xref: /linux/fs/btrfs/extent-tree.c (revision ebc733e54a1a79ea2dde2ba5121ae73a188e20d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 #include "raid-stripe-tree.h"
46 
47 #undef SCRAMBLE_DELAYED_REFS
48 
49 
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 			       struct btrfs_delayed_ref_head *href,
52 			       struct btrfs_delayed_ref_node *node, u64 parent,
53 			       u64 root_objectid, u64 owner_objectid,
54 			       u64 owner_offset,
55 			       struct btrfs_delayed_extent_op *extra_op);
56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
57 				    struct extent_buffer *leaf,
58 				    struct btrfs_extent_item *ei);
59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
60 				      u64 parent, u64 root_objectid,
61 				      u64 flags, u64 owner, u64 offset,
62 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
64 				     struct btrfs_delayed_ref_node *node,
65 				     struct btrfs_delayed_extent_op *extent_op);
66 static int find_next_key(struct btrfs_path *path, int level,
67 			 struct btrfs_key *key);
68 
69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70 {
71 	return (cache->flags & bits) == bits;
72 }
73 
74 /* simple helper to search for an existing data extent at a given offset */
75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
76 {
77 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
78 	int ret;
79 	struct btrfs_key key;
80 	struct btrfs_path *path;
81 
82 	path = btrfs_alloc_path();
83 	if (!path)
84 		return -ENOMEM;
85 
86 	key.objectid = start;
87 	key.offset = len;
88 	key.type = BTRFS_EXTENT_ITEM_KEY;
89 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
90 	btrfs_free_path(path);
91 	return ret;
92 }
93 
94 /*
95  * helper function to lookup reference count and flags of a tree block.
96  *
97  * the head node for delayed ref is used to store the sum of all the
98  * reference count modifications queued up in the rbtree. the head
99  * node may also store the extent flags to set. This way you can check
100  * to see what the reference count and extent flags would be if all of
101  * the delayed refs are not processed.
102  */
103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
104 			     struct btrfs_fs_info *fs_info, u64 bytenr,
105 			     u64 offset, int metadata, u64 *refs, u64 *flags,
106 			     u64 *owning_root)
107 {
108 	struct btrfs_root *extent_root;
109 	struct btrfs_delayed_ref_head *head;
110 	struct btrfs_delayed_ref_root *delayed_refs;
111 	struct btrfs_path *path;
112 	struct btrfs_extent_item *ei;
113 	struct extent_buffer *leaf;
114 	struct btrfs_key key;
115 	u32 item_size;
116 	u64 num_refs;
117 	u64 extent_flags;
118 	u64 owner = 0;
119 	int ret;
120 
121 	/*
122 	 * If we don't have skinny metadata, don't bother doing anything
123 	 * different
124 	 */
125 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
126 		offset = fs_info->nodesize;
127 		metadata = 0;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	if (!trans) {
135 		path->skip_locking = 1;
136 		path->search_commit_root = 1;
137 	}
138 
139 search_again:
140 	key.objectid = bytenr;
141 	key.offset = offset;
142 	if (metadata)
143 		key.type = BTRFS_METADATA_ITEM_KEY;
144 	else
145 		key.type = BTRFS_EXTENT_ITEM_KEY;
146 
147 	extent_root = btrfs_extent_root(fs_info, bytenr);
148 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
149 	if (ret < 0)
150 		goto out_free;
151 
152 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
153 		if (path->slots[0]) {
154 			path->slots[0]--;
155 			btrfs_item_key_to_cpu(path->nodes[0], &key,
156 					      path->slots[0]);
157 			if (key.objectid == bytenr &&
158 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
159 			    key.offset == fs_info->nodesize)
160 				ret = 0;
161 		}
162 	}
163 
164 	if (ret == 0) {
165 		leaf = path->nodes[0];
166 		item_size = btrfs_item_size(leaf, path->slots[0]);
167 		if (item_size >= sizeof(*ei)) {
168 			ei = btrfs_item_ptr(leaf, path->slots[0],
169 					    struct btrfs_extent_item);
170 			num_refs = btrfs_extent_refs(leaf, ei);
171 			extent_flags = btrfs_extent_flags(leaf, ei);
172 			owner = btrfs_get_extent_owner_root(fs_info, leaf,
173 							    path->slots[0]);
174 		} else {
175 			ret = -EUCLEAN;
176 			btrfs_err(fs_info,
177 			"unexpected extent item size, has %u expect >= %zu",
178 				  item_size, sizeof(*ei));
179 			if (trans)
180 				btrfs_abort_transaction(trans, ret);
181 			else
182 				btrfs_handle_fs_error(fs_info, ret, NULL);
183 
184 			goto out_free;
185 		}
186 
187 		BUG_ON(num_refs == 0);
188 	} else {
189 		num_refs = 0;
190 		extent_flags = 0;
191 		ret = 0;
192 	}
193 
194 	if (!trans)
195 		goto out;
196 
197 	delayed_refs = &trans->transaction->delayed_refs;
198 	spin_lock(&delayed_refs->lock);
199 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
200 	if (head) {
201 		if (!mutex_trylock(&head->mutex)) {
202 			refcount_inc(&head->refs);
203 			spin_unlock(&delayed_refs->lock);
204 
205 			btrfs_release_path(path);
206 
207 			/*
208 			 * Mutex was contended, block until it's released and try
209 			 * again
210 			 */
211 			mutex_lock(&head->mutex);
212 			mutex_unlock(&head->mutex);
213 			btrfs_put_delayed_ref_head(head);
214 			goto search_again;
215 		}
216 		spin_lock(&head->lock);
217 		if (head->extent_op && head->extent_op->update_flags)
218 			extent_flags |= head->extent_op->flags_to_set;
219 		else
220 			BUG_ON(num_refs == 0);
221 
222 		num_refs += head->ref_mod;
223 		spin_unlock(&head->lock);
224 		mutex_unlock(&head->mutex);
225 	}
226 	spin_unlock(&delayed_refs->lock);
227 out:
228 	WARN_ON(num_refs == 0);
229 	if (refs)
230 		*refs = num_refs;
231 	if (flags)
232 		*flags = extent_flags;
233 	if (owning_root)
234 		*owning_root = owner;
235 out_free:
236 	btrfs_free_path(path);
237 	return ret;
238 }
239 
240 /*
241  * Back reference rules.  Back refs have three main goals:
242  *
243  * 1) differentiate between all holders of references to an extent so that
244  *    when a reference is dropped we can make sure it was a valid reference
245  *    before freeing the extent.
246  *
247  * 2) Provide enough information to quickly find the holders of an extent
248  *    if we notice a given block is corrupted or bad.
249  *
250  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251  *    maintenance.  This is actually the same as #2, but with a slightly
252  *    different use case.
253  *
254  * There are two kinds of back refs. The implicit back refs is optimized
255  * for pointers in non-shared tree blocks. For a given pointer in a block,
256  * back refs of this kind provide information about the block's owner tree
257  * and the pointer's key. These information allow us to find the block by
258  * b-tree searching. The full back refs is for pointers in tree blocks not
259  * referenced by their owner trees. The location of tree block is recorded
260  * in the back refs. Actually the full back refs is generic, and can be
261  * used in all cases the implicit back refs is used. The major shortcoming
262  * of the full back refs is its overhead. Every time a tree block gets
263  * COWed, we have to update back refs entry for all pointers in it.
264  *
265  * For a newly allocated tree block, we use implicit back refs for
266  * pointers in it. This means most tree related operations only involve
267  * implicit back refs. For a tree block created in old transaction, the
268  * only way to drop a reference to it is COW it. So we can detect the
269  * event that tree block loses its owner tree's reference and do the
270  * back refs conversion.
271  *
272  * When a tree block is COWed through a tree, there are four cases:
273  *
274  * The reference count of the block is one and the tree is the block's
275  * owner tree. Nothing to do in this case.
276  *
277  * The reference count of the block is one and the tree is not the
278  * block's owner tree. In this case, full back refs is used for pointers
279  * in the block. Remove these full back refs, add implicit back refs for
280  * every pointers in the new block.
281  *
282  * The reference count of the block is greater than one and the tree is
283  * the block's owner tree. In this case, implicit back refs is used for
284  * pointers in the block. Add full back refs for every pointers in the
285  * block, increase lower level extents' reference counts. The original
286  * implicit back refs are entailed to the new block.
287  *
288  * The reference count of the block is greater than one and the tree is
289  * not the block's owner tree. Add implicit back refs for every pointer in
290  * the new block, increase lower level extents' reference count.
291  *
292  * Back Reference Key composing:
293  *
294  * The key objectid corresponds to the first byte in the extent,
295  * The key type is used to differentiate between types of back refs.
296  * There are different meanings of the key offset for different types
297  * of back refs.
298  *
299  * File extents can be referenced by:
300  *
301  * - multiple snapshots, subvolumes, or different generations in one subvol
302  * - different files inside a single subvolume
303  * - different offsets inside a file (bookend extents in file.c)
304  *
305  * The extent ref structure for the implicit back refs has fields for:
306  *
307  * - Objectid of the subvolume root
308  * - objectid of the file holding the reference
309  * - original offset in the file
310  * - how many bookend extents
311  *
312  * The key offset for the implicit back refs is hash of the first
313  * three fields.
314  *
315  * The extent ref structure for the full back refs has field for:
316  *
317  * - number of pointers in the tree leaf
318  *
319  * The key offset for the implicit back refs is the first byte of
320  * the tree leaf
321  *
322  * When a file extent is allocated, The implicit back refs is used.
323  * the fields are filled in:
324  *
325  *     (root_key.objectid, inode objectid, offset in file, 1)
326  *
327  * When a file extent is removed file truncation, we find the
328  * corresponding implicit back refs and check the following fields:
329  *
330  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
331  *
332  * Btree extents can be referenced by:
333  *
334  * - Different subvolumes
335  *
336  * Both the implicit back refs and the full back refs for tree blocks
337  * only consist of key. The key offset for the implicit back refs is
338  * objectid of block's owner tree. The key offset for the full back refs
339  * is the first byte of parent block.
340  *
341  * When implicit back refs is used, information about the lowest key and
342  * level of the tree block are required. These information are stored in
343  * tree block info structure.
344  */
345 
346 /*
347  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350  */
351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 				     struct btrfs_extent_inline_ref *iref,
353 				     enum btrfs_inline_ref_type is_data)
354 {
355 	struct btrfs_fs_info *fs_info = eb->fs_info;
356 	int type = btrfs_extent_inline_ref_type(eb, iref);
357 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
358 
359 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
360 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
361 		return type;
362 	}
363 
364 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
366 	    type == BTRFS_SHARED_DATA_REF_KEY ||
367 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
368 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
369 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
370 				return type;
371 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
372 				ASSERT(fs_info);
373 				/*
374 				 * Every shared one has parent tree block,
375 				 * which must be aligned to sector size.
376 				 */
377 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	WARN_ON(1);
400 	btrfs_print_leaf(eb);
401 	btrfs_err(fs_info,
402 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
403 		  eb->start, (unsigned long)iref, type);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(trans, leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else {
622 		btrfs_err(trans->fs_info,
623 			  "unrecognized backref key (%llu %u %llu)",
624 			  key.objectid, key.type, key.offset);
625 		btrfs_abort_transaction(trans, -EUCLEAN);
626 		return -EUCLEAN;
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(trans, leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	if (iref) {
658 		/*
659 		 * If type is invalid, we should have bailed out earlier than
660 		 * this call.
661 		 */
662 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
663 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
664 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
665 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
666 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
667 		} else {
668 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
669 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
670 		}
671 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
672 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
673 				      struct btrfs_extent_data_ref);
674 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
676 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
677 				      struct btrfs_shared_data_ref);
678 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
679 	} else {
680 		WARN_ON(1);
681 	}
682 	return num_refs;
683 }
684 
685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
686 					  struct btrfs_path *path,
687 					  u64 bytenr, u64 parent,
688 					  u64 root_objectid)
689 {
690 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 	struct btrfs_key key;
692 	int ret;
693 
694 	key.objectid = bytenr;
695 	if (parent) {
696 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 		key.offset = parent;
698 	} else {
699 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 		key.offset = root_objectid;
701 	}
702 
703 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
704 	if (ret > 0)
705 		ret = -ENOENT;
706 	return ret;
707 }
708 
709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
710 					  struct btrfs_path *path,
711 					  u64 bytenr, u64 parent,
712 					  u64 root_objectid)
713 {
714 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
715 	struct btrfs_key key;
716 	int ret;
717 
718 	key.objectid = bytenr;
719 	if (parent) {
720 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
721 		key.offset = parent;
722 	} else {
723 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
724 		key.offset = root_objectid;
725 	}
726 
727 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
728 	btrfs_release_path(path);
729 	return ret;
730 }
731 
732 static inline int extent_ref_type(u64 parent, u64 owner)
733 {
734 	int type;
735 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
736 		if (parent > 0)
737 			type = BTRFS_SHARED_BLOCK_REF_KEY;
738 		else
739 			type = BTRFS_TREE_BLOCK_REF_KEY;
740 	} else {
741 		if (parent > 0)
742 			type = BTRFS_SHARED_DATA_REF_KEY;
743 		else
744 			type = BTRFS_EXTENT_DATA_REF_KEY;
745 	}
746 	return type;
747 }
748 
749 static int find_next_key(struct btrfs_path *path, int level,
750 			 struct btrfs_key *key)
751 
752 {
753 	for (; level < BTRFS_MAX_LEVEL; level++) {
754 		if (!path->nodes[level])
755 			break;
756 		if (path->slots[level] + 1 >=
757 		    btrfs_header_nritems(path->nodes[level]))
758 			continue;
759 		if (level == 0)
760 			btrfs_item_key_to_cpu(path->nodes[level], key,
761 					      path->slots[level] + 1);
762 		else
763 			btrfs_node_key_to_cpu(path->nodes[level], key,
764 					      path->slots[level] + 1);
765 		return 0;
766 	}
767 	return 1;
768 }
769 
770 /*
771  * look for inline back ref. if back ref is found, *ref_ret is set
772  * to the address of inline back ref, and 0 is returned.
773  *
774  * if back ref isn't found, *ref_ret is set to the address where it
775  * should be inserted, and -ENOENT is returned.
776  *
777  * if insert is true and there are too many inline back refs, the path
778  * points to the extent item, and -EAGAIN is returned.
779  *
780  * NOTE: inline back refs are ordered in the same way that back ref
781  *	 items in the tree are ordered.
782  */
783 static noinline_for_stack
784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
785 				 struct btrfs_path *path,
786 				 struct btrfs_extent_inline_ref **ref_ret,
787 				 u64 bytenr, u64 num_bytes,
788 				 u64 parent, u64 root_objectid,
789 				 u64 owner, u64 offset, int insert)
790 {
791 	struct btrfs_fs_info *fs_info = trans->fs_info;
792 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
793 	struct btrfs_key key;
794 	struct extent_buffer *leaf;
795 	struct btrfs_extent_item *ei;
796 	struct btrfs_extent_inline_ref *iref;
797 	u64 flags;
798 	u64 item_size;
799 	unsigned long ptr;
800 	unsigned long end;
801 	int extra_size;
802 	int type;
803 	int want;
804 	int ret;
805 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
806 	int needed;
807 
808 	key.objectid = bytenr;
809 	key.type = BTRFS_EXTENT_ITEM_KEY;
810 	key.offset = num_bytes;
811 
812 	want = extent_ref_type(parent, owner);
813 	if (insert) {
814 		extra_size = btrfs_extent_inline_ref_size(want);
815 		path->search_for_extension = 1;
816 		path->keep_locks = 1;
817 	} else
818 		extra_size = -1;
819 
820 	/*
821 	 * Owner is our level, so we can just add one to get the level for the
822 	 * block we are interested in.
823 	 */
824 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
825 		key.type = BTRFS_METADATA_ITEM_KEY;
826 		key.offset = owner;
827 	}
828 
829 again:
830 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
831 	if (ret < 0)
832 		goto out;
833 
834 	/*
835 	 * We may be a newly converted file system which still has the old fat
836 	 * extent entries for metadata, so try and see if we have one of those.
837 	 */
838 	if (ret > 0 && skinny_metadata) {
839 		skinny_metadata = false;
840 		if (path->slots[0]) {
841 			path->slots[0]--;
842 			btrfs_item_key_to_cpu(path->nodes[0], &key,
843 					      path->slots[0]);
844 			if (key.objectid == bytenr &&
845 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
846 			    key.offset == num_bytes)
847 				ret = 0;
848 		}
849 		if (ret) {
850 			key.objectid = bytenr;
851 			key.type = BTRFS_EXTENT_ITEM_KEY;
852 			key.offset = num_bytes;
853 			btrfs_release_path(path);
854 			goto again;
855 		}
856 	}
857 
858 	if (ret && !insert) {
859 		ret = -ENOENT;
860 		goto out;
861 	} else if (WARN_ON(ret)) {
862 		btrfs_print_leaf(path->nodes[0]);
863 		btrfs_err(fs_info,
864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
865 			  bytenr, num_bytes, parent, root_objectid, owner,
866 			  offset);
867 		ret = -EUCLEAN;
868 		goto out;
869 	}
870 
871 	leaf = path->nodes[0];
872 	item_size = btrfs_item_size(leaf, path->slots[0]);
873 	if (unlikely(item_size < sizeof(*ei))) {
874 		ret = -EUCLEAN;
875 		btrfs_err(fs_info,
876 			  "unexpected extent item size, has %llu expect >= %zu",
877 			  item_size, sizeof(*ei));
878 		btrfs_abort_transaction(trans, ret);
879 		goto out;
880 	}
881 
882 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
883 	flags = btrfs_extent_flags(leaf, ei);
884 
885 	ptr = (unsigned long)(ei + 1);
886 	end = (unsigned long)ei + item_size;
887 
888 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
889 		ptr += sizeof(struct btrfs_tree_block_info);
890 		BUG_ON(ptr > end);
891 	}
892 
893 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
894 		needed = BTRFS_REF_TYPE_DATA;
895 	else
896 		needed = BTRFS_REF_TYPE_BLOCK;
897 
898 	ret = -ENOENT;
899 	while (ptr < end) {
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
903 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
904 			ptr += btrfs_extent_inline_ref_size(type);
905 			continue;
906 		}
907 		if (type == BTRFS_REF_TYPE_INVALID) {
908 			ret = -EUCLEAN;
909 			goto out;
910 		}
911 
912 		if (want < type)
913 			break;
914 		if (want > type) {
915 			ptr += btrfs_extent_inline_ref_size(type);
916 			continue;
917 		}
918 
919 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
920 			struct btrfs_extent_data_ref *dref;
921 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
922 			if (match_extent_data_ref(leaf, dref, root_objectid,
923 						  owner, offset)) {
924 				ret = 0;
925 				break;
926 			}
927 			if (hash_extent_data_ref_item(leaf, dref) <
928 			    hash_extent_data_ref(root_objectid, owner, offset))
929 				break;
930 		} else {
931 			u64 ref_offset;
932 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
933 			if (parent > 0) {
934 				if (parent == ref_offset) {
935 					ret = 0;
936 					break;
937 				}
938 				if (ref_offset < parent)
939 					break;
940 			} else {
941 				if (root_objectid == ref_offset) {
942 					ret = 0;
943 					break;
944 				}
945 				if (ref_offset < root_objectid)
946 					break;
947 			}
948 		}
949 		ptr += btrfs_extent_inline_ref_size(type);
950 	}
951 
952 	if (unlikely(ptr > end)) {
953 		ret = -EUCLEAN;
954 		btrfs_print_leaf(path->nodes[0]);
955 		btrfs_crit(fs_info,
956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
957 			   path->slots[0], root_objectid, owner, offset, parent);
958 		goto out;
959 	}
960 
961 	if (ret == -ENOENT && insert) {
962 		if (item_size + extra_size >=
963 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
964 			ret = -EAGAIN;
965 			goto out;
966 		}
967 		/*
968 		 * To add new inline back ref, we have to make sure
969 		 * there is no corresponding back ref item.
970 		 * For simplicity, we just do not add new inline back
971 		 * ref if there is any kind of item for this block
972 		 */
973 		if (find_next_key(path, 0, &key) == 0 &&
974 		    key.objectid == bytenr &&
975 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 			ret = -EAGAIN;
977 			goto out;
978 		}
979 	}
980 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981 out:
982 	if (insert) {
983 		path->keep_locks = 0;
984 		path->search_for_extension = 0;
985 		btrfs_unlock_up_safe(path, 1);
986 	}
987 	return ret;
988 }
989 
990 /*
991  * helper to add new inline back ref
992  */
993 static noinline_for_stack
994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 				 struct btrfs_path *path,
996 				 struct btrfs_extent_inline_ref *iref,
997 				 u64 parent, u64 root_objectid,
998 				 u64 owner, u64 offset, int refs_to_add,
999 				 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 	struct extent_buffer *leaf;
1002 	struct btrfs_extent_item *ei;
1003 	unsigned long ptr;
1004 	unsigned long end;
1005 	unsigned long item_offset;
1006 	u64 refs;
1007 	int size;
1008 	int type;
1009 
1010 	leaf = path->nodes[0];
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	item_offset = (unsigned long)iref - (unsigned long)ei;
1013 
1014 	type = extent_ref_type(parent, owner);
1015 	size = btrfs_extent_inline_ref_size(type);
1016 
1017 	btrfs_extend_item(trans, path, size);
1018 
1019 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 	refs = btrfs_extent_refs(leaf, ei);
1021 	refs += refs_to_add;
1022 	btrfs_set_extent_refs(leaf, ei, refs);
1023 	if (extent_op)
1024 		__run_delayed_extent_op(extent_op, leaf, ei);
1025 
1026 	ptr = (unsigned long)ei + item_offset;
1027 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 	if (ptr < end - size)
1029 		memmove_extent_buffer(leaf, ptr + size, ptr,
1030 				      end - size - ptr);
1031 
1032 	iref = (struct btrfs_extent_inline_ref *)ptr;
1033 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 		struct btrfs_extent_data_ref *dref;
1036 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 		struct btrfs_shared_data_ref *sref;
1043 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 	} else {
1049 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 	}
1051 	btrfs_mark_buffer_dirty(trans, leaf);
1052 }
1053 
1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055 				 struct btrfs_path *path,
1056 				 struct btrfs_extent_inline_ref **ref_ret,
1057 				 u64 bytenr, u64 num_bytes, u64 parent,
1058 				 u64 root_objectid, u64 owner, u64 offset)
1059 {
1060 	int ret;
1061 
1062 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063 					   num_bytes, parent, root_objectid,
1064 					   owner, offset, 0);
1065 	if (ret != -ENOENT)
1066 		return ret;
1067 
1068 	btrfs_release_path(path);
1069 	*ref_ret = NULL;
1070 
1071 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 					    root_objectid);
1074 	} else {
1075 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076 					     root_objectid, owner, offset);
1077 	}
1078 	return ret;
1079 }
1080 
1081 /*
1082  * helper to update/remove inline back ref
1083  */
1084 static noinline_for_stack int update_inline_extent_backref(
1085 				  struct btrfs_trans_handle *trans,
1086 				  struct btrfs_path *path,
1087 				  struct btrfs_extent_inline_ref *iref,
1088 				  int refs_to_mod,
1089 				  struct btrfs_delayed_extent_op *extent_op)
1090 {
1091 	struct extent_buffer *leaf = path->nodes[0];
1092 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1093 	struct btrfs_extent_item *ei;
1094 	struct btrfs_extent_data_ref *dref = NULL;
1095 	struct btrfs_shared_data_ref *sref = NULL;
1096 	unsigned long ptr;
1097 	unsigned long end;
1098 	u32 item_size;
1099 	int size;
1100 	int type;
1101 	u64 refs;
1102 
1103 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 	refs = btrfs_extent_refs(leaf, ei);
1105 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106 		struct btrfs_key key;
1107 		u32 extent_size;
1108 
1109 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1111 			extent_size = fs_info->nodesize;
1112 		else
1113 			extent_size = key.offset;
1114 		btrfs_print_leaf(leaf);
1115 		btrfs_err(fs_info,
1116 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117 			  key.objectid, extent_size, refs_to_mod, refs);
1118 		return -EUCLEAN;
1119 	}
1120 	refs += refs_to_mod;
1121 	btrfs_set_extent_refs(leaf, ei, refs);
1122 	if (extent_op)
1123 		__run_delayed_extent_op(extent_op, leaf, ei);
1124 
1125 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126 	/*
1127 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1128 	 * error messages.
