1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 #include "raid-stripe-tree.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_head *href, 52 struct btrfs_delayed_ref_node *node, u64 parent, 53 u64 root_objectid, u64 owner_objectid, 54 u64 owner_offset, 55 struct btrfs_delayed_extent_op *extra_op); 56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 57 struct extent_buffer *leaf, 58 struct btrfs_extent_item *ei); 59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 60 u64 parent, u64 root_objectid, 61 u64 flags, u64 owner, u64 offset, 62 struct btrfs_key *ins, int ref_mod, u64 oref_root); 63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 64 struct btrfs_delayed_ref_node *node, 65 struct btrfs_delayed_extent_op *extent_op); 66 static int find_next_key(struct btrfs_path *path, int level, 67 struct btrfs_key *key); 68 69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 70 { 71 return (cache->flags & bits) == bits; 72 } 73 74 /* simple helper to search for an existing data extent at a given offset */ 75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 76 { 77 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 78 int ret; 79 struct btrfs_key key; 80 struct btrfs_path *path; 81 82 path = btrfs_alloc_path(); 83 if (!path) 84 return -ENOMEM; 85 86 key.objectid = start; 87 key.offset = len; 88 key.type = BTRFS_EXTENT_ITEM_KEY; 89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 90 btrfs_free_path(path); 91 return ret; 92 } 93 94 /* 95 * helper function to lookup reference count and flags of a tree block. 96 * 97 * the head node for delayed ref is used to store the sum of all the 98 * reference count modifications queued up in the rbtree. the head 99 * node may also store the extent flags to set. This way you can check 100 * to see what the reference count and extent flags would be if all of 101 * the delayed refs are not processed. 102 */ 103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 104 struct btrfs_fs_info *fs_info, u64 bytenr, 105 u64 offset, int metadata, u64 *refs, u64 *flags, 106 u64 *owning_root) 107 { 108 struct btrfs_root *extent_root; 109 struct btrfs_delayed_ref_head *head; 110 struct btrfs_delayed_ref_root *delayed_refs; 111 struct btrfs_path *path; 112 struct btrfs_extent_item *ei; 113 struct extent_buffer *leaf; 114 struct btrfs_key key; 115 u32 item_size; 116 u64 num_refs; 117 u64 extent_flags; 118 u64 owner = 0; 119 int ret; 120 121 /* 122 * If we don't have skinny metadata, don't bother doing anything 123 * different 124 */ 125 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 126 offset = fs_info->nodesize; 127 metadata = 0; 128 } 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 if (!trans) { 135 path->skip_locking = 1; 136 path->search_commit_root = 1; 137 } 138 139 search_again: 140 key.objectid = bytenr; 141 key.offset = offset; 142 if (metadata) 143 key.type = BTRFS_METADATA_ITEM_KEY; 144 else 145 key.type = BTRFS_EXTENT_ITEM_KEY; 146 147 extent_root = btrfs_extent_root(fs_info, bytenr); 148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 149 if (ret < 0) 150 goto out_free; 151 152 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 153 if (path->slots[0]) { 154 path->slots[0]--; 155 btrfs_item_key_to_cpu(path->nodes[0], &key, 156 path->slots[0]); 157 if (key.objectid == bytenr && 158 key.type == BTRFS_EXTENT_ITEM_KEY && 159 key.offset == fs_info->nodesize) 160 ret = 0; 161 } 162 } 163 164 if (ret == 0) { 165 leaf = path->nodes[0]; 166 item_size = btrfs_item_size(leaf, path->slots[0]); 167 if (item_size >= sizeof(*ei)) { 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_extent_item); 170 num_refs = btrfs_extent_refs(leaf, ei); 171 extent_flags = btrfs_extent_flags(leaf, ei); 172 owner = btrfs_get_extent_owner_root(fs_info, leaf, 173 path->slots[0]); 174 } else { 175 ret = -EUCLEAN; 176 btrfs_err(fs_info, 177 "unexpected extent item size, has %u expect >= %zu", 178 item_size, sizeof(*ei)); 179 if (trans) 180 btrfs_abort_transaction(trans, ret); 181 else 182 btrfs_handle_fs_error(fs_info, ret, NULL); 183 184 goto out_free; 185 } 186 187 BUG_ON(num_refs == 0); 188 } else { 189 num_refs = 0; 190 extent_flags = 0; 191 ret = 0; 192 } 193 194 if (!trans) 195 goto out; 196 197 delayed_refs = &trans->transaction->delayed_refs; 198 spin_lock(&delayed_refs->lock); 199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 200 if (head) { 201 if (!mutex_trylock(&head->mutex)) { 202 refcount_inc(&head->refs); 203 spin_unlock(&delayed_refs->lock); 204 205 btrfs_release_path(path); 206 207 /* 208 * Mutex was contended, block until it's released and try 209 * again 210 */ 211 mutex_lock(&head->mutex); 212 mutex_unlock(&head->mutex); 213 btrfs_put_delayed_ref_head(head); 214 goto search_again; 215 } 216 spin_lock(&head->lock); 217 if (head->extent_op && head->extent_op->update_flags) 218 extent_flags |= head->extent_op->flags_to_set; 219 else 220 BUG_ON(num_refs == 0); 221 222 num_refs += head->ref_mod; 223 spin_unlock(&head->lock); 224 mutex_unlock(&head->mutex); 225 } 226 spin_unlock(&delayed_refs->lock); 227 out: 228 WARN_ON(num_refs == 0); 229 if (refs) 230 *refs = num_refs; 231 if (flags) 232 *flags = extent_flags; 233 if (owning_root) 234 *owning_root = owner; 235 out_free: 236 btrfs_free_path(path); 237 return ret; 238 } 239 240 /* 241 * Back reference rules. Back refs have three main goals: 242 * 243 * 1) differentiate between all holders of references to an extent so that 244 * when a reference is dropped we can make sure it was a valid reference 245 * before freeing the extent. 246 * 247 * 2) Provide enough information to quickly find the holders of an extent 248 * if we notice a given block is corrupted or bad. 249 * 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 251 * maintenance. This is actually the same as #2, but with a slightly 252 * different use case. 253 * 254 * There are two kinds of back refs. The implicit back refs is optimized 255 * for pointers in non-shared tree blocks. For a given pointer in a block, 256 * back refs of this kind provide information about the block's owner tree 257 * and the pointer's key. These information allow us to find the block by 258 * b-tree searching. The full back refs is for pointers in tree blocks not 259 * referenced by their owner trees. The location of tree block is recorded 260 * in the back refs. Actually the full back refs is generic, and can be 261 * used in all cases the implicit back refs is used. The major shortcoming 262 * of the full back refs is its overhead. Every time a tree block gets 263 * COWed, we have to update back refs entry for all pointers in it. 264 * 265 * For a newly allocated tree block, we use implicit back refs for 266 * pointers in it. This means most tree related operations only involve 267 * implicit back refs. For a tree block created in old transaction, the 268 * only way to drop a reference to it is COW it. So we can detect the 269 * event that tree block loses its owner tree's reference and do the 270 * back refs conversion. 271 * 272 * When a tree block is COWed through a tree, there are four cases: 273 * 274 * The reference count of the block is one and the tree is the block's 275 * owner tree. Nothing to do in this case. 276 * 277 * The reference count of the block is one and the tree is not the 278 * block's owner tree. In this case, full back refs is used for pointers 279 * in the block. Remove these full back refs, add implicit back refs for 280 * every pointers in the new block. 281 * 282 * The reference count of the block is greater than one and the tree is 283 * the block's owner tree. In this case, implicit back refs is used for 284 * pointers in the block. Add full back refs for every pointers in the 285 * block, increase lower level extents' reference counts. The original 286 * implicit back refs are entailed to the new block. 287 * 288 * The reference count of the block is greater than one and the tree is 289 * not the block's owner tree. Add implicit back refs for every pointer in 290 * the new block, increase lower level extents' reference count. 291 * 292 * Back Reference Key composing: 293 * 294 * The key objectid corresponds to the first byte in the extent, 295 * The key type is used to differentiate between types of back refs. 296 * There are different meanings of the key offset for different types 297 * of back refs. 298 * 299 * File extents can be referenced by: 300 * 301 * - multiple snapshots, subvolumes, or different generations in one subvol 302 * - different files inside a single subvolume 303 * - different offsets inside a file (bookend extents in file.c) 304 * 305 * The extent ref structure for the implicit back refs has fields for: 306 * 307 * - Objectid of the subvolume root 308 * - objectid of the file holding the reference 309 * - original offset in the file 310 * - how many bookend extents 311 * 312 * The key offset for the implicit back refs is hash of the first 313 * three fields. 314 * 315 * The extent ref structure for the full back refs has field for: 316 * 317 * - number of pointers in the tree leaf 318 * 319 * The key offset for the implicit back refs is the first byte of 320 * the tree leaf 321 * 322 * When a file extent is allocated, The implicit back refs is used. 323 * the fields are filled in: 324 * 325 * (root_key.objectid, inode objectid, offset in file, 1) 326 * 327 * When a file extent is removed file truncation, we find the 328 * corresponding implicit back refs and check the following fields: 329 * 330 * (btrfs_header_owner(leaf), inode objectid, offset in file) 331 * 332 * Btree extents can be referenced by: 333 * 334 * - Different subvolumes 335 * 336 * Both the implicit back refs and the full back refs for tree blocks 337 * only consist of key. The key offset for the implicit back refs is 338 * objectid of block's owner tree. The key offset for the full back refs 339 * is the first byte of parent block. 340 * 341 * When implicit back refs is used, information about the lowest key and 342 * level of the tree block are required. These information are stored in 343 * tree block info structure. 344 */ 345 346 /* 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 350 */ 351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 352 struct btrfs_extent_inline_ref *iref, 353 enum btrfs_inline_ref_type is_data) 354 { 355 struct btrfs_fs_info *fs_info = eb->fs_info; 356 int type = btrfs_extent_inline_ref_type(eb, iref); 357 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 358 359 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 360 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 361 return type; 362 } 363 364 if (type == BTRFS_TREE_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_BLOCK_REF_KEY || 366 type == BTRFS_SHARED_DATA_REF_KEY || 367 type == BTRFS_EXTENT_DATA_REF_KEY) { 368 if (is_data == BTRFS_REF_TYPE_BLOCK) { 369 if (type == BTRFS_TREE_BLOCK_REF_KEY) 370 return type; 371 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 372 ASSERT(fs_info); 373 /* 374 * Every shared one has parent tree block, 375 * which must be aligned to sector size. 376 */ 377 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 WARN_ON(1); 400 btrfs_print_leaf(eb); 401 btrfs_err(fs_info, 402 "eb %llu iref 0x%lx invalid extent inline ref type %d", 403 eb->start, (unsigned long)iref, type); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(trans, leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else { 622 btrfs_err(trans->fs_info, 623 "unrecognized backref key (%llu %u %llu)", 624 key.objectid, key.type, key.offset); 625 btrfs_abort_transaction(trans, -EUCLEAN); 626 return -EUCLEAN; 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(trans, leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 if (iref) { 658 /* 659 * If type is invalid, we should have bailed out earlier than 660 * this call. 661 */ 662 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 663 ASSERT(type != BTRFS_REF_TYPE_INVALID); 664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 665 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 666 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 667 } else { 668 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 669 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 670 } 671 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 672 ref1 = btrfs_item_ptr(leaf, path->slots[0], 673 struct btrfs_extent_data_ref); 674 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 675 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 676 ref2 = btrfs_item_ptr(leaf, path->slots[0], 677 struct btrfs_shared_data_ref); 678 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 679 } else { 680 WARN_ON(1); 681 } 682 return num_refs; 683 } 684 685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 u64 bytenr, u64 parent, 688 u64 root_objectid) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = root_objectid; 701 } 702 703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 704 if (ret > 0) 705 ret = -ENOENT; 706 return ret; 707 } 708 709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 710 struct btrfs_path *path, 711 u64 bytenr, u64 parent, 712 u64 root_objectid) 713 { 714 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 715 struct btrfs_key key; 716 int ret; 717 718 key.objectid = bytenr; 719 if (parent) { 720 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 721 key.offset = parent; 722 } else { 723 key.type = BTRFS_TREE_BLOCK_REF_KEY; 724 key.offset = root_objectid; 725 } 726 727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 728 btrfs_release_path(path); 729 return ret; 730 } 731 732 static inline int extent_ref_type(u64 parent, u64 owner) 733 { 734 int type; 735 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 736 if (parent > 0) 737 type = BTRFS_SHARED_BLOCK_REF_KEY; 738 else 739 type = BTRFS_TREE_BLOCK_REF_KEY; 740 } else { 741 if (parent > 0) 742 type = BTRFS_SHARED_DATA_REF_KEY; 743 else 744 type = BTRFS_EXTENT_DATA_REF_KEY; 745 } 746 return type; 747 } 748 749 static int find_next_key(struct btrfs_path *path, int level, 750 struct btrfs_key *key) 751 752 { 753 for (; level < BTRFS_MAX_LEVEL; level++) { 754 if (!path->nodes[level]) 755 break; 756 if (path->slots[level] + 1 >= 757 btrfs_header_nritems(path->nodes[level])) 758 continue; 759 if (level == 0) 760 btrfs_item_key_to_cpu(path->nodes[level], key, 761 path->slots[level] + 1); 762 else 763 btrfs_node_key_to_cpu(path->nodes[level], key, 764 path->slots[level] + 1); 765 return 0; 766 } 767 return 1; 768 } 769 770 /* 771 * look for inline back ref. if back ref is found, *ref_ret is set 772 * to the address of inline back ref, and 0 is returned. 773 * 774 * if back ref isn't found, *ref_ret is set to the address where it 775 * should be inserted, and -ENOENT is returned. 776 * 777 * if insert is true and there are too many inline back refs, the path 778 * points to the extent item, and -EAGAIN is returned. 779 * 780 * NOTE: inline back refs are ordered in the same way that back ref 781 * items in the tree are ordered. 782 */ 783 static noinline_for_stack 784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 785 struct btrfs_path *path, 786 struct btrfs_extent_inline_ref **ref_ret, 787 u64 bytenr, u64 num_bytes, 788 u64 parent, u64 root_objectid, 789 u64 owner, u64 offset, int insert) 790 { 791 struct btrfs_fs_info *fs_info = trans->fs_info; 792 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 793 struct btrfs_key key; 794 struct extent_buffer *leaf; 795 struct btrfs_extent_item *ei; 796 struct btrfs_extent_inline_ref *iref; 797 u64 flags; 798 u64 item_size; 799 unsigned long ptr; 800 unsigned long end; 801 int extra_size; 802 int type; 803 int want; 804 int ret; 805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 806 int needed; 807 808 key.objectid = bytenr; 809 key.type = BTRFS_EXTENT_ITEM_KEY; 810 key.offset = num_bytes; 811 812 want = extent_ref_type(parent, owner); 813 if (insert) { 814 extra_size = btrfs_extent_inline_ref_size(want); 815 path->search_for_extension = 1; 816 path->keep_locks = 1; 817 } else 818 extra_size = -1; 819 820 /* 821 * Owner is our level, so we can just add one to get the level for the 822 * block we are interested in. 823 */ 824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 825 key.type = BTRFS_METADATA_ITEM_KEY; 826 key.offset = owner; 827 } 828 829 again: 830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 831 if (ret < 0) 832 goto out; 833 834 /* 835 * We may be a newly converted file system which still has the old fat 836 * extent entries for metadata, so try and see if we have one of those. 837 */ 838 if (ret > 0 && skinny_metadata) { 839 skinny_metadata = false; 840 if (path->slots[0]) { 841 path->slots[0]--; 842 btrfs_item_key_to_cpu(path->nodes[0], &key, 843 path->slots[0]); 844 if (key.objectid == bytenr && 845 key.type == BTRFS_EXTENT_ITEM_KEY && 846 key.offset == num_bytes) 847 ret = 0; 848 } 849 if (ret) { 850 key.objectid = bytenr; 851 key.type = BTRFS_EXTENT_ITEM_KEY; 852 key.offset = num_bytes; 853 btrfs_release_path(path); 854 goto again; 855 } 856 } 857 858 if (ret && !insert) { 859 ret = -ENOENT; 860 goto out; 861 } else if (WARN_ON(ret)) { 862 btrfs_print_leaf(path->nodes[0]); 863 btrfs_err(fs_info, 864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 865 bytenr, num_bytes, parent, root_objectid, owner, 866 offset); 867 ret = -EUCLEAN; 868 goto out; 869 } 870 871 leaf = path->nodes[0]; 872 item_size = btrfs_item_size(leaf, path->slots[0]); 873 if (unlikely(item_size < sizeof(*ei))) { 874 ret = -EUCLEAN; 875 btrfs_err(fs_info, 876 "unexpected extent item size, has %llu expect >= %zu", 877 item_size, sizeof(*ei)); 878 btrfs_abort_transaction(trans, ret); 879 goto out; 880 } 881 882 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 883 flags = btrfs_extent_flags(leaf, ei); 884 885 ptr = (unsigned long)(ei + 1); 886 end = (unsigned long)ei + item_size; 887 888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 889 ptr += sizeof(struct btrfs_tree_block_info); 890 BUG_ON(ptr > end); 891 } 892 893 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 894 needed = BTRFS_REF_TYPE_DATA; 895 else 896 needed = BTRFS_REF_TYPE_BLOCK; 897 898 ret = -ENOENT; 899 while (ptr < end) { 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 903 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 904 ptr += btrfs_extent_inline_ref_size(type); 905 continue; 906 } 907 if (type == BTRFS_REF_TYPE_INVALID) { 908 ret = -EUCLEAN; 909 goto out; 910 } 911 912 if (want < type) 913 break; 914 if (want > type) { 915 ptr += btrfs_extent_inline_ref_size(type); 916 continue; 917 } 918 919 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 920 struct btrfs_extent_data_ref *dref; 921 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 922 if (match_extent_data_ref(leaf, dref, root_objectid, 923 owner, offset)) { 924 ret = 0; 925 break; 926 } 927 if (hash_extent_data_ref_item(leaf, dref) < 928 hash_extent_data_ref(root_objectid, owner, offset)) 929 break; 930 } else { 931 u64 ref_offset; 932 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 933 if (parent > 0) { 934 if (parent == ref_offset) { 935 ret = 0; 936 break; 937 } 938 if (ref_offset < parent) 939 break; 940 } else { 941 if (root_objectid == ref_offset) { 942 ret = 0; 943 break; 944 } 945 if (ref_offset < root_objectid) 946 break; 947 } 948 } 949 ptr += btrfs_extent_inline_ref_size(type); 950 } 951 952 if (unlikely(ptr > end)) { 953 ret = -EUCLEAN; 954 btrfs_print_leaf(path->nodes[0]); 955 btrfs_crit(fs_info, 956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 957 path->slots[0], root_objectid, owner, offset, parent); 958 goto out; 959 } 960 961 if (ret == -ENOENT && insert) { 962 if (item_size + extra_size >= 963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 964 ret = -EAGAIN; 965 goto out; 966 } 967 /* 968 * To add new inline back ref, we have to make sure 969 * there is no corresponding back ref item. 970 * For simplicity, we just do not add new inline back 971 * ref if there is any kind of item for this block 972 */ 973 if (find_next_key(path, 0, &key) == 0 && 974 key.objectid == bytenr && 975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 976 ret = -EAGAIN; 977 goto out; 978 } 979 } 980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 981 out: 982 if (insert) { 983 path->keep_locks = 0; 984 path->search_for_extension = 0; 985 btrfs_unlock_up_safe(path, 1); 986 } 987 return ret; 988 } 989 990 /* 991 * helper to add new inline back ref 992 */ 993 static noinline_for_stack 994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 995 struct btrfs_path *path, 996 struct btrfs_extent_inline_ref *iref, 997 u64 parent, u64 root_objectid, 998 u64 owner, u64 offset, int refs_to_add, 999 struct btrfs_delayed_extent_op *extent_op) 1000 { 1001 struct extent_buffer *leaf; 1002 struct btrfs_extent_item *ei; 1003 unsigned long ptr; 1004 unsigned long end; 1005 unsigned long item_offset; 1006 u64 refs; 1007 int size; 1008 int type; 1009 1010 leaf = path->nodes[0]; 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 item_offset = (unsigned long)iref - (unsigned long)ei; 1013 1014 type = extent_ref_type(parent, owner); 1015 size = btrfs_extent_inline_ref_size(type); 1016 1017 btrfs_extend_item(trans, path, size); 1018 1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1020 refs = btrfs_extent_refs(leaf, ei); 1021 refs += refs_to_add; 1022 btrfs_set_extent_refs(leaf, ei, refs); 1023 if (extent_op) 1024 __run_delayed_extent_op(extent_op, leaf, ei); 1025 1026 ptr = (unsigned long)ei + item_offset; 1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1028 if (ptr < end - size) 1029 memmove_extent_buffer(leaf, ptr + size, ptr, 1030 end - size - ptr); 1031 1032 iref = (struct btrfs_extent_inline_ref *)ptr; 1033 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1035 struct btrfs_extent_data_ref *dref; 1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1042 struct btrfs_shared_data_ref *sref; 1043 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1048 } else { 1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1050 } 1051 btrfs_mark_buffer_dirty(trans, leaf); 1052 } 1053 1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1055 struct btrfs_path *path, 1056 struct btrfs_extent_inline_ref **ref_ret, 1057 u64 bytenr, u64 num_bytes, u64 parent, 1058 u64 root_objectid, u64 owner, u64 offset) 1059 { 1060 int ret; 1061 1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1063 num_bytes, parent, root_objectid, 1064 owner, offset, 0); 1065 if (ret != -ENOENT) 1066 return ret; 1067 1068 btrfs_release_path(path); 1069 *ref_ret = NULL; 1070 1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1073 root_objectid); 1074 } else { 1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1076 root_objectid, owner, offset); 1077 } 1078 return ret; 1079 } 1080 1081 /* 1082 * helper to update/remove inline back ref 1083 */ 1084 static noinline_for_stack int update_inline_extent_backref( 1085 struct btrfs_trans_handle *trans, 1086 struct btrfs_path *path, 1087 struct btrfs_extent_inline_ref *iref, 1088 int refs_to_mod, 1089 struct btrfs_delayed_extent_op *extent_op) 1090 { 1091 struct extent_buffer *leaf = path->nodes[0]; 1092 struct btrfs_fs_info *fs_info = leaf->fs_info; 1093 struct btrfs_extent_item *ei; 1094 struct btrfs_extent_data_ref *dref = NULL; 1095 struct btrfs_shared_data_ref *sref = NULL; 1096 unsigned long ptr; 1097 unsigned long end; 1098 u32 item_size; 1099 int size; 1100 int type; 1101 u64 refs; 1102 1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1104 refs = btrfs_extent_refs(leaf, ei); 1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1106 struct btrfs_key key; 1107 u32 extent_size; 1108 1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1110 if (key.type == BTRFS_METADATA_ITEM_KEY) 1111 extent_size = fs_info->nodesize; 1112 else 1113 extent_size = key.offset; 1114 btrfs_print_leaf(leaf); 1115 btrfs_err(fs_info, 1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1117 key.objectid, extent_size, refs_to_mod, refs); 1118 return -EUCLEAN; 1119 } 1120 refs += refs_to_mod; 1121 btrfs_set_extent_refs(leaf, ei, refs); 1122 if (extent_op) 1123 __run_delayed_extent_op(extent_op, leaf, ei); 1124 1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1126 /* 1127 * Function btrfs_get_extent_inline_ref_type() has already printed 1128 * error messages. 