xref: /linux/fs/btrfs/extent-tree.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 			       struct btrfs_delayed_ref_head *href,
49 			       struct btrfs_delayed_ref_node *node, u64 parent,
50 			       u64 root_objectid, u64 owner_objectid,
51 			       u64 owner_offset,
52 			       struct btrfs_delayed_extent_op *extra_op);
53 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
54 				    struct extent_buffer *leaf,
55 				    struct btrfs_extent_item *ei);
56 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
57 				      u64 parent, u64 root_objectid,
58 				      u64 flags, u64 owner, u64 offset,
59 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
60 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
61 				     struct btrfs_delayed_ref_node *node,
62 				     struct btrfs_delayed_extent_op *extent_op);
63 static int find_next_key(struct btrfs_path *path, int level,
64 			 struct btrfs_key *key);
65 
66 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
67 {
68 	return (cache->flags & bits) == bits;
69 }
70 
71 /* simple helper to search for an existing data extent at a given offset */
72 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
73 {
74 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
75 	int ret;
76 	struct btrfs_key key;
77 	struct btrfs_path *path;
78 
79 	path = btrfs_alloc_path();
80 	if (!path)
81 		return -ENOMEM;
82 
83 	key.objectid = start;
84 	key.offset = len;
85 	key.type = BTRFS_EXTENT_ITEM_KEY;
86 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
87 	btrfs_free_path(path);
88 	return ret;
89 }
90 
91 /*
92  * helper function to lookup reference count and flags of a tree block.
93  *
94  * the head node for delayed ref is used to store the sum of all the
95  * reference count modifications queued up in the rbtree. the head
96  * node may also store the extent flags to set. This way you can check
97  * to see what the reference count and extent flags would be if all of
98  * the delayed refs are not processed.
99  */
100 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
101 			     struct btrfs_fs_info *fs_info, u64 bytenr,
102 			     u64 offset, int metadata, u64 *refs, u64 *flags,
103 			     u64 *owning_root)
104 {
105 	struct btrfs_root *extent_root;
106 	struct btrfs_delayed_ref_head *head;
107 	struct btrfs_delayed_ref_root *delayed_refs;
108 	struct btrfs_path *path;
109 	struct btrfs_extent_item *ei;
110 	struct extent_buffer *leaf;
111 	struct btrfs_key key;
112 	u32 item_size;
113 	u64 num_refs;
114 	u64 extent_flags;
115 	u64 owner = 0;
116 	int ret;
117 
118 	/*
119 	 * If we don't have skinny metadata, don't bother doing anything
120 	 * different
121 	 */
122 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
123 		offset = fs_info->nodesize;
124 		metadata = 0;
125 	}
126 
127 	path = btrfs_alloc_path();
128 	if (!path)
129 		return -ENOMEM;
130 
131 	if (!trans) {
132 		path->skip_locking = 1;
133 		path->search_commit_root = 1;
134 	}
135 
136 search_again:
137 	key.objectid = bytenr;
138 	key.offset = offset;
139 	if (metadata)
140 		key.type = BTRFS_METADATA_ITEM_KEY;
141 	else
142 		key.type = BTRFS_EXTENT_ITEM_KEY;
143 
144 	extent_root = btrfs_extent_root(fs_info, bytenr);
145 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
146 	if (ret < 0)
147 		goto out_free;
148 
149 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
150 		if (path->slots[0]) {
151 			path->slots[0]--;
152 			btrfs_item_key_to_cpu(path->nodes[0], &key,
153 					      path->slots[0]);
154 			if (key.objectid == bytenr &&
155 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
156 			    key.offset == fs_info->nodesize)
157 				ret = 0;
158 		}
159 	}
160 
161 	if (ret == 0) {
162 		leaf = path->nodes[0];
163 		item_size = btrfs_item_size(leaf, path->slots[0]);
164 		if (item_size >= sizeof(*ei)) {
165 			ei = btrfs_item_ptr(leaf, path->slots[0],
166 					    struct btrfs_extent_item);
167 			num_refs = btrfs_extent_refs(leaf, ei);
168 			extent_flags = btrfs_extent_flags(leaf, ei);
169 			owner = btrfs_get_extent_owner_root(fs_info, leaf,
170 							    path->slots[0]);
171 		} else {
172 			ret = -EUCLEAN;
173 			btrfs_err(fs_info,
174 			"unexpected extent item size, has %u expect >= %zu",
175 				  item_size, sizeof(*ei));
176 			if (trans)
177 				btrfs_abort_transaction(trans, ret);
178 			else
179 				btrfs_handle_fs_error(fs_info, ret, NULL);
180 
181 			goto out_free;
182 		}
183 
184 		BUG_ON(num_refs == 0);
185 	} else {
186 		num_refs = 0;
187 		extent_flags = 0;
188 		ret = 0;
189 	}
190 
191 	if (!trans)
192 		goto out;
193 
194 	delayed_refs = &trans->transaction->delayed_refs;
195 	spin_lock(&delayed_refs->lock);
196 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
197 	if (head) {
198 		if (!mutex_trylock(&head->mutex)) {
199 			refcount_inc(&head->refs);
200 			spin_unlock(&delayed_refs->lock);
201 
202 			btrfs_release_path(path);
203 
204 			/*
205 			 * Mutex was contended, block until it's released and try
206 			 * again
207 			 */
208 			mutex_lock(&head->mutex);
209 			mutex_unlock(&head->mutex);
210 			btrfs_put_delayed_ref_head(head);
211 			goto search_again;
212 		}
213 		spin_lock(&head->lock);
214 		if (head->extent_op && head->extent_op->update_flags)
215 			extent_flags |= head->extent_op->flags_to_set;
216 		else
217 			BUG_ON(num_refs == 0);
218 
219 		num_refs += head->ref_mod;
220 		spin_unlock(&head->lock);
221 		mutex_unlock(&head->mutex);
222 	}
223 	spin_unlock(&delayed_refs->lock);
224 out:
225 	WARN_ON(num_refs == 0);
226 	if (refs)
227 		*refs = num_refs;
228 	if (flags)
229 		*flags = extent_flags;
230 	if (owning_root)
231 		*owning_root = owner;
232 out_free:
233 	btrfs_free_path(path);
234 	return ret;
235 }
236 
237 /*
238  * Back reference rules.  Back refs have three main goals:
239  *
240  * 1) differentiate between all holders of references to an extent so that
241  *    when a reference is dropped we can make sure it was a valid reference
242  *    before freeing the extent.
243  *
244  * 2) Provide enough information to quickly find the holders of an extent
245  *    if we notice a given block is corrupted or bad.
246  *
247  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
248  *    maintenance.  This is actually the same as #2, but with a slightly
249  *    different use case.
250  *
251  * There are two kinds of back refs. The implicit back refs is optimized
252  * for pointers in non-shared tree blocks. For a given pointer in a block,
253  * back refs of this kind provide information about the block's owner tree
254  * and the pointer's key. These information allow us to find the block by
255  * b-tree searching. The full back refs is for pointers in tree blocks not
256  * referenced by their owner trees. The location of tree block is recorded
257  * in the back refs. Actually the full back refs is generic, and can be
258  * used in all cases the implicit back refs is used. The major shortcoming
259  * of the full back refs is its overhead. Every time a tree block gets
260  * COWed, we have to update back refs entry for all pointers in it.
261  *
262  * For a newly allocated tree block, we use implicit back refs for
263  * pointers in it. This means most tree related operations only involve
264  * implicit back refs. For a tree block created in old transaction, the
265  * only way to drop a reference to it is COW it. So we can detect the
266  * event that tree block loses its owner tree's reference and do the
267  * back refs conversion.
268  *
269  * When a tree block is COWed through a tree, there are four cases:
270  *
271  * The reference count of the block is one and the tree is the block's
272  * owner tree. Nothing to do in this case.
273  *
274  * The reference count of the block is one and the tree is not the
275  * block's owner tree. In this case, full back refs is used for pointers
276  * in the block. Remove these full back refs, add implicit back refs for
277  * every pointers in the new block.
278  *
279  * The reference count of the block is greater than one and the tree is
280  * the block's owner tree. In this case, implicit back refs is used for
281  * pointers in the block. Add full back refs for every pointers in the
282  * block, increase lower level extents' reference counts. The original
283  * implicit back refs are entailed to the new block.
284  *
285  * The reference count of the block is greater than one and the tree is
286  * not the block's owner tree. Add implicit back refs for every pointer in
287  * the new block, increase lower level extents' reference count.
288  *
289  * Back Reference Key composing:
290  *
291  * The key objectid corresponds to the first byte in the extent,
292  * The key type is used to differentiate between types of back refs.
293  * There are different meanings of the key offset for different types
294  * of back refs.
295  *
296  * File extents can be referenced by:
297  *
298  * - multiple snapshots, subvolumes, or different generations in one subvol
299  * - different files inside a single subvolume
300  * - different offsets inside a file (bookend extents in file.c)
301  *
302  * The extent ref structure for the implicit back refs has fields for:
303  *
304  * - Objectid of the subvolume root
305  * - objectid of the file holding the reference
306  * - original offset in the file
307  * - how many bookend extents
308  *
309  * The key offset for the implicit back refs is hash of the first
310  * three fields.
311  *
312  * The extent ref structure for the full back refs has field for:
313  *
314  * - number of pointers in the tree leaf
315  *
316  * The key offset for the implicit back refs is the first byte of
317  * the tree leaf
318  *
319  * When a file extent is allocated, The implicit back refs is used.
320  * the fields are filled in:
321  *
322  *     (root_key.objectid, inode objectid, offset in file, 1)
323  *
324  * When a file extent is removed file truncation, we find the
325  * corresponding implicit back refs and check the following fields:
326  *
327  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
328  *
329  * Btree extents can be referenced by:
330  *
331  * - Different subvolumes
332  *
333  * Both the implicit back refs and the full back refs for tree blocks
334  * only consist of key. The key offset for the implicit back refs is
335  * objectid of block's owner tree. The key offset for the full back refs
336  * is the first byte of parent block.
337  *
338  * When implicit back refs is used, information about the lowest key and
339  * level of the tree block are required. These information are stored in
340  * tree block info structure.
341  */
342 
343 /*
344  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
345  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
346  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
347  */
348 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
349 				     struct btrfs_extent_inline_ref *iref,
350 				     enum btrfs_inline_ref_type is_data)
351 {
352 	struct btrfs_fs_info *fs_info = eb->fs_info;
353 	int type = btrfs_extent_inline_ref_type(eb, iref);
354 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
355 
356 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
357 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
358 		return type;
359 	}
360 
361 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
362 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
363 	    type == BTRFS_SHARED_DATA_REF_KEY ||
364 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
365 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
366 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
367 				return type;
368 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
369 				ASSERT(fs_info);
370 				/*
371 				 * Every shared one has parent tree block,
372 				 * which must be aligned to sector size.
373 				 */
374 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
375 					return type;
376 			}
377 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
378 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
379 				return type;
380 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
381 				ASSERT(fs_info);
382 				/*
383 				 * Every shared one has parent tree block,
384 				 * which must be aligned to sector size.
385 				 */
386 				if (offset &&
387 				    IS_ALIGNED(offset, fs_info->sectorsize))
388 					return type;
389 			}
390 		} else {
391 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
392 			return type;
393 		}
394 	}
395 
396 	WARN_ON(1);
397 	btrfs_print_leaf(eb);
398 	btrfs_err(fs_info,
399 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
400 		  eb->start, (unsigned long)iref, type);
401 
402 	return BTRFS_REF_TYPE_INVALID;
403 }
404 
405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
406 {
407 	u32 high_crc = ~(u32)0;
408 	u32 low_crc = ~(u32)0;
409 	__le64 lenum;
410 
411 	lenum = cpu_to_le64(root_objectid);
412 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
413 	lenum = cpu_to_le64(owner);
414 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
415 	lenum = cpu_to_le64(offset);
416 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
417 
418 	return ((u64)high_crc << 31) ^ (u64)low_crc;
419 }
420 
421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 				     struct btrfs_extent_data_ref *ref)
423 {
424 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 				    btrfs_extent_data_ref_objectid(leaf, ref),
426 				    btrfs_extent_data_ref_offset(leaf, ref));
427 }
428 
429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 				 struct btrfs_extent_data_ref *ref,
431 				 u64 root_objectid, u64 owner, u64 offset)
432 {
433 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
436 		return 0;
437 	return 1;
438 }
439 
440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 					   struct btrfs_path *path,
442 					   u64 bytenr, u64 parent,
443 					   u64 root_objectid,
444 					   u64 owner, u64 offset)
445 {
446 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
447 	struct btrfs_key key;
448 	struct btrfs_extent_data_ref *ref;
449 	struct extent_buffer *leaf;
450 	u32 nritems;
451 	int ret;
452 	int recow;
453 	int err = -ENOENT;
454 
455 	key.objectid = bytenr;
456 	if (parent) {
457 		key.type = BTRFS_SHARED_DATA_REF_KEY;
458 		key.offset = parent;
459 	} else {
460 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 		key.offset = hash_extent_data_ref(root_objectid,
462 						  owner, offset);
463 	}
464 again:
465 	recow = 0;
466 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
467 	if (ret < 0) {
468 		err = ret;
469 		goto fail;
470 	}
471 
472 	if (parent) {
473 		if (!ret)
474 			return 0;
475 		goto fail;
476 	}
477 
478 	leaf = path->nodes[0];
479 	nritems = btrfs_header_nritems(leaf);
480 	while (1) {
481 		if (path->slots[0] >= nritems) {
482 			ret = btrfs_next_leaf(root, path);
483 			if (ret < 0)
484 				err = ret;
485 			if (ret)
486 				goto fail;
487 
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			recow = 1;
491 		}
492 
493 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 		if (key.objectid != bytenr ||
495 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
496 			goto fail;
497 
498 		ref = btrfs_item_ptr(leaf, path->slots[0],
499 				     struct btrfs_extent_data_ref);
500 
501 		if (match_extent_data_ref(leaf, ref, root_objectid,
502 					  owner, offset)) {
503 			if (recow) {
504 				btrfs_release_path(path);
505 				goto again;
506 			}
507 			err = 0;
508 			break;
509 		}
510 		path->slots[0]++;
511 	}
512 fail:
513 	return err;
514 }
515 
516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 					   struct btrfs_path *path,
518 					   u64 bytenr, u64 parent,
519 					   u64 root_objectid, u64 owner,
520 					   u64 offset, int refs_to_add)
521 {
522 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
523 	struct btrfs_key key;
524 	struct extent_buffer *leaf;
525 	u32 size;
526 	u32 num_refs;
527 	int ret;
528 
529 	key.objectid = bytenr;
530 	if (parent) {
531 		key.type = BTRFS_SHARED_DATA_REF_KEY;
532 		key.offset = parent;
533 		size = sizeof(struct btrfs_shared_data_ref);
534 	} else {
535 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 		key.offset = hash_extent_data_ref(root_objectid,
537 						  owner, offset);
538 		size = sizeof(struct btrfs_extent_data_ref);
539 	}
540 
541 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 	if (ret && ret != -EEXIST)
543 		goto fail;
544 
545 	leaf = path->nodes[0];
546 	if (parent) {
547 		struct btrfs_shared_data_ref *ref;
548 		ref = btrfs_item_ptr(leaf, path->slots[0],
549 				     struct btrfs_shared_data_ref);
550 		if (ret == 0) {
551 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
552 		} else {
553 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 			num_refs += refs_to_add;
555 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
556 		}
557 	} else {
558 		struct btrfs_extent_data_ref *ref;
559 		while (ret == -EEXIST) {
560 			ref = btrfs_item_ptr(leaf, path->slots[0],
561 					     struct btrfs_extent_data_ref);
562 			if (match_extent_data_ref(leaf, ref, root_objectid,
563 						  owner, offset))
564 				break;
565 			btrfs_release_path(path);
566 			key.offset++;
567 			ret = btrfs_insert_empty_item(trans, root, path, &key,
568 						      size);
569 			if (ret && ret != -EEXIST)
570 				goto fail;
571 
572 			leaf = path->nodes[0];
573 		}
574 		ref = btrfs_item_ptr(leaf, path->slots[0],
575 				     struct btrfs_extent_data_ref);
576 		if (ret == 0) {
577 			btrfs_set_extent_data_ref_root(leaf, ref,
578 						       root_objectid);
579 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
582 		} else {
583 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 			num_refs += refs_to_add;
585 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
586 		}
587 	}
588 	btrfs_mark_buffer_dirty(trans, leaf);
589 	ret = 0;
590 fail:
591 	btrfs_release_path(path);
592 	return ret;
593 }
594 
595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 					   struct btrfs_root *root,
597 					   struct btrfs_path *path,
598 					   int refs_to_drop)
599 {
600 	struct btrfs_key key;
601 	struct btrfs_extent_data_ref *ref1 = NULL;
602 	struct btrfs_shared_data_ref *ref2 = NULL;
603 	struct extent_buffer *leaf;
604 	u32 num_refs = 0;
605 	int ret = 0;
606 
607 	leaf = path->nodes[0];
608 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
609 
610 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
611 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
612 				      struct btrfs_extent_data_ref);
613 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
614 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
615 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
616 				      struct btrfs_shared_data_ref);
617 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
618 	} else {
619 		btrfs_err(trans->fs_info,
620 			  "unrecognized backref key (%llu %u %llu)",
621 			  key.objectid, key.type, key.offset);
622 		btrfs_abort_transaction(trans, -EUCLEAN);
623 		return -EUCLEAN;
624 	}
625 
626 	BUG_ON(num_refs < refs_to_drop);
627 	num_refs -= refs_to_drop;
628 
629 	if (num_refs == 0) {
630 		ret = btrfs_del_item(trans, root, path);
631 	} else {
632 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 		btrfs_mark_buffer_dirty(trans, leaf);
637 	}
638 	return ret;
639 }
640 
641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 					  struct btrfs_extent_inline_ref *iref)
643 {
644 	struct btrfs_key key;
645 	struct extent_buffer *leaf;
646 	struct btrfs_extent_data_ref *ref1;
647 	struct btrfs_shared_data_ref *ref2;
648 	u32 num_refs = 0;
649 	int type;
650 
651 	leaf = path->nodes[0];
652 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
653 
654 	if (iref) {
655 		/*
656 		 * If type is invalid, we should have bailed out earlier than
657 		 * this call.
658 		 */
659 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
660 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
661 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
662 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
663 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
664 		} else {
665 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
666 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
667 		}
668 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
669 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
670 				      struct btrfs_extent_data_ref);
671 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
672 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
673 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_shared_data_ref);
675 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
676 	} else {
677 		WARN_ON(1);
678 	}
679 	return num_refs;
680 }
681 
682 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
683 					  struct btrfs_path *path,
684 					  u64 bytenr, u64 parent,
685 					  u64 root_objectid)
686 {
687 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
688 	struct btrfs_key key;
689 	int ret;
690 
691 	key.objectid = bytenr;
692 	if (parent) {
693 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
694 		key.offset = parent;
695 	} else {
696 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
697 		key.offset = root_objectid;
698 	}
699 
700 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
701 	if (ret > 0)
702 		ret = -ENOENT;
703 	return ret;
704 }
705 
706 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
707 					  struct btrfs_path *path,
708 					  u64 bytenr, u64 parent,
709 					  u64 root_objectid)
710 {
711 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
712 	struct btrfs_key key;
713 	int ret;
714 
715 	key.objectid = bytenr;
716 	if (parent) {
717 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
718 		key.offset = parent;
719 	} else {
720 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 		key.offset = root_objectid;
722 	}
723 
724 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
725 	btrfs_release_path(path);
726 	return ret;
727 }
728 
729 static inline int extent_ref_type(u64 parent, u64 owner)
730 {
731 	int type;
732 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
733 		if (parent > 0)
734 			type = BTRFS_SHARED_BLOCK_REF_KEY;
735 		else
736 			type = BTRFS_TREE_BLOCK_REF_KEY;
737 	} else {
738 		if (parent > 0)
739 			type = BTRFS_SHARED_DATA_REF_KEY;
740 		else
741 			type = BTRFS_EXTENT_DATA_REF_KEY;
742 	}
743 	return type;
744 }
745 
746 static int find_next_key(struct btrfs_path *path, int level,
747 			 struct btrfs_key *key)
748 
749 {
750 	for (; level < BTRFS_MAX_LEVEL; level++) {
751 		if (!path->nodes[level])
752 			break;
753 		if (path->slots[level] + 1 >=
754 		    btrfs_header_nritems(path->nodes[level]))
755 			continue;
756 		if (level == 0)
757 			btrfs_item_key_to_cpu(path->nodes[level], key,
758 					      path->slots[level] + 1);
759 		else
760 			btrfs_node_key_to_cpu(path->nodes[level], key,
761 					      path->slots[level] + 1);
762 		return 0;
763 	}
764 	return 1;
765 }
766 
767 /*
768  * look for inline back ref. if back ref is found, *ref_ret is set
769  * to the address of inline back ref, and 0 is returned.
770  *
771  * if back ref isn't found, *ref_ret is set to the address where it
772  * should be inserted, and -ENOENT is returned.
773  *
774  * if insert is true and there are too many inline back refs, the path
775  * points to the extent item, and -EAGAIN is returned.
776  *
777  * NOTE: inline back refs are ordered in the same way that back ref
778  *	 items in the tree are ordered.
779  */
780 static noinline_for_stack
781 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
782 				 struct btrfs_path *path,
783 				 struct btrfs_extent_inline_ref **ref_ret,
784 				 u64 bytenr, u64 num_bytes,
785 				 u64 parent, u64 root_objectid,
786 				 u64 owner, u64 offset, int insert)
787 {
788 	struct btrfs_fs_info *fs_info = trans->fs_info;
789 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
790 	struct btrfs_key key;
791 	struct extent_buffer *leaf;
792 	struct btrfs_extent_item *ei;
793 	struct btrfs_extent_inline_ref *iref;
794 	u64 flags;
795 	u64 item_size;
796 	unsigned long ptr;
797 	unsigned long end;
798 	int extra_size;
799 	int type;
800 	int want;
801 	int ret;
802 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
803 	int needed;
804 
805 	key.objectid = bytenr;
806 	key.type = BTRFS_EXTENT_ITEM_KEY;
807 	key.offset = num_bytes;
808 
809 	want = extent_ref_type(parent, owner);
810 	if (insert) {
811 		extra_size = btrfs_extent_inline_ref_size(want);
812 		path->search_for_extension = 1;
813 		path->keep_locks = 1;
814 	} else
815 		extra_size = -1;
816 
817 	/*
818 	 * Owner is our level, so we can just add one to get the level for the
819 	 * block we are interested in.
820 	 */
821 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
822 		key.type = BTRFS_METADATA_ITEM_KEY;
823 		key.offset = owner;
824 	}
825 
826 again:
827 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
828 	if (ret < 0)
829 		goto out;
830 
831 	/*
832 	 * We may be a newly converted file system which still has the old fat
833 	 * extent entries for metadata, so try and see if we have one of those.