1129 	 */
1130 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131 		return -EUCLEAN;
1132 
1133 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 		refs = btrfs_extent_data_ref_count(leaf, dref);
1136 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 		refs = btrfs_shared_data_ref_count(leaf, sref);
1139 	} else {
1140 		refs = 1;
1141 		/*
1142 		 * For tree blocks we can only drop one ref for it, and tree
1143 		 * blocks should not have refs > 1.
1144 		 *
1145 		 * Furthermore if we're inserting a new inline backref, we
1146 		 * won't reach this path either. That would be
1147 		 * setup_inline_extent_backref().
1148 		 */
1149 		if (unlikely(refs_to_mod != -1)) {
1150 			struct btrfs_key key;
1151 
1152 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153 
1154 			btrfs_print_leaf(leaf);
1155 			btrfs_err(fs_info,
1156 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1157 				  key.objectid, refs_to_mod);
1158 			return -EUCLEAN;
1159 		}
1160 	}
1161 
1162 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163 		struct btrfs_key key;
1164 		u32 extent_size;
1165 
1166 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1168 			extent_size = fs_info->nodesize;
1169 		else
1170 			extent_size = key.offset;
1171 		btrfs_print_leaf(leaf);
1172 		btrfs_err(fs_info,
1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174 			  (unsigned long)iref, key.objectid, extent_size,
1175 			  refs_to_mod, refs);
1176 		return -EUCLEAN;
1177 	}
1178 	refs += refs_to_mod;
1179 
1180 	if (refs > 0) {
1181 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183 		else
1184 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185 	} else {
1186 		size =  btrfs_extent_inline_ref_size(type);
1187 		item_size = btrfs_item_size(leaf, path->slots[0]);
1188 		ptr = (unsigned long)iref;
1189 		end = (unsigned long)ei + item_size;
1190 		if (ptr + size < end)
1191 			memmove_extent_buffer(leaf, ptr, ptr + size,
1192 					      end - ptr - size);
1193 		item_size -= size;
1194 		btrfs_truncate_item(trans, path, item_size, 1);
1195 	}
1196 	btrfs_mark_buffer_dirty(trans, leaf);
1197 	return 0;
1198 }
1199 
1200 static noinline_for_stack
1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202 				 struct btrfs_path *path,
1203 				 u64 bytenr, u64 num_bytes, u64 parent,
1204 				 u64 root_objectid, u64 owner,
1205 				 u64 offset, int refs_to_add,
1206 				 struct btrfs_delayed_extent_op *extent_op)
1207 {
1208 	struct btrfs_extent_inline_ref *iref;
1209 	int ret;
1210 
1211 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212 					   num_bytes, parent, root_objectid,
1213 					   owner, offset, 1);
1214 	if (ret == 0) {
1215 		/*
1216 		 * We're adding refs to a tree block we already own, this
1217 		 * should not happen at all.
1218 		 */
1219 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220 			btrfs_print_leaf(path->nodes[0]);
1221 			btrfs_crit(trans->fs_info,
1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1224 			return -EUCLEAN;
1225 		}
1226 		ret = update_inline_extent_backref(trans, path, iref,
1227 						   refs_to_add, extent_op);
1228 	} else if (ret == -ENOENT) {
1229 		setup_inline_extent_backref(trans, path, iref, parent,
1230 					    root_objectid, owner, offset,
1231 					    refs_to_add, extent_op);
1232 		ret = 0;
1233 	}
1234 	return ret;
1235 }
1236 
1237 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238 				 struct btrfs_root *root,
1239 				 struct btrfs_path *path,
1240 				 struct btrfs_extent_inline_ref *iref,
1241 				 int refs_to_drop, int is_data)
1242 {
1243 	int ret = 0;
1244 
1245 	BUG_ON(!is_data && refs_to_drop != 1);
1246 	if (iref)
1247 		ret = update_inline_extent_backref(trans, path, iref,
1248 						   -refs_to_drop, NULL);
1249 	else if (is_data)
1250 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251 	else
1252 		ret = btrfs_del_item(trans, root, path);
1253 	return ret;
1254 }
1255 
1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257 			       u64 *discarded_bytes)
1258 {
1259 	int j, ret = 0;
1260 	u64 bytes_left, end;
1261 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262 
1263 	if (WARN_ON(start != aligned_start)) {
1264 		len -= aligned_start - start;
1265 		len = round_down(len, 1 << SECTOR_SHIFT);
1266 		start = aligned_start;
1267 	}
1268 
1269 	*discarded_bytes = 0;
1270 
1271 	if (!len)
1272 		return 0;
1273 
1274 	end = start + len;
1275 	bytes_left = len;
1276 
1277 	/* Skip any superblocks on this device. */
1278 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1279 		u64 sb_start = btrfs_sb_offset(j);
1280 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1281 		u64 size = sb_start - start;
1282 
1283 		if (!in_range(sb_start, start, bytes_left) &&
1284 		    !in_range(sb_end, start, bytes_left) &&
1285 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1286 			continue;
1287 
1288 		/*
1289 		 * Superblock spans beginning of range.  Adjust start and
1290 		 * try again.
1291 		 */
1292 		if (sb_start <= start) {
1293 			start += sb_end - start;
1294 			if (start > end) {
1295 				bytes_left = 0;
1296 				break;
1297 			}
1298 			bytes_left = end - start;
1299 			continue;
1300 		}
1301 
1302 		if (size) {
1303 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1304 						   size >> SECTOR_SHIFT,
1305 						   GFP_NOFS);
1306 			if (!ret)
1307 				*discarded_bytes += size;
1308 			else if (ret != -EOPNOTSUPP)
1309 				return ret;
1310 		}
1311 
1312 		start = sb_end;
1313 		if (start > end) {
1314 			bytes_left = 0;
1315 			break;
1316 		}
1317 		bytes_left = end - start;
1318 	}
1319 
1320 	if (bytes_left) {
1321 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1322 					   bytes_left >> SECTOR_SHIFT,
1323 					   GFP_NOFS);
1324 		if (!ret)
1325 			*discarded_bytes += bytes_left;
1326 	}
1327 	return ret;
1328 }
1329 
1330 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1331 {
1332 	struct btrfs_device *dev = stripe->dev;
1333 	struct btrfs_fs_info *fs_info = dev->fs_info;
1334 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1335 	u64 phys = stripe->physical;
1336 	u64 len = stripe->length;
1337 	u64 discarded = 0;
1338 	int ret = 0;
1339 
1340 	/* Zone reset on a zoned filesystem */
1341 	if (btrfs_can_zone_reset(dev, phys, len)) {
1342 		u64 src_disc;
1343 
1344 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1345 		if (ret)
1346 			goto out;
1347 
1348 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1349 		    dev != dev_replace->srcdev)
1350 			goto out;
1351 
1352 		src_disc = discarded;
1353 
1354 		/* Send to replace target as well */
1355 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1356 					      &discarded);
1357 		discarded += src_disc;
1358 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1359 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1360 	} else {
1361 		ret = 0;
1362 		*bytes = 0;
1363 	}
1364 
1365 out:
1366 	*bytes = discarded;
1367 	return ret;
1368 }
1369 
1370 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1371 			 u64 num_bytes, u64 *actual_bytes)
1372 {
1373 	int ret = 0;
1374 	u64 discarded_bytes = 0;
1375 	u64 end = bytenr + num_bytes;
1376 	u64 cur = bytenr;
1377 
1378 	/*
1379 	 * Avoid races with device replace and make sure the devices in the
1380 	 * stripes don't go away while we are discarding.
1381 	 */
1382 	btrfs_bio_counter_inc_blocked(fs_info);
1383 	while (cur < end) {
1384 		struct btrfs_discard_stripe *stripes;
1385 		unsigned int num_stripes;
1386 		int i;
1387 
1388 		num_bytes = end - cur;
1389 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1390 		if (IS_ERR(stripes)) {
1391 			ret = PTR_ERR(stripes);
1392 			if (ret == -EOPNOTSUPP)
1393 				ret = 0;
1394 			break;
1395 		}
1396 
1397 		for (i = 0; i < num_stripes; i++) {
1398 			struct btrfs_discard_stripe *stripe = stripes + i;
1399 			u64 bytes;
1400 
1401 			if (!stripe->dev->bdev) {
1402 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1403 				continue;
1404 			}
1405 
1406 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1407 					&stripe->dev->dev_state))
1408 				continue;
1409 
1410 			ret = do_discard_extent(stripe, &bytes);
1411 			if (ret) {
1412 				/*
1413 				 * Keep going if discard is not supported by the
1414 				 * device.
1415 				 */
1416 				if (ret != -EOPNOTSUPP)
1417 					break;
1418 				ret = 0;
1419 			} else {
1420 				discarded_bytes += bytes;
1421 			}
1422 		}
1423 		kfree(stripes);
1424 		if (ret)
1425 			break;
1426 		cur += num_bytes;
1427 	}
1428 	btrfs_bio_counter_dec(fs_info);
1429 	if (actual_bytes)
1430 		*actual_bytes = discarded_bytes;
1431 	return ret;
1432 }
1433 
1434 /* Can return -ENOMEM */
1435 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1436 			 struct btrfs_ref *generic_ref)
1437 {
1438 	struct btrfs_fs_info *fs_info = trans->fs_info;
1439 	int ret;
1440 
1441 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1442 	       generic_ref->action);
1443 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1444 	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1445 
1446 	if (generic_ref->type == BTRFS_REF_METADATA)
1447 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1448 	else
1449 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1450 
1451 	btrfs_ref_tree_mod(fs_info, generic_ref);
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * Insert backreference for a given extent.
1458  *
1459  * The counterpart is in __btrfs_free_extent(), with examples and more details
1460  * how it works.
1461  *
1462  * @trans:	    Handle of transaction
1463  *
1464  * @node:	    The delayed ref node used to get the bytenr/length for
1465  *		    extent whose references are incremented.
1466  *
1467  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1468  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1469  *		    bytenr of the parent block. Since new extents are always
1470  *		    created with indirect references, this will only be the case
1471  *		    when relocating a shared extent. In that case, root_objectid
1472  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1473  *		    be 0
1474  *
1475  * @root_objectid:  The id of the root where this modification has originated,
1476  *		    this can be either one of the well-known metadata trees or
1477  *		    the subvolume id which references this extent.
1478  *
1479  * @owner:	    For data extents it is the inode number of the owning file.
1480  *		    For metadata extents this parameter holds the level in the
1481  *		    tree of the extent.
1482  *
1483  * @offset:	    For metadata extents the offset is ignored and is currently
1484  *		    always passed as 0. For data extents it is the fileoffset
1485  *		    this extent belongs to.
1486  *
1487  * @extent_op       Pointer to a structure, holding information necessary when
1488  *                  updating a tree block's flags
1489  *
1490  */
1491 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1492 				  struct btrfs_delayed_ref_node *node,
1493 				  u64 parent, u64 root_objectid,
1494 				  u64 owner, u64 offset,
1495 				  struct btrfs_delayed_extent_op *extent_op)
1496 {
1497 	struct btrfs_path *path;
1498 	struct extent_buffer *leaf;
1499 	struct btrfs_extent_item *item;
1500 	struct btrfs_key key;
1501 	u64 bytenr = node->bytenr;
1502 	u64 num_bytes = node->num_bytes;
1503 	u64 refs;
1504 	int refs_to_add = node->ref_mod;
1505 	int ret;
1506 
1507 	path = btrfs_alloc_path();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	/* this will setup the path even if it fails to insert the back ref */
1512 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1513 					   parent, root_objectid, owner,
1514 					   offset, refs_to_add, extent_op);
1515 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1516 		goto out;
1517 
1518 	/*
1519 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1520 	 * inline extent ref, so just update the reference count and add a
1521 	 * normal backref.
1522 	 */
1523 	leaf = path->nodes[0];
1524 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1525 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1526 	refs = btrfs_extent_refs(leaf, item);
1527 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1528 	if (extent_op)
1529 		__run_delayed_extent_op(extent_op, leaf, item);
1530 
1531 	btrfs_mark_buffer_dirty(trans, leaf);
1532 	btrfs_release_path(path);
1533 
1534 	/* now insert the actual backref */
1535 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1536 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1537 					    root_objectid);
1538 	else
1539 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1540 					     root_objectid, owner, offset,
1541 					     refs_to_add);
1542 
1543 	if (ret)
1544 		btrfs_abort_transaction(trans, ret);
1545 out:
1546 	btrfs_free_path(path);
1547 	return ret;
1548 }
1549 
1550 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1551 				struct btrfs_delayed_ref_head *href,
1552 				struct btrfs_delayed_ref_node *node,
1553 				struct btrfs_delayed_extent_op *extent_op,
1554 				bool insert_reserved)
1555 {
1556 	int ret = 0;
1557 	struct btrfs_delayed_data_ref *ref;
1558 	u64 parent = 0;
1559 	u64 flags = 0;
1560 
1561 	ref = btrfs_delayed_node_to_data_ref(node);
1562 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1563 
1564 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1565 		parent = ref->parent;
1566 
1567 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1568 		struct btrfs_key key;
1569 		struct btrfs_squota_delta delta = {
1570 			.root = href->owning_root,
1571 			.num_bytes = node->num_bytes,
1572 			.rsv_bytes = href->reserved_bytes,
1573 			.is_data = true,
1574 			.is_inc	= true,
1575 			.generation = trans->transid,
1576 		};
1577 
1578 		if (extent_op)
1579 			flags |= extent_op->flags_to_set;
1580 
1581 		key.objectid = node->bytenr;
1582 		key.type = BTRFS_EXTENT_ITEM_KEY;
1583 		key.offset = node->num_bytes;
1584 
1585 		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1586 						 flags, ref->objectid,
1587 						 ref->offset, &key,
1588 						 node->ref_mod, href->owning_root);
1589 		if (!ret)
1590 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1591 		else
1592 			btrfs_qgroup_free_refroot(trans->fs_info, delta.root,
1593 						  delta.rsv_bytes, BTRFS_QGROUP_RSV_DATA);
1594 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1595 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1596 					     ref->objectid, ref->offset,
1597 					     extent_op);
1598 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1599 		ret = __btrfs_free_extent(trans, href, node, parent,
1600 					  ref->root, ref->objectid,
1601 					  ref->offset, extent_op);
1602 	} else {
1603 		BUG();
1604 	}
1605 	return ret;
1606 }
1607 
1608 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1609 				    struct extent_buffer *leaf,
1610 				    struct btrfs_extent_item *ei)
1611 {
1612 	u64 flags = btrfs_extent_flags(leaf, ei);
1613 	if (extent_op->update_flags) {
1614 		flags |= extent_op->flags_to_set;
1615 		btrfs_set_extent_flags(leaf, ei, flags);
1616 	}
1617 
1618 	if (extent_op->update_key) {
1619 		struct btrfs_tree_block_info *bi;
1620 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1621 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1622 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1623 	}
1624 }
1625 
1626 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1627 				 struct btrfs_delayed_ref_head *head,
1628 				 struct btrfs_delayed_extent_op *extent_op)
1629 {
1630 	struct btrfs_fs_info *fs_info = trans->fs_info;
1631 	struct btrfs_root *root;
1632 	struct btrfs_key key;
1633 	struct btrfs_path *path;
1634 	struct btrfs_extent_item *ei;
1635 	struct extent_buffer *leaf;
1636 	u32 item_size;
1637 	int ret;
1638 	int metadata = 1;
1639 
1640 	if (TRANS_ABORTED(trans))
1641 		return 0;
1642 
1643 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1644 		metadata = 0;
1645 
1646 	path = btrfs_alloc_path();
1647 	if (!path)
1648 		return -ENOMEM;
1649 
1650 	key.objectid = head->bytenr;
1651 
1652 	if (metadata) {
1653 		key.type = BTRFS_METADATA_ITEM_KEY;
1654 		key.offset = extent_op->level;
1655 	} else {
1656 		key.type = BTRFS_EXTENT_ITEM_KEY;
1657 		key.offset = head->num_bytes;
1658 	}
1659 
1660 	root = btrfs_extent_root(fs_info, key.objectid);
1661 again:
1662 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1663 	if (ret < 0) {
1664 		goto out;
1665 	} else if (ret > 0) {
1666 		if (metadata) {
1667 			if (path->slots[0] > 0) {
1668 				path->slots[0]--;
1669 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1670 						      path->slots[0]);
1671 				if (key.objectid == head->bytenr &&
1672 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1673 				    key.offset == head->num_bytes)
1674 					ret = 0;
1675 			}
1676 			if (ret > 0) {
1677 				btrfs_release_path(path);
1678 				metadata = 0;
1679 
1680 				key.objectid = head->bytenr;
1681 				key.offset = head->num_bytes;
1682 				key.type = BTRFS_EXTENT_ITEM_KEY;
1683 				goto again;
1684 			}
1685 		} else {
1686 			ret = -EUCLEAN;
1687 			btrfs_err(fs_info,
1688 		  "missing extent item for extent %llu num_bytes %llu level %d",
1689 				  head->bytenr, head->num_bytes, extent_op->level);
1690 			goto out;
1691 		}
1692 	}
1693 
1694 	leaf = path->nodes[0];
1695 	item_size = btrfs_item_size(leaf, path->slots[0]);
1696 
1697 	if (unlikely(item_size < sizeof(*ei))) {
1698 		ret = -EUCLEAN;
1699 		btrfs_err(fs_info,
1700 			  "unexpected extent item size, has %u expect >= %zu",
1701 			  item_size, sizeof(*ei));
1702 		btrfs_abort_transaction(trans, ret);
1703 		goto out;
1704 	}
1705 
1706 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1707 	__run_delayed_extent_op(extent_op, leaf, ei);
1708 
1709 	btrfs_mark_buffer_dirty(trans, leaf);
1710 out:
1711 	btrfs_free_path(path);
1712 	return ret;
1713 }
1714 
1715 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1716 				struct btrfs_delayed_ref_head *href,
1717 				struct btrfs_delayed_ref_node *node,
1718 				struct btrfs_delayed_extent_op *extent_op,
1719 				bool insert_reserved)
1720 {
1721 	int ret = 0;
1722 	struct btrfs_fs_info *fs_info = trans->fs_info;
1723 	struct btrfs_delayed_tree_ref *ref;
1724 	u64 parent = 0;
1725 	u64 ref_root = 0;
1726 
1727 	ref = btrfs_delayed_node_to_tree_ref(node);
1728 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1729 
1730 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1731 		parent = ref->parent;
1732 	ref_root = ref->root;
1733 
1734 	if (unlikely(node->ref_mod != 1)) {
1735 		btrfs_err(trans->fs_info,
1736 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1737 			  node->bytenr, node->ref_mod, node->action, ref_root,
1738 			  parent);
1739 		return -EUCLEAN;
1740 	}
1741 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1742 		struct btrfs_squota_delta delta = {
1743 			.root = href->owning_root,
1744 			.num_bytes = fs_info->nodesize,
1745 			.rsv_bytes = 0,
1746 			.is_data = false,
1747 			.is_inc = true,
1748 			.generation = trans->transid,
1749 		};
1750 
1751 		BUG_ON(!extent_op || !extent_op->update_flags);
1752 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1753 		if (!ret)
1754 			btrfs_record_squota_delta(fs_info, &delta);
1755 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1756 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1757 					     ref->level, 0, extent_op);
1758 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1759 		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1760 					  ref->level, 0, extent_op);
1761 	} else {
1762 		BUG();
1763 	}
1764 	return ret;
1765 }
1766 
1767 /* helper function to actually process a single delayed ref entry */
1768 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769 			       struct btrfs_delayed_ref_head *href,
1770 			       struct btrfs_delayed_ref_node *node,
1771 			       struct btrfs_delayed_extent_op *extent_op,
1772 			       bool insert_reserved)
1773 {
1774 	int ret = 0;
1775 
1776 	if (TRANS_ABORTED(trans)) {
1777 		if (insert_reserved)
1778 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779 		return 0;
1780 	}
1781 
1782 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1783 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1784 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1785 					   insert_reserved);
1786 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1787 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1788 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1789 					   insert_reserved);
1790 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1791 		ret = 0;
1792 	else
1793 		BUG();
1794 	if (ret && insert_reserved)
1795 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1796 	if (ret < 0)
1797 		btrfs_err(trans->fs_info,
1798 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1799 			  node->bytenr, node->num_bytes, node->type,
1800 			  node->action, node->ref_mod, ret);
1801 	return ret;
1802 }
1803 
1804 static inline struct btrfs_delayed_ref_node *
1805 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1806 {
1807 	struct btrfs_delayed_ref_node *ref;
1808 
1809 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1810 		return NULL;
1811 
1812 	/*
1813 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1814 	 * This is to prevent a ref count from going down to zero, which deletes
1815 	 * the extent item from the extent tree, when there still are references
1816 	 * to add, which would fail because they would not find the extent item.
