* If the block group is read-only, we can skip it entirely. */
7853 		if (unlikely(block_group->ro))
7854 			continue;
7855 
7856 		btrfs_grab_block_group(block_group, delalloc);
7857 		ffe_ctl.search_start = block_group->key.objectid;
7858 
7859 		/*
7860 		 * this can happen if we end up cycling through all the
7861 		 * raid types, but we want to make sure we only allocate
7862 		 * for the proper type.
7863 		 */
7864 		if (!block_group_bits(block_group, flags)) {
7865 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
7866 				BTRFS_BLOCK_GROUP_RAID1 |
7867 				BTRFS_BLOCK_GROUP_RAID5 |
7868 				BTRFS_BLOCK_GROUP_RAID6 |
7869 				BTRFS_BLOCK_GROUP_RAID10;
7870 
7871 			/*
7872 			 * if they asked for extra copies and this block group
7873 			 * doesn't provide them, bail.  This does allow us to
7874 			 * fill raid0 from raid1.
7875 			 */
7876 			if ((flags & extra) && !(block_group->flags & extra))
7877 				goto loop;
7878 		}
7879 
7880 have_block_group:
7881 		ffe_ctl.cached = block_group_cache_done(block_group);
7882 		if (unlikely(!ffe_ctl.cached)) {
7883 			ffe_ctl.have_caching_bg = true;
7884 			ret = cache_block_group(block_group, 0);
7885 			BUG_ON(ret < 0);
7886 			ret = 0;
7887 		}
7888 
7889 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7890 			goto loop;
7891 
7892 		/*
7893 		 * Ok we want to try and use the cluster allocator, so
7894 		 * lets look there
7895 		 */
7896 		if (last_ptr && use_cluster) {
7897 			struct btrfs_block_group_cache *cluster_bg = NULL;
7898 
7899 			ret = find_free_extent_clustered(block_group, last_ptr,
7900 							 &ffe_ctl, &cluster_bg);
7901 
7902 			if (ret == 0) {
7903 				if (cluster_bg && cluster_bg != block_group) {
7904 					btrfs_release_block_group(block_group,
7905 								  delalloc);
7906 					block_group = cluster_bg;
7907 				}
7908 				goto checks;
7909 			} else if (ret == -EAGAIN) {
7910 				goto have_block_group;
7911 			} else if (ret > 0) {
7912 				goto loop;
7913 			}
7914 			/* ret == -ENOENT case falls through */
7915 		}
7916 
7917 		ret = find_free_extent_unclustered(block_group, last_ptr,
7918 						   &ffe_ctl);
7919 		if (ret == -EAGAIN)
7920 			goto have_block_group;
7921 		else if (ret > 0)
7922 			goto loop;
7923 		/* ret == 0 case falls through */
7924 checks:
7925 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7926 					     fs_info->stripesize);
7927 
7928 		/* move on to the next group */
7929 		if (ffe_ctl.search_start + num_bytes >
7930 		    block_group->key.objectid + block_group->key.offset) {
7931 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7932 					     num_bytes);
7933 			goto loop;
7934 		}
7935 
7936 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
7937 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7938 				ffe_ctl.search_start - ffe_ctl.found_offset);
7939 
7940 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7941 				num_bytes, delalloc);
7942 		if (ret == -EAGAIN) {
7943 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7944 					     num_bytes);
7945 			goto loop;
7946 		}
7947 		btrfs_inc_block_group_reservations(block_group);
7948 
7949 		/* we are all good, lets return */
7950 		ins->objectid = ffe_ctl.search_start;
7951 		ins->offset = num_bytes;
7952 
7953 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7954 					   num_bytes);
7955 		btrfs_release_block_group(block_group, delalloc);
7956 		break;
7957 loop:
7958 		ffe_ctl.retry_clustered = false;
7959 		ffe_ctl.retry_unclustered = false;
7960 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7961 		       ffe_ctl.index);
7962 		btrfs_release_block_group(block_group, delalloc);
7963 		cond_resched();
7964 	}
7965 	up_read(&space_info->groups_sem);
7966 
7967 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
7968 					   full_search, use_cluster);
7969 	if (ret > 0)
7970 		goto search;
7971 
7972 	if (ret == -ENOSPC) {
7973 		/*
7974 		 * Use ffe_ctl->total_free_space as fallback if we can't find
7975 		 * any contiguous hole.
7976 		 */
7977 		if (!ffe_ctl.max_extent_size)
7978 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
7979 		spin_lock(&space_info->lock);
7980 		space_info->max_extent_size = ffe_ctl.max_extent_size;
7981 		spin_unlock(&space_info->lock);
7982 		ins->offset = ffe_ctl.max_extent_size;
7983 	}
7984 	return ret;
7985 }
7986 
7987 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
7988 do {									\
7989 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
7990 	spin_lock(&__rsv->lock);					\
7991 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
7992 		   __rsv->size, __rsv->reserved);			\
7993 	spin_unlock(&__rsv->lock);					\
7994 } while (0)
7995 
7996 static void dump_space_info(struct btrfs_fs_info *fs_info,
7997 			    struct btrfs_space_info *info, u64 bytes,
7998 			    int dump_block_groups)
7999 {
8000 	struct btrfs_block_group_cache *cache;
8001 	int index = 0;
8002 
8003 	spin_lock(&info->lock);
8004 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8005 		   info->flags,
8006 		   info->total_bytes - btrfs_space_info_used(info, true),
8007 		   info->full ? "" : "not ");
8008 	btrfs_info(fs_info,
8009 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8010 		info->total_bytes, info->bytes_used, info->bytes_pinned,
8011 		info->bytes_reserved, info->bytes_may_use,
8012 		info->bytes_readonly);
8013 	spin_unlock(&info->lock);
8014 
8015 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8016 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8017 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8018 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8019 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8020 
8021 	if (!dump_block_groups)
8022 		return;
8023 
8024 	down_read(&info->groups_sem);
8025 again:
8026 	list_for_each_entry(cache, &info->block_groups[index], list) {
8027 		spin_lock(&cache->lock);
8028 		btrfs_info(fs_info,
8029 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8030 			cache->key.objectid, cache->key.offset,
8031 			btrfs_block_group_used(&cache->item), cache->pinned,
8032 			cache->reserved, cache->ro ? "[readonly]" : "");
8033 		btrfs_dump_free_space(cache, bytes);
8034 		spin_unlock(&cache->lock);
8035 	}
8036 	if (++index < BTRFS_NR_RAID_TYPES)
8037 		goto again;
8038 	up_read(&info->groups_sem);
8039 }
8040 
8041 /*
8042  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8043  *			  hole that is at least as big as @num_bytes.
8044  *
8045  * @root           -	The root that will contain this extent
8046  *
8047  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
8048  *			is used for accounting purposes. This value differs
8049  *			from @num_bytes only in the case of compressed extents.
8050  *
8051  * @num_bytes      -	Number of bytes to allocate on-disk.
8052  *
8053  * @min_alloc_size -	Indicates the minimum amount of space that the
8054  *			allocator should try to satisfy. In some cases
8055  *			@num_bytes may be larger than what is required and if
8056  *			the filesystem is fragmented then allocation fails.
8057  *			However, the presence of @min_alloc_size gives a
8058  *			chance to try and satisfy the smaller allocation.
8059  *
8060  * @empty_size     -	A hint that you plan on doing more COW. This is the
8061  *			size in bytes the allocator should try to find free
8062  *			next to the block it returns.  This is just a hint and
8063  *			may be ignored by the allocator.
8064  *
8065  * @hint_byte      -	Hint to the allocator to start searching above the byte
8066  *			address passed. It might be ignored.
8067  *
8068  * @ins            -	This key is modified to record the found hole. It will
8069  *			have the following values:
8070  *			ins->objectid == start position
8071  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8072  *			ins->offset == the size of the hole.
8073  *
8074  * @is_data        -	Boolean flag indicating whether an extent is
8075  *			allocated for data (true) or metadata (false)
8076  *
8077  * @delalloc       -	Boolean flag indicating whether this allocation is for
8078  *			delalloc or not. If 'true' data_rwsem of block groups
8079  *			is going to be acquired.
8080  *
8081  *
8082  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8083  * case -ENOSPC is returned then @ins->offset will contain the size of the
8084  * largest available hole the allocator managed to find.
8085  */
8086 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8087 			 u64 num_bytes, u64 min_alloc_size,
8088 			 u64 empty_size, u64 hint_byte,
8089 			 struct btrfs_key *ins, int is_data, int delalloc)
8090 {
8091 	struct btrfs_fs_info *fs_info = root->fs_info;
8092 	bool final_tried = num_bytes == min_alloc_size;
8093 	u64 flags;
8094 	int ret;
8095 
8096 	flags = get_alloc_profile_by_root(root, is_data);
8097 again:
8098 	WARN_ON(num_bytes < fs_info->sectorsize);
8099 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8100 			       hint_byte, ins, flags, delalloc);
8101 	if (!ret && !is_data) {
8102 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8103 	} else if (ret == -ENOSPC) {
8104 		if (!final_tried && ins->offset) {
8105 			num_bytes = min(num_bytes >> 1, ins->offset);
8106 			num_bytes = round_down(num_bytes,
8107 					       fs_info->sectorsize);
8108 			num_bytes = max(num_bytes, min_alloc_size);
8109 			ram_bytes = num_bytes;
8110 			if (num_bytes == min_alloc_size)
8111 				final_tried = true;
8112 			goto again;
8113 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8114 			struct btrfs_space_info *sinfo;
8115 
8116 			sinfo = __find_space_info(fs_info, flags);
8117 			btrfs_err(fs_info,
8118 				  "allocation failed flags %llu, wanted %llu",
8119 				  flags, num_bytes);
8120 			if (sinfo)
8121 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8122 		}
8123 	}
8124 
8125 	return ret;
8126 }
8127 
8128 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8129 					u64 start, u64 len,
8130 					int pin, int delalloc)
8131 {
8132 	struct btrfs_block_group_cache *cache;
8133 	int ret = 0;
8134 
8135 	cache = btrfs_lookup_block_group(fs_info, start);
8136 	if (!cache) {
8137 		btrfs_err(fs_info, "Unable to find block group for %llu",
8138 			  start);
8139 		return -ENOSPC;
8140 	}
8141 
8142 	if (pin)
8143 		pin_down_extent(cache, start, len, 1);
8144 	else {
8145 		if (btrfs_test_opt(fs_info, DISCARD))
8146 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8147 		btrfs_add_free_space(cache, start, len);
8148 		btrfs_free_reserved_bytes(cache, len, delalloc);
8149 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8150 	}
8151 
8152 	btrfs_put_block_group(cache);
8153 	return ret;
8154 }
8155 
8156 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8157 			       u64 start, u64 len, int delalloc)
8158 {
8159 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8160 }
8161 
8162 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8163 				       u64 start, u64 len)
8164 {
8165 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8166 }
8167 
8168 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8169 				      u64 parent, u64 root_objectid,
8170 				      u64 flags, u64 owner, u64 offset,
8171 				      struct btrfs_key *ins, int ref_mod)
8172 {
8173 	struct btrfs_fs_info *fs_info = trans->fs_info;
8174 	int ret;
8175 	struct btrfs_extent_item *extent_item;
8176 	struct btrfs_extent_inline_ref *iref;
8177 	struct btrfs_path *path;
8178 	struct extent_buffer *leaf;
8179 	int type;
8180 	u32 size;
8181 
8182 	if (parent > 0)
8183 		type = BTRFS_SHARED_DATA_REF_KEY;
8184 	else
8185 		type = BTRFS_EXTENT_DATA_REF_KEY;
8186 
8187 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8188 
8189 	path = btrfs_alloc_path();
8190 	if (!path)
8191 		return -ENOMEM;
8192 
8193 	path->leave_spinning = 1;
8194 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8195 				      ins, size);
8196 	if (ret) {
8197 		btrfs_free_path(path);
8198 		return ret;
8199 	}
8200 
8201 	leaf = path->nodes[0];
8202 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8203 				     struct btrfs_extent_item);
8204 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8205 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206 	btrfs_set_extent_flags(leaf, extent_item,
8207 			       flags | BTRFS_EXTENT_FLAG_DATA);
8208 
8209 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8210 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8211 	if (parent > 0) {
8212 		struct btrfs_shared_data_ref *ref;
8213 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8214 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8215 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8216 	} else {
8217 		struct btrfs_extent_data_ref *ref;
8218 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8219 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8220 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8221 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8222 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8223 	}
8224 
8225 	btrfs_mark_buffer_dirty(path->nodes[0]);
8226 	btrfs_free_path(path);
8227 
8228 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8229 	if (ret)
8230 		return ret;
8231 
8232 	ret = update_block_group(trans, ins->objectid, ins->offset, 1);
8233 	if (ret) { /* -ENOENT, logic error */
8234 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8235 			ins->objectid, ins->offset);
8236 		BUG();
8237 	}
8238 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8239 	return ret;
8240 }
8241 
8242 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8243 				     struct btrfs_delayed_ref_node *node,
8244 				     struct btrfs_delayed_extent_op *extent_op)
8245 {
8246 	struct btrfs_fs_info *fs_info = trans->fs_info;
8247 	int ret;
8248 	struct btrfs_extent_item *extent_item;
8249 	struct btrfs_key extent_key;
8250 	struct btrfs_tree_block_info *block_info;
8251 	struct btrfs_extent_inline_ref *iref;
8252 	struct btrfs_path *path;
8253 	struct extent_buffer *leaf;
8254 	struct btrfs_delayed_tree_ref *ref;
8255 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8256 	u64 num_bytes;
8257 	u64 flags = extent_op->flags_to_set;
8258 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8259 
8260 	ref = btrfs_delayed_node_to_tree_ref(node);
8261 
8262 	extent_key.objectid = node->bytenr;
8263 	if (skinny_metadata) {
8264 		extent_key.offset = ref->level;
8265 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
8266 		num_bytes = fs_info->nodesize;
8267 	} else {
8268 		extent_key.offset = node->num_bytes;
8269 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8270 		size += sizeof(*block_info);
8271 		num_bytes = node->num_bytes;
8272 	}
8273 
8274 	path = btrfs_alloc_path();
8275 	if (!path)
8276 		return -ENOMEM;
8277 
8278 	path->leave_spinning = 1;
8279 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8280 				      &extent_key, size);
8281 	if (ret) {
8282 		btrfs_free_path(path);
8283 		return ret;
8284 	}
8285 
8286 	leaf = path->nodes[0];
8287 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8288 				     struct btrfs_extent_item);
8289 	btrfs_set_extent_refs(leaf, extent_item, 1);
8290 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8291 	btrfs_set_extent_flags(leaf, extent_item,
8292 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8293 
8294 	if (skinny_metadata) {
8295 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8296 	} else {
8297 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8298 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8299 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
8300 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8301 	}
8302 
8303 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8304 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8305 		btrfs_set_extent_inline_ref_type(leaf, iref,
8306 						 BTRFS_SHARED_BLOCK_REF_KEY);
8307 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8308 	} else {
8309 		btrfs_set_extent_inline_ref_type(leaf, iref,
8310 						 BTRFS_TREE_BLOCK_REF_KEY);
8311 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8312 	}
8313 
8314 	btrfs_mark_buffer_dirty(leaf);
8315 	btrfs_free_path(path);
8316 
8317 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
8318 					  num_bytes);
8319 	if (ret)
8320 		return ret;
8321 
8322 	ret = update_block_group(trans, extent_key.objectid,
8323 				 fs_info->nodesize, 1);
8324 	if (ret) { /* -ENOENT, logic error */
8325 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8326 			extent_key.objectid, extent_key.offset);
8327 		BUG();
8328 	}
8329 
8330 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8331 					  fs_info->nodesize);
8332 	return ret;
8333 }
8334 
8335 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8336 				     struct btrfs_root *root, u64 owner,
8337 				     u64 offset, u64 ram_bytes,
8338 				     struct btrfs_key *ins)
8339 {
8340 	struct btrfs_ref generic_ref = { 0 };
8341 	int ret;
8342 
8343 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8344 
8345 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8346 			       ins->objectid, ins->offset, 0);
8347 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8348 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
8349 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8350 					 ram_bytes, NULL, NULL);
8351 	return ret;
8352 }
8353 
8354 /*
8355  * this is used by the tree logging recovery code.  It records that
8356  * an extent has been allocated and makes sure to clear the free
8357  * space cache bits as well
8358  */
8359 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8360 				   u64 root_objectid, u64 owner, u64 offset,
8361 				   struct btrfs_key *ins)
8362 {
8363 	struct btrfs_fs_info *fs_info = trans->fs_info;
8364 	int ret;
8365 	struct btrfs_block_group_cache *block_group;
8366 	struct btrfs_space_info *space_info;
8367 
8368 	/*
8369 	 * Mixed block groups will exclude before processing the log so we only
8370 	 * need to do the exclude dance if this fs isn't mixed.