834 	 */
835 	if (ret > 0 && skinny_metadata) {
836 		skinny_metadata = false;
837 		if (path->slots[0]) {
838 			path->slots[0]--;
839 			btrfs_item_key_to_cpu(path->nodes[0], &key,
840 					      path->slots[0]);
841 			if (key.objectid == bytenr &&
842 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
843 			    key.offset == num_bytes)
844 				ret = 0;
845 		}
846 		if (ret) {
847 			key.objectid = bytenr;
848 			key.type = BTRFS_EXTENT_ITEM_KEY;
849 			key.offset = num_bytes;
850 			btrfs_release_path(path);
851 			goto again;
852 		}
853 	}
854 
855 	if (ret && !insert) {
856 		ret = -ENOENT;
857 		goto out;
858 	} else if (WARN_ON(ret)) {
859 		btrfs_print_leaf(path->nodes[0]);
860 		btrfs_err(fs_info,
861 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
862 			  bytenr, num_bytes, parent, root_objectid, owner,
863 			  offset);
864 		ret = -EUCLEAN;
865 		goto out;
866 	}
867 
868 	leaf = path->nodes[0];
869 	item_size = btrfs_item_size(leaf, path->slots[0]);
870 	if (unlikely(item_size < sizeof(*ei))) {
871 		ret = -EUCLEAN;
872 		btrfs_err(fs_info,
873 			  "unexpected extent item size, has %llu expect >= %zu",
874 			  item_size, sizeof(*ei));
875 		btrfs_abort_transaction(trans, ret);
876 		goto out;
877 	}
878 
879 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
880 	flags = btrfs_extent_flags(leaf, ei);
881 
882 	ptr = (unsigned long)(ei + 1);
883 	end = (unsigned long)ei + item_size;
884 
885 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
886 		ptr += sizeof(struct btrfs_tree_block_info);
887 		BUG_ON(ptr > end);
888 	}
889 
890 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
891 		needed = BTRFS_REF_TYPE_DATA;
892 	else
893 		needed = BTRFS_REF_TYPE_BLOCK;
894 
895 	ret = -ENOENT;
896 	while (ptr < end) {
897 		iref = (struct btrfs_extent_inline_ref *)ptr;
898 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
899 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
900 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
901 			ptr += btrfs_extent_inline_ref_size(type);
902 			continue;
903 		}
904 		if (type == BTRFS_REF_TYPE_INVALID) {
905 			ret = -EUCLEAN;
906 			goto out;
907 		}
908 
909 		if (want < type)
910 			break;
911 		if (want > type) {
912 			ptr += btrfs_extent_inline_ref_size(type);
913 			continue;
914 		}
915 
916 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
917 			struct btrfs_extent_data_ref *dref;
918 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
919 			if (match_extent_data_ref(leaf, dref, root_objectid,
920 						  owner, offset)) {
921 				ret = 0;
922 				break;
923 			}
924 			if (hash_extent_data_ref_item(leaf, dref) <
925 			    hash_extent_data_ref(root_objectid, owner, offset))
926 				break;
927 		} else {
928 			u64 ref_offset;
929 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
930 			if (parent > 0) {
931 				if (parent == ref_offset) {
932 					ret = 0;
933 					break;
934 				}
935 				if (ref_offset < parent)
936 					break;
937 			} else {
938 				if (root_objectid == ref_offset) {
939 					ret = 0;
940 					break;
941 				}
942 				if (ref_offset < root_objectid)
943 					break;
944 			}
945 		}
946 		ptr += btrfs_extent_inline_ref_size(type);
947 	}
948 
949 	if (unlikely(ptr > end)) {
950 		ret = -EUCLEAN;
951 		btrfs_print_leaf(path->nodes[0]);
952 		btrfs_crit(fs_info,
953 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
954 			   path->slots[0], root_objectid, owner, offset, parent);
955 		goto out;
956 	}
957 
958 	if (ret == -ENOENT && insert) {
959 		if (item_size + extra_size >=
960 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
961 			ret = -EAGAIN;
962 			goto out;
963 		}
964 		/*
965 		 * To add new inline back ref, we have to make sure
966 		 * there is no corresponding back ref item.
967 		 * For simplicity, we just do not add new inline back
968 		 * ref if there is any kind of item for this block
969 		 */
970 		if (find_next_key(path, 0, &key) == 0 &&
971 		    key.objectid == bytenr &&
972 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
973 			ret = -EAGAIN;
974 			goto out;
975 		}
976 	}
977 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
978 out:
979 	if (insert) {
980 		path->keep_locks = 0;
981 		path->search_for_extension = 0;
982 		btrfs_unlock_up_safe(path, 1);
983 	}
984 	return ret;
985 }
986 
987 /*
988  * helper to add new inline back ref
989  */
990 static noinline_for_stack
991 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
992 				 struct btrfs_path *path,
993 				 struct btrfs_extent_inline_ref *iref,
994 				 u64 parent, u64 root_objectid,
995 				 u64 owner, u64 offset, int refs_to_add,
996 				 struct btrfs_delayed_extent_op *extent_op)
997 {
998 	struct extent_buffer *leaf;
999 	struct btrfs_extent_item *ei;
1000 	unsigned long ptr;
1001 	unsigned long end;
1002 	unsigned long item_offset;
1003 	u64 refs;
1004 	int size;
1005 	int type;
1006 
1007 	leaf = path->nodes[0];
1008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1009 	item_offset = (unsigned long)iref - (unsigned long)ei;
1010 
1011 	type = extent_ref_type(parent, owner);
1012 	size = btrfs_extent_inline_ref_size(type);
1013 
1014 	btrfs_extend_item(trans, path, size);
1015 
1016 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 	refs = btrfs_extent_refs(leaf, ei);
1018 	refs += refs_to_add;
1019 	btrfs_set_extent_refs(leaf, ei, refs);
1020 	if (extent_op)
1021 		__run_delayed_extent_op(extent_op, leaf, ei);
1022 
1023 	ptr = (unsigned long)ei + item_offset;
1024 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1025 	if (ptr < end - size)
1026 		memmove_extent_buffer(leaf, ptr + size, ptr,
1027 				      end - size - ptr);
1028 
1029 	iref = (struct btrfs_extent_inline_ref *)ptr;
1030 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1031 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1032 		struct btrfs_extent_data_ref *dref;
1033 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1034 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1035 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1036 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1037 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1038 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1039 		struct btrfs_shared_data_ref *sref;
1040 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1041 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1042 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1043 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 	} else {
1046 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1047 	}
1048 	btrfs_mark_buffer_dirty(trans, leaf);
1049 }
1050 
1051 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1052 				 struct btrfs_path *path,
1053 				 struct btrfs_extent_inline_ref **ref_ret,
1054 				 u64 bytenr, u64 num_bytes, u64 parent,
1055 				 u64 root_objectid, u64 owner, u64 offset)
1056 {
1057 	int ret;
1058 
1059 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1060 					   num_bytes, parent, root_objectid,
1061 					   owner, offset, 0);
1062 	if (ret != -ENOENT)
1063 		return ret;
1064 
1065 	btrfs_release_path(path);
1066 	*ref_ret = NULL;
1067 
1068 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1069 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1070 					    root_objectid);
1071 	} else {
1072 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1073 					     root_objectid, owner, offset);
1074 	}
1075 	return ret;
1076 }
1077 
1078 /*
1079  * helper to update/remove inline back ref
1080  */
1081 static noinline_for_stack int update_inline_extent_backref(
1082 				  struct btrfs_trans_handle *trans,
1083 				  struct btrfs_path *path,
1084 				  struct btrfs_extent_inline_ref *iref,
1085 				  int refs_to_mod,
1086 				  struct btrfs_delayed_extent_op *extent_op)
1087 {
1088 	struct extent_buffer *leaf = path->nodes[0];
1089 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1090 	struct btrfs_extent_item *ei;
1091 	struct btrfs_extent_data_ref *dref = NULL;
1092 	struct btrfs_shared_data_ref *sref = NULL;
1093 	unsigned long ptr;
1094 	unsigned long end;
1095 	u32 item_size;
1096 	int size;
1097 	int type;
1098 	u64 refs;
1099 
1100 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 	refs = btrfs_extent_refs(leaf, ei);
1102 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1103 		struct btrfs_key key;
1104 		u32 extent_size;
1105 
1106 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1107 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1108 			extent_size = fs_info->nodesize;
1109 		else
1110 			extent_size = key.offset;
1111 		btrfs_print_leaf(leaf);
1112 		btrfs_err(fs_info,
1113 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1114 			  key.objectid, extent_size, refs_to_mod, refs);
1115 		return -EUCLEAN;
1116 	}
1117 	refs += refs_to_mod;
1118 	btrfs_set_extent_refs(leaf, ei, refs);
1119 	if (extent_op)
1120 		__run_delayed_extent_op(extent_op, leaf, ei);
1121 
1122 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1123 	/*
1124 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1125 	 * error messages.
1126 	 */
1127 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1128 		return -EUCLEAN;
1129 
1130 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1131 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1132 		refs = btrfs_extent_data_ref_count(leaf, dref);
1133 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1134 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1135 		refs = btrfs_shared_data_ref_count(leaf, sref);
1136 	} else {
1137 		refs = 1;
1138 		/*
1139 		 * For tree blocks we can only drop one ref for it, and tree
1140 		 * blocks should not have refs > 1.
1141 		 *
1142 		 * Furthermore if we're inserting a new inline backref, we
1143 		 * won't reach this path either. That would be
1144 		 * setup_inline_extent_backref().
1145 		 */
1146 		if (unlikely(refs_to_mod != -1)) {
1147 			struct btrfs_key key;
1148 
1149 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1150 
1151 			btrfs_print_leaf(leaf);
1152 			btrfs_err(fs_info,
1153 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1154 				  key.objectid, refs_to_mod);
1155 			return -EUCLEAN;
1156 		}
1157 	}
1158 
1159 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1160 		struct btrfs_key key;
1161 		u32 extent_size;
1162 
1163 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1164 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1165 			extent_size = fs_info->nodesize;
1166 		else
1167 			extent_size = key.offset;
1168 		btrfs_print_leaf(leaf);
1169 		btrfs_err(fs_info,
1170 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1171 			  (unsigned long)iref, key.objectid, extent_size,
1172 			  refs_to_mod, refs);
1173 		return -EUCLEAN;
1174 	}
1175 	refs += refs_to_mod;
1176 
1177 	if (refs > 0) {
1178 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1179 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1180 		else
1181 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1182 	} else {
1183 		size =  btrfs_extent_inline_ref_size(type);
1184 		item_size = btrfs_item_size(leaf, path->slots[0]);
1185 		ptr = (unsigned long)iref;
1186 		end = (unsigned long)ei + item_size;
1187 		if (ptr + size < end)
1188 			memmove_extent_buffer(leaf, ptr, ptr + size,
1189 					      end - ptr - size);
1190 		item_size -= size;
1191 		btrfs_truncate_item(trans, path, item_size, 1);
1192 	}
1193 	btrfs_mark_buffer_dirty(trans, leaf);
1194 	return 0;
1195 }
1196 
1197 static noinline_for_stack
1198 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1199 				 struct btrfs_path *path,
1200 				 u64 bytenr, u64 num_bytes, u64 parent,
1201 				 u64 root_objectid, u64 owner,
1202 				 u64 offset, int refs_to_add,
1203 				 struct btrfs_delayed_extent_op *extent_op)
1204 {
1205 	struct btrfs_extent_inline_ref *iref;
1206 	int ret;
1207 
1208 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1209 					   num_bytes, parent, root_objectid,
1210 					   owner, offset, 1);
1211 	if (ret == 0) {
1212 		/*
1213 		 * We're adding refs to a tree block we already own, this
1214 		 * should not happen at all.
1215 		 */
1216 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1217 			btrfs_print_leaf(path->nodes[0]);
1218 			btrfs_crit(trans->fs_info,
1219 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1220 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1221 			return -EUCLEAN;
1222 		}
1223 		ret = update_inline_extent_backref(trans, path, iref,
1224 						   refs_to_add, extent_op);
1225 	} else if (ret == -ENOENT) {
1226 		setup_inline_extent_backref(trans, path, iref, parent,
1227 					    root_objectid, owner, offset,
1228 					    refs_to_add, extent_op);
1229 		ret = 0;
1230 	}
1231 	return ret;
1232 }
1233 
1234 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1235 				 struct btrfs_root *root,
1236 				 struct btrfs_path *path,
1237 				 struct btrfs_extent_inline_ref *iref,
1238 				 int refs_to_drop, int is_data)
1239 {
1240 	int ret = 0;
1241 
1242 	BUG_ON(!is_data && refs_to_drop != 1);
1243 	if (iref)
1244 		ret = update_inline_extent_backref(trans, path, iref,
1245 						   -refs_to_drop, NULL);
1246 	else if (is_data)
1247 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1248 	else
1249 		ret = btrfs_del_item(trans, root, path);
1250 	return ret;
1251 }
1252 
1253 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1254 			       u64 *discarded_bytes)
1255 {
1256 	int j, ret = 0;
1257 	u64 bytes_left, end;
1258 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1259 
1260 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1261 	if (start != aligned_start) {
1262 		len -= aligned_start - start;
1263 		len = round_down(len, 1 << SECTOR_SHIFT);
1264 		start = aligned_start;
1265 	}
1266 
1267 	*discarded_bytes = 0;
1268 
1269 	if (!len)
1270 		return 0;
1271 
1272 	end = start + len;
1273 	bytes_left = len;
1274 
1275 	/* Skip any superblocks on this device. */
1276 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1277 		u64 sb_start = btrfs_sb_offset(j);
1278 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1279 		u64 size = sb_start - start;
1280 
1281 		if (!in_range(sb_start, start, bytes_left) &&
1282 		    !in_range(sb_end, start, bytes_left) &&
1283 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1284 			continue;
1285 
1286 		/*
1287 		 * Superblock spans beginning of range.  Adjust start and
1288 		 * try again.
1289 		 */
1290 		if (sb_start <= start) {
1291 			start += sb_end - start;
1292 			if (start > end) {
1293 				bytes_left = 0;
1294 				break;
1295 			}
1296 			bytes_left = end - start;
1297 			continue;
1298 		}
1299 
1300 		if (size) {
1301 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1302 						   size >> SECTOR_SHIFT,
1303 						   GFP_NOFS);
1304 			if (!ret)
1305 				*discarded_bytes += size;
1306 			else if (ret != -EOPNOTSUPP)
1307 				return ret;
1308 		}
1309 
1310 		start = sb_end;
1311 		if (start > end) {
1312 			bytes_left = 0;
1313 			break;
1314 		}
1315 		bytes_left = end - start;
1316 	}
1317 
1318 	if (bytes_left) {
1319 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1320 					   bytes_left >> SECTOR_SHIFT,
1321 					   GFP_NOFS);
1322 		if (!ret)
1323 			*discarded_bytes += bytes_left;
1324 	}
1325 	return ret;
1326 }
1327 
1328 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1329 {
1330 	struct btrfs_device *dev = stripe->dev;
1331 	struct btrfs_fs_info *fs_info = dev->fs_info;
1332 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1333 	u64 phys = stripe->physical;
1334 	u64 len = stripe->length;
1335 	u64 discarded = 0;
1336 	int ret = 0;
1337 
1338 	/* Zone reset on a zoned filesystem */
1339 	if (btrfs_can_zone_reset(dev, phys, len)) {
1340 		u64 src_disc;
1341 
1342 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1343 		if (ret)
1344 			goto out;
1345 
1346 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1347 		    dev != dev_replace->srcdev)
1348 			goto out;
1349 
1350 		src_disc = discarded;
1351 
1352 		/* Send to replace target as well */
1353 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1354 					      &discarded);
1355 		discarded += src_disc;
1356 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1357 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1358 	} else {
1359 		ret = 0;
1360 		*bytes = 0;
1361 	}
1362 
1363 out:
1364 	*bytes = discarded;
1365 	return ret;
1366 }
1367 
1368 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1369 			 u64 num_bytes, u64 *actual_bytes)
1370 {
1371 	int ret = 0;
1372 	u64 discarded_bytes = 0;
1373 	u64 end = bytenr + num_bytes;
1374 	u64 cur = bytenr;
1375 
1376 	/*
1377 	 * Avoid races with device replace and make sure the devices in the
1378 	 * stripes don't go away while we are discarding.
1379 	 */
1380 	btrfs_bio_counter_inc_blocked(fs_info);
1381 	while (cur < end) {
1382 		struct btrfs_discard_stripe *stripes;
1383 		unsigned int num_stripes;
1384 		int i;
1385 
1386 		num_bytes = end - cur;
1387 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1388 		if (IS_ERR(stripes)) {
1389 			ret = PTR_ERR(stripes);
1390 			if (ret == -EOPNOTSUPP)
1391 				ret = 0;
1392 			break;
1393 		}
1394 
1395 		for (i = 0; i < num_stripes; i++) {
1396 			struct btrfs_discard_stripe *stripe = stripes + i;
1397 			u64 bytes;
1398 
1399 			if (!stripe->dev->bdev) {
1400 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1401 				continue;
1402 			}
1403 
1404 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1405 					&stripe->dev->dev_state))
1406 				continue;
1407 
1408 			ret = do_discard_extent(stripe, &bytes);
1409 			if (ret) {
1410 				/*
1411 				 * Keep going if discard is not supported by the
1412 				 * device.
1413 				 */
1414 				if (ret != -EOPNOTSUPP)
1415 					break;
1416 				ret = 0;
1417 			} else {
1418 				discarded_bytes += bytes;
1419 			}
1420 		}
1421 		kfree(stripes);
1422 		if (ret)
1423 			break;
1424 		cur += num_bytes;
1425 	}
1426 	btrfs_bio_counter_dec(fs_info);
1427 	if (actual_bytes)
1428 		*actual_bytes = discarded_bytes;
1429 	return ret;
1430 }
1431 
1432 /* Can return -ENOMEM */
1433 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1434 			 struct btrfs_ref *generic_ref)
1435 {
1436 	struct btrfs_fs_info *fs_info = trans->fs_info;
1437 	int ret;
1438 
1439 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1440 	       generic_ref->action);
1441 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1442 	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1443 
1444 	if (generic_ref->type == BTRFS_REF_METADATA)
1445 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1446 	else
1447 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1448 
1449 	btrfs_ref_tree_mod(fs_info, generic_ref);
1450 
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Insert backreference for a given extent.
1456  *
1457  * The counterpart is in __btrfs_free_extent(), with examples and more details
1458  * how it works.
1459  *
1460  * @trans:	    Handle of transaction
1461  *
1462  * @node:	    The delayed ref node used to get the bytenr/length for
1463  *		    extent whose references are incremented.
1464  *
1465  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1466  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1467  *		    bytenr of the parent block. Since new extents are always
1468  *		    created with indirect references, this will only be the case
1469  *		    when relocating a shared extent. In that case, root_objectid
1470  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1471  *		    be 0
1472  *
1473  * @root_objectid:  The id of the root where this modification has originated,
1474  *		    this can be either one of the well-known metadata trees or
1475  *		    the subvolume id which references this extent.
1476  *
1477  * @owner:	    For data extents it is the inode number of the owning file.
1478  *		    For metadata extents this parameter holds the level in the
1479  *		    tree of the extent.
1480  *
1481  * @offset:	    For metadata extents the offset is ignored and is currently
1482  *		    always passed as 0. For data extents it is the fileoffset
1483  *		    this extent belongs to.
1484  *
1485  * @extent_op       Pointer to a structure, holding information necessary when
1486  *                  updating a tree block's flags
1487  *
1488  */
1489 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1490 				  struct btrfs_delayed_ref_node *node,
1491 				  u64 parent, u64 root_objectid,
1492 				  u64 owner, u64 offset,
1493 				  struct btrfs_delayed_extent_op *extent_op)
1494 {
1495 	struct btrfs_path *path;
1496 	struct extent_buffer *leaf;
1497 	struct btrfs_extent_item *item;
1498 	struct btrfs_key key;
1499 	u64 bytenr = node->bytenr;
1500 	u64 num_bytes = node->num_bytes;
1501 	u64 refs;
1502 	int refs_to_add = node->ref_mod;
1503 	int ret;
1504 
1505 	path = btrfs_alloc_path();
1506 	if (!path)
1507 		return -ENOMEM;
1508 
1509 	/* this will setup the path even if it fails to insert the back ref */
1510 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1511 					   parent, root_objectid, owner,
1512 					   offset, refs_to_add, extent_op);
1513 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1514 		goto out;
1515 
1516 	/*
1517 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1518 	 * inline extent ref, so just update the reference count and add a
1519 	 * normal backref.
1520 	 */
1521 	leaf = path->nodes[0];
1522 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1523 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1524 	refs = btrfs_extent_refs(leaf, item);
1525 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1526 	if (extent_op)
1527 		__run_delayed_extent_op(extent_op, leaf, item);
1528 
1529 	btrfs_mark_buffer_dirty(trans, leaf);
1530 	btrfs_release_path(path);
1531 
1532 	/* now insert the actual backref */
1533 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1534 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1535 					    root_objectid);
1536 	else
1537 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1538 					     root_objectid, owner, offset,
1539 					     refs_to_add);
1540 
1541 	if (ret)
1542 		btrfs_abort_transaction(trans, ret);
1543 out:
1544 	btrfs_free_path(path);
1545 	return ret;
1546 }
1547 
1548 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1549 				     struct btrfs_delayed_ref_head *href)
1550 {
1551 	u64 root = href->owning_root;
1552 
1553 	/*
1554 	 * Don't check must_insert_reserved, as this is called from contexts
1555 	 * where it has already been unset.
1556 	 */
1557 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1558 	    !href->is_data || !is_fstree(root))
1559 		return;
1560 
1561 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1562 				  BTRFS_QGROUP_RSV_DATA);
1563 }
1564 
1565 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1566 				struct btrfs_delayed_ref_head *href,
1567 				struct btrfs_delayed_ref_node *node,
1568 				struct btrfs_delayed_extent_op *extent_op,
1569 				bool insert_reserved)
1570 {
1571 	int ret = 0;
1572 	struct btrfs_delayed_data_ref *ref;
1573 	u64 parent = 0;
1574 	u64 flags = 0;
1575 
1576 	ref = btrfs_delayed_node_to_data_ref(node);
1577 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1578 
1579 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1580 		parent = ref->parent;
1581 
1582 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1583 		struct btrfs_key key;
1584 		struct btrfs_squota_delta delta = {
1585 			.root = href->owning_root,
1586 			.num_bytes = node->num_bytes,
1587 			.is_data = true,
1588 			.is_inc	= true,
1589 			.generation = trans->transid,
1590 		};
1591 
1592 		if (extent_op)
1593 			flags |= extent_op->flags_to_set;
1594 
1595 		key.objectid = node->bytenr;
1596 		key.type = BTRFS_EXTENT_ITEM_KEY;
1597 		key.offset = node->num_bytes;
1598 
1599 		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1600 						 flags, ref->objectid,
1601 						 ref->offset, &key,
1602 						 node->ref_mod, href->owning_root);
1603 		free_head_ref_squota_rsv(trans->fs_info, href);
1604 		if (!ret)
1605 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1606 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1607 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1608 					     ref->objectid, ref->offset,
1609 					     extent_op);
1610 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1611 		ret = __btrfs_free_extent(trans, href, node, parent,
1612 					  ref->root, ref->objectid,
1613 					  ref->offset, extent_op);
1614 	} else {
1615 		BUG();
1616 	}
1617 	return ret;
1618 }
1619 
1620 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1621 				    struct extent_buffer *leaf,
1622 				    struct btrfs_extent_item *ei)
1623 {
1624 	u64 flags = btrfs_extent_flags(leaf, ei);
1625 	if (extent_op->update_flags) {
1626 		flags |= extent_op->flags_to_set;
1627 		btrfs_set_extent_flags(leaf, ei, flags);
1628 	}
1629 
1630 	if (extent_op->update_key) {
1631 		struct btrfs_tree_block_info *bi;
1632 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1633 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1634 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1635 	}
1636 }
1637 
1638 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1639 				 struct btrfs_delayed_ref_head *head,
1640 				 struct btrfs_delayed_extent_op *extent_op)
1641 {
1642 	struct btrfs_fs_info *fs_info = trans->fs_info;
1643 	struct btrfs_root *root;
1644 	struct btrfs_key key;
1645 	struct btrfs_path *path;
1646 	struct btrfs_extent_item *ei;
1647 	struct extent_buffer *leaf;
1648 	u32 item_size;
1649 	int ret;
1650 	int metadata = 1;
1651 
1652 	if (TRANS_ABORTED(trans))
1653 		return 0;
1654 
1655 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1656 		metadata = 0;
1657 
1658 	path = btrfs_alloc_path();
1659 	if (!path)
1660 		return -ENOMEM;
1661 
1662 	key.objectid = head->bytenr;
1663 
1664 	if (metadata) {
1665 		key.type = BTRFS_METADATA_ITEM_KEY;
1666 		key.offset = extent_op->level;
1667 	} else {
1668 		key.type = BTRFS_EXTENT_ITEM_KEY;
1669 		key.offset = head->num_bytes;
1670 	}
1671 
1672 	root = btrfs_extent_root(fs_info, key.objectid);
1673 again:
1674 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1675 	if (ret < 0) {
1676 		goto out;
1677 	} else if (ret > 0) {
1678 		if (metadata) {
1679 			if (path->slots[0] > 0) {
1680 				path->slots[0]--;
1681 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1682 						      path->slots[0]);
1683 				if (key.objectid == head->bytenr &&
1684 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1685 				    key.offset == head->num_bytes)
1686 					ret = 0;
1687 			}
1688 			if (ret > 0) {
1689 				btrfs_release_path(path);
1690 				metadata = 0;
1691 
1692 				key.objectid = head->bytenr;
1693 				key.offset = head->num_bytes;
1694 				key.type = BTRFS_EXTENT_ITEM_KEY;
1695 				goto again;
1696 			}
1697 		} else {
1698 			ret = -EUCLEAN;
1699 			btrfs_err(fs_info,
1700 		  "missing extent item for extent %llu num_bytes %llu level %d",
1701 				  head->bytenr, head->num_bytes, extent_op->level);
1702 			goto out;
1703 		}
1704 	}
1705 
1706 	leaf = path->nodes[0];
1707 	item_size = btrfs_item_size(leaf, path->slots[0]);
1708 
1709 	if (unlikely(item_size < sizeof(*ei))) {
1710 		ret = -EUCLEAN;
1711 		btrfs_err(fs_info,
1712 			  "unexpected extent item size, has %u expect >= %zu",
1713 			  item_size, sizeof(*ei));
1714 		btrfs_abort_transaction(trans, ret);
1715 		goto out;
1716 	}
1717 
1718 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1719 	__run_delayed_extent_op(extent_op, leaf, ei);
1720 
1721 	btrfs_mark_buffer_dirty(trans, leaf);
1722 out:
1723 	btrfs_free_path(path);
1724 	return ret;
1725 }
1726 
1727 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1728 				struct btrfs_delayed_ref_head *href,
1729 				struct btrfs_delayed_ref_node *node,
1730 				struct btrfs_delayed_extent_op *extent_op,
1731 				bool insert_reserved)
1732 {
1733 	int ret = 0;
1734 	struct btrfs_fs_info *fs_info = trans->fs_info;
1735 	struct btrfs_delayed_tree_ref *ref;
1736 	u64 parent = 0;
1737 	u64 ref_root = 0;
1738 
1739 	ref = btrfs_delayed_node_to_tree_ref(node);
1740 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1741 
1742 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1743 		parent = ref->parent;
1744 	ref_root = ref->root;
1745 
1746 	if (unlikely(node->ref_mod != 1)) {
1747 		btrfs_err(trans->fs_info,
1748 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1749 			  node->bytenr, node->ref_mod, node->action, ref_root,
1750 			  parent);
1751 		return -EUCLEAN;
1752 	}
1753 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1754 		struct btrfs_squota_delta delta = {
1755 			.root = href->owning_root,
1756 			.num_bytes = fs_info->nodesize,
1757 			.is_data = false,
1758 			.is_inc = true,
1759 			.generation = trans->transid,
1760 		};
1761 
1762 		BUG_ON(!extent_op || !extent_op->update_flags);
1763 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1764 		if (!ret)
1765 			btrfs_record_squota_delta(fs_info, &delta);
1766 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1767 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1768 					     ref->level, 0, extent_op);
1769 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1770 		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1771 					  ref->level, 0, extent_op);
1772 	} else {
1773 		BUG();
1774 	}
1775 	return ret;
1776 }
1777 
1778 /* helper function to actually process a single delayed ref entry */
1779 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1780 			       struct btrfs_delayed_ref_head *href,
1781 			       struct btrfs_delayed_ref_node *node,
1782 			       struct btrfs_delayed_extent_op *extent_op,
1783 			       bool insert_reserved)
1784 {
1785 	int ret = 0;
1786 
1787 	if (TRANS_ABORTED(trans)) {
1788 		if (insert_reserved) {
1789 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1790 			free_head_ref_squota_rsv(trans->fs_info, href);
1791 		}
1792 		return 0;
1793 	}
1794 
1795 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1796 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1797 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1798 					   insert_reserved);
1799 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1800 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1801 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1802 					   insert_reserved);
1803 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1804 		ret = 0;
1805 	else
1806 		BUG();
1807 	if (ret && insert_reserved)
1808 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1809 	if (ret < 0)
1810 		btrfs_err(trans->fs_info,
1811 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1812 			  node->bytenr, node->num_bytes, node->type,
1813 			  node->action, node->ref_mod, ret);
1814 	return ret;
1815 }
1816 
1817 static inline struct btrfs_delayed_ref_node *
1818 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1819 {
1820 	struct btrfs_delayed_ref_node *ref;
1821 
1822 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1823 		return NULL;
1824 
1825 	/*
1826 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1827 	 * This is to prevent a ref count from going down to zero, which deletes
1828 	 * the extent item from the extent tree, when there still are references
1829 	 * to add, which would fail because they would not find the extent item.