1817 	 */
1818 	if (!list_empty(&head->ref_add_list))
1819 		return list_first_entry(&head->ref_add_list,
1820 				struct btrfs_delayed_ref_node, add_list);
1821 
1822 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1823 		       struct btrfs_delayed_ref_node, ref_node);
1824 	ASSERT(list_empty(&ref->add_list));
1825 	return ref;
1826 }
1827 
1828 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1829 				      struct btrfs_delayed_ref_head *head)
1830 {
1831 	spin_lock(&delayed_refs->lock);
1832 	head->processing = false;
1833 	delayed_refs->num_heads_ready++;
1834 	spin_unlock(&delayed_refs->lock);
1835 	btrfs_delayed_ref_unlock(head);
1836 }
1837 
1838 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1839 				struct btrfs_delayed_ref_head *head)
1840 {
1841 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1842 
1843 	if (!extent_op)
1844 		return NULL;
1845 
1846 	if (head->must_insert_reserved) {
1847 		head->extent_op = NULL;
1848 		btrfs_free_delayed_extent_op(extent_op);
1849 		return NULL;
1850 	}
1851 	return extent_op;
1852 }
1853 
1854 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1855 				     struct btrfs_delayed_ref_head *head)
1856 {
1857 	struct btrfs_delayed_extent_op *extent_op;
1858 	int ret;
1859 
1860 	extent_op = cleanup_extent_op(head);
1861 	if (!extent_op)
1862 		return 0;
1863 	head->extent_op = NULL;
1864 	spin_unlock(&head->lock);
1865 	ret = run_delayed_extent_op(trans, head, extent_op);
1866 	btrfs_free_delayed_extent_op(extent_op);
1867 	return ret ? ret : 1;
1868 }
1869 
1870 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1871 				  struct btrfs_delayed_ref_root *delayed_refs,
1872 				  struct btrfs_delayed_ref_head *head)
1873 {
1874 	/*
1875 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1876 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1877 	 */
1878 	if (head->total_ref_mod < 0 && head->is_data) {
1879 		int nr_csums;
1880 
1881 		spin_lock(&delayed_refs->lock);
1882 		delayed_refs->pending_csums -= head->num_bytes;
1883 		spin_unlock(&delayed_refs->lock);
1884 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1885 
1886 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1887 
1888 		return btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1889 	}
1890 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE &&
1891 	    head->must_insert_reserved && head->is_data)
1892 		btrfs_qgroup_free_refroot(fs_info, head->owning_root,
1893 					  head->reserved_bytes, BTRFS_QGROUP_RSV_DATA);
1894 
1895 	return 0;
1896 }
1897 
1898 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1899 			    struct btrfs_delayed_ref_head *head,
1900 			    u64 *bytes_released)
1901 {
1902 
1903 	struct btrfs_fs_info *fs_info = trans->fs_info;
1904 	struct btrfs_delayed_ref_root *delayed_refs;
1905 	int ret;
1906 
1907 	delayed_refs = &trans->transaction->delayed_refs;
1908 
1909 	ret = run_and_cleanup_extent_op(trans, head);
1910 	if (ret < 0) {
1911 		unselect_delayed_ref_head(delayed_refs, head);
1912 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1913 		return ret;
1914 	} else if (ret) {
1915 		return ret;
1916 	}
1917 
1918 	/*
1919 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1920 	 * and then re-check to make sure nobody got added.
1921 	 */
1922 	spin_unlock(&head->lock);
1923 	spin_lock(&delayed_refs->lock);
1924 	spin_lock(&head->lock);
1925 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1926 		spin_unlock(&head->lock);
1927 		spin_unlock(&delayed_refs->lock);
1928 		return 1;
1929 	}
1930 	btrfs_delete_ref_head(delayed_refs, head);
1931 	spin_unlock(&head->lock);
1932 	spin_unlock(&delayed_refs->lock);
1933 
1934 	if (head->must_insert_reserved) {
1935 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1936 		if (head->is_data) {
1937 			struct btrfs_root *csum_root;
1938 
1939 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1940 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1941 					      head->num_bytes);
1942 		}
1943 	}
1944 
1945 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1946 
1947 	trace_run_delayed_ref_head(fs_info, head, 0);
1948 	btrfs_delayed_ref_unlock(head);
1949 	btrfs_put_delayed_ref_head(head);
1950 	return ret;
1951 }
1952 
1953 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1954 					struct btrfs_trans_handle *trans)
1955 {
1956 	struct btrfs_delayed_ref_root *delayed_refs =
1957 		&trans->transaction->delayed_refs;
1958 	struct btrfs_delayed_ref_head *head = NULL;
1959 	int ret;
1960 
1961 	spin_lock(&delayed_refs->lock);
1962 	head = btrfs_select_ref_head(delayed_refs);
1963 	if (!head) {
1964 		spin_unlock(&delayed_refs->lock);
1965 		return head;
1966 	}
1967 
1968 	/*
1969 	 * Grab the lock that says we are going to process all the refs for
1970 	 * this head
1971 	 */
1972 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1973 	spin_unlock(&delayed_refs->lock);
1974 
1975 	/*
1976 	 * We may have dropped the spin lock to get the head mutex lock, and
1977 	 * that might have given someone else time to free the head.  If that's
1978 	 * true, it has been removed from our list and we can move on.
1979 	 */
1980 	if (ret == -EAGAIN)
1981 		head = ERR_PTR(-EAGAIN);
1982 
1983 	return head;
1984 }
1985 
1986 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1987 					   struct btrfs_delayed_ref_head *locked_ref,
1988 					   u64 *bytes_released)
1989 {
1990 	struct btrfs_fs_info *fs_info = trans->fs_info;
1991 	struct btrfs_delayed_ref_root *delayed_refs;
1992 	struct btrfs_delayed_extent_op *extent_op;
1993 	struct btrfs_delayed_ref_node *ref;
1994 	bool must_insert_reserved;
1995 	int ret;
1996 
1997 	delayed_refs = &trans->transaction->delayed_refs;
1998 
1999 	lockdep_assert_held(&locked_ref->mutex);
2000 	lockdep_assert_held(&locked_ref->lock);
2001 
2002 	while ((ref = select_delayed_ref(locked_ref))) {
2003 		if (ref->seq &&
2004 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2005 			spin_unlock(&locked_ref->lock);
2006 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2007 			return -EAGAIN;
2008 		}
2009 
2010 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2011 		RB_CLEAR_NODE(&ref->ref_node);
2012 		if (!list_empty(&ref->add_list))
2013 			list_del(&ref->add_list);
2014 		/*
2015 		 * When we play the delayed ref, also correct the ref_mod on
2016 		 * head
2017 		 */
2018 		switch (ref->action) {
2019 		case BTRFS_ADD_DELAYED_REF:
2020 		case BTRFS_ADD_DELAYED_EXTENT:
2021 			locked_ref->ref_mod -= ref->ref_mod;
2022 			break;
2023 		case BTRFS_DROP_DELAYED_REF:
2024 			locked_ref->ref_mod += ref->ref_mod;
2025 			break;
2026 		default:
2027 			WARN_ON(1);
2028 		}
2029 		atomic_dec(&delayed_refs->num_entries);
2030 
2031 		/*
2032 		 * Record the must_insert_reserved flag before we drop the
2033 		 * spin lock.
2034 		 */
2035 		must_insert_reserved = locked_ref->must_insert_reserved;
2036 		locked_ref->must_insert_reserved = false;
2037 
2038 		extent_op = locked_ref->extent_op;
2039 		locked_ref->extent_op = NULL;
2040 		spin_unlock(&locked_ref->lock);
2041 
2042 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2043 					  must_insert_reserved);
2044 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2045 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2046 
2047 		btrfs_free_delayed_extent_op(extent_op);
2048 		if (ret) {
2049 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2050 			btrfs_put_delayed_ref(ref);
2051 			return ret;
2052 		}
2053 
2054 		btrfs_put_delayed_ref(ref);
2055 		cond_resched();
2056 
2057 		spin_lock(&locked_ref->lock);
2058 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 /*
2065  * Returns 0 on success or if called with an already aborted transaction.
2066  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2067  */
2068 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2069 					     u64 min_bytes)
2070 {
2071 	struct btrfs_fs_info *fs_info = trans->fs_info;
2072 	struct btrfs_delayed_ref_root *delayed_refs;
2073 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2074 	int ret;
2075 	unsigned long count = 0;
2076 	unsigned long max_count = 0;
2077 	u64 bytes_processed = 0;
2078 
2079 	delayed_refs = &trans->transaction->delayed_refs;
2080 	if (min_bytes == 0) {
2081 		max_count = delayed_refs->num_heads_ready;
2082 		min_bytes = U64_MAX;
2083 	}
2084 
2085 	do {
2086 		if (!locked_ref) {
2087 			locked_ref = btrfs_obtain_ref_head(trans);
2088 			if (IS_ERR_OR_NULL(locked_ref)) {
2089 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2090 					continue;
2091 				} else {
2092 					break;
2093 				}
2094 			}
2095 			count++;
2096 		}
2097 		/*
2098 		 * We need to try and merge add/drops of the same ref since we
2099 		 * can run into issues with relocate dropping the implicit ref
2100 		 * and then it being added back again before the drop can
2101 		 * finish.  If we merged anything we need to re-loop so we can
2102 		 * get a good ref.
2103 		 * Or we can get node references of the same type that weren't
2104 		 * merged when created due to bumps in the tree mod seq, and
2105 		 * we need to merge them to prevent adding an inline extent
2106 		 * backref before dropping it (triggering a BUG_ON at
2107 		 * insert_inline_extent_backref()).
2108 		 */
2109 		spin_lock(&locked_ref->lock);
2110 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2111 
2112 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2113 		if (ret < 0 && ret != -EAGAIN) {
2114 			/*
2115 			 * Error, btrfs_run_delayed_refs_for_head already
2116 			 * unlocked everything so just bail out
2117 			 */
2118 			return ret;
2119 		} else if (!ret) {
2120 			/*
2121 			 * Success, perform the usual cleanup of a processed
2122 			 * head
2123 			 */
2124 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2125 			if (ret > 0 ) {
2126 				/* We dropped our lock, we need to loop. */
2127 				ret = 0;
2128 				continue;
2129 			} else if (ret) {
2130 				return ret;
2131 			}
2132 		}
2133 
2134 		/*
2135 		 * Either success case or btrfs_run_delayed_refs_for_head
2136 		 * returned -EAGAIN, meaning we need to select another head
2137 		 */
2138 
2139 		locked_ref = NULL;
2140 		cond_resched();
2141 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2142 		 (max_count > 0 && count < max_count) ||
2143 		 locked_ref);
2144 
2145 	return 0;
2146 }
2147 
2148 #ifdef SCRAMBLE_DELAYED_REFS
2149 /*
2150  * Normally delayed refs get processed in ascending bytenr order. This
2151  * correlates in most cases to the order added. To expose dependencies on this
2152  * order, we start to process the tree in the middle instead of the beginning
2153  */
2154 static u64 find_middle(struct rb_root *root)
2155 {
2156 	struct rb_node *n = root->rb_node;
2157 	struct btrfs_delayed_ref_node *entry;
2158 	int alt = 1;
2159 	u64 middle;
2160 	u64 first = 0, last = 0;
2161 
2162 	n = rb_first(root);
2163 	if (n) {
2164 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2165 		first = entry->bytenr;
2166 	}
2167 	n = rb_last(root);
2168 	if (n) {
2169 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2170 		last = entry->bytenr;
2171 	}
2172 	n = root->rb_node;
2173 
2174 	while (n) {
2175 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2176 		WARN_ON(!entry->in_tree);
2177 
2178 		middle = entry->bytenr;
2179 
2180 		if (alt)
2181 			n = n->rb_left;
2182 		else
2183 			n = n->rb_right;
2184 
2185 		alt = 1 - alt;
2186 	}
2187 	return middle;
2188 }
2189 #endif
2190 
2191 /*
2192  * Start processing the delayed reference count updates and extent insertions
2193  * we have queued up so far.
2194  *
2195  * @trans:	Transaction handle.
2196  * @min_bytes:	How many bytes of delayed references to process. After this
2197  *		many bytes we stop processing delayed references if there are
2198  *		any more. If 0 it means to run all existing delayed references,
2199  *		but not new ones added after running all existing ones.
2200  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2201  *		plus any new ones that are added.
2202  *
2203  * Returns 0 on success or if called with an aborted transaction
2204  * Returns <0 on error and aborts the transaction
2205  */
2206 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2207 {
2208 	struct btrfs_fs_info *fs_info = trans->fs_info;
2209 	struct btrfs_delayed_ref_root *delayed_refs;
2210 	int ret;
2211 
2212 	/* We'll clean this up in btrfs_cleanup_transaction */
2213 	if (TRANS_ABORTED(trans))
2214 		return 0;
2215 
2216 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2217 		return 0;
2218 
2219 	delayed_refs = &trans->transaction->delayed_refs;
2220 again:
2221 #ifdef SCRAMBLE_DELAYED_REFS
2222 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2223 #endif
2224 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2225 	if (ret < 0) {
2226 		btrfs_abort_transaction(trans, ret);
2227 		return ret;
2228 	}
2229 
2230 	if (min_bytes == U64_MAX) {
2231 		btrfs_create_pending_block_groups(trans);
2232 
2233 		spin_lock(&delayed_refs->lock);
2234 		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2235 			spin_unlock(&delayed_refs->lock);
2236 			return 0;
2237 		}
2238 		spin_unlock(&delayed_refs->lock);
2239 
2240 		cond_resched();
2241 		goto again;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2248 				struct extent_buffer *eb, u64 flags)
2249 {
2250 	struct btrfs_delayed_extent_op *extent_op;
2251 	int level = btrfs_header_level(eb);
2252 	int ret;
2253 
2254 	extent_op = btrfs_alloc_delayed_extent_op();
2255 	if (!extent_op)
2256 		return -ENOMEM;
2257 
2258 	extent_op->flags_to_set = flags;
2259 	extent_op->update_flags = true;
2260 	extent_op->update_key = false;
2261 	extent_op->level = level;
2262 
2263 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2264 	if (ret)
2265 		btrfs_free_delayed_extent_op(extent_op);
2266 	return ret;
2267 }
2268 
2269 static noinline int check_delayed_ref(struct btrfs_root *root,
2270 				      struct btrfs_path *path,
2271 				      u64 objectid, u64 offset, u64 bytenr)
2272 {
2273 	struct btrfs_delayed_ref_head *head;
2274 	struct btrfs_delayed_ref_node *ref;
2275 	struct btrfs_delayed_data_ref *data_ref;
2276 	struct btrfs_delayed_ref_root *delayed_refs;
2277 	struct btrfs_transaction *cur_trans;
2278 	struct rb_node *node;
2279 	int ret = 0;
2280 
2281 	spin_lock(&root->fs_info->trans_lock);
2282 	cur_trans = root->fs_info->running_transaction;
2283 	if (cur_trans)
2284 		refcount_inc(&cur_trans->use_count);
2285 	spin_unlock(&root->fs_info->trans_lock);
2286 	if (!cur_trans)
2287 		return 0;
2288 
2289 	delayed_refs = &cur_trans->delayed_refs;
2290 	spin_lock(&delayed_refs->lock);
2291 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2292 	if (!head) {
2293 		spin_unlock(&delayed_refs->lock);
2294 		btrfs_put_transaction(cur_trans);
2295 		return 0;
2296 	}
2297 
2298 	if (!mutex_trylock(&head->mutex)) {
2299 		if (path->nowait) {
2300 			spin_unlock(&delayed_refs->lock);
2301 			btrfs_put_transaction(cur_trans);
2302 			return -EAGAIN;
2303 		}
2304 
2305 		refcount_inc(&head->refs);
2306 		spin_unlock(&delayed_refs->lock);
2307 
2308 		btrfs_release_path(path);
2309 
2310 		/*
2311 		 * Mutex was contended, block until it's released and let
2312 		 * caller try again
2313 		 */
2314 		mutex_lock(&head->mutex);
2315 		mutex_unlock(&head->mutex);
2316 		btrfs_put_delayed_ref_head(head);
2317 		btrfs_put_transaction(cur_trans);
2318 		return -EAGAIN;
2319 	}
2320 	spin_unlock(&delayed_refs->lock);
2321 
2322 	spin_lock(&head->lock);
2323 	/*
2324 	 * XXX: We should replace this with a proper search function in the
2325 	 * future.
2326 	 */
2327 	for (node = rb_first_cached(&head->ref_tree); node;
2328 	     node = rb_next(node)) {
2329 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2330 		/* If it's a shared ref we know a cross reference exists */
2331 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2332 			ret = 1;
2333 			break;
2334 		}
2335 
2336 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2337 
2338 		/*
2339 		 * If our ref doesn't match the one we're currently looking at
2340 		 * then we have a cross reference.
2341 		 */
2342 		if (data_ref->root != root->root_key.objectid ||
2343 		    data_ref->objectid != objectid ||
2344 		    data_ref->offset != offset) {
2345 			ret = 1;
2346 			break;
2347 		}
2348 	}
2349 	spin_unlock(&head->lock);
2350 	mutex_unlock(&head->mutex);
2351 	btrfs_put_transaction(cur_trans);
2352 	return ret;
2353 }
2354 
2355 static noinline int check_committed_ref(struct btrfs_root *root,
2356 					struct btrfs_path *path,
2357 					u64 objectid, u64 offset, u64 bytenr,
2358 					bool strict)
2359 {
2360 	struct btrfs_fs_info *fs_info = root->fs_info;
2361 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2362 	struct extent_buffer *leaf;
2363 	struct btrfs_extent_data_ref *ref;
2364 	struct btrfs_extent_inline_ref *iref;
2365 	struct btrfs_extent_item *ei;
2366 	struct btrfs_key key;
2367 	u32 item_size;
2368 	u32 expected_size;
2369 	int type;
2370 	int ret;
2371 
2372 	key.objectid = bytenr;
2373 	key.offset = (u64)-1;
2374 	key.type = BTRFS_EXTENT_ITEM_KEY;
2375 
2376 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2377 	if (ret < 0)
2378 		goto out;
2379 	BUG_ON(ret == 0); /* Corruption */
2380 
2381 	ret = -ENOENT;
2382 	if (path->slots[0] == 0)
2383 		goto out;
2384 
2385 	path->slots[0]--;
2386 	leaf = path->nodes[0];
2387 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2388 
2389 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2390 		goto out;
2391 
2392 	ret = 1;
2393 	item_size = btrfs_item_size(leaf, path->slots[0]);
2394 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2395 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2396 
2397 	/* No inline refs; we need to bail before checking for owner ref. */
2398 	if (item_size == sizeof(*ei))
2399 		goto out;
2400 
2401 	/* Check for an owner ref; skip over it to the real inline refs. */
2402 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2403 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2404 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2405 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2406 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2407 	}
2408 
2409 	/* If extent item has more than 1 inline ref then it's shared */
2410 	if (item_size != expected_size)
2411 		goto out;
2412 
2413 	/*
2414 	 * If extent created before last snapshot => it's shared unless the
2415 	 * snapshot has been deleted. Use the heuristic if strict is false.
2416 	 */
2417 	if (!strict &&
2418 	    (btrfs_extent_generation(leaf, ei) <=
2419 	     btrfs_root_last_snapshot(&root->root_item)))
2420 		goto out;
2421 
2422 	/* If this extent has SHARED_DATA_REF then it's shared */
2423 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2424 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2425 		goto out;
2426 
2427 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2428 	if (btrfs_extent_refs(leaf, ei) !=
2429 	    btrfs_extent_data_ref_count(leaf, ref) ||
2430 	    btrfs_extent_data_ref_root(leaf, ref) !=
2431 	    root->root_key.objectid ||
2432 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2433 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2434 		goto out;
2435 
2436 	ret = 0;
2437 out:
2438 	return ret;
2439 }
2440 
2441 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2442 			  u64 bytenr, bool strict, struct btrfs_path *path)
2443 {
2444 	int ret;
2445 
2446 	do {
2447 		ret = check_committed_ref(root, path, objectid,
2448 					  offset, bytenr, strict);
2449 		if (ret && ret != -ENOENT)
2450 			goto out;
2451 
2452 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2453 	} while (ret == -EAGAIN);
2454 
2455 out:
2456 	btrfs_release_path(path);
2457 	if (btrfs_is_data_reloc_root(root))
2458 		WARN_ON(ret > 0);
2459 	return ret;
2460 }
2461 
2462 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2463 			   struct btrfs_root *root,
2464 			   struct extent_buffer *buf,
2465 			   int full_backref, int inc)
2466 {
2467 	struct btrfs_fs_info *fs_info = root->fs_info;
2468 	u64 bytenr;
2469 	u64 num_bytes;
2470 	u64 parent;
2471 	u64 ref_root;
2472 	u32 nritems;
2473 	struct btrfs_key key;
2474 	struct btrfs_file_extent_item *fi;
2475 	struct btrfs_ref generic_ref = { 0 };
2476 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2477 	int i;
2478 	int action;
2479 	int level;
2480 	int ret = 0;
2481 
2482 	if (btrfs_is_testing(fs_info))
2483 		return 0;
2484 
2485 	ref_root = btrfs_header_owner(buf);
2486 	nritems = btrfs_header_nritems(buf);
2487 	level = btrfs_header_level(buf);
2488 
2489 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2490 		return 0;
2491 
2492 	if (full_backref)
2493 		parent = buf->start;
2494 	else
2495 		parent = 0;
2496 	if (inc)
2497 		action = BTRFS_ADD_DELAYED_REF;
2498 	else
2499 		action = BTRFS_DROP_DELAYED_REF;
2500 
2501 	for (i = 0; i < nritems; i++) {
2502 		if (level == 0) {
2503 			btrfs_item_key_to_cpu(buf, &key, i);
2504 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2505 				continue;
2506 			fi = btrfs_item_ptr(buf, i,
2507 					    struct btrfs_file_extent_item);
2508 			if (btrfs_file_extent_type(buf, fi) ==
2509 			    BTRFS_FILE_EXTENT_INLINE)
2510 				continue;
2511 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2512 			if (bytenr == 0)
2513 				continue;
2514 
2515 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2516 			key.offset -= btrfs_file_extent_offset(buf, fi);
2517 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2518 					       num_bytes, parent, ref_root);
2519 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2520 					    key.offset, root->root_key.objectid,
2521 					    for_reloc);
2522 			if (inc)
2523 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2524 			else
2525 				ret = btrfs_free_extent(trans, &generic_ref);
2526 			if (ret)
2527 				goto fail;
2528 		} else {
2529 			bytenr = btrfs_node_blockptr(buf, i);
2530 			num_bytes = fs_info->nodesize;
2531 			/* We don't know the owning_root, use 0. */
2532 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2533 					       num_bytes, parent, 0);
2534 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2535 					    root->root_key.objectid, for_reloc);
2536 			if (inc)
2537 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2538 			else
2539 				ret = btrfs_free_extent(trans, &generic_ref);
2540 			if (ret)
2541 				goto fail;
2542 		}
2543 	}
2544 	return 0;
2545 fail:
2546 	return ret;
2547 }
2548 
2549 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2550 		  struct extent_buffer *buf, int full_backref)
2551 {
2552 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2553 }
2554 
2555 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2556 		  struct extent_buffer *buf, int full_backref)
2557 {
2558 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2559 }
2560 
2561 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2562 {
2563 	struct btrfs_fs_info *fs_info = root->fs_info;
2564 	u64 flags;
2565 	u64 ret;
2566 
2567 	if (data)
2568 		flags = BTRFS_BLOCK_GROUP_DATA;
2569 	else if (root == fs_info->chunk_root)
2570 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2571 	else
2572 		flags = BTRFS_BLOCK_GROUP_METADATA;
2573 
2574 	ret = btrfs_get_alloc_profile(fs_info, flags);
2575 	return ret;
2576 }
2577 
2578 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2579 {
2580 	struct rb_node *leftmost;
2581 	u64 bytenr = 0;
2582 
2583 	read_lock(&fs_info->block_group_cache_lock);
2584 	/* Get the block group with the lowest logical start address. */
2585 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2586 	if (leftmost) {
2587 		struct btrfs_block_group *bg;
2588 
2589 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2590 		bytenr = bg->start;
2591 	}
2592 	read_unlock(&fs_info->block_group_cache_lock);
2593 
2594 	return bytenr;
2595 }
2596 
2597 static int pin_down_extent(struct btrfs_trans_handle *trans,
2598 			   struct btrfs_block_group *cache,
2599 			   u64 bytenr, u64 num_bytes, int reserved)
2600 {
2601 	struct btrfs_fs_info *fs_info = cache->fs_info;
2602 
2603 	spin_lock(&cache->space_info->lock);
2604 	spin_lock(&cache->lock);
2605 	cache->pinned += num_bytes;
2606 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2607 					     num_bytes);
2608 	if (reserved) {
2609 		cache->reserved -= num_bytes;
2610 		cache->space_info->bytes_reserved -= num_bytes;
2611 	}
2612 	spin_unlock(&cache->lock);
2613 	spin_unlock(&cache->space_info->lock);
2614 
2615 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2616 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2617 	return 0;
2618 }
2619 
2620 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2621 		     u64 bytenr, u64 num_bytes, int reserved)
2622 {
2623 	struct btrfs_block_group *cache;
2624 
2625 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2626 	BUG_ON(!cache); /* Logic error */
2627 
2628 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2629 
2630 	btrfs_put_block_group(cache);
2631 	return 0;
2632 }
2633 
2634 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2635 				    const struct extent_buffer *eb)
2636 {
2637 	struct btrfs_block_group *cache;
2638 	int ret;
2639 
2640 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2641 	if (!cache)
2642 		return -EINVAL;
2643 
2644 	/*
2645 	 * Fully cache the free space first so that our pin removes the free space
2646 	 * from the cache.