1129 */ 1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1131 return -EUCLEAN; 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 /* 1142 * For tree blocks we can only drop one ref for it, and tree 1143 * blocks should not have refs > 1. 1144 * 1145 * Furthermore if we're inserting a new inline backref, we 1146 * won't reach this path either. That would be 1147 * setup_inline_extent_backref(). 1148 */ 1149 if (unlikely(refs_to_mod != -1)) { 1150 struct btrfs_key key; 1151 1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1153 1154 btrfs_print_leaf(leaf); 1155 btrfs_err(fs_info, 1156 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1157 key.objectid, refs_to_mod); 1158 return -EUCLEAN; 1159 } 1160 } 1161 1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1163 struct btrfs_key key; 1164 u32 extent_size; 1165 1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1167 if (key.type == BTRFS_METADATA_ITEM_KEY) 1168 extent_size = fs_info->nodesize; 1169 else 1170 extent_size = key.offset; 1171 btrfs_print_leaf(leaf); 1172 btrfs_err(fs_info, 1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1174 (unsigned long)iref, key.objectid, extent_size, 1175 refs_to_mod, refs); 1176 return -EUCLEAN; 1177 } 1178 refs += refs_to_mod; 1179 1180 if (refs > 0) { 1181 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1182 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1183 else 1184 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1185 } else { 1186 size = btrfs_extent_inline_ref_size(type); 1187 item_size = btrfs_item_size(leaf, path->slots[0]); 1188 ptr = (unsigned long)iref; 1189 end = (unsigned long)ei + item_size; 1190 if (ptr + size < end) 1191 memmove_extent_buffer(leaf, ptr, ptr + size, 1192 end - ptr - size); 1193 item_size -= size; 1194 btrfs_truncate_item(trans, path, item_size, 1); 1195 } 1196 btrfs_mark_buffer_dirty(trans, leaf); 1197 return 0; 1198 } 1199 1200 static noinline_for_stack 1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1202 struct btrfs_path *path, 1203 u64 bytenr, u64 num_bytes, u64 parent, 1204 u64 root_objectid, u64 owner, 1205 u64 offset, int refs_to_add, 1206 struct btrfs_delayed_extent_op *extent_op) 1207 { 1208 struct btrfs_extent_inline_ref *iref; 1209 int ret; 1210 1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1212 num_bytes, parent, root_objectid, 1213 owner, offset, 1); 1214 if (ret == 0) { 1215 /* 1216 * We're adding refs to a tree block we already own, this 1217 * should not happen at all. 1218 */ 1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1220 btrfs_print_leaf(path->nodes[0]); 1221 btrfs_crit(trans->fs_info, 1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1223 bytenr, num_bytes, root_objectid, path->slots[0]); 1224 return -EUCLEAN; 1225 } 1226 ret = update_inline_extent_backref(trans, path, iref, 1227 refs_to_add, extent_op); 1228 } else if (ret == -ENOENT) { 1229 setup_inline_extent_backref(trans, path, iref, parent, 1230 root_objectid, owner, offset, 1231 refs_to_add, extent_op); 1232 ret = 0; 1233 } 1234 return ret; 1235 } 1236 1237 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1238 struct btrfs_root *root, 1239 struct btrfs_path *path, 1240 struct btrfs_extent_inline_ref *iref, 1241 int refs_to_drop, int is_data) 1242 { 1243 int ret = 0; 1244 1245 BUG_ON(!is_data && refs_to_drop != 1); 1246 if (iref) 1247 ret = update_inline_extent_backref(trans, path, iref, 1248 -refs_to_drop, NULL); 1249 else if (is_data) 1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1251 else 1252 ret = btrfs_del_item(trans, root, path); 1253 return ret; 1254 } 1255 1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1257 u64 *discarded_bytes) 1258 { 1259 int j, ret = 0; 1260 u64 bytes_left, end; 1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1262 1263 if (WARN_ON(start != aligned_start)) { 1264 len -= aligned_start - start; 1265 len = round_down(len, 1 << SECTOR_SHIFT); 1266 start = aligned_start; 1267 } 1268 1269 *discarded_bytes = 0; 1270 1271 if (!len) 1272 return 0; 1273 1274 end = start + len; 1275 bytes_left = len; 1276 1277 /* Skip any superblocks on this device. */ 1278 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1279 u64 sb_start = btrfs_sb_offset(j); 1280 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1281 u64 size = sb_start - start; 1282 1283 if (!in_range(sb_start, start, bytes_left) && 1284 !in_range(sb_end, start, bytes_left) && 1285 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1286 continue; 1287 1288 /* 1289 * Superblock spans beginning of range. Adjust start and 1290 * try again. 1291 */ 1292 if (sb_start <= start) { 1293 start += sb_end - start; 1294 if (start > end) { 1295 bytes_left = 0; 1296 break; 1297 } 1298 bytes_left = end - start; 1299 continue; 1300 } 1301 1302 if (size) { 1303 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1304 size >> SECTOR_SHIFT, 1305 GFP_NOFS); 1306 if (!ret) 1307 *discarded_bytes += size; 1308 else if (ret != -EOPNOTSUPP) 1309 return ret; 1310 } 1311 1312 start = sb_end; 1313 if (start > end) { 1314 bytes_left = 0; 1315 break; 1316 } 1317 bytes_left = end - start; 1318 } 1319 1320 if (bytes_left) { 1321 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1322 bytes_left >> SECTOR_SHIFT, 1323 GFP_NOFS); 1324 if (!ret) 1325 *discarded_bytes += bytes_left; 1326 } 1327 return ret; 1328 } 1329 1330 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1331 { 1332 struct btrfs_device *dev = stripe->dev; 1333 struct btrfs_fs_info *fs_info = dev->fs_info; 1334 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1335 u64 phys = stripe->physical; 1336 u64 len = stripe->length; 1337 u64 discarded = 0; 1338 int ret = 0; 1339 1340 /* Zone reset on a zoned filesystem */ 1341 if (btrfs_can_zone_reset(dev, phys, len)) { 1342 u64 src_disc; 1343 1344 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1345 if (ret) 1346 goto out; 1347 1348 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1349 dev != dev_replace->srcdev) 1350 goto out; 1351 1352 src_disc = discarded; 1353 1354 /* Send to replace target as well */ 1355 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1356 &discarded); 1357 discarded += src_disc; 1358 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1359 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1360 } else { 1361 ret = 0; 1362 *bytes = 0; 1363 } 1364 1365 out: 1366 *bytes = discarded; 1367 return ret; 1368 } 1369 1370 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1371 u64 num_bytes, u64 *actual_bytes) 1372 { 1373 int ret = 0; 1374 u64 discarded_bytes = 0; 1375 u64 end = bytenr + num_bytes; 1376 u64 cur = bytenr; 1377 1378 /* 1379 * Avoid races with device replace and make sure the devices in the 1380 * stripes don't go away while we are discarding. 1381 */ 1382 btrfs_bio_counter_inc_blocked(fs_info); 1383 while (cur < end) { 1384 struct btrfs_discard_stripe *stripes; 1385 unsigned int num_stripes; 1386 int i; 1387 1388 num_bytes = end - cur; 1389 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1390 if (IS_ERR(stripes)) { 1391 ret = PTR_ERR(stripes); 1392 if (ret == -EOPNOTSUPP) 1393 ret = 0; 1394 break; 1395 } 1396 1397 for (i = 0; i < num_stripes; i++) { 1398 struct btrfs_discard_stripe *stripe = stripes + i; 1399 u64 bytes; 1400 1401 if (!stripe->dev->bdev) { 1402 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1403 continue; 1404 } 1405 1406 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1407 &stripe->dev->dev_state)) 1408 continue; 1409 1410 ret = do_discard_extent(stripe, &bytes); 1411 if (ret) { 1412 /* 1413 * Keep going if discard is not supported by the 1414 * device. 1415 */ 1416 if (ret != -EOPNOTSUPP) 1417 break; 1418 ret = 0; 1419 } else { 1420 discarded_bytes += bytes; 1421 } 1422 } 1423 kfree(stripes); 1424 if (ret) 1425 break; 1426 cur += num_bytes; 1427 } 1428 btrfs_bio_counter_dec(fs_info); 1429 if (actual_bytes) 1430 *actual_bytes = discarded_bytes; 1431 return ret; 1432 } 1433 1434 /* Can return -ENOMEM */ 1435 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_ref *generic_ref) 1437 { 1438 struct btrfs_fs_info *fs_info = trans->fs_info; 1439 int ret; 1440 1441 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1442 generic_ref->action); 1443 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1444 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1445 1446 if (generic_ref->type == BTRFS_REF_METADATA) 1447 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1448 else 1449 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1450 1451 btrfs_ref_tree_mod(fs_info, generic_ref); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * Insert backreference for a given extent. 1458 * 1459 * The counterpart is in __btrfs_free_extent(), with examples and more details 1460 * how it works. 1461 * 1462 * @trans: Handle of transaction 1463 * 1464 * @node: The delayed ref node used to get the bytenr/length for 1465 * extent whose references are incremented. 1466 * 1467 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1468 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1469 * bytenr of the parent block. Since new extents are always 1470 * created with indirect references, this will only be the case 1471 * when relocating a shared extent. In that case, root_objectid 1472 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1473 * be 0 1474 * 1475 * @root_objectid: The id of the root where this modification has originated, 1476 * this can be either one of the well-known metadata trees or 1477 * the subvolume id which references this extent. 1478 * 1479 * @owner: For data extents it is the inode number of the owning file. 1480 * For metadata extents this parameter holds the level in the 1481 * tree of the extent. 1482 * 1483 * @offset: For metadata extents the offset is ignored and is currently 1484 * always passed as 0. For data extents it is the fileoffset 1485 * this extent belongs to. 1486 * 1487 * @extent_op Pointer to a structure, holding information necessary when 1488 * updating a tree block's flags 1489 * 1490 */ 1491 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1492 struct btrfs_delayed_ref_node *node, 1493 u64 parent, u64 root_objectid, 1494 u64 owner, u64 offset, 1495 struct btrfs_delayed_extent_op *extent_op) 1496 { 1497 struct btrfs_path *path; 1498 struct extent_buffer *leaf; 1499 struct btrfs_extent_item *item; 1500 struct btrfs_key key; 1501 u64 bytenr = node->bytenr; 1502 u64 num_bytes = node->num_bytes; 1503 u64 refs; 1504 int refs_to_add = node->ref_mod; 1505 int ret; 1506 1507 path = btrfs_alloc_path(); 1508 if (!path) 1509 return -ENOMEM; 1510 1511 /* this will setup the path even if it fails to insert the back ref */ 1512 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1513 parent, root_objectid, owner, 1514 offset, refs_to_add, extent_op); 1515 if ((ret < 0 && ret != -EAGAIN) || !ret) 1516 goto out; 1517 1518 /* 1519 * Ok we had -EAGAIN which means we didn't have space to insert and 1520 * inline extent ref, so just update the reference count and add a 1521 * normal backref. 1522 */ 1523 leaf = path->nodes[0]; 1524 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1525 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1526 refs = btrfs_extent_refs(leaf, item); 1527 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1528 if (extent_op) 1529 __run_delayed_extent_op(extent_op, leaf, item); 1530 1531 btrfs_mark_buffer_dirty(trans, leaf); 1532 btrfs_release_path(path); 1533 1534 /* now insert the actual backref */ 1535 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1536 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1537 root_objectid); 1538 else 1539 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1540 root_objectid, owner, offset, 1541 refs_to_add); 1542 1543 if (ret) 1544 btrfs_abort_transaction(trans, ret); 1545 out: 1546 btrfs_free_path(path); 1547 return ret; 1548 } 1549 1550 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1551 struct btrfs_delayed_ref_head *href, 1552 struct btrfs_delayed_ref_node *node, 1553 struct btrfs_delayed_extent_op *extent_op, 1554 bool insert_reserved) 1555 { 1556 int ret = 0; 1557 struct btrfs_delayed_data_ref *ref; 1558 u64 parent = 0; 1559 u64 flags = 0; 1560 1561 ref = btrfs_delayed_node_to_data_ref(node); 1562 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1563 1564 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1565 parent = ref->parent; 1566 1567 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1568 struct btrfs_key key; 1569 struct btrfs_squota_delta delta = { 1570 .root = href->owning_root, 1571 .num_bytes = node->num_bytes, 1572 .rsv_bytes = href->reserved_bytes, 1573 .is_data = true, 1574 .is_inc = true, 1575 .generation = trans->transid, 1576 }; 1577 1578 if (extent_op) 1579 flags |= extent_op->flags_to_set; 1580 1581 key.objectid = node->bytenr; 1582 key.type = BTRFS_EXTENT_ITEM_KEY; 1583 key.offset = node->num_bytes; 1584 1585 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1586 flags, ref->objectid, 1587 ref->offset, &key, 1588 node->ref_mod, href->owning_root); 1589 if (!ret) 1590 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1591 else 1592 btrfs_qgroup_free_refroot(trans->fs_info, delta.root, 1593 delta.rsv_bytes, BTRFS_QGROUP_RSV_DATA); 1594 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1595 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1596 ref->objectid, ref->offset, 1597 extent_op); 1598 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1599 ret = __btrfs_free_extent(trans, href, node, parent, 1600 ref->root, ref->objectid, 1601 ref->offset, extent_op); 1602 } else { 1603 BUG(); 1604 } 1605 return ret; 1606 } 1607 1608 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1609 struct extent_buffer *leaf, 1610 struct btrfs_extent_item *ei) 1611 { 1612 u64 flags = btrfs_extent_flags(leaf, ei); 1613 if (extent_op->update_flags) { 1614 flags |= extent_op->flags_to_set; 1615 btrfs_set_extent_flags(leaf, ei, flags); 1616 } 1617 1618 if (extent_op->update_key) { 1619 struct btrfs_tree_block_info *bi; 1620 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1621 bi = (struct btrfs_tree_block_info *)(ei + 1); 1622 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1623 } 1624 } 1625 1626 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1627 struct btrfs_delayed_ref_head *head, 1628 struct btrfs_delayed_extent_op *extent_op) 1629 { 1630 struct btrfs_fs_info *fs_info = trans->fs_info; 1631 struct btrfs_root *root; 1632 struct btrfs_key key; 1633 struct btrfs_path *path; 1634 struct btrfs_extent_item *ei; 1635 struct extent_buffer *leaf; 1636 u32 item_size; 1637 int ret; 1638 int metadata = 1; 1639 1640 if (TRANS_ABORTED(trans)) 1641 return 0; 1642 1643 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1644 metadata = 0; 1645 1646 path = btrfs_alloc_path(); 1647 if (!path) 1648 return -ENOMEM; 1649 1650 key.objectid = head->bytenr; 1651 1652 if (metadata) { 1653 key.type = BTRFS_METADATA_ITEM_KEY; 1654 key.offset = extent_op->level; 1655 } else { 1656 key.type = BTRFS_EXTENT_ITEM_KEY; 1657 key.offset = head->num_bytes; 1658 } 1659 1660 root = btrfs_extent_root(fs_info, key.objectid); 1661 again: 1662 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1663 if (ret < 0) { 1664 goto out; 1665 } else if (ret > 0) { 1666 if (metadata) { 1667 if (path->slots[0] > 0) { 1668 path->slots[0]--; 1669 btrfs_item_key_to_cpu(path->nodes[0], &key, 1670 path->slots[0]); 1671 if (key.objectid == head->bytenr && 1672 key.type == BTRFS_EXTENT_ITEM_KEY && 1673 key.offset == head->num_bytes) 1674 ret = 0; 1675 } 1676 if (ret > 0) { 1677 btrfs_release_path(path); 1678 metadata = 0; 1679 1680 key.objectid = head->bytenr; 1681 key.offset = head->num_bytes; 1682 key.type = BTRFS_EXTENT_ITEM_KEY; 1683 goto again; 1684 } 1685 } else { 1686 ret = -EUCLEAN; 1687 btrfs_err(fs_info, 1688 "missing extent item for extent %llu num_bytes %llu level %d", 1689 head->bytenr, head->num_bytes, extent_op->level); 1690 goto out; 1691 } 1692 } 1693 1694 leaf = path->nodes[0]; 1695 item_size = btrfs_item_size(leaf, path->slots[0]); 1696 1697 if (unlikely(item_size < sizeof(*ei))) { 1698 ret = -EUCLEAN; 1699 btrfs_err(fs_info, 1700 "unexpected extent item size, has %u expect >= %zu", 1701 item_size, sizeof(*ei)); 1702 btrfs_abort_transaction(trans, ret); 1703 goto out; 1704 } 1705 1706 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1707 __run_delayed_extent_op(extent_op, leaf, ei); 1708 1709 btrfs_mark_buffer_dirty(trans, leaf); 1710 out: 1711 btrfs_free_path(path); 1712 return ret; 1713 } 1714 1715 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1716 struct btrfs_delayed_ref_head *href, 1717 struct btrfs_delayed_ref_node *node, 1718 struct btrfs_delayed_extent_op *extent_op, 1719 bool insert_reserved) 1720 { 1721 int ret = 0; 1722 struct btrfs_fs_info *fs_info = trans->fs_info; 1723 struct btrfs_delayed_tree_ref *ref; 1724 u64 parent = 0; 1725 u64 ref_root = 0; 1726 1727 ref = btrfs_delayed_node_to_tree_ref(node); 1728 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1729 1730 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1731 parent = ref->parent; 1732 ref_root = ref->root; 1733 1734 if (unlikely(node->ref_mod != 1)) { 1735 btrfs_err(trans->fs_info, 1736 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1737 node->bytenr, node->ref_mod, node->action, ref_root, 1738 parent); 1739 return -EUCLEAN; 1740 } 1741 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1742 struct btrfs_squota_delta delta = { 1743 .root = href->owning_root, 1744 .num_bytes = fs_info->nodesize, 1745 .rsv_bytes = 0, 1746 .is_data = false, 1747 .is_inc = true, 1748 .generation = trans->transid, 1749 }; 1750 1751 BUG_ON(!extent_op || !extent_op->update_flags); 1752 ret = alloc_reserved_tree_block(trans, node, extent_op); 1753 if (!ret) 1754 btrfs_record_squota_delta(fs_info, &delta); 1755 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1756 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1757 ref->level, 0, extent_op); 1758 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1759 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1760 ref->level, 0, extent_op); 1761 } else { 1762 BUG(); 1763 } 1764 return ret; 1765 } 1766 1767 /* helper function to actually process a single delayed ref entry */ 1768 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1769 struct btrfs_delayed_ref_head *href, 1770 struct btrfs_delayed_ref_node *node, 1771 struct btrfs_delayed_extent_op *extent_op, 1772 bool insert_reserved) 1773 { 1774 int ret = 0; 1775 1776 if (TRANS_ABORTED(trans)) { 1777 if (insert_reserved) 1778 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1779 return 0; 1780 } 1781 1782 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1783 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1784 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1785 insert_reserved); 1786 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1787 node->type == BTRFS_SHARED_DATA_REF_KEY) 1788 ret = run_delayed_data_ref(trans, href, node, extent_op, 1789 insert_reserved); 1790 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1791 ret = 0; 1792 else 1793 BUG(); 1794 if (ret && insert_reserved) 1795 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1796 if (ret < 0) 1797 btrfs_err(trans->fs_info, 1798 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1799 node->bytenr, node->num_bytes, node->type, 1800 node->action, node->ref_mod, ret); 1801 return ret; 1802 } 1803 1804 static inline struct btrfs_delayed_ref_node * 1805 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1806 { 1807 struct btrfs_delayed_ref_node *ref; 1808 1809 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1810 return NULL; 1811 1812 /* 1813 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1814 * This is to prevent a ref count from going down to zero, which deletes 1815 * the extent item from the extent tree, when there still are references 1816 * to add, which would fail because they would not find the extent item. 1817 */ 1818 if (!list_empty(&head->ref_add_list)) 1819 return list_first_entry(&head->ref_add_list, 1820 struct btrfs_delayed_ref_node, add_list); 1821 1822 ref = rb_entry(rb_first_cached(&head->ref_tree), 1823 struct btrfs_delayed_ref_node, ref_node); 1824 ASSERT(list_empty(&ref->add_list)); 1825 return ref; 1826 } 1827 1828 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1829 struct btrfs_delayed_ref_head *head) 1830 { 1831 spin_lock(&delayed_refs->lock); 1832 head->processing = false; 1833 delayed_refs->num_heads_ready++; 1834 spin_unlock(&delayed_refs->lock); 1835 btrfs_delayed_ref_unlock(head); 1836 } 1837 1838 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1839 struct btrfs_delayed_ref_head *head) 1840 { 1841 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1842 1843 if (!extent_op) 1844 return NULL; 1845 1846 if (head->must_insert_reserved) { 1847 head->extent_op = NULL; 1848 btrfs_free_delayed_extent_op(extent_op); 1849 return NULL; 1850 } 1851 return extent_op; 1852 } 1853 1854 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1855 struct btrfs_delayed_ref_head *head) 1856 { 1857 struct btrfs_delayed_extent_op *extent_op; 1858 int ret; 1859 1860 extent_op = cleanup_extent_op(head); 1861 if (!extent_op) 1862 return 0; 1863 head->extent_op = NULL; 1864 spin_unlock(&head->lock); 1865 ret = run_delayed_extent_op(trans, head, extent_op); 1866 btrfs_free_delayed_extent_op(extent_op); 1867 return ret ? ret : 1; 1868 } 1869 1870 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1871 struct btrfs_delayed_ref_root *delayed_refs, 1872 struct btrfs_delayed_ref_head *head) 1873 { 1874 /* 1875 * We had csum deletions accounted for in our delayed refs rsv, we need 1876 * to drop the csum leaves for this update from our delayed_refs_rsv. 1877 */ 1878 if (head->total_ref_mod < 0 && head->is_data) { 1879 int nr_csums; 1880 1881 spin_lock(&delayed_refs->lock); 1882 delayed_refs->pending_csums -= head->num_bytes; 1883 spin_unlock(&delayed_refs->lock); 1884 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1885 1886 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1887 1888 return btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1889 } 1890 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE && 1891 head->must_insert_reserved && head->is_data) 1892 btrfs_qgroup_free_refroot(fs_info, head->owning_root, 1893 head->reserved_bytes, BTRFS_QGROUP_RSV_DATA); 1894 1895 return 0; 1896 } 1897 1898 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1899 struct btrfs_delayed_ref_head *head, 1900 u64 *bytes_released) 1901 { 1902 1903 struct btrfs_fs_info *fs_info = trans->fs_info; 1904 struct btrfs_delayed_ref_root *delayed_refs; 1905 int ret; 1906 1907 delayed_refs = &trans->transaction->delayed_refs; 1908 1909 ret = run_and_cleanup_extent_op(trans, head); 1910 if (ret < 0) { 1911 unselect_delayed_ref_head(delayed_refs, head); 1912 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1913 return ret; 1914 } else if (ret) { 1915 return ret; 1916 } 1917 1918 /* 1919 * Need to drop our head ref lock and re-acquire the delayed ref lock 1920 * and then re-check to make sure nobody got added. 