1830 	 */
1831 	if (!list_empty(&head->ref_add_list))
1832 		return list_first_entry(&head->ref_add_list,
1833 				struct btrfs_delayed_ref_node, add_list);
1834 
1835 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1836 		       struct btrfs_delayed_ref_node, ref_node);
1837 	ASSERT(list_empty(&ref->add_list));
1838 	return ref;
1839 }
1840 
1841 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1842 				      struct btrfs_delayed_ref_head *head)
1843 {
1844 	spin_lock(&delayed_refs->lock);
1845 	head->processing = false;
1846 	delayed_refs->num_heads_ready++;
1847 	spin_unlock(&delayed_refs->lock);
1848 	btrfs_delayed_ref_unlock(head);
1849 }
1850 
1851 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1852 				struct btrfs_delayed_ref_head *head)
1853 {
1854 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1855 
1856 	if (!extent_op)
1857 		return NULL;
1858 
1859 	if (head->must_insert_reserved) {
1860 		head->extent_op = NULL;
1861 		btrfs_free_delayed_extent_op(extent_op);
1862 		return NULL;
1863 	}
1864 	return extent_op;
1865 }
1866 
1867 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1868 				     struct btrfs_delayed_ref_head *head)
1869 {
1870 	struct btrfs_delayed_extent_op *extent_op;
1871 	int ret;
1872 
1873 	extent_op = cleanup_extent_op(head);
1874 	if (!extent_op)
1875 		return 0;
1876 	head->extent_op = NULL;
1877 	spin_unlock(&head->lock);
1878 	ret = run_delayed_extent_op(trans, head, extent_op);
1879 	btrfs_free_delayed_extent_op(extent_op);
1880 	return ret ? ret : 1;
1881 }
1882 
1883 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1884 				  struct btrfs_delayed_ref_root *delayed_refs,
1885 				  struct btrfs_delayed_ref_head *head)
1886 {
1887 	u64 ret = 0;
1888 
1889 	/*
1890 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1891 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1892 	 */
1893 	if (head->total_ref_mod < 0 && head->is_data) {
1894 		int nr_csums;
1895 
1896 		spin_lock(&delayed_refs->lock);
1897 		delayed_refs->pending_csums -= head->num_bytes;
1898 		spin_unlock(&delayed_refs->lock);
1899 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1900 
1901 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1902 
1903 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1904 	}
1905 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1906 	if (head->must_insert_reserved)
1907 		free_head_ref_squota_rsv(fs_info, head);
1908 
1909 	return ret;
1910 }
1911 
1912 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1913 			    struct btrfs_delayed_ref_head *head,
1914 			    u64 *bytes_released)
1915 {
1916 
1917 	struct btrfs_fs_info *fs_info = trans->fs_info;
1918 	struct btrfs_delayed_ref_root *delayed_refs;
1919 	int ret;
1920 
1921 	delayed_refs = &trans->transaction->delayed_refs;
1922 
1923 	ret = run_and_cleanup_extent_op(trans, head);
1924 	if (ret < 0) {
1925 		unselect_delayed_ref_head(delayed_refs, head);
1926 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1927 		return ret;
1928 	} else if (ret) {
1929 		return ret;
1930 	}
1931 
1932 	/*
1933 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1934 	 * and then re-check to make sure nobody got added.
1935 	 */
1936 	spin_unlock(&head->lock);
1937 	spin_lock(&delayed_refs->lock);
1938 	spin_lock(&head->lock);
1939 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1940 		spin_unlock(&head->lock);
1941 		spin_unlock(&delayed_refs->lock);
1942 		return 1;
1943 	}
1944 	btrfs_delete_ref_head(delayed_refs, head);
1945 	spin_unlock(&head->lock);
1946 	spin_unlock(&delayed_refs->lock);
1947 
1948 	if (head->must_insert_reserved) {
1949 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1950 		if (head->is_data) {
1951 			struct btrfs_root *csum_root;
1952 
1953 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1954 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1955 					      head->num_bytes);
1956 		}
1957 	}
1958 
1959 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1960 
1961 	trace_run_delayed_ref_head(fs_info, head, 0);
1962 	btrfs_delayed_ref_unlock(head);
1963 	btrfs_put_delayed_ref_head(head);
1964 	return ret;
1965 }
1966 
1967 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1968 					struct btrfs_trans_handle *trans)
1969 {
1970 	struct btrfs_delayed_ref_root *delayed_refs =
1971 		&trans->transaction->delayed_refs;
1972 	struct btrfs_delayed_ref_head *head = NULL;
1973 	int ret;
1974 
1975 	spin_lock(&delayed_refs->lock);
1976 	head = btrfs_select_ref_head(delayed_refs);
1977 	if (!head) {
1978 		spin_unlock(&delayed_refs->lock);
1979 		return head;
1980 	}
1981 
1982 	/*
1983 	 * Grab the lock that says we are going to process all the refs for
1984 	 * this head
1985 	 */
1986 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1987 	spin_unlock(&delayed_refs->lock);
1988 
1989 	/*
1990 	 * We may have dropped the spin lock to get the head mutex lock, and
1991 	 * that might have given someone else time to free the head.  If that's
1992 	 * true, it has been removed from our list and we can move on.
1993 	 */
1994 	if (ret == -EAGAIN)
1995 		head = ERR_PTR(-EAGAIN);
1996 
1997 	return head;
1998 }
1999 
2000 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2001 					   struct btrfs_delayed_ref_head *locked_ref,
2002 					   u64 *bytes_released)
2003 {
2004 	struct btrfs_fs_info *fs_info = trans->fs_info;
2005 	struct btrfs_delayed_ref_root *delayed_refs;
2006 	struct btrfs_delayed_extent_op *extent_op;
2007 	struct btrfs_delayed_ref_node *ref;
2008 	bool must_insert_reserved;
2009 	int ret;
2010 
2011 	delayed_refs = &trans->transaction->delayed_refs;
2012 
2013 	lockdep_assert_held(&locked_ref->mutex);
2014 	lockdep_assert_held(&locked_ref->lock);
2015 
2016 	while ((ref = select_delayed_ref(locked_ref))) {
2017 		if (ref->seq &&
2018 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2019 			spin_unlock(&locked_ref->lock);
2020 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2021 			return -EAGAIN;
2022 		}
2023 
2024 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2025 		RB_CLEAR_NODE(&ref->ref_node);
2026 		if (!list_empty(&ref->add_list))
2027 			list_del(&ref->add_list);
2028 		/*
2029 		 * When we play the delayed ref, also correct the ref_mod on
2030 		 * head
2031 		 */
2032 		switch (ref->action) {
2033 		case BTRFS_ADD_DELAYED_REF:
2034 		case BTRFS_ADD_DELAYED_EXTENT:
2035 			locked_ref->ref_mod -= ref->ref_mod;
2036 			break;
2037 		case BTRFS_DROP_DELAYED_REF:
2038 			locked_ref->ref_mod += ref->ref_mod;
2039 			break;
2040 		default:
2041 			WARN_ON(1);
2042 		}
2043 		atomic_dec(&delayed_refs->num_entries);
2044 
2045 		/*
2046 		 * Record the must_insert_reserved flag before we drop the
2047 		 * spin lock.
2048 		 */
2049 		must_insert_reserved = locked_ref->must_insert_reserved;
2050 		/*
2051 		 * Unsetting this on the head ref relinquishes ownership of
2052 		 * the rsv_bytes, so it is critical that every possible code
2053 		 * path from here forward frees all reserves including qgroup
2054 		 * reserve.
2055 		 */
2056 		locked_ref->must_insert_reserved = false;
2057 
2058 		extent_op = locked_ref->extent_op;
2059 		locked_ref->extent_op = NULL;
2060 		spin_unlock(&locked_ref->lock);
2061 
2062 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2063 					  must_insert_reserved);
2064 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2065 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2066 
2067 		btrfs_free_delayed_extent_op(extent_op);
2068 		if (ret) {
2069 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2070 			btrfs_put_delayed_ref(ref);
2071 			return ret;
2072 		}
2073 
2074 		btrfs_put_delayed_ref(ref);
2075 		cond_resched();
2076 
2077 		spin_lock(&locked_ref->lock);
2078 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 /*
2085  * Returns 0 on success or if called with an already aborted transaction.
2086  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2087  */
2088 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2089 					     u64 min_bytes)
2090 {
2091 	struct btrfs_fs_info *fs_info = trans->fs_info;
2092 	struct btrfs_delayed_ref_root *delayed_refs;
2093 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2094 	int ret;
2095 	unsigned long count = 0;
2096 	unsigned long max_count = 0;
2097 	u64 bytes_processed = 0;
2098 
2099 	delayed_refs = &trans->transaction->delayed_refs;
2100 	if (min_bytes == 0) {
2101 		max_count = delayed_refs->num_heads_ready;
2102 		min_bytes = U64_MAX;
2103 	}
2104 
2105 	do {
2106 		if (!locked_ref) {
2107 			locked_ref = btrfs_obtain_ref_head(trans);
2108 			if (IS_ERR_OR_NULL(locked_ref)) {
2109 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2110 					continue;
2111 				} else {
2112 					break;
2113 				}
2114 			}
2115 			count++;
2116 		}
2117 		/*
2118 		 * We need to try and merge add/drops of the same ref since we
2119 		 * can run into issues with relocate dropping the implicit ref
2120 		 * and then it being added back again before the drop can
2121 		 * finish.  If we merged anything we need to re-loop so we can
2122 		 * get a good ref.
2123 		 * Or we can get node references of the same type that weren't
2124 		 * merged when created due to bumps in the tree mod seq, and
2125 		 * we need to merge them to prevent adding an inline extent
2126 		 * backref before dropping it (triggering a BUG_ON at
2127 		 * insert_inline_extent_backref()).
2128 		 */
2129 		spin_lock(&locked_ref->lock);
2130 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2131 
2132 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2133 		if (ret < 0 && ret != -EAGAIN) {
2134 			/*
2135 			 * Error, btrfs_run_delayed_refs_for_head already
2136 			 * unlocked everything so just bail out
2137 			 */
2138 			return ret;
2139 		} else if (!ret) {
2140 			/*
2141 			 * Success, perform the usual cleanup of a processed
2142 			 * head
2143 			 */
2144 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2145 			if (ret > 0 ) {
2146 				/* We dropped our lock, we need to loop. */
2147 				ret = 0;
2148 				continue;
2149 			} else if (ret) {
2150 				return ret;
2151 			}
2152 		}
2153 
2154 		/*
2155 		 * Either success case or btrfs_run_delayed_refs_for_head
2156 		 * returned -EAGAIN, meaning we need to select another head
2157 		 */
2158 
2159 		locked_ref = NULL;
2160 		cond_resched();
2161 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2162 		 (max_count > 0 && count < max_count) ||
2163 		 locked_ref);
2164 
2165 	return 0;
2166 }
2167 
2168 #ifdef SCRAMBLE_DELAYED_REFS
2169 /*
2170  * Normally delayed refs get processed in ascending bytenr order. This
2171  * correlates in most cases to the order added. To expose dependencies on this
2172  * order, we start to process the tree in the middle instead of the beginning
2173  */
2174 static u64 find_middle(struct rb_root *root)
2175 {
2176 	struct rb_node *n = root->rb_node;
2177 	struct btrfs_delayed_ref_node *entry;
2178 	int alt = 1;
2179 	u64 middle;
2180 	u64 first = 0, last = 0;
2181 
2182 	n = rb_first(root);
2183 	if (n) {
2184 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2185 		first = entry->bytenr;
2186 	}
2187 	n = rb_last(root);
2188 	if (n) {
2189 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2190 		last = entry->bytenr;
2191 	}
2192 	n = root->rb_node;
2193 
2194 	while (n) {
2195 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2196 		WARN_ON(!entry->in_tree);
2197 
2198 		middle = entry->bytenr;
2199 
2200 		if (alt)
2201 			n = n->rb_left;
2202 		else
2203 			n = n->rb_right;
2204 
2205 		alt = 1 - alt;
2206 	}
2207 	return middle;
2208 }
2209 #endif
2210 
2211 /*
2212  * Start processing the delayed reference count updates and extent insertions
2213  * we have queued up so far.
2214  *
2215  * @trans:	Transaction handle.
2216  * @min_bytes:	How many bytes of delayed references to process. After this
2217  *		many bytes we stop processing delayed references if there are
2218  *		any more. If 0 it means to run all existing delayed references,
2219  *		but not new ones added after running all existing ones.
2220  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2221  *		plus any new ones that are added.
2222  *
2223  * Returns 0 on success or if called with an aborted transaction
2224  * Returns <0 on error and aborts the transaction
2225  */
2226 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2227 {
2228 	struct btrfs_fs_info *fs_info = trans->fs_info;
2229 	struct btrfs_delayed_ref_root *delayed_refs;
2230 	int ret;
2231 
2232 	/* We'll clean this up in btrfs_cleanup_transaction */
2233 	if (TRANS_ABORTED(trans))
2234 		return 0;
2235 
2236 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2237 		return 0;
2238 
2239 	delayed_refs = &trans->transaction->delayed_refs;
2240 again:
2241 #ifdef SCRAMBLE_DELAYED_REFS
2242 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2243 #endif
2244 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2245 	if (ret < 0) {
2246 		btrfs_abort_transaction(trans, ret);
2247 		return ret;
2248 	}
2249 
2250 	if (min_bytes == U64_MAX) {
2251 		btrfs_create_pending_block_groups(trans);
2252 
2253 		spin_lock(&delayed_refs->lock);
2254 		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2255 			spin_unlock(&delayed_refs->lock);
2256 			return 0;
2257 		}
2258 		spin_unlock(&delayed_refs->lock);
2259 
2260 		cond_resched();
2261 		goto again;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2268 				struct extent_buffer *eb, u64 flags)
2269 {
2270 	struct btrfs_delayed_extent_op *extent_op;
2271 	int level = btrfs_header_level(eb);
2272 	int ret;
2273 
2274 	extent_op = btrfs_alloc_delayed_extent_op();
2275 	if (!extent_op)
2276 		return -ENOMEM;
2277 
2278 	extent_op->flags_to_set = flags;
2279 	extent_op->update_flags = true;
2280 	extent_op->update_key = false;
2281 	extent_op->level = level;
2282 
2283 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2284 	if (ret)
2285 		btrfs_free_delayed_extent_op(extent_op);
2286 	return ret;
2287 }
2288 
2289 static noinline int check_delayed_ref(struct btrfs_root *root,
2290 				      struct btrfs_path *path,
2291 				      u64 objectid, u64 offset, u64 bytenr)
2292 {
2293 	struct btrfs_delayed_ref_head *head;
2294 	struct btrfs_delayed_ref_node *ref;
2295 	struct btrfs_delayed_data_ref *data_ref;
2296 	struct btrfs_delayed_ref_root *delayed_refs;
2297 	struct btrfs_transaction *cur_trans;
2298 	struct rb_node *node;
2299 	int ret = 0;
2300 
2301 	spin_lock(&root->fs_info->trans_lock);
2302 	cur_trans = root->fs_info->running_transaction;
2303 	if (cur_trans)
2304 		refcount_inc(&cur_trans->use_count);
2305 	spin_unlock(&root->fs_info->trans_lock);
2306 	if (!cur_trans)
2307 		return 0;
2308 
2309 	delayed_refs = &cur_trans->delayed_refs;
2310 	spin_lock(&delayed_refs->lock);
2311 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2312 	if (!head) {
2313 		spin_unlock(&delayed_refs->lock);
2314 		btrfs_put_transaction(cur_trans);
2315 		return 0;
2316 	}
2317 
2318 	if (!mutex_trylock(&head->mutex)) {
2319 		if (path->nowait) {
2320 			spin_unlock(&delayed_refs->lock);
2321 			btrfs_put_transaction(cur_trans);
2322 			return -EAGAIN;
2323 		}
2324 
2325 		refcount_inc(&head->refs);
2326 		spin_unlock(&delayed_refs->lock);
2327 
2328 		btrfs_release_path(path);
2329 
2330 		/*
2331 		 * Mutex was contended, block until it's released and let
2332 		 * caller try again
2333 		 */
2334 		mutex_lock(&head->mutex);
2335 		mutex_unlock(&head->mutex);
2336 		btrfs_put_delayed_ref_head(head);
2337 		btrfs_put_transaction(cur_trans);
2338 		return -EAGAIN;
2339 	}
2340 	spin_unlock(&delayed_refs->lock);
2341 
2342 	spin_lock(&head->lock);
2343 	/*
2344 	 * XXX: We should replace this with a proper search function in the
2345 	 * future.
2346 	 */
2347 	for (node = rb_first_cached(&head->ref_tree); node;
2348 	     node = rb_next(node)) {
2349 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2350 		/* If it's a shared ref we know a cross reference exists */
2351 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2352 			ret = 1;
2353 			break;
2354 		}
2355 
2356 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2357 
2358 		/*
2359 		 * If our ref doesn't match the one we're currently looking at
2360 		 * then we have a cross reference.
2361 		 */
2362 		if (data_ref->root != root->root_key.objectid ||
2363 		    data_ref->objectid != objectid ||
2364 		    data_ref->offset != offset) {
2365 			ret = 1;
2366 			break;
2367 		}
2368 	}
2369 	spin_unlock(&head->lock);
2370 	mutex_unlock(&head->mutex);
2371 	btrfs_put_transaction(cur_trans);
2372 	return ret;
2373 }
2374 
2375 static noinline int check_committed_ref(struct btrfs_root *root,
2376 					struct btrfs_path *path,
2377 					u64 objectid, u64 offset, u64 bytenr,
2378 					bool strict)
2379 {
2380 	struct btrfs_fs_info *fs_info = root->fs_info;
2381 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2382 	struct extent_buffer *leaf;
2383 	struct btrfs_extent_data_ref *ref;
2384 	struct btrfs_extent_inline_ref *iref;
2385 	struct btrfs_extent_item *ei;
2386 	struct btrfs_key key;
2387 	u32 item_size;
2388 	u32 expected_size;
2389 	int type;
2390 	int ret;
2391 
2392 	key.objectid = bytenr;
2393 	key.offset = (u64)-1;
2394 	key.type = BTRFS_EXTENT_ITEM_KEY;
2395 
2396 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2397 	if (ret < 0)
2398 		goto out;
2399 	if (ret == 0) {
2400 		/*
2401 		 * Key with offset -1 found, there would have to exist an extent
2402 		 * item with such offset, but this is out of the valid range.
2403 		 */
2404 		ret = -EUCLEAN;
2405 		goto out;
2406 	}
2407 
2408 	ret = -ENOENT;
2409 	if (path->slots[0] == 0)
2410 		goto out;
2411 
2412 	path->slots[0]--;
2413 	leaf = path->nodes[0];
2414 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2415 
2416 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2417 		goto out;
2418 
2419 	ret = 1;
2420 	item_size = btrfs_item_size(leaf, path->slots[0]);
2421 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2423 
2424 	/* No inline refs; we need to bail before checking for owner ref. */
2425 	if (item_size == sizeof(*ei))
2426 		goto out;
2427 
2428 	/* Check for an owner ref; skip over it to the real inline refs. */
2429 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2430 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2431 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2432 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2433 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2434 	}
2435 
2436 	/* If extent item has more than 1 inline ref then it's shared */
2437 	if (item_size != expected_size)
2438 		goto out;
2439 
2440 	/*
2441 	 * If extent created before last snapshot => it's shared unless the
2442 	 * snapshot has been deleted. Use the heuristic if strict is false.