2647 	 */
2648 	ret = btrfs_cache_block_group(cache, true);
2649 	if (ret)
2650 		goto out;
2651 
2652 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2653 
2654 	/* remove us from the free space cache (if we're there at all) */
2655 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2656 out:
2657 	btrfs_put_block_group(cache);
2658 	return ret;
2659 }
2660 
2661 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2662 				   u64 start, u64 num_bytes)
2663 {
2664 	int ret;
2665 	struct btrfs_block_group *block_group;
2666 
2667 	block_group = btrfs_lookup_block_group(fs_info, start);
2668 	if (!block_group)
2669 		return -EINVAL;
2670 
2671 	ret = btrfs_cache_block_group(block_group, true);
2672 	if (ret)
2673 		goto out;
2674 
2675 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2676 out:
2677 	btrfs_put_block_group(block_group);
2678 	return ret;
2679 }
2680 
2681 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2682 {
2683 	struct btrfs_fs_info *fs_info = eb->fs_info;
2684 	struct btrfs_file_extent_item *item;
2685 	struct btrfs_key key;
2686 	int found_type;
2687 	int i;
2688 	int ret = 0;
2689 
2690 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2691 		return 0;
2692 
2693 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2694 		btrfs_item_key_to_cpu(eb, &key, i);
2695 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2696 			continue;
2697 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2698 		found_type = btrfs_file_extent_type(eb, item);
2699 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2700 			continue;
2701 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2702 			continue;
2703 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2704 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2705 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2706 		if (ret)
2707 			break;
2708 	}
2709 
2710 	return ret;
2711 }
2712 
2713 static void
2714 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2715 {
2716 	atomic_inc(&bg->reservations);
2717 }
2718 
2719 /*
2720  * Returns the free cluster for the given space info and sets empty_cluster to
2721  * what it should be based on the mount options.
2722  */
2723 static struct btrfs_free_cluster *
2724 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2725 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2726 {
2727 	struct btrfs_free_cluster *ret = NULL;
2728 
2729 	*empty_cluster = 0;
2730 	if (btrfs_mixed_space_info(space_info))
2731 		return ret;
2732 
2733 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2734 		ret = &fs_info->meta_alloc_cluster;
2735 		if (btrfs_test_opt(fs_info, SSD))
2736 			*empty_cluster = SZ_2M;
2737 		else
2738 			*empty_cluster = SZ_64K;
2739 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2740 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2741 		*empty_cluster = SZ_2M;
2742 		ret = &fs_info->data_alloc_cluster;
2743 	}
2744 
2745 	return ret;
2746 }
2747 
2748 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2749 			      u64 start, u64 end,
2750 			      const bool return_free_space)
2751 {
2752 	struct btrfs_block_group *cache = NULL;
2753 	struct btrfs_space_info *space_info;
2754 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2755 	struct btrfs_free_cluster *cluster = NULL;
2756 	u64 len;
2757 	u64 total_unpinned = 0;
2758 	u64 empty_cluster = 0;
2759 	bool readonly;
2760 
2761 	while (start <= end) {
2762 		readonly = false;
2763 		if (!cache ||
2764 		    start >= cache->start + cache->length) {
2765 			if (cache)
2766 				btrfs_put_block_group(cache);
2767 			total_unpinned = 0;
2768 			cache = btrfs_lookup_block_group(fs_info, start);
2769 			BUG_ON(!cache); /* Logic error */
2770 
2771 			cluster = fetch_cluster_info(fs_info,
2772 						     cache->space_info,
2773 						     &empty_cluster);
2774 			empty_cluster <<= 1;
2775 		}
2776 
2777 		len = cache->start + cache->length - start;
2778 		len = min(len, end + 1 - start);
2779 
2780 		if (return_free_space)
2781 			btrfs_add_free_space(cache, start, len);
2782 
2783 		start += len;
2784 		total_unpinned += len;
2785 		space_info = cache->space_info;
2786 
2787 		/*
2788 		 * If this space cluster has been marked as fragmented and we've
2789 		 * unpinned enough in this block group to potentially allow a
2790 		 * cluster to be created inside of it go ahead and clear the
2791 		 * fragmented check.
2792 		 */
2793 		if (cluster && cluster->fragmented &&
2794 		    total_unpinned > empty_cluster) {
2795 			spin_lock(&cluster->lock);
2796 			cluster->fragmented = 0;
2797 			spin_unlock(&cluster->lock);
2798 		}
2799 
2800 		spin_lock(&space_info->lock);
2801 		spin_lock(&cache->lock);
2802 		cache->pinned -= len;
2803 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2804 		space_info->max_extent_size = 0;
2805 		if (cache->ro) {
2806 			space_info->bytes_readonly += len;
2807 			readonly = true;
2808 		} else if (btrfs_is_zoned(fs_info)) {
2809 			/* Need reset before reusing in a zoned block group */
2810 			space_info->bytes_zone_unusable += len;
2811 			readonly = true;
2812 		}
2813 		spin_unlock(&cache->lock);
2814 		if (!readonly && return_free_space &&
2815 		    global_rsv->space_info == space_info) {
2816 			spin_lock(&global_rsv->lock);
2817 			if (!global_rsv->full) {
2818 				u64 to_add = min(len, global_rsv->size -
2819 						      global_rsv->reserved);
2820 
2821 				global_rsv->reserved += to_add;
2822 				btrfs_space_info_update_bytes_may_use(fs_info,
2823 						space_info, to_add);
2824 				if (global_rsv->reserved >= global_rsv->size)
2825 					global_rsv->full = 1;
2826 				len -= to_add;
2827 			}
2828 			spin_unlock(&global_rsv->lock);
2829 		}
2830 		/* Add to any tickets we may have */
2831 		if (!readonly && return_free_space && len)
2832 			btrfs_try_granting_tickets(fs_info, space_info);
2833 		spin_unlock(&space_info->lock);
2834 	}
2835 
2836 	if (cache)
2837 		btrfs_put_block_group(cache);
2838 	return 0;
2839 }
2840 
2841 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2842 {
2843 	struct btrfs_fs_info *fs_info = trans->fs_info;
2844 	struct btrfs_block_group *block_group, *tmp;
2845 	struct list_head *deleted_bgs;
2846 	struct extent_io_tree *unpin;
2847 	u64 start;
2848 	u64 end;
2849 	int ret;
2850 
2851 	unpin = &trans->transaction->pinned_extents;
2852 
2853 	while (!TRANS_ABORTED(trans)) {
2854 		struct extent_state *cached_state = NULL;
2855 
2856 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2857 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2858 					   EXTENT_DIRTY, &cached_state)) {
2859 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2860 			break;
2861 		}
2862 
2863 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2864 			ret = btrfs_discard_extent(fs_info, start,
2865 						   end + 1 - start, NULL);
2866 
2867 		clear_extent_dirty(unpin, start, end, &cached_state);
2868 		unpin_extent_range(fs_info, start, end, true);
2869 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2870 		free_extent_state(cached_state);
2871 		cond_resched();
2872 	}
2873 
2874 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2875 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2876 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2877 	}
2878 
2879 	/*
2880 	 * Transaction is finished.  We don't need the lock anymore.  We
2881 	 * do need to clean up the block groups in case of a transaction
2882 	 * abort.
2883 	 */
2884 	deleted_bgs = &trans->transaction->deleted_bgs;
2885 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2886 		u64 trimmed = 0;
2887 
2888 		ret = -EROFS;
2889 		if (!TRANS_ABORTED(trans))
2890 			ret = btrfs_discard_extent(fs_info,
2891 						   block_group->start,
2892 						   block_group->length,
2893 						   &trimmed);
2894 
2895 		list_del_init(&block_group->bg_list);
2896 		btrfs_unfreeze_block_group(block_group);
2897 		btrfs_put_block_group(block_group);
2898 
2899 		if (ret) {
2900 			const char *errstr = btrfs_decode_error(ret);
2901 			btrfs_warn(fs_info,
2902 			   "discard failed while removing blockgroup: errno=%d %s",
2903 				   ret, errstr);
2904 		}
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 /*
2911  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2912  *
2913  * @fs_info:	the btrfs_fs_info for this mount
2914  * @leaf:	a leaf in the extent tree containing the extent item
2915  * @slot:	the slot in the leaf where the extent item is found
2916  *
2917  * Returns the objectid of the root that originally allocated the extent item
2918  * if the inline owner ref is expected and present, otherwise 0.
2919  *
2920  * If an extent item has an owner ref item, it will be the first inline ref
2921  * item. Therefore the logic is to check whether there are any inline ref
2922  * items, then check the type of the first one.
2923  */
2924 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2925 				struct extent_buffer *leaf, int slot)
2926 {
2927 	struct btrfs_extent_item *ei;
2928 	struct btrfs_extent_inline_ref *iref;
2929 	struct btrfs_extent_owner_ref *oref;
2930 	unsigned long ptr;
2931 	unsigned long end;
2932 	int type;
2933 
2934 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2935 		return 0;
2936 
2937 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2938 	ptr = (unsigned long)(ei + 1);
2939 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2940 
2941 	/* No inline ref items of any kind, can't check type. */
2942 	if (ptr == end)
2943 		return 0;
2944 
2945 	iref = (struct btrfs_extent_inline_ref *)ptr;
2946 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2947 
2948 	/* We found an owner ref, get the root out of it. */
2949 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2950 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2951 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2952 	}
2953 
2954 	/* We have inline refs, but not an owner ref. */
2955 	return 0;
2956 }
2957 
2958 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2959 				     u64 bytenr, struct btrfs_squota_delta *delta)
2960 {
2961 	int ret;
2962 	u64 num_bytes = delta->num_bytes;
2963 
2964 	if (delta->is_data) {
2965 		struct btrfs_root *csum_root;
2966 
2967 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2968 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2969 		if (ret) {
2970 			btrfs_abort_transaction(trans, ret);
2971 			return ret;
2972 		}
2973 
2974 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2975 		if (ret) {
2976 			btrfs_abort_transaction(trans, ret);
2977 			return ret;
2978 		}
2979 	}
2980 
2981 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2982 	if (ret) {
2983 		btrfs_abort_transaction(trans, ret);
2984 		return ret;
2985 	}
2986 
2987 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2988 	if (ret) {
2989 		btrfs_abort_transaction(trans, ret);
2990 		return ret;
2991 	}
2992 
2993 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2994 	if (ret)
2995 		btrfs_abort_transaction(trans, ret);
2996 
2997 	return ret;
2998 }
2999 
3000 #define abort_and_dump(trans, path, fmt, args...)	\
3001 ({							\
3002 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3003 	btrfs_print_leaf(path->nodes[0]);		\
3004 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3005 })
3006 
3007 /*
3008  * Drop one or more refs of @node.
3009  *
3010  * 1. Locate the extent refs.
3011  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3012  *    Locate it, then reduce the refs number or remove the ref line completely.
3013  *
3014  * 2. Update the refs count in EXTENT/METADATA_ITEM
3015  *
3016  * Inline backref case:
3017  *
3018  * in extent tree we have:
3019  *
3020  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3021  *		refs 2 gen 6 flags DATA
3022  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3023  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3024  *
3025  * This function gets called with:
3026  *
3027  *    node->bytenr = 13631488
3028  *    node->num_bytes = 1048576
3029  *    root_objectid = FS_TREE
3030  *    owner_objectid = 257
3031  *    owner_offset = 0
3032  *    refs_to_drop = 1
3033  *
3034  * Then we should get some like:
3035  *
3036  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3037  *		refs 1 gen 6 flags DATA
3038  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3039  *
3040  * Keyed backref case:
3041  *
3042  * in extent tree we have:
3043  *
3044  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3045  *		refs 754 gen 6 flags DATA
3046  *	[...]
3047  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3048  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3049  *
3050  * This function get called with:
3051  *
3052  *    node->bytenr = 13631488
3053  *    node->num_bytes = 1048576
3054  *    root_objectid = FS_TREE
3055  *    owner_objectid = 866
3056  *    owner_offset = 0
3057  *    refs_to_drop = 1
3058  *
3059  * Then we should get some like:
3060  *
3061  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3062  *		refs 753 gen 6 flags DATA
3063  *
3064  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3065  */
3066 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3067 			       struct btrfs_delayed_ref_head *href,
3068 			       struct btrfs_delayed_ref_node *node, u64 parent,
3069 			       u64 root_objectid, u64 owner_objectid,
3070 			       u64 owner_offset,
3071 			       struct btrfs_delayed_extent_op *extent_op)
3072 {
3073 	struct btrfs_fs_info *info = trans->fs_info;
3074 	struct btrfs_key key;
3075 	struct btrfs_path *path;
3076 	struct btrfs_root *extent_root;
3077 	struct extent_buffer *leaf;
3078 	struct btrfs_extent_item *ei;
3079 	struct btrfs_extent_inline_ref *iref;
3080 	int ret;
3081 	int is_data;
3082 	int extent_slot = 0;
3083 	int found_extent = 0;
3084 	int num_to_del = 1;
3085 	int refs_to_drop = node->ref_mod;
3086 	u32 item_size;
3087 	u64 refs;
3088 	u64 bytenr = node->bytenr;
3089 	u64 num_bytes = node->num_bytes;
3090 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3091 	u64 delayed_ref_root = href->owning_root;
3092 
3093 	extent_root = btrfs_extent_root(info, bytenr);
3094 	ASSERT(extent_root);
3095 
3096 	path = btrfs_alloc_path();
3097 	if (!path)
3098 		return -ENOMEM;
3099 
3100 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3101 
3102 	if (!is_data && refs_to_drop != 1) {
3103 		btrfs_crit(info,
3104 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3105 			   node->bytenr, refs_to_drop);
3106 		ret = -EINVAL;
3107 		btrfs_abort_transaction(trans, ret);
3108 		goto out;
3109 	}
3110 
3111 	if (is_data)
3112 		skinny_metadata = false;
3113 
3114 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3115 				    parent, root_objectid, owner_objectid,
3116 				    owner_offset);
3117 	if (ret == 0) {
3118 		/*
3119 		 * Either the inline backref or the SHARED_DATA_REF/
3120 		 * SHARED_BLOCK_REF is found
3121 		 *
3122 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3123 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3124 		 */
3125 		extent_slot = path->slots[0];
3126 		while (extent_slot >= 0) {
3127 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3128 					      extent_slot);
3129 			if (key.objectid != bytenr)
3130 				break;
3131 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3132 			    key.offset == num_bytes) {
3133 				found_extent = 1;
3134 				break;
3135 			}
3136 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3137 			    key.offset == owner_objectid) {
3138 				found_extent = 1;
3139 				break;
3140 			}
3141 
3142 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3143 			if (path->slots[0] - extent_slot > 5)
3144 				break;
3145 			extent_slot--;
3146 		}
3147 
3148 		if (!found_extent) {
3149 			if (iref) {
3150 				abort_and_dump(trans, path,
3151 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3152 					   path->slots[0]);
3153 				ret = -EUCLEAN;
3154 				goto out;
3155 			}
3156 			/* Must be SHARED_* item, remove the backref first */
3157 			ret = remove_extent_backref(trans, extent_root, path,
3158 						    NULL, refs_to_drop, is_data);
3159 			if (ret) {
3160 				btrfs_abort_transaction(trans, ret);
3161 				goto out;
3162 			}
3163 			btrfs_release_path(path);
3164 
3165 			/* Slow path to locate EXTENT/METADATA_ITEM */
3166 			key.objectid = bytenr;
3167 			key.type = BTRFS_EXTENT_ITEM_KEY;
3168 			key.offset = num_bytes;
3169 
3170 			if (!is_data && skinny_metadata) {
3171 				key.type = BTRFS_METADATA_ITEM_KEY;
3172 				key.offset = owner_objectid;
3173 			}
3174 
3175 			ret = btrfs_search_slot(trans, extent_root,
3176 						&key, path, -1, 1);
3177 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3178 				/*
3179 				 * Couldn't find our skinny metadata item,
3180 				 * see if we have ye olde extent item.
3181 				 */
3182 				path->slots[0]--;
3183 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3184 						      path->slots[0]);
3185 				if (key.objectid == bytenr &&
3186 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3187 				    key.offset == num_bytes)
3188 					ret = 0;
3189 			}
3190 
3191 			if (ret > 0 && skinny_metadata) {
3192 				skinny_metadata = false;
3193 				key.objectid = bytenr;
3194 				key.type = BTRFS_EXTENT_ITEM_KEY;
3195 				key.offset = num_bytes;
3196 				btrfs_release_path(path);
3197 				ret = btrfs_search_slot(trans, extent_root,
3198 							&key, path, -1, 1);
3199 			}
3200 
3201 			if (ret) {
3202 				if (ret > 0)
3203 					btrfs_print_leaf(path->nodes[0]);
3204 				btrfs_err(info,
3205 			"umm, got %d back from search, was looking for %llu, slot %d",
3206 					  ret, bytenr, path->slots[0]);
3207 			}
3208 			if (ret < 0) {
3209 				btrfs_abort_transaction(trans, ret);
3210 				goto out;
3211 			}
3212 			extent_slot = path->slots[0];
3213 		}
3214 	} else if (WARN_ON(ret == -ENOENT)) {
3215 		abort_and_dump(trans, path,
3216 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3217 			       bytenr, parent, root_objectid, owner_objectid,
3218 			       owner_offset, path->slots[0]);
3219 		goto out;
3220 	} else {
3221 		btrfs_abort_transaction(trans, ret);
3222 		goto out;
3223 	}
3224 
3225 	leaf = path->nodes[0];
3226 	item_size = btrfs_item_size(leaf, extent_slot);
3227 	if (unlikely(item_size < sizeof(*ei))) {
3228 		ret = -EUCLEAN;
3229 		btrfs_err(trans->fs_info,
3230 			  "unexpected extent item size, has %u expect >= %zu",
3231 			  item_size, sizeof(*ei));
3232 		btrfs_abort_transaction(trans, ret);
3233 		goto out;
3234 	}
3235 	ei = btrfs_item_ptr(leaf, extent_slot,
3236 			    struct btrfs_extent_item);
3237 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3238 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3239 		struct btrfs_tree_block_info *bi;
3240 
3241 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3242 			abort_and_dump(trans, path,
3243 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3244 				       key.objectid, key.type, key.offset,
3245 				       path->slots[0], owner_objectid, item_size,
3246 				       sizeof(*ei) + sizeof(*bi));
3247 			ret = -EUCLEAN;
3248 			goto out;
3249 		}
3250 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3251 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3252 	}
3253 
3254 	refs = btrfs_extent_refs(leaf, ei);
3255 	if (refs < refs_to_drop) {
3256 		abort_and_dump(trans, path,
3257 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3258 			       refs_to_drop, refs, bytenr, path->slots[0]);
3259 		ret = -EUCLEAN;
3260 		goto out;
3261 	}
3262 	refs -= refs_to_drop;
3263 
3264 	if (refs > 0) {
3265 		if (extent_op)
3266 			__run_delayed_extent_op(extent_op, leaf, ei);
3267 		/*
3268 		 * In the case of inline back ref, reference count will
3269 		 * be updated by remove_extent_backref
3270 		 */
3271 		if (iref) {
3272 			if (!found_extent) {
3273 				abort_and_dump(trans, path,
3274 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3275 					       path->slots[0]);
3276 				ret = -EUCLEAN;
3277 				goto out;
3278 			}
3279 		} else {
3280 			btrfs_set_extent_refs(leaf, ei, refs);
3281 			btrfs_mark_buffer_dirty(trans, leaf);
3282 		}
3283 		if (found_extent) {
3284 			ret = remove_extent_backref(trans, extent_root, path,
3285 						    iref, refs_to_drop, is_data);
3286 			if (ret) {
3287 				btrfs_abort_transaction(trans, ret);
3288 				goto out;
3289 			}
3290 		}
3291 	} else {
3292 		struct btrfs_squota_delta delta = {
3293 			.root = delayed_ref_root,
3294 			.num_bytes = num_bytes,
3295 			.rsv_bytes = 0,
3296 			.is_data = is_data,
3297 			.is_inc = false,
3298 			.generation = btrfs_extent_generation(leaf, ei),
3299 		};
3300 
3301 		/* In this branch refs == 1 */
3302 		if (found_extent) {
3303 			if (is_data && refs_to_drop !=
3304 			    extent_data_ref_count(path, iref)) {
3305 				abort_and_dump(trans, path,
3306 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3307 					       extent_data_ref_count(path, iref),
3308 					       refs_to_drop, path->slots[0]);
3309 				ret = -EUCLEAN;
3310 				goto out;
3311 			}
3312 			if (iref) {
3313 				if (path->slots[0] != extent_slot) {
3314 					abort_and_dump(trans, path,
3315 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3316 						       key.objectid, key.type,
3317 						       key.offset, path->slots[0]);
3318 					ret = -EUCLEAN;
3319 					goto out;
3320 				}
3321 			} else {
3322 				/*
3323 				 * No inline ref, we must be at SHARED_* item,
3324 				 * And it's single ref, it must be:
3325 				 * |	extent_slot	  ||extent_slot + 1|
3326 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3327 				 */
3328 				if (path->slots[0] != extent_slot + 1) {
3329 					abort_and_dump(trans, path,
3330 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3331 						       path->slots[0]);
3332 					ret = -EUCLEAN;
3333 					goto out;
3334 				}
3335 				path->slots[0] = extent_slot;
3336 				num_to_del = 2;
3337 			}
3338 		}
3339 		/*
3340 		 * We can't infer the data owner from the delayed ref, so we need
3341 		 * to try to get it from the owning ref item.
3342 		 *
3343 		 * If it is not present, then that extent was not written under
3344 		 * simple quotas mode, so we don't need to account for its deletion.
3345 		 */
3346 		if (is_data)
3347 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3348 								 leaf, extent_slot);
3349 
3350 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3351 				      num_to_del);
3352 		if (ret) {
3353 			btrfs_abort_transaction(trans, ret);
3354 			goto out;
3355 		}
3356 		btrfs_release_path(path);
3357 
3358 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3359 	}
3360 	btrfs_release_path(path);
3361 
3362 out:
3363 	btrfs_free_path(path);
3364 	return ret;
3365 }
3366 
3367 /*
3368  * when we free an block, it is possible (and likely) that we free the last
3369  * delayed ref for that extent as well.  This searches the delayed ref tree for
3370  * a given extent, and if there are no other delayed refs to be processed, it
3371  * removes it from the tree.