1921 */ 1922 spin_unlock(&head->lock); 1923 spin_lock(&delayed_refs->lock); 1924 spin_lock(&head->lock); 1925 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1926 spin_unlock(&head->lock); 1927 spin_unlock(&delayed_refs->lock); 1928 return 1; 1929 } 1930 btrfs_delete_ref_head(delayed_refs, head); 1931 spin_unlock(&head->lock); 1932 spin_unlock(&delayed_refs->lock); 1933 1934 if (head->must_insert_reserved) { 1935 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1936 if (head->is_data) { 1937 struct btrfs_root *csum_root; 1938 1939 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1940 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1941 head->num_bytes); 1942 } 1943 } 1944 1945 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1946 1947 trace_run_delayed_ref_head(fs_info, head, 0); 1948 btrfs_delayed_ref_unlock(head); 1949 btrfs_put_delayed_ref_head(head); 1950 return ret; 1951 } 1952 1953 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1954 struct btrfs_trans_handle *trans) 1955 { 1956 struct btrfs_delayed_ref_root *delayed_refs = 1957 &trans->transaction->delayed_refs; 1958 struct btrfs_delayed_ref_head *head = NULL; 1959 int ret; 1960 1961 spin_lock(&delayed_refs->lock); 1962 head = btrfs_select_ref_head(delayed_refs); 1963 if (!head) { 1964 spin_unlock(&delayed_refs->lock); 1965 return head; 1966 } 1967 1968 /* 1969 * Grab the lock that says we are going to process all the refs for 1970 * this head 1971 */ 1972 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1973 spin_unlock(&delayed_refs->lock); 1974 1975 /* 1976 * We may have dropped the spin lock to get the head mutex lock, and 1977 * that might have given someone else time to free the head. If that's 1978 * true, it has been removed from our list and we can move on. 1979 */ 1980 if (ret == -EAGAIN) 1981 head = ERR_PTR(-EAGAIN); 1982 1983 return head; 1984 } 1985 1986 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1987 struct btrfs_delayed_ref_head *locked_ref, 1988 u64 *bytes_released) 1989 { 1990 struct btrfs_fs_info *fs_info = trans->fs_info; 1991 struct btrfs_delayed_ref_root *delayed_refs; 1992 struct btrfs_delayed_extent_op *extent_op; 1993 struct btrfs_delayed_ref_node *ref; 1994 bool must_insert_reserved; 1995 int ret; 1996 1997 delayed_refs = &trans->transaction->delayed_refs; 1998 1999 lockdep_assert_held(&locked_ref->mutex); 2000 lockdep_assert_held(&locked_ref->lock); 2001 2002 while ((ref = select_delayed_ref(locked_ref))) { 2003 if (ref->seq && 2004 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2005 spin_unlock(&locked_ref->lock); 2006 unselect_delayed_ref_head(delayed_refs, locked_ref); 2007 return -EAGAIN; 2008 } 2009 2010 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2011 RB_CLEAR_NODE(&ref->ref_node); 2012 if (!list_empty(&ref->add_list)) 2013 list_del(&ref->add_list); 2014 /* 2015 * When we play the delayed ref, also correct the ref_mod on 2016 * head 2017 */ 2018 switch (ref->action) { 2019 case BTRFS_ADD_DELAYED_REF: 2020 case BTRFS_ADD_DELAYED_EXTENT: 2021 locked_ref->ref_mod -= ref->ref_mod; 2022 break; 2023 case BTRFS_DROP_DELAYED_REF: 2024 locked_ref->ref_mod += ref->ref_mod; 2025 break; 2026 default: 2027 WARN_ON(1); 2028 } 2029 atomic_dec(&delayed_refs->num_entries); 2030 2031 /* 2032 * Record the must_insert_reserved flag before we drop the 2033 * spin lock. 2034 */ 2035 must_insert_reserved = locked_ref->must_insert_reserved; 2036 locked_ref->must_insert_reserved = false; 2037 2038 extent_op = locked_ref->extent_op; 2039 locked_ref->extent_op = NULL; 2040 spin_unlock(&locked_ref->lock); 2041 2042 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2043 must_insert_reserved); 2044 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2045 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2046 2047 btrfs_free_delayed_extent_op(extent_op); 2048 if (ret) { 2049 unselect_delayed_ref_head(delayed_refs, locked_ref); 2050 btrfs_put_delayed_ref(ref); 2051 return ret; 2052 } 2053 2054 btrfs_put_delayed_ref(ref); 2055 cond_resched(); 2056 2057 spin_lock(&locked_ref->lock); 2058 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2059 } 2060 2061 return 0; 2062 } 2063 2064 /* 2065 * Returns 0 on success or if called with an already aborted transaction. 2066 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2067 */ 2068 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2069 u64 min_bytes) 2070 { 2071 struct btrfs_fs_info *fs_info = trans->fs_info; 2072 struct btrfs_delayed_ref_root *delayed_refs; 2073 struct btrfs_delayed_ref_head *locked_ref = NULL; 2074 int ret; 2075 unsigned long count = 0; 2076 unsigned long max_count = 0; 2077 u64 bytes_processed = 0; 2078 2079 delayed_refs = &trans->transaction->delayed_refs; 2080 if (min_bytes == 0) { 2081 max_count = delayed_refs->num_heads_ready; 2082 min_bytes = U64_MAX; 2083 } 2084 2085 do { 2086 if (!locked_ref) { 2087 locked_ref = btrfs_obtain_ref_head(trans); 2088 if (IS_ERR_OR_NULL(locked_ref)) { 2089 if (PTR_ERR(locked_ref) == -EAGAIN) { 2090 continue; 2091 } else { 2092 break; 2093 } 2094 } 2095 count++; 2096 } 2097 /* 2098 * We need to try and merge add/drops of the same ref since we 2099 * can run into issues with relocate dropping the implicit ref 2100 * and then it being added back again before the drop can 2101 * finish. If we merged anything we need to re-loop so we can 2102 * get a good ref. 2103 * Or we can get node references of the same type that weren't 2104 * merged when created due to bumps in the tree mod seq, and 2105 * we need to merge them to prevent adding an inline extent 2106 * backref before dropping it (triggering a BUG_ON at 2107 * insert_inline_extent_backref()). 2108 */ 2109 spin_lock(&locked_ref->lock); 2110 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2111 2112 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2113 if (ret < 0 && ret != -EAGAIN) { 2114 /* 2115 * Error, btrfs_run_delayed_refs_for_head already 2116 * unlocked everything so just bail out 2117 */ 2118 return ret; 2119 } else if (!ret) { 2120 /* 2121 * Success, perform the usual cleanup of a processed 2122 * head 2123 */ 2124 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2125 if (ret > 0 ) { 2126 /* We dropped our lock, we need to loop. */ 2127 ret = 0; 2128 continue; 2129 } else if (ret) { 2130 return ret; 2131 } 2132 } 2133 2134 /* 2135 * Either success case or btrfs_run_delayed_refs_for_head 2136 * returned -EAGAIN, meaning we need to select another head 2137 */ 2138 2139 locked_ref = NULL; 2140 cond_resched(); 2141 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2142 (max_count > 0 && count < max_count) || 2143 locked_ref); 2144 2145 return 0; 2146 } 2147 2148 #ifdef SCRAMBLE_DELAYED_REFS 2149 /* 2150 * Normally delayed refs get processed in ascending bytenr order. This 2151 * correlates in most cases to the order added. To expose dependencies on this 2152 * order, we start to process the tree in the middle instead of the beginning 2153 */ 2154 static u64 find_middle(struct rb_root *root) 2155 { 2156 struct rb_node *n = root->rb_node; 2157 struct btrfs_delayed_ref_node *entry; 2158 int alt = 1; 2159 u64 middle; 2160 u64 first = 0, last = 0; 2161 2162 n = rb_first(root); 2163 if (n) { 2164 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2165 first = entry->bytenr; 2166 } 2167 n = rb_last(root); 2168 if (n) { 2169 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2170 last = entry->bytenr; 2171 } 2172 n = root->rb_node; 2173 2174 while (n) { 2175 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2176 WARN_ON(!entry->in_tree); 2177 2178 middle = entry->bytenr; 2179 2180 if (alt) 2181 n = n->rb_left; 2182 else 2183 n = n->rb_right; 2184 2185 alt = 1 - alt; 2186 } 2187 return middle; 2188 } 2189 #endif 2190 2191 /* 2192 * Start processing the delayed reference count updates and extent insertions 2193 * we have queued up so far. 2194 * 2195 * @trans: Transaction handle. 2196 * @min_bytes: How many bytes of delayed references to process. After this 2197 * many bytes we stop processing delayed references if there are 2198 * any more. If 0 it means to run all existing delayed references, 2199 * but not new ones added after running all existing ones. 2200 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2201 * plus any new ones that are added. 2202 * 2203 * Returns 0 on success or if called with an aborted transaction 2204 * Returns <0 on error and aborts the transaction 2205 */ 2206 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2207 { 2208 struct btrfs_fs_info *fs_info = trans->fs_info; 2209 struct btrfs_delayed_ref_root *delayed_refs; 2210 int ret; 2211 2212 /* We'll clean this up in btrfs_cleanup_transaction */ 2213 if (TRANS_ABORTED(trans)) 2214 return 0; 2215 2216 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2217 return 0; 2218 2219 delayed_refs = &trans->transaction->delayed_refs; 2220 again: 2221 #ifdef SCRAMBLE_DELAYED_REFS 2222 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2223 #endif 2224 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2225 if (ret < 0) { 2226 btrfs_abort_transaction(trans, ret); 2227 return ret; 2228 } 2229 2230 if (min_bytes == U64_MAX) { 2231 btrfs_create_pending_block_groups(trans); 2232 2233 spin_lock(&delayed_refs->lock); 2234 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2235 spin_unlock(&delayed_refs->lock); 2236 return 0; 2237 } 2238 spin_unlock(&delayed_refs->lock); 2239 2240 cond_resched(); 2241 goto again; 2242 } 2243 2244 return 0; 2245 } 2246 2247 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2248 struct extent_buffer *eb, u64 flags) 2249 { 2250 struct btrfs_delayed_extent_op *extent_op; 2251 int level = btrfs_header_level(eb); 2252 int ret; 2253 2254 extent_op = btrfs_alloc_delayed_extent_op(); 2255 if (!extent_op) 2256 return -ENOMEM; 2257 2258 extent_op->flags_to_set = flags; 2259 extent_op->update_flags = true; 2260 extent_op->update_key = false; 2261 extent_op->level = level; 2262 2263 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2264 if (ret) 2265 btrfs_free_delayed_extent_op(extent_op); 2266 return ret; 2267 } 2268 2269 static noinline int check_delayed_ref(struct btrfs_root *root, 2270 struct btrfs_path *path, 2271 u64 objectid, u64 offset, u64 bytenr) 2272 { 2273 struct btrfs_delayed_ref_head *head; 2274 struct btrfs_delayed_ref_node *ref; 2275 struct btrfs_delayed_data_ref *data_ref; 2276 struct btrfs_delayed_ref_root *delayed_refs; 2277 struct btrfs_transaction *cur_trans; 2278 struct rb_node *node; 2279 int ret = 0; 2280 2281 spin_lock(&root->fs_info->trans_lock); 2282 cur_trans = root->fs_info->running_transaction; 2283 if (cur_trans) 2284 refcount_inc(&cur_trans->use_count); 2285 spin_unlock(&root->fs_info->trans_lock); 2286 if (!cur_trans) 2287 return 0; 2288 2289 delayed_refs = &cur_trans->delayed_refs; 2290 spin_lock(&delayed_refs->lock); 2291 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2292 if (!head) { 2293 spin_unlock(&delayed_refs->lock); 2294 btrfs_put_transaction(cur_trans); 2295 return 0; 2296 } 2297 2298 if (!mutex_trylock(&head->mutex)) { 2299 if (path->nowait) { 2300 spin_unlock(&delayed_refs->lock); 2301 btrfs_put_transaction(cur_trans); 2302 return -EAGAIN; 2303 } 2304 2305 refcount_inc(&head->refs); 2306 spin_unlock(&delayed_refs->lock); 2307 2308 btrfs_release_path(path); 2309 2310 /* 2311 * Mutex was contended, block until it's released and let 2312 * caller try again 2313 */ 2314 mutex_lock(&head->mutex); 2315 mutex_unlock(&head->mutex); 2316 btrfs_put_delayed_ref_head(head); 2317 btrfs_put_transaction(cur_trans); 2318 return -EAGAIN; 2319 } 2320 spin_unlock(&delayed_refs->lock); 2321 2322 spin_lock(&head->lock); 2323 /* 2324 * XXX: We should replace this with a proper search function in the 2325 * future. 2326 */ 2327 for (node = rb_first_cached(&head->ref_tree); node; 2328 node = rb_next(node)) { 2329 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2330 /* If it's a shared ref we know a cross reference exists */ 2331 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2332 ret = 1; 2333 break; 2334 } 2335 2336 data_ref = btrfs_delayed_node_to_data_ref(ref); 2337 2338 /* 2339 * If our ref doesn't match the one we're currently looking at 2340 * then we have a cross reference. 2341 */ 2342 if (data_ref->root != root->root_key.objectid || 2343 data_ref->objectid != objectid || 2344 data_ref->offset != offset) { 2345 ret = 1; 2346 break; 2347 } 2348 } 2349 spin_unlock(&head->lock); 2350 mutex_unlock(&head->mutex); 2351 btrfs_put_transaction(cur_trans); 2352 return ret; 2353 } 2354 2355 static noinline int check_committed_ref(struct btrfs_root *root, 2356 struct btrfs_path *path, 2357 u64 objectid, u64 offset, u64 bytenr, 2358 bool strict) 2359 { 2360 struct btrfs_fs_info *fs_info = root->fs_info; 2361 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2362 struct extent_buffer *leaf; 2363 struct btrfs_extent_data_ref *ref; 2364 struct btrfs_extent_inline_ref *iref; 2365 struct btrfs_extent_item *ei; 2366 struct btrfs_key key; 2367 u32 item_size; 2368 u32 expected_size; 2369 int type; 2370 int ret; 2371 2372 key.objectid = bytenr; 2373 key.offset = (u64)-1; 2374 key.type = BTRFS_EXTENT_ITEM_KEY; 2375 2376 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2377 if (ret < 0) 2378 goto out; 2379 BUG_ON(ret == 0); /* Corruption */ 2380 2381 ret = -ENOENT; 2382 if (path->slots[0] == 0) 2383 goto out; 2384 2385 path->slots[0]--; 2386 leaf = path->nodes[0]; 2387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2388 2389 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2390 goto out; 2391 2392 ret = 1; 2393 item_size = btrfs_item_size(leaf, path->slots[0]); 2394 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2395 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2396 2397 /* No inline refs; we need to bail before checking for owner ref. */ 2398 if (item_size == sizeof(*ei)) 2399 goto out; 2400 2401 /* Check for an owner ref; skip over it to the real inline refs. */ 2402 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2403 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2404 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2405 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2406 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2407 } 2408 2409 /* If extent item has more than 1 inline ref then it's shared */ 2410 if (item_size != expected_size) 2411 goto out; 2412 2413 /* 2414 * If extent created before last snapshot => it's shared unless the 2415 * snapshot has been deleted. Use the heuristic if strict is false. 2416 */ 2417 if (!strict && 2418 (btrfs_extent_generation(leaf, ei) <= 2419 btrfs_root_last_snapshot(&root->root_item))) 2420 goto out; 2421 2422 /* If this extent has SHARED_DATA_REF then it's shared */ 2423 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2424 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2425 goto out; 2426 2427 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2428 if (btrfs_extent_refs(leaf, ei) != 2429 btrfs_extent_data_ref_count(leaf, ref) || 2430 btrfs_extent_data_ref_root(leaf, ref) != 2431 root->root_key.objectid || 2432 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2433 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2434 goto out; 2435 2436 ret = 0; 2437 out: 2438 return ret; 2439 } 2440 2441 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2442 u64 bytenr, bool strict, struct btrfs_path *path) 2443 { 2444 int ret; 2445 2446 do { 2447 ret = check_committed_ref(root, path, objectid, 2448 offset, bytenr, strict); 2449 if (ret && ret != -ENOENT) 2450 goto out; 2451 2452 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2453 } while (ret == -EAGAIN); 2454 2455 out: 2456 btrfs_release_path(path); 2457 if (btrfs_is_data_reloc_root(root)) 2458 WARN_ON(ret > 0); 2459 return ret; 2460 } 2461 2462 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2463 struct btrfs_root *root, 2464 struct extent_buffer *buf, 2465 int full_backref, int inc) 2466 { 2467 struct btrfs_fs_info *fs_info = root->fs_info; 2468 u64 bytenr; 2469 u64 num_bytes; 2470 u64 parent; 2471 u64 ref_root; 2472 u32 nritems; 2473 struct btrfs_key key; 2474 struct btrfs_file_extent_item *fi; 2475 struct btrfs_ref generic_ref = { 0 }; 2476 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2477 int i; 2478 int action; 2479 int level; 2480 int ret = 0; 2481 2482 if (btrfs_is_testing(fs_info)) 2483 return 0; 2484 2485 ref_root = btrfs_header_owner(buf); 2486 nritems = btrfs_header_nritems(buf); 2487 level = btrfs_header_level(buf); 2488 2489 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2490 return 0; 2491 2492 if (full_backref) 2493 parent = buf->start; 2494 else 2495 parent = 0; 2496 if (inc) 2497 action = BTRFS_ADD_DELAYED_REF; 2498 else 2499 action = BTRFS_DROP_DELAYED_REF; 2500 2501 for (i = 0; i < nritems; i++) { 2502 if (level == 0) { 2503 btrfs_item_key_to_cpu(buf, &key, i); 2504 if (key.type != BTRFS_EXTENT_DATA_KEY) 2505 continue; 2506 fi = btrfs_item_ptr(buf, i, 2507 struct btrfs_file_extent_item); 2508 if (btrfs_file_extent_type(buf, fi) == 2509 BTRFS_FILE_EXTENT_INLINE) 2510 continue; 2511 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2512 if (bytenr == 0) 2513 continue; 2514 2515 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2516 key.offset -= btrfs_file_extent_offset(buf, fi); 2517 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2518 num_bytes, parent, ref_root); 2519 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2520 key.offset, root->root_key.objectid, 2521 for_reloc); 2522 if (inc) 2523 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2524 else 2525 ret = btrfs_free_extent(trans, &generic_ref); 2526 if (ret) 2527 goto fail; 2528 } else { 2529 bytenr = btrfs_node_blockptr(buf, i); 2530 num_bytes = fs_info->nodesize; 2531 /* We don't know the owning_root, use 0. */ 2532 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2533 num_bytes, parent, 0); 2534 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2535 root->root_key.objectid, for_reloc); 2536 if (inc) 2537 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2538 else 2539 ret = btrfs_free_extent(trans, &generic_ref); 2540 if (ret) 2541 goto fail; 2542 } 2543 } 2544 return 0; 2545 fail: 2546 return ret; 2547 } 2548 2549 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2550 struct extent_buffer *buf, int full_backref) 2551 { 2552 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2553 } 2554 2555 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2556 struct extent_buffer *buf, int full_backref) 2557 { 2558 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2559 } 2560 2561 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2562 { 2563 struct btrfs_fs_info *fs_info = root->fs_info; 2564 u64 flags; 2565 u64 ret; 2566 2567 if (data) 2568 flags = BTRFS_BLOCK_GROUP_DATA; 2569 else if (root == fs_info->chunk_root) 2570 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2571 else 2572 flags = BTRFS_BLOCK_GROUP_METADATA; 2573 2574 ret = btrfs_get_alloc_profile(fs_info, flags); 2575 return ret; 2576 } 2577 2578 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2579 { 2580 struct rb_node *leftmost; 2581 u64 bytenr = 0; 2582 2583 read_lock(&fs_info->block_group_cache_lock); 2584 /* Get the block group with the lowest logical start address. */ 2585 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2586 if (leftmost) { 2587 struct btrfs_block_group *bg; 2588 2589 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2590 bytenr = bg->start; 2591 } 2592 read_unlock(&fs_info->block_group_cache_lock); 2593 2594 return bytenr; 2595 } 2596 2597 static int pin_down_extent(struct btrfs_trans_handle *trans, 2598 struct btrfs_block_group *cache, 2599 u64 bytenr, u64 num_bytes, int reserved) 2600 { 2601 struct btrfs_fs_info *fs_info = cache->fs_info; 2602 2603 spin_lock(&cache->space_info->lock); 2604 spin_lock(&cache->lock); 2605 cache->pinned += num_bytes; 2606 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2607 num_bytes); 2608 if (reserved) { 2609 cache->reserved -= num_bytes; 2610 cache->space_info->bytes_reserved -= num_bytes; 2611 } 2612 spin_unlock(&cache->lock); 2613 spin_unlock(&cache->space_info->lock); 2614 2615 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2616 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2617 return 0; 2618 } 2619 2620 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2621 u64 bytenr, u64 num_bytes, int reserved) 2622 { 2623 struct btrfs_block_group *cache; 2624 2625 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2626 BUG_ON(!cache); /* Logic error */ 2627 2628 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2629 2630 btrfs_put_block_group(cache); 2631 return 0; 2632 } 2633 2634 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2635 const struct extent_buffer *eb) 2636 { 2637 struct btrfs_block_group *cache; 2638 int ret; 2639 2640 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2641 if (!cache) 2642 return -EINVAL; 2643 2644 /* 2645 * Fully cache the free space first so that our pin removes the free space 2646 * from the cache. 