xref: /linux/fs/btrfs/extent-tree.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35 
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 				 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 			  struct btrfs_root *extent_root, u64 alloc_bytes,
62 			  u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 			 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 			    int dump_block_groups);
67 
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 	smp_mb();
72 	return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74 
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 	return (cache->flags & bits) == bits;
78 }
79 
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 	atomic_inc(&cache->count);
83 }
84 
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 	if (atomic_dec_and_test(&cache->count)) {
88 		WARN_ON(cache->pinned > 0);
89 		WARN_ON(cache->reserved > 0);
90 		WARN_ON(cache->reserved_pinned > 0);
91 		kfree(cache);
92 	}
93 }
94 
95 /*
96  * this adds the block group to the fs_info rb tree for the block group
97  * cache
98  */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 				struct btrfs_block_group_cache *block_group)
101 {
102 	struct rb_node **p;
103 	struct rb_node *parent = NULL;
104 	struct btrfs_block_group_cache *cache;
105 
106 	spin_lock(&info->block_group_cache_lock);
107 	p = &info->block_group_cache_tree.rb_node;
108 
109 	while (*p) {
110 		parent = *p;
111 		cache = rb_entry(parent, struct btrfs_block_group_cache,
112 				 cache_node);
113 		if (block_group->key.objectid < cache->key.objectid) {
114 			p = &(*p)->rb_left;
115 		} else if (block_group->key.objectid > cache->key.objectid) {
116 			p = &(*p)->rb_right;
117 		} else {
118 			spin_unlock(&info->block_group_cache_lock);
119 			return -EEXIST;
120 		}
121 	}
122 
123 	rb_link_node(&block_group->cache_node, parent, p);
124 	rb_insert_color(&block_group->cache_node,
125 			&info->block_group_cache_tree);
126 	spin_unlock(&info->block_group_cache_lock);
127 
128 	return 0;
129 }
130 
131 /*
132  * This will return the block group at or after bytenr if contains is 0, else
133  * it will return the block group that contains the bytenr
134  */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 			      int contains)
138 {
139 	struct btrfs_block_group_cache *cache, *ret = NULL;
140 	struct rb_node *n;
141 	u64 end, start;
142 
143 	spin_lock(&info->block_group_cache_lock);
144 	n = info->block_group_cache_tree.rb_node;
145 
146 	while (n) {
147 		cache = rb_entry(n, struct btrfs_block_group_cache,
148 				 cache_node);
149 		end = cache->key.objectid + cache->key.offset - 1;
150 		start = cache->key.objectid;
151 
152 		if (bytenr < start) {
153 			if (!contains && (!ret || start < ret->key.objectid))
154 				ret = cache;
155 			n = n->rb_left;
156 		} else if (bytenr > start) {
157 			if (contains && bytenr <= end) {
158 				ret = cache;
159 				break;
160 			}
161 			n = n->rb_right;
162 		} else {
163 			ret = cache;
164 			break;
165 		}
166 	}
167 	if (ret)
168 		btrfs_get_block_group(ret);
169 	spin_unlock(&info->block_group_cache_lock);
170 
171 	return ret;
172 }
173 
174 static int add_excluded_extent(struct btrfs_root *root,
175 			       u64 start, u64 num_bytes)
176 {
177 	u64 end = start + num_bytes - 1;
178 	set_extent_bits(&root->fs_info->freed_extents[0],
179 			start, end, EXTENT_UPTODATE, GFP_NOFS);
180 	set_extent_bits(&root->fs_info->freed_extents[1],
181 			start, end, EXTENT_UPTODATE, GFP_NOFS);
182 	return 0;
183 }
184 
185 static void free_excluded_extents(struct btrfs_root *root,
186 				  struct btrfs_block_group_cache *cache)
187 {
188 	u64 start, end;
189 
190 	start = cache->key.objectid;
191 	end = start + cache->key.offset - 1;
192 
193 	clear_extent_bits(&root->fs_info->freed_extents[0],
194 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
195 	clear_extent_bits(&root->fs_info->freed_extents[1],
196 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198 
199 static int exclude_super_stripes(struct btrfs_root *root,
200 				 struct btrfs_block_group_cache *cache)
201 {
202 	u64 bytenr;
203 	u64 *logical;
204 	int stripe_len;
205 	int i, nr, ret;
206 
207 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 		cache->bytes_super += stripe_len;
210 		ret = add_excluded_extent(root, cache->key.objectid,
211 					  stripe_len);
212 		BUG_ON(ret);
213 	}
214 
215 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 		bytenr = btrfs_sb_offset(i);
217 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 				       cache->key.objectid, bytenr,
219 				       0, &logical, &nr, &stripe_len);
220 		BUG_ON(ret);
221 
222 		while (nr--) {
223 			cache->bytes_super += stripe_len;
224 			ret = add_excluded_extent(root, logical[nr],
225 						  stripe_len);
226 			BUG_ON(ret);
227 		}
228 
229 		kfree(logical);
230 	}
231 	return 0;
232 }
233 
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 	struct btrfs_caching_control *ctl;
238 
239 	spin_lock(&cache->lock);
240 	if (cache->cached != BTRFS_CACHE_STARTED) {
241 		spin_unlock(&cache->lock);
242 		return NULL;
243 	}
244 
245 	/* We're loading it the fast way, so we don't have a caching_ctl. */
246 	if (!cache->caching_ctl) {
247 		spin_unlock(&cache->lock);
248 		return NULL;
249 	}
250 
251 	ctl = cache->caching_ctl;
252 	atomic_inc(&ctl->count);
253 	spin_unlock(&cache->lock);
254 	return ctl;
255 }
256 
257 static void put_caching_control(struct btrfs_caching_control *ctl)
258 {
259 	if (atomic_dec_and_test(&ctl->count))
260 		kfree(ctl);
261 }
262 
263 /*
264  * this is only called by cache_block_group, since we could have freed extents
265  * we need to check the pinned_extents for any extents that can't be used yet
266  * since their free space will be released as soon as the transaction commits.
267  */
268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 			      struct btrfs_fs_info *info, u64 start, u64 end)
270 {
271 	u64 extent_start, extent_end, size, total_added = 0;
272 	int ret;
273 
274 	while (start < end) {
275 		ret = find_first_extent_bit(info->pinned_extents, start,
276 					    &extent_start, &extent_end,
277 					    EXTENT_DIRTY | EXTENT_UPTODATE);
278 		if (ret)
279 			break;
280 
281 		if (extent_start <= start) {
282 			start = extent_end + 1;
283 		} else if (extent_start > start && extent_start < end) {
284 			size = extent_start - start;
285 			total_added += size;
286 			ret = btrfs_add_free_space(block_group, start,
287 						   size);
288 			BUG_ON(ret);
289 			start = extent_end + 1;
290 		} else {
291 			break;
292 		}
293 	}
294 
295 	if (start < end) {
296 		size = end - start;
297 		total_added += size;
298 		ret = btrfs_add_free_space(block_group, start, size);
299 		BUG_ON(ret);
300 	}
301 
302 	return total_added;
303 }
304 
305 static int caching_kthread(void *data)
306 {
307 	struct btrfs_block_group_cache *block_group = data;
308 	struct btrfs_fs_info *fs_info = block_group->fs_info;
309 	struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 	struct btrfs_root *extent_root = fs_info->extent_root;
311 	struct btrfs_path *path;
312 	struct extent_buffer *leaf;
313 	struct btrfs_key key;
314 	u64 total_found = 0;
315 	u64 last = 0;
316 	u32 nritems;
317 	int ret = 0;
318 
319 	path = btrfs_alloc_path();
320 	if (!path)
321 		return -ENOMEM;
322 
323 	exclude_super_stripes(extent_root, block_group);
324 	spin_lock(&block_group->space_info->lock);
325 	block_group->space_info->bytes_readonly += block_group->bytes_super;
326 	spin_unlock(&block_group->space_info->lock);
327 
328 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
329 
330 	/*
331 	 * We don't want to deadlock with somebody trying to allocate a new
332 	 * extent for the extent root while also trying to search the extent
333 	 * root to add free space.  So we skip locking and search the commit
334 	 * root, since its read-only
335 	 */
336 	path->skip_locking = 1;
337 	path->search_commit_root = 1;
338 	path->reada = 2;
339 
340 	key.objectid = last;
341 	key.offset = 0;
342 	key.type = BTRFS_EXTENT_ITEM_KEY;
343 again:
344 	mutex_lock(&caching_ctl->mutex);
345 	/* need to make sure the commit_root doesn't disappear */
346 	down_read(&fs_info->extent_commit_sem);
347 
348 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
349 	if (ret < 0)
350 		goto err;
351 
352 	leaf = path->nodes[0];
353 	nritems = btrfs_header_nritems(leaf);
354 
355 	while (1) {
356 		smp_mb();
357 		if (fs_info->closing > 1) {
358 			last = (u64)-1;
359 			break;
360 		}
361 
362 		if (path->slots[0] < nritems) {
363 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
364 		} else {
365 			ret = find_next_key(path, 0, &key);
366 			if (ret)
367 				break;
368 
369 			caching_ctl->progress = last;
370 			btrfs_release_path(extent_root, path);
371 			up_read(&fs_info->extent_commit_sem);
372 			mutex_unlock(&caching_ctl->mutex);
373 			if (btrfs_transaction_in_commit(fs_info))
374 				schedule_timeout(1);
375 			else
376 				cond_resched();
377 			goto again;
378 		}
379 
380 		if (key.objectid < block_group->key.objectid) {
381 			path->slots[0]++;
382 			continue;
383 		}
384 
385 		if (key.objectid >= block_group->key.objectid +
386 		    block_group->key.offset)
387 			break;
388 
389 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
390 			total_found += add_new_free_space(block_group,
391 							  fs_info, last,
392 							  key.objectid);
393 			last = key.objectid + key.offset;
394 
395 			if (total_found > (1024 * 1024 * 2)) {
396 				total_found = 0;
397 				wake_up(&caching_ctl->wait);
398 			}
399 		}
400 		path->slots[0]++;
401 	}
402 	ret = 0;
403 
404 	total_found += add_new_free_space(block_group, fs_info, last,
405 					  block_group->key.objectid +
406 					  block_group->key.offset);
407 	caching_ctl->progress = (u64)-1;
408 
409 	spin_lock(&block_group->lock);
410 	block_group->caching_ctl = NULL;
411 	block_group->cached = BTRFS_CACHE_FINISHED;
412 	spin_unlock(&block_group->lock);
413 
414 err:
415 	btrfs_free_path(path);
416 	up_read(&fs_info->extent_commit_sem);
417 
418 	free_excluded_extents(extent_root, block_group);
419 
420 	mutex_unlock(&caching_ctl->mutex);
421 	wake_up(&caching_ctl->wait);
422 
423 	put_caching_control(caching_ctl);
424 	atomic_dec(&block_group->space_info->caching_threads);
425 	btrfs_put_block_group(block_group);
426 
427 	return 0;
428 }
429 
430 static int cache_block_group(struct btrfs_block_group_cache *cache,
431 			     struct btrfs_trans_handle *trans,
432 			     struct btrfs_root *root,
433 			     int load_cache_only)
434 {
435 	struct btrfs_fs_info *fs_info = cache->fs_info;
436 	struct btrfs_caching_control *caching_ctl;
437 	struct task_struct *tsk;
438 	int ret = 0;
439 
440 	smp_mb();
441 	if (cache->cached != BTRFS_CACHE_NO)
442 		return 0;
443 
444 	/*
445 	 * We can't do the read from on-disk cache during a commit since we need
446 	 * to have the normal tree locking.  Also if we are currently trying to
447 	 * allocate blocks for the tree root we can't do the fast caching since
448 	 * we likely hold important locks.
449 	 */
450 	if (!trans->transaction->in_commit &&
451 	    (root && root != root->fs_info->tree_root)) {
452 		spin_lock(&cache->lock);
453 		if (cache->cached != BTRFS_CACHE_NO) {
454 			spin_unlock(&cache->lock);
455 			return 0;
456 		}
457 		cache->cached = BTRFS_CACHE_STARTED;
458 		spin_unlock(&cache->lock);
459 
460 		ret = load_free_space_cache(fs_info, cache);
461 
462 		spin_lock(&cache->lock);
463 		if (ret == 1) {
464 			cache->cached = BTRFS_CACHE_FINISHED;
465 			cache->last_byte_to_unpin = (u64)-1;
466 		} else {
467 			cache->cached = BTRFS_CACHE_NO;
468 		}
469 		spin_unlock(&cache->lock);
470 		if (ret == 1)
471 			return 0;
472 	}
473 
474 	if (load_cache_only)
475 		return 0;
476 
477 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
478 	BUG_ON(!caching_ctl);
479 
480 	INIT_LIST_HEAD(&caching_ctl->list);
481 	mutex_init(&caching_ctl->mutex);
482 	init_waitqueue_head(&caching_ctl->wait);
483 	caching_ctl->block_group = cache;
484 	caching_ctl->progress = cache->key.objectid;
485 	/* one for caching kthread, one for caching block group list */
486 	atomic_set(&caching_ctl->count, 2);
487 
488 	spin_lock(&cache->lock);
489 	if (cache->cached != BTRFS_CACHE_NO) {
490 		spin_unlock(&cache->lock);
491 		kfree(caching_ctl);
492 		return 0;
493 	}
494 	cache->caching_ctl = caching_ctl;
495 	cache->cached = BTRFS_CACHE_STARTED;
496 	spin_unlock(&cache->lock);
497 
498 	down_write(&fs_info->extent_commit_sem);
499 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
500 	up_write(&fs_info->extent_commit_sem);
501 
502 	atomic_inc(&cache->space_info->caching_threads);
503 	btrfs_get_block_group(cache);
504 
505 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
506 			  cache->key.objectid);
507 	if (IS_ERR(tsk)) {
508 		ret = PTR_ERR(tsk);
509 		printk(KERN_ERR "error running thread %d\n", ret);
510 		BUG();
511 	}
512 
513 	return ret;
514 }
515 
516 /*
517  * return the block group that starts at or after bytenr
518  */
519 static struct btrfs_block_group_cache *
520 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
521 {
522 	struct btrfs_block_group_cache *cache;
523 
524 	cache = block_group_cache_tree_search(info, bytenr, 0);
525 
526 	return cache;
527 }
528 
529 /*
530  * return the block group that contains the given bytenr
531  */
532 struct btrfs_block_group_cache *btrfs_lookup_block_group(
533 						 struct btrfs_fs_info *info,
534 						 u64 bytenr)
535 {
536 	struct btrfs_block_group_cache *cache;
537 
538 	cache = block_group_cache_tree_search(info, bytenr, 1);
539 
540 	return cache;
541 }
542 
543 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
544 						  u64 flags)
545 {
546 	struct list_head *head = &info->space_info;
547 	struct btrfs_space_info *found;
548 
549 	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
550 		 BTRFS_BLOCK_GROUP_METADATA;
551 
552 	rcu_read_lock();
553 	list_for_each_entry_rcu(found, head, list) {
554 		if (found->flags & flags) {
555 			rcu_read_unlock();
556 			return found;
557 		}
558 	}
559 	rcu_read_unlock();
560 	return NULL;
561 }
562 
563 /*
564  * after adding space to the filesystem, we need to clear the full flags
565  * on all the space infos.
566  */
567 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
568 {
569 	struct list_head *head = &info->space_info;
570 	struct btrfs_space_info *found;
571 
572 	rcu_read_lock();
573 	list_for_each_entry_rcu(found, head, list)
574 		found->full = 0;
575 	rcu_read_unlock();
576 }
577 
578 static u64 div_factor(u64 num, int factor)
579 {
580 	if (factor == 10)
581 		return num;
582 	num *= factor;
583 	do_div(num, 10);
584 	return num;
585 }
586 
587 static u64 div_factor_fine(u64 num, int factor)
588 {
589 	if (factor == 100)
590 		return num;
591 	num *= factor;
592 	do_div(num, 100);
593 	return num;
594 }
595 
596 u64 btrfs_find_block_group(struct btrfs_root *root,
597 			   u64 search_start, u64 search_hint, int owner)
598 {
599 	struct btrfs_block_group_cache *cache;
600 	u64 used;
601 	u64 last = max(search_hint, search_start);
602 	u64 group_start = 0;
603 	int full_search = 0;
604 	int factor = 9;
605 	int wrapped = 0;
606 again:
607 	while (1) {
608 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
609 		if (!cache)
610 			break;
611 
612 		spin_lock(&cache->lock);
613 		last = cache->key.objectid + cache->key.offset;
614 		used = btrfs_block_group_used(&cache->item);
615 
616 		if ((full_search || !cache->ro) &&
617 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
618 			if (used + cache->pinned + cache->reserved <
619 			    div_factor(cache->key.offset, factor)) {
620 				group_start = cache->key.objectid;
621 				spin_unlock(&cache->lock);
622 				btrfs_put_block_group(cache);
623 				goto found;
624 			}
625 		}
626 		spin_unlock(&cache->lock);
627 		btrfs_put_block_group(cache);
628 		cond_resched();
629 	}
630 	if (!wrapped) {
631 		last = search_start;
632 		wrapped = 1;
633 		goto again;
634 	}
635 	if (!full_search && factor < 10) {
636 		last = search_start;
637 		full_search = 1;
638 		factor = 10;
639 		goto again;
640 	}
641 found:
642 	return group_start;
643 }
644 
645 /* simple helper to search for an existing extent at a given offset */
646 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
647 {
648 	int ret;
649 	struct btrfs_key key;
650 	struct btrfs_path *path;
651 
652 	path = btrfs_alloc_path();
653 	BUG_ON(!path);
654 	key.objectid = start;
655 	key.offset = len;
656 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
657 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
658 				0, 0);
659 	btrfs_free_path(path);
660 	return ret;
661 }
662 
663 /*
664  * helper function to lookup reference count and flags of extent.
665  *
666  * the head node for delayed ref is used to store the sum of all the
667  * reference count modifications queued up in the rbtree. the head
668  * node may also store the extent flags to set. This way you can check
669  * to see what the reference count and extent flags would be if all of
670  * the delayed refs are not processed.
671  */
672 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
673 			     struct btrfs_root *root, u64 bytenr,
674 			     u64 num_bytes, u64 *refs, u64 *flags)
675 {
676 	struct btrfs_delayed_ref_head *head;
677 	struct btrfs_delayed_ref_root *delayed_refs;
678 	struct btrfs_path *path;
679 	struct btrfs_extent_item *ei;
680 	struct extent_buffer *leaf;
681 	struct btrfs_key key;
682 	u32 item_size;
683 	u64 num_refs;
684 	u64 extent_flags;
685 	int ret;
686 
687 	path = btrfs_alloc_path();
688 	if (!path)
689 		return -ENOMEM;
690 
691 	key.objectid = bytenr;
692 	key.type = BTRFS_EXTENT_ITEM_KEY;
693 	key.offset = num_bytes;
694 	if (!trans) {
695 		path->skip_locking = 1;
696 		path->search_commit_root = 1;
697 	}
698 again:
699 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
700 				&key, path, 0, 0);
701 	if (ret < 0)
702 		goto out_free;
703 
704 	if (ret == 0) {
705 		leaf = path->nodes[0];
706 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
707 		if (item_size >= sizeof(*ei)) {
708 			ei = btrfs_item_ptr(leaf, path->slots[0],
709 					    struct btrfs_extent_item);
710 			num_refs = btrfs_extent_refs(leaf, ei);
711 			extent_flags = btrfs_extent_flags(leaf, ei);
712 		} else {
713 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
714 			struct btrfs_extent_item_v0 *ei0;
715 			BUG_ON(item_size != sizeof(*ei0));
716 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
717 					     struct btrfs_extent_item_v0);
718 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
719 			/* FIXME: this isn't correct for data */
720 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
721 #else
722 			BUG();
723 #endif
724 		}
725 		BUG_ON(num_refs == 0);
726 	} else {
727 		num_refs = 0;
728 		extent_flags = 0;
729 		ret = 0;
730 	}
731 
732 	if (!trans)
733 		goto out;
734 
735 	delayed_refs = &trans->transaction->delayed_refs;
736 	spin_lock(&delayed_refs->lock);
737 	head = btrfs_find_delayed_ref_head(trans, bytenr);
738 	if (head) {
739 		if (!mutex_trylock(&head->mutex)) {
740 			atomic_inc(&head->node.refs);
741 			spin_unlock(&delayed_refs->lock);
742 
743 			btrfs_release_path(root->fs_info->extent_root, path);
744 
745 			mutex_lock(&head->mutex);
746 			mutex_unlock(&head->mutex);
747 			btrfs_put_delayed_ref(&head->node);
748 			goto again;
749 		}
750 		if (head->extent_op && head->extent_op->update_flags)
751 			extent_flags |= head->extent_op->flags_to_set;
752 		else
753 			BUG_ON(num_refs == 0);
754 
755 		num_refs += head->node.ref_mod;
756 		mutex_unlock(&head->mutex);
757 	}
758 	spin_unlock(&delayed_refs->lock);
759 out:
760 	WARN_ON(num_refs == 0);
761 	if (refs)
762 		*refs = num_refs;
763 	if (flags)
764 		*flags = extent_flags;
765 out_free:
766 	btrfs_free_path(path);
767 	return ret;
768 }
769 
770 /*
771  * Back reference rules.  Back refs have three main goals:
772  *
773  * 1) differentiate between all holders of references to an extent so that
774  *    when a reference is dropped we can make sure it was a valid reference
775  *    before freeing the extent.
776  *
777  * 2) Provide enough information to quickly find the holders of an extent
778  *    if we notice a given block is corrupted or bad.
779  *
780  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
781  *    maintenance.  This is actually the same as #2, but with a slightly
782  *    different use case.
783  *
784  * There are two kinds of back refs. The implicit back refs is optimized
785  * for pointers in non-shared tree blocks. For a given pointer in a block,
786  * back refs of this kind provide information about the block's owner tree
787  * and the pointer's key. These information allow us to find the block by
788  * b-tree searching. The full back refs is for pointers in tree blocks not
789  * referenced by their owner trees. The location of tree block is recorded
790  * in the back refs. Actually the full back refs is generic, and can be
791  * used in all cases the implicit back refs is used. The major shortcoming
792  * of the full back refs is its overhead. Every time a tree block gets
793  * COWed, we have to update back refs entry for all pointers in it.
794  *
795  * For a newly allocated tree block, we use implicit back refs for
796  * pointers in it. This means most tree related operations only involve
797  * implicit back refs. For a tree block created in old transaction, the
798  * only way to drop a reference to it is COW it. So we can detect the
799  * event that tree block loses its owner tree's reference and do the
800  * back refs conversion.
801  *
802  * When a tree block is COW'd through a tree, there are four cases:
803  *
804  * The reference count of the block is one and the tree is the block's
805  * owner tree. Nothing to do in this case.
806  *
807  * The reference count of the block is one and the tree is not the
808  * block's owner tree. In this case, full back refs is used for pointers
809  * in the block. Remove these full back refs, add implicit back refs for
810  * every pointers in the new block.
811  *
812  * The reference count of the block is greater than one and the tree is
813  * the block's owner tree. In this case, implicit back refs is used for
814  * pointers in the block. Add full back refs for every pointers in the
815  * block, increase lower level extents' reference counts. The original
816  * implicit back refs are entailed to the new block.
817  *
818  * The reference count of the block is greater than one and the tree is
819  * not the block's owner tree. Add implicit back refs for every pointer in
820  * the new block, increase lower level extents' reference count.
821  *
822  * Back Reference Key composing:
823  *
824  * The key objectid corresponds to the first byte in the extent,
825  * The key type is used to differentiate between types of back refs.
826  * There are different meanings of the key offset for different types
827  * of back refs.
828  *
829  * File extents can be referenced by:
830  *
831  * - multiple snapshots, subvolumes, or different generations in one subvol
832  * - different files inside a single subvolume
833  * - different offsets inside a file (bookend extents in file.c)
834  *
835  * The extent ref structure for the implicit back refs has fields for:
836  *
837  * - Objectid of the subvolume root
838  * - objectid of the file holding the reference
839  * - original offset in the file
840  * - how many bookend extents
841  *
842  * The key offset for the implicit back refs is hash of the first
843  * three fields.
844  *
845  * The extent ref structure for the full back refs has field for:
846  *
847  * - number of pointers in the tree leaf
848  *
849  * The key offset for the implicit back refs is the first byte of
850  * the tree leaf
851  *
852  * When a file extent is allocated, The implicit back refs is used.
853  * the fields are filled in:
854  *
855  *     (root_key.objectid, inode objectid, offset in file, 1)
856  *
857  * When a file extent is removed file truncation, we find the
858  * corresponding implicit back refs and check the following fields:
859  *
860  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
861  *
862  * Btree extents can be referenced by:
863  *
864  * - Different subvolumes
865  *
866  * Both the implicit back refs and the full back refs for tree blocks
867  * only consist of key. The key offset for the implicit back refs is
868  * objectid of block's owner tree. The key offset for the full back refs
869  * is the first byte of parent block.
870  *
871  * When implicit back refs is used, information about the lowest key and
872  * level of the tree block are required. These information are stored in
873  * tree block info structure.
874  */
875 
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
878 				  struct btrfs_root *root,
879 				  struct btrfs_path *path,
880 				  u64 owner, u32 extra_size)
881 {
882 	struct btrfs_extent_item *item;
883 	struct btrfs_extent_item_v0 *ei0;
884 	struct btrfs_extent_ref_v0 *ref0;
885 	struct btrfs_tree_block_info *bi;
886 	struct extent_buffer *leaf;
887 	struct btrfs_key key;
888 	struct btrfs_key found_key;
889 	u32 new_size = sizeof(*item);
890 	u64 refs;
891 	int ret;
892 
893 	leaf = path->nodes[0];
894 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
895 
896 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
897 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
898 			     struct btrfs_extent_item_v0);
899 	refs = btrfs_extent_refs_v0(leaf, ei0);
900 
901 	if (owner == (u64)-1) {
902 		while (1) {
903 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
904 				ret = btrfs_next_leaf(root, path);
905 				if (ret < 0)
906 					return ret;
907 				BUG_ON(ret > 0);
908 				leaf = path->nodes[0];
909 			}
910 			btrfs_item_key_to_cpu(leaf, &found_key,
911 					      path->slots[0]);
912 			BUG_ON(key.objectid != found_key.objectid);
913 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
914 				path->slots[0]++;
915 				continue;
916 			}
917 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
918 					      struct btrfs_extent_ref_v0);
919 			owner = btrfs_ref_objectid_v0(leaf, ref0);
920 			break;
921 		}
922 	}
923 	btrfs_release_path(root, path);
924 
925 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
926 		new_size += sizeof(*bi);
927 
928 	new_size -= sizeof(*ei0);
929 	ret = btrfs_search_slot(trans, root, &key, path,
930 				new_size + extra_size, 1);
931 	if (ret < 0)
932 		return ret;
933 	BUG_ON(ret);
934 
935 	ret = btrfs_extend_item(trans, root, path, new_size);
936 	BUG_ON(ret);
937 
938 	leaf = path->nodes[0];
939 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
940 	btrfs_set_extent_refs(leaf, item, refs);
941 	/* FIXME: get real generation */
942 	btrfs_set_extent_generation(leaf, item, 0);
943 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
944 		btrfs_set_extent_flags(leaf, item,
945 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
946 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
947 		bi = (struct btrfs_tree_block_info *)(item + 1);
948 		/* FIXME: get first key of the block */
949 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
950 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
951 	} else {
952 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
953 	}
954 	btrfs_mark_buffer_dirty(leaf);
955 	return 0;
956 }
957 #endif
958 
959 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
960 {
961 	u32 high_crc = ~(u32)0;
962 	u32 low_crc = ~(u32)0;
963 	__le64 lenum;
964 
965 	lenum = cpu_to_le64(root_objectid);
966 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
967 	lenum = cpu_to_le64(owner);
968 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
969 	lenum = cpu_to_le64(offset);
970 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
971 
972 	return ((u64)high_crc << 31) ^ (u64)low_crc;
973 }
974 
975 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
976 				     struct btrfs_extent_data_ref *ref)
977 {
978 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
979 				    btrfs_extent_data_ref_objectid(leaf, ref),
980 				    btrfs_extent_data_ref_offset(leaf, ref));
981 }
982 
983 static int match_extent_data_ref(struct extent_buffer *leaf,
984 				 struct btrfs_extent_data_ref *ref,
985 				 u64 root_objectid, u64 owner, u64 offset)
986 {
987 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
988 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
989 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
990 		return 0;
991 	return 1;
992 }
993 
994 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
995 					   struct btrfs_root *root,
996 					   struct btrfs_path *path,
997 					   u64 bytenr, u64 parent,
998 					   u64 root_objectid,
999 					   u64 owner, u64 offset)
1000 {
1001 	struct btrfs_key key;
1002 	struct btrfs_extent_data_ref *ref;
1003 	struct extent_buffer *leaf;
1004 	u32 nritems;
1005 	int ret;
1006 	int recow;
1007 	int err = -ENOENT;
1008 
1009 	key.objectid = bytenr;
1010 	if (parent) {
1011 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1012 		key.offset = parent;
1013 	} else {
1014 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1015 		key.offset = hash_extent_data_ref(root_objectid,
1016 						  owner, offset);
1017 	}
1018 again:
1019 	recow = 0;
1020 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1021 	if (ret < 0) {
1022 		err = ret;
1023 		goto fail;
1024 	}
1025 
1026 	if (parent) {
1027 		if (!ret)
1028 			return 0;
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1030 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1031 		btrfs_release_path(root, path);
1032 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1033 		if (ret < 0) {
1034 			err = ret;
1035 			goto fail;
1036 		}
1037 		if (!ret)
1038 			return 0;
1039 #endif
1040 		goto fail;
1041 	}
1042 
1043 	leaf = path->nodes[0];
1044 	nritems = btrfs_header_nritems(leaf);
1045 	while (1) {
1046 		if (path->slots[0] >= nritems) {
1047 			ret = btrfs_next_leaf(root, path);
1048 			if (ret < 0)
1049 				err = ret;
1050 			if (ret)
1051 				goto fail;
1052 
1053 			leaf = path->nodes[0];
1054 			nritems = btrfs_header_nritems(leaf);
1055 			recow = 1;
1056 		}
1057 
1058 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059 		if (key.objectid != bytenr ||
1060 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1061 			goto fail;
1062 
1063 		ref = btrfs_item_ptr(leaf, path->slots[0],
1064 				     struct btrfs_extent_data_ref);
1065 
1066 		if (match_extent_data_ref(leaf, ref, root_objectid,
1067 					  owner, offset)) {
1068 			if (recow) {
1069 				btrfs_release_path(root, path);
1070 				goto again;
1071 			}
1072 			err = 0;
1073 			break;
1074 		}
1075 		path->slots[0]++;
1076 	}
1077 fail:
1078 	return err;
1079 }
1080 
1081 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1082 					   struct btrfs_root *root,
1083 					   struct btrfs_path *path,
1084 					   u64 bytenr, u64 parent,
1085 					   u64 root_objectid, u64 owner,
1086 					   u64 offset, int refs_to_add)
1087 {
1088 	struct btrfs_key key;
1089 	struct extent_buffer *leaf;
1090 	u32 size;
1091 	u32 num_refs;
1092 	int ret;
1093 
1094 	key.objectid = bytenr;
1095 	if (parent) {
1096 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1097 		key.offset = parent;
1098 		size = sizeof(struct btrfs_shared_data_ref);
1099 	} else {
1100 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1101 		key.offset = hash_extent_data_ref(root_objectid,
1102 						  owner, offset);
1103 		size = sizeof(struct btrfs_extent_data_ref);
1104 	}
1105 
1106 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1107 	if (ret && ret != -EEXIST)
1108 		goto fail;
1109 
1110 	leaf = path->nodes[0];
1111 	if (parent) {
1112 		struct btrfs_shared_data_ref *ref;
1113 		ref = btrfs_item_ptr(leaf, path->slots[0],
1114 				     struct btrfs_shared_data_ref);
1115 		if (ret == 0) {
1116 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1117 		} else {
1118 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1119 			num_refs += refs_to_add;
1120 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1121 		}
1122 	} else {
1123 		struct btrfs_extent_data_ref *ref;
1124 		while (ret == -EEXIST) {
1125 			ref = btrfs_item_ptr(leaf, path->slots[0],
1126 					     struct btrfs_extent_data_ref);
1127 			if (match_extent_data_ref(leaf, ref, root_objectid,
1128 						  owner, offset))
1129 				break;
1130 			btrfs_release_path(root, path);
1131 			key.offset++;
1132 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1133 						      size);
1134 			if (ret && ret != -EEXIST)
1135 				goto fail;
1136 
1137 			leaf = path->nodes[0];
1138 		}
1139 		ref = btrfs_item_ptr(leaf, path->slots[0],
1140 				     struct btrfs_extent_data_ref);
1141 		if (ret == 0) {
1142 			btrfs_set_extent_data_ref_root(leaf, ref,
1143 						       root_objectid);
1144 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1145 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1146 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1147 		} else {
1148 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1149 			num_refs += refs_to_add;
1150 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1151 		}
1152 	}
1153 	btrfs_mark_buffer_dirty(leaf);
1154 	ret = 0;
1155 fail:
1156 	btrfs_release_path(root, path);
1157 	return ret;
1158 }
1159 
1160 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1161 					   struct btrfs_root *root,
1162 					   struct btrfs_path *path,
1163 					   int refs_to_drop)
1164 {
1165 	struct btrfs_key key;
1166 	struct btrfs_extent_data_ref *ref1 = NULL;
1167 	struct btrfs_shared_data_ref *ref2 = NULL;
1168 	struct extent_buffer *leaf;
1169 	u32 num_refs = 0;
1170 	int ret = 0;
1171 
1172 	leaf = path->nodes[0];
1173 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 
1175 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1176 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1177 				      struct btrfs_extent_data_ref);
1178 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1179 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1180 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1181 				      struct btrfs_shared_data_ref);
1182 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1183 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1184 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1185 		struct btrfs_extent_ref_v0 *ref0;
1186 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1187 				      struct btrfs_extent_ref_v0);
1188 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1189 #endif
1190 	} else {
1191 		BUG();
1192 	}
1193 
1194 	BUG_ON(num_refs < refs_to_drop);
1195 	num_refs -= refs_to_drop;
1196 
1197 	if (num_refs == 0) {
1198 		ret = btrfs_del_item(trans, root, path);
1199 	} else {
1200 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1201 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1202 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1203 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1204 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1205 		else {
1206 			struct btrfs_extent_ref_v0 *ref0;
1207 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1208 					struct btrfs_extent_ref_v0);
1209 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1210 		}
1211 #endif
1212 		btrfs_mark_buffer_dirty(leaf);
1213 	}
1214 	return ret;
1215 }
1216 
1217 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1218 					  struct btrfs_path *path,
1219 					  struct btrfs_extent_inline_ref *iref)
1220 {
1221 	struct btrfs_key key;
1222 	struct extent_buffer *leaf;
1223 	struct btrfs_extent_data_ref *ref1;
1224 	struct btrfs_shared_data_ref *ref2;
1225 	u32 num_refs = 0;
1226 
1227 	leaf = path->nodes[0];
1228 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1229 	if (iref) {
1230 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1231 		    BTRFS_EXTENT_DATA_REF_KEY) {
1232 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1233 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1234 		} else {
1235 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1236 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1237 		}
1238 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1239 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1240 				      struct btrfs_extent_data_ref);
1241 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1242 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1243 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1244 				      struct btrfs_shared_data_ref);
1245 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1247 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1248 		struct btrfs_extent_ref_v0 *ref0;
1249 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1250 				      struct btrfs_extent_ref_v0);
1251 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1252 #endif
1253 	} else {
1254 		WARN_ON(1);
1255 	}
1256 	return num_refs;
1257 }
1258 
1259 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1260 					  struct btrfs_root *root,
1261 					  struct btrfs_path *path,
1262 					  u64 bytenr, u64 parent,
1263 					  u64 root_objectid)
1264 {
1265 	struct btrfs_key key;
1266 	int ret;
1267 
1268 	key.objectid = bytenr;
1269 	if (parent) {
1270 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1271 		key.offset = parent;
1272 	} else {
1273 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1274 		key.offset = root_objectid;
1275 	}
1276 
1277 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1278 	if (ret > 0)
1279 		ret = -ENOENT;
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 	if (ret == -ENOENT && parent) {
1282 		btrfs_release_path(root, path);
1283 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1284 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1285 		if (ret > 0)
1286 			ret = -ENOENT;
1287 	}
1288 #endif
1289 	return ret;
1290 }
1291 
1292 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1293 					  struct btrfs_root *root,
1294 					  struct btrfs_path *path,
1295 					  u64 bytenr, u64 parent,
1296 					  u64 root_objectid)
1297 {
1298 	struct btrfs_key key;
1299 	int ret;
1300 
1301 	key.objectid = bytenr;
1302 	if (parent) {
1303 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1304 		key.offset = parent;
1305 	} else {
1306 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1307 		key.offset = root_objectid;
1308 	}
1309 
1310 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1311 	btrfs_release_path(root, path);
1312 	return ret;
1313 }
1314 
1315 static inline int extent_ref_type(u64 parent, u64 owner)
1316 {
1317 	int type;
1318 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1319 		if (parent > 0)
1320 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1321 		else
1322 			type = BTRFS_TREE_BLOCK_REF_KEY;
1323 	} else {
1324 		if (parent > 0)
1325 			type = BTRFS_SHARED_DATA_REF_KEY;
1326 		else
1327 			type = BTRFS_EXTENT_DATA_REF_KEY;
1328 	}
1329 	return type;
1330 }
1331 
1332 static int find_next_key(struct btrfs_path *path, int level,
1333 			 struct btrfs_key *key)
1334 
1335 {
1336 	for (; level < BTRFS_MAX_LEVEL; level++) {
1337 		if (!path->nodes[level])
1338 			break;
1339 		if (path->slots[level] + 1 >=
1340 		    btrfs_header_nritems(path->nodes[level]))
1341 			continue;
1342 		if (level == 0)
1343 			btrfs_item_key_to_cpu(path->nodes[level], key,
1344 					      path->slots[level] + 1);
1345 		else
1346 			btrfs_node_key_to_cpu(path->nodes[level], key,
1347 					      path->slots[level] + 1);
1348 		return 0;
1349 	}
1350 	return 1;
1351 }
1352 
1353 /*
1354  * look for inline back ref. if back ref is found, *ref_ret is set
1355  * to the address of inline back ref, and 0 is returned.