2443 	 */
2444 	if (!strict &&
2445 	    (btrfs_extent_generation(leaf, ei) <=
2446 	     btrfs_root_last_snapshot(&root->root_item)))
2447 		goto out;
2448 
2449 	/* If this extent has SHARED_DATA_REF then it's shared */
2450 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2451 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2452 		goto out;
2453 
2454 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2455 	if (btrfs_extent_refs(leaf, ei) !=
2456 	    btrfs_extent_data_ref_count(leaf, ref) ||
2457 	    btrfs_extent_data_ref_root(leaf, ref) !=
2458 	    root->root_key.objectid ||
2459 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2460 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2461 		goto out;
2462 
2463 	ret = 0;
2464 out:
2465 	return ret;
2466 }
2467 
2468 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2469 			  u64 bytenr, bool strict, struct btrfs_path *path)
2470 {
2471 	int ret;
2472 
2473 	do {
2474 		ret = check_committed_ref(root, path, objectid,
2475 					  offset, bytenr, strict);
2476 		if (ret && ret != -ENOENT)
2477 			goto out;
2478 
2479 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2480 	} while (ret == -EAGAIN);
2481 
2482 out:
2483 	btrfs_release_path(path);
2484 	if (btrfs_is_data_reloc_root(root))
2485 		WARN_ON(ret > 0);
2486 	return ret;
2487 }
2488 
2489 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2490 			   struct btrfs_root *root,
2491 			   struct extent_buffer *buf,
2492 			   int full_backref, int inc)
2493 {
2494 	struct btrfs_fs_info *fs_info = root->fs_info;
2495 	u64 bytenr;
2496 	u64 num_bytes;
2497 	u64 parent;
2498 	u64 ref_root;
2499 	u32 nritems;
2500 	struct btrfs_key key;
2501 	struct btrfs_file_extent_item *fi;
2502 	struct btrfs_ref generic_ref = { 0 };
2503 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2504 	int i;
2505 	int action;
2506 	int level;
2507 	int ret = 0;
2508 
2509 	if (btrfs_is_testing(fs_info))
2510 		return 0;
2511 
2512 	ref_root = btrfs_header_owner(buf);
2513 	nritems = btrfs_header_nritems(buf);
2514 	level = btrfs_header_level(buf);
2515 
2516 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2517 		return 0;
2518 
2519 	if (full_backref)
2520 		parent = buf->start;
2521 	else
2522 		parent = 0;
2523 	if (inc)
2524 		action = BTRFS_ADD_DELAYED_REF;
2525 	else
2526 		action = BTRFS_DROP_DELAYED_REF;
2527 
2528 	for (i = 0; i < nritems; i++) {
2529 		if (level == 0) {
2530 			btrfs_item_key_to_cpu(buf, &key, i);
2531 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2532 				continue;
2533 			fi = btrfs_item_ptr(buf, i,
2534 					    struct btrfs_file_extent_item);
2535 			if (btrfs_file_extent_type(buf, fi) ==
2536 			    BTRFS_FILE_EXTENT_INLINE)
2537 				continue;
2538 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2539 			if (bytenr == 0)
2540 				continue;
2541 
2542 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2543 			key.offset -= btrfs_file_extent_offset(buf, fi);
2544 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2545 					       num_bytes, parent, ref_root);
2546 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2547 					    key.offset, root->root_key.objectid,
2548 					    for_reloc);
2549 			if (inc)
2550 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2551 			else
2552 				ret = btrfs_free_extent(trans, &generic_ref);
2553 			if (ret)
2554 				goto fail;
2555 		} else {
2556 			bytenr = btrfs_node_blockptr(buf, i);
2557 			num_bytes = fs_info->nodesize;
2558 			/* We don't know the owning_root, use 0. */
2559 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2560 					       num_bytes, parent, 0);
2561 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2562 					    root->root_key.objectid, for_reloc);
2563 			if (inc)
2564 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2565 			else
2566 				ret = btrfs_free_extent(trans, &generic_ref);
2567 			if (ret)
2568 				goto fail;
2569 		}
2570 	}
2571 	return 0;
2572 fail:
2573 	return ret;
2574 }
2575 
2576 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2577 		  struct extent_buffer *buf, int full_backref)
2578 {
2579 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2580 }
2581 
2582 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2583 		  struct extent_buffer *buf, int full_backref)
2584 {
2585 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2586 }
2587 
2588 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2589 {
2590 	struct btrfs_fs_info *fs_info = root->fs_info;
2591 	u64 flags;
2592 	u64 ret;
2593 
2594 	if (data)
2595 		flags = BTRFS_BLOCK_GROUP_DATA;
2596 	else if (root == fs_info->chunk_root)
2597 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2598 	else
2599 		flags = BTRFS_BLOCK_GROUP_METADATA;
2600 
2601 	ret = btrfs_get_alloc_profile(fs_info, flags);
2602 	return ret;
2603 }
2604 
2605 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2606 {
2607 	struct rb_node *leftmost;
2608 	u64 bytenr = 0;
2609 
2610 	read_lock(&fs_info->block_group_cache_lock);
2611 	/* Get the block group with the lowest logical start address. */
2612 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2613 	if (leftmost) {
2614 		struct btrfs_block_group *bg;
2615 
2616 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2617 		bytenr = bg->start;
2618 	}
2619 	read_unlock(&fs_info->block_group_cache_lock);
2620 
2621 	return bytenr;
2622 }
2623 
2624 static int pin_down_extent(struct btrfs_trans_handle *trans,
2625 			   struct btrfs_block_group *cache,
2626 			   u64 bytenr, u64 num_bytes, int reserved)
2627 {
2628 	struct btrfs_fs_info *fs_info = cache->fs_info;
2629 
2630 	spin_lock(&cache->space_info->lock);
2631 	spin_lock(&cache->lock);
2632 	cache->pinned += num_bytes;
2633 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2634 					     num_bytes);
2635 	if (reserved) {
2636 		cache->reserved -= num_bytes;
2637 		cache->space_info->bytes_reserved -= num_bytes;
2638 	}
2639 	spin_unlock(&cache->lock);
2640 	spin_unlock(&cache->space_info->lock);
2641 
2642 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2643 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2644 	return 0;
2645 }
2646 
2647 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2648 		     u64 bytenr, u64 num_bytes, int reserved)
2649 {
2650 	struct btrfs_block_group *cache;
2651 
2652 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2653 	BUG_ON(!cache); /* Logic error */
2654 
2655 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2656 
2657 	btrfs_put_block_group(cache);
2658 	return 0;
2659 }
2660 
2661 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2662 				    const struct extent_buffer *eb)
2663 {
2664 	struct btrfs_block_group *cache;
2665 	int ret;
2666 
2667 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2668 	if (!cache)
2669 		return -EINVAL;
2670 
2671 	/*
2672 	 * Fully cache the free space first so that our pin removes the free space
2673 	 * from the cache.
2674 	 */
2675 	ret = btrfs_cache_block_group(cache, true);
2676 	if (ret)
2677 		goto out;
2678 
2679 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2680 
2681 	/* remove us from the free space cache (if we're there at all) */
2682 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2683 out:
2684 	btrfs_put_block_group(cache);
2685 	return ret;
2686 }
2687 
2688 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2689 				   u64 start, u64 num_bytes)
2690 {
2691 	int ret;
2692 	struct btrfs_block_group *block_group;
2693 
2694 	block_group = btrfs_lookup_block_group(fs_info, start);
2695 	if (!block_group)
2696 		return -EINVAL;
2697 
2698 	ret = btrfs_cache_block_group(block_group, true);
2699 	if (ret)
2700 		goto out;
2701 
2702 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2703 out:
2704 	btrfs_put_block_group(block_group);
2705 	return ret;
2706 }
2707 
2708 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2709 {
2710 	struct btrfs_fs_info *fs_info = eb->fs_info;
2711 	struct btrfs_file_extent_item *item;
2712 	struct btrfs_key key;
2713 	int found_type;
2714 	int i;
2715 	int ret = 0;
2716 
2717 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2718 		return 0;
2719 
2720 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2721 		btrfs_item_key_to_cpu(eb, &key, i);
2722 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2723 			continue;
2724 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2725 		found_type = btrfs_file_extent_type(eb, item);
2726 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2727 			continue;
2728 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2729 			continue;
2730 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2731 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2732 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2733 		if (ret)
2734 			break;
2735 	}
2736 
2737 	return ret;
2738 }
2739 
2740 static void
2741 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2742 {
2743 	atomic_inc(&bg->reservations);
2744 }
2745 
2746 /*
2747  * Returns the free cluster for the given space info and sets empty_cluster to
2748  * what it should be based on the mount options.
2749  */
2750 static struct btrfs_free_cluster *
2751 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2752 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2753 {
2754 	struct btrfs_free_cluster *ret = NULL;
2755 
2756 	*empty_cluster = 0;
2757 	if (btrfs_mixed_space_info(space_info))
2758 		return ret;
2759 
2760 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2761 		ret = &fs_info->meta_alloc_cluster;
2762 		if (btrfs_test_opt(fs_info, SSD))
2763 			*empty_cluster = SZ_2M;
2764 		else
2765 			*empty_cluster = SZ_64K;
2766 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2767 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2768 		*empty_cluster = SZ_2M;
2769 		ret = &fs_info->data_alloc_cluster;
2770 	}
2771 
2772 	return ret;
2773 }
2774 
2775 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2776 			      u64 start, u64 end,
2777 			      const bool return_free_space)
2778 {
2779 	struct btrfs_block_group *cache = NULL;
2780 	struct btrfs_space_info *space_info;
2781 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2782 	struct btrfs_free_cluster *cluster = NULL;
2783 	u64 len;
2784 	u64 total_unpinned = 0;
2785 	u64 empty_cluster = 0;
2786 	bool readonly;
2787 	int ret = 0;
2788 
2789 	while (start <= end) {
2790 		readonly = false;
2791 		if (!cache ||
2792 		    start >= cache->start + cache->length) {
2793 			if (cache)
2794 				btrfs_put_block_group(cache);
2795 			total_unpinned = 0;
2796 			cache = btrfs_lookup_block_group(fs_info, start);
2797 			if (cache == NULL) {
2798 				/* Logic error, something removed the block group. */
2799 				ret = -EUCLEAN;
2800 				goto out;
2801 			}
2802 
2803 			cluster = fetch_cluster_info(fs_info,
2804 						     cache->space_info,
2805 						     &empty_cluster);
2806 			empty_cluster <<= 1;
2807 		}
2808 
2809 		len = cache->start + cache->length - start;
2810 		len = min(len, end + 1 - start);
2811 
2812 		if (return_free_space)
2813 			btrfs_add_free_space(cache, start, len);
2814 
2815 		start += len;
2816 		total_unpinned += len;
2817 		space_info = cache->space_info;
2818 
2819 		/*
2820 		 * If this space cluster has been marked as fragmented and we've
2821 		 * unpinned enough in this block group to potentially allow a
2822 		 * cluster to be created inside of it go ahead and clear the
2823 		 * fragmented check.
2824 		 */
2825 		if (cluster && cluster->fragmented &&
2826 		    total_unpinned > empty_cluster) {
2827 			spin_lock(&cluster->lock);
2828 			cluster->fragmented = 0;
2829 			spin_unlock(&cluster->lock);
2830 		}
2831 
2832 		spin_lock(&space_info->lock);
2833 		spin_lock(&cache->lock);
2834 		cache->pinned -= len;
2835 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2836 		space_info->max_extent_size = 0;
2837 		if (cache->ro) {
2838 			space_info->bytes_readonly += len;
2839 			readonly = true;
2840 		} else if (btrfs_is_zoned(fs_info)) {
2841 			/* Need reset before reusing in a zoned block group */
2842 			space_info->bytes_zone_unusable += len;
2843 			readonly = true;
2844 		}
2845 		spin_unlock(&cache->lock);
2846 		if (!readonly && return_free_space &&
2847 		    global_rsv->space_info == space_info) {
2848 			spin_lock(&global_rsv->lock);
2849 			if (!global_rsv->full) {
2850 				u64 to_add = min(len, global_rsv->size -
2851 						      global_rsv->reserved);
2852 
2853 				global_rsv->reserved += to_add;
2854 				btrfs_space_info_update_bytes_may_use(fs_info,
2855 						space_info, to_add);
2856 				if (global_rsv->reserved >= global_rsv->size)
2857 					global_rsv->full = 1;
2858 				len -= to_add;
2859 			}
2860 			spin_unlock(&global_rsv->lock);
2861 		}
2862 		/* Add to any tickets we may have */
2863 		if (!readonly && return_free_space && len)
2864 			btrfs_try_granting_tickets(fs_info, space_info);
2865 		spin_unlock(&space_info->lock);
2866 	}
2867 
2868 	if (cache)
2869 		btrfs_put_block_group(cache);
2870 out:
2871 	return ret;
2872 }
2873 
2874 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2875 {
2876 	struct btrfs_fs_info *fs_info = trans->fs_info;
2877 	struct btrfs_block_group *block_group, *tmp;
2878 	struct list_head *deleted_bgs;
2879 	struct extent_io_tree *unpin;
2880 	u64 start;
2881 	u64 end;
2882 	int ret;
2883 
2884 	unpin = &trans->transaction->pinned_extents;
2885 
2886 	while (!TRANS_ABORTED(trans)) {
2887 		struct extent_state *cached_state = NULL;
2888 
2889 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2890 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2891 					   EXTENT_DIRTY, &cached_state)) {
2892 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2893 			break;
2894 		}
2895 
2896 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2897 			ret = btrfs_discard_extent(fs_info, start,
2898 						   end + 1 - start, NULL);
2899 
2900 		clear_extent_dirty(unpin, start, end, &cached_state);
2901 		ret = unpin_extent_range(fs_info, start, end, true);
2902 		BUG_ON(ret);
2903 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2904 		free_extent_state(cached_state);
2905 		cond_resched();
2906 	}
2907 
2908 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2909 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2910 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2911 	}
2912 
2913 	/*
2914 	 * Transaction is finished.  We don't need the lock anymore.  We
2915 	 * do need to clean up the block groups in case of a transaction
2916 	 * abort.
2917 	 */
2918 	deleted_bgs = &trans->transaction->deleted_bgs;
2919 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2920 		u64 trimmed = 0;
2921 
2922 		ret = -EROFS;
2923 		if (!TRANS_ABORTED(trans))
2924 			ret = btrfs_discard_extent(fs_info,
2925 						   block_group->start,
2926 						   block_group->length,
2927 						   &trimmed);
2928 
2929 		list_del_init(&block_group->bg_list);
2930 		btrfs_unfreeze_block_group(block_group);
2931 		btrfs_put_block_group(block_group);
2932 
2933 		if (ret) {
2934 			const char *errstr = btrfs_decode_error(ret);
2935 			btrfs_warn(fs_info,
2936 			   "discard failed while removing blockgroup: errno=%d %s",
2937 				   ret, errstr);
2938 		}
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 /*
2945  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2946  *
2947  * @fs_info:	the btrfs_fs_info for this mount
2948  * @leaf:	a leaf in the extent tree containing the extent item
2949  * @slot:	the slot in the leaf where the extent item is found
2950  *
2951  * Returns the objectid of the root that originally allocated the extent item
2952  * if the inline owner ref is expected and present, otherwise 0.
2953  *
2954  * If an extent item has an owner ref item, it will be the first inline ref
2955  * item. Therefore the logic is to check whether there are any inline ref
2956  * items, then check the type of the first one.
2957  */
2958 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2959 				struct extent_buffer *leaf, int slot)
2960 {
2961 	struct btrfs_extent_item *ei;
2962 	struct btrfs_extent_inline_ref *iref;
2963 	struct btrfs_extent_owner_ref *oref;
2964 	unsigned long ptr;
2965 	unsigned long end;
2966 	int type;
2967 
2968 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2969 		return 0;
2970 
2971 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2972 	ptr = (unsigned long)(ei + 1);
2973 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2974 
2975 	/* No inline ref items of any kind, can't check type. */
2976 	if (ptr == end)
2977 		return 0;
2978 
2979 	iref = (struct btrfs_extent_inline_ref *)ptr;
2980 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2981 
2982 	/* We found an owner ref, get the root out of it. */
2983 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2984 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2985 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2986 	}
2987 
2988 	/* We have inline refs, but not an owner ref. */
2989 	return 0;
2990 }
2991 
2992 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2993 				     u64 bytenr, struct btrfs_squota_delta *delta)
2994 {
2995 	int ret;
2996 	u64 num_bytes = delta->num_bytes;
2997 
2998 	if (delta->is_data) {
2999 		struct btrfs_root *csum_root;
3000 
3001 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
3002 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
3003 		if (ret) {
3004 			btrfs_abort_transaction(trans, ret);
3005 			return ret;
3006 		}
3007 
3008 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
3009 		if (ret) {
3010 			btrfs_abort_transaction(trans, ret);
3011 			return ret;
3012 		}
3013 	}
3014 
3015 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
3016 	if (ret) {
3017 		btrfs_abort_transaction(trans, ret);
3018 		return ret;
3019 	}
3020 
3021 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3022 	if (ret) {
3023 		btrfs_abort_transaction(trans, ret);
3024 		return ret;
3025 	}
3026 
3027 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3028 	if (ret)
3029 		btrfs_abort_transaction(trans, ret);
3030 
3031 	return ret;
3032 }
3033 
3034 #define abort_and_dump(trans, path, fmt, args...)	\
3035 ({							\
3036 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3037 	btrfs_print_leaf(path->nodes[0]);		\
3038 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3039 })
3040 
3041 /*
3042  * Drop one or more refs of @node.
3043  *
3044  * 1. Locate the extent refs.
3045  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3046  *    Locate it, then reduce the refs number or remove the ref line completely.
3047  *
3048  * 2. Update the refs count in EXTENT/METADATA_ITEM
3049  *
3050  * Inline backref case:
3051  *
3052  * in extent tree we have:
3053  *
3054  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3055  *		refs 2 gen 6 flags DATA
3056  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3057  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3058  *
3059  * This function gets called with:
3060  *
3061  *    node->bytenr = 13631488
3062  *    node->num_bytes = 1048576
3063  *    root_objectid = FS_TREE
3064  *    owner_objectid = 257
3065  *    owner_offset = 0
3066  *    refs_to_drop = 1
3067  *
3068  * Then we should get some like:
3069  *
3070  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3071  *		refs 1 gen 6 flags DATA
3072  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3073  *
3074  * Keyed backref case:
3075  *
3076  * in extent tree we have:
3077  *
3078  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3079  *		refs 754 gen 6 flags DATA
3080  *	[...]
3081  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3082  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3083  *
3084  * This function get called with:
3085  *
3086  *    node->bytenr = 13631488
3087  *    node->num_bytes = 1048576
3088  *    root_objectid = FS_TREE
3089  *    owner_objectid = 866
3090  *    owner_offset = 0
3091  *    refs_to_drop = 1
3092  *
3093  * Then we should get some like:
3094  *
3095  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3096  *		refs 753 gen 6 flags DATA
3097  *
3098  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3099  */
3100 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3101 			       struct btrfs_delayed_ref_head *href,
3102 			       struct btrfs_delayed_ref_node *node, u64 parent,
3103 			       u64 root_objectid, u64 owner_objectid,
3104 			       u64 owner_offset,
3105 			       struct btrfs_delayed_extent_op *extent_op)
3106 {
3107 	struct btrfs_fs_info *info = trans->fs_info;
3108 	struct btrfs_key key;
3109 	struct btrfs_path *path;
3110 	struct btrfs_root *extent_root;
3111 	struct extent_buffer *leaf;
3112 	struct btrfs_extent_item *ei;
3113 	struct btrfs_extent_inline_ref *iref;
3114 	int ret;
3115 	int is_data;
3116 	int extent_slot = 0;
3117 	int found_extent = 0;
3118 	int num_to_del = 1;
3119 	int refs_to_drop = node->ref_mod;
3120 	u32 item_size;
3121 	u64 refs;
3122 	u64 bytenr = node->bytenr;
3123 	u64 num_bytes = node->num_bytes;
3124 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3125 	u64 delayed_ref_root = href->owning_root;
3126 
3127 	extent_root = btrfs_extent_root(info, bytenr);
3128 	ASSERT(extent_root);
3129 
3130 	path = btrfs_alloc_path();
3131 	if (!path)
3132 		return -ENOMEM;
3133 
3134 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3135 
3136 	if (!is_data && refs_to_drop != 1) {
3137 		btrfs_crit(info,
3138 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3139 			   node->bytenr, refs_to_drop);
3140 		ret = -EINVAL;
3141 		btrfs_abort_transaction(trans, ret);
3142 		goto out;
3143 	}
3144 
3145 	if (is_data)
3146 		skinny_metadata = false;
3147 
3148 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3149 				    parent, root_objectid, owner_objectid,
3150 				    owner_offset);
3151 	if (ret == 0) {
3152 		/*
3153 		 * Either the inline backref or the SHARED_DATA_REF/
3154 		 * SHARED_BLOCK_REF is found
3155 		 *
3156 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3157 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3158 		 */
3159 		extent_slot = path->slots[0];
3160 		while (extent_slot >= 0) {
3161 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3162 					      extent_slot);
3163 			if (key.objectid != bytenr)
3164 				break;
3165 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3166 			    key.offset == num_bytes) {
3167 				found_extent = 1;
3168 				break;
3169 			}
3170 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3171 			    key.offset == owner_objectid) {
3172 				found_extent = 1;
3173 				break;
3174 			}
3175 
3176 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3177 			if (path->slots[0] - extent_slot > 5)
3178 				break;
3179 			extent_slot--;
3180 		}
3181 
3182 		if (!found_extent) {
3183 			if (iref) {
3184 				abort_and_dump(trans, path,
3185 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3186 					   path->slots[0]);
3187 				ret = -EUCLEAN;
3188 				goto out;
3189 			}
3190 			/* Must be SHARED_* item, remove the backref first */
3191 			ret = remove_extent_backref(trans, extent_root, path,
3192 						    NULL, refs_to_drop, is_data);
3193 			if (ret) {
3194 				btrfs_abort_transaction(trans, ret);
3195 				goto out;
3196 			}
3197 			btrfs_release_path(path);
3198 
3199 			/* Slow path to locate EXTENT/METADATA_ITEM */
3200 			key.objectid = bytenr;
3201 			key.type = BTRFS_EXTENT_ITEM_KEY;
3202 			key.offset = num_bytes;
3203 
3204 			if (!is_data && skinny_metadata) {
3205 				key.type = BTRFS_METADATA_ITEM_KEY;
3206 				key.offset = owner_objectid;
3207 			}
3208 
3209 			ret = btrfs_search_slot(trans, extent_root,
3210 						&key, path, -1, 1);
3211 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3212 				/*
3213 				 * Couldn't find our skinny metadata item,
3214 				 * see if we have ye olde extent item.
3215 				 */
3216 				path->slots[0]--;
3217 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3218 						      path->slots[0]);
3219 				if (key.objectid == bytenr &&
3220 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3221 				    key.offset == num_bytes)
3222 					ret = 0;
3223 			}
3224 
3225 			if (ret > 0 && skinny_metadata) {
3226 				skinny_metadata = false;
3227 				key.objectid = bytenr;
3228 				key.type = BTRFS_EXTENT_ITEM_KEY;
3229 				key.offset = num_bytes;
3230 				btrfs_release_path(path);
3231 				ret = btrfs_search_slot(trans, extent_root,
3232 							&key, path, -1, 1);
3233 			}
3234 
3235 			if (ret) {
3236 				if (ret > 0)
3237 					btrfs_print_leaf(path->nodes[0]);
3238 				btrfs_err(info,
3239 			"umm, got %d back from search, was looking for %llu, slot %d",
3240 					  ret, bytenr, path->slots[0]);
3241 			}
3242 			if (ret < 0) {
3243 				btrfs_abort_transaction(trans, ret);
3244 				goto out;
3245 			}
3246 			extent_slot = path->slots[0];
3247 		}
3248 	} else if (WARN_ON(ret == -ENOENT)) {
3249 		abort_and_dump(trans, path,
3250 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3251 			       bytenr, parent, root_objectid, owner_objectid,
3252 			       owner_offset, path->slots[0]);
3253 		goto out;
3254 	} else {
3255 		btrfs_abort_transaction(trans, ret);
3256 		goto out;
3257 	}
3258 
3259 	leaf = path->nodes[0];
3260 	item_size = btrfs_item_size(leaf, extent_slot);
3261 	if (unlikely(item_size < sizeof(*ei))) {
3262 		ret = -EUCLEAN;
3263 		btrfs_err(trans->fs_info,
3264 			  "unexpected extent item size, has %u expect >= %zu",
3265 			  item_size, sizeof(*ei));
3266 		btrfs_abort_transaction(trans, ret);
3267 		goto out;
3268 	}
3269 	ei = btrfs_item_ptr(leaf, extent_slot,
3270 			    struct btrfs_extent_item);
3271 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3272 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3273 		struct btrfs_tree_block_info *bi;
3274 
3275 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3276 			abort_and_dump(trans, path,
3277 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3278 				       key.objectid, key.type, key.offset,
3279 				       path->slots[0], owner_objectid, item_size,
3280 				       sizeof(*ei) + sizeof(*bi));
3281 			ret = -EUCLEAN;
3282 			goto out;
3283 		}
3284 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3285 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3286 	}
3287 
3288 	refs = btrfs_extent_refs(leaf, ei);
3289 	if (refs < refs_to_drop) {
3290 		abort_and_dump(trans, path,
3291 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3292 			       refs_to_drop, refs, bytenr, path->slots[0]);
3293 		ret = -EUCLEAN;
3294 		goto out;
3295 	}
3296 	refs -= refs_to_drop;
3297 
3298 	if (refs > 0) {
3299 		if (extent_op)
3300 			__run_delayed_extent_op(extent_op, leaf, ei);
3301 		/*
3302 		 * In the case of inline back ref, reference count will
3303 		 * be updated by remove_extent_backref
3304 		 */
3305 		if (iref) {
3306 			if (!found_extent) {
3307 				abort_and_dump(trans, path,
3308 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3309 					       path->slots[0]);
3310 				ret = -EUCLEAN;
3311 				goto out;
3312 			}
3313 		} else {
3314 			btrfs_set_extent_refs(leaf, ei, refs);
3315 			btrfs_mark_buffer_dirty(trans, leaf);
3316 		}
3317 		if (found_extent) {
3318 			ret = remove_extent_backref(trans, extent_root, path,
3319 						    iref, refs_to_drop, is_data);
3320 			if (ret) {
3321 				btrfs_abort_transaction(trans, ret);
3322 				goto out;
3323 			}
3324 		}
3325 	} else {
3326 		struct btrfs_squota_delta delta = {
3327 			.root = delayed_ref_root,
3328 			.num_bytes = num_bytes,
3329 			.is_data = is_data,
3330 			.is_inc = false,
3331 			.generation = btrfs_extent_generation(leaf, ei),
3332 		};
3333 
3334 		/* In this branch refs == 1 */
3335 		if (found_extent) {
3336 			if (is_data && refs_to_drop !=
3337 			    extent_data_ref_count(path, iref)) {
3338 				abort_and_dump(trans, path,
3339 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3340 					       extent_data_ref_count(path, iref),
3341 					       refs_to_drop, path->slots[0]);
3342 				ret = -EUCLEAN;
3343 				goto out;
3344 			}
3345 			if (iref) {
3346 				if (path->slots[0] != extent_slot) {
3347 					abort_and_dump(trans, path,
3348 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3349 						       key.objectid, key.type,
3350 						       key.offset, path->slots[0]);
3351 					ret = -EUCLEAN;
3352 					goto out;
3353 				}
3354 			} else {
3355 				/*
3356 				 * No inline ref, we must be at SHARED_* item,
3357 				 * And it's single ref, it must be:
3358 				 * |	extent_slot	  ||extent_slot + 1|
3359 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3360 				 */
3361 				if (path->slots[0] != extent_slot + 1) {
3362 					abort_and_dump(trans, path,
3363 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3364 						       path->slots[0]);
3365 					ret = -EUCLEAN;
3366 					goto out;
3367 				}
3368 				path->slots[0] = extent_slot;
3369 				num_to_del = 2;
3370 			}
3371 		}
3372 		/*
3373 		 * We can't infer the data owner from the delayed ref, so we need
3374 		 * to try to get it from the owning ref item.