3372  */
3373 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3374 				      u64 bytenr)
3375 {
3376 	struct btrfs_delayed_ref_head *head;
3377 	struct btrfs_delayed_ref_root *delayed_refs;
3378 	int ret = 0;
3379 
3380 	delayed_refs = &trans->transaction->delayed_refs;
3381 	spin_lock(&delayed_refs->lock);
3382 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3383 	if (!head)
3384 		goto out_delayed_unlock;
3385 
3386 	spin_lock(&head->lock);
3387 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3388 		goto out;
3389 
3390 	if (cleanup_extent_op(head) != NULL)
3391 		goto out;
3392 
3393 	/*
3394 	 * waiting for the lock here would deadlock.  If someone else has it
3395 	 * locked they are already in the process of dropping it anyway
3396 	 */
3397 	if (!mutex_trylock(&head->mutex))
3398 		goto out;
3399 
3400 	btrfs_delete_ref_head(delayed_refs, head);
3401 	head->processing = false;
3402 
3403 	spin_unlock(&head->lock);
3404 	spin_unlock(&delayed_refs->lock);
3405 
3406 	BUG_ON(head->extent_op);
3407 	if (head->must_insert_reserved)
3408 		ret = 1;
3409 
3410 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3411 	mutex_unlock(&head->mutex);
3412 	btrfs_put_delayed_ref_head(head);
3413 	return ret;
3414 out:
3415 	spin_unlock(&head->lock);
3416 
3417 out_delayed_unlock:
3418 	spin_unlock(&delayed_refs->lock);
3419 	return 0;
3420 }
3421 
3422 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3423 			   u64 root_id,
3424 			   struct extent_buffer *buf,
3425 			   u64 parent, int last_ref)
3426 {
3427 	struct btrfs_fs_info *fs_info = trans->fs_info;
3428 	struct btrfs_ref generic_ref = { 0 };
3429 	int ret;
3430 
3431 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3432 			       buf->start, buf->len, parent, btrfs_header_owner(buf));
3433 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3434 			    root_id, 0, false);
3435 
3436 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3437 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3438 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3439 		BUG_ON(ret); /* -ENOMEM */
3440 	}
3441 
3442 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3443 		struct btrfs_block_group *cache;
3444 		bool must_pin = false;
3445 
3446 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3447 			ret = check_ref_cleanup(trans, buf->start);
3448 			if (!ret) {
3449 				btrfs_redirty_list_add(trans->transaction, buf);
3450 				goto out;
3451 			}
3452 		}
3453 
3454 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3455 
3456 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3457 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3458 			btrfs_put_block_group(cache);
3459 			goto out;
3460 		}
3461 
3462 		/*
3463 		 * If there are tree mod log users we may have recorded mod log
3464 		 * operations for this node.  If we re-allocate this node we
3465 		 * could replay operations on this node that happened when it
3466 		 * existed in a completely different root.  For example if it
3467 		 * was part of root A, then was reallocated to root B, and we
3468 		 * are doing a btrfs_old_search_slot(root b), we could replay
3469 		 * operations that happened when the block was part of root A,
3470 		 * giving us an inconsistent view of the btree.
3471 		 *
3472 		 * We are safe from races here because at this point no other
3473 		 * node or root points to this extent buffer, so if after this
3474 		 * check a new tree mod log user joins we will not have an
3475 		 * existing log of operations on this node that we have to
3476 		 * contend with.
3477 		 */
3478 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3479 			must_pin = true;
3480 
3481 		if (must_pin || btrfs_is_zoned(fs_info)) {
3482 			btrfs_redirty_list_add(trans->transaction, buf);
3483 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3484 			btrfs_put_block_group(cache);
3485 			goto out;
3486 		}
3487 
3488 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3489 
3490 		btrfs_add_free_space(cache, buf->start, buf->len);
3491 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3492 		btrfs_put_block_group(cache);
3493 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3494 	}
3495 out:
3496 	if (last_ref) {
3497 		/*
3498 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3499 		 * matter anymore.
3500 		 */
3501 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3502 	}
3503 }
3504 
3505 /* Can return -ENOMEM */
3506 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3507 {
3508 	struct btrfs_fs_info *fs_info = trans->fs_info;
3509 	int ret;
3510 
3511 	if (btrfs_is_testing(fs_info))
3512 		return 0;
3513 
3514 	/*
3515 	 * tree log blocks never actually go into the extent allocation
3516 	 * tree, just update pinning info and exit early.
3517 	 */
3518 	if ((ref->type == BTRFS_REF_METADATA &&
3519 	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3520 	    (ref->type == BTRFS_REF_DATA &&
3521 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3522 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3523 		ret = 0;
3524 	} else if (ref->type == BTRFS_REF_METADATA) {
3525 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3526 	} else {
3527 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3528 	}
3529 
3530 	if (!((ref->type == BTRFS_REF_METADATA &&
3531 	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3532 	      (ref->type == BTRFS_REF_DATA &&
3533 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3534 		btrfs_ref_tree_mod(fs_info, ref);
3535 
3536 	return ret;
3537 }
3538 
3539 enum btrfs_loop_type {
3540 	/*
3541 	 * Start caching block groups but do not wait for progress or for them
3542 	 * to be done.
3543 	 */
3544 	LOOP_CACHING_NOWAIT,
3545 
3546 	/*
3547 	 * Wait for the block group free_space >= the space we're waiting for if
3548 	 * the block group isn't cached.
3549 	 */
3550 	LOOP_CACHING_WAIT,
3551 
3552 	/*
3553 	 * Allow allocations to happen from block groups that do not yet have a
3554 	 * size classification.
3555 	 */
3556 	LOOP_UNSET_SIZE_CLASS,
3557 
3558 	/*
3559 	 * Allocate a chunk and then retry the allocation.
3560 	 */
3561 	LOOP_ALLOC_CHUNK,
3562 
3563 	/*
3564 	 * Ignore the size class restrictions for this allocation.
3565 	 */
3566 	LOOP_WRONG_SIZE_CLASS,
3567 
3568 	/*
3569 	 * Ignore the empty size, only try to allocate the number of bytes
3570 	 * needed for this allocation.
3571 	 */
3572 	LOOP_NO_EMPTY_SIZE,
3573 };
3574 
3575 static inline void
3576 btrfs_lock_block_group(struct btrfs_block_group *cache,
3577 		       int delalloc)
3578 {
3579 	if (delalloc)
3580 		down_read(&cache->data_rwsem);
3581 }
3582 
3583 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3584 		       int delalloc)
3585 {
3586 	btrfs_get_block_group(cache);
3587 	if (delalloc)
3588 		down_read(&cache->data_rwsem);
3589 }
3590 
3591 static struct btrfs_block_group *btrfs_lock_cluster(
3592 		   struct btrfs_block_group *block_group,
3593 		   struct btrfs_free_cluster *cluster,
3594 		   int delalloc)
3595 	__acquires(&cluster->refill_lock)
3596 {
3597 	struct btrfs_block_group *used_bg = NULL;
3598 
3599 	spin_lock(&cluster->refill_lock);
3600 	while (1) {
3601 		used_bg = cluster->block_group;
3602 		if (!used_bg)
3603 			return NULL;
3604 
3605 		if (used_bg == block_group)
3606 			return used_bg;
3607 
3608 		btrfs_get_block_group(used_bg);
3609 
3610 		if (!delalloc)
3611 			return used_bg;
3612 
3613 		if (down_read_trylock(&used_bg->data_rwsem))
3614 			return used_bg;
3615 
3616 		spin_unlock(&cluster->refill_lock);
3617 
3618 		/* We should only have one-level nested. */
3619 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3620 
3621 		spin_lock(&cluster->refill_lock);
3622 		if (used_bg == cluster->block_group)
3623 			return used_bg;
3624 
3625 		up_read(&used_bg->data_rwsem);
3626 		btrfs_put_block_group(used_bg);
3627 	}
3628 }
3629 
3630 static inline void
3631 btrfs_release_block_group(struct btrfs_block_group *cache,
3632 			 int delalloc)
3633 {
3634 	if (delalloc)
3635 		up_read(&cache->data_rwsem);
3636 	btrfs_put_block_group(cache);
3637 }
3638 
3639 /*
3640  * Helper function for find_free_extent().
3641  *
3642  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3643  * Return >0 to inform caller that we find nothing
3644  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3645  */
3646 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3647 				      struct find_free_extent_ctl *ffe_ctl,
3648 				      struct btrfs_block_group **cluster_bg_ret)
3649 {
3650 	struct btrfs_block_group *cluster_bg;
3651 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3652 	u64 aligned_cluster;
3653 	u64 offset;
3654 	int ret;
3655 
3656 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3657 	if (!cluster_bg)
3658 		goto refill_cluster;
3659 	if (cluster_bg != bg && (cluster_bg->ro ||
3660 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3661 		goto release_cluster;
3662 
3663 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3664 			ffe_ctl->num_bytes, cluster_bg->start,
3665 			&ffe_ctl->max_extent_size);
3666 	if (offset) {
3667 		/* We have a block, we're done */
3668 		spin_unlock(&last_ptr->refill_lock);
3669 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3670 		*cluster_bg_ret = cluster_bg;
3671 		ffe_ctl->found_offset = offset;
3672 		return 0;
3673 	}
3674 	WARN_ON(last_ptr->block_group != cluster_bg);
3675 
3676 release_cluster:
3677 	/*
3678 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3679 	 * lets just skip it and let the allocator find whatever block it can
3680 	 * find. If we reach this point, we will have tried the cluster
3681 	 * allocator plenty of times and not have found anything, so we are
3682 	 * likely way too fragmented for the clustering stuff to find anything.
3683 	 *
3684 	 * However, if the cluster is taken from the current block group,
3685 	 * release the cluster first, so that we stand a better chance of
3686 	 * succeeding in the unclustered allocation.
3687 	 */
3688 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3689 		spin_unlock(&last_ptr->refill_lock);
3690 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3691 		return -ENOENT;
3692 	}
3693 
3694 	/* This cluster didn't work out, free it and start over */
3695 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3696 
3697 	if (cluster_bg != bg)
3698 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3699 
3700 refill_cluster:
3701 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3702 		spin_unlock(&last_ptr->refill_lock);
3703 		return -ENOENT;
3704 	}
3705 
3706 	aligned_cluster = max_t(u64,
3707 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3708 			bg->full_stripe_len);
3709 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3710 			ffe_ctl->num_bytes, aligned_cluster);
3711 	if (ret == 0) {
3712 		/* Now pull our allocation out of this cluster */
3713 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3714 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3715 				&ffe_ctl->max_extent_size);
3716 		if (offset) {
3717 			/* We found one, proceed */
3718 			spin_unlock(&last_ptr->refill_lock);
3719 			ffe_ctl->found_offset = offset;
3720 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3721 			return 0;
3722 		}
3723 	}
3724 	/*
3725 	 * At this point we either didn't find a cluster or we weren't able to
3726 	 * allocate a block from our cluster.  Free the cluster we've been
3727 	 * trying to use, and go to the next block group.
3728 	 */
3729 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3730 	spin_unlock(&last_ptr->refill_lock);
3731 	return 1;
3732 }
3733 
3734 /*
3735  * Return >0 to inform caller that we find nothing
3736  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3737  */
3738 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3739 					struct find_free_extent_ctl *ffe_ctl)
3740 {
3741 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3742 	u64 offset;
3743 
3744 	/*
3745 	 * We are doing an unclustered allocation, set the fragmented flag so
3746 	 * we don't bother trying to setup a cluster again until we get more
3747 	 * space.
3748 	 */
3749 	if (unlikely(last_ptr)) {
3750 		spin_lock(&last_ptr->lock);
3751 		last_ptr->fragmented = 1;
3752 		spin_unlock(&last_ptr->lock);
3753 	}
3754 	if (ffe_ctl->cached) {
3755 		struct btrfs_free_space_ctl *free_space_ctl;
3756 
3757 		free_space_ctl = bg->free_space_ctl;
3758 		spin_lock(&free_space_ctl->tree_lock);
3759 		if (free_space_ctl->free_space <
3760 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3761 		    ffe_ctl->empty_size) {
3762 			ffe_ctl->total_free_space = max_t(u64,
3763 					ffe_ctl->total_free_space,
3764 					free_space_ctl->free_space);
3765 			spin_unlock(&free_space_ctl->tree_lock);
3766 			return 1;
3767 		}
3768 		spin_unlock(&free_space_ctl->tree_lock);
3769 	}
3770 
3771 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3772 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3773 			&ffe_ctl->max_extent_size);
3774 	if (!offset)
3775 		return 1;
3776 	ffe_ctl->found_offset = offset;
3777 	return 0;
3778 }
3779 
3780 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3781 				   struct find_free_extent_ctl *ffe_ctl,
3782 				   struct btrfs_block_group **bg_ret)
3783 {
3784 	int ret;
3785 
3786 	/* We want to try and use the cluster allocator, so lets look there */
3787 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3788 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3789 		if (ret >= 0)
3790 			return ret;
3791 		/* ret == -ENOENT case falls through */
3792 	}
3793 
3794 	return find_free_extent_unclustered(block_group, ffe_ctl);
3795 }
3796 
3797 /*
3798  * Tree-log block group locking
3799  * ============================
3800  *
3801  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3802  * indicates the starting address of a block group, which is reserved only
3803  * for tree-log metadata.
3804  *
3805  * Lock nesting
3806  * ============
3807  *
3808  * space_info::lock
3809  *   block_group::lock
3810  *     fs_info::treelog_bg_lock
3811  */
3812 
3813 /*
3814  * Simple allocator for sequential-only block group. It only allows sequential
3815  * allocation. No need to play with trees. This function also reserves the
3816  * bytes as in btrfs_add_reserved_bytes.
3817  */
3818 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3819 			       struct find_free_extent_ctl *ffe_ctl,
3820 			       struct btrfs_block_group **bg_ret)
3821 {
3822 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3823 	struct btrfs_space_info *space_info = block_group->space_info;
3824 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3825 	u64 start = block_group->start;
3826 	u64 num_bytes = ffe_ctl->num_bytes;
3827 	u64 avail;
3828 	u64 bytenr = block_group->start;
3829 	u64 log_bytenr;
3830 	u64 data_reloc_bytenr;
3831 	int ret = 0;
3832 	bool skip = false;
3833 
3834 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3835 
3836 	/*
3837 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3838 	 * group, and vice versa.
3839 	 */
3840 	spin_lock(&fs_info->treelog_bg_lock);
3841 	log_bytenr = fs_info->treelog_bg;
3842 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3843 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3844 		skip = true;
3845 	spin_unlock(&fs_info->treelog_bg_lock);
3846 	if (skip)
3847 		return 1;
3848 
3849 	/*
3850 	 * Do not allow non-relocation blocks in the dedicated relocation block
3851 	 * group, and vice versa.
3852 	 */
3853 	spin_lock(&fs_info->relocation_bg_lock);
3854 	data_reloc_bytenr = fs_info->data_reloc_bg;
3855 	if (data_reloc_bytenr &&
3856 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3857 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3858 		skip = true;
3859 	spin_unlock(&fs_info->relocation_bg_lock);
3860 	if (skip)
3861 		return 1;
3862 
3863 	/* Check RO and no space case before trying to activate it */
3864 	spin_lock(&block_group->lock);
3865 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3866 		ret = 1;
3867 		/*
3868 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3869 		 * Return the error after taking the locks.
3870 		 */
3871 	}
3872 	spin_unlock(&block_group->lock);
3873 
3874 	/* Metadata block group is activated at write time. */
3875 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3876 	    !btrfs_zone_activate(block_group)) {
3877 		ret = 1;
3878 		/*
3879 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3880 		 * Return the error after taking the locks.
3881 		 */
3882 	}
3883 
3884 	spin_lock(&space_info->lock);
3885 	spin_lock(&block_group->lock);
3886 	spin_lock(&fs_info->treelog_bg_lock);
3887 	spin_lock(&fs_info->relocation_bg_lock);
3888 
3889 	if (ret)
3890 		goto out;
3891 
3892 	ASSERT(!ffe_ctl->for_treelog ||
3893 	       block_group->start == fs_info->treelog_bg ||
3894 	       fs_info->treelog_bg == 0);
3895 	ASSERT(!ffe_ctl->for_data_reloc ||
3896 	       block_group->start == fs_info->data_reloc_bg ||
3897 	       fs_info->data_reloc_bg == 0);
3898 
3899 	if (block_group->ro ||
3900 	    (!ffe_ctl->for_data_reloc &&
3901 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3902 		ret = 1;
3903 		goto out;
3904 	}
3905 
3906 	/*
3907 	 * Do not allow currently using block group to be tree-log dedicated
3908 	 * block group.
3909 	 */
3910 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3911 	    (block_group->used || block_group->reserved)) {
3912 		ret = 1;
3913 		goto out;
3914 	}
3915 
3916 	/*
3917 	 * Do not allow currently used block group to be the data relocation
3918 	 * dedicated block group.
3919 	 */
3920 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3921 	    (block_group->used || block_group->reserved)) {
3922 		ret = 1;
3923 		goto out;
3924 	}
3925 
3926 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3927 	avail = block_group->zone_capacity - block_group->alloc_offset;
3928 	if (avail < num_bytes) {
3929 		if (ffe_ctl->max_extent_size < avail) {
3930 			/*
3931 			 * With sequential allocator, free space is always
3932 			 * contiguous
3933 			 */
3934 			ffe_ctl->max_extent_size = avail;
3935 			ffe_ctl->total_free_space = avail;
3936 		}
3937 		ret = 1;
3938 		goto out;
3939 	}
3940 
3941 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3942 		fs_info->treelog_bg = block_group->start;
3943 
3944 	if (ffe_ctl->for_data_reloc) {
3945 		if (!fs_info->data_reloc_bg)
3946 			fs_info->data_reloc_bg = block_group->start;
3947 		/*
3948 		 * Do not allow allocations from this block group, unless it is
3949 		 * for data relocation. Compared to increasing the ->ro, setting
3950 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3951 		 * writers to come in. See btrfs_inc_nocow_writers().
3952 		 *
3953 		 * We need to disable an allocation to avoid an allocation of
3954 		 * regular (non-relocation data) extent. With mix of relocation
3955 		 * extents and regular extents, we can dispatch WRITE commands
3956 		 * (for relocation extents) and ZONE APPEND commands (for
3957 		 * regular extents) at the same time to the same zone, which
3958 		 * easily break the write pointer.
3959 		 *
3960 		 * Also, this flag avoids this block group to be zone finished.
3961 		 */
3962 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3963 	}
3964 
3965 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3966 	block_group->alloc_offset += num_bytes;
3967 	spin_lock(&ctl->tree_lock);
3968 	ctl->free_space -= num_bytes;
3969 	spin_unlock(&ctl->tree_lock);
3970 
3971 	/*
3972 	 * We do not check if found_offset is aligned to stripesize. The
3973 	 * address is anyway rewritten when using zone append writing.
3974 	 */
3975 
3976 	ffe_ctl->search_start = ffe_ctl->found_offset;
3977 
3978 out:
3979 	if (ret && ffe_ctl->for_treelog)
3980 		fs_info->treelog_bg = 0;
3981 	if (ret && ffe_ctl->for_data_reloc)
3982 		fs_info->data_reloc_bg = 0;
3983 	spin_unlock(&fs_info->relocation_bg_lock);
3984 	spin_unlock(&fs_info->treelog_bg_lock);
3985 	spin_unlock(&block_group->lock);
3986 	spin_unlock(&space_info->lock);
3987 	return ret;
3988 }
3989 
3990 static int do_allocation(struct btrfs_block_group *block_group,
3991 			 struct find_free_extent_ctl *ffe_ctl,
3992 			 struct btrfs_block_group **bg_ret)
3993 {
3994 	switch (ffe_ctl->policy) {
3995 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3996 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3997 	case BTRFS_EXTENT_ALLOC_ZONED:
3998 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3999 	default:
4000 		BUG();
4001 	}
4002 }
4003 
4004 static void release_block_group(struct btrfs_block_group *block_group,
4005 				struct find_free_extent_ctl *ffe_ctl,
4006 				int delalloc)
4007 {
4008 	switch (ffe_ctl->policy) {
4009 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4010 		ffe_ctl->retry_uncached = false;
4011 		break;
4012 	case BTRFS_EXTENT_ALLOC_ZONED:
4013 		/* Nothing to do */
4014 		break;
4015 	default:
4016 		BUG();
4017 	}
4018 
4019 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4020 	       ffe_ctl->index);
4021 	btrfs_release_block_group(block_group, delalloc);
4022 }
4023 
4024 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4025 				   struct btrfs_key *ins)
4026 {
4027 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4028 
4029 	if (!ffe_ctl->use_cluster && last_ptr) {
4030 		spin_lock(&last_ptr->lock);
4031 		last_ptr->window_start = ins->objectid;
4032 		spin_unlock(&last_ptr->lock);
4033 	}
4034 }
4035 
4036 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4037 			 struct btrfs_key *ins)
4038 {
4039 	switch (ffe_ctl->policy) {
4040 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4041 		found_extent_clustered(ffe_ctl, ins);
4042 		break;
4043 	case BTRFS_EXTENT_ALLOC_ZONED:
4044 		/* Nothing to do */
4045 		break;
4046 	default:
4047 		BUG();
4048 	}
4049 }
4050 
4051 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4052 				    struct find_free_extent_ctl *ffe_ctl)
4053 {
4054 	/* Block group's activeness is not a requirement for METADATA block groups. */
4055 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4056 		return 0;
4057 
4058 	/* If we can activate new zone, just allocate a chunk and use it */
4059 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4060 		return 0;
4061 
4062 	/*
4063 	 * We already reached the max active zones. Try to finish one block
4064 	 * group to make a room for a new block group. This is only possible
4065 	 * for a data block group because btrfs_zone_finish() may need to wait
4066 	 * for a running transaction which can cause a deadlock for metadata
4067 	 * allocation.
4068 	 */
4069 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4070 		int ret = btrfs_zone_finish_one_bg(fs_info);
4071 
4072 		if (ret == 1)
4073 			return 0;
4074 		else if (ret < 0)
4075 			return ret;
4076 	}
4077 
4078 	/*
4079 	 * If we have enough free space left in an already active block group
4080 	 * and we can't activate any other zone now, do not allow allocating a
4081 	 * new chunk and let find_free_extent() retry with a smaller size.
4082 	 */
4083 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4084 		return -ENOSPC;
4085 
4086 	/*
4087 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4088 	 * activate a new block group, allocating it may not help. Let's tell a
4089 	 * caller to try again and hope it progress something by writing some
4090 	 * parts of the region. That is only possible for data block groups,
4091 	 * where a part of the region can be written.
4092 	 */
4093 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4094 		return -EAGAIN;
4095 
4096 	/*
4097 	 * We cannot activate a new block group and no enough space left in any
4098 	 * block groups. So, allocating a new block group may not help. But,
4099 	 * there is nothing to do anyway, so let's go with it.
4100 	 */
4101 	return 0;
4102 }
4103 
4104 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4105 			      struct find_free_extent_ctl *ffe_ctl)
4106 {
4107 	switch (ffe_ctl->policy) {
4108 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4109 		return 0;
4110 	case BTRFS_EXTENT_ALLOC_ZONED:
4111 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4112 	default:
4113 		BUG();
4114 	}
4115 }
4116 
4117 /*
4118  * Return >0 means caller needs to re-search for free extent
4119  * Return 0 means we have the needed free extent.
4120  * Return <0 means we failed to locate any free extent.
