1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 struct btrfs_delayed_ref_node *node, 50 struct btrfs_delayed_extent_op *extra_op); 51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 52 struct extent_buffer *leaf, 53 struct btrfs_extent_item *ei); 54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 55 u64 parent, u64 root_objectid, 56 u64 flags, u64 owner, u64 offset, 57 struct btrfs_key *ins, int ref_mod, u64 oref_root); 58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 59 struct btrfs_delayed_ref_node *node, 60 struct btrfs_delayed_extent_op *extent_op); 61 static int find_next_key(struct btrfs_path *path, int level, 62 struct btrfs_key *key); 63 64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 65 { 66 return (cache->flags & bits) == bits; 67 } 68 69 /* simple helper to search for an existing data extent at a given offset */ 70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 71 { 72 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 73 int ret; 74 struct btrfs_key key; 75 struct btrfs_path *path; 76 77 path = btrfs_alloc_path(); 78 if (!path) 79 return -ENOMEM; 80 81 key.objectid = start; 82 key.offset = len; 83 key.type = BTRFS_EXTENT_ITEM_KEY; 84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 85 btrfs_free_path(path); 86 return ret; 87 } 88 89 /* 90 * helper function to lookup reference count and flags of a tree block. 91 * 92 * the head node for delayed ref is used to store the sum of all the 93 * reference count modifications queued up in the rbtree. the head 94 * node may also store the extent flags to set. This way you can check 95 * to see what the reference count and extent flags would be if all of 96 * the delayed refs are not processed. 97 */ 98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 99 struct btrfs_fs_info *fs_info, u64 bytenr, 100 u64 offset, int metadata, u64 *refs, u64 *flags, 101 u64 *owning_root) 102 { 103 struct btrfs_root *extent_root; 104 struct btrfs_delayed_ref_head *head; 105 struct btrfs_delayed_ref_root *delayed_refs; 106 struct btrfs_path *path; 107 struct btrfs_key key; 108 u64 num_refs; 109 u64 extent_flags; 110 u64 owner = 0; 111 int ret; 112 113 /* 114 * If we don't have skinny metadata, don't bother doing anything 115 * different 116 */ 117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 118 offset = fs_info->nodesize; 119 metadata = 0; 120 } 121 122 path = btrfs_alloc_path(); 123 if (!path) 124 return -ENOMEM; 125 126 search_again: 127 key.objectid = bytenr; 128 key.offset = offset; 129 if (metadata) 130 key.type = BTRFS_METADATA_ITEM_KEY; 131 else 132 key.type = BTRFS_EXTENT_ITEM_KEY; 133 134 extent_root = btrfs_extent_root(fs_info, bytenr); 135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 136 if (ret < 0) 137 goto out_free; 138 139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 140 if (path->slots[0]) { 141 path->slots[0]--; 142 btrfs_item_key_to_cpu(path->nodes[0], &key, 143 path->slots[0]); 144 if (key.objectid == bytenr && 145 key.type == BTRFS_EXTENT_ITEM_KEY && 146 key.offset == fs_info->nodesize) 147 ret = 0; 148 } 149 } 150 151 if (ret == 0) { 152 struct extent_buffer *leaf = path->nodes[0]; 153 struct btrfs_extent_item *ei; 154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 155 156 if (unlikely(item_size < sizeof(*ei))) { 157 ret = -EUCLEAN; 158 btrfs_err(fs_info, 159 "unexpected extent item size, has %u expect >= %zu", 160 item_size, sizeof(*ei)); 161 btrfs_abort_transaction(trans, ret); 162 goto out_free; 163 } 164 165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 if (unlikely(num_refs == 0)) { 168 ret = -EUCLEAN; 169 btrfs_err(fs_info, 170 "unexpected zero reference count for extent item (%llu %u %llu)", 171 key.objectid, key.type, key.offset); 172 btrfs_abort_transaction(trans, ret); 173 goto out_free; 174 } 175 extent_flags = btrfs_extent_flags(leaf, ei); 176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 177 } else { 178 num_refs = 0; 179 extent_flags = 0; 180 ret = 0; 181 } 182 183 delayed_refs = &trans->transaction->delayed_refs; 184 spin_lock(&delayed_refs->lock); 185 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 186 if (head) { 187 if (!mutex_trylock(&head->mutex)) { 188 refcount_inc(&head->refs); 189 spin_unlock(&delayed_refs->lock); 190 191 btrfs_release_path(path); 192 193 /* 194 * Mutex was contended, block until it's released and try 195 * again 196 */ 197 mutex_lock(&head->mutex); 198 mutex_unlock(&head->mutex); 199 btrfs_put_delayed_ref_head(head); 200 goto search_again; 201 } 202 spin_lock(&head->lock); 203 if (head->extent_op && head->extent_op->update_flags) 204 extent_flags |= head->extent_op->flags_to_set; 205 206 num_refs += head->ref_mod; 207 spin_unlock(&head->lock); 208 mutex_unlock(&head->mutex); 209 } 210 spin_unlock(&delayed_refs->lock); 211 212 WARN_ON(num_refs == 0); 213 if (refs) 214 *refs = num_refs; 215 if (flags) 216 *flags = extent_flags; 217 if (owning_root) 218 *owning_root = owner; 219 out_free: 220 btrfs_free_path(path); 221 return ret; 222 } 223 224 /* 225 * Back reference rules. Back refs have three main goals: 226 * 227 * 1) differentiate between all holders of references to an extent so that 228 * when a reference is dropped we can make sure it was a valid reference 229 * before freeing the extent. 230 * 231 * 2) Provide enough information to quickly find the holders of an extent 232 * if we notice a given block is corrupted or bad. 233 * 234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 235 * maintenance. This is actually the same as #2, but with a slightly 236 * different use case. 237 * 238 * There are two kinds of back refs. The implicit back refs is optimized 239 * for pointers in non-shared tree blocks. For a given pointer in a block, 240 * back refs of this kind provide information about the block's owner tree 241 * and the pointer's key. These information allow us to find the block by 242 * b-tree searching. The full back refs is for pointers in tree blocks not 243 * referenced by their owner trees. The location of tree block is recorded 244 * in the back refs. Actually the full back refs is generic, and can be 245 * used in all cases the implicit back refs is used. The major shortcoming 246 * of the full back refs is its overhead. Every time a tree block gets 247 * COWed, we have to update back refs entry for all pointers in it. 248 * 249 * For a newly allocated tree block, we use implicit back refs for 250 * pointers in it. This means most tree related operations only involve 251 * implicit back refs. For a tree block created in old transaction, the 252 * only way to drop a reference to it is COW it. So we can detect the 253 * event that tree block loses its owner tree's reference and do the 254 * back refs conversion. 255 * 256 * When a tree block is COWed through a tree, there are four cases: 257 * 258 * The reference count of the block is one and the tree is the block's 259 * owner tree. Nothing to do in this case. 260 * 261 * The reference count of the block is one and the tree is not the 262 * block's owner tree. In this case, full back refs is used for pointers 263 * in the block. Remove these full back refs, add implicit back refs for 264 * every pointers in the new block. 265 * 266 * The reference count of the block is greater than one and the tree is 267 * the block's owner tree. In this case, implicit back refs is used for 268 * pointers in the block. Add full back refs for every pointers in the 269 * block, increase lower level extents' reference counts. The original 270 * implicit back refs are entailed to the new block. 271 * 272 * The reference count of the block is greater than one and the tree is 273 * not the block's owner tree. Add implicit back refs for every pointer in 274 * the new block, increase lower level extents' reference count. 275 * 276 * Back Reference Key composing: 277 * 278 * The key objectid corresponds to the first byte in the extent, 279 * The key type is used to differentiate between types of back refs. 280 * There are different meanings of the key offset for different types 281 * of back refs. 282 * 283 * File extents can be referenced by: 284 * 285 * - multiple snapshots, subvolumes, or different generations in one subvol 286 * - different files inside a single subvolume 287 * - different offsets inside a file (bookend extents in file.c) 288 * 289 * The extent ref structure for the implicit back refs has fields for: 290 * 291 * - Objectid of the subvolume root 292 * - objectid of the file holding the reference 293 * - original offset in the file 294 * - how many bookend extents 295 * 296 * The key offset for the implicit back refs is hash of the first 297 * three fields. 298 * 299 * The extent ref structure for the full back refs has field for: 300 * 301 * - number of pointers in the tree leaf 302 * 303 * The key offset for the implicit back refs is the first byte of 304 * the tree leaf 305 * 306 * When a file extent is allocated, The implicit back refs is used. 307 * the fields are filled in: 308 * 309 * (root_key.objectid, inode objectid, offset in file, 1) 310 * 311 * When a file extent is removed file truncation, we find the 312 * corresponding implicit back refs and check the following fields: 313 * 314 * (btrfs_header_owner(leaf), inode objectid, offset in file) 315 * 316 * Btree extents can be referenced by: 317 * 318 * - Different subvolumes 319 * 320 * Both the implicit back refs and the full back refs for tree blocks 321 * only consist of key. The key offset for the implicit back refs is 322 * objectid of block's owner tree. The key offset for the full back refs 323 * is the first byte of parent block. 324 * 325 * When implicit back refs is used, information about the lowest key and 326 * level of the tree block are required. These information are stored in 327 * tree block info structure. 328 */ 329 330 /* 331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 334 */ 335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 336 struct btrfs_extent_inline_ref *iref, 337 enum btrfs_inline_ref_type is_data) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 int type = btrfs_extent_inline_ref_type(eb, iref); 341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 342 343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 345 return type; 346 } 347 348 if (type == BTRFS_TREE_BLOCK_REF_KEY || 349 type == BTRFS_SHARED_BLOCK_REF_KEY || 350 type == BTRFS_SHARED_DATA_REF_KEY || 351 type == BTRFS_EXTENT_DATA_REF_KEY) { 352 if (is_data == BTRFS_REF_TYPE_BLOCK) { 353 if (type == BTRFS_TREE_BLOCK_REF_KEY) 354 return type; 355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 356 ASSERT(fs_info); 357 /* 358 * Every shared one has parent tree block, 359 * which must be aligned to sector size. 360 */ 361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 362 return type; 363 } 364 } else if (is_data == BTRFS_REF_TYPE_DATA) { 365 if (type == BTRFS_EXTENT_DATA_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_DATA_REF_KEY) { 368 ASSERT(fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, fs_info->sectorsize)) 375 return type; 376 } 377 } else { 378 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 379 return type; 380 } 381 } 382 383 WARN_ON(1); 384 btrfs_print_leaf(eb); 385 btrfs_err(fs_info, 386 "eb %llu iref 0x%lx invalid extent inline ref type %d", 387 eb->start, (unsigned long)iref, type); 388 389 return BTRFS_REF_TYPE_INVALID; 390 } 391 392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 393 { 394 u32 high_crc = ~(u32)0; 395 u32 low_crc = ~(u32)0; 396 __le64 lenum; 397 398 lenum = cpu_to_le64(root_objectid); 399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 400 lenum = cpu_to_le64(owner); 401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 402 lenum = cpu_to_le64(offset); 403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 404 405 return ((u64)high_crc << 31) ^ (u64)low_crc; 406 } 407 408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 409 struct btrfs_extent_data_ref *ref) 410 { 411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 412 btrfs_extent_data_ref_objectid(leaf, ref), 413 btrfs_extent_data_ref_offset(leaf, ref)); 414 } 415 416 static int match_extent_data_ref(struct extent_buffer *leaf, 417 struct btrfs_extent_data_ref *ref, 418 u64 root_objectid, u64 owner, u64 offset) 419 { 420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 421 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 422 btrfs_extent_data_ref_offset(leaf, ref) != offset) 423 return 0; 424 return 1; 425 } 426 427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 428 struct btrfs_path *path, 429 u64 bytenr, u64 parent, 430 u64 root_objectid, 431 u64 owner, u64 offset) 432 { 433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 434 struct btrfs_key key; 435 struct btrfs_extent_data_ref *ref; 436 struct extent_buffer *leaf; 437 u32 nritems; 438 int recow; 439 int ret; 440 441 key.objectid = bytenr; 442 if (parent) { 443 key.type = BTRFS_SHARED_DATA_REF_KEY; 444 key.offset = parent; 445 } else { 446 key.type = BTRFS_EXTENT_DATA_REF_KEY; 447 key.offset = hash_extent_data_ref(root_objectid, 448 owner, offset); 449 } 450 again: 451 recow = 0; 452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 453 if (ret < 0) 454 return ret; 455 456 if (parent) { 457 if (ret) 458 return -ENOENT; 459 return 0; 460 } 461 462 ret = -ENOENT; 463 leaf = path->nodes[0]; 464 nritems = btrfs_header_nritems(leaf); 465 while (1) { 466 if (path->slots[0] >= nritems) { 467 ret = btrfs_next_leaf(root, path); 468 if (ret) { 469 if (ret > 0) 470 return -ENOENT; 471 return ret; 472 } 473 474 leaf = path->nodes[0]; 475 nritems = btrfs_header_nritems(leaf); 476 recow = 1; 477 } 478 479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 480 if (key.objectid != bytenr || 481 key.type != BTRFS_EXTENT_DATA_REF_KEY) 482 goto fail; 483 484 ref = btrfs_item_ptr(leaf, path->slots[0], 485 struct btrfs_extent_data_ref); 486 487 if (match_extent_data_ref(leaf, ref, root_objectid, 488 owner, offset)) { 489 if (recow) { 490 btrfs_release_path(path); 491 goto again; 492 } 493 ret = 0; 494 break; 495 } 496 path->slots[0]++; 497 } 498 fail: 499 return ret; 500 } 501 502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_delayed_ref_node *node, 505 u64 bytenr) 506 { 507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 508 struct btrfs_key key; 509 struct extent_buffer *leaf; 510 u64 owner = btrfs_delayed_ref_owner(node); 511 u64 offset = btrfs_delayed_ref_offset(node); 512 u32 size; 513 u32 num_refs; 514 int ret; 515 516 key.objectid = bytenr; 517 if (node->parent) { 518 key.type = BTRFS_SHARED_DATA_REF_KEY; 519 key.offset = node->parent; 520 size = sizeof(struct btrfs_shared_data_ref); 521 } else { 522 key.type = BTRFS_EXTENT_DATA_REF_KEY; 523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 524 size = sizeof(struct btrfs_extent_data_ref); 525 } 526 527 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 528 if (ret && ret != -EEXIST) 529 goto fail; 530 531 leaf = path->nodes[0]; 532 if (node->parent) { 533 struct btrfs_shared_data_ref *ref; 534 ref = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_shared_data_ref); 536 if (ret == 0) { 537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 538 } else { 539 num_refs = btrfs_shared_data_ref_count(leaf, ref); 540 num_refs += node->ref_mod; 541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 542 } 543 } else { 544 struct btrfs_extent_data_ref *ref; 545 while (ret == -EEXIST) { 546 ref = btrfs_item_ptr(leaf, path->slots[0], 547 struct btrfs_extent_data_ref); 548 if (match_extent_data_ref(leaf, ref, node->ref_root, 549 owner, offset)) 550 break; 551 btrfs_release_path(path); 552 key.offset++; 553 ret = btrfs_insert_empty_item(trans, root, path, &key, 554 size); 555 if (ret && ret != -EEXIST) 556 goto fail; 557 558 leaf = path->nodes[0]; 559 } 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (ret == 0) { 563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 565 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 567 } else { 568 num_refs = btrfs_extent_data_ref_count(leaf, ref); 569 num_refs += node->ref_mod; 570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 571 } 572 } 573 ret = 0; 574 fail: 575 btrfs_release_path(path); 576 return ret; 577 } 578 579 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct btrfs_path *path, 582 int refs_to_drop) 583 { 584 struct btrfs_key key; 585 struct btrfs_extent_data_ref *ref1 = NULL; 586 struct btrfs_shared_data_ref *ref2 = NULL; 587 struct extent_buffer *leaf; 588 u32 num_refs = 0; 589 int ret = 0; 590 591 leaf = path->nodes[0]; 592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 593 594 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 595 ref1 = btrfs_item_ptr(leaf, path->slots[0], 596 struct btrfs_extent_data_ref); 597 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 598 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 599 ref2 = btrfs_item_ptr(leaf, path->slots[0], 600 struct btrfs_shared_data_ref); 601 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 602 } else { 603 btrfs_err(trans->fs_info, 604 "unrecognized backref key (%llu %u %llu)", 605 key.objectid, key.type, key.offset); 606 btrfs_abort_transaction(trans, -EUCLEAN); 607 return -EUCLEAN; 608 } 609 610 BUG_ON(num_refs < refs_to_drop); 611 num_refs -= refs_to_drop; 612 613 if (num_refs == 0) { 614 ret = btrfs_del_item(trans, root, path); 615 } else { 616 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 617 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 618 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 619 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 620 } 621 return ret; 622 } 623 624 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 625 struct btrfs_extent_inline_ref *iref) 626 { 627 struct btrfs_key key; 628 struct extent_buffer *leaf; 629 struct btrfs_extent_data_ref *ref1; 630 struct btrfs_shared_data_ref *ref2; 631 u32 num_refs = 0; 632 int type; 633 634 leaf = path->nodes[0]; 635 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 636 637 if (iref) { 638 /* 639 * If type is invalid, we should have bailed out earlier than 640 * this call. 641 */ 642 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 643 ASSERT(type != BTRFS_REF_TYPE_INVALID); 644 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 645 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 646 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 647 } else { 648 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } 651 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 652 ref1 = btrfs_item_ptr(leaf, path->slots[0], 653 struct btrfs_extent_data_ref); 654 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 655 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 656 ref2 = btrfs_item_ptr(leaf, path->slots[0], 657 struct btrfs_shared_data_ref); 658 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 659 } else { 660 WARN_ON(1); 661 } 662 return num_refs; 663 } 664 665 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 666 struct btrfs_path *path, 667 u64 bytenr, u64 parent, 668 u64 root_objectid) 669 { 670 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 671 struct btrfs_key key; 672 int ret; 673 674 key.objectid = bytenr; 675 if (parent) { 676 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 677 key.offset = parent; 678 } else { 679 key.type = BTRFS_TREE_BLOCK_REF_KEY; 680 key.offset = root_objectid; 681 } 682 683 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 684 if (ret > 0) 685 ret = -ENOENT; 686 return ret; 687 } 688 689 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 690 struct btrfs_path *path, 691 struct btrfs_delayed_ref_node *node, 692 u64 bytenr) 693 { 694 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 695 struct btrfs_key key; 696 int ret; 697 698 key.objectid = bytenr; 699 if (node->parent) { 700 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 701 key.offset = node->parent; 702 } else { 703 key.type = BTRFS_TREE_BLOCK_REF_KEY; 704 key.offset = node->ref_root; 705 } 706 707 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 708 btrfs_release_path(path); 709 return ret; 710 } 711 712 static inline int extent_ref_type(u64 parent, u64 owner) 713 { 714 int type; 715 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 716 if (parent > 0) 717 type = BTRFS_SHARED_BLOCK_REF_KEY; 718 else 719 type = BTRFS_TREE_BLOCK_REF_KEY; 720 } else { 721 if (parent > 0) 722 type = BTRFS_SHARED_DATA_REF_KEY; 723 else 724 type = BTRFS_EXTENT_DATA_REF_KEY; 725 } 726 return type; 727 } 728 729 static int find_next_key(struct btrfs_path *path, int level, 730 struct btrfs_key *key) 731 732 { 733 for (; level < BTRFS_MAX_LEVEL; level++) { 734 if (!path->nodes[level]) 735 break; 736 if (path->slots[level] + 1 >= 737 btrfs_header_nritems(path->nodes[level])) 738 continue; 739 if (level == 0) 740 btrfs_item_key_to_cpu(path->nodes[level], key, 741 path->slots[level] + 1); 742 else 743 btrfs_node_key_to_cpu(path->nodes[level], key, 744 path->slots[level] + 1); 745 return 0; 746 } 747 return 1; 748 } 749 750 /* 751 * look for inline back ref. if back ref is found, *ref_ret is set 752 * to the address of inline back ref, and 0 is returned. 753 * 754 * if back ref isn't found, *ref_ret is set to the address where it 755 * should be inserted, and -ENOENT is returned. 756 * 757 * if insert is true and there are too many inline back refs, the path 758 * points to the extent item, and -EAGAIN is returned. 759 * 760 * NOTE: inline back refs are ordered in the same way that back ref 761 * items in the tree are ordered. 762 */ 763 static noinline_for_stack 764 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 765 struct btrfs_path *path, 766 struct btrfs_extent_inline_ref **ref_ret, 767 u64 bytenr, u64 num_bytes, 768 u64 parent, u64 root_objectid, 769 u64 owner, u64 offset, int insert) 770 { 771 struct btrfs_fs_info *fs_info = trans->fs_info; 772 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 773 struct btrfs_key key; 774 struct extent_buffer *leaf; 775 struct btrfs_extent_item *ei; 776 struct btrfs_extent_inline_ref *iref; 777 u64 flags; 778 u64 item_size; 779 unsigned long ptr; 780 unsigned long end; 781 int extra_size; 782 int type; 783 int want; 784 int ret; 785 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 786 int needed; 787 788 key.objectid = bytenr; 789 key.type = BTRFS_EXTENT_ITEM_KEY; 790 key.offset = num_bytes; 791 792 want = extent_ref_type(parent, owner); 793 if (insert) { 794 extra_size = btrfs_extent_inline_ref_size(want); 795 path->search_for_extension = 1; 796 } else 797 extra_size = -1; 798 799 /* 800 * Owner is our level, so we can just add one to get the level for the 801 * block we are interested in. 802 */ 803 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 804 key.type = BTRFS_METADATA_ITEM_KEY; 805 key.offset = owner; 806 } 807 808 again: 809 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 810 if (ret < 0) 811 goto out; 812 813 /* 814 * We may be a newly converted file system which still has the old fat 815 * extent entries for metadata, so try and see if we have one of those. 