1356  *
1357  * if back ref isn't found, *ref_ret is set to the address where it
1358  * should be inserted, and -ENOENT is returned.
1359  *
1360  * if insert is true and there are too many inline back refs, the path
1361  * points to the extent item, and -EAGAIN is returned.
1362  *
1363  * NOTE: inline back refs are ordered in the same way that back ref
1364  *	 items in the tree are ordered.
1365  */
1366 static noinline_for_stack
1367 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1368 				 struct btrfs_root *root,
1369 				 struct btrfs_path *path,
1370 				 struct btrfs_extent_inline_ref **ref_ret,
1371 				 u64 bytenr, u64 num_bytes,
1372 				 u64 parent, u64 root_objectid,
1373 				 u64 owner, u64 offset, int insert)
1374 {
1375 	struct btrfs_key key;
1376 	struct extent_buffer *leaf;
1377 	struct btrfs_extent_item *ei;
1378 	struct btrfs_extent_inline_ref *iref;
1379 	u64 flags;
1380 	u64 item_size;
1381 	unsigned long ptr;
1382 	unsigned long end;
1383 	int extra_size;
1384 	int type;
1385 	int want;
1386 	int ret;
1387 	int err = 0;
1388 
1389 	key.objectid = bytenr;
1390 	key.type = BTRFS_EXTENT_ITEM_KEY;
1391 	key.offset = num_bytes;
1392 
1393 	want = extent_ref_type(parent, owner);
1394 	if (insert) {
1395 		extra_size = btrfs_extent_inline_ref_size(want);
1396 		path->keep_locks = 1;
1397 	} else
1398 		extra_size = -1;
1399 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1400 	if (ret < 0) {
1401 		err = ret;
1402 		goto out;
1403 	}
1404 	BUG_ON(ret);
1405 
1406 	leaf = path->nodes[0];
1407 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1408 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1409 	if (item_size < sizeof(*ei)) {
1410 		if (!insert) {
1411 			err = -ENOENT;
1412 			goto out;
1413 		}
1414 		ret = convert_extent_item_v0(trans, root, path, owner,
1415 					     extra_size);
1416 		if (ret < 0) {
1417 			err = ret;
1418 			goto out;
1419 		}
1420 		leaf = path->nodes[0];
1421 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1422 	}
1423 #endif
1424 	BUG_ON(item_size < sizeof(*ei));
1425 
1426 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1427 	flags = btrfs_extent_flags(leaf, ei);
1428 
1429 	ptr = (unsigned long)(ei + 1);
1430 	end = (unsigned long)ei + item_size;
1431 
1432 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1433 		ptr += sizeof(struct btrfs_tree_block_info);
1434 		BUG_ON(ptr > end);
1435 	} else {
1436 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1437 	}
1438 
1439 	err = -ENOENT;
1440 	while (1) {
1441 		if (ptr >= end) {
1442 			WARN_ON(ptr > end);
1443 			break;
1444 		}
1445 		iref = (struct btrfs_extent_inline_ref *)ptr;
1446 		type = btrfs_extent_inline_ref_type(leaf, iref);
1447 		if (want < type)
1448 			break;
1449 		if (want > type) {
1450 			ptr += btrfs_extent_inline_ref_size(type);
1451 			continue;
1452 		}
1453 
1454 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1455 			struct btrfs_extent_data_ref *dref;
1456 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1457 			if (match_extent_data_ref(leaf, dref, root_objectid,
1458 						  owner, offset)) {
1459 				err = 0;
1460 				break;
1461 			}
1462 			if (hash_extent_data_ref_item(leaf, dref) <
1463 			    hash_extent_data_ref(root_objectid, owner, offset))
1464 				break;
1465 		} else {
1466 			u64 ref_offset;
1467 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1468 			if (parent > 0) {
1469 				if (parent == ref_offset) {
1470 					err = 0;
1471 					break;
1472 				}
1473 				if (ref_offset < parent)
1474 					break;
1475 			} else {
1476 				if (root_objectid == ref_offset) {
1477 					err = 0;
1478 					break;
1479 				}
1480 				if (ref_offset < root_objectid)
1481 					break;
1482 			}
1483 		}
1484 		ptr += btrfs_extent_inline_ref_size(type);
1485 	}
1486 	if (err == -ENOENT && insert) {
1487 		if (item_size + extra_size >=
1488 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1489 			err = -EAGAIN;
1490 			goto out;
1491 		}
1492 		/*
1493 		 * To add new inline back ref, we have to make sure
1494 		 * there is no corresponding back ref item.
1495 		 * For simplicity, we just do not add new inline back
1496 		 * ref if there is any kind of item for this block
1497 		 */
1498 		if (find_next_key(path, 0, &key) == 0 &&
1499 		    key.objectid == bytenr &&
1500 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1501 			err = -EAGAIN;
1502 			goto out;
1503 		}
1504 	}
1505 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1506 out:
1507 	if (insert) {
1508 		path->keep_locks = 0;
1509 		btrfs_unlock_up_safe(path, 1);
1510 	}
1511 	return err;
1512 }
1513 
1514 /*
1515  * helper to add new inline back ref
1516  */
1517 static noinline_for_stack
1518 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1519 				struct btrfs_root *root,
1520 				struct btrfs_path *path,
1521 				struct btrfs_extent_inline_ref *iref,
1522 				u64 parent, u64 root_objectid,
1523 				u64 owner, u64 offset, int refs_to_add,
1524 				struct btrfs_delayed_extent_op *extent_op)
1525 {
1526 	struct extent_buffer *leaf;
1527 	struct btrfs_extent_item *ei;
1528 	unsigned long ptr;
1529 	unsigned long end;
1530 	unsigned long item_offset;
1531 	u64 refs;
1532 	int size;
1533 	int type;
1534 	int ret;
1535 
1536 	leaf = path->nodes[0];
1537 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1538 	item_offset = (unsigned long)iref - (unsigned long)ei;
1539 
1540 	type = extent_ref_type(parent, owner);
1541 	size = btrfs_extent_inline_ref_size(type);
1542 
1543 	ret = btrfs_extend_item(trans, root, path, size);
1544 	BUG_ON(ret);
1545 
1546 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1547 	refs = btrfs_extent_refs(leaf, ei);
1548 	refs += refs_to_add;
1549 	btrfs_set_extent_refs(leaf, ei, refs);
1550 	if (extent_op)
1551 		__run_delayed_extent_op(extent_op, leaf, ei);
1552 
1553 	ptr = (unsigned long)ei + item_offset;
1554 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1555 	if (ptr < end - size)
1556 		memmove_extent_buffer(leaf, ptr + size, ptr,
1557 				      end - size - ptr);
1558 
1559 	iref = (struct btrfs_extent_inline_ref *)ptr;
1560 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1561 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1562 		struct btrfs_extent_data_ref *dref;
1563 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1564 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1565 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1566 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1567 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1568 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1569 		struct btrfs_shared_data_ref *sref;
1570 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1571 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1572 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1573 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1574 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1575 	} else {
1576 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1577 	}
1578 	btrfs_mark_buffer_dirty(leaf);
1579 	return 0;
1580 }
1581 
1582 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1583 				 struct btrfs_root *root,
1584 				 struct btrfs_path *path,
1585 				 struct btrfs_extent_inline_ref **ref_ret,
1586 				 u64 bytenr, u64 num_bytes, u64 parent,
1587 				 u64 root_objectid, u64 owner, u64 offset)
1588 {
1589 	int ret;
1590 
1591 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1592 					   bytenr, num_bytes, parent,
1593 					   root_objectid, owner, offset, 0);
1594 	if (ret != -ENOENT)
1595 		return ret;
1596 
1597 	btrfs_release_path(root, path);
1598 	*ref_ret = NULL;
1599 
1600 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1601 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1602 					    root_objectid);
1603 	} else {
1604 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1605 					     root_objectid, owner, offset);
1606 	}
1607 	return ret;
1608 }
1609 
1610 /*
1611  * helper to update/remove inline back ref
1612  */
1613 static noinline_for_stack
1614 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1615 				 struct btrfs_root *root,
1616 				 struct btrfs_path *path,
1617 				 struct btrfs_extent_inline_ref *iref,
1618 				 int refs_to_mod,
1619 				 struct btrfs_delayed_extent_op *extent_op)
1620 {
1621 	struct extent_buffer *leaf;
1622 	struct btrfs_extent_item *ei;
1623 	struct btrfs_extent_data_ref *dref = NULL;
1624 	struct btrfs_shared_data_ref *sref = NULL;
1625 	unsigned long ptr;
1626 	unsigned long end;
1627 	u32 item_size;
1628 	int size;
1629 	int type;
1630 	int ret;
1631 	u64 refs;
1632 
1633 	leaf = path->nodes[0];
1634 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 	refs = btrfs_extent_refs(leaf, ei);
1636 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1637 	refs += refs_to_mod;
1638 	btrfs_set_extent_refs(leaf, ei, refs);
1639 	if (extent_op)
1640 		__run_delayed_extent_op(extent_op, leaf, ei);
1641 
1642 	type = btrfs_extent_inline_ref_type(leaf, iref);
1643 
1644 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1645 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1646 		refs = btrfs_extent_data_ref_count(leaf, dref);
1647 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1648 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 		refs = btrfs_shared_data_ref_count(leaf, sref);
1650 	} else {
1651 		refs = 1;
1652 		BUG_ON(refs_to_mod != -1);
1653 	}
1654 
1655 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1656 	refs += refs_to_mod;
1657 
1658 	if (refs > 0) {
1659 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1660 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1661 		else
1662 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1663 	} else {
1664 		size =  btrfs_extent_inline_ref_size(type);
1665 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1666 		ptr = (unsigned long)iref;
1667 		end = (unsigned long)ei + item_size;
1668 		if (ptr + size < end)
1669 			memmove_extent_buffer(leaf, ptr, ptr + size,
1670 					      end - ptr - size);
1671 		item_size -= size;
1672 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1673 		BUG_ON(ret);
1674 	}
1675 	btrfs_mark_buffer_dirty(leaf);
1676 	return 0;
1677 }
1678 
1679 static noinline_for_stack
1680 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1681 				 struct btrfs_root *root,
1682 				 struct btrfs_path *path,
1683 				 u64 bytenr, u64 num_bytes, u64 parent,
1684 				 u64 root_objectid, u64 owner,
1685 				 u64 offset, int refs_to_add,
1686 				 struct btrfs_delayed_extent_op *extent_op)
1687 {
1688 	struct btrfs_extent_inline_ref *iref;
1689 	int ret;
1690 
1691 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1692 					   bytenr, num_bytes, parent,
1693 					   root_objectid, owner, offset, 1);
1694 	if (ret == 0) {
1695 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1696 		ret = update_inline_extent_backref(trans, root, path, iref,
1697 						   refs_to_add, extent_op);
1698 	} else if (ret == -ENOENT) {
1699 		ret = setup_inline_extent_backref(trans, root, path, iref,
1700 						  parent, root_objectid,
1701 						  owner, offset, refs_to_add,
1702 						  extent_op);
1703 	}
1704 	return ret;
1705 }
1706 
1707 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1708 				 struct btrfs_root *root,
1709 				 struct btrfs_path *path,
1710 				 u64 bytenr, u64 parent, u64 root_objectid,
1711 				 u64 owner, u64 offset, int refs_to_add)
1712 {
1713 	int ret;
1714 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1715 		BUG_ON(refs_to_add != 1);
1716 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1717 					    parent, root_objectid);
1718 	} else {
1719 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1720 					     parent, root_objectid,
1721 					     owner, offset, refs_to_add);
1722 	}
1723 	return ret;
1724 }
1725 
1726 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1727 				 struct btrfs_root *root,
1728 				 struct btrfs_path *path,
1729 				 struct btrfs_extent_inline_ref *iref,
1730 				 int refs_to_drop, int is_data)
1731 {
1732 	int ret;
1733 
1734 	BUG_ON(!is_data && refs_to_drop != 1);
1735 	if (iref) {
1736 		ret = update_inline_extent_backref(trans, root, path, iref,
1737 						   -refs_to_drop, NULL);
1738 	} else if (is_data) {
1739 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1740 	} else {
1741 		ret = btrfs_del_item(trans, root, path);
1742 	}
1743 	return ret;
1744 }
1745 
1746 static void btrfs_issue_discard(struct block_device *bdev,
1747 				u64 start, u64 len)
1748 {
1749 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1750 }
1751 
1752 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1753 				u64 num_bytes)
1754 {
1755 	int ret;
1756 	u64 map_length = num_bytes;
1757 	struct btrfs_multi_bio *multi = NULL;
1758 
1759 	if (!btrfs_test_opt(root, DISCARD))
1760 		return 0;
1761 
1762 	/* Tell the block device(s) that the sectors can be discarded */
1763 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1764 			      bytenr, &map_length, &multi, 0);
1765 	if (!ret) {
1766 		struct btrfs_bio_stripe *stripe = multi->stripes;
1767 		int i;
1768 
1769 		if (map_length > num_bytes)
1770 			map_length = num_bytes;
1771 
1772 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1773 			btrfs_issue_discard(stripe->dev->bdev,
1774 					    stripe->physical,
1775 					    map_length);
1776 		}
1777 		kfree(multi);
1778 	}
1779 
1780 	return ret;
1781 }
1782 
1783 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1784 			 struct btrfs_root *root,
1785 			 u64 bytenr, u64 num_bytes, u64 parent,
1786 			 u64 root_objectid, u64 owner, u64 offset)
1787 {
1788 	int ret;
1789 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1790 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1791 
1792 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1793 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1794 					parent, root_objectid, (int)owner,
1795 					BTRFS_ADD_DELAYED_REF, NULL);
1796 	} else {
1797 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1798 					parent, root_objectid, owner, offset,
1799 					BTRFS_ADD_DELAYED_REF, NULL);
1800 	}
1801 	return ret;
1802 }
1803 
1804 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1805 				  struct btrfs_root *root,
1806 				  u64 bytenr, u64 num_bytes,
1807 				  u64 parent, u64 root_objectid,
1808 				  u64 owner, u64 offset, int refs_to_add,
1809 				  struct btrfs_delayed_extent_op *extent_op)
1810 {
1811 	struct btrfs_path *path;
1812 	struct extent_buffer *leaf;
1813 	struct btrfs_extent_item *item;
1814 	u64 refs;
1815 	int ret;
1816 	int err = 0;
1817 
1818 	path = btrfs_alloc_path();
1819 	if (!path)
1820 		return -ENOMEM;
1821 
1822 	path->reada = 1;
1823 	path->leave_spinning = 1;
1824 	/* this will setup the path even if it fails to insert the back ref */
1825 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1826 					   path, bytenr, num_bytes, parent,
1827 					   root_objectid, owner, offset,
1828 					   refs_to_add, extent_op);
1829 	if (ret == 0)
1830 		goto out;
1831 
1832 	if (ret != -EAGAIN) {
1833 		err = ret;
1834 		goto out;
1835 	}
1836 
1837 	leaf = path->nodes[0];
1838 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 	refs = btrfs_extent_refs(leaf, item);
1840 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1841 	if (extent_op)
1842 		__run_delayed_extent_op(extent_op, leaf, item);
1843 
1844 	btrfs_mark_buffer_dirty(leaf);
1845 	btrfs_release_path(root->fs_info->extent_root, path);
1846 
1847 	path->reada = 1;
1848 	path->leave_spinning = 1;
1849 
1850 	/* now insert the actual backref */
1851 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1852 				    path, bytenr, parent, root_objectid,
1853 				    owner, offset, refs_to_add);
1854 	BUG_ON(ret);
1855 out:
1856 	btrfs_free_path(path);
1857 	return err;
1858 }
1859 
1860 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1861 				struct btrfs_root *root,
1862 				struct btrfs_delayed_ref_node *node,
1863 				struct btrfs_delayed_extent_op *extent_op,
1864 				int insert_reserved)
1865 {
1866 	int ret = 0;
1867 	struct btrfs_delayed_data_ref *ref;
1868 	struct btrfs_key ins;
1869 	u64 parent = 0;
1870 	u64 ref_root = 0;
1871 	u64 flags = 0;
1872 
1873 	ins.objectid = node->bytenr;
1874 	ins.offset = node->num_bytes;
1875 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1876 
1877 	ref = btrfs_delayed_node_to_data_ref(node);
1878 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1879 		parent = ref->parent;
1880 	else
1881 		ref_root = ref->root;
1882 
1883 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1884 		if (extent_op) {
1885 			BUG_ON(extent_op->update_key);
1886 			flags |= extent_op->flags_to_set;
1887 		}
1888 		ret = alloc_reserved_file_extent(trans, root,
1889 						 parent, ref_root, flags,
1890 						 ref->objectid, ref->offset,
1891 						 &ins, node->ref_mod);
1892 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1893 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1894 					     node->num_bytes, parent,
1895 					     ref_root, ref->objectid,
1896 					     ref->offset, node->ref_mod,
1897 					     extent_op);
1898 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1899 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1900 					  node->num_bytes, parent,
1901 					  ref_root, ref->objectid,
1902 					  ref->offset, node->ref_mod,
1903 					  extent_op);
1904 	} else {
1905 		BUG();
1906 	}
1907 	return ret;
1908 }
1909 
1910 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1911 				    struct extent_buffer *leaf,
1912 				    struct btrfs_extent_item *ei)
1913 {
1914 	u64 flags = btrfs_extent_flags(leaf, ei);
1915 	if (extent_op->update_flags) {
1916 		flags |= extent_op->flags_to_set;
1917 		btrfs_set_extent_flags(leaf, ei, flags);
1918 	}
1919 
1920 	if (extent_op->update_key) {
1921 		struct btrfs_tree_block_info *bi;
1922 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1923 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1924 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1925 	}
1926 }
1927 
1928 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1929 				 struct btrfs_root *root,
1930 				 struct btrfs_delayed_ref_node *node,
1931 				 struct btrfs_delayed_extent_op *extent_op)
1932 {
1933 	struct btrfs_key key;
1934 	struct btrfs_path *path;
1935 	struct btrfs_extent_item *ei;
1936 	struct extent_buffer *leaf;
1937 	u32 item_size;
1938 	int ret;
1939 	int err = 0;
1940 
1941 	path = btrfs_alloc_path();
1942 	if (!path)
1943 		return -ENOMEM;
1944 
1945 	key.objectid = node->bytenr;
1946 	key.type = BTRFS_EXTENT_ITEM_KEY;
1947 	key.offset = node->num_bytes;
1948 
1949 	path->reada = 1;
1950 	path->leave_spinning = 1;
1951 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1952 				path, 0, 1);
1953 	if (ret < 0) {
1954 		err = ret;
1955 		goto out;
1956 	}
1957 	if (ret > 0) {
1958 		err = -EIO;
1959 		goto out;
1960 	}
1961 
1962 	leaf = path->nodes[0];
1963 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1965 	if (item_size < sizeof(*ei)) {
1966 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1967 					     path, (u64)-1, 0);
1968 		if (ret < 0) {
1969 			err = ret;
1970 			goto out;
1971 		}
1972 		leaf = path->nodes[0];
1973 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1974 	}
1975 #endif
1976 	BUG_ON(item_size < sizeof(*ei));
1977 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1978 	__run_delayed_extent_op(extent_op, leaf, ei);
1979 
1980 	btrfs_mark_buffer_dirty(leaf);
1981 out:
1982 	btrfs_free_path(path);
1983 	return err;
1984 }
1985 
1986 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1987 				struct btrfs_root *root,
1988 				struct btrfs_delayed_ref_node *node,
1989 				struct btrfs_delayed_extent_op *extent_op,
1990 				int insert_reserved)
1991 {
1992 	int ret = 0;
1993 	struct btrfs_delayed_tree_ref *ref;
1994 	struct btrfs_key ins;
1995 	u64 parent = 0;
1996 	u64 ref_root = 0;
1997 
1998 	ins.objectid = node->bytenr;
1999 	ins.offset = node->num_bytes;
2000 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2001 
2002 	ref = btrfs_delayed_node_to_tree_ref(node);
2003 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2004 		parent = ref->parent;
2005 	else
2006 		ref_root = ref->root;
2007 
2008 	BUG_ON(node->ref_mod != 1);
2009 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2010 		BUG_ON(!extent_op || !extent_op->update_flags ||
2011 		       !extent_op->update_key);
2012 		ret = alloc_reserved_tree_block(trans, root,
2013 						parent, ref_root,
2014 						extent_op->flags_to_set,
2015 						&extent_op->key,
2016 						ref->level, &ins);
2017 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2018 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2019 					     node->num_bytes, parent, ref_root,
2020 					     ref->level, 0, 1, extent_op);
2021 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2022 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2023 					  node->num_bytes, parent, ref_root,
2024 					  ref->level, 0, 1, extent_op);
2025 	} else {
2026 		BUG();
2027 	}
2028 	return ret;
2029 }
2030 
2031 /* helper function to actually process a single delayed ref entry */
2032 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2033 			       struct btrfs_root *root,
2034 			       struct btrfs_delayed_ref_node *node,
2035 			       struct btrfs_delayed_extent_op *extent_op,
2036 			       int insert_reserved)
2037 {
2038 	int ret;
2039 	if (btrfs_delayed_ref_is_head(node)) {
2040 		struct btrfs_delayed_ref_head *head;
2041 		/*
2042 		 * we've hit the end of the chain and we were supposed
2043 		 * to insert this extent into the tree.  But, it got
2044 		 * deleted before we ever needed to insert it, so all
2045 		 * we have to do is clean up the accounting
2046 		 */
2047 		BUG_ON(extent_op);
2048 		head = btrfs_delayed_node_to_head(node);
2049 		if (insert_reserved) {
2050 			btrfs_pin_extent(root, node->bytenr,
2051 					 node->num_bytes, 1);
2052 			if (head->is_data) {
2053 				ret = btrfs_del_csums(trans, root,
2054 						      node->bytenr,
2055 						      node->num_bytes);
2056 				BUG_ON(ret);
2057 			}
2058 		}
2059 		mutex_unlock(&head->mutex);
2060 		return 0;
2061 	}
2062 
2063 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2064 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2065 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2066 					   insert_reserved);
2067 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2068 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2069 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2070 					   insert_reserved);
2071 	else
2072 		BUG();
2073 	return ret;
2074 }
2075 
2076 static noinline struct btrfs_delayed_ref_node *
2077 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2078 {
2079 	struct rb_node *node;
2080 	struct btrfs_delayed_ref_node *ref;
2081 	int action = BTRFS_ADD_DELAYED_REF;
2082 again:
2083 	/*
2084 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2085 	 * this prevents ref count from going down to zero when
2086 	 * there still are pending delayed ref.
2087 	 */
2088 	node = rb_prev(&head->node.rb_node);
2089 	while (1) {
2090 		if (!node)
2091 			break;
2092 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2093 				rb_node);
2094 		if (ref->bytenr != head->node.bytenr)
2095 			break;
2096 		if (ref->action == action)
2097 			return ref;
2098 		node = rb_prev(node);
2099 	}
2100 	if (action == BTRFS_ADD_DELAYED_REF) {
2101 		action = BTRFS_DROP_DELAYED_REF;
2102 		goto again;
2103 	}
2104 	return NULL;
2105 }
2106 
2107 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2108 				       struct btrfs_root *root,
2109 				       struct list_head *cluster)
2110 {
2111 	struct btrfs_delayed_ref_root *delayed_refs;
2112 	struct btrfs_delayed_ref_node *ref;
2113 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2114 	struct btrfs_delayed_extent_op *extent_op;
2115 	int ret;
2116 	int count = 0;
2117 	int must_insert_reserved = 0;
2118 
2119 	delayed_refs = &trans->transaction->delayed_refs;
2120 	while (1) {
2121 		if (!locked_ref) {
2122 			/* pick a new head ref from the cluster list */
2123 			if (list_empty(cluster))
2124 				break;
2125 
2126 			locked_ref = list_entry(cluster->next,
2127 				     struct btrfs_delayed_ref_head, cluster);
2128 
2129 			/* grab the lock that says we are going to process
2130 			 * all the refs for this head */
2131 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2132 
2133 			/*
2134 			 * we may have dropped the spin lock to get the head
2135 			 * mutex lock, and that might have given someone else
2136 			 * time to free the head.  If that's true, it has been
2137 			 * removed from our list and we can move on.
2138 			 */
2139 			if (ret == -EAGAIN) {
2140 				locked_ref = NULL;
2141 				count++;
2142 				continue;
2143 			}
2144 		}
2145 
2146 		/*
2147 		 * record the must insert reserved flag before we
2148 		 * drop the spin lock.
2149 		 */
2150 		must_insert_reserved = locked_ref->must_insert_reserved;
2151 		locked_ref->must_insert_reserved = 0;
2152 
2153 		extent_op = locked_ref->extent_op;
2154 		locked_ref->extent_op = NULL;
2155 
2156 		/*
2157 		 * locked_ref is the head node, so we have to go one
2158 		 * node back for any delayed ref updates
2159 		 */
2160 		ref = select_delayed_ref(locked_ref);
2161 		if (!ref) {
2162 			/* All delayed refs have been processed, Go ahead
2163 			 * and send the head node to run_one_delayed_ref,
2164 			 * so that any accounting fixes can happen
2165 			 */
2166 			ref = &locked_ref->node;
2167 
2168 			if (extent_op && must_insert_reserved) {
2169 				kfree(extent_op);
2170 				extent_op = NULL;
2171 			}
2172 
2173 			if (extent_op) {
2174 				spin_unlock(&delayed_refs->lock);
2175 
2176 				ret = run_delayed_extent_op(trans, root,
2177 							    ref, extent_op);
2178 				BUG_ON(ret);
2179 				kfree(extent_op);
2180 
2181 				cond_resched();
2182 				spin_lock(&delayed_refs->lock);
2183 				continue;
2184 			}
2185 
2186 			list_del_init(&locked_ref->cluster);
2187 			locked_ref = NULL;
2188 		}
2189 
2190 		ref->in_tree = 0;
2191 		rb_erase(&ref->rb_node, &delayed_refs->root);
2192 		delayed_refs->num_entries--;
2193 
2194 		spin_unlock(&delayed_refs->lock);
2195 
2196 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2197 					  must_insert_reserved);
2198 		BUG_ON(ret);
2199 
2200 		btrfs_put_delayed_ref(ref);
2201 		kfree(extent_op);
2202 		count++;
2203 
2204 		cond_resched();
2205 		spin_lock(&delayed_refs->lock);
2206 	}
2207 	return count;
2208 }
2209 
2210 /*
2211  * this starts processing the delayed reference count updates and
2212  * extent insertions we have queued up so far.  count can be
2213  * 0, which means to process everything in the tree at the start
2214  * of the run (but not newly added entries), or it can be some target
2215  * number you'd like to process.