3375 		 *
3376 		 * If it is not present, then that extent was not written under
3377 		 * simple quotas mode, so we don't need to account for its deletion.
3378 		 */
3379 		if (is_data)
3380 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3381 								 leaf, extent_slot);
3382 
3383 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3384 				      num_to_del);
3385 		if (ret) {
3386 			btrfs_abort_transaction(trans, ret);
3387 			goto out;
3388 		}
3389 		btrfs_release_path(path);
3390 
3391 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3392 	}
3393 	btrfs_release_path(path);
3394 
3395 out:
3396 	btrfs_free_path(path);
3397 	return ret;
3398 }
3399 
3400 /*
3401  * when we free an block, it is possible (and likely) that we free the last
3402  * delayed ref for that extent as well.  This searches the delayed ref tree for
3403  * a given extent, and if there are no other delayed refs to be processed, it
3404  * removes it from the tree.
3405  */
3406 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3407 				      u64 bytenr)
3408 {
3409 	struct btrfs_delayed_ref_head *head;
3410 	struct btrfs_delayed_ref_root *delayed_refs;
3411 	int ret = 0;
3412 
3413 	delayed_refs = &trans->transaction->delayed_refs;
3414 	spin_lock(&delayed_refs->lock);
3415 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3416 	if (!head)
3417 		goto out_delayed_unlock;
3418 
3419 	spin_lock(&head->lock);
3420 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3421 		goto out;
3422 
3423 	if (cleanup_extent_op(head) != NULL)
3424 		goto out;
3425 
3426 	/*
3427 	 * waiting for the lock here would deadlock.  If someone else has it
3428 	 * locked they are already in the process of dropping it anyway
3429 	 */
3430 	if (!mutex_trylock(&head->mutex))
3431 		goto out;
3432 
3433 	btrfs_delete_ref_head(delayed_refs, head);
3434 	head->processing = false;
3435 
3436 	spin_unlock(&head->lock);
3437 	spin_unlock(&delayed_refs->lock);
3438 
3439 	BUG_ON(head->extent_op);
3440 	if (head->must_insert_reserved)
3441 		ret = 1;
3442 
3443 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3444 	mutex_unlock(&head->mutex);
3445 	btrfs_put_delayed_ref_head(head);
3446 	return ret;
3447 out:
3448 	spin_unlock(&head->lock);
3449 
3450 out_delayed_unlock:
3451 	spin_unlock(&delayed_refs->lock);
3452 	return 0;
3453 }
3454 
3455 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3456 			   u64 root_id,
3457 			   struct extent_buffer *buf,
3458 			   u64 parent, int last_ref)
3459 {
3460 	struct btrfs_fs_info *fs_info = trans->fs_info;
3461 	struct btrfs_block_group *bg;
3462 	int ret;
3463 
3464 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3465 		struct btrfs_ref generic_ref = { 0 };
3466 
3467 		btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3468 				       buf->start, buf->len, parent,
3469 				       btrfs_header_owner(buf));
3470 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3471 				    root_id, 0, false);
3472 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3473 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3474 		BUG_ON(ret); /* -ENOMEM */
3475 	}
3476 
3477 	if (!last_ref)
3478 		return;
3479 
3480 	if (btrfs_header_generation(buf) != trans->transid)
3481 		goto out;
3482 
3483 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3484 		ret = check_ref_cleanup(trans, buf->start);
3485 		if (!ret)
3486 			goto out;
3487 	}
3488 
3489 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3490 
3491 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3492 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3493 		btrfs_put_block_group(bg);
3494 		goto out;
3495 	}
3496 
3497 	/*
3498 	 * If there are tree mod log users we may have recorded mod log
3499 	 * operations for this node.  If we re-allocate this node we
3500 	 * could replay operations on this node that happened when it
3501 	 * existed in a completely different root.  For example if it
3502 	 * was part of root A, then was reallocated to root B, and we
3503 	 * are doing a btrfs_old_search_slot(root b), we could replay
3504 	 * operations that happened when the block was part of root A,
3505 	 * giving us an inconsistent view of the btree.
3506 	 *
3507 	 * We are safe from races here because at this point no other
3508 	 * node or root points to this extent buffer, so if after this
3509 	 * check a new tree mod log user joins we will not have an
3510 	 * existing log of operations on this node that we have to
3511 	 * contend with.
3512 	 */
3513 
3514 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3515 		     || btrfs_is_zoned(fs_info)) {
3516 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3517 		btrfs_put_block_group(bg);
3518 		goto out;
3519 	}
3520 
3521 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3522 
3523 	btrfs_add_free_space(bg, buf->start, buf->len);
3524 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3525 	btrfs_put_block_group(bg);
3526 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3527 
3528 out:
3529 
3530 	/*
3531 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3532 	 * matter anymore.
3533 	 */
3534 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3535 }
3536 
3537 /* Can return -ENOMEM */
3538 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3539 {
3540 	struct btrfs_fs_info *fs_info = trans->fs_info;
3541 	int ret;
3542 
3543 	if (btrfs_is_testing(fs_info))
3544 		return 0;
3545 
3546 	/*
3547 	 * tree log blocks never actually go into the extent allocation
3548 	 * tree, just update pinning info and exit early.
3549 	 */
3550 	if ((ref->type == BTRFS_REF_METADATA &&
3551 	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3552 	    (ref->type == BTRFS_REF_DATA &&
3553 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3554 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3555 		ret = 0;
3556 	} else if (ref->type == BTRFS_REF_METADATA) {
3557 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3558 	} else {
3559 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3560 	}
3561 
3562 	if (!((ref->type == BTRFS_REF_METADATA &&
3563 	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3564 	      (ref->type == BTRFS_REF_DATA &&
3565 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3566 		btrfs_ref_tree_mod(fs_info, ref);
3567 
3568 	return ret;
3569 }
3570 
3571 enum btrfs_loop_type {
3572 	/*
3573 	 * Start caching block groups but do not wait for progress or for them
3574 	 * to be done.
3575 	 */
3576 	LOOP_CACHING_NOWAIT,
3577 
3578 	/*
3579 	 * Wait for the block group free_space >= the space we're waiting for if
3580 	 * the block group isn't cached.
3581 	 */
3582 	LOOP_CACHING_WAIT,
3583 
3584 	/*
3585 	 * Allow allocations to happen from block groups that do not yet have a
3586 	 * size classification.
3587 	 */
3588 	LOOP_UNSET_SIZE_CLASS,
3589 
3590 	/*
3591 	 * Allocate a chunk and then retry the allocation.
3592 	 */
3593 	LOOP_ALLOC_CHUNK,
3594 
3595 	/*
3596 	 * Ignore the size class restrictions for this allocation.
3597 	 */
3598 	LOOP_WRONG_SIZE_CLASS,
3599 
3600 	/*
3601 	 * Ignore the empty size, only try to allocate the number of bytes
3602 	 * needed for this allocation.
3603 	 */
3604 	LOOP_NO_EMPTY_SIZE,
3605 };
3606 
3607 static inline void
3608 btrfs_lock_block_group(struct btrfs_block_group *cache,
3609 		       int delalloc)
3610 {
3611 	if (delalloc)
3612 		down_read(&cache->data_rwsem);
3613 }
3614 
3615 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3616 		       int delalloc)
3617 {
3618 	btrfs_get_block_group(cache);
3619 	if (delalloc)
3620 		down_read(&cache->data_rwsem);
3621 }
3622 
3623 static struct btrfs_block_group *btrfs_lock_cluster(
3624 		   struct btrfs_block_group *block_group,
3625 		   struct btrfs_free_cluster *cluster,
3626 		   int delalloc)
3627 	__acquires(&cluster->refill_lock)
3628 {
3629 	struct btrfs_block_group *used_bg = NULL;
3630 
3631 	spin_lock(&cluster->refill_lock);
3632 	while (1) {
3633 		used_bg = cluster->block_group;
3634 		if (!used_bg)
3635 			return NULL;
3636 
3637 		if (used_bg == block_group)
3638 			return used_bg;
3639 
3640 		btrfs_get_block_group(used_bg);
3641 
3642 		if (!delalloc)
3643 			return used_bg;
3644 
3645 		if (down_read_trylock(&used_bg->data_rwsem))
3646 			return used_bg;
3647 
3648 		spin_unlock(&cluster->refill_lock);
3649 
3650 		/* We should only have one-level nested. */
3651 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3652 
3653 		spin_lock(&cluster->refill_lock);
3654 		if (used_bg == cluster->block_group)
3655 			return used_bg;
3656 
3657 		up_read(&used_bg->data_rwsem);
3658 		btrfs_put_block_group(used_bg);
3659 	}
3660 }
3661 
3662 static inline void
3663 btrfs_release_block_group(struct btrfs_block_group *cache,
3664 			 int delalloc)
3665 {
3666 	if (delalloc)
3667 		up_read(&cache->data_rwsem);
3668 	btrfs_put_block_group(cache);
3669 }
3670 
3671 /*
3672  * Helper function for find_free_extent().
3673  *
3674  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3675  * Return >0 to inform caller that we find nothing
3676  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3677  */
3678 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3679 				      struct find_free_extent_ctl *ffe_ctl,
3680 				      struct btrfs_block_group **cluster_bg_ret)
3681 {
3682 	struct btrfs_block_group *cluster_bg;
3683 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3684 	u64 aligned_cluster;
3685 	u64 offset;
3686 	int ret;
3687 
3688 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3689 	if (!cluster_bg)
3690 		goto refill_cluster;
3691 	if (cluster_bg != bg && (cluster_bg->ro ||
3692 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3693 		goto release_cluster;
3694 
3695 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3696 			ffe_ctl->num_bytes, cluster_bg->start,
3697 			&ffe_ctl->max_extent_size);
3698 	if (offset) {
3699 		/* We have a block, we're done */
3700 		spin_unlock(&last_ptr->refill_lock);
3701 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3702 		*cluster_bg_ret = cluster_bg;
3703 		ffe_ctl->found_offset = offset;
3704 		return 0;
3705 	}
3706 	WARN_ON(last_ptr->block_group != cluster_bg);
3707 
3708 release_cluster:
3709 	/*
3710 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3711 	 * lets just skip it and let the allocator find whatever block it can
3712 	 * find. If we reach this point, we will have tried the cluster
3713 	 * allocator plenty of times and not have found anything, so we are
3714 	 * likely way too fragmented for the clustering stuff to find anything.
3715 	 *
3716 	 * However, if the cluster is taken from the current block group,
3717 	 * release the cluster first, so that we stand a better chance of
3718 	 * succeeding in the unclustered allocation.
3719 	 */
3720 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3721 		spin_unlock(&last_ptr->refill_lock);
3722 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3723 		return -ENOENT;
3724 	}
3725 
3726 	/* This cluster didn't work out, free it and start over */
3727 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3728 
3729 	if (cluster_bg != bg)
3730 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3731 
3732 refill_cluster:
3733 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3734 		spin_unlock(&last_ptr->refill_lock);
3735 		return -ENOENT;
3736 	}
3737 
3738 	aligned_cluster = max_t(u64,
3739 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3740 			bg->full_stripe_len);
3741 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3742 			ffe_ctl->num_bytes, aligned_cluster);
3743 	if (ret == 0) {
3744 		/* Now pull our allocation out of this cluster */
3745 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3746 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3747 				&ffe_ctl->max_extent_size);
3748 		if (offset) {
3749 			/* We found one, proceed */
3750 			spin_unlock(&last_ptr->refill_lock);
3751 			ffe_ctl->found_offset = offset;
3752 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3753 			return 0;
3754 		}
3755 	}
3756 	/*
3757 	 * At this point we either didn't find a cluster or we weren't able to
3758 	 * allocate a block from our cluster.  Free the cluster we've been
3759 	 * trying to use, and go to the next block group.
3760 	 */
3761 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3762 	spin_unlock(&last_ptr->refill_lock);
3763 	return 1;
3764 }
3765 
3766 /*
3767  * Return >0 to inform caller that we find nothing
3768  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3769  */
3770 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3771 					struct find_free_extent_ctl *ffe_ctl)
3772 {
3773 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3774 	u64 offset;
3775 
3776 	/*
3777 	 * We are doing an unclustered allocation, set the fragmented flag so
3778 	 * we don't bother trying to setup a cluster again until we get more
3779 	 * space.
3780 	 */
3781 	if (unlikely(last_ptr)) {
3782 		spin_lock(&last_ptr->lock);
3783 		last_ptr->fragmented = 1;
3784 		spin_unlock(&last_ptr->lock);
3785 	}
3786 	if (ffe_ctl->cached) {
3787 		struct btrfs_free_space_ctl *free_space_ctl;
3788 
3789 		free_space_ctl = bg->free_space_ctl;
3790 		spin_lock(&free_space_ctl->tree_lock);
3791 		if (free_space_ctl->free_space <
3792 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3793 		    ffe_ctl->empty_size) {
3794 			ffe_ctl->total_free_space = max_t(u64,
3795 					ffe_ctl->total_free_space,
3796 					free_space_ctl->free_space);
3797 			spin_unlock(&free_space_ctl->tree_lock);
3798 			return 1;
3799 		}
3800 		spin_unlock(&free_space_ctl->tree_lock);
3801 	}
3802 
3803 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3804 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3805 			&ffe_ctl->max_extent_size);
3806 	if (!offset)
3807 		return 1;
3808 	ffe_ctl->found_offset = offset;
3809 	return 0;
3810 }
3811 
3812 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3813 				   struct find_free_extent_ctl *ffe_ctl,
3814 				   struct btrfs_block_group **bg_ret)
3815 {
3816 	int ret;
3817 
3818 	/* We want to try and use the cluster allocator, so lets look there */
3819 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3820 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3821 		if (ret >= 0)
3822 			return ret;
3823 		/* ret == -ENOENT case falls through */
3824 	}
3825 
3826 	return find_free_extent_unclustered(block_group, ffe_ctl);
3827 }
3828 
3829 /*
3830  * Tree-log block group locking
3831  * ============================
3832  *
3833  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3834  * indicates the starting address of a block group, which is reserved only
3835  * for tree-log metadata.
3836  *
3837  * Lock nesting
3838  * ============
3839  *
3840  * space_info::lock
3841  *   block_group::lock
3842  *     fs_info::treelog_bg_lock
3843  */
3844 
3845 /*
3846  * Simple allocator for sequential-only block group. It only allows sequential
3847  * allocation. No need to play with trees. This function also reserves the
3848  * bytes as in btrfs_add_reserved_bytes.
3849  */
3850 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3851 			       struct find_free_extent_ctl *ffe_ctl,
3852 			       struct btrfs_block_group **bg_ret)
3853 {
3854 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3855 	struct btrfs_space_info *space_info = block_group->space_info;
3856 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3857 	u64 start = block_group->start;
3858 	u64 num_bytes = ffe_ctl->num_bytes;
3859 	u64 avail;
3860 	u64 bytenr = block_group->start;
3861 	u64 log_bytenr;
3862 	u64 data_reloc_bytenr;
3863 	int ret = 0;
3864 	bool skip = false;
3865 
3866 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3867 
3868 	/*
3869 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3870 	 * group, and vice versa.
3871 	 */
3872 	spin_lock(&fs_info->treelog_bg_lock);
3873 	log_bytenr = fs_info->treelog_bg;
3874 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3875 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3876 		skip = true;
3877 	spin_unlock(&fs_info->treelog_bg_lock);
3878 	if (skip)
3879 		return 1;
3880 
3881 	/*
3882 	 * Do not allow non-relocation blocks in the dedicated relocation block
3883 	 * group, and vice versa.
3884 	 */
3885 	spin_lock(&fs_info->relocation_bg_lock);
3886 	data_reloc_bytenr = fs_info->data_reloc_bg;
3887 	if (data_reloc_bytenr &&
3888 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3889 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3890 		skip = true;
3891 	spin_unlock(&fs_info->relocation_bg_lock);
3892 	if (skip)
3893 		return 1;
3894 
3895 	/* Check RO and no space case before trying to activate it */
3896 	spin_lock(&block_group->lock);
3897 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3898 		ret = 1;
3899 		/*
3900 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3901 		 * Return the error after taking the locks.
3902 		 */
3903 	}
3904 	spin_unlock(&block_group->lock);
3905 
3906 	/* Metadata block group is activated at write time. */
3907 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3908 	    !btrfs_zone_activate(block_group)) {
3909 		ret = 1;
3910 		/*
3911 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3912 		 * Return the error after taking the locks.
3913 		 */
3914 	}
3915 
3916 	spin_lock(&space_info->lock);
3917 	spin_lock(&block_group->lock);
3918 	spin_lock(&fs_info->treelog_bg_lock);
3919 	spin_lock(&fs_info->relocation_bg_lock);
3920 
3921 	if (ret)
3922 		goto out;
3923 
3924 	ASSERT(!ffe_ctl->for_treelog ||
3925 	       block_group->start == fs_info->treelog_bg ||
3926 	       fs_info->treelog_bg == 0);
3927 	ASSERT(!ffe_ctl->for_data_reloc ||
3928 	       block_group->start == fs_info->data_reloc_bg ||
3929 	       fs_info->data_reloc_bg == 0);
3930 
3931 	if (block_group->ro ||
3932 	    (!ffe_ctl->for_data_reloc &&
3933 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3934 		ret = 1;
3935 		goto out;
3936 	}
3937 
3938 	/*
3939 	 * Do not allow currently using block group to be tree-log dedicated
3940 	 * block group.
3941 	 */
3942 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3943 	    (block_group->used || block_group->reserved)) {
3944 		ret = 1;
3945 		goto out;
3946 	}
3947 
3948 	/*
3949 	 * Do not allow currently used block group to be the data relocation
3950 	 * dedicated block group.
3951 	 */
3952 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3953 	    (block_group->used || block_group->reserved)) {
3954 		ret = 1;
3955 		goto out;
3956 	}
3957 
3958 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3959 	avail = block_group->zone_capacity - block_group->alloc_offset;
3960 	if (avail < num_bytes) {
3961 		if (ffe_ctl->max_extent_size < avail) {
3962 			/*
3963 			 * With sequential allocator, free space is always
3964 			 * contiguous
3965 			 */
3966 			ffe_ctl->max_extent_size = avail;
3967 			ffe_ctl->total_free_space = avail;
3968 		}
3969 		ret = 1;
3970 		goto out;
3971 	}
3972 
3973 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3974 		fs_info->treelog_bg = block_group->start;
3975 
3976 	if (ffe_ctl->for_data_reloc) {
3977 		if (!fs_info->data_reloc_bg)
3978 			fs_info->data_reloc_bg = block_group->start;
3979 		/*
3980 		 * Do not allow allocations from this block group, unless it is
3981 		 * for data relocation. Compared to increasing the ->ro, setting
3982 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3983 		 * writers to come in. See btrfs_inc_nocow_writers().
3984 		 *
3985 		 * We need to disable an allocation to avoid an allocation of
3986 		 * regular (non-relocation data) extent. With mix of relocation
3987 		 * extents and regular extents, we can dispatch WRITE commands
3988 		 * (for relocation extents) and ZONE APPEND commands (for
3989 		 * regular extents) at the same time to the same zone, which
3990 		 * easily break the write pointer.
3991 		 *
3992 		 * Also, this flag avoids this block group to be zone finished.
3993 		 */
3994 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3995 	}
3996 
3997 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3998 	block_group->alloc_offset += num_bytes;
3999 	spin_lock(&ctl->tree_lock);
4000 	ctl->free_space -= num_bytes;
4001 	spin_unlock(&ctl->tree_lock);
4002 
4003 	/*
4004 	 * We do not check if found_offset is aligned to stripesize. The
4005 	 * address is anyway rewritten when using zone append writing.
4006 	 */
4007 
4008 	ffe_ctl->search_start = ffe_ctl->found_offset;
4009 
4010 out:
4011 	if (ret && ffe_ctl->for_treelog)
4012 		fs_info->treelog_bg = 0;
4013 	if (ret && ffe_ctl->for_data_reloc)
4014 		fs_info->data_reloc_bg = 0;
4015 	spin_unlock(&fs_info->relocation_bg_lock);
4016 	spin_unlock(&fs_info->treelog_bg_lock);
4017 	spin_unlock(&block_group->lock);
4018 	spin_unlock(&space_info->lock);
4019 	return ret;
4020 }
4021 
4022 static int do_allocation(struct btrfs_block_group *block_group,
4023 			 struct find_free_extent_ctl *ffe_ctl,
4024 			 struct btrfs_block_group **bg_ret)
4025 {
4026 	switch (ffe_ctl->policy) {
4027 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4029 	case BTRFS_EXTENT_ALLOC_ZONED:
4030 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4031 	default:
4032 		BUG();
4033 	}
4034 }
4035 
4036 static void release_block_group(struct btrfs_block_group *block_group,
4037 				struct find_free_extent_ctl *ffe_ctl,
4038 				int delalloc)
4039 {
4040 	switch (ffe_ctl->policy) {
4041 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4042 		ffe_ctl->retry_uncached = false;
4043 		break;
4044 	case BTRFS_EXTENT_ALLOC_ZONED:
4045 		/* Nothing to do */
4046 		break;
4047 	default:
4048 		BUG();
4049 	}
4050 
4051 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4052 	       ffe_ctl->index);
4053 	btrfs_release_block_group(block_group, delalloc);
4054 }
4055 
4056 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4057 				   struct btrfs_key *ins)
4058 {
4059 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4060 
4061 	if (!ffe_ctl->use_cluster && last_ptr) {
4062 		spin_lock(&last_ptr->lock);
4063 		last_ptr->window_start = ins->objectid;
4064 		spin_unlock(&last_ptr->lock);
4065 	}
4066 }
4067 
4068 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4069 			 struct btrfs_key *ins)
4070 {
4071 	switch (ffe_ctl->policy) {
4072 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4073 		found_extent_clustered(ffe_ctl, ins);
4074 		break;
4075 	case BTRFS_EXTENT_ALLOC_ZONED:
4076 		/* Nothing to do */
4077 		break;
4078 	default:
4079 		BUG();
4080 	}
4081 }
4082 
4083 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4084 				    struct find_free_extent_ctl *ffe_ctl)
4085 {
4086 	/* Block group's activeness is not a requirement for METADATA block groups. */
4087 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4088 		return 0;
4089 
4090 	/* If we can activate new zone, just allocate a chunk and use it */
4091 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4092 		return 0;
4093 
4094 	/*
4095 	 * We already reached the max active zones. Try to finish one block
4096 	 * group to make a room for a new block group. This is only possible
4097 	 * for a data block group because btrfs_zone_finish() may need to wait
4098 	 * for a running transaction which can cause a deadlock for metadata
4099 	 * allocation.