8371 	 */
8372 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8373 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8374 					      ins->offset);
8375 		if (ret)
8376 			return ret;
8377 	}
8378 
8379 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8380 	if (!block_group)
8381 		return -EINVAL;
8382 
8383 	space_info = block_group->space_info;
8384 	spin_lock(&space_info->lock);
8385 	spin_lock(&block_group->lock);
8386 	space_info->bytes_reserved += ins->offset;
8387 	block_group->reserved += ins->offset;
8388 	spin_unlock(&block_group->lock);
8389 	spin_unlock(&space_info->lock);
8390 
8391 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8392 					 offset, ins, 1);
8393 	btrfs_put_block_group(block_group);
8394 	return ret;
8395 }
8396 
8397 static struct extent_buffer *
8398 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8399 		      u64 bytenr, int level, u64 owner)
8400 {
8401 	struct btrfs_fs_info *fs_info = root->fs_info;
8402 	struct extent_buffer *buf;
8403 
8404 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8405 	if (IS_ERR(buf))
8406 		return buf;
8407 
8408 	/*
8409 	 * Extra safety check in case the extent tree is corrupted and extent
8410 	 * allocator chooses to use a tree block which is already used and
8411 	 * locked.
8412 	 */
8413 	if (buf->lock_owner == current->pid) {
8414 		btrfs_err_rl(fs_info,
8415 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8416 			buf->start, btrfs_header_owner(buf), current->pid);
8417 		free_extent_buffer(buf);
8418 		return ERR_PTR(-EUCLEAN);
8419 	}
8420 
8421 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8422 	btrfs_tree_lock(buf);
8423 	btrfs_clean_tree_block(buf);
8424 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8425 
8426 	btrfs_set_lock_blocking_write(buf);
8427 	set_extent_buffer_uptodate(buf);
8428 
8429 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8430 	btrfs_set_header_level(buf, level);
8431 	btrfs_set_header_bytenr(buf, buf->start);
8432 	btrfs_set_header_generation(buf, trans->transid);
8433 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8434 	btrfs_set_header_owner(buf, owner);
8435 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8436 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8437 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8438 		buf->log_index = root->log_transid % 2;
8439 		/*
8440 		 * we allow two log transactions at a time, use different
8441 		 * EXTENT bit to differentiate dirty pages.
8442 		 */
8443 		if (buf->log_index == 0)
8444 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8445 					buf->start + buf->len - 1, GFP_NOFS);
8446 		else
8447 			set_extent_new(&root->dirty_log_pages, buf->start,
8448 					buf->start + buf->len - 1);
8449 	} else {
8450 		buf->log_index = -1;
8451 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8452 			 buf->start + buf->len - 1, GFP_NOFS);
8453 	}
8454 	trans->dirty = true;
8455 	/* this returns a buffer locked for blocking */
8456 	return buf;
8457 }
8458 
8459 static struct btrfs_block_rsv *
8460 use_block_rsv(struct btrfs_trans_handle *trans,
8461 	      struct btrfs_root *root, u32 blocksize)
8462 {
8463 	struct btrfs_fs_info *fs_info = root->fs_info;
8464 	struct btrfs_block_rsv *block_rsv;
8465 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8466 	int ret;
8467 	bool global_updated = false;
8468 
8469 	block_rsv = get_block_rsv(trans, root);
8470 
8471 	if (unlikely(block_rsv->size == 0))
8472 		goto try_reserve;
8473 again:
8474 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8475 	if (!ret)
8476 		return block_rsv;
8477 
8478 	if (block_rsv->failfast)
8479 		return ERR_PTR(ret);
8480 
8481 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8482 		global_updated = true;
8483 		update_global_block_rsv(fs_info);
8484 		goto again;
8485 	}
8486 
8487 	/*
8488 	 * The global reserve still exists to save us from ourselves, so don't
8489 	 * warn_on if we are short on our delayed refs reserve.
8490 	 */
8491 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8492 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8493 		static DEFINE_RATELIMIT_STATE(_rs,
8494 				DEFAULT_RATELIMIT_INTERVAL * 10,
8495 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8496 		if (__ratelimit(&_rs))
8497 			WARN(1, KERN_DEBUG
8498 				"BTRFS: block rsv returned %d\n", ret);
8499 	}
8500 try_reserve:
8501 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8502 				     BTRFS_RESERVE_NO_FLUSH);
8503 	if (!ret)
8504 		return block_rsv;
8505 	/*
8506 	 * If we couldn't reserve metadata bytes try and use some from
8507 	 * the global reserve if its space type is the same as the global
8508 	 * reservation.
8509 	 */
8510 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8511 	    block_rsv->space_info == global_rsv->space_info) {
8512 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8513 		if (!ret)
8514 			return global_rsv;
8515 	}
8516 	return ERR_PTR(ret);
8517 }
8518 
8519 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8520 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8521 {
8522 	block_rsv_add_bytes(block_rsv, blocksize, false);
8523 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8524 }
8525 
8526 /*
8527  * finds a free extent and does all the dirty work required for allocation
8528  * returns the tree buffer or an ERR_PTR on error.
8529  */
8530 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8531 					     struct btrfs_root *root,
8532 					     u64 parent, u64 root_objectid,
8533 					     const struct btrfs_disk_key *key,
8534 					     int level, u64 hint,
8535 					     u64 empty_size)
8536 {
8537 	struct btrfs_fs_info *fs_info = root->fs_info;
8538 	struct btrfs_key ins;
8539 	struct btrfs_block_rsv *block_rsv;
8540 	struct extent_buffer *buf;
8541 	struct btrfs_delayed_extent_op *extent_op;
8542 	struct btrfs_ref generic_ref = { 0 };
8543 	u64 flags = 0;
8544 	int ret;
8545 	u32 blocksize = fs_info->nodesize;
8546 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8547 
8548 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8549 	if (btrfs_is_testing(fs_info)) {
8550 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8551 					    level, root_objectid);
8552 		if (!IS_ERR(buf))
8553 			root->alloc_bytenr += blocksize;
8554 		return buf;
8555 	}
8556 #endif
8557 
8558 	block_rsv = use_block_rsv(trans, root, blocksize);
8559 	if (IS_ERR(block_rsv))
8560 		return ERR_CAST(block_rsv);
8561 
8562 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8563 				   empty_size, hint, &ins, 0, 0);
8564 	if (ret)
8565 		goto out_unuse;
8566 
8567 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8568 				    root_objectid);
8569 	if (IS_ERR(buf)) {
8570 		ret = PTR_ERR(buf);
8571 		goto out_free_reserved;
8572 	}
8573 
8574 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8575 		if (parent == 0)
8576 			parent = ins.objectid;
8577 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8578 	} else
8579 		BUG_ON(parent > 0);
8580 
8581 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8582 		extent_op = btrfs_alloc_delayed_extent_op();
8583 		if (!extent_op) {
8584 			ret = -ENOMEM;
8585 			goto out_free_buf;
8586 		}
8587 		if (key)
8588 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8589 		else
8590 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8591 		extent_op->flags_to_set = flags;
8592 		extent_op->update_key = skinny_metadata ? false : true;
8593 		extent_op->update_flags = true;
8594 		extent_op->is_data = false;
8595 		extent_op->level = level;
8596 
8597 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8598 				       ins.objectid, ins.offset, parent);
8599 		generic_ref.real_root = root->root_key.objectid;
8600 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8601 		btrfs_ref_tree_mod(fs_info, &generic_ref);
8602 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
8603 						 extent_op, NULL, NULL);
8604 		if (ret)
8605 			goto out_free_delayed;
8606 	}
8607 	return buf;
8608 
8609 out_free_delayed:
8610 	btrfs_free_delayed_extent_op(extent_op);
8611 out_free_buf:
8612 	free_extent_buffer(buf);
8613 out_free_reserved:
8614 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8615 out_unuse:
8616 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8617 	return ERR_PTR(ret);
8618 }
8619 
8620 struct walk_control {
8621 	u64 refs[BTRFS_MAX_LEVEL];
8622 	u64 flags[BTRFS_MAX_LEVEL];
8623 	struct btrfs_key update_progress;
8624 	struct btrfs_key drop_progress;
8625 	int drop_level;
8626 	int stage;
8627 	int level;
8628 	int shared_level;
8629 	int update_ref;
8630 	int keep_locks;
8631 	int reada_slot;
8632 	int reada_count;
8633 	int restarted;
8634 };
8635 
8636 #define DROP_REFERENCE	1
8637 #define UPDATE_BACKREF	2
8638 
8639 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8640 				     struct btrfs_root *root,
8641 				     struct walk_control *wc,
8642 				     struct btrfs_path *path)
8643 {
8644 	struct btrfs_fs_info *fs_info = root->fs_info;
8645 	u64 bytenr;
8646 	u64 generation;
8647 	u64 refs;
8648 	u64 flags;
8649 	u32 nritems;
8650 	struct btrfs_key key;
8651 	struct extent_buffer *eb;
8652 	int ret;
8653 	int slot;
8654 	int nread = 0;
8655 
8656 	if (path->slots[wc->level] < wc->reada_slot) {
8657 		wc->reada_count = wc->reada_count * 2 / 3;
8658 		wc->reada_count = max(wc->reada_count, 2);
8659 	} else {
8660 		wc->reada_count = wc->reada_count * 3 / 2;
8661 		wc->reada_count = min_t(int, wc->reada_count,
8662 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8663 	}
8664 
8665 	eb = path->nodes[wc->level];
8666 	nritems = btrfs_header_nritems(eb);
8667 
8668 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8669 		if (nread >= wc->reada_count)
8670 			break;
8671 
8672 		cond_resched();
8673 		bytenr = btrfs_node_blockptr(eb, slot);
8674 		generation = btrfs_node_ptr_generation(eb, slot);
8675 
8676 		if (slot == path->slots[wc->level])
8677 			goto reada;
8678 
8679 		if (wc->stage == UPDATE_BACKREF &&
8680 		    generation <= root->root_key.offset)
8681 			continue;
8682 
8683 		/* We don't lock the tree block, it's OK to be racy here */
8684 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8685 					       wc->level - 1, 1, &refs,
8686 					       &flags);
8687 		/* We don't care about errors in readahead. */
8688 		if (ret < 0)
8689 			continue;
8690 		BUG_ON(refs == 0);
8691 
8692 		if (wc->stage == DROP_REFERENCE) {
8693 			if (refs == 1)
8694 				goto reada;
8695 
8696 			if (wc->level == 1 &&
8697 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8698 				continue;
8699 			if (!wc->update_ref ||
8700 			    generation <= root->root_key.offset)
8701 				continue;
8702 			btrfs_node_key_to_cpu(eb, &key, slot);
8703 			ret = btrfs_comp_cpu_keys(&key,
8704 						  &wc->update_progress);
8705 			if (ret < 0)
8706 				continue;
8707 		} else {
8708 			if (wc->level == 1 &&
8709 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8710 				continue;
8711 		}
8712 reada:
8713 		readahead_tree_block(fs_info, bytenr);
8714 		nread++;
8715 	}
8716 	wc->reada_slot = slot;
8717 }
8718 
8719 /*
8720  * helper to process tree block while walking down the tree.
8721  *
8722  * when wc->stage == UPDATE_BACKREF, this function updates
8723  * back refs for pointers in the block.
8724  *
8725  * NOTE: return value 1 means we should stop walking down.
8726  */
8727 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8728 				   struct btrfs_root *root,
8729 				   struct btrfs_path *path,
8730 				   struct walk_control *wc, int lookup_info)
8731 {
8732 	struct btrfs_fs_info *fs_info = root->fs_info;
8733 	int level = wc->level;
8734 	struct extent_buffer *eb = path->nodes[level];
8735 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8736 	int ret;
8737 
8738 	if (wc->stage == UPDATE_BACKREF &&
8739 	    btrfs_header_owner(eb) != root->root_key.objectid)
8740 		return 1;
8741 
8742 	/*
8743 	 * when reference count of tree block is 1, it won't increase
8744 	 * again. once full backref flag is set, we never clear it.