4121  */
4122 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4123 					struct btrfs_key *ins,
4124 					struct find_free_extent_ctl *ffe_ctl,
4125 					bool full_search)
4126 {
4127 	struct btrfs_root *root = fs_info->chunk_root;
4128 	int ret;
4129 
4130 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4131 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4132 		ffe_ctl->orig_have_caching_bg = true;
4133 
4134 	if (ins->objectid) {
4135 		found_extent(ffe_ctl, ins);
4136 		return 0;
4137 	}
4138 
4139 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4140 		return 1;
4141 
4142 	ffe_ctl->index++;
4143 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4144 		return 1;
4145 
4146 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4147 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4148 		ffe_ctl->index = 0;
4149 		/*
4150 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4151 		 * any uncached bgs and we've already done a full search
4152 		 * through.
4153 		 */
4154 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4155 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4156 			ffe_ctl->loop++;
4157 		ffe_ctl->loop++;
4158 
4159 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4160 			struct btrfs_trans_handle *trans;
4161 			int exist = 0;
4162 
4163 			/* Check if allocation policy allows to create a new chunk */
4164 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4165 			if (ret)
4166 				return ret;
4167 
4168 			trans = current->journal_info;
4169 			if (trans)
4170 				exist = 1;
4171 			else
4172 				trans = btrfs_join_transaction(root);
4173 
4174 			if (IS_ERR(trans)) {
4175 				ret = PTR_ERR(trans);
4176 				return ret;
4177 			}
4178 
4179 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4180 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4181 
4182 			/* Do not bail out on ENOSPC since we can do more. */
4183 			if (ret == -ENOSPC) {
4184 				ret = 0;
4185 				ffe_ctl->loop++;
4186 			}
4187 			else if (ret < 0)
4188 				btrfs_abort_transaction(trans, ret);
4189 			else
4190 				ret = 0;
4191 			if (!exist)
4192 				btrfs_end_transaction(trans);
4193 			if (ret)
4194 				return ret;
4195 		}
4196 
4197 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4198 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4199 				return -ENOSPC;
4200 
4201 			/*
4202 			 * Don't loop again if we already have no empty_size and
4203 			 * no empty_cluster.
4204 			 */
4205 			if (ffe_ctl->empty_size == 0 &&
4206 			    ffe_ctl->empty_cluster == 0)
4207 				return -ENOSPC;
4208 			ffe_ctl->empty_size = 0;
4209 			ffe_ctl->empty_cluster = 0;
4210 		}
4211 		return 1;
4212 	}
4213 	return -ENOSPC;
4214 }
4215 
4216 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4217 					      struct btrfs_block_group *bg)
4218 {
4219 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4220 		return true;
4221 	if (!btrfs_block_group_should_use_size_class(bg))
4222 		return true;
4223 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4224 		return true;
4225 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4226 	    bg->size_class == BTRFS_BG_SZ_NONE)
4227 		return true;
4228 	return ffe_ctl->size_class == bg->size_class;
4229 }
4230 
4231 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4232 					struct find_free_extent_ctl *ffe_ctl,
4233 					struct btrfs_space_info *space_info,
4234 					struct btrfs_key *ins)
4235 {
4236 	/*
4237 	 * If our free space is heavily fragmented we may not be able to make
4238 	 * big contiguous allocations, so instead of doing the expensive search
4239 	 * for free space, simply return ENOSPC with our max_extent_size so we
4240 	 * can go ahead and search for a more manageable chunk.
4241 	 *
4242 	 * If our max_extent_size is large enough for our allocation simply
4243 	 * disable clustering since we will likely not be able to find enough
4244 	 * space to create a cluster and induce latency trying.
4245 	 */
4246 	if (space_info->max_extent_size) {
4247 		spin_lock(&space_info->lock);
4248 		if (space_info->max_extent_size &&
4249 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4250 			ins->offset = space_info->max_extent_size;
4251 			spin_unlock(&space_info->lock);
4252 			return -ENOSPC;
4253 		} else if (space_info->max_extent_size) {
4254 			ffe_ctl->use_cluster = false;
4255 		}
4256 		spin_unlock(&space_info->lock);
4257 	}
4258 
4259 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4260 					       &ffe_ctl->empty_cluster);
4261 	if (ffe_ctl->last_ptr) {
4262 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4263 
4264 		spin_lock(&last_ptr->lock);
4265 		if (last_ptr->block_group)
4266 			ffe_ctl->hint_byte = last_ptr->window_start;
4267 		if (last_ptr->fragmented) {
4268 			/*
4269 			 * We still set window_start so we can keep track of the
4270 			 * last place we found an allocation to try and save
4271 			 * some time.
4272 			 */
4273 			ffe_ctl->hint_byte = last_ptr->window_start;
4274 			ffe_ctl->use_cluster = false;
4275 		}
4276 		spin_unlock(&last_ptr->lock);
4277 	}
4278 
4279 	return 0;
4280 }
4281 
4282 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4283 			      struct find_free_extent_ctl *ffe_ctl,
4284 			      struct btrfs_space_info *space_info,
4285 			      struct btrfs_key *ins)
4286 {
4287 	switch (ffe_ctl->policy) {
4288 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4289 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4290 						    space_info, ins);
4291 	case BTRFS_EXTENT_ALLOC_ZONED:
4292 		if (ffe_ctl->for_treelog) {
4293 			spin_lock(&fs_info->treelog_bg_lock);
4294 			if (fs_info->treelog_bg)
4295 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4296 			spin_unlock(&fs_info->treelog_bg_lock);
4297 		}
4298 		if (ffe_ctl->for_data_reloc) {
4299 			spin_lock(&fs_info->relocation_bg_lock);
4300 			if (fs_info->data_reloc_bg)
4301 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4302 			spin_unlock(&fs_info->relocation_bg_lock);
4303 		}
4304 		return 0;
4305 	default:
4306 		BUG();
4307 	}
4308 }
4309 
4310 /*
4311  * walks the btree of allocated extents and find a hole of a given size.
4312  * The key ins is changed to record the hole:
4313  * ins->objectid == start position
4314  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4315  * ins->offset == the size of the hole.
4316  * Any available blocks before search_start are skipped.
4317  *
4318  * If there is no suitable free space, we will record the max size of
4319  * the free space extent currently.
4320  *
4321  * The overall logic and call chain:
4322  *
4323  * find_free_extent()
4324  * |- Iterate through all block groups
4325  * |  |- Get a valid block group
4326  * |  |- Try to do clustered allocation in that block group
4327  * |  |- Try to do unclustered allocation in that block group
4328  * |  |- Check if the result is valid
4329  * |  |  |- If valid, then exit
4330  * |  |- Jump to next block group
4331  * |
4332  * |- Push harder to find free extents
4333  *    |- If not found, re-iterate all block groups
4334  */
4335 static noinline int find_free_extent(struct btrfs_root *root,
4336 				     struct btrfs_key *ins,
4337 				     struct find_free_extent_ctl *ffe_ctl)
4338 {
4339 	struct btrfs_fs_info *fs_info = root->fs_info;
4340 	int ret = 0;
4341 	int cache_block_group_error = 0;
4342 	struct btrfs_block_group *block_group = NULL;
4343 	struct btrfs_space_info *space_info;
4344 	bool full_search = false;
4345 
4346 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4347 
4348 	ffe_ctl->search_start = 0;
4349 	/* For clustered allocation */
4350 	ffe_ctl->empty_cluster = 0;
4351 	ffe_ctl->last_ptr = NULL;
4352 	ffe_ctl->use_cluster = true;
4353 	ffe_ctl->have_caching_bg = false;
4354 	ffe_ctl->orig_have_caching_bg = false;
4355 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4356 	ffe_ctl->loop = 0;
4357 	ffe_ctl->retry_uncached = false;
4358 	ffe_ctl->cached = 0;
4359 	ffe_ctl->max_extent_size = 0;
4360 	ffe_ctl->total_free_space = 0;
4361 	ffe_ctl->found_offset = 0;
4362 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4363 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4364 
4365 	if (btrfs_is_zoned(fs_info))
4366 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4367 
4368 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4369 	ins->objectid = 0;
4370 	ins->offset = 0;
4371 
4372 	trace_find_free_extent(root, ffe_ctl);
4373 
4374 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4375 	if (!space_info) {
4376 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4377 		return -ENOSPC;
4378 	}
4379 
4380 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4381 	if (ret < 0)
4382 		return ret;
4383 
4384 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4385 				    first_logical_byte(fs_info));
4386 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4387 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4388 		block_group = btrfs_lookup_block_group(fs_info,
4389 						       ffe_ctl->search_start);
4390 		/*
4391 		 * we don't want to use the block group if it doesn't match our
4392 		 * allocation bits, or if its not cached.
4393 		 *
4394 		 * However if we are re-searching with an ideal block group
4395 		 * picked out then we don't care that the block group is cached.
4396 		 */
4397 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4398 		    block_group->cached != BTRFS_CACHE_NO) {
4399 			down_read(&space_info->groups_sem);
4400 			if (list_empty(&block_group->list) ||
4401 			    block_group->ro) {
4402 				/*
4403 				 * someone is removing this block group,
4404 				 * we can't jump into the have_block_group
4405 				 * target because our list pointers are not
4406 				 * valid
4407 				 */
4408 				btrfs_put_block_group(block_group);
4409 				up_read(&space_info->groups_sem);
4410 			} else {
4411 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4412 							block_group->flags);
4413 				btrfs_lock_block_group(block_group,
4414 						       ffe_ctl->delalloc);
4415 				ffe_ctl->hinted = true;
4416 				goto have_block_group;
4417 			}
4418 		} else if (block_group) {
4419 			btrfs_put_block_group(block_group);
4420 		}
4421 	}
4422 search:
4423 	trace_find_free_extent_search_loop(root, ffe_ctl);
4424 	ffe_ctl->have_caching_bg = false;
4425 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4426 	    ffe_ctl->index == 0)
4427 		full_search = true;
4428 	down_read(&space_info->groups_sem);
4429 	list_for_each_entry(block_group,
4430 			    &space_info->block_groups[ffe_ctl->index], list) {
4431 		struct btrfs_block_group *bg_ret;
4432 
4433 		ffe_ctl->hinted = false;
4434 		/* If the block group is read-only, we can skip it entirely. */
4435 		if (unlikely(block_group->ro)) {
4436 			if (ffe_ctl->for_treelog)
4437 				btrfs_clear_treelog_bg(block_group);
4438 			if (ffe_ctl->for_data_reloc)
4439 				btrfs_clear_data_reloc_bg(block_group);
4440 			continue;
4441 		}
4442 
4443 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4444 		ffe_ctl->search_start = block_group->start;
4445 
4446 		/*
4447 		 * this can happen if we end up cycling through all the
4448 		 * raid types, but we want to make sure we only allocate
4449 		 * for the proper type.
4450 		 */
4451 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4452 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4453 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4454 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4455 				BTRFS_BLOCK_GROUP_RAID10;
4456 
4457 			/*
4458 			 * if they asked for extra copies and this block group
4459 			 * doesn't provide them, bail.  This does allow us to
4460 			 * fill raid0 from raid1.
4461 			 */
4462 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4463 				goto loop;
4464 
4465 			/*
4466 			 * This block group has different flags than we want.
4467 			 * It's possible that we have MIXED_GROUP flag but no
4468 			 * block group is mixed.  Just skip such block group.
4469 			 */
4470 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4471 			continue;
4472 		}
4473 
4474 have_block_group:
4475 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4476 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4477 		if (unlikely(!ffe_ctl->cached)) {
4478 			ffe_ctl->have_caching_bg = true;
4479 			ret = btrfs_cache_block_group(block_group, false);
4480 
4481 			/*
4482 			 * If we get ENOMEM here or something else we want to
4483 			 * try other block groups, because it may not be fatal.
4484 			 * However if we can't find anything else we need to
4485 			 * save our return here so that we return the actual
4486 			 * error that caused problems, not ENOSPC.
4487 			 */
4488 			if (ret < 0) {
4489 				if (!cache_block_group_error)
4490 					cache_block_group_error = ret;
4491 				ret = 0;
4492 				goto loop;
4493 			}
4494 			ret = 0;
4495 		}
4496 
4497 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4498 			if (!cache_block_group_error)
4499 				cache_block_group_error = -EIO;
4500 			goto loop;
4501 		}
4502 
4503 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4504 			goto loop;
4505 
4506 		bg_ret = NULL;
4507 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4508 		if (ret > 0)
4509 			goto loop;
4510 
4511 		if (bg_ret && bg_ret != block_group) {
4512 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4513 			block_group = bg_ret;
4514 		}
4515 
4516 		/* Checks */
4517 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4518 						 fs_info->stripesize);
4519 
4520 		/* move on to the next group */
4521 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4522 		    block_group->start + block_group->length) {
4523 			btrfs_add_free_space_unused(block_group,
4524 					    ffe_ctl->found_offset,
4525 					    ffe_ctl->num_bytes);
4526 			goto loop;
4527 		}
4528 
4529 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4530 			btrfs_add_free_space_unused(block_group,
4531 					ffe_ctl->found_offset,
4532 					ffe_ctl->search_start - ffe_ctl->found_offset);
4533 
4534 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4535 					       ffe_ctl->num_bytes,
4536 					       ffe_ctl->delalloc,
4537 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4538 		if (ret == -EAGAIN) {
4539 			btrfs_add_free_space_unused(block_group,
4540 					ffe_ctl->found_offset,
4541 					ffe_ctl->num_bytes);
4542 			goto loop;
4543 		}
4544 		btrfs_inc_block_group_reservations(block_group);
4545 
4546 		/* we are all good, lets return */
4547 		ins->objectid = ffe_ctl->search_start;
4548 		ins->offset = ffe_ctl->num_bytes;
4549 
4550 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4551 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4552 		break;
4553 loop:
4554 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4555 		    !ffe_ctl->retry_uncached) {
4556 			ffe_ctl->retry_uncached = true;
4557 			btrfs_wait_block_group_cache_progress(block_group,
4558 						ffe_ctl->num_bytes +
4559 						ffe_ctl->empty_cluster +
4560 						ffe_ctl->empty_size);
4561 			goto have_block_group;
4562 		}
4563 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4564 		cond_resched();
4565 	}
4566 	up_read(&space_info->groups_sem);
4567 
4568 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4569 	if (ret > 0)
4570 		goto search;
4571 
4572 	if (ret == -ENOSPC && !cache_block_group_error) {
4573 		/*
4574 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4575 		 * any contiguous hole.
4576 		 */
4577 		if (!ffe_ctl->max_extent_size)
4578 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4579 		spin_lock(&space_info->lock);
4580 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4581 		spin_unlock(&space_info->lock);
4582 		ins->offset = ffe_ctl->max_extent_size;
4583 	} else if (ret == -ENOSPC) {
4584 		ret = cache_block_group_error;
4585 	}
4586 	return ret;
4587 }
4588 
4589 /*
4590  * Entry point to the extent allocator. Tries to find a hole that is at least
4591  * as big as @num_bytes.
4592  *
4593  * @root           -	The root that will contain this extent
4594  *
4595  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4596  *			is used for accounting purposes. This value differs
4597  *			from @num_bytes only in the case of compressed extents.
4598  *
4599  * @num_bytes      -	Number of bytes to allocate on-disk.
4600  *
4601  * @min_alloc_size -	Indicates the minimum amount of space that the
4602  *			allocator should try to satisfy. In some cases
4603  *			@num_bytes may be larger than what is required and if
4604  *			the filesystem is fragmented then allocation fails.
4605  *			However, the presence of @min_alloc_size gives a
4606  *			chance to try and satisfy the smaller allocation.
4607  *
4608  * @empty_size     -	A hint that you plan on doing more COW. This is the
4609  *			size in bytes the allocator should try to find free
4610  *			next to the block it returns.  This is just a hint and
4611  *			may be ignored by the allocator.
4612  *
4613  * @hint_byte      -	Hint to the allocator to start searching above the byte
4614  *			address passed. It might be ignored.
4615  *
4616  * @ins            -	This key is modified to record the found hole. It will
4617  *			have the following values:
4618  *			ins->objectid == start position
4619  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4620  *			ins->offset == the size of the hole.
4621  *
4622  * @is_data        -	Boolean flag indicating whether an extent is
4623  *			allocated for data (true) or metadata (false)
4624  *
4625  * @delalloc       -	Boolean flag indicating whether this allocation is for
4626  *			delalloc or not. If 'true' data_rwsem of block groups
4627  *			is going to be acquired.
4628  *
4629  *
4630  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4631  * case -ENOSPC is returned then @ins->offset will contain the size of the
4632  * largest available hole the allocator managed to find.
4633  */
4634 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4635 			 u64 num_bytes, u64 min_alloc_size,
4636 			 u64 empty_size, u64 hint_byte,
4637 			 struct btrfs_key *ins, int is_data, int delalloc)
4638 {
4639 	struct btrfs_fs_info *fs_info = root->fs_info;
4640 	struct find_free_extent_ctl ffe_ctl = {};
4641 	bool final_tried = num_bytes == min_alloc_size;
4642 	u64 flags;
4643 	int ret;
4644 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4645 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4646 
4647 	flags = get_alloc_profile_by_root(root, is_data);
4648 again:
4649 	WARN_ON(num_bytes < fs_info->sectorsize);
4650 
4651 	ffe_ctl.ram_bytes = ram_bytes;
4652 	ffe_ctl.num_bytes = num_bytes;
4653 	ffe_ctl.min_alloc_size = min_alloc_size;
4654 	ffe_ctl.empty_size = empty_size;
4655 	ffe_ctl.flags = flags;
4656 	ffe_ctl.delalloc = delalloc;
4657 	ffe_ctl.hint_byte = hint_byte;
4658 	ffe_ctl.for_treelog = for_treelog;
4659 	ffe_ctl.for_data_reloc = for_data_reloc;
4660 
4661 	ret = find_free_extent(root, ins, &ffe_ctl);
4662 	if (!ret && !is_data) {
4663 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4664 	} else if (ret == -ENOSPC) {
4665 		if (!final_tried && ins->offset) {
4666 			num_bytes = min(num_bytes >> 1, ins->offset);
4667 			num_bytes = round_down(num_bytes,
4668 					       fs_info->sectorsize);
4669 			num_bytes = max(num_bytes, min_alloc_size);
4670 			ram_bytes = num_bytes;
4671 			if (num_bytes == min_alloc_size)
4672 				final_tried = true;
4673 			goto again;
4674 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4675 			struct btrfs_space_info *sinfo;
4676 
4677 			sinfo = btrfs_find_space_info(fs_info, flags);
4678 			btrfs_err(fs_info,
4679 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4680 				  flags, num_bytes, for_treelog, for_data_reloc);
4681 			if (sinfo)
4682 				btrfs_dump_space_info(fs_info, sinfo,
4683 						      num_bytes, 1);
4684 		}
4685 	}
4686 
4687 	return ret;
4688 }
4689 
4690 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4691 			       u64 start, u64 len, int delalloc)
4692 {
4693 	struct btrfs_block_group *cache;
4694 
4695 	cache = btrfs_lookup_block_group(fs_info, start);
4696 	if (!cache) {
4697 		btrfs_err(fs_info, "Unable to find block group for %llu",
4698 			  start);
4699 		return -ENOSPC;
4700 	}
4701 
4702 	btrfs_add_free_space(cache, start, len);
4703 	btrfs_free_reserved_bytes(cache, len, delalloc);
4704 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4705 
4706 	btrfs_put_block_group(cache);
4707 	return 0;
4708 }
4709 
4710 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4711 			      const struct extent_buffer *eb)
4712 {
4713 	struct btrfs_block_group *cache;
4714 	int ret = 0;
4715 
4716 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4717 	if (!cache) {
4718 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4719 			  eb->start);
4720 		return -ENOSPC;
4721 	}
4722 
4723 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4724 	btrfs_put_block_group(cache);
4725 	return ret;
4726 }
4727 
4728 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4729 				 u64 num_bytes)
4730 {
4731 	struct btrfs_fs_info *fs_info = trans->fs_info;
4732 	int ret;
4733 
4734 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4735 	if (ret)
4736 		return ret;
4737 
4738 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4739 	if (ret) {
4740 		ASSERT(!ret);
4741 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4742 			  bytenr, num_bytes);
4743 		return ret;
4744 	}
4745 
4746 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4747 	return 0;
4748 }
4749 
4750 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4751 				      u64 parent, u64 root_objectid,
4752 				      u64 flags, u64 owner, u64 offset,
4753 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4754 {
4755 	struct btrfs_fs_info *fs_info = trans->fs_info;
4756 	struct btrfs_root *extent_root;
4757 	int ret;
4758 	struct btrfs_extent_item *extent_item;
4759 	struct btrfs_extent_owner_ref *oref;
4760 	struct btrfs_extent_inline_ref *iref;
4761 	struct btrfs_path *path;
4762 	struct extent_buffer *leaf;
4763 	int type;
4764 	u32 size;
4765 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4766 
4767 	if (parent > 0)
4768 		type = BTRFS_SHARED_DATA_REF_KEY;
4769 	else
4770 		type = BTRFS_EXTENT_DATA_REF_KEY;
4771 
4772 	size = sizeof(*extent_item);
4773 	if (simple_quota)
4774 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4775 	size += btrfs_extent_inline_ref_size(type);
4776 
4777 	path = btrfs_alloc_path();
4778 	if (!path)
4779 		return -ENOMEM;
4780 
4781 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4782 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4783 	if (ret) {
4784 		btrfs_free_path(path);
4785 		return ret;
4786 	}
4787 
4788 	leaf = path->nodes[0];
4789 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4790 				     struct btrfs_extent_item);
4791 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4792 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4793 	btrfs_set_extent_flags(leaf, extent_item,
4794 			       flags | BTRFS_EXTENT_FLAG_DATA);
4795 
4796 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4797 	if (simple_quota) {
4798 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4799 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4800 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4801 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4802 	}
4803 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4804 
4805 	if (parent > 0) {
4806 		struct btrfs_shared_data_ref *ref;
4807 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4808 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4809 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4810 	} else {
4811 		struct btrfs_extent_data_ref *ref;
4812 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4813 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4814 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4815 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4816 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4817 	}
4818 
4819 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4820 	btrfs_free_path(path);
4821 
4822 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4823 }
4824 
4825 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4826 				     struct btrfs_delayed_ref_node *node,
4827 				     struct btrfs_delayed_extent_op *extent_op)
4828 {
4829 	struct btrfs_fs_info *fs_info = trans->fs_info;
4830 	struct btrfs_root *extent_root;
4831 	int ret;
4832 	struct btrfs_extent_item *extent_item;
4833 	struct btrfs_key extent_key;
4834 	struct btrfs_tree_block_info *block_info;
4835 	struct btrfs_extent_inline_ref *iref;
4836 	struct btrfs_path *path;
4837 	struct extent_buffer *leaf;
4838 	struct btrfs_delayed_tree_ref *ref;
4839 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4840 	u64 flags = extent_op->flags_to_set;
4841 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4842 
4843 	ref = btrfs_delayed_node_to_tree_ref(node);
4844 
4845 	extent_key.objectid = node->bytenr;
4846 	if (skinny_metadata) {
4847 		extent_key.offset = ref->level;
4848 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4849 	} else {
4850 		extent_key.offset = node->num_bytes;
4851 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4852 		size += sizeof(*block_info);
4853 	}
4854 
4855 	path = btrfs_alloc_path();
4856 	if (!path)
4857 		return -ENOMEM;
4858 
4859 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4860 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4861 				      size);
4862 	if (ret) {
4863 		btrfs_free_path(path);
4864 		return ret;
4865 	}
4866 
4867 	leaf = path->nodes[0];
4868 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4869 				     struct btrfs_extent_item);
4870 	btrfs_set_extent_refs(leaf, extent_item, 1);
4871 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4872 	btrfs_set_extent_flags(leaf, extent_item,
4873 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4874 
4875 	if (skinny_metadata) {
4876 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4877 	} else {
4878 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4879 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4880 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4881 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4882 	}
4883 
4884 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4885 		btrfs_set_extent_inline_ref_type(leaf, iref,
4886 						 BTRFS_SHARED_BLOCK_REF_KEY);
4887 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4888 	} else {
4889 		btrfs_set_extent_inline_ref_type(leaf, iref,
4890 						 BTRFS_TREE_BLOCK_REF_KEY);
4891 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4892 	}
4893 
4894 	btrfs_mark_buffer_dirty(trans, leaf);
4895 	btrfs_free_path(path);
4896 
4897 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4898 }
4899 
4900 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4901 				     struct btrfs_root *root, u64 owner,
4902 				     u64 offset, u64 ram_bytes,
4903 				     struct btrfs_key *ins)
4904 {
4905 	struct btrfs_ref generic_ref = { 0 };
4906 	u64 root_objectid = root->root_key.objectid;
4907 	u64 owning_root = root_objectid;
4908 
4909 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4910 
4911 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4912 		owning_root = root->relocation_src_root;
4913 
4914 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4915 			       ins->objectid, ins->offset, 0, owning_root);
4916 	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4917 			    offset, 0, false);
4918 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4919 
4920 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4921 }
4922 
4923 /*
4924  * this is used by the tree logging recovery code.  It records that
4925  * an extent has been allocated and makes sure to clear the free
4926  * space cache bits as well
4927  */
4928 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4929 				   u64 root_objectid, u64 owner, u64 offset,
4930 				   struct btrfs_key *ins)
4931 {
4932 	struct btrfs_fs_info *fs_info = trans->fs_info;
4933 	int ret;
4934 	struct btrfs_block_group *block_group;
4935 	struct btrfs_space_info *space_info;
4936 	struct btrfs_squota_delta delta = {
4937 		.root = root_objectid,
4938 		.num_bytes = ins->offset,
4939 		.generation = trans->transid,
4940 		.rsv_bytes = 0,
4941 		.is_data = true,
4942 		.is_inc = true,
4943 	};
4944 
4945 	/*
4946 	 * Mixed block groups will exclude before processing the log so we only
4947 	 * need to do the exclude dance if this fs isn't mixed.