4100 	 */
4101 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4102 		int ret = btrfs_zone_finish_one_bg(fs_info);
4103 
4104 		if (ret == 1)
4105 			return 0;
4106 		else if (ret < 0)
4107 			return ret;
4108 	}
4109 
4110 	/*
4111 	 * If we have enough free space left in an already active block group
4112 	 * and we can't activate any other zone now, do not allow allocating a
4113 	 * new chunk and let find_free_extent() retry with a smaller size.
4114 	 */
4115 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4116 		return -ENOSPC;
4117 
4118 	/*
4119 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4120 	 * activate a new block group, allocating it may not help. Let's tell a
4121 	 * caller to try again and hope it progress something by writing some
4122 	 * parts of the region. That is only possible for data block groups,
4123 	 * where a part of the region can be written.
4124 	 */
4125 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4126 		return -EAGAIN;
4127 
4128 	/*
4129 	 * We cannot activate a new block group and no enough space left in any
4130 	 * block groups. So, allocating a new block group may not help. But,
4131 	 * there is nothing to do anyway, so let's go with it.
4132 	 */
4133 	return 0;
4134 }
4135 
4136 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4137 			      struct find_free_extent_ctl *ffe_ctl)
4138 {
4139 	switch (ffe_ctl->policy) {
4140 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4141 		return 0;
4142 	case BTRFS_EXTENT_ALLOC_ZONED:
4143 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4144 	default:
4145 		BUG();
4146 	}
4147 }
4148 
4149 /*
4150  * Return >0 means caller needs to re-search for free extent
4151  * Return 0 means we have the needed free extent.
4152  * Return <0 means we failed to locate any free extent.
4153  */
4154 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4155 					struct btrfs_key *ins,
4156 					struct find_free_extent_ctl *ffe_ctl,
4157 					bool full_search)
4158 {
4159 	struct btrfs_root *root = fs_info->chunk_root;
4160 	int ret;
4161 
4162 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4163 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4164 		ffe_ctl->orig_have_caching_bg = true;
4165 
4166 	if (ins->objectid) {
4167 		found_extent(ffe_ctl, ins);
4168 		return 0;
4169 	}
4170 
4171 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4172 		return 1;
4173 
4174 	ffe_ctl->index++;
4175 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4176 		return 1;
4177 
4178 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4179 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4180 		ffe_ctl->index = 0;
4181 		/*
4182 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4183 		 * any uncached bgs and we've already done a full search
4184 		 * through.
4185 		 */
4186 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4187 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4188 			ffe_ctl->loop++;
4189 		ffe_ctl->loop++;
4190 
4191 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4192 			struct btrfs_trans_handle *trans;
4193 			int exist = 0;
4194 
4195 			/* Check if allocation policy allows to create a new chunk */
4196 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4197 			if (ret)
4198 				return ret;
4199 
4200 			trans = current->journal_info;
4201 			if (trans)
4202 				exist = 1;
4203 			else
4204 				trans = btrfs_join_transaction(root);
4205 
4206 			if (IS_ERR(trans)) {
4207 				ret = PTR_ERR(trans);
4208 				return ret;
4209 			}
4210 
4211 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4212 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4213 
4214 			/* Do not bail out on ENOSPC since we can do more. */
4215 			if (ret == -ENOSPC) {
4216 				ret = 0;
4217 				ffe_ctl->loop++;
4218 			}
4219 			else if (ret < 0)
4220 				btrfs_abort_transaction(trans, ret);
4221 			else
4222 				ret = 0;
4223 			if (!exist)
4224 				btrfs_end_transaction(trans);
4225 			if (ret)
4226 				return ret;
4227 		}
4228 
4229 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4230 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4231 				return -ENOSPC;
4232 
4233 			/*
4234 			 * Don't loop again if we already have no empty_size and
4235 			 * no empty_cluster.
4236 			 */
4237 			if (ffe_ctl->empty_size == 0 &&
4238 			    ffe_ctl->empty_cluster == 0)
4239 				return -ENOSPC;
4240 			ffe_ctl->empty_size = 0;
4241 			ffe_ctl->empty_cluster = 0;
4242 		}
4243 		return 1;
4244 	}
4245 	return -ENOSPC;
4246 }
4247 
4248 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4249 					      struct btrfs_block_group *bg)
4250 {
4251 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4252 		return true;
4253 	if (!btrfs_block_group_should_use_size_class(bg))
4254 		return true;
4255 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4256 		return true;
4257 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4258 	    bg->size_class == BTRFS_BG_SZ_NONE)
4259 		return true;
4260 	return ffe_ctl->size_class == bg->size_class;
4261 }
4262 
4263 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4264 					struct find_free_extent_ctl *ffe_ctl,
4265 					struct btrfs_space_info *space_info,
4266 					struct btrfs_key *ins)
4267 {
4268 	/*
4269 	 * If our free space is heavily fragmented we may not be able to make
4270 	 * big contiguous allocations, so instead of doing the expensive search
4271 	 * for free space, simply return ENOSPC with our max_extent_size so we
4272 	 * can go ahead and search for a more manageable chunk.
4273 	 *
4274 	 * If our max_extent_size is large enough for our allocation simply
4275 	 * disable clustering since we will likely not be able to find enough
4276 	 * space to create a cluster and induce latency trying.
4277 	 */
4278 	if (space_info->max_extent_size) {
4279 		spin_lock(&space_info->lock);
4280 		if (space_info->max_extent_size &&
4281 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4282 			ins->offset = space_info->max_extent_size;
4283 			spin_unlock(&space_info->lock);
4284 			return -ENOSPC;
4285 		} else if (space_info->max_extent_size) {
4286 			ffe_ctl->use_cluster = false;
4287 		}
4288 		spin_unlock(&space_info->lock);
4289 	}
4290 
4291 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4292 					       &ffe_ctl->empty_cluster);
4293 	if (ffe_ctl->last_ptr) {
4294 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4295 
4296 		spin_lock(&last_ptr->lock);
4297 		if (last_ptr->block_group)
4298 			ffe_ctl->hint_byte = last_ptr->window_start;
4299 		if (last_ptr->fragmented) {
4300 			/*
4301 			 * We still set window_start so we can keep track of the
4302 			 * last place we found an allocation to try and save
4303 			 * some time.
4304 			 */
4305 			ffe_ctl->hint_byte = last_ptr->window_start;
4306 			ffe_ctl->use_cluster = false;
4307 		}
4308 		spin_unlock(&last_ptr->lock);
4309 	}
4310 
4311 	return 0;
4312 }
4313 
4314 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4315 				    struct find_free_extent_ctl *ffe_ctl)
4316 {
4317 	if (ffe_ctl->for_treelog) {
4318 		spin_lock(&fs_info->treelog_bg_lock);
4319 		if (fs_info->treelog_bg)
4320 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4321 		spin_unlock(&fs_info->treelog_bg_lock);
4322 	} else if (ffe_ctl->for_data_reloc) {
4323 		spin_lock(&fs_info->relocation_bg_lock);
4324 		if (fs_info->data_reloc_bg)
4325 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4326 		spin_unlock(&fs_info->relocation_bg_lock);
4327 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4328 		struct btrfs_block_group *block_group;
4329 
4330 		spin_lock(&fs_info->zone_active_bgs_lock);
4331 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4332 			/*
4333 			 * No lock is OK here because avail is monotinically
4334 			 * decreasing, and this is just a hint.
4335 			 */
4336 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4337 
4338 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4339 			    avail >= ffe_ctl->num_bytes) {
4340 				ffe_ctl->hint_byte = block_group->start;
4341 				break;
4342 			}
4343 		}
4344 		spin_unlock(&fs_info->zone_active_bgs_lock);
4345 	}
4346 
4347 	return 0;
4348 }
4349 
4350 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4351 			      struct find_free_extent_ctl *ffe_ctl,
4352 			      struct btrfs_space_info *space_info,
4353 			      struct btrfs_key *ins)
4354 {
4355 	switch (ffe_ctl->policy) {
4356 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4357 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4358 						    space_info, ins);
4359 	case BTRFS_EXTENT_ALLOC_ZONED:
4360 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4361 	default:
4362 		BUG();
4363 	}
4364 }
4365 
4366 /*
4367  * walks the btree of allocated extents and find a hole of a given size.
4368  * The key ins is changed to record the hole:
4369  * ins->objectid == start position
4370  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4371  * ins->offset == the size of the hole.
4372  * Any available blocks before search_start are skipped.
4373  *
4374  * If there is no suitable free space, we will record the max size of
4375  * the free space extent currently.
4376  *
4377  * The overall logic and call chain:
4378  *
4379  * find_free_extent()
4380  * |- Iterate through all block groups
4381  * |  |- Get a valid block group
4382  * |  |- Try to do clustered allocation in that block group
4383  * |  |- Try to do unclustered allocation in that block group
4384  * |  |- Check if the result is valid
4385  * |  |  |- If valid, then exit
4386  * |  |- Jump to next block group
4387  * |
4388  * |- Push harder to find free extents
4389  *    |- If not found, re-iterate all block groups
4390  */
4391 static noinline int find_free_extent(struct btrfs_root *root,
4392 				     struct btrfs_key *ins,
4393 				     struct find_free_extent_ctl *ffe_ctl)
4394 {
4395 	struct btrfs_fs_info *fs_info = root->fs_info;
4396 	int ret = 0;
4397 	int cache_block_group_error = 0;
4398 	struct btrfs_block_group *block_group = NULL;
4399 	struct btrfs_space_info *space_info;
4400 	bool full_search = false;
4401 
4402 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4403 
4404 	ffe_ctl->search_start = 0;
4405 	/* For clustered allocation */
4406 	ffe_ctl->empty_cluster = 0;
4407 	ffe_ctl->last_ptr = NULL;
4408 	ffe_ctl->use_cluster = true;
4409 	ffe_ctl->have_caching_bg = false;
4410 	ffe_ctl->orig_have_caching_bg = false;
4411 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4412 	ffe_ctl->loop = 0;
4413 	ffe_ctl->retry_uncached = false;
4414 	ffe_ctl->cached = 0;
4415 	ffe_ctl->max_extent_size = 0;
4416 	ffe_ctl->total_free_space = 0;
4417 	ffe_ctl->found_offset = 0;
4418 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4419 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4420 
4421 	if (btrfs_is_zoned(fs_info))
4422 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4423 
4424 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4425 	ins->objectid = 0;
4426 	ins->offset = 0;
4427 
4428 	trace_find_free_extent(root, ffe_ctl);
4429 
4430 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4431 	if (!space_info) {
4432 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4433 		return -ENOSPC;
4434 	}
4435 
4436 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4437 	if (ret < 0)
4438 		return ret;
4439 
4440 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4441 				    first_logical_byte(fs_info));
4442 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4443 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4444 		block_group = btrfs_lookup_block_group(fs_info,
4445 						       ffe_ctl->search_start);
4446 		/*
4447 		 * we don't want to use the block group if it doesn't match our
4448 		 * allocation bits, or if its not cached.
4449 		 *
4450 		 * However if we are re-searching with an ideal block group
4451 		 * picked out then we don't care that the block group is cached.
4452 		 */
4453 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4454 		    block_group->cached != BTRFS_CACHE_NO) {
4455 			down_read(&space_info->groups_sem);
4456 			if (list_empty(&block_group->list) ||
4457 			    block_group->ro) {
4458 				/*
4459 				 * someone is removing this block group,
4460 				 * we can't jump into the have_block_group
4461 				 * target because our list pointers are not
4462 				 * valid
4463 				 */
4464 				btrfs_put_block_group(block_group);
4465 				up_read(&space_info->groups_sem);
4466 			} else {
4467 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4468 							block_group->flags);
4469 				btrfs_lock_block_group(block_group,
4470 						       ffe_ctl->delalloc);
4471 				ffe_ctl->hinted = true;
4472 				goto have_block_group;
4473 			}
4474 		} else if (block_group) {
4475 			btrfs_put_block_group(block_group);
4476 		}
4477 	}
4478 search:
4479 	trace_find_free_extent_search_loop(root, ffe_ctl);
4480 	ffe_ctl->have_caching_bg = false;
4481 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4482 	    ffe_ctl->index == 0)
4483 		full_search = true;
4484 	down_read(&space_info->groups_sem);
4485 	list_for_each_entry(block_group,
4486 			    &space_info->block_groups[ffe_ctl->index], list) {
4487 		struct btrfs_block_group *bg_ret;
4488 
4489 		ffe_ctl->hinted = false;
4490 		/* If the block group is read-only, we can skip it entirely. */
4491 		if (unlikely(block_group->ro)) {
4492 			if (ffe_ctl->for_treelog)
4493 				btrfs_clear_treelog_bg(block_group);
4494 			if (ffe_ctl->for_data_reloc)
4495 				btrfs_clear_data_reloc_bg(block_group);
4496 			continue;
4497 		}
4498 
4499 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4500 		ffe_ctl->search_start = block_group->start;
4501 
4502 		/*
4503 		 * this can happen if we end up cycling through all the
4504 		 * raid types, but we want to make sure we only allocate
4505 		 * for the proper type.
4506 		 */
4507 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4508 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4509 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4510 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4511 				BTRFS_BLOCK_GROUP_RAID10;
4512 
4513 			/*
4514 			 * if they asked for extra copies and this block group
4515 			 * doesn't provide them, bail.  This does allow us to
4516 			 * fill raid0 from raid1.
4517 			 */
4518 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4519 				goto loop;
4520 
4521 			/*
4522 			 * This block group has different flags than we want.
4523 			 * It's possible that we have MIXED_GROUP flag but no
4524 			 * block group is mixed.  Just skip such block group.
4525 			 */
4526 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4527 			continue;
4528 		}
4529 
4530 have_block_group:
4531 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4532 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4533 		if (unlikely(!ffe_ctl->cached)) {
4534 			ffe_ctl->have_caching_bg = true;
4535 			ret = btrfs_cache_block_group(block_group, false);
4536 
4537 			/*
4538 			 * If we get ENOMEM here or something else we want to
4539 			 * try other block groups, because it may not be fatal.
4540 			 * However if we can't find anything else we need to
4541 			 * save our return here so that we return the actual
4542 			 * error that caused problems, not ENOSPC.
4543 			 */
4544 			if (ret < 0) {
4545 				if (!cache_block_group_error)
4546 					cache_block_group_error = ret;
4547 				ret = 0;
4548 				goto loop;
4549 			}
4550 			ret = 0;
4551 		}
4552 
4553 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4554 			if (!cache_block_group_error)
4555 				cache_block_group_error = -EIO;
4556 			goto loop;
4557 		}
4558 
4559 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4560 			goto loop;
4561 
4562 		bg_ret = NULL;
4563 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4564 		if (ret > 0)
4565 			goto loop;
4566 
4567 		if (bg_ret && bg_ret != block_group) {
4568 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4569 			block_group = bg_ret;
4570 		}
4571 
4572 		/* Checks */
4573 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4574 						 fs_info->stripesize);
4575 
4576 		/* move on to the next group */
4577 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4578 		    block_group->start + block_group->length) {
4579 			btrfs_add_free_space_unused(block_group,
4580 					    ffe_ctl->found_offset,
4581 					    ffe_ctl->num_bytes);
4582 			goto loop;
4583 		}
4584 
4585 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4586 			btrfs_add_free_space_unused(block_group,
4587 					ffe_ctl->found_offset,
4588 					ffe_ctl->search_start - ffe_ctl->found_offset);
4589 
4590 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4591 					       ffe_ctl->num_bytes,
4592 					       ffe_ctl->delalloc,
4593 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4594 		if (ret == -EAGAIN) {
4595 			btrfs_add_free_space_unused(block_group,
4596 					ffe_ctl->found_offset,
4597 					ffe_ctl->num_bytes);
4598 			goto loop;
4599 		}
4600 		btrfs_inc_block_group_reservations(block_group);
4601 
4602 		/* we are all good, lets return */
4603 		ins->objectid = ffe_ctl->search_start;
4604 		ins->offset = ffe_ctl->num_bytes;
4605 
4606 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4607 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4608 		break;
4609 loop:
4610 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4611 		    !ffe_ctl->retry_uncached) {
4612 			ffe_ctl->retry_uncached = true;
4613 			btrfs_wait_block_group_cache_progress(block_group,
4614 						ffe_ctl->num_bytes +
4615 						ffe_ctl->empty_cluster +
4616 						ffe_ctl->empty_size);
4617 			goto have_block_group;
4618 		}
4619 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4620 		cond_resched();
4621 	}
4622 	up_read(&space_info->groups_sem);
4623 
4624 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4625 	if (ret > 0)
4626 		goto search;
4627 
4628 	if (ret == -ENOSPC && !cache_block_group_error) {
4629 		/*
4630 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4631 		 * any contiguous hole.
4632 		 */
4633 		if (!ffe_ctl->max_extent_size)
4634 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4635 		spin_lock(&space_info->lock);
4636 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4637 		spin_unlock(&space_info->lock);
4638 		ins->offset = ffe_ctl->max_extent_size;
4639 	} else if (ret == -ENOSPC) {
4640 		ret = cache_block_group_error;
4641 	}
4642 	return ret;
4643 }
4644 
4645 /*
4646  * Entry point to the extent allocator. Tries to find a hole that is at least
4647  * as big as @num_bytes.
4648  *
4649  * @root           -	The root that will contain this extent
4650  *
4651  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4652  *			is used for accounting purposes. This value differs
4653  *			from @num_bytes only in the case of compressed extents.
4654  *
4655  * @num_bytes      -	Number of bytes to allocate on-disk.
4656  *
4657  * @min_alloc_size -	Indicates the minimum amount of space that the
4658  *			allocator should try to satisfy. In some cases
4659  *			@num_bytes may be larger than what is required and if
4660  *			the filesystem is fragmented then allocation fails.
4661  *			However, the presence of @min_alloc_size gives a
4662  *			chance to try and satisfy the smaller allocation.
4663  *
4664  * @empty_size     -	A hint that you plan on doing more COW. This is the
4665  *			size in bytes the allocator should try to find free
4666  *			next to the block it returns.  This is just a hint and
4667  *			may be ignored by the allocator.
4668  *
4669  * @hint_byte      -	Hint to the allocator to start searching above the byte
4670  *			address passed. It might be ignored.
4671  *
4672  * @ins            -	This key is modified to record the found hole. It will
4673  *			have the following values:
4674  *			ins->objectid == start position
4675  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4676  *			ins->offset == the size of the hole.
4677  *
4678  * @is_data        -	Boolean flag indicating whether an extent is
4679  *			allocated for data (true) or metadata (false)
4680  *
4681  * @delalloc       -	Boolean flag indicating whether this allocation is for
4682  *			delalloc or not. If 'true' data_rwsem of block groups
4683  *			is going to be acquired.
4684  *
4685  *
4686  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4687  * case -ENOSPC is returned then @ins->offset will contain the size of the
4688  * largest available hole the allocator managed to find.
4689  */
4690 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4691 			 u64 num_bytes, u64 min_alloc_size,
4692 			 u64 empty_size, u64 hint_byte,
4693 			 struct btrfs_key *ins, int is_data, int delalloc)
4694 {
4695 	struct btrfs_fs_info *fs_info = root->fs_info;
4696 	struct find_free_extent_ctl ffe_ctl = {};
4697 	bool final_tried = num_bytes == min_alloc_size;
4698 	u64 flags;
4699 	int ret;
4700 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4701 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4702 
4703 	flags = get_alloc_profile_by_root(root, is_data);
4704 again:
4705 	WARN_ON(num_bytes < fs_info->sectorsize);
4706 
4707 	ffe_ctl.ram_bytes = ram_bytes;
4708 	ffe_ctl.num_bytes = num_bytes;
4709 	ffe_ctl.min_alloc_size = min_alloc_size;
4710 	ffe_ctl.empty_size = empty_size;
4711 	ffe_ctl.flags = flags;
4712 	ffe_ctl.delalloc = delalloc;
4713 	ffe_ctl.hint_byte = hint_byte;
4714 	ffe_ctl.for_treelog = for_treelog;
4715 	ffe_ctl.for_data_reloc = for_data_reloc;
4716 
4717 	ret = find_free_extent(root, ins, &ffe_ctl);
4718 	if (!ret && !is_data) {
4719 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4720 	} else if (ret == -ENOSPC) {
4721 		if (!final_tried && ins->offset) {
4722 			num_bytes = min(num_bytes >> 1, ins->offset);
4723 			num_bytes = round_down(num_bytes,
4724 					       fs_info->sectorsize);
4725 			num_bytes = max(num_bytes, min_alloc_size);
4726 			ram_bytes = num_bytes;
4727 			if (num_bytes == min_alloc_size)
4728 				final_tried = true;
4729 			goto again;
4730 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4731 			struct btrfs_space_info *sinfo;
4732 
4733 			sinfo = btrfs_find_space_info(fs_info, flags);
4734 			btrfs_err(fs_info,
4735 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4736 				  flags, num_bytes, for_treelog, for_data_reloc);
4737 			if (sinfo)
4738 				btrfs_dump_space_info(fs_info, sinfo,
4739 						      num_bytes, 1);
4740 		}
4741 	}
4742 
4743 	return ret;
4744 }
4745 
4746 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4747 			       u64 start, u64 len, int delalloc)
4748 {
4749 	struct btrfs_block_group *cache;
4750 
4751 	cache = btrfs_lookup_block_group(fs_info, start);
4752 	if (!cache) {
4753 		btrfs_err(fs_info, "Unable to find block group for %llu",
4754 			  start);
4755 		return -ENOSPC;
4756 	}
4757 
4758 	btrfs_add_free_space(cache, start, len);
4759 	btrfs_free_reserved_bytes(cache, len, delalloc);
4760 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4761 
4762 	btrfs_put_block_group(cache);
4763 	return 0;
4764 }
4765 
4766 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4767 			      const struct extent_buffer *eb)
4768 {
4769 	struct btrfs_block_group *cache;
4770 	int ret = 0;
4771 
4772 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4773 	if (!cache) {
4774 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4775 			  eb->start);
4776 		return -ENOSPC;
4777 	}
4778 
4779 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4780 	btrfs_put_block_group(cache);
4781 	return ret;
4782 }
4783 
4784 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4785 				 u64 num_bytes)
4786 {
4787 	struct btrfs_fs_info *fs_info = trans->fs_info;
4788 	int ret;
4789 
4790 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4791 	if (ret)
4792 		return ret;
4793 
4794 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4795 	if (ret) {
4796 		ASSERT(!ret);
4797 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4798 			  bytenr, num_bytes);
4799 		return ret;
4800 	}
4801 
4802 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4803 	return 0;
4804 }
4805 
4806 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4807 				      u64 parent, u64 root_objectid,
4808 				      u64 flags, u64 owner, u64 offset,
4809 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4810 {
4811 	struct btrfs_fs_info *fs_info = trans->fs_info;
4812 	struct btrfs_root *extent_root;
4813 	int ret;
4814 	struct btrfs_extent_item *extent_item;
4815 	struct btrfs_extent_owner_ref *oref;
4816 	struct btrfs_extent_inline_ref *iref;
4817 	struct btrfs_path *path;
4818 	struct extent_buffer *leaf;
4819 	int type;
4820 	u32 size;
4821 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4822 
4823 	if (parent > 0)
4824 		type = BTRFS_SHARED_DATA_REF_KEY;
4825 	else
4826 		type = BTRFS_EXTENT_DATA_REF_KEY;
4827 
4828 	size = sizeof(*extent_item);
4829 	if (simple_quota)
4830 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4831 	size += btrfs_extent_inline_ref_size(type);
4832 
4833 	path = btrfs_alloc_path();
4834 	if (!path)
4835 		return -ENOMEM;
4836 
4837 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4838 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4839 	if (ret) {
4840 		btrfs_free_path(path);
4841 		return ret;
4842 	}
4843 
4844 	leaf = path->nodes[0];
4845 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4846 				     struct btrfs_extent_item);
4847 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4848 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4849 	btrfs_set_extent_flags(leaf, extent_item,
4850 			       flags | BTRFS_EXTENT_FLAG_DATA);
4851 
4852 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4853 	if (simple_quota) {
4854 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4855 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4856 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4857 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4858 	}
4859 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4860 
4861 	if (parent > 0) {
4862 		struct btrfs_shared_data_ref *ref;
4863 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4864 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4865 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4866 	} else {
4867 		struct btrfs_extent_data_ref *ref;
4868 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4869 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4870 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4871 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4872 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4873 	}
4874 
4875 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4876 	btrfs_free_path(path);
4877 
4878 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4879 }
4880 
4881 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4882 				     struct btrfs_delayed_ref_node *node,
4883 				     struct btrfs_delayed_extent_op *extent_op)
4884 {
4885 	struct btrfs_fs_info *fs_info = trans->fs_info;
4886 	struct btrfs_root *extent_root;
4887 	int ret;
4888 	struct btrfs_extent_item *extent_item;
4889 	struct btrfs_key extent_key;
4890 	struct btrfs_tree_block_info *block_info;
4891 	struct btrfs_extent_inline_ref *iref;
4892 	struct btrfs_path *path;
4893 	struct extent_buffer *leaf;
4894 	struct btrfs_delayed_tree_ref *ref;
4895 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4896 	u64 flags = extent_op->flags_to_set;
4897 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4898 
4899 	ref = btrfs_delayed_node_to_tree_ref(node);
4900 
4901 	extent_key.objectid = node->bytenr;
4902 	if (skinny_metadata) {
4903 		extent_key.offset = ref->level;
4904 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4905 	} else {
4906 		extent_key.offset = node->num_bytes;
4907 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4908 		size += sizeof(*block_info);
4909 	}
4910 
4911 	path = btrfs_alloc_path();
4912 	if (!path)
4913 		return -ENOMEM;
4914 
4915 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4916 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4917 				      size);
4918 	if (ret) {
4919 		btrfs_free_path(path);
4920 		return ret;
4921 	}
4922 
4923 	leaf = path->nodes[0];
4924 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4925 				     struct btrfs_extent_item);
4926 	btrfs_set_extent_refs(leaf, extent_item, 1);
4927 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4928 	btrfs_set_extent_flags(leaf, extent_item,
4929 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4930 
4931 	if (skinny_metadata) {
4932 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4933 	} else {
4934 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4935 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4936 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4937 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4938 	}
4939 
4940 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4941 		btrfs_set_extent_inline_ref_type(leaf, iref,
4942 						 BTRFS_SHARED_BLOCK_REF_KEY);
4943 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4944 	} else {
4945 		btrfs_set_extent_inline_ref_type(leaf, iref,
4946 						 BTRFS_TREE_BLOCK_REF_KEY);
4947 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4948 	}
4949 
4950 	btrfs_mark_buffer_dirty(trans, leaf);
4951 	btrfs_free_path(path);
4952 
4953 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4954 }
4955 
4956 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4957 				     struct btrfs_root *root, u64 owner,
4958 				     u64 offset, u64 ram_bytes,
4959 				     struct btrfs_key *ins)
4960 {
4961 	struct btrfs_ref generic_ref = { 0 };
4962 	u64 root_objectid = root->root_key.objectid;
4963 	u64 owning_root = root_objectid;
4964 
4965 	ASSERT(root_objectid != BTRFS_TREE_LOG_OBJECTID);
4966 
4967 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4968 		owning_root = root->relocation_src_root;
4969 
4970 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4971 			       ins->objectid, ins->offset, 0, owning_root);
4972 	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4973 			    offset, 0, false);
4974 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4975 
4976 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4977 }
4978 
4979 /*
4980  * this is used by the tree logging recovery code.  It records that
4981  * an extent has been allocated and makes sure to clear the free
4982  * space cache bits as well
4983  */
4984 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4985 				   u64 root_objectid, u64 owner, u64 offset,
4986 				   struct btrfs_key *ins)
4987 {
4988 	struct btrfs_fs_info *fs_info = trans->fs_info;
4989 	int ret;
4990 	struct btrfs_block_group *block_group;
4991 	struct btrfs_space_info *space_info;
4992 	struct btrfs_squota_delta delta = {
4993 		.root = root_objectid,
4994 		.num_bytes = ins->offset,
4995 		.generation = trans->transid,
4996 		.is_data = true,
4997 		.is_inc = true,
4998 	};
4999 
5000 	/*
5001 	 * Mixed block groups will exclude before processing the log so we only
5002 	 * need to do the exclude dance if this fs isn't mixed.
