1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 41 struct btrfs_delayed_ref_node *node, u64 parent, 42 u64 root_objectid, u64 owner_objectid, 43 u64 owner_offset, int refs_to_drop, 44 struct btrfs_delayed_extent_op *extra_op); 45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 46 struct extent_buffer *leaf, 47 struct btrfs_extent_item *ei); 48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 49 u64 parent, u64 root_objectid, 50 u64 flags, u64 owner, u64 offset, 51 struct btrfs_key *ins, int ref_mod); 52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 53 struct btrfs_delayed_ref_node *node, 54 struct btrfs_delayed_extent_op *extent_op); 55 static int find_next_key(struct btrfs_path *path, int level, 56 struct btrfs_key *key); 57 58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 59 { 60 return (cache->flags & bits) == bits; 61 } 62 63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 64 u64 start, u64 num_bytes) 65 { 66 u64 end = start + num_bytes - 1; 67 set_extent_bits(&fs_info->excluded_extents, start, end, 68 EXTENT_UPTODATE); 69 return 0; 70 } 71 72 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 73 { 74 struct btrfs_fs_info *fs_info = cache->fs_info; 75 u64 start, end; 76 77 start = cache->start; 78 end = start + cache->length - 1; 79 80 clear_extent_bits(&fs_info->excluded_extents, start, end, 81 EXTENT_UPTODATE); 82 } 83 84 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 85 { 86 if (ref->type == BTRFS_REF_METADATA) { 87 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 88 return BTRFS_BLOCK_GROUP_SYSTEM; 89 else 90 return BTRFS_BLOCK_GROUP_METADATA; 91 } 92 return BTRFS_BLOCK_GROUP_DATA; 93 } 94 95 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_ref *ref) 97 { 98 struct btrfs_space_info *space_info; 99 u64 flags = generic_ref_to_space_flags(ref); 100 101 space_info = btrfs_find_space_info(fs_info, flags); 102 ASSERT(space_info); 103 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 104 BTRFS_TOTAL_BYTES_PINNED_BATCH); 105 } 106 107 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 108 struct btrfs_ref *ref) 109 { 110 struct btrfs_space_info *space_info; 111 u64 flags = generic_ref_to_space_flags(ref); 112 113 space_info = btrfs_find_space_info(fs_info, flags); 114 ASSERT(space_info); 115 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 116 BTRFS_TOTAL_BYTES_PINNED_BATCH); 117 } 118 119 /* simple helper to search for an existing data extent at a given offset */ 120 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 121 { 122 int ret; 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 key.objectid = start; 131 key.offset = len; 132 key.type = BTRFS_EXTENT_ITEM_KEY; 133 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 134 btrfs_free_path(path); 135 return ret; 136 } 137 138 /* 139 * helper function to lookup reference count and flags of a tree block. 140 * 141 * the head node for delayed ref is used to store the sum of all the 142 * reference count modifications queued up in the rbtree. the head 143 * node may also store the extent flags to set. This way you can check 144 * to see what the reference count and extent flags would be if all of 145 * the delayed refs are not processed. 146 */ 147 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 148 struct btrfs_fs_info *fs_info, u64 bytenr, 149 u64 offset, int metadata, u64 *refs, u64 *flags) 150 { 151 struct btrfs_delayed_ref_head *head; 152 struct btrfs_delayed_ref_root *delayed_refs; 153 struct btrfs_path *path; 154 struct btrfs_extent_item *ei; 155 struct extent_buffer *leaf; 156 struct btrfs_key key; 157 u32 item_size; 158 u64 num_refs; 159 u64 extent_flags; 160 int ret; 161 162 /* 163 * If we don't have skinny metadata, don't bother doing anything 164 * different 165 */ 166 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 167 offset = fs_info->nodesize; 168 metadata = 0; 169 } 170 171 path = btrfs_alloc_path(); 172 if (!path) 173 return -ENOMEM; 174 175 if (!trans) { 176 path->skip_locking = 1; 177 path->search_commit_root = 1; 178 } 179 180 search_again: 181 key.objectid = bytenr; 182 key.offset = offset; 183 if (metadata) 184 key.type = BTRFS_METADATA_ITEM_KEY; 185 else 186 key.type = BTRFS_EXTENT_ITEM_KEY; 187 188 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 189 if (ret < 0) 190 goto out_free; 191 192 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 193 if (path->slots[0]) { 194 path->slots[0]--; 195 btrfs_item_key_to_cpu(path->nodes[0], &key, 196 path->slots[0]); 197 if (key.objectid == bytenr && 198 key.type == BTRFS_EXTENT_ITEM_KEY && 199 key.offset == fs_info->nodesize) 200 ret = 0; 201 } 202 } 203 204 if (ret == 0) { 205 leaf = path->nodes[0]; 206 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 207 if (item_size >= sizeof(*ei)) { 208 ei = btrfs_item_ptr(leaf, path->slots[0], 209 struct btrfs_extent_item); 210 num_refs = btrfs_extent_refs(leaf, ei); 211 extent_flags = btrfs_extent_flags(leaf, ei); 212 } else { 213 ret = -EINVAL; 214 btrfs_print_v0_err(fs_info); 215 if (trans) 216 btrfs_abort_transaction(trans, ret); 217 else 218 btrfs_handle_fs_error(fs_info, ret, NULL); 219 220 goto out_free; 221 } 222 223 BUG_ON(num_refs == 0); 224 } else { 225 num_refs = 0; 226 extent_flags = 0; 227 ret = 0; 228 } 229 230 if (!trans) 231 goto out; 232 233 delayed_refs = &trans->transaction->delayed_refs; 234 spin_lock(&delayed_refs->lock); 235 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 236 if (head) { 237 if (!mutex_trylock(&head->mutex)) { 238 refcount_inc(&head->refs); 239 spin_unlock(&delayed_refs->lock); 240 241 btrfs_release_path(path); 242 243 /* 244 * Mutex was contended, block until it's released and try 245 * again 246 */ 247 mutex_lock(&head->mutex); 248 mutex_unlock(&head->mutex); 249 btrfs_put_delayed_ref_head(head); 250 goto search_again; 251 } 252 spin_lock(&head->lock); 253 if (head->extent_op && head->extent_op->update_flags) 254 extent_flags |= head->extent_op->flags_to_set; 255 else 256 BUG_ON(num_refs == 0); 257 258 num_refs += head->ref_mod; 259 spin_unlock(&head->lock); 260 mutex_unlock(&head->mutex); 261 } 262 spin_unlock(&delayed_refs->lock); 263 out: 264 WARN_ON(num_refs == 0); 265 if (refs) 266 *refs = num_refs; 267 if (flags) 268 *flags = extent_flags; 269 out_free: 270 btrfs_free_path(path); 271 return ret; 272 } 273 274 /* 275 * Back reference rules. Back refs have three main goals: 276 * 277 * 1) differentiate between all holders of references to an extent so that 278 * when a reference is dropped we can make sure it was a valid reference 279 * before freeing the extent. 280 * 281 * 2) Provide enough information to quickly find the holders of an extent 282 * if we notice a given block is corrupted or bad. 283 * 284 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 285 * maintenance. This is actually the same as #2, but with a slightly 286 * different use case. 287 * 288 * There are two kinds of back refs. The implicit back refs is optimized 289 * for pointers in non-shared tree blocks. For a given pointer in a block, 290 * back refs of this kind provide information about the block's owner tree 291 * and the pointer's key. These information allow us to find the block by 292 * b-tree searching. The full back refs is for pointers in tree blocks not 293 * referenced by their owner trees. The location of tree block is recorded 294 * in the back refs. Actually the full back refs is generic, and can be 295 * used in all cases the implicit back refs is used. The major shortcoming 296 * of the full back refs is its overhead. Every time a tree block gets 297 * COWed, we have to update back refs entry for all pointers in it. 298 * 299 * For a newly allocated tree block, we use implicit back refs for 300 * pointers in it. This means most tree related operations only involve 301 * implicit back refs. For a tree block created in old transaction, the 302 * only way to drop a reference to it is COW it. So we can detect the 303 * event that tree block loses its owner tree's reference and do the 304 * back refs conversion. 305 * 306 * When a tree block is COWed through a tree, there are four cases: 307 * 308 * The reference count of the block is one and the tree is the block's 309 * owner tree. Nothing to do in this case. 310 * 311 * The reference count of the block is one and the tree is not the 312 * block's owner tree. In this case, full back refs is used for pointers 313 * in the block. Remove these full back refs, add implicit back refs for 314 * every pointers in the new block. 315 * 316 * The reference count of the block is greater than one and the tree is 317 * the block's owner tree. In this case, implicit back refs is used for 318 * pointers in the block. Add full back refs for every pointers in the 319 * block, increase lower level extents' reference counts. The original 320 * implicit back refs are entailed to the new block. 321 * 322 * The reference count of the block is greater than one and the tree is 323 * not the block's owner tree. Add implicit back refs for every pointer in 324 * the new block, increase lower level extents' reference count. 325 * 326 * Back Reference Key composing: 327 * 328 * The key objectid corresponds to the first byte in the extent, 329 * The key type is used to differentiate between types of back refs. 330 * There are different meanings of the key offset for different types 331 * of back refs. 332 * 333 * File extents can be referenced by: 334 * 335 * - multiple snapshots, subvolumes, or different generations in one subvol 336 * - different files inside a single subvolume 337 * - different offsets inside a file (bookend extents in file.c) 338 * 339 * The extent ref structure for the implicit back refs has fields for: 340 * 341 * - Objectid of the subvolume root 342 * - objectid of the file holding the reference 343 * - original offset in the file 344 * - how many bookend extents 345 * 346 * The key offset for the implicit back refs is hash of the first 347 * three fields. 348 * 349 * The extent ref structure for the full back refs has field for: 350 * 351 * - number of pointers in the tree leaf 352 * 353 * The key offset for the implicit back refs is the first byte of 354 * the tree leaf 355 * 356 * When a file extent is allocated, The implicit back refs is used. 357 * the fields are filled in: 358 * 359 * (root_key.objectid, inode objectid, offset in file, 1) 360 * 361 * When a file extent is removed file truncation, we find the 362 * corresponding implicit back refs and check the following fields: 363 * 364 * (btrfs_header_owner(leaf), inode objectid, offset in file) 365 * 366 * Btree extents can be referenced by: 367 * 368 * - Different subvolumes 369 * 370 * Both the implicit back refs and the full back refs for tree blocks 371 * only consist of key. The key offset for the implicit back refs is 372 * objectid of block's owner tree. The key offset for the full back refs 373 * is the first byte of parent block. 374 * 375 * When implicit back refs is used, information about the lowest key and 376 * level of the tree block are required. These information are stored in 377 * tree block info structure. 378 */ 379 380 /* 381 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 382 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 383 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 384 */ 385 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 386 struct btrfs_extent_inline_ref *iref, 387 enum btrfs_inline_ref_type is_data) 388 { 389 int type = btrfs_extent_inline_ref_type(eb, iref); 390 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 391 392 if (type == BTRFS_TREE_BLOCK_REF_KEY || 393 type == BTRFS_SHARED_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_DATA_REF_KEY || 395 type == BTRFS_EXTENT_DATA_REF_KEY) { 396 if (is_data == BTRFS_REF_TYPE_BLOCK) { 397 if (type == BTRFS_TREE_BLOCK_REF_KEY) 398 return type; 399 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 400 ASSERT(eb->fs_info); 401 /* 402 * Every shared one has parent tree 403 * block, which must be aligned to 404 * nodesize. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->nodesize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree 417 * block, which must be aligned to 418 * nodesize. 419 */ 420 if (offset && 421 IS_ALIGNED(offset, eb->fs_info->nodesize)) 422 return type; 423 } 424 } else { 425 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 426 return type; 427 } 428 } 429 430 btrfs_print_leaf((struct extent_buffer *)eb); 431 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 432 eb->start, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->keep_locks = 1; 848 } else 849 extra_size = -1; 850 851 /* 852 * Owner is our level, so we can just add one to get the level for the 853 * block we are interested in. 854 */ 855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 856 key.type = BTRFS_METADATA_ITEM_KEY; 857 key.offset = owner; 858 } 859 860 again: 861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 862 if (ret < 0) { 863 err = ret; 864 goto out; 865 } 866 867 /* 868 * We may be a newly converted file system which still has the old fat 869 * extent entries for metadata, so try and see if we have one of those. 870 */ 871 if (ret > 0 && skinny_metadata) { 872 skinny_metadata = false; 873 if (path->slots[0]) { 874 path->slots[0]--; 875 btrfs_item_key_to_cpu(path->nodes[0], &key, 876 path->slots[0]); 877 if (key.objectid == bytenr && 878 key.type == BTRFS_EXTENT_ITEM_KEY && 879 key.offset == num_bytes) 880 ret = 0; 881 } 882 if (ret) { 883 key.objectid = bytenr; 884 key.type = BTRFS_EXTENT_ITEM_KEY; 885 key.offset = num_bytes; 886 btrfs_release_path(path); 887 goto again; 888 } 889 } 890 891 if (ret && !insert) { 892 err = -ENOENT; 893 goto out; 894 } else if (WARN_ON(ret)) { 895 err = -EIO; 896 goto out; 897 } 898 899 leaf = path->nodes[0]; 900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 901 if (unlikely(item_size < sizeof(*ei))) { 902 err = -EINVAL; 903 btrfs_print_v0_err(fs_info); 904 btrfs_abort_transaction(trans, err); 905 goto out; 906 } 907 908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 909 flags = btrfs_extent_flags(leaf, ei); 910 911 ptr = (unsigned long)(ei + 1); 912 end = (unsigned long)ei + item_size; 913 914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 915 ptr += sizeof(struct btrfs_tree_block_info); 916 BUG_ON(ptr > end); 917 } 918 919 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 920 needed = BTRFS_REF_TYPE_DATA; 921 else 922 needed = BTRFS_REF_TYPE_BLOCK; 923 924 err = -ENOENT; 925 while (1) { 926 if (ptr >= end) { 927 WARN_ON(ptr > end); 928 break; 929 } 930 iref = (struct btrfs_extent_inline_ref *)ptr; 931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 932 if (type == BTRFS_REF_TYPE_INVALID) { 933 err = -EUCLEAN; 934 goto out; 935 } 936 937 if (want < type) 938 break; 939 if (want > type) { 940 ptr += btrfs_extent_inline_ref_size(type); 941 continue; 942 } 943 944 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 945 struct btrfs_extent_data_ref *dref; 946 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 947 if (match_extent_data_ref(leaf, dref, root_objectid, 948 owner, offset)) { 949 err = 0; 950 break; 951 } 952 if (hash_extent_data_ref_item(leaf, dref) < 953 hash_extent_data_ref(root_objectid, owner, offset)) 954 break; 955 } else { 956 u64 ref_offset; 957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 958 if (parent > 0) { 959 if (parent == ref_offset) { 960 err = 0; 961 break; 962 } 963 if (ref_offset < parent) 964 break; 965 } else { 966 if (root_objectid == ref_offset) { 967 err = 0; 968 break; 969 } 970 if (ref_offset < root_objectid) 971 break; 972 } 973 } 974 ptr += btrfs_extent_inline_ref_size(type); 975 } 976 if (err == -ENOENT && insert) { 977 if (item_size + extra_size >= 978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 979 err = -EAGAIN; 980 goto out; 981 } 982 /* 983 * To add new inline back ref, we have to make sure 984 * there is no corresponding back ref item. 985 * For simplicity, we just do not add new inline back 986 * ref if there is any kind of item for this block 987 */ 988 if (find_next_key(path, 0, &key) == 0 && 989 key.objectid == bytenr && 990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 