4948 	 */
4949 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4950 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4951 					      ins->offset);
4952 		if (ret)
4953 			return ret;
4954 	}
4955 
4956 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4957 	if (!block_group)
4958 		return -EINVAL;
4959 
4960 	space_info = block_group->space_info;
4961 	spin_lock(&space_info->lock);
4962 	spin_lock(&block_group->lock);
4963 	space_info->bytes_reserved += ins->offset;
4964 	block_group->reserved += ins->offset;
4965 	spin_unlock(&block_group->lock);
4966 	spin_unlock(&space_info->lock);
4967 
4968 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4969 					 offset, ins, 1, root_objectid);
4970 	if (ret)
4971 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4972 	ret = btrfs_record_squota_delta(fs_info, &delta);
4973 	btrfs_put_block_group(block_group);
4974 	return ret;
4975 }
4976 
4977 #ifdef CONFIG_BTRFS_DEBUG
4978 /*
4979  * Extra safety check in case the extent tree is corrupted and extent allocator
4980  * chooses to use a tree block which is already used and locked.
4981  */
4982 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4983 {
4984 	if (eb->lock_owner == current->pid) {
4985 		btrfs_err_rl(eb->fs_info,
4986 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4987 			     eb->start, btrfs_header_owner(eb), current->pid);
4988 		return true;
4989 	}
4990 	return false;
4991 }
4992 #else
4993 static bool check_eb_lock_owner(struct extent_buffer *eb)
4994 {
4995 	return false;
4996 }
4997 #endif
4998 
4999 static struct extent_buffer *
5000 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5001 		      u64 bytenr, int level, u64 owner,
5002 		      enum btrfs_lock_nesting nest)
5003 {
5004 	struct btrfs_fs_info *fs_info = root->fs_info;
5005 	struct extent_buffer *buf;
5006 	u64 lockdep_owner = owner;
5007 
5008 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5009 	if (IS_ERR(buf))
5010 		return buf;
5011 
5012 	if (check_eb_lock_owner(buf)) {
5013 		free_extent_buffer(buf);
5014 		return ERR_PTR(-EUCLEAN);
5015 	}
5016 
5017 	/*
5018 	 * The reloc trees are just snapshots, so we need them to appear to be
5019 	 * just like any other fs tree WRT lockdep.
5020 	 *
5021 	 * The exception however is in replace_path() in relocation, where we
5022 	 * hold the lock on the original fs root and then search for the reloc
5023 	 * root.  At that point we need to make sure any reloc root buffers are
5024 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5025 	 * lockdep happy.
5026 	 */
5027 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5028 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5029 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5030 
5031 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5032 	btrfs_set_header_generation(buf, trans->transid);
5033 
5034 	/*
5035 	 * This needs to stay, because we could allocate a freed block from an
5036 	 * old tree into a new tree, so we need to make sure this new block is
5037 	 * set to the appropriate level and owner.
5038 	 */
5039 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5040 
5041 	__btrfs_tree_lock(buf, nest);
5042 	btrfs_clear_buffer_dirty(trans, buf);
5043 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5044 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
5045 
5046 	set_extent_buffer_uptodate(buf);
5047 
5048 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5049 	btrfs_set_header_level(buf, level);
5050 	btrfs_set_header_bytenr(buf, buf->start);
5051 	btrfs_set_header_generation(buf, trans->transid);
5052 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5053 	btrfs_set_header_owner(buf, owner);
5054 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5055 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5056 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5057 		buf->log_index = root->log_transid % 2;
5058 		/*
5059 		 * we allow two log transactions at a time, use different
5060 		 * EXTENT bit to differentiate dirty pages.
5061 		 */
5062 		if (buf->log_index == 0)
5063 			set_extent_bit(&root->dirty_log_pages, buf->start,
5064 				       buf->start + buf->len - 1,
5065 				       EXTENT_DIRTY, NULL);
5066 		else
5067 			set_extent_bit(&root->dirty_log_pages, buf->start,
5068 				       buf->start + buf->len - 1,
5069 				       EXTENT_NEW, NULL);
5070 	} else {
5071 		buf->log_index = -1;
5072 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5073 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5074 	}
5075 	/* this returns a buffer locked for blocking */
5076 	return buf;
5077 }
5078 
5079 /*
5080  * finds a free extent and does all the dirty work required for allocation
5081  * returns the tree buffer or an ERR_PTR on error.
5082  */
5083 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5084 					     struct btrfs_root *root,
5085 					     u64 parent, u64 root_objectid,
5086 					     const struct btrfs_disk_key *key,
5087 					     int level, u64 hint,
5088 					     u64 empty_size,
5089 					     u64 reloc_src_root,
5090 					     enum btrfs_lock_nesting nest)
5091 {
5092 	struct btrfs_fs_info *fs_info = root->fs_info;
5093 	struct btrfs_key ins;
5094 	struct btrfs_block_rsv *block_rsv;
5095 	struct extent_buffer *buf;
5096 	struct btrfs_delayed_extent_op *extent_op;
5097 	struct btrfs_ref generic_ref = { 0 };
5098 	u64 flags = 0;
5099 	int ret;
5100 	u32 blocksize = fs_info->nodesize;
5101 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5102 	u64 owning_root;
5103 
5104 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5105 	if (btrfs_is_testing(fs_info)) {
5106 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5107 					    level, root_objectid, nest);
5108 		if (!IS_ERR(buf))
5109 			root->alloc_bytenr += blocksize;
5110 		return buf;
5111 	}
5112 #endif
5113 
5114 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5115 	if (IS_ERR(block_rsv))
5116 		return ERR_CAST(block_rsv);
5117 
5118 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5119 				   empty_size, hint, &ins, 0, 0);
5120 	if (ret)
5121 		goto out_unuse;
5122 
5123 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5124 				    root_objectid, nest);
5125 	if (IS_ERR(buf)) {
5126 		ret = PTR_ERR(buf);
5127 		goto out_free_reserved;
5128 	}
5129 	owning_root = btrfs_header_owner(buf);
5130 
5131 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5132 		if (parent == 0)
5133 			parent = ins.objectid;
5134 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5135 		owning_root = reloc_src_root;
5136 	} else
5137 		BUG_ON(parent > 0);
5138 
5139 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5140 		extent_op = btrfs_alloc_delayed_extent_op();
5141 		if (!extent_op) {
5142 			ret = -ENOMEM;
5143 			goto out_free_buf;
5144 		}
5145 		if (key)
5146 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5147 		else
5148 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5149 		extent_op->flags_to_set = flags;
5150 		extent_op->update_key = skinny_metadata ? false : true;
5151 		extent_op->update_flags = true;
5152 		extent_op->level = level;
5153 
5154 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5155 				       ins.objectid, ins.offset, parent, owning_root);
5156 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5157 				    root->root_key.objectid, false);
5158 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5159 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5160 		if (ret)
5161 			goto out_free_delayed;
5162 	}
5163 	return buf;
5164 
5165 out_free_delayed:
5166 	btrfs_free_delayed_extent_op(extent_op);
5167 out_free_buf:
5168 	btrfs_tree_unlock(buf);
5169 	free_extent_buffer(buf);
5170 out_free_reserved:
5171 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5172 out_unuse:
5173 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5174 	return ERR_PTR(ret);
5175 }
5176 
5177 struct walk_control {
5178 	u64 refs[BTRFS_MAX_LEVEL];
5179 	u64 flags[BTRFS_MAX_LEVEL];
5180 	struct btrfs_key update_progress;
5181 	struct btrfs_key drop_progress;
5182 	int drop_level;
5183 	int stage;
5184 	int level;
5185 	int shared_level;
5186 	int update_ref;
5187 	int keep_locks;
5188 	int reada_slot;
5189 	int reada_count;
5190 	int restarted;
5191 };
5192 
5193 #define DROP_REFERENCE	1
5194 #define UPDATE_BACKREF	2
5195 
5196 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5197 				     struct btrfs_root *root,
5198 				     struct walk_control *wc,
5199 				     struct btrfs_path *path)
5200 {
5201 	struct btrfs_fs_info *fs_info = root->fs_info;
5202 	u64 bytenr;
5203 	u64 generation;
5204 	u64 refs;
5205 	u64 flags;
5206 	u32 nritems;
5207 	struct btrfs_key key;
5208 	struct extent_buffer *eb;
5209 	int ret;
5210 	int slot;
5211 	int nread = 0;
5212 
5213 	if (path->slots[wc->level] < wc->reada_slot) {
5214 		wc->reada_count = wc->reada_count * 2 / 3;
5215 		wc->reada_count = max(wc->reada_count, 2);
5216 	} else {
5217 		wc->reada_count = wc->reada_count * 3 / 2;
5218 		wc->reada_count = min_t(int, wc->reada_count,
5219 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5220 	}
5221 
5222 	eb = path->nodes[wc->level];
5223 	nritems = btrfs_header_nritems(eb);
5224 
5225 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5226 		if (nread >= wc->reada_count)
5227 			break;
5228 
5229 		cond_resched();
5230 		bytenr = btrfs_node_blockptr(eb, slot);
5231 		generation = btrfs_node_ptr_generation(eb, slot);
5232 
5233 		if (slot == path->slots[wc->level])
5234 			goto reada;
5235 
5236 		if (wc->stage == UPDATE_BACKREF &&
5237 		    generation <= root->root_key.offset)
5238 			continue;
5239 
5240 		/* We don't lock the tree block, it's OK to be racy here */
5241 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5242 					       wc->level - 1, 1, &refs,
5243 					       &flags, NULL);
5244 		/* We don't care about errors in readahead. */
5245 		if (ret < 0)
5246 			continue;
5247 		BUG_ON(refs == 0);
5248 
5249 		if (wc->stage == DROP_REFERENCE) {
5250 			if (refs == 1)
5251 				goto reada;
5252 
5253 			if (wc->level == 1 &&
5254 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5255 				continue;
5256 			if (!wc->update_ref ||
5257 			    generation <= root->root_key.offset)
5258 				continue;
5259 			btrfs_node_key_to_cpu(eb, &key, slot);
5260 			ret = btrfs_comp_cpu_keys(&key,
5261 						  &wc->update_progress);
5262 			if (ret < 0)
5263 				continue;
5264 		} else {
5265 			if (wc->level == 1 &&
5266 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5267 				continue;
5268 		}
5269 reada:
5270 		btrfs_readahead_node_child(eb, slot);
5271 		nread++;
5272 	}
5273 	wc->reada_slot = slot;
5274 }
5275 
5276 /*
5277  * helper to process tree block while walking down the tree.
5278  *
5279  * when wc->stage == UPDATE_BACKREF, this function updates
5280  * back refs for pointers in the block.
5281  *
5282  * NOTE: return value 1 means we should stop walking down.
5283  */
5284 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5285 				   struct btrfs_root *root,
5286 				   struct btrfs_path *path,
5287 				   struct walk_control *wc, int lookup_info)
5288 {
5289 	struct btrfs_fs_info *fs_info = root->fs_info;
5290 	int level = wc->level;
5291 	struct extent_buffer *eb = path->nodes[level];
5292 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5293 	int ret;
5294 
5295 	if (wc->stage == UPDATE_BACKREF &&
5296 	    btrfs_header_owner(eb) != root->root_key.objectid)
5297 		return 1;
5298 
5299 	/*
5300 	 * when reference count of tree block is 1, it won't increase
5301 	 * again. once full backref flag is set, we never clear it.
5302 	 */
5303 	if (lookup_info &&
5304 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5305 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5306 		BUG_ON(!path->locks[level]);
5307 		ret = btrfs_lookup_extent_info(trans, fs_info,
5308 					       eb->start, level, 1,
5309 					       &wc->refs[level],
5310 					       &wc->flags[level],
5311 					       NULL);
5312 		BUG_ON(ret == -ENOMEM);
5313 		if (ret)
5314 			return ret;
5315 		BUG_ON(wc->refs[level] == 0);
5316 	}
5317 
5318 	if (wc->stage == DROP_REFERENCE) {
5319 		if (wc->refs[level] > 1)
5320 			return 1;
5321 
5322 		if (path->locks[level] && !wc->keep_locks) {
5323 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5324 			path->locks[level] = 0;
5325 		}
5326 		return 0;
5327 	}
5328 
5329 	/* wc->stage == UPDATE_BACKREF */
5330 	if (!(wc->flags[level] & flag)) {
5331 		BUG_ON(!path->locks[level]);
5332 		ret = btrfs_inc_ref(trans, root, eb, 1);
5333 		BUG_ON(ret); /* -ENOMEM */
5334 		ret = btrfs_dec_ref(trans, root, eb, 0);
5335 		BUG_ON(ret); /* -ENOMEM */
5336 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5337 		BUG_ON(ret); /* -ENOMEM */
5338 		wc->flags[level] |= flag;
5339 	}
5340 
5341 	/*
5342 	 * the block is shared by multiple trees, so it's not good to
5343 	 * keep the tree lock
5344 	 */
5345 	if (path->locks[level] && level > 0) {
5346 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5347 		path->locks[level] = 0;
5348 	}
5349 	return 0;
5350 }
5351 
5352 /*
5353  * This is used to verify a ref exists for this root to deal with a bug where we
5354  * would have a drop_progress key that hadn't been updated properly.
5355  */
5356 static int check_ref_exists(struct btrfs_trans_handle *trans,
5357 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5358 			    int level)
5359 {
5360 	struct btrfs_path *path;
5361 	struct btrfs_extent_inline_ref *iref;
5362 	int ret;
5363 
5364 	path = btrfs_alloc_path();
5365 	if (!path)
5366 		return -ENOMEM;
5367 
5368 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5369 				    root->fs_info->nodesize, parent,
5370 				    root->root_key.objectid, level, 0);
5371 	btrfs_free_path(path);
5372 	if (ret == -ENOENT)
5373 		return 0;
5374 	if (ret < 0)
5375 		return ret;
5376 	return 1;
5377 }
5378 
5379 /*
5380  * helper to process tree block pointer.
5381  *
5382  * when wc->stage == DROP_REFERENCE, this function checks
5383  * reference count of the block pointed to. if the block
5384  * is shared and we need update back refs for the subtree
5385  * rooted at the block, this function changes wc->stage to
5386  * UPDATE_BACKREF. if the block is shared and there is no
5387  * need to update back, this function drops the reference
5388  * to the block.
5389  *
5390  * NOTE: return value 1 means we should stop walking down.
5391  */
5392 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5393 				 struct btrfs_root *root,
5394 				 struct btrfs_path *path,
5395 				 struct walk_control *wc, int *lookup_info)
5396 {
5397 	struct btrfs_fs_info *fs_info = root->fs_info;
5398 	u64 bytenr;
5399 	u64 generation;
5400 	u64 parent;
5401 	u64 owner_root = 0;
5402 	struct btrfs_tree_parent_check check = { 0 };
5403 	struct btrfs_key key;
5404 	struct btrfs_ref ref = { 0 };
5405 	struct extent_buffer *next;
5406 	int level = wc->level;
5407 	int reada = 0;
5408 	int ret = 0;
5409 	bool need_account = false;
5410 
5411 	generation = btrfs_node_ptr_generation(path->nodes[level],
5412 					       path->slots[level]);
5413 	/*
5414 	 * if the lower level block was created before the snapshot
5415 	 * was created, we know there is no need to update back refs
5416 	 * for the subtree
5417 	 */
5418 	if (wc->stage == UPDATE_BACKREF &&
5419 	    generation <= root->root_key.offset) {
5420 		*lookup_info = 1;
5421 		return 1;
5422 	}
5423 
5424 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5425 
5426 	check.level = level - 1;
5427 	check.transid = generation;
5428 	check.owner_root = root->root_key.objectid;
5429 	check.has_first_key = true;
5430 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5431 			      path->slots[level]);
5432 
5433 	next = find_extent_buffer(fs_info, bytenr);
5434 	if (!next) {
5435 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5436 				root->root_key.objectid, level - 1);
5437 		if (IS_ERR(next))
5438 			return PTR_ERR(next);
5439 		reada = 1;
5440 	}
5441 	btrfs_tree_lock(next);
5442 
5443 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5444 				       &wc->refs[level - 1],
5445 				       &wc->flags[level - 1],
5446 				       &owner_root);
5447 	if (ret < 0)
5448 		goto out_unlock;
5449 
5450 	if (unlikely(wc->refs[level - 1] == 0)) {
5451 		btrfs_err(fs_info, "Missing references.");
5452 		ret = -EIO;
5453 		goto out_unlock;
5454 	}
5455 	*lookup_info = 0;
5456 
5457 	if (wc->stage == DROP_REFERENCE) {
5458 		if (wc->refs[level - 1] > 1) {
5459 			need_account = true;
5460 			if (level == 1 &&
5461 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5462 				goto skip;
5463 
5464 			if (!wc->update_ref ||
5465 			    generation <= root->root_key.offset)
5466 				goto skip;
5467 
5468 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5469 					      path->slots[level]);
5470 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5471 			if (ret < 0)
5472 				goto skip;
5473 
5474 			wc->stage = UPDATE_BACKREF;
5475 			wc->shared_level = level - 1;
5476 		}
5477 	} else {
5478 		if (level == 1 &&
5479 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5480 			goto skip;
5481 	}
5482 
5483 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5484 		btrfs_tree_unlock(next);
5485 		free_extent_buffer(next);
5486 		next = NULL;
5487 		*lookup_info = 1;
5488 	}
5489 
5490 	if (!next) {
5491 		if (reada && level == 1)
5492 			reada_walk_down(trans, root, wc, path);
5493 		next = read_tree_block(fs_info, bytenr, &check);
5494 		if (IS_ERR(next)) {
5495 			return PTR_ERR(next);
5496 		} else if (!extent_buffer_uptodate(next)) {
5497 			free_extent_buffer(next);
5498 			return -EIO;
5499 		}
5500 		btrfs_tree_lock(next);
5501 	}
5502 
5503 	level--;
5504 	ASSERT(level == btrfs_header_level(next));
5505 	if (level != btrfs_header_level(next)) {
5506 		btrfs_err(root->fs_info, "mismatched level");
5507 		ret = -EIO;
5508 		goto out_unlock;
5509 	}
5510 	path->nodes[level] = next;
5511 	path->slots[level] = 0;
5512 	path->locks[level] = BTRFS_WRITE_LOCK;
5513 	wc->level = level;
5514 	if (wc->level == 1)
5515 		wc->reada_slot = 0;
5516 	return 0;
5517 skip:
5518 	wc->refs[level - 1] = 0;
5519 	wc->flags[level - 1] = 0;
5520 	if (wc->stage == DROP_REFERENCE) {
5521 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5522 			parent = path->nodes[level]->start;
5523 		} else {
5524 			ASSERT(root->root_key.objectid ==
5525 			       btrfs_header_owner(path->nodes[level]));
5526 			if (root->root_key.objectid !=
5527 			    btrfs_header_owner(path->nodes[level])) {
5528 				btrfs_err(root->fs_info,
5529 						"mismatched block owner");
5530 				ret = -EIO;
5531 				goto out_unlock;
5532 			}
5533 			parent = 0;
5534 		}
5535 
5536 		/*
5537 		 * If we had a drop_progress we need to verify the refs are set
5538 		 * as expected.  If we find our ref then we know that from here
5539 		 * on out everything should be correct, and we can clear the
5540 		 * ->restarted flag.
5541 		 */
5542 		if (wc->restarted) {
5543 			ret = check_ref_exists(trans, root, bytenr, parent,
5544 					       level - 1);
5545 			if (ret < 0)
5546 				goto out_unlock;
5547 			if (ret == 0)
5548 				goto no_delete;
5549 			ret = 0;
5550 			wc->restarted = 0;
5551 		}
5552 
5553 		/*
5554 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5555 		 * already accounted them at merge time (replace_path),
5556 		 * thus we could skip expensive subtree trace here.
5557 		 */
5558 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5559 		    need_account) {
5560 			ret = btrfs_qgroup_trace_subtree(trans, next,
5561 							 generation, level - 1);
5562 			if (ret) {
5563 				btrfs_err_rl(fs_info,
5564 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5565 					     ret);
5566 			}
5567 		}
5568 
5569 		/*
5570 		 * We need to update the next key in our walk control so we can
5571 		 * update the drop_progress key accordingly.  We don't care if
5572 		 * find_next_key doesn't find a key because that means we're at
5573 		 * the end and are going to clean up now.
5574 		 */
5575 		wc->drop_level = level;
5576 		find_next_key(path, level, &wc->drop_progress);
5577 
5578 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5579 				       fs_info->nodesize, parent, owner_root);
5580 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5581 				    0, false);
5582 		ret = btrfs_free_extent(trans, &ref);
5583 		if (ret)
5584 			goto out_unlock;
5585 	}
5586 no_delete:
5587 	*lookup_info = 1;
5588 	ret = 1;
5589 
5590 out_unlock:
5591 	btrfs_tree_unlock(next);
5592 	free_extent_buffer(next);
5593 
5594 	return ret;
5595 }
5596 
5597 /*
5598  * helper to process tree block while walking up the tree.