2216  */
2217 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2218 			   struct btrfs_root *root, unsigned long count)
2219 {
2220 	struct rb_node *node;
2221 	struct btrfs_delayed_ref_root *delayed_refs;
2222 	struct btrfs_delayed_ref_node *ref;
2223 	struct list_head cluster;
2224 	int ret;
2225 	int run_all = count == (unsigned long)-1;
2226 	int run_most = 0;
2227 
2228 	if (root == root->fs_info->extent_root)
2229 		root = root->fs_info->tree_root;
2230 
2231 	delayed_refs = &trans->transaction->delayed_refs;
2232 	INIT_LIST_HEAD(&cluster);
2233 again:
2234 	spin_lock(&delayed_refs->lock);
2235 	if (count == 0) {
2236 		count = delayed_refs->num_entries * 2;
2237 		run_most = 1;
2238 	}
2239 	while (1) {
2240 		if (!(run_all || run_most) &&
2241 		    delayed_refs->num_heads_ready < 64)
2242 			break;
2243 
2244 		/*
2245 		 * go find something we can process in the rbtree.  We start at
2246 		 * the beginning of the tree, and then build a cluster
2247 		 * of refs to process starting at the first one we are able to
2248 		 * lock
2249 		 */
2250 		ret = btrfs_find_ref_cluster(trans, &cluster,
2251 					     delayed_refs->run_delayed_start);
2252 		if (ret)
2253 			break;
2254 
2255 		ret = run_clustered_refs(trans, root, &cluster);
2256 		BUG_ON(ret < 0);
2257 
2258 		count -= min_t(unsigned long, ret, count);
2259 
2260 		if (count == 0)
2261 			break;
2262 	}
2263 
2264 	if (run_all) {
2265 		node = rb_first(&delayed_refs->root);
2266 		if (!node)
2267 			goto out;
2268 		count = (unsigned long)-1;
2269 
2270 		while (node) {
2271 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2272 				       rb_node);
2273 			if (btrfs_delayed_ref_is_head(ref)) {
2274 				struct btrfs_delayed_ref_head *head;
2275 
2276 				head = btrfs_delayed_node_to_head(ref);
2277 				atomic_inc(&ref->refs);
2278 
2279 				spin_unlock(&delayed_refs->lock);
2280 				mutex_lock(&head->mutex);
2281 				mutex_unlock(&head->mutex);
2282 
2283 				btrfs_put_delayed_ref(ref);
2284 				cond_resched();
2285 				goto again;
2286 			}
2287 			node = rb_next(node);
2288 		}
2289 		spin_unlock(&delayed_refs->lock);
2290 		schedule_timeout(1);
2291 		goto again;
2292 	}
2293 out:
2294 	spin_unlock(&delayed_refs->lock);
2295 	return 0;
2296 }
2297 
2298 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2299 				struct btrfs_root *root,
2300 				u64 bytenr, u64 num_bytes, u64 flags,
2301 				int is_data)
2302 {
2303 	struct btrfs_delayed_extent_op *extent_op;
2304 	int ret;
2305 
2306 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2307 	if (!extent_op)
2308 		return -ENOMEM;
2309 
2310 	extent_op->flags_to_set = flags;
2311 	extent_op->update_flags = 1;
2312 	extent_op->update_key = 0;
2313 	extent_op->is_data = is_data ? 1 : 0;
2314 
2315 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2316 	if (ret)
2317 		kfree(extent_op);
2318 	return ret;
2319 }
2320 
2321 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2322 				      struct btrfs_root *root,
2323 				      struct btrfs_path *path,
2324 				      u64 objectid, u64 offset, u64 bytenr)
2325 {
2326 	struct btrfs_delayed_ref_head *head;
2327 	struct btrfs_delayed_ref_node *ref;
2328 	struct btrfs_delayed_data_ref *data_ref;
2329 	struct btrfs_delayed_ref_root *delayed_refs;
2330 	struct rb_node *node;
2331 	int ret = 0;
2332 
2333 	ret = -ENOENT;
2334 	delayed_refs = &trans->transaction->delayed_refs;
2335 	spin_lock(&delayed_refs->lock);
2336 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2337 	if (!head)
2338 		goto out;
2339 
2340 	if (!mutex_trylock(&head->mutex)) {
2341 		atomic_inc(&head->node.refs);
2342 		spin_unlock(&delayed_refs->lock);
2343 
2344 		btrfs_release_path(root->fs_info->extent_root, path);
2345 
2346 		mutex_lock(&head->mutex);
2347 		mutex_unlock(&head->mutex);
2348 		btrfs_put_delayed_ref(&head->node);
2349 		return -EAGAIN;
2350 	}
2351 
2352 	node = rb_prev(&head->node.rb_node);
2353 	if (!node)
2354 		goto out_unlock;
2355 
2356 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2357 
2358 	if (ref->bytenr != bytenr)
2359 		goto out_unlock;
2360 
2361 	ret = 1;
2362 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2363 		goto out_unlock;
2364 
2365 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2366 
2367 	node = rb_prev(node);
2368 	if (node) {
2369 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2370 		if (ref->bytenr == bytenr)
2371 			goto out_unlock;
2372 	}
2373 
2374 	if (data_ref->root != root->root_key.objectid ||
2375 	    data_ref->objectid != objectid || data_ref->offset != offset)
2376 		goto out_unlock;
2377 
2378 	ret = 0;
2379 out_unlock:
2380 	mutex_unlock(&head->mutex);
2381 out:
2382 	spin_unlock(&delayed_refs->lock);
2383 	return ret;
2384 }
2385 
2386 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2387 					struct btrfs_root *root,
2388 					struct btrfs_path *path,
2389 					u64 objectid, u64 offset, u64 bytenr)
2390 {
2391 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2392 	struct extent_buffer *leaf;
2393 	struct btrfs_extent_data_ref *ref;
2394 	struct btrfs_extent_inline_ref *iref;
2395 	struct btrfs_extent_item *ei;
2396 	struct btrfs_key key;
2397 	u32 item_size;
2398 	int ret;
2399 
2400 	key.objectid = bytenr;
2401 	key.offset = (u64)-1;
2402 	key.type = BTRFS_EXTENT_ITEM_KEY;
2403 
2404 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2405 	if (ret < 0)
2406 		goto out;
2407 	BUG_ON(ret == 0);
2408 
2409 	ret = -ENOENT;
2410 	if (path->slots[0] == 0)
2411 		goto out;
2412 
2413 	path->slots[0]--;
2414 	leaf = path->nodes[0];
2415 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2416 
2417 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2418 		goto out;
2419 
2420 	ret = 1;
2421 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2423 	if (item_size < sizeof(*ei)) {
2424 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2425 		goto out;
2426 	}
2427 #endif
2428 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429 
2430 	if (item_size != sizeof(*ei) +
2431 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2432 		goto out;
2433 
2434 	if (btrfs_extent_generation(leaf, ei) <=
2435 	    btrfs_root_last_snapshot(&root->root_item))
2436 		goto out;
2437 
2438 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2439 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2440 	    BTRFS_EXTENT_DATA_REF_KEY)
2441 		goto out;
2442 
2443 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2444 	if (btrfs_extent_refs(leaf, ei) !=
2445 	    btrfs_extent_data_ref_count(leaf, ref) ||
2446 	    btrfs_extent_data_ref_root(leaf, ref) !=
2447 	    root->root_key.objectid ||
2448 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2449 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2450 		goto out;
2451 
2452 	ret = 0;
2453 out:
2454 	return ret;
2455 }
2456 
2457 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2458 			  struct btrfs_root *root,
2459 			  u64 objectid, u64 offset, u64 bytenr)
2460 {
2461 	struct btrfs_path *path;
2462 	int ret;
2463 	int ret2;
2464 
2465 	path = btrfs_alloc_path();
2466 	if (!path)
2467 		return -ENOENT;
2468 
2469 	do {
2470 		ret = check_committed_ref(trans, root, path, objectid,
2471 					  offset, bytenr);
2472 		if (ret && ret != -ENOENT)
2473 			goto out;
2474 
2475 		ret2 = check_delayed_ref(trans, root, path, objectid,
2476 					 offset, bytenr);
2477 	} while (ret2 == -EAGAIN);
2478 
2479 	if (ret2 && ret2 != -ENOENT) {
2480 		ret = ret2;
2481 		goto out;
2482 	}
2483 
2484 	if (ret != -ENOENT || ret2 != -ENOENT)
2485 		ret = 0;
2486 out:
2487 	btrfs_free_path(path);
2488 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2489 		WARN_ON(ret > 0);
2490 	return ret;
2491 }
2492 
2493 #if 0
2494 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2495 		    struct extent_buffer *buf, u32 nr_extents)
2496 {
2497 	struct btrfs_key key;
2498 	struct btrfs_file_extent_item *fi;
2499 	u64 root_gen;
2500 	u32 nritems;
2501 	int i;
2502 	int level;
2503 	int ret = 0;
2504 	int shared = 0;
2505 
2506 	if (!root->ref_cows)
2507 		return 0;
2508 
2509 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2510 		shared = 0;
2511 		root_gen = root->root_key.offset;
2512 	} else {
2513 		shared = 1;
2514 		root_gen = trans->transid - 1;
2515 	}
2516 
2517 	level = btrfs_header_level(buf);
2518 	nritems = btrfs_header_nritems(buf);
2519 
2520 	if (level == 0) {
2521 		struct btrfs_leaf_ref *ref;
2522 		struct btrfs_extent_info *info;
2523 
2524 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2525 		if (!ref) {
2526 			ret = -ENOMEM;
2527 			goto out;
2528 		}
2529 
2530 		ref->root_gen = root_gen;
2531 		ref->bytenr = buf->start;
2532 		ref->owner = btrfs_header_owner(buf);
2533 		ref->generation = btrfs_header_generation(buf);
2534 		ref->nritems = nr_extents;
2535 		info = ref->extents;
2536 
2537 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2538 			u64 disk_bytenr;
2539 			btrfs_item_key_to_cpu(buf, &key, i);
2540 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2541 				continue;
2542 			fi = btrfs_item_ptr(buf, i,
2543 					    struct btrfs_file_extent_item);
2544 			if (btrfs_file_extent_type(buf, fi) ==
2545 			    BTRFS_FILE_EXTENT_INLINE)
2546 				continue;
2547 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2548 			if (disk_bytenr == 0)
2549 				continue;
2550 
2551 			info->bytenr = disk_bytenr;
2552 			info->num_bytes =
2553 				btrfs_file_extent_disk_num_bytes(buf, fi);
2554 			info->objectid = key.objectid;
2555 			info->offset = key.offset;
2556 			info++;
2557 		}
2558 
2559 		ret = btrfs_add_leaf_ref(root, ref, shared);
2560 		if (ret == -EEXIST && shared) {
2561 			struct btrfs_leaf_ref *old;
2562 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2563 			BUG_ON(!old);
2564 			btrfs_remove_leaf_ref(root, old);
2565 			btrfs_free_leaf_ref(root, old);
2566 			ret = btrfs_add_leaf_ref(root, ref, shared);
2567 		}
2568 		WARN_ON(ret);
2569 		btrfs_free_leaf_ref(root, ref);
2570 	}
2571 out:
2572 	return ret;
2573 }
2574 
2575 /* when a block goes through cow, we update the reference counts of
2576  * everything that block points to.  The internal pointers of the block
2577  * can be in just about any order, and it is likely to have clusters of
2578  * things that are close together and clusters of things that are not.
2579  *
2580  * To help reduce the seeks that come with updating all of these reference
2581  * counts, sort them by byte number before actual updates are done.
2582  *
2583  * struct refsort is used to match byte number to slot in the btree block.
2584  * we sort based on the byte number and then use the slot to actually
2585  * find the item.
2586  *
2587  * struct refsort is smaller than strcut btrfs_item and smaller than
2588  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2589  * for a btree block, there's no way for a kmalloc of refsorts for a
2590  * single node to be bigger than a page.
2591  */
2592 struct refsort {
2593 	u64 bytenr;
2594 	u32 slot;
2595 };
2596 
2597 /*
2598  * for passing into sort()
2599  */
2600 static int refsort_cmp(const void *a_void, const void *b_void)
2601 {
2602 	const struct refsort *a = a_void;
2603 	const struct refsort *b = b_void;
2604 
2605 	if (a->bytenr < b->bytenr)
2606 		return -1;
2607 	if (a->bytenr > b->bytenr)
2608 		return 1;
2609 	return 0;
2610 }
2611 #endif
2612 
2613 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2614 			   struct btrfs_root *root,
2615 			   struct extent_buffer *buf,
2616 			   int full_backref, int inc)
2617 {
2618 	u64 bytenr;
2619 	u64 num_bytes;
2620 	u64 parent;
2621 	u64 ref_root;
2622 	u32 nritems;
2623 	struct btrfs_key key;
2624 	struct btrfs_file_extent_item *fi;
2625 	int i;
2626 	int level;
2627 	int ret = 0;
2628 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2629 			    u64, u64, u64, u64, u64, u64);
2630 
2631 	ref_root = btrfs_header_owner(buf);
2632 	nritems = btrfs_header_nritems(buf);
2633 	level = btrfs_header_level(buf);
2634 
2635 	if (!root->ref_cows && level == 0)
2636 		return 0;
2637 
2638 	if (inc)
2639 		process_func = btrfs_inc_extent_ref;
2640 	else
2641 		process_func = btrfs_free_extent;
2642 
2643 	if (full_backref)
2644 		parent = buf->start;
2645 	else
2646 		parent = 0;
2647 
2648 	for (i = 0; i < nritems; i++) {
2649 		if (level == 0) {
2650 			btrfs_item_key_to_cpu(buf, &key, i);
2651 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2652 				continue;
2653 			fi = btrfs_item_ptr(buf, i,
2654 					    struct btrfs_file_extent_item);
2655 			if (btrfs_file_extent_type(buf, fi) ==
2656 			    BTRFS_FILE_EXTENT_INLINE)
2657 				continue;
2658 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2659 			if (bytenr == 0)
2660 				continue;
2661 
2662 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2663 			key.offset -= btrfs_file_extent_offset(buf, fi);
2664 			ret = process_func(trans, root, bytenr, num_bytes,
2665 					   parent, ref_root, key.objectid,
2666 					   key.offset);
2667 			if (ret)
2668 				goto fail;
2669 		} else {
2670 			bytenr = btrfs_node_blockptr(buf, i);
2671 			num_bytes = btrfs_level_size(root, level - 1);
2672 			ret = process_func(trans, root, bytenr, num_bytes,
2673 					   parent, ref_root, level - 1, 0);
2674 			if (ret)
2675 				goto fail;
2676 		}
2677 	}
2678 	return 0;
2679 fail:
2680 	BUG();
2681 	return ret;
2682 }
2683 
2684 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2685 		  struct extent_buffer *buf, int full_backref)
2686 {
2687 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2688 }
2689 
2690 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2691 		  struct extent_buffer *buf, int full_backref)
2692 {
2693 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2694 }
2695 
2696 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2697 				 struct btrfs_root *root,
2698 				 struct btrfs_path *path,
2699 				 struct btrfs_block_group_cache *cache)
2700 {
2701 	int ret;
2702 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2703 	unsigned long bi;
2704 	struct extent_buffer *leaf;
2705 
2706 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2707 	if (ret < 0)
2708 		goto fail;
2709 	BUG_ON(ret);
2710 
2711 	leaf = path->nodes[0];
2712 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2713 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2714 	btrfs_mark_buffer_dirty(leaf);
2715 	btrfs_release_path(extent_root, path);
2716 fail:
2717 	if (ret)
2718 		return ret;
2719 	return 0;
2720 
2721 }
2722 
2723 static struct btrfs_block_group_cache *
2724 next_block_group(struct btrfs_root *root,
2725 		 struct btrfs_block_group_cache *cache)
2726 {
2727 	struct rb_node *node;
2728 	spin_lock(&root->fs_info->block_group_cache_lock);
2729 	node = rb_next(&cache->cache_node);
2730 	btrfs_put_block_group(cache);
2731 	if (node) {
2732 		cache = rb_entry(node, struct btrfs_block_group_cache,
2733 				 cache_node);
2734 		btrfs_get_block_group(cache);
2735 	} else
2736 		cache = NULL;
2737 	spin_unlock(&root->fs_info->block_group_cache_lock);
2738 	return cache;
2739 }
2740 
2741 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2742 			    struct btrfs_trans_handle *trans,
2743 			    struct btrfs_path *path)
2744 {
2745 	struct btrfs_root *root = block_group->fs_info->tree_root;
2746 	struct inode *inode = NULL;
2747 	u64 alloc_hint = 0;
2748 	int dcs = BTRFS_DC_ERROR;
2749 	int num_pages = 0;
2750 	int retries = 0;
2751 	int ret = 0;
2752 
2753 	/*
2754 	 * If this block group is smaller than 100 megs don't bother caching the
2755 	 * block group.
2756 	 */
2757 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2758 		spin_lock(&block_group->lock);
2759 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2760 		spin_unlock(&block_group->lock);
2761 		return 0;
2762 	}
2763 
2764 again:
2765 	inode = lookup_free_space_inode(root, block_group, path);
2766 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2767 		ret = PTR_ERR(inode);
2768 		btrfs_release_path(root, path);
2769 		goto out;
2770 	}
2771 
2772 	if (IS_ERR(inode)) {
2773 		BUG_ON(retries);
2774 		retries++;
2775 
2776 		if (block_group->ro)
2777 			goto out_free;
2778 
2779 		ret = create_free_space_inode(root, trans, block_group, path);
2780 		if (ret)
2781 			goto out_free;
2782 		goto again;
2783 	}
2784 
2785 	/*
2786 	 * We want to set the generation to 0, that way if anything goes wrong
2787 	 * from here on out we know not to trust this cache when we load up next
2788 	 * time.
2789 	 */
2790 	BTRFS_I(inode)->generation = 0;
2791 	ret = btrfs_update_inode(trans, root, inode);
2792 	WARN_ON(ret);
2793 
2794 	if (i_size_read(inode) > 0) {
2795 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2796 						      inode);
2797 		if (ret)
2798 			goto out_put;
2799 	}
2800 
2801 	spin_lock(&block_group->lock);
2802 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2803 		/* We're not cached, don't bother trying to write stuff out */
2804 		dcs = BTRFS_DC_WRITTEN;
2805 		spin_unlock(&block_group->lock);
2806 		goto out_put;
2807 	}
2808 	spin_unlock(&block_group->lock);
2809 
2810 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2811 	if (!num_pages)
2812 		num_pages = 1;
2813 
2814 	/*
2815 	 * Just to make absolutely sure we have enough space, we're going to
2816 	 * preallocate 12 pages worth of space for each block group.  In
2817 	 * practice we ought to use at most 8, but we need extra space so we can
2818 	 * add our header and have a terminator between the extents and the
2819 	 * bitmaps.
2820 	 */
2821 	num_pages *= 16;
2822 	num_pages *= PAGE_CACHE_SIZE;
2823 
2824 	ret = btrfs_check_data_free_space(inode, num_pages);
2825 	if (ret)
2826 		goto out_put;
2827 
2828 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2829 					      num_pages, num_pages,
2830 					      &alloc_hint);
2831 	if (!ret)
2832 		dcs = BTRFS_DC_SETUP;
2833 	btrfs_free_reserved_data_space(inode, num_pages);
2834 out_put:
2835 	iput(inode);
2836 out_free:
2837 	btrfs_release_path(root, path);
2838 out:
2839 	spin_lock(&block_group->lock);
2840 	block_group->disk_cache_state = dcs;
2841 	spin_unlock(&block_group->lock);
2842 
2843 	return ret;
2844 }
2845 
2846 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2847 				   struct btrfs_root *root)
2848 {
2849 	struct btrfs_block_group_cache *cache;
2850 	int err = 0;
2851 	struct btrfs_path *path;
2852 	u64 last = 0;
2853 
2854 	path = btrfs_alloc_path();
2855 	if (!path)
2856 		return -ENOMEM;
2857 
2858 again:
2859 	while (1) {
2860 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2861 		while (cache) {
2862 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2863 				break;
2864 			cache = next_block_group(root, cache);
2865 		}
2866 		if (!cache) {
2867 			if (last == 0)
2868 				break;
2869 			last = 0;
2870 			continue;
2871 		}
2872 		err = cache_save_setup(cache, trans, path);
2873 		last = cache->key.objectid + cache->key.offset;
2874 		btrfs_put_block_group(cache);
2875 	}
2876 
2877 	while (1) {
2878 		if (last == 0) {
2879 			err = btrfs_run_delayed_refs(trans, root,
2880 						     (unsigned long)-1);
2881 			BUG_ON(err);
2882 		}
2883 
2884 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2885 		while (cache) {
2886 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2887 				btrfs_put_block_group(cache);
2888 				goto again;
2889 			}
2890 
2891 			if (cache->dirty)
2892 				break;
2893 			cache = next_block_group(root, cache);
2894 		}
2895 		if (!cache) {
2896 			if (last == 0)
2897 				break;
2898 			last = 0;
2899 			continue;
2900 		}
2901 
2902 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2903 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2904 		cache->dirty = 0;
2905 		last = cache->key.objectid + cache->key.offset;
2906 
2907 		err = write_one_cache_group(trans, root, path, cache);
2908 		BUG_ON(err);
2909 		btrfs_put_block_group(cache);
2910 	}
2911 
2912 	while (1) {
2913 		/*
2914 		 * I don't think this is needed since we're just marking our
2915 		 * preallocated extent as written, but just in case it can't
2916 		 * hurt.
2917 		 */
2918 		if (last == 0) {
2919 			err = btrfs_run_delayed_refs(trans, root,
2920 						     (unsigned long)-1);
2921 			BUG_ON(err);
2922 		}
2923 
2924 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2925 		while (cache) {
2926 			/*
2927 			 * Really this shouldn't happen, but it could if we
2928 			 * couldn't write the entire preallocated extent and
2929 			 * splitting the extent resulted in a new block.
2930 			 */
2931 			if (cache->dirty) {
2932 				btrfs_put_block_group(cache);
2933 				goto again;
2934 			}
2935 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2936 				break;
2937 			cache = next_block_group(root, cache);
2938 		}
2939 		if (!cache) {
2940 			if (last == 0)
2941 				break;
2942 			last = 0;
2943 			continue;
2944 		}
2945 
2946 		btrfs_write_out_cache(root, trans, cache, path);
2947 
2948 		/*
2949 		 * If we didn't have an error then the cache state is still
2950 		 * NEED_WRITE, so we can set it to WRITTEN.
2951 		 */
2952 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2953 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
2954 		last = cache->key.objectid + cache->key.offset;
2955 		btrfs_put_block_group(cache);
2956 	}
2957 
2958 	btrfs_free_path(path);
2959 	return 0;
2960 }
2961 
2962 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2963 {
2964 	struct btrfs_block_group_cache *block_group;
2965 	int readonly = 0;
2966 
2967 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2968 	if (!block_group || block_group->ro)
2969 		readonly = 1;
2970 	if (block_group)
2971 		btrfs_put_block_group(block_group);
2972 	return readonly;
2973 }
2974 
2975 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2976 			     u64 total_bytes, u64 bytes_used,
2977 			     struct btrfs_space_info **space_info)
2978 {
2979 	struct btrfs_space_info *found;
2980 	int i;
2981 	int factor;
2982 
2983 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2984 		     BTRFS_BLOCK_GROUP_RAID10))
2985 		factor = 2;
2986 	else
2987 		factor = 1;
2988 
2989 	found = __find_space_info(info, flags);
2990 	if (found) {
2991 		spin_lock(&found->lock);
2992 		found->total_bytes += total_bytes;
2993 		found->disk_total += total_bytes * factor;
2994 		found->bytes_used += bytes_used;
2995 		found->disk_used += bytes_used * factor;
2996 		found->full = 0;
2997 		spin_unlock(&found->lock);
2998 		*space_info = found;
2999 		return 0;
3000 	}
3001 	found = kzalloc(sizeof(*found), GFP_NOFS);
3002 	if (!found)
3003 		return -ENOMEM;
3004 
3005 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3006 		INIT_LIST_HEAD(&found->block_groups[i]);
3007 	init_rwsem(&found->groups_sem);
3008 	spin_lock_init(&found->lock);
3009 	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3010 				BTRFS_BLOCK_GROUP_SYSTEM |
3011 				BTRFS_BLOCK_GROUP_METADATA);
3012 	found->total_bytes = total_bytes;
3013 	found->disk_total = total_bytes * factor;
3014 	found->bytes_used = bytes_used;
3015 	found->disk_used = bytes_used * factor;
3016 	found->bytes_pinned = 0;
3017 	found->bytes_reserved = 0;
3018 	found->bytes_readonly = 0;
3019 	found->bytes_may_use = 0;
3020 	found->full = 0;
3021 	found->force_alloc = 0;
3022 	*space_info = found;
3023 	list_add_rcu(&found->list, &info->space_info);
3024 	atomic_set(&found->caching_threads, 0);
3025 	return 0;
3026 }
3027 
3028 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3029 {
3030 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3031 				   BTRFS_BLOCK_GROUP_RAID1 |
3032 				   BTRFS_BLOCK_GROUP_RAID10 |
3033 				   BTRFS_BLOCK_GROUP_DUP);
3034 	if (extra_flags) {
3035 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3036 			fs_info->avail_data_alloc_bits |= extra_flags;
3037 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
3038 			fs_info->avail_metadata_alloc_bits |= extra_flags;
3039 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3040 			fs_info->avail_system_alloc_bits |= extra_flags;
3041 	}
3042 }
3043 
3044 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3045 {
3046 	/*
3047 	 * we add in the count of missing devices because we want
3048 	 * to make sure that any RAID levels on a degraded FS
3049 	 * continue to be honored.
3050 	 */
3051 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3052 		root->fs_info->fs_devices->missing_devices;
3053 
3054 	if (num_devices == 1)
3055 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3056 	if (num_devices < 4)
3057 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3058 
3059 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3060 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3061 		      BTRFS_BLOCK_GROUP_RAID10))) {
3062 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3063 	}
3064 
3065 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3066 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3067 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3068 	}
3069 
3070 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3071 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3072 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3073 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
3074 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3075 	return flags;
3076 }
3077 
3078 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3079 {
3080 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3081 		flags |= root->fs_info->avail_data_alloc_bits &
3082 			 root->fs_info->data_alloc_profile;
3083 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3084 		flags |= root->fs_info->avail_system_alloc_bits &
3085 			 root->fs_info->system_alloc_profile;
3086 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3087 		flags |= root->fs_info->avail_metadata_alloc_bits &
3088 			 root->fs_info->metadata_alloc_profile;
3089 	return btrfs_reduce_alloc_profile(root, flags);
3090 }
3091 
3092 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3093 {
3094 	u64 flags;
3095 
3096 	if (data)
3097 		flags = BTRFS_BLOCK_GROUP_DATA;
3098 	else if (root == root->fs_info->chunk_root)
3099 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3100 	else
3101 		flags = BTRFS_BLOCK_GROUP_METADATA;
3102 
3103 	return get_alloc_profile(root, flags);
3104 }
3105 
3106 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3107 {
3108 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3109 						       BTRFS_BLOCK_GROUP_DATA);
3110 }
3111 
3112 /*
3113  * This will check the space that the inode allocates from to make sure we have
3114  * enough space for bytes.
3115  */
3116 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3117 {
3118 	struct btrfs_space_info *data_sinfo;
3119 	struct btrfs_root *root = BTRFS_I(inode)->root;
3120 	u64 used;
3121 	int ret = 0, committed = 0, alloc_chunk = 1;
3122 
3123 	/* make sure bytes are sectorsize aligned */
3124 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3125 
3126 	if (root == root->fs_info->tree_root) {
3127 		alloc_chunk = 0;
3128 		committed = 1;
3129 	}
3130 
3131 	data_sinfo = BTRFS_I(inode)->space_info;
3132 	if (!data_sinfo)
3133 		goto alloc;
3134 
3135 again:
3136 	/* make sure we have enough space to handle the data first */
3137 	spin_lock(&data_sinfo->lock);
3138 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3139 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3140 		data_sinfo->bytes_may_use;
3141 
3142 	if (used + bytes > data_sinfo->total_bytes) {
3143 		struct btrfs_trans_handle *trans;
3144 
3145 		/*
3146 		 * if we don't have enough free bytes in this space then we need
3147 		 * to alloc a new chunk.
3148 		 */
3149 		if (!data_sinfo->full && alloc_chunk) {
3150 			u64 alloc_target;
3151 
3152 			data_sinfo->force_alloc = 1;
3153 			spin_unlock(&data_sinfo->lock);
3154 alloc:
3155 			alloc_target = btrfs_get_alloc_profile(root, 1);
3156 			trans = btrfs_join_transaction(root, 1);
3157 			if (IS_ERR(trans))
3158 				return PTR_ERR(trans);
3159 
3160 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3161 					     bytes + 2 * 1024 * 1024,
3162 					     alloc_target, 0);
3163 			btrfs_end_transaction(trans, root);
3164 			if (ret < 0) {
3165 				if (ret != -ENOSPC)
3166 					return ret;
3167 				else
3168 					goto commit_trans;
3169 			}
3170 
3171 			if (!data_sinfo) {
3172 				btrfs_set_inode_space_info(root, inode);
3173 				data_sinfo = BTRFS_I(inode)->space_info;
3174 			}
3175 			goto again;
3176 		}
3177 		spin_unlock(&data_sinfo->lock);
3178 
3179 		/* commit the current transaction and try again */
3180 commit_trans:
3181 		if (!committed && !root->fs_info->open_ioctl_trans) {
3182 			committed = 1;
3183 			trans = btrfs_join_transaction(root, 1);
3184 			if (IS_ERR(trans))
3185 				return PTR_ERR(trans);
3186 			ret = btrfs_commit_transaction(trans, root);
3187 			if (ret)
3188 				return ret;
3189 			goto again;
3190 		}
3191 
3192 #if 0 /* I hope we never need this code again, just in case */
3193 		printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3194 		       "%llu bytes_reserved, " "%llu bytes_pinned, "
3195 		       "%llu bytes_readonly, %llu may use %llu total\n",
3196 		       (unsigned long long)bytes,
3197 		       (unsigned long long)data_sinfo->bytes_used,
3198 		       (unsigned long long)data_sinfo->bytes_reserved,
3199 		       (unsigned long long)data_sinfo->bytes_pinned,
3200 		       (unsigned long long)data_sinfo->bytes_readonly,
3201 		       (unsigned long long)data_sinfo->bytes_may_use,
3202 		       (unsigned long long)data_sinfo->total_bytes);
3203 #endif
3204 		return -ENOSPC;
3205 	}
3206 	data_sinfo->bytes_may_use += bytes;
3207 	BTRFS_I(inode)->reserved_bytes += bytes;
3208 	spin_unlock(&data_sinfo->lock);
3209 
3210 	return 0;
3211 }
3212 
3213 /*
3214  * called when we are clearing an delalloc extent from the
3215  * inode's io_tree or there was an error for whatever reason
3216  * after calling btrfs_check_data_free_space
3217  */
3218 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3219 {
3220 	struct btrfs_root *root = BTRFS_I(inode)->root;
3221 	struct btrfs_space_info *data_sinfo;
3222 
3223 	/* make sure bytes are sectorsize aligned */
3224 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3225 
3226 	data_sinfo = BTRFS_I(inode)->space_info;
3227 	spin_lock(&data_sinfo->lock);
3228 	data_sinfo->bytes_may_use -= bytes;
3229 	BTRFS_I(inode)->reserved_bytes -= bytes;
3230 	spin_unlock(&data_sinfo->lock);
3231 }
3232 
3233 static void force_metadata_allocation(struct btrfs_fs_info *info)
3234 {
3235 	struct list_head *head = &info->space_info;
3236 	struct btrfs_space_info *found;
3237 
3238 	rcu_read_lock();
3239 	list_for_each_entry_rcu(found, head, list) {
3240 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3241 			found->force_alloc = 1;
3242 	}
3243 	rcu_read_unlock();
3244 }
3245 
3246 static int should_alloc_chunk(struct btrfs_root *root,
3247 			      struct btrfs_space_info *sinfo, u64 alloc_bytes)
3248 {
3249 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3250 	u64 thresh;
3251 
3252 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3253 	    alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3254 		return 0;
3255 
3256 	if (sinfo->bytes_used + sinfo->bytes_reserved +
3257 	    alloc_bytes < div_factor(num_bytes, 8))
3258 		return 0;
3259 
3260 	thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3261 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3262 
3263 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3264 		return 0;
3265 
3266 	return 1;
3267 }
3268 
3269 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3270 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3271 			  u64 flags, int force)
3272 {
3273 	struct btrfs_space_info *space_info;
3274 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3275 	int ret = 0;
3276 
3277 	mutex_lock(&fs_info->chunk_mutex);
3278 
3279 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3280 
3281 	space_info = __find_space_info(extent_root->fs_info, flags);
3282 	if (!space_info) {
3283 		ret = update_space_info(extent_root->fs_info, flags,
3284 					0, 0, &space_info);
3285 		BUG_ON(ret);
3286 	}
3287 	BUG_ON(!space_info);
3288 
3289 	spin_lock(&space_info->lock);
3290 	if (space_info->force_alloc)
3291 		force = 1;
3292 	if (space_info->full) {
3293 		spin_unlock(&space_info->lock);
3294 		goto out;
3295 	}
3296 
3297 	if (!force && !should_alloc_chunk(extent_root, space_info,
3298 					  alloc_bytes)) {
3299 		spin_unlock(&space_info->lock);
3300 		goto out;
3301 	}
3302 	spin_unlock(&space_info->lock);
3303 
3304 	/*
3305 	 * If we have mixed data/metadata chunks we want to make sure we keep
3306 	 * allocating mixed chunks instead of individual chunks.
3307 	 */
3308 	if (btrfs_mixed_space_info(space_info))
3309 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3310 
3311 	/*
3312 	 * if we're doing a data chunk, go ahead and make sure that
3313 	 * we keep a reasonable number of metadata chunks allocated in the
3314 	 * FS as well.
3315 	 */
3316 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3317 		fs_info->data_chunk_allocations++;
3318 		if (!(fs_info->data_chunk_allocations %
3319 		      fs_info->metadata_ratio))
3320 			force_metadata_allocation(fs_info);
3321 	}
3322 
3323 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3324 	spin_lock(&space_info->lock);
3325 	if (ret)
3326 		space_info->full = 1;
3327 	else
3328 		ret = 1;
3329 	space_info->force_alloc = 0;
3330 	spin_unlock(&space_info->lock);
3331 out:
3332 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3333 	return ret;
3334 }
3335 
3336 /*
3337  * shrink metadata reservation for delalloc
3338  */
3339 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3340 			   struct btrfs_root *root, u64 to_reclaim, int sync)
3341 {
3342 	struct btrfs_block_rsv *block_rsv;
3343 	struct btrfs_space_info *space_info;
3344 	u64 reserved;
3345 	u64 max_reclaim;
3346 	u64 reclaimed = 0;
3347 	int pause = 1;
3348 	int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3349 
3350 	block_rsv = &root->fs_info->delalloc_block_rsv;
3351 	space_info = block_rsv->space_info;
3352 
3353 	smp_mb();
3354 	reserved = space_info->bytes_reserved;
3355 
3356 	if (reserved == 0)
3357 		return 0;
3358 
3359 	max_reclaim = min(reserved, to_reclaim);
3360 
3361 	while (1) {
3362 		/* have the flusher threads jump in and do some IO */
3363 		smp_mb();
3364 		nr_pages = min_t(unsigned long, nr_pages,
3365 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3366 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3367 
3368 		spin_lock(&space_info->lock);
3369 		if (reserved > space_info->bytes_reserved)
3370 			reclaimed += reserved - space_info->bytes_reserved;
3371 		reserved = space_info->bytes_reserved;
3372 		spin_unlock(&space_info->lock);
3373 
3374 		if (reserved == 0 || reclaimed >= max_reclaim)
3375 			break;
3376 
3377 		if (trans && trans->transaction->blocked)
3378 			return -EAGAIN;
3379 
3380 		__set_current_state(TASK_INTERRUPTIBLE);
3381 		schedule_timeout(pause);
3382 		pause <<= 1;
3383 		if (pause > HZ / 10)
3384 			pause = HZ / 10;
3385 
3386 	}
3387 	return reclaimed >= to_reclaim;
3388 }
3389 
3390 /*
3391  * Retries tells us how many times we've called reserve_metadata_bytes.  The
3392  * idea is if this is the first call (retries == 0) then we will add to our
3393  * reserved count if we can't make the allocation in order to hold our place
3394  * while we go and try and free up space.  That way for retries > 1 we don't try
3395  * and add space, we just check to see if the amount of unused space is >= the
3396  * total space, meaning that our reservation is valid.
3397  *
3398  * However if we don't intend to retry this reservation, pass -1 as retries so
3399  * that it short circuits this logic.