991 err = -EAGAIN; 992 goto out; 993 } 994 } 995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 996 out: 997 if (insert) { 998 path->keep_locks = 0; 999 btrfs_unlock_up_safe(path, 1); 1000 } 1001 return err; 1002 } 1003 1004 /* 1005 * helper to add new inline back ref 1006 */ 1007 static noinline_for_stack 1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1009 struct btrfs_path *path, 1010 struct btrfs_extent_inline_ref *iref, 1011 u64 parent, u64 root_objectid, 1012 u64 owner, u64 offset, int refs_to_add, 1013 struct btrfs_delayed_extent_op *extent_op) 1014 { 1015 struct extent_buffer *leaf; 1016 struct btrfs_extent_item *ei; 1017 unsigned long ptr; 1018 unsigned long end; 1019 unsigned long item_offset; 1020 u64 refs; 1021 int size; 1022 int type; 1023 1024 leaf = path->nodes[0]; 1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1026 item_offset = (unsigned long)iref - (unsigned long)ei; 1027 1028 type = extent_ref_type(parent, owner); 1029 size = btrfs_extent_inline_ref_size(type); 1030 1031 btrfs_extend_item(path, size); 1032 1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1034 refs = btrfs_extent_refs(leaf, ei); 1035 refs += refs_to_add; 1036 btrfs_set_extent_refs(leaf, ei, refs); 1037 if (extent_op) 1038 __run_delayed_extent_op(extent_op, leaf, ei); 1039 1040 ptr = (unsigned long)ei + item_offset; 1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1042 if (ptr < end - size) 1043 memmove_extent_buffer(leaf, ptr + size, ptr, 1044 end - size - ptr); 1045 1046 iref = (struct btrfs_extent_inline_ref *)ptr; 1047 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1049 struct btrfs_extent_data_ref *dref; 1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1056 struct btrfs_shared_data_ref *sref; 1057 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 } 1067 1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1069 struct btrfs_path *path, 1070 struct btrfs_extent_inline_ref **ref_ret, 1071 u64 bytenr, u64 num_bytes, u64 parent, 1072 u64 root_objectid, u64 owner, u64 offset) 1073 { 1074 int ret; 1075 1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1077 num_bytes, parent, root_objectid, 1078 owner, offset, 0); 1079 if (ret != -ENOENT) 1080 return ret; 1081 1082 btrfs_release_path(path); 1083 *ref_ret = NULL; 1084 1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1087 root_objectid); 1088 } else { 1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1090 root_objectid, owner, offset); 1091 } 1092 return ret; 1093 } 1094 1095 /* 1096 * helper to update/remove inline back ref 1097 */ 1098 static noinline_for_stack 1099 void update_inline_extent_backref(struct btrfs_path *path, 1100 struct btrfs_extent_inline_ref *iref, 1101 int refs_to_mod, 1102 struct btrfs_delayed_extent_op *extent_op, 1103 int *last_ref) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 struct btrfs_extent_item *ei; 1107 struct btrfs_extent_data_ref *dref = NULL; 1108 struct btrfs_shared_data_ref *sref = NULL; 1109 unsigned long ptr; 1110 unsigned long end; 1111 u32 item_size; 1112 int size; 1113 int type; 1114 u64 refs; 1115 1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1117 refs = btrfs_extent_refs(leaf, ei); 1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1119 refs += refs_to_mod; 1120 btrfs_set_extent_refs(leaf, ei, refs); 1121 if (extent_op) 1122 __run_delayed_extent_op(extent_op, leaf, ei); 1123 1124 /* 1125 * If type is invalid, we should have bailed out after 1126 * lookup_inline_extent_backref(). 1127 */ 1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1129 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1130 1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1133 refs = btrfs_extent_data_ref_count(leaf, dref); 1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1135 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1136 refs = btrfs_shared_data_ref_count(leaf, sref); 1137 } else { 1138 refs = 1; 1139 BUG_ON(refs_to_mod != -1); 1140 } 1141 1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1143 refs += refs_to_mod; 1144 1145 if (refs > 0) { 1146 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1147 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1148 else 1149 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1150 } else { 1151 *last_ref = 1; 1152 size = btrfs_extent_inline_ref_size(type); 1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1154 ptr = (unsigned long)iref; 1155 end = (unsigned long)ei + item_size; 1156 if (ptr + size < end) 1157 memmove_extent_buffer(leaf, ptr, ptr + size, 1158 end - ptr - size); 1159 item_size -= size; 1160 btrfs_truncate_item(path, item_size, 1); 1161 } 1162 btrfs_mark_buffer_dirty(leaf); 1163 } 1164 1165 static noinline_for_stack 1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1167 struct btrfs_path *path, 1168 u64 bytenr, u64 num_bytes, u64 parent, 1169 u64 root_objectid, u64 owner, 1170 u64 offset, int refs_to_add, 1171 struct btrfs_delayed_extent_op *extent_op) 1172 { 1173 struct btrfs_extent_inline_ref *iref; 1174 int ret; 1175 1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1177 num_bytes, parent, root_objectid, 1178 owner, offset, 1); 1179 if (ret == 0) { 1180 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1181 update_inline_extent_backref(path, iref, refs_to_add, 1182 extent_op, NULL); 1183 } else if (ret == -ENOENT) { 1184 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1185 root_objectid, owner, offset, 1186 refs_to_add, extent_op); 1187 ret = 0; 1188 } 1189 return ret; 1190 } 1191 1192 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1193 struct btrfs_path *path, 1194 struct btrfs_extent_inline_ref *iref, 1195 int refs_to_drop, int is_data, int *last_ref) 1196 { 1197 int ret = 0; 1198 1199 BUG_ON(!is_data && refs_to_drop != 1); 1200 if (iref) { 1201 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1202 last_ref); 1203 } else if (is_data) { 1204 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1205 last_ref); 1206 } else { 1207 *last_ref = 1; 1208 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1209 } 1210 return ret; 1211 } 1212 1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1214 u64 *discarded_bytes) 1215 { 1216 int j, ret = 0; 1217 u64 bytes_left, end; 1218 u64 aligned_start = ALIGN(start, 1 << 9); 1219 1220 if (WARN_ON(start != aligned_start)) { 1221 len -= aligned_start - start; 1222 len = round_down(len, 1 << 9); 1223 start = aligned_start; 1224 } 1225 1226 *discarded_bytes = 0; 1227 1228 if (!len) 1229 return 0; 1230 1231 end = start + len; 1232 bytes_left = len; 1233 1234 /* Skip any superblocks on this device. */ 1235 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1236 u64 sb_start = btrfs_sb_offset(j); 1237 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1238 u64 size = sb_start - start; 1239 1240 if (!in_range(sb_start, start, bytes_left) && 1241 !in_range(sb_end, start, bytes_left) && 1242 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1243 continue; 1244 1245 /* 1246 * Superblock spans beginning of range. Adjust start and 1247 * try again. 1248 */ 1249 if (sb_start <= start) { 1250 start += sb_end - start; 1251 if (start > end) { 1252 bytes_left = 0; 1253 break; 1254 } 1255 bytes_left = end - start; 1256 continue; 1257 } 1258 1259 if (size) { 1260 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1261 GFP_NOFS, 0); 1262 if (!ret) 1263 *discarded_bytes += size; 1264 else if (ret != -EOPNOTSUPP) 1265 return ret; 1266 } 1267 1268 start = sb_end; 1269 if (start > end) { 1270 bytes_left = 0; 1271 break; 1272 } 1273 bytes_left = end - start; 1274 } 1275 1276 if (bytes_left) { 1277 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1278 GFP_NOFS, 0); 1279 if (!ret) 1280 *discarded_bytes += bytes_left; 1281 } 1282 return ret; 1283 } 1284 1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1286 u64 num_bytes, u64 *actual_bytes) 1287 { 1288 int ret = 0; 1289 u64 discarded_bytes = 0; 1290 u64 end = bytenr + num_bytes; 1291 u64 cur = bytenr; 1292 struct btrfs_bio *bbio = NULL; 1293 1294 1295 /* 1296 * Avoid races with device replace and make sure our bbio has devices 1297 * associated to its stripes that don't go away while we are discarding. 1298 */ 1299 btrfs_bio_counter_inc_blocked(fs_info); 1300 while (cur < end) { 1301 struct btrfs_bio_stripe *stripe; 1302 int i; 1303 1304 num_bytes = end - cur; 1305 /* Tell the block device(s) that the sectors can be discarded */ 1306 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1307 &num_bytes, &bbio, 0); 1308 /* 1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1311 * thus we can't continue anyway. 1312 */ 1313 if (ret < 0) 1314 goto out; 1315 1316 stripe = bbio->stripes; 1317 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1318 u64 bytes; 1319 struct request_queue *req_q; 1320 1321 if (!stripe->dev->bdev) { 1322 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1323 continue; 1324 } 1325 req_q = bdev_get_queue(stripe->dev->bdev); 1326 if (!blk_queue_discard(req_q)) 1327 continue; 1328 1329 ret = btrfs_issue_discard(stripe->dev->bdev, 1330 stripe->physical, 1331 stripe->length, 1332 &bytes); 1333 if (!ret) { 1334 discarded_bytes += bytes; 1335 } else if (ret != -EOPNOTSUPP) { 1336 /* 1337 * Logic errors or -ENOMEM, or -EIO, but 1338 * unlikely to happen. 1339 * 1340 * And since there are two loops, explicitly 1341 * go to out to avoid confusion. 1342 */ 1343 btrfs_put_bbio(bbio); 1344 goto out; 1345 } 1346 1347 /* 1348 * Just in case we get back EOPNOTSUPP for some reason, 1349 * just ignore the return value so we don't screw up 1350 * people calling discard_extent. 1351 */ 1352 ret = 0; 1353 } 1354 btrfs_put_bbio(bbio); 1355 cur += num_bytes; 1356 } 1357 out: 1358 btrfs_bio_counter_dec(fs_info); 1359 1360 if (actual_bytes) 1361 *actual_bytes = discarded_bytes; 1362 1363 1364 if (ret == -EOPNOTSUPP) 1365 ret = 0; 1366 return ret; 1367 } 1368 1369 /* Can return -ENOMEM */ 1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_ref *generic_ref) 1372 { 1373 struct btrfs_fs_info *fs_info = trans->fs_info; 1374 int old_ref_mod, new_ref_mod; 1375 int ret; 1376 1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1378 generic_ref->action); 1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1381 1382 if (generic_ref->type == BTRFS_REF_METADATA) 1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1384 NULL, &old_ref_mod, &new_ref_mod); 1385 else 1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1387 &old_ref_mod, &new_ref_mod); 1388 1389 btrfs_ref_tree_mod(fs_info, generic_ref); 1390 1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1392 sub_pinned_bytes(fs_info, generic_ref); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * __btrfs_inc_extent_ref - insert backreference for a given extent 1399 * 1400 * @trans: Handle of transaction 1401 * 1402 * @node: The delayed ref node used to get the bytenr/length for 1403 * extent whose references are incremented. 1404 * 1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1407 * bytenr of the parent block. Since new extents are always 1408 * created with indirect references, this will only be the case 1409 * when relocating a shared extent. In that case, root_objectid 1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1411 * be 0 1412 * 1413 * @root_objectid: The id of the root where this modification has originated, 1414 * this can be either one of the well-known metadata trees or 1415 * the subvolume id which references this extent. 1416 * 1417 * @owner: For data extents it is the inode number of the owning file. 1418 * For metadata extents this parameter holds the level in the 1419 * tree of the extent. 1420 * 1421 * @offset: For metadata extents the offset is ignored and is currently 1422 * always passed as 0. For data extents it is the fileoffset 1423 * this extent belongs to. 1424 * 1425 * @refs_to_add Number of references to add 1426 * 1427 * @extent_op Pointer to a structure, holding information necessary when 1428 * updating a tree block's flags 1429 * 1430 */ 1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1432 struct btrfs_delayed_ref_node *node, 1433 u64 parent, u64 root_objectid, 1434 u64 owner, u64 offset, int refs_to_add, 1435 struct btrfs_delayed_extent_op *extent_op) 1436 { 1437 struct btrfs_path *path; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *item; 1440 struct btrfs_key key; 1441 u64 bytenr = node->bytenr; 1442 u64 num_bytes = node->num_bytes; 1443 u64 refs; 1444 int ret; 1445 1446 path = btrfs_alloc_path(); 1447 if (!path) 1448 return -ENOMEM; 1449 1450 path->leave_spinning = 1; 1451 /* this will setup the path even if it fails to insert the back ref */ 1452 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1453 parent, root_objectid, owner, 1454 offset, refs_to_add, extent_op); 1455 if ((ret < 0 && ret != -EAGAIN) || !ret) 1456 goto out; 1457 1458 /* 1459 * Ok we had -EAGAIN which means we didn't have space to insert and 1460 * inline extent ref, so just update the reference count and add a 1461 * normal backref. 1462 */ 1463 leaf = path->nodes[0]; 1464 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1465 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1466 refs = btrfs_extent_refs(leaf, item); 1467 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1468 if (extent_op) 1469 __run_delayed_extent_op(extent_op, leaf, item); 1470 1471 btrfs_mark_buffer_dirty(leaf); 1472 btrfs_release_path(path); 1473 1474 path->leave_spinning = 1; 1475 /* now insert the actual backref */ 1476 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1477 BUG_ON(refs_to_add != 1); 1478 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1479 root_objectid); 1480 } else { 1481 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1482 root_objectid, owner, offset, 1483 refs_to_add); 1484 } 1485 if (ret) 1486 btrfs_abort_transaction(trans, ret); 1487 out: 1488 btrfs_free_path(path); 1489 return ret; 1490 } 1491 1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1493 struct btrfs_delayed_ref_node *node, 1494 struct btrfs_delayed_extent_op *extent_op, 1495 int insert_reserved) 1496 { 1497 int ret = 0; 1498 struct btrfs_delayed_data_ref *ref; 1499 struct btrfs_key ins; 1500 u64 parent = 0; 1501 u64 ref_root = 0; 1502 u64 flags = 0; 1503 1504 ins.objectid = node->bytenr; 1505 ins.offset = node->num_bytes; 1506 ins.type = BTRFS_EXTENT_ITEM_KEY; 1507 1508 ref = btrfs_delayed_node_to_data_ref(node); 1509 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1510 1511 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1512 parent = ref->parent; 1513 ref_root = ref->root; 1514 1515 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1516 if (extent_op) 1517 flags |= extent_op->flags_to_set; 1518 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1519 flags, ref->objectid, 1520 ref->offset, &ins, 1521 node->ref_mod); 1522 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1523 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1524 ref->objectid, ref->offset, 1525 node->ref_mod, extent_op); 1526 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1527 ret = __btrfs_free_extent(trans, node, parent, 1528 ref_root, ref->objectid, 1529 ref->offset, node->ref_mod, 1530 extent_op); 1531 } else { 1532 BUG(); 1533 } 1534 return ret; 1535 } 1536 1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1538 struct extent_buffer *leaf, 1539 struct btrfs_extent_item *ei) 1540 { 1541 u64 flags = btrfs_extent_flags(leaf, ei); 1542 if (extent_op->update_flags) { 1543 flags |= extent_op->flags_to_set; 1544 btrfs_set_extent_flags(leaf, ei, flags); 1545 } 1546 1547 if (extent_op->update_key) { 1548 struct btrfs_tree_block_info *bi; 1549 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1550 bi = (struct btrfs_tree_block_info *)(ei + 1); 1551 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1552 } 1553 } 1554 1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1556 struct btrfs_delayed_ref_head *head, 1557 struct btrfs_delayed_extent_op *extent_op) 1558 { 1559 struct btrfs_fs_info *fs_info = trans->fs_info; 1560 struct btrfs_key key; 1561 struct btrfs_path *path; 1562 struct btrfs_extent_item *ei; 1563 struct extent_buffer *leaf; 1564 u32 item_size; 1565 int ret; 1566 int err = 0; 