8745 	 */
8746 	if (lookup_info &&
8747 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8748 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8749 		BUG_ON(!path->locks[level]);
8750 		ret = btrfs_lookup_extent_info(trans, fs_info,
8751 					       eb->start, level, 1,
8752 					       &wc->refs[level],
8753 					       &wc->flags[level]);
8754 		BUG_ON(ret == -ENOMEM);
8755 		if (ret)
8756 			return ret;
8757 		BUG_ON(wc->refs[level] == 0);
8758 	}
8759 
8760 	if (wc->stage == DROP_REFERENCE) {
8761 		if (wc->refs[level] > 1)
8762 			return 1;
8763 
8764 		if (path->locks[level] && !wc->keep_locks) {
8765 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8766 			path->locks[level] = 0;
8767 		}
8768 		return 0;
8769 	}
8770 
8771 	/* wc->stage == UPDATE_BACKREF */
8772 	if (!(wc->flags[level] & flag)) {
8773 		BUG_ON(!path->locks[level]);
8774 		ret = btrfs_inc_ref(trans, root, eb, 1);
8775 		BUG_ON(ret); /* -ENOMEM */
8776 		ret = btrfs_dec_ref(trans, root, eb, 0);
8777 		BUG_ON(ret); /* -ENOMEM */
8778 		ret = btrfs_set_disk_extent_flags(trans, eb->start,
8779 						  eb->len, flag,
8780 						  btrfs_header_level(eb), 0);
8781 		BUG_ON(ret); /* -ENOMEM */
8782 		wc->flags[level] |= flag;
8783 	}
8784 
8785 	/*
8786 	 * the block is shared by multiple trees, so it's not good to
8787 	 * keep the tree lock
8788 	 */
8789 	if (path->locks[level] && level > 0) {
8790 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8791 		path->locks[level] = 0;
8792 	}
8793 	return 0;
8794 }
8795 
8796 /*
8797  * This is used to verify a ref exists for this root to deal with a bug where we
8798  * would have a drop_progress key that hadn't been updated properly.
8799  */
8800 static int check_ref_exists(struct btrfs_trans_handle *trans,
8801 			    struct btrfs_root *root, u64 bytenr, u64 parent,
8802 			    int level)
8803 {
8804 	struct btrfs_path *path;
8805 	struct btrfs_extent_inline_ref *iref;
8806 	int ret;
8807 
8808 	path = btrfs_alloc_path();
8809 	if (!path)
8810 		return -ENOMEM;
8811 
8812 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
8813 				    root->fs_info->nodesize, parent,
8814 				    root->root_key.objectid, level, 0);
8815 	btrfs_free_path(path);
8816 	if (ret == -ENOENT)
8817 		return 0;
8818 	if (ret < 0)
8819 		return ret;
8820 	return 1;
8821 }
8822 
8823 /*
8824  * helper to process tree block pointer.
8825  *
8826  * when wc->stage == DROP_REFERENCE, this function checks
8827  * reference count of the block pointed to. if the block
8828  * is shared and we need update back refs for the subtree
8829  * rooted at the block, this function changes wc->stage to
8830  * UPDATE_BACKREF. if the block is shared and there is no
8831  * need to update back, this function drops the reference
8832  * to the block.
8833  *
8834  * NOTE: return value 1 means we should stop walking down.
8835  */
8836 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8837 				 struct btrfs_root *root,
8838 				 struct btrfs_path *path,
8839 				 struct walk_control *wc, int *lookup_info)
8840 {
8841 	struct btrfs_fs_info *fs_info = root->fs_info;
8842 	u64 bytenr;
8843 	u64 generation;
8844 	u64 parent;
8845 	struct btrfs_key key;
8846 	struct btrfs_key first_key;
8847 	struct btrfs_ref ref = { 0 };
8848 	struct extent_buffer *next;
8849 	int level = wc->level;
8850 	int reada = 0;
8851 	int ret = 0;
8852 	bool need_account = false;
8853 
8854 	generation = btrfs_node_ptr_generation(path->nodes[level],
8855 					       path->slots[level]);
8856 	/*
8857 	 * if the lower level block was created before the snapshot
8858 	 * was created, we know there is no need to update back refs
8859 	 * for the subtree
8860 	 */
8861 	if (wc->stage == UPDATE_BACKREF &&
8862 	    generation <= root->root_key.offset) {
8863 		*lookup_info = 1;
8864 		return 1;
8865 	}
8866 
8867 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8868 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8869 			      path->slots[level]);
8870 
8871 	next = find_extent_buffer(fs_info, bytenr);
8872 	if (!next) {
8873 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8874 		if (IS_ERR(next))
8875 			return PTR_ERR(next);
8876 
8877 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8878 					       level - 1);
8879 		reada = 1;
8880 	}
8881 	btrfs_tree_lock(next);
8882 	btrfs_set_lock_blocking_write(next);
8883 
8884 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8885 				       &wc->refs[level - 1],
8886 				       &wc->flags[level - 1]);
8887 	if (ret < 0)
8888 		goto out_unlock;
8889 
8890 	if (unlikely(wc->refs[level - 1] == 0)) {
8891 		btrfs_err(fs_info, "Missing references.");
8892 		ret = -EIO;
8893 		goto out_unlock;
8894 	}
8895 	*lookup_info = 0;
8896 
8897 	if (wc->stage == DROP_REFERENCE) {
8898 		if (wc->refs[level - 1] > 1) {
8899 			need_account = true;
8900 			if (level == 1 &&
8901 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8902 				goto skip;
8903 
8904 			if (!wc->update_ref ||
8905 			    generation <= root->root_key.offset)
8906 				goto skip;
8907 
8908 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8909 					      path->slots[level]);
8910 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8911 			if (ret < 0)
8912 				goto skip;
8913 
8914 			wc->stage = UPDATE_BACKREF;
8915 			wc->shared_level = level - 1;
8916 		}
8917 	} else {
8918 		if (level == 1 &&
8919 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8920 			goto skip;
8921 	}
8922 
8923 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8924 		btrfs_tree_unlock(next);
8925 		free_extent_buffer(next);
8926 		next = NULL;
8927 		*lookup_info = 1;
8928 	}
8929 
8930 	if (!next) {
8931 		if (reada && level == 1)
8932 			reada_walk_down(trans, root, wc, path);
8933 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8934 				       &first_key);
8935 		if (IS_ERR(next)) {
8936 			return PTR_ERR(next);
8937 		} else if (!extent_buffer_uptodate(next)) {
8938 			free_extent_buffer(next);
8939 			return -EIO;
8940 		}
8941 		btrfs_tree_lock(next);
8942 		btrfs_set_lock_blocking_write(next);
8943 	}
8944 
8945 	level--;
8946 	ASSERT(level == btrfs_header_level(next));
8947 	if (level != btrfs_header_level(next)) {
8948 		btrfs_err(root->fs_info, "mismatched level");
8949 		ret = -EIO;
8950 		goto out_unlock;
8951 	}
8952 	path->nodes[level] = next;
8953 	path->slots[level] = 0;
8954 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8955 	wc->level = level;
8956 	if (wc->level == 1)
8957 		wc->reada_slot = 0;
8958 	return 0;
8959 skip:
8960 	wc->refs[level - 1] = 0;
8961 	wc->flags[level - 1] = 0;
8962 	if (wc->stage == DROP_REFERENCE) {
8963 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8964 			parent = path->nodes[level]->start;
8965 		} else {
8966 			ASSERT(root->root_key.objectid ==
8967 			       btrfs_header_owner(path->nodes[level]));
8968 			if (root->root_key.objectid !=
8969 			    btrfs_header_owner(path->nodes[level])) {
8970 				btrfs_err(root->fs_info,
8971 						"mismatched block owner");
8972 				ret = -EIO;
8973 				goto out_unlock;
8974 			}
8975 			parent = 0;
8976 		}
8977 
8978 		/*
8979 		 * If we had a drop_progress we need to verify the refs are set
8980 		 * as expected.  If we find our ref then we know that from here
8981 		 * on out everything should be correct, and we can clear the
8982 		 * ->restarted flag.
8983 		 */
8984 		if (wc->restarted) {
8985 			ret = check_ref_exists(trans, root, bytenr, parent,
8986 					       level - 1);
8987 			if (ret < 0)
8988 				goto out_unlock;
8989 			if (ret == 0)
8990 				goto no_delete;
8991 			ret = 0;
8992 			wc->restarted = 0;
8993 		}
8994 
8995 		/*
8996 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
8997 		 * already accounted them at merge time (replace_path),
8998 		 * thus we could skip expensive subtree trace here.
8999 		 */
9000 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9001 		    need_account) {
9002 			ret = btrfs_qgroup_trace_subtree(trans, next,
9003 							 generation, level - 1);
9004 			if (ret) {
9005 				btrfs_err_rl(fs_info,
9006 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9007 					     ret);
9008 			}
9009 		}
9010 
9011 		/*
9012 		 * We need to update the next key in our walk control so we can
9013 		 * update the drop_progress key accordingly.  We don't care if
9014 		 * find_next_key doesn't find a key because that means we're at
9015 		 * the end and are going to clean up now.
9016 		 */
9017 		wc->drop_level = level;
9018 		find_next_key(path, level, &wc->drop_progress);
9019 
9020 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
9021 				       fs_info->nodesize, parent);
9022 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
9023 		ret = btrfs_free_extent(trans, &ref);
9024 		if (ret)
9025 			goto out_unlock;
9026 	}
9027 no_delete:
9028 	*lookup_info = 1;
9029 	ret = 1;
9030 
9031 out_unlock:
9032 	btrfs_tree_unlock(next);
9033 	free_extent_buffer(next);
9034 
9035 	return ret;
9036 }
9037 
9038 /*
9039  * helper to process tree block while walking up the tree.
9040  *
9041  * when wc->stage == DROP_REFERENCE, this function drops
9042  * reference count on the block.
9043  *
9044  * when wc->stage == UPDATE_BACKREF, this function changes
9045  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9046  * to UPDATE_BACKREF previously while processing the block.
9047  *
9048  * NOTE: return value 1 means we should stop walking up.
9049  */
9050 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9051 				 struct btrfs_root *root,
9052 				 struct btrfs_path *path,
9053 				 struct walk_control *wc)
9054 {
9055 	struct btrfs_fs_info *fs_info = root->fs_info;
9056 	int ret;
9057 	int level = wc->level;
9058 	struct extent_buffer *eb = path->nodes[level];
9059 	u64 parent = 0;
9060 
9061 	if (wc->stage == UPDATE_BACKREF) {
9062 		BUG_ON(wc->shared_level < level);
9063 		if (level < wc->shared_level)
9064 			goto out;
9065 
9066 		ret = find_next_key(path, level + 1, &wc->update_progress);
9067 		if (ret > 0)
9068 			wc->update_ref = 0;
9069 
9070 		wc->stage = DROP_REFERENCE;
9071 		wc->shared_level = -1;
9072 		path->slots[level] = 0;
9073 
9074 		/*
9075 		 * check reference count again if the block isn't locked.
9076 		 * we should start walking down the tree again if reference
9077 		 * count is one.
9078 		 */
9079 		if (!path->locks[level]) {
9080 			BUG_ON(level == 0);
9081 			btrfs_tree_lock(eb);
9082 			btrfs_set_lock_blocking_write(eb);
9083 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9084 
9085 			ret = btrfs_lookup_extent_info(trans, fs_info,
9086 						       eb->start, level, 1,
9087 						       &wc->refs[level],
9088 						       &wc->flags[level]);
9089 			if (ret < 0) {
9090 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9091 				path->locks[level] = 0;
9092 				return ret;
9093 			}
9094 			BUG_ON(wc->refs[level] == 0);
9095 			if (wc->refs[level] == 1) {
9096 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9097 				path->locks[level] = 0;
9098 				return 1;
9099 			}
9100 		}
9101 	}
9102 
9103 	/* wc->stage == DROP_REFERENCE */
9104 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9105 
9106 	if (wc->refs[level] == 1) {
9107 		if (level == 0) {
9108 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9109 				ret = btrfs_dec_ref(trans, root, eb, 1);
9110 			else
9111 				ret = btrfs_dec_ref(trans, root, eb, 0);
9112 			BUG_ON(ret); /* -ENOMEM */
9113 			if (is_fstree(root->root_key.objectid)) {
9114 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9115 				if (ret) {
9116 					btrfs_err_rl(fs_info,
9117 	"error %d accounting leaf items, quota is out of sync, rescan required",
9118 					     ret);
9119 				}
9120 			}
9121 		}
9122 		/* make block locked assertion in btrfs_clean_tree_block happy */
9123 		if (!path->locks[level] &&
9124 		    btrfs_header_generation(eb) == trans->transid) {
9125 			btrfs_tree_lock(eb);
9126 			btrfs_set_lock_blocking_write(eb);
9127 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9128 		}
9129 		btrfs_clean_tree_block(eb);
9130 	}
9131 
9132 	if (eb == root->node) {
9133 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9134 			parent = eb->start;
9135 		else if (root->root_key.objectid != btrfs_header_owner(eb))
9136 			goto owner_mismatch;
9137 	} else {
9138 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9139 			parent = path->nodes[level + 1]->start;
9140 		else if (root->root_key.objectid !=
9141 			 btrfs_header_owner(path->nodes[level + 1]))
9142 			goto owner_mismatch;
9143 	}
9144 
9145 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9146 out:
9147 	wc->refs[level] = 0;
9148 	wc->flags[level] = 0;
9149 	return 0;
9150 
9151 owner_mismatch:
9152 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9153 		     btrfs_header_owner(eb), root->root_key.objectid);
9154 	return -EUCLEAN;
9155 }
9156 
9157 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9158 				   struct btrfs_root *root,
9159 				   struct btrfs_path *path,
9160 				   struct walk_control *wc)
9161 {
9162 	int level = wc->level;
9163 	int lookup_info = 1;
9164 	int ret;
9165 
9166 	while (level >= 0) {
9167 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9168 		if (ret > 0)
9169 			break;
9170 
9171 		if (level == 0)
9172 			break;
9173 
9174 		if (path->slots[level] >=
9175 		    btrfs_header_nritems(path->nodes[level]))
9176 			break;
9177 
9178 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9179 		if (ret > 0) {
9180 			path->slots[level]++;
9181 			continue;
9182 		} else if (ret < 0)
9183 			return ret;
9184 		level = wc->level;
9185 	}
9186 	return 0;
9187 }
9188 
9189 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9190 				 struct btrfs_root *root,
9191 				 struct btrfs_path *path,
9192 				 struct walk_control *wc, int max_level)
9193 {
9194 	int level = wc->level;
9195 	int ret;
9196 
9197 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9198 	while (level < max_level && path->nodes[level]) {
9199 		wc->level = level;
9200 		if (path->slots[level] + 1 <
9201 		    btrfs_header_nritems(path->nodes[level])) {
9202 			path->slots[level]++;
9203 			return 0;
9204 		} else {
9205 			ret = walk_up_proc(trans, root, path, wc);
9206 			if (ret > 0)
9207 				return 0;
9208 			if (ret < 0)
9209 				return ret;
9210 
9211 			if (path->locks[level]) {
9212 				btrfs_tree_unlock_rw(path->nodes[level],
9213 						     path->locks[level]);
9214 				path->locks[level] = 0;
9215 			}
9216 			free_extent_buffer(path->nodes[level]);
9217 			path->nodes[level] = NULL;
9218 			level++;
9219 		}
9220 	}
9221 	return 1;
9222 }
9223 
9224 /*
9225  * drop a subvolume tree.