2647 */ 2648 ret = btrfs_cache_block_group(cache, true); 2649 if (ret) 2650 goto out; 2651 2652 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2653 2654 /* remove us from the free space cache (if we're there at all) */ 2655 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2656 out: 2657 btrfs_put_block_group(cache); 2658 return ret; 2659 } 2660 2661 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2662 u64 start, u64 num_bytes) 2663 { 2664 int ret; 2665 struct btrfs_block_group *block_group; 2666 2667 block_group = btrfs_lookup_block_group(fs_info, start); 2668 if (!block_group) 2669 return -EINVAL; 2670 2671 ret = btrfs_cache_block_group(block_group, true); 2672 if (ret) 2673 goto out; 2674 2675 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2676 out: 2677 btrfs_put_block_group(block_group); 2678 return ret; 2679 } 2680 2681 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2682 { 2683 struct btrfs_fs_info *fs_info = eb->fs_info; 2684 struct btrfs_file_extent_item *item; 2685 struct btrfs_key key; 2686 int found_type; 2687 int i; 2688 int ret = 0; 2689 2690 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2691 return 0; 2692 2693 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2694 btrfs_item_key_to_cpu(eb, &key, i); 2695 if (key.type != BTRFS_EXTENT_DATA_KEY) 2696 continue; 2697 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2698 found_type = btrfs_file_extent_type(eb, item); 2699 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2700 continue; 2701 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2702 continue; 2703 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2704 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2705 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2706 if (ret) 2707 break; 2708 } 2709 2710 return ret; 2711 } 2712 2713 static void 2714 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2715 { 2716 atomic_inc(&bg->reservations); 2717 } 2718 2719 /* 2720 * Returns the free cluster for the given space info and sets empty_cluster to 2721 * what it should be based on the mount options. 2722 */ 2723 static struct btrfs_free_cluster * 2724 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2725 struct btrfs_space_info *space_info, u64 *empty_cluster) 2726 { 2727 struct btrfs_free_cluster *ret = NULL; 2728 2729 *empty_cluster = 0; 2730 if (btrfs_mixed_space_info(space_info)) 2731 return ret; 2732 2733 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2734 ret = &fs_info->meta_alloc_cluster; 2735 if (btrfs_test_opt(fs_info, SSD)) 2736 *empty_cluster = SZ_2M; 2737 else 2738 *empty_cluster = SZ_64K; 2739 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2740 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2741 *empty_cluster = SZ_2M; 2742 ret = &fs_info->data_alloc_cluster; 2743 } 2744 2745 return ret; 2746 } 2747 2748 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2749 u64 start, u64 end, 2750 const bool return_free_space) 2751 { 2752 struct btrfs_block_group *cache = NULL; 2753 struct btrfs_space_info *space_info; 2754 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2755 struct btrfs_free_cluster *cluster = NULL; 2756 u64 len; 2757 u64 total_unpinned = 0; 2758 u64 empty_cluster = 0; 2759 bool readonly; 2760 2761 while (start <= end) { 2762 readonly = false; 2763 if (!cache || 2764 start >= cache->start + cache->length) { 2765 if (cache) 2766 btrfs_put_block_group(cache); 2767 total_unpinned = 0; 2768 cache = btrfs_lookup_block_group(fs_info, start); 2769 BUG_ON(!cache); /* Logic error */ 2770 2771 cluster = fetch_cluster_info(fs_info, 2772 cache->space_info, 2773 &empty_cluster); 2774 empty_cluster <<= 1; 2775 } 2776 2777 len = cache->start + cache->length - start; 2778 len = min(len, end + 1 - start); 2779 2780 if (return_free_space) 2781 btrfs_add_free_space(cache, start, len); 2782 2783 start += len; 2784 total_unpinned += len; 2785 space_info = cache->space_info; 2786 2787 /* 2788 * If this space cluster has been marked as fragmented and we've 2789 * unpinned enough in this block group to potentially allow a 2790 * cluster to be created inside of it go ahead and clear the 2791 * fragmented check. 2792 */ 2793 if (cluster && cluster->fragmented && 2794 total_unpinned > empty_cluster) { 2795 spin_lock(&cluster->lock); 2796 cluster->fragmented = 0; 2797 spin_unlock(&cluster->lock); 2798 } 2799 2800 spin_lock(&space_info->lock); 2801 spin_lock(&cache->lock); 2802 cache->pinned -= len; 2803 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2804 space_info->max_extent_size = 0; 2805 if (cache->ro) { 2806 space_info->bytes_readonly += len; 2807 readonly = true; 2808 } else if (btrfs_is_zoned(fs_info)) { 2809 /* Need reset before reusing in a zoned block group */ 2810 space_info->bytes_zone_unusable += len; 2811 readonly = true; 2812 } 2813 spin_unlock(&cache->lock); 2814 if (!readonly && return_free_space && 2815 global_rsv->space_info == space_info) { 2816 spin_lock(&global_rsv->lock); 2817 if (!global_rsv->full) { 2818 u64 to_add = min(len, global_rsv->size - 2819 global_rsv->reserved); 2820 2821 global_rsv->reserved += to_add; 2822 btrfs_space_info_update_bytes_may_use(fs_info, 2823 space_info, to_add); 2824 if (global_rsv->reserved >= global_rsv->size) 2825 global_rsv->full = 1; 2826 len -= to_add; 2827 } 2828 spin_unlock(&global_rsv->lock); 2829 } 2830 /* Add to any tickets we may have */ 2831 if (!readonly && return_free_space && len) 2832 btrfs_try_granting_tickets(fs_info, space_info); 2833 spin_unlock(&space_info->lock); 2834 } 2835 2836 if (cache) 2837 btrfs_put_block_group(cache); 2838 return 0; 2839 } 2840 2841 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2842 { 2843 struct btrfs_fs_info *fs_info = trans->fs_info; 2844 struct btrfs_block_group *block_group, *tmp; 2845 struct list_head *deleted_bgs; 2846 struct extent_io_tree *unpin; 2847 u64 start; 2848 u64 end; 2849 int ret; 2850 2851 unpin = &trans->transaction->pinned_extents; 2852 2853 while (!TRANS_ABORTED(trans)) { 2854 struct extent_state *cached_state = NULL; 2855 2856 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2857 if (!find_first_extent_bit(unpin, 0, &start, &end, 2858 EXTENT_DIRTY, &cached_state)) { 2859 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2860 break; 2861 } 2862 2863 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2864 ret = btrfs_discard_extent(fs_info, start, 2865 end + 1 - start, NULL); 2866 2867 clear_extent_dirty(unpin, start, end, &cached_state); 2868 unpin_extent_range(fs_info, start, end, true); 2869 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2870 free_extent_state(cached_state); 2871 cond_resched(); 2872 } 2873 2874 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2875 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2876 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2877 } 2878 2879 /* 2880 * Transaction is finished. We don't need the lock anymore. We 2881 * do need to clean up the block groups in case of a transaction 2882 * abort. 2883 */ 2884 deleted_bgs = &trans->transaction->deleted_bgs; 2885 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2886 u64 trimmed = 0; 2887 2888 ret = -EROFS; 2889 if (!TRANS_ABORTED(trans)) 2890 ret = btrfs_discard_extent(fs_info, 2891 block_group->start, 2892 block_group->length, 2893 &trimmed); 2894 2895 list_del_init(&block_group->bg_list); 2896 btrfs_unfreeze_block_group(block_group); 2897 btrfs_put_block_group(block_group); 2898 2899 if (ret) { 2900 const char *errstr = btrfs_decode_error(ret); 2901 btrfs_warn(fs_info, 2902 "discard failed while removing blockgroup: errno=%d %s", 2903 ret, errstr); 2904 } 2905 } 2906 2907 return 0; 2908 } 2909 2910 /* 2911 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2912 * 2913 * @fs_info: the btrfs_fs_info for this mount 2914 * @leaf: a leaf in the extent tree containing the extent item 2915 * @slot: the slot in the leaf where the extent item is found 2916 * 2917 * Returns the objectid of the root that originally allocated the extent item 2918 * if the inline owner ref is expected and present, otherwise 0. 2919 * 2920 * If an extent item has an owner ref item, it will be the first inline ref 2921 * item. Therefore the logic is to check whether there are any inline ref 2922 * items, then check the type of the first one. 2923 */ 2924 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2925 struct extent_buffer *leaf, int slot) 2926 { 2927 struct btrfs_extent_item *ei; 2928 struct btrfs_extent_inline_ref *iref; 2929 struct btrfs_extent_owner_ref *oref; 2930 unsigned long ptr; 2931 unsigned long end; 2932 int type; 2933 2934 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2935 return 0; 2936 2937 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2938 ptr = (unsigned long)(ei + 1); 2939 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2940 2941 /* No inline ref items of any kind, can't check type. */ 2942 if (ptr == end) 2943 return 0; 2944 2945 iref = (struct btrfs_extent_inline_ref *)ptr; 2946 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2947 2948 /* We found an owner ref, get the root out of it. */ 2949 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2950 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2951 return btrfs_extent_owner_ref_root_id(leaf, oref); 2952 } 2953 2954 /* We have inline refs, but not an owner ref. */ 2955 return 0; 2956 } 2957 2958 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2959 u64 bytenr, struct btrfs_squota_delta *delta) 2960 { 2961 int ret; 2962 u64 num_bytes = delta->num_bytes; 2963 2964 if (delta->is_data) { 2965 struct btrfs_root *csum_root; 2966 2967 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2968 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2969 if (ret) { 2970 btrfs_abort_transaction(trans, ret); 2971 return ret; 2972 } 2973 2974 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2975 if (ret) { 2976 btrfs_abort_transaction(trans, ret); 2977 return ret; 2978 } 2979 } 2980 2981 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2982 if (ret) { 2983 btrfs_abort_transaction(trans, ret); 2984 return ret; 2985 } 2986 2987 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2988 if (ret) { 2989 btrfs_abort_transaction(trans, ret); 2990 return ret; 2991 } 2992 2993 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2994 if (ret) 2995 btrfs_abort_transaction(trans, ret); 2996 2997 return ret; 2998 } 2999 3000 #define abort_and_dump(trans, path, fmt, args...) \ 3001 ({ \ 3002 btrfs_abort_transaction(trans, -EUCLEAN); \ 3003 btrfs_print_leaf(path->nodes[0]); \ 3004 btrfs_crit(trans->fs_info, fmt, ##args); \ 3005 }) 3006 3007 /* 3008 * Drop one or more refs of @node. 3009 * 3010 * 1. Locate the extent refs. 3011 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3012 * Locate it, then reduce the refs number or remove the ref line completely. 3013 * 3014 * 2. Update the refs count in EXTENT/METADATA_ITEM 3015 * 3016 * Inline backref case: 3017 * 3018 * in extent tree we have: 3019 * 3020 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3021 * refs 2 gen 6 flags DATA 3022 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3023 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3024 * 3025 * This function gets called with: 3026 * 3027 * node->bytenr = 13631488 3028 * node->num_bytes = 1048576 3029 * root_objectid = FS_TREE 3030 * owner_objectid = 257 3031 * owner_offset = 0 3032 * refs_to_drop = 1 3033 * 3034 * Then we should get some like: 3035 * 3036 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3037 * refs 1 gen 6 flags DATA 3038 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3039 * 3040 * Keyed backref case: 3041 * 3042 * in extent tree we have: 3043 * 3044 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3045 * refs 754 gen 6 flags DATA 3046 * [...] 3047 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3048 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3049 * 3050 * This function get called with: 3051 * 3052 * node->bytenr = 13631488 3053 * node->num_bytes = 1048576 3054 * root_objectid = FS_TREE 3055 * owner_objectid = 866 3056 * owner_offset = 0 3057 * refs_to_drop = 1 3058 * 3059 * Then we should get some like: 3060 * 3061 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3062 * refs 753 gen 6 flags DATA 3063 * 3064 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3065 */ 3066 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3067 struct btrfs_delayed_ref_head *href, 3068 struct btrfs_delayed_ref_node *node, u64 parent, 3069 u64 root_objectid, u64 owner_objectid, 3070 u64 owner_offset, 3071 struct btrfs_delayed_extent_op *extent_op) 3072 { 3073 struct btrfs_fs_info *info = trans->fs_info; 3074 struct btrfs_key key; 3075 struct btrfs_path *path; 3076 struct btrfs_root *extent_root; 3077 struct extent_buffer *leaf; 3078 struct btrfs_extent_item *ei; 3079 struct btrfs_extent_inline_ref *iref; 3080 int ret; 3081 int is_data; 3082 int extent_slot = 0; 3083 int found_extent = 0; 3084 int num_to_del = 1; 3085 int refs_to_drop = node->ref_mod; 3086 u32 item_size; 3087 u64 refs; 3088 u64 bytenr = node->bytenr; 3089 u64 num_bytes = node->num_bytes; 3090 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3091 u64 delayed_ref_root = href->owning_root; 3092 3093 extent_root = btrfs_extent_root(info, bytenr); 3094 ASSERT(extent_root); 3095 3096 path = btrfs_alloc_path(); 3097 if (!path) 3098 return -ENOMEM; 3099 3100 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3101 3102 if (!is_data && refs_to_drop != 1) { 3103 btrfs_crit(info, 3104 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3105 node->bytenr, refs_to_drop); 3106 ret = -EINVAL; 3107 btrfs_abort_transaction(trans, ret); 3108 goto out; 3109 } 3110 3111 if (is_data) 3112 skinny_metadata = false; 3113 3114 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3115 parent, root_objectid, owner_objectid, 3116 owner_offset); 3117 if (ret == 0) { 3118 /* 3119 * Either the inline backref or the SHARED_DATA_REF/ 3120 * SHARED_BLOCK_REF is found 3121 * 3122 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3123 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3124 */ 3125 extent_slot = path->slots[0]; 3126 while (extent_slot >= 0) { 3127 btrfs_item_key_to_cpu(path->nodes[0], &key, 3128 extent_slot); 3129 if (key.objectid != bytenr) 3130 break; 3131 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3132 key.offset == num_bytes) { 3133 found_extent = 1; 3134 break; 3135 } 3136 if (key.type == BTRFS_METADATA_ITEM_KEY && 3137 key.offset == owner_objectid) { 3138 found_extent = 1; 3139 break; 3140 } 3141 3142 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3143 if (path->slots[0] - extent_slot > 5) 3144 break; 3145 extent_slot--; 3146 } 3147 3148 if (!found_extent) { 3149 if (iref) { 3150 abort_and_dump(trans, path, 3151 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3152 path->slots[0]); 3153 ret = -EUCLEAN; 3154 goto out; 3155 } 3156 /* Must be SHARED_* item, remove the backref first */ 3157 ret = remove_extent_backref(trans, extent_root, path, 3158 NULL, refs_to_drop, is_data); 3159 if (ret) { 3160 btrfs_abort_transaction(trans, ret); 3161 goto out; 3162 } 3163 btrfs_release_path(path); 3164 3165 /* Slow path to locate EXTENT/METADATA_ITEM */ 3166 key.objectid = bytenr; 3167 key.type = BTRFS_EXTENT_ITEM_KEY; 3168 key.offset = num_bytes; 3169 3170 if (!is_data && skinny_metadata) { 3171 key.type = BTRFS_METADATA_ITEM_KEY; 3172 key.offset = owner_objectid; 3173 } 3174 3175 ret = btrfs_search_slot(trans, extent_root, 3176 &key, path, -1, 1); 3177 if (ret > 0 && skinny_metadata && path->slots[0]) { 3178 /* 3179 * Couldn't find our skinny metadata item, 3180 * see if we have ye olde extent item. 3181 */ 3182 path->slots[0]--; 3183 btrfs_item_key_to_cpu(path->nodes[0], &key, 3184 path->slots[0]); 3185 if (key.objectid == bytenr && 3186 key.type == BTRFS_EXTENT_ITEM_KEY && 3187 key.offset == num_bytes) 3188 ret = 0; 3189 } 3190 3191 if (ret > 0 && skinny_metadata) { 3192 skinny_metadata = false; 3193 key.objectid = bytenr; 3194 key.type = BTRFS_EXTENT_ITEM_KEY; 3195 key.offset = num_bytes; 3196 btrfs_release_path(path); 3197 ret = btrfs_search_slot(trans, extent_root, 3198 &key, path, -1, 1); 3199 } 3200 3201 if (ret) { 3202 if (ret > 0) 3203 btrfs_print_leaf(path->nodes[0]); 3204 btrfs_err(info, 3205 "umm, got %d back from search, was looking for %llu, slot %d", 3206 ret, bytenr, path->slots[0]); 3207 } 3208 if (ret < 0) { 3209 btrfs_abort_transaction(trans, ret); 3210 goto out; 3211 } 3212 extent_slot = path->slots[0]; 3213 } 3214 } else if (WARN_ON(ret == -ENOENT)) { 3215 abort_and_dump(trans, path, 3216 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3217 bytenr, parent, root_objectid, owner_objectid, 3218 owner_offset, path->slots[0]); 3219 goto out; 3220 } else { 3221 btrfs_abort_transaction(trans, ret); 3222 goto out; 3223 } 3224 3225 leaf = path->nodes[0]; 3226 item_size = btrfs_item_size(leaf, extent_slot); 3227 if (unlikely(item_size < sizeof(*ei))) { 3228 ret = -EUCLEAN; 3229 btrfs_err(trans->fs_info, 3230 "unexpected extent item size, has %u expect >= %zu", 3231 item_size, sizeof(*ei)); 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 ei = btrfs_item_ptr(leaf, extent_slot, 3236 struct btrfs_extent_item); 3237 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3238 key.type == BTRFS_EXTENT_ITEM_KEY) { 3239 struct btrfs_tree_block_info *bi; 3240 3241 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3242 abort_and_dump(trans, path, 3243 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3244 key.objectid, key.type, key.offset, 3245 path->slots[0], owner_objectid, item_size, 3246 sizeof(*ei) + sizeof(*bi)); 3247 ret = -EUCLEAN; 3248 goto out; 3249 } 3250 bi = (struct btrfs_tree_block_info *)(ei + 1); 3251 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3252 } 3253 3254 refs = btrfs_extent_refs(leaf, ei); 3255 if (refs < refs_to_drop) { 3256 abort_and_dump(trans, path, 3257 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3258 refs_to_drop, refs, bytenr, path->slots[0]); 3259 ret = -EUCLEAN; 3260 goto out; 3261 } 3262 refs -= refs_to_drop; 3263 3264 if (refs > 0) { 3265 if (extent_op) 3266 __run_delayed_extent_op(extent_op, leaf, ei); 3267 /* 3268 * In the case of inline back ref, reference count will 3269 * be updated by remove_extent_backref 3270 */ 3271 if (iref) { 3272 if (!found_extent) { 3273 abort_and_dump(trans, path, 3274 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3275 path->slots[0]); 3276 ret = -EUCLEAN; 3277 goto out; 3278 } 3279 } else { 3280 btrfs_set_extent_refs(leaf, ei, refs); 3281 btrfs_mark_buffer_dirty(trans, leaf); 3282 } 3283 if (found_extent) { 3284 ret = remove_extent_backref(trans, extent_root, path, 3285 iref, refs_to_drop, is_data); 3286 if (ret) { 3287 btrfs_abort_transaction(trans, ret); 3288 goto out; 3289 } 3290 } 3291 } else { 3292 struct btrfs_squota_delta delta = { 3293 .root = delayed_ref_root, 3294 .num_bytes = num_bytes, 3295 .rsv_bytes = 0, 3296 .is_data = is_data, 3297 .is_inc = false, 3298 .generation = btrfs_extent_generation(leaf, ei), 3299 }; 3300 3301 /* In this branch refs == 1 */ 3302 if (found_extent) { 3303 if (is_data && refs_to_drop != 3304 extent_data_ref_count(path, iref)) { 3305 abort_and_dump(trans, path, 3306 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3307 extent_data_ref_count(path, iref), 3308 refs_to_drop, path->slots[0]); 3309 ret = -EUCLEAN; 3310 goto out; 3311 } 3312 if (iref) { 3313 if (path->slots[0] != extent_slot) { 3314 abort_and_dump(trans, path, 3315 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3316 key.objectid, key.type, 3317 key.offset, path->slots[0]); 3318 ret = -EUCLEAN; 3319 goto out; 3320 } 3321 } else { 3322 /* 3323 * No inline ref, we must be at SHARED_* item, 3324 * And it's single ref, it must be: 3325 * | extent_slot ||extent_slot + 1| 3326 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3327 */ 3328 if (path->slots[0] != extent_slot + 1) { 3329 abort_and_dump(trans, path, 3330 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3331 path->slots[0]); 3332 ret = -EUCLEAN; 3333 goto out; 3334 } 3335 path->slots[0] = extent_slot; 3336 num_to_del = 2; 3337 } 3338 } 3339 /* 3340 * We can't infer the data owner from the delayed ref, so we need 3341 * to try to get it from the owning ref item. 3342 * 3343 * If it is not present, then that extent was not written under 3344 * simple quotas mode, so we don't need to account for its deletion. 