5003 	 */
5004 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
5005 		ret = __exclude_logged_extent(fs_info, ins->objectid,
5006 					      ins->offset);
5007 		if (ret)
5008 			return ret;
5009 	}
5010 
5011 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5012 	if (!block_group)
5013 		return -EINVAL;
5014 
5015 	space_info = block_group->space_info;
5016 	spin_lock(&space_info->lock);
5017 	spin_lock(&block_group->lock);
5018 	space_info->bytes_reserved += ins->offset;
5019 	block_group->reserved += ins->offset;
5020 	spin_unlock(&block_group->lock);
5021 	spin_unlock(&space_info->lock);
5022 
5023 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5024 					 offset, ins, 1, root_objectid);
5025 	if (ret)
5026 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5027 	ret = btrfs_record_squota_delta(fs_info, &delta);
5028 	btrfs_put_block_group(block_group);
5029 	return ret;
5030 }
5031 
5032 #ifdef CONFIG_BTRFS_DEBUG
5033 /*
5034  * Extra safety check in case the extent tree is corrupted and extent allocator
5035  * chooses to use a tree block which is already used and locked.
5036  */
5037 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5038 {
5039 	if (eb->lock_owner == current->pid) {
5040 		btrfs_err_rl(eb->fs_info,
5041 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5042 			     eb->start, btrfs_header_owner(eb), current->pid);
5043 		return true;
5044 	}
5045 	return false;
5046 }
5047 #else
5048 static bool check_eb_lock_owner(struct extent_buffer *eb)
5049 {
5050 	return false;
5051 }
5052 #endif
5053 
5054 static struct extent_buffer *
5055 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5056 		      u64 bytenr, int level, u64 owner,
5057 		      enum btrfs_lock_nesting nest)
5058 {
5059 	struct btrfs_fs_info *fs_info = root->fs_info;
5060 	struct extent_buffer *buf;
5061 	u64 lockdep_owner = owner;
5062 
5063 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5064 	if (IS_ERR(buf))
5065 		return buf;
5066 
5067 	if (check_eb_lock_owner(buf)) {
5068 		free_extent_buffer(buf);
5069 		return ERR_PTR(-EUCLEAN);
5070 	}
5071 
5072 	/*
5073 	 * The reloc trees are just snapshots, so we need them to appear to be
5074 	 * just like any other fs tree WRT lockdep.
5075 	 *
5076 	 * The exception however is in replace_path() in relocation, where we
5077 	 * hold the lock on the original fs root and then search for the reloc
5078 	 * root.  At that point we need to make sure any reloc root buffers are
5079 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5080 	 * lockdep happy.
5081 	 */
5082 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5083 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5084 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5085 
5086 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5087 	btrfs_set_header_generation(buf, trans->transid);
5088 
5089 	/*
5090 	 * This needs to stay, because we could allocate a freed block from an
5091 	 * old tree into a new tree, so we need to make sure this new block is
5092 	 * set to the appropriate level and owner.
5093 	 */
5094 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5095 
5096 	__btrfs_tree_lock(buf, nest);
5097 	btrfs_clear_buffer_dirty(trans, buf);
5098 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5099 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5100 
5101 	set_extent_buffer_uptodate(buf);
5102 
5103 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5104 	btrfs_set_header_level(buf, level);
5105 	btrfs_set_header_bytenr(buf, buf->start);
5106 	btrfs_set_header_generation(buf, trans->transid);
5107 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5108 	btrfs_set_header_owner(buf, owner);
5109 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5110 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5111 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5112 		buf->log_index = root->log_transid % 2;
5113 		/*
5114 		 * we allow two log transactions at a time, use different
5115 		 * EXTENT bit to differentiate dirty pages.
5116 		 */
5117 		if (buf->log_index == 0)
5118 			set_extent_bit(&root->dirty_log_pages, buf->start,
5119 				       buf->start + buf->len - 1,
5120 				       EXTENT_DIRTY, NULL);
5121 		else
5122 			set_extent_bit(&root->dirty_log_pages, buf->start,
5123 				       buf->start + buf->len - 1,
5124 				       EXTENT_NEW, NULL);
5125 	} else {
5126 		buf->log_index = -1;
5127 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5128 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5129 	}
5130 	/* this returns a buffer locked for blocking */
5131 	return buf;
5132 }
5133 
5134 /*
5135  * finds a free extent and does all the dirty work required for allocation
5136  * returns the tree buffer or an ERR_PTR on error.
5137  */
5138 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5139 					     struct btrfs_root *root,
5140 					     u64 parent, u64 root_objectid,
5141 					     const struct btrfs_disk_key *key,
5142 					     int level, u64 hint,
5143 					     u64 empty_size,
5144 					     u64 reloc_src_root,
5145 					     enum btrfs_lock_nesting nest)
5146 {
5147 	struct btrfs_fs_info *fs_info = root->fs_info;
5148 	struct btrfs_key ins;
5149 	struct btrfs_block_rsv *block_rsv;
5150 	struct extent_buffer *buf;
5151 	struct btrfs_delayed_extent_op *extent_op;
5152 	struct btrfs_ref generic_ref = { 0 };
5153 	u64 flags = 0;
5154 	int ret;
5155 	u32 blocksize = fs_info->nodesize;
5156 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5157 	u64 owning_root;
5158 
5159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5160 	if (btrfs_is_testing(fs_info)) {
5161 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5162 					    level, root_objectid, nest);
5163 		if (!IS_ERR(buf))
5164 			root->alloc_bytenr += blocksize;
5165 		return buf;
5166 	}
5167 #endif
5168 
5169 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5170 	if (IS_ERR(block_rsv))
5171 		return ERR_CAST(block_rsv);
5172 
5173 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5174 				   empty_size, hint, &ins, 0, 0);
5175 	if (ret)
5176 		goto out_unuse;
5177 
5178 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5179 				    root_objectid, nest);
5180 	if (IS_ERR(buf)) {
5181 		ret = PTR_ERR(buf);
5182 		goto out_free_reserved;
5183 	}
5184 	owning_root = btrfs_header_owner(buf);
5185 
5186 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5187 		if (parent == 0)
5188 			parent = ins.objectid;
5189 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5190 		owning_root = reloc_src_root;
5191 	} else
5192 		BUG_ON(parent > 0);
5193 
5194 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5195 		extent_op = btrfs_alloc_delayed_extent_op();
5196 		if (!extent_op) {
5197 			ret = -ENOMEM;
5198 			goto out_free_buf;
5199 		}
5200 		if (key)
5201 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5202 		else
5203 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5204 		extent_op->flags_to_set = flags;
5205 		extent_op->update_key = skinny_metadata ? false : true;
5206 		extent_op->update_flags = true;
5207 		extent_op->level = level;
5208 
5209 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5210 				       ins.objectid, ins.offset, parent, owning_root);
5211 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5212 				    root->root_key.objectid, false);
5213 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5214 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5215 		if (ret)
5216 			goto out_free_delayed;
5217 	}
5218 	return buf;
5219 
5220 out_free_delayed:
5221 	btrfs_free_delayed_extent_op(extent_op);
5222 out_free_buf:
5223 	btrfs_tree_unlock(buf);
5224 	free_extent_buffer(buf);
5225 out_free_reserved:
5226 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5227 out_unuse:
5228 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5229 	return ERR_PTR(ret);
5230 }
5231 
5232 struct walk_control {
5233 	u64 refs[BTRFS_MAX_LEVEL];
5234 	u64 flags[BTRFS_MAX_LEVEL];
5235 	struct btrfs_key update_progress;
5236 	struct btrfs_key drop_progress;
5237 	int drop_level;
5238 	int stage;
5239 	int level;
5240 	int shared_level;
5241 	int update_ref;
5242 	int keep_locks;
5243 	int reada_slot;
5244 	int reada_count;
5245 	int restarted;
5246 };
5247 
5248 #define DROP_REFERENCE	1
5249 #define UPDATE_BACKREF	2
5250 
5251 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5252 				     struct btrfs_root *root,
5253 				     struct walk_control *wc,
5254 				     struct btrfs_path *path)
5255 {
5256 	struct btrfs_fs_info *fs_info = root->fs_info;
5257 	u64 bytenr;
5258 	u64 generation;
5259 	u64 refs;
5260 	u64 flags;
5261 	u32 nritems;
5262 	struct btrfs_key key;
5263 	struct extent_buffer *eb;
5264 	int ret;
5265 	int slot;
5266 	int nread = 0;
5267 
5268 	if (path->slots[wc->level] < wc->reada_slot) {
5269 		wc->reada_count = wc->reada_count * 2 / 3;
5270 		wc->reada_count = max(wc->reada_count, 2);
5271 	} else {
5272 		wc->reada_count = wc->reada_count * 3 / 2;
5273 		wc->reada_count = min_t(int, wc->reada_count,
5274 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5275 	}
5276 
5277 	eb = path->nodes[wc->level];
5278 	nritems = btrfs_header_nritems(eb);
5279 
5280 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5281 		if (nread >= wc->reada_count)
5282 			break;
5283 
5284 		cond_resched();
5285 		bytenr = btrfs_node_blockptr(eb, slot);
5286 		generation = btrfs_node_ptr_generation(eb, slot);
5287 
5288 		if (slot == path->slots[wc->level])
5289 			goto reada;
5290 
5291 		if (wc->stage == UPDATE_BACKREF &&
5292 		    generation <= root->root_key.offset)
5293 			continue;
5294 
5295 		/* We don't lock the tree block, it's OK to be racy here */
5296 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5297 					       wc->level - 1, 1, &refs,
5298 					       &flags, NULL);
5299 		/* We don't care about errors in readahead. */
5300 		if (ret < 0)
5301 			continue;
5302 		BUG_ON(refs == 0);
5303 
5304 		if (wc->stage == DROP_REFERENCE) {
5305 			if (refs == 1)
5306 				goto reada;
5307 
5308 			if (wc->level == 1 &&
5309 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5310 				continue;
5311 			if (!wc->update_ref ||
5312 			    generation <= root->root_key.offset)
5313 				continue;
5314 			btrfs_node_key_to_cpu(eb, &key, slot);
5315 			ret = btrfs_comp_cpu_keys(&key,
5316 						  &wc->update_progress);
5317 			if (ret < 0)
5318 				continue;
5319 		} else {
5320 			if (wc->level == 1 &&
5321 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5322 				continue;
5323 		}
5324 reada:
5325 		btrfs_readahead_node_child(eb, slot);
5326 		nread++;
5327 	}
5328 	wc->reada_slot = slot;
5329 }
5330 
5331 /*
5332  * helper to process tree block while walking down the tree.
5333  *
5334  * when wc->stage == UPDATE_BACKREF, this function updates
5335  * back refs for pointers in the block.
5336  *
5337  * NOTE: return value 1 means we should stop walking down.
5338  */
5339 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5340 				   struct btrfs_root *root,
5341 				   struct btrfs_path *path,
5342 				   struct walk_control *wc, int lookup_info)
5343 {
5344 	struct btrfs_fs_info *fs_info = root->fs_info;
5345 	int level = wc->level;
5346 	struct extent_buffer *eb = path->nodes[level];
5347 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5348 	int ret;
5349 
5350 	if (wc->stage == UPDATE_BACKREF &&
5351 	    btrfs_header_owner(eb) != root->root_key.objectid)
5352 		return 1;
5353 
5354 	/*
5355 	 * when reference count of tree block is 1, it won't increase
5356 	 * again. once full backref flag is set, we never clear it.
5357 	 */
5358 	if (lookup_info &&
5359 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5360 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5361 		BUG_ON(!path->locks[level]);
5362 		ret = btrfs_lookup_extent_info(trans, fs_info,
5363 					       eb->start, level, 1,
5364 					       &wc->refs[level],
5365 					       &wc->flags[level],
5366 					       NULL);
5367 		BUG_ON(ret == -ENOMEM);
5368 		if (ret)
5369 			return ret;
5370 		BUG_ON(wc->refs[level] == 0);
5371 	}
5372 
5373 	if (wc->stage == DROP_REFERENCE) {
5374 		if (wc->refs[level] > 1)
5375 			return 1;
5376 
5377 		if (path->locks[level] && !wc->keep_locks) {
5378 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5379 			path->locks[level] = 0;
5380 		}
5381 		return 0;
5382 	}
5383 
5384 	/* wc->stage == UPDATE_BACKREF */
5385 	if (!(wc->flags[level] & flag)) {
5386 		BUG_ON(!path->locks[level]);
5387 		ret = btrfs_inc_ref(trans, root, eb, 1);
5388 		BUG_ON(ret); /* -ENOMEM */
5389 		ret = btrfs_dec_ref(trans, root, eb, 0);
5390 		BUG_ON(ret); /* -ENOMEM */
5391 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5392 		BUG_ON(ret); /* -ENOMEM */
5393 		wc->flags[level] |= flag;
5394 	}
5395 
5396 	/*
5397 	 * the block is shared by multiple trees, so it's not good to
5398 	 * keep the tree lock
5399 	 */
5400 	if (path->locks[level] && level > 0) {
5401 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5402 		path->locks[level] = 0;
5403 	}
5404 	return 0;
5405 }
5406 
5407 /*
5408  * This is used to verify a ref exists for this root to deal with a bug where we
5409  * would have a drop_progress key that hadn't been updated properly.
5410  */
5411 static int check_ref_exists(struct btrfs_trans_handle *trans,
5412 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5413 			    int level)
5414 {
5415 	struct btrfs_path *path;
5416 	struct btrfs_extent_inline_ref *iref;
5417 	int ret;
5418 
5419 	path = btrfs_alloc_path();
5420 	if (!path)
5421 		return -ENOMEM;
5422 
5423 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5424 				    root->fs_info->nodesize, parent,
5425 				    root->root_key.objectid, level, 0);
5426 	btrfs_free_path(path);
5427 	if (ret == -ENOENT)
5428 		return 0;
5429 	if (ret < 0)
5430 		return ret;
5431 	return 1;
5432 }
5433 
5434 /*
5435  * helper to process tree block pointer.
5436  *
5437  * when wc->stage == DROP_REFERENCE, this function checks
5438  * reference count of the block pointed to. if the block
5439  * is shared and we need update back refs for the subtree
5440  * rooted at the block, this function changes wc->stage to
5441  * UPDATE_BACKREF. if the block is shared and there is no
5442  * need to update back, this function drops the reference
5443  * to the block.
5444  *
5445  * NOTE: return value 1 means we should stop walking down.
5446  */
5447 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5448 				 struct btrfs_root *root,
5449 				 struct btrfs_path *path,
5450 				 struct walk_control *wc, int *lookup_info)
5451 {
5452 	struct btrfs_fs_info *fs_info = root->fs_info;
5453 	u64 bytenr;
5454 	u64 generation;
5455 	u64 parent;
5456 	u64 owner_root = 0;
5457 	struct btrfs_tree_parent_check check = { 0 };
5458 	struct btrfs_key key;
5459 	struct btrfs_ref ref = { 0 };
5460 	struct extent_buffer *next;
5461 	int level = wc->level;
5462 	int reada = 0;
5463 	int ret = 0;
5464 	bool need_account = false;
5465 
5466 	generation = btrfs_node_ptr_generation(path->nodes[level],
5467 					       path->slots[level]);
5468 	/*
5469 	 * if the lower level block was created before the snapshot
5470 	 * was created, we know there is no need to update back refs
5471 	 * for the subtree
5472 	 */
5473 	if (wc->stage == UPDATE_BACKREF &&
5474 	    generation <= root->root_key.offset) {
5475 		*lookup_info = 1;
5476 		return 1;
5477 	}
5478 
5479 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5480 
5481 	check.level = level - 1;
5482 	check.transid = generation;
5483 	check.owner_root = root->root_key.objectid;
5484 	check.has_first_key = true;
5485 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5486 			      path->slots[level]);
5487 
5488 	next = find_extent_buffer(fs_info, bytenr);
5489 	if (!next) {
5490 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5491 				root->root_key.objectid, level - 1);
5492 		if (IS_ERR(next))
5493 			return PTR_ERR(next);
5494 		reada = 1;
5495 	}
5496 	btrfs_tree_lock(next);
5497 
5498 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5499 				       &wc->refs[level - 1],
5500 				       &wc->flags[level - 1],
5501 				       &owner_root);
5502 	if (ret < 0)
5503 		goto out_unlock;
5504 
5505 	if (unlikely(wc->refs[level - 1] == 0)) {
5506 		btrfs_err(fs_info, "Missing references.");
5507 		ret = -EIO;
5508 		goto out_unlock;
5509 	}
5510 	*lookup_info = 0;
5511 
5512 	if (wc->stage == DROP_REFERENCE) {
5513 		if (wc->refs[level - 1] > 1) {
5514 			need_account = true;
5515 			if (level == 1 &&
5516 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5517 				goto skip;
5518 
5519 			if (!wc->update_ref ||
5520 			    generation <= root->root_key.offset)
5521 				goto skip;
5522 
5523 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5524 					      path->slots[level]);
5525 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5526 			if (ret < 0)
5527 				goto skip;
5528 
5529 			wc->stage = UPDATE_BACKREF;
5530 			wc->shared_level = level - 1;
5531 		}
5532 	} else {
5533 		if (level == 1 &&
5534 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5535 			goto skip;
5536 	}
5537 
5538 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5539 		btrfs_tree_unlock(next);
5540 		free_extent_buffer(next);
5541 		next = NULL;
5542 		*lookup_info = 1;
5543 	}
5544 
5545 	if (!next) {
5546 		if (reada && level == 1)
5547 			reada_walk_down(trans, root, wc, path);
5548 		next = read_tree_block(fs_info, bytenr, &check);
5549 		if (IS_ERR(next)) {
5550 			return PTR_ERR(next);
5551 		} else if (!extent_buffer_uptodate(next)) {
5552 			free_extent_buffer(next);
5553 			return -EIO;
5554 		}
5555 		btrfs_tree_lock(next);
5556 	}
5557 
5558 	level--;
5559 	ASSERT(level == btrfs_header_level(next));
5560 	if (level != btrfs_header_level(next)) {
5561 		btrfs_err(root->fs_info, "mismatched level");
5562 		ret = -EIO;
5563 		goto out_unlock;
5564 	}
5565 	path->nodes[level] = next;
5566 	path->slots[level] = 0;
5567 	path->locks[level] = BTRFS_WRITE_LOCK;
5568 	wc->level = level;
5569 	if (wc->level == 1)
5570 		wc->reada_slot = 0;
5571 	return 0;
5572 skip:
5573 	wc->refs[level - 1] = 0;
5574 	wc->flags[level - 1] = 0;
5575 	if (wc->stage == DROP_REFERENCE) {
5576 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5577 			parent = path->nodes[level]->start;
5578 		} else {
5579 			ASSERT(root->root_key.objectid ==
5580 			       btrfs_header_owner(path->nodes[level]));
5581 			if (root->root_key.objectid !=
5582 			    btrfs_header_owner(path->nodes[level])) {
5583 				btrfs_err(root->fs_info,
5584 						"mismatched block owner");
5585 				ret = -EIO;
5586 				goto out_unlock;
5587 			}
5588 			parent = 0;
5589 		}
5590 
5591 		/*
5592 		 * If we had a drop_progress we need to verify the refs are set
5593 		 * as expected.  If we find our ref then we know that from here
5594 		 * on out everything should be correct, and we can clear the
5595 		 * ->restarted flag.
5596 		 */
5597 		if (wc->restarted) {
5598 			ret = check_ref_exists(trans, root, bytenr, parent,
5599 					       level - 1);
5600 			if (ret < 0)
5601 				goto out_unlock;
5602 			if (ret == 0)
5603 				goto no_delete;
5604 			ret = 0;
5605 			wc->restarted = 0;
5606 		}
5607 
5608 		/*
5609 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5610 		 * already accounted them at merge time (replace_path),
5611 		 * thus we could skip expensive subtree trace here.