3400  */
3401 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3402 				  struct btrfs_root *root,
3403 				  struct btrfs_block_rsv *block_rsv,
3404 				  u64 orig_bytes, int flush)
3405 {
3406 	struct btrfs_space_info *space_info = block_rsv->space_info;
3407 	u64 unused;
3408 	u64 num_bytes = orig_bytes;
3409 	int retries = 0;
3410 	int ret = 0;
3411 	bool reserved = false;
3412 	bool committed = false;
3413 
3414 again:
3415 	ret = -ENOSPC;
3416 	if (reserved)
3417 		num_bytes = 0;
3418 
3419 	spin_lock(&space_info->lock);
3420 	unused = space_info->bytes_used + space_info->bytes_reserved +
3421 		 space_info->bytes_pinned + space_info->bytes_readonly +
3422 		 space_info->bytes_may_use;
3423 
3424 	/*
3425 	 * The idea here is that we've not already over-reserved the block group
3426 	 * then we can go ahead and save our reservation first and then start
3427 	 * flushing if we need to.  Otherwise if we've already overcommitted
3428 	 * lets start flushing stuff first and then come back and try to make
3429 	 * our reservation.
3430 	 */
3431 	if (unused <= space_info->total_bytes) {
3432 		unused = space_info->total_bytes - unused;
3433 		if (unused >= num_bytes) {
3434 			if (!reserved)
3435 				space_info->bytes_reserved += orig_bytes;
3436 			ret = 0;
3437 		} else {
3438 			/*
3439 			 * Ok set num_bytes to orig_bytes since we aren't
3440 			 * overocmmitted, this way we only try and reclaim what
3441 			 * we need.
3442 			 */
3443 			num_bytes = orig_bytes;
3444 		}
3445 	} else {
3446 		/*
3447 		 * Ok we're over committed, set num_bytes to the overcommitted
3448 		 * amount plus the amount of bytes that we need for this
3449 		 * reservation.
3450 		 */
3451 		num_bytes = unused - space_info->total_bytes +
3452 			(orig_bytes * (retries + 1));
3453 	}
3454 
3455 	/*
3456 	 * Couldn't make our reservation, save our place so while we're trying
3457 	 * to reclaim space we can actually use it instead of somebody else
3458 	 * stealing it from us.
3459 	 */
3460 	if (ret && !reserved) {
3461 		space_info->bytes_reserved += orig_bytes;
3462 		reserved = true;
3463 	}
3464 
3465 	spin_unlock(&space_info->lock);
3466 
3467 	if (!ret)
3468 		return 0;
3469 
3470 	if (!flush)
3471 		goto out;
3472 
3473 	/*
3474 	 * We do synchronous shrinking since we don't actually unreserve
3475 	 * metadata until after the IO is completed.
3476 	 */
3477 	ret = shrink_delalloc(trans, root, num_bytes, 1);
3478 	if (ret > 0)
3479 		return 0;
3480 	else if (ret < 0)
3481 		goto out;
3482 
3483 	/*
3484 	 * So if we were overcommitted it's possible that somebody else flushed
3485 	 * out enough space and we simply didn't have enough space to reclaim,
3486 	 * so go back around and try again.
3487 	 */
3488 	if (retries < 2) {
3489 		retries++;
3490 		goto again;
3491 	}
3492 
3493 	spin_lock(&space_info->lock);
3494 	/*
3495 	 * Not enough space to be reclaimed, don't bother committing the
3496 	 * transaction.
3497 	 */
3498 	if (space_info->bytes_pinned < orig_bytes)
3499 		ret = -ENOSPC;
3500 	spin_unlock(&space_info->lock);
3501 	if (ret)
3502 		goto out;
3503 
3504 	ret = -EAGAIN;
3505 	if (trans || committed)
3506 		goto out;
3507 
3508 	ret = -ENOSPC;
3509 	trans = btrfs_join_transaction(root, 1);
3510 	if (IS_ERR(trans))
3511 		goto out;
3512 	ret = btrfs_commit_transaction(trans, root);
3513 	if (!ret) {
3514 		trans = NULL;
3515 		committed = true;
3516 		goto again;
3517 	}
3518 
3519 out:
3520 	if (reserved) {
3521 		spin_lock(&space_info->lock);
3522 		space_info->bytes_reserved -= orig_bytes;
3523 		spin_unlock(&space_info->lock);
3524 	}
3525 
3526 	return ret;
3527 }
3528 
3529 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3530 					     struct btrfs_root *root)
3531 {
3532 	struct btrfs_block_rsv *block_rsv;
3533 	if (root->ref_cows)
3534 		block_rsv = trans->block_rsv;
3535 	else
3536 		block_rsv = root->block_rsv;
3537 
3538 	if (!block_rsv)
3539 		block_rsv = &root->fs_info->empty_block_rsv;
3540 
3541 	return block_rsv;
3542 }
3543 
3544 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3545 			       u64 num_bytes)
3546 {
3547 	int ret = -ENOSPC;
3548 	spin_lock(&block_rsv->lock);
3549 	if (block_rsv->reserved >= num_bytes) {
3550 		block_rsv->reserved -= num_bytes;
3551 		if (block_rsv->reserved < block_rsv->size)
3552 			block_rsv->full = 0;
3553 		ret = 0;
3554 	}
3555 	spin_unlock(&block_rsv->lock);
3556 	return ret;
3557 }
3558 
3559 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3560 				u64 num_bytes, int update_size)
3561 {
3562 	spin_lock(&block_rsv->lock);
3563 	block_rsv->reserved += num_bytes;
3564 	if (update_size)
3565 		block_rsv->size += num_bytes;
3566 	else if (block_rsv->reserved >= block_rsv->size)
3567 		block_rsv->full = 1;
3568 	spin_unlock(&block_rsv->lock);
3569 }
3570 
3571 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3572 			     struct btrfs_block_rsv *dest, u64 num_bytes)
3573 {
3574 	struct btrfs_space_info *space_info = block_rsv->space_info;
3575 
3576 	spin_lock(&block_rsv->lock);
3577 	if (num_bytes == (u64)-1)
3578 		num_bytes = block_rsv->size;
3579 	block_rsv->size -= num_bytes;
3580 	if (block_rsv->reserved >= block_rsv->size) {
3581 		num_bytes = block_rsv->reserved - block_rsv->size;
3582 		block_rsv->reserved = block_rsv->size;
3583 		block_rsv->full = 1;
3584 	} else {
3585 		num_bytes = 0;
3586 	}
3587 	spin_unlock(&block_rsv->lock);
3588 
3589 	if (num_bytes > 0) {
3590 		if (dest) {
3591 			block_rsv_add_bytes(dest, num_bytes, 0);
3592 		} else {
3593 			spin_lock(&space_info->lock);
3594 			space_info->bytes_reserved -= num_bytes;
3595 			spin_unlock(&space_info->lock);
3596 		}
3597 	}
3598 }
3599 
3600 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3601 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3602 {
3603 	int ret;
3604 
3605 	ret = block_rsv_use_bytes(src, num_bytes);
3606 	if (ret)
3607 		return ret;
3608 
3609 	block_rsv_add_bytes(dst, num_bytes, 1);
3610 	return 0;
3611 }
3612 
3613 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3614 {
3615 	memset(rsv, 0, sizeof(*rsv));
3616 	spin_lock_init(&rsv->lock);
3617 	atomic_set(&rsv->usage, 1);
3618 	rsv->priority = 6;
3619 	INIT_LIST_HEAD(&rsv->list);
3620 }
3621 
3622 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3623 {
3624 	struct btrfs_block_rsv *block_rsv;
3625 	struct btrfs_fs_info *fs_info = root->fs_info;
3626 
3627 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3628 	if (!block_rsv)
3629 		return NULL;
3630 
3631 	btrfs_init_block_rsv(block_rsv);
3632 	block_rsv->space_info = __find_space_info(fs_info,
3633 						  BTRFS_BLOCK_GROUP_METADATA);
3634 	return block_rsv;
3635 }
3636 
3637 void btrfs_free_block_rsv(struct btrfs_root *root,
3638 			  struct btrfs_block_rsv *rsv)
3639 {
3640 	if (rsv && atomic_dec_and_test(&rsv->usage)) {
3641 		btrfs_block_rsv_release(root, rsv, (u64)-1);
3642 		if (!rsv->durable)
3643 			kfree(rsv);
3644 	}
3645 }
3646 
3647 /*
3648  * make the block_rsv struct be able to capture freed space.
3649  * the captured space will re-add to the the block_rsv struct
3650  * after transaction commit
3651  */
3652 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3653 				 struct btrfs_block_rsv *block_rsv)
3654 {
3655 	block_rsv->durable = 1;
3656 	mutex_lock(&fs_info->durable_block_rsv_mutex);
3657 	list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3658 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
3659 }
3660 
3661 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3662 			struct btrfs_root *root,
3663 			struct btrfs_block_rsv *block_rsv,
3664 			u64 num_bytes)
3665 {
3666 	int ret;
3667 
3668 	if (num_bytes == 0)
3669 		return 0;
3670 
3671 	ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3672 	if (!ret) {
3673 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3674 		return 0;
3675 	}
3676 
3677 	return ret;
3678 }
3679 
3680 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3681 			  struct btrfs_root *root,
3682 			  struct btrfs_block_rsv *block_rsv,
3683 			  u64 min_reserved, int min_factor)
3684 {
3685 	u64 num_bytes = 0;
3686 	int commit_trans = 0;
3687 	int ret = -ENOSPC;
3688 
3689 	if (!block_rsv)
3690 		return 0;
3691 
3692 	spin_lock(&block_rsv->lock);
3693 	if (min_factor > 0)
3694 		num_bytes = div_factor(block_rsv->size, min_factor);
3695 	if (min_reserved > num_bytes)
3696 		num_bytes = min_reserved;
3697 
3698 	if (block_rsv->reserved >= num_bytes) {
3699 		ret = 0;
3700 	} else {
3701 		num_bytes -= block_rsv->reserved;
3702 		if (block_rsv->durable &&
3703 		    block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3704 			commit_trans = 1;
3705 	}
3706 	spin_unlock(&block_rsv->lock);
3707 	if (!ret)
3708 		return 0;
3709 
3710 	if (block_rsv->refill_used) {
3711 		ret = reserve_metadata_bytes(trans, root, block_rsv,
3712 					     num_bytes, 0);
3713 		if (!ret) {
3714 			block_rsv_add_bytes(block_rsv, num_bytes, 0);
3715 			return 0;
3716 		}
3717 	}
3718 
3719 	if (commit_trans) {
3720 		if (trans)
3721 			return -EAGAIN;
3722 
3723 		trans = btrfs_join_transaction(root, 1);
3724 		BUG_ON(IS_ERR(trans));
3725 		ret = btrfs_commit_transaction(trans, root);
3726 		return 0;
3727 	}
3728 
3729 	return -ENOSPC;
3730 }
3731 
3732 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3733 			    struct btrfs_block_rsv *dst_rsv,
3734 			    u64 num_bytes)
3735 {
3736 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3737 }
3738 
3739 void btrfs_block_rsv_release(struct btrfs_root *root,
3740 			     struct btrfs_block_rsv *block_rsv,
3741 			     u64 num_bytes)
3742 {
3743 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3744 	if (global_rsv->full || global_rsv == block_rsv ||
3745 	    block_rsv->space_info != global_rsv->space_info)
3746 		global_rsv = NULL;
3747 	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3748 }
3749 
3750 /*
3751  * helper to calculate size of global block reservation.
3752  * the desired value is sum of space used by extent tree,
3753  * checksum tree and root tree
3754  */
3755 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3756 {
3757 	struct btrfs_space_info *sinfo;
3758 	u64 num_bytes;
3759 	u64 meta_used;
3760 	u64 data_used;
3761 	int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3762 #if 0
3763 	/*
3764 	 * per tree used space accounting can be inaccuracy, so we
3765 	 * can't rely on it.
3766 	 */
3767 	spin_lock(&fs_info->extent_root->accounting_lock);
3768 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3769 	spin_unlock(&fs_info->extent_root->accounting_lock);
3770 
3771 	spin_lock(&fs_info->csum_root->accounting_lock);
3772 	num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3773 	spin_unlock(&fs_info->csum_root->accounting_lock);
3774 
3775 	spin_lock(&fs_info->tree_root->accounting_lock);
3776 	num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3777 	spin_unlock(&fs_info->tree_root->accounting_lock);
3778 #endif
3779 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3780 	spin_lock(&sinfo->lock);
3781 	data_used = sinfo->bytes_used;
3782 	spin_unlock(&sinfo->lock);
3783 
3784 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3785 	spin_lock(&sinfo->lock);
3786 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3787 		data_used = 0;
3788 	meta_used = sinfo->bytes_used;
3789 	spin_unlock(&sinfo->lock);
3790 
3791 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3792 		    csum_size * 2;
3793 	num_bytes += div64_u64(data_used + meta_used, 50);
3794 
3795 	if (num_bytes * 3 > meta_used)
3796 		num_bytes = div64_u64(meta_used, 3);
3797 
3798 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3799 }
3800 
3801 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3802 {
3803 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3804 	struct btrfs_space_info *sinfo = block_rsv->space_info;
3805 	u64 num_bytes;
3806 
3807 	num_bytes = calc_global_metadata_size(fs_info);
3808 
3809 	spin_lock(&block_rsv->lock);
3810 	spin_lock(&sinfo->lock);
3811 
3812 	block_rsv->size = num_bytes;
3813 
3814 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3815 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
3816 		    sinfo->bytes_may_use;
3817 
3818 	if (sinfo->total_bytes > num_bytes) {
3819 		num_bytes = sinfo->total_bytes - num_bytes;
3820 		block_rsv->reserved += num_bytes;
3821 		sinfo->bytes_reserved += num_bytes;
3822 	}
3823 
3824 	if (block_rsv->reserved >= block_rsv->size) {
3825 		num_bytes = block_rsv->reserved - block_rsv->size;
3826 		sinfo->bytes_reserved -= num_bytes;
3827 		block_rsv->reserved = block_rsv->size;
3828 		block_rsv->full = 1;
3829 	}
3830 #if 0
3831 	printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3832 		block_rsv->size, block_rsv->reserved);
3833 #endif
3834 	spin_unlock(&sinfo->lock);
3835 	spin_unlock(&block_rsv->lock);
3836 }
3837 
3838 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3839 {
3840 	struct btrfs_space_info *space_info;
3841 
3842 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3843 	fs_info->chunk_block_rsv.space_info = space_info;
3844 	fs_info->chunk_block_rsv.priority = 10;
3845 
3846 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3847 	fs_info->global_block_rsv.space_info = space_info;
3848 	fs_info->global_block_rsv.priority = 10;
3849 	fs_info->global_block_rsv.refill_used = 1;
3850 	fs_info->delalloc_block_rsv.space_info = space_info;
3851 	fs_info->trans_block_rsv.space_info = space_info;
3852 	fs_info->empty_block_rsv.space_info = space_info;
3853 	fs_info->empty_block_rsv.priority = 10;
3854 
3855 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3856 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3857 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3858 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3859 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3860 
3861 	btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3862 
3863 	btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3864 
3865 	update_global_block_rsv(fs_info);
3866 }
3867 
3868 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3869 {
3870 	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3871 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3872 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3873 	WARN_ON(fs_info->trans_block_rsv.size > 0);
3874 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3875 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
3876 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3877 }
3878 
3879 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3880 {
3881 	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3882 		3 * num_items;
3883 }
3884 
3885 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3886 				 struct btrfs_root *root,
3887 				 int num_items)
3888 {
3889 	u64 num_bytes;
3890 	int ret;
3891 
3892 	if (num_items == 0 || root->fs_info->chunk_root == root)
3893 		return 0;
3894 
3895 	num_bytes = calc_trans_metadata_size(root, num_items);
3896 	ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3897 				  num_bytes);
3898 	if (!ret) {
3899 		trans->bytes_reserved += num_bytes;
3900 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3901 	}
3902 	return ret;
3903 }
3904 
3905 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3906 				  struct btrfs_root *root)
3907 {
3908 	if (!trans->bytes_reserved)
3909 		return;
3910 
3911 	BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3912 	btrfs_block_rsv_release(root, trans->block_rsv,
3913 				trans->bytes_reserved);
3914 	trans->bytes_reserved = 0;
3915 }
3916 
3917 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3918 				  struct inode *inode)
3919 {
3920 	struct btrfs_root *root = BTRFS_I(inode)->root;
3921 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3922 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3923 
3924 	/*
3925 	 * one for deleting orphan item, one for updating inode and
3926 	 * two for calling btrfs_truncate_inode_items.
3927 	 *
3928 	 * btrfs_truncate_inode_items is a delete operation, it frees
3929 	 * more space than it uses in most cases. So two units of
3930 	 * metadata space should be enough for calling it many times.
3931 	 * If all of the metadata space is used, we can commit
3932 	 * transaction and use space it freed.
3933 	 */
3934 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3935 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3936 }
3937 
3938 void btrfs_orphan_release_metadata(struct inode *inode)
3939 {
3940 	struct btrfs_root *root = BTRFS_I(inode)->root;
3941 	u64 num_bytes = calc_trans_metadata_size(root, 4);
3942 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3943 }
3944 
3945 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3946 				struct btrfs_pending_snapshot *pending)
3947 {
3948 	struct btrfs_root *root = pending->root;
3949 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3950 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3951 	/*
3952 	 * two for root back/forward refs, two for directory entries
3953 	 * and one for root of the snapshot.
3954 	 */
3955 	u64 num_bytes = calc_trans_metadata_size(root, 5);
3956 	dst_rsv->space_info = src_rsv->space_info;
3957 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3958 }
3959 
3960 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3961 {
3962 	return num_bytes >>= 3;
3963 }
3964 
3965 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3966 {
3967 	struct btrfs_root *root = BTRFS_I(inode)->root;
3968 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3969 	u64 to_reserve;
3970 	int nr_extents;
3971 	int ret;
3972 
3973 	if (btrfs_transaction_in_commit(root->fs_info))
3974 		schedule_timeout(1);
3975 
3976 	num_bytes = ALIGN(num_bytes, root->sectorsize);
3977 
3978 	spin_lock(&BTRFS_I(inode)->accounting_lock);
3979 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3980 	if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3981 		nr_extents -= BTRFS_I(inode)->reserved_extents;
3982 		to_reserve = calc_trans_metadata_size(root, nr_extents);
3983 	} else {
3984 		nr_extents = 0;
3985 		to_reserve = 0;
3986 	}
3987 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
3988 
3989 	to_reserve += calc_csum_metadata_size(inode, num_bytes);
3990 	ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3991 	if (ret)
3992 		return ret;
3993 
3994 	spin_lock(&BTRFS_I(inode)->accounting_lock);
3995 	BTRFS_I(inode)->reserved_extents += nr_extents;
3996 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3997 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
3998 
3999 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4000 
4001 	if (block_rsv->size > 512 * 1024 * 1024)
4002 		shrink_delalloc(NULL, root, to_reserve, 0);
4003 
4004 	return 0;
4005 }
4006 
4007 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4008 {
4009 	struct btrfs_root *root = BTRFS_I(inode)->root;
4010 	u64 to_free;
4011 	int nr_extents;
4012 
4013 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4014 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4015 
4016 	spin_lock(&BTRFS_I(inode)->accounting_lock);
4017 	nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4018 	if (nr_extents < BTRFS_I(inode)->reserved_extents) {
4019 		nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
4020 		BTRFS_I(inode)->reserved_extents -= nr_extents;
4021 	} else {
4022 		nr_extents = 0;
4023 	}
4024 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
4025 
4026 	to_free = calc_csum_metadata_size(inode, num_bytes);
4027 	if (nr_extents > 0)
4028 		to_free += calc_trans_metadata_size(root, nr_extents);
4029 
4030 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4031 				to_free);
4032 }
4033 
4034 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4035 {
4036 	int ret;
4037 
4038 	ret = btrfs_check_data_free_space(inode, num_bytes);
4039 	if (ret)
4040 		return ret;
4041 
4042 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4043 	if (ret) {
4044 		btrfs_free_reserved_data_space(inode, num_bytes);
4045 		return ret;
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4052 {
4053 	btrfs_delalloc_release_metadata(inode, num_bytes);
4054 	btrfs_free_reserved_data_space(inode, num_bytes);
4055 }
4056 
4057 static int update_block_group(struct btrfs_trans_handle *trans,
4058 			      struct btrfs_root *root,
4059 			      u64 bytenr, u64 num_bytes, int alloc)
4060 {
4061 	struct btrfs_block_group_cache *cache = NULL;
4062 	struct btrfs_fs_info *info = root->fs_info;
4063 	u64 total = num_bytes;
4064 	u64 old_val;
4065 	u64 byte_in_group;
4066 	int factor;
4067 
4068 	/* block accounting for super block */
4069 	spin_lock(&info->delalloc_lock);
4070 	old_val = btrfs_super_bytes_used(&info->super_copy);
4071 	if (alloc)
4072 		old_val += num_bytes;
4073 	else
4074 		old_val -= num_bytes;
4075 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
4076 	spin_unlock(&info->delalloc_lock);
4077 
4078 	while (total) {
4079 		cache = btrfs_lookup_block_group(info, bytenr);
4080 		if (!cache)
4081 			return -1;
4082 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4083 				    BTRFS_BLOCK_GROUP_RAID1 |
4084 				    BTRFS_BLOCK_GROUP_RAID10))
4085 			factor = 2;
4086 		else
4087 			factor = 1;
4088 		/*
4089 		 * If this block group has free space cache written out, we
4090 		 * need to make sure to load it if we are removing space.  This
4091 		 * is because we need the unpinning stage to actually add the
4092 		 * space back to the block group, otherwise we will leak space.
4093 		 */
4094 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4095 			cache_block_group(cache, trans, NULL, 1);
4096 
4097 		byte_in_group = bytenr - cache->key.objectid;
4098 		WARN_ON(byte_in_group > cache->key.offset);
4099 
4100 		spin_lock(&cache->space_info->lock);
4101 		spin_lock(&cache->lock);
4102 
4103 		if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4104 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4105 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4106 
4107 		cache->dirty = 1;
4108 		old_val = btrfs_block_group_used(&cache->item);
4109 		num_bytes = min(total, cache->key.offset - byte_in_group);
4110 		if (alloc) {
4111 			old_val += num_bytes;
4112 			btrfs_set_block_group_used(&cache->item, old_val);
4113 			cache->reserved -= num_bytes;
4114 			cache->space_info->bytes_reserved -= num_bytes;
4115 			cache->space_info->bytes_used += num_bytes;
4116 			cache->space_info->disk_used += num_bytes * factor;
4117 			spin_unlock(&cache->lock);
4118 			spin_unlock(&cache->space_info->lock);
4119 		} else {
4120 			old_val -= num_bytes;
4121 			btrfs_set_block_group_used(&cache->item, old_val);
4122 			cache->pinned += num_bytes;
4123 			cache->space_info->bytes_pinned += num_bytes;
4124 			cache->space_info->bytes_used -= num_bytes;
4125 			cache->space_info->disk_used -= num_bytes * factor;
4126 			spin_unlock(&cache->lock);
4127 			spin_unlock(&cache->space_info->lock);
4128 
4129 			set_extent_dirty(info->pinned_extents,
4130 					 bytenr, bytenr + num_bytes - 1,
4131 					 GFP_NOFS | __GFP_NOFAIL);
4132 		}
4133 		btrfs_put_block_group(cache);
4134 		total -= num_bytes;
4135 		bytenr += num_bytes;
4136 	}
4137 	return 0;
4138 }
4139 
4140 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4141 {
4142 	struct btrfs_block_group_cache *cache;
4143 	u64 bytenr;
4144 
4145 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4146 	if (!cache)
4147 		return 0;
4148 
4149 	bytenr = cache->key.objectid;
4150 	btrfs_put_block_group(cache);
4151 
4152 	return bytenr;
4153 }
4154 
4155 static int pin_down_extent(struct btrfs_root *root,
4156 			   struct btrfs_block_group_cache *cache,
4157 			   u64 bytenr, u64 num_bytes, int reserved)
4158 {
4159 	spin_lock(&cache->space_info->lock);
4160 	spin_lock(&cache->lock);
4161 	cache->pinned += num_bytes;
4162 	cache->space_info->bytes_pinned += num_bytes;
4163 	if (reserved) {
4164 		cache->reserved -= num_bytes;
4165 		cache->space_info->bytes_reserved -= num_bytes;
4166 	}
4167 	spin_unlock(&cache->lock);
4168 	spin_unlock(&cache->space_info->lock);
4169 
4170 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4171 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4172 	return 0;
4173 }
4174 
4175 /*
4176  * this function must be called within transaction
4177  */
4178 int btrfs_pin_extent(struct btrfs_root *root,
4179 		     u64 bytenr, u64 num_bytes, int reserved)
4180 {
4181 	struct btrfs_block_group_cache *cache;
4182 
4183 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4184 	BUG_ON(!cache);
4185 
4186 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4187 
4188 	btrfs_put_block_group(cache);
4189 	return 0;
4190 }
4191 
4192 /*
4193  * update size of reserved extents. this function may return -EAGAIN
4194  * if 'reserve' is true or 'sinfo' is false.
4195  */
4196 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4197 				 u64 num_bytes, int reserve, int sinfo)
4198 {
4199 	int ret = 0;
4200 	if (sinfo) {
4201 		struct btrfs_space_info *space_info = cache->space_info;
4202 		spin_lock(&space_info->lock);
4203 		spin_lock(&cache->lock);
4204 		if (reserve) {
4205 			if (cache->ro) {
4206 				ret = -EAGAIN;
4207 			} else {
4208 				cache->reserved += num_bytes;
4209 				space_info->bytes_reserved += num_bytes;
4210 			}
4211 		} else {
4212 			if (cache->ro)
4213 				space_info->bytes_readonly += num_bytes;
4214 			cache->reserved -= num_bytes;
4215 			space_info->bytes_reserved -= num_bytes;
4216 		}
4217 		spin_unlock(&cache->lock);
4218 		spin_unlock(&space_info->lock);
4219 	} else {
4220 		spin_lock(&cache->lock);
4221 		if (cache->ro) {
4222 			ret = -EAGAIN;
4223 		} else {
4224 			if (reserve)
4225 				cache->reserved += num_bytes;
4226 			else
4227 				cache->reserved -= num_bytes;
4228 		}
4229 		spin_unlock(&cache->lock);
4230 	}
4231 	return ret;
4232 }
4233 
4234 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4235 				struct btrfs_root *root)
4236 {
4237 	struct btrfs_fs_info *fs_info = root->fs_info;
4238 	struct btrfs_caching_control *next;
4239 	struct btrfs_caching_control *caching_ctl;
4240 	struct btrfs_block_group_cache *cache;
4241 
4242 	down_write(&fs_info->extent_commit_sem);
4243 
4244 	list_for_each_entry_safe(caching_ctl, next,
4245 				 &fs_info->caching_block_groups, list) {
4246 		cache = caching_ctl->block_group;
4247 		if (block_group_cache_done(cache)) {
4248 			cache->last_byte_to_unpin = (u64)-1;
4249 			list_del_init(&caching_ctl->list);
4250 			put_caching_control(caching_ctl);
4251 		} else {
4252 			cache->last_byte_to_unpin = caching_ctl->progress;
4253 		}
4254 	}
4255 
4256 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4257 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4258 	else
4259 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4260 
4261 	up_write(&fs_info->extent_commit_sem);
4262 
4263 	update_global_block_rsv(fs_info);
4264 	return 0;
4265 }
4266 
4267 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4268 {
4269 	struct btrfs_fs_info *fs_info = root->fs_info;
4270 	struct btrfs_block_group_cache *cache = NULL;
4271 	u64 len;
4272 
4273 	while (start <= end) {
4274 		if (!cache ||
4275 		    start >= cache->key.objectid + cache->key.offset) {
4276 			if (cache)
4277 				btrfs_put_block_group(cache);
4278 			cache = btrfs_lookup_block_group(fs_info, start);
4279 			BUG_ON(!cache);
4280 		}
4281 
4282 		len = cache->key.objectid + cache->key.offset - start;
4283 		len = min(len, end + 1 - start);
4284 
4285 		if (start < cache->last_byte_to_unpin) {
4286 			len = min(len, cache->last_byte_to_unpin - start);
4287 			btrfs_add_free_space(cache, start, len);
4288 		}
4289 
4290 		start += len;
4291 
4292 		spin_lock(&cache->space_info->lock);
4293 		spin_lock(&cache->lock);
4294 		cache->pinned -= len;
4295 		cache->space_info->bytes_pinned -= len;
4296 		if (cache->ro) {
4297 			cache->space_info->bytes_readonly += len;
4298 		} else if (cache->reserved_pinned > 0) {
4299 			len = min(len, cache->reserved_pinned);
4300 			cache->reserved_pinned -= len;
4301 			cache->space_info->bytes_reserved += len;
4302 		}
4303 		spin_unlock(&cache->lock);
4304 		spin_unlock(&cache->space_info->lock);
4305 	}
4306 
4307 	if (cache)
4308 		btrfs_put_block_group(cache);
4309 	return 0;
4310 }
4311 
4312 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4313 			       struct btrfs_root *root)
4314 {
4315 	struct btrfs_fs_info *fs_info = root->fs_info;
4316 	struct extent_io_tree *unpin;
4317 	struct btrfs_block_rsv *block_rsv;
4318 	struct btrfs_block_rsv *next_rsv;
4319 	u64 start;
4320 	u64 end;
4321 	int idx;
4322 	int ret;
4323 
4324 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4325 		unpin = &fs_info->freed_extents[1];
4326 	else
4327 		unpin = &fs_info->freed_extents[0];
4328 
4329 	while (1) {
4330 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4331 					    EXTENT_DIRTY);
4332 		if (ret)
4333 			break;
4334 
4335 		ret = btrfs_discard_extent(root, start, end + 1 - start);
4336 
4337 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4338 		unpin_extent_range(root, start, end);
4339 		cond_resched();
4340 	}
4341 
4342 	mutex_lock(&fs_info->durable_block_rsv_mutex);
4343 	list_for_each_entry_safe(block_rsv, next_rsv,
4344 				 &fs_info->durable_block_rsv_list, list) {
4345 
4346 		idx = trans->transid & 0x1;
4347 		if (block_rsv->freed[idx] > 0) {
4348 			block_rsv_add_bytes(block_rsv,
4349 					    block_rsv->freed[idx], 0);
4350 			block_rsv->freed[idx] = 0;
4351 		}
4352 		if (atomic_read(&block_rsv->usage) == 0) {
4353 			btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4354 
4355 			if (block_rsv->freed[0] == 0 &&
4356 			    block_rsv->freed[1] == 0) {
4357 				list_del_init(&block_rsv->list);
4358 				kfree(block_rsv);
4359 			}
4360 		} else {
4361 			btrfs_block_rsv_release(root, block_rsv, 0);
4362 		}
4363 	}
4364 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
4365 
4366 	return 0;
4367 }
4368 
4369 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4370 				struct btrfs_root *root,
4371 				u64 bytenr, u64 num_bytes, u64 parent,
4372 				u64 root_objectid, u64 owner_objectid,
4373 				u64 owner_offset, int refs_to_drop,
4374 				struct btrfs_delayed_extent_op *extent_op)
4375 {
4376 	struct btrfs_key key;
4377 	struct btrfs_path *path;
4378 	struct btrfs_fs_info *info = root->fs_info;
4379 	struct btrfs_root *extent_root = info->extent_root;
4380 	struct extent_buffer *leaf;
4381 	struct btrfs_extent_item *ei;
4382 	struct btrfs_extent_inline_ref *iref;
4383 	int ret;
4384 	int is_data;
4385 	int extent_slot = 0;
4386 	int found_extent = 0;
4387 	int num_to_del = 1;
4388 	u32 item_size;
4389 	u64 refs;
4390 
4391 	path = btrfs_alloc_path();
4392 	if (!path)
4393 		return -ENOMEM;
4394 
4395 	path->reada = 1;
4396 	path->leave_spinning = 1;
4397 
4398 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4399 	BUG_ON(!is_data && refs_to_drop != 1);
4400 
4401 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4402 				    bytenr, num_bytes, parent,
4403 				    root_objectid, owner_objectid,
4404 				    owner_offset);
4405 	if (ret == 0) {
4406 		extent_slot = path->slots[0];
4407 		while (extent_slot >= 0) {
4408 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4409 					      extent_slot);
4410 			if (key.objectid != bytenr)
4411 				break;
4412 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4413 			    key.offset == num_bytes) {
4414 				found_extent = 1;
4415 				break;
4416 			}
4417 			if (path->slots[0] - extent_slot > 5)
4418 				break;
4419 			extent_slot--;
4420 		}
4421 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4422 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4423 		if (found_extent && item_size < sizeof(*ei))
4424 			found_extent = 0;
4425 #endif
4426 		if (!found_extent) {
4427 			BUG_ON(iref);
4428 			ret = remove_extent_backref(trans, extent_root, path,
4429 						    NULL, refs_to_drop,
4430 						    is_data);
4431 			BUG_ON(ret);
4432 			btrfs_release_path(extent_root, path);
4433 			path->leave_spinning = 1;
4434 
4435 			key.objectid = bytenr;
4436 			key.type = BTRFS_EXTENT_ITEM_KEY;
4437 			key.offset = num_bytes;
4438 
4439 			ret = btrfs_search_slot(trans, extent_root,
4440 						&key, path, -1, 1);
4441 			if (ret) {
4442 				printk(KERN_ERR "umm, got %d back from search"
4443 				       ", was looking for %llu\n", ret,
4444 				       (unsigned long long)bytenr);
4445 				btrfs_print_leaf(extent_root, path->nodes[0]);
4446 			}
4447 			BUG_ON(ret);
4448 			extent_slot = path->slots[0];
4449 		}
4450 	} else {
4451 		btrfs_print_leaf(extent_root, path->nodes[0]);
4452 		WARN_ON(1);
4453 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4454 		       "parent %llu root %llu  owner %llu offset %llu\n",
4455 		       (unsigned long long)bytenr,
4456 		       (unsigned long long)parent,
4457 		       (unsigned long long)root_objectid,
4458 		       (unsigned long long)owner_objectid,
4459 		       (unsigned long long)owner_offset);
4460 	}
4461 
4462 	leaf = path->nodes[0];
4463 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4464 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4465 	if (item_size < sizeof(*ei)) {
4466 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4467 		ret = convert_extent_item_v0(trans, extent_root, path,
4468 					     owner_objectid, 0);
4469 		BUG_ON(ret < 0);
4470 
4471 		btrfs_release_path(extent_root, path);
4472 		path->leave_spinning = 1;
4473 
4474 		key.objectid = bytenr;
4475 		key.type = BTRFS_EXTENT_ITEM_KEY;
4476 		key.offset = num_bytes;
4477 
4478 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4479 					-1, 1);
4480 		if (ret) {
4481 			printk(KERN_ERR "umm, got %d back from search"
4482 			       ", was looking for %llu\n", ret,
4483 			       (unsigned long long)bytenr);
4484 			btrfs_print_leaf(extent_root, path->nodes[0]);
4485 		}
4486 		BUG_ON(ret);
4487 		extent_slot = path->slots[0];
4488 		leaf = path->nodes[0];
4489 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4490 	}
4491 #endif
4492 	BUG_ON(item_size < sizeof(*ei));
4493 	ei = btrfs_item_ptr(leaf, extent_slot,
4494 			    struct btrfs_extent_item);
4495 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4496 		struct btrfs_tree_block_info *bi;
4497 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4498 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4499 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4500 	}
4501 
4502 	refs = btrfs_extent_refs(leaf, ei);
4503 	BUG_ON(refs < refs_to_drop);
4504 	refs -= refs_to_drop;
4505 
4506 	if (refs > 0) {
4507 		if (extent_op)
4508 			__run_delayed_extent_op(extent_op, leaf, ei);
4509 		/*
4510 		 * In the case of inline back ref, reference count will
4511 		 * be updated by remove_extent_backref
4512 		 */
4513 		if (iref) {
4514 			BUG_ON(!found_extent);
4515 		} else {
4516 			btrfs_set_extent_refs(leaf, ei, refs);
4517 			btrfs_mark_buffer_dirty(leaf);
4518 		}
4519 		if (found_extent) {
4520 			ret = remove_extent_backref(trans, extent_root, path,
4521 						    iref, refs_to_drop,
4522 						    is_data);
4523 			BUG_ON(ret);
4524 		}
4525 	} else {
4526 		if (found_extent) {
4527 			BUG_ON(is_data && refs_to_drop !=
4528 			       extent_data_ref_count(root, path, iref));
4529 			if (iref) {
4530 				BUG_ON(path->slots[0] != extent_slot);
4531 			} else {
4532 				BUG_ON(path->slots[0] != extent_slot + 1);
4533 				path->slots[0] = extent_slot;
4534 				num_to_del = 2;
4535 			}
4536 		}
4537 
4538 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4539 				      num_to_del);
4540 		BUG_ON(ret);
4541 		btrfs_release_path(extent_root, path);
4542 
4543 		if (is_data) {
4544 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4545 			BUG_ON(ret);
4546 		} else {
4547 			invalidate_mapping_pages(info->btree_inode->i_mapping,
4548 			     bytenr >> PAGE_CACHE_SHIFT,
4549 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4550 		}
4551 
4552 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4553 		BUG_ON(ret);
4554 	}
4555 	btrfs_free_path(path);
4556 	return ret;
4557 }
4558 
4559 /*
4560  * when we free an block, it is possible (and likely) that we free the last
4561  * delayed ref for that extent as well.  This searches the delayed ref tree for
4562  * a given extent, and if there are no other delayed refs to be processed, it
4563  * removes it from the tree.