3345 */ 3346 if (is_data) 3347 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3348 leaf, extent_slot); 3349 3350 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3351 num_to_del); 3352 if (ret) { 3353 btrfs_abort_transaction(trans, ret); 3354 goto out; 3355 } 3356 btrfs_release_path(path); 3357 3358 ret = do_free_extent_accounting(trans, bytenr, &delta); 3359 } 3360 btrfs_release_path(path); 3361 3362 out: 3363 btrfs_free_path(path); 3364 return ret; 3365 } 3366 3367 /* 3368 * when we free an block, it is possible (and likely) that we free the last 3369 * delayed ref for that extent as well. This searches the delayed ref tree for 3370 * a given extent, and if there are no other delayed refs to be processed, it 3371 * removes it from the tree. 3372 */ 3373 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3374 u64 bytenr) 3375 { 3376 struct btrfs_delayed_ref_head *head; 3377 struct btrfs_delayed_ref_root *delayed_refs; 3378 int ret = 0; 3379 3380 delayed_refs = &trans->transaction->delayed_refs; 3381 spin_lock(&delayed_refs->lock); 3382 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3383 if (!head) 3384 goto out_delayed_unlock; 3385 3386 spin_lock(&head->lock); 3387 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3388 goto out; 3389 3390 if (cleanup_extent_op(head) != NULL) 3391 goto out; 3392 3393 /* 3394 * waiting for the lock here would deadlock. If someone else has it 3395 * locked they are already in the process of dropping it anyway 3396 */ 3397 if (!mutex_trylock(&head->mutex)) 3398 goto out; 3399 3400 btrfs_delete_ref_head(delayed_refs, head); 3401 head->processing = false; 3402 3403 spin_unlock(&head->lock); 3404 spin_unlock(&delayed_refs->lock); 3405 3406 BUG_ON(head->extent_op); 3407 if (head->must_insert_reserved) 3408 ret = 1; 3409 3410 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3411 mutex_unlock(&head->mutex); 3412 btrfs_put_delayed_ref_head(head); 3413 return ret; 3414 out: 3415 spin_unlock(&head->lock); 3416 3417 out_delayed_unlock: 3418 spin_unlock(&delayed_refs->lock); 3419 return 0; 3420 } 3421 3422 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3423 u64 root_id, 3424 struct extent_buffer *buf, 3425 u64 parent, int last_ref) 3426 { 3427 struct btrfs_fs_info *fs_info = trans->fs_info; 3428 struct btrfs_ref generic_ref = { 0 }; 3429 int ret; 3430 3431 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3432 buf->start, buf->len, parent, btrfs_header_owner(buf)); 3433 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3434 root_id, 0, false); 3435 3436 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3437 btrfs_ref_tree_mod(fs_info, &generic_ref); 3438 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3439 BUG_ON(ret); /* -ENOMEM */ 3440 } 3441 3442 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3443 struct btrfs_block_group *cache; 3444 bool must_pin = false; 3445 3446 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3447 ret = check_ref_cleanup(trans, buf->start); 3448 if (!ret) { 3449 btrfs_redirty_list_add(trans->transaction, buf); 3450 goto out; 3451 } 3452 } 3453 3454 cache = btrfs_lookup_block_group(fs_info, buf->start); 3455 3456 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3457 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3458 btrfs_put_block_group(cache); 3459 goto out; 3460 } 3461 3462 /* 3463 * If there are tree mod log users we may have recorded mod log 3464 * operations for this node. If we re-allocate this node we 3465 * could replay operations on this node that happened when it 3466 * existed in a completely different root. For example if it 3467 * was part of root A, then was reallocated to root B, and we 3468 * are doing a btrfs_old_search_slot(root b), we could replay 3469 * operations that happened when the block was part of root A, 3470 * giving us an inconsistent view of the btree. 3471 * 3472 * We are safe from races here because at this point no other 3473 * node or root points to this extent buffer, so if after this 3474 * check a new tree mod log user joins we will not have an 3475 * existing log of operations on this node that we have to 3476 * contend with. 3477 */ 3478 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3479 must_pin = true; 3480 3481 if (must_pin || btrfs_is_zoned(fs_info)) { 3482 btrfs_redirty_list_add(trans->transaction, buf); 3483 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3484 btrfs_put_block_group(cache); 3485 goto out; 3486 } 3487 3488 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3489 3490 btrfs_add_free_space(cache, buf->start, buf->len); 3491 btrfs_free_reserved_bytes(cache, buf->len, 0); 3492 btrfs_put_block_group(cache); 3493 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3494 } 3495 out: 3496 if (last_ref) { 3497 /* 3498 * Deleting the buffer, clear the corrupt flag since it doesn't 3499 * matter anymore. 3500 */ 3501 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3502 } 3503 } 3504 3505 /* Can return -ENOMEM */ 3506 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3507 { 3508 struct btrfs_fs_info *fs_info = trans->fs_info; 3509 int ret; 3510 3511 if (btrfs_is_testing(fs_info)) 3512 return 0; 3513 3514 /* 3515 * tree log blocks never actually go into the extent allocation 3516 * tree, just update pinning info and exit early. 3517 */ 3518 if ((ref->type == BTRFS_REF_METADATA && 3519 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3520 (ref->type == BTRFS_REF_DATA && 3521 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3522 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3523 ret = 0; 3524 } else if (ref->type == BTRFS_REF_METADATA) { 3525 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3526 } else { 3527 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3528 } 3529 3530 if (!((ref->type == BTRFS_REF_METADATA && 3531 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3532 (ref->type == BTRFS_REF_DATA && 3533 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3534 btrfs_ref_tree_mod(fs_info, ref); 3535 3536 return ret; 3537 } 3538 3539 enum btrfs_loop_type { 3540 /* 3541 * Start caching block groups but do not wait for progress or for them 3542 * to be done. 3543 */ 3544 LOOP_CACHING_NOWAIT, 3545 3546 /* 3547 * Wait for the block group free_space >= the space we're waiting for if 3548 * the block group isn't cached. 3549 */ 3550 LOOP_CACHING_WAIT, 3551 3552 /* 3553 * Allow allocations to happen from block groups that do not yet have a 3554 * size classification. 3555 */ 3556 LOOP_UNSET_SIZE_CLASS, 3557 3558 /* 3559 * Allocate a chunk and then retry the allocation. 3560 */ 3561 LOOP_ALLOC_CHUNK, 3562 3563 /* 3564 * Ignore the size class restrictions for this allocation. 3565 */ 3566 LOOP_WRONG_SIZE_CLASS, 3567 3568 /* 3569 * Ignore the empty size, only try to allocate the number of bytes 3570 * needed for this allocation. 3571 */ 3572 LOOP_NO_EMPTY_SIZE, 3573 }; 3574 3575 static inline void 3576 btrfs_lock_block_group(struct btrfs_block_group *cache, 3577 int delalloc) 3578 { 3579 if (delalloc) 3580 down_read(&cache->data_rwsem); 3581 } 3582 3583 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3584 int delalloc) 3585 { 3586 btrfs_get_block_group(cache); 3587 if (delalloc) 3588 down_read(&cache->data_rwsem); 3589 } 3590 3591 static struct btrfs_block_group *btrfs_lock_cluster( 3592 struct btrfs_block_group *block_group, 3593 struct btrfs_free_cluster *cluster, 3594 int delalloc) 3595 __acquires(&cluster->refill_lock) 3596 { 3597 struct btrfs_block_group *used_bg = NULL; 3598 3599 spin_lock(&cluster->refill_lock); 3600 while (1) { 3601 used_bg = cluster->block_group; 3602 if (!used_bg) 3603 return NULL; 3604 3605 if (used_bg == block_group) 3606 return used_bg; 3607 3608 btrfs_get_block_group(used_bg); 3609 3610 if (!delalloc) 3611 return used_bg; 3612 3613 if (down_read_trylock(&used_bg->data_rwsem)) 3614 return used_bg; 3615 3616 spin_unlock(&cluster->refill_lock); 3617 3618 /* We should only have one-level nested. */ 3619 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3620 3621 spin_lock(&cluster->refill_lock); 3622 if (used_bg == cluster->block_group) 3623 return used_bg; 3624 3625 up_read(&used_bg->data_rwsem); 3626 btrfs_put_block_group(used_bg); 3627 } 3628 } 3629 3630 static inline void 3631 btrfs_release_block_group(struct btrfs_block_group *cache, 3632 int delalloc) 3633 { 3634 if (delalloc) 3635 up_read(&cache->data_rwsem); 3636 btrfs_put_block_group(cache); 3637 } 3638 3639 /* 3640 * Helper function for find_free_extent(). 3641 * 3642 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3643 * Return >0 to inform caller that we find nothing 3644 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3645 */ 3646 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3647 struct find_free_extent_ctl *ffe_ctl, 3648 struct btrfs_block_group **cluster_bg_ret) 3649 { 3650 struct btrfs_block_group *cluster_bg; 3651 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3652 u64 aligned_cluster; 3653 u64 offset; 3654 int ret; 3655 3656 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3657 if (!cluster_bg) 3658 goto refill_cluster; 3659 if (cluster_bg != bg && (cluster_bg->ro || 3660 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3661 goto release_cluster; 3662 3663 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3664 ffe_ctl->num_bytes, cluster_bg->start, 3665 &ffe_ctl->max_extent_size); 3666 if (offset) { 3667 /* We have a block, we're done */ 3668 spin_unlock(&last_ptr->refill_lock); 3669 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3670 *cluster_bg_ret = cluster_bg; 3671 ffe_ctl->found_offset = offset; 3672 return 0; 3673 } 3674 WARN_ON(last_ptr->block_group != cluster_bg); 3675 3676 release_cluster: 3677 /* 3678 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3679 * lets just skip it and let the allocator find whatever block it can 3680 * find. If we reach this point, we will have tried the cluster 3681 * allocator plenty of times and not have found anything, so we are 3682 * likely way too fragmented for the clustering stuff to find anything. 3683 * 3684 * However, if the cluster is taken from the current block group, 3685 * release the cluster first, so that we stand a better chance of 3686 * succeeding in the unclustered allocation. 3687 */ 3688 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3689 spin_unlock(&last_ptr->refill_lock); 3690 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3691 return -ENOENT; 3692 } 3693 3694 /* This cluster didn't work out, free it and start over */ 3695 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3696 3697 if (cluster_bg != bg) 3698 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3699 3700 refill_cluster: 3701 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3702 spin_unlock(&last_ptr->refill_lock); 3703 return -ENOENT; 3704 } 3705 3706 aligned_cluster = max_t(u64, 3707 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3708 bg->full_stripe_len); 3709 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3710 ffe_ctl->num_bytes, aligned_cluster); 3711 if (ret == 0) { 3712 /* Now pull our allocation out of this cluster */ 3713 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3714 ffe_ctl->num_bytes, ffe_ctl->search_start, 3715 &ffe_ctl->max_extent_size); 3716 if (offset) { 3717 /* We found one, proceed */ 3718 spin_unlock(&last_ptr->refill_lock); 3719 ffe_ctl->found_offset = offset; 3720 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3721 return 0; 3722 } 3723 } 3724 /* 3725 * At this point we either didn't find a cluster or we weren't able to 3726 * allocate a block from our cluster. Free the cluster we've been 3727 * trying to use, and go to the next block group. 3728 */ 3729 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3730 spin_unlock(&last_ptr->refill_lock); 3731 return 1; 3732 } 3733 3734 /* 3735 * Return >0 to inform caller that we find nothing 3736 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3737 */ 3738 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3739 struct find_free_extent_ctl *ffe_ctl) 3740 { 3741 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3742 u64 offset; 3743 3744 /* 3745 * We are doing an unclustered allocation, set the fragmented flag so 3746 * we don't bother trying to setup a cluster again until we get more 3747 * space. 3748 */ 3749 if (unlikely(last_ptr)) { 3750 spin_lock(&last_ptr->lock); 3751 last_ptr->fragmented = 1; 3752 spin_unlock(&last_ptr->lock); 3753 } 3754 if (ffe_ctl->cached) { 3755 struct btrfs_free_space_ctl *free_space_ctl; 3756 3757 free_space_ctl = bg->free_space_ctl; 3758 spin_lock(&free_space_ctl->tree_lock); 3759 if (free_space_ctl->free_space < 3760 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3761 ffe_ctl->empty_size) { 3762 ffe_ctl->total_free_space = max_t(u64, 3763 ffe_ctl->total_free_space, 3764 free_space_ctl->free_space); 3765 spin_unlock(&free_space_ctl->tree_lock); 3766 return 1; 3767 } 3768 spin_unlock(&free_space_ctl->tree_lock); 3769 } 3770 3771 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3772 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3773 &ffe_ctl->max_extent_size); 3774 if (!offset) 3775 return 1; 3776 ffe_ctl->found_offset = offset; 3777 return 0; 3778 } 3779 3780 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3781 struct find_free_extent_ctl *ffe_ctl, 3782 struct btrfs_block_group **bg_ret) 3783 { 3784 int ret; 3785 3786 /* We want to try and use the cluster allocator, so lets look there */ 3787 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3788 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3789 if (ret >= 0) 3790 return ret; 3791 /* ret == -ENOENT case falls through */ 3792 } 3793 3794 return find_free_extent_unclustered(block_group, ffe_ctl); 3795 } 3796 3797 /* 3798 * Tree-log block group locking 3799 * ============================ 3800 * 3801 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3802 * indicates the starting address of a block group, which is reserved only 3803 * for tree-log metadata. 3804 * 3805 * Lock nesting 3806 * ============ 3807 * 3808 * space_info::lock 3809 * block_group::lock 3810 * fs_info::treelog_bg_lock 3811 */ 3812 3813 /* 3814 * Simple allocator for sequential-only block group. It only allows sequential 3815 * allocation. No need to play with trees. This function also reserves the 3816 * bytes as in btrfs_add_reserved_bytes. 3817 */ 3818 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3819 struct find_free_extent_ctl *ffe_ctl, 3820 struct btrfs_block_group **bg_ret) 3821 { 3822 struct btrfs_fs_info *fs_info = block_group->fs_info; 3823 struct btrfs_space_info *space_info = block_group->space_info; 3824 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3825 u64 start = block_group->start; 3826 u64 num_bytes = ffe_ctl->num_bytes; 3827 u64 avail; 3828 u64 bytenr = block_group->start; 3829 u64 log_bytenr; 3830 u64 data_reloc_bytenr; 3831 int ret = 0; 3832 bool skip = false; 3833 3834 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3835 3836 /* 3837 * Do not allow non-tree-log blocks in the dedicated tree-log block 3838 * group, and vice versa. 3839 */ 3840 spin_lock(&fs_info->treelog_bg_lock); 3841 log_bytenr = fs_info->treelog_bg; 3842 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3843 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3844 skip = true; 3845 spin_unlock(&fs_info->treelog_bg_lock); 3846 if (skip) 3847 return 1; 3848 3849 /* 3850 * Do not allow non-relocation blocks in the dedicated relocation block 3851 * group, and vice versa. 3852 */ 3853 spin_lock(&fs_info->relocation_bg_lock); 3854 data_reloc_bytenr = fs_info->data_reloc_bg; 3855 if (data_reloc_bytenr && 3856 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3857 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3858 skip = true; 3859 spin_unlock(&fs_info->relocation_bg_lock); 3860 if (skip) 3861 return 1; 3862 3863 /* Check RO and no space case before trying to activate it */ 3864 spin_lock(&block_group->lock); 3865 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3866 ret = 1; 3867 /* 3868 * May need to clear fs_info->{treelog,data_reloc}_bg. 3869 * Return the error after taking the locks. 3870 */ 3871 } 3872 spin_unlock(&block_group->lock); 3873 3874 /* Metadata block group is activated at write time. */ 3875 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3876 !btrfs_zone_activate(block_group)) { 3877 ret = 1; 3878 /* 3879 * May need to clear fs_info->{treelog,data_reloc}_bg. 3880 * Return the error after taking the locks. 3881 */ 3882 } 3883 3884 spin_lock(&space_info->lock); 3885 spin_lock(&block_group->lock); 3886 spin_lock(&fs_info->treelog_bg_lock); 3887 spin_lock(&fs_info->relocation_bg_lock); 3888 3889 if (ret) 3890 goto out; 3891 3892 ASSERT(!ffe_ctl->for_treelog || 3893 block_group->start == fs_info->treelog_bg || 3894 fs_info->treelog_bg == 0); 3895 ASSERT(!ffe_ctl->for_data_reloc || 3896 block_group->start == fs_info->data_reloc_bg || 3897 fs_info->data_reloc_bg == 0); 3898 3899 if (block_group->ro || 3900 (!ffe_ctl->for_data_reloc && 3901 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3902 ret = 1; 3903 goto out; 3904 } 3905 3906 /* 3907 * Do not allow currently using block group to be tree-log dedicated 3908 * block group. 3909 */ 3910 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3911 (block_group->used || block_group->reserved)) { 3912 ret = 1; 3913 goto out; 3914 } 3915 3916 /* 3917 * Do not allow currently used block group to be the data relocation 3918 * dedicated block group. 3919 */ 3920 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3921 (block_group->used || block_group->reserved)) { 3922 ret = 1; 3923 goto out; 3924 } 3925 3926 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3927 avail = block_group->zone_capacity - block_group->alloc_offset; 3928 if (avail < num_bytes) { 3929 if (ffe_ctl->max_extent_size < avail) { 3930 /* 3931 * With sequential allocator, free space is always 3932 * contiguous 3933 */ 3934 ffe_ctl->max_extent_size = avail; 3935 ffe_ctl->total_free_space = avail; 3936 } 3937 ret = 1; 3938 goto out; 3939 } 3940 3941 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3942 fs_info->treelog_bg = block_group->start; 3943 3944 if (ffe_ctl->for_data_reloc) { 3945 if (!fs_info->data_reloc_bg) 3946 fs_info->data_reloc_bg = block_group->start; 3947 /* 3948 * Do not allow allocations from this block group, unless it is 3949 * for data relocation. Compared to increasing the ->ro, setting 3950 * the ->zoned_data_reloc_ongoing flag still allows nocow 3951 * writers to come in. See btrfs_inc_nocow_writers(). 3952 * 3953 * We need to disable an allocation to avoid an allocation of 3954 * regular (non-relocation data) extent. With mix of relocation 3955 * extents and regular extents, we can dispatch WRITE commands 3956 * (for relocation extents) and ZONE APPEND commands (for 3957 * regular extents) at the same time to the same zone, which 3958 * easily break the write pointer. 3959 * 3960 * Also, this flag avoids this block group to be zone finished. 3961 */ 3962 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3963 } 3964 3965 ffe_ctl->found_offset = start + block_group->alloc_offset; 3966 block_group->alloc_offset += num_bytes; 3967 spin_lock(&ctl->tree_lock); 3968 ctl->free_space -= num_bytes; 3969 spin_unlock(&ctl->tree_lock); 3970 3971 /* 3972 * We do not check if found_offset is aligned to stripesize. The 3973 * address is anyway rewritten when using zone append writing. 3974 */ 3975 3976 ffe_ctl->search_start = ffe_ctl->found_offset; 3977 3978 out: 3979 if (ret && ffe_ctl->for_treelog) 3980 fs_info->treelog_bg = 0; 3981 if (ret && ffe_ctl->for_data_reloc) 3982 fs_info->data_reloc_bg = 0; 3983 spin_unlock(&fs_info->relocation_bg_lock); 3984 spin_unlock(&fs_info->treelog_bg_lock); 3985 spin_unlock(&block_group->lock); 3986 spin_unlock(&space_info->lock); 3987 return ret; 3988 } 3989 3990 static int do_allocation(struct btrfs_block_group *block_group, 3991 struct find_free_extent_ctl *ffe_ctl, 3992 struct btrfs_block_group **bg_ret) 3993 { 3994 switch (ffe_ctl->policy) { 3995 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3996 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3997 case BTRFS_EXTENT_ALLOC_ZONED: 3998 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3999 default: 4000 BUG(); 4001 } 4002 } 4003 4004 static void release_block_group(struct btrfs_block_group *block_group, 4005 struct find_free_extent_ctl *ffe_ctl, 4006 int delalloc) 4007 { 4008 switch (ffe_ctl->policy) { 4009 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4010 ffe_ctl->retry_uncached = false; 4011 break; 4012 case BTRFS_EXTENT_ALLOC_ZONED: 4013 /* Nothing to do */ 4014 break; 4015 default: 4016 BUG(); 4017 } 4018 4019 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4020 ffe_ctl->index); 4021 btrfs_release_block_group(block_group, delalloc); 4022 } 4023 4024 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4025 struct btrfs_key *ins) 4026 { 4027 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4028 4029 if (!ffe_ctl->use_cluster && last_ptr) { 4030 spin_lock(&last_ptr->lock); 4031 last_ptr->window_start = ins->objectid; 4032 spin_unlock(&last_ptr->lock); 4033 } 4034 } 4035 4036 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4037 struct btrfs_key *ins) 4038 { 4039 switch (ffe_ctl->policy) { 4040 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4041 found_extent_clustered(ffe_ctl, ins); 4042 break; 4043 case BTRFS_EXTENT_ALLOC_ZONED: 4044 /* Nothing to do */ 4045 break; 4046 default: 4047 BUG(); 4048 } 4049 } 4050 4051 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4052 struct find_free_extent_ctl *ffe_ctl) 4053 { 4054 /* Block group's activeness is not a requirement for METADATA block groups. */ 4055 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4056 return 0; 4057 4058 /* If we can activate new zone, just allocate a chunk and use it */ 4059 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4060 return 0; 4061 4062 /* 4063 * We already reached the max active zones. Try to finish one block 4064 * group to make a room for a new block group. This is only possible 4065 * for a data block group because btrfs_zone_finish() may need to wait 4066 * for a running transaction which can cause a deadlock for metadata 4067 * allocation. 4068 */ 4069 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4070 int ret = btrfs_zone_finish_one_bg(fs_info); 4071 4072 if (ret == 1) 4073 return 0; 4074 else if (ret < 0) 4075 return ret; 4076 } 4077 4078 /* 4079 * If we have enough free space left in an already active block group 4080 * and we can't activate any other zone now, do not allow allocating a 4081 * new chunk and let find_free_extent() retry with a smaller size. 4082 */ 4083 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4084 return -ENOSPC; 4085 4086 /* 4087 * Even min_alloc_size is not left in any block groups. Since we cannot 4088 * activate a new block group, allocating it may not help. Let's tell a 4089 * caller to try again and hope it progress something by writing some 4090 * parts of the region. That is only possible for data block groups, 4091 * where a part of the region can be written. 4092 */ 4093 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4094 return -EAGAIN; 4095 4096 /* 4097 * We cannot activate a new block group and no enough space left in any 4098 * block groups. So, allocating a new block group may not help. But, 4099 * there is nothing to do anyway, so let's go with it. 4100 */ 4101 return 0; 4102 } 4103 4104 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4105 struct find_free_extent_ctl *ffe_ctl) 4106 { 4107 switch (ffe_ctl->policy) { 4108 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4109 return 0; 4110 case BTRFS_EXTENT_ALLOC_ZONED: 4111 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4112 default: 4113 BUG(); 4114 } 4115 } 4116 4117 /* 4118 * Return >0 means caller needs to re-search for free extent 4119 * Return 0 means we have the needed free extent. 