9226  *
9227  * this function traverses the tree freeing any blocks that only
9228  * referenced by the tree.
9229  *
9230  * when a shared tree block is found. this function decreases its
9231  * reference count by one. if update_ref is true, this function
9232  * also make sure backrefs for the shared block and all lower level
9233  * blocks are properly updated.
9234  *
9235  * If called with for_reloc == 0, may exit early with -EAGAIN
9236  */
9237 int btrfs_drop_snapshot(struct btrfs_root *root,
9238 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9239 			 int for_reloc)
9240 {
9241 	struct btrfs_fs_info *fs_info = root->fs_info;
9242 	struct btrfs_path *path;
9243 	struct btrfs_trans_handle *trans;
9244 	struct btrfs_root *tree_root = fs_info->tree_root;
9245 	struct btrfs_root_item *root_item = &root->root_item;
9246 	struct walk_control *wc;
9247 	struct btrfs_key key;
9248 	int err = 0;
9249 	int ret;
9250 	int level;
9251 	bool root_dropped = false;
9252 
9253 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9254 
9255 	path = btrfs_alloc_path();
9256 	if (!path) {
9257 		err = -ENOMEM;
9258 		goto out;
9259 	}
9260 
9261 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9262 	if (!wc) {
9263 		btrfs_free_path(path);
9264 		err = -ENOMEM;
9265 		goto out;
9266 	}
9267 
9268 	trans = btrfs_start_transaction(tree_root, 0);
9269 	if (IS_ERR(trans)) {
9270 		err = PTR_ERR(trans);
9271 		goto out_free;
9272 	}
9273 
9274 	err = btrfs_run_delayed_items(trans);
9275 	if (err)
9276 		goto out_end_trans;
9277 
9278 	if (block_rsv)
9279 		trans->block_rsv = block_rsv;
9280 
9281 	/*
9282 	 * This will help us catch people modifying the fs tree while we're
9283 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
9284 	 * dropped as we unlock the root node and parent nodes as we walk down
9285 	 * the tree, assuming nothing will change.  If something does change
9286 	 * then we'll have stale information and drop references to blocks we've
9287 	 * already dropped.
9288 	 */
9289 	set_bit(BTRFS_ROOT_DELETING, &root->state);
9290 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9291 		level = btrfs_header_level(root->node);
9292 		path->nodes[level] = btrfs_lock_root_node(root);
9293 		btrfs_set_lock_blocking_write(path->nodes[level]);
9294 		path->slots[level] = 0;
9295 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9296 		memset(&wc->update_progress, 0,
9297 		       sizeof(wc->update_progress));
9298 	} else {
9299 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9300 		memcpy(&wc->update_progress, &key,
9301 		       sizeof(wc->update_progress));
9302 
9303 		level = root_item->drop_level;
9304 		BUG_ON(level == 0);
9305 		path->lowest_level = level;
9306 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9307 		path->lowest_level = 0;
9308 		if (ret < 0) {
9309 			err = ret;
9310 			goto out_end_trans;
9311 		}
9312 		WARN_ON(ret > 0);
9313 
9314 		/*
9315 		 * unlock our path, this is safe because only this
9316 		 * function is allowed to delete this snapshot
9317 		 */
9318 		btrfs_unlock_up_safe(path, 0);
9319 
9320 		level = btrfs_header_level(root->node);
9321 		while (1) {
9322 			btrfs_tree_lock(path->nodes[level]);
9323 			btrfs_set_lock_blocking_write(path->nodes[level]);
9324 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9325 
9326 			ret = btrfs_lookup_extent_info(trans, fs_info,
9327 						path->nodes[level]->start,
9328 						level, 1, &wc->refs[level],
9329 						&wc->flags[level]);
9330 			if (ret < 0) {
9331 				err = ret;
9332 				goto out_end_trans;
9333 			}
9334 			BUG_ON(wc->refs[level] == 0);
9335 
9336 			if (level == root_item->drop_level)
9337 				break;
9338 
9339 			btrfs_tree_unlock(path->nodes[level]);
9340 			path->locks[level] = 0;
9341 			WARN_ON(wc->refs[level] != 1);
9342 			level--;
9343 		}
9344 	}
9345 
9346 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
9347 	wc->level = level;
9348 	wc->shared_level = -1;
9349 	wc->stage = DROP_REFERENCE;
9350 	wc->update_ref = update_ref;
9351 	wc->keep_locks = 0;
9352 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9353 
9354 	while (1) {
9355 
9356 		ret = walk_down_tree(trans, root, path, wc);
9357 		if (ret < 0) {
9358 			err = ret;
9359 			break;
9360 		}
9361 
9362 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9363 		if (ret < 0) {
9364 			err = ret;
9365 			break;
9366 		}
9367 
9368 		if (ret > 0) {
9369 			BUG_ON(wc->stage != DROP_REFERENCE);
9370 			break;
9371 		}
9372 
9373 		if (wc->stage == DROP_REFERENCE) {
9374 			wc->drop_level = wc->level;
9375 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9376 					      &wc->drop_progress,
9377 					      path->slots[wc->drop_level]);
9378 		}
9379 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
9380 				      &wc->drop_progress);
9381 		root_item->drop_level = wc->drop_level;
9382 
9383 		BUG_ON(wc->level == 0);
9384 		if (btrfs_should_end_transaction(trans) ||
9385 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9386 			ret = btrfs_update_root(trans, tree_root,
9387 						&root->root_key,
9388 						root_item);
9389 			if (ret) {
9390 				btrfs_abort_transaction(trans, ret);
9391 				err = ret;
9392 				goto out_end_trans;
9393 			}
9394 
9395 			btrfs_end_transaction_throttle(trans);
9396 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9397 				btrfs_debug(fs_info,
9398 					    "drop snapshot early exit");
9399 				err = -EAGAIN;
9400 				goto out_free;
9401 			}
9402 
9403 			trans = btrfs_start_transaction(tree_root, 0);
9404 			if (IS_ERR(trans)) {
9405 				err = PTR_ERR(trans);
9406 				goto out_free;
9407 			}
9408 			if (block_rsv)
9409 				trans->block_rsv = block_rsv;
9410 		}
9411 	}
9412 	btrfs_release_path(path);
9413 	if (err)
9414 		goto out_end_trans;
9415 
9416 	ret = btrfs_del_root(trans, &root->root_key);
9417 	if (ret) {
9418 		btrfs_abort_transaction(trans, ret);
9419 		err = ret;
9420 		goto out_end_trans;
9421 	}
9422 
9423 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9424 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9425 				      NULL, NULL);
9426 		if (ret < 0) {
9427 			btrfs_abort_transaction(trans, ret);
9428 			err = ret;
9429 			goto out_end_trans;
9430 		} else if (ret > 0) {
9431 			/* if we fail to delete the orphan item this time
9432 			 * around, it'll get picked up the next time.
9433 			 *
9434 			 * The most common failure here is just -ENOENT.
9435 			 */
9436 			btrfs_del_orphan_item(trans, tree_root,
9437 					      root->root_key.objectid);
9438 		}
9439 	}
9440 
9441 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9442 		btrfs_add_dropped_root(trans, root);
9443 	} else {
9444 		free_extent_buffer(root->node);
9445 		free_extent_buffer(root->commit_root);
9446 		btrfs_put_fs_root(root);
9447 	}
9448 	root_dropped = true;
9449 out_end_trans:
9450 	btrfs_end_transaction_throttle(trans);
9451 out_free:
9452 	kfree(wc);
9453 	btrfs_free_path(path);
9454 out:
9455 	/*
9456 	 * So if we need to stop dropping the snapshot for whatever reason we
9457 	 * need to make sure to add it back to the dead root list so that we
9458 	 * keep trying to do the work later.  This also cleans up roots if we
9459 	 * don't have it in the radix (like when we recover after a power fail
9460 	 * or unmount) so we don't leak memory.
9461 	 */
9462 	if (!for_reloc && !root_dropped)
9463 		btrfs_add_dead_root(root);
9464 	if (err && err != -EAGAIN)
9465 		btrfs_handle_fs_error(fs_info, err, NULL);
9466 	return err;
9467 }
9468 
9469 /*
9470  * drop subtree rooted at tree block 'node'.
9471  *
9472  * NOTE: this function will unlock and release tree block 'node'
9473  * only used by relocation code
9474  */
9475 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9476 			struct btrfs_root *root,
9477 			struct extent_buffer *node,
9478 			struct extent_buffer *parent)
9479 {
9480 	struct btrfs_fs_info *fs_info = root->fs_info;
9481 	struct btrfs_path *path;
9482 	struct walk_control *wc;
9483 	int level;
9484 	int parent_level;
9485 	int ret = 0;
9486 	int wret;
9487 
9488 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9489 
9490 	path = btrfs_alloc_path();
9491 	if (!path)
9492 		return -ENOMEM;
9493 
9494 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9495 	if (!wc) {
9496 		btrfs_free_path(path);
9497 		return -ENOMEM;
9498 	}
9499 
9500 	btrfs_assert_tree_locked(parent);
9501 	parent_level = btrfs_header_level(parent);
9502 	extent_buffer_get(parent);
9503 	path->nodes[parent_level] = parent;
9504 	path->slots[parent_level] = btrfs_header_nritems(parent);
9505 
9506 	btrfs_assert_tree_locked(node);
9507 	level = btrfs_header_level(node);
9508 	path->nodes[level] = node;
9509 	path->slots[level] = 0;
9510 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9511 
9512 	wc->refs[parent_level] = 1;
9513 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9514 	wc->level = level;
9515 	wc->shared_level = -1;
9516 	wc->stage = DROP_REFERENCE;
9517 	wc->update_ref = 0;
9518 	wc->keep_locks = 1;
9519 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9520 
9521 	while (1) {
9522 		wret = walk_down_tree(trans, root, path, wc);
9523 		if (wret < 0) {
9524 			ret = wret;
9525 			break;
9526 		}
9527 
9528 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9529 		if (wret < 0)
9530 			ret = wret;
9531 		if (wret != 0)
9532 			break;
9533 	}
9534 
9535 	kfree(wc);
9536 	btrfs_free_path(path);
9537 	return ret;
9538 }
9539 
9540 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9541 {
9542 	u64 num_devices;
9543 	u64 stripped;
9544 
9545 	/*
9546 	 * if restripe for this chunk_type is on pick target profile and
9547 	 * return, otherwise do the usual balance
9548 	 */
9549 	stripped = get_restripe_target(fs_info, flags);
9550 	if (stripped)
9551 		return extended_to_chunk(stripped);
9552 
9553 	num_devices = fs_info->fs_devices->rw_devices;
9554 
9555 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9556 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9557 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9558 
9559 	if (num_devices == 1) {
9560 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9561 		stripped = flags & ~stripped;
9562 
9563 		/* turn raid0 into single device chunks */
9564 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9565 			return stripped;
9566 
9567 		/* turn mirroring into duplication */
9568 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9569 			     BTRFS_BLOCK_GROUP_RAID10))
9570 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9571 	} else {
9572 		/* they already had raid on here, just return */
9573 		if (flags & stripped)
9574 			return flags;
9575 
9576 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9577 		stripped = flags & ~stripped;
9578 
9579 		/* switch duplicated blocks with raid1 */
9580 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9581 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9582 
9583 		/* this is drive concat, leave it alone */
9584 	}
9585 
9586 	return flags;
9587 }
9588 
9589 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9590 {
9591 	struct btrfs_space_info *sinfo = cache->space_info;
9592 	u64 num_bytes;
9593 	u64 sinfo_used;
9594 	u64 min_allocable_bytes;
9595 	int ret = -ENOSPC;
9596 
9597 	/*
9598 	 * We need some metadata space and system metadata space for
9599 	 * allocating chunks in some corner cases until we force to set
9600 	 * it to be readonly.
9601 	 */
9602 	if ((sinfo->flags &
9603 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9604 	    !force)
9605 		min_allocable_bytes = SZ_1M;
9606 	else
9607 		min_allocable_bytes = 0;
9608 
9609 	spin_lock(&sinfo->lock);
9610 	spin_lock(&cache->lock);
9611 
9612 	if (cache->ro) {
9613 		cache->ro++;
9614 		ret = 0;
9615 		goto out;
9616 	}
9617 
9618 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9619 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9620 	sinfo_used = btrfs_space_info_used(sinfo, true);
9621 
9622 	if (sinfo_used + num_bytes + min_allocable_bytes <=
9623 	    sinfo->total_bytes) {
9624 		sinfo->bytes_readonly += num_bytes;
9625 		cache->ro++;
9626 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9627 		ret = 0;
9628 	}
9629 out:
9630 	spin_unlock(&cache->lock);
9631 	spin_unlock(&sinfo->lock);
9632 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9633 		btrfs_info(cache->fs_info,
9634 			"unable to make block group %llu ro",
9635 			cache->key.objectid);
9636 		btrfs_info(cache->fs_info,
9637 			"sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9638 			sinfo_used, num_bytes, min_allocable_bytes);
9639 		dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9640 	}
9641 	return ret;
9642 }
9643 
9644 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9645 
9646 {
9647 	struct btrfs_fs_info *fs_info = cache->fs_info;
9648 	struct btrfs_trans_handle *trans;
9649 	u64 alloc_flags;
9650 	int ret;
9651 
9652 again:
9653 	trans = btrfs_join_transaction(fs_info->extent_root);
9654 	if (IS_ERR(trans))
9655 		return PTR_ERR(trans);
9656 
9657 	/*
9658 	 * we're not allowed to set block groups readonly after the dirty
9659 	 * block groups cache has started writing.  If it already started,
9660 	 * back off and let this transaction commit
9661 	 */
9662 	mutex_lock(&fs_info->ro_block_group_mutex);
9663 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9664 		u64 transid = trans->transid;
9665 
9666 		mutex_unlock(&fs_info->ro_block_group_mutex);
9667 		btrfs_end_transaction(trans);
9668 
9669 		ret = btrfs_wait_for_commit(fs_info, transid);
9670 		if (ret)
9671 			return ret;
9672 		goto again;
9673 	}
9674 
9675 	/*
9676 	 * if we are changing raid levels, try to allocate a corresponding
9677 	 * block group with the new raid level.