4564  */
4565 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4566 				      struct btrfs_root *root, u64 bytenr)
4567 {
4568 	struct btrfs_delayed_ref_head *head;
4569 	struct btrfs_delayed_ref_root *delayed_refs;
4570 	struct btrfs_delayed_ref_node *ref;
4571 	struct rb_node *node;
4572 	int ret = 0;
4573 
4574 	delayed_refs = &trans->transaction->delayed_refs;
4575 	spin_lock(&delayed_refs->lock);
4576 	head = btrfs_find_delayed_ref_head(trans, bytenr);
4577 	if (!head)
4578 		goto out;
4579 
4580 	node = rb_prev(&head->node.rb_node);
4581 	if (!node)
4582 		goto out;
4583 
4584 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4585 
4586 	/* there are still entries for this ref, we can't drop it */
4587 	if (ref->bytenr == bytenr)
4588 		goto out;
4589 
4590 	if (head->extent_op) {
4591 		if (!head->must_insert_reserved)
4592 			goto out;
4593 		kfree(head->extent_op);
4594 		head->extent_op = NULL;
4595 	}
4596 
4597 	/*
4598 	 * waiting for the lock here would deadlock.  If someone else has it
4599 	 * locked they are already in the process of dropping it anyway
4600 	 */
4601 	if (!mutex_trylock(&head->mutex))
4602 		goto out;
4603 
4604 	/*
4605 	 * at this point we have a head with no other entries.  Go
4606 	 * ahead and process it.
4607 	 */
4608 	head->node.in_tree = 0;
4609 	rb_erase(&head->node.rb_node, &delayed_refs->root);
4610 
4611 	delayed_refs->num_entries--;
4612 
4613 	/*
4614 	 * we don't take a ref on the node because we're removing it from the
4615 	 * tree, so we just steal the ref the tree was holding.
4616 	 */
4617 	delayed_refs->num_heads--;
4618 	if (list_empty(&head->cluster))
4619 		delayed_refs->num_heads_ready--;
4620 
4621 	list_del_init(&head->cluster);
4622 	spin_unlock(&delayed_refs->lock);
4623 
4624 	BUG_ON(head->extent_op);
4625 	if (head->must_insert_reserved)
4626 		ret = 1;
4627 
4628 	mutex_unlock(&head->mutex);
4629 	btrfs_put_delayed_ref(&head->node);
4630 	return ret;
4631 out:
4632 	spin_unlock(&delayed_refs->lock);
4633 	return 0;
4634 }
4635 
4636 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4637 			   struct btrfs_root *root,
4638 			   struct extent_buffer *buf,
4639 			   u64 parent, int last_ref)
4640 {
4641 	struct btrfs_block_rsv *block_rsv;
4642 	struct btrfs_block_group_cache *cache = NULL;
4643 	int ret;
4644 
4645 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4646 		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4647 						parent, root->root_key.objectid,
4648 						btrfs_header_level(buf),
4649 						BTRFS_DROP_DELAYED_REF, NULL);
4650 		BUG_ON(ret);
4651 	}
4652 
4653 	if (!last_ref)
4654 		return;
4655 
4656 	block_rsv = get_block_rsv(trans, root);
4657 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4658 	if (block_rsv->space_info != cache->space_info)
4659 		goto out;
4660 
4661 	if (btrfs_header_generation(buf) == trans->transid) {
4662 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4663 			ret = check_ref_cleanup(trans, root, buf->start);
4664 			if (!ret)
4665 				goto pin;
4666 		}
4667 
4668 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4669 			pin_down_extent(root, cache, buf->start, buf->len, 1);
4670 			goto pin;
4671 		}
4672 
4673 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4674 
4675 		btrfs_add_free_space(cache, buf->start, buf->len);
4676 		ret = update_reserved_bytes(cache, buf->len, 0, 0);
4677 		if (ret == -EAGAIN) {
4678 			/* block group became read-only */
4679 			update_reserved_bytes(cache, buf->len, 0, 1);
4680 			goto out;
4681 		}
4682 
4683 		ret = 1;
4684 		spin_lock(&block_rsv->lock);
4685 		if (block_rsv->reserved < block_rsv->size) {
4686 			block_rsv->reserved += buf->len;
4687 			ret = 0;
4688 		}
4689 		spin_unlock(&block_rsv->lock);
4690 
4691 		if (ret) {
4692 			spin_lock(&cache->space_info->lock);
4693 			cache->space_info->bytes_reserved -= buf->len;
4694 			spin_unlock(&cache->space_info->lock);
4695 		}
4696 		goto out;
4697 	}
4698 pin:
4699 	if (block_rsv->durable && !cache->ro) {
4700 		ret = 0;
4701 		spin_lock(&cache->lock);
4702 		if (!cache->ro) {
4703 			cache->reserved_pinned += buf->len;
4704 			ret = 1;
4705 		}
4706 		spin_unlock(&cache->lock);
4707 
4708 		if (ret) {
4709 			spin_lock(&block_rsv->lock);
4710 			block_rsv->freed[trans->transid & 0x1] += buf->len;
4711 			spin_unlock(&block_rsv->lock);
4712 		}
4713 	}
4714 out:
4715 	btrfs_put_block_group(cache);
4716 }
4717 
4718 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4719 		      struct btrfs_root *root,
4720 		      u64 bytenr, u64 num_bytes, u64 parent,
4721 		      u64 root_objectid, u64 owner, u64 offset)
4722 {
4723 	int ret;
4724 
4725 	/*
4726 	 * tree log blocks never actually go into the extent allocation
4727 	 * tree, just update pinning info and exit early.
4728 	 */
4729 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4730 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4731 		/* unlocks the pinned mutex */
4732 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4733 		ret = 0;
4734 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4735 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4736 					parent, root_objectid, (int)owner,
4737 					BTRFS_DROP_DELAYED_REF, NULL);
4738 		BUG_ON(ret);
4739 	} else {
4740 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4741 					parent, root_objectid, owner,
4742 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4743 		BUG_ON(ret);
4744 	}
4745 	return ret;
4746 }
4747 
4748 static u64 stripe_align(struct btrfs_root *root, u64 val)
4749 {
4750 	u64 mask = ((u64)root->stripesize - 1);
4751 	u64 ret = (val + mask) & ~mask;
4752 	return ret;
4753 }
4754 
4755 /*
4756  * when we wait for progress in the block group caching, its because
4757  * our allocation attempt failed at least once.  So, we must sleep
4758  * and let some progress happen before we try again.
4759  *
4760  * This function will sleep at least once waiting for new free space to
4761  * show up, and then it will check the block group free space numbers
4762  * for our min num_bytes.  Another option is to have it go ahead
4763  * and look in the rbtree for a free extent of a given size, but this
4764  * is a good start.
4765  */
4766 static noinline int
4767 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4768 				u64 num_bytes)
4769 {
4770 	struct btrfs_caching_control *caching_ctl;
4771 	DEFINE_WAIT(wait);
4772 
4773 	caching_ctl = get_caching_control(cache);
4774 	if (!caching_ctl)
4775 		return 0;
4776 
4777 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4778 		   (cache->free_space >= num_bytes));
4779 
4780 	put_caching_control(caching_ctl);
4781 	return 0;
4782 }
4783 
4784 static noinline int
4785 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4786 {
4787 	struct btrfs_caching_control *caching_ctl;
4788 	DEFINE_WAIT(wait);
4789 
4790 	caching_ctl = get_caching_control(cache);
4791 	if (!caching_ctl)
4792 		return 0;
4793 
4794 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4795 
4796 	put_caching_control(caching_ctl);
4797 	return 0;
4798 }
4799 
4800 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4801 {
4802 	int index;
4803 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4804 		index = 0;
4805 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4806 		index = 1;
4807 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4808 		index = 2;
4809 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4810 		index = 3;
4811 	else
4812 		index = 4;
4813 	return index;
4814 }
4815 
4816 enum btrfs_loop_type {
4817 	LOOP_FIND_IDEAL = 0,
4818 	LOOP_CACHING_NOWAIT = 1,
4819 	LOOP_CACHING_WAIT = 2,
4820 	LOOP_ALLOC_CHUNK = 3,
4821 	LOOP_NO_EMPTY_SIZE = 4,
4822 };
4823 
4824 /*
4825  * walks the btree of allocated extents and find a hole of a given size.
4826  * The key ins is changed to record the hole:
4827  * ins->objectid == block start
4828  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4829  * ins->offset == number of blocks
4830  * Any available blocks before search_start are skipped.
4831  */
4832 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4833 				     struct btrfs_root *orig_root,
4834 				     u64 num_bytes, u64 empty_size,
4835 				     u64 search_start, u64 search_end,
4836 				     u64 hint_byte, struct btrfs_key *ins,
4837 				     int data)
4838 {
4839 	int ret = 0;
4840 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4841 	struct btrfs_free_cluster *last_ptr = NULL;
4842 	struct btrfs_block_group_cache *block_group = NULL;
4843 	int empty_cluster = 2 * 1024 * 1024;
4844 	int allowed_chunk_alloc = 0;
4845 	int done_chunk_alloc = 0;
4846 	struct btrfs_space_info *space_info;
4847 	int last_ptr_loop = 0;
4848 	int loop = 0;
4849 	int index = 0;
4850 	bool found_uncached_bg = false;
4851 	bool failed_cluster_refill = false;
4852 	bool failed_alloc = false;
4853 	bool use_cluster = true;
4854 	u64 ideal_cache_percent = 0;
4855 	u64 ideal_cache_offset = 0;
4856 
4857 	WARN_ON(num_bytes < root->sectorsize);
4858 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4859 	ins->objectid = 0;
4860 	ins->offset = 0;
4861 
4862 	space_info = __find_space_info(root->fs_info, data);
4863 	if (!space_info) {
4864 		printk(KERN_ERR "No space info for %d\n", data);
4865 		return -ENOSPC;
4866 	}
4867 
4868 	/*
4869 	 * If the space info is for both data and metadata it means we have a
4870 	 * small filesystem and we can't use the clustering stuff.
4871 	 */
4872 	if (btrfs_mixed_space_info(space_info))
4873 		use_cluster = false;
4874 
4875 	if (orig_root->ref_cows || empty_size)
4876 		allowed_chunk_alloc = 1;
4877 
4878 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4879 		last_ptr = &root->fs_info->meta_alloc_cluster;
4880 		if (!btrfs_test_opt(root, SSD))
4881 			empty_cluster = 64 * 1024;
4882 	}
4883 
4884 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4885 	    btrfs_test_opt(root, SSD)) {
4886 		last_ptr = &root->fs_info->data_alloc_cluster;
4887 	}
4888 
4889 	if (last_ptr) {
4890 		spin_lock(&last_ptr->lock);
4891 		if (last_ptr->block_group)
4892 			hint_byte = last_ptr->window_start;
4893 		spin_unlock(&last_ptr->lock);
4894 	}
4895 
4896 	search_start = max(search_start, first_logical_byte(root, 0));
4897 	search_start = max(search_start, hint_byte);
4898 
4899 	if (!last_ptr)
4900 		empty_cluster = 0;
4901 
4902 	if (search_start == hint_byte) {
4903 ideal_cache:
4904 		block_group = btrfs_lookup_block_group(root->fs_info,
4905 						       search_start);
4906 		/*
4907 		 * we don't want to use the block group if it doesn't match our
4908 		 * allocation bits, or if its not cached.
4909 		 *
4910 		 * However if we are re-searching with an ideal block group
4911 		 * picked out then we don't care that the block group is cached.
4912 		 */
4913 		if (block_group && block_group_bits(block_group, data) &&
4914 		    (block_group->cached != BTRFS_CACHE_NO ||
4915 		     search_start == ideal_cache_offset)) {
4916 			down_read(&space_info->groups_sem);
4917 			if (list_empty(&block_group->list) ||
4918 			    block_group->ro) {
4919 				/*
4920 				 * someone is removing this block group,
4921 				 * we can't jump into the have_block_group
4922 				 * target because our list pointers are not
4923 				 * valid
4924 				 */
4925 				btrfs_put_block_group(block_group);
4926 				up_read(&space_info->groups_sem);
4927 			} else {
4928 				index = get_block_group_index(block_group);
4929 				goto have_block_group;
4930 			}
4931 		} else if (block_group) {
4932 			btrfs_put_block_group(block_group);
4933 		}
4934 	}
4935 search:
4936 	down_read(&space_info->groups_sem);
4937 	list_for_each_entry(block_group, &space_info->block_groups[index],
4938 			    list) {
4939 		u64 offset;
4940 		int cached;
4941 
4942 		btrfs_get_block_group(block_group);
4943 		search_start = block_group->key.objectid;
4944 
4945 		/*
4946 		 * this can happen if we end up cycling through all the
4947 		 * raid types, but we want to make sure we only allocate
4948 		 * for the proper type.
4949 		 */
4950 		if (!block_group_bits(block_group, data)) {
4951 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
4952 				BTRFS_BLOCK_GROUP_RAID1 |
4953 				BTRFS_BLOCK_GROUP_RAID10;
4954 
4955 			/*
4956 			 * if they asked for extra copies and this block group
4957 			 * doesn't provide them, bail.  This does allow us to
4958 			 * fill raid0 from raid1.
4959 			 */
4960 			if ((data & extra) && !(block_group->flags & extra))
4961 				goto loop;
4962 		}
4963 
4964 have_block_group:
4965 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4966 			u64 free_percent;
4967 
4968 			ret = cache_block_group(block_group, trans,
4969 						orig_root, 1);
4970 			if (block_group->cached == BTRFS_CACHE_FINISHED)
4971 				goto have_block_group;
4972 
4973 			free_percent = btrfs_block_group_used(&block_group->item);
4974 			free_percent *= 100;
4975 			free_percent = div64_u64(free_percent,
4976 						 block_group->key.offset);
4977 			free_percent = 100 - free_percent;
4978 			if (free_percent > ideal_cache_percent &&
4979 			    likely(!block_group->ro)) {
4980 				ideal_cache_offset = block_group->key.objectid;
4981 				ideal_cache_percent = free_percent;
4982 			}
4983 
4984 			/*
4985 			 * We only want to start kthread caching if we are at
4986 			 * the point where we will wait for caching to make
4987 			 * progress, or if our ideal search is over and we've
4988 			 * found somebody to start caching.
4989 			 */
4990 			if (loop > LOOP_CACHING_NOWAIT ||
4991 			    (loop > LOOP_FIND_IDEAL &&
4992 			     atomic_read(&space_info->caching_threads) < 2)) {
4993 				ret = cache_block_group(block_group, trans,
4994 							orig_root, 0);
4995 				BUG_ON(ret);
4996 			}
4997 			found_uncached_bg = true;
4998 
4999 			/*
5000 			 * If loop is set for cached only, try the next block
5001 			 * group.
5002 			 */
5003 			if (loop == LOOP_FIND_IDEAL)
5004 				goto loop;
5005 		}
5006 
5007 		cached = block_group_cache_done(block_group);
5008 		if (unlikely(!cached))
5009 			found_uncached_bg = true;
5010 
5011 		if (unlikely(block_group->ro))
5012 			goto loop;
5013 
5014 		/*
5015 		 * Ok we want to try and use the cluster allocator, so lets look
5016 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5017 		 * have tried the cluster allocator plenty of times at this
5018 		 * point and not have found anything, so we are likely way too
5019 		 * fragmented for the clustering stuff to find anything, so lets
5020 		 * just skip it and let the allocator find whatever block it can
5021 		 * find
5022 		 */
5023 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5024 			/*
5025 			 * the refill lock keeps out other
5026 			 * people trying to start a new cluster
5027 			 */
5028 			spin_lock(&last_ptr->refill_lock);
5029 			if (last_ptr->block_group &&
5030 			    (last_ptr->block_group->ro ||
5031 			    !block_group_bits(last_ptr->block_group, data))) {
5032 				offset = 0;
5033 				goto refill_cluster;
5034 			}
5035 
5036 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5037 						 num_bytes, search_start);
5038 			if (offset) {
5039 				/* we have a block, we're done */
5040 				spin_unlock(&last_ptr->refill_lock);
5041 				goto checks;
5042 			}
5043 
5044 			spin_lock(&last_ptr->lock);
5045 			/*
5046 			 * whoops, this cluster doesn't actually point to
5047 			 * this block group.  Get a ref on the block
5048 			 * group is does point to and try again
5049 			 */
5050 			if (!last_ptr_loop && last_ptr->block_group &&
5051 			    last_ptr->block_group != block_group) {
5052 
5053 				btrfs_put_block_group(block_group);
5054 				block_group = last_ptr->block_group;
5055 				btrfs_get_block_group(block_group);
5056 				spin_unlock(&last_ptr->lock);
5057 				spin_unlock(&last_ptr->refill_lock);
5058 
5059 				last_ptr_loop = 1;
5060 				search_start = block_group->key.objectid;
5061 				/*
5062 				 * we know this block group is properly
5063 				 * in the list because
5064 				 * btrfs_remove_block_group, drops the
5065 				 * cluster before it removes the block
5066 				 * group from the list
5067 				 */
5068 				goto have_block_group;
5069 			}
5070 			spin_unlock(&last_ptr->lock);
5071 refill_cluster:
5072 			/*
5073 			 * this cluster didn't work out, free it and
5074 			 * start over
5075 			 */
5076 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5077 
5078 			last_ptr_loop = 0;
5079 
5080 			/* allocate a cluster in this block group */
5081 			ret = btrfs_find_space_cluster(trans, root,
5082 					       block_group, last_ptr,
5083 					       offset, num_bytes,
5084 					       empty_cluster + empty_size);
5085 			if (ret == 0) {
5086 				/*
5087 				 * now pull our allocation out of this
5088 				 * cluster
5089 				 */
5090 				offset = btrfs_alloc_from_cluster(block_group,
5091 						  last_ptr, num_bytes,
5092 						  search_start);
5093 				if (offset) {
5094 					/* we found one, proceed */
5095 					spin_unlock(&last_ptr->refill_lock);
5096 					goto checks;
5097 				}
5098 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5099 				   && !failed_cluster_refill) {
5100 				spin_unlock(&last_ptr->refill_lock);
5101 
5102 				failed_cluster_refill = true;
5103 				wait_block_group_cache_progress(block_group,
5104 				       num_bytes + empty_cluster + empty_size);
5105 				goto have_block_group;
5106 			}
5107 
5108 			/*
5109 			 * at this point we either didn't find a cluster
5110 			 * or we weren't able to allocate a block from our
5111 			 * cluster.  Free the cluster we've been trying
5112 			 * to use, and go to the next block group
5113 			 */
5114 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5115 			spin_unlock(&last_ptr->refill_lock);
5116 			goto loop;
5117 		}
5118 
5119 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5120 						    num_bytes, empty_size);
5121 		/*
5122 		 * If we didn't find a chunk, and we haven't failed on this
5123 		 * block group before, and this block group is in the middle of
5124 		 * caching and we are ok with waiting, then go ahead and wait
5125 		 * for progress to be made, and set failed_alloc to true.
5126 		 *
5127 		 * If failed_alloc is true then we've already waited on this
5128 		 * block group once and should move on to the next block group.
5129 		 */
5130 		if (!offset && !failed_alloc && !cached &&
5131 		    loop > LOOP_CACHING_NOWAIT) {
5132 			wait_block_group_cache_progress(block_group,
5133 						num_bytes + empty_size);
5134 			failed_alloc = true;
5135 			goto have_block_group;
5136 		} else if (!offset) {
5137 			goto loop;
5138 		}
5139 checks:
5140 		search_start = stripe_align(root, offset);
5141 		/* move on to the next group */
5142 		if (search_start + num_bytes >= search_end) {
5143 			btrfs_add_free_space(block_group, offset, num_bytes);
5144 			goto loop;
5145 		}
5146 
5147 		/* move on to the next group */
5148 		if (search_start + num_bytes >
5149 		    block_group->key.objectid + block_group->key.offset) {
5150 			btrfs_add_free_space(block_group, offset, num_bytes);
5151 			goto loop;
5152 		}
5153 
5154 		ins->objectid = search_start;
5155 		ins->offset = num_bytes;
5156 
5157 		if (offset < search_start)
5158 			btrfs_add_free_space(block_group, offset,
5159 					     search_start - offset);
5160 		BUG_ON(offset > search_start);
5161 
5162 		ret = update_reserved_bytes(block_group, num_bytes, 1,
5163 					    (data & BTRFS_BLOCK_GROUP_DATA));
5164 		if (ret == -EAGAIN) {
5165 			btrfs_add_free_space(block_group, offset, num_bytes);
5166 			goto loop;
5167 		}
5168 
5169 		/* we are all good, lets return */
5170 		ins->objectid = search_start;
5171 		ins->offset = num_bytes;
5172 
5173 		if (offset < search_start)
5174 			btrfs_add_free_space(block_group, offset,
5175 					     search_start - offset);
5176 		BUG_ON(offset > search_start);
5177 		break;
5178 loop:
5179 		failed_cluster_refill = false;
5180 		failed_alloc = false;
5181 		BUG_ON(index != get_block_group_index(block_group));
5182 		btrfs_put_block_group(block_group);
5183 	}
5184 	up_read(&space_info->groups_sem);
5185 
5186 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5187 		goto search;
5188 
5189 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5190 	 *			for them to make caching progress.  Also
5191 	 *			determine the best possible bg to cache
5192 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5193 	 *			caching kthreads as we move along
5194 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5195 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5196 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5197 	 *			again
5198 	 */
5199 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5200 	    (found_uncached_bg || empty_size || empty_cluster ||
5201 	     allowed_chunk_alloc)) {
5202 		index = 0;
5203 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5204 			found_uncached_bg = false;
5205 			loop++;
5206 			if (!ideal_cache_percent &&
5207 			    atomic_read(&space_info->caching_threads))
5208 				goto search;
5209 
5210 			/*
5211 			 * 1 of the following 2 things have happened so far
5212 			 *
5213 			 * 1) We found an ideal block group for caching that
5214 			 * is mostly full and will cache quickly, so we might
5215 			 * as well wait for it.
5216 			 *
5217 			 * 2) We searched for cached only and we didn't find
5218 			 * anything, and we didn't start any caching kthreads
5219 			 * either, so chances are we will loop through and
5220 			 * start a couple caching kthreads, and then come back
5221 			 * around and just wait for them.  This will be slower
5222 			 * because we will have 2 caching kthreads reading at
5223 			 * the same time when we could have just started one
5224 			 * and waited for it to get far enough to give us an
5225 			 * allocation, so go ahead and go to the wait caching
5226 			 * loop.
5227 			 */
5228 			loop = LOOP_CACHING_WAIT;
5229 			search_start = ideal_cache_offset;
5230 			ideal_cache_percent = 0;
5231 			goto ideal_cache;
5232 		} else if (loop == LOOP_FIND_IDEAL) {
5233 			/*
5234 			 * Didn't find a uncached bg, wait on anything we find
5235 			 * next.
5236 			 */
5237 			loop = LOOP_CACHING_WAIT;
5238 			goto search;
5239 		}
5240 
5241 		if (loop < LOOP_CACHING_WAIT) {
5242 			loop++;
5243 			goto search;
5244 		}
5245 
5246 		if (loop == LOOP_ALLOC_CHUNK) {
5247 			empty_size = 0;
5248 			empty_cluster = 0;
5249 		}
5250 
5251 		if (allowed_chunk_alloc) {
5252 			ret = do_chunk_alloc(trans, root, num_bytes +
5253 					     2 * 1024 * 1024, data, 1);
5254 			allowed_chunk_alloc = 0;
5255 			done_chunk_alloc = 1;
5256 		} else if (!done_chunk_alloc) {
5257 			space_info->force_alloc = 1;
5258 		}
5259 
5260 		if (loop < LOOP_NO_EMPTY_SIZE) {
5261 			loop++;
5262 			goto search;
5263 		}
5264 		ret = -ENOSPC;
5265 	} else if (!ins->objectid) {
5266 		ret = -ENOSPC;
5267 	}
5268 
5269 	/* we found what we needed */
5270 	if (ins->objectid) {
5271 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
5272 			trans->block_group = block_group->key.objectid;
5273 
5274 		btrfs_put_block_group(block_group);
5275 		ret = 0;
5276 	}
5277 
5278 	return ret;
5279 }
5280 
5281 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5282 			    int dump_block_groups)
5283 {
5284 	struct btrfs_block_group_cache *cache;
5285 	int index = 0;
5286 
5287 	spin_lock(&info->lock);
5288 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5289 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5290 				    info->bytes_pinned - info->bytes_reserved -
5291 				    info->bytes_readonly),
5292 	       (info->full) ? "" : "not ");
5293 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5294 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5295 	       (unsigned long long)info->total_bytes,
5296 	       (unsigned long long)info->bytes_used,
5297 	       (unsigned long long)info->bytes_pinned,
5298 	       (unsigned long long)info->bytes_reserved,
5299 	       (unsigned long long)info->bytes_may_use,
5300 	       (unsigned long long)info->bytes_readonly);
5301 	spin_unlock(&info->lock);
5302 
5303 	if (!dump_block_groups)
5304 		return;
5305 
5306 	down_read(&info->groups_sem);
5307 again:
5308 	list_for_each_entry(cache, &info->block_groups[index], list) {
5309 		spin_lock(&cache->lock);
5310 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5311 		       "%llu pinned %llu reserved\n",
5312 		       (unsigned long long)cache->key.objectid,
5313 		       (unsigned long long)cache->key.offset,
5314 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5315 		       (unsigned long long)cache->pinned,
5316 		       (unsigned long long)cache->reserved);
5317 		btrfs_dump_free_space(cache, bytes);
5318 		spin_unlock(&cache->lock);
5319 	}
5320 	if (++index < BTRFS_NR_RAID_TYPES)
5321 		goto again;
5322 	up_read(&info->groups_sem);
5323 }
5324 
5325 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5326 			 struct btrfs_root *root,
5327 			 u64 num_bytes, u64 min_alloc_size,
5328 			 u64 empty_size, u64 hint_byte,
5329 			 u64 search_end, struct btrfs_key *ins,
5330 			 u64 data)
5331 {
5332 	int ret;
5333 	u64 search_start = 0;
5334 
5335 	data = btrfs_get_alloc_profile(root, data);
5336 again:
5337 	/*
5338 	 * the only place that sets empty_size is btrfs_realloc_node, which
5339 	 * is not called recursively on allocations
5340 	 */
5341 	if (empty_size || root->ref_cows)
5342 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5343 				     num_bytes + 2 * 1024 * 1024, data, 0);
5344 
5345 	WARN_ON(num_bytes < root->sectorsize);
5346 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5347 			       search_start, search_end, hint_byte,
5348 			       ins, data);
5349 
5350 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5351 		num_bytes = num_bytes >> 1;
5352 		num_bytes = num_bytes & ~(root->sectorsize - 1);
5353 		num_bytes = max(num_bytes, min_alloc_size);
5354 		do_chunk_alloc(trans, root->fs_info->extent_root,
5355 			       num_bytes, data, 1);
5356 		goto again;
5357 	}
5358 	if (ret == -ENOSPC) {
5359 		struct btrfs_space_info *sinfo;
5360 
5361 		sinfo = __find_space_info(root->fs_info, data);
5362 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5363 		       "wanted %llu\n", (unsigned long long)data,
5364 		       (unsigned long long)num_bytes);
5365 		dump_space_info(sinfo, num_bytes, 1);
5366 	}
5367 
5368 	return ret;
5369 }
5370 
5371 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5372 {
5373 	struct btrfs_block_group_cache *cache;
5374 	int ret = 0;
5375 
5376 	cache = btrfs_lookup_block_group(root->fs_info, start);
5377 	if (!cache) {
5378 		printk(KERN_ERR "Unable to find block group for %llu\n",
5379 		       (unsigned long long)start);
5380 		return -ENOSPC;
5381 	}
5382 
5383 	ret = btrfs_discard_extent(root, start, len);
5384 
5385 	btrfs_add_free_space(cache, start, len);
5386 	update_reserved_bytes(cache, len, 0, 1);
5387 	btrfs_put_block_group(cache);
5388 
5389 	return ret;
5390 }
5391 
5392 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5393 				      struct btrfs_root *root,
5394 				      u64 parent, u64 root_objectid,
5395 				      u64 flags, u64 owner, u64 offset,
5396 				      struct btrfs_key *ins, int ref_mod)
5397 {
5398 	int ret;
5399 	struct btrfs_fs_info *fs_info = root->fs_info;
5400 	struct btrfs_extent_item *extent_item;
5401 	struct btrfs_extent_inline_ref *iref;
5402 	struct btrfs_path *path;
5403 	struct extent_buffer *leaf;
5404 	int type;
5405 	u32 size;
5406 
5407 	if (parent > 0)
5408 		type = BTRFS_SHARED_DATA_REF_KEY;
5409 	else
5410 		type = BTRFS_EXTENT_DATA_REF_KEY;
5411 
5412 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5413 
5414 	path = btrfs_alloc_path();
5415 	BUG_ON(!path);
5416 
5417 	path->leave_spinning = 1;
5418 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5419 				      ins, size);
5420 	BUG_ON(ret);
5421 
5422 	leaf = path->nodes[0];
5423 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5424 				     struct btrfs_extent_item);
5425 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5426 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5427 	btrfs_set_extent_flags(leaf, extent_item,
5428 			       flags | BTRFS_EXTENT_FLAG_DATA);
5429 
5430 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5431 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5432 	if (parent > 0) {
5433 		struct btrfs_shared_data_ref *ref;
5434 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5435 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5436 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5437 	} else {
5438 		struct btrfs_extent_data_ref *ref;
5439 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5440 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5441 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5442 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5443 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5444 	}
5445 
5446 	btrfs_mark_buffer_dirty(path->nodes[0]);
5447 	btrfs_free_path(path);
5448 
5449 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5450 	if (ret) {
5451 		printk(KERN_ERR "btrfs update block group failed for %llu "
5452 		       "%llu\n", (unsigned long long)ins->objectid,
5453 		       (unsigned long long)ins->offset);
5454 		BUG();
5455 	}
5456 	return ret;
5457 }
5458 
5459 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5460 				     struct btrfs_root *root,
5461 				     u64 parent, u64 root_objectid,
5462 				     u64 flags, struct btrfs_disk_key *key,
5463 				     int level, struct btrfs_key *ins)
5464 {
5465 	int ret;
5466 	struct btrfs_fs_info *fs_info = root->fs_info;
5467 	struct btrfs_extent_item *extent_item;
5468 	struct btrfs_tree_block_info *block_info;
5469 	struct btrfs_extent_inline_ref *iref;
5470 	struct btrfs_path *path;
5471 	struct extent_buffer *leaf;
5472 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5473 
5474 	path = btrfs_alloc_path();
5475 	BUG_ON(!path);
5476 
5477 	path->leave_spinning = 1;
5478 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5479 				      ins, size);
5480 	BUG_ON(ret);
5481 
5482 	leaf = path->nodes[0];
5483 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5484 				     struct btrfs_extent_item);
5485 	btrfs_set_extent_refs(leaf, extent_item, 1);
5486 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5487 	btrfs_set_extent_flags(leaf, extent_item,
5488 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5489 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5490 
5491 	btrfs_set_tree_block_key(leaf, block_info, key);
5492 	btrfs_set_tree_block_level(leaf, block_info, level);
5493 
5494 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5495 	if (parent > 0) {
5496 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5497 		btrfs_set_extent_inline_ref_type(leaf, iref,
5498 						 BTRFS_SHARED_BLOCK_REF_KEY);
5499 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5500 	} else {
5501 		btrfs_set_extent_inline_ref_type(leaf, iref,
5502 						 BTRFS_TREE_BLOCK_REF_KEY);
5503 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5504 	}
5505 
5506 	btrfs_mark_buffer_dirty(leaf);
5507 	btrfs_free_path(path);
5508 
5509 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5510 	if (ret) {
5511 		printk(KERN_ERR "btrfs update block group failed for %llu "
5512 		       "%llu\n", (unsigned long long)ins->objectid,
5513 		       (unsigned long long)ins->offset);
5514 		BUG();
5515 	}
5516 	return ret;
5517 }
5518 
5519 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5520 				     struct btrfs_root *root,
5521 				     u64 root_objectid, u64 owner,
5522 				     u64 offset, struct btrfs_key *ins)
5523 {
5524 	int ret;
5525 
5526 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5527 
5528 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5529 					 0, root_objectid, owner, offset,
5530 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
5531 	return ret;
5532 }
5533 
5534 /*
5535  * this is used by the tree logging recovery code.  It records that
5536  * an extent has been allocated and makes sure to clear the free
5537  * space cache bits as well
5538  */
5539 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5540 				   struct btrfs_root *root,
5541 				   u64 root_objectid, u64 owner, u64 offset,
5542 				   struct btrfs_key *ins)
5543 {
5544 	int ret;
5545 	struct btrfs_block_group_cache *block_group;
5546 	struct btrfs_caching_control *caching_ctl;
5547 	u64 start = ins->objectid;
5548 	u64 num_bytes = ins->offset;
5549 
5550 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5551 	cache_block_group(block_group, trans, NULL, 0);
5552 	caching_ctl = get_caching_control(block_group);
5553 
5554 	if (!caching_ctl) {
5555 		BUG_ON(!block_group_cache_done(block_group));
5556 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5557 		BUG_ON(ret);
5558 	} else {
5559 		mutex_lock(&caching_ctl->mutex);
5560 
5561 		if (start >= caching_ctl->progress) {
5562 			ret = add_excluded_extent(root, start, num_bytes);
5563 			BUG_ON(ret);
5564 		} else if (start + num_bytes <= caching_ctl->progress) {
5565 			ret = btrfs_remove_free_space(block_group,
5566 						      start, num_bytes);
5567 			BUG_ON(ret);
5568 		} else {
5569 			num_bytes = caching_ctl->progress - start;
5570 			ret = btrfs_remove_free_space(block_group,
5571 						      start, num_bytes);
5572 			BUG_ON(ret);
5573 
5574 			start = caching_ctl->progress;
5575 			num_bytes = ins->objectid + ins->offset -
5576 				    caching_ctl->progress;
5577 			ret = add_excluded_extent(root, start, num_bytes);
5578 			BUG_ON(ret);
5579 		}
5580 
5581 		mutex_unlock(&caching_ctl->mutex);
5582 		put_caching_control(caching_ctl);
5583 	}
5584 
5585 	ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5586 	BUG_ON(ret);
5587 	btrfs_put_block_group(block_group);
5588 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5589 					 0, owner, offset, ins, 1);
5590 	return ret;
5591 }
5592 
5593 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5594 					    struct btrfs_root *root,
5595 					    u64 bytenr, u32 blocksize,
5596 					    int level)
5597 {
5598 	struct extent_buffer *buf;
5599 
5600 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5601 	if (!buf)
5602 		return ERR_PTR(-ENOMEM);
5603 	btrfs_set_header_generation(buf, trans->transid);
5604 	btrfs_set_buffer_lockdep_class(buf, level);
5605 	btrfs_tree_lock(buf);
5606 	clean_tree_block(trans, root, buf);
5607 
5608 	btrfs_set_lock_blocking(buf);
5609 	btrfs_set_buffer_uptodate(buf);
5610 
5611 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5612 		/*
5613 		 * we allow two log transactions at a time, use different
5614 		 * EXENT bit to differentiate dirty pages.