816 */ 817 if (ret > 0 && skinny_metadata) { 818 skinny_metadata = false; 819 if (path->slots[0]) { 820 path->slots[0]--; 821 btrfs_item_key_to_cpu(path->nodes[0], &key, 822 path->slots[0]); 823 if (key.objectid == bytenr && 824 key.type == BTRFS_EXTENT_ITEM_KEY && 825 key.offset == num_bytes) 826 ret = 0; 827 } 828 if (ret) { 829 key.objectid = bytenr; 830 key.type = BTRFS_EXTENT_ITEM_KEY; 831 key.offset = num_bytes; 832 btrfs_release_path(path); 833 goto again; 834 } 835 } 836 837 if (ret && !insert) { 838 ret = -ENOENT; 839 goto out; 840 } else if (WARN_ON(ret)) { 841 btrfs_print_leaf(path->nodes[0]); 842 btrfs_err(fs_info, 843 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 844 bytenr, num_bytes, parent, root_objectid, owner, 845 offset); 846 ret = -EUCLEAN; 847 goto out; 848 } 849 850 leaf = path->nodes[0]; 851 item_size = btrfs_item_size(leaf, path->slots[0]); 852 if (unlikely(item_size < sizeof(*ei))) { 853 ret = -EUCLEAN; 854 btrfs_err(fs_info, 855 "unexpected extent item size, has %llu expect >= %zu", 856 item_size, sizeof(*ei)); 857 btrfs_abort_transaction(trans, ret); 858 goto out; 859 } 860 861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 862 flags = btrfs_extent_flags(leaf, ei); 863 864 ptr = (unsigned long)(ei + 1); 865 end = (unsigned long)ei + item_size; 866 867 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 868 ptr += sizeof(struct btrfs_tree_block_info); 869 BUG_ON(ptr > end); 870 } 871 872 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 873 needed = BTRFS_REF_TYPE_DATA; 874 else 875 needed = BTRFS_REF_TYPE_BLOCK; 876 877 ret = -ENOENT; 878 while (ptr < end) { 879 iref = (struct btrfs_extent_inline_ref *)ptr; 880 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 881 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 882 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 883 ptr += btrfs_extent_inline_ref_size(type); 884 continue; 885 } 886 if (type == BTRFS_REF_TYPE_INVALID) { 887 ret = -EUCLEAN; 888 goto out; 889 } 890 891 if (want < type) 892 break; 893 if (want > type) { 894 ptr += btrfs_extent_inline_ref_size(type); 895 continue; 896 } 897 898 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 899 struct btrfs_extent_data_ref *dref; 900 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 901 if (match_extent_data_ref(leaf, dref, root_objectid, 902 owner, offset)) { 903 ret = 0; 904 break; 905 } 906 if (hash_extent_data_ref_item(leaf, dref) < 907 hash_extent_data_ref(root_objectid, owner, offset)) 908 break; 909 } else { 910 u64 ref_offset; 911 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 912 if (parent > 0) { 913 if (parent == ref_offset) { 914 ret = 0; 915 break; 916 } 917 if (ref_offset < parent) 918 break; 919 } else { 920 if (root_objectid == ref_offset) { 921 ret = 0; 922 break; 923 } 924 if (ref_offset < root_objectid) 925 break; 926 } 927 } 928 ptr += btrfs_extent_inline_ref_size(type); 929 } 930 931 if (unlikely(ptr > end)) { 932 ret = -EUCLEAN; 933 btrfs_print_leaf(path->nodes[0]); 934 btrfs_crit(fs_info, 935 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 936 path->slots[0], root_objectid, owner, offset, parent); 937 goto out; 938 } 939 940 if (ret == -ENOENT && insert) { 941 if (item_size + extra_size >= 942 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 943 ret = -EAGAIN; 944 goto out; 945 } 946 947 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) { 948 struct btrfs_key tmp_key; 949 950 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1); 951 if (tmp_key.objectid == bytenr && 952 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 953 ret = -EAGAIN; 954 goto out; 955 } 956 goto out_no_entry; 957 } 958 959 if (!path->keep_locks) { 960 btrfs_release_path(path); 961 path->keep_locks = 1; 962 goto again; 963 } 964 965 /* 966 * To add new inline back ref, we have to make sure 967 * there is no corresponding back ref item. 968 * For simplicity, we just do not add new inline back 969 * ref if there is any kind of item for this block 970 */ 971 if (find_next_key(path, 0, &key) == 0 && 972 key.objectid == bytenr && 973 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 974 ret = -EAGAIN; 975 goto out; 976 } 977 } 978 out_no_entry: 979 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 980 out: 981 if (path->keep_locks) { 982 path->keep_locks = 0; 983 btrfs_unlock_up_safe(path, 1); 984 } 985 if (insert) 986 path->search_for_extension = 0; 987 return ret; 988 } 989 990 /* 991 * helper to add new inline back ref 992 */ 993 static noinline_for_stack 994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 995 struct btrfs_path *path, 996 struct btrfs_extent_inline_ref *iref, 997 u64 parent, u64 root_objectid, 998 u64 owner, u64 offset, int refs_to_add, 999 struct btrfs_delayed_extent_op *extent_op) 1000 { 1001 struct extent_buffer *leaf; 1002 struct btrfs_extent_item *ei; 1003 unsigned long ptr; 1004 unsigned long end; 1005 unsigned long item_offset; 1006 u64 refs; 1007 int size; 1008 int type; 1009 1010 leaf = path->nodes[0]; 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 item_offset = (unsigned long)iref - (unsigned long)ei; 1013 1014 type = extent_ref_type(parent, owner); 1015 size = btrfs_extent_inline_ref_size(type); 1016 1017 btrfs_extend_item(trans, path, size); 1018 1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1020 refs = btrfs_extent_refs(leaf, ei); 1021 refs += refs_to_add; 1022 btrfs_set_extent_refs(leaf, ei, refs); 1023 if (extent_op) 1024 __run_delayed_extent_op(extent_op, leaf, ei); 1025 1026 ptr = (unsigned long)ei + item_offset; 1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1028 if (ptr < end - size) 1029 memmove_extent_buffer(leaf, ptr + size, ptr, 1030 end - size - ptr); 1031 1032 iref = (struct btrfs_extent_inline_ref *)ptr; 1033 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1035 struct btrfs_extent_data_ref *dref; 1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1042 struct btrfs_shared_data_ref *sref; 1043 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1048 } else { 1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1050 } 1051 } 1052 1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1054 struct btrfs_path *path, 1055 struct btrfs_extent_inline_ref **ref_ret, 1056 u64 bytenr, u64 num_bytes, u64 parent, 1057 u64 root_objectid, u64 owner, u64 offset) 1058 { 1059 int ret; 1060 1061 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1062 num_bytes, parent, root_objectid, 1063 owner, offset, 0); 1064 if (ret != -ENOENT) 1065 return ret; 1066 1067 btrfs_release_path(path); 1068 *ref_ret = NULL; 1069 1070 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1071 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1072 root_objectid); 1073 } else { 1074 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1075 root_objectid, owner, offset); 1076 } 1077 return ret; 1078 } 1079 1080 /* 1081 * helper to update/remove inline back ref 1082 */ 1083 static noinline_for_stack int update_inline_extent_backref( 1084 struct btrfs_trans_handle *trans, 1085 struct btrfs_path *path, 1086 struct btrfs_extent_inline_ref *iref, 1087 int refs_to_mod, 1088 struct btrfs_delayed_extent_op *extent_op) 1089 { 1090 struct extent_buffer *leaf = path->nodes[0]; 1091 struct btrfs_fs_info *fs_info = leaf->fs_info; 1092 struct btrfs_extent_item *ei; 1093 struct btrfs_extent_data_ref *dref = NULL; 1094 struct btrfs_shared_data_ref *sref = NULL; 1095 unsigned long ptr; 1096 unsigned long end; 1097 u32 item_size; 1098 int size; 1099 int type; 1100 u64 refs; 1101 1102 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1103 refs = btrfs_extent_refs(leaf, ei); 1104 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1105 struct btrfs_key key; 1106 u32 extent_size; 1107 1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1109 if (key.type == BTRFS_METADATA_ITEM_KEY) 1110 extent_size = fs_info->nodesize; 1111 else 1112 extent_size = key.offset; 1113 btrfs_print_leaf(leaf); 1114 btrfs_err(fs_info, 1115 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1116 key.objectid, extent_size, refs_to_mod, refs); 1117 return -EUCLEAN; 1118 } 1119 refs += refs_to_mod; 1120 btrfs_set_extent_refs(leaf, ei, refs); 1121 if (extent_op) 1122 __run_delayed_extent_op(extent_op, leaf, ei); 1123 1124 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1125 /* 1126 * Function btrfs_get_extent_inline_ref_type() has already printed 1127 * error messages. 1128 */ 1129 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1130 return -EUCLEAN; 1131 1132 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1133 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1134 refs = btrfs_extent_data_ref_count(leaf, dref); 1135 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1136 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1137 refs = btrfs_shared_data_ref_count(leaf, sref); 1138 } else { 1139 refs = 1; 1140 /* 1141 * For tree blocks we can only drop one ref for it, and tree 1142 * blocks should not have refs > 1. 1143 * 1144 * Furthermore if we're inserting a new inline backref, we 1145 * won't reach this path either. That would be 1146 * setup_inline_extent_backref(). 1147 */ 1148 if (unlikely(refs_to_mod != -1)) { 1149 struct btrfs_key key; 1150 1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1152 1153 btrfs_print_leaf(leaf); 1154 btrfs_err(fs_info, 1155 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1156 key.objectid, refs_to_mod); 1157 return -EUCLEAN; 1158 } 1159 } 1160 1161 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1162 struct btrfs_key key; 1163 u32 extent_size; 1164 1165 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1166 if (key.type == BTRFS_METADATA_ITEM_KEY) 1167 extent_size = fs_info->nodesize; 1168 else 1169 extent_size = key.offset; 1170 btrfs_print_leaf(leaf); 1171 btrfs_err(fs_info, 1172 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1173 (unsigned long)iref, key.objectid, extent_size, 1174 refs_to_mod, refs); 1175 return -EUCLEAN; 1176 } 1177 refs += refs_to_mod; 1178 1179 if (refs > 0) { 1180 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1181 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1182 else 1183 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1184 } else { 1185 size = btrfs_extent_inline_ref_size(type); 1186 item_size = btrfs_item_size(leaf, path->slots[0]); 1187 ptr = (unsigned long)iref; 1188 end = (unsigned long)ei + item_size; 1189 if (ptr + size < end) 1190 memmove_extent_buffer(leaf, ptr, ptr + size, 1191 end - ptr - size); 1192 item_size -= size; 1193 btrfs_truncate_item(trans, path, item_size, 1); 1194 } 1195 return 0; 1196 } 1197 1198 static noinline_for_stack 1199 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1200 struct btrfs_path *path, 1201 u64 bytenr, u64 num_bytes, u64 parent, 1202 u64 root_objectid, u64 owner, 1203 u64 offset, int refs_to_add, 1204 struct btrfs_delayed_extent_op *extent_op) 1205 { 1206 struct btrfs_extent_inline_ref *iref; 1207 int ret; 1208 1209 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1210 num_bytes, parent, root_objectid, 1211 owner, offset, 1); 1212 if (ret == 0) { 1213 /* 1214 * We're adding refs to a tree block we already own, this 1215 * should not happen at all. 1216 */ 1217 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1218 btrfs_print_leaf(path->nodes[0]); 1219 btrfs_crit(trans->fs_info, 1220 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1221 bytenr, num_bytes, root_objectid, path->slots[0]); 1222 return -EUCLEAN; 1223 } 1224 ret = update_inline_extent_backref(trans, path, iref, 1225 refs_to_add, extent_op); 1226 } else if (ret == -ENOENT) { 1227 setup_inline_extent_backref(trans, path, iref, parent, 1228 root_objectid, owner, offset, 1229 refs_to_add, extent_op); 1230 ret = 0; 1231 } 1232 return ret; 1233 } 1234 1235 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1236 struct btrfs_root *root, 1237 struct btrfs_path *path, 1238 struct btrfs_extent_inline_ref *iref, 1239 int refs_to_drop, int is_data) 1240 { 1241 int ret = 0; 1242 1243 BUG_ON(!is_data && refs_to_drop != 1); 1244 if (iref) 1245 ret = update_inline_extent_backref(trans, path, iref, 1246 -refs_to_drop, NULL); 1247 else if (is_data) 1248 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1249 else 1250 ret = btrfs_del_item(trans, root, path); 1251 return ret; 1252 } 1253 1254 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1255 u64 *discarded_bytes) 1256 { 1257 int j, ret = 0; 1258 u64 bytes_left, end; 1259 u64 aligned_start = ALIGN(start, SECTOR_SIZE); 1260 1261 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1262 if (start != aligned_start) { 1263 len -= aligned_start - start; 1264 len = round_down(len, SECTOR_SIZE); 1265 start = aligned_start; 1266 } 1267 1268 *discarded_bytes = 0; 1269 1270 if (!len) 1271 return 0; 1272 1273 end = start + len; 1274 bytes_left = len; 1275 1276 /* Skip any superblocks on this device. */ 1277 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1278 u64 sb_start = btrfs_sb_offset(j); 1279 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1280 u64 size = sb_start - start; 1281 1282 if (!in_range(sb_start, start, bytes_left) && 1283 !in_range(sb_end, start, bytes_left) && 1284 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1285 continue; 1286 1287 /* 1288 * Superblock spans beginning of range. Adjust start and 1289 * try again. 1290 */ 1291 if (sb_start <= start) { 1292 start += sb_end - start; 1293 if (start > end) { 1294 bytes_left = 0; 1295 break; 1296 } 1297 bytes_left = end - start; 1298 continue; 1299 } 1300 1301 if (size) { 1302 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1303 size >> SECTOR_SHIFT, 1304 GFP_NOFS); 1305 if (!ret) 1306 *discarded_bytes += size; 1307 else if (ret != -EOPNOTSUPP) 1308 return ret; 1309 } 1310 1311 start = sb_end; 1312 if (start > end) { 1313 bytes_left = 0; 1314 break; 1315 } 1316 bytes_left = end - start; 1317 } 1318 1319 while (bytes_left) { 1320 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1321 1322 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1323 bytes_to_discard >> SECTOR_SHIFT, 1324 GFP_NOFS); 1325 1326 if (ret) { 1327 if (ret != -EOPNOTSUPP) 1328 break; 1329 continue; 1330 } 1331 1332 start += bytes_to_discard; 1333 bytes_left -= bytes_to_discard; 1334 *discarded_bytes += bytes_to_discard; 1335 1336 if (btrfs_trim_interrupted()) { 1337 ret = -ERESTARTSYS; 1338 break; 1339 } 1340 } 1341 1342 return ret; 1343 } 1344 1345 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1346 { 1347 struct btrfs_device *dev = stripe->dev; 1348 struct btrfs_fs_info *fs_info = dev->fs_info; 1349 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1350 u64 phys = stripe->physical; 1351 u64 len = stripe->length; 1352 u64 discarded = 0; 1353 int ret = 0; 1354 1355 /* Zone reset on a zoned filesystem */ 1356 if (btrfs_can_zone_reset(dev, phys, len)) { 1357 u64 src_disc; 1358 1359 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1360 if (ret) 1361 goto out; 1362 1363 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1364 dev != dev_replace->srcdev) 1365 goto out; 1366 1367 src_disc = discarded; 1368 1369 /* Send to replace target as well */ 1370 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1371 &discarded); 1372 discarded += src_disc; 1373 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1374 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1375 } else { 1376 ret = 0; 1377 *bytes = 0; 1378 } 1379 1380 out: 1381 *bytes = discarded; 1382 return ret; 1383 } 1384 1385 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1386 u64 num_bytes, u64 *actual_bytes) 1387 { 1388 int ret = 0; 1389 u64 discarded_bytes = 0; 1390 u64 end = bytenr + num_bytes; 1391 u64 cur = bytenr; 1392 1393 /* 1394 * Avoid races with device replace and make sure the devices in the 1395 * stripes don't go away while we are discarding. 1396 */ 1397 btrfs_bio_counter_inc_blocked(fs_info); 1398 while (cur < end) { 1399 struct btrfs_discard_stripe *stripes; 1400 unsigned int num_stripes; 1401 int i; 1402 1403 num_bytes = end - cur; 1404 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1405 if (IS_ERR(stripes)) { 1406 ret = PTR_ERR(stripes); 1407 if (ret == -EOPNOTSUPP) 1408 ret = 0; 1409 break; 1410 } 1411 1412 for (i = 0; i < num_stripes; i++) { 1413 struct btrfs_discard_stripe *stripe = stripes + i; 1414 u64 bytes; 1415 1416 if (!stripe->dev->bdev) { 1417 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1418 continue; 1419 } 1420 1421 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1422 &stripe->dev->dev_state)) 1423 continue; 1424 1425 ret = do_discard_extent(stripe, &bytes); 1426 if (ret) { 1427 /* 1428 * Keep going if discard is not supported by the 1429 * device. 1430 */ 1431 if (ret != -EOPNOTSUPP) 1432 break; 1433 ret = 0; 1434 } else { 1435 discarded_bytes += bytes; 1436 } 1437 } 1438 kfree(stripes); 1439 if (ret) 1440 break; 1441 cur += num_bytes; 1442 } 1443 btrfs_bio_counter_dec(fs_info); 1444 if (actual_bytes) 1445 *actual_bytes = discarded_bytes; 1446 return ret; 1447 } 1448 1449 /* Can return -ENOMEM */ 1450 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1451 struct btrfs_ref *generic_ref) 1452 { 1453 struct btrfs_fs_info *fs_info = trans->fs_info; 1454 int ret; 1455 1456 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1457 generic_ref->action); 1458 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1459 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1460 1461 if (generic_ref->type == BTRFS_REF_METADATA) 1462 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1463 else 1464 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1465 1466 btrfs_ref_tree_mod(fs_info, generic_ref); 1467 1468 return ret; 1469 } 1470 1471 /* 1472 * Insert backreference for a given extent. 1473 * 1474 * The counterpart is in __btrfs_free_extent(), with examples and more details 1475 * how it works. 1476 * 1477 * @trans: Handle of transaction 1478 * 1479 * @node: The delayed ref node used to get the bytenr/length for 1480 * extent whose references are incremented. 1481 * 1482 * @extent_op Pointer to a structure, holding information necessary when 1483 * updating a tree block's flags 1484 * 1485 */ 1486 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1487 struct btrfs_delayed_ref_node *node, 1488 struct btrfs_delayed_extent_op *extent_op) 1489 { 1490 struct btrfs_path *path; 1491 struct extent_buffer *leaf; 1492 struct btrfs_extent_item *item; 1493 struct btrfs_key key; 1494 u64 bytenr = node->bytenr; 1495 u64 num_bytes = node->num_bytes; 1496 u64 owner = btrfs_delayed_ref_owner(node); 1497 u64 offset = btrfs_delayed_ref_offset(node); 1498 u64 refs; 1499 int refs_to_add = node->ref_mod; 1500 int ret; 1501 1502 path = btrfs_alloc_path(); 1503 if (!path) 1504 return -ENOMEM; 1505 1506 /* this will setup the path even if it fails to insert the back ref */ 1507 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1508 node->parent, node->ref_root, owner, 1509 offset, refs_to_add, extent_op); 1510 if ((ret < 0 && ret != -EAGAIN) || !ret) 1511 goto out; 1512 1513 /* 1514 * Ok we had -EAGAIN which means we didn't have space to insert and 1515 * inline extent ref, so just update the reference count and add a 1516 * normal backref. 1517 */ 1518 leaf = path->nodes[0]; 1519 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1520 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1521 refs = btrfs_extent_refs(leaf, item); 1522 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1523 if (extent_op) 1524 __run_delayed_extent_op(extent_op, leaf, item); 1525 1526 btrfs_release_path(path); 1527 1528 /* now insert the actual backref */ 1529 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1530 ret = insert_tree_block_ref(trans, path, node, bytenr); 1531 else 1532 ret = insert_extent_data_ref(trans, path, node, bytenr); 1533 1534 if (ret) 1535 btrfs_abort_transaction(trans, ret); 1536 out: 1537 btrfs_free_path(path); 1538 return ret; 1539 } 1540 1541 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1542 struct btrfs_delayed_ref_head *href) 1543 { 1544 u64 root = href->owning_root; 1545 1546 /* 1547 * Don't check must_insert_reserved, as this is called from contexts 1548 * where it has already been unset. 1549 */ 1550 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1551 !href->is_data || !is_fstree(root)) 1552 return; 1553 1554 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1555 BTRFS_QGROUP_RSV_DATA); 1556 } 1557 1558 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1559 struct btrfs_delayed_ref_head *href, 1560 struct btrfs_delayed_ref_node *node, 1561 struct btrfs_delayed_extent_op *extent_op, 1562 bool insert_reserved) 1563 { 1564 int ret = 0; 1565 u64 parent = 0; 1566 u64 flags = 0; 1567 1568 trace_run_delayed_data_ref(trans->fs_info, node); 1569 1570 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1571 parent = node->parent; 1572 1573 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1574 struct btrfs_key key; 1575 struct btrfs_squota_delta delta = { 1576 .root = href->owning_root, 1577 .num_bytes = node->num_bytes, 1578 .is_data = true, 1579 .is_inc = true, 1580 .generation = trans->transid, 1581 }; 1582 u64 owner = btrfs_delayed_ref_owner(node); 1583 u64 offset = btrfs_delayed_ref_offset(node); 1584 1585 if (extent_op) 1586 flags |= extent_op->flags_to_set; 1587 1588 key.objectid = node->bytenr; 1589 key.type = BTRFS_EXTENT_ITEM_KEY; 1590 key.offset = node->num_bytes; 1591 1592 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1593 flags, owner, offset, &key, 1594 node->ref_mod, 1595 href->owning_root); 1596 free_head_ref_squota_rsv(trans->fs_info, href); 1597 if (!ret) 1598 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1599 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1600 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1601 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1602 ret = __btrfs_free_extent(trans, href, node, extent_op); 1603 } else { 1604 BUG(); 1605 } 1606 return ret; 1607 } 1608 1609 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1610 struct extent_buffer *leaf, 1611 struct btrfs_extent_item *ei) 1612 { 1613 u64 flags = btrfs_extent_flags(leaf, ei); 1614 if (extent_op->update_flags) { 1615 flags |= extent_op->flags_to_set; 1616 btrfs_set_extent_flags(leaf, ei, flags); 1617 } 1618 1619 if (extent_op->update_key) { 1620 struct btrfs_tree_block_info *bi; 1621 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1622 bi = (struct btrfs_tree_block_info *)(ei + 1); 1623 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1624 } 1625 } 1626 1627 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1628 struct btrfs_delayed_ref_head *head, 1629 struct btrfs_delayed_extent_op *extent_op) 1630 { 1631 struct btrfs_fs_info *fs_info = trans->fs_info; 1632 struct btrfs_root *root; 1633 struct btrfs_key key; 1634 struct btrfs_path *path; 1635 struct btrfs_extent_item *ei; 1636 struct extent_buffer *leaf; 1637 u32 item_size; 1638 int ret; 1639 int metadata = 1; 1640 1641 if (TRANS_ABORTED(trans)) 1642 return 0; 1643 1644 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1645 metadata = 0; 1646 1647 path = btrfs_alloc_path(); 1648 if (!path) 1649 return -ENOMEM; 1650 1651 key.objectid = head->bytenr; 1652 1653 if (metadata) { 1654 key.type = BTRFS_METADATA_ITEM_KEY; 1655 key.offset = head->level; 1656 } else { 1657 key.type = BTRFS_EXTENT_ITEM_KEY; 1658 key.offset = head->num_bytes; 1659 } 1660 1661 root = btrfs_extent_root(fs_info, key.objectid); 1662 again: 1663 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1664 if (ret < 0) { 1665 goto out; 1666 } else if (ret > 0) { 1667 if (metadata) { 1668 if (path->slots[0] > 0) { 1669 path->slots[0]--; 1670 btrfs_item_key_to_cpu(path->nodes[0], &key, 1671 path->slots[0]); 1672 if (key.objectid == head->bytenr && 1673 key.type == BTRFS_EXTENT_ITEM_KEY && 1674 key.offset == head->num_bytes) 1675 ret = 0; 1676 } 1677 if (ret > 0) { 1678 btrfs_release_path(path); 1679 metadata = 0; 1680 1681 key.objectid = head->bytenr; 1682 key.offset = head->num_bytes; 1683 key.type = BTRFS_EXTENT_ITEM_KEY; 1684 goto again; 1685 } 1686 } else { 1687 ret = -EUCLEAN; 1688 btrfs_err(fs_info, 1689 "missing extent item for extent %llu num_bytes %llu level %d", 1690 head->bytenr, head->num_bytes, head->level); 1691 goto out; 1692 } 1693 } 1694 1695 leaf = path->nodes[0]; 1696 item_size = btrfs_item_size(leaf, path->slots[0]); 1697 1698 if (unlikely(item_size < sizeof(*ei))) { 1699 ret = -EUCLEAN; 1700 btrfs_err(fs_info, 1701 "unexpected extent item size, has %u expect >= %zu", 1702 item_size, sizeof(*ei)); 1703 btrfs_abort_transaction(trans, ret); 1704 goto out; 1705 } 1706 1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1708 __run_delayed_extent_op(extent_op, leaf, ei); 1709 out: 1710 btrfs_free_path(path); 1711 return ret; 1712 } 1713 1714 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1715 struct btrfs_delayed_ref_head *href, 1716 struct btrfs_delayed_ref_node *node, 1717 struct btrfs_delayed_extent_op *extent_op, 1718 bool insert_reserved) 1719 { 1720 int ret = 0; 1721 struct btrfs_fs_info *fs_info = trans->fs_info; 1722 u64 parent = 0; 1723 u64 ref_root = 0; 1724 1725 trace_run_delayed_tree_ref(trans->fs_info, node); 1726 1727 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1728 parent = node->parent; 1729 ref_root = node->ref_root; 1730 1731 if (unlikely(node->ref_mod != 1)) { 1732 btrfs_err(trans->fs_info, 1733 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1734 node->bytenr, node->ref_mod, node->action, ref_root, 1735 parent); 1736 return -EUCLEAN; 1737 } 1738 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1739 struct btrfs_squota_delta delta = { 1740 .root = href->owning_root, 1741 .num_bytes = fs_info->nodesize, 1742 .is_data = false, 1743 .is_inc = true, 1744 .generation = trans->transid, 1745 }; 1746 1747 ret = alloc_reserved_tree_block(trans, node, extent_op); 1748 if (!ret) 1749 btrfs_record_squota_delta(fs_info, &delta); 1750 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1751 