5599  *
5600  * when wc->stage == DROP_REFERENCE, this function drops
5601  * reference count on the block.
5602  *
5603  * when wc->stage == UPDATE_BACKREF, this function changes
5604  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5605  * to UPDATE_BACKREF previously while processing the block.
5606  *
5607  * NOTE: return value 1 means we should stop walking up.
5608  */
5609 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5610 				 struct btrfs_root *root,
5611 				 struct btrfs_path *path,
5612 				 struct walk_control *wc)
5613 {
5614 	struct btrfs_fs_info *fs_info = root->fs_info;
5615 	int ret;
5616 	int level = wc->level;
5617 	struct extent_buffer *eb = path->nodes[level];
5618 	u64 parent = 0;
5619 
5620 	if (wc->stage == UPDATE_BACKREF) {
5621 		BUG_ON(wc->shared_level < level);
5622 		if (level < wc->shared_level)
5623 			goto out;
5624 
5625 		ret = find_next_key(path, level + 1, &wc->update_progress);
5626 		if (ret > 0)
5627 			wc->update_ref = 0;
5628 
5629 		wc->stage = DROP_REFERENCE;
5630 		wc->shared_level = -1;
5631 		path->slots[level] = 0;
5632 
5633 		/*
5634 		 * check reference count again if the block isn't locked.
5635 		 * we should start walking down the tree again if reference
5636 		 * count is one.
5637 		 */
5638 		if (!path->locks[level]) {
5639 			BUG_ON(level == 0);
5640 			btrfs_tree_lock(eb);
5641 			path->locks[level] = BTRFS_WRITE_LOCK;
5642 
5643 			ret = btrfs_lookup_extent_info(trans, fs_info,
5644 						       eb->start, level, 1,
5645 						       &wc->refs[level],
5646 						       &wc->flags[level],
5647 						       NULL);
5648 			if (ret < 0) {
5649 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5650 				path->locks[level] = 0;
5651 				return ret;
5652 			}
5653 			BUG_ON(wc->refs[level] == 0);
5654 			if (wc->refs[level] == 1) {
5655 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5656 				path->locks[level] = 0;
5657 				return 1;
5658 			}
5659 		}
5660 	}
5661 
5662 	/* wc->stage == DROP_REFERENCE */
5663 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5664 
5665 	if (wc->refs[level] == 1) {
5666 		if (level == 0) {
5667 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5668 				ret = btrfs_dec_ref(trans, root, eb, 1);
5669 			else
5670 				ret = btrfs_dec_ref(trans, root, eb, 0);
5671 			BUG_ON(ret); /* -ENOMEM */
5672 			if (is_fstree(root->root_key.objectid)) {
5673 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5674 				if (ret) {
5675 					btrfs_err_rl(fs_info,
5676 	"error %d accounting leaf items, quota is out of sync, rescan required",
5677 					     ret);
5678 				}
5679 			}
5680 		}
5681 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5682 		if (!path->locks[level]) {
5683 			btrfs_tree_lock(eb);
5684 			path->locks[level] = BTRFS_WRITE_LOCK;
5685 		}
5686 		btrfs_clear_buffer_dirty(trans, eb);
5687 	}
5688 
5689 	if (eb == root->node) {
5690 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5691 			parent = eb->start;
5692 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5693 			goto owner_mismatch;
5694 	} else {
5695 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5696 			parent = path->nodes[level + 1]->start;
5697 		else if (root->root_key.objectid !=
5698 			 btrfs_header_owner(path->nodes[level + 1]))
5699 			goto owner_mismatch;
5700 	}
5701 
5702 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5703 			      wc->refs[level] == 1);
5704 out:
5705 	wc->refs[level] = 0;
5706 	wc->flags[level] = 0;
5707 	return 0;
5708 
5709 owner_mismatch:
5710 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5711 		     btrfs_header_owner(eb), root->root_key.objectid);
5712 	return -EUCLEAN;
5713 }
5714 
5715 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5716 				   struct btrfs_root *root,
5717 				   struct btrfs_path *path,
5718 				   struct walk_control *wc)
5719 {
5720 	int level = wc->level;
5721 	int lookup_info = 1;
5722 	int ret = 0;
5723 
5724 	while (level >= 0) {
5725 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5726 		if (ret)
5727 			break;
5728 
5729 		if (level == 0)
5730 			break;
5731 
5732 		if (path->slots[level] >=
5733 		    btrfs_header_nritems(path->nodes[level]))
5734 			break;
5735 
5736 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5737 		if (ret > 0) {
5738 			path->slots[level]++;
5739 			continue;
5740 		} else if (ret < 0)
5741 			break;
5742 		level = wc->level;
5743 	}
5744 	return (ret == 1) ? 0 : ret;
5745 }
5746 
5747 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5748 				 struct btrfs_root *root,
5749 				 struct btrfs_path *path,
5750 				 struct walk_control *wc, int max_level)
5751 {
5752 	int level = wc->level;
5753 	int ret;
5754 
5755 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5756 	while (level < max_level && path->nodes[level]) {
5757 		wc->level = level;
5758 		if (path->slots[level] + 1 <
5759 		    btrfs_header_nritems(path->nodes[level])) {
5760 			path->slots[level]++;
5761 			return 0;
5762 		} else {
5763 			ret = walk_up_proc(trans, root, path, wc);
5764 			if (ret > 0)
5765 				return 0;
5766 			if (ret < 0)
5767 				return ret;
5768 
5769 			if (path->locks[level]) {
5770 				btrfs_tree_unlock_rw(path->nodes[level],
5771 						     path->locks[level]);
5772 				path->locks[level] = 0;
5773 			}
5774 			free_extent_buffer(path->nodes[level]);
5775 			path->nodes[level] = NULL;
5776 			level++;
5777 		}
5778 	}
5779 	return 1;
5780 }
5781 
5782 /*
5783  * drop a subvolume tree.
5784  *
5785  * this function traverses the tree freeing any blocks that only
5786  * referenced by the tree.
5787  *
5788  * when a shared tree block is found. this function decreases its
5789  * reference count by one. if update_ref is true, this function
5790  * also make sure backrefs for the shared block and all lower level
5791  * blocks are properly updated.
5792  *
5793  * If called with for_reloc == 0, may exit early with -EAGAIN
5794  */
5795 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5796 {
5797 	const bool is_reloc_root = (root->root_key.objectid ==
5798 				    BTRFS_TREE_RELOC_OBJECTID);
5799 	struct btrfs_fs_info *fs_info = root->fs_info;
5800 	struct btrfs_path *path;
5801 	struct btrfs_trans_handle *trans;
5802 	struct btrfs_root *tree_root = fs_info->tree_root;
5803 	struct btrfs_root_item *root_item = &root->root_item;
5804 	struct walk_control *wc;
5805 	struct btrfs_key key;
5806 	int err = 0;
5807 	int ret;
5808 	int level;
5809 	bool root_dropped = false;
5810 	bool unfinished_drop = false;
5811 
5812 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5813 
5814 	path = btrfs_alloc_path();
5815 	if (!path) {
5816 		err = -ENOMEM;
5817 		goto out;
5818 	}
5819 
5820 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5821 	if (!wc) {
5822 		btrfs_free_path(path);
5823 		err = -ENOMEM;
5824 		goto out;
5825 	}
5826 
5827 	/*
5828 	 * Use join to avoid potential EINTR from transaction start. See
5829 	 * wait_reserve_ticket and the whole reservation callchain.
5830 	 */
5831 	if (for_reloc)
5832 		trans = btrfs_join_transaction(tree_root);
5833 	else
5834 		trans = btrfs_start_transaction(tree_root, 0);
5835 	if (IS_ERR(trans)) {
5836 		err = PTR_ERR(trans);
5837 		goto out_free;
5838 	}
5839 
5840 	err = btrfs_run_delayed_items(trans);
5841 	if (err)
5842 		goto out_end_trans;
5843 
5844 	/*
5845 	 * This will help us catch people modifying the fs tree while we're
5846 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5847 	 * dropped as we unlock the root node and parent nodes as we walk down
5848 	 * the tree, assuming nothing will change.  If something does change
5849 	 * then we'll have stale information and drop references to blocks we've
5850 	 * already dropped.
5851 	 */
5852 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5853 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5854 
5855 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5856 		level = btrfs_header_level(root->node);
5857 		path->nodes[level] = btrfs_lock_root_node(root);
5858 		path->slots[level] = 0;
5859 		path->locks[level] = BTRFS_WRITE_LOCK;
5860 		memset(&wc->update_progress, 0,
5861 		       sizeof(wc->update_progress));
5862 	} else {
5863 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5864 		memcpy(&wc->update_progress, &key,
5865 		       sizeof(wc->update_progress));
5866 
5867 		level = btrfs_root_drop_level(root_item);
5868 		BUG_ON(level == 0);
5869 		path->lowest_level = level;
5870 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5871 		path->lowest_level = 0;
5872 		if (ret < 0) {
5873 			err = ret;
5874 			goto out_end_trans;
5875 		}
5876 		WARN_ON(ret > 0);
5877 
5878 		/*
5879 		 * unlock our path, this is safe because only this
5880 		 * function is allowed to delete this snapshot
5881 		 */
5882 		btrfs_unlock_up_safe(path, 0);
5883 
5884 		level = btrfs_header_level(root->node);
5885 		while (1) {
5886 			btrfs_tree_lock(path->nodes[level]);
5887 			path->locks[level] = BTRFS_WRITE_LOCK;
5888 
5889 			ret = btrfs_lookup_extent_info(trans, fs_info,
5890 						path->nodes[level]->start,
5891 						level, 1, &wc->refs[level],
5892 						&wc->flags[level], NULL);
5893 			if (ret < 0) {
5894 				err = ret;
5895 				goto out_end_trans;
5896 			}
5897 			BUG_ON(wc->refs[level] == 0);
5898 
5899 			if (level == btrfs_root_drop_level(root_item))
5900 				break;
5901 
5902 			btrfs_tree_unlock(path->nodes[level]);
5903 			path->locks[level] = 0;
5904 			WARN_ON(wc->refs[level] != 1);
5905 			level--;
5906 		}
5907 	}
5908 
5909 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5910 	wc->level = level;
5911 	wc->shared_level = -1;
5912 	wc->stage = DROP_REFERENCE;
5913 	wc->update_ref = update_ref;
5914 	wc->keep_locks = 0;
5915 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5916 
5917 	while (1) {
5918 
5919 		ret = walk_down_tree(trans, root, path, wc);
5920 		if (ret < 0) {
5921 			btrfs_abort_transaction(trans, ret);
5922 			err = ret;
5923 			break;
5924 		}
5925 
5926 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5927 		if (ret < 0) {
5928 			btrfs_abort_transaction(trans, ret);
5929 			err = ret;
5930 			break;
5931 		}
5932 
5933 		if (ret > 0) {
5934 			BUG_ON(wc->stage != DROP_REFERENCE);
5935 			break;
5936 		}
5937 
5938 		if (wc->stage == DROP_REFERENCE) {
5939 			wc->drop_level = wc->level;
5940 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5941 					      &wc->drop_progress,
5942 					      path->slots[wc->drop_level]);
5943 		}
5944 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5945 				      &wc->drop_progress);
5946 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5947 
5948 		BUG_ON(wc->level == 0);
5949 		if (btrfs_should_end_transaction(trans) ||
5950 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5951 			ret = btrfs_update_root(trans, tree_root,
5952 						&root->root_key,
5953 						root_item);
5954 			if (ret) {
5955 				btrfs_abort_transaction(trans, ret);
5956 				err = ret;
5957 				goto out_end_trans;
5958 			}
5959 
5960 			if (!is_reloc_root)
5961 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5962 
5963 			btrfs_end_transaction_throttle(trans);
5964 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5965 				btrfs_debug(fs_info,
5966 					    "drop snapshot early exit");
5967 				err = -EAGAIN;
5968 				goto out_free;
5969 			}
5970 
5971 		       /*
5972 			* Use join to avoid potential EINTR from transaction
5973 			* start. See wait_reserve_ticket and the whole
5974 			* reservation callchain.
5975 			*/
5976 			if (for_reloc)
5977 				trans = btrfs_join_transaction(tree_root);
5978 			else
5979 				trans = btrfs_start_transaction(tree_root, 0);
5980 			if (IS_ERR(trans)) {
5981 				err = PTR_ERR(trans);
5982 				goto out_free;
5983 			}
5984 		}
5985 	}
5986 	btrfs_release_path(path);
5987 	if (err)
5988 		goto out_end_trans;
5989 
5990 	ret = btrfs_del_root(trans, &root->root_key);
5991 	if (ret) {
5992 		btrfs_abort_transaction(trans, ret);
5993 		err = ret;
5994 		goto out_end_trans;
5995 	}
5996 
5997 	if (!is_reloc_root) {
5998 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5999 				      NULL, NULL);
6000 		if (ret < 0) {
6001 			btrfs_abort_transaction(trans, ret);
6002 			err = ret;
6003 			goto out_end_trans;
6004 		} else if (ret > 0) {
6005 			/* if we fail to delete the orphan item this time
6006 			 * around, it'll get picked up the next time.
6007 			 *
6008 			 * The most common failure here is just -ENOENT.
6009 			 */
6010 			btrfs_del_orphan_item(trans, tree_root,
6011 					      root->root_key.objectid);
6012 		}
6013 	}
6014 
6015 	/*
6016 	 * This subvolume is going to be completely dropped, and won't be
6017 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6018 	 * commit transaction time.  So free it here manually.
6019 	 */
6020 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6021 	btrfs_qgroup_free_meta_all_pertrans(root);
6022 
6023 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6024 		btrfs_add_dropped_root(trans, root);
6025 	else
6026 		btrfs_put_root(root);
6027 	root_dropped = true;
6028 out_end_trans:
6029 	if (!is_reloc_root)
6030 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6031 
6032 	btrfs_end_transaction_throttle(trans);
6033 out_free:
6034 	kfree(wc);
6035 	btrfs_free_path(path);
6036 out:
6037 	/*
6038 	 * We were an unfinished drop root, check to see if there are any
6039 	 * pending, and if not clear and wake up any waiters.
6040 	 */
6041 	if (!err && unfinished_drop)
6042 		btrfs_maybe_wake_unfinished_drop(fs_info);
6043 
6044 	/*
6045 	 * So if we need to stop dropping the snapshot for whatever reason we
6046 	 * need to make sure to add it back to the dead root list so that we
6047 	 * keep trying to do the work later.  This also cleans up roots if we
6048 	 * don't have it in the radix (like when we recover after a power fail
6049 	 * or unmount) so we don't leak memory.
6050 	 */
6051 	if (!for_reloc && !root_dropped)
6052 		btrfs_add_dead_root(root);
6053 	return err;
6054 }
6055 
6056 /*
6057  * drop subtree rooted at tree block 'node'.
6058  *
6059  * NOTE: this function will unlock and release tree block 'node'
6060  * only used by relocation code
6061  */
6062 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6063 			struct btrfs_root *root,
6064 			struct extent_buffer *node,
6065 			struct extent_buffer *parent)
6066 {
6067 	struct btrfs_fs_info *fs_info = root->fs_info;
6068 	struct btrfs_path *path;
6069 	struct walk_control *wc;
6070 	int level;
6071 	int parent_level;
6072 	int ret = 0;
6073 	int wret;
6074 
6075 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6076 
6077 	path = btrfs_alloc_path();
6078 	if (!path)
6079 		return -ENOMEM;
6080 
6081 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6082 	if (!wc) {
6083 		btrfs_free_path(path);
6084 		return -ENOMEM;
6085 	}
6086 
6087 	btrfs_assert_tree_write_locked(parent);
6088 	parent_level = btrfs_header_level(parent);
6089 	atomic_inc(&parent->refs);
6090 	path->nodes[parent_level] = parent;
6091 	path->slots[parent_level] = btrfs_header_nritems(parent);
6092 
6093 	btrfs_assert_tree_write_locked(node);
6094 	level = btrfs_header_level(node);
6095 	path->nodes[level] = node;
6096 	path->slots[level] = 0;
6097 	path->locks[level] = BTRFS_WRITE_LOCK;
6098 
6099 	wc->refs[parent_level] = 1;
6100 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6101 	wc->level = level;
6102 	wc->shared_level = -1;
6103 	wc->stage = DROP_REFERENCE;
6104 	wc->update_ref = 0;
6105 	wc->keep_locks = 1;
6106 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6107 
6108 	while (1) {
6109 		wret = walk_down_tree(trans, root, path, wc);
6110 		if (wret < 0) {
6111 			ret = wret;
6112 			break;
6113 		}
6114 
6115 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6116 		if (wret < 0)
6117 			ret = wret;
6118 		if (wret != 0)
6119 			break;
6120 	}
6121 
6122 	kfree(wc);
6123 	btrfs_free_path(path);
6124 	return ret;
6125 }
6126 
6127 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6128 				   u64 start, u64 end)
6129 {
6130 	return unpin_extent_range(fs_info, start, end, false);
6131 }
6132 
6133 /*
6134  * It used to be that old block groups would be left around forever.
6135  * Iterating over them would be enough to trim unused space.  Since we
6136  * now automatically remove them, we also need to iterate over unallocated
6137  * space.
6138  *
6139  * We don't want a transaction for this since the discard may take a
6140  * substantial amount of time.  We don't require that a transaction be
6141  * running, but we do need to take a running transaction into account
6142  * to ensure that we're not discarding chunks that were released or
6143  * allocated in the current transaction.
6144  *
6145  * Holding the chunks lock will prevent other threads from allocating
6146  * or releasing chunks, but it won't prevent a running transaction
6147  * from committing and releasing the memory that the pending chunks
6148  * list head uses.  For that, we need to take a reference to the
6149  * transaction and hold the commit root sem.  We only need to hold
6150  * it while performing the free space search since we have already
6151  * held back allocations.
6152  */
6153 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6154 {
6155 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6156 	int ret;
6157 
6158 	*trimmed = 0;
6159 
6160 	/* Discard not supported = nothing to do. */
6161 	if (!bdev_max_discard_sectors(device->bdev))
6162 		return 0;
6163 
6164 	/* Not writable = nothing to do. */
6165 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6166 		return 0;
6167 
6168 	/* No free space = nothing to do. */
6169 	if (device->total_bytes <= device->bytes_used)
6170 		return 0;
6171 
6172 	ret = 0;
6173 
6174 	while (1) {
6175 		struct btrfs_fs_info *fs_info = device->fs_info;
6176 		u64 bytes;
6177 
6178 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6179 		if (ret)
6180 			break;
6181 
6182 		find_first_clear_extent_bit(&device->alloc_state, start,
6183 					    &start, &end,
6184 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6185 
6186 		/* Check if there are any CHUNK_* bits left */
6187 		if (start > device->total_bytes) {
6188 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6189 			btrfs_warn_in_rcu(fs_info,
6190 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6191 					  start, end - start + 1,
6192 					  btrfs_dev_name(device),
6193 					  device->total_bytes);
6194 			mutex_unlock(&fs_info->chunk_mutex);
6195 			ret = 0;
6196 			break;
6197 		}
6198 
6199 		/* Ensure we skip the reserved space on each device. */
6200 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6201 
6202 		/*
6203 		 * If find_first_clear_extent_bit find a range that spans the
6204 		 * end of the device it will set end to -1, in this case it's up
6205 		 * to the caller to trim the value to the size of the device.
6206 		 */
6207 		end = min(end, device->total_bytes - 1);
6208 
6209 		len = end - start + 1;
6210 
6211 		/* We didn't find any extents */
6212 		if (!len) {
6213 			mutex_unlock(&fs_info->chunk_mutex);
6214 			ret = 0;
6215 			break;
6216 		}
6217 
6218 		ret = btrfs_issue_discard(device->bdev, start, len,
6219 					  &bytes);
6220 		if (!ret)
6221 			set_extent_bit(&device->alloc_state, start,
6222 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6223 		mutex_unlock(&fs_info->chunk_mutex);
6224 
6225 		if (ret)
6226 			break;
6227 
6228 		start += len;
6229 		*trimmed += bytes;
6230 
6231 		if (fatal_signal_pending(current)) {
6232 			ret = -ERESTARTSYS;
6233 			break;
6234 		}
6235 
6236 		cond_resched();
6237 	}
6238 
6239 	return ret;
6240 }
6241 
6242 /*
6243  * Trim the whole filesystem by:
6244  * 1) trimming the free space in each block group
6245  * 2) trimming the unallocated space on each device
6246  *
6247  * This will also continue trimming even if a block group or device encounters
6248  * an error.  The return value will be the last error, or 0 if nothing bad
6249  * happens.
6250  */
6251 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6252 {
6253 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6254 	struct btrfs_block_group *cache = NULL;
6255 	struct btrfs_device *device;
6256 	u64 group_trimmed;
6257 	u64 range_end = U64_MAX;
6258 	u64 start;
6259 	u64 end;
6260 	u64 trimmed = 0;
6261 	u64 bg_failed = 0;
6262 	u64 dev_failed = 0;
6263 	int bg_ret = 0;
6264 	int dev_ret = 0;
6265 	int ret = 0;
6266 
6267 	if (range->start == U64_MAX)
6268 		return -EINVAL;
6269 
6270 	/*
6271 	 * Check range overflow if range->len is set.
6272 	 * The default range->len is U64_MAX.
6273 	 */
6274 	if (range->len != U64_MAX &&
6275 	    check_add_overflow(range->start, range->len, &range_end))
6276 		return -EINVAL;
6277 
6278 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6279 	for (; cache; cache = btrfs_next_block_group(cache)) {
6280 		if (cache->start >= range_end) {
6281 			btrfs_put_block_group(cache);
6282 			break;
6283 		}
6284 
6285 		start = max(range->start, cache->start);
6286 		end = min(range_end, cache->start + cache->length);
6287 
6288 		if (end - start >= range->minlen) {
6289 			if (!btrfs_block_group_done(cache)) {
6290 				ret = btrfs_cache_block_group(cache, true);
6291 				if (ret) {
6292 					bg_failed++;
6293 					bg_ret = ret;
6294 					continue;
6295 				}
6296 			}
6297 			ret = btrfs_trim_block_group(cache,
6298 						     &group_trimmed,
6299 						     start,
6300 						     end,
6301 						     range->minlen);
6302 
6303 			trimmed += group_trimmed;
6304 			if (ret) {
6305 				bg_failed++;
6306 				bg_ret = ret;
6307 				continue;
6308 			}
6309 		}
6310 	}
6311 
6312 	if (bg_failed)
6313 		btrfs_warn(fs_info,
6314 			"failed to trim %llu block group(s), last error %d",
6315 			bg_failed, bg_ret);
6316 
6317 	mutex_lock(&fs_devices->device_list_mutex);
6318 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6319 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6320 			continue;
6321 
6322 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6323 		if (ret) {
6324 			dev_failed++;
6325 			dev_ret = ret;
6326 			break;
6327 		}
6328 
6329 		trimmed += group_trimmed;
6330 	}
6331 	mutex_unlock(&fs_devices->device_list_mutex);
6332 
6333 	if (dev_failed)
6334 		btrfs_warn(fs_info,
6335 			"failed to trim %llu device(s), last error %d",
6336 			dev_failed, dev_ret);
6337 	range->len = trimmed;
6338 	if (bg_ret)
6339 		return bg_ret;
6340 	return dev_ret;
6341 }
6342