9678 	 */
9679 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9680 	if (alloc_flags != cache->flags) {
9681 		ret = do_chunk_alloc(trans, alloc_flags,
9682 				     CHUNK_ALLOC_FORCE);
9683 		/*
9684 		 * ENOSPC is allowed here, we may have enough space
9685 		 * already allocated at the new raid level to
9686 		 * carry on
9687 		 */
9688 		if (ret == -ENOSPC)
9689 			ret = 0;
9690 		if (ret < 0)
9691 			goto out;
9692 	}
9693 
9694 	ret = inc_block_group_ro(cache, 0);
9695 	if (!ret)
9696 		goto out;
9697 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9698 	ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9699 	if (ret < 0)
9700 		goto out;
9701 	ret = inc_block_group_ro(cache, 0);
9702 out:
9703 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9704 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9705 		mutex_lock(&fs_info->chunk_mutex);
9706 		check_system_chunk(trans, alloc_flags);
9707 		mutex_unlock(&fs_info->chunk_mutex);
9708 	}
9709 	mutex_unlock(&fs_info->ro_block_group_mutex);
9710 
9711 	btrfs_end_transaction(trans);
9712 	return ret;
9713 }
9714 
9715 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9716 {
9717 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9718 
9719 	return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9720 }
9721 
9722 /*
9723  * helper to account the unused space of all the readonly block group in the
9724  * space_info. takes mirrors into account.
9725  */
9726 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9727 {
9728 	struct btrfs_block_group_cache *block_group;
9729 	u64 free_bytes = 0;
9730 	int factor;
9731 
9732 	/* It's df, we don't care if it's racy */
9733 	if (list_empty(&sinfo->ro_bgs))
9734 		return 0;
9735 
9736 	spin_lock(&sinfo->lock);
9737 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9738 		spin_lock(&block_group->lock);
9739 
9740 		if (!block_group->ro) {
9741 			spin_unlock(&block_group->lock);
9742 			continue;
9743 		}
9744 
9745 		factor = btrfs_bg_type_to_factor(block_group->flags);
9746 		free_bytes += (block_group->key.offset -
9747 			       btrfs_block_group_used(&block_group->item)) *
9748 			       factor;
9749 
9750 		spin_unlock(&block_group->lock);
9751 	}
9752 	spin_unlock(&sinfo->lock);
9753 
9754 	return free_bytes;
9755 }
9756 
9757 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9758 {
9759 	struct btrfs_space_info *sinfo = cache->space_info;
9760 	u64 num_bytes;
9761 
9762 	BUG_ON(!cache->ro);
9763 
9764 	spin_lock(&sinfo->lock);
9765 	spin_lock(&cache->lock);
9766 	if (!--cache->ro) {
9767 		num_bytes = cache->key.offset - cache->reserved -
9768 			    cache->pinned - cache->bytes_super -
9769 			    btrfs_block_group_used(&cache->item);
9770 		sinfo->bytes_readonly -= num_bytes;
9771 		list_del_init(&cache->ro_list);
9772 	}
9773 	spin_unlock(&cache->lock);
9774 	spin_unlock(&sinfo->lock);
9775 }
9776 
9777 /*
9778  * Checks to see if it's even possible to relocate this block group.
9779  *
9780  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9781  * ok to go ahead and try.
9782  */
9783 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9784 {
9785 	struct btrfs_block_group_cache *block_group;
9786 	struct btrfs_space_info *space_info;
9787 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9788 	struct btrfs_device *device;
9789 	u64 min_free;
9790 	u64 dev_min = 1;
9791 	u64 dev_nr = 0;
9792 	u64 target;
9793 	int debug;
9794 	int index;
9795 	int full = 0;
9796 	int ret = 0;
9797 
9798 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9799 
9800 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9801 
9802 	/* odd, couldn't find the block group, leave it alone */
9803 	if (!block_group) {
9804 		if (debug)
9805 			btrfs_warn(fs_info,
9806 				   "can't find block group for bytenr %llu",
9807 				   bytenr);
9808 		return -1;
9809 	}
9810 
9811 	min_free = btrfs_block_group_used(&block_group->item);
9812 
9813 	/* no bytes used, we're good */
9814 	if (!min_free)
9815 		goto out;
9816 
9817 	space_info = block_group->space_info;
9818 	spin_lock(&space_info->lock);
9819 
9820 	full = space_info->full;
9821 
9822 	/*
9823 	 * if this is the last block group we have in this space, we can't
9824 	 * relocate it unless we're able to allocate a new chunk below.
9825 	 *
9826 	 * Otherwise, we need to make sure we have room in the space to handle
9827 	 * all of the extents from this block group.  If we can, we're good
9828 	 */
9829 	if ((space_info->total_bytes != block_group->key.offset) &&
9830 	    (btrfs_space_info_used(space_info, false) + min_free <
9831 	     space_info->total_bytes)) {
9832 		spin_unlock(&space_info->lock);
9833 		goto out;
9834 	}
9835 	spin_unlock(&space_info->lock);
9836 
9837 	/*
9838 	 * ok we don't have enough space, but maybe we have free space on our
9839 	 * devices to allocate new chunks for relocation, so loop through our
9840 	 * alloc devices and guess if we have enough space.  if this block
9841 	 * group is going to be restriped, run checks against the target
9842 	 * profile instead of the current one.
9843 	 */
9844 	ret = -1;
9845 
9846 	/*
9847 	 * index:
9848 	 *      0: raid10
9849 	 *      1: raid1
9850 	 *      2: dup
9851 	 *      3: raid0
9852 	 *      4: single
9853 	 */
9854 	target = get_restripe_target(fs_info, block_group->flags);
9855 	if (target) {
9856 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9857 	} else {
9858 		/*
9859 		 * this is just a balance, so if we were marked as full
9860 		 * we know there is no space for a new chunk
9861 		 */
9862 		if (full) {
9863 			if (debug)
9864 				btrfs_warn(fs_info,
9865 					   "no space to alloc new chunk for block group %llu",
9866 					   block_group->key.objectid);
9867 			goto out;
9868 		}
9869 
9870 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9871 	}
9872 
9873 	if (index == BTRFS_RAID_RAID10) {
9874 		dev_min = 4;
9875 		/* Divide by 2 */
9876 		min_free >>= 1;
9877 	} else if (index == BTRFS_RAID_RAID1) {
9878 		dev_min = 2;
9879 	} else if (index == BTRFS_RAID_DUP) {
9880 		/* Multiply by 2 */
9881 		min_free <<= 1;
9882 	} else if (index == BTRFS_RAID_RAID0) {
9883 		dev_min = fs_devices->rw_devices;
9884 		min_free = div64_u64(min_free, dev_min);
9885 	}
9886 
9887 	mutex_lock(&fs_info->chunk_mutex);
9888 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9889 		u64 dev_offset;
9890 
9891 		/*
9892 		 * check to make sure we can actually find a chunk with enough
9893 		 * space to fit our block group in.
9894 		 */
9895 		if (device->total_bytes > device->bytes_used + min_free &&
9896 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9897 			ret = find_free_dev_extent(device, min_free,
9898 						   &dev_offset, NULL);
9899 			if (!ret)
9900 				dev_nr++;
9901 
9902 			if (dev_nr >= dev_min)
9903 				break;
9904 
9905 			ret = -1;
9906 		}
9907 	}
9908 	if (debug && ret == -1)
9909 		btrfs_warn(fs_info,
9910 			   "no space to allocate a new chunk for block group %llu",
9911 			   block_group->key.objectid);
9912 	mutex_unlock(&fs_info->chunk_mutex);
9913 out:
9914 	btrfs_put_block_group(block_group);
9915 	return ret;
9916 }
9917 
9918 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9919 				  struct btrfs_path *path,
9920 				  struct btrfs_key *key)
9921 {
9922 	struct btrfs_root *root = fs_info->extent_root;
9923 	int ret = 0;
9924 	struct btrfs_key found_key;
9925 	struct extent_buffer *leaf;
9926 	struct btrfs_block_group_item bg;
9927 	u64 flags;
9928 	int slot;
9929 
9930 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9931 	if (ret < 0)
9932 		goto out;
9933 
9934 	while (1) {
9935 		slot = path->slots[0];
9936 		leaf = path->nodes[0];
9937 		if (slot >= btrfs_header_nritems(leaf)) {
9938 			ret = btrfs_next_leaf(root, path);
9939 			if (ret == 0)
9940 				continue;
9941 			if (ret < 0)
9942 				goto out;
9943 			break;
9944 		}
9945 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9946 
9947 		if (found_key.objectid >= key->objectid &&
9948 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9949 			struct extent_map_tree *em_tree;
9950 			struct extent_map *em;
9951 
9952 			em_tree = &root->fs_info->mapping_tree.map_tree;
9953 			read_lock(&em_tree->lock);
9954 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9955 						   found_key.offset);
9956 			read_unlock(&em_tree->lock);
9957 			if (!em) {
9958 				btrfs_err(fs_info,
9959 			"logical %llu len %llu found bg but no related chunk",
9960 					  found_key.objectid, found_key.offset);
9961 				ret = -ENOENT;
9962 			} else if (em->start != found_key.objectid ||
9963 				   em->len != found_key.offset) {
9964 				btrfs_err(fs_info,
9965 		"block group %llu len %llu mismatch with chunk %llu len %llu",
9966 					  found_key.objectid, found_key.offset,
9967 					  em->start, em->len);
9968 				ret = -EUCLEAN;
9969 			} else {
9970 				read_extent_buffer(leaf, &bg,
9971 					btrfs_item_ptr_offset(leaf, slot),
9972 					sizeof(bg));
9973 				flags = btrfs_block_group_flags(&bg) &
9974 					BTRFS_BLOCK_GROUP_TYPE_MASK;
9975 
9976 				if (flags != (em->map_lookup->type &
9977 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9978 					btrfs_err(fs_info,
9979 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9980 						found_key.objectid,
9981 						found_key.offset, flags,
9982 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
9983 						 em->map_lookup->type));
9984 					ret = -EUCLEAN;
9985 				} else {
9986 					ret = 0;
9987 				}
9988 			}
9989 			free_extent_map(em);
9990 			goto out;
9991 		}
9992 		path->slots[0]++;
9993 	}
9994 out:
9995 	return ret;
9996 }
9997 
9998 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9999 {
10000 	struct btrfs_block_group_cache *block_group;
10001 	u64 last = 0;
10002 
10003 	while (1) {
10004 		struct inode *inode;
10005 
10006 		block_group = btrfs_lookup_first_block_group(info, last);
10007 		while (block_group) {
10008 			wait_block_group_cache_done(block_group);
10009 			spin_lock(&block_group->lock);
10010 			if (block_group->iref)
10011 				break;
10012 			spin_unlock(&block_group->lock);
10013 			block_group = next_block_group(block_group);
10014 		}
10015 		if (!block_group) {
10016 			if (last == 0)
10017 				break;
10018 			last = 0;
10019 			continue;
10020 		}
10021 
10022 		inode = block_group->inode;
10023 		block_group->iref = 0;
10024 		block_group->inode = NULL;
10025 		spin_unlock(&block_group->lock);
10026 		ASSERT(block_group->io_ctl.inode == NULL);
10027 		iput(inode);
10028 		last = block_group->key.objectid + block_group->key.offset;
10029 		btrfs_put_block_group(block_group);
10030 	}
10031 }
10032 
10033 /*
10034  * Must be called only after stopping all workers, since we could have block
10035  * group caching kthreads running, and therefore they could race with us if we
10036  * freed the block groups before stopping them.
10037  */
10038 int btrfs_free_block_groups(struct btrfs_fs_info *info)
10039 {
10040 	struct btrfs_block_group_cache *block_group;
10041 	struct btrfs_space_info *space_info;
10042 	struct btrfs_caching_control *caching_ctl;
10043 	struct rb_node *n;
10044 
10045 	down_write(&info->commit_root_sem);
10046 	while (!list_empty(&info->caching_block_groups)) {
10047 		caching_ctl = list_entry(info->caching_block_groups.next,
10048 					 struct btrfs_caching_control, list);
10049 		list_del(&caching_ctl->list);
10050 		put_caching_control(caching_ctl);
10051 	}
10052 	up_write(&info->commit_root_sem);
10053 
10054 	spin_lock(&info->unused_bgs_lock);
10055 	while (!list_empty(&info->unused_bgs)) {
10056 		block_group = list_first_entry(&info->unused_bgs,
10057 					       struct btrfs_block_group_cache,
10058 					       bg_list);
10059 		list_del_init(&block_group->bg_list);
10060 		btrfs_put_block_group(block_group);
10061 	}
10062 	spin_unlock(&info->unused_bgs_lock);
10063 
10064 	spin_lock(&info->block_group_cache_lock);
10065 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10066 		block_group = rb_entry(n, struct btrfs_block_group_cache,
10067 				       cache_node);
10068 		rb_erase(&block_group->cache_node,
10069 			 &info->block_group_cache_tree);
10070 		RB_CLEAR_NODE(&block_group->cache_node);
10071 		spin_unlock(&info->block_group_cache_lock);
10072 
10073 		down_write(&block_group->space_info->groups_sem);
10074 		list_del(&block_group->list);
10075 		up_write(&block_group->space_info->groups_sem);
10076 
10077 		/*
10078 		 * We haven't cached this block group, which means we could
10079 		 * possibly have excluded extents on this block group.