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1752 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1753 ret = __btrfs_free_extent(trans, href, node, extent_op); 1754 } else { 1755 BUG(); 1756 } 1757 return ret; 1758 } 1759 1760 /* helper function to actually process a single delayed ref entry */ 1761 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1762 struct btrfs_delayed_ref_head *href, 1763 struct btrfs_delayed_ref_node *node, 1764 struct btrfs_delayed_extent_op *extent_op, 1765 bool insert_reserved) 1766 { 1767 int ret = 0; 1768 1769 if (TRANS_ABORTED(trans)) { 1770 if (insert_reserved) { 1771 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1772 free_head_ref_squota_rsv(trans->fs_info, href); 1773 } 1774 return 0; 1775 } 1776 1777 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1778 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1779 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1780 insert_reserved); 1781 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1782 node->type == BTRFS_SHARED_DATA_REF_KEY) 1783 ret = run_delayed_data_ref(trans, href, node, extent_op, 1784 insert_reserved); 1785 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1786 ret = 0; 1787 else 1788 BUG(); 1789 if (ret && insert_reserved) 1790 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1791 if (ret < 0) 1792 btrfs_err(trans->fs_info, 1793 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1794 node->bytenr, node->num_bytes, node->type, 1795 node->action, node->ref_mod, ret); 1796 return ret; 1797 } 1798 1799 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1800 struct btrfs_delayed_ref_head *head) 1801 { 1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1803 1804 if (!extent_op) 1805 return NULL; 1806 1807 if (head->must_insert_reserved) { 1808 head->extent_op = NULL; 1809 btrfs_free_delayed_extent_op(extent_op); 1810 return NULL; 1811 } 1812 return extent_op; 1813 } 1814 1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1816 struct btrfs_delayed_ref_head *head) 1817 { 1818 struct btrfs_delayed_extent_op *extent_op; 1819 int ret; 1820 1821 extent_op = cleanup_extent_op(head); 1822 if (!extent_op) 1823 return 0; 1824 head->extent_op = NULL; 1825 spin_unlock(&head->lock); 1826 ret = run_delayed_extent_op(trans, head, extent_op); 1827 btrfs_free_delayed_extent_op(extent_op); 1828 return ret ? ret : 1; 1829 } 1830 1831 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1832 struct btrfs_delayed_ref_root *delayed_refs, 1833 struct btrfs_delayed_ref_head *head) 1834 { 1835 u64 ret = 0; 1836 1837 /* 1838 * We had csum deletions accounted for in our delayed refs rsv, we need 1839 * to drop the csum leaves for this update from our delayed_refs_rsv. 1840 */ 1841 if (head->total_ref_mod < 0 && head->is_data) { 1842 int nr_csums; 1843 1844 spin_lock(&delayed_refs->lock); 1845 delayed_refs->pending_csums -= head->num_bytes; 1846 spin_unlock(&delayed_refs->lock); 1847 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1848 1849 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1850 1851 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1852 } 1853 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1854 if (head->must_insert_reserved) 1855 free_head_ref_squota_rsv(fs_info, head); 1856 1857 return ret; 1858 } 1859 1860 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1861 struct btrfs_delayed_ref_head *head, 1862 u64 *bytes_released) 1863 { 1864 1865 struct btrfs_fs_info *fs_info = trans->fs_info; 1866 struct btrfs_delayed_ref_root *delayed_refs; 1867 int ret; 1868 1869 delayed_refs = &trans->transaction->delayed_refs; 1870 1871 ret = run_and_cleanup_extent_op(trans, head); 1872 if (ret < 0) { 1873 btrfs_unselect_ref_head(delayed_refs, head); 1874 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1875 return ret; 1876 } else if (ret) { 1877 return ret; 1878 } 1879 1880 /* 1881 * Need to drop our head ref lock and re-acquire the delayed ref lock 1882 * and then re-check to make sure nobody got added. 1883 */ 1884 spin_unlock(&head->lock); 1885 spin_lock(&delayed_refs->lock); 1886 spin_lock(&head->lock); 1887 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1888 spin_unlock(&head->lock); 1889 spin_unlock(&delayed_refs->lock); 1890 return 1; 1891 } 1892 btrfs_delete_ref_head(fs_info, delayed_refs, head); 1893 spin_unlock(&head->lock); 1894 spin_unlock(&delayed_refs->lock); 1895 1896 if (head->must_insert_reserved) { 1897 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1898 if (head->is_data) { 1899 struct btrfs_root *csum_root; 1900 1901 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1902 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1903 head->num_bytes); 1904 } 1905 } 1906 1907 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1908 1909 trace_run_delayed_ref_head(fs_info, head, 0); 1910 btrfs_delayed_ref_unlock(head); 1911 btrfs_put_delayed_ref_head(head); 1912 return ret; 1913 } 1914 1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1916 struct btrfs_delayed_ref_head *locked_ref, 1917 u64 *bytes_released) 1918 { 1919 struct btrfs_fs_info *fs_info = trans->fs_info; 1920 struct btrfs_delayed_ref_root *delayed_refs; 1921 struct btrfs_delayed_extent_op *extent_op; 1922 struct btrfs_delayed_ref_node *ref; 1923 bool must_insert_reserved; 1924 int ret; 1925 1926 delayed_refs = &trans->transaction->delayed_refs; 1927 1928 lockdep_assert_held(&locked_ref->mutex); 1929 lockdep_assert_held(&locked_ref->lock); 1930 1931 while ((ref = btrfs_select_delayed_ref(locked_ref))) { 1932 if (ref->seq && 1933 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1934 spin_unlock(&locked_ref->lock); 1935 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1936 return -EAGAIN; 1937 } 1938 1939 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1940 RB_CLEAR_NODE(&ref->ref_node); 1941 if (!list_empty(&ref->add_list)) 1942 list_del(&ref->add_list); 1943 /* 1944 * When we play the delayed ref, also correct the ref_mod on 1945 * head 1946 */ 1947 switch (ref->action) { 1948 case BTRFS_ADD_DELAYED_REF: 1949 case BTRFS_ADD_DELAYED_EXTENT: 1950 locked_ref->ref_mod -= ref->ref_mod; 1951 break; 1952 case BTRFS_DROP_DELAYED_REF: 1953 locked_ref->ref_mod += ref->ref_mod; 1954 break; 1955 default: 1956 WARN_ON(1); 1957 } 1958 1959 /* 1960 * Record the must_insert_reserved flag before we drop the 1961 * spin lock. 1962 */ 1963 must_insert_reserved = locked_ref->must_insert_reserved; 1964 /* 1965 * Unsetting this on the head ref relinquishes ownership of 1966 * the rsv_bytes, so it is critical that every possible code 1967 * path from here forward frees all reserves including qgroup 1968 * reserve. 1969 */ 1970 locked_ref->must_insert_reserved = false; 1971 1972 extent_op = locked_ref->extent_op; 1973 locked_ref->extent_op = NULL; 1974 spin_unlock(&locked_ref->lock); 1975 1976 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 1977 must_insert_reserved); 1978 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 1979 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 1980 1981 btrfs_free_delayed_extent_op(extent_op); 1982 if (ret) { 1983 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1984 btrfs_put_delayed_ref(ref); 1985 return ret; 1986 } 1987 1988 btrfs_put_delayed_ref(ref); 1989 cond_resched(); 1990 1991 spin_lock(&locked_ref->lock); 1992 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 1993 } 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * Returns 0 on success or if called with an already aborted transaction. 2000 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2001 */ 2002 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2003 u64 min_bytes) 2004 { 2005 struct btrfs_fs_info *fs_info = trans->fs_info; 2006 struct btrfs_delayed_ref_root *delayed_refs; 2007 struct btrfs_delayed_ref_head *locked_ref = NULL; 2008 int ret; 2009 unsigned long count = 0; 2010 unsigned long max_count = 0; 2011 u64 bytes_processed = 0; 2012 2013 delayed_refs = &trans->transaction->delayed_refs; 2014 if (min_bytes == 0) { 2015 max_count = delayed_refs->num_heads_ready; 2016 min_bytes = U64_MAX; 2017 } 2018 2019 do { 2020 if (!locked_ref) { 2021 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs); 2022 if (IS_ERR_OR_NULL(locked_ref)) { 2023 if (PTR_ERR(locked_ref) == -EAGAIN) { 2024 continue; 2025 } else { 2026 break; 2027 } 2028 } 2029 count++; 2030 } 2031 /* 2032 * We need to try and merge add/drops of the same ref since we 2033 * can run into issues with relocate dropping the implicit ref 2034 * and then it being added back again before the drop can 2035 * finish. If we merged anything we need to re-loop so we can 2036 * get a good ref. 2037 * Or we can get node references of the same type that weren't 2038 * merged when created due to bumps in the tree mod seq, and 2039 * we need to merge them to prevent adding an inline extent 2040 * backref before dropping it (triggering a BUG_ON at 2041 * insert_inline_extent_backref()). 2042 */ 2043 spin_lock(&locked_ref->lock); 2044 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2045 2046 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2047 if (ret < 0 && ret != -EAGAIN) { 2048 /* 2049 * Error, btrfs_run_delayed_refs_for_head already 2050 * unlocked everything so just bail out 2051 */ 2052 return ret; 2053 } else if (!ret) { 2054 /* 2055 * Success, perform the usual cleanup of a processed 2056 * head 2057 */ 2058 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2059 if (ret > 0 ) { 2060 /* We dropped our lock, we need to loop. */ 2061 ret = 0; 2062 continue; 2063 } else if (ret) { 2064 return ret; 2065 } 2066 } 2067 2068 /* 2069 * Either success case or btrfs_run_delayed_refs_for_head 2070 * returned -EAGAIN, meaning we need to select another head 2071 */ 2072 2073 locked_ref = NULL; 2074 cond_resched(); 2075 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2076 (max_count > 0 && count < max_count) || 2077 locked_ref); 2078 2079 return 0; 2080 } 2081 2082 #ifdef SCRAMBLE_DELAYED_REFS 2083 /* 2084 * Normally delayed refs get processed in ascending bytenr order. This 2085 * correlates in most cases to the order added. To expose dependencies on this 2086 * order, we start to process the tree in the middle instead of the beginning 2087 */ 2088 static u64 find_middle(struct rb_root *root) 2089 { 2090 struct rb_node *n = root->rb_node; 2091 struct btrfs_delayed_ref_node *entry; 2092 int alt = 1; 2093 u64 middle; 2094 u64 first = 0, last = 0; 2095 2096 n = rb_first(root); 2097 if (n) { 2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2099 first = entry->bytenr; 2100 } 2101 n = rb_last(root); 2102 if (n) { 2103 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2104 last = entry->bytenr; 2105 } 2106 n = root->rb_node; 2107 2108 while (n) { 2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2110 WARN_ON(!entry->in_tree); 2111 2112 middle = entry->bytenr; 2113 2114 if (alt) 2115 n = n->rb_left; 2116 else 2117 n = n->rb_right; 2118 2119 alt = 1 - alt; 2120 } 2121 return middle; 2122 } 2123 #endif 2124 2125 /* 2126 * Start processing the delayed reference count updates and extent insertions 2127 * we have queued up so far. 2128 * 2129 * @trans: Transaction handle. 2130 * @min_bytes: How many bytes of delayed references to process. After this 2131 * many bytes we stop processing delayed references if there are 2132 * any more. If 0 it means to run all existing delayed references, 2133 * but not new ones added after running all existing ones. 2134 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2135 * plus any new ones that are added. 2136 * 2137 * Returns 0 on success or if called with an aborted transaction 2138 * Returns <0 on error and aborts the transaction 2139 */ 2140 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2141 { 2142 struct btrfs_fs_info *fs_info = trans->fs_info; 2143 struct btrfs_delayed_ref_root *delayed_refs; 2144 int ret; 2145 2146 /* We'll clean this up in btrfs_cleanup_transaction */ 2147 if (TRANS_ABORTED(trans)) 2148 return 0; 2149 2150 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2151 return 0; 2152 2153 delayed_refs = &trans->transaction->delayed_refs; 2154 again: 2155 #ifdef SCRAMBLE_DELAYED_REFS 2156 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2157 #endif 2158 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2159 if (ret < 0) { 2160 btrfs_abort_transaction(trans, ret); 2161 return ret; 2162 } 2163 2164 if (min_bytes == U64_MAX) { 2165 btrfs_create_pending_block_groups(trans); 2166 2167 spin_lock(&delayed_refs->lock); 2168 if (xa_empty(&delayed_refs->head_refs)) { 2169 spin_unlock(&delayed_refs->lock); 2170 return 0; 2171 } 2172 spin_unlock(&delayed_refs->lock); 2173 2174 cond_resched(); 2175 goto again; 2176 } 2177 2178 return 0; 2179 } 2180 2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2182 struct extent_buffer *eb, u64 flags) 2183 { 2184 struct btrfs_delayed_extent_op *extent_op; 2185 int ret; 2186 2187 extent_op = btrfs_alloc_delayed_extent_op(); 2188 if (!extent_op) 2189 return -ENOMEM; 2190 2191 extent_op->flags_to_set = flags; 2192 extent_op->update_flags = true; 2193 extent_op->update_key = false; 2194 2195 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2196 btrfs_header_level(eb), extent_op); 2197 if (ret) 2198 btrfs_free_delayed_extent_op(extent_op); 2199 return ret; 2200 } 2201 2202 static noinline int check_delayed_ref(struct btrfs_inode *inode, 2203 struct btrfs_path *path, 2204 u64 offset, u64 bytenr) 2205 { 2206 struct btrfs_root *root = inode->root; 2207 struct btrfs_delayed_ref_head *head; 2208 struct btrfs_delayed_ref_node *ref; 2209 struct btrfs_delayed_ref_root *delayed_refs; 2210 struct btrfs_transaction *cur_trans; 2211 struct rb_node *node; 2212 int ret = 0; 2213 2214 spin_lock(&root->fs_info->trans_lock); 2215 cur_trans = root->fs_info->running_transaction; 2216 if (cur_trans) 2217 refcount_inc(&cur_trans->use_count); 2218 spin_unlock(&root->fs_info->trans_lock); 2219 if (!cur_trans) 2220 return 0; 2221 2222 delayed_refs = &cur_trans->delayed_refs; 2223 spin_lock(&delayed_refs->lock); 2224 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 2225 if (!head) { 2226 spin_unlock(&delayed_refs->lock); 2227 btrfs_put_transaction(cur_trans); 2228 return 0; 2229 } 2230 2231 if (!mutex_trylock(&head->mutex)) { 2232 if (path->nowait) { 2233 spin_unlock(&delayed_refs->lock); 2234 btrfs_put_transaction(cur_trans); 2235 return -EAGAIN; 2236 } 2237 2238 refcount_inc(&head->refs); 2239 spin_unlock(&delayed_refs->lock); 2240 2241 btrfs_release_path(path); 2242 2243 /* 2244 * Mutex was contended, block until it's released and let 2245 * caller try again 2246 */ 2247 mutex_lock(&head->mutex); 2248 mutex_unlock(&head->mutex); 2249 btrfs_put_delayed_ref_head(head); 2250 btrfs_put_transaction(cur_trans); 2251 return -EAGAIN; 2252 } 2253 spin_unlock(&delayed_refs->lock); 2254 2255 spin_lock(&head->lock); 2256 /* 2257 * XXX: We should replace this with a proper search function in the 2258 * future. 2259 */ 2260 for (node = rb_first_cached(&head->ref_tree); node; 2261 node = rb_next(node)) { 2262 u64 ref_owner; 2263 u64 ref_offset; 2264 2265 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2266 /* If it's a shared ref we know a cross reference exists */ 2267 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2268 ret = 1; 2269 break; 2270 } 2271 2272 ref_owner = btrfs_delayed_ref_owner(ref); 2273 ref_offset = btrfs_delayed_ref_offset(ref); 2274 2275 /* 2276 * If our ref doesn't match the one we're currently looking at 2277 * then we have a cross reference. 2278 */ 2279 if (ref->ref_root != btrfs_root_id(root) || 2280 ref_owner != btrfs_ino(inode) || ref_offset != offset) { 2281 ret = 1; 2282 break; 2283 } 2284 } 2285 spin_unlock(&head->lock); 2286 mutex_unlock(&head->mutex); 2287 btrfs_put_transaction(cur_trans); 2288 return ret; 2289 } 2290 2291 /* 2292 * Check if there are references for a data extent other than the one belonging 2293 * to the given inode and offset. 2294 * 2295 * @inode: The only inode we expect to find associated with the data extent. 2296 * @path: A path to use for searching the extent tree. 2297 * @offset: The only offset we expect to find associated with the data extent. 2298 * @bytenr: The logical address of the data extent. 2299 * 2300 * When the extent does not have any other references other than the one we 2301 * expect to find, we always return a value of 0 with the path having a locked 2302 * leaf that contains the extent's extent item - this is necessary to ensure 2303 * we don't race with a task running delayed references, and our caller must 2304 * have such a path when calling check_delayed_ref() - it must lock a delayed 2305 * ref head while holding the leaf locked. In case the extent item is not found 2306 * in the extent tree, we return -ENOENT with the path having the leaf (locked) 2307 * where the extent item should be, in order to prevent races with another task 2308 * running delayed references, so that we don't miss any reference when calling 2309 * check_delayed_ref(). 2310 * 2311 * Note: this may return false positives, and this is because we want to be 2312 * quick here as we're called in write paths (when flushing delalloc and 2313 * in the direct IO write path). For example we can have an extent with 2314 * a single reference but that reference is not inlined, or we may have 2315 * many references in the extent tree but we also have delayed references 2316 * that cancel all the reference except the one for our inode and offset, 2317 * but it would be expensive to do such checks and complex due to all 2318 * locking to avoid races between the checks and flushing delayed refs, 2319 * plus non-inline references may be located on leaves other than the one 2320 * that contains the extent item in the extent tree. The important thing 2321 * here is to not return false negatives and that the false positives are 2322 * not very common. 2323 * 2324 * Returns: 0 if there are no cross references and with the path having a locked 2325 * leaf from the extent tree that contains the extent's extent item. 2326 * 2327 * 1 if there are cross references (false positives can happen). 2328 * 2329 * < 0 in case of an error. In case of -ENOENT the leaf in the extent 2330 * tree where the extent item should be located at is read locked and 2331 * accessible in the given path. 2332 */ 2333 static noinline int check_committed_ref(struct btrfs_inode *inode, 2334 struct btrfs_path *path, 2335 u64 offset, u64 bytenr) 2336 { 2337 struct btrfs_root *root = inode->root; 2338 struct btrfs_fs_info *fs_info = root->fs_info; 2339 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2340 struct extent_buffer *leaf; 2341 struct btrfs_extent_data_ref *ref; 2342 struct btrfs_extent_inline_ref *iref; 2343 struct btrfs_extent_item *ei; 2344 struct btrfs_key key; 2345 u32 item_size; 2346 u32 expected_size; 2347 int type; 2348 int ret; 2349 2350 key.objectid = bytenr; 2351 key.offset = (u64)-1; 2352 key.type = BTRFS_EXTENT_ITEM_KEY; 2353 2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2355 if (ret < 0) 2356 return ret; 2357 if (ret == 0) { 2358 /* 2359 * Key with offset -1 found, there would have to exist an extent 2360 * item with such offset, but this is out of the valid range. 2361 */ 2362 return -EUCLEAN; 2363 } 2364 2365 if (path->slots[0] == 0) 2366 return -ENOENT; 2367 2368 path->slots[0]--; 2369 leaf = path->nodes[0]; 2370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2371 2372 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2373 return -ENOENT; 2374 2375 item_size = btrfs_item_size(leaf, path->slots[0]); 2376 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2377 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2378 2379 /* No inline refs; we need to bail before checking for owner ref. */ 2380 if (item_size == sizeof(*ei)) 2381 return 1; 2382 2383 /* Check for an owner ref; skip over it to the real inline refs. */ 2384 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2385 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2386 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2387 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2388 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2389 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2390 } 2391 2392 /* If extent item has more than 1 inline ref then it's shared */ 2393 if (item_size != expected_size) 2394 return 1; 2395 2396 /* If this extent has SHARED_DATA_REF then it's shared */ 2397 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2398 return 1; 2399 2400 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2401 if (btrfs_extent_refs(leaf, ei) != 2402 btrfs_extent_data_ref_count(leaf, ref) || 2403 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2404 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) || 2405 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2406 return 1; 2407 2408 return 0; 2409 } 2410 2411 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset, 2412 u64 bytenr, struct btrfs_path *path) 2413 { 2414 int ret; 2415 2416 do { 2417 ret = check_committed_ref(inode, path, offset, bytenr); 2418 if (ret && ret != -ENOENT) 2419 goto out; 2420 2421 /* 2422 * The path must have a locked leaf from the extent tree where 2423 * the extent item for our extent is located, in case it exists, 2424 * or where it should be located in case it doesn't exist yet 2425 * because it's new and its delayed ref was not yet flushed. 2426 * We need to lock the delayed ref head at check_delayed_ref(), 2427 * if one exists, while holding the leaf locked in order to not 2428 * race with delayed ref flushing, missing references and 2429 * incorrectly reporting that the extent is not shared. 2430 */ 2431 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 2432 struct extent_buffer *leaf = path->nodes[0]; 2433 2434 ASSERT(leaf != NULL); 2435 btrfs_assert_tree_read_locked(leaf); 2436 2437 if (ret != -ENOENT) { 2438 struct btrfs_key key; 2439 2440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2441 ASSERT(key.objectid == bytenr); 2442 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY); 2443 } 2444 } 2445 2446 ret = check_delayed_ref(inode, path, offset, bytenr); 2447 } while (ret == -EAGAIN && !path->nowait); 2448 2449 out: 2450 btrfs_release_path(path); 2451 if (btrfs_is_data_reloc_root(inode->root)) 2452 WARN_ON(ret > 0); 2453 return ret; 2454 } 2455 2456 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2457 struct btrfs_root *root, 2458 struct extent_buffer *buf, 2459 int full_backref, int inc) 2460 { 2461 struct btrfs_fs_info *fs_info = root->fs_info; 2462 u64 parent; 2463 u64 ref_root; 2464 u32 nritems; 2465 struct btrfs_key key; 2466 struct btrfs_file_extent_item *fi; 2467 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2468 int i; 2469 int action; 2470 int level; 2471 int ret = 0; 2472 2473 if (btrfs_is_testing(fs_info)) 2474 return 0; 2475 2476 ref_root = btrfs_header_owner(buf); 2477 nritems = btrfs_header_nritems(buf); 2478 level = btrfs_header_level(buf); 2479 2480 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2481 return 0; 2482 2483 if (full_backref) 2484 parent = buf->start; 2485 else 2486 parent = 0; 2487 if (inc) 2488 action = BTRFS_ADD_DELAYED_REF; 2489 else 2490 action = BTRFS_DROP_DELAYED_REF; 2491 2492 for (i = 0; i < nritems; i++) { 2493 struct btrfs_ref ref = { 2494 .action = action, 2495 .parent = parent, 2496 .ref_root = ref_root, 2497 }; 2498 2499 if (level == 0) { 2500 btrfs_item_key_to_cpu(buf, &key, i); 2501 if (key.type != BTRFS_EXTENT_DATA_KEY) 2502 continue; 2503 fi = btrfs_item_ptr(buf, i, 2504 struct btrfs_file_extent_item); 2505 if (btrfs_file_extent_type(buf, fi) == 2506 BTRFS_FILE_EXTENT_INLINE) 2507 continue; 2508 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2509 if (ref.bytenr == 0) 2510 continue; 2511 2512 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2513 ref.owning_root = ref_root; 2514 2515 key.offset -= btrfs_file_extent_offset(buf, fi); 2516 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2517 btrfs_root_id(root), for_reloc); 2518 if (inc) 2519 ret = btrfs_inc_extent_ref(trans, &ref); 2520 else 2521 ret = btrfs_free_extent(trans, &ref); 2522 if (ret) 2523 goto fail; 2524 } else { 2525 /* We don't know the owning_root, leave as 0. */ 2526 ref.bytenr = btrfs_node_blockptr(buf, i); 2527 ref.num_bytes = fs_info->nodesize; 2528 2529 btrfs_init_tree_ref(&ref, level - 1, 2530 btrfs_root_id(root), for_reloc); 2531 if (inc) 2532 ret = btrfs_inc_extent_ref(trans, &ref); 2533 else 2534 ret = btrfs_free_extent(trans, &ref); 2535 if (ret) 2536 goto fail; 2537 } 2538 } 2539 return 0; 2540 fail: 2541 return ret; 2542 } 2543 2544 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2545 struct extent_buffer *buf, int full_backref) 2546 { 2547 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2548 } 2549 2550 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2551 struct extent_buffer *buf, int full_backref) 2552 { 2553 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2554 } 2555 2556 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2557 { 2558 struct btrfs_fs_info *fs_info = root->fs_info; 2559 u64 flags; 2560 u64 ret; 2561 2562 if (data) 2563 flags = BTRFS_BLOCK_GROUP_DATA; 2564 else if (root == fs_info->chunk_root) 2565 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2566 else 2567 flags = BTRFS_BLOCK_GROUP_METADATA; 2568 2569 ret = btrfs_get_alloc_profile(fs_info, flags); 2570 return ret; 2571 } 2572 2573 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2574 { 2575 struct rb_node *leftmost; 2576 u64 bytenr = 0; 2577 2578 read_lock(&fs_info->block_group_cache_lock); 2579 /* Get the block group with the lowest logical start address. */ 2580 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2581 if (leftmost) { 2582 struct btrfs_block_group *bg; 2583 2584 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2585 bytenr = bg->start; 2586 } 2587 read_unlock(&fs_info->block_group_cache_lock); 2588 2589 return bytenr; 2590 } 2591 2592 static int pin_down_extent(struct btrfs_trans_handle *trans, 2593 struct btrfs_block_group *cache, 2594 u64 bytenr, u64 num_bytes, int reserved) 2595 { 2596 spin_lock(&cache->space_info->lock); 2597 spin_lock(&cache->lock); 2598 cache->pinned += num_bytes; 2599 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes); 2600 if (reserved) { 2601 cache->reserved -= num_bytes; 2602 cache->space_info->bytes_reserved -= num_bytes; 2603 } 2604 spin_unlock(&cache->lock); 2605 spin_unlock(&cache->space_info->lock); 2606 2607 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2608 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2609 return 0; 2610 } 2611 2612 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2613 u64 bytenr, u64 num_bytes, int reserved) 2614 { 2615 struct btrfs_block_group *cache; 2616 2617 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2618 BUG_ON(!cache); /* Logic error */ 2619 2620 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2621 2622 btrfs_put_block_group(cache); 2623 return 0; 2624 } 2625 2626 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2627 const struct extent_buffer *eb) 2628 { 2629 struct btrfs_block_group *cache; 2630 int ret; 2631 2632 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2633 if (!cache) 2634 return -EINVAL; 2635 2636 /* 2637 * Fully cache the free space first so that our pin removes the free space 2638 * from the cache. 