5615 		 */
5616 		if (root->log_transid % 2 == 0)
5617 			set_extent_dirty(&root->dirty_log_pages, buf->start,
5618 					buf->start + buf->len - 1, GFP_NOFS);
5619 		else
5620 			set_extent_new(&root->dirty_log_pages, buf->start,
5621 					buf->start + buf->len - 1, GFP_NOFS);
5622 	} else {
5623 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5624 			 buf->start + buf->len - 1, GFP_NOFS);
5625 	}
5626 	trans->blocks_used++;
5627 	/* this returns a buffer locked for blocking */
5628 	return buf;
5629 }
5630 
5631 static struct btrfs_block_rsv *
5632 use_block_rsv(struct btrfs_trans_handle *trans,
5633 	      struct btrfs_root *root, u32 blocksize)
5634 {
5635 	struct btrfs_block_rsv *block_rsv;
5636 	int ret;
5637 
5638 	block_rsv = get_block_rsv(trans, root);
5639 
5640 	if (block_rsv->size == 0) {
5641 		ret = reserve_metadata_bytes(trans, root, block_rsv,
5642 					     blocksize, 0);
5643 		if (ret)
5644 			return ERR_PTR(ret);
5645 		return block_rsv;
5646 	}
5647 
5648 	ret = block_rsv_use_bytes(block_rsv, blocksize);
5649 	if (!ret)
5650 		return block_rsv;
5651 
5652 	return ERR_PTR(-ENOSPC);
5653 }
5654 
5655 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5656 {
5657 	block_rsv_add_bytes(block_rsv, blocksize, 0);
5658 	block_rsv_release_bytes(block_rsv, NULL, 0);
5659 }
5660 
5661 /*
5662  * finds a free extent and does all the dirty work required for allocation
5663  * returns the key for the extent through ins, and a tree buffer for
5664  * the first block of the extent through buf.
5665  *
5666  * returns the tree buffer or NULL.
5667  */
5668 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5669 					struct btrfs_root *root, u32 blocksize,
5670 					u64 parent, u64 root_objectid,
5671 					struct btrfs_disk_key *key, int level,
5672 					u64 hint, u64 empty_size)
5673 {
5674 	struct btrfs_key ins;
5675 	struct btrfs_block_rsv *block_rsv;
5676 	struct extent_buffer *buf;
5677 	u64 flags = 0;
5678 	int ret;
5679 
5680 
5681 	block_rsv = use_block_rsv(trans, root, blocksize);
5682 	if (IS_ERR(block_rsv))
5683 		return ERR_CAST(block_rsv);
5684 
5685 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5686 				   empty_size, hint, (u64)-1, &ins, 0);
5687 	if (ret) {
5688 		unuse_block_rsv(block_rsv, blocksize);
5689 		return ERR_PTR(ret);
5690 	}
5691 
5692 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5693 				    blocksize, level);
5694 	BUG_ON(IS_ERR(buf));
5695 
5696 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5697 		if (parent == 0)
5698 			parent = ins.objectid;
5699 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5700 	} else
5701 		BUG_ON(parent > 0);
5702 
5703 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5704 		struct btrfs_delayed_extent_op *extent_op;
5705 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5706 		BUG_ON(!extent_op);
5707 		if (key)
5708 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5709 		else
5710 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5711 		extent_op->flags_to_set = flags;
5712 		extent_op->update_key = 1;
5713 		extent_op->update_flags = 1;
5714 		extent_op->is_data = 0;
5715 
5716 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5717 					ins.offset, parent, root_objectid,
5718 					level, BTRFS_ADD_DELAYED_EXTENT,
5719 					extent_op);
5720 		BUG_ON(ret);
5721 	}
5722 	return buf;
5723 }
5724 
5725 struct walk_control {
5726 	u64 refs[BTRFS_MAX_LEVEL];
5727 	u64 flags[BTRFS_MAX_LEVEL];
5728 	struct btrfs_key update_progress;
5729 	int stage;
5730 	int level;
5731 	int shared_level;
5732 	int update_ref;
5733 	int keep_locks;
5734 	int reada_slot;
5735 	int reada_count;
5736 };
5737 
5738 #define DROP_REFERENCE	1
5739 #define UPDATE_BACKREF	2
5740 
5741 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5742 				     struct btrfs_root *root,
5743 				     struct walk_control *wc,
5744 				     struct btrfs_path *path)
5745 {
5746 	u64 bytenr;
5747 	u64 generation;
5748 	u64 refs;
5749 	u64 flags;
5750 	u32 nritems;
5751 	u32 blocksize;
5752 	struct btrfs_key key;
5753 	struct extent_buffer *eb;
5754 	int ret;
5755 	int slot;
5756 	int nread = 0;
5757 
5758 	if (path->slots[wc->level] < wc->reada_slot) {
5759 		wc->reada_count = wc->reada_count * 2 / 3;
5760 		wc->reada_count = max(wc->reada_count, 2);
5761 	} else {
5762 		wc->reada_count = wc->reada_count * 3 / 2;
5763 		wc->reada_count = min_t(int, wc->reada_count,
5764 					BTRFS_NODEPTRS_PER_BLOCK(root));
5765 	}
5766 
5767 	eb = path->nodes[wc->level];
5768 	nritems = btrfs_header_nritems(eb);
5769 	blocksize = btrfs_level_size(root, wc->level - 1);
5770 
5771 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5772 		if (nread >= wc->reada_count)
5773 			break;
5774 
5775 		cond_resched();
5776 		bytenr = btrfs_node_blockptr(eb, slot);
5777 		generation = btrfs_node_ptr_generation(eb, slot);
5778 
5779 		if (slot == path->slots[wc->level])
5780 			goto reada;
5781 
5782 		if (wc->stage == UPDATE_BACKREF &&
5783 		    generation <= root->root_key.offset)
5784 			continue;
5785 
5786 		/* We don't lock the tree block, it's OK to be racy here */
5787 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5788 					       &refs, &flags);
5789 		BUG_ON(ret);
5790 		BUG_ON(refs == 0);
5791 
5792 		if (wc->stage == DROP_REFERENCE) {
5793 			if (refs == 1)
5794 				goto reada;
5795 
5796 			if (wc->level == 1 &&
5797 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5798 				continue;
5799 			if (!wc->update_ref ||
5800 			    generation <= root->root_key.offset)
5801 				continue;
5802 			btrfs_node_key_to_cpu(eb, &key, slot);
5803 			ret = btrfs_comp_cpu_keys(&key,
5804 						  &wc->update_progress);
5805 			if (ret < 0)
5806 				continue;
5807 		} else {
5808 			if (wc->level == 1 &&
5809 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5810 				continue;
5811 		}
5812 reada:
5813 		ret = readahead_tree_block(root, bytenr, blocksize,
5814 					   generation);
5815 		if (ret)
5816 			break;
5817 		nread++;
5818 	}
5819 	wc->reada_slot = slot;
5820 }
5821 
5822 /*
5823  * hepler to process tree block while walking down the tree.
5824  *
5825  * when wc->stage == UPDATE_BACKREF, this function updates
5826  * back refs for pointers in the block.
5827  *
5828  * NOTE: return value 1 means we should stop walking down.
5829  */
5830 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5831 				   struct btrfs_root *root,
5832 				   struct btrfs_path *path,
5833 				   struct walk_control *wc, int lookup_info)
5834 {
5835 	int level = wc->level;
5836 	struct extent_buffer *eb = path->nodes[level];
5837 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5838 	int ret;
5839 
5840 	if (wc->stage == UPDATE_BACKREF &&
5841 	    btrfs_header_owner(eb) != root->root_key.objectid)
5842 		return 1;
5843 
5844 	/*
5845 	 * when reference count of tree block is 1, it won't increase
5846 	 * again. once full backref flag is set, we never clear it.
5847 	 */
5848 	if (lookup_info &&
5849 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5850 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5851 		BUG_ON(!path->locks[level]);
5852 		ret = btrfs_lookup_extent_info(trans, root,
5853 					       eb->start, eb->len,
5854 					       &wc->refs[level],
5855 					       &wc->flags[level]);
5856 		BUG_ON(ret);
5857 		BUG_ON(wc->refs[level] == 0);
5858 	}
5859 
5860 	if (wc->stage == DROP_REFERENCE) {
5861 		if (wc->refs[level] > 1)
5862 			return 1;
5863 
5864 		if (path->locks[level] && !wc->keep_locks) {
5865 			btrfs_tree_unlock(eb);
5866 			path->locks[level] = 0;
5867 		}
5868 		return 0;
5869 	}
5870 
5871 	/* wc->stage == UPDATE_BACKREF */
5872 	if (!(wc->flags[level] & flag)) {
5873 		BUG_ON(!path->locks[level]);
5874 		ret = btrfs_inc_ref(trans, root, eb, 1);
5875 		BUG_ON(ret);
5876 		ret = btrfs_dec_ref(trans, root, eb, 0);
5877 		BUG_ON(ret);
5878 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5879 						  eb->len, flag, 0);
5880 		BUG_ON(ret);
5881 		wc->flags[level] |= flag;
5882 	}
5883 
5884 	/*
5885 	 * the block is shared by multiple trees, so it's not good to
5886 	 * keep the tree lock
5887 	 */
5888 	if (path->locks[level] && level > 0) {
5889 		btrfs_tree_unlock(eb);
5890 		path->locks[level] = 0;
5891 	}
5892 	return 0;
5893 }
5894 
5895 /*
5896  * hepler to process tree block pointer.
5897  *
5898  * when wc->stage == DROP_REFERENCE, this function checks
5899  * reference count of the block pointed to. if the block
5900  * is shared and we need update back refs for the subtree
5901  * rooted at the block, this function changes wc->stage to
5902  * UPDATE_BACKREF. if the block is shared and there is no
5903  * need to update back, this function drops the reference
5904  * to the block.
5905  *
5906  * NOTE: return value 1 means we should stop walking down.
5907  */
5908 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5909 				 struct btrfs_root *root,
5910 				 struct btrfs_path *path,
5911 				 struct walk_control *wc, int *lookup_info)
5912 {
5913 	u64 bytenr;
5914 	u64 generation;
5915 	u64 parent;
5916 	u32 blocksize;
5917 	struct btrfs_key key;
5918 	struct extent_buffer *next;
5919 	int level = wc->level;
5920 	int reada = 0;
5921 	int ret = 0;
5922 
5923 	generation = btrfs_node_ptr_generation(path->nodes[level],
5924 					       path->slots[level]);
5925 	/*
5926 	 * if the lower level block was created before the snapshot
5927 	 * was created, we know there is no need to update back refs
5928 	 * for the subtree
5929 	 */
5930 	if (wc->stage == UPDATE_BACKREF &&
5931 	    generation <= root->root_key.offset) {
5932 		*lookup_info = 1;
5933 		return 1;
5934 	}
5935 
5936 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5937 	blocksize = btrfs_level_size(root, level - 1);
5938 
5939 	next = btrfs_find_tree_block(root, bytenr, blocksize);
5940 	if (!next) {
5941 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5942 		if (!next)
5943 			return -ENOMEM;
5944 		reada = 1;
5945 	}
5946 	btrfs_tree_lock(next);
5947 	btrfs_set_lock_blocking(next);
5948 
5949 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5950 				       &wc->refs[level - 1],
5951 				       &wc->flags[level - 1]);
5952 	BUG_ON(ret);
5953 	BUG_ON(wc->refs[level - 1] == 0);
5954 	*lookup_info = 0;
5955 
5956 	if (wc->stage == DROP_REFERENCE) {
5957 		if (wc->refs[level - 1] > 1) {
5958 			if (level == 1 &&
5959 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5960 				goto skip;
5961 
5962 			if (!wc->update_ref ||
5963 			    generation <= root->root_key.offset)
5964 				goto skip;
5965 
5966 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5967 					      path->slots[level]);
5968 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5969 			if (ret < 0)
5970 				goto skip;
5971 
5972 			wc->stage = UPDATE_BACKREF;
5973 			wc->shared_level = level - 1;
5974 		}
5975 	} else {
5976 		if (level == 1 &&
5977 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5978 			goto skip;
5979 	}
5980 
5981 	if (!btrfs_buffer_uptodate(next, generation)) {
5982 		btrfs_tree_unlock(next);
5983 		free_extent_buffer(next);
5984 		next = NULL;
5985 		*lookup_info = 1;
5986 	}
5987 
5988 	if (!next) {
5989 		if (reada && level == 1)
5990 			reada_walk_down(trans, root, wc, path);
5991 		next = read_tree_block(root, bytenr, blocksize, generation);
5992 		btrfs_tree_lock(next);
5993 		btrfs_set_lock_blocking(next);
5994 	}
5995 
5996 	level--;
5997 	BUG_ON(level != btrfs_header_level(next));
5998 	path->nodes[level] = next;
5999 	path->slots[level] = 0;
6000 	path->locks[level] = 1;
6001 	wc->level = level;
6002 	if (wc->level == 1)
6003 		wc->reada_slot = 0;
6004 	return 0;
6005 skip:
6006 	wc->refs[level - 1] = 0;
6007 	wc->flags[level - 1] = 0;
6008 	if (wc->stage == DROP_REFERENCE) {
6009 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6010 			parent = path->nodes[level]->start;
6011 		} else {
6012 			BUG_ON(root->root_key.objectid !=
6013 			       btrfs_header_owner(path->nodes[level]));
6014 			parent = 0;
6015 		}
6016 
6017 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6018 					root->root_key.objectid, level - 1, 0);
6019 		BUG_ON(ret);
6020 	}
6021 	btrfs_tree_unlock(next);
6022 	free_extent_buffer(next);
6023 	*lookup_info = 1;
6024 	return 1;
6025 }
6026 
6027 /*
6028  * hepler to process tree block while walking up the tree.
6029  *
6030  * when wc->stage == DROP_REFERENCE, this function drops
6031  * reference count on the block.
6032  *
6033  * when wc->stage == UPDATE_BACKREF, this function changes
6034  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6035  * to UPDATE_BACKREF previously while processing the block.
6036  *
6037  * NOTE: return value 1 means we should stop walking up.
6038  */
6039 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6040 				 struct btrfs_root *root,
6041 				 struct btrfs_path *path,
6042 				 struct walk_control *wc)
6043 {
6044 	int ret;
6045 	int level = wc->level;
6046 	struct extent_buffer *eb = path->nodes[level];
6047 	u64 parent = 0;
6048 
6049 	if (wc->stage == UPDATE_BACKREF) {
6050 		BUG_ON(wc->shared_level < level);
6051 		if (level < wc->shared_level)
6052 			goto out;
6053 
6054 		ret = find_next_key(path, level + 1, &wc->update_progress);
6055 		if (ret > 0)
6056 			wc->update_ref = 0;
6057 
6058 		wc->stage = DROP_REFERENCE;
6059 		wc->shared_level = -1;
6060 		path->slots[level] = 0;
6061 
6062 		/*
6063 		 * check reference count again if the block isn't locked.
6064 		 * we should start walking down the tree again if reference
6065 		 * count is one.
6066 		 */
6067 		if (!path->locks[level]) {
6068 			BUG_ON(level == 0);
6069 			btrfs_tree_lock(eb);
6070 			btrfs_set_lock_blocking(eb);
6071 			path->locks[level] = 1;
6072 
6073 			ret = btrfs_lookup_extent_info(trans, root,
6074 						       eb->start, eb->len,
6075 						       &wc->refs[level],
6076 						       &wc->flags[level]);
6077 			BUG_ON(ret);
6078 			BUG_ON(wc->refs[level] == 0);
6079 			if (wc->refs[level] == 1) {
6080 				btrfs_tree_unlock(eb);
6081 				path->locks[level] = 0;
6082 				return 1;
6083 			}
6084 		}
6085 	}
6086 
6087 	/* wc->stage == DROP_REFERENCE */
6088 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6089 
6090 	if (wc->refs[level] == 1) {
6091 		if (level == 0) {
6092 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6093 				ret = btrfs_dec_ref(trans, root, eb, 1);
6094 			else
6095 				ret = btrfs_dec_ref(trans, root, eb, 0);
6096 			BUG_ON(ret);
6097 		}
6098 		/* make block locked assertion in clean_tree_block happy */
6099 		if (!path->locks[level] &&
6100 		    btrfs_header_generation(eb) == trans->transid) {
6101 			btrfs_tree_lock(eb);
6102 			btrfs_set_lock_blocking(eb);
6103 			path->locks[level] = 1;
6104 		}
6105 		clean_tree_block(trans, root, eb);
6106 	}
6107 
6108 	if (eb == root->node) {
6109 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6110 			parent = eb->start;
6111 		else
6112 			BUG_ON(root->root_key.objectid !=
6113 			       btrfs_header_owner(eb));
6114 	} else {
6115 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6116 			parent = path->nodes[level + 1]->start;
6117 		else
6118 			BUG_ON(root->root_key.objectid !=
6119 			       btrfs_header_owner(path->nodes[level + 1]));
6120 	}
6121 
6122 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6123 out:
6124 	wc->refs[level] = 0;
6125 	wc->flags[level] = 0;
6126 	return 0;
6127 }
6128 
6129 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6130 				   struct btrfs_root *root,
6131 				   struct btrfs_path *path,
6132 				   struct walk_control *wc)
6133 {
6134 	int level = wc->level;
6135 	int lookup_info = 1;
6136 	int ret;
6137 
6138 	while (level >= 0) {
6139 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6140 		if (ret > 0)
6141 			break;
6142 
6143 		if (level == 0)
6144 			break;
6145 
6146 		if (path->slots[level] >=
6147 		    btrfs_header_nritems(path->nodes[level]))
6148 			break;
6149 
6150 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6151 		if (ret > 0) {
6152 			path->slots[level]++;
6153 			continue;
6154 		} else if (ret < 0)
6155 			return ret;
6156 		level = wc->level;
6157 	}
6158 	return 0;
6159 }
6160 
6161 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6162 				 struct btrfs_root *root,
6163 				 struct btrfs_path *path,
6164 				 struct walk_control *wc, int max_level)
6165 {
6166 	int level = wc->level;
6167 	int ret;
6168 
6169 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6170 	while (level < max_level && path->nodes[level]) {
6171 		wc->level = level;
6172 		if (path->slots[level] + 1 <
6173 		    btrfs_header_nritems(path->nodes[level])) {
6174 			path->slots[level]++;
6175 			return 0;
6176 		} else {
6177 			ret = walk_up_proc(trans, root, path, wc);
6178 			if (ret > 0)
6179 				return 0;
6180 
6181 			if (path->locks[level]) {
6182 				btrfs_tree_unlock(path->nodes[level]);
6183 				path->locks[level] = 0;
6184 			}
6185 			free_extent_buffer(path->nodes[level]);
6186 			path->nodes[level] = NULL;
6187 			level++;
6188 		}
6189 	}
6190 	return 1;
6191 }
6192 
6193 /*
6194  * drop a subvolume tree.
6195  *
6196  * this function traverses the tree freeing any blocks that only
6197  * referenced by the tree.
6198  *
6199  * when a shared tree block is found. this function decreases its
6200  * reference count by one. if update_ref is true, this function
6201  * also make sure backrefs for the shared block and all lower level
6202  * blocks are properly updated.
6203  */
6204 int btrfs_drop_snapshot(struct btrfs_root *root,
6205 			struct btrfs_block_rsv *block_rsv, int update_ref)
6206 {
6207 	struct btrfs_path *path;
6208 	struct btrfs_trans_handle *trans;
6209 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6210 	struct btrfs_root_item *root_item = &root->root_item;
6211 	struct walk_control *wc;
6212 	struct btrfs_key key;
6213 	int err = 0;
6214 	int ret;
6215 	int level;
6216 
6217 	path = btrfs_alloc_path();
6218 	BUG_ON(!path);
6219 
6220 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6221 	BUG_ON(!wc);
6222 
6223 	trans = btrfs_start_transaction(tree_root, 0);
6224 	if (block_rsv)
6225 		trans->block_rsv = block_rsv;
6226 
6227 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6228 		level = btrfs_header_level(root->node);
6229 		path->nodes[level] = btrfs_lock_root_node(root);
6230 		btrfs_set_lock_blocking(path->nodes[level]);
6231 		path->slots[level] = 0;
6232 		path->locks[level] = 1;
6233 		memset(&wc->update_progress, 0,
6234 		       sizeof(wc->update_progress));
6235 	} else {
6236 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6237 		memcpy(&wc->update_progress, &key,
6238 		       sizeof(wc->update_progress));
6239 
6240 		level = root_item->drop_level;
6241 		BUG_ON(level == 0);
6242 		path->lowest_level = level;
6243 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6244 		path->lowest_level = 0;
6245 		if (ret < 0) {
6246 			err = ret;
6247 			goto out;
6248 		}
6249 		WARN_ON(ret > 0);
6250 
6251 		/*
6252 		 * unlock our path, this is safe because only this
6253 		 * function is allowed to delete this snapshot
6254 		 */
6255 		btrfs_unlock_up_safe(path, 0);
6256 
6257 		level = btrfs_header_level(root->node);
6258 		while (1) {
6259 			btrfs_tree_lock(path->nodes[level]);
6260 			btrfs_set_lock_blocking(path->nodes[level]);
6261 
6262 			ret = btrfs_lookup_extent_info(trans, root,
6263 						path->nodes[level]->start,
6264 						path->nodes[level]->len,
6265 						&wc->refs[level],
6266 						&wc->flags[level]);
6267 			BUG_ON(ret);
6268 			BUG_ON(wc->refs[level] == 0);
6269 
6270 			if (level == root_item->drop_level)
6271 				break;
6272 
6273 			btrfs_tree_unlock(path->nodes[level]);
6274 			WARN_ON(wc->refs[level] != 1);
6275 			level--;
6276 		}
6277 	}
6278 
6279 	wc->level = level;
6280 	wc->shared_level = -1;
6281 	wc->stage = DROP_REFERENCE;
6282 	wc->update_ref = update_ref;
6283 	wc->keep_locks = 0;
6284 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6285 
6286 	while (1) {
6287 		ret = walk_down_tree(trans, root, path, wc);
6288 		if (ret < 0) {
6289 			err = ret;
6290 			break;
6291 		}
6292 
6293 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6294 		if (ret < 0) {
6295 			err = ret;
6296 			break;
6297 		}
6298 
6299 		if (ret > 0) {
6300 			BUG_ON(wc->stage != DROP_REFERENCE);
6301 			break;
6302 		}
6303 
6304 		if (wc->stage == DROP_REFERENCE) {
6305 			level = wc->level;
6306 			btrfs_node_key(path->nodes[level],
6307 				       &root_item->drop_progress,
6308 				       path->slots[level]);
6309 			root_item->drop_level = level;
6310 		}
6311 
6312 		BUG_ON(wc->level == 0);
6313 		if (btrfs_should_end_transaction(trans, tree_root)) {
6314 			ret = btrfs_update_root(trans, tree_root,
6315 						&root->root_key,
6316 						root_item);
6317 			BUG_ON(ret);
6318 
6319 			btrfs_end_transaction_throttle(trans, tree_root);
6320 			trans = btrfs_start_transaction(tree_root, 0);
6321 			if (block_rsv)
6322 				trans->block_rsv = block_rsv;
6323 		}
6324 	}
6325 	btrfs_release_path(root, path);
6326 	BUG_ON(err);
6327 
6328 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6329 	BUG_ON(ret);
6330 
6331 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6332 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6333 					   NULL, NULL);
6334 		BUG_ON(ret < 0);
6335 		if (ret > 0) {
6336 			/* if we fail to delete the orphan item this time
6337 			 * around, it'll get picked up the next time.
6338 			 *
6339 			 * The most common failure here is just -ENOENT.
6340 			 */
6341 			btrfs_del_orphan_item(trans, tree_root,
6342 					      root->root_key.objectid);
6343 		}
6344 	}
6345 
6346 	if (root->in_radix) {
6347 		btrfs_free_fs_root(tree_root->fs_info, root);
6348 	} else {
6349 		free_extent_buffer(root->node);
6350 		free_extent_buffer(root->commit_root);
6351 		kfree(root);
6352 	}
6353 out:
6354 	btrfs_end_transaction_throttle(trans, tree_root);
6355 	kfree(wc);
6356 	btrfs_free_path(path);
6357 	return err;
6358 }
6359 
6360 /*
6361  * drop subtree rooted at tree block 'node'.