10080 		 */
10081 		if (block_group->cached == BTRFS_CACHE_NO ||
10082 		    block_group->cached == BTRFS_CACHE_ERROR)
10083 			free_excluded_extents(block_group);
10084 
10085 		btrfs_remove_free_space_cache(block_group);
10086 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10087 		ASSERT(list_empty(&block_group->dirty_list));
10088 		ASSERT(list_empty(&block_group->io_list));
10089 		ASSERT(list_empty(&block_group->bg_list));
10090 		ASSERT(atomic_read(&block_group->count) == 1);
10091 		btrfs_put_block_group(block_group);
10092 
10093 		spin_lock(&info->block_group_cache_lock);
10094 	}
10095 	spin_unlock(&info->block_group_cache_lock);
10096 
10097 	/* now that all the block groups are freed, go through and
10098 	 * free all the space_info structs.  This is only called during
10099 	 * the final stages of unmount, and so we know nobody is
10100 	 * using them.  We call synchronize_rcu() once before we start,
10101 	 * just to be on the safe side.
10102 	 */
10103 	synchronize_rcu();
10104 
10105 	release_global_block_rsv(info);
10106 
10107 	while (!list_empty(&info->space_info)) {
10108 		int i;
10109 
10110 		space_info = list_entry(info->space_info.next,
10111 					struct btrfs_space_info,
10112 					list);
10113 
10114 		/*
10115 		 * Do not hide this behind enospc_debug, this is actually
10116 		 * important and indicates a real bug if this happens.
10117 		 */
10118 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10119 			    space_info->bytes_reserved > 0 ||
10120 			    space_info->bytes_may_use > 0))
10121 			dump_space_info(info, space_info, 0, 0);
10122 		list_del(&space_info->list);
10123 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10124 			struct kobject *kobj;
10125 			kobj = space_info->block_group_kobjs[i];
10126 			space_info->block_group_kobjs[i] = NULL;
10127 			if (kobj) {
10128 				kobject_del(kobj);
10129 				kobject_put(kobj);
10130 			}
10131 		}
10132 		kobject_del(&space_info->kobj);
10133 		kobject_put(&space_info->kobj);
10134 	}
10135 	return 0;
10136 }
10137 
10138 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
10139 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10140 {
10141 	struct btrfs_space_info *space_info;
10142 	struct raid_kobject *rkobj;
10143 	LIST_HEAD(list);
10144 	int index;
10145 	int ret = 0;
10146 
10147 	spin_lock(&fs_info->pending_raid_kobjs_lock);
10148 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
10149 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
10150 
10151 	list_for_each_entry(rkobj, &list, list) {
10152 		space_info = __find_space_info(fs_info, rkobj->flags);
10153 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10154 
10155 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10156 				  "%s", get_raid_name(index));
10157 		if (ret) {
10158 			kobject_put(&rkobj->kobj);
10159 			break;
10160 		}
10161 	}
10162 	if (ret)
10163 		btrfs_warn(fs_info,
10164 			   "failed to add kobject for block cache, ignoring");
10165 }
10166 
10167 static void link_block_group(struct btrfs_block_group_cache *cache)
10168 {
10169 	struct btrfs_space_info *space_info = cache->space_info;
10170 	struct btrfs_fs_info *fs_info = cache->fs_info;
10171 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
10172 	bool first = false;
10173 
10174 	down_write(&space_info->groups_sem);
10175 	if (list_empty(&space_info->block_groups[index]))
10176 		first = true;
10177 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10178 	up_write(&space_info->groups_sem);
10179 
10180 	if (first) {
10181 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10182 		if (!rkobj) {
10183 			btrfs_warn(cache->fs_info,
10184 				"couldn't alloc memory for raid level kobject");
10185 			return;
10186 		}
10187 		rkobj->flags = cache->flags;
10188 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10189 
10190 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10191 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10192 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10193 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10194 	}
10195 }
10196 
10197 static struct btrfs_block_group_cache *
10198 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10199 			       u64 start, u64 size)
10200 {
10201 	struct btrfs_block_group_cache *cache;
10202 
10203 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10204 	if (!cache)
10205 		return NULL;
10206 
10207 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10208 					GFP_NOFS);
10209 	if (!cache->free_space_ctl) {
10210 		kfree(cache);
10211 		return NULL;
10212 	}
10213 
10214 	cache->key.objectid = start;
10215 	cache->key.offset = size;
10216 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10217 
10218 	cache->fs_info = fs_info;
10219 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10220 	set_free_space_tree_thresholds(cache);
10221 
10222 	atomic_set(&cache->count, 1);
10223 	spin_lock_init(&cache->lock);
10224 	init_rwsem(&cache->data_rwsem);
10225 	INIT_LIST_HEAD(&cache->list);
10226 	INIT_LIST_HEAD(&cache->cluster_list);
10227 	INIT_LIST_HEAD(&cache->bg_list);
10228 	INIT_LIST_HEAD(&cache->ro_list);
10229 	INIT_LIST_HEAD(&cache->dirty_list);
10230 	INIT_LIST_HEAD(&cache->io_list);
10231 	btrfs_init_free_space_ctl(cache);
10232 	atomic_set(&cache->trimming, 0);
10233 	mutex_init(&cache->free_space_lock);
10234 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10235 
10236 	return cache;
10237 }
10238 
10239 
10240 /*
10241  * Iterate all chunks and verify that each of them has the corresponding block
10242  * group
10243  */
10244 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10245 {
10246 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10247 	struct extent_map *em;
10248 	struct btrfs_block_group_cache *bg;
10249 	u64 start = 0;
10250 	int ret = 0;
10251 
10252 	while (1) {
10253 		read_lock(&map_tree->map_tree.lock);
10254 		/*
10255 		 * lookup_extent_mapping will return the first extent map
10256 		 * intersecting the range, so setting @len to 1 is enough to
10257 		 * get the first chunk.
10258 		 */
10259 		em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10260 		read_unlock(&map_tree->map_tree.lock);
10261 		if (!em)
10262 			break;
10263 
10264 		bg = btrfs_lookup_block_group(fs_info, em->start);
10265 		if (!bg) {
10266 			btrfs_err(fs_info,
10267 	"chunk start=%llu len=%llu doesn't have corresponding block group",
10268 				     em->start, em->len);
10269 			ret = -EUCLEAN;
10270 			free_extent_map(em);
10271 			break;
10272 		}
10273 		if (bg->key.objectid != em->start ||
10274 		    bg->key.offset != em->len ||
10275 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10276 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10277 			btrfs_err(fs_info,
10278 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10279 				em->start, em->len,
10280 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10281 				bg->key.objectid, bg->key.offset,
10282 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10283 			ret = -EUCLEAN;
10284 			free_extent_map(em);
10285 			btrfs_put_block_group(bg);
10286 			break;
10287 		}
10288 		start = em->start + em->len;
10289 		free_extent_map(em);
10290 		btrfs_put_block_group(bg);
10291 	}
10292 	return ret;
10293 }
10294 
10295 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10296 {
10297 	struct btrfs_path *path;
10298 	int ret;
10299 	struct btrfs_block_group_cache *cache;
10300 	struct btrfs_space_info *space_info;
10301 	struct btrfs_key key;
10302 	struct btrfs_key found_key;
10303 	struct extent_buffer *leaf;
10304 	int need_clear = 0;
10305 	u64 cache_gen;
10306 	u64 feature;
10307 	int mixed;
10308 
10309 	feature = btrfs_super_incompat_flags(info->super_copy);
10310 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10311 
10312 	key.objectid = 0;
10313 	key.offset = 0;
10314 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10315 	path = btrfs_alloc_path();
10316 	if (!path)
10317 		return -ENOMEM;
10318 	path->reada = READA_FORWARD;
10319 
10320 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10321 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10322 	    btrfs_super_generation(info->super_copy) != cache_gen)
10323 		need_clear = 1;
10324 	if (btrfs_test_opt(info, CLEAR_CACHE))
10325 		need_clear = 1;
10326 
10327 	while (1) {
10328 		ret = find_first_block_group(info, path, &key);
10329 		if (ret > 0)
10330 			break;
10331 		if (ret != 0)
10332 			goto error;
10333 
10334 		leaf = path->nodes[0];
10335 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10336 
10337 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10338 						       found_key.offset);
10339 		if (!cache) {
10340 			ret = -ENOMEM;
10341 			goto error;
10342 		}
10343 
10344 		if (need_clear) {
10345 			/*
10346 			 * When we mount with old space cache, we need to
10347 			 * set BTRFS_DC_CLEAR and set dirty flag.
10348 			 *
10349 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10350 			 *    truncate the old free space cache inode and
10351 			 *    setup a new one.
10352 			 * b) Setting 'dirty flag' makes sure that we flush
10353 			 *    the new space cache info onto disk.
10354 			 */
10355 			if (btrfs_test_opt(info, SPACE_CACHE))
10356 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10357 		}
10358 
10359 		read_extent_buffer(leaf, &cache->item,
10360 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10361 				   sizeof(cache->item));
10362 		cache->flags = btrfs_block_group_flags(&cache->item);
10363 		if (!mixed &&
10364 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10365 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10366 			btrfs_err(info,
10367 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10368 				  cache->key.objectid);
10369 			ret = -EINVAL;
10370 			goto error;
10371 		}
10372 
10373 		key.objectid = found_key.objectid + found_key.offset;
10374 		btrfs_release_path(path);
10375 
10376 		/*
10377 		 * We need to exclude the super stripes now so that the space
10378 		 * info has super bytes accounted for, otherwise we'll think
10379 		 * we have more space than we actually do.
10380 		 */
10381 		ret = exclude_super_stripes(cache);
10382 		if (ret) {
10383 			/*
10384 			 * We may have excluded something, so call this just in
10385 			 * case.
10386 			 */
10387 			free_excluded_extents(cache);
10388 			btrfs_put_block_group(cache);
10389 			goto error;
10390 		}
10391 
10392 		/*
10393 		 * check for two cases, either we are full, and therefore
10394 		 * don't need to bother with the caching work since we won't
10395 		 * find any space, or we are empty, and we can just add all
10396 		 * the space in and be done with it.  This saves us _a_lot_ of
10397 		 * time, particularly in the full case.
10398 		 */
10399 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10400 			cache->last_byte_to_unpin = (u64)-1;
10401 			cache->cached = BTRFS_CACHE_FINISHED;
10402 			free_excluded_extents(cache);
10403 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10404 			cache->last_byte_to_unpin = (u64)-1;
10405 			cache->cached = BTRFS_CACHE_FINISHED;
10406 			add_new_free_space(cache, found_key.objectid,
10407 					   found_key.objectid +
10408 					   found_key.offset);
10409 			free_excluded_extents(cache);
10410 		}
10411 
10412 		ret = btrfs_add_block_group_cache(info, cache);
10413 		if (ret) {
10414 			btrfs_remove_free_space_cache(cache);
10415 			btrfs_put_block_group(cache);
10416 			goto error;
10417 		}
10418 
10419 		trace_btrfs_add_block_group(info, cache, 0);
10420 		update_space_info(info, cache->flags, found_key.offset,
10421 				  btrfs_block_group_used(&cache->item),
10422 				  cache->bytes_super, &space_info);
10423 
10424 		cache->space_info = space_info;
10425 
10426 		link_block_group(cache);
10427 
10428 		set_avail_alloc_bits(info, cache->flags);
10429 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10430 			inc_block_group_ro(cache, 1);
10431 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10432 			ASSERT(list_empty(&cache->bg_list));
10433 			btrfs_mark_bg_unused(cache);
10434 		}
10435 	}
10436 
10437 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10438 		if (!(get_alloc_profile(info, space_info->flags) &
10439 		      (BTRFS_BLOCK_GROUP_RAID10 |
10440 		       BTRFS_BLOCK_GROUP_RAID1 |
10441 		       BTRFS_BLOCK_GROUP_RAID5 |
10442 		       BTRFS_BLOCK_GROUP_RAID6 |
10443 		       BTRFS_BLOCK_GROUP_DUP)))
10444 			continue;
10445 		/*
10446 		 * avoid allocating from un-mirrored block group if there are
10447 		 * mirrored block groups.
10448 		 */
10449 		list_for_each_entry(cache,
10450 				&space_info->block_groups[BTRFS_RAID_RAID0],
10451 				list)
10452 			inc_block_group_ro(cache, 1);
10453 		list_for_each_entry(cache,
10454 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10455 				list)
10456 			inc_block_group_ro(cache, 1);
10457 	}
10458 
10459 	btrfs_add_raid_kobjects(info);
10460 	init_global_block_rsv(info);
10461 	ret = check_chunk_block_group_mappings(info);
10462 error:
10463 	btrfs_free_path(path);
10464 	return ret;
10465 }
10466 
10467 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10468 {
10469 	struct btrfs_fs_info *fs_info = trans->fs_info;
10470 	struct btrfs_block_group_cache *block_group;
10471 	struct btrfs_root *extent_root = fs_info->extent_root;
10472 	struct btrfs_block_group_item item;
10473 	struct btrfs_key key;
10474 	int ret = 0;
10475 
10476 	if (!trans->can_flush_pending_bgs)
10477 		return;
10478 
10479 	while (!list_empty(&trans->new_bgs)) {
10480 		block_group = list_first_entry(&trans->new_bgs,
10481 					       struct btrfs_block_group_cache,
10482 					       bg_list);
10483 		if (ret)
10484 			goto next;
10485 
10486 		spin_lock(&block_group->lock);
10487 		memcpy(&item, &block_group->item, sizeof(item));
10488 		memcpy(&key, &block_group->key, sizeof(key));
10489 		spin_unlock(&block_group->lock);
10490 
10491 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10492 					sizeof(item));
10493 		if (ret)
10494 			btrfs_abort_transaction(trans, ret);
10495 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10496 		if (ret)
10497 			btrfs_abort_transaction(trans, ret);
10498 		add_block_group_free_space(trans, block_group);
10499 		/* already aborted the transaction if it failed. */
10500 next:
10501 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10502 		list_del_init(&block_group->bg_list);
10503 	}
10504 	btrfs_trans_release_chunk_metadata(trans);
10505 }
10506 
10507 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10508 			   u64 type, u64 chunk_offset, u64 size)
10509 {
10510 	struct btrfs_fs_info *fs_info = trans->fs_info;
10511 	struct btrfs_block_group_cache *cache;
10512 	int ret;
10513 
10514 	btrfs_set_log_full_commit(trans);
10515 
10516 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10517 	if (!cache)
10518 		return -ENOMEM;
10519 
10520 	btrfs_set_block_group_used(&cache->item, bytes_used);
10521 	btrfs_set_block_group_chunk_objectid(&cache->item,
10522 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10523 	btrfs_set_block_group_flags(&cache->item, type);
10524 
10525 	cache->flags = type;
10526 	cache->last_byte_to_unpin = (u64)-1;
10527 	cache->cached = BTRFS_CACHE_FINISHED;
10528 	cache->needs_free_space = 1;
10529 	ret = exclude_super_stripes(cache);
10530 	if (ret) {
10531 		/*
10532 		 * We may have excluded something, so call this just in
10533 		 * case.