4120 * Return <0 means we failed to locate any free extent. 4121 */ 4122 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4123 struct btrfs_key *ins, 4124 struct find_free_extent_ctl *ffe_ctl, 4125 bool full_search) 4126 { 4127 struct btrfs_root *root = fs_info->chunk_root; 4128 int ret; 4129 4130 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4131 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4132 ffe_ctl->orig_have_caching_bg = true; 4133 4134 if (ins->objectid) { 4135 found_extent(ffe_ctl, ins); 4136 return 0; 4137 } 4138 4139 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4140 return 1; 4141 4142 ffe_ctl->index++; 4143 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4144 return 1; 4145 4146 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4147 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4148 ffe_ctl->index = 0; 4149 /* 4150 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4151 * any uncached bgs and we've already done a full search 4152 * through. 4153 */ 4154 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4155 (!ffe_ctl->orig_have_caching_bg && full_search)) 4156 ffe_ctl->loop++; 4157 ffe_ctl->loop++; 4158 4159 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4160 struct btrfs_trans_handle *trans; 4161 int exist = 0; 4162 4163 /* Check if allocation policy allows to create a new chunk */ 4164 ret = can_allocate_chunk(fs_info, ffe_ctl); 4165 if (ret) 4166 return ret; 4167 4168 trans = current->journal_info; 4169 if (trans) 4170 exist = 1; 4171 else 4172 trans = btrfs_join_transaction(root); 4173 4174 if (IS_ERR(trans)) { 4175 ret = PTR_ERR(trans); 4176 return ret; 4177 } 4178 4179 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4180 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4181 4182 /* Do not bail out on ENOSPC since we can do more. */ 4183 if (ret == -ENOSPC) { 4184 ret = 0; 4185 ffe_ctl->loop++; 4186 } 4187 else if (ret < 0) 4188 btrfs_abort_transaction(trans, ret); 4189 else 4190 ret = 0; 4191 if (!exist) 4192 btrfs_end_transaction(trans); 4193 if (ret) 4194 return ret; 4195 } 4196 4197 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4198 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4199 return -ENOSPC; 4200 4201 /* 4202 * Don't loop again if we already have no empty_size and 4203 * no empty_cluster. 4204 */ 4205 if (ffe_ctl->empty_size == 0 && 4206 ffe_ctl->empty_cluster == 0) 4207 return -ENOSPC; 4208 ffe_ctl->empty_size = 0; 4209 ffe_ctl->empty_cluster = 0; 4210 } 4211 return 1; 4212 } 4213 return -ENOSPC; 4214 } 4215 4216 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4217 struct btrfs_block_group *bg) 4218 { 4219 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4220 return true; 4221 if (!btrfs_block_group_should_use_size_class(bg)) 4222 return true; 4223 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4224 return true; 4225 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4226 bg->size_class == BTRFS_BG_SZ_NONE) 4227 return true; 4228 return ffe_ctl->size_class == bg->size_class; 4229 } 4230 4231 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4232 struct find_free_extent_ctl *ffe_ctl, 4233 struct btrfs_space_info *space_info, 4234 struct btrfs_key *ins) 4235 { 4236 /* 4237 * If our free space is heavily fragmented we may not be able to make 4238 * big contiguous allocations, so instead of doing the expensive search 4239 * for free space, simply return ENOSPC with our max_extent_size so we 4240 * can go ahead and search for a more manageable chunk. 4241 * 4242 * If our max_extent_size is large enough for our allocation simply 4243 * disable clustering since we will likely not be able to find enough 4244 * space to create a cluster and induce latency trying. 4245 */ 4246 if (space_info->max_extent_size) { 4247 spin_lock(&space_info->lock); 4248 if (space_info->max_extent_size && 4249 ffe_ctl->num_bytes > space_info->max_extent_size) { 4250 ins->offset = space_info->max_extent_size; 4251 spin_unlock(&space_info->lock); 4252 return -ENOSPC; 4253 } else if (space_info->max_extent_size) { 4254 ffe_ctl->use_cluster = false; 4255 } 4256 spin_unlock(&space_info->lock); 4257 } 4258 4259 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4260 &ffe_ctl->empty_cluster); 4261 if (ffe_ctl->last_ptr) { 4262 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4263 4264 spin_lock(&last_ptr->lock); 4265 if (last_ptr->block_group) 4266 ffe_ctl->hint_byte = last_ptr->window_start; 4267 if (last_ptr->fragmented) { 4268 /* 4269 * We still set window_start so we can keep track of the 4270 * last place we found an allocation to try and save 4271 * some time. 4272 */ 4273 ffe_ctl->hint_byte = last_ptr->window_start; 4274 ffe_ctl->use_cluster = false; 4275 } 4276 spin_unlock(&last_ptr->lock); 4277 } 4278 4279 return 0; 4280 } 4281 4282 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4283 struct find_free_extent_ctl *ffe_ctl, 4284 struct btrfs_space_info *space_info, 4285 struct btrfs_key *ins) 4286 { 4287 switch (ffe_ctl->policy) { 4288 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4289 return prepare_allocation_clustered(fs_info, ffe_ctl, 4290 space_info, ins); 4291 case BTRFS_EXTENT_ALLOC_ZONED: 4292 if (ffe_ctl->for_treelog) { 4293 spin_lock(&fs_info->treelog_bg_lock); 4294 if (fs_info->treelog_bg) 4295 ffe_ctl->hint_byte = fs_info->treelog_bg; 4296 spin_unlock(&fs_info->treelog_bg_lock); 4297 } 4298 if (ffe_ctl->for_data_reloc) { 4299 spin_lock(&fs_info->relocation_bg_lock); 4300 if (fs_info->data_reloc_bg) 4301 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4302 spin_unlock(&fs_info->relocation_bg_lock); 4303 } 4304 return 0; 4305 default: 4306 BUG(); 4307 } 4308 } 4309 4310 /* 4311 * walks the btree of allocated extents and find a hole of a given size. 4312 * The key ins is changed to record the hole: 4313 * ins->objectid == start position 4314 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4315 * ins->offset == the size of the hole. 4316 * Any available blocks before search_start are skipped. 4317 * 4318 * If there is no suitable free space, we will record the max size of 4319 * the free space extent currently. 4320 * 4321 * The overall logic and call chain: 4322 * 4323 * find_free_extent() 4324 * |- Iterate through all block groups 4325 * | |- Get a valid block group 4326 * | |- Try to do clustered allocation in that block group 4327 * | |- Try to do unclustered allocation in that block group 4328 * | |- Check if the result is valid 4329 * | | |- If valid, then exit 4330 * | |- Jump to next block group 4331 * | 4332 * |- Push harder to find free extents 4333 * |- If not found, re-iterate all block groups 4334 */ 4335 static noinline int find_free_extent(struct btrfs_root *root, 4336 struct btrfs_key *ins, 4337 struct find_free_extent_ctl *ffe_ctl) 4338 { 4339 struct btrfs_fs_info *fs_info = root->fs_info; 4340 int ret = 0; 4341 int cache_block_group_error = 0; 4342 struct btrfs_block_group *block_group = NULL; 4343 struct btrfs_space_info *space_info; 4344 bool full_search = false; 4345 4346 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4347 4348 ffe_ctl->search_start = 0; 4349 /* For clustered allocation */ 4350 ffe_ctl->empty_cluster = 0; 4351 ffe_ctl->last_ptr = NULL; 4352 ffe_ctl->use_cluster = true; 4353 ffe_ctl->have_caching_bg = false; 4354 ffe_ctl->orig_have_caching_bg = false; 4355 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4356 ffe_ctl->loop = 0; 4357 ffe_ctl->retry_uncached = false; 4358 ffe_ctl->cached = 0; 4359 ffe_ctl->max_extent_size = 0; 4360 ffe_ctl->total_free_space = 0; 4361 ffe_ctl->found_offset = 0; 4362 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4363 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4364 4365 if (btrfs_is_zoned(fs_info)) 4366 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4367 4368 ins->type = BTRFS_EXTENT_ITEM_KEY; 4369 ins->objectid = 0; 4370 ins->offset = 0; 4371 4372 trace_find_free_extent(root, ffe_ctl); 4373 4374 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4375 if (!space_info) { 4376 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4377 return -ENOSPC; 4378 } 4379 4380 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4381 if (ret < 0) 4382 return ret; 4383 4384 ffe_ctl->search_start = max(ffe_ctl->search_start, 4385 first_logical_byte(fs_info)); 4386 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4387 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4388 block_group = btrfs_lookup_block_group(fs_info, 4389 ffe_ctl->search_start); 4390 /* 4391 * we don't want to use the block group if it doesn't match our 4392 * allocation bits, or if its not cached. 4393 * 4394 * However if we are re-searching with an ideal block group 4395 * picked out then we don't care that the block group is cached. 4396 */ 4397 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4398 block_group->cached != BTRFS_CACHE_NO) { 4399 down_read(&space_info->groups_sem); 4400 if (list_empty(&block_group->list) || 4401 block_group->ro) { 4402 /* 4403 * someone is removing this block group, 4404 * we can't jump into the have_block_group 4405 * target because our list pointers are not 4406 * valid 4407 */ 4408 btrfs_put_block_group(block_group); 4409 up_read(&space_info->groups_sem); 4410 } else { 4411 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4412 block_group->flags); 4413 btrfs_lock_block_group(block_group, 4414 ffe_ctl->delalloc); 4415 ffe_ctl->hinted = true; 4416 goto have_block_group; 4417 } 4418 } else if (block_group) { 4419 btrfs_put_block_group(block_group); 4420 } 4421 } 4422 search: 4423 trace_find_free_extent_search_loop(root, ffe_ctl); 4424 ffe_ctl->have_caching_bg = false; 4425 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4426 ffe_ctl->index == 0) 4427 full_search = true; 4428 down_read(&space_info->groups_sem); 4429 list_for_each_entry(block_group, 4430 &space_info->block_groups[ffe_ctl->index], list) { 4431 struct btrfs_block_group *bg_ret; 4432 4433 ffe_ctl->hinted = false; 4434 /* If the block group is read-only, we can skip it entirely. */ 4435 if (unlikely(block_group->ro)) { 4436 if (ffe_ctl->for_treelog) 4437 btrfs_clear_treelog_bg(block_group); 4438 if (ffe_ctl->for_data_reloc) 4439 btrfs_clear_data_reloc_bg(block_group); 4440 continue; 4441 } 4442 4443 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4444 ffe_ctl->search_start = block_group->start; 4445 4446 /* 4447 * this can happen if we end up cycling through all the 4448 * raid types, but we want to make sure we only allocate 4449 * for the proper type. 4450 */ 4451 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4452 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4453 BTRFS_BLOCK_GROUP_RAID1_MASK | 4454 BTRFS_BLOCK_GROUP_RAID56_MASK | 4455 BTRFS_BLOCK_GROUP_RAID10; 4456 4457 /* 4458 * if they asked for extra copies and this block group 4459 * doesn't provide them, bail. This does allow us to 4460 * fill raid0 from raid1. 4461 */ 4462 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4463 goto loop; 4464 4465 /* 4466 * This block group has different flags than we want. 4467 * It's possible that we have MIXED_GROUP flag but no 4468 * block group is mixed. Just skip such block group. 4469 */ 4470 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4471 continue; 4472 } 4473 4474 have_block_group: 4475 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4476 ffe_ctl->cached = btrfs_block_group_done(block_group); 4477 if (unlikely(!ffe_ctl->cached)) { 4478 ffe_ctl->have_caching_bg = true; 4479 ret = btrfs_cache_block_group(block_group, false); 4480 4481 /* 4482 * If we get ENOMEM here or something else we want to 4483 * try other block groups, because it may not be fatal. 4484 * However if we can't find anything else we need to 4485 * save our return here so that we return the actual 4486 * error that caused problems, not ENOSPC. 4487 */ 4488 if (ret < 0) { 4489 if (!cache_block_group_error) 4490 cache_block_group_error = ret; 4491 ret = 0; 4492 goto loop; 4493 } 4494 ret = 0; 4495 } 4496 4497 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4498 if (!cache_block_group_error) 4499 cache_block_group_error = -EIO; 4500 goto loop; 4501 } 4502 4503 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4504 goto loop; 4505 4506 bg_ret = NULL; 4507 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4508 if (ret > 0) 4509 goto loop; 4510 4511 if (bg_ret && bg_ret != block_group) { 4512 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4513 block_group = bg_ret; 4514 } 4515 4516 /* Checks */ 4517 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4518 fs_info->stripesize); 4519 4520 /* move on to the next group */ 4521 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4522 block_group->start + block_group->length) { 4523 btrfs_add_free_space_unused(block_group, 4524 ffe_ctl->found_offset, 4525 ffe_ctl->num_bytes); 4526 goto loop; 4527 } 4528 4529 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4530 btrfs_add_free_space_unused(block_group, 4531 ffe_ctl->found_offset, 4532 ffe_ctl->search_start - ffe_ctl->found_offset); 4533 4534 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4535 ffe_ctl->num_bytes, 4536 ffe_ctl->delalloc, 4537 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4538 if (ret == -EAGAIN) { 4539 btrfs_add_free_space_unused(block_group, 4540 ffe_ctl->found_offset, 4541 ffe_ctl->num_bytes); 4542 goto loop; 4543 } 4544 btrfs_inc_block_group_reservations(block_group); 4545 4546 /* we are all good, lets return */ 4547 ins->objectid = ffe_ctl->search_start; 4548 ins->offset = ffe_ctl->num_bytes; 4549 4550 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4551 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4552 break; 4553 loop: 4554 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4555 !ffe_ctl->retry_uncached) { 4556 ffe_ctl->retry_uncached = true; 4557 btrfs_wait_block_group_cache_progress(block_group, 4558 ffe_ctl->num_bytes + 4559 ffe_ctl->empty_cluster + 4560 ffe_ctl->empty_size); 4561 goto have_block_group; 4562 } 4563 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4564 cond_resched(); 4565 } 4566 up_read(&space_info->groups_sem); 4567 4568 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4569 if (ret > 0) 4570 goto search; 4571 4572 if (ret == -ENOSPC && !cache_block_group_error) { 4573 /* 4574 * Use ffe_ctl->total_free_space as fallback if we can't find 4575 * any contiguous hole. 4576 */ 4577 if (!ffe_ctl->max_extent_size) 4578 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4579 spin_lock(&space_info->lock); 4580 space_info->max_extent_size = ffe_ctl->max_extent_size; 4581 spin_unlock(&space_info->lock); 4582 ins->offset = ffe_ctl->max_extent_size; 4583 } else if (ret == -ENOSPC) { 4584 ret = cache_block_group_error; 4585 } 4586 return ret; 4587 } 4588 4589 /* 4590 * Entry point to the extent allocator. Tries to find a hole that is at least 4591 * as big as @num_bytes. 4592 * 4593 * @root - The root that will contain this extent 4594 * 4595 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4596 * is used for accounting purposes. This value differs 4597 * from @num_bytes only in the case of compressed extents. 4598 * 4599 * @num_bytes - Number of bytes to allocate on-disk. 4600 * 4601 * @min_alloc_size - Indicates the minimum amount of space that the 4602 * allocator should try to satisfy. In some cases 4603 * @num_bytes may be larger than what is required and if 4604 * the filesystem is fragmented then allocation fails. 4605 * However, the presence of @min_alloc_size gives a 4606 * chance to try and satisfy the smaller allocation. 4607 * 4608 * @empty_size - A hint that you plan on doing more COW. This is the 4609 * size in bytes the allocator should try to find free 4610 * next to the block it returns. This is just a hint and 4611 * may be ignored by the allocator. 4612 * 4613 * @hint_byte - Hint to the allocator to start searching above the byte 4614 * address passed. It might be ignored. 4615 * 4616 * @ins - This key is modified to record the found hole. It will 4617 * have the following values: 4618 * ins->objectid == start position 4619 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4620 * ins->offset == the size of the hole. 4621 * 4622 * @is_data - Boolean flag indicating whether an extent is 4623 * allocated for data (true) or metadata (false) 4624 * 4625 * @delalloc - Boolean flag indicating whether this allocation is for 4626 * delalloc or not. If 'true' data_rwsem of block groups 4627 * is going to be acquired. 4628 * 4629 * 4630 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4631 * case -ENOSPC is returned then @ins->offset will contain the size of the 4632 * largest available hole the allocator managed to find. 4633 */ 4634 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4635 u64 num_bytes, u64 min_alloc_size, 4636 u64 empty_size, u64 hint_byte, 4637 struct btrfs_key *ins, int is_data, int delalloc) 4638 { 4639 struct btrfs_fs_info *fs_info = root->fs_info; 4640 struct find_free_extent_ctl ffe_ctl = {}; 4641 bool final_tried = num_bytes == min_alloc_size; 4642 u64 flags; 4643 int ret; 4644 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4645 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4646 4647 flags = get_alloc_profile_by_root(root, is_data); 4648 again: 4649 WARN_ON(num_bytes < fs_info->sectorsize); 4650 4651 ffe_ctl.ram_bytes = ram_bytes; 4652 ffe_ctl.num_bytes = num_bytes; 4653 ffe_ctl.min_alloc_size = min_alloc_size; 4654 ffe_ctl.empty_size = empty_size; 4655 ffe_ctl.flags = flags; 4656 ffe_ctl.delalloc = delalloc; 4657 ffe_ctl.hint_byte = hint_byte; 4658 ffe_ctl.for_treelog = for_treelog; 4659 ffe_ctl.for_data_reloc = for_data_reloc; 4660 4661 ret = find_free_extent(root, ins, &ffe_ctl); 4662 if (!ret && !is_data) { 4663 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4664 } else if (ret == -ENOSPC) { 4665 if (!final_tried && ins->offset) { 4666 num_bytes = min(num_bytes >> 1, ins->offset); 4667 num_bytes = round_down(num_bytes, 4668 fs_info->sectorsize); 4669 num_bytes = max(num_bytes, min_alloc_size); 4670 ram_bytes = num_bytes; 4671 if (num_bytes == min_alloc_size) 4672 final_tried = true; 4673 goto again; 4674 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4675 struct btrfs_space_info *sinfo; 4676 4677 sinfo = btrfs_find_space_info(fs_info, flags); 4678 btrfs_err(fs_info, 4679 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4680 flags, num_bytes, for_treelog, for_data_reloc); 4681 if (sinfo) 4682 btrfs_dump_space_info(fs_info, sinfo, 4683 num_bytes, 1); 4684 } 4685 } 4686 4687 return ret; 4688 } 4689 4690 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4691 u64 start, u64 len, int delalloc) 4692 { 4693 struct btrfs_block_group *cache; 4694 4695 cache = btrfs_lookup_block_group(fs_info, start); 4696 if (!cache) { 4697 btrfs_err(fs_info, "Unable to find block group for %llu", 4698 start); 4699 return -ENOSPC; 4700 } 4701 4702 btrfs_add_free_space(cache, start, len); 4703 btrfs_free_reserved_bytes(cache, len, delalloc); 4704 trace_btrfs_reserved_extent_free(fs_info, start, len); 4705 4706 btrfs_put_block_group(cache); 4707 return 0; 4708 } 4709 4710 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4711 const struct extent_buffer *eb) 4712 { 4713 struct btrfs_block_group *cache; 4714 int ret = 0; 4715 4716 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4717 if (!cache) { 4718 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4719 eb->start); 4720 return -ENOSPC; 4721 } 4722 4723 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4724 btrfs_put_block_group(cache); 4725 return ret; 4726 } 4727 4728 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4729 u64 num_bytes) 4730 { 4731 struct btrfs_fs_info *fs_info = trans->fs_info; 4732 int ret; 4733 4734 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4735 if (ret) 4736 return ret; 4737 4738 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4739 if (ret) { 4740 ASSERT(!ret); 4741 btrfs_err(fs_info, "update block group failed for %llu %llu", 4742 bytenr, num_bytes); 4743 return ret; 4744 } 4745 4746 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4747 return 0; 4748 } 4749 4750 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4751 u64 parent, u64 root_objectid, 4752 u64 flags, u64 owner, u64 offset, 4753 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4754 { 4755 struct btrfs_fs_info *fs_info = trans->fs_info; 4756 struct btrfs_root *extent_root; 4757 int ret; 4758 struct btrfs_extent_item *extent_item; 4759 struct btrfs_extent_owner_ref *oref; 4760 struct btrfs_extent_inline_ref *iref; 4761 struct btrfs_path *path; 4762 struct extent_buffer *leaf; 4763 int type; 4764 u32 size; 4765 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4766 4767 if (parent > 0) 4768 type = BTRFS_SHARED_DATA_REF_KEY; 4769 else 4770 type = BTRFS_EXTENT_DATA_REF_KEY; 4771 4772 size = sizeof(*extent_item); 4773 if (simple_quota) 4774 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4775 size += btrfs_extent_inline_ref_size(type); 4776 4777 path = btrfs_alloc_path(); 4778 if (!path) 4779 return -ENOMEM; 4780 4781 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4782 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4783 if (ret) { 4784 btrfs_free_path(path); 4785 return ret; 4786 } 4787 4788 leaf = path->nodes[0]; 4789 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4790 struct btrfs_extent_item); 4791 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4792 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4793 btrfs_set_extent_flags(leaf, extent_item, 4794 flags | BTRFS_EXTENT_FLAG_DATA); 4795 4796 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4797 if (simple_quota) { 4798 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4799 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4800 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4801 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4802 } 4803 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4804 4805 if (parent > 0) { 4806 struct btrfs_shared_data_ref *ref; 4807 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4808 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4809 