6362  *
6363  * NOTE: this function will unlock and release tree block 'node'
6364  */
6365 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6366 			struct btrfs_root *root,
6367 			struct extent_buffer *node,
6368 			struct extent_buffer *parent)
6369 {
6370 	struct btrfs_path *path;
6371 	struct walk_control *wc;
6372 	int level;
6373 	int parent_level;
6374 	int ret = 0;
6375 	int wret;
6376 
6377 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6378 
6379 	path = btrfs_alloc_path();
6380 	BUG_ON(!path);
6381 
6382 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6383 	BUG_ON(!wc);
6384 
6385 	btrfs_assert_tree_locked(parent);
6386 	parent_level = btrfs_header_level(parent);
6387 	extent_buffer_get(parent);
6388 	path->nodes[parent_level] = parent;
6389 	path->slots[parent_level] = btrfs_header_nritems(parent);
6390 
6391 	btrfs_assert_tree_locked(node);
6392 	level = btrfs_header_level(node);
6393 	path->nodes[level] = node;
6394 	path->slots[level] = 0;
6395 	path->locks[level] = 1;
6396 
6397 	wc->refs[parent_level] = 1;
6398 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6399 	wc->level = level;
6400 	wc->shared_level = -1;
6401 	wc->stage = DROP_REFERENCE;
6402 	wc->update_ref = 0;
6403 	wc->keep_locks = 1;
6404 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6405 
6406 	while (1) {
6407 		wret = walk_down_tree(trans, root, path, wc);
6408 		if (wret < 0) {
6409 			ret = wret;
6410 			break;
6411 		}
6412 
6413 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6414 		if (wret < 0)
6415 			ret = wret;
6416 		if (wret != 0)
6417 			break;
6418 	}
6419 
6420 	kfree(wc);
6421 	btrfs_free_path(path);
6422 	return ret;
6423 }
6424 
6425 #if 0
6426 static unsigned long calc_ra(unsigned long start, unsigned long last,
6427 			     unsigned long nr)
6428 {
6429 	return min(last, start + nr - 1);
6430 }
6431 
6432 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6433 					 u64 len)
6434 {
6435 	u64 page_start;
6436 	u64 page_end;
6437 	unsigned long first_index;
6438 	unsigned long last_index;
6439 	unsigned long i;
6440 	struct page *page;
6441 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6442 	struct file_ra_state *ra;
6443 	struct btrfs_ordered_extent *ordered;
6444 	unsigned int total_read = 0;
6445 	unsigned int total_dirty = 0;
6446 	int ret = 0;
6447 
6448 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
6449 
6450 	mutex_lock(&inode->i_mutex);
6451 	first_index = start >> PAGE_CACHE_SHIFT;
6452 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6453 
6454 	/* make sure the dirty trick played by the caller work */
6455 	ret = invalidate_inode_pages2_range(inode->i_mapping,
6456 					    first_index, last_index);
6457 	if (ret)
6458 		goto out_unlock;
6459 
6460 	file_ra_state_init(ra, inode->i_mapping);
6461 
6462 	for (i = first_index ; i <= last_index; i++) {
6463 		if (total_read % ra->ra_pages == 0) {
6464 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6465 				       calc_ra(i, last_index, ra->ra_pages));
6466 		}
6467 		total_read++;
6468 again:
6469 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6470 			BUG_ON(1);
6471 		page = grab_cache_page(inode->i_mapping, i);
6472 		if (!page) {
6473 			ret = -ENOMEM;
6474 			goto out_unlock;
6475 		}
6476 		if (!PageUptodate(page)) {
6477 			btrfs_readpage(NULL, page);
6478 			lock_page(page);
6479 			if (!PageUptodate(page)) {
6480 				unlock_page(page);
6481 				page_cache_release(page);
6482 				ret = -EIO;
6483 				goto out_unlock;
6484 			}
6485 		}
6486 		wait_on_page_writeback(page);
6487 
6488 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6489 		page_end = page_start + PAGE_CACHE_SIZE - 1;
6490 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6491 
6492 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
6493 		if (ordered) {
6494 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6495 			unlock_page(page);
6496 			page_cache_release(page);
6497 			btrfs_start_ordered_extent(inode, ordered, 1);
6498 			btrfs_put_ordered_extent(ordered);
6499 			goto again;
6500 		}
6501 		set_page_extent_mapped(page);
6502 
6503 		if (i == first_index)
6504 			set_extent_bits(io_tree, page_start, page_end,
6505 					EXTENT_BOUNDARY, GFP_NOFS);
6506 		btrfs_set_extent_delalloc(inode, page_start, page_end);
6507 
6508 		set_page_dirty(page);
6509 		total_dirty++;
6510 
6511 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6512 		unlock_page(page);
6513 		page_cache_release(page);
6514 	}
6515 
6516 out_unlock:
6517 	kfree(ra);
6518 	mutex_unlock(&inode->i_mutex);
6519 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6520 	return ret;
6521 }
6522 
6523 static noinline int relocate_data_extent(struct inode *reloc_inode,
6524 					 struct btrfs_key *extent_key,
6525 					 u64 offset)
6526 {
6527 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6528 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6529 	struct extent_map *em;
6530 	u64 start = extent_key->objectid - offset;
6531 	u64 end = start + extent_key->offset - 1;
6532 
6533 	em = alloc_extent_map(GFP_NOFS);
6534 	BUG_ON(!em || IS_ERR(em));
6535 
6536 	em->start = start;
6537 	em->len = extent_key->offset;
6538 	em->block_len = extent_key->offset;
6539 	em->block_start = extent_key->objectid;
6540 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6541 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6542 
6543 	/* setup extent map to cheat btrfs_readpage */
6544 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6545 	while (1) {
6546 		int ret;
6547 		write_lock(&em_tree->lock);
6548 		ret = add_extent_mapping(em_tree, em);
6549 		write_unlock(&em_tree->lock);
6550 		if (ret != -EEXIST) {
6551 			free_extent_map(em);
6552 			break;
6553 		}
6554 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6555 	}
6556 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6557 
6558 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6559 }
6560 
6561 struct btrfs_ref_path {
6562 	u64 extent_start;
6563 	u64 nodes[BTRFS_MAX_LEVEL];
6564 	u64 root_objectid;
6565 	u64 root_generation;
6566 	u64 owner_objectid;
6567 	u32 num_refs;
6568 	int lowest_level;
6569 	int current_level;
6570 	int shared_level;
6571 
6572 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6573 	u64 new_nodes[BTRFS_MAX_LEVEL];
6574 };
6575 
6576 struct disk_extent {
6577 	u64 ram_bytes;
6578 	u64 disk_bytenr;
6579 	u64 disk_num_bytes;
6580 	u64 offset;
6581 	u64 num_bytes;
6582 	u8 compression;
6583 	u8 encryption;
6584 	u16 other_encoding;
6585 };
6586 
6587 static int is_cowonly_root(u64 root_objectid)
6588 {
6589 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6590 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6591 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6592 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6593 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6594 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6595 		return 1;
6596 	return 0;
6597 }
6598 
6599 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6600 				    struct btrfs_root *extent_root,
6601 				    struct btrfs_ref_path *ref_path,
6602 				    int first_time)
6603 {
6604 	struct extent_buffer *leaf;
6605 	struct btrfs_path *path;
6606 	struct btrfs_extent_ref *ref;
6607 	struct btrfs_key key;
6608 	struct btrfs_key found_key;
6609 	u64 bytenr;
6610 	u32 nritems;
6611 	int level;
6612 	int ret = 1;
6613 
6614 	path = btrfs_alloc_path();
6615 	if (!path)
6616 		return -ENOMEM;
6617 
6618 	if (first_time) {
6619 		ref_path->lowest_level = -1;
6620 		ref_path->current_level = -1;
6621 		ref_path->shared_level = -1;
6622 		goto walk_up;
6623 	}
6624 walk_down:
6625 	level = ref_path->current_level - 1;
6626 	while (level >= -1) {
6627 		u64 parent;
6628 		if (level < ref_path->lowest_level)
6629 			break;
6630 
6631 		if (level >= 0)
6632 			bytenr = ref_path->nodes[level];
6633 		else
6634 			bytenr = ref_path->extent_start;
6635 		BUG_ON(bytenr == 0);
6636 
6637 		parent = ref_path->nodes[level + 1];
6638 		ref_path->nodes[level + 1] = 0;
6639 		ref_path->current_level = level;
6640 		BUG_ON(parent == 0);
6641 
6642 		key.objectid = bytenr;
6643 		key.offset = parent + 1;
6644 		key.type = BTRFS_EXTENT_REF_KEY;
6645 
6646 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6647 		if (ret < 0)
6648 			goto out;
6649 		BUG_ON(ret == 0);
6650 
6651 		leaf = path->nodes[0];
6652 		nritems = btrfs_header_nritems(leaf);
6653 		if (path->slots[0] >= nritems) {
6654 			ret = btrfs_next_leaf(extent_root, path);
6655 			if (ret < 0)
6656 				goto out;
6657 			if (ret > 0)
6658 				goto next;
6659 			leaf = path->nodes[0];
6660 		}
6661 
6662 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6663 		if (found_key.objectid == bytenr &&
6664 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
6665 			if (level < ref_path->shared_level)
6666 				ref_path->shared_level = level;
6667 			goto found;
6668 		}
6669 next:
6670 		level--;
6671 		btrfs_release_path(extent_root, path);
6672 		cond_resched();
6673 	}
6674 	/* reached lowest level */
6675 	ret = 1;
6676 	goto out;
6677 walk_up:
6678 	level = ref_path->current_level;
6679 	while (level < BTRFS_MAX_LEVEL - 1) {
6680 		u64 ref_objectid;
6681 
6682 		if (level >= 0)
6683 			bytenr = ref_path->nodes[level];
6684 		else
6685 			bytenr = ref_path->extent_start;
6686 
6687 		BUG_ON(bytenr == 0);
6688 
6689 		key.objectid = bytenr;
6690 		key.offset = 0;
6691 		key.type = BTRFS_EXTENT_REF_KEY;
6692 
6693 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6694 		if (ret < 0)
6695 			goto out;
6696 
6697 		leaf = path->nodes[0];
6698 		nritems = btrfs_header_nritems(leaf);
6699 		if (path->slots[0] >= nritems) {
6700 			ret = btrfs_next_leaf(extent_root, path);
6701 			if (ret < 0)
6702 				goto out;
6703 			if (ret > 0) {
6704 				/* the extent was freed by someone */
6705 				if (ref_path->lowest_level == level)
6706 					goto out;
6707 				btrfs_release_path(extent_root, path);
6708 				goto walk_down;
6709 			}
6710 			leaf = path->nodes[0];
6711 		}
6712 
6713 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6714 		if (found_key.objectid != bytenr ||
6715 				found_key.type != BTRFS_EXTENT_REF_KEY) {
6716 			/* the extent was freed by someone */
6717 			if (ref_path->lowest_level == level) {
6718 				ret = 1;
6719 				goto out;
6720 			}
6721 			btrfs_release_path(extent_root, path);
6722 			goto walk_down;
6723 		}
6724 found:
6725 		ref = btrfs_item_ptr(leaf, path->slots[0],
6726 				struct btrfs_extent_ref);
6727 		ref_objectid = btrfs_ref_objectid(leaf, ref);
6728 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6729 			if (first_time) {
6730 				level = (int)ref_objectid;
6731 				BUG_ON(level >= BTRFS_MAX_LEVEL);
6732 				ref_path->lowest_level = level;
6733 				ref_path->current_level = level;
6734 				ref_path->nodes[level] = bytenr;
6735 			} else {
6736 				WARN_ON(ref_objectid != level);
6737 			}
6738 		} else {
6739 			WARN_ON(level != -1);
6740 		}
6741 		first_time = 0;
6742 
6743 		if (ref_path->lowest_level == level) {
6744 			ref_path->owner_objectid = ref_objectid;
6745 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6746 		}
6747 
6748 		/*
6749 		 * the block is tree root or the block isn't in reference
6750 		 * counted tree.
6751 		 */
6752 		if (found_key.objectid == found_key.offset ||
6753 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6754 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6755 			ref_path->root_generation =
6756 				btrfs_ref_generation(leaf, ref);
6757 			if (level < 0) {
6758 				/* special reference from the tree log */
6759 				ref_path->nodes[0] = found_key.offset;
6760 				ref_path->current_level = 0;
6761 			}
6762 			ret = 0;
6763 			goto out;
6764 		}
6765 
6766 		level++;
6767 		BUG_ON(ref_path->nodes[level] != 0);
6768 		ref_path->nodes[level] = found_key.offset;
6769 		ref_path->current_level = level;
6770 
6771 		/*
6772 		 * the reference was created in the running transaction,
6773 		 * no need to continue walking up.
6774 		 */
6775 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6776 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6777 			ref_path->root_generation =
6778 				btrfs_ref_generation(leaf, ref);
6779 			ret = 0;
6780 			goto out;
6781 		}
6782 
6783 		btrfs_release_path(extent_root, path);
6784 		cond_resched();
6785 	}
6786 	/* reached max tree level, but no tree root found. */
6787 	BUG();
6788 out:
6789 	btrfs_free_path(path);
6790 	return ret;
6791 }
6792 
6793 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6794 				struct btrfs_root *extent_root,
6795 				struct btrfs_ref_path *ref_path,
6796 				u64 extent_start)
6797 {
6798 	memset(ref_path, 0, sizeof(*ref_path));
6799 	ref_path->extent_start = extent_start;
6800 
6801 	return __next_ref_path(trans, extent_root, ref_path, 1);
6802 }
6803 
6804 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6805 			       struct btrfs_root *extent_root,
6806 			       struct btrfs_ref_path *ref_path)
6807 {
6808 	return __next_ref_path(trans, extent_root, ref_path, 0);
6809 }
6810 
6811 static noinline int get_new_locations(struct inode *reloc_inode,
6812 				      struct btrfs_key *extent_key,
6813 				      u64 offset, int no_fragment,
6814 				      struct disk_extent **extents,
6815 				      int *nr_extents)
6816 {
6817 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6818 	struct btrfs_path *path;
6819 	struct btrfs_file_extent_item *fi;
6820 	struct extent_buffer *leaf;
6821 	struct disk_extent *exts = *extents;
6822 	struct btrfs_key found_key;
6823 	u64 cur_pos;
6824 	u64 last_byte;
6825 	u32 nritems;
6826 	int nr = 0;
6827 	int max = *nr_extents;
6828 	int ret;
6829 
6830 	WARN_ON(!no_fragment && *extents);
6831 	if (!exts) {
6832 		max = 1;
6833 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6834 		if (!exts)
6835 			return -ENOMEM;
6836 	}
6837 
6838 	path = btrfs_alloc_path();
6839 	BUG_ON(!path);
6840 
6841 	cur_pos = extent_key->objectid - offset;
6842 	last_byte = extent_key->objectid + extent_key->offset;
6843 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6844 				       cur_pos, 0);
6845 	if (ret < 0)
6846 		goto out;
6847 	if (ret > 0) {
6848 		ret = -ENOENT;
6849 		goto out;
6850 	}
6851 
6852 	while (1) {
6853 		leaf = path->nodes[0];
6854 		nritems = btrfs_header_nritems(leaf);
6855 		if (path->slots[0] >= nritems) {
6856 			ret = btrfs_next_leaf(root, path);
6857 			if (ret < 0)
6858 				goto out;
6859 			if (ret > 0)
6860 				break;
6861 			leaf = path->nodes[0];
6862 		}
6863 
6864 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 		if (found_key.offset != cur_pos ||
6866 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
6867 		    found_key.objectid != reloc_inode->i_ino)
6868 			break;
6869 
6870 		fi = btrfs_item_ptr(leaf, path->slots[0],
6871 				    struct btrfs_file_extent_item);
6872 		if (btrfs_file_extent_type(leaf, fi) !=
6873 		    BTRFS_FILE_EXTENT_REG ||
6874 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6875 			break;
6876 
6877 		if (nr == max) {
6878 			struct disk_extent *old = exts;
6879 			max *= 2;
6880 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6881 			memcpy(exts, old, sizeof(*exts) * nr);
6882 			if (old != *extents)
6883 				kfree(old);
6884 		}
6885 
6886 		exts[nr].disk_bytenr =
6887 			btrfs_file_extent_disk_bytenr(leaf, fi);
6888 		exts[nr].disk_num_bytes =
6889 			btrfs_file_extent_disk_num_bytes(leaf, fi);
6890 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6891 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6892 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6893 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6894 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6895 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6896 									   fi);
6897 		BUG_ON(exts[nr].offset > 0);
6898 		BUG_ON(exts[nr].compression || exts[nr].encryption);
6899 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6900 
6901 		cur_pos += exts[nr].num_bytes;
6902 		nr++;
6903 
6904 		if (cur_pos + offset >= last_byte)
6905 			break;
6906 
6907 		if (no_fragment) {
6908 			ret = 1;
6909 			goto out;
6910 		}
6911 		path->slots[0]++;
6912 	}
6913 
6914 	BUG_ON(cur_pos + offset > last_byte);
6915 	if (cur_pos + offset < last_byte) {
6916 		ret = -ENOENT;
6917 		goto out;
6918 	}
6919 	ret = 0;
6920 out:
6921 	btrfs_free_path(path);
6922 	if (ret) {
6923 		if (exts != *extents)
6924 			kfree(exts);
6925 	} else {
6926 		*extents = exts;
6927 		*nr_extents = nr;
6928 	}
6929 	return ret;
6930 }
6931 
6932 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6933 					struct btrfs_root *root,
6934 					struct btrfs_path *path,
6935 					struct btrfs_key *extent_key,
6936 					struct btrfs_key *leaf_key,
6937 					struct btrfs_ref_path *ref_path,
6938 					struct disk_extent *new_extents,
6939 					int nr_extents)
6940 {
6941 	struct extent_buffer *leaf;
6942 	struct btrfs_file_extent_item *fi;
6943 	struct inode *inode = NULL;
6944 	struct btrfs_key key;
6945 	u64 lock_start = 0;
6946 	u64 lock_end = 0;
6947 	u64 num_bytes;
6948 	u64 ext_offset;
6949 	u64 search_end = (u64)-1;
6950 	u32 nritems;
6951 	int nr_scaned = 0;
6952 	int extent_locked = 0;
6953 	int extent_type;
6954 	int ret;
6955 
6956 	memcpy(&key, leaf_key, sizeof(key));
6957 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6958 		if (key.objectid < ref_path->owner_objectid ||
6959 		    (key.objectid == ref_path->owner_objectid &&
6960 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
6961 			key.objectid = ref_path->owner_objectid;
6962 			key.type = BTRFS_EXTENT_DATA_KEY;
6963 			key.offset = 0;
6964 		}
6965 	}
6966 
6967 	while (1) {
6968 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6969 		if (ret < 0)
6970 			goto out;
6971 
6972 		leaf = path->nodes[0];
6973 		nritems = btrfs_header_nritems(leaf);
6974 next:
6975 		if (extent_locked && ret > 0) {
6976 			/*
6977 			 * the file extent item was modified by someone
6978 			 * before the extent got locked.
6979 			 */
6980 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6981 				      lock_end, GFP_NOFS);
6982 			extent_locked = 0;
6983 		}
6984 
6985 		if (path->slots[0] >= nritems) {
6986 			if (++nr_scaned > 2)
6987 				break;
6988 
6989 			BUG_ON(extent_locked);
6990 			ret = btrfs_next_leaf(root, path);
6991 			if (ret < 0)
6992 				goto out;
6993 			if (ret > 0)
6994 				break;
6995 			leaf = path->nodes[0];
6996 			nritems = btrfs_header_nritems(leaf);
6997 		}
6998 
6999 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7000 
7001 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7002 			if ((key.objectid > ref_path->owner_objectid) ||
7003 			    (key.objectid == ref_path->owner_objectid &&
7004 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
7005 			    key.offset >= search_end)
7006 				break;
7007 		}
7008 
7009 		if (inode && key.objectid != inode->i_ino) {
7010 			BUG_ON(extent_locked);
7011 			btrfs_release_path(root, path);
7012 			mutex_unlock(&inode->i_mutex);
7013 			iput(inode);
7014 			inode = NULL;
7015 			continue;
7016 		}
7017 
7018 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
7019 			path->slots[0]++;
7020 			ret = 1;
7021 			goto next;
7022 		}
7023 		fi = btrfs_item_ptr(leaf, path->slots[0],
7024 				    struct btrfs_file_extent_item);
7025 		extent_type = btrfs_file_extent_type(leaf, fi);
7026 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7027 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7028 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7029 		     extent_key->objectid)) {
7030 			path->slots[0]++;
7031 			ret = 1;
7032 			goto next;
7033 		}
7034 
7035 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7036 		ext_offset = btrfs_file_extent_offset(leaf, fi);
7037 
7038 		if (search_end == (u64)-1) {
7039 			search_end = key.offset - ext_offset +
7040 				btrfs_file_extent_ram_bytes(leaf, fi);
7041 		}
7042 
7043 		if (!extent_locked) {
7044 			lock_start = key.offset;
7045 			lock_end = lock_start + num_bytes - 1;
7046 		} else {
7047 			if (lock_start > key.offset ||
7048 			    lock_end + 1 < key.offset + num_bytes) {
7049 				unlock_extent(&BTRFS_I(inode)->io_tree,
7050 					      lock_start, lock_end, GFP_NOFS);
7051 				extent_locked = 0;
7052 			}
7053 		}
7054 
7055 		if (!inode) {
7056 			btrfs_release_path(root, path);
7057 
7058 			inode = btrfs_iget_locked(root->fs_info->sb,
7059 						  key.objectid, root);
7060 			if (inode->i_state & I_NEW) {
7061 				BTRFS_I(inode)->root = root;
7062 				BTRFS_I(inode)->location.objectid =
7063 					key.objectid;
7064 				BTRFS_I(inode)->location.type =
7065 					BTRFS_INODE_ITEM_KEY;
7066 				BTRFS_I(inode)->location.offset = 0;
7067 				btrfs_read_locked_inode(inode);
7068 				unlock_new_inode(inode);
7069 			}
7070 			/*
7071 			 * some code call btrfs_commit_transaction while
7072 			 * holding the i_mutex, so we can't use mutex_lock
7073 			 * here.
7074 			 */
7075 			if (is_bad_inode(inode) ||
7076 			    !mutex_trylock(&inode->i_mutex)) {
7077 				iput(inode);
7078 				inode = NULL;
7079 				key.offset = (u64)-1;
7080 				goto skip;
7081 			}
7082 		}
7083 
7084 		if (!extent_locked) {
7085 			struct btrfs_ordered_extent *ordered;
7086 
7087 			btrfs_release_path(root, path);
7088 
7089 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7090 				    lock_end, GFP_NOFS);
7091 			ordered = btrfs_lookup_first_ordered_extent(inode,
7092 								    lock_end);
7093 			if (ordered &&
7094 			    ordered->file_offset <= lock_end &&
7095 			    ordered->file_offset + ordered->len > lock_start) {
7096 				unlock_extent(&BTRFS_I(inode)->io_tree,
7097 					      lock_start, lock_end, GFP_NOFS);
7098 				btrfs_start_ordered_extent(inode, ordered, 1);
7099 				btrfs_put_ordered_extent(ordered);
7100 				key.offset += num_bytes;
7101 				goto skip;
7102 			}
7103 			if (ordered)
7104 				btrfs_put_ordered_extent(ordered);
7105 
7106 			extent_locked = 1;
7107 			continue;
7108 		}
7109 
7110 		if (nr_extents == 1) {
7111 			/* update extent pointer in place */
7112 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
7113 						new_extents[0].disk_bytenr);
7114 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7115 						new_extents[0].disk_num_bytes);
7116 			btrfs_mark_buffer_dirty(leaf);
7117 
7118 			btrfs_drop_extent_cache(inode, key.offset,
7119 						key.offset + num_bytes - 1, 0);
7120 
7121 			ret = btrfs_inc_extent_ref(trans, root,
7122 						new_extents[0].disk_bytenr,
7123 						new_extents[0].disk_num_bytes,
7124 						leaf->start,
7125 						root->root_key.objectid,
7126 						trans->transid,
7127 						key.objectid);
7128 			BUG_ON(ret);
7129 
7130 			ret = btrfs_free_extent(trans, root,
7131 						extent_key->objectid,
7132 						extent_key->offset,
7133 						leaf->start,
7134 						btrfs_header_owner(leaf),
7135 						btrfs_header_generation(leaf),
7136 						key.objectid, 0);
7137 			BUG_ON(ret);
7138 
7139 			btrfs_release_path(root, path);
7140 			key.offset += num_bytes;
7141 		} else {
7142 			BUG_ON(1);
7143 #if 0
7144 			u64 alloc_hint;
7145 			u64 extent_len;
7146 			int i;
7147 			/*
7148 			 * drop old extent pointer at first, then insert the
7149 			 * new pointers one bye one
7150 			 */
7151 			btrfs_release_path(root, path);
7152 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
7153 						 key.offset + num_bytes,
7154 						 key.offset, &alloc_hint);
7155 			BUG_ON(ret);
7156 
7157 			for (i = 0; i < nr_extents; i++) {
7158 				if (ext_offset >= new_extents[i].num_bytes) {
7159 					ext_offset -= new_extents[i].num_bytes;
7160 					continue;
7161 				}
7162 				extent_len = min(new_extents[i].num_bytes -
7163 						 ext_offset, num_bytes);
7164 
7165 				ret = btrfs_insert_empty_item(trans, root,
7166 							      path, &key,
7167 							      sizeof(*fi));
7168 				BUG_ON(ret);
7169 
7170 				leaf = path->nodes[0];
7171 				fi = btrfs_item_ptr(leaf, path->slots[0],
7172 						struct btrfs_file_extent_item);
7173 				btrfs_set_file_extent_generation(leaf, fi,
7174 							trans->transid);
7175 				btrfs_set_file_extent_type(leaf, fi,
7176 							BTRFS_FILE_EXTENT_REG);
7177 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
7178 						new_extents[i].disk_bytenr);
7179 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7180 						new_extents[i].disk_num_bytes);
7181 				btrfs_set_file_extent_ram_bytes(leaf, fi,
7182 						new_extents[i].ram_bytes);
7183 
7184 				btrfs_set_file_extent_compression(leaf, fi,
7185 						new_extents[i].compression);
7186 				btrfs_set_file_extent_encryption(leaf, fi,
7187 						new_extents[i].encryption);
7188 				btrfs_set_file_extent_other_encoding(leaf, fi,
7189 						new_extents[i].other_encoding);
7190 
7191 				btrfs_set_file_extent_num_bytes(leaf, fi,
7192 							extent_len);
7193 				ext_offset += new_extents[i].offset;
7194 				btrfs_set_file_extent_offset(leaf, fi,
7195 							ext_offset);
7196 				btrfs_mark_buffer_dirty(leaf);
7197 
7198 				btrfs_drop_extent_cache(inode, key.offset,
7199 						key.offset + extent_len - 1, 0);
7200 
7201 				ret = btrfs_inc_extent_ref(trans, root,
7202 						new_extents[i].disk_bytenr,
7203 						new_extents[i].disk_num_bytes,
7204 						leaf->start,
7205 						root->root_key.objectid,
7206 						trans->transid, key.objectid);
7207 				BUG_ON(ret);
7208 				btrfs_release_path(root, path);
7209 
7210 				inode_add_bytes(inode, extent_len);
7211 
7212 				ext_offset = 0;
7213 				num_bytes -= extent_len;
7214 				key.offset += extent_len;
7215 
7216 				if (num_bytes == 0)
7217 					break;
7218 			}
7219 			BUG_ON(i >= nr_extents);
7220 #endif
7221 		}
7222 
7223 		if (extent_locked) {
7224 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7225 				      lock_end, GFP_NOFS);
7226 			extent_locked = 0;
7227 		}
7228 skip:
7229 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7230 		    key.offset >= search_end)
7231 			break;
7232 
7233 		cond_resched();
7234 	}
7235 	ret = 0;
7236 out:
7237 	btrfs_release_path(root, path);
7238 	if (inode) {
7239 		mutex_unlock(&inode->i_mutex);
7240 		if (extent_locked) {
7241 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7242 				      lock_end, GFP_NOFS);
7243 		}
7244 		iput(inode);
7245 	}
7246 	return ret;
7247 }
7248 
7249 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7250 			       struct btrfs_root *root,
7251 			       struct extent_buffer *buf, u64 orig_start)
7252 {
7253 	int level;
7254 	int ret;
7255 
7256 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
7257 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7258 
7259 	level = btrfs_header_level(buf);
7260 	if (level == 0) {
7261 		struct btrfs_leaf_ref *ref;
7262 		struct btrfs_leaf_ref *orig_ref;
7263 
7264 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7265 		if (!orig_ref)
7266 			return -ENOENT;
7267 
7268 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7269 		if (!ref) {
7270 			btrfs_free_leaf_ref(root, orig_ref);
7271 			return -ENOMEM;
7272 		}
7273 
7274 		ref->nritems = orig_ref->nritems;
7275 		memcpy(ref->extents, orig_ref->extents,
7276 			sizeof(ref->extents[0]) * ref->nritems);
7277 
7278 		btrfs_free_leaf_ref(root, orig_ref);
7279 
7280 		ref->root_gen = trans->transid;
7281 		ref->bytenr = buf->start;
7282 		ref->owner = btrfs_header_owner(buf);
7283 		ref->generation = btrfs_header_generation(buf);
7284 
7285 		ret = btrfs_add_leaf_ref(root, ref, 0);
7286 		WARN_ON(ret);
7287 		btrfs_free_leaf_ref(root, ref);
7288 	}
7289 	return 0;
7290 }
7291 
7292 static noinline int invalidate_extent_cache(struct btrfs_root *root,
7293 					struct extent_buffer *leaf,
7294 					struct btrfs_block_group_cache *group,
7295 					struct btrfs_root *target_root)
7296 {
7297 	struct btrfs_key key;
7298 	struct inode *inode = NULL;
7299 	struct btrfs_file_extent_item *fi;
7300 	struct extent_state *cached_state = NULL;
7301 	u64 num_bytes;
7302 	u64 skip_objectid = 0;
7303 	u32 nritems;
7304 	u32 i;
7305 
7306 	nritems = btrfs_header_nritems(leaf);
7307 	for (i = 0; i < nritems; i++) {
7308 		btrfs_item_key_to_cpu(leaf, &key, i);
7309 		if (key.objectid == skip_objectid ||
7310 		    key.type != BTRFS_EXTENT_DATA_KEY)
7311 			continue;
7312 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7313 		if (btrfs_file_extent_type(leaf, fi) ==
7314 		    BTRFS_FILE_EXTENT_INLINE)
7315 			continue;
7316 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7317 			continue;
7318 		if (!inode || inode->i_ino != key.objectid) {
7319 			iput(inode);
7320 			inode = btrfs_ilookup(target_root->fs_info->sb,
7321 					      key.objectid, target_root, 1);
7322 		}
7323 		if (!inode) {
7324 			skip_objectid = key.objectid;
7325 			continue;
7326 		}
7327 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7328 
7329 		lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7330 				 key.offset + num_bytes - 1, 0, &cached_state,
7331 				 GFP_NOFS);
7332 		btrfs_drop_extent_cache(inode, key.offset,
7333 					key.offset + num_bytes - 1, 1);
7334 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7335 				     key.offset + num_bytes - 1, &cached_state,
7336 				     GFP_NOFS);
7337 		cond_resched();
7338 	}
7339 	iput(inode);
7340 	return 0;
7341 }
7342 
7343 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7344 					struct btrfs_root *root,
7345 					struct extent_buffer *leaf,
7346 					struct btrfs_block_group_cache *group,
7347 					struct inode *reloc_inode)
7348 {
7349 	struct btrfs_key key;
7350 	struct btrfs_key extent_key;
7351 	struct btrfs_file_extent_item *fi;
7352 	struct btrfs_leaf_ref *ref;
7353 	struct disk_extent *new_extent;
7354 	u64 bytenr;
7355 	u64 num_bytes;
7356 	u32 nritems;
7357 	u32 i;
7358 	int ext_index;
7359 	int nr_extent;
7360 	int ret;
7361 
7362 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7363 	BUG_ON(!new_extent);
7364 
7365 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
7366 	BUG_ON(!ref);
7367 
7368 	ext_index = -1;
7369 	nritems = btrfs_header_nritems(leaf);
7370 	for (i = 0; i < nritems; i++) {
7371 		btrfs_item_key_to_cpu(leaf, &key, i);
7372 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7373 			continue;
7374 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7375 		if (btrfs_file_extent_type(leaf, fi) ==
7376 		    BTRFS_FILE_EXTENT_INLINE)
7377 			continue;
7378 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7379 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7380 		if (bytenr == 0)
7381 			continue;
7382 
7383 		ext_index++;
7384 		if (bytenr >= group->key.objectid + group->key.offset ||
7385 		    bytenr + num_bytes <= group->key.objectid)
7386 			continue;
7387 
7388 		extent_key.objectid = bytenr;
7389 		extent_key.offset = num_bytes;
7390 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7391 		nr_extent = 1;
7392 		ret = get_new_locations(reloc_inode, &extent_key,
7393 					group->key.objectid, 1,
7394 					&new_extent, &nr_extent);
7395 		if (ret > 0)
7396 			continue;
7397 		BUG_ON(ret < 0);
7398 
7399 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7400 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7401 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7402 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7403 
7404 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
7405 						new_extent->disk_bytenr);
7406 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7407 						new_extent->disk_num_bytes);
7408 		btrfs_mark_buffer_dirty(leaf);
7409 
7410 		ret = btrfs_inc_extent_ref(trans, root,
7411 					new_extent->disk_bytenr,
7412 					new_extent->disk_num_bytes,
7413 					leaf->start,
7414 					root->root_key.objectid,
7415 					trans->transid, key.objectid);
7416 		BUG_ON(ret);
7417 
7418 		ret = btrfs_free_extent(trans, root,
7419 					bytenr, num_bytes, leaf->start,
7420 					btrfs_header_owner(leaf),
7421 					btrfs_header_generation(leaf),
7422 					key.objectid, 0);
7423 		BUG_ON(ret);
7424 		cond_resched();
7425 	}
7426 	kfree(new_extent);
7427 	BUG_ON(ext_index + 1 != ref->nritems);
7428 	btrfs_free_leaf_ref(root, ref);
7429 	return 0;
7430 }
7431 
7432 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7433 			  struct btrfs_root *root)
7434 {
7435 	struct btrfs_root *reloc_root;
7436 	int ret;
7437 
7438 	if (root->reloc_root) {
7439 		reloc_root = root->reloc_root;
7440 		root->reloc_root = NULL;
7441 		list_add(&reloc_root->dead_list,
7442 			 &root->fs_info->dead_reloc_roots);
7443 
7444 		btrfs_set_root_bytenr(&reloc_root->root_item,
7445 				      reloc_root->node->start);
7446 		btrfs_set_root_level(&root->root_item,
7447 				     btrfs_header_level(reloc_root->node));
7448 		memset(&reloc_root->root_item.drop_progress, 0,
7449 			sizeof(struct btrfs_disk_key));
7450 		reloc_root->root_item.drop_level = 0;
7451 
7452 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
7453 					&reloc_root->root_key,
7454 					&reloc_root->root_item);
7455 		BUG_ON(ret);
7456 	}
7457 	return 0;
7458 }
7459 
7460 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7461 {
7462 	struct btrfs_trans_handle *trans;
7463 	struct btrfs_root *reloc_root;
7464 	struct btrfs_root *prev_root = NULL;
7465 	struct list_head dead_roots;
7466 	int ret;
7467 	unsigned long nr;
7468 
7469 	INIT_LIST_HEAD(&dead_roots);
7470 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7471 
7472 	while (!list_empty(&dead_roots)) {
7473 		reloc_root = list_entry(dead_roots.prev,
7474 					struct btrfs_root, dead_list);
7475 		list_del_init(&reloc_root->dead_list);
7476 
7477 		BUG_ON(reloc_root->commit_root != NULL);
7478 		while (1) {
7479 			trans = btrfs_join_transaction(root, 1);
7480 			BUG_ON(!trans);
7481 
7482 			mutex_lock(&root->fs_info->drop_mutex);
7483 			ret = btrfs_drop_snapshot(trans, reloc_root);
7484 			if (ret != -EAGAIN)
7485 				break;
7486 			mutex_unlock(&root->fs_info->drop_mutex);
7487 
7488 			nr = trans->blocks_used;
7489 			ret = btrfs_end_transaction(trans, root);
7490 			BUG_ON(ret);
7491 			btrfs_btree_balance_dirty(root, nr);
7492 		}
7493 
7494 		free_extent_buffer(reloc_root->node);
7495 
7496 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
7497 				     &reloc_root->root_key);
7498 		BUG_ON(ret);
7499 		mutex_unlock(&root->fs_info->drop_mutex);
7500 
7501 		nr = trans->blocks_used;
7502 		ret = btrfs_end_transaction(trans, root);
7503 		BUG_ON(ret);
7504 		btrfs_btree_balance_dirty(root, nr);
7505 
7506 		kfree(prev_root);
7507 		prev_root = reloc_root;
7508 	}
7509 	if (prev_root) {
7510 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7511 		kfree(prev_root);
7512 	}
7513 	return 0;
7514 }
7515 
7516 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7517 {
7518 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7519 	return 0;
7520 }
7521 
7522 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7523 {
7524 	struct btrfs_root *reloc_root;
7525 	struct btrfs_trans_handle *trans;
7526 	struct btrfs_key location;
7527 	int found;
7528 	int ret;
7529 
7530 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7531 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7532 	BUG_ON(ret);
7533 	found = !list_empty(&root->fs_info->dead_reloc_roots);
7534 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7535 
7536 	if (found) {
7537 		trans = btrfs_start_transaction(root, 1);
7538 		BUG_ON(!trans);
7539 		ret = btrfs_commit_transaction(trans, root);
7540 		BUG_ON(ret);
7541 	}
7542 
7543 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7544 	location.offset = (u64)-1;
7545 	location.type = BTRFS_ROOT_ITEM_KEY;
7546 
7547 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7548 	BUG_ON(!reloc_root);
7549 	btrfs_orphan_cleanup(reloc_root);
7550 	return 0;
7551 }
7552 
7553 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7554 				    struct btrfs_root *root)
7555 {
7556 	struct btrfs_root *reloc_root;
7557 	struct extent_buffer *eb;
7558 	struct btrfs_root_item *root_item;
7559 	struct btrfs_key root_key;
7560 	int ret;
7561 
7562 	BUG_ON(!root->ref_cows);
7563 	if (root->reloc_root)
7564 		return 0;
7565 
7566 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7567 	BUG_ON(!root_item);
7568 
7569 	ret = btrfs_copy_root(trans, root, root->commit_root,
7570 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
7571 	BUG_ON(ret);
7572 
7573 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7574 	root_key.offset = root->root_key.objectid;
7575 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7576 
7577 	memcpy(root_item, &root->root_item, sizeof(root_item));
7578 	btrfs_set_root_refs(root_item, 0);
7579 	btrfs_set_root_bytenr(root_item, eb->start);
7580 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
7581 	btrfs_set_root_generation(root_item, trans->transid);
7582 
7583 	btrfs_tree_unlock(eb);
7584 	free_extent_buffer(eb);
7585 
7586 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7587 				&root_key, root_item);
7588 	BUG_ON(ret);
7589 	kfree(root_item);
7590 
7591 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7592 						 &root_key);
7593 	BUG_ON(!reloc_root);
7594 	reloc_root->last_trans = trans->transid;
7595 	reloc_root->commit_root = NULL;
7596 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7597 
7598 	root->reloc_root = reloc_root;
7599 	return 0;
7600 }
7601 
7602 /*
7603  * Core function of space balance.