10534 		 */
10535 		free_excluded_extents(cache);
10536 		btrfs_put_block_group(cache);
10537 		return ret;
10538 	}
10539 
10540 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10541 
10542 	free_excluded_extents(cache);
10543 
10544 #ifdef CONFIG_BTRFS_DEBUG
10545 	if (btrfs_should_fragment_free_space(cache)) {
10546 		u64 new_bytes_used = size - bytes_used;
10547 
10548 		bytes_used += new_bytes_used >> 1;
10549 		fragment_free_space(cache);
10550 	}
10551 #endif
10552 	/*
10553 	 * Ensure the corresponding space_info object is created and
10554 	 * assigned to our block group. We want our bg to be added to the rbtree
10555 	 * with its ->space_info set.
10556 	 */
10557 	cache->space_info = __find_space_info(fs_info, cache->flags);
10558 	ASSERT(cache->space_info);
10559 
10560 	ret = btrfs_add_block_group_cache(fs_info, cache);
10561 	if (ret) {
10562 		btrfs_remove_free_space_cache(cache);
10563 		btrfs_put_block_group(cache);
10564 		return ret;
10565 	}
10566 
10567 	/*
10568 	 * Now that our block group has its ->space_info set and is inserted in
10569 	 * the rbtree, update the space info's counters.
10570 	 */
10571 	trace_btrfs_add_block_group(fs_info, cache, 1);
10572 	update_space_info(fs_info, cache->flags, size, bytes_used,
10573 				cache->bytes_super, &cache->space_info);
10574 	update_global_block_rsv(fs_info);
10575 
10576 	link_block_group(cache);
10577 
10578 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10579 	trans->delayed_ref_updates++;
10580 	btrfs_update_delayed_refs_rsv(trans);
10581 
10582 	set_avail_alloc_bits(fs_info, type);
10583 	return 0;
10584 }
10585 
10586 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10587 {
10588 	u64 extra_flags = chunk_to_extended(flags) &
10589 				BTRFS_EXTENDED_PROFILE_MASK;
10590 
10591 	write_seqlock(&fs_info->profiles_lock);
10592 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10593 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10594 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10595 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10596 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10597 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10598 	write_sequnlock(&fs_info->profiles_lock);
10599 }
10600 
10601 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10602 			     u64 group_start, struct extent_map *em)
10603 {
10604 	struct btrfs_fs_info *fs_info = trans->fs_info;
10605 	struct btrfs_root *root = fs_info->extent_root;
10606 	struct btrfs_path *path;
10607 	struct btrfs_block_group_cache *block_group;
10608 	struct btrfs_free_cluster *cluster;
10609 	struct btrfs_root *tree_root = fs_info->tree_root;
10610 	struct btrfs_key key;
10611 	struct inode *inode;
10612 	struct kobject *kobj = NULL;
10613 	int ret;
10614 	int index;
10615 	int factor;
10616 	struct btrfs_caching_control *caching_ctl = NULL;
10617 	bool remove_em;
10618 	bool remove_rsv = false;
10619 
10620 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10621 	BUG_ON(!block_group);
10622 	BUG_ON(!block_group->ro);
10623 
10624 	trace_btrfs_remove_block_group(block_group);
10625 	/*
10626 	 * Free the reserved super bytes from this block group before
10627 	 * remove it.
10628 	 */
10629 	free_excluded_extents(block_group);
10630 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10631 				  block_group->key.offset);
10632 
10633 	memcpy(&key, &block_group->key, sizeof(key));
10634 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10635 	factor = btrfs_bg_type_to_factor(block_group->flags);
10636 
10637 	/* make sure this block group isn't part of an allocation cluster */
10638 	cluster = &fs_info->data_alloc_cluster;
10639 	spin_lock(&cluster->refill_lock);
10640 	btrfs_return_cluster_to_free_space(block_group, cluster);
10641 	spin_unlock(&cluster->refill_lock);
10642 
10643 	/*
10644 	 * make sure this block group isn't part of a metadata
10645 	 * allocation cluster
10646 	 */
10647 	cluster = &fs_info->meta_alloc_cluster;
10648 	spin_lock(&cluster->refill_lock);
10649 	btrfs_return_cluster_to_free_space(block_group, cluster);
10650 	spin_unlock(&cluster->refill_lock);
10651 
10652 	path = btrfs_alloc_path();
10653 	if (!path) {
10654 		ret = -ENOMEM;
10655 		goto out;
10656 	}
10657 
10658 	/*
10659 	 * get the inode first so any iput calls done for the io_list
10660 	 * aren't the final iput (no unlinks allowed now)
10661 	 */
10662 	inode = lookup_free_space_inode(block_group, path);
10663 
10664 	mutex_lock(&trans->transaction->cache_write_mutex);
10665 	/*
10666 	 * Make sure our free space cache IO is done before removing the
10667 	 * free space inode
10668 	 */
10669 	spin_lock(&trans->transaction->dirty_bgs_lock);
10670 	if (!list_empty(&block_group->io_list)) {
10671 		list_del_init(&block_group->io_list);
10672 
10673 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10674 
10675 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10676 		btrfs_wait_cache_io(trans, block_group, path);
10677 		btrfs_put_block_group(block_group);
10678 		spin_lock(&trans->transaction->dirty_bgs_lock);
10679 	}
10680 
10681 	if (!list_empty(&block_group->dirty_list)) {
10682 		list_del_init(&block_group->dirty_list);
10683 		remove_rsv = true;
10684 		btrfs_put_block_group(block_group);
10685 	}
10686 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10687 	mutex_unlock(&trans->transaction->cache_write_mutex);
10688 
10689 	if (!IS_ERR(inode)) {
10690 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10691 		if (ret) {
10692 			btrfs_add_delayed_iput(inode);
10693 			goto out;
10694 		}
10695 		clear_nlink(inode);
10696 		/* One for the block groups ref */
10697 		spin_lock(&block_group->lock);
10698 		if (block_group->iref) {
10699 			block_group->iref = 0;
10700 			block_group->inode = NULL;
10701 			spin_unlock(&block_group->lock);
10702 			iput(inode);
10703 		} else {
10704 			spin_unlock(&block_group->lock);
10705 		}
10706 		/* One for our lookup ref */
10707 		btrfs_add_delayed_iput(inode);
10708 	}
10709 
10710 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10711 	key.offset = block_group->key.objectid;
10712 	key.type = 0;
10713 
10714 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10715 	if (ret < 0)
10716 		goto out;
10717 	if (ret > 0)
10718 		btrfs_release_path(path);
10719 	if (ret == 0) {
10720 		ret = btrfs_del_item(trans, tree_root, path);
10721 		if (ret)
10722 			goto out;
10723 		btrfs_release_path(path);
10724 	}
10725 
10726 	spin_lock(&fs_info->block_group_cache_lock);
10727 	rb_erase(&block_group->cache_node,
10728 		 &fs_info->block_group_cache_tree);
10729 	RB_CLEAR_NODE(&block_group->cache_node);
10730 
10731 	if (fs_info->first_logical_byte == block_group->key.objectid)
10732 		fs_info->first_logical_byte = (u64)-1;
10733 	spin_unlock(&fs_info->block_group_cache_lock);
10734 
10735 	down_write(&block_group->space_info->groups_sem);
10736 	/*
10737 	 * we must use list_del_init so people can check to see if they
10738 	 * are still on the list after taking the semaphore
10739 	 */
10740 	list_del_init(&block_group->list);
10741 	if (list_empty(&block_group->space_info->block_groups[index])) {
10742 		kobj = block_group->space_info->block_group_kobjs[index];
10743 		block_group->space_info->block_group_kobjs[index] = NULL;
10744 		clear_avail_alloc_bits(fs_info, block_group->flags);
10745 	}
10746 	up_write(&block_group->space_info->groups_sem);
10747 	if (kobj) {
10748 		kobject_del(kobj);
10749 		kobject_put(kobj);
10750 	}
10751 
10752 	if (block_group->has_caching_ctl)
10753 		caching_ctl = get_caching_control(block_group);
10754 	if (block_group->cached == BTRFS_CACHE_STARTED)
10755 		wait_block_group_cache_done(block_group);
10756 	if (block_group->has_caching_ctl) {
10757 		down_write(&fs_info->commit_root_sem);
10758 		if (!caching_ctl) {
10759 			struct btrfs_caching_control *ctl;
10760 
10761 			list_for_each_entry(ctl,
10762 				    &fs_info->caching_block_groups, list)
10763 				if (ctl->block_group == block_group) {
10764 					caching_ctl = ctl;
10765 					refcount_inc(&caching_ctl->count);
10766 					break;
10767 				}
10768 		}
10769 		if (caching_ctl)
10770 			list_del_init(&caching_ctl->list);
10771 		up_write(&fs_info->commit_root_sem);
10772 		if (caching_ctl) {
10773 			/* Once for the caching bgs list and once for us. */
10774 			put_caching_control(caching_ctl);
10775 			put_caching_control(caching_ctl);
10776 		}
10777 	}
10778 
10779 	spin_lock(&trans->transaction->dirty_bgs_lock);
10780 	WARN_ON(!list_empty(&block_group->dirty_list));
10781 	WARN_ON(!list_empty(&block_group->io_list));
10782 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10783 
10784 	btrfs_remove_free_space_cache(block_group);
10785 
10786 	spin_lock(&block_group->space_info->lock);
10787 	list_del_init(&block_group->ro_list);
10788 
10789 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10790 		WARN_ON(block_group->space_info->total_bytes
10791 			< block_group->key.offset);
10792 		WARN_ON(block_group->space_info->bytes_readonly
10793 			< block_group->key.offset);
10794 		WARN_ON(block_group->space_info->disk_total
10795 			< block_group->key.offset * factor);
10796 	}
10797 	block_group->space_info->total_bytes -= block_group->key.offset;
10798 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10799 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10800 
10801 	spin_unlock(&block_group->space_info->lock);
10802 
10803 	memcpy(&key, &block_group->key, sizeof(key));
10804 
10805 	mutex_lock(&fs_info->chunk_mutex);
10806 	spin_lock(&block_group->lock);
10807 	block_group->removed = 1;
10808 	/*
10809 	 * At this point trimming can't start on this block group, because we
10810 	 * removed the block group from the tree fs_info->block_group_cache_tree
10811 	 * so no one can't find it anymore and even if someone already got this
10812 	 * block group before we removed it from the rbtree, they have already
10813 	 * incremented block_group->trimming - if they didn't, they won't find
10814 	 * any free space entries because we already removed them all when we
10815 	 * called btrfs_remove_free_space_cache().
10816 	 *
10817 	 * And we must not remove the extent map from the fs_info->mapping_tree
10818 	 * to prevent the same logical address range and physical device space
10819 	 * ranges from being reused for a new block group. This is because our
10820 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10821 	 * completely transactionless, so while it is trimming a range the
10822 	 * currently running transaction might finish and a new one start,
10823 	 * allowing for new block groups to be created that can reuse the same
10824 	 * physical device locations unless we take this special care.
10825 	 *
10826 	 * There may also be an implicit trim operation if the file system
10827 	 * is mounted with -odiscard. The same protections must remain
10828 	 * in place until the extents have been discarded completely when
10829 	 * the transaction commit has completed.
10830 	 */
10831 	remove_em = (atomic_read(&block_group->trimming) == 0);
10832 	spin_unlock(&block_group->lock);
10833 
10834 	if (remove_em) {
10835 		struct extent_map_tree *em_tree;
10836 
10837 		em_tree = &fs_info->mapping_tree.map_tree;
10838 		write_lock(&em_tree->lock);
10839 		remove_extent_mapping(em_tree, em);
10840 		write_unlock(&em_tree->lock);
10841 		/* once for the tree */
10842 		free_extent_map(em);
10843 	}
10844 
10845 	mutex_unlock(&fs_info->chunk_mutex);
10846 
10847 	ret = remove_block_group_free_space(trans, block_group);
10848 	if (ret)
10849 		goto out;
10850 
10851 	btrfs_put_block_group(block_group);
10852 	btrfs_put_block_group(block_group);
10853 
10854 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10855 	if (ret > 0)
10856 		ret = -EIO;
10857 	if (ret < 0)
10858 		goto out;
10859 
10860 	ret = btrfs_del_item(trans, root, path);
10861 out:
10862 	if (remove_rsv)
10863 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10864 	btrfs_free_path(path);
10865 	return ret;
10866 }
10867 
10868 struct btrfs_trans_handle *
10869 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10870 				     const u64 chunk_offset)
10871 {
10872 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10873 	struct extent_map *em;
10874 	struct map_lookup *map;
10875 	unsigned int num_items;
10876 
10877 	read_lock(&em_tree->lock);
10878 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10879 	read_unlock(&em_tree->lock);
10880 	ASSERT(em && em->start == chunk_offset);
10881 
10882 	/*
10883 	 * We need to reserve 3 + N units from the metadata space info in order
10884 	 * to remove a block group (done at btrfs_remove_chunk() and at
10885 	 * btrfs_remove_block_group()), which are used for:
10886 	 *
10887 	 * 1 unit for adding the free space inode's orphan (located in the tree
10888 	 * of tree roots).
10889 	 * 1 unit for deleting the block group item (located in the extent
10890 	 * tree).
10891 	 * 1 unit for deleting the free space item (located in tree of tree
10892 	 * roots).
10893 	 * N units for deleting N device extent items corresponding to each
10894 	 * stripe (located in the device tree).
10895 	 *
10896 	 * In order to remove a block group we also need to reserve units in the
10897 	 * system space info in order to update the chunk tree (update one or
10898 	 * more device items and remove one chunk item), but this is done at
10899 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10900 	 */
10901 	map = em->map_lookup;
10902 	num_items = 3 + map->num_stripes;
10903 	free_extent_map(em);
10904 
10905 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10906 							   num_items, 1);
10907 }
10908 
10909 /*
10910  * Process the unused_bgs list and remove any that don't have any allocated
10911  * space inside of them.