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4810 } else { 4811 struct btrfs_extent_data_ref *ref; 4812 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4813 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4814 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4815 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4816 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4817 } 4818 4819 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4820 btrfs_free_path(path); 4821 4822 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4823 } 4824 4825 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4826 struct btrfs_delayed_ref_node *node, 4827 struct btrfs_delayed_extent_op *extent_op) 4828 { 4829 struct btrfs_fs_info *fs_info = trans->fs_info; 4830 struct btrfs_root *extent_root; 4831 int ret; 4832 struct btrfs_extent_item *extent_item; 4833 struct btrfs_key extent_key; 4834 struct btrfs_tree_block_info *block_info; 4835 struct btrfs_extent_inline_ref *iref; 4836 struct btrfs_path *path; 4837 struct extent_buffer *leaf; 4838 struct btrfs_delayed_tree_ref *ref; 4839 u32 size = sizeof(*extent_item) + sizeof(*iref); 4840 u64 flags = extent_op->flags_to_set; 4841 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4842 4843 ref = btrfs_delayed_node_to_tree_ref(node); 4844 4845 extent_key.objectid = node->bytenr; 4846 if (skinny_metadata) { 4847 extent_key.offset = ref->level; 4848 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4849 } else { 4850 extent_key.offset = node->num_bytes; 4851 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4852 size += sizeof(*block_info); 4853 } 4854 4855 path = btrfs_alloc_path(); 4856 if (!path) 4857 return -ENOMEM; 4858 4859 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4860 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4861 size); 4862 if (ret) { 4863 btrfs_free_path(path); 4864 return ret; 4865 } 4866 4867 leaf = path->nodes[0]; 4868 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4869 struct btrfs_extent_item); 4870 btrfs_set_extent_refs(leaf, extent_item, 1); 4871 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4872 btrfs_set_extent_flags(leaf, extent_item, 4873 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4874 4875 if (skinny_metadata) { 4876 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4877 } else { 4878 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4879 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4880 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4881 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4882 } 4883 4884 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4885 btrfs_set_extent_inline_ref_type(leaf, iref, 4886 BTRFS_SHARED_BLOCK_REF_KEY); 4887 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4888 } else { 4889 btrfs_set_extent_inline_ref_type(leaf, iref, 4890 BTRFS_TREE_BLOCK_REF_KEY); 4891 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4892 } 4893 4894 btrfs_mark_buffer_dirty(trans, leaf); 4895 btrfs_free_path(path); 4896 4897 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4898 } 4899 4900 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4901 struct btrfs_root *root, u64 owner, 4902 u64 offset, u64 ram_bytes, 4903 struct btrfs_key *ins) 4904 { 4905 struct btrfs_ref generic_ref = { 0 }; 4906 u64 root_objectid = root->root_key.objectid; 4907 u64 owning_root = root_objectid; 4908 4909 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 4910 4911 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4912 owning_root = root->relocation_src_root; 4913 4914 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4915 ins->objectid, ins->offset, 0, owning_root); 4916 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4917 offset, 0, false); 4918 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4919 4920 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4921 } 4922 4923 /* 4924 * this is used by the tree logging recovery code. It records that 4925 * an extent has been allocated and makes sure to clear the free 4926 * space cache bits as well 4927 */ 4928 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4929 u64 root_objectid, u64 owner, u64 offset, 4930 struct btrfs_key *ins) 4931 { 4932 struct btrfs_fs_info *fs_info = trans->fs_info; 4933 int ret; 4934 struct btrfs_block_group *block_group; 4935 struct btrfs_space_info *space_info; 4936 struct btrfs_squota_delta delta = { 4937 .root = root_objectid, 4938 .num_bytes = ins->offset, 4939 .generation = trans->transid, 4940 .rsv_bytes = 0, 4941 .is_data = true, 4942 .is_inc = true, 4943 }; 4944 4945 /* 4946 * Mixed block groups will exclude before processing the log so we only 4947 * need to do the exclude dance if this fs isn't mixed. 4948 */ 4949 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4950 ret = __exclude_logged_extent(fs_info, ins->objectid, 4951 ins->offset); 4952 if (ret) 4953 return ret; 4954 } 4955 4956 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4957 if (!block_group) 4958 return -EINVAL; 4959 4960 space_info = block_group->space_info; 4961 spin_lock(&space_info->lock); 4962 spin_lock(&block_group->lock); 4963 space_info->bytes_reserved += ins->offset; 4964 block_group->reserved += ins->offset; 4965 spin_unlock(&block_group->lock); 4966 spin_unlock(&space_info->lock); 4967 4968 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4969 offset, ins, 1, root_objectid); 4970 if (ret) 4971 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4972 ret = btrfs_record_squota_delta(fs_info, &delta); 4973 btrfs_put_block_group(block_group); 4974 return ret; 4975 } 4976 4977 #ifdef CONFIG_BTRFS_DEBUG 4978 /* 4979 * Extra safety check in case the extent tree is corrupted and extent allocator 4980 * chooses to use a tree block which is already used and locked. 4981 */ 4982 static bool check_eb_lock_owner(const struct extent_buffer *eb) 4983 { 4984 if (eb->lock_owner == current->pid) { 4985 btrfs_err_rl(eb->fs_info, 4986 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4987 eb->start, btrfs_header_owner(eb), current->pid); 4988 return true; 4989 } 4990 return false; 4991 } 4992 #else 4993 static bool check_eb_lock_owner(struct extent_buffer *eb) 4994 { 4995 return false; 4996 } 4997 #endif 4998 4999 static struct extent_buffer * 5000 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5001 u64 bytenr, int level, u64 owner, 5002 enum btrfs_lock_nesting nest) 5003 { 5004 struct btrfs_fs_info *fs_info = root->fs_info; 5005 struct extent_buffer *buf; 5006 u64 lockdep_owner = owner; 5007 5008 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5009 if (IS_ERR(buf)) 5010 return buf; 5011 5012 if (check_eb_lock_owner(buf)) { 5013 free_extent_buffer(buf); 5014 return ERR_PTR(-EUCLEAN); 5015 } 5016 5017 /* 5018 * The reloc trees are just snapshots, so we need them to appear to be 5019 * just like any other fs tree WRT lockdep. 5020 * 5021 * The exception however is in replace_path() in relocation, where we 5022 * hold the lock on the original fs root and then search for the reloc 5023 * root. At that point we need to make sure any reloc root buffers are 5024 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5025 * lockdep happy. 5026 */ 5027 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5028 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5029 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5030 5031 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5032 btrfs_set_header_generation(buf, trans->transid); 5033 5034 /* 5035 * This needs to stay, because we could allocate a freed block from an 5036 * old tree into a new tree, so we need to make sure this new block is 5037 * set to the appropriate level and owner. 5038 */ 5039 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5040 5041 __btrfs_tree_lock(buf, nest); 5042 btrfs_clear_buffer_dirty(trans, buf); 5043 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5044 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 5045 5046 set_extent_buffer_uptodate(buf); 5047 5048 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5049 btrfs_set_header_level(buf, level); 5050 btrfs_set_header_bytenr(buf, buf->start); 5051 btrfs_set_header_generation(buf, trans->transid); 5052 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5053 btrfs_set_header_owner(buf, owner); 5054 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5055 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5056 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5057 buf->log_index = root->log_transid % 2; 5058 /* 5059 * we allow two log transactions at a time, use different 5060 * EXTENT bit to differentiate dirty pages. 5061 */ 5062 if (buf->log_index == 0) 5063 set_extent_bit(&root->dirty_log_pages, buf->start, 5064 buf->start + buf->len - 1, 5065 EXTENT_DIRTY, NULL); 5066 else 5067 set_extent_bit(&root->dirty_log_pages, buf->start, 5068 buf->start + buf->len - 1, 5069 EXTENT_NEW, NULL); 5070 } else { 5071 buf->log_index = -1; 5072 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5073 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5074 } 5075 /* this returns a buffer locked for blocking */ 5076 return buf; 5077 } 5078 5079 /* 5080 * finds a free extent and does all the dirty work required for allocation 5081 * returns the tree buffer or an ERR_PTR on error. 5082 */ 5083 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5084 struct btrfs_root *root, 5085 u64 parent, u64 root_objectid, 5086 const struct btrfs_disk_key *key, 5087 int level, u64 hint, 5088 u64 empty_size, 5089 u64 reloc_src_root, 5090 enum btrfs_lock_nesting nest) 5091 { 5092 struct btrfs_fs_info *fs_info = root->fs_info; 5093 struct btrfs_key ins; 5094 struct btrfs_block_rsv *block_rsv; 5095 struct extent_buffer *buf; 5096 struct btrfs_delayed_extent_op *extent_op; 5097 struct btrfs_ref generic_ref = { 0 }; 5098 u64 flags = 0; 5099 int ret; 5100 u32 blocksize = fs_info->nodesize; 5101 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5102 u64 owning_root; 5103 5104 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5105 if (btrfs_is_testing(fs_info)) { 5106 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5107 level, root_objectid, nest); 5108 if (!IS_ERR(buf)) 5109 root->alloc_bytenr += blocksize; 5110 return buf; 5111 } 5112 #endif 5113 5114 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5115 if (IS_ERR(block_rsv)) 5116 return ERR_CAST(block_rsv); 5117 5118 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5119 empty_size, hint, &ins, 0, 0); 5120 if (ret) 5121 goto out_unuse; 5122 5123 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5124 root_objectid, nest); 5125 if (IS_ERR(buf)) { 5126 ret = PTR_ERR(buf); 5127 goto out_free_reserved; 5128 } 5129 owning_root = btrfs_header_owner(buf); 5130 5131 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5132 if (parent == 0) 5133 parent = ins.objectid; 5134 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5135 owning_root = reloc_src_root; 5136 } else 5137 BUG_ON(parent > 0); 5138 5139 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5140 extent_op = btrfs_alloc_delayed_extent_op(); 5141 if (!extent_op) { 5142 ret = -ENOMEM; 5143 goto out_free_buf; 5144 } 5145 if (key) 5146 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5147 else 5148 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5149 extent_op->flags_to_set = flags; 5150 extent_op->update_key = skinny_metadata ? false : true; 5151 extent_op->update_flags = true; 5152 extent_op->level = level; 5153 5154 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5155 ins.objectid, ins.offset, parent, owning_root); 5156 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5157 root->root_key.objectid, false); 5158 btrfs_ref_tree_mod(fs_info, &generic_ref); 5159 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5160 if (ret) 5161 goto out_free_delayed; 5162 } 5163 return buf; 5164 5165 out_free_delayed: 5166 btrfs_free_delayed_extent_op(extent_op); 5167 out_free_buf: 5168 btrfs_tree_unlock(buf); 5169 free_extent_buffer(buf); 5170 out_free_reserved: 5171 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5172 out_unuse: 5173 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5174 return ERR_PTR(ret); 5175 } 5176 5177 struct walk_control { 5178 u64 refs[BTRFS_MAX_LEVEL]; 5179 u64 flags[BTRFS_MAX_LEVEL]; 5180 struct btrfs_key update_progress; 5181 struct btrfs_key drop_progress; 5182 int drop_level; 5183 int stage; 5184 int level; 5185 int shared_level; 5186 int update_ref; 5187 int keep_locks; 5188 int reada_slot; 5189 int reada_count; 5190 int restarted; 5191 }; 5192 5193 #define DROP_REFERENCE 1 5194 #define UPDATE_BACKREF 2 5195 5196 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5197 struct btrfs_root *root, 5198 struct walk_control *wc, 5199 struct btrfs_path *path) 5200 { 5201 struct btrfs_fs_info *fs_info = root->fs_info; 5202 u64 bytenr; 5203 u64 generation; 5204 u64 refs; 5205 u64 flags; 5206 u32 nritems; 5207 struct btrfs_key key; 5208 struct extent_buffer *eb; 5209 int ret; 5210 int slot; 5211 int nread = 0; 5212 5213 if (path->slots[wc->level] < wc->reada_slot) { 5214 wc->reada_count = wc->reada_count * 2 / 3; 5215 wc->reada_count = max(wc->reada_count, 2); 5216 } else { 5217 wc->reada_count = wc->reada_count * 3 / 2; 5218 wc->reada_count = min_t(int, wc->reada_count, 5219 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5220 } 5221 5222 eb = path->nodes[wc->level]; 5223 nritems = btrfs_header_nritems(eb); 5224 5225 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5226 if (nread >= wc->reada_count) 5227 break; 5228 5229 cond_resched(); 5230 bytenr = btrfs_node_blockptr(eb, slot); 5231 generation = btrfs_node_ptr_generation(eb, slot); 5232 5233 if (slot == path->slots[wc->level]) 5234 goto reada; 5235 5236 if (wc->stage == UPDATE_BACKREF && 5237 generation <= root->root_key.offset) 5238 continue; 5239 5240 /* We don't lock the tree block, it's OK to be racy here */ 5241 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5242 wc->level - 1, 1, &refs, 5243 &flags, NULL); 5244 /* We don't care about errors in readahead. */ 5245 if (ret < 0) 5246 continue; 5247 BUG_ON(refs == 0); 5248 5249 if (wc->stage == DROP_REFERENCE) { 5250 if (refs == 1) 5251 goto reada; 5252 5253 if (wc->level == 1 && 5254 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5255 continue; 5256 if (!wc->update_ref || 5257 generation <= root->root_key.offset) 5258 continue; 5259 btrfs_node_key_to_cpu(eb, &key, slot); 5260 ret = btrfs_comp_cpu_keys(&key, 5261 &wc->update_progress); 5262 if (ret < 0) 5263 continue; 5264 } else { 5265 if (wc->level == 1 && 5266 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5267 continue; 5268 } 5269 reada: 5270 btrfs_readahead_node_child(eb, slot); 5271 nread++; 5272 } 5273 wc->reada_slot = slot; 5274 } 5275 5276 /* 5277 * helper to process tree block while walking down the tree. 5278 * 5279 * when wc->stage == UPDATE_BACKREF, this function updates 5280 * back refs for pointers in the block. 5281 * 5282 * NOTE: return value 1 means we should stop walking down. 5283 */ 5284 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5285 struct btrfs_root *root, 5286 struct btrfs_path *path, 5287 struct walk_control *wc, int lookup_info) 5288 { 5289 struct btrfs_fs_info *fs_info = root->fs_info; 5290 int level = wc->level; 5291 struct extent_buffer *eb = path->nodes[level]; 5292 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5293 int ret; 5294 5295 if (wc->stage == UPDATE_BACKREF && 5296 btrfs_header_owner(eb) != root->root_key.objectid) 5297 return 1; 5298 5299 /* 5300 * when reference count of tree block is 1, it won't increase 5301 * again. once full backref flag is set, we never clear it. 5302 */ 5303 if (lookup_info && 5304 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5305 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5306 BUG_ON(!path->locks[level]); 5307 ret = btrfs_lookup_extent_info(trans, fs_info, 5308 eb->start, level, 1, 5309 &wc->refs[level], 5310 &wc->flags[level], 5311 NULL); 5312 BUG_ON(ret == -ENOMEM); 5313 if (ret) 5314 return ret; 5315 BUG_ON(wc->refs[level] == 0); 5316 } 5317 5318 if (wc->stage == DROP_REFERENCE) { 5319 if (wc->refs[level] > 1) 5320 return 1; 5321 5322 if (path->locks[level] && !wc->keep_locks) { 5323 btrfs_tree_unlock_rw(eb, path->locks[level]); 5324 path->locks[level] = 0; 5325 } 5326 return 0; 5327 } 5328 5329 /* wc->stage == UPDATE_BACKREF */ 5330 if (!(wc->flags[level] & flag)) { 5331 BUG_ON(!path->locks[level]); 5332 ret = btrfs_inc_ref(trans, root, eb, 1); 5333 BUG_ON(ret); /* -ENOMEM */ 5334 ret = btrfs_dec_ref(trans, root, eb, 0); 5335 BUG_ON(ret); /* -ENOMEM */ 5336 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5337 BUG_ON(ret); /* -ENOMEM */ 5338 wc->flags[level] |= flag; 5339 } 5340 5341 /* 5342 * the block is shared by multiple trees, so it's not good to 5343 * keep the tree lock 5344 */ 5345 if (path->locks[level] && level > 0) { 5346 btrfs_tree_unlock_rw(eb, path->locks[level]); 5347 path->locks[level] = 0; 5348 } 5349 return 0; 5350 } 5351 5352 /* 5353 * This is used to verify a ref exists for this root to deal with a bug where we 5354 * would have a drop_progress key that hadn't been updated properly. 5355 */ 5356 static int check_ref_exists(struct btrfs_trans_handle *trans, 5357 struct btrfs_root *root, u64 bytenr, u64 parent, 5358 int level) 5359 { 5360 struct btrfs_path *path; 5361 struct btrfs_extent_inline_ref *iref; 5362 int ret; 5363 5364 path = btrfs_alloc_path(); 5365 if (!path) 5366 return -ENOMEM; 5367 5368 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5369 root->fs_info->nodesize, parent, 5370 root->root_key.objectid, level, 0); 5371 btrfs_free_path(path); 5372 if (ret == -ENOENT) 5373 return 0; 5374 if (ret < 0) 5375 return ret; 5376 return 1; 5377 } 5378 5379 /* 5380 * helper to process tree block pointer. 5381 * 5382 * when wc->stage == DROP_REFERENCE, this function checks 5383 * reference count of the block pointed to. if the block 5384 * is shared and we need update back refs for the subtree 5385 * rooted at the block, this function changes wc->stage to 5386 * UPDATE_BACKREF. if the block is shared and there is no 5387 * need to update back, this function drops the reference 5388 * to the block. 5389 * 5390 * NOTE: return value 1 means we should stop walking down. 5391 */ 5392 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5393 struct btrfs_root *root, 5394 struct btrfs_path *path, 5395 struct walk_control *wc, int *lookup_info) 5396 { 5397 struct btrfs_fs_info *fs_info = root->fs_info; 5398 u64 bytenr; 5399 u64 generation; 5400 u64 parent; 5401 u64 owner_root = 0; 5402 struct btrfs_tree_parent_check check = { 0 }; 5403 struct btrfs_key key; 5404 struct btrfs_ref ref = { 0 }; 5405 struct extent_buffer *next; 5406 int level = wc->level; 5407 int reada = 0; 5408 int ret = 0; 5409 bool need_account = false; 5410 5411 generation = btrfs_node_ptr_generation(path->nodes[level], 5412 path->slots[level]); 5413 /* 5414 * if the lower level block was created before the snapshot 5415 * was created, we know there is no need to update back refs 5416 * for the subtree 5417 */ 5418 if (wc->stage == UPDATE_BACKREF && 5419 generation <= root->root_key.offset) { 5420 *lookup_info = 1; 5421 return 1; 5422 } 5423 5424 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5425 5426 check.level = level - 1; 5427 check.transid = generation; 5428 check.owner_root = root->root_key.objectid; 5429 check.has_first_key = true; 5430 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5431 path->slots[level]); 5432 5433 next = find_extent_buffer(fs_info, bytenr); 5434 if (!next) { 5435 next = btrfs_find_create_tree_block(fs_info, bytenr, 5436 root->root_key.objectid, level - 1); 5437 if (IS_ERR(next)) 5438 return PTR_ERR(next); 5439 reada = 1; 5440 } 5441 btrfs_tree_lock(next); 5442 5443 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5444 &wc->refs[level - 1], 5445 &wc->flags[level - 1], 5446 &owner_root); 5447 if (ret < 0) 5448 goto out_unlock; 5449 5450 if (unlikely(wc->refs[level - 1] == 0)) { 5451 btrfs_err(fs_info, "Missing references."); 5452 ret = -EIO; 5453 goto out_unlock; 5454 } 5455 *lookup_info = 0; 5456 5457 if (wc->stage == DROP_REFERENCE) { 5458 if (wc->refs[level - 1] > 1) { 5459 need_account = true; 5460 if (level == 1 && 5461 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5462 goto skip; 5463 5464 if (!wc->update_ref || 5465 generation <= root->root_key.offset) 5466 goto skip; 5467 5468 btrfs_node_key_to_cpu(path->nodes[level], &key, 5469 path->slots[level]); 5470 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5471 if (ret < 0) 5472 goto skip; 5473 5474 wc->stage = UPDATE_BACKREF; 5475 wc->shared_level = level - 1; 5476 } 5477 } else { 5478 if (level == 1 && 5479 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5480 goto skip; 5481 } 5482 5483 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5484 btrfs_tree_unlock(next); 5485 free_extent_buffer(next); 5486 next = NULL; 5487 *lookup_info = 1; 5488 } 5489 5490 if (!next) { 5491 if (reada && level == 1) 5492 reada_walk_down(trans, root, wc, path); 5493 next = read_tree_block(fs_info, bytenr, &check); 5494 if (IS_ERR(next)) { 5495 return PTR_ERR(next); 5496 } else if (!extent_buffer_uptodate(next)) { 5497 free_extent_buffer(next); 5498 return -EIO; 5499 } 5500 btrfs_tree_lock(next); 5501 } 5502 5503 level--; 5504 ASSERT(level == btrfs_header_level(next)); 5505 if (level != btrfs_header_level(next)) { 5506 btrfs_err(root->fs_info, "mismatched level"); 5507 ret = -EIO; 5508 goto out_unlock; 5509 } 5510 path->nodes[level] = next; 5511 path->slots[level] = 0; 5512 path->locks[level] = BTRFS_WRITE_LOCK; 5513 wc->level = level; 5514 if (wc->level == 1) 5515 wc->reada_slot = 0; 5516 return 0; 5517 skip: 5518 wc->refs[level - 1] = 0; 5519 wc->flags[level - 1] = 0; 5520 if (wc->stage == DROP_REFERENCE) { 5521 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5522 parent = path->nodes[level]->start; 5523 } else { 5524 ASSERT(root->root_key.objectid == 5525 btrfs_header_owner(path->nodes[level])); 5526 if (root->root_key.objectid != 5527 btrfs_header_owner(path->nodes[level])) { 5528 btrfs_err(root->fs_info, 5529 "mismatched block owner"); 5530 ret = -EIO; 5531 goto out_unlock; 5532 } 5533 parent = 0; 5534 } 5535 5536 /* 5537 * If we had a drop_progress we need to verify the refs are set 5538 * as expected. If we find our ref then we know that from here 5539 * on out everything should be correct, and we can clear the 5540 * ->restarted flag. 5541 */ 5542 if (wc->restarted) { 5543 ret = check_ref_exists(trans, root, bytenr, parent, 5544 level - 1); 5545 if (ret < 0) 5546 goto out_unlock; 5547 if (ret == 0) 5548 goto no_delete; 5549 ret = 0; 5550 wc->restarted = 0; 5551 } 5552 5553 /* 5554 * Reloc tree doesn't contribute to qgroup numbers, and we have 5555 * already accounted them at merge time (replace_path), 5556 * thus we could skip expensive subtree trace here. 5557 */ 5558 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5559 need_account) { 5560 ret = btrfs_qgroup_trace_subtree(trans, next, 5561 generation, level - 1); 5562 if (ret) { 5563 btrfs_err_rl(fs_info, 5564 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5565 ret); 5566 } 5567 } 5568 5569 /* 5570 * We need to update the next key in our walk control so we can 5571 * update the drop_progress key accordingly. We don't care if 5572 * find_next_key doesn't find a key because that means we're at 5573 * the end and are going to clean up now. 5574 */ 5575 wc->drop_level = level; 5576 find_next_key(path, level, &wc->drop_progress); 5577 5578 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5579 fs_info->nodesize, parent, owner_root); 5580 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5581 0, false); 5582 ret = btrfs_free_extent(trans, &ref); 5583 if (ret) 5584 goto out_unlock; 5585 } 5586 no_delete: 5587 *lookup_info = 1; 5588 ret = 1; 5589 5590 out_unlock: 5591 btrfs_tree_unlock(next); 5592 free_extent_buffer(next); 5593 5594 return ret; 5595 } 5596 5597 /* 5598 * helper to process tree block while walking up the tree. 5599 * 5600 * when wc->stage == DROP_REFERENCE, this function drops 5601 * reference count on the block. 