1567 int metadata = !extent_op->is_data; 1568 1569 if (TRANS_ABORTED(trans)) 1570 return 0; 1571 1572 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1573 metadata = 0; 1574 1575 path = btrfs_alloc_path(); 1576 if (!path) 1577 return -ENOMEM; 1578 1579 key.objectid = head->bytenr; 1580 1581 if (metadata) { 1582 key.type = BTRFS_METADATA_ITEM_KEY; 1583 key.offset = extent_op->level; 1584 } else { 1585 key.type = BTRFS_EXTENT_ITEM_KEY; 1586 key.offset = head->num_bytes; 1587 } 1588 1589 again: 1590 path->leave_spinning = 1; 1591 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1592 if (ret < 0) { 1593 err = ret; 1594 goto out; 1595 } 1596 if (ret > 0) { 1597 if (metadata) { 1598 if (path->slots[0] > 0) { 1599 path->slots[0]--; 1600 btrfs_item_key_to_cpu(path->nodes[0], &key, 1601 path->slots[0]); 1602 if (key.objectid == head->bytenr && 1603 key.type == BTRFS_EXTENT_ITEM_KEY && 1604 key.offset == head->num_bytes) 1605 ret = 0; 1606 } 1607 if (ret > 0) { 1608 btrfs_release_path(path); 1609 metadata = 0; 1610 1611 key.objectid = head->bytenr; 1612 key.offset = head->num_bytes; 1613 key.type = BTRFS_EXTENT_ITEM_KEY; 1614 goto again; 1615 } 1616 } else { 1617 err = -EIO; 1618 goto out; 1619 } 1620 } 1621 1622 leaf = path->nodes[0]; 1623 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1624 1625 if (unlikely(item_size < sizeof(*ei))) { 1626 err = -EINVAL; 1627 btrfs_print_v0_err(fs_info); 1628 btrfs_abort_transaction(trans, err); 1629 goto out; 1630 } 1631 1632 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1633 __run_delayed_extent_op(extent_op, leaf, ei); 1634 1635 btrfs_mark_buffer_dirty(leaf); 1636 out: 1637 btrfs_free_path(path); 1638 return err; 1639 } 1640 1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1642 struct btrfs_delayed_ref_node *node, 1643 struct btrfs_delayed_extent_op *extent_op, 1644 int insert_reserved) 1645 { 1646 int ret = 0; 1647 struct btrfs_delayed_tree_ref *ref; 1648 u64 parent = 0; 1649 u64 ref_root = 0; 1650 1651 ref = btrfs_delayed_node_to_tree_ref(node); 1652 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1653 1654 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1655 parent = ref->parent; 1656 ref_root = ref->root; 1657 1658 if (node->ref_mod != 1) { 1659 btrfs_err(trans->fs_info, 1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1661 node->bytenr, node->ref_mod, node->action, ref_root, 1662 parent); 1663 return -EIO; 1664 } 1665 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1666 BUG_ON(!extent_op || !extent_op->update_flags); 1667 ret = alloc_reserved_tree_block(trans, node, extent_op); 1668 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1669 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1670 ref->level, 0, 1, extent_op); 1671 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1672 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else { 1675 BUG(); 1676 } 1677 return ret; 1678 } 1679 1680 /* helper function to actually process a single delayed ref entry */ 1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1682 struct btrfs_delayed_ref_node *node, 1683 struct btrfs_delayed_extent_op *extent_op, 1684 int insert_reserved) 1685 { 1686 int ret = 0; 1687 1688 if (TRANS_ABORTED(trans)) { 1689 if (insert_reserved) 1690 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1691 return 0; 1692 } 1693 1694 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1695 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1696 ret = run_delayed_tree_ref(trans, node, extent_op, 1697 insert_reserved); 1698 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1699 node->type == BTRFS_SHARED_DATA_REF_KEY) 1700 ret = run_delayed_data_ref(trans, node, extent_op, 1701 insert_reserved); 1702 else 1703 BUG(); 1704 if (ret && insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return ret; 1707 } 1708 1709 static inline struct btrfs_delayed_ref_node * 1710 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1711 { 1712 struct btrfs_delayed_ref_node *ref; 1713 1714 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1715 return NULL; 1716 1717 /* 1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1719 * This is to prevent a ref count from going down to zero, which deletes 1720 * the extent item from the extent tree, when there still are references 1721 * to add, which would fail because they would not find the extent item. 1722 */ 1723 if (!list_empty(&head->ref_add_list)) 1724 return list_first_entry(&head->ref_add_list, 1725 struct btrfs_delayed_ref_node, add_list); 1726 1727 ref = rb_entry(rb_first_cached(&head->ref_tree), 1728 struct btrfs_delayed_ref_node, ref_node); 1729 ASSERT(list_empty(&ref->add_list)); 1730 return ref; 1731 } 1732 1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1734 struct btrfs_delayed_ref_head *head) 1735 { 1736 spin_lock(&delayed_refs->lock); 1737 head->processing = 0; 1738 delayed_refs->num_heads_ready++; 1739 spin_unlock(&delayed_refs->lock); 1740 btrfs_delayed_ref_unlock(head); 1741 } 1742 1743 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1744 struct btrfs_delayed_ref_head *head) 1745 { 1746 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1747 1748 if (!extent_op) 1749 return NULL; 1750 1751 if (head->must_insert_reserved) { 1752 head->extent_op = NULL; 1753 btrfs_free_delayed_extent_op(extent_op); 1754 return NULL; 1755 } 1756 return extent_op; 1757 } 1758 1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1760 struct btrfs_delayed_ref_head *head) 1761 { 1762 struct btrfs_delayed_extent_op *extent_op; 1763 int ret; 1764 1765 extent_op = cleanup_extent_op(head); 1766 if (!extent_op) 1767 return 0; 1768 head->extent_op = NULL; 1769 spin_unlock(&head->lock); 1770 ret = run_delayed_extent_op(trans, head, extent_op); 1771 btrfs_free_delayed_extent_op(extent_op); 1772 return ret ? ret : 1; 1773 } 1774 1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1776 struct btrfs_delayed_ref_root *delayed_refs, 1777 struct btrfs_delayed_ref_head *head) 1778 { 1779 int nr_items = 1; /* Dropping this ref head update. */ 1780 1781 if (head->total_ref_mod < 0) { 1782 struct btrfs_space_info *space_info; 1783 u64 flags; 1784 1785 if (head->is_data) 1786 flags = BTRFS_BLOCK_GROUP_DATA; 1787 else if (head->is_system) 1788 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1789 else 1790 flags = BTRFS_BLOCK_GROUP_METADATA; 1791 space_info = btrfs_find_space_info(fs_info, flags); 1792 ASSERT(space_info); 1793 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1794 -head->num_bytes, 1795 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1796 1797 /* 1798 * We had csum deletions accounted for in our delayed refs rsv, 1799 * we need to drop the csum leaves for this update from our 1800 * delayed_refs_rsv. 1801 */ 1802 if (head->is_data) { 1803 spin_lock(&delayed_refs->lock); 1804 delayed_refs->pending_csums -= head->num_bytes; 1805 spin_unlock(&delayed_refs->lock); 1806 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1807 head->num_bytes); 1808 } 1809 } 1810 1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1812 } 1813 1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1815 struct btrfs_delayed_ref_head *head) 1816 { 1817 1818 struct btrfs_fs_info *fs_info = trans->fs_info; 1819 struct btrfs_delayed_ref_root *delayed_refs; 1820 int ret; 1821 1822 delayed_refs = &trans->transaction->delayed_refs; 1823 1824 ret = run_and_cleanup_extent_op(trans, head); 1825 if (ret < 0) { 1826 unselect_delayed_ref_head(delayed_refs, head); 1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1828 return ret; 1829 } else if (ret) { 1830 return ret; 1831 } 1832 1833 /* 1834 * Need to drop our head ref lock and re-acquire the delayed ref lock 1835 * and then re-check to make sure nobody got added. 1836 */ 1837 spin_unlock(&head->lock); 1838 spin_lock(&delayed_refs->lock); 1839 spin_lock(&head->lock); 1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 return 1; 1844 } 1845 btrfs_delete_ref_head(delayed_refs, head); 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 1849 if (head->must_insert_reserved) { 1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1851 if (head->is_data) { 1852 ret = btrfs_del_csums(trans, fs_info->csum_root, 1853 head->bytenr, head->num_bytes); 1854 } 1855 } 1856 1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1858 1859 trace_run_delayed_ref_head(fs_info, head, 0); 1860 btrfs_delayed_ref_unlock(head); 1861 btrfs_put_delayed_ref_head(head); 1862 return 0; 1863 } 1864 1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1866 struct btrfs_trans_handle *trans) 1867 { 1868 struct btrfs_delayed_ref_root *delayed_refs = 1869 &trans->transaction->delayed_refs; 1870 struct btrfs_delayed_ref_head *head = NULL; 1871 int ret; 1872 1873 spin_lock(&delayed_refs->lock); 1874 head = btrfs_select_ref_head(delayed_refs); 1875 if (!head) { 1876 spin_unlock(&delayed_refs->lock); 1877 return head; 1878 } 1879 1880 /* 1881 * Grab the lock that says we are going to process all the refs for 1882 * this head 1883 */ 1884 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1885 spin_unlock(&delayed_refs->lock); 1886 1887 /* 1888 * We may have dropped the spin lock to get the head mutex lock, and 1889 * that might have given someone else time to free the head. If that's 1890 * true, it has been removed from our list and we can move on. 1891 */ 1892 if (ret == -EAGAIN) 1893 head = ERR_PTR(-EAGAIN); 1894 1895 return head; 1896 } 1897 1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1899 struct btrfs_delayed_ref_head *locked_ref, 1900 unsigned long *run_refs) 1901 { 1902 struct btrfs_fs_info *fs_info = trans->fs_info; 1903 struct btrfs_delayed_ref_root *delayed_refs; 1904 struct btrfs_delayed_extent_op *extent_op; 1905 struct btrfs_delayed_ref_node *ref; 1906 int must_insert_reserved = 0; 1907 int ret; 1908 1909 delayed_refs = &trans->transaction->delayed_refs; 1910 1911 lockdep_assert_held(&locked_ref->mutex); 1912 lockdep_assert_held(&locked_ref->lock); 1913 1914 while ((ref = select_delayed_ref(locked_ref))) { 1915 if (ref->seq && 1916 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1917 spin_unlock(&locked_ref->lock); 1918 unselect_delayed_ref_head(delayed_refs, locked_ref); 1919 return -EAGAIN; 1920 } 1921 1922 (*run_refs)++; 1923 ref->in_tree = 0; 1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1925 RB_CLEAR_NODE(&ref->ref_node); 1926 if (!list_empty(&ref->add_list)) 1927 list_del(&ref->add_list); 1928 /* 1929 * When we play the delayed ref, also correct the ref_mod on 1930 * head 1931 */ 1932 switch (ref->action) { 1933 case BTRFS_ADD_DELAYED_REF: 1934 case BTRFS_ADD_DELAYED_EXTENT: 1935 locked_ref->ref_mod -= ref->ref_mod; 1936 break; 1937 case BTRFS_DROP_DELAYED_REF: 1938 locked_ref->ref_mod += ref->ref_mod; 1939 break; 1940 default: 1941 WARN_ON(1); 1942 } 1943 atomic_dec(&delayed_refs->num_entries); 1944 1945 /* 1946 * Record the must_insert_reserved flag before we drop the 1947 * spin lock. 1948 */ 1949 must_insert_reserved = locked_ref->must_insert_reserved; 1950 locked_ref->must_insert_reserved = 0; 1951 1952 extent_op = locked_ref->extent_op; 1953 locked_ref->extent_op = NULL; 1954 spin_unlock(&locked_ref->lock); 1955 1956 ret = run_one_delayed_ref(trans, ref, extent_op, 1957 must_insert_reserved); 1958 1959 btrfs_free_delayed_extent_op(extent_op); 1960 if (ret) { 1961 unselect_delayed_ref_head(delayed_refs, locked_ref); 1962 btrfs_put_delayed_ref(ref); 1963 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1964 ret); 1965 return ret; 1966 } 1967 1968 btrfs_put_delayed_ref(ref); 1969 cond_resched(); 1970 1971 spin_lock(&locked_ref->lock); 1972 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Returns 0 on success or if called with an already aborted transaction. 1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1981 */ 1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1983 unsigned long nr) 1984 { 1985 struct btrfs_fs_info *fs_info = trans->fs_info; 1986 struct btrfs_delayed_ref_root *delayed_refs; 1987 struct btrfs_delayed_ref_head *locked_ref = NULL; 1988 ktime_t start = ktime_get(); 1989 int ret; 1990 unsigned long count = 0; 1991 unsigned long actual_count = 0; 1992 1993 delayed_refs = &trans->transaction->delayed_refs; 1994 do { 1995 if (!locked_ref) { 1996 locked_ref = btrfs_obtain_ref_head(trans); 1997 if (IS_ERR_OR_NULL(locked_ref)) { 1998 if (PTR_ERR(locked_ref) == -EAGAIN) { 1999 continue; 2000 } else { 2001 break; 2002 } 2003 } 2004 count++; 2005 } 2006 /* 2007 * We need to try and merge add/drops of the same ref since we 2008 * can run into issues with relocate dropping the implicit ref 2009 * and then it being added back again before the drop can 2010 * finish. If we merged anything we need to re-loop so we can 2011 * get a good ref. 2012 * Or we can get node references of the same type that weren't 2013 * merged when created due to bumps in the tree mod seq, and 2014 * we need to merge them to prevent adding an inline extent 2015 * backref before dropping it (triggering a BUG_ON at 2016 * insert_inline_extent_backref()). 2017 */ 2018 spin_lock(&locked_ref->lock); 2019 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2020 2021 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2022 &actual_count); 2023 if (ret < 0 && ret != -EAGAIN) { 2024 /* 2025 * Error, btrfs_run_delayed_refs_for_head already 2026 * unlocked everything so just bail out 2027 */ 2028 return ret; 2029 } else if (!ret) { 2030 /* 2031 * Success, perform the usual cleanup of a processed 2032 * head 2033 */ 2034 ret = cleanup_ref_head(trans, locked_ref); 2035 if (ret > 0 ) { 2036 /* We dropped our lock, we need to loop. */ 2037 ret = 0; 2038 continue; 2039 } else if (ret) { 2040 return ret; 2041 } 2042 } 2043 2044 /* 2045 * Either success case or btrfs_run_delayed_refs_for_head 2046 * returned -EAGAIN, meaning we need to select another head 2047 */ 2048 2049 locked_ref = NULL; 2050 cond_resched(); 2051 } while ((nr != -1 && count < nr) || locked_ref); 2052 2053 /* 2054 * We don't want to include ref heads since we can have empty ref heads 2055 * and those will drastically skew our runtime down since we just do 2056 * accounting, no actual extent tree updates. 2057 */ 2058 if (actual_count > 0) { 2059 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2060 u64 avg; 2061 2062 /* 2063 * We weigh the current average higher than our current runtime 2064 * to avoid large swings in the average. 2065 */ 2066 spin_lock(&delayed_refs->lock); 2067 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2068 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2069 spin_unlock(&delayed_refs->lock); 2070 } 2071 return 0; 2072 } 2073 2074 #ifdef SCRAMBLE_DELAYED_REFS 2075 /* 2076 * Normally delayed refs get processed in ascending bytenr order. This 2077 * correlates in most cases to the order added. To expose dependencies on this 2078 * order, we start to process the tree in the middle instead of the beginning 2079 */ 2080 static u64 find_middle(struct rb_root *root) 2081 { 2082 struct rb_node *n = root->rb_node; 2083 struct btrfs_delayed_ref_node *entry; 2084 int alt = 1; 2085 u64 middle; 2086 u64 first = 0, last = 0; 2087 2088 n = rb_first(root); 2089 if (n) { 2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2091 first = entry->bytenr; 2092 } 2093 n = rb_last(root); 2094 if (n) { 2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2096 last = entry->bytenr; 2097 } 2098 n = root->rb_node; 2099 2100 while (n) { 2101 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2102 WARN_ON(!entry->in_tree); 2103 2104 middle = entry->bytenr; 2105 2106 if (alt) 2107 n = n->rb_left; 2108 else 2109 n = n->rb_right; 2110 2111 alt = 1 - alt; 2112 } 2113 return middle; 2114 } 2115 #endif 2116 2117 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2118 { 2119 u64 num_bytes; 2120 2121 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2122 sizeof(struct btrfs_extent_inline_ref)); 2123 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2124 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2125 2126 /* 2127 * We don't ever fill up leaves all the way so multiply by 2 just to be 2128 * closer to what we're really going to want to use. 2129 */ 2130 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2131 } 2132 2133 /* 2134 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2135 * would require to store the csums for that many bytes. 