5612 		 */
5613 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5614 		    need_account) {
5615 			ret = btrfs_qgroup_trace_subtree(trans, next,
5616 							 generation, level - 1);
5617 			if (ret) {
5618 				btrfs_err_rl(fs_info,
5619 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5620 					     ret);
5621 			}
5622 		}
5623 
5624 		/*
5625 		 * We need to update the next key in our walk control so we can
5626 		 * update the drop_progress key accordingly.  We don't care if
5627 		 * find_next_key doesn't find a key because that means we're at
5628 		 * the end and are going to clean up now.
5629 		 */
5630 		wc->drop_level = level;
5631 		find_next_key(path, level, &wc->drop_progress);
5632 
5633 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5634 				       fs_info->nodesize, parent, owner_root);
5635 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5636 				    0, false);
5637 		ret = btrfs_free_extent(trans, &ref);
5638 		if (ret)
5639 			goto out_unlock;
5640 	}
5641 no_delete:
5642 	*lookup_info = 1;
5643 	ret = 1;
5644 
5645 out_unlock:
5646 	btrfs_tree_unlock(next);
5647 	free_extent_buffer(next);
5648 
5649 	return ret;
5650 }
5651 
5652 /*
5653  * helper to process tree block while walking up the tree.
5654  *
5655  * when wc->stage == DROP_REFERENCE, this function drops
5656  * reference count on the block.
5657  *
5658  * when wc->stage == UPDATE_BACKREF, this function changes
5659  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5660  * to UPDATE_BACKREF previously while processing the block.
5661  *
5662  * NOTE: return value 1 means we should stop walking up.
5663  */
5664 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5665 				 struct btrfs_root *root,
5666 				 struct btrfs_path *path,
5667 				 struct walk_control *wc)
5668 {
5669 	struct btrfs_fs_info *fs_info = root->fs_info;
5670 	int ret;
5671 	int level = wc->level;
5672 	struct extent_buffer *eb = path->nodes[level];
5673 	u64 parent = 0;
5674 
5675 	if (wc->stage == UPDATE_BACKREF) {
5676 		BUG_ON(wc->shared_level < level);
5677 		if (level < wc->shared_level)
5678 			goto out;
5679 
5680 		ret = find_next_key(path, level + 1, &wc->update_progress);
5681 		if (ret > 0)
5682 			wc->update_ref = 0;
5683 
5684 		wc->stage = DROP_REFERENCE;
5685 		wc->shared_level = -1;
5686 		path->slots[level] = 0;
5687 
5688 		/*
5689 		 * check reference count again if the block isn't locked.
5690 		 * we should start walking down the tree again if reference
5691 		 * count is one.
5692 		 */
5693 		if (!path->locks[level]) {
5694 			BUG_ON(level == 0);
5695 			btrfs_tree_lock(eb);
5696 			path->locks[level] = BTRFS_WRITE_LOCK;
5697 
5698 			ret = btrfs_lookup_extent_info(trans, fs_info,
5699 						       eb->start, level, 1,
5700 						       &wc->refs[level],
5701 						       &wc->flags[level],
5702 						       NULL);
5703 			if (ret < 0) {
5704 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5705 				path->locks[level] = 0;
5706 				return ret;
5707 			}
5708 			BUG_ON(wc->refs[level] == 0);
5709 			if (wc->refs[level] == 1) {
5710 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5711 				path->locks[level] = 0;
5712 				return 1;
5713 			}
5714 		}
5715 	}
5716 
5717 	/* wc->stage == DROP_REFERENCE */
5718 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5719 
5720 	if (wc->refs[level] == 1) {
5721 		if (level == 0) {
5722 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5723 				ret = btrfs_dec_ref(trans, root, eb, 1);
5724 			else
5725 				ret = btrfs_dec_ref(trans, root, eb, 0);
5726 			BUG_ON(ret); /* -ENOMEM */
5727 			if (is_fstree(root->root_key.objectid)) {
5728 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5729 				if (ret) {
5730 					btrfs_err_rl(fs_info,
5731 	"error %d accounting leaf items, quota is out of sync, rescan required",
5732 					     ret);
5733 				}
5734 			}
5735 		}
5736 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5737 		if (!path->locks[level]) {
5738 			btrfs_tree_lock(eb);
5739 			path->locks[level] = BTRFS_WRITE_LOCK;
5740 		}
5741 		btrfs_clear_buffer_dirty(trans, eb);
5742 	}
5743 
5744 	if (eb == root->node) {
5745 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5746 			parent = eb->start;
5747 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5748 			goto owner_mismatch;
5749 	} else {
5750 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5751 			parent = path->nodes[level + 1]->start;
5752 		else if (root->root_key.objectid !=
5753 			 btrfs_header_owner(path->nodes[level + 1]))
5754 			goto owner_mismatch;
5755 	}
5756 
5757 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5758 			      wc->refs[level] == 1);
5759 out:
5760 	wc->refs[level] = 0;
5761 	wc->flags[level] = 0;
5762 	return 0;
5763 
5764 owner_mismatch:
5765 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5766 		     btrfs_header_owner(eb), root->root_key.objectid);
5767 	return -EUCLEAN;
5768 }
5769 
5770 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5771 				   struct btrfs_root *root,
5772 				   struct btrfs_path *path,
5773 				   struct walk_control *wc)
5774 {
5775 	int level = wc->level;
5776 	int lookup_info = 1;
5777 	int ret = 0;
5778 
5779 	while (level >= 0) {
5780 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5781 		if (ret)
5782 			break;
5783 
5784 		if (level == 0)
5785 			break;
5786 
5787 		if (path->slots[level] >=
5788 		    btrfs_header_nritems(path->nodes[level]))
5789 			break;
5790 
5791 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5792 		if (ret > 0) {
5793 			path->slots[level]++;
5794 			continue;
5795 		} else if (ret < 0)
5796 			break;
5797 		level = wc->level;
5798 	}
5799 	return (ret == 1) ? 0 : ret;
5800 }
5801 
5802 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5803 				 struct btrfs_root *root,
5804 				 struct btrfs_path *path,
5805 				 struct walk_control *wc, int max_level)
5806 {
5807 	int level = wc->level;
5808 	int ret;
5809 
5810 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5811 	while (level < max_level && path->nodes[level]) {
5812 		wc->level = level;
5813 		if (path->slots[level] + 1 <
5814 		    btrfs_header_nritems(path->nodes[level])) {
5815 			path->slots[level]++;
5816 			return 0;
5817 		} else {
5818 			ret = walk_up_proc(trans, root, path, wc);
5819 			if (ret > 0)
5820 				return 0;
5821 			if (ret < 0)
5822 				return ret;
5823 
5824 			if (path->locks[level]) {
5825 				btrfs_tree_unlock_rw(path->nodes[level],
5826 						     path->locks[level]);
5827 				path->locks[level] = 0;
5828 			}
5829 			free_extent_buffer(path->nodes[level]);
5830 			path->nodes[level] = NULL;
5831 			level++;
5832 		}
5833 	}
5834 	return 1;
5835 }
5836 
5837 /*
5838  * drop a subvolume tree.
5839  *
5840  * this function traverses the tree freeing any blocks that only
5841  * referenced by the tree.
5842  *
5843  * when a shared tree block is found. this function decreases its
5844  * reference count by one. if update_ref is true, this function
5845  * also make sure backrefs for the shared block and all lower level
5846  * blocks are properly updated.
5847  *
5848  * If called with for_reloc == 0, may exit early with -EAGAIN
5849  */
5850 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5851 {
5852 	const bool is_reloc_root = (root->root_key.objectid ==
5853 				    BTRFS_TREE_RELOC_OBJECTID);
5854 	struct btrfs_fs_info *fs_info = root->fs_info;
5855 	struct btrfs_path *path;
5856 	struct btrfs_trans_handle *trans;
5857 	struct btrfs_root *tree_root = fs_info->tree_root;
5858 	struct btrfs_root_item *root_item = &root->root_item;
5859 	struct walk_control *wc;
5860 	struct btrfs_key key;
5861 	int err = 0;
5862 	int ret;
5863 	int level;
5864 	bool root_dropped = false;
5865 	bool unfinished_drop = false;
5866 
5867 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5868 
5869 	path = btrfs_alloc_path();
5870 	if (!path) {
5871 		err = -ENOMEM;
5872 		goto out;
5873 	}
5874 
5875 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5876 	if (!wc) {
5877 		btrfs_free_path(path);
5878 		err = -ENOMEM;
5879 		goto out;
5880 	}
5881 
5882 	/*
5883 	 * Use join to avoid potential EINTR from transaction start. See
5884 	 * wait_reserve_ticket and the whole reservation callchain.
5885 	 */
5886 	if (for_reloc)
5887 		trans = btrfs_join_transaction(tree_root);
5888 	else
5889 		trans = btrfs_start_transaction(tree_root, 0);
5890 	if (IS_ERR(trans)) {
5891 		err = PTR_ERR(trans);
5892 		goto out_free;
5893 	}
5894 
5895 	err = btrfs_run_delayed_items(trans);
5896 	if (err)
5897 		goto out_end_trans;
5898 
5899 	/*
5900 	 * This will help us catch people modifying the fs tree while we're
5901 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5902 	 * dropped as we unlock the root node and parent nodes as we walk down
5903 	 * the tree, assuming nothing will change.  If something does change
5904 	 * then we'll have stale information and drop references to blocks we've
5905 	 * already dropped.
5906 	 */
5907 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5908 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5909 
5910 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5911 		level = btrfs_header_level(root->node);
5912 		path->nodes[level] = btrfs_lock_root_node(root);
5913 		path->slots[level] = 0;
5914 		path->locks[level] = BTRFS_WRITE_LOCK;
5915 		memset(&wc->update_progress, 0,
5916 		       sizeof(wc->update_progress));
5917 	} else {
5918 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5919 		memcpy(&wc->update_progress, &key,
5920 		       sizeof(wc->update_progress));
5921 
5922 		level = btrfs_root_drop_level(root_item);
5923 		BUG_ON(level == 0);
5924 		path->lowest_level = level;
5925 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5926 		path->lowest_level = 0;
5927 		if (ret < 0) {
5928 			err = ret;
5929 			goto out_end_trans;
5930 		}
5931 		WARN_ON(ret > 0);
5932 
5933 		/*
5934 		 * unlock our path, this is safe because only this
5935 		 * function is allowed to delete this snapshot
5936 		 */
5937 		btrfs_unlock_up_safe(path, 0);
5938 
5939 		level = btrfs_header_level(root->node);
5940 		while (1) {
5941 			btrfs_tree_lock(path->nodes[level]);
5942 			path->locks[level] = BTRFS_WRITE_LOCK;
5943 
5944 			ret = btrfs_lookup_extent_info(trans, fs_info,
5945 						path->nodes[level]->start,
5946 						level, 1, &wc->refs[level],
5947 						&wc->flags[level], NULL);
5948 			if (ret < 0) {
5949 				err = ret;
5950 				goto out_end_trans;
5951 			}
5952 			BUG_ON(wc->refs[level] == 0);
5953 
5954 			if (level == btrfs_root_drop_level(root_item))
5955 				break;
5956 
5957 			btrfs_tree_unlock(path->nodes[level]);
5958 			path->locks[level] = 0;
5959 			WARN_ON(wc->refs[level] != 1);
5960 			level--;
5961 		}
5962 	}
5963 
5964 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5965 	wc->level = level;
5966 	wc->shared_level = -1;
5967 	wc->stage = DROP_REFERENCE;
5968 	wc->update_ref = update_ref;
5969 	wc->keep_locks = 0;
5970 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5971 
5972 	while (1) {
5973 
5974 		ret = walk_down_tree(trans, root, path, wc);
5975 		if (ret < 0) {
5976 			btrfs_abort_transaction(trans, ret);
5977 			err = ret;
5978 			break;
5979 		}
5980 
5981 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5982 		if (ret < 0) {
5983 			btrfs_abort_transaction(trans, ret);
5984 			err = ret;
5985 			break;
5986 		}
5987 
5988 		if (ret > 0) {
5989 			BUG_ON(wc->stage != DROP_REFERENCE);
5990 			break;
5991 		}
5992 
5993 		if (wc->stage == DROP_REFERENCE) {
5994 			wc->drop_level = wc->level;
5995 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5996 					      &wc->drop_progress,
5997 					      path->slots[wc->drop_level]);
5998 		}
5999 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6000 				      &wc->drop_progress);
6001 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6002 
6003 		BUG_ON(wc->level == 0);
6004 		if (btrfs_should_end_transaction(trans) ||
6005 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6006 			ret = btrfs_update_root(trans, tree_root,
6007 						&root->root_key,
6008 						root_item);
6009 			if (ret) {
6010 				btrfs_abort_transaction(trans, ret);
6011 				err = ret;
6012 				goto out_end_trans;
6013 			}
6014 
6015 			if (!is_reloc_root)
6016 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6017 
6018 			btrfs_end_transaction_throttle(trans);
6019 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6020 				btrfs_debug(fs_info,
6021 					    "drop snapshot early exit");
6022 				err = -EAGAIN;
6023 				goto out_free;
6024 			}
6025 
6026 		       /*
6027 			* Use join to avoid potential EINTR from transaction
6028 			* start. See wait_reserve_ticket and the whole
6029 			* reservation callchain.
6030 			*/
6031 			if (for_reloc)
6032 				trans = btrfs_join_transaction(tree_root);
6033 			else
6034 				trans = btrfs_start_transaction(tree_root, 0);
6035 			if (IS_ERR(trans)) {
6036 				err = PTR_ERR(trans);
6037 				goto out_free;
6038 			}
6039 		}
6040 	}
6041 	btrfs_release_path(path);
6042 	if (err)
6043 		goto out_end_trans;
6044 
6045 	ret = btrfs_del_root(trans, &root->root_key);
6046 	if (ret) {
6047 		btrfs_abort_transaction(trans, ret);
6048 		err = ret;
6049 		goto out_end_trans;
6050 	}
6051 
6052 	if (!is_reloc_root) {
6053 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6054 				      NULL, NULL);
6055 		if (ret < 0) {
6056 			btrfs_abort_transaction(trans, ret);
6057 			err = ret;
6058 			goto out_end_trans;
6059 		} else if (ret > 0) {
6060 			/* if we fail to delete the orphan item this time
6061 			 * around, it'll get picked up the next time.
6062 			 *
6063 			 * The most common failure here is just -ENOENT.
6064 			 */
6065 			btrfs_del_orphan_item(trans, tree_root,
6066 					      root->root_key.objectid);
6067 		}
6068 	}
6069 
6070 	/*
6071 	 * This subvolume is going to be completely dropped, and won't be
6072 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6073 	 * commit transaction time.  So free it here manually.
6074 	 */
6075 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6076 	btrfs_qgroup_free_meta_all_pertrans(root);
6077 
6078 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6079 		btrfs_add_dropped_root(trans, root);
6080 	else
6081 		btrfs_put_root(root);
6082 	root_dropped = true;
6083 out_end_trans:
6084 	if (!is_reloc_root)
6085 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6086 
6087 	btrfs_end_transaction_throttle(trans);
6088 out_free:
6089 	kfree(wc);
6090 	btrfs_free_path(path);
6091 out:
6092 	/*
6093 	 * We were an unfinished drop root, check to see if there are any
6094 	 * pending, and if not clear and wake up any waiters.
6095 	 */
6096 	if (!err && unfinished_drop)
6097 		btrfs_maybe_wake_unfinished_drop(fs_info);
6098 
6099 	/*
6100 	 * So if we need to stop dropping the snapshot for whatever reason we
6101 	 * need to make sure to add it back to the dead root list so that we
6102 	 * keep trying to do the work later.  This also cleans up roots if we
6103 	 * don't have it in the radix (like when we recover after a power fail
6104 	 * or unmount) so we don't leak memory.
6105 	 */
6106 	if (!for_reloc && !root_dropped)
6107 		btrfs_add_dead_root(root);
6108 	return err;
6109 }
6110 
6111 /*
6112  * drop subtree rooted at tree block 'node'.
6113  *
6114  * NOTE: this function will unlock and release tree block 'node'
6115  * only used by relocation code
6116  */
6117 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6118 			struct btrfs_root *root,
6119 			struct extent_buffer *node,
6120 			struct extent_buffer *parent)
6121 {
6122 	struct btrfs_fs_info *fs_info = root->fs_info;
6123 	struct btrfs_path *path;
6124 	struct walk_control *wc;
6125 	int level;
6126 	int parent_level;
6127 	int ret = 0;
6128 	int wret;
6129 
6130 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6131 
6132 	path = btrfs_alloc_path();
6133 	if (!path)
6134 		return -ENOMEM;
6135 
6136 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6137 	if (!wc) {
6138 		btrfs_free_path(path);
6139 		return -ENOMEM;
6140 	}
6141 
6142 	btrfs_assert_tree_write_locked(parent);
6143 	parent_level = btrfs_header_level(parent);
6144 	atomic_inc(&parent->refs);
6145 	path->nodes[parent_level] = parent;
6146 	path->slots[parent_level] = btrfs_header_nritems(parent);
6147 
6148 	btrfs_assert_tree_write_locked(node);
6149 	level = btrfs_header_level(node);
6150 	path->nodes[level] = node;
6151 	path->slots[level] = 0;
6152 	path->locks[level] = BTRFS_WRITE_LOCK;
6153 
6154 	wc->refs[parent_level] = 1;
6155 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6156 	wc->level = level;
6157 	wc->shared_level = -1;
6158 	wc->stage = DROP_REFERENCE;
6159 	wc->update_ref = 0;
6160 	wc->keep_locks = 1;
6161 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6162 
6163 	while (1) {
6164 		wret = walk_down_tree(trans, root, path, wc);
6165 		if (wret < 0) {
6166 			ret = wret;
6167 			break;
6168 		}
6169 
6170 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6171 		if (wret < 0)
6172 			ret = wret;
6173 		if (wret != 0)
6174 			break;
6175 	}
6176 
6177 	kfree(wc);
6178 	btrfs_free_path(path);
6179 	return ret;
6180 }
6181 
6182 /*
6183  * Unpin the extent range in an error context and don't add the space back.
6184  * Errors are not propagated further.
6185  */
6186 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6187 {
6188 	unpin_extent_range(fs_info, start, end, false);
6189 }
6190 
6191 /*
6192  * It used to be that old block groups would be left around forever.
6193  * Iterating over them would be enough to trim unused space.  Since we
6194  * now automatically remove them, we also need to iterate over unallocated
6195  * space.
6196  *
6197  * We don't want a transaction for this since the discard may take a
6198  * substantial amount of time.  We don't require that a transaction be
6199  * running, but we do need to take a running transaction into account
6200  * to ensure that we're not discarding chunks that were released or
6201  * allocated in the current transaction.
6202  *
6203  * Holding the chunks lock will prevent other threads from allocating
6204  * or releasing chunks, but it won't prevent a running transaction
6205  * from committing and releasing the memory that the pending chunks
6206  * list head uses.  For that, we need to take a reference to the
6207  * transaction and hold the commit root sem.  We only need to hold
6208  * it while performing the free space search since we have already
6209  * held back allocations.
6210  */
6211 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6212 {
6213 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6214 	int ret;
6215 
6216 	*trimmed = 0;
6217 
6218 	/* Discard not supported = nothing to do. */
6219 	if (!bdev_max_discard_sectors(device->bdev))
6220 		return 0;
6221 
6222 	/* Not writable = nothing to do. */
6223 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6224 		return 0;
6225 
6226 	/* No free space = nothing to do. */
6227 	if (device->total_bytes <= device->bytes_used)
6228 		return 0;
6229 
6230 	ret = 0;
6231 
6232 	while (1) {
6233 		struct btrfs_fs_info *fs_info = device->fs_info;
6234 		u64 bytes;
6235 
6236 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6237 		if (ret)
6238 			break;
6239 
6240 		find_first_clear_extent_bit(&device->alloc_state, start,
6241 					    &start, &end,
6242 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6243 
6244 		/* Check if there are any CHUNK_* bits left */
6245 		if (start > device->total_bytes) {
6246 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6247 			btrfs_warn_in_rcu(fs_info,
6248 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6249 					  start, end - start + 1,
6250 					  btrfs_dev_name(device),
6251 					  device->total_bytes);
6252 			mutex_unlock(&fs_info->chunk_mutex);
6253 			ret = 0;
6254 			break;
6255 		}
6256 
6257 		/* Ensure we skip the reserved space on each device. */
6258 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6259 
6260 		/*
6261 		 * If find_first_clear_extent_bit find a range that spans the
6262 		 * end of the device it will set end to -1, in this case it's up
6263 		 * to the caller to trim the value to the size of the device.
6264 		 */
6265 		end = min(end, device->total_bytes - 1);
6266 
6267 		len = end - start + 1;
6268 
6269 		/* We didn't find any extents */
6270 		if (!len) {
6271 			mutex_unlock(&fs_info->chunk_mutex);
6272 			ret = 0;
6273 			break;
6274 		}
6275 
6276 		ret = btrfs_issue_discard(device->bdev, start, len,
6277 					  &bytes);
6278 		if (!ret)
6279 			set_extent_bit(&device->alloc_state, start,
6280 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6281 		mutex_unlock(&fs_info->chunk_mutex);
6282 
6283 		if (ret)
6284 			break;
6285 
6286 		start += len;
6287 		*trimmed += bytes;
6288 
6289 		if (fatal_signal_pending(current)) {
6290 			ret = -ERESTARTSYS;
6291 			break;
6292 		}
6293 
6294 		cond_resched();
6295 	}
6296 
6297 	return ret;
6298 }
6299 
6300 /*
6301  * Trim the whole filesystem by:
6302  * 1) trimming the free space in each block group
6303  * 2) trimming the unallocated space on each device
6304  *
6305  * This will also continue trimming even if a block group or device encounters
6306  * an error.  The return value will be the last error, or 0 if nothing bad
6307  * happens.
6308  */
6309 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6310 {
6311 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6312 	struct btrfs_block_group *cache = NULL;
6313 	struct btrfs_device *device;
6314 	u64 group_trimmed;
6315 	u64 range_end = U64_MAX;
6316 	u64 start;
6317 	u64 end;
6318 	u64 trimmed = 0;
6319 	u64 bg_failed = 0;
6320 	u64 dev_failed = 0;
6321 	int bg_ret = 0;
6322 	int dev_ret = 0;
6323 	int ret = 0;
6324 
6325 	if (range->start == U64_MAX)
6326 		return -EINVAL;
6327 
6328 	/*
6329 	 * Check range overflow if range->len is set.
6330 	 * The default range->len is U64_MAX.
6331 	 */
6332 	if (range->len != U64_MAX &&
6333 	    check_add_overflow(range->start, range->len, &range_end))
6334 		return -EINVAL;
6335 
6336 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6337 	for (; cache; cache = btrfs_next_block_group(cache)) {
6338 		if (cache->start >= range_end) {
6339 			btrfs_put_block_group(cache);
6340 			break;
6341 		}
6342 
6343 		start = max(range->start, cache->start);
6344 		end = min(range_end, cache->start + cache->length);
6345 
6346 		if (end - start >= range->minlen) {
6347 			if (!btrfs_block_group_done(cache)) {
6348 				ret = btrfs_cache_block_group(cache, true);
6349 				if (ret) {
6350 					bg_failed++;
6351 					bg_ret = ret;
6352 					continue;
6353 				}
6354 			}
6355 			ret = btrfs_trim_block_group(cache,
6356 						     &group_trimmed,
6357 						     start,
6358 						     end,
6359 						     range->minlen);
6360 
6361 			trimmed += group_trimmed;
6362 			if (ret) {
6363 				bg_failed++;
6364 				bg_ret = ret;
6365 				continue;
6366 			}
6367 		}
6368 	}
6369 
6370 	if (bg_failed)
6371 		btrfs_warn(fs_info,
6372 			"failed to trim %llu block group(s), last error %d",
6373 			bg_failed, bg_ret);
6374 
6375 	mutex_lock(&fs_devices->device_list_mutex);
6376 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6377 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6378 			continue;
6379 
6380 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6381 		if (ret) {
6382 			dev_failed++;
6383 			dev_ret = ret;
6384 			break;
6385 		}
6386 
6387 		trimmed += group_trimmed;
6388 	}
6389 	mutex_unlock(&fs_devices->device_list_mutex);
6390 
6391 	if (dev_failed)
6392 		btrfs_warn(fs_info,
6393 			"failed to trim %llu device(s), last error %d",
6394 			dev_failed, dev_ret);
6395 	range->len = trimmed;
6396 	if (bg_ret)
6397 		return bg_ret;
6398 	return dev_ret;
6399 }
6400