5602 * 5603 * when wc->stage == UPDATE_BACKREF, this function changes 5604 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5605 * to UPDATE_BACKREF previously while processing the block. 5606 * 5607 * NOTE: return value 1 means we should stop walking up. 5608 */ 5609 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5610 struct btrfs_root *root, 5611 struct btrfs_path *path, 5612 struct walk_control *wc) 5613 { 5614 struct btrfs_fs_info *fs_info = root->fs_info; 5615 int ret; 5616 int level = wc->level; 5617 struct extent_buffer *eb = path->nodes[level]; 5618 u64 parent = 0; 5619 5620 if (wc->stage == UPDATE_BACKREF) { 5621 BUG_ON(wc->shared_level < level); 5622 if (level < wc->shared_level) 5623 goto out; 5624 5625 ret = find_next_key(path, level + 1, &wc->update_progress); 5626 if (ret > 0) 5627 wc->update_ref = 0; 5628 5629 wc->stage = DROP_REFERENCE; 5630 wc->shared_level = -1; 5631 path->slots[level] = 0; 5632 5633 /* 5634 * check reference count again if the block isn't locked. 5635 * we should start walking down the tree again if reference 5636 * count is one. 5637 */ 5638 if (!path->locks[level]) { 5639 BUG_ON(level == 0); 5640 btrfs_tree_lock(eb); 5641 path->locks[level] = BTRFS_WRITE_LOCK; 5642 5643 ret = btrfs_lookup_extent_info(trans, fs_info, 5644 eb->start, level, 1, 5645 &wc->refs[level], 5646 &wc->flags[level], 5647 NULL); 5648 if (ret < 0) { 5649 btrfs_tree_unlock_rw(eb, path->locks[level]); 5650 path->locks[level] = 0; 5651 return ret; 5652 } 5653 BUG_ON(wc->refs[level] == 0); 5654 if (wc->refs[level] == 1) { 5655 btrfs_tree_unlock_rw(eb, path->locks[level]); 5656 path->locks[level] = 0; 5657 return 1; 5658 } 5659 } 5660 } 5661 5662 /* wc->stage == DROP_REFERENCE */ 5663 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5664 5665 if (wc->refs[level] == 1) { 5666 if (level == 0) { 5667 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5668 ret = btrfs_dec_ref(trans, root, eb, 1); 5669 else 5670 ret = btrfs_dec_ref(trans, root, eb, 0); 5671 BUG_ON(ret); /* -ENOMEM */ 5672 if (is_fstree(root->root_key.objectid)) { 5673 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5674 if (ret) { 5675 btrfs_err_rl(fs_info, 5676 "error %d accounting leaf items, quota is out of sync, rescan required", 5677 ret); 5678 } 5679 } 5680 } 5681 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5682 if (!path->locks[level]) { 5683 btrfs_tree_lock(eb); 5684 path->locks[level] = BTRFS_WRITE_LOCK; 5685 } 5686 btrfs_clear_buffer_dirty(trans, eb); 5687 } 5688 5689 if (eb == root->node) { 5690 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5691 parent = eb->start; 5692 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5693 goto owner_mismatch; 5694 } else { 5695 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5696 parent = path->nodes[level + 1]->start; 5697 else if (root->root_key.objectid != 5698 btrfs_header_owner(path->nodes[level + 1])) 5699 goto owner_mismatch; 5700 } 5701 5702 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5703 wc->refs[level] == 1); 5704 out: 5705 wc->refs[level] = 0; 5706 wc->flags[level] = 0; 5707 return 0; 5708 5709 owner_mismatch: 5710 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5711 btrfs_header_owner(eb), root->root_key.objectid); 5712 return -EUCLEAN; 5713 } 5714 5715 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5716 struct btrfs_root *root, 5717 struct btrfs_path *path, 5718 struct walk_control *wc) 5719 { 5720 int level = wc->level; 5721 int lookup_info = 1; 5722 int ret = 0; 5723 5724 while (level >= 0) { 5725 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5726 if (ret) 5727 break; 5728 5729 if (level == 0) 5730 break; 5731 5732 if (path->slots[level] >= 5733 btrfs_header_nritems(path->nodes[level])) 5734 break; 5735 5736 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5737 if (ret > 0) { 5738 path->slots[level]++; 5739 continue; 5740 } else if (ret < 0) 5741 break; 5742 level = wc->level; 5743 } 5744 return (ret == 1) ? 0 : ret; 5745 } 5746 5747 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5748 struct btrfs_root *root, 5749 struct btrfs_path *path, 5750 struct walk_control *wc, int max_level) 5751 { 5752 int level = wc->level; 5753 int ret; 5754 5755 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5756 while (level < max_level && path->nodes[level]) { 5757 wc->level = level; 5758 if (path->slots[level] + 1 < 5759 btrfs_header_nritems(path->nodes[level])) { 5760 path->slots[level]++; 5761 return 0; 5762 } else { 5763 ret = walk_up_proc(trans, root, path, wc); 5764 if (ret > 0) 5765 return 0; 5766 if (ret < 0) 5767 return ret; 5768 5769 if (path->locks[level]) { 5770 btrfs_tree_unlock_rw(path->nodes[level], 5771 path->locks[level]); 5772 path->locks[level] = 0; 5773 } 5774 free_extent_buffer(path->nodes[level]); 5775 path->nodes[level] = NULL; 5776 level++; 5777 } 5778 } 5779 return 1; 5780 } 5781 5782 /* 5783 * drop a subvolume tree. 5784 * 5785 * this function traverses the tree freeing any blocks that only 5786 * referenced by the tree. 5787 * 5788 * when a shared tree block is found. this function decreases its 5789 * reference count by one. if update_ref is true, this function 5790 * also make sure backrefs for the shared block and all lower level 5791 * blocks are properly updated. 5792 * 5793 * If called with for_reloc == 0, may exit early with -EAGAIN 5794 */ 5795 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5796 { 5797 const bool is_reloc_root = (root->root_key.objectid == 5798 BTRFS_TREE_RELOC_OBJECTID); 5799 struct btrfs_fs_info *fs_info = root->fs_info; 5800 struct btrfs_path *path; 5801 struct btrfs_trans_handle *trans; 5802 struct btrfs_root *tree_root = fs_info->tree_root; 5803 struct btrfs_root_item *root_item = &root->root_item; 5804 struct walk_control *wc; 5805 struct btrfs_key key; 5806 int err = 0; 5807 int ret; 5808 int level; 5809 bool root_dropped = false; 5810 bool unfinished_drop = false; 5811 5812 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5813 5814 path = btrfs_alloc_path(); 5815 if (!path) { 5816 err = -ENOMEM; 5817 goto out; 5818 } 5819 5820 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5821 if (!wc) { 5822 btrfs_free_path(path); 5823 err = -ENOMEM; 5824 goto out; 5825 } 5826 5827 /* 5828 * Use join to avoid potential EINTR from transaction start. See 5829 * wait_reserve_ticket and the whole reservation callchain. 5830 */ 5831 if (for_reloc) 5832 trans = btrfs_join_transaction(tree_root); 5833 else 5834 trans = btrfs_start_transaction(tree_root, 0); 5835 if (IS_ERR(trans)) { 5836 err = PTR_ERR(trans); 5837 goto out_free; 5838 } 5839 5840 err = btrfs_run_delayed_items(trans); 5841 if (err) 5842 goto out_end_trans; 5843 5844 /* 5845 * This will help us catch people modifying the fs tree while we're 5846 * dropping it. It is unsafe to mess with the fs tree while it's being 5847 * dropped as we unlock the root node and parent nodes as we walk down 5848 * the tree, assuming nothing will change. If something does change 5849 * then we'll have stale information and drop references to blocks we've 5850 * already dropped. 5851 */ 5852 set_bit(BTRFS_ROOT_DELETING, &root->state); 5853 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5854 5855 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5856 level = btrfs_header_level(root->node); 5857 path->nodes[level] = btrfs_lock_root_node(root); 5858 path->slots[level] = 0; 5859 path->locks[level] = BTRFS_WRITE_LOCK; 5860 memset(&wc->update_progress, 0, 5861 sizeof(wc->update_progress)); 5862 } else { 5863 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5864 memcpy(&wc->update_progress, &key, 5865 sizeof(wc->update_progress)); 5866 5867 level = btrfs_root_drop_level(root_item); 5868 BUG_ON(level == 0); 5869 path->lowest_level = level; 5870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5871 path->lowest_level = 0; 5872 if (ret < 0) { 5873 err = ret; 5874 goto out_end_trans; 5875 } 5876 WARN_ON(ret > 0); 5877 5878 /* 5879 * unlock our path, this is safe because only this 5880 * function is allowed to delete this snapshot 5881 */ 5882 btrfs_unlock_up_safe(path, 0); 5883 5884 level = btrfs_header_level(root->node); 5885 while (1) { 5886 btrfs_tree_lock(path->nodes[level]); 5887 path->locks[level] = BTRFS_WRITE_LOCK; 5888 5889 ret = btrfs_lookup_extent_info(trans, fs_info, 5890 path->nodes[level]->start, 5891 level, 1, &wc->refs[level], 5892 &wc->flags[level], NULL); 5893 if (ret < 0) { 5894 err = ret; 5895 goto out_end_trans; 5896 } 5897 BUG_ON(wc->refs[level] == 0); 5898 5899 if (level == btrfs_root_drop_level(root_item)) 5900 break; 5901 5902 btrfs_tree_unlock(path->nodes[level]); 5903 path->locks[level] = 0; 5904 WARN_ON(wc->refs[level] != 1); 5905 level--; 5906 } 5907 } 5908 5909 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5910 wc->level = level; 5911 wc->shared_level = -1; 5912 wc->stage = DROP_REFERENCE; 5913 wc->update_ref = update_ref; 5914 wc->keep_locks = 0; 5915 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5916 5917 while (1) { 5918 5919 ret = walk_down_tree(trans, root, path, wc); 5920 if (ret < 0) { 5921 btrfs_abort_transaction(trans, ret); 5922 err = ret; 5923 break; 5924 } 5925 5926 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5927 if (ret < 0) { 5928 btrfs_abort_transaction(trans, ret); 5929 err = ret; 5930 break; 5931 } 5932 5933 if (ret > 0) { 5934 BUG_ON(wc->stage != DROP_REFERENCE); 5935 break; 5936 } 5937 5938 if (wc->stage == DROP_REFERENCE) { 5939 wc->drop_level = wc->level; 5940 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5941 &wc->drop_progress, 5942 path->slots[wc->drop_level]); 5943 } 5944 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5945 &wc->drop_progress); 5946 btrfs_set_root_drop_level(root_item, wc->drop_level); 5947 5948 BUG_ON(wc->level == 0); 5949 if (btrfs_should_end_transaction(trans) || 5950 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5951 ret = btrfs_update_root(trans, tree_root, 5952 &root->root_key, 5953 root_item); 5954 if (ret) { 5955 btrfs_abort_transaction(trans, ret); 5956 err = ret; 5957 goto out_end_trans; 5958 } 5959 5960 if (!is_reloc_root) 5961 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5962 5963 btrfs_end_transaction_throttle(trans); 5964 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5965 btrfs_debug(fs_info, 5966 "drop snapshot early exit"); 5967 err = -EAGAIN; 5968 goto out_free; 5969 } 5970 5971 /* 5972 * Use join to avoid potential EINTR from transaction 5973 * start. See wait_reserve_ticket and the whole 5974 * reservation callchain. 5975 */ 5976 if (for_reloc) 5977 trans = btrfs_join_transaction(tree_root); 5978 else 5979 trans = btrfs_start_transaction(tree_root, 0); 5980 if (IS_ERR(trans)) { 5981 err = PTR_ERR(trans); 5982 goto out_free; 5983 } 5984 } 5985 } 5986 btrfs_release_path(path); 5987 if (err) 5988 goto out_end_trans; 5989 5990 ret = btrfs_del_root(trans, &root->root_key); 5991 if (ret) { 5992 btrfs_abort_transaction(trans, ret); 5993 err = ret; 5994 goto out_end_trans; 5995 } 5996 5997 if (!is_reloc_root) { 5998 ret = btrfs_find_root(tree_root, &root->root_key, path, 5999 NULL, NULL); 6000 if (ret < 0) { 6001 btrfs_abort_transaction(trans, ret); 6002 err = ret; 6003 goto out_end_trans; 6004 } else if (ret > 0) { 6005 /* if we fail to delete the orphan item this time 6006 * around, it'll get picked up the next time. 6007 * 6008 * The most common failure here is just -ENOENT. 6009 */ 6010 btrfs_del_orphan_item(trans, tree_root, 6011 root->root_key.objectid); 6012 } 6013 } 6014 6015 /* 6016 * This subvolume is going to be completely dropped, and won't be 6017 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6018 * commit transaction time. So free it here manually. 6019 */ 6020 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6021 btrfs_qgroup_free_meta_all_pertrans(root); 6022 6023 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6024 btrfs_add_dropped_root(trans, root); 6025 else 6026 btrfs_put_root(root); 6027 root_dropped = true; 6028 out_end_trans: 6029 if (!is_reloc_root) 6030 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6031 6032 btrfs_end_transaction_throttle(trans); 6033 out_free: 6034 kfree(wc); 6035 btrfs_free_path(path); 6036 out: 6037 /* 6038 * We were an unfinished drop root, check to see if there are any 6039 * pending, and if not clear and wake up any waiters. 6040 */ 6041 if (!err && unfinished_drop) 6042 btrfs_maybe_wake_unfinished_drop(fs_info); 6043 6044 /* 6045 * So if we need to stop dropping the snapshot for whatever reason we 6046 * need to make sure to add it back to the dead root list so that we 6047 * keep trying to do the work later. This also cleans up roots if we 6048 * don't have it in the radix (like when we recover after a power fail 6049 * or unmount) so we don't leak memory. 6050 */ 6051 if (!for_reloc && !root_dropped) 6052 btrfs_add_dead_root(root); 6053 return err; 6054 } 6055 6056 /* 6057 * drop subtree rooted at tree block 'node'. 6058 * 6059 * NOTE: this function will unlock and release tree block 'node' 6060 * only used by relocation code 6061 */ 6062 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6063 struct btrfs_root *root, 6064 struct extent_buffer *node, 6065 struct extent_buffer *parent) 6066 { 6067 struct btrfs_fs_info *fs_info = root->fs_info; 6068 struct btrfs_path *path; 6069 struct walk_control *wc; 6070 int level; 6071 int parent_level; 6072 int ret = 0; 6073 int wret; 6074 6075 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6076 6077 path = btrfs_alloc_path(); 6078 if (!path) 6079 return -ENOMEM; 6080 6081 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6082 if (!wc) { 6083 btrfs_free_path(path); 6084 return -ENOMEM; 6085 } 6086 6087 btrfs_assert_tree_write_locked(parent); 6088 parent_level = btrfs_header_level(parent); 6089 atomic_inc(&parent->refs); 6090 path->nodes[parent_level] = parent; 6091 path->slots[parent_level] = btrfs_header_nritems(parent); 6092 6093 btrfs_assert_tree_write_locked(node); 6094 level = btrfs_header_level(node); 6095 path->nodes[level] = node; 6096 path->slots[level] = 0; 6097 path->locks[level] = BTRFS_WRITE_LOCK; 6098 6099 wc->refs[parent_level] = 1; 6100 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6101 wc->level = level; 6102 wc->shared_level = -1; 6103 wc->stage = DROP_REFERENCE; 6104 wc->update_ref = 0; 6105 wc->keep_locks = 1; 6106 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6107 6108 while (1) { 6109 wret = walk_down_tree(trans, root, path, wc); 6110 if (wret < 0) { 6111 ret = wret; 6112 break; 6113 } 6114 6115 wret = walk_up_tree(trans, root, path, wc, parent_level); 6116 if (wret < 0) 6117 ret = wret; 6118 if (wret != 0) 6119 break; 6120 } 6121 6122 kfree(wc); 6123 btrfs_free_path(path); 6124 return ret; 6125 } 6126 6127 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6128 u64 start, u64 end) 6129 { 6130 return unpin_extent_range(fs_info, start, end, false); 6131 } 6132 6133 /* 6134 * It used to be that old block groups would be left around forever. 6135 * Iterating over them would be enough to trim unused space. Since we 6136 * now automatically remove them, we also need to iterate over unallocated 6137 * space. 6138 * 6139 * We don't want a transaction for this since the discard may take a 6140 * substantial amount of time. We don't require that a transaction be 6141 * running, but we do need to take a running transaction into account 6142 * to ensure that we're not discarding chunks that were released or 6143 * allocated in the current transaction. 6144 * 6145 * Holding the chunks lock will prevent other threads from allocating 6146 * or releasing chunks, but it won't prevent a running transaction 6147 * from committing and releasing the memory that the pending chunks 6148 * list head uses. For that, we need to take a reference to the 6149 * transaction and hold the commit root sem. We only need to hold 6150 * it while performing the free space search since we have already 6151 * held back allocations. 6152 */ 6153 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6154 { 6155 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6156 int ret; 6157 6158 *trimmed = 0; 6159 6160 /* Discard not supported = nothing to do. */ 6161 if (!bdev_max_discard_sectors(device->bdev)) 6162 return 0; 6163 6164 /* Not writable = nothing to do. */ 6165 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6166 return 0; 6167 6168 /* No free space = nothing to do. */ 6169 if (device->total_bytes <= device->bytes_used) 6170 return 0; 6171 6172 ret = 0; 6173 6174 while (1) { 6175 struct btrfs_fs_info *fs_info = device->fs_info; 6176 u64 bytes; 6177 6178 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6179 if (ret) 6180 break; 6181 6182 find_first_clear_extent_bit(&device->alloc_state, start, 6183 &start, &end, 6184 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6185 6186 /* Check if there are any CHUNK_* bits left */ 6187 if (start > device->total_bytes) { 6188 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6189 btrfs_warn_in_rcu(fs_info, 6190 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6191 start, end - start + 1, 6192 btrfs_dev_name(device), 6193 device->total_bytes); 6194 mutex_unlock(&fs_info->chunk_mutex); 6195 ret = 0; 6196 break; 6197 } 6198 6199 /* Ensure we skip the reserved space on each device. */ 6200 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6201 6202 /* 6203 * If find_first_clear_extent_bit find a range that spans the 6204 * end of the device it will set end to -1, in this case it's up 6205 * to the caller to trim the value to the size of the device. 6206 */ 6207 end = min(end, device->total_bytes - 1); 6208 6209 len = end - start + 1; 6210 6211 /* We didn't find any extents */ 6212 if (!len) { 6213 mutex_unlock(&fs_info->chunk_mutex); 6214 ret = 0; 6215 break; 6216 } 6217 6218 ret = btrfs_issue_discard(device->bdev, start, len, 6219 &bytes); 6220 if (!ret) 6221 set_extent_bit(&device->alloc_state, start, 6222 start + bytes - 1, CHUNK_TRIMMED, NULL); 6223 mutex_unlock(&fs_info->chunk_mutex); 6224 6225 if (ret) 6226 break; 6227 6228 start += len; 6229 *trimmed += bytes; 6230 6231 if (fatal_signal_pending(current)) { 6232 ret = -ERESTARTSYS; 6233 break; 6234 } 6235 6236 cond_resched(); 6237 } 6238 6239 return ret; 6240 } 6241 6242 /* 6243 * Trim the whole filesystem by: 6244 * 1) trimming the free space in each block group 6245 * 2) trimming the unallocated space on each device 6246 * 6247 * This will also continue trimming even if a block group or device encounters 6248 * an error. The return value will be the last error, or 0 if nothing bad 6249 * happens. 6250 */ 6251 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6252 { 6253 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6254 struct btrfs_block_group *cache = NULL; 6255 struct btrfs_device *device; 6256 u64 group_trimmed; 6257 u64 range_end = U64_MAX; 6258 u64 start; 6259 u64 end; 6260 u64 trimmed = 0; 6261 u64 bg_failed = 0; 6262 u64 dev_failed = 0; 6263 int bg_ret = 0; 6264 int dev_ret = 0; 6265 int ret = 0; 6266 6267 if (range->start == U64_MAX) 6268 return -EINVAL; 6269 6270 /* 6271 * Check range overflow if range->len is set. 6272 * The default range->len is U64_MAX. 6273 */ 6274 if (range->len != U64_MAX && 6275 check_add_overflow(range->start, range->len, &range_end)) 6276 return -EINVAL; 6277 6278 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6279 for (; cache; cache = btrfs_next_block_group(cache)) { 6280 if (cache->start >= range_end) { 6281 btrfs_put_block_group(cache); 6282 break; 6283 } 6284 6285 start = max(range->start, cache->start); 6286 end = min(range_end, cache->start + cache->length); 6287 6288 if (end - start >= range->minlen) { 6289 if (!btrfs_block_group_done(cache)) { 6290 ret = btrfs_cache_block_group(cache, true); 6291 if (ret) { 6292 bg_failed++; 6293 bg_ret = ret; 6294 continue; 6295 } 6296 } 6297 ret = btrfs_trim_block_group(cache, 6298 &group_trimmed, 6299 start, 6300 end, 6301 range->minlen); 6302 6303 trimmed += group_trimmed; 6304 if (ret) { 6305 bg_failed++; 6306 bg_ret = ret; 6307 continue; 6308 } 6309 } 6310 } 6311 6312 if (bg_failed) 6313 btrfs_warn(fs_info, 6314 "failed to trim %llu block group(s), last error %d", 6315 bg_failed, bg_ret); 6316 6317 mutex_lock(&fs_devices->device_list_mutex); 6318 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6319 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6320 continue; 6321 6322 ret = btrfs_trim_free_extents(device, &group_trimmed); 6323 if (ret) { 6324 dev_failed++; 6325 dev_ret = ret; 6326 break; 6327 } 6328 6329 trimmed += group_trimmed; 6330 } 6331 mutex_unlock(&fs_devices->device_list_mutex); 6332 6333 if (dev_failed) 6334 btrfs_warn(fs_info, 6335 "failed to trim %llu device(s), last error %d", 6336 dev_failed, dev_ret); 6337 range->len = trimmed; 6338 if (bg_ret) 6339 return bg_ret; 6340 return dev_ret; 6341 } 6342