2136 */ 2137 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2138 { 2139 u64 csum_size; 2140 u64 num_csums_per_leaf; 2141 u64 num_csums; 2142 2143 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2144 num_csums_per_leaf = div64_u64(csum_size, 2145 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2146 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2147 num_csums += num_csums_per_leaf - 1; 2148 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2149 return num_csums; 2150 } 2151 2152 /* 2153 * this starts processing the delayed reference count updates and 2154 * extent insertions we have queued up so far. count can be 2155 * 0, which means to process everything in the tree at the start 2156 * of the run (but not newly added entries), or it can be some target 2157 * number you'd like to process. 2158 * 2159 * Returns 0 on success or if called with an aborted transaction 2160 * Returns <0 on error and aborts the transaction 2161 */ 2162 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2163 unsigned long count) 2164 { 2165 struct btrfs_fs_info *fs_info = trans->fs_info; 2166 struct rb_node *node; 2167 struct btrfs_delayed_ref_root *delayed_refs; 2168 struct btrfs_delayed_ref_head *head; 2169 int ret; 2170 int run_all = count == (unsigned long)-1; 2171 2172 /* We'll clean this up in btrfs_cleanup_transaction */ 2173 if (TRANS_ABORTED(trans)) 2174 return 0; 2175 2176 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2177 return 0; 2178 2179 delayed_refs = &trans->transaction->delayed_refs; 2180 if (count == 0) 2181 count = atomic_read(&delayed_refs->num_entries) * 2; 2182 2183 again: 2184 #ifdef SCRAMBLE_DELAYED_REFS 2185 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2186 #endif 2187 ret = __btrfs_run_delayed_refs(trans, count); 2188 if (ret < 0) { 2189 btrfs_abort_transaction(trans, ret); 2190 return ret; 2191 } 2192 2193 if (run_all) { 2194 btrfs_create_pending_block_groups(trans); 2195 2196 spin_lock(&delayed_refs->lock); 2197 node = rb_first_cached(&delayed_refs->href_root); 2198 if (!node) { 2199 spin_unlock(&delayed_refs->lock); 2200 goto out; 2201 } 2202 head = rb_entry(node, struct btrfs_delayed_ref_head, 2203 href_node); 2204 refcount_inc(&head->refs); 2205 spin_unlock(&delayed_refs->lock); 2206 2207 /* Mutex was contended, block until it's released and retry. */ 2208 mutex_lock(&head->mutex); 2209 mutex_unlock(&head->mutex); 2210 2211 btrfs_put_delayed_ref_head(head); 2212 cond_resched(); 2213 goto again; 2214 } 2215 out: 2216 return 0; 2217 } 2218 2219 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2220 struct extent_buffer *eb, u64 flags, 2221 int level, int is_data) 2222 { 2223 struct btrfs_delayed_extent_op *extent_op; 2224 int ret; 2225 2226 extent_op = btrfs_alloc_delayed_extent_op(); 2227 if (!extent_op) 2228 return -ENOMEM; 2229 2230 extent_op->flags_to_set = flags; 2231 extent_op->update_flags = true; 2232 extent_op->update_key = false; 2233 extent_op->is_data = is_data ? true : false; 2234 extent_op->level = level; 2235 2236 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2237 if (ret) 2238 btrfs_free_delayed_extent_op(extent_op); 2239 return ret; 2240 } 2241 2242 static noinline int check_delayed_ref(struct btrfs_root *root, 2243 struct btrfs_path *path, 2244 u64 objectid, u64 offset, u64 bytenr) 2245 { 2246 struct btrfs_delayed_ref_head *head; 2247 struct btrfs_delayed_ref_node *ref; 2248 struct btrfs_delayed_data_ref *data_ref; 2249 struct btrfs_delayed_ref_root *delayed_refs; 2250 struct btrfs_transaction *cur_trans; 2251 struct rb_node *node; 2252 int ret = 0; 2253 2254 spin_lock(&root->fs_info->trans_lock); 2255 cur_trans = root->fs_info->running_transaction; 2256 if (cur_trans) 2257 refcount_inc(&cur_trans->use_count); 2258 spin_unlock(&root->fs_info->trans_lock); 2259 if (!cur_trans) 2260 return 0; 2261 2262 delayed_refs = &cur_trans->delayed_refs; 2263 spin_lock(&delayed_refs->lock); 2264 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2265 if (!head) { 2266 spin_unlock(&delayed_refs->lock); 2267 btrfs_put_transaction(cur_trans); 2268 return 0; 2269 } 2270 2271 if (!mutex_trylock(&head->mutex)) { 2272 refcount_inc(&head->refs); 2273 spin_unlock(&delayed_refs->lock); 2274 2275 btrfs_release_path(path); 2276 2277 /* 2278 * Mutex was contended, block until it's released and let 2279 * caller try again 2280 */ 2281 mutex_lock(&head->mutex); 2282 mutex_unlock(&head->mutex); 2283 btrfs_put_delayed_ref_head(head); 2284 btrfs_put_transaction(cur_trans); 2285 return -EAGAIN; 2286 } 2287 spin_unlock(&delayed_refs->lock); 2288 2289 spin_lock(&head->lock); 2290 /* 2291 * XXX: We should replace this with a proper search function in the 2292 * future. 2293 */ 2294 for (node = rb_first_cached(&head->ref_tree); node; 2295 node = rb_next(node)) { 2296 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2297 /* If it's a shared ref we know a cross reference exists */ 2298 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2299 ret = 1; 2300 break; 2301 } 2302 2303 data_ref = btrfs_delayed_node_to_data_ref(ref); 2304 2305 /* 2306 * If our ref doesn't match the one we're currently looking at 2307 * then we have a cross reference. 2308 */ 2309 if (data_ref->root != root->root_key.objectid || 2310 data_ref->objectid != objectid || 2311 data_ref->offset != offset) { 2312 ret = 1; 2313 break; 2314 } 2315 } 2316 spin_unlock(&head->lock); 2317 mutex_unlock(&head->mutex); 2318 btrfs_put_transaction(cur_trans); 2319 return ret; 2320 } 2321 2322 static noinline int check_committed_ref(struct btrfs_root *root, 2323 struct btrfs_path *path, 2324 u64 objectid, u64 offset, u64 bytenr) 2325 { 2326 struct btrfs_fs_info *fs_info = root->fs_info; 2327 struct btrfs_root *extent_root = fs_info->extent_root; 2328 struct extent_buffer *leaf; 2329 struct btrfs_extent_data_ref *ref; 2330 struct btrfs_extent_inline_ref *iref; 2331 struct btrfs_extent_item *ei; 2332 struct btrfs_key key; 2333 u32 item_size; 2334 int type; 2335 int ret; 2336 2337 key.objectid = bytenr; 2338 key.offset = (u64)-1; 2339 key.type = BTRFS_EXTENT_ITEM_KEY; 2340 2341 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2342 if (ret < 0) 2343 goto out; 2344 BUG_ON(ret == 0); /* Corruption */ 2345 2346 ret = -ENOENT; 2347 if (path->slots[0] == 0) 2348 goto out; 2349 2350 path->slots[0]--; 2351 leaf = path->nodes[0]; 2352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2353 2354 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2355 goto out; 2356 2357 ret = 1; 2358 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2359 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2360 2361 /* If extent item has more than 1 inline ref then it's shared */ 2362 if (item_size != sizeof(*ei) + 2363 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2364 goto out; 2365 2366 /* If extent created before last snapshot => it's definitely shared */ 2367 if (btrfs_extent_generation(leaf, ei) <= 2368 btrfs_root_last_snapshot(&root->root_item)) 2369 goto out; 2370 2371 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2372 2373 /* If this extent has SHARED_DATA_REF then it's shared */ 2374 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2375 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2376 goto out; 2377 2378 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2379 if (btrfs_extent_refs(leaf, ei) != 2380 btrfs_extent_data_ref_count(leaf, ref) || 2381 btrfs_extent_data_ref_root(leaf, ref) != 2382 root->root_key.objectid || 2383 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2384 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2385 goto out; 2386 2387 ret = 0; 2388 out: 2389 return ret; 2390 } 2391 2392 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2393 u64 bytenr) 2394 { 2395 struct btrfs_path *path; 2396 int ret; 2397 2398 path = btrfs_alloc_path(); 2399 if (!path) 2400 return -ENOMEM; 2401 2402 do { 2403 ret = check_committed_ref(root, path, objectid, 2404 offset, bytenr); 2405 if (ret && ret != -ENOENT) 2406 goto out; 2407 2408 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2409 } while (ret == -EAGAIN); 2410 2411 out: 2412 btrfs_free_path(path); 2413 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2414 WARN_ON(ret > 0); 2415 return ret; 2416 } 2417 2418 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2419 struct btrfs_root *root, 2420 struct extent_buffer *buf, 2421 int full_backref, int inc) 2422 { 2423 struct btrfs_fs_info *fs_info = root->fs_info; 2424 u64 bytenr; 2425 u64 num_bytes; 2426 u64 parent; 2427 u64 ref_root; 2428 u32 nritems; 2429 struct btrfs_key key; 2430 struct btrfs_file_extent_item *fi; 2431 struct btrfs_ref generic_ref = { 0 }; 2432 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2433 int i; 2434 int action; 2435 int level; 2436 int ret = 0; 2437 2438 if (btrfs_is_testing(fs_info)) 2439 return 0; 2440 2441 ref_root = btrfs_header_owner(buf); 2442 nritems = btrfs_header_nritems(buf); 2443 level = btrfs_header_level(buf); 2444 2445 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 2446 return 0; 2447 2448 if (full_backref) 2449 parent = buf->start; 2450 else 2451 parent = 0; 2452 if (inc) 2453 action = BTRFS_ADD_DELAYED_REF; 2454 else 2455 action = BTRFS_DROP_DELAYED_REF; 2456 2457 for (i = 0; i < nritems; i++) { 2458 if (level == 0) { 2459 btrfs_item_key_to_cpu(buf, &key, i); 2460 if (key.type != BTRFS_EXTENT_DATA_KEY) 2461 continue; 2462 fi = btrfs_item_ptr(buf, i, 2463 struct btrfs_file_extent_item); 2464 if (btrfs_file_extent_type(buf, fi) == 2465 BTRFS_FILE_EXTENT_INLINE) 2466 continue; 2467 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2468 if (bytenr == 0) 2469 continue; 2470 2471 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2472 key.offset -= btrfs_file_extent_offset(buf, fi); 2473 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2474 num_bytes, parent); 2475 generic_ref.real_root = root->root_key.objectid; 2476 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2477 key.offset); 2478 generic_ref.skip_qgroup = for_reloc; 2479 if (inc) 2480 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2481 else 2482 ret = btrfs_free_extent(trans, &generic_ref); 2483 if (ret) 2484 goto fail; 2485 } else { 2486 bytenr = btrfs_node_blockptr(buf, i); 2487 num_bytes = fs_info->nodesize; 2488 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2489 num_bytes, parent); 2490 generic_ref.real_root = root->root_key.objectid; 2491 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2492 generic_ref.skip_qgroup = for_reloc; 2493 if (inc) 2494 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2495 else 2496 ret = btrfs_free_extent(trans, &generic_ref); 2497 if (ret) 2498 goto fail; 2499 } 2500 } 2501 return 0; 2502 fail: 2503 return ret; 2504 } 2505 2506 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2507 struct extent_buffer *buf, int full_backref) 2508 { 2509 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2510 } 2511 2512 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2513 struct extent_buffer *buf, int full_backref) 2514 { 2515 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2516 } 2517 2518 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2519 { 2520 struct btrfs_block_group *block_group; 2521 int readonly = 0; 2522 2523 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2524 if (!block_group || block_group->ro) 2525 readonly = 1; 2526 if (block_group) 2527 btrfs_put_block_group(block_group); 2528 return readonly; 2529 } 2530 2531 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2532 { 2533 struct btrfs_fs_info *fs_info = root->fs_info; 2534 u64 flags; 2535 u64 ret; 2536 2537 if (data) 2538 flags = BTRFS_BLOCK_GROUP_DATA; 2539 else if (root == fs_info->chunk_root) 2540 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2541 else 2542 flags = BTRFS_BLOCK_GROUP_METADATA; 2543 2544 ret = btrfs_get_alloc_profile(fs_info, flags); 2545 return ret; 2546 } 2547 2548 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2549 { 2550 struct btrfs_block_group *cache; 2551 u64 bytenr; 2552 2553 spin_lock(&fs_info->block_group_cache_lock); 2554 bytenr = fs_info->first_logical_byte; 2555 spin_unlock(&fs_info->block_group_cache_lock); 2556 2557 if (bytenr < (u64)-1) 2558 return bytenr; 2559 2560 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2561 if (!cache) 2562 return 0; 2563 2564 bytenr = cache->start; 2565 btrfs_put_block_group(cache); 2566 2567 return bytenr; 2568 } 2569 2570 static int pin_down_extent(struct btrfs_trans_handle *trans, 2571 struct btrfs_block_group *cache, 2572 u64 bytenr, u64 num_bytes, int reserved) 2573 { 2574 struct btrfs_fs_info *fs_info = cache->fs_info; 2575 2576 spin_lock(&cache->space_info->lock); 2577 spin_lock(&cache->lock); 2578 cache->pinned += num_bytes; 2579 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2580 num_bytes); 2581 if (reserved) { 2582 cache->reserved -= num_bytes; 2583 cache->space_info->bytes_reserved -= num_bytes; 2584 } 2585 spin_unlock(&cache->lock); 2586 spin_unlock(&cache->space_info->lock); 2587 2588 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2589 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2590 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2591 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2592 return 0; 2593 } 2594 2595 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2596 u64 bytenr, u64 num_bytes, int reserved) 2597 { 2598 struct btrfs_block_group *cache; 2599 2600 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2601 BUG_ON(!cache); /* Logic error */ 2602 2603 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2604 2605 btrfs_put_block_group(cache); 2606 return 0; 2607 } 2608 2609 /* 2610 * this function must be called within transaction 2611 */ 2612 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2613 u64 bytenr, u64 num_bytes) 2614 { 2615 struct btrfs_block_group *cache; 2616 int ret; 2617 2618 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2619 2620 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2621 if (!cache) 2622 return -EINVAL; 2623 2624 /* 2625 * pull in the free space cache (if any) so that our pin 2626 * removes the free space from the cache. We have load_only set 2627 * to one because the slow code to read in the free extents does check 2628 * the pinned extents. 