10912  */
10913 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10914 {
10915 	struct btrfs_block_group_cache *block_group;
10916 	struct btrfs_space_info *space_info;
10917 	struct btrfs_trans_handle *trans;
10918 	int ret = 0;
10919 
10920 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10921 		return;
10922 
10923 	spin_lock(&fs_info->unused_bgs_lock);
10924 	while (!list_empty(&fs_info->unused_bgs)) {
10925 		u64 start, end;
10926 		int trimming;
10927 
10928 		block_group = list_first_entry(&fs_info->unused_bgs,
10929 					       struct btrfs_block_group_cache,
10930 					       bg_list);
10931 		list_del_init(&block_group->bg_list);
10932 
10933 		space_info = block_group->space_info;
10934 
10935 		if (ret || btrfs_mixed_space_info(space_info)) {
10936 			btrfs_put_block_group(block_group);
10937 			continue;
10938 		}
10939 		spin_unlock(&fs_info->unused_bgs_lock);
10940 
10941 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10942 
10943 		/* Don't want to race with allocators so take the groups_sem */
10944 		down_write(&space_info->groups_sem);
10945 		spin_lock(&block_group->lock);
10946 		if (block_group->reserved || block_group->pinned ||
10947 		    btrfs_block_group_used(&block_group->item) ||
10948 		    block_group->ro ||
10949 		    list_is_singular(&block_group->list)) {
10950 			/*
10951 			 * We want to bail if we made new allocations or have
10952 			 * outstanding allocations in this block group.  We do
10953 			 * the ro check in case balance is currently acting on
10954 			 * this block group.
10955 			 */
10956 			trace_btrfs_skip_unused_block_group(block_group);
10957 			spin_unlock(&block_group->lock);
10958 			up_write(&space_info->groups_sem);
10959 			goto next;
10960 		}
10961 		spin_unlock(&block_group->lock);
10962 
10963 		/* We don't want to force the issue, only flip if it's ok. */
10964 		ret = inc_block_group_ro(block_group, 0);
10965 		up_write(&space_info->groups_sem);
10966 		if (ret < 0) {
10967 			ret = 0;
10968 			goto next;
10969 		}
10970 
10971 		/*
10972 		 * Want to do this before we do anything else so we can recover
10973 		 * properly if we fail to join the transaction.
10974 		 */
10975 		trans = btrfs_start_trans_remove_block_group(fs_info,
10976 						     block_group->key.objectid);
10977 		if (IS_ERR(trans)) {
10978 			btrfs_dec_block_group_ro(block_group);
10979 			ret = PTR_ERR(trans);
10980 			goto next;
10981 		}
10982 
10983 		/*
10984 		 * We could have pending pinned extents for this block group,
10985 		 * just delete them, we don't care about them anymore.
10986 		 */
10987 		start = block_group->key.objectid;
10988 		end = start + block_group->key.offset - 1;
10989 		/*
10990 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10991 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10992 		 * another task might be running finish_extent_commit() for the
10993 		 * previous transaction N - 1, and have seen a range belonging
10994 		 * to the block group in freed_extents[] before we were able to
10995 		 * clear the whole block group range from freed_extents[]. This
10996 		 * means that task can lookup for the block group after we
10997 		 * unpinned it from freed_extents[] and removed it, leading to
10998 		 * a BUG_ON() at btrfs_unpin_extent_range().
10999 		 */
11000 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
11001 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11002 				  EXTENT_DIRTY);
11003 		if (ret) {
11004 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11005 			btrfs_dec_block_group_ro(block_group);
11006 			goto end_trans;
11007 		}
11008 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11009 				  EXTENT_DIRTY);
11010 		if (ret) {
11011 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11012 			btrfs_dec_block_group_ro(block_group);
11013 			goto end_trans;
11014 		}
11015 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11016 
11017 		/* Reset pinned so btrfs_put_block_group doesn't complain */
11018 		spin_lock(&space_info->lock);
11019 		spin_lock(&block_group->lock);
11020 
11021 		update_bytes_pinned(space_info, -block_group->pinned);
11022 		space_info->bytes_readonly += block_group->pinned;
11023 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
11024 				   -block_group->pinned,
11025 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
11026 		block_group->pinned = 0;
11027 
11028 		spin_unlock(&block_group->lock);
11029 		spin_unlock(&space_info->lock);
11030 
11031 		/* DISCARD can flip during remount */
11032 		trimming = btrfs_test_opt(fs_info, DISCARD);
11033 
11034 		/* Implicit trim during transaction commit. */
11035 		if (trimming)
11036 			btrfs_get_block_group_trimming(block_group);
11037 
11038 		/*
11039 		 * Btrfs_remove_chunk will abort the transaction if things go
11040 		 * horribly wrong.
11041 		 */
11042 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11043 
11044 		if (ret) {
11045 			if (trimming)
11046 				btrfs_put_block_group_trimming(block_group);
11047 			goto end_trans;
11048 		}
11049 
11050 		/*
11051 		 * If we're not mounted with -odiscard, we can just forget
11052 		 * about this block group. Otherwise we'll need to wait
11053 		 * until transaction commit to do the actual discard.
11054 		 */
11055 		if (trimming) {
11056 			spin_lock(&fs_info->unused_bgs_lock);
11057 			/*
11058 			 * A concurrent scrub might have added us to the list
11059 			 * fs_info->unused_bgs, so use a list_move operation
11060 			 * to add the block group to the deleted_bgs list.
11061 			 */
11062 			list_move(&block_group->bg_list,
11063 				  &trans->transaction->deleted_bgs);
11064 			spin_unlock(&fs_info->unused_bgs_lock);
11065 			btrfs_get_block_group(block_group);
11066 		}
11067 end_trans:
11068 		btrfs_end_transaction(trans);
11069 next:
11070 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11071 		btrfs_put_block_group(block_group);
11072 		spin_lock(&fs_info->unused_bgs_lock);
11073 	}
11074 	spin_unlock(&fs_info->unused_bgs_lock);
11075 }
11076 
11077 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11078 {
11079 	struct btrfs_super_block *disk_super;
11080 	u64 features;
11081 	u64 flags;
11082 	int mixed = 0;
11083 	int ret;
11084 
11085 	disk_super = fs_info->super_copy;
11086 	if (!btrfs_super_root(disk_super))
11087 		return -EINVAL;
11088 
11089 	features = btrfs_super_incompat_flags(disk_super);
11090 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11091 		mixed = 1;
11092 
11093 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
11094 	ret = create_space_info(fs_info, flags);
11095 	if (ret)
11096 		goto out;
11097 
11098 	if (mixed) {
11099 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11100 		ret = create_space_info(fs_info, flags);
11101 	} else {
11102 		flags = BTRFS_BLOCK_GROUP_METADATA;
11103 		ret = create_space_info(fs_info, flags);
11104 		if (ret)
11105 			goto out;
11106 
11107 		flags = BTRFS_BLOCK_GROUP_DATA;
11108 		ret = create_space_info(fs_info, flags);
11109 	}
11110 out:
11111 	return ret;
11112 }
11113 
11114 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11115 				   u64 start, u64 end)
11116 {
11117 	return unpin_extent_range(fs_info, start, end, false);
11118 }
11119 
11120 /*
11121  * It used to be that old block groups would be left around forever.
11122  * Iterating over them would be enough to trim unused space.  Since we
11123  * now automatically remove them, we also need to iterate over unallocated
11124  * space.
11125  *
11126  * We don't want a transaction for this since the discard may take a
11127  * substantial amount of time.  We don't require that a transaction be
11128  * running, but we do need to take a running transaction into account
11129  * to ensure that we're not discarding chunks that were released or
11130  * allocated in the current transaction.
11131  *
11132  * Holding the chunks lock will prevent other threads from allocating
11133  * or releasing chunks, but it won't prevent a running transaction
11134  * from committing and releasing the memory that the pending chunks
11135  * list head uses.  For that, we need to take a reference to the
11136  * transaction and hold the commit root sem.  We only need to hold
11137  * it while performing the free space search since we have already
11138  * held back allocations.
11139  */
11140 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
11141 {
11142 	u64 start = SZ_1M, len = 0, end = 0;
11143 	int ret;
11144 
11145 	*trimmed = 0;
11146 
11147 	/* Discard not supported = nothing to do. */
11148 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11149 		return 0;
11150 
11151 	/* Not writable = nothing to do. */
11152 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11153 		return 0;
11154 
11155 	/* No free space = nothing to do. */
11156 	if (device->total_bytes <= device->bytes_used)
11157 		return 0;
11158 
11159 	ret = 0;
11160 
11161 	while (1) {
11162 		struct btrfs_fs_info *fs_info = device->fs_info;
11163 		u64 bytes;
11164 
11165 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11166 		if (ret)
11167 			break;
11168 
11169 		find_first_clear_extent_bit(&device->alloc_state, start,
11170 					    &start, &end,
11171 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
11172 		/*
11173 		 * If find_first_clear_extent_bit find a range that spans the
11174 		 * end of the device it will set end to -1, in this case it's up
11175 		 * to the caller to trim the value to the size of the device.
11176 		 */
11177 		end = min(end, device->total_bytes - 1);
11178 		len = end - start + 1;
11179 
11180 		/* We didn't find any extents */
11181 		if (!len) {
11182 			mutex_unlock(&fs_info->chunk_mutex);
11183 			ret = 0;
11184 			break;
11185 		}
11186 
11187 		ret = btrfs_issue_discard(device->bdev, start, len,
11188 					  &bytes);
11189 		if (!ret)
11190 			set_extent_bits(&device->alloc_state, start,
11191 					start + bytes - 1,
11192 					CHUNK_TRIMMED);
11193 		mutex_unlock(&fs_info->chunk_mutex);
11194 
11195 		if (ret)
11196 			break;
11197 
11198 		start += len;
11199 		*trimmed += bytes;
11200 
11201 		if (fatal_signal_pending(current)) {
11202 			ret = -ERESTARTSYS;
11203 			break;
11204 		}
11205 
11206 		cond_resched();
11207 	}
11208 
11209 	return ret;
11210 }
11211 
11212 /*
11213  * Trim the whole filesystem by:
11214  * 1) trimming the free space in each block group
11215  * 2) trimming the unallocated space on each device
11216  *
11217  * This will also continue trimming even if a block group or device encounters
11218  * an error.  The return value will be the last error, or 0 if nothing bad
11219  * happens.
11220  */
11221 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11222 {
11223 	struct btrfs_block_group_cache *cache = NULL;
11224 	struct btrfs_device *device;
11225 	struct list_head *devices;
11226 	u64 group_trimmed;
11227 	u64 start;
11228 	u64 end;
11229 	u64 trimmed = 0;
11230 	u64 bg_failed = 0;
11231 	u64 dev_failed = 0;
11232 	int bg_ret = 0;
11233 	int dev_ret = 0;
11234 	int ret = 0;
11235 
11236 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
11237 	for (; cache; cache = next_block_group(cache)) {
11238 		if (cache->key.objectid >= (range->start + range->len)) {
11239 			btrfs_put_block_group(cache);
11240 			break;
11241 		}
11242 
11243 		start = max(range->start, cache->key.objectid);
11244 		end = min(range->start + range->len,
11245 				cache->key.objectid + cache->key.offset);
11246 
11247 		if (end - start >= range->minlen) {
11248 			if (!block_group_cache_done(cache)) {
11249 				ret = cache_block_group(cache, 0);
11250 				if (ret) {
11251 					bg_failed++;
11252 					bg_ret = ret;
11253 					continue;
11254 				}
11255 				ret = wait_block_group_cache_done(cache);
11256 				if (ret) {
11257 					bg_failed++;
11258 					bg_ret = ret;
11259 					continue;
11260 				}
11261 			}
11262 			ret = btrfs_trim_block_group(cache,
11263 						     &group_trimmed,
11264 						     start,
11265 						     end,
11266 						     range->minlen);
11267 
11268 			trimmed += group_trimmed;
11269 			if (ret) {
11270 				bg_failed++;
11271 				bg_ret = ret;
11272 				continue;
11273 			}
11274 		}
11275 	}
11276 
11277 	if (bg_failed)
11278 		btrfs_warn(fs_info,
11279 			"failed to trim %llu block group(s), last error %d",
11280 			bg_failed, bg_ret);
11281 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11282 	devices = &fs_info->fs_devices->devices;
11283 	list_for_each_entry(device, devices, dev_list) {
11284 		ret = btrfs_trim_free_extents(device, &group_trimmed);
11285 		if (ret) {
11286 			dev_failed++;
11287 			dev_ret = ret;
11288 			break;
11289 		}
11290 
11291 		trimmed += group_trimmed;
11292 	}
11293 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11294 
11295 	if (dev_failed)
11296 		btrfs_warn(fs_info,
11297 			"failed to trim %llu device(s), last error %d",
11298 			dev_failed, dev_ret);
11299 	range->len = trimmed;
11300 	if (bg_ret)
11301 		return bg_ret;
11302 	return dev_ret;
11303 }
11304 
11305 /*
11306  * btrfs_{start,end}_write_no_snapshotting() are similar to
11307  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11308  * data into the page cache through nocow before the subvolume is snapshoted,
11309  * but flush the data into disk after the snapshot creation, or to prevent
11310  * operations while snapshotting is ongoing and that cause the snapshot to be
11311  * inconsistent (writes followed by expanding truncates for example).
11312  */
11313 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11314 {
11315 	percpu_counter_dec(&root->subv_writers->counter);
11316 	cond_wake_up(&root->subv_writers->wait);
11317 }
11318 
11319 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11320 {
11321 	if (atomic_read(&root->will_be_snapshotted))
11322 		return 0;
11323 
11324 	percpu_counter_inc(&root->subv_writers->counter);
11325 	/*
11326 	 * Make sure counter is updated before we check for snapshot creation.
11327 	 */
11328 	smp_mb();
11329 	if (atomic_read(&root->will_be_snapshotted)) {
11330 		btrfs_end_write_no_snapshotting(root);
11331 		return 0;
11332 	}
11333 	return 1;
11334 }
11335 
11336 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11337 {
11338 	while (true) {
11339 		int ret;
11340 
11341 		ret = btrfs_start_write_no_snapshotting(root);
11342 		if (ret)
11343 			break;
11344 		wait_var_event(&root->will_be_snapshotted,
11345 			       !atomic_read(&root->will_be_snapshotted));
11346 	}
11347 }
11348 
11349 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11350 {
11351 	struct btrfs_fs_info *fs_info = bg->fs_info;
11352 
11353 	spin_lock(&fs_info->unused_bgs_lock);
11354 	if (list_empty(&bg->bg_list)) {
11355 		btrfs_get_block_group(bg);
11356 		trace_btrfs_add_unused_block_group(bg);
11357 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11358 	}
11359 	spin_unlock(&fs_info->unused_bgs_lock);
11360 }
11361