7604  *
7605  * The idea is using reloc trees to relocate tree blocks in reference
7606  * counted roots. There is one reloc tree for each subvol, and all
7607  * reloc trees share same root key objectid. Reloc trees are snapshots
7608  * of the latest committed roots of subvols (root->commit_root).
7609  *
7610  * To relocate a tree block referenced by a subvol, there are two steps.
7611  * COW the block through subvol's reloc tree, then update block pointer
7612  * in the subvol to point to the new block. Since all reloc trees share
7613  * same root key objectid, doing special handing for tree blocks owned
7614  * by them is easy. Once a tree block has been COWed in one reloc tree,
7615  * we can use the resulting new block directly when the same block is
7616  * required to COW again through other reloc trees. By this way, relocated
7617  * tree blocks are shared between reloc trees, so they are also shared
7618  * between subvols.
7619  */
7620 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7621 				      struct btrfs_root *root,
7622 				      struct btrfs_path *path,
7623 				      struct btrfs_key *first_key,
7624 				      struct btrfs_ref_path *ref_path,
7625 				      struct btrfs_block_group_cache *group,
7626 				      struct inode *reloc_inode)
7627 {
7628 	struct btrfs_root *reloc_root;
7629 	struct extent_buffer *eb = NULL;
7630 	struct btrfs_key *keys;
7631 	u64 *nodes;
7632 	int level;
7633 	int shared_level;
7634 	int lowest_level = 0;
7635 	int ret;
7636 
7637 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7638 		lowest_level = ref_path->owner_objectid;
7639 
7640 	if (!root->ref_cows) {
7641 		path->lowest_level = lowest_level;
7642 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7643 		BUG_ON(ret < 0);
7644 		path->lowest_level = 0;
7645 		btrfs_release_path(root, path);
7646 		return 0;
7647 	}
7648 
7649 	mutex_lock(&root->fs_info->tree_reloc_mutex);
7650 	ret = init_reloc_tree(trans, root);
7651 	BUG_ON(ret);
7652 	reloc_root = root->reloc_root;
7653 
7654 	shared_level = ref_path->shared_level;
7655 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7656 
7657 	keys = ref_path->node_keys;
7658 	nodes = ref_path->new_nodes;
7659 	memset(&keys[shared_level + 1], 0,
7660 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7661 	memset(&nodes[shared_level + 1], 0,
7662 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7663 
7664 	if (nodes[lowest_level] == 0) {
7665 		path->lowest_level = lowest_level;
7666 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7667 					0, 1);
7668 		BUG_ON(ret);
7669 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7670 			eb = path->nodes[level];
7671 			if (!eb || eb == reloc_root->node)
7672 				break;
7673 			nodes[level] = eb->start;
7674 			if (level == 0)
7675 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
7676 			else
7677 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
7678 		}
7679 		if (nodes[0] &&
7680 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7681 			eb = path->nodes[0];
7682 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
7683 						      group, reloc_inode);
7684 			BUG_ON(ret);
7685 		}
7686 		btrfs_release_path(reloc_root, path);
7687 	} else {
7688 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7689 				       lowest_level);
7690 		BUG_ON(ret);
7691 	}
7692 
7693 	/*
7694 	 * replace tree blocks in the fs tree with tree blocks in
7695 	 * the reloc tree.
7696 	 */
7697 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7698 	BUG_ON(ret < 0);
7699 
7700 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7701 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7702 					0, 0);
7703 		BUG_ON(ret);
7704 		extent_buffer_get(path->nodes[0]);
7705 		eb = path->nodes[0];
7706 		btrfs_release_path(reloc_root, path);
7707 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
7708 		BUG_ON(ret);
7709 		free_extent_buffer(eb);
7710 	}
7711 
7712 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
7713 	path->lowest_level = 0;
7714 	return 0;
7715 }
7716 
7717 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7718 					struct btrfs_root *root,
7719 					struct btrfs_path *path,
7720 					struct btrfs_key *first_key,
7721 					struct btrfs_ref_path *ref_path)
7722 {
7723 	int ret;
7724 
7725 	ret = relocate_one_path(trans, root, path, first_key,
7726 				ref_path, NULL, NULL);
7727 	BUG_ON(ret);
7728 
7729 	return 0;
7730 }
7731 
7732 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7733 				    struct btrfs_root *extent_root,
7734 				    struct btrfs_path *path,
7735 				    struct btrfs_key *extent_key)
7736 {
7737 	int ret;
7738 
7739 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7740 	if (ret)
7741 		goto out;
7742 	ret = btrfs_del_item(trans, extent_root, path);
7743 out:
7744 	btrfs_release_path(extent_root, path);
7745 	return ret;
7746 }
7747 
7748 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7749 						struct btrfs_ref_path *ref_path)
7750 {
7751 	struct btrfs_key root_key;
7752 
7753 	root_key.objectid = ref_path->root_objectid;
7754 	root_key.type = BTRFS_ROOT_ITEM_KEY;
7755 	if (is_cowonly_root(ref_path->root_objectid))
7756 		root_key.offset = 0;
7757 	else
7758 		root_key.offset = (u64)-1;
7759 
7760 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
7761 }
7762 
7763 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7764 					struct btrfs_path *path,
7765 					struct btrfs_key *extent_key,
7766 					struct btrfs_block_group_cache *group,
7767 					struct inode *reloc_inode, int pass)
7768 {
7769 	struct btrfs_trans_handle *trans;
7770 	struct btrfs_root *found_root;
7771 	struct btrfs_ref_path *ref_path = NULL;
7772 	struct disk_extent *new_extents = NULL;
7773 	int nr_extents = 0;
7774 	int loops;
7775 	int ret;
7776 	int level;
7777 	struct btrfs_key first_key;
7778 	u64 prev_block = 0;
7779 
7780 
7781 	trans = btrfs_start_transaction(extent_root, 1);
7782 	BUG_ON(!trans);
7783 
7784 	if (extent_key->objectid == 0) {
7785 		ret = del_extent_zero(trans, extent_root, path, extent_key);
7786 		goto out;
7787 	}
7788 
7789 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7790 	if (!ref_path) {
7791 		ret = -ENOMEM;
7792 		goto out;
7793 	}
7794 
7795 	for (loops = 0; ; loops++) {
7796 		if (loops == 0) {
7797 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7798 						   extent_key->objectid);
7799 		} else {
7800 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7801 		}
7802 		if (ret < 0)
7803 			goto out;
7804 		if (ret > 0)
7805 			break;
7806 
7807 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7808 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7809 			continue;
7810 
7811 		found_root = read_ref_root(extent_root->fs_info, ref_path);
7812 		BUG_ON(!found_root);
7813 		/*
7814 		 * for reference counted tree, only process reference paths
7815 		 * rooted at the latest committed root.
7816 		 */
7817 		if (found_root->ref_cows &&
7818 		    ref_path->root_generation != found_root->root_key.offset)
7819 			continue;
7820 
7821 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7822 			if (pass == 0) {
7823 				/*
7824 				 * copy data extents to new locations
7825 				 */
7826 				u64 group_start = group->key.objectid;
7827 				ret = relocate_data_extent(reloc_inode,
7828 							   extent_key,
7829 							   group_start);
7830 				if (ret < 0)
7831 					goto out;
7832 				break;
7833 			}
7834 			level = 0;
7835 		} else {
7836 			level = ref_path->owner_objectid;
7837 		}
7838 
7839 		if (prev_block != ref_path->nodes[level]) {
7840 			struct extent_buffer *eb;
7841 			u64 block_start = ref_path->nodes[level];
7842 			u64 block_size = btrfs_level_size(found_root, level);
7843 
7844 			eb = read_tree_block(found_root, block_start,
7845 					     block_size, 0);
7846 			btrfs_tree_lock(eb);
7847 			BUG_ON(level != btrfs_header_level(eb));
7848 
7849 			if (level == 0)
7850 				btrfs_item_key_to_cpu(eb, &first_key, 0);
7851 			else
7852 				btrfs_node_key_to_cpu(eb, &first_key, 0);
7853 
7854 			btrfs_tree_unlock(eb);
7855 			free_extent_buffer(eb);
7856 			prev_block = block_start;
7857 		}
7858 
7859 		mutex_lock(&extent_root->fs_info->trans_mutex);
7860 		btrfs_record_root_in_trans(found_root);
7861 		mutex_unlock(&extent_root->fs_info->trans_mutex);
7862 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7863 			/*
7864 			 * try to update data extent references while
7865 			 * keeping metadata shared between snapshots.
7866 			 */
7867 			if (pass == 1) {
7868 				ret = relocate_one_path(trans, found_root,
7869 						path, &first_key, ref_path,
7870 						group, reloc_inode);
7871 				if (ret < 0)
7872 					goto out;
7873 				continue;
7874 			}
7875 			/*
7876 			 * use fallback method to process the remaining
7877 			 * references.
7878 			 */
7879 			if (!new_extents) {
7880 				u64 group_start = group->key.objectid;
7881 				new_extents = kmalloc(sizeof(*new_extents),
7882 						      GFP_NOFS);
7883 				nr_extents = 1;
7884 				ret = get_new_locations(reloc_inode,
7885 							extent_key,
7886 							group_start, 1,
7887 							&new_extents,
7888 							&nr_extents);
7889 				if (ret)
7890 					goto out;
7891 			}
7892 			ret = replace_one_extent(trans, found_root,
7893 						path, extent_key,
7894 						&first_key, ref_path,
7895 						new_extents, nr_extents);
7896 		} else {
7897 			ret = relocate_tree_block(trans, found_root, path,
7898 						  &first_key, ref_path);
7899 		}
7900 		if (ret < 0)
7901 			goto out;
7902 	}
7903 	ret = 0;
7904 out:
7905 	btrfs_end_transaction(trans, extent_root);
7906 	kfree(new_extents);
7907 	kfree(ref_path);
7908 	return ret;
7909 }
7910 #endif
7911 
7912 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7913 {
7914 	u64 num_devices;
7915 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7916 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7917 
7918 	/*
7919 	 * we add in the count of missing devices because we want
7920 	 * to make sure that any RAID levels on a degraded FS
7921 	 * continue to be honored.
7922 	 */
7923 	num_devices = root->fs_info->fs_devices->rw_devices +
7924 		root->fs_info->fs_devices->missing_devices;
7925 
7926 	if (num_devices == 1) {
7927 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7928 		stripped = flags & ~stripped;
7929 
7930 		/* turn raid0 into single device chunks */
7931 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7932 			return stripped;
7933 
7934 		/* turn mirroring into duplication */
7935 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7936 			     BTRFS_BLOCK_GROUP_RAID10))
7937 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7938 		return flags;
7939 	} else {
7940 		/* they already had raid on here, just return */
7941 		if (flags & stripped)
7942 			return flags;
7943 
7944 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7945 		stripped = flags & ~stripped;
7946 
7947 		/* switch duplicated blocks with raid1 */
7948 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7949 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7950 
7951 		/* turn single device chunks into raid0 */
7952 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7953 	}
7954 	return flags;
7955 }
7956 
7957 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7958 {
7959 	struct btrfs_space_info *sinfo = cache->space_info;
7960 	u64 num_bytes;
7961 	int ret = -ENOSPC;
7962 
7963 	if (cache->ro)
7964 		return 0;
7965 
7966 	spin_lock(&sinfo->lock);
7967 	spin_lock(&cache->lock);
7968 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7969 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7970 
7971 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7972 	    sinfo->bytes_may_use + sinfo->bytes_readonly +
7973 	    cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
7974 		sinfo->bytes_readonly += num_bytes;
7975 		sinfo->bytes_reserved += cache->reserved_pinned;
7976 		cache->reserved_pinned = 0;
7977 		cache->ro = 1;
7978 		ret = 0;
7979 	}
7980 
7981 	spin_unlock(&cache->lock);
7982 	spin_unlock(&sinfo->lock);
7983 	return ret;
7984 }
7985 
7986 int btrfs_set_block_group_ro(struct btrfs_root *root,
7987 			     struct btrfs_block_group_cache *cache)
7988 
7989 {
7990 	struct btrfs_trans_handle *trans;
7991 	u64 alloc_flags;
7992 	int ret;
7993 
7994 	BUG_ON(cache->ro);
7995 
7996 	trans = btrfs_join_transaction(root, 1);
7997 	BUG_ON(IS_ERR(trans));
7998 
7999 	alloc_flags = update_block_group_flags(root, cache->flags);
8000 	if (alloc_flags != cache->flags)
8001 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8002 
8003 	ret = set_block_group_ro(cache);
8004 	if (!ret)
8005 		goto out;
8006 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8007 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8008 	if (ret < 0)
8009 		goto out;
8010 	ret = set_block_group_ro(cache);
8011 out:
8012 	btrfs_end_transaction(trans, root);
8013 	return ret;
8014 }
8015 
8016 /*
8017  * helper to account the unused space of all the readonly block group in the
8018  * list. takes mirrors into account.
8019  */
8020 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8021 {
8022 	struct btrfs_block_group_cache *block_group;
8023 	u64 free_bytes = 0;
8024 	int factor;
8025 
8026 	list_for_each_entry(block_group, groups_list, list) {
8027 		spin_lock(&block_group->lock);
8028 
8029 		if (!block_group->ro) {
8030 			spin_unlock(&block_group->lock);
8031 			continue;
8032 		}
8033 
8034 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8035 					  BTRFS_BLOCK_GROUP_RAID10 |
8036 					  BTRFS_BLOCK_GROUP_DUP))
8037 			factor = 2;
8038 		else
8039 			factor = 1;
8040 
8041 		free_bytes += (block_group->key.offset -
8042 			       btrfs_block_group_used(&block_group->item)) *
8043 			       factor;
8044 
8045 		spin_unlock(&block_group->lock);
8046 	}
8047 
8048 	return free_bytes;
8049 }
8050 
8051 /*
8052  * helper to account the unused space of all the readonly block group in the
8053  * space_info. takes mirrors into account.
8054  */
8055 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8056 {
8057 	int i;
8058 	u64 free_bytes = 0;
8059 
8060 	spin_lock(&sinfo->lock);
8061 
8062 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8063 		if (!list_empty(&sinfo->block_groups[i]))
8064 			free_bytes += __btrfs_get_ro_block_group_free_space(
8065 						&sinfo->block_groups[i]);
8066 
8067 	spin_unlock(&sinfo->lock);
8068 
8069 	return free_bytes;
8070 }
8071 
8072 int btrfs_set_block_group_rw(struct btrfs_root *root,
8073 			      struct btrfs_block_group_cache *cache)
8074 {
8075 	struct btrfs_space_info *sinfo = cache->space_info;
8076 	u64 num_bytes;
8077 
8078 	BUG_ON(!cache->ro);
8079 
8080 	spin_lock(&sinfo->lock);
8081 	spin_lock(&cache->lock);
8082 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8083 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8084 	sinfo->bytes_readonly -= num_bytes;
8085 	cache->ro = 0;
8086 	spin_unlock(&cache->lock);
8087 	spin_unlock(&sinfo->lock);
8088 	return 0;
8089 }
8090 
8091 /*
8092  * checks to see if its even possible to relocate this block group.
8093  *
8094  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8095  * ok to go ahead and try.
8096  */
8097 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8098 {
8099 	struct btrfs_block_group_cache *block_group;
8100 	struct btrfs_space_info *space_info;
8101 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8102 	struct btrfs_device *device;
8103 	int full = 0;
8104 	int ret = 0;
8105 
8106 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8107 
8108 	/* odd, couldn't find the block group, leave it alone */
8109 	if (!block_group)
8110 		return -1;
8111 
8112 	/* no bytes used, we're good */
8113 	if (!btrfs_block_group_used(&block_group->item))
8114 		goto out;
8115 
8116 	space_info = block_group->space_info;
8117 	spin_lock(&space_info->lock);
8118 
8119 	full = space_info->full;
8120 
8121 	/*
8122 	 * if this is the last block group we have in this space, we can't
8123 	 * relocate it unless we're able to allocate a new chunk below.
8124 	 *
8125 	 * Otherwise, we need to make sure we have room in the space to handle
8126 	 * all of the extents from this block group.  If we can, we're good
8127 	 */
8128 	if ((space_info->total_bytes != block_group->key.offset) &&
8129 	   (space_info->bytes_used + space_info->bytes_reserved +
8130 	    space_info->bytes_pinned + space_info->bytes_readonly +
8131 	    btrfs_block_group_used(&block_group->item) <
8132 	    space_info->total_bytes)) {
8133 		spin_unlock(&space_info->lock);
8134 		goto out;
8135 	}
8136 	spin_unlock(&space_info->lock);
8137 
8138 	/*
8139 	 * ok we don't have enough space, but maybe we have free space on our
8140 	 * devices to allocate new chunks for relocation, so loop through our
8141 	 * alloc devices and guess if we have enough space.  However, if we
8142 	 * were marked as full, then we know there aren't enough chunks, and we
8143 	 * can just return.
8144 	 */
8145 	ret = -1;
8146 	if (full)
8147 		goto out;
8148 
8149 	mutex_lock(&root->fs_info->chunk_mutex);
8150 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8151 		u64 min_free = btrfs_block_group_used(&block_group->item);
8152 		u64 dev_offset;
8153 
8154 		/*
8155 		 * check to make sure we can actually find a chunk with enough
8156 		 * space to fit our block group in.
8157 		 */
8158 		if (device->total_bytes > device->bytes_used + min_free) {
8159 			ret = find_free_dev_extent(NULL, device, min_free,
8160 						   &dev_offset, NULL);
8161 			if (!ret)
8162 				break;
8163 			ret = -1;
8164 		}
8165 	}
8166 	mutex_unlock(&root->fs_info->chunk_mutex);
8167 out:
8168 	btrfs_put_block_group(block_group);
8169 	return ret;
8170 }
8171 
8172 static int find_first_block_group(struct btrfs_root *root,
8173 		struct btrfs_path *path, struct btrfs_key *key)
8174 {
8175 	int ret = 0;
8176 	struct btrfs_key found_key;
8177 	struct extent_buffer *leaf;
8178 	int slot;
8179 
8180 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8181 	if (ret < 0)
8182 		goto out;
8183 
8184 	while (1) {
8185 		slot = path->slots[0];
8186 		leaf = path->nodes[0];
8187 		if (slot >= btrfs_header_nritems(leaf)) {
8188 			ret = btrfs_next_leaf(root, path);
8189 			if (ret == 0)
8190 				continue;
8191 			if (ret < 0)
8192 				goto out;
8193 			break;
8194 		}
8195 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8196 
8197 		if (found_key.objectid >= key->objectid &&
8198 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8199 			ret = 0;
8200 			goto out;
8201 		}
8202 		path->slots[0]++;
8203 	}
8204 out:
8205 	return ret;
8206 }
8207 
8208 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8209 {
8210 	struct btrfs_block_group_cache *block_group;
8211 	u64 last = 0;
8212 
8213 	while (1) {
8214 		struct inode *inode;
8215 
8216 		block_group = btrfs_lookup_first_block_group(info, last);
8217 		while (block_group) {
8218 			spin_lock(&block_group->lock);
8219 			if (block_group->iref)
8220 				break;
8221 			spin_unlock(&block_group->lock);
8222 			block_group = next_block_group(info->tree_root,
8223 						       block_group);
8224 		}
8225 		if (!block_group) {
8226 			if (last == 0)
8227 				break;
8228 			last = 0;
8229 			continue;
8230 		}
8231 
8232 		inode = block_group->inode;
8233 		block_group->iref = 0;
8234 		block_group->inode = NULL;
8235 		spin_unlock(&block_group->lock);
8236 		iput(inode);
8237 		last = block_group->key.objectid + block_group->key.offset;
8238 		btrfs_put_block_group(block_group);
8239 	}
8240 }
8241 
8242 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8243 {
8244 	struct btrfs_block_group_cache *block_group;
8245 	struct btrfs_space_info *space_info;
8246 	struct btrfs_caching_control *caching_ctl;
8247 	struct rb_node *n;
8248 
8249 	down_write(&info->extent_commit_sem);
8250 	while (!list_empty(&info->caching_block_groups)) {
8251 		caching_ctl = list_entry(info->caching_block_groups.next,
8252 					 struct btrfs_caching_control, list);
8253 		list_del(&caching_ctl->list);
8254 		put_caching_control(caching_ctl);
8255 	}
8256 	up_write(&info->extent_commit_sem);
8257 
8258 	spin_lock(&info->block_group_cache_lock);
8259 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8260 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8261 				       cache_node);
8262 		rb_erase(&block_group->cache_node,
8263 			 &info->block_group_cache_tree);
8264 		spin_unlock(&info->block_group_cache_lock);
8265 
8266 		down_write(&block_group->space_info->groups_sem);
8267 		list_del(&block_group->list);
8268 		up_write(&block_group->space_info->groups_sem);
8269 
8270 		if (block_group->cached == BTRFS_CACHE_STARTED)
8271 			wait_block_group_cache_done(block_group);
8272 
8273 		btrfs_remove_free_space_cache(block_group);
8274 		btrfs_put_block_group(block_group);
8275 
8276 		spin_lock(&info->block_group_cache_lock);
8277 	}
8278 	spin_unlock(&info->block_group_cache_lock);
8279 
8280 	/* now that all the block groups are freed, go through and
8281 	 * free all the space_info structs.  This is only called during
8282 	 * the final stages of unmount, and so we know nobody is
8283 	 * using them.  We call synchronize_rcu() once before we start,
8284 	 * just to be on the safe side.
8285 	 */
8286 	synchronize_rcu();
8287 
8288 	release_global_block_rsv(info);
8289 
8290 	while(!list_empty(&info->space_info)) {
8291 		space_info = list_entry(info->space_info.next,
8292 					struct btrfs_space_info,
8293 					list);
8294 		if (space_info->bytes_pinned > 0 ||
8295 		    space_info->bytes_reserved > 0) {
8296 			WARN_ON(1);
8297 			dump_space_info(space_info, 0, 0);
8298 		}
8299 		list_del(&space_info->list);
8300 		kfree(space_info);
8301 	}
8302 	return 0;
8303 }
8304 
8305 static void __link_block_group(struct btrfs_space_info *space_info,
8306 			       struct btrfs_block_group_cache *cache)
8307 {
8308 	int index = get_block_group_index(cache);
8309 
8310 	down_write(&space_info->groups_sem);
8311 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8312 	up_write(&space_info->groups_sem);
8313 }
8314 
8315 int btrfs_read_block_groups(struct btrfs_root *root)
8316 {
8317 	struct btrfs_path *path;
8318 	int ret;
8319 	struct btrfs_block_group_cache *cache;
8320 	struct btrfs_fs_info *info = root->fs_info;
8321 	struct btrfs_space_info *space_info;
8322 	struct btrfs_key key;
8323 	struct btrfs_key found_key;
8324 	struct extent_buffer *leaf;
8325 	int need_clear = 0;
8326 	u64 cache_gen;
8327 
8328 	root = info->extent_root;
8329 	key.objectid = 0;
8330 	key.offset = 0;
8331 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8332 	path = btrfs_alloc_path();
8333 	if (!path)
8334 		return -ENOMEM;
8335 
8336 	cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8337 	if (cache_gen != 0 &&
8338 	    btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8339 		need_clear = 1;
8340 	if (btrfs_test_opt(root, CLEAR_CACHE))
8341 		need_clear = 1;
8342 	if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8343 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8344 
8345 	while (1) {
8346 		ret = find_first_block_group(root, path, &key);
8347 		if (ret > 0)
8348 			break;
8349 		if (ret != 0)
8350 			goto error;
8351 		leaf = path->nodes[0];
8352 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8353 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8354 		if (!cache) {
8355 			ret = -ENOMEM;
8356 			goto error;
8357 		}
8358 
8359 		atomic_set(&cache->count, 1);
8360 		spin_lock_init(&cache->lock);
8361 		spin_lock_init(&cache->tree_lock);
8362 		cache->fs_info = info;
8363 		INIT_LIST_HEAD(&cache->list);
8364 		INIT_LIST_HEAD(&cache->cluster_list);
8365 
8366 		if (need_clear)
8367 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8368 
8369 		/*
8370 		 * we only want to have 32k of ram per block group for keeping
8371 		 * track of free space, and if we pass 1/2 of that we want to
8372 		 * start converting things over to using bitmaps
8373 		 */
8374 		cache->extents_thresh = ((1024 * 32) / 2) /
8375 			sizeof(struct btrfs_free_space);
8376 
8377 		read_extent_buffer(leaf, &cache->item,
8378 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8379 				   sizeof(cache->item));
8380 		memcpy(&cache->key, &found_key, sizeof(found_key));
8381 
8382 		key.objectid = found_key.objectid + found_key.offset;
8383 		btrfs_release_path(root, path);
8384 		cache->flags = btrfs_block_group_flags(&cache->item);
8385 		cache->sectorsize = root->sectorsize;
8386 
8387 		/*
8388 		 * check for two cases, either we are full, and therefore
8389 		 * don't need to bother with the caching work since we won't
8390 		 * find any space, or we are empty, and we can just add all
8391 		 * the space in and be done with it.  This saves us _alot_ of
8392 		 * time, particularly in the full case.
8393 		 */
8394 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8395 			exclude_super_stripes(root, cache);
8396 			cache->last_byte_to_unpin = (u64)-1;
8397 			cache->cached = BTRFS_CACHE_FINISHED;
8398 			free_excluded_extents(root, cache);
8399 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8400 			exclude_super_stripes(root, cache);
8401 			cache->last_byte_to_unpin = (u64)-1;
8402 			cache->cached = BTRFS_CACHE_FINISHED;
8403 			add_new_free_space(cache, root->fs_info,
8404 					   found_key.objectid,
8405 					   found_key.objectid +
8406 					   found_key.offset);
8407 			free_excluded_extents(root, cache);
8408 		}
8409 
8410 		ret = update_space_info(info, cache->flags, found_key.offset,
8411 					btrfs_block_group_used(&cache->item),
8412 					&space_info);
8413 		BUG_ON(ret);
8414 		cache->space_info = space_info;
8415 		spin_lock(&cache->space_info->lock);
8416 		cache->space_info->bytes_readonly += cache->bytes_super;
8417 		spin_unlock(&cache->space_info->lock);
8418 
8419 		__link_block_group(space_info, cache);
8420 
8421 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8422 		BUG_ON(ret);
8423 
8424 		set_avail_alloc_bits(root->fs_info, cache->flags);
8425 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8426 			set_block_group_ro(cache);
8427 	}
8428 
8429 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8430 		if (!(get_alloc_profile(root, space_info->flags) &
8431 		      (BTRFS_BLOCK_GROUP_RAID10 |
8432 		       BTRFS_BLOCK_GROUP_RAID1 |
8433 		       BTRFS_BLOCK_GROUP_DUP)))
8434 			continue;
8435 		/*
8436 		 * avoid allocating from un-mirrored block group if there are
8437 		 * mirrored block groups.
8438 		 */
8439 		list_for_each_entry(cache, &space_info->block_groups[3], list)
8440 			set_block_group_ro(cache);
8441 		list_for_each_entry(cache, &space_info->block_groups[4], list)
8442 			set_block_group_ro(cache);
8443 	}
8444 
8445 	init_global_block_rsv(info);
8446 	ret = 0;
8447 error:
8448 	btrfs_free_path(path);
8449 	return ret;
8450 }
8451 
8452 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8453 			   struct btrfs_root *root, u64 bytes_used,
8454 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8455 			   u64 size)
8456 {
8457 	int ret;
8458 	struct btrfs_root *extent_root;
8459 	struct btrfs_block_group_cache *cache;
8460 
8461 	extent_root = root->fs_info->extent_root;
8462 
8463 	root->fs_info->last_trans_log_full_commit = trans->transid;
8464 
8465 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8466 	if (!cache)
8467 		return -ENOMEM;
8468 
8469 	cache->key.objectid = chunk_offset;
8470 	cache->key.offset = size;
8471 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8472 	cache->sectorsize = root->sectorsize;
8473 	cache->fs_info = root->fs_info;
8474 
8475 	/*
8476 	 * we only want to have 32k of ram per block group for keeping track
8477 	 * of free space, and if we pass 1/2 of that we want to start
8478 	 * converting things over to using bitmaps
8479 	 */
8480 	cache->extents_thresh = ((1024 * 32) / 2) /
8481 		sizeof(struct btrfs_free_space);
8482 	atomic_set(&cache->count, 1);
8483 	spin_lock_init(&cache->lock);
8484 	spin_lock_init(&cache->tree_lock);
8485 	INIT_LIST_HEAD(&cache->list);
8486 	INIT_LIST_HEAD(&cache->cluster_list);
8487 
8488 	btrfs_set_block_group_used(&cache->item, bytes_used);
8489 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8490 	cache->flags = type;
8491 	btrfs_set_block_group_flags(&cache->item, type);
8492 
8493 	cache->last_byte_to_unpin = (u64)-1;
8494 	cache->cached = BTRFS_CACHE_FINISHED;
8495 	exclude_super_stripes(root, cache);
8496 
8497 	add_new_free_space(cache, root->fs_info, chunk_offset,
8498 			   chunk_offset + size);
8499 
8500 	free_excluded_extents(root, cache);
8501 
8502 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8503 				&cache->space_info);
8504 	BUG_ON(ret);
8505 
8506 	spin_lock(&cache->space_info->lock);
8507 	cache->space_info->bytes_readonly += cache->bytes_super;
8508 	spin_unlock(&cache->space_info->lock);
8509 
8510 	__link_block_group(cache->space_info, cache);
8511 
8512 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8513 	BUG_ON(ret);
8514 
8515 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8516 				sizeof(cache->item));
8517 	BUG_ON(ret);
8518 
8519 	set_avail_alloc_bits(extent_root->fs_info, type);
8520 
8521 	return 0;
8522 }
8523 
8524 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8525 			     struct btrfs_root *root, u64 group_start)
8526 {
8527 	struct btrfs_path *path;
8528 	struct btrfs_block_group_cache *block_group;
8529 	struct btrfs_free_cluster *cluster;
8530 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8531 	struct btrfs_key key;
8532 	struct inode *inode;
8533 	int ret;
8534 	int factor;
8535 
8536 	root = root->fs_info->extent_root;
8537 
8538 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8539 	BUG_ON(!block_group);
8540 	BUG_ON(!block_group->ro);
8541 
8542 	memcpy(&key, &block_group->key, sizeof(key));
8543 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8544 				  BTRFS_BLOCK_GROUP_RAID1 |
8545 				  BTRFS_BLOCK_GROUP_RAID10))
8546 		factor = 2;
8547 	else
8548 		factor = 1;
8549 
8550 	/* make sure this block group isn't part of an allocation cluster */
8551 	cluster = &root->fs_info->data_alloc_cluster;
8552 	spin_lock(&cluster->refill_lock);
8553 	btrfs_return_cluster_to_free_space(block_group, cluster);
8554 	spin_unlock(&cluster->refill_lock);
8555 
8556 	/*
8557 	 * make sure this block group isn't part of a metadata
8558 	 * allocation cluster
8559 	 */
8560 	cluster = &root->fs_info->meta_alloc_cluster;
8561 	spin_lock(&cluster->refill_lock);
8562 	btrfs_return_cluster_to_free_space(block_group, cluster);
8563 	spin_unlock(&cluster->refill_lock);
8564 
8565 	path = btrfs_alloc_path();
8566 	BUG_ON(!path);
8567 
8568 	inode = lookup_free_space_inode(root, block_group, path);
8569 	if (!IS_ERR(inode)) {
8570 		btrfs_orphan_add(trans, inode);
8571 		clear_nlink(inode);
8572 		/* One for the block groups ref */
8573 		spin_lock(&block_group->lock);
8574 		if (block_group->iref) {
8575 			block_group->iref = 0;
8576 			block_group->inode = NULL;
8577 			spin_unlock(&block_group->lock);
8578 			iput(inode);
8579 		} else {
8580 			spin_unlock(&block_group->lock);
8581 		}
8582 		/* One for our lookup ref */
8583 		iput(inode);
8584 	}
8585 
8586 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8587 	key.offset = block_group->key.objectid;
8588 	key.type = 0;
8589 
8590 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8591 	if (ret < 0)
8592 		goto out;
8593 	if (ret > 0)
8594 		btrfs_release_path(tree_root, path);
8595 	if (ret == 0) {
8596 		ret = btrfs_del_item(trans, tree_root, path);
8597 		if (ret)
8598 			goto out;
8599 		btrfs_release_path(tree_root, path);
8600 	}
8601 
8602 	spin_lock(&root->fs_info->block_group_cache_lock);
8603 	rb_erase(&block_group->cache_node,
8604 		 &root->fs_info->block_group_cache_tree);
8605 	spin_unlock(&root->fs_info->block_group_cache_lock);
8606 
8607 	down_write(&block_group->space_info->groups_sem);
8608 	/*
8609 	 * we must use list_del_init so people can check to see if they
8610 	 * are still on the list after taking the semaphore
8611 	 */
8612 	list_del_init(&block_group->list);
8613 	up_write(&block_group->space_info->groups_sem);
8614 
8615 	if (block_group->cached == BTRFS_CACHE_STARTED)
8616 		wait_block_group_cache_done(block_group);
8617 
8618 	btrfs_remove_free_space_cache(block_group);
8619 
8620 	spin_lock(&block_group->space_info->lock);
8621 	block_group->space_info->total_bytes -= block_group->key.offset;
8622 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8623 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8624 	spin_unlock(&block_group->space_info->lock);
8625 
8626 	memcpy(&key, &block_group->key, sizeof(key));
8627 
8628 	btrfs_clear_space_info_full(root->fs_info);
8629 
8630 	btrfs_put_block_group(block_group);
8631 	btrfs_put_block_group(block_group);
8632 
8633 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8634 	if (ret > 0)
8635 		ret = -EIO;
8636 	if (ret < 0)
8637 		goto out;
8638 
8639 	ret = btrfs_del_item(trans, root, path);
8640 out:
8641 	btrfs_free_path(path);
8642 	return ret;
8643 }
8644 
8645 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8646 {
8647 	return unpin_extent_range(root, start, end);
8648 }
8649 
8650 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8651 			       u64 num_bytes)
8652 {
8653 	return btrfs_discard_extent(root, bytenr, num_bytes);
8654 }
8655