2629 */ 2630 btrfs_cache_block_group(cache, 1); 2631 2632 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2633 2634 /* remove us from the free space cache (if we're there at all) */ 2635 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2636 btrfs_put_block_group(cache); 2637 return ret; 2638 } 2639 2640 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2641 u64 start, u64 num_bytes) 2642 { 2643 int ret; 2644 struct btrfs_block_group *block_group; 2645 struct btrfs_caching_control *caching_ctl; 2646 2647 block_group = btrfs_lookup_block_group(fs_info, start); 2648 if (!block_group) 2649 return -EINVAL; 2650 2651 btrfs_cache_block_group(block_group, 0); 2652 caching_ctl = btrfs_get_caching_control(block_group); 2653 2654 if (!caching_ctl) { 2655 /* Logic error */ 2656 BUG_ON(!btrfs_block_group_done(block_group)); 2657 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2658 } else { 2659 mutex_lock(&caching_ctl->mutex); 2660 2661 if (start >= caching_ctl->progress) { 2662 ret = btrfs_add_excluded_extent(fs_info, start, 2663 num_bytes); 2664 } else if (start + num_bytes <= caching_ctl->progress) { 2665 ret = btrfs_remove_free_space(block_group, 2666 start, num_bytes); 2667 } else { 2668 num_bytes = caching_ctl->progress - start; 2669 ret = btrfs_remove_free_space(block_group, 2670 start, num_bytes); 2671 if (ret) 2672 goto out_lock; 2673 2674 num_bytes = (start + num_bytes) - 2675 caching_ctl->progress; 2676 start = caching_ctl->progress; 2677 ret = btrfs_add_excluded_extent(fs_info, start, 2678 num_bytes); 2679 } 2680 out_lock: 2681 mutex_unlock(&caching_ctl->mutex); 2682 btrfs_put_caching_control(caching_ctl); 2683 } 2684 btrfs_put_block_group(block_group); 2685 return ret; 2686 } 2687 2688 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2689 { 2690 struct btrfs_fs_info *fs_info = eb->fs_info; 2691 struct btrfs_file_extent_item *item; 2692 struct btrfs_key key; 2693 int found_type; 2694 int i; 2695 int ret = 0; 2696 2697 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2698 return 0; 2699 2700 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2701 btrfs_item_key_to_cpu(eb, &key, i); 2702 if (key.type != BTRFS_EXTENT_DATA_KEY) 2703 continue; 2704 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2705 found_type = btrfs_file_extent_type(eb, item); 2706 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2707 continue; 2708 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2709 continue; 2710 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2711 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2712 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2713 if (ret) 2714 break; 2715 } 2716 2717 return ret; 2718 } 2719 2720 static void 2721 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2722 { 2723 atomic_inc(&bg->reservations); 2724 } 2725 2726 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2727 { 2728 struct btrfs_caching_control *next; 2729 struct btrfs_caching_control *caching_ctl; 2730 struct btrfs_block_group *cache; 2731 2732 down_write(&fs_info->commit_root_sem); 2733 2734 list_for_each_entry_safe(caching_ctl, next, 2735 &fs_info->caching_block_groups, list) { 2736 cache = caching_ctl->block_group; 2737 if (btrfs_block_group_done(cache)) { 2738 cache->last_byte_to_unpin = (u64)-1; 2739 list_del_init(&caching_ctl->list); 2740 btrfs_put_caching_control(caching_ctl); 2741 } else { 2742 cache->last_byte_to_unpin = caching_ctl->progress; 2743 } 2744 } 2745 2746 up_write(&fs_info->commit_root_sem); 2747 2748 btrfs_update_global_block_rsv(fs_info); 2749 } 2750 2751 /* 2752 * Returns the free cluster for the given space info and sets empty_cluster to 2753 * what it should be based on the mount options. 2754 */ 2755 static struct btrfs_free_cluster * 2756 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2757 struct btrfs_space_info *space_info, u64 *empty_cluster) 2758 { 2759 struct btrfs_free_cluster *ret = NULL; 2760 2761 *empty_cluster = 0; 2762 if (btrfs_mixed_space_info(space_info)) 2763 return ret; 2764 2765 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2766 ret = &fs_info->meta_alloc_cluster; 2767 if (btrfs_test_opt(fs_info, SSD)) 2768 *empty_cluster = SZ_2M; 2769 else 2770 *empty_cluster = SZ_64K; 2771 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2772 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2773 *empty_cluster = SZ_2M; 2774 ret = &fs_info->data_alloc_cluster; 2775 } 2776 2777 return ret; 2778 } 2779 2780 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2781 u64 start, u64 end, 2782 const bool return_free_space) 2783 { 2784 struct btrfs_block_group *cache = NULL; 2785 struct btrfs_space_info *space_info; 2786 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2787 struct btrfs_free_cluster *cluster = NULL; 2788 u64 len; 2789 u64 total_unpinned = 0; 2790 u64 empty_cluster = 0; 2791 bool readonly; 2792 2793 while (start <= end) { 2794 readonly = false; 2795 if (!cache || 2796 start >= cache->start + cache->length) { 2797 if (cache) 2798 btrfs_put_block_group(cache); 2799 total_unpinned = 0; 2800 cache = btrfs_lookup_block_group(fs_info, start); 2801 BUG_ON(!cache); /* Logic error */ 2802 2803 cluster = fetch_cluster_info(fs_info, 2804 cache->space_info, 2805 &empty_cluster); 2806 empty_cluster <<= 1; 2807 } 2808 2809 len = cache->start + cache->length - start; 2810 len = min(len, end + 1 - start); 2811 2812 if (start < cache->last_byte_to_unpin) { 2813 len = min(len, cache->last_byte_to_unpin - start); 2814 if (return_free_space) 2815 btrfs_add_free_space(cache, start, len); 2816 } 2817 2818 start += len; 2819 total_unpinned += len; 2820 space_info = cache->space_info; 2821 2822 /* 2823 * If this space cluster has been marked as fragmented and we've 2824 * unpinned enough in this block group to potentially allow a 2825 * cluster to be created inside of it go ahead and clear the 2826 * fragmented check. 2827 */ 2828 if (cluster && cluster->fragmented && 2829 total_unpinned > empty_cluster) { 2830 spin_lock(&cluster->lock); 2831 cluster->fragmented = 0; 2832 spin_unlock(&cluster->lock); 2833 } 2834 2835 spin_lock(&space_info->lock); 2836 spin_lock(&cache->lock); 2837 cache->pinned -= len; 2838 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2839 space_info->max_extent_size = 0; 2840 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2841 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2842 if (cache->ro) { 2843 space_info->bytes_readonly += len; 2844 readonly = true; 2845 } 2846 spin_unlock(&cache->lock); 2847 if (!readonly && return_free_space && 2848 global_rsv->space_info == space_info) { 2849 u64 to_add = len; 2850 2851 spin_lock(&global_rsv->lock); 2852 if (!global_rsv->full) { 2853 to_add = min(len, global_rsv->size - 2854 global_rsv->reserved); 2855 global_rsv->reserved += to_add; 2856 btrfs_space_info_update_bytes_may_use(fs_info, 2857 space_info, to_add); 2858 if (global_rsv->reserved >= global_rsv->size) 2859 global_rsv->full = 1; 2860 len -= to_add; 2861 } 2862 spin_unlock(&global_rsv->lock); 2863 /* Add to any tickets we may have */ 2864 if (len) 2865 btrfs_try_granting_tickets(fs_info, 2866 space_info); 2867 } 2868 spin_unlock(&space_info->lock); 2869 } 2870 2871 if (cache) 2872 btrfs_put_block_group(cache); 2873 return 0; 2874 } 2875 2876 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2877 { 2878 struct btrfs_fs_info *fs_info = trans->fs_info; 2879 struct btrfs_block_group *block_group, *tmp; 2880 struct list_head *deleted_bgs; 2881 struct extent_io_tree *unpin; 2882 u64 start; 2883 u64 end; 2884 int ret; 2885 2886 unpin = &trans->transaction->pinned_extents; 2887 2888 while (!TRANS_ABORTED(trans)) { 2889 struct extent_state *cached_state = NULL; 2890 2891 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2892 ret = find_first_extent_bit(unpin, 0, &start, &end, 2893 EXTENT_DIRTY, &cached_state); 2894 if (ret) { 2895 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2896 break; 2897 } 2898 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2899 clear_extent_bits(&fs_info->excluded_extents, start, 2900 end, EXTENT_UPTODATE); 2901 2902 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2903 ret = btrfs_discard_extent(fs_info, start, 2904 end + 1 - start, NULL); 2905 2906 clear_extent_dirty(unpin, start, end, &cached_state); 2907 unpin_extent_range(fs_info, start, end, true); 2908 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2909 free_extent_state(cached_state); 2910 cond_resched(); 2911 } 2912 2913 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2914 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2915 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2916 } 2917 2918 /* 2919 * Transaction is finished. We don't need the lock anymore. We 2920 * do need to clean up the block groups in case of a transaction 2921 * abort. 2922 */ 2923 deleted_bgs = &trans->transaction->deleted_bgs; 2924 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2925 u64 trimmed = 0; 2926 2927 ret = -EROFS; 2928 if (!TRANS_ABORTED(trans)) 2929 ret = btrfs_discard_extent(fs_info, 2930 block_group->start, 2931 block_group->length, 2932 &trimmed); 2933 2934 list_del_init(&block_group->bg_list); 2935 btrfs_put_block_group_trimming(block_group); 2936 btrfs_put_block_group(block_group); 2937 2938 if (ret) { 2939 const char *errstr = btrfs_decode_error(ret); 2940 btrfs_warn(fs_info, 2941 "discard failed while removing blockgroup: errno=%d %s", 2942 ret, errstr); 2943 } 2944 } 2945 2946 return 0; 2947 } 2948 2949 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2950 struct btrfs_delayed_ref_node *node, u64 parent, 2951 u64 root_objectid, u64 owner_objectid, 2952 u64 owner_offset, int refs_to_drop, 2953 struct btrfs_delayed_extent_op *extent_op) 2954 { 2955 struct btrfs_fs_info *info = trans->fs_info; 2956 struct btrfs_key key; 2957 struct btrfs_path *path; 2958 struct btrfs_root *extent_root = info->extent_root; 2959 struct extent_buffer *leaf; 2960 struct btrfs_extent_item *ei; 2961 struct btrfs_extent_inline_ref *iref; 2962 int ret; 2963 int is_data; 2964 int extent_slot = 0; 2965 int found_extent = 0; 2966 int num_to_del = 1; 2967 u32 item_size; 2968 u64 refs; 2969 u64 bytenr = node->bytenr; 2970 u64 num_bytes = node->num_bytes; 2971 int last_ref = 0; 2972 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2973 2974 path = btrfs_alloc_path(); 2975 if (!path) 2976 return -ENOMEM; 2977 2978 path->leave_spinning = 1; 2979 2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2981 BUG_ON(!is_data && refs_to_drop != 1); 2982 2983 if (is_data) 2984 skinny_metadata = false; 2985 2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2987 parent, root_objectid, owner_objectid, 2988 owner_offset); 2989 if (ret == 0) { 2990 extent_slot = path->slots[0]; 2991 while (extent_slot >= 0) { 2992 btrfs_item_key_to_cpu(path->nodes[0], &key, 2993 extent_slot); 2994 if (key.objectid != bytenr) 2995 break; 2996 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2997 key.offset == num_bytes) { 2998 found_extent = 1; 2999 break; 3000 } 3001 if (key.type == BTRFS_METADATA_ITEM_KEY && 3002 key.offset == owner_objectid) { 3003 found_extent = 1; 3004 break; 3005 } 3006 if (path->slots[0] - extent_slot > 5) 3007 break; 3008 extent_slot--; 3009 } 3010 3011 if (!found_extent) { 3012 BUG_ON(iref); 3013 ret = remove_extent_backref(trans, path, NULL, 3014 refs_to_drop, 3015 is_data, &last_ref); 3016 if (ret) { 3017 btrfs_abort_transaction(trans, ret); 3018 goto out; 3019 } 3020 btrfs_release_path(path); 3021 path->leave_spinning = 1; 3022 3023 key.objectid = bytenr; 3024 key.type = BTRFS_EXTENT_ITEM_KEY; 3025 key.offset = num_bytes; 3026 3027 if (!is_data && skinny_metadata) { 3028 key.type = BTRFS_METADATA_ITEM_KEY; 3029 key.offset = owner_objectid; 3030 } 3031 3032 ret = btrfs_search_slot(trans, extent_root, 3033 &key, path, -1, 1); 3034 if (ret > 0 && skinny_metadata && path->slots[0]) { 3035 /* 3036 * Couldn't find our skinny metadata item, 3037 * see if we have ye olde extent item. 3038 */ 3039 path->slots[0]--; 3040 btrfs_item_key_to_cpu(path->nodes[0], &key, 3041 path->slots[0]); 3042 if (key.objectid == bytenr && 3043 key.type == BTRFS_EXTENT_ITEM_KEY && 3044 key.offset == num_bytes) 3045 ret = 0; 3046 } 3047 3048 if (ret > 0 && skinny_metadata) { 3049 skinny_metadata = false; 3050 key.objectid = bytenr; 3051 key.type = BTRFS_EXTENT_ITEM_KEY; 3052 key.offset = num_bytes; 3053 btrfs_release_path(path); 3054 ret = btrfs_search_slot(trans, extent_root, 3055 &key, path, -1, 1); 3056 } 3057 3058 if (ret) { 3059 btrfs_err(info, 3060 "umm, got %d back from search, was looking for %llu", 3061 ret, bytenr); 3062 if (ret > 0) 3063 btrfs_print_leaf(path->nodes[0]); 3064 } 3065 if (ret < 0) { 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } 3069 extent_slot = path->slots[0]; 3070 } 3071 } else if (WARN_ON(ret == -ENOENT)) { 3072 btrfs_print_leaf(path->nodes[0]); 3073 btrfs_err(info, 3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3075 bytenr, parent, root_objectid, owner_objectid, 3076 owner_offset); 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } else { 3080 btrfs_abort_transaction(trans, ret); 3081 goto out; 3082 } 3083 3084 leaf = path->nodes[0]; 3085 item_size = btrfs_item_size_nr(leaf, extent_slot); 3086 if (unlikely(item_size < sizeof(*ei))) { 3087 ret = -EINVAL; 3088 btrfs_print_v0_err(info); 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 ei = btrfs_item_ptr(leaf, extent_slot, 3093 struct btrfs_extent_item); 3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3095 key.type == BTRFS_EXTENT_ITEM_KEY) { 3096 struct btrfs_tree_block_info *bi; 3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3098 bi = (struct btrfs_tree_block_info *)(ei + 1); 3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3100 } 3101 3102 refs = btrfs_extent_refs(leaf, ei); 3103 if (refs < refs_to_drop) { 3104 btrfs_err(info, 3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3106 refs_to_drop, refs, bytenr); 3107 ret = -EINVAL; 3108 btrfs_abort_transaction(trans, ret); 3109 goto out; 3110 } 3111 refs -= refs_to_drop; 3112 3113 if (refs > 0) { 3114 if (extent_op) 3115 __run_delayed_extent_op(extent_op, leaf, ei); 3116 /* 3117 * In the case of inline back ref, reference count will 3118 * be updated by remove_extent_backref 3119 */ 3120 if (iref) { 3121 BUG_ON(!found_extent); 3122 } else { 3123 btrfs_set_extent_refs(leaf, ei, refs); 3124 btrfs_mark_buffer_dirty(leaf); 3125 } 3126 if (found_extent) { 3127 ret = remove_extent_backref(trans, path, iref, 3128 refs_to_drop, is_data, 3129 &last_ref); 3130 if (ret) { 3131 btrfs_abort_transaction(trans, ret); 3132 goto out; 3133 } 3134 } 3135 } else { 3136 if (found_extent) { 3137 BUG_ON(is_data && refs_to_drop != 3138 extent_data_ref_count(path, iref)); 3139 if (iref) { 3140 BUG_ON(path->slots[0] != extent_slot); 3141 } else { 3142 BUG_ON(path->slots[0] != extent_slot + 1); 3143 path->slots[0] = extent_slot; 3144 num_to_del = 2; 3145 } 3146 } 3147 3148 last_ref = 1; 3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3150 num_to_del); 3151 if (ret) { 3152 btrfs_abort_transaction(trans, ret); 3153 goto out; 3154 } 3155 btrfs_release_path(path); 3156 3157 if (is_data) { 3158 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3159 num_bytes); 3160 if (ret) { 3161 btrfs_abort_transaction(trans, ret); 3162 goto out; 3163 } 3164 } 3165 3166 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3167 if (ret) { 3168 btrfs_abort_transaction(trans, ret); 3169 goto out; 3170 } 3171 3172 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3173 if (ret) { 3174 btrfs_abort_transaction(trans, ret); 3175 goto out; 3176 } 3177 } 3178 btrfs_release_path(path); 3179 3180 out: 3181 btrfs_free_path(path); 3182 return ret; 3183 } 3184 3185 /* 3186 * when we free an block, it is possible (and likely) that we free the last 3187 * delayed ref for that extent as well. This searches the delayed ref tree for 3188 * a given extent, and if there are no other delayed refs to be processed, it 3189 * removes it from the tree. 3190 */ 3191 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3192 u64 bytenr) 3193 { 3194 struct btrfs_delayed_ref_head *head; 3195 struct btrfs_delayed_ref_root *delayed_refs; 3196 int ret = 0; 3197 3198 delayed_refs = &trans->transaction->delayed_refs; 3199 spin_lock(&delayed_refs->lock); 3200 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3201 if (!head) 3202 goto out_delayed_unlock; 3203 3204 spin_lock(&head->lock); 3205 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3206 goto out; 3207 3208 if (cleanup_extent_op(head) != NULL) 3209 goto out; 3210 3211 /* 3212 * waiting for the lock here would deadlock. If someone else has it 3213 * locked they are already in the process of dropping it anyway 3214 */ 3215 if (!mutex_trylock(&head->mutex)) 3216 goto out; 3217 3218 btrfs_delete_ref_head(delayed_refs, head); 3219 head->processing = 0; 3220 3221 spin_unlock(&head->lock); 3222 spin_unlock(&delayed_refs->lock); 3223 3224 BUG_ON(head->extent_op); 3225 if (head->must_insert_reserved) 3226 ret = 1; 3227 3228 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3229 mutex_unlock(&head->mutex); 3230 btrfs_put_delayed_ref_head(head); 3231 return ret; 3232 out: 3233 spin_unlock(&head->lock); 3234 3235 out_delayed_unlock: 3236 spin_unlock(&delayed_refs->lock); 3237 return 0; 3238 } 3239 3240 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3241 struct btrfs_root *root, 3242 struct extent_buffer *buf, 3243 u64 parent, int last_ref) 3244 { 3245 struct btrfs_fs_info *fs_info = root->fs_info; 3246 struct btrfs_ref generic_ref = { 0 }; 3247 int pin = 1; 3248 int ret; 3249 3250 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3251 buf->start, buf->len, parent); 3252 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3253 root->root_key.objectid); 3254 3255 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3256 int old_ref_mod, new_ref_mod; 3257 3258 btrfs_ref_tree_mod(fs_info, &generic_ref); 3259 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3260 &old_ref_mod, &new_ref_mod); 3261 BUG_ON(ret); /* -ENOMEM */ 3262 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3263 } 3264 3265 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3266 struct btrfs_block_group *cache; 3267 3268 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3269 ret = check_ref_cleanup(trans, buf->start); 3270 if (!ret) 3271 goto out; 3272 } 3273 3274 pin = 0; 3275 cache = btrfs_lookup_block_group(fs_info, buf->start); 3276 3277 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3278 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3279 btrfs_put_block_group(cache); 3280 goto out; 3281 } 3282 3283 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3284 3285 btrfs_add_free_space(cache, buf->start, buf->len); 3286 btrfs_free_reserved_bytes(cache, buf->len, 0); 3287 btrfs_put_block_group(cache); 3288 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3289 } 3290 out: 3291 if (pin) 3292 add_pinned_bytes(fs_info, &generic_ref); 3293 3294 if (last_ref) { 3295 /* 3296 * Deleting the buffer, clear the corrupt flag since it doesn't 3297 * matter anymore. 