2639 */ 2640 ret = btrfs_cache_block_group(cache, true); 2641 if (ret) 2642 goto out; 2643 2644 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2645 2646 /* remove us from the free space cache (if we're there at all) */ 2647 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2648 out: 2649 btrfs_put_block_group(cache); 2650 return ret; 2651 } 2652 2653 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2654 u64 start, u64 num_bytes) 2655 { 2656 int ret; 2657 struct btrfs_block_group *block_group; 2658 2659 block_group = btrfs_lookup_block_group(fs_info, start); 2660 if (!block_group) 2661 return -EINVAL; 2662 2663 ret = btrfs_cache_block_group(block_group, true); 2664 if (ret) 2665 goto out; 2666 2667 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2668 out: 2669 btrfs_put_block_group(block_group); 2670 return ret; 2671 } 2672 2673 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2674 { 2675 struct btrfs_fs_info *fs_info = eb->fs_info; 2676 struct btrfs_file_extent_item *item; 2677 struct btrfs_key key; 2678 int found_type; 2679 int i; 2680 int ret = 0; 2681 2682 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2683 return 0; 2684 2685 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2686 btrfs_item_key_to_cpu(eb, &key, i); 2687 if (key.type != BTRFS_EXTENT_DATA_KEY) 2688 continue; 2689 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2690 found_type = btrfs_file_extent_type(eb, item); 2691 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2692 continue; 2693 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2694 continue; 2695 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2696 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2697 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2698 if (ret) 2699 break; 2700 } 2701 2702 return ret; 2703 } 2704 2705 static void 2706 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2707 { 2708 atomic_inc(&bg->reservations); 2709 } 2710 2711 /* 2712 * Returns the free cluster for the given space info and sets empty_cluster to 2713 * what it should be based on the mount options. 2714 */ 2715 static struct btrfs_free_cluster * 2716 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2717 struct btrfs_space_info *space_info, u64 *empty_cluster) 2718 { 2719 struct btrfs_free_cluster *ret = NULL; 2720 2721 *empty_cluster = 0; 2722 if (btrfs_mixed_space_info(space_info)) 2723 return ret; 2724 2725 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2726 ret = &fs_info->meta_alloc_cluster; 2727 if (btrfs_test_opt(fs_info, SSD)) 2728 *empty_cluster = SZ_2M; 2729 else 2730 *empty_cluster = SZ_64K; 2731 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2732 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2733 *empty_cluster = SZ_2M; 2734 ret = &fs_info->data_alloc_cluster; 2735 } 2736 2737 return ret; 2738 } 2739 2740 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2741 u64 start, u64 end, 2742 const bool return_free_space) 2743 { 2744 struct btrfs_block_group *cache = NULL; 2745 struct btrfs_space_info *space_info; 2746 struct btrfs_free_cluster *cluster = NULL; 2747 u64 total_unpinned = 0; 2748 u64 empty_cluster = 0; 2749 bool readonly; 2750 int ret = 0; 2751 2752 while (start <= end) { 2753 u64 len; 2754 2755 readonly = false; 2756 if (!cache || 2757 start >= cache->start + cache->length) { 2758 if (cache) 2759 btrfs_put_block_group(cache); 2760 total_unpinned = 0; 2761 cache = btrfs_lookup_block_group(fs_info, start); 2762 if (cache == NULL) { 2763 /* Logic error, something removed the block group. */ 2764 ret = -EUCLEAN; 2765 goto out; 2766 } 2767 2768 cluster = fetch_cluster_info(fs_info, 2769 cache->space_info, 2770 &empty_cluster); 2771 empty_cluster <<= 1; 2772 } 2773 2774 len = cache->start + cache->length - start; 2775 len = min(len, end + 1 - start); 2776 2777 if (return_free_space) 2778 btrfs_add_free_space(cache, start, len); 2779 2780 start += len; 2781 total_unpinned += len; 2782 space_info = cache->space_info; 2783 2784 /* 2785 * If this space cluster has been marked as fragmented and we've 2786 * unpinned enough in this block group to potentially allow a 2787 * cluster to be created inside of it go ahead and clear the 2788 * fragmented check. 2789 */ 2790 if (cluster && cluster->fragmented && 2791 total_unpinned > empty_cluster) { 2792 spin_lock(&cluster->lock); 2793 cluster->fragmented = 0; 2794 spin_unlock(&cluster->lock); 2795 } 2796 2797 spin_lock(&space_info->lock); 2798 spin_lock(&cache->lock); 2799 cache->pinned -= len; 2800 btrfs_space_info_update_bytes_pinned(space_info, -len); 2801 space_info->max_extent_size = 0; 2802 if (cache->ro) { 2803 space_info->bytes_readonly += len; 2804 readonly = true; 2805 } else if (btrfs_is_zoned(fs_info)) { 2806 /* Need reset before reusing in a zoned block group */ 2807 btrfs_space_info_update_bytes_zone_unusable(space_info, len); 2808 readonly = true; 2809 } 2810 spin_unlock(&cache->lock); 2811 if (!readonly && return_free_space) 2812 btrfs_return_free_space(space_info, len); 2813 spin_unlock(&space_info->lock); 2814 } 2815 2816 if (cache) 2817 btrfs_put_block_group(cache); 2818 out: 2819 return ret; 2820 } 2821 2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2823 { 2824 struct btrfs_fs_info *fs_info = trans->fs_info; 2825 struct btrfs_block_group *block_group, *tmp; 2826 struct list_head *deleted_bgs; 2827 struct extent_io_tree *unpin; 2828 u64 start; 2829 u64 end; 2830 int ret; 2831 2832 unpin = &trans->transaction->pinned_extents; 2833 2834 while (!TRANS_ABORTED(trans)) { 2835 struct extent_state *cached_state = NULL; 2836 2837 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2838 if (!find_first_extent_bit(unpin, 0, &start, &end, 2839 EXTENT_DIRTY, &cached_state)) { 2840 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2841 break; 2842 } 2843 2844 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2845 ret = btrfs_discard_extent(fs_info, start, 2846 end + 1 - start, NULL); 2847 2848 clear_extent_dirty(unpin, start, end, &cached_state); 2849 ret = unpin_extent_range(fs_info, start, end, true); 2850 BUG_ON(ret); 2851 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2852 free_extent_state(cached_state); 2853 cond_resched(); 2854 } 2855 2856 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2857 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2858 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2859 } 2860 2861 /* 2862 * Transaction is finished. We don't need the lock anymore. We 2863 * do need to clean up the block groups in case of a transaction 2864 * abort. 2865 */ 2866 deleted_bgs = &trans->transaction->deleted_bgs; 2867 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2868 u64 trimmed = 0; 2869 2870 ret = -EROFS; 2871 if (!TRANS_ABORTED(trans)) 2872 ret = btrfs_discard_extent(fs_info, 2873 block_group->start, 2874 block_group->length, 2875 &trimmed); 2876 2877 list_del_init(&block_group->bg_list); 2878 btrfs_unfreeze_block_group(block_group); 2879 btrfs_put_block_group(block_group); 2880 2881 if (ret) { 2882 const char *errstr = btrfs_decode_error(ret); 2883 btrfs_warn(fs_info, 2884 "discard failed while removing blockgroup: errno=%d %s", 2885 ret, errstr); 2886 } 2887 } 2888 2889 return 0; 2890 } 2891 2892 /* 2893 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2894 * 2895 * @fs_info: the btrfs_fs_info for this mount 2896 * @leaf: a leaf in the extent tree containing the extent item 2897 * @slot: the slot in the leaf where the extent item is found 2898 * 2899 * Returns the objectid of the root that originally allocated the extent item 2900 * if the inline owner ref is expected and present, otherwise 0. 2901 * 2902 * If an extent item has an owner ref item, it will be the first inline ref 2903 * item. Therefore the logic is to check whether there are any inline ref 2904 * items, then check the type of the first one. 2905 */ 2906 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2907 struct extent_buffer *leaf, int slot) 2908 { 2909 struct btrfs_extent_item *ei; 2910 struct btrfs_extent_inline_ref *iref; 2911 struct btrfs_extent_owner_ref *oref; 2912 unsigned long ptr; 2913 unsigned long end; 2914 int type; 2915 2916 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2917 return 0; 2918 2919 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2920 ptr = (unsigned long)(ei + 1); 2921 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2922 2923 /* No inline ref items of any kind, can't check type. */ 2924 if (ptr == end) 2925 return 0; 2926 2927 iref = (struct btrfs_extent_inline_ref *)ptr; 2928 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2929 2930 /* We found an owner ref, get the root out of it. */ 2931 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2932 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2933 return btrfs_extent_owner_ref_root_id(leaf, oref); 2934 } 2935 2936 /* We have inline refs, but not an owner ref. */ 2937 return 0; 2938 } 2939 2940 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2941 u64 bytenr, struct btrfs_squota_delta *delta) 2942 { 2943 int ret; 2944 u64 num_bytes = delta->num_bytes; 2945 2946 if (delta->is_data) { 2947 struct btrfs_root *csum_root; 2948 2949 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2950 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2951 if (ret) { 2952 btrfs_abort_transaction(trans, ret); 2953 return ret; 2954 } 2955 2956 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2957 if (ret) { 2958 btrfs_abort_transaction(trans, ret); 2959 return ret; 2960 } 2961 } 2962 2963 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2964 if (ret) { 2965 btrfs_abort_transaction(trans, ret); 2966 return ret; 2967 } 2968 2969 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2970 if (ret) { 2971 btrfs_abort_transaction(trans, ret); 2972 return ret; 2973 } 2974 2975 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2976 if (ret) 2977 btrfs_abort_transaction(trans, ret); 2978 2979 return ret; 2980 } 2981 2982 #define abort_and_dump(trans, path, fmt, args...) \ 2983 ({ \ 2984 btrfs_abort_transaction(trans, -EUCLEAN); \ 2985 btrfs_print_leaf(path->nodes[0]); \ 2986 btrfs_crit(trans->fs_info, fmt, ##args); \ 2987 }) 2988 2989 /* 2990 * Drop one or more refs of @node. 2991 * 2992 * 1. Locate the extent refs. 2993 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2994 * Locate it, then reduce the refs number or remove the ref line completely. 2995 * 2996 * 2. Update the refs count in EXTENT/METADATA_ITEM 2997 * 2998 * Inline backref case: 2999 * 3000 * in extent tree we have: 3001 * 3002 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3003 * refs 2 gen 6 flags DATA 3004 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3005 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3006 * 3007 * This function gets called with: 3008 * 3009 * node->bytenr = 13631488 3010 * node->num_bytes = 1048576 3011 * root_objectid = FS_TREE 3012 * owner_objectid = 257 3013 * owner_offset = 0 3014 * refs_to_drop = 1 3015 * 3016 * Then we should get some like: 3017 * 3018 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3019 * refs 1 gen 6 flags DATA 3020 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3021 * 3022 * Keyed backref case: 3023 * 3024 * in extent tree we have: 3025 * 3026 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3027 * refs 754 gen 6 flags DATA 3028 * [...] 3029 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3030 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3031 * 3032 * This function get called with: 3033 * 3034 * node->bytenr = 13631488 3035 * node->num_bytes = 1048576 3036 * root_objectid = FS_TREE 3037 * owner_objectid = 866 3038 * owner_offset = 0 3039 * refs_to_drop = 1 3040 * 3041 * Then we should get some like: 3042 * 3043 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3044 * refs 753 gen 6 flags DATA 3045 * 3046 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3047 */ 3048 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3049 struct btrfs_delayed_ref_head *href, 3050 struct btrfs_delayed_ref_node *node, 3051 struct btrfs_delayed_extent_op *extent_op) 3052 { 3053 struct btrfs_fs_info *info = trans->fs_info; 3054 struct btrfs_key key; 3055 struct btrfs_path *path; 3056 struct btrfs_root *extent_root; 3057 struct extent_buffer *leaf; 3058 struct btrfs_extent_item *ei; 3059 struct btrfs_extent_inline_ref *iref; 3060 int ret; 3061 int is_data; 3062 int extent_slot = 0; 3063 int found_extent = 0; 3064 int num_to_del = 1; 3065 int refs_to_drop = node->ref_mod; 3066 u32 item_size; 3067 u64 refs; 3068 u64 bytenr = node->bytenr; 3069 u64 num_bytes = node->num_bytes; 3070 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3071 u64 owner_offset = btrfs_delayed_ref_offset(node); 3072 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3073 u64 delayed_ref_root = href->owning_root; 3074 3075 extent_root = btrfs_extent_root(info, bytenr); 3076 ASSERT(extent_root); 3077 3078 path = btrfs_alloc_path(); 3079 if (!path) 3080 return -ENOMEM; 3081 3082 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3083 3084 if (!is_data && refs_to_drop != 1) { 3085 btrfs_crit(info, 3086 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3087 node->bytenr, refs_to_drop); 3088 ret = -EINVAL; 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 3093 if (is_data) 3094 skinny_metadata = false; 3095 3096 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3097 node->parent, node->ref_root, owner_objectid, 3098 owner_offset); 3099 if (ret == 0) { 3100 /* 3101 * Either the inline backref or the SHARED_DATA_REF/ 3102 * SHARED_BLOCK_REF is found 3103 * 3104 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3105 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3106 */ 3107 extent_slot = path->slots[0]; 3108 while (extent_slot >= 0) { 3109 btrfs_item_key_to_cpu(path->nodes[0], &key, 3110 extent_slot); 3111 if (key.objectid != bytenr) 3112 break; 3113 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3114 key.offset == num_bytes) { 3115 found_extent = 1; 3116 break; 3117 } 3118 if (key.type == BTRFS_METADATA_ITEM_KEY && 3119 key.offset == owner_objectid) { 3120 found_extent = 1; 3121 break; 3122 } 3123 3124 /* Quick path didn't find the EXTENT/METADATA_ITEM */ 3125 if (path->slots[0] - extent_slot > 5) 3126 break; 3127 extent_slot--; 3128 } 3129 3130 if (!found_extent) { 3131 if (iref) { 3132 abort_and_dump(trans, path, 3133 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3134 path->slots[0]); 3135 ret = -EUCLEAN; 3136 goto out; 3137 } 3138 /* Must be SHARED_* item, remove the backref first */ 3139 ret = remove_extent_backref(trans, extent_root, path, 3140 NULL, refs_to_drop, is_data); 3141 if (ret) { 3142 btrfs_abort_transaction(trans, ret); 3143 goto out; 3144 } 3145 btrfs_release_path(path); 3146 3147 /* Slow path to locate EXTENT/METADATA_ITEM */ 3148 key.objectid = bytenr; 3149 key.type = BTRFS_EXTENT_ITEM_KEY; 3150 key.offset = num_bytes; 3151 3152 if (!is_data && skinny_metadata) { 3153 key.type = BTRFS_METADATA_ITEM_KEY; 3154 key.offset = owner_objectid; 3155 } 3156 3157 ret = btrfs_search_slot(trans, extent_root, 3158 &key, path, -1, 1); 3159 if (ret > 0 && skinny_metadata && path->slots[0]) { 3160 /* 3161 * Couldn't find our skinny metadata item, 3162 * see if we have ye olde extent item. 3163 */ 3164 path->slots[0]--; 3165 btrfs_item_key_to_cpu(path->nodes[0], &key, 3166 path->slots[0]); 3167 if (key.objectid == bytenr && 3168 key.type == BTRFS_EXTENT_ITEM_KEY && 3169 key.offset == num_bytes) 3170 ret = 0; 3171 } 3172 3173 if (ret > 0 && skinny_metadata) { 3174 skinny_metadata = false; 3175 key.objectid = bytenr; 3176 key.type = BTRFS_EXTENT_ITEM_KEY; 3177 key.offset = num_bytes; 3178 btrfs_release_path(path); 3179 ret = btrfs_search_slot(trans, extent_root, 3180 &key, path, -1, 1); 3181 } 3182 3183 if (ret) { 3184 if (ret > 0) 3185 btrfs_print_leaf(path->nodes[0]); 3186 btrfs_err(info, 3187 "umm, got %d back from search, was looking for %llu, slot %d", 3188 ret, bytenr, path->slots[0]); 3189 } 3190 if (ret < 0) { 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 extent_slot = path->slots[0]; 3195 } 3196 } else if (WARN_ON(ret == -ENOENT)) { 3197 abort_and_dump(trans, path, 3198 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3199 bytenr, node->parent, node->ref_root, owner_objectid, 3200 owner_offset, path->slots[0]); 3201 goto out; 3202 } else { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 3207 leaf = path->nodes[0]; 3208 item_size = btrfs_item_size(leaf, extent_slot); 3209 if (unlikely(item_size < sizeof(*ei))) { 3210 ret = -EUCLEAN; 3211 btrfs_err(trans->fs_info, 3212 "unexpected extent item size, has %u expect >= %zu", 3213 item_size, sizeof(*ei)); 3214 btrfs_abort_transaction(trans, ret); 3215 goto out; 3216 } 3217 ei = btrfs_item_ptr(leaf, extent_slot, 3218 struct btrfs_extent_item); 3219 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3220 key.type == BTRFS_EXTENT_ITEM_KEY) { 3221 struct btrfs_tree_block_info *bi; 3222 3223 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3224 abort_and_dump(trans, path, 3225 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3226 key.objectid, key.type, key.offset, 3227 path->slots[0], owner_objectid, item_size, 3228 sizeof(*ei) + sizeof(*bi)); 3229 ret = -EUCLEAN; 3230 goto out; 3231 } 3232 bi = (struct btrfs_tree_block_info *)(ei + 1); 3233 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3234 } 3235 3236 refs = btrfs_extent_refs(leaf, ei); 3237 if (refs < refs_to_drop) { 3238 abort_and_dump(trans, path, 3239 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3240 refs_to_drop, refs, bytenr, path->slots[0]); 3241 ret = -EUCLEAN; 3242 goto out; 3243 } 3244 refs -= refs_to_drop; 3245 3246 if (refs > 0) { 3247 if (extent_op) 3248 __run_delayed_extent_op(extent_op, leaf, ei); 3249 /* 3250 * In the case of inline back ref, reference count will 3251 * be updated by remove_extent_backref 3252 */ 3253 if (iref) { 3254 if (!found_extent) { 3255 abort_and_dump(trans, path, 3256 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3257 path->slots[0]); 3258 ret = -EUCLEAN; 3259 goto out; 3260 } 3261 } else { 3262 btrfs_set_extent_refs(leaf, ei, refs); 3263 } 3264 if (found_extent) { 3265 ret = remove_extent_backref(trans, extent_root, path, 3266 iref, refs_to_drop, is_data); 3267 if (ret) { 3268 btrfs_abort_transaction(trans, ret); 3269 goto out; 3270 } 3271 } 3272 } else { 3273 struct btrfs_squota_delta delta = { 3274 .root = delayed_ref_root, 3275 .num_bytes = num_bytes, 3276 .is_data = is_data, 3277 .is_inc = false, 3278 .generation = btrfs_extent_generation(leaf, ei), 3279 }; 3280 3281 /* In this branch refs == 1 */ 3282 if (found_extent) { 3283 if (is_data && refs_to_drop != 3284 extent_data_ref_count(path, iref)) { 3285 abort_and_dump(trans, path, 3286 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3287 extent_data_ref_count(path, iref), 3288 refs_to_drop, path->slots[0]); 3289 ret = -EUCLEAN; 3290 goto out; 3291 } 3292 if (iref) { 3293 if (path->slots[0] != extent_slot) { 3294 abort_and_dump(trans, path, 3295 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3296 key.objectid, key.type, 3297 key.offset, path->slots[0]); 3298 ret = -EUCLEAN; 3299 goto out; 3300 } 3301 } else { 3302 /* 3303 * No inline ref, we must be at SHARED_* item, 3304 * And it's single ref, it must be: 3305 * | extent_slot ||extent_slot + 1| 3306 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3307 */ 3308 if (path->slots[0] != extent_slot + 1) { 3309 abort_and_dump(trans, path, 3310 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3311 path->slots[0]); 3312 ret = -EUCLEAN; 3313 goto out; 3314 } 3315 path->slots[0] = extent_slot; 3316 num_to_del = 2; 3317 } 3318 } 3319 /* 3320 * We can't infer the data owner from the delayed ref, so we need 3321 * to try to get it from the owning ref item. 3322 * 3323 * If it is not present, then that extent was not written under 3324 * simple quotas mode, so we don't need to account for its deletion. 3325 */ 3326 if (is_data) 3327 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3328 leaf, extent_slot); 3329 3330 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3331 num_to_del); 3332 if (ret) { 3333 btrfs_abort_transaction(trans, ret); 3334 goto out; 3335 } 3336 btrfs_release_path(path); 3337 3338 ret = do_free_extent_accounting(trans, bytenr, &delta); 3339 } 3340 btrfs_release_path(path); 3341 3342 out: 3343 btrfs_free_path(path); 3344 return ret; 3345 } 3346 3347 /* 3348 * when we free an block, it is possible (and likely) that we free the last 3349 * delayed ref for that extent as well. This searches the delayed ref tree for 3350 * a given extent, and if there are no other delayed refs to be processed, it 3351 * removes it from the tree. 3352 */ 3353 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3354 u64 bytenr) 3355 { 3356 struct btrfs_fs_info *fs_info = trans->fs_info; 3357 struct btrfs_delayed_ref_head *head; 3358 struct btrfs_delayed_ref_root *delayed_refs; 3359 int ret = 0; 3360 3361 delayed_refs = &trans->transaction->delayed_refs; 3362 spin_lock(&delayed_refs->lock); 3363 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 3364 if (!head) 3365 goto out_delayed_unlock; 3366 3367 spin_lock(&head->lock); 3368 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3369 goto out; 3370 3371 if (cleanup_extent_op(head) != NULL) 3372 goto out; 3373 3374 /* 3375 * waiting for the lock here would deadlock. If someone else has it 3376 * locked they are already in the process of dropping it anyway 3377 */ 3378 if (!mutex_trylock(&head->mutex)) 3379 goto out; 3380 3381 btrfs_delete_ref_head(fs_info, delayed_refs, head); 3382 head->processing = false; 3383 3384 spin_unlock(&head->lock); 3385 spin_unlock(&delayed_refs->lock); 3386 3387 BUG_ON(head->extent_op); 3388 if (head->must_insert_reserved) 3389 ret = 1; 3390 3391 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 3392 mutex_unlock(&head->mutex); 3393 btrfs_put_delayed_ref_head(head); 3394 return ret; 3395 out: 3396 spin_unlock(&head->lock); 3397 3398 out_delayed_unlock: 3399 spin_unlock(&delayed_refs->lock); 3400 return 0; 3401 } 3402 3403 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3404 u64 root_id, 3405 struct extent_buffer *buf, 3406 u64 parent, int last_ref) 3407 { 3408 struct btrfs_fs_info *fs_info = trans->fs_info; 3409 struct btrfs_block_group *bg; 3410 int ret; 3411 3412 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3413 struct btrfs_ref generic_ref = { 3414 .action = BTRFS_DROP_DELAYED_REF, 3415 .bytenr = buf->start, 3416 .num_bytes = buf->len, 3417 .parent = parent, 3418 .owning_root = btrfs_header_owner(buf), 3419 .ref_root = root_id, 3420 }; 3421 3422 /* 3423 * Assert that the extent buffer is not cleared due to 3424 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3425 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3426 * detail. 3427 */ 3428 ASSERT(btrfs_header_bytenr(buf) != 0); 3429 3430 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3431 btrfs_ref_tree_mod(fs_info, &generic_ref); 3432 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3433 if (ret < 0) 3434 return ret; 3435 } 3436 3437 if (!last_ref) 3438 return 0; 3439 3440 if (btrfs_header_generation(buf) != trans->transid) 3441 goto out; 3442 3443 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3444 ret = check_ref_cleanup(trans, buf->start); 3445 if (!ret) 3446 goto out; 3447 } 3448 3449 bg = btrfs_lookup_block_group(fs_info, buf->start); 3450 3451 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3452 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3453 btrfs_put_block_group(bg); 3454 goto out; 3455 } 3456 3457 /* 3458 * If there are tree mod log users we may have recorded mod log 3459 * operations for this node. If we re-allocate this node we 3460 * could replay operations on this node that happened when it 3461 * existed in a completely different root. For example if it 3462 * was part of root A, then was reallocated to root B, and we 3463 * are doing a btrfs_old_search_slot(root b), we could replay 3464 * operations that happened when the block was part of root A, 3465 * giving us an inconsistent view of the btree. 3466 * 3467 * We are safe from races here because at this point no other 3468 * node or root points to this extent buffer, so if after this 3469 * check a new tree mod log user joins we will not have an 3470 * existing log of operations on this node that we have to 3471 * contend with. 3472 */ 3473 3474 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3475 || btrfs_is_zoned(fs_info)) { 3476 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3477 btrfs_put_block_group(bg); 3478 goto out; 3479 } 3480 3481 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3482 3483 btrfs_add_free_space(bg, buf->start, buf->len); 3484 btrfs_free_reserved_bytes(bg, buf->len, 0); 3485 btrfs_put_block_group(bg); 3486 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3487 3488 out: 3489 3490 /* 3491 * Deleting the buffer, clear the corrupt flag since it doesn't 3492 * matter anymore. 3493 */ 3494 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3495 return 0; 3496 } 3497 3498 /* Can return -ENOMEM */ 3499 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3500 { 3501 struct btrfs_fs_info *fs_info = trans->fs_info; 3502 int ret; 3503 3504 if (btrfs_is_testing(fs_info)) 3505 return 0; 3506 3507 /* 3508 * tree log blocks never actually go into the extent allocation 3509 * tree, just update pinning info and exit early. 3510 */ 3511 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3512 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); 3513 ret = 0; 3514 } else if (ref->type == BTRFS_REF_METADATA) { 3515 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3516 } else { 3517 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3518 } 3519 3520 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3521 btrfs_ref_tree_mod(fs_info, ref); 3522 3523 return ret; 3524 } 3525 3526 enum btrfs_loop_type { 3527 /* 3528 * Start caching block groups but do not wait for progress or for them 3529 * to be done. 3530 */ 3531 LOOP_CACHING_NOWAIT, 3532 3533 /* 3534 * Wait for the block group free_space >= the space we're waiting for if 3535 * the block group isn't cached. 3536 */ 3537 LOOP_CACHING_WAIT, 3538 3539 /* 3540 * Allow allocations to happen from block groups that do not yet have a 3541 * size classification. 3542 */ 3543 LOOP_UNSET_SIZE_CLASS, 3544 3545 /* 3546 * Allocate a chunk and then retry the allocation. 3547 */ 3548 LOOP_ALLOC_CHUNK, 3549 3550 /* 3551 * Ignore the size class restrictions for this allocation. 3552 */ 3553 LOOP_WRONG_SIZE_CLASS, 3554 3555 /* 3556 * Ignore the empty size, only try to allocate the number of bytes 3557 * needed for this allocation. 3558 */ 3559 LOOP_NO_EMPTY_SIZE, 3560 }; 3561 3562 static inline void 3563 btrfs_lock_block_group(struct btrfs_block_group *cache, 3564 int delalloc) 3565 { 3566 if (delalloc) 3567 down_read(&cache->data_rwsem); 3568 } 3569 3570 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3571 int delalloc) 3572 { 3573 btrfs_get_block_group(cache); 3574 if (delalloc) 3575 down_read(&cache->data_rwsem); 3576 } 3577 3578 static struct btrfs_block_group *btrfs_lock_cluster( 3579 struct btrfs_block_group *block_group, 3580 struct btrfs_free_cluster *cluster, 3581 int delalloc) 3582 __acquires(&cluster->refill_lock) 3583 { 3584 struct btrfs_block_group *used_bg = NULL; 3585 3586 spin_lock(&cluster->refill_lock); 3587 while (1) { 3588 used_bg = cluster->block_group; 3589 if (!used_bg) 3590 return NULL; 3591 3592 if (used_bg == block_group) 3593 return used_bg; 3594 3595 btrfs_get_block_group(used_bg); 3596 3597 if (!delalloc) 3598 return used_bg; 3599 3600 if (down_read_trylock(&used_bg->data_rwsem)) 3601 return used_bg; 3602 3603 spin_unlock(&cluster->refill_lock); 3604 3605 /* We should only have one-level nested. */ 3606 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3607 3608 spin_lock(&cluster->refill_lock); 3609 if (used_bg == cluster->block_group) 3610 return used_bg; 3611 3612 up_read(&used_bg->data_rwsem); 3613 btrfs_put_block_group(used_bg); 3614 } 3615 } 3616 3617 static inline void 3618 btrfs_release_block_group(struct btrfs_block_group *cache, 3619 int delalloc) 3620 { 3621 if (delalloc) 3622 up_read(&cache->data_rwsem); 3623 btrfs_put_block_group(cache); 3624 } 3625 3626 /* 3627 * Helper function for find_free_extent(). 3628 * 3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3630 * Return >0 to inform caller that we find nothing 3631 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3632 */ 3633 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3634 struct find_free_extent_ctl *ffe_ctl, 3635 struct btrfs_block_group **cluster_bg_ret) 3636 { 3637 struct btrfs_block_group *cluster_bg; 3638 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3639 u64 aligned_cluster; 3640 u64 offset; 3641 int ret; 3642 3643 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3644 if (!cluster_bg) 3645 goto refill_cluster; 3646 if (cluster_bg != bg && (cluster_bg->ro || 3647 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3648 goto release_cluster; 3649 3650 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3651 ffe_ctl->num_bytes, cluster_bg->start, 3652 &ffe_ctl->max_extent_size); 3653 if (offset) { 3654 /* We have a block, we're done */ 3655 spin_unlock(&last_ptr->refill_lock); 3656 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3657 *cluster_bg_ret = cluster_bg; 3658 ffe_ctl->found_offset = offset; 3659 return 0; 3660 } 3661 WARN_ON(last_ptr->block_group != cluster_bg); 3662 3663 release_cluster: 3664 /* 3665 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3666 * lets just skip it and let the allocator find whatever block it can 3667 * find. If we reach this point, we will have tried the cluster 3668 * allocator plenty of times and not have found anything, so we are 3669 * likely way too fragmented for the clustering stuff to find anything. 3670 * 3671 * However, if the cluster is taken from the current block group, 3672 * release the cluster first, so that we stand a better chance of 3673 * succeeding in the unclustered allocation. 3674 */ 3675 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3676 spin_unlock(&last_ptr->refill_lock); 3677 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3678 return -ENOENT; 3679 } 3680 3681 /* This cluster didn't work out, free it and start over */ 3682 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3683 3684 if (cluster_bg != bg) 3685 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3686 3687 refill_cluster: 3688 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3689 spin_unlock(&last_ptr->refill_lock); 3690 return -ENOENT; 3691 } 3692 3693 aligned_cluster = max_t(u64, 3694 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3695 bg->full_stripe_len); 3696 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3697 ffe_ctl->num_bytes, aligned_cluster); 3698 if (ret == 0) { 3699 /* Now pull our allocation out of this cluster */ 3700 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3701 ffe_ctl->num_bytes, ffe_ctl->search_start, 3702 &ffe_ctl->max_extent_size); 3703 if (offset) { 3704 /* We found one, proceed */ 3705 spin_unlock(&last_ptr->refill_lock); 3706 ffe_ctl->found_offset = offset; 3707 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3708 return 0; 3709 } 3710 } 3711 /* 3712 * At this point we either didn't find a cluster or we weren't able to 3713 * allocate a block from our cluster. Free the cluster we've been 3714 * trying to use, and go to the next block group. 3715 */ 3716 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3717 spin_unlock(&last_ptr->refill_lock); 3718 return 1; 3719 } 3720 3721 /* 3722 * Return >0 to inform caller that we find nothing 3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3724 */ 3725 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3726 struct find_free_extent_ctl *ffe_ctl) 3727 { 3728 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3729 u64 offset; 3730 3731 /* 3732 * We are doing an unclustered allocation, set the fragmented flag so 3733 * we don't bother trying to setup a cluster again until we get more 3734 * space. 3735 */ 3736 if (unlikely(last_ptr)) { 3737 spin_lock(&last_ptr->lock); 3738 last_ptr->fragmented = 1; 3739 spin_unlock(&last_ptr->lock); 3740 } 3741 if (ffe_ctl->cached) { 3742 struct btrfs_free_space_ctl *free_space_ctl; 3743 3744 free_space_ctl = bg->free_space_ctl; 3745 spin_lock(&free_space_ctl->tree_lock); 3746 if (free_space_ctl->free_space < 3747 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3748 ffe_ctl->empty_size) { 3749 ffe_ctl->total_free_space = max_t(u64, 3750 ffe_ctl->total_free_space, 3751 free_space_ctl->free_space); 3752 spin_unlock(&free_space_ctl->tree_lock); 3753 return 1; 3754 } 3755 spin_unlock(&free_space_ctl->tree_lock); 3756 } 3757 3758 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3759 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3760 &ffe_ctl->max_extent_size); 3761 if (!offset) 3762 return 1; 3763 ffe_ctl->found_offset = offset; 3764 return 0; 3765 } 3766 3767 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3768 struct find_free_extent_ctl *ffe_ctl, 3769 struct btrfs_block_group **bg_ret) 3770 { 3771 int ret; 3772 3773 /* We want to try and use the cluster allocator, so lets look there */ 3774 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3775 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3776 if (ret >= 0) 3777 return ret; 3778 /* ret == -ENOENT case falls through */ 3779 } 3780 3781 return find_free_extent_unclustered(block_group, ffe_ctl); 3782 } 3783 3784 /* 3785 * Tree-log block group locking 3786 * ============================ 3787 * 3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3789 * indicates the starting address of a block group, which is reserved only 3790 * for tree-log metadata. 3791 * 3792 * Lock nesting 3793 * ============ 3794 * 3795 * space_info::lock 3796 * block_group::lock 3797 * fs_info::treelog_bg_lock 3798 */ 3799 3800 /* 3801 * Simple allocator for sequential-only block group. It only allows sequential 3802 * allocation. No need to play with trees. This function also reserves the 3803 * bytes as in btrfs_add_reserved_bytes. 3804 */ 3805 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3806 struct find_free_extent_ctl *ffe_ctl, 3807 struct btrfs_block_group **bg_ret) 3808 { 3809 struct btrfs_fs_info *fs_info = block_group->fs_info; 3810 struct btrfs_space_info *space_info = block_group->space_info; 3811 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3812 u64 start = block_group->start; 3813 u64 num_bytes = ffe_ctl->num_bytes; 3814 u64 avail; 3815 u64 bytenr = block_group->start; 3816 u64 log_bytenr; 3817 u64 data_reloc_bytenr; 3818 int ret = 0; 3819 bool skip = false; 3820 3821 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3822 3823 /* 3824 * Do not allow non-tree-log blocks in the dedicated tree-log block 3825 * group, and vice versa. 3826 */ 3827 spin_lock(&fs_info->treelog_bg_lock); 3828 log_bytenr = fs_info->treelog_bg; 3829 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3830 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3831 skip = true; 3832 spin_unlock(&fs_info->treelog_bg_lock); 3833 if (skip) 3834 return 1; 3835 3836 /* 3837 * Do not allow non-relocation blocks in the dedicated relocation block 3838 * group, and vice versa. 3839 */ 3840 spin_lock(&fs_info->relocation_bg_lock); 3841 data_reloc_bytenr = fs_info->data_reloc_bg; 3842 if (data_reloc_bytenr && 3843 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3844 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3845 skip = true; 3846 spin_unlock(&fs_info->relocation_bg_lock); 3847 if (skip) 3848 return 1; 3849 3850 /* Check RO and no space case before trying to activate it */ 3851 spin_lock(&block_group->lock); 3852 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3853 ret = 1; 3854 /* 3855 * May need to clear fs_info->{treelog,data_reloc}_bg. 3856 * Return the error after taking the locks. 3857 */ 3858 } 3859 spin_unlock(&block_group->lock); 3860 3861 /* Metadata block group is activated at write time. */ 3862 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3863 !btrfs_zone_activate(block_group)) { 3864 ret = 1; 3865 /* 3866 * May need to clear fs_info->{treelog,data_reloc}_bg. 3867 * Return the error after taking the locks. 3868 */ 3869 } 3870 3871 spin_lock(&space_info->lock); 3872 spin_lock(&block_group->lock); 3873 spin_lock(&fs_info->treelog_bg_lock); 3874 spin_lock(&fs_info->relocation_bg_lock); 3875 3876 if (ret) 3877 goto out; 3878 3879 ASSERT(!ffe_ctl->for_treelog || 3880 block_group->start == fs_info->treelog_bg || 3881 fs_info->treelog_bg == 0); 3882 ASSERT(!ffe_ctl->for_data_reloc || 3883 block_group->start == fs_info->data_reloc_bg || 3884 fs_info->data_reloc_bg == 0); 3885 3886 if (block_group->ro || 3887 (!ffe_ctl->for_data_reloc && 3888 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3889 ret = 1; 3890 goto out; 3891 } 3892 3893 /* 3894 * Do not allow currently using block group to be tree-log dedicated 3895 * block group. 3896 */ 3897 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3898 (block_group->used || block_group->reserved)) { 3899 ret = 1; 3900 goto out; 3901 } 3902 3903 /* 3904 * Do not allow currently used block group to be the data relocation 3905 * dedicated block group. 3906 */ 3907 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3908 (block_group->used || block_group->reserved)) { 3909 ret = 1; 3910 goto out; 3911 } 3912 3913 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3914 avail = block_group->zone_capacity - block_group->alloc_offset; 3915 if (avail < num_bytes) { 3916 if (ffe_ctl->max_extent_size < avail) { 3917 /* 3918 * With sequential allocator, free space is always 3919 * contiguous 3920 */ 3921 ffe_ctl->max_extent_size = avail; 3922 ffe_ctl->total_free_space = avail; 3923 } 3924 ret = 1; 3925 goto out; 3926 } 3927 3928 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3929 fs_info->treelog_bg = block_group->start; 3930 3931 if (ffe_ctl->for_data_reloc) { 3932 if (!fs_info->data_reloc_bg) 3933 fs_info->data_reloc_bg = block_group->start; 3934 /* 3935 * Do not allow allocations from this block group, unless it is 3936 * for data relocation. Compared to increasing the ->ro, setting 3937 * the ->zoned_data_reloc_ongoing flag still allows nocow 3938 * writers to come in. See btrfs_inc_nocow_writers(). 3939 * 3940 * We need to disable an allocation to avoid an allocation of 3941 * regular (non-relocation data) extent. With mix of relocation 3942 * extents and regular extents, we can dispatch WRITE commands 3943 * (for relocation extents) and ZONE APPEND commands (for 3944 * regular extents) at the same time to the same zone, which 3945 * easily break the write pointer. 3946 * 3947 * Also, this flag avoids this block group to be zone finished. 3948 */ 3949 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3950 } 3951 3952 ffe_ctl->found_offset = start + block_group->alloc_offset; 3953 block_group->alloc_offset += num_bytes; 3954 spin_lock(&ctl->tree_lock); 3955 ctl->free_space -= num_bytes; 3956 spin_unlock(&ctl->tree_lock); 3957 3958 /* 3959 * We do not check if found_offset is aligned to stripesize. The 3960 * address is anyway rewritten when using zone append writing. 3961 */ 3962 3963 ffe_ctl->search_start = ffe_ctl->found_offset; 3964 3965 out: 3966 if (ret && ffe_ctl->for_treelog) 3967 fs_info->treelog_bg = 0; 3968 if (ret && ffe_ctl->for_data_reloc) 3969 fs_info->data_reloc_bg = 0; 3970 spin_unlock(&fs_info->relocation_bg_lock); 3971 spin_unlock(&fs_info->treelog_bg_lock); 3972 spin_unlock(&block_group->lock); 3973 spin_unlock(&space_info->lock); 3974 return ret; 3975 } 3976 3977 static int do_allocation(struct btrfs_block_group *block_group, 3978 struct find_free_extent_ctl *ffe_ctl, 3979 struct btrfs_block_group **bg_ret) 3980 { 3981 switch (ffe_ctl->policy) { 3982 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3983 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3984 case BTRFS_EXTENT_ALLOC_ZONED: 3985 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3986 default: 3987 BUG(); 3988 } 3989 } 3990 3991 static void release_block_group(struct btrfs_block_group *block_group, 3992 struct find_free_extent_ctl *ffe_ctl, 3993 int delalloc) 3994 { 3995 switch (ffe_ctl->policy) { 3996 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3997 ffe_ctl->retry_uncached = false; 3998 break; 3999 case BTRFS_EXTENT_ALLOC_ZONED: 4000 /* Nothing to do */ 4001 break; 4002 default: 4003 BUG(); 4004 } 4005 4006 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4007 ffe_ctl->index); 4008 btrfs_release_block_group(block_group, delalloc); 4009 } 4010 4011 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4012 struct btrfs_key *ins) 4013 { 4014 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4015 4016 if (!ffe_ctl->use_cluster && last_ptr) { 4017 spin_lock(&last_ptr->lock); 4018 last_ptr->window_start = ins->objectid; 4019 spin_unlock(&last_ptr->lock); 4020 } 4021 } 4022 4023 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4024 struct btrfs_key *ins) 4025 { 4026 switch (ffe_ctl->policy) { 4027 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4028 found_extent_clustered(ffe_ctl, ins); 4029 break; 4030 case BTRFS_EXTENT_ALLOC_ZONED: 4031 /* Nothing to do */ 4032 break; 4033 default: 4034 BUG(); 4035 } 4036 } 4037 4038 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4039 struct find_free_extent_ctl *ffe_ctl) 4040 { 4041 /* Block group's activeness is not a requirement for METADATA block groups. */ 4042 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4043 return 0; 4044 4045 /* If we can activate new zone, just allocate a chunk and use it */ 4046 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4047 return 0; 4048 4049 /* 4050 * We already reached the max active zones. Try to finish one block 4051 * group to make a room for a new block group. This is only possible 4052 * for a data block group because btrfs_zone_finish() may need to wait 4053 * for a running transaction which can cause a deadlock for metadata 4054 * allocation. 4055 */ 4056 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4057 int ret = btrfs_zone_finish_one_bg(fs_info); 4058 4059 if (ret == 1) 4060 return 0; 4061 else if (ret < 0) 4062 return ret; 4063 } 4064 4065 /* 4066 * If we have enough free space left in an already active block group 4067 * and we can't activate any other zone now, do not allow allocating a 4068 * new chunk and let find_free_extent() retry with a smaller size. 4069 */ 4070 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4071 return -ENOSPC; 4072 4073 /* 4074 * Even min_alloc_size is not left in any block groups. Since we cannot 4075 * activate a new block group, allocating it may not help. Let's tell a 4076 * caller to try again and hope it progress something by writing some 4077 * parts of the region. That is only possible for data block groups, 4078 * where a part of the region can be written. 4079 */ 4080 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4081 return -EAGAIN; 4082 4083 /* 4084 * We cannot activate a new block group and no enough space left in any 4085 * block groups. So, allocating a new block group may not help. But, 4086 * there is nothing to do anyway, so let's go with it. 4087 */ 4088 return 0; 4089 } 4090 4091 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4092 struct find_free_extent_ctl *ffe_ctl) 4093 { 4094 switch (ffe_ctl->policy) { 4095 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4096 return 0; 4097 case BTRFS_EXTENT_ALLOC_ZONED: 4098 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4099 default: 4100 BUG(); 4101 } 4102 } 4103 4104 /* 4105 * Return >0 means caller needs to re-search for free extent 4106 * Return 0 means we have the needed free extent. 4107 * Return <0 means we failed to locate any free extent. 4108 */ 4109 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4110 struct btrfs_key *ins, 4111 struct find_free_extent_ctl *ffe_ctl, 4112 bool full_search) 4113 { 4114 struct btrfs_root *root = fs_info->chunk_root; 4115 int ret; 4116 4117 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4118 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4119 ffe_ctl->orig_have_caching_bg = true; 4120 4121 if (ins->objectid) { 4122 found_extent(ffe_ctl, ins); 4123 return 0; 4124 } 4125 4126 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4127 return 1; 4128 4129 ffe_ctl->index++; 4130 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4131 return 1; 4132 4133 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4134 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4135 ffe_ctl->index = 0; 4136 /* 4137 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4138 * any uncached bgs and we've already done a full search 4139 * through. 4140 */ 4141 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4142 (!ffe_ctl->orig_have_caching_bg && full_search)) 4143 ffe_ctl->loop++; 4144 ffe_ctl->loop++; 4145 4146 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4147 struct btrfs_trans_handle *trans; 4148 int exist = 0; 4149 4150 /* Check if allocation policy allows to create a new chunk */ 4151 ret = can_allocate_chunk(fs_info, ffe_ctl); 4152 if (ret) 4153 return ret; 4154 4155 trans = current->journal_info; 4156 if (trans) 4157 exist = 1; 4158 else 4159 trans = btrfs_join_transaction(root); 4160 4161 if (IS_ERR(trans)) { 4162 ret = PTR_ERR(trans); 4163 return ret; 4164 } 4165 4166 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4167 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4168 4169 /* Do not bail out on ENOSPC since we can do more. */ 4170 if (ret == -ENOSPC) { 4171 ret = 0; 4172 ffe_ctl->loop++; 4173 } 4174 else if (ret < 0) 4175 btrfs_abort_transaction(trans, ret); 4176 else 4177 ret = 0; 4178 if (!exist) 4179 btrfs_end_transaction(trans); 4180 if (ret) 4181 return ret; 4182 } 4183 4184 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4185 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4186 return -ENOSPC; 4187 4188 /* 4189 * Don't loop again if we already have no empty_size and 4190 * no empty_cluster. 4191 */ 4192 if (ffe_ctl->empty_size == 0 && 4193 ffe_ctl->empty_cluster == 0) 4194 return -ENOSPC; 4195 ffe_ctl->empty_size = 0; 4196 ffe_ctl->empty_cluster = 0; 4197 } 4198 return 1; 4199 } 4200 return -ENOSPC; 4201 } 4202 4203 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4204 struct btrfs_block_group *bg) 4205 { 4206 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4207 return true; 4208 if (!btrfs_block_group_should_use_size_class(bg)) 4209 return true; 4210 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4211 return true; 4212 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4213 bg->size_class == BTRFS_BG_SZ_NONE) 4214 return true; 4215 return ffe_ctl->size_class == bg->size_class; 4216 } 4217 4218 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4219 struct find_free_extent_ctl *ffe_ctl, 4220 struct btrfs_space_info *space_info, 4221 struct btrfs_key *ins) 4222 { 4223 /* 4224 * If our free space is heavily fragmented we may not be able to make 4225 * big contiguous allocations, so instead of doing the expensive search 4226 * for free space, simply return ENOSPC with our max_extent_size so we 4227 * can go ahead and search for a more manageable chunk. 4228 * 4229 * If our max_extent_size is large enough for our allocation simply 4230 * disable clustering since we will likely not be able to find enough 4231 * space to create a cluster and induce latency trying. 4232 */ 4233 if (space_info->max_extent_size) { 4234 spin_lock(&space_info->lock); 4235 if (space_info->max_extent_size && 4236 ffe_ctl->num_bytes > space_info->max_extent_size) { 4237 ins->offset = space_info->max_extent_size; 4238 spin_unlock(&space_info->lock); 4239 return -ENOSPC; 4240 } else if (space_info->max_extent_size) { 4241 ffe_ctl->use_cluster = false; 4242 } 4243 spin_unlock(&space_info->lock); 4244 } 4245 4246 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4247 &ffe_ctl->empty_cluster); 4248 if (ffe_ctl->last_ptr) { 4249 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4250 4251 spin_lock(&last_ptr->lock); 4252 if (last_ptr->block_group) 4253 ffe_ctl->hint_byte = last_ptr->window_start; 4254 if (last_ptr->fragmented) { 4255 /* 4256 * We still set window_start so we can keep track of the 4257 * last place we found an allocation to try and save 4258 * some time. 4259 */ 4260 ffe_ctl->hint_byte = last_ptr->window_start; 4261 ffe_ctl->use_cluster = false; 4262 } 4263 spin_unlock(&last_ptr->lock); 4264 } 4265 4266 return 0; 4267 } 4268 4269 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4270 struct find_free_extent_ctl *ffe_ctl) 4271 { 4272 if (ffe_ctl->for_treelog) { 4273 spin_lock(&fs_info->treelog_bg_lock); 4274 if (fs_info->treelog_bg) 4275 ffe_ctl->hint_byte = fs_info->treelog_bg; 4276 spin_unlock(&fs_info->treelog_bg_lock); 4277 } else if (ffe_ctl->for_data_reloc) { 4278 spin_lock(&fs_info->relocation_bg_lock); 4279 if (fs_info->data_reloc_bg) 4280 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4281 spin_unlock(&fs_info->relocation_bg_lock); 4282 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4283 struct btrfs_block_group *block_group; 4284 4285 spin_lock(&fs_info->zone_active_bgs_lock); 4286 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4287 /* 4288 * No lock is OK here because avail is monotinically 4289 * decreasing, and this is just a hint. 4290 */ 4291 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4292 4293 if (block_group_bits(block_group, ffe_ctl->flags) && 4294 avail >= ffe_ctl->num_bytes) { 4295 ffe_ctl->hint_byte = block_group->start; 4296 break; 4297 } 4298 } 4299 spin_unlock(&fs_info->zone_active_bgs_lock); 4300 } 4301 4302 return 0; 4303 } 4304 4305 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4306 struct find_free_extent_ctl *ffe_ctl, 4307 struct btrfs_space_info *space_info, 4308 struct btrfs_key *ins) 4309 { 4310 switch (ffe_ctl->policy) { 4311 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4312 return prepare_allocation_clustered(fs_info, ffe_ctl, 4313 space_info, ins); 4314 case BTRFS_EXTENT_ALLOC_ZONED: 4315 return prepare_allocation_zoned(fs_info, ffe_ctl); 4316 default: 4317 BUG(); 4318 } 4319 } 4320 4321 /* 4322 * walks the btree of allocated extents and find a hole of a given size. 4323 * The key ins is changed to record the hole: 4324 * ins->objectid == start position 4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4326 * ins->offset == the size of the hole. 4327 * Any available blocks before search_start are skipped. 4328 * 4329 * If there is no suitable free space, we will record the max size of 4330 * the free space extent currently. 4331 * 4332 * The overall logic and call chain: 4333 * 4334 * find_free_extent() 4335 * |- Iterate through all block groups 4336 * | |- Get a valid block group 4337 * | |- Try to do clustered allocation in that block group 4338 * | |- Try to do unclustered allocation in that block group 4339 * | |- Check if the result is valid 4340 * | | |- If valid, then exit 4341 * | |- Jump to next block group 4342 * | 4343 * |- Push harder to find free extents 4344 * |- If not found, re-iterate all block groups 4345 */ 4346 static noinline int find_free_extent(struct btrfs_root *root, 4347 struct btrfs_key *ins, 4348 struct find_free_extent_ctl *ffe_ctl) 4349 { 4350 struct btrfs_fs_info *fs_info = root->fs_info; 4351 int ret = 0; 4352 int cache_block_group_error = 0; 4353 struct btrfs_block_group *block_group = NULL; 4354 struct btrfs_space_info *space_info; 4355 bool full_search = false; 4356 4357 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4358 4359 ffe_ctl->search_start = 0; 4360 /* For clustered allocation */ 4361 ffe_ctl->empty_cluster = 0; 4362 ffe_ctl->last_ptr = NULL; 4363 ffe_ctl->use_cluster = true; 4364 ffe_ctl->have_caching_bg = false; 4365 ffe_ctl->orig_have_caching_bg = false; 4366 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4367 ffe_ctl->loop = 0; 4368 ffe_ctl->retry_uncached = false; 4369 ffe_ctl->cached = 0; 4370 ffe_ctl->max_extent_size = 0; 4371 ffe_ctl->total_free_space = 0; 4372 ffe_ctl->found_offset = 0; 4373 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4374 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4375 4376 if (btrfs_is_zoned(fs_info)) 4377 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4378 4379 ins->type = BTRFS_EXTENT_ITEM_KEY; 4380 ins->objectid = 0; 4381 ins->offset = 0; 4382 4383 trace_find_free_extent(root, ffe_ctl); 4384 4385 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4386 if (!space_info) { 4387 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4388 return -ENOSPC; 4389 } 4390 4391 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4392 if (ret < 0) 4393 return ret; 4394 4395 ffe_ctl->search_start = max(ffe_ctl->search_start, 4396 first_logical_byte(fs_info)); 4397 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4398 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4399 block_group = btrfs_lookup_block_group(fs_info, 4400 ffe_ctl->search_start); 4401 /* 4402 * we don't want to use the block group if it doesn't match our 4403 * allocation bits, or if its not cached. 4404 * 4405 * However if we are re-searching with an ideal block group 4406 * picked out then we don't care that the block group is cached. 4407 */ 4408 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4409 block_group->cached != BTRFS_CACHE_NO) { 4410 down_read(&space_info->groups_sem); 4411 if (list_empty(&block_group->list) || 4412 block_group->ro) { 4413 /* 4414 * someone is removing this block group, 4415 * we can't jump into the have_block_group 4416 * target because our list pointers are not 4417 * valid 4418 */ 4419 btrfs_put_block_group(block_group); 4420 up_read(&space_info->groups_sem); 4421 } else { 4422 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4423 block_group->flags); 4424 btrfs_lock_block_group(block_group, 4425 ffe_ctl->delalloc); 4426 ffe_ctl->hinted = true; 4427 goto have_block_group; 4428 } 4429 } else if (block_group) { 4430 btrfs_put_block_group(block_group); 4431 } 4432 } 4433 search: 4434 trace_find_free_extent_search_loop(root, ffe_ctl); 4435 ffe_ctl->have_caching_bg = false; 4436 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4437 ffe_ctl->index == 0) 4438 full_search = true; 4439 down_read(&space_info->groups_sem); 4440 list_for_each_entry(block_group, 4441 &space_info->block_groups[ffe_ctl->index], list) { 4442 struct btrfs_block_group *bg_ret; 4443 4444 ffe_ctl->hinted = false; 4445 /* If the block group is read-only, we can skip it entirely. */ 4446 if (unlikely(block_group->ro)) { 4447 if (ffe_ctl->for_treelog) 4448 btrfs_clear_treelog_bg(block_group); 4449 if (ffe_ctl->for_data_reloc) 4450 btrfs_clear_data_reloc_bg(block_group); 4451 continue; 4452 } 4453 4454 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4455 ffe_ctl->search_start = block_group->start; 4456 4457 /* 4458 * this can happen if we end up cycling through all the 4459 * raid types, but we want to make sure we only allocate 4460 * for the proper type. 4461 */ 4462 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4463 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4464 BTRFS_BLOCK_GROUP_RAID1_MASK | 4465 BTRFS_BLOCK_GROUP_RAID56_MASK | 4466 BTRFS_BLOCK_GROUP_RAID10; 4467 4468 /* 4469 * if they asked for extra copies and this block group 4470 * doesn't provide them, bail. This does allow us to 4471 * fill raid0 from raid1. 4472 */ 4473 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4474 goto loop; 4475 4476 /* 4477 * This block group has different flags than we want. 4478 * It's possible that we have MIXED_GROUP flag but no 4479 * block group is mixed. Just skip such block group. 4480 */ 4481 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4482 continue; 4483 } 4484 4485 have_block_group: 4486 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4487 ffe_ctl->cached = btrfs_block_group_done(block_group); 4488 if (unlikely(!ffe_ctl->cached)) { 4489 ffe_ctl->have_caching_bg = true; 4490 ret = btrfs_cache_block_group(block_group, false); 4491 4492 /* 4493 * If we get ENOMEM here or something else we want to 4494 * try other block groups, because it may not be fatal. 4495 * However if we can't find anything else we need to 4496 * save our return here so that we return the actual 4497 * error that caused problems, not ENOSPC. 4498 */ 4499 if (ret < 0) { 4500 if (!cache_block_group_error) 4501 cache_block_group_error = ret; 4502 ret = 0; 4503 goto loop; 4504 } 4505 ret = 0; 4506 } 4507 4508 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4509 if (!cache_block_group_error) 4510 cache_block_group_error = -EIO; 4511 goto loop; 4512 } 4513 4514 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4515 goto loop; 4516 4517 bg_ret = NULL; 4518 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4519 if (ret > 0) 4520 goto loop; 4521 4522 if (bg_ret && bg_ret != block_group) { 4523 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4524 block_group = bg_ret; 4525 } 4526 4527 /* Checks */ 4528 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4529 fs_info->stripesize); 4530 4531 /* move on to the next group */ 4532 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4533 block_group->start + block_group->length) { 4534 btrfs_add_free_space_unused(block_group, 4535 ffe_ctl->found_offset, 4536 ffe_ctl->num_bytes); 4537 goto loop; 4538 } 4539 4540 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4541 btrfs_add_free_space_unused(block_group, 4542 ffe_ctl->found_offset, 4543 ffe_ctl->search_start - ffe_ctl->found_offset); 4544 4545 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4546 ffe_ctl->num_bytes, 4547 ffe_ctl->delalloc, 4548 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4549 if (ret == -EAGAIN) { 4550 btrfs_add_free_space_unused(block_group, 4551 ffe_ctl->found_offset, 4552 ffe_ctl->num_bytes); 4553 goto loop; 4554 } 4555 btrfs_inc_block_group_reservations(block_group); 4556 4557 /* we are all good, lets return */ 4558 ins->objectid = ffe_ctl->search_start; 4559 ins->offset = ffe_ctl->num_bytes; 4560 4561 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4562 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4563 break; 4564 loop: 4565 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4566 !ffe_ctl->retry_uncached) { 4567 ffe_ctl->retry_uncached = true; 4568 btrfs_wait_block_group_cache_progress(block_group, 4569 ffe_ctl->num_bytes + 4570 ffe_ctl->empty_cluster + 4571 ffe_ctl->empty_size); 4572 goto have_block_group; 4573 } 4574 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4575 cond_resched(); 4576 } 4577 up_read(&space_info->groups_sem); 4578 4579 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4580 if (ret > 0) 4581 goto search; 4582 4583 if (ret == -ENOSPC && !cache_block_group_error) { 4584 /* 4585 * Use ffe_ctl->total_free_space as fallback if we can't find 4586 * any contiguous hole. 4587 */ 4588 if (!ffe_ctl->max_extent_size) 4589 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4590 spin_lock(&space_info->lock); 4591 space_info->max_extent_size = ffe_ctl->max_extent_size; 4592 spin_unlock(&space_info->lock); 4593 ins->offset = ffe_ctl->max_extent_size; 4594 } else if (ret == -ENOSPC) { 4595 ret = cache_block_group_error; 4596 } 4597 return ret; 4598 } 4599 4600 /* 4601 * Entry point to the extent allocator. Tries to find a hole that is at least 4602 * as big as @num_bytes. 4603 * 4604 * @root - The root that will contain this extent 4605 * 4606 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4607 * is used for accounting purposes. This value differs 4608 * from @num_bytes only in the case of compressed extents. 4609 * 4610 * @num_bytes - Number of bytes to allocate on-disk. 4611 * 4612 * @min_alloc_size - Indicates the minimum amount of space that the 4613 * allocator should try to satisfy. In some cases 4614 * @num_bytes may be larger than what is required and if 4615 * the filesystem is fragmented then allocation fails. 4616 * However, the presence of @min_alloc_size gives a 4617 * chance to try and satisfy the smaller allocation. 4618 * 4619 * @empty_size - A hint that you plan on doing more COW. This is the 4620 * size in bytes the allocator should try to find free 4621 * next to the block it returns. This is just a hint and 4622 * may be ignored by the allocator. 4623 * 4624 * @hint_byte - Hint to the allocator to start searching above the byte 4625 * address passed. It might be ignored. 4626 * 4627 * @ins - This key is modified to record the found hole. It will 4628 * have the following values: 4629 * ins->objectid == start position 4630 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4631 * ins->offset == the size of the hole. 4632 * 4633 * @is_data - Boolean flag indicating whether an extent is 4634 * allocated for data (true) or metadata (false) 4635 * 4636 * @delalloc - Boolean flag indicating whether this allocation is for 4637 * delalloc or not. If 'true' data_rwsem of block groups 4638 * is going to be acquired. 4639 * 4640 * 4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4642 * case -ENOSPC is returned then @ins->offset will contain the size of the 4643 * largest available hole the allocator managed to find. 4644 */ 4645 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4646 u64 num_bytes, u64 min_alloc_size, 4647 u64 empty_size, u64 hint_byte, 4648 struct btrfs_key *ins, int is_data, int delalloc) 4649 { 4650 struct btrfs_fs_info *fs_info = root->fs_info; 4651 struct find_free_extent_ctl ffe_ctl = {}; 4652 bool final_tried = num_bytes == min_alloc_size; 4653 u64 flags; 4654 int ret; 4655 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4656 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4657 4658 flags = get_alloc_profile_by_root(root, is_data); 4659 again: 4660 WARN_ON(num_bytes < fs_info->sectorsize); 4661 4662 ffe_ctl.ram_bytes = ram_bytes; 4663 ffe_ctl.num_bytes = num_bytes; 4664 ffe_ctl.min_alloc_size = min_alloc_size; 4665 ffe_ctl.empty_size = empty_size; 4666 ffe_ctl.flags = flags; 4667 ffe_ctl.delalloc = delalloc; 4668 ffe_ctl.hint_byte = hint_byte; 4669 ffe_ctl.for_treelog = for_treelog; 4670 ffe_ctl.for_data_reloc = for_data_reloc; 4671 4672 ret = find_free_extent(root, ins, &ffe_ctl); 4673 if (!ret && !is_data) { 4674 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4675 } else if (ret == -ENOSPC) { 4676 if (!final_tried && ins->offset) { 4677 num_bytes = min(num_bytes >> 1, ins->offset); 4678 num_bytes = round_down(num_bytes, 4679 fs_info->sectorsize); 4680 num_bytes = max(num_bytes, min_alloc_size); 4681 ram_bytes = num_bytes; 4682 if (num_bytes == min_alloc_size) 4683 final_tried = true; 4684 goto again; 4685 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4686 struct btrfs_space_info *sinfo; 4687 4688 sinfo = btrfs_find_space_info(fs_info, flags); 4689 btrfs_err(fs_info, 4690 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4691 flags, num_bytes, for_treelog, for_data_reloc); 4692 if (sinfo) 4693 btrfs_dump_space_info(fs_info, sinfo, 4694 num_bytes, 1); 4695 } 4696 } 4697 4698 return ret; 4699 } 4700 4701 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4702 u64 start, u64 len, int delalloc) 4703 { 4704 struct btrfs_block_group *cache; 4705 4706 cache = btrfs_lookup_block_group(fs_info, start); 4707 if (!cache) { 4708 btrfs_err(fs_info, "Unable to find block group for %llu", 4709 start); 4710 return -ENOSPC; 4711 } 4712 4713 btrfs_add_free_space(cache, start, len); 4714 btrfs_free_reserved_bytes(cache, len, delalloc); 4715 trace_btrfs_reserved_extent_free(fs_info, start, len); 4716 4717 btrfs_put_block_group(cache); 4718 return 0; 4719 } 4720 4721 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4722 const struct extent_buffer *eb) 4723 { 4724 struct btrfs_block_group *cache; 4725 int ret = 0; 4726 4727 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4728 if (!cache) { 4729 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4730 eb->start); 4731 return -ENOSPC; 4732 } 4733 4734 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4735 btrfs_put_block_group(cache); 4736 return ret; 4737 } 4738 4739 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4740 u64 num_bytes) 4741 { 4742 struct btrfs_fs_info *fs_info = trans->fs_info; 4743 int ret; 4744 4745 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4746 if (ret) 4747 return ret; 4748 4749 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4750 if (ret) { 4751 ASSERT(!ret); 4752 btrfs_err(fs_info, "update block group failed for %llu %llu", 4753 bytenr, num_bytes); 4754 return ret; 4755 } 4756 4757 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4758 return 0; 4759 } 4760 4761 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4762 u64 parent, u64 root_objectid, 4763 u64 flags, u64 owner, u64 offset, 4764 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4765 { 4766 struct btrfs_fs_info *fs_info = trans->fs_info; 4767 struct btrfs_root *extent_root; 4768 int ret; 4769 struct btrfs_extent_item *extent_item; 4770 struct btrfs_extent_owner_ref *oref; 4771 struct btrfs_extent_inline_ref *iref; 4772 struct btrfs_path *path; 4773 struct extent_buffer *leaf; 4774 int type; 4775 u32 size; 4776 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4777 4778 if (parent > 0) 4779 type = BTRFS_SHARED_DATA_REF_KEY; 4780 else 4781 type = BTRFS_EXTENT_DATA_REF_KEY; 4782 4783 size = sizeof(*extent_item); 4784 if (simple_quota) 4785 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4786 size += btrfs_extent_inline_ref_size(type); 4787 4788 path = btrfs_alloc_path(); 4789 if (!path) 4790 return -ENOMEM; 4791 4792 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4793 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4794 if (ret) { 4795 btrfs_free_path(path); 4796 return ret; 4797 } 4798 4799 leaf = path->nodes[0]; 4800 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4801 struct btrfs_extent_item); 4802 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4803 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4804 btrfs_set_extent_flags(leaf, extent_item, 4805 flags | BTRFS_EXTENT_FLAG_DATA); 4806 4807 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4808 if (simple_quota) { 4809 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4810 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4811 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4812 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4813 } 4814 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4815 4816 if (parent > 0) { 4817 struct btrfs_shared_data_ref *ref; 4818 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4820 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4821 } else { 4822 struct btrfs_extent_data_ref *ref; 4823 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4824 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4825 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4826 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4827 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4828 } 4829 4830 btrfs_free_path(path); 4831 4832 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4833 } 4834 4835 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4836 struct btrfs_delayed_ref_node *node, 4837 struct btrfs_delayed_extent_op *extent_op) 4838 { 4839 struct btrfs_fs_info *fs_info = trans->fs_info; 4840 struct btrfs_root *extent_root; 4841 int ret; 4842 struct btrfs_extent_item *extent_item; 4843 struct btrfs_key extent_key; 4844 struct btrfs_tree_block_info *block_info; 4845 struct btrfs_extent_inline_ref *iref; 4846 struct btrfs_path *path; 4847 struct extent_buffer *leaf; 4848 u32 size = sizeof(*extent_item) + sizeof(*iref); 4849 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4850 /* The owner of a tree block is the level. */ 4851 int level = btrfs_delayed_ref_owner(node); 4852 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4853 4854 extent_key.objectid = node->bytenr; 4855 if (skinny_metadata) { 4856 /* The owner of a tree block is the level. */ 4857 extent_key.offset = level; 4858 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4859 } else { 4860 extent_key.offset = node->num_bytes; 4861 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4862 size += sizeof(*block_info); 4863 } 4864 4865 path = btrfs_alloc_path(); 4866 if (!path) 4867 return -ENOMEM; 4868 4869 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4870 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4871 size); 4872 if (ret) { 4873 btrfs_free_path(path); 4874 return ret; 4875 } 4876 4877 leaf = path->nodes[0]; 4878 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4879 struct btrfs_extent_item); 4880 btrfs_set_extent_refs(leaf, extent_item, 1); 4881 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4882 btrfs_set_extent_flags(leaf, extent_item, 4883 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4884 4885 if (skinny_metadata) { 4886 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4887 } else { 4888 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4889 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4890 btrfs_set_tree_block_level(leaf, block_info, level); 4891 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4892 } 4893 4894 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4895 btrfs_set_extent_inline_ref_type(leaf, iref, 4896 BTRFS_SHARED_BLOCK_REF_KEY); 4897 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4898 } else { 4899 btrfs_set_extent_inline_ref_type(leaf, iref, 4900 BTRFS_TREE_BLOCK_REF_KEY); 4901 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4902 } 4903 4904 btrfs_free_path(path); 4905 4906 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4907 } 4908 4909 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4910 struct btrfs_root *root, u64 owner, 4911 u64 offset, u64 ram_bytes, 4912 struct btrfs_key *ins) 4913 { 4914 struct btrfs_ref generic_ref = { 4915 .action = BTRFS_ADD_DELAYED_EXTENT, 4916 .bytenr = ins->objectid, 4917 .num_bytes = ins->offset, 4918 .owning_root = btrfs_root_id(root), 4919 .ref_root = btrfs_root_id(root), 4920 }; 4921 4922 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4923 4924 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4925 generic_ref.owning_root = root->relocation_src_root; 4926 4927 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4928 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4929 4930 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4931 } 4932 4933 /* 4934 * this is used by the tree logging recovery code. It records that 4935 * an extent has been allocated and makes sure to clear the free 4936 * space cache bits as well 4937 */ 4938 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4939 u64 root_objectid, u64 owner, u64 offset, 4940 struct btrfs_key *ins) 4941 { 4942 struct btrfs_fs_info *fs_info = trans->fs_info; 4943 int ret; 4944 struct btrfs_block_group *block_group; 4945 struct btrfs_space_info *space_info; 4946 struct btrfs_squota_delta delta = { 4947 .root = root_objectid, 4948 .num_bytes = ins->offset, 4949 .generation = trans->transid, 4950 .is_data = true, 4951 .is_inc = true, 4952 }; 4953 4954 /* 4955 * Mixed block groups will exclude before processing the log so we only 4956 * need to do the exclude dance if this fs isn't mixed. 4957 */ 4958 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4959 ret = __exclude_logged_extent(fs_info, ins->objectid, 4960 ins->offset); 4961 if (ret) 4962 return ret; 4963 } 4964 4965 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4966 if (!block_group) 4967 return -EINVAL; 4968 4969 space_info = block_group->space_info; 4970 spin_lock(&space_info->lock); 4971 spin_lock(&block_group->lock); 4972 space_info->bytes_reserved += ins->offset; 4973 block_group->reserved += ins->offset; 4974 spin_unlock(&block_group->lock); 4975 spin_unlock(&space_info->lock); 4976 4977 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4978 offset, ins, 1, root_objectid); 4979 if (ret) 4980 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4981 ret = btrfs_record_squota_delta(fs_info, &delta); 4982 btrfs_put_block_group(block_group); 4983 return ret; 4984 } 4985 4986 #ifdef CONFIG_BTRFS_DEBUG 4987 /* 4988 * Extra safety check in case the extent tree is corrupted and extent allocator 4989 * chooses to use a tree block which is already used and locked. 4990 */ 4991 static bool check_eb_lock_owner(const struct extent_buffer *eb) 4992 { 4993 if (eb->lock_owner == current->pid) { 4994 btrfs_err_rl(eb->fs_info, 4995 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4996 eb->start, btrfs_header_owner(eb), current->pid); 4997 return true; 4998 } 4999 return false; 5000 } 5001 #else 5002 static bool check_eb_lock_owner(struct extent_buffer *eb) 5003 { 5004 return false; 5005 } 5006 #endif 5007 5008 static struct extent_buffer * 5009 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5010 u64 bytenr, int level, u64 owner, 5011 enum btrfs_lock_nesting nest) 5012 { 5013 struct btrfs_fs_info *fs_info = root->fs_info; 5014 struct extent_buffer *buf; 5015 u64 lockdep_owner = owner; 5016 5017 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5018 if (IS_ERR(buf)) 5019 return buf; 5020 5021 if (check_eb_lock_owner(buf)) { 5022 free_extent_buffer(buf); 5023 return ERR_PTR(-EUCLEAN); 5024 } 5025 5026 /* 5027 * The reloc trees are just snapshots, so we need them to appear to be 5028 * just like any other fs tree WRT lockdep. 5029 * 5030 * The exception however is in replace_path() in relocation, where we 5031 * hold the lock on the original fs root and then search for the reloc 5032 * root. At that point we need to make sure any reloc root buffers are 5033 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5034 * lockdep happy. 5035 */ 5036 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5037 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5038 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5039 5040 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5041 btrfs_set_header_generation(buf, trans->transid); 5042 5043 /* 5044 * This needs to stay, because we could allocate a freed block from an 5045 * old tree into a new tree, so we need to make sure this new block is 5046 * set to the appropriate level and owner. 5047 */ 5048 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5049 5050 btrfs_tree_lock_nested(buf, nest); 5051 btrfs_clear_buffer_dirty(trans, buf); 5052 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5053 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5054 5055 set_extent_buffer_uptodate(buf); 5056 5057 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5058 btrfs_set_header_level(buf, level); 5059 btrfs_set_header_bytenr(buf, buf->start); 5060 btrfs_set_header_generation(buf, trans->transid); 5061 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5062 btrfs_set_header_owner(buf, owner); 5063 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5064 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5065 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5066 buf->log_index = root->log_transid % 2; 5067 /* 5068 * we allow two log transactions at a time, use different 5069 * EXTENT bit to differentiate dirty pages. 5070 */ 5071 if (buf->log_index == 0) 5072 set_extent_bit(&root->dirty_log_pages, buf->start, 5073 buf->start + buf->len - 1, 5074 EXTENT_DIRTY, NULL); 5075 else 5076 set_extent_bit(&root->dirty_log_pages, buf->start, 5077 buf->start + buf->len - 1, 5078 EXTENT_NEW, NULL); 5079 } else { 5080 buf->log_index = -1; 5081 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5082 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5083 } 5084 /* this returns a buffer locked for blocking */ 5085 return buf; 5086 } 5087 5088 /* 5089 * finds a free extent and does all the dirty work required for allocation 5090 * returns the tree buffer or an ERR_PTR on error. 5091 */ 5092 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5093 struct btrfs_root *root, 5094 u64 parent, u64 root_objectid, 5095 const struct btrfs_disk_key *key, 5096 int level, u64 hint, 5097 u64 empty_size, 5098 u64 reloc_src_root, 5099 enum btrfs_lock_nesting nest) 5100 { 5101 struct btrfs_fs_info *fs_info = root->fs_info; 5102 struct btrfs_key ins; 5103 struct btrfs_block_rsv *block_rsv; 5104 struct extent_buffer *buf; 5105 u64 flags = 0; 5106 int ret; 5107 u32 blocksize = fs_info->nodesize; 5108 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5109 u64 owning_root; 5110 5111 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5112 if (btrfs_is_testing(fs_info)) { 5113 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5114 level, root_objectid, nest); 5115 if (!IS_ERR(buf)) 5116 root->alloc_bytenr += blocksize; 5117 return buf; 5118 } 5119 #endif 5120 5121 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5122 if (IS_ERR(block_rsv)) 5123 return ERR_CAST(block_rsv); 5124 5125 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5126 empty_size, hint, &ins, 0, 0); 5127 if (ret) 5128 goto out_unuse; 5129 5130 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5131 root_objectid, nest); 5132 if (IS_ERR(buf)) { 5133 ret = PTR_ERR(buf); 5134 goto out_free_reserved; 5135 } 5136 owning_root = btrfs_header_owner(buf); 5137 5138 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5139 if (parent == 0) 5140 parent = ins.objectid; 5141 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5142 owning_root = reloc_src_root; 5143 } else 5144 BUG_ON(parent > 0); 5145 5146 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5147 struct btrfs_delayed_extent_op *extent_op; 5148 struct btrfs_ref generic_ref = { 5149 .action = BTRFS_ADD_DELAYED_EXTENT, 5150 .bytenr = ins.objectid, 5151 .num_bytes = ins.offset, 5152 .parent = parent, 5153 .owning_root = owning_root, 5154 .ref_root = root_objectid, 5155 }; 5156 5157 if (!skinny_metadata || flags != 0) { 5158 extent_op = btrfs_alloc_delayed_extent_op(); 5159 if (!extent_op) { 5160 ret = -ENOMEM; 5161 goto out_free_buf; 5162 } 5163 if (key) 5164 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5165 else 5166 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5167 extent_op->flags_to_set = flags; 5168 extent_op->update_key = (skinny_metadata ? false : true); 5169 extent_op->update_flags = (flags != 0); 5170 } else { 5171 extent_op = NULL; 5172 } 5173 5174 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5175 btrfs_ref_tree_mod(fs_info, &generic_ref); 5176 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5177 if (ret) { 5178 btrfs_free_delayed_extent_op(extent_op); 5179 goto out_free_buf; 5180 } 5181 } 5182 return buf; 5183 5184 out_free_buf: 5185 btrfs_tree_unlock(buf); 5186 free_extent_buffer(buf); 5187 out_free_reserved: 5188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5189 out_unuse: 5190 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5191 return ERR_PTR(ret); 5192 } 5193 5194 struct walk_control { 5195 u64 refs[BTRFS_MAX_LEVEL]; 5196 u64 flags[BTRFS_MAX_LEVEL]; 5197 struct btrfs_key update_progress; 5198 struct btrfs_key drop_progress; 5199 int drop_level; 5200 int stage; 5201 int level; 5202 int shared_level; 5203 int update_ref; 5204 int keep_locks; 5205 int reada_slot; 5206 int reada_count; 5207 int restarted; 5208 /* Indicate that extent info needs to be looked up when walking the tree. */ 5209 int lookup_info; 5210 }; 5211 5212 /* 5213 * This is our normal stage. We are traversing blocks the current snapshot owns 5214 * and we are dropping any of our references to any children we are able to, and 5215 * then freeing the block once we've processed all of the children. 5216 */ 5217 #define DROP_REFERENCE 1 5218 5219 /* 5220 * We enter this stage when we have to walk into a child block (meaning we can't 5221 * simply drop our reference to it from our current parent node) and there are 5222 * more than one reference on it. If we are the owner of any of the children 5223 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5224 * on them in order to drop our normal ref and add the shared ref. 5225 */ 5226 #define UPDATE_BACKREF 2 5227 5228 /* 5229 * Decide if we need to walk down into this node to adjust the references. 5230 * 5231 * @root: the root we are currently deleting 5232 * @wc: the walk control for this deletion 5233 * @eb: the parent eb that we're currently visiting 5234 * @refs: the number of refs for wc->level - 1 5235 * @flags: the flags for wc->level - 1 5236 * @slot: the slot in the eb that we're currently checking 5237 * 5238 * This is meant to be called when we're evaluating if a node we point to at 5239 * wc->level should be read and walked into, or if we can simply delete our 5240 * reference to it. We return true if we should walk into the node, false if we 5241 * can skip it. 5242 * 5243 * We have assertions in here to make sure this is called correctly. We assume 5244 * that sanity checking on the blocks read to this point has been done, so any 5245 * corrupted file systems must have been caught before calling this function. 5246 */ 5247 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5248 struct extent_buffer *eb, u64 flags, int slot) 5249 { 5250 struct btrfs_key key; 5251 u64 generation; 5252 int level = wc->level; 5253 5254 ASSERT(level > 0); 5255 ASSERT(wc->refs[level - 1] > 0); 5256 5257 /* 5258 * The update backref stage we only want to skip if we already have 5259 * FULL_BACKREF set, otherwise we need to read. 5260 */ 5261 if (wc->stage == UPDATE_BACKREF) { 5262 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5263 return false; 5264 return true; 5265 } 5266 5267 /* 5268 * We're the last ref on this block, we must walk into it and process 5269 * any refs it's pointing at. 5270 */ 5271 if (wc->refs[level - 1] == 1) 5272 return true; 5273 5274 /* 5275 * If we're already FULL_BACKREF then we know we can just drop our 5276 * current reference. 5277 */ 5278 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5279 return false; 5280 5281 /* 5282 * This block is older than our creation generation, we can drop our 5283 * reference to it. 5284 */ 5285 generation = btrfs_node_ptr_generation(eb, slot); 5286 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root)) 5287 return false; 5288 5289 /* 5290 * This block was processed from a previous snapshot deletion run, we 5291 * can skip it. 5292 */ 5293 btrfs_node_key_to_cpu(eb, &key, slot); 5294 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5295 return false; 5296 5297 /* All other cases we need to wander into the node. */ 5298 return true; 5299 } 5300 5301 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5302 struct btrfs_root *root, 5303 struct walk_control *wc, 5304 struct btrfs_path *path) 5305 { 5306 struct btrfs_fs_info *fs_info = root->fs_info; 5307 u64 bytenr; 5308 u64 generation; 5309 u64 refs; 5310 u64 flags; 5311 u32 nritems; 5312 struct extent_buffer *eb; 5313 int ret; 5314 int slot; 5315 int nread = 0; 5316 5317 if (path->slots[wc->level] < wc->reada_slot) { 5318 wc->reada_count = wc->reada_count * 2 / 3; 5319 wc->reada_count = max(wc->reada_count, 2); 5320 } else { 5321 wc->reada_count = wc->reada_count * 3 / 2; 5322 wc->reada_count = min_t(int, wc->reada_count, 5323 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5324 } 5325 5326 eb = path->nodes[wc->level]; 5327 nritems = btrfs_header_nritems(eb); 5328 5329 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5330 if (nread >= wc->reada_count) 5331 break; 5332 5333 cond_resched(); 5334 bytenr = btrfs_node_blockptr(eb, slot); 5335 generation = btrfs_node_ptr_generation(eb, slot); 5336 5337 if (slot == path->slots[wc->level]) 5338 goto reada; 5339 5340 if (wc->stage == UPDATE_BACKREF && 5341 generation <= btrfs_root_origin_generation(root)) 5342 continue; 5343 5344 /* We don't lock the tree block, it's OK to be racy here */ 5345 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5346 wc->level - 1, 1, &refs, 5347 &flags, NULL); 5348 /* We don't care about errors in readahead. */ 5349 if (ret < 0) 5350 continue; 5351 5352 /* 5353 * This could be racey, it's conceivable that we raced and end 5354 * up with a bogus refs count, if that's the case just skip, if 5355 * we are actually corrupt we will notice when we look up 5356 * everything again with our locks. 5357 */ 5358 if (refs == 0) 5359 continue; 5360 5361 /* If we don't need to visit this node don't reada. */ 5362 if (!visit_node_for_delete(root, wc, eb, flags, slot)) 5363 continue; 5364 reada: 5365 btrfs_readahead_node_child(eb, slot); 5366 nread++; 5367 } 5368 wc->reada_slot = slot; 5369 } 5370 5371 /* 5372 * helper to process tree block while walking down the tree. 5373 * 5374 * when wc->stage == UPDATE_BACKREF, this function updates 5375 * back refs for pointers in the block. 5376 * 5377 * NOTE: return value 1 means we should stop walking down. 5378 */ 5379 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5380 struct btrfs_root *root, 5381 struct btrfs_path *path, 5382 struct walk_control *wc) 5383 { 5384 struct btrfs_fs_info *fs_info = root->fs_info; 5385 int level = wc->level; 5386 struct extent_buffer *eb = path->nodes[level]; 5387 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5388 int ret; 5389 5390 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5391 return 1; 5392 5393 /* 5394 * when reference count of tree block is 1, it won't increase 5395 * again. once full backref flag is set, we never clear it. 5396 */ 5397 if (wc->lookup_info && 5398 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5399 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5400 ASSERT(path->locks[level]); 5401 ret = btrfs_lookup_extent_info(trans, fs_info, 5402 eb->start, level, 1, 5403 &wc->refs[level], 5404 &wc->flags[level], 5405 NULL); 5406 if (ret) 5407 return ret; 5408 if (unlikely(wc->refs[level] == 0)) { 5409 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5410 eb->start); 5411 return -EUCLEAN; 5412 } 5413 } 5414 5415 if (wc->stage == DROP_REFERENCE) { 5416 if (wc->refs[level] > 1) 5417 return 1; 5418 5419 if (path->locks[level] && !wc->keep_locks) { 5420 btrfs_tree_unlock_rw(eb, path->locks[level]); 5421 path->locks[level] = 0; 5422 } 5423 return 0; 5424 } 5425 5426 /* wc->stage == UPDATE_BACKREF */ 5427 if (!(wc->flags[level] & flag)) { 5428 ASSERT(path->locks[level]); 5429 ret = btrfs_inc_ref(trans, root, eb, 1); 5430 if (ret) { 5431 btrfs_abort_transaction(trans, ret); 5432 return ret; 5433 } 5434 ret = btrfs_dec_ref(trans, root, eb, 0); 5435 if (ret) { 5436 btrfs_abort_transaction(trans, ret); 5437 return ret; 5438 } 5439 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5440 if (ret) { 5441 btrfs_abort_transaction(trans, ret); 5442 return ret; 5443 } 5444 wc->flags[level] |= flag; 5445 } 5446 5447 /* 5448 * the block is shared by multiple trees, so it's not good to 5449 * keep the tree lock 5450 */ 5451 if (path->locks[level] && level > 0) { 5452 btrfs_tree_unlock_rw(eb, path->locks[level]); 5453 path->locks[level] = 0; 5454 } 5455 return 0; 5456 } 5457 5458 /* 5459 * This is used to verify a ref exists for this root to deal with a bug where we 5460 * would have a drop_progress key that hadn't been updated properly. 5461 */ 5462 static int check_ref_exists(struct btrfs_trans_handle *trans, 5463 struct btrfs_root *root, u64 bytenr, u64 parent, 5464 int level) 5465 { 5466 struct btrfs_delayed_ref_root *delayed_refs; 5467 struct btrfs_delayed_ref_head *head; 5468 struct btrfs_path *path; 5469 struct btrfs_extent_inline_ref *iref; 5470 int ret; 5471 bool exists = false; 5472 5473 path = btrfs_alloc_path(); 5474 if (!path) 5475 return -ENOMEM; 5476 again: 5477 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5478 root->fs_info->nodesize, parent, 5479 btrfs_root_id(root), level, 0); 5480 if (ret != -ENOENT) { 5481 /* 5482 * If we get 0 then we found our reference, return 1, else 5483 * return the error if it's not -ENOENT; 5484 */ 5485 btrfs_free_path(path); 5486 return (ret < 0 ) ? ret : 1; 5487 } 5488 5489 /* 5490 * We could have a delayed ref with this reference, so look it up while 5491 * we're holding the path open to make sure we don't race with the 5492 * delayed ref running. 5493 */ 5494 delayed_refs = &trans->transaction->delayed_refs; 5495 spin_lock(&delayed_refs->lock); 5496 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 5497 if (!head) 5498 goto out; 5499 if (!mutex_trylock(&head->mutex)) { 5500 /* 5501 * We're contended, means that the delayed ref is running, get a 5502 * reference and wait for the ref head to be complete and then 5503 * try again. 5504 */ 5505 refcount_inc(&head->refs); 5506 spin_unlock(&delayed_refs->lock); 5507 5508 btrfs_release_path(path); 5509 5510 mutex_lock(&head->mutex); 5511 mutex_unlock(&head->mutex); 5512 btrfs_put_delayed_ref_head(head); 5513 goto again; 5514 } 5515 5516 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent); 5517 mutex_unlock(&head->mutex); 5518 out: 5519 spin_unlock(&delayed_refs->lock); 5520 btrfs_free_path(path); 5521 return exists ? 1 : 0; 5522 } 5523 5524 /* 5525 * We may not have an uptodate block, so if we are going to walk down into this 5526 * block we need to drop the lock, read it off of the disk, re-lock it and 5527 * return to continue dropping the snapshot. 5528 */ 5529 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5530 struct btrfs_root *root, 5531 struct btrfs_path *path, 5532 struct walk_control *wc, 5533 struct extent_buffer *next) 5534 { 5535 struct btrfs_tree_parent_check check = { 0 }; 5536 u64 generation; 5537 int level = wc->level; 5538 int ret; 5539 5540 btrfs_assert_tree_write_locked(next); 5541 5542 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5543 5544 if (btrfs_buffer_uptodate(next, generation, 0)) 5545 return 0; 5546 5547 check.level = level - 1; 5548 check.transid = generation; 5549 check.owner_root = btrfs_root_id(root); 5550 check.has_first_key = true; 5551 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5552 5553 btrfs_tree_unlock(next); 5554 if (level == 1) 5555 reada_walk_down(trans, root, wc, path); 5556 ret = btrfs_read_extent_buffer(next, &check); 5557 if (ret) { 5558 free_extent_buffer(next); 5559 return ret; 5560 } 5561 btrfs_tree_lock(next); 5562 wc->lookup_info = 1; 5563 return 0; 5564 } 5565 5566 /* 5567 * If we determine that we don't have to visit wc->level - 1 then we need to 5568 * determine if we can drop our reference. 5569 * 5570 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5571 * 5572 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5573 * reference, skipping it if we dropped it from a previous incompleted drop, or 5574 * dropping it if we still have a reference to it. 5575 */ 5576 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5577 struct btrfs_path *path, struct walk_control *wc, 5578 struct extent_buffer *next, u64 owner_root) 5579 { 5580 struct btrfs_ref ref = { 5581 .action = BTRFS_DROP_DELAYED_REF, 5582 .bytenr = next->start, 5583 .num_bytes = root->fs_info->nodesize, 5584 .owning_root = owner_root, 5585 .ref_root = btrfs_root_id(root), 5586 }; 5587 int level = wc->level; 5588 int ret; 5589 5590 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5591 if (wc->stage == UPDATE_BACKREF) 5592 return 0; 5593 5594 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5595 ref.parent = path->nodes[level]->start; 5596 } else { 5597 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5598 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { 5599 btrfs_err(root->fs_info, "mismatched block owner"); 5600 return -EIO; 5601 } 5602 } 5603 5604 /* 5605 * If we had a drop_progress we need to verify the refs are set as 5606 * expected. If we find our ref then we know that from here on out 5607 * everything should be correct, and we can clear the 5608 * ->restarted flag. 5609 */ 5610 if (wc->restarted) { 5611 ret = check_ref_exists(trans, root, next->start, ref.parent, 5612 level - 1); 5613 if (ret <= 0) 5614 return ret; 5615 ret = 0; 5616 wc->restarted = 0; 5617 } 5618 5619 /* 5620 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5621 * accounted them at merge time (replace_path), thus we could skip 5622 * expensive subtree trace here. 5623 */ 5624 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5625 wc->refs[level - 1] > 1) { 5626 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5627 path->slots[level]); 5628 5629 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5630 if (ret) { 5631 btrfs_err_rl(root->fs_info, 5632 "error %d accounting shared subtree, quota is out of sync, rescan required", 5633 ret); 5634 } 5635 } 5636 5637 /* 5638 * We need to update the next key in our walk control so we can update 5639 * the drop_progress key accordingly. We don't care if find_next_key 5640 * doesn't find a key because that means we're at the end and are going 5641 * to clean up now. 5642 */ 5643 wc->drop_level = level; 5644 find_next_key(path, level, &wc->drop_progress); 5645 5646 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5647 return btrfs_free_extent(trans, &ref); 5648 } 5649 5650 /* 5651 * helper to process tree block pointer. 5652 * 5653 * when wc->stage == DROP_REFERENCE, this function checks 5654 * reference count of the block pointed to. if the block 5655 * is shared and we need update back refs for the subtree 5656 * rooted at the block, this function changes wc->stage to 5657 * UPDATE_BACKREF. if the block is shared and there is no 5658 * need to update back, this function drops the reference 5659 * to the block. 5660 * 5661 * NOTE: return value 1 means we should stop walking down. 5662 */ 5663 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5664 struct btrfs_root *root, 5665 struct btrfs_path *path, 5666 struct walk_control *wc) 5667 { 5668 struct btrfs_fs_info *fs_info = root->fs_info; 5669 u64 bytenr; 5670 u64 generation; 5671 u64 owner_root = 0; 5672 struct extent_buffer *next; 5673 int level = wc->level; 5674 int ret = 0; 5675 5676 generation = btrfs_node_ptr_generation(path->nodes[level], 5677 path->slots[level]); 5678 /* 5679 * if the lower level block was created before the snapshot 5680 * was created, we know there is no need to update back refs 5681 * for the subtree 5682 */ 5683 if (wc->stage == UPDATE_BACKREF && 5684 generation <= btrfs_root_origin_generation(root)) { 5685 wc->lookup_info = 1; 5686 return 1; 5687 } 5688 5689 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5690 5691 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5692 level - 1); 5693 if (IS_ERR(next)) 5694 return PTR_ERR(next); 5695 5696 btrfs_tree_lock(next); 5697 5698 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5699 &wc->refs[level - 1], 5700 &wc->flags[level - 1], 5701 &owner_root); 5702 if (ret < 0) 5703 goto out_unlock; 5704 5705 if (unlikely(wc->refs[level - 1] == 0)) { 5706 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5707 bytenr); 5708 ret = -EUCLEAN; 5709 goto out_unlock; 5710 } 5711 wc->lookup_info = 0; 5712 5713 /* If we don't have to walk into this node skip it. */ 5714 if (!visit_node_for_delete(root, wc, path->nodes[level], 5715 wc->flags[level - 1], path->slots[level])) 5716 goto skip; 5717 5718 /* 5719 * We have to walk down into this node, and if we're currently at the 5720 * DROP_REFERNCE stage and this block is shared then we need to switch 5721 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5722 */ 5723 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5724 wc->stage = UPDATE_BACKREF; 5725 wc->shared_level = level - 1; 5726 } 5727 5728 ret = check_next_block_uptodate(trans, root, path, wc, next); 5729 if (ret) 5730 return ret; 5731 5732 level--; 5733 ASSERT(level == btrfs_header_level(next)); 5734 if (level != btrfs_header_level(next)) { 5735 btrfs_err(root->fs_info, "mismatched level"); 5736 ret = -EIO; 5737 goto out_unlock; 5738 } 5739 path->nodes[level] = next; 5740 path->slots[level] = 0; 5741 path->locks[level] = BTRFS_WRITE_LOCK; 5742 wc->level = level; 5743 if (wc->level == 1) 5744 wc->reada_slot = 0; 5745 return 0; 5746 skip: 5747 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5748 if (ret) 5749 goto out_unlock; 5750 wc->refs[level - 1] = 0; 5751 wc->flags[level - 1] = 0; 5752 wc->lookup_info = 1; 5753 ret = 1; 5754 5755 out_unlock: 5756 btrfs_tree_unlock(next); 5757 free_extent_buffer(next); 5758 5759 return ret; 5760 } 5761 5762 /* 5763 * helper to process tree block while walking up the tree. 5764 * 5765 * when wc->stage == DROP_REFERENCE, this function drops 5766 * reference count on the block. 5767 * 5768 * when wc->stage == UPDATE_BACKREF, this function changes 5769 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5770 * to UPDATE_BACKREF previously while processing the block. 5771 * 5772 * NOTE: return value 1 means we should stop walking up. 5773 */ 5774 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5775 struct btrfs_root *root, 5776 struct btrfs_path *path, 5777 struct walk_control *wc) 5778 { 5779 struct btrfs_fs_info *fs_info = root->fs_info; 5780 int ret = 0; 5781 int level = wc->level; 5782 struct extent_buffer *eb = path->nodes[level]; 5783 u64 parent = 0; 5784 5785 if (wc->stage == UPDATE_BACKREF) { 5786 ASSERT(wc->shared_level >= level); 5787 if (level < wc->shared_level) 5788 goto out; 5789 5790 ret = find_next_key(path, level + 1, &wc->update_progress); 5791 if (ret > 0) 5792 wc->update_ref = 0; 5793 5794 wc->stage = DROP_REFERENCE; 5795 wc->shared_level = -1; 5796 path->slots[level] = 0; 5797 5798 /* 5799 * check reference count again if the block isn't locked. 5800 * we should start walking down the tree again if reference 5801 * count is one. 5802 */ 5803 if (!path->locks[level]) { 5804 ASSERT(level > 0); 5805 btrfs_tree_lock(eb); 5806 path->locks[level] = BTRFS_WRITE_LOCK; 5807 5808 ret = btrfs_lookup_extent_info(trans, fs_info, 5809 eb->start, level, 1, 5810 &wc->refs[level], 5811 &wc->flags[level], 5812 NULL); 5813 if (ret < 0) { 5814 btrfs_tree_unlock_rw(eb, path->locks[level]); 5815 path->locks[level] = 0; 5816 return ret; 5817 } 5818 if (unlikely(wc->refs[level] == 0)) { 5819 btrfs_tree_unlock_rw(eb, path->locks[level]); 5820 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5821 eb->start); 5822 return -EUCLEAN; 5823 } 5824 if (wc->refs[level] == 1) { 5825 btrfs_tree_unlock_rw(eb, path->locks[level]); 5826 path->locks[level] = 0; 5827 return 1; 5828 } 5829 } 5830 } 5831 5832 /* wc->stage == DROP_REFERENCE */ 5833 ASSERT(path->locks[level] || wc->refs[level] == 1); 5834 5835 if (wc->refs[level] == 1) { 5836 if (level == 0) { 5837 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5838 ret = btrfs_dec_ref(trans, root, eb, 1); 5839 else 5840 ret = btrfs_dec_ref(trans, root, eb, 0); 5841 if (ret) { 5842 btrfs_abort_transaction(trans, ret); 5843 return ret; 5844 } 5845 if (is_fstree(btrfs_root_id(root))) { 5846 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5847 if (ret) { 5848 btrfs_err_rl(fs_info, 5849 "error %d accounting leaf items, quota is out of sync, rescan required", 5850 ret); 5851 } 5852 } 5853 } 5854 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5855 if (!path->locks[level]) { 5856 btrfs_tree_lock(eb); 5857 path->locks[level] = BTRFS_WRITE_LOCK; 5858 } 5859 btrfs_clear_buffer_dirty(trans, eb); 5860 } 5861 5862 if (eb == root->node) { 5863 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5864 parent = eb->start; 5865 else if (btrfs_root_id(root) != btrfs_header_owner(eb)) 5866 goto owner_mismatch; 5867 } else { 5868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5869 parent = path->nodes[level + 1]->start; 5870 else if (btrfs_root_id(root) != 5871 btrfs_header_owner(path->nodes[level + 1])) 5872 goto owner_mismatch; 5873 } 5874 5875 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5876 wc->refs[level] == 1); 5877 if (ret < 0) 5878 btrfs_abort_transaction(trans, ret); 5879 out: 5880 wc->refs[level] = 0; 5881 wc->flags[level] = 0; 5882 return ret; 5883 5884 owner_mismatch: 5885 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5886 btrfs_header_owner(eb), btrfs_root_id(root)); 5887 return -EUCLEAN; 5888 } 5889 5890 /* 5891 * walk_down_tree consists of two steps. 5892 * 5893 * walk_down_proc(). Look up the reference count and reference of our current 5894 * wc->level. At this point path->nodes[wc->level] should be populated and 5895 * uptodate, and in most cases should already be locked. If we are in 5896 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5897 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5898 * FULL_BACKREF on this node if it's not already set, and then do the 5899 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5900 * the shared reference to all of this nodes children. 5901 * 5902 * do_walk_down(). This is where we actually start iterating on the children of 5903 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5904 * our reference to the children that return false from visit_node_for_delete(), 5905 * which has various conditions where we know we can just drop our reference 5906 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5907 * visit_node_for_delete() returns false for, only walking down when necessary. 5908 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5909 * snapshot deletion. 5910 */ 5911 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5912 struct btrfs_root *root, 5913 struct btrfs_path *path, 5914 struct walk_control *wc) 5915 { 5916 int level = wc->level; 5917 int ret = 0; 5918 5919 wc->lookup_info = 1; 5920 while (level >= 0) { 5921 ret = walk_down_proc(trans, root, path, wc); 5922 if (ret) 5923 break; 5924 5925 if (level == 0) 5926 break; 5927 5928 if (path->slots[level] >= 5929 btrfs_header_nritems(path->nodes[level])) 5930 break; 5931 5932 ret = do_walk_down(trans, root, path, wc); 5933 if (ret > 0) { 5934 path->slots[level]++; 5935 continue; 5936 } else if (ret < 0) 5937 break; 5938 level = wc->level; 5939 } 5940 return (ret == 1) ? 0 : ret; 5941 } 5942 5943 /* 5944 * walk_up_tree() is responsible for making sure we visit every slot on our 5945 * current node, and if we're at the end of that node then we call 5946 * walk_up_proc() on our current node which will do one of a few things based on 5947 * our stage. 5948 * 5949 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5950 * then we need to walk back up the tree, and then going back down into the 5951 * other slots via walk_down_tree to update any other children from our original 5952 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5953 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 5954 * 5955 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 5956 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 5957 * in our current leaf. After that we call btrfs_free_tree_block() on the 5958 * current node and walk up to the next node to walk down the next slot. 5959 */ 5960 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5961 struct btrfs_root *root, 5962 struct btrfs_path *path, 5963 struct walk_control *wc, int max_level) 5964 { 5965 int level = wc->level; 5966 int ret; 5967 5968 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5969 while (level < max_level && path->nodes[level]) { 5970 wc->level = level; 5971 if (path->slots[level] + 1 < 5972 btrfs_header_nritems(path->nodes[level])) { 5973 path->slots[level]++; 5974 return 0; 5975 } else { 5976 ret = walk_up_proc(trans, root, path, wc); 5977 if (ret > 0) 5978 return 0; 5979 if (ret < 0) 5980 return ret; 5981 5982 if (path->locks[level]) { 5983 btrfs_tree_unlock_rw(path->nodes[level], 5984 path->locks[level]); 5985 path->locks[level] = 0; 5986 } 5987 free_extent_buffer(path->nodes[level]); 5988 path->nodes[level] = NULL; 5989 level++; 5990 } 5991 } 5992 return 1; 5993 } 5994 5995 /* 5996 * drop a subvolume tree. 5997 * 5998 * this function traverses the tree freeing any blocks that only 5999 * referenced by the tree. 6000 * 6001 * when a shared tree block is found. this function decreases its 6002 * reference count by one. if update_ref is true, this function 6003 * also make sure backrefs for the shared block and all lower level 6004 * blocks are properly updated. 6005 * 6006 * If called with for_reloc == 0, may exit early with -EAGAIN 6007 */ 6008 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 6009 { 6010 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 6011 struct btrfs_fs_info *fs_info = root->fs_info; 6012 struct btrfs_path *path; 6013 struct btrfs_trans_handle *trans; 6014 struct btrfs_root *tree_root = fs_info->tree_root; 6015 struct btrfs_root_item *root_item = &root->root_item; 6016 struct walk_control *wc; 6017 struct btrfs_key key; 6018 const u64 rootid = btrfs_root_id(root); 6019 int ret = 0; 6020 int level; 6021 bool root_dropped = false; 6022 bool unfinished_drop = false; 6023 6024 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 6025 6026 path = btrfs_alloc_path(); 6027 if (!path) { 6028 ret = -ENOMEM; 6029 goto out; 6030 } 6031 6032 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6033 if (!wc) { 6034 btrfs_free_path(path); 6035 ret = -ENOMEM; 6036 goto out; 6037 } 6038 6039 /* 6040 * Use join to avoid potential EINTR from transaction start. See 6041 * wait_reserve_ticket and the whole reservation callchain. 6042 */ 6043 if (for_reloc) 6044 trans = btrfs_join_transaction(tree_root); 6045 else 6046 trans = btrfs_start_transaction(tree_root, 0); 6047 if (IS_ERR(trans)) { 6048 ret = PTR_ERR(trans); 6049 goto out_free; 6050 } 6051 6052 ret = btrfs_run_delayed_items(trans); 6053 if (ret) 6054 goto out_end_trans; 6055 6056 /* 6057 * This will help us catch people modifying the fs tree while we're 6058 * dropping it. It is unsafe to mess with the fs tree while it's being 6059 * dropped as we unlock the root node and parent nodes as we walk down 6060 * the tree, assuming nothing will change. If something does change 6061 * then we'll have stale information and drop references to blocks we've 6062 * already dropped. 6063 */ 6064 set_bit(BTRFS_ROOT_DELETING, &root->state); 6065 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6066 6067 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6068 level = btrfs_header_level(root->node); 6069 path->nodes[level] = btrfs_lock_root_node(root); 6070 path->slots[level] = 0; 6071 path->locks[level] = BTRFS_WRITE_LOCK; 6072 memset(&wc->update_progress, 0, 6073 sizeof(wc->update_progress)); 6074 } else { 6075 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6076 memcpy(&wc->update_progress, &key, 6077 sizeof(wc->update_progress)); 6078 6079 level = btrfs_root_drop_level(root_item); 6080 BUG_ON(level == 0); 6081 path->lowest_level = level; 6082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6083 path->lowest_level = 0; 6084 if (ret < 0) 6085 goto out_end_trans; 6086 6087 WARN_ON(ret > 0); 6088 ret = 0; 6089 6090 /* 6091 * unlock our path, this is safe because only this 6092 * function is allowed to delete this snapshot 6093 */ 6094 btrfs_unlock_up_safe(path, 0); 6095 6096 level = btrfs_header_level(root->node); 6097 while (1) { 6098 btrfs_tree_lock(path->nodes[level]); 6099 path->locks[level] = BTRFS_WRITE_LOCK; 6100 6101 /* 6102 * btrfs_lookup_extent_info() returns 0 for success, 6103 * or < 0 for error. 6104 */ 6105 ret = btrfs_lookup_extent_info(trans, fs_info, 6106 path->nodes[level]->start, 6107 level, 1, &wc->refs[level], 6108 &wc->flags[level], NULL); 6109 if (ret < 0) 6110 goto out_end_trans; 6111 6112 BUG_ON(wc->refs[level] == 0); 6113 6114 if (level == btrfs_root_drop_level(root_item)) 6115 break; 6116 6117 btrfs_tree_unlock(path->nodes[level]); 6118 path->locks[level] = 0; 6119 WARN_ON(wc->refs[level] != 1); 6120 level--; 6121 } 6122 } 6123 6124 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6125 wc->level = level; 6126 wc->shared_level = -1; 6127 wc->stage = DROP_REFERENCE; 6128 wc->update_ref = update_ref; 6129 wc->keep_locks = 0; 6130 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6131 6132 while (1) { 6133 6134 ret = walk_down_tree(trans, root, path, wc); 6135 if (ret < 0) { 6136 btrfs_abort_transaction(trans, ret); 6137 break; 6138 } 6139 6140 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6141 if (ret < 0) { 6142 btrfs_abort_transaction(trans, ret); 6143 break; 6144 } 6145 6146 if (ret > 0) { 6147 BUG_ON(wc->stage != DROP_REFERENCE); 6148 ret = 0; 6149 break; 6150 } 6151 6152 if (wc->stage == DROP_REFERENCE) { 6153 wc->drop_level = wc->level; 6154 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6155 &wc->drop_progress, 6156 path->slots[wc->drop_level]); 6157 } 6158 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6159 &wc->drop_progress); 6160 btrfs_set_root_drop_level(root_item, wc->drop_level); 6161 6162 BUG_ON(wc->level == 0); 6163 if (btrfs_should_end_transaction(trans) || 6164 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6165 ret = btrfs_update_root(trans, tree_root, 6166 &root->root_key, 6167 root_item); 6168 if (ret) { 6169 btrfs_abort_transaction(trans, ret); 6170 goto out_end_trans; 6171 } 6172 6173 if (!is_reloc_root) 6174 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6175 6176 btrfs_end_transaction_throttle(trans); 6177 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6178 btrfs_debug(fs_info, 6179 "drop snapshot early exit"); 6180 ret = -EAGAIN; 6181 goto out_free; 6182 } 6183 6184 /* 6185 * Use join to avoid potential EINTR from transaction 6186 * start. See wait_reserve_ticket and the whole 6187 * reservation callchain. 6188 */ 6189 if (for_reloc) 6190 trans = btrfs_join_transaction(tree_root); 6191 else 6192 trans = btrfs_start_transaction(tree_root, 0); 6193 if (IS_ERR(trans)) { 6194 ret = PTR_ERR(trans); 6195 goto out_free; 6196 } 6197 } 6198 } 6199 btrfs_release_path(path); 6200 if (ret) 6201 goto out_end_trans; 6202 6203 ret = btrfs_del_root(trans, &root->root_key); 6204 if (ret) { 6205 btrfs_abort_transaction(trans, ret); 6206 goto out_end_trans; 6207 } 6208 6209 if (!is_reloc_root) { 6210 ret = btrfs_find_root(tree_root, &root->root_key, path, 6211 NULL, NULL); 6212 if (ret < 0) { 6213 btrfs_abort_transaction(trans, ret); 6214 goto out_end_trans; 6215 } else if (ret > 0) { 6216 ret = 0; 6217 /* 6218 * If we fail to delete the orphan item this time 6219 * around, it'll get picked up the next time. 6220 * 6221 * The most common failure here is just -ENOENT. 6222 */ 6223 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6224 } 6225 } 6226 6227 /* 6228 * This subvolume is going to be completely dropped, and won't be 6229 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6230 * commit transaction time. So free it here manually. 6231 */ 6232 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6233 btrfs_qgroup_free_meta_all_pertrans(root); 6234 6235 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6236 btrfs_add_dropped_root(trans, root); 6237 else 6238 btrfs_put_root(root); 6239 root_dropped = true; 6240 out_end_trans: 6241 if (!is_reloc_root) 6242 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6243 6244 btrfs_end_transaction_throttle(trans); 6245 out_free: 6246 kfree(wc); 6247 btrfs_free_path(path); 6248 out: 6249 if (!ret && root_dropped) { 6250 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6251 if (ret < 0) 6252 btrfs_warn_rl(fs_info, 6253 "failed to cleanup qgroup 0/%llu: %d", 6254 rootid, ret); 6255 ret = 0; 6256 } 6257 /* 6258 * We were an unfinished drop root, check to see if there are any 6259 * pending, and if not clear and wake up any waiters. 6260 */ 6261 if (!ret && unfinished_drop) 6262 btrfs_maybe_wake_unfinished_drop(fs_info); 6263 6264 /* 6265 * So if we need to stop dropping the snapshot for whatever reason we 6266 * need to make sure to add it back to the dead root list so that we 6267 * keep trying to do the work later. This also cleans up roots if we 6268 * don't have it in the radix (like when we recover after a power fail 6269 * or unmount) so we don't leak memory. 6270 */ 6271 if (!for_reloc && !root_dropped) 6272 btrfs_add_dead_root(root); 6273 return ret; 6274 } 6275 6276 /* 6277 * drop subtree rooted at tree block 'node'. 6278 * 6279 * NOTE: this function will unlock and release tree block 'node' 6280 * only used by relocation code 6281 */ 6282 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6283 struct btrfs_root *root, 6284 struct extent_buffer *node, 6285 struct extent_buffer *parent) 6286 { 6287 struct btrfs_fs_info *fs_info = root->fs_info; 6288 struct btrfs_path *path; 6289 struct walk_control *wc; 6290 int level; 6291 int parent_level; 6292 int ret = 0; 6293 6294 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6295 6296 path = btrfs_alloc_path(); 6297 if (!path) 6298 return -ENOMEM; 6299 6300 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6301 if (!wc) { 6302 btrfs_free_path(path); 6303 return -ENOMEM; 6304 } 6305 6306 btrfs_assert_tree_write_locked(parent); 6307 parent_level = btrfs_header_level(parent); 6308 atomic_inc(&parent->refs); 6309 path->nodes[parent_level] = parent; 6310 path->slots[parent_level] = btrfs_header_nritems(parent); 6311 6312 btrfs_assert_tree_write_locked(node); 6313 level = btrfs_header_level(node); 6314 path->nodes[level] = node; 6315 path->slots[level] = 0; 6316 path->locks[level] = BTRFS_WRITE_LOCK; 6317 6318 wc->refs[parent_level] = 1; 6319 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6320 wc->level = level; 6321 wc->shared_level = -1; 6322 wc->stage = DROP_REFERENCE; 6323 wc->update_ref = 0; 6324 wc->keep_locks = 1; 6325 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6326 6327 while (1) { 6328 ret = walk_down_tree(trans, root, path, wc); 6329 if (ret < 0) 6330 break; 6331 6332 ret = walk_up_tree(trans, root, path, wc, parent_level); 6333 if (ret) { 6334 if (ret > 0) 6335 ret = 0; 6336 break; 6337 } 6338 } 6339 6340 kfree(wc); 6341 btrfs_free_path(path); 6342 return ret; 6343 } 6344 6345 /* 6346 * Unpin the extent range in an error context and don't add the space back. 6347 * Errors are not propagated further. 6348 */ 6349 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6350 { 6351 unpin_extent_range(fs_info, start, end, false); 6352 } 6353 6354 /* 6355 * It used to be that old block groups would be left around forever. 6356 * Iterating over them would be enough to trim unused space. Since we 6357 * now automatically remove them, we also need to iterate over unallocated 6358 * space. 6359 * 6360 * We don't want a transaction for this since the discard may take a 6361 * substantial amount of time. We don't require that a transaction be 6362 * running, but we do need to take a running transaction into account 6363 * to ensure that we're not discarding chunks that were released or 6364 * allocated in the current transaction. 6365 * 6366 * Holding the chunks lock will prevent other threads from allocating 6367 * or releasing chunks, but it won't prevent a running transaction 6368 * from committing and releasing the memory that the pending chunks 6369 * list head uses. For that, we need to take a reference to the 6370 * transaction and hold the commit root sem. We only need to hold 6371 * it while performing the free space search since we have already 6372 * held back allocations. 6373 */ 6374 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6375 { 6376 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6377 int ret; 6378 6379 *trimmed = 0; 6380 6381 /* Discard not supported = nothing to do. */ 6382 if (!bdev_max_discard_sectors(device->bdev)) 6383 return 0; 6384 6385 /* Not writable = nothing to do. */ 6386 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6387 return 0; 6388 6389 /* No free space = nothing to do. */ 6390 if (device->total_bytes <= device->bytes_used) 6391 return 0; 6392 6393 ret = 0; 6394 6395 while (1) { 6396 struct btrfs_fs_info *fs_info = device->fs_info; 6397 u64 bytes; 6398 6399 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6400 if (ret) 6401 break; 6402 6403 find_first_clear_extent_bit(&device->alloc_state, start, 6404 &start, &end, 6405 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6406 6407 /* Check if there are any CHUNK_* bits left */ 6408 if (start > device->total_bytes) { 6409 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6410 btrfs_warn_in_rcu(fs_info, 6411 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6412 start, end - start + 1, 6413 btrfs_dev_name(device), 6414 device->total_bytes); 6415 mutex_unlock(&fs_info->chunk_mutex); 6416 ret = 0; 6417 break; 6418 } 6419 6420 /* Ensure we skip the reserved space on each device. */ 6421 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6422 6423 /* 6424 * If find_first_clear_extent_bit find a range that spans the 6425 * end of the device it will set end to -1, in this case it's up 6426 * to the caller to trim the value to the size of the device. 6427 */ 6428 end = min(end, device->total_bytes - 1); 6429 6430 len = end - start + 1; 6431 6432 /* We didn't find any extents */ 6433 if (!len) { 6434 mutex_unlock(&fs_info->chunk_mutex); 6435 ret = 0; 6436 break; 6437 } 6438 6439 ret = btrfs_issue_discard(device->bdev, start, len, 6440 &bytes); 6441 if (!ret) 6442 set_extent_bit(&device->alloc_state, start, 6443 start + bytes - 1, CHUNK_TRIMMED, NULL); 6444 mutex_unlock(&fs_info->chunk_mutex); 6445 6446 if (ret) 6447 break; 6448 6449 start += len; 6450 *trimmed += bytes; 6451 6452 if (btrfs_trim_interrupted()) { 6453 ret = -ERESTARTSYS; 6454 break; 6455 } 6456 6457 cond_resched(); 6458 } 6459 6460 return ret; 6461 } 6462 6463 /* 6464 * Trim the whole filesystem by: 6465 * 1) trimming the free space in each block group 6466 * 2) trimming the unallocated space on each device 6467 * 6468 * This will also continue trimming even if a block group or device encounters 6469 * an error. The return value will be the last error, or 0 if nothing bad 6470 * happens. 6471 */ 6472 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6473 { 6474 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6475 struct btrfs_block_group *cache = NULL; 6476 struct btrfs_device *device; 6477 u64 group_trimmed; 6478 u64 range_end = U64_MAX; 6479 u64 start; 6480 u64 end; 6481 u64 trimmed = 0; 6482 u64 bg_failed = 0; 6483 u64 dev_failed = 0; 6484 int bg_ret = 0; 6485 int dev_ret = 0; 6486 int ret = 0; 6487 6488 if (range->start == U64_MAX) 6489 return -EINVAL; 6490 6491 /* 6492 * Check range overflow if range->len is set. 6493 * The default range->len is U64_MAX. 6494 */ 6495 if (range->len != U64_MAX && 6496 check_add_overflow(range->start, range->len, &range_end)) 6497 return -EINVAL; 6498 6499 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6500 for (; cache; cache = btrfs_next_block_group(cache)) { 6501 if (cache->start >= range_end) { 6502 btrfs_put_block_group(cache); 6503 break; 6504 } 6505 6506 start = max(range->start, cache->start); 6507 end = min(range_end, cache->start + cache->length); 6508 6509 if (end - start >= range->minlen) { 6510 if (!btrfs_block_group_done(cache)) { 6511 ret = btrfs_cache_block_group(cache, true); 6512 if (ret) { 6513 bg_failed++; 6514 bg_ret = ret; 6515 continue; 6516 } 6517 } 6518 ret = btrfs_trim_block_group(cache, 6519 &group_trimmed, 6520 start, 6521 end, 6522 range->minlen); 6523 6524 trimmed += group_trimmed; 6525 if (ret) { 6526 bg_failed++; 6527 bg_ret = ret; 6528 continue; 6529 } 6530 } 6531 } 6532 6533 if (bg_failed) 6534 btrfs_warn(fs_info, 6535 "failed to trim %llu block group(s), last error %d", 6536 bg_failed, bg_ret); 6537 6538 mutex_lock(&fs_devices->device_list_mutex); 6539 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6540 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6541 continue; 6542 6543 ret = btrfs_trim_free_extents(device, &group_trimmed); 6544 6545 trimmed += group_trimmed; 6546 if (ret) { 6547 dev_failed++; 6548 dev_ret = ret; 6549 break; 6550 } 6551 } 6552 mutex_unlock(&fs_devices->device_list_mutex); 6553 6554 if (dev_failed) 6555 btrfs_warn(fs_info, 6556 "failed to trim %llu device(s), last error %d", 6557 dev_failed, dev_ret); 6558 range->len = trimmed; 6559 if (bg_ret) 6560 return bg_ret; 6561 return dev_ret; 6562 } 6563