3298 */ 3299 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3300 } 3301 } 3302 3303 /* Can return -ENOMEM */ 3304 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3305 { 3306 struct btrfs_fs_info *fs_info = trans->fs_info; 3307 int old_ref_mod, new_ref_mod; 3308 int ret; 3309 3310 if (btrfs_is_testing(fs_info)) 3311 return 0; 3312 3313 /* 3314 * tree log blocks never actually go into the extent allocation 3315 * tree, just update pinning info and exit early. 3316 */ 3317 if ((ref->type == BTRFS_REF_METADATA && 3318 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3319 (ref->type == BTRFS_REF_DATA && 3320 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3321 /* unlocks the pinned mutex */ 3322 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3323 old_ref_mod = new_ref_mod = 0; 3324 ret = 0; 3325 } else if (ref->type == BTRFS_REF_METADATA) { 3326 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3327 &old_ref_mod, &new_ref_mod); 3328 } else { 3329 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3330 &old_ref_mod, &new_ref_mod); 3331 } 3332 3333 if (!((ref->type == BTRFS_REF_METADATA && 3334 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3335 (ref->type == BTRFS_REF_DATA && 3336 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3337 btrfs_ref_tree_mod(fs_info, ref); 3338 3339 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3340 add_pinned_bytes(fs_info, ref); 3341 3342 return ret; 3343 } 3344 3345 enum btrfs_loop_type { 3346 LOOP_CACHING_NOWAIT, 3347 LOOP_CACHING_WAIT, 3348 LOOP_ALLOC_CHUNK, 3349 LOOP_NO_EMPTY_SIZE, 3350 }; 3351 3352 static inline void 3353 btrfs_lock_block_group(struct btrfs_block_group *cache, 3354 int delalloc) 3355 { 3356 if (delalloc) 3357 down_read(&cache->data_rwsem); 3358 } 3359 3360 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3361 int delalloc) 3362 { 3363 btrfs_get_block_group(cache); 3364 if (delalloc) 3365 down_read(&cache->data_rwsem); 3366 } 3367 3368 static struct btrfs_block_group *btrfs_lock_cluster( 3369 struct btrfs_block_group *block_group, 3370 struct btrfs_free_cluster *cluster, 3371 int delalloc) 3372 { 3373 struct btrfs_block_group *used_bg = NULL; 3374 3375 spin_lock(&cluster->refill_lock); 3376 while (1) { 3377 used_bg = cluster->block_group; 3378 if (!used_bg) 3379 return NULL; 3380 3381 if (used_bg == block_group) 3382 return used_bg; 3383 3384 btrfs_get_block_group(used_bg); 3385 3386 if (!delalloc) 3387 return used_bg; 3388 3389 if (down_read_trylock(&used_bg->data_rwsem)) 3390 return used_bg; 3391 3392 spin_unlock(&cluster->refill_lock); 3393 3394 /* We should only have one-level nested. */ 3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3396 3397 spin_lock(&cluster->refill_lock); 3398 if (used_bg == cluster->block_group) 3399 return used_bg; 3400 3401 up_read(&used_bg->data_rwsem); 3402 btrfs_put_block_group(used_bg); 3403 } 3404 } 3405 3406 static inline void 3407 btrfs_release_block_group(struct btrfs_block_group *cache, 3408 int delalloc) 3409 { 3410 if (delalloc) 3411 up_read(&cache->data_rwsem); 3412 btrfs_put_block_group(cache); 3413 } 3414 3415 enum btrfs_extent_allocation_policy { 3416 BTRFS_EXTENT_ALLOC_CLUSTERED, 3417 }; 3418 3419 /* 3420 * Structure used internally for find_free_extent() function. Wraps needed 3421 * parameters. 3422 */ 3423 struct find_free_extent_ctl { 3424 /* Basic allocation info */ 3425 u64 num_bytes; 3426 u64 empty_size; 3427 u64 flags; 3428 int delalloc; 3429 3430 /* Where to start the search inside the bg */ 3431 u64 search_start; 3432 3433 /* For clustered allocation */ 3434 u64 empty_cluster; 3435 struct btrfs_free_cluster *last_ptr; 3436 bool use_cluster; 3437 3438 bool have_caching_bg; 3439 bool orig_have_caching_bg; 3440 3441 /* RAID index, converted from flags */ 3442 int index; 3443 3444 /* 3445 * Current loop number, check find_free_extent_update_loop() for details 3446 */ 3447 int loop; 3448 3449 /* 3450 * Whether we're refilling a cluster, if true we need to re-search 3451 * current block group but don't try to refill the cluster again. 3452 */ 3453 bool retry_clustered; 3454 3455 /* 3456 * Whether we're updating free space cache, if true we need to re-search 3457 * current block group but don't try updating free space cache again. 3458 */ 3459 bool retry_unclustered; 3460 3461 /* If current block group is cached */ 3462 int cached; 3463 3464 /* Max contiguous hole found */ 3465 u64 max_extent_size; 3466 3467 /* Total free space from free space cache, not always contiguous */ 3468 u64 total_free_space; 3469 3470 /* Found result */ 3471 u64 found_offset; 3472 3473 /* Hint where to start looking for an empty space */ 3474 u64 hint_byte; 3475 3476 /* Allocation policy */ 3477 enum btrfs_extent_allocation_policy policy; 3478 }; 3479 3480 3481 /* 3482 * Helper function for find_free_extent(). 3483 * 3484 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3485 * Return -EAGAIN to inform caller that we need to re-search this block group 3486 * Return >0 to inform caller that we find nothing 3487 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3488 */ 3489 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3490 struct find_free_extent_ctl *ffe_ctl, 3491 struct btrfs_block_group **cluster_bg_ret) 3492 { 3493 struct btrfs_block_group *cluster_bg; 3494 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3495 u64 aligned_cluster; 3496 u64 offset; 3497 int ret; 3498 3499 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3500 if (!cluster_bg) 3501 goto refill_cluster; 3502 if (cluster_bg != bg && (cluster_bg->ro || 3503 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3504 goto release_cluster; 3505 3506 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3507 ffe_ctl->num_bytes, cluster_bg->start, 3508 &ffe_ctl->max_extent_size); 3509 if (offset) { 3510 /* We have a block, we're done */ 3511 spin_unlock(&last_ptr->refill_lock); 3512 trace_btrfs_reserve_extent_cluster(cluster_bg, 3513 ffe_ctl->search_start, ffe_ctl->num_bytes); 3514 *cluster_bg_ret = cluster_bg; 3515 ffe_ctl->found_offset = offset; 3516 return 0; 3517 } 3518 WARN_ON(last_ptr->block_group != cluster_bg); 3519 3520 release_cluster: 3521 /* 3522 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3523 * lets just skip it and let the allocator find whatever block it can 3524 * find. If we reach this point, we will have tried the cluster 3525 * allocator plenty of times and not have found anything, so we are 3526 * likely way too fragmented for the clustering stuff to find anything. 3527 * 3528 * However, if the cluster is taken from the current block group, 3529 * release the cluster first, so that we stand a better chance of 3530 * succeeding in the unclustered allocation. 3531 */ 3532 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3533 spin_unlock(&last_ptr->refill_lock); 3534 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3535 return -ENOENT; 3536 } 3537 3538 /* This cluster didn't work out, free it and start over */ 3539 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3540 3541 if (cluster_bg != bg) 3542 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3543 3544 refill_cluster: 3545 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3546 spin_unlock(&last_ptr->refill_lock); 3547 return -ENOENT; 3548 } 3549 3550 aligned_cluster = max_t(u64, 3551 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3552 bg->full_stripe_len); 3553 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3554 ffe_ctl->num_bytes, aligned_cluster); 3555 if (ret == 0) { 3556 /* Now pull our allocation out of this cluster */ 3557 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3558 ffe_ctl->num_bytes, ffe_ctl->search_start, 3559 &ffe_ctl->max_extent_size); 3560 if (offset) { 3561 /* We found one, proceed */ 3562 spin_unlock(&last_ptr->refill_lock); 3563 trace_btrfs_reserve_extent_cluster(bg, 3564 ffe_ctl->search_start, 3565 ffe_ctl->num_bytes); 3566 ffe_ctl->found_offset = offset; 3567 return 0; 3568 } 3569 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3570 !ffe_ctl->retry_clustered) { 3571 spin_unlock(&last_ptr->refill_lock); 3572 3573 ffe_ctl->retry_clustered = true; 3574 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3575 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3576 return -EAGAIN; 3577 } 3578 /* 3579 * At this point we either didn't find a cluster or we weren't able to 3580 * allocate a block from our cluster. Free the cluster we've been 3581 * trying to use, and go to the next block group. 3582 */ 3583 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3584 spin_unlock(&last_ptr->refill_lock); 3585 return 1; 3586 } 3587 3588 /* 3589 * Return >0 to inform caller that we find nothing 3590 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3591 * Return -EAGAIN to inform caller that we need to re-search this block group 3592 */ 3593 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3594 struct find_free_extent_ctl *ffe_ctl) 3595 { 3596 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3597 u64 offset; 3598 3599 /* 3600 * We are doing an unclustered allocation, set the fragmented flag so 3601 * we don't bother trying to setup a cluster again until we get more 3602 * space. 3603 */ 3604 if (unlikely(last_ptr)) { 3605 spin_lock(&last_ptr->lock); 3606 last_ptr->fragmented = 1; 3607 spin_unlock(&last_ptr->lock); 3608 } 3609 if (ffe_ctl->cached) { 3610 struct btrfs_free_space_ctl *free_space_ctl; 3611 3612 free_space_ctl = bg->free_space_ctl; 3613 spin_lock(&free_space_ctl->tree_lock); 3614 if (free_space_ctl->free_space < 3615 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3616 ffe_ctl->empty_size) { 3617 ffe_ctl->total_free_space = max_t(u64, 3618 ffe_ctl->total_free_space, 3619 free_space_ctl->free_space); 3620 spin_unlock(&free_space_ctl->tree_lock); 3621 return 1; 3622 } 3623 spin_unlock(&free_space_ctl->tree_lock); 3624 } 3625 3626 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3627 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3628 &ffe_ctl->max_extent_size); 3629 3630 /* 3631 * If we didn't find a chunk, and we haven't failed on this block group 3632 * before, and this block group is in the middle of caching and we are 3633 * ok with waiting, then go ahead and wait for progress to be made, and 3634 * set @retry_unclustered to true. 3635 * 3636 * If @retry_unclustered is true then we've already waited on this 3637 * block group once and should move on to the next block group. 3638 */ 3639 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3640 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3641 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3642 ffe_ctl->empty_size); 3643 ffe_ctl->retry_unclustered = true; 3644 return -EAGAIN; 3645 } else if (!offset) { 3646 return 1; 3647 } 3648 ffe_ctl->found_offset = offset; 3649 return 0; 3650 } 3651 3652 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3653 struct find_free_extent_ctl *ffe_ctl, 3654 struct btrfs_block_group **bg_ret) 3655 { 3656 int ret; 3657 3658 /* We want to try and use the cluster allocator, so lets look there */ 3659 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3660 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3661 if (ret >= 0 || ret == -EAGAIN) 3662 return ret; 3663 /* ret == -ENOENT case falls through */ 3664 } 3665 3666 return find_free_extent_unclustered(block_group, ffe_ctl); 3667 } 3668 3669 static int do_allocation(struct btrfs_block_group *block_group, 3670 struct find_free_extent_ctl *ffe_ctl, 3671 struct btrfs_block_group **bg_ret) 3672 { 3673 switch (ffe_ctl->policy) { 3674 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3675 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3676 default: 3677 BUG(); 3678 } 3679 } 3680 3681 static void release_block_group(struct btrfs_block_group *block_group, 3682 struct find_free_extent_ctl *ffe_ctl, 3683 int delalloc) 3684 { 3685 switch (ffe_ctl->policy) { 3686 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3687 ffe_ctl->retry_clustered = false; 3688 ffe_ctl->retry_unclustered = false; 3689 break; 3690 default: 3691 BUG(); 3692 } 3693 3694 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3695 ffe_ctl->index); 3696 btrfs_release_block_group(block_group, delalloc); 3697 } 3698 3699 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3700 struct btrfs_key *ins) 3701 { 3702 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3703 3704 if (!ffe_ctl->use_cluster && last_ptr) { 3705 spin_lock(&last_ptr->lock); 3706 last_ptr->window_start = ins->objectid; 3707 spin_unlock(&last_ptr->lock); 3708 } 3709 } 3710 3711 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3712 struct btrfs_key *ins) 3713 { 3714 switch (ffe_ctl->policy) { 3715 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3716 found_extent_clustered(ffe_ctl, ins); 3717 break; 3718 default: 3719 BUG(); 3720 } 3721 } 3722 3723 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3724 { 3725 switch (ffe_ctl->policy) { 3726 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3727 /* 3728 * If we can't allocate a new chunk we've already looped through 3729 * at least once, move on to the NO_EMPTY_SIZE case. 3730 */ 3731 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3732 return 0; 3733 default: 3734 BUG(); 3735 } 3736 } 3737 3738 /* 3739 * Return >0 means caller needs to re-search for free extent 3740 * Return 0 means we have the needed free extent. 3741 * Return <0 means we failed to locate any free extent. 3742 */ 3743 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3744 struct btrfs_key *ins, 3745 struct find_free_extent_ctl *ffe_ctl, 3746 bool full_search) 3747 { 3748 struct btrfs_root *root = fs_info->extent_root; 3749 int ret; 3750 3751 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3752 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3753 ffe_ctl->orig_have_caching_bg = true; 3754 3755 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3756 ffe_ctl->have_caching_bg) 3757 return 1; 3758 3759 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3760 return 1; 3761 3762 if (ins->objectid) { 3763 found_extent(ffe_ctl, ins); 3764 return 0; 3765 } 3766 3767 /* 3768 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3769 * caching kthreads as we move along 3770 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3771 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3772 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3773 * again 3774 */ 3775 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3776 ffe_ctl->index = 0; 3777 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3778 /* 3779 * We want to skip the LOOP_CACHING_WAIT step if we 3780 * don't have any uncached bgs and we've already done a 3781 * full search through. 3782 */ 3783 if (ffe_ctl->orig_have_caching_bg || !full_search) 3784 ffe_ctl->loop = LOOP_CACHING_WAIT; 3785 else 3786 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3787 } else { 3788 ffe_ctl->loop++; 3789 } 3790 3791 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3792 struct btrfs_trans_handle *trans; 3793 int exist = 0; 3794 3795 trans = current->journal_info; 3796 if (trans) 3797 exist = 1; 3798 else 3799 trans = btrfs_join_transaction(root); 3800 3801 if (IS_ERR(trans)) { 3802 ret = PTR_ERR(trans); 3803 return ret; 3804 } 3805 3806 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3807 CHUNK_ALLOC_FORCE); 3808 3809 /* Do not bail out on ENOSPC since we can do more. */ 3810 if (ret == -ENOSPC) 3811 ret = chunk_allocation_failed(ffe_ctl); 3812 else if (ret < 0) 3813 btrfs_abort_transaction(trans, ret); 3814 else 3815 ret = 0; 3816 if (!exist) 3817 btrfs_end_transaction(trans); 3818 if (ret) 3819 return ret; 3820 } 3821 3822 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3823 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3824 return -ENOSPC; 3825 3826 /* 3827 * Don't loop again if we already have no empty_size and 3828 * no empty_cluster. 3829 */ 3830 if (ffe_ctl->empty_size == 0 && 3831 ffe_ctl->empty_cluster == 0) 3832 return -ENOSPC; 3833 ffe_ctl->empty_size = 0; 3834 ffe_ctl->empty_cluster = 0; 3835 } 3836 return 1; 3837 } 3838 return -ENOSPC; 3839 } 3840 3841 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3842 struct find_free_extent_ctl *ffe_ctl, 3843 struct btrfs_space_info *space_info, 3844 struct btrfs_key *ins) 3845 { 3846 /* 3847 * If our free space is heavily fragmented we may not be able to make 3848 * big contiguous allocations, so instead of doing the expensive search 3849 * for free space, simply return ENOSPC with our max_extent_size so we 3850 * can go ahead and search for a more manageable chunk. 3851 * 3852 * If our max_extent_size is large enough for our allocation simply 3853 * disable clustering since we will likely not be able to find enough 3854 * space to create a cluster and induce latency trying. 3855 */ 3856 if (space_info->max_extent_size) { 3857 spin_lock(&space_info->lock); 3858 if (space_info->max_extent_size && 3859 ffe_ctl->num_bytes > space_info->max_extent_size) { 3860 ins->offset = space_info->max_extent_size; 3861 spin_unlock(&space_info->lock); 3862 return -ENOSPC; 3863 } else if (space_info->max_extent_size) { 3864 ffe_ctl->use_cluster = false; 3865 } 3866 spin_unlock(&space_info->lock); 3867 } 3868 3869 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3870 &ffe_ctl->empty_cluster); 3871 if (ffe_ctl->last_ptr) { 3872 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3873 3874 spin_lock(&last_ptr->lock); 3875 if (last_ptr->block_group) 3876 ffe_ctl->hint_byte = last_ptr->window_start; 3877 if (last_ptr->fragmented) { 3878 /* 3879 * We still set window_start so we can keep track of the 3880 * last place we found an allocation to try and save 3881 * some time. 3882 */ 3883 ffe_ctl->hint_byte = last_ptr->window_start; 3884 ffe_ctl->use_cluster = false; 3885 } 3886 spin_unlock(&last_ptr->lock); 3887 } 3888 3889 return 0; 3890 } 3891 3892 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3893 struct find_free_extent_ctl *ffe_ctl, 3894 struct btrfs_space_info *space_info, 3895 struct btrfs_key *ins) 3896 { 3897 switch (ffe_ctl->policy) { 3898 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3899 return prepare_allocation_clustered(fs_info, ffe_ctl, 3900 space_info, ins); 3901 default: 3902 BUG(); 3903 } 3904 } 3905 3906 /* 3907 * walks the btree of allocated extents and find a hole of a given size. 3908 * The key ins is changed to record the hole: 3909 * ins->objectid == start position 3910 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3911 * ins->offset == the size of the hole. 3912 * Any available blocks before search_start are skipped. 3913 * 3914 * If there is no suitable free space, we will record the max size of 3915 * the free space extent currently. 3916 * 3917 * The overall logic and call chain: 3918 * 3919 * find_free_extent() 3920 * |- Iterate through all block groups 3921 * | |- Get a valid block group 3922 * | |- Try to do clustered allocation in that block group 3923 * | |- Try to do unclustered allocation in that block group 3924 * | |- Check if the result is valid 3925 * | | |- If valid, then exit 3926 * | |- Jump to next block group 3927 * | 3928 * |- Push harder to find free extents 3929 * |- If not found, re-iterate all block groups 3930 */ 3931 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3932 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3933 u64 hint_byte_orig, struct btrfs_key *ins, 3934 u64 flags, int delalloc) 3935 { 3936 int ret = 0; 3937 int cache_block_group_error = 0; 3938 struct btrfs_block_group *block_group = NULL; 3939 struct find_free_extent_ctl ffe_ctl = {0}; 3940 struct btrfs_space_info *space_info; 3941 bool full_search = false; 3942 3943 WARN_ON(num_bytes < fs_info->sectorsize); 3944 3945 ffe_ctl.num_bytes = num_bytes; 3946 ffe_ctl.empty_size = empty_size; 3947 ffe_ctl.flags = flags; 3948 ffe_ctl.search_start = 0; 3949 ffe_ctl.delalloc = delalloc; 3950 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3951 ffe_ctl.have_caching_bg = false; 3952 ffe_ctl.orig_have_caching_bg = false; 3953 ffe_ctl.found_offset = 0; 3954 ffe_ctl.hint_byte = hint_byte_orig; 3955 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 3956 3957 /* For clustered allocation */ 3958 ffe_ctl.retry_clustered = false; 3959 ffe_ctl.retry_unclustered = false; 3960 ffe_ctl.last_ptr = NULL; 3961 ffe_ctl.use_cluster = true; 3962 3963 ins->type = BTRFS_EXTENT_ITEM_KEY; 3964 ins->objectid = 0; 3965 ins->offset = 0; 3966 3967 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3968 3969 space_info = btrfs_find_space_info(fs_info, flags); 3970 if (!space_info) { 3971 btrfs_err(fs_info, "No space info for %llu", flags); 3972 return -ENOSPC; 3973 } 3974 3975 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 3976 if (ret < 0) 3977 return ret; 3978 3979 ffe_ctl.search_start = max(ffe_ctl.search_start, 3980 first_logical_byte(fs_info, 0)); 3981 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 3982 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 3983 block_group = btrfs_lookup_block_group(fs_info, 3984 ffe_ctl.search_start); 3985 /* 3986 * we don't want to use the block group if it doesn't match our 3987 * allocation bits, or if its not cached. 3988 * 3989 * However if we are re-searching with an ideal block group 3990 * picked out then we don't care that the block group is cached. 3991 */ 3992 if (block_group && block_group_bits(block_group, flags) && 3993 block_group->cached != BTRFS_CACHE_NO) { 3994 down_read(&space_info->groups_sem); 3995 if (list_empty(&block_group->list) || 3996 block_group->ro) { 3997 /* 3998 * someone is removing this block group, 3999 * we can't jump into the have_block_group 4000 * target because our list pointers are not 4001 * valid 4002 */ 4003 btrfs_put_block_group(block_group); 4004 up_read(&space_info->groups_sem); 4005 } else { 4006 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4007 block_group->flags); 4008 btrfs_lock_block_group(block_group, delalloc); 4009 goto have_block_group; 4010 } 4011 } else if (block_group) { 4012 btrfs_put_block_group(block_group); 4013 } 4014 } 4015 search: 4016 ffe_ctl.have_caching_bg = false; 4017 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4018 ffe_ctl.index == 0) 4019 full_search = true; 4020 down_read(&space_info->groups_sem); 4021 list_for_each_entry(block_group, 4022 &space_info->block_groups[ffe_ctl.index], list) { 4023 struct btrfs_block_group *bg_ret; 4024 4025 /* If the block group is read-only, we can skip it entirely. */ 4026 if (unlikely(block_group->ro)) 4027 continue; 4028 4029 btrfs_grab_block_group(block_group, delalloc); 4030 ffe_ctl.search_start = block_group->start; 4031 4032 /* 4033 * this can happen if we end up cycling through all the 4034 * raid types, but we want to make sure we only allocate 4035 * for the proper type. 4036 */ 4037 if (!block_group_bits(block_group, flags)) { 4038 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4039 BTRFS_BLOCK_GROUP_RAID1_MASK | 4040 BTRFS_BLOCK_GROUP_RAID56_MASK | 4041 BTRFS_BLOCK_GROUP_RAID10; 4042 4043 /* 4044 * if they asked for extra copies and this block group 4045 * doesn't provide them, bail. This does allow us to 4046 * fill raid0 from raid1. 4047 */ 4048 if ((flags & extra) && !(block_group->flags & extra)) 4049 goto loop; 4050 4051 /* 4052 * This block group has different flags than we want. 4053 * It's possible that we have MIXED_GROUP flag but no 4054 * block group is mixed. Just skip such block group. 4055 */ 4056 btrfs_release_block_group(block_group, delalloc); 4057 continue; 4058 } 4059 4060 have_block_group: 4061 ffe_ctl.cached = btrfs_block_group_done(block_group); 4062 if (unlikely(!ffe_ctl.cached)) { 4063 ffe_ctl.have_caching_bg = true; 4064 ret = btrfs_cache_block_group(block_group, 0); 4065 4066 /* 4067 * If we get ENOMEM here or something else we want to 4068 * try other block groups, because it may not be fatal. 4069 * However if we can't find anything else we need to 4070 * save our return here so that we return the actual 4071 * error that caused problems, not ENOSPC. 4072 */ 4073 if (ret < 0) { 4074 if (!cache_block_group_error) 4075 cache_block_group_error = ret; 4076 ret = 0; 4077 goto loop; 4078 } 4079 ret = 0; 4080 } 4081 4082 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4083 goto loop; 4084 4085 bg_ret = NULL; 4086 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4087 if (ret == 0) { 4088 if (bg_ret && bg_ret != block_group) { 4089 btrfs_release_block_group(block_group, delalloc); 4090 block_group = bg_ret; 4091 } 4092 } else if (ret == -EAGAIN) { 4093 goto have_block_group; 4094 } else if (ret > 0) { 4095 goto loop; 4096 } 4097 4098 /* Checks */ 4099 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4100 fs_info->stripesize); 4101 4102 /* move on to the next group */ 4103 if (ffe_ctl.search_start + num_bytes > 4104 block_group->start + block_group->length) { 4105 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4106 num_bytes); 4107 goto loop; 4108 } 4109 4110 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4111 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4112 ffe_ctl.search_start - ffe_ctl.found_offset); 4113 4114 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4115 num_bytes, delalloc); 4116 if (ret == -EAGAIN) { 4117 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4118 num_bytes); 4119 goto loop; 4120 } 4121 btrfs_inc_block_group_reservations(block_group); 4122 4123 /* we are all good, lets return */ 4124 ins->objectid = ffe_ctl.search_start; 4125 ins->offset = num_bytes; 4126 4127 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4128 num_bytes); 4129 btrfs_release_block_group(block_group, delalloc); 4130 break; 4131 loop: 4132 release_block_group(block_group, &ffe_ctl, delalloc); 4133 cond_resched(); 4134 } 4135 up_read(&space_info->groups_sem); 4136 4137 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4138 if (ret > 0) 4139 goto search; 4140 4141 if (ret == -ENOSPC && !cache_block_group_error) { 4142 /* 4143 * Use ffe_ctl->total_free_space as fallback if we can't find 4144 * any contiguous hole. 4145 */ 4146 if (!ffe_ctl.max_extent_size) 4147 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4148 spin_lock(&space_info->lock); 4149 space_info->max_extent_size = ffe_ctl.max_extent_size; 4150 spin_unlock(&space_info->lock); 4151 ins->offset = ffe_ctl.max_extent_size; 4152 } else if (ret == -ENOSPC) { 4153 ret = cache_block_group_error; 4154 } 4155 return ret; 4156 } 4157 4158 /* 4159 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4160 * hole that is at least as big as @num_bytes. 4161 * 4162 * @root - The root that will contain this extent 4163 * 4164 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4165 * is used for accounting purposes. This value differs 4166 * from @num_bytes only in the case of compressed extents. 4167 * 4168 * @num_bytes - Number of bytes to allocate on-disk. 4169 * 4170 * @min_alloc_size - Indicates the minimum amount of space that the 4171 * allocator should try to satisfy. In some cases 4172 * @num_bytes may be larger than what is required and if 4173 * the filesystem is fragmented then allocation fails. 4174 * However, the presence of @min_alloc_size gives a 4175 * chance to try and satisfy the smaller allocation. 4176 * 4177 * @empty_size - A hint that you plan on doing more COW. This is the 4178 * size in bytes the allocator should try to find free 4179 * next to the block it returns. This is just a hint and 4180 * may be ignored by the allocator. 4181 * 4182 * @hint_byte - Hint to the allocator to start searching above the byte 4183 * address passed. It might be ignored. 4184 * 4185 * @ins - This key is modified to record the found hole. It will 4186 * have the following values: 4187 * ins->objectid == start position 4188 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4189 * ins->offset == the size of the hole. 4190 * 4191 * @is_data - Boolean flag indicating whether an extent is 4192 * allocated for data (true) or metadata (false) 4193 * 4194 * @delalloc - Boolean flag indicating whether this allocation is for 4195 * delalloc or not. If 'true' data_rwsem of block groups 4196 * is going to be acquired. 4197 * 4198 * 4199 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4200 * case -ENOSPC is returned then @ins->offset will contain the size of the 4201 * largest available hole the allocator managed to find. 4202 */ 4203 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4204 u64 num_bytes, u64 min_alloc_size, 4205 u64 empty_size, u64 hint_byte, 4206 struct btrfs_key *ins, int is_data, int delalloc) 4207 { 4208 struct btrfs_fs_info *fs_info = root->fs_info; 4209 bool final_tried = num_bytes == min_alloc_size; 4210 u64 flags; 4211 int ret; 4212 4213 flags = get_alloc_profile_by_root(root, is_data); 4214 again: 4215 WARN_ON(num_bytes < fs_info->sectorsize); 4216 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4217 hint_byte, ins, flags, delalloc); 4218 if (!ret && !is_data) { 4219 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4220 } else if (ret == -ENOSPC) { 4221 if (!final_tried && ins->offset) { 4222 num_bytes = min(num_bytes >> 1, ins->offset); 4223 num_bytes = round_down(num_bytes, 4224 fs_info->sectorsize); 4225 num_bytes = max(num_bytes, min_alloc_size); 4226 ram_bytes = num_bytes; 4227 if (num_bytes == min_alloc_size) 4228 final_tried = true; 4229 goto again; 4230 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4231 struct btrfs_space_info *sinfo; 4232 4233 sinfo = btrfs_find_space_info(fs_info, flags); 4234 btrfs_err(fs_info, 4235 "allocation failed flags %llu, wanted %llu", 4236 flags, num_bytes); 4237 if (sinfo) 4238 btrfs_dump_space_info(fs_info, sinfo, 4239 num_bytes, 1); 4240 } 4241 } 4242 4243 return ret; 4244 } 4245 4246 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4247 u64 start, u64 len, int delalloc) 4248 { 4249 struct btrfs_block_group *cache; 4250 4251 cache = btrfs_lookup_block_group(fs_info, start); 4252 if (!cache) { 4253 btrfs_err(fs_info, "Unable to find block group for %llu", 4254 start); 4255 return -ENOSPC; 4256 } 4257 4258 btrfs_add_free_space(cache, start, len); 4259 btrfs_free_reserved_bytes(cache, len, delalloc); 4260 trace_btrfs_reserved_extent_free(fs_info, start, len); 4261 4262 btrfs_put_block_group(cache); 4263 return 0; 4264 } 4265 4266 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4267 u64 len) 4268 { 4269 struct btrfs_block_group *cache; 4270 int ret = 0; 4271 4272 cache = btrfs_lookup_block_group(trans->fs_info, start); 4273 if (!cache) { 4274 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4275 start); 4276 return -ENOSPC; 4277 } 4278 4279 ret = pin_down_extent(trans, cache, start, len, 1); 4280 btrfs_put_block_group(cache); 4281 return ret; 4282 } 4283 4284 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4285 u64 parent, u64 root_objectid, 4286 u64 flags, u64 owner, u64 offset, 4287 struct btrfs_key *ins, int ref_mod) 4288 { 4289 struct btrfs_fs_info *fs_info = trans->fs_info; 4290 int ret; 4291 struct btrfs_extent_item *extent_item; 4292 struct btrfs_extent_inline_ref *iref; 4293 struct btrfs_path *path; 4294 struct extent_buffer *leaf; 4295 int type; 4296 u32 size; 4297 4298 if (parent > 0) 4299 type = BTRFS_SHARED_DATA_REF_KEY; 4300 else 4301 type = BTRFS_EXTENT_DATA_REF_KEY; 4302 4303 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4304 4305 path = btrfs_alloc_path(); 4306 if (!path) 4307 return -ENOMEM; 4308 4309 path->leave_spinning = 1; 4310 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4311 ins, size); 4312 if (ret) { 4313 btrfs_free_path(path); 4314 return ret; 4315 } 4316 4317 leaf = path->nodes[0]; 4318 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4319 struct btrfs_extent_item); 4320 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4321 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4322 btrfs_set_extent_flags(leaf, extent_item, 4323 flags | BTRFS_EXTENT_FLAG_DATA); 4324 4325 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4326 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4327 if (parent > 0) { 4328 struct btrfs_shared_data_ref *ref; 4329 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4330 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4331 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4332 } else { 4333 struct btrfs_extent_data_ref *ref; 4334 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4335 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4336 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4337 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4338 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4339 } 4340 4341 btrfs_mark_buffer_dirty(path->nodes[0]); 4342 btrfs_free_path(path); 4343 4344 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4345 if (ret) 4346 return ret; 4347 4348 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4349 if (ret) { /* -ENOENT, logic error */ 4350 btrfs_err(fs_info, "update block group failed for %llu %llu", 4351 ins->objectid, ins->offset); 4352 BUG(); 4353 } 4354 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4355 return ret; 4356 } 4357 4358 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4359 struct btrfs_delayed_ref_node *node, 4360 struct btrfs_delayed_extent_op *extent_op) 4361 { 4362 struct btrfs_fs_info *fs_info = trans->fs_info; 4363 int ret; 4364 struct btrfs_extent_item *extent_item; 4365 struct btrfs_key extent_key; 4366 struct btrfs_tree_block_info *block_info; 4367 struct btrfs_extent_inline_ref *iref; 4368 struct btrfs_path *path; 4369 struct extent_buffer *leaf; 4370 struct btrfs_delayed_tree_ref *ref; 4371 u32 size = sizeof(*extent_item) + sizeof(*iref); 4372 u64 num_bytes; 4373 u64 flags = extent_op->flags_to_set; 4374 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4375 4376 ref = btrfs_delayed_node_to_tree_ref(node); 4377 4378 extent_key.objectid = node->bytenr; 4379 if (skinny_metadata) { 4380 extent_key.offset = ref->level; 4381 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4382 num_bytes = fs_info->nodesize; 4383 } else { 4384 extent_key.offset = node->num_bytes; 4385 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4386 size += sizeof(*block_info); 4387 num_bytes = node->num_bytes; 4388 } 4389 4390 path = btrfs_alloc_path(); 4391 if (!path) 4392 return -ENOMEM; 4393 4394 path->leave_spinning = 1; 4395 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4396 &extent_key, size); 4397 if (ret) { 4398 btrfs_free_path(path); 4399 return ret; 4400 } 4401 4402 leaf = path->nodes[0]; 4403 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4404 struct btrfs_extent_item); 4405 btrfs_set_extent_refs(leaf, extent_item, 1); 4406 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4407 btrfs_set_extent_flags(leaf, extent_item, 4408 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4409 4410 if (skinny_metadata) { 4411 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4412 } else { 4413 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4414 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4415 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4416 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4417 } 4418 4419 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4420 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4421 btrfs_set_extent_inline_ref_type(leaf, iref, 4422 BTRFS_SHARED_BLOCK_REF_KEY); 4423 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4424 } else { 4425 btrfs_set_extent_inline_ref_type(leaf, iref, 4426 BTRFS_TREE_BLOCK_REF_KEY); 4427 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4428 } 4429 4430 btrfs_mark_buffer_dirty(leaf); 4431 btrfs_free_path(path); 4432 4433 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4434 num_bytes); 4435 if (ret) 4436 return ret; 4437 4438 ret = btrfs_update_block_group(trans, extent_key.objectid, 4439 fs_info->nodesize, 1); 4440 if (ret) { /* -ENOENT, logic error */ 4441 btrfs_err(fs_info, "update block group failed for %llu %llu", 4442 extent_key.objectid, extent_key.offset); 4443 BUG(); 4444 } 4445 4446 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4447 fs_info->nodesize); 4448 return ret; 4449 } 4450 4451 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4452 struct btrfs_root *root, u64 owner, 4453 u64 offset, u64 ram_bytes, 4454 struct btrfs_key *ins) 4455 { 4456 struct btrfs_ref generic_ref = { 0 }; 4457 int ret; 4458 4459 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4460 4461 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4462 ins->objectid, ins->offset, 0); 4463 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4464 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4465 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4466 ram_bytes, NULL, NULL); 4467 return ret; 4468 } 4469 4470 /* 4471 * this is used by the tree logging recovery code. It records that 4472 * an extent has been allocated and makes sure to clear the free 4473 * space cache bits as well 4474 */ 4475 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4476 u64 root_objectid, u64 owner, u64 offset, 4477 struct btrfs_key *ins) 4478 { 4479 struct btrfs_fs_info *fs_info = trans->fs_info; 4480 int ret; 4481 struct btrfs_block_group *block_group; 4482 struct btrfs_space_info *space_info; 4483 4484 /* 4485 * Mixed block groups will exclude before processing the log so we only 4486 * need to do the exclude dance if this fs isn't mixed. 4487 */ 4488 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4489 ret = __exclude_logged_extent(fs_info, ins->objectid, 4490 ins->offset); 4491 if (ret) 4492 return ret; 4493 } 4494 4495 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4496 if (!block_group) 4497 return -EINVAL; 4498 4499 space_info = block_group->space_info; 4500 spin_lock(&space_info->lock); 4501 spin_lock(&block_group->lock); 4502 space_info->bytes_reserved += ins->offset; 4503 block_group->reserved += ins->offset; 4504 spin_unlock(&block_group->lock); 4505 spin_unlock(&space_info->lock); 4506 4507 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4508 offset, ins, 1); 4509 if (ret) 4510 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4511 btrfs_put_block_group(block_group); 4512 return ret; 4513 } 4514 4515 static struct extent_buffer * 4516 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4517 u64 bytenr, int level, u64 owner) 4518 { 4519 struct btrfs_fs_info *fs_info = root->fs_info; 4520 struct extent_buffer *buf; 4521 4522 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4523 if (IS_ERR(buf)) 4524 return buf; 4525 4526 /* 4527 * Extra safety check in case the extent tree is corrupted and extent 4528 * allocator chooses to use a tree block which is already used and 4529 * locked. 4530 */ 4531 if (buf->lock_owner == current->pid) { 4532 btrfs_err_rl(fs_info, 4533 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4534 buf->start, btrfs_header_owner(buf), current->pid); 4535 free_extent_buffer(buf); 4536 return ERR_PTR(-EUCLEAN); 4537 } 4538 4539 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4540 btrfs_tree_lock(buf); 4541 btrfs_clean_tree_block(buf); 4542 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4543 4544 btrfs_set_lock_blocking_write(buf); 4545 set_extent_buffer_uptodate(buf); 4546 4547 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4548 btrfs_set_header_level(buf, level); 4549 btrfs_set_header_bytenr(buf, buf->start); 4550 btrfs_set_header_generation(buf, trans->transid); 4551 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4552 btrfs_set_header_owner(buf, owner); 4553 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4554 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4555 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4556 buf->log_index = root->log_transid % 2; 4557 /* 4558 * we allow two log transactions at a time, use different 4559 * EXTENT bit to differentiate dirty pages. 4560 */ 4561 if (buf->log_index == 0) 4562 set_extent_dirty(&root->dirty_log_pages, buf->start, 4563 buf->start + buf->len - 1, GFP_NOFS); 4564 else 4565 set_extent_new(&root->dirty_log_pages, buf->start, 4566 buf->start + buf->len - 1); 4567 } else { 4568 buf->log_index = -1; 4569 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4570 buf->start + buf->len - 1, GFP_NOFS); 4571 } 4572 trans->dirty = true; 4573 /* this returns a buffer locked for blocking */ 4574 return buf; 4575 } 4576 4577 /* 4578 * finds a free extent and does all the dirty work required for allocation 4579 * returns the tree buffer or an ERR_PTR on error. 4580 */ 4581 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4582 struct btrfs_root *root, 4583 u64 parent, u64 root_objectid, 4584 const struct btrfs_disk_key *key, 4585 int level, u64 hint, 4586 u64 empty_size) 4587 { 4588 struct btrfs_fs_info *fs_info = root->fs_info; 4589 struct btrfs_key ins; 4590 struct btrfs_block_rsv *block_rsv; 4591 struct extent_buffer *buf; 4592 struct btrfs_delayed_extent_op *extent_op; 4593 struct btrfs_ref generic_ref = { 0 }; 4594 u64 flags = 0; 4595 int ret; 4596 u32 blocksize = fs_info->nodesize; 4597 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4598 4599 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4600 if (btrfs_is_testing(fs_info)) { 4601 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4602 level, root_objectid); 4603 if (!IS_ERR(buf)) 4604 root->alloc_bytenr += blocksize; 4605 return buf; 4606 } 4607 #endif 4608 4609 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4610 if (IS_ERR(block_rsv)) 4611 return ERR_CAST(block_rsv); 4612 4613 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4614 empty_size, hint, &ins, 0, 0); 4615 if (ret) 4616 goto out_unuse; 4617 4618 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4619 root_objectid); 4620 if (IS_ERR(buf)) { 4621 ret = PTR_ERR(buf); 4622 goto out_free_reserved; 4623 } 4624 4625 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4626 if (parent == 0) 4627 parent = ins.objectid; 4628 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4629 } else 4630 BUG_ON(parent > 0); 4631 4632 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4633 extent_op = btrfs_alloc_delayed_extent_op(); 4634 if (!extent_op) { 4635 ret = -ENOMEM; 4636 goto out_free_buf; 4637 } 4638 if (key) 4639 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4640 else 4641 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4642 extent_op->flags_to_set = flags; 4643 extent_op->update_key = skinny_metadata ? false : true; 4644 extent_op->update_flags = true; 4645 extent_op->is_data = false; 4646 extent_op->level = level; 4647 4648 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4649 ins.objectid, ins.offset, parent); 4650 generic_ref.real_root = root->root_key.objectid; 4651 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4652 btrfs_ref_tree_mod(fs_info, &generic_ref); 4653 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4654 extent_op, NULL, NULL); 4655 if (ret) 4656 goto out_free_delayed; 4657 } 4658 return buf; 4659 4660 out_free_delayed: 4661 btrfs_free_delayed_extent_op(extent_op); 4662 out_free_buf: 4663 free_extent_buffer(buf); 4664 out_free_reserved: 4665 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4666 out_unuse: 4667 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4668 return ERR_PTR(ret); 4669 } 4670 4671 struct walk_control { 4672 u64 refs[BTRFS_MAX_LEVEL]; 4673 u64 flags[BTRFS_MAX_LEVEL]; 4674 struct btrfs_key update_progress; 4675 struct btrfs_key drop_progress; 4676 int drop_level; 4677 int stage; 4678 int level; 4679 int shared_level; 4680 int update_ref; 4681 int keep_locks; 4682 int reada_slot; 4683 int reada_count; 4684 int restarted; 4685 }; 4686 4687 #define DROP_REFERENCE 1 4688 #define UPDATE_BACKREF 2 4689 4690 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4691 struct btrfs_root *root, 4692 struct walk_control *wc, 4693 struct btrfs_path *path) 4694 { 4695 struct btrfs_fs_info *fs_info = root->fs_info; 4696 u64 bytenr; 4697 u64 generation; 4698 u64 refs; 4699 u64 flags; 4700 u32 nritems; 4701 struct btrfs_key key; 4702 struct extent_buffer *eb; 4703 int ret; 4704 int slot; 4705 int nread = 0; 4706 4707 if (path->slots[wc->level] < wc->reada_slot) { 4708 wc->reada_count = wc->reada_count * 2 / 3; 4709 wc->reada_count = max(wc->reada_count, 2); 4710 } else { 4711 wc->reada_count = wc->reada_count * 3 / 2; 4712 wc->reada_count = min_t(int, wc->reada_count, 4713 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4714 } 4715 4716 eb = path->nodes[wc->level]; 4717 nritems = btrfs_header_nritems(eb); 4718 4719 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4720 if (nread >= wc->reada_count) 4721 break; 4722 4723 cond_resched(); 4724 bytenr = btrfs_node_blockptr(eb, slot); 4725 generation = btrfs_node_ptr_generation(eb, slot); 4726 4727 if (slot == path->slots[wc->level]) 4728 goto reada; 4729 4730 if (wc->stage == UPDATE_BACKREF && 4731 generation <= root->root_key.offset) 4732 continue; 4733 4734 /* We don't lock the tree block, it's OK to be racy here */ 4735 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4736 wc->level - 1, 1, &refs, 4737 &flags); 4738 /* We don't care about errors in readahead. */ 4739 if (ret < 0) 4740 continue; 4741 BUG_ON(refs == 0); 4742 4743 if (wc->stage == DROP_REFERENCE) { 4744 if (refs == 1) 4745 goto reada; 4746 4747 if (wc->level == 1 && 4748 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4749 continue; 4750 if (!wc->update_ref || 4751 generation <= root->root_key.offset) 4752 continue; 4753 btrfs_node_key_to_cpu(eb, &key, slot); 4754 ret = btrfs_comp_cpu_keys(&key, 4755 &wc->update_progress); 4756 if (ret < 0) 4757 continue; 4758 } else { 4759 if (wc->level == 1 && 4760 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4761 continue; 4762 } 4763 reada: 4764 readahead_tree_block(fs_info, bytenr); 4765 nread++; 4766 } 4767 wc->reada_slot = slot; 4768 } 4769 4770 /* 4771 * helper to process tree block while walking down the tree. 4772 * 4773 * when wc->stage == UPDATE_BACKREF, this function updates 4774 * back refs for pointers in the block. 4775 * 4776 * NOTE: return value 1 means we should stop walking down. 4777 */ 4778 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4779 struct btrfs_root *root, 4780 struct btrfs_path *path, 4781 struct walk_control *wc, int lookup_info) 4782 { 4783 struct btrfs_fs_info *fs_info = root->fs_info; 4784 int level = wc->level; 4785 struct extent_buffer *eb = path->nodes[level]; 4786 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4787 int ret; 4788 4789 if (wc->stage == UPDATE_BACKREF && 4790 btrfs_header_owner(eb) != root->root_key.objectid) 4791 return 1; 4792 4793 /* 4794 * when reference count of tree block is 1, it won't increase 4795 * again. once full backref flag is set, we never clear it. 4796 */ 4797 if (lookup_info && 4798 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4799 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4800 BUG_ON(!path->locks[level]); 4801 ret = btrfs_lookup_extent_info(trans, fs_info, 4802 eb->start, level, 1, 4803 &wc->refs[level], 4804 &wc->flags[level]); 4805 BUG_ON(ret == -ENOMEM); 4806 if (ret) 4807 return ret; 4808 BUG_ON(wc->refs[level] == 0); 4809 } 4810 4811 if (wc->stage == DROP_REFERENCE) { 4812 if (wc->refs[level] > 1) 4813 return 1; 4814 4815 if (path->locks[level] && !wc->keep_locks) { 4816 btrfs_tree_unlock_rw(eb, path->locks[level]); 4817 path->locks[level] = 0; 4818 } 4819 return 0; 4820 } 4821 4822 /* wc->stage == UPDATE_BACKREF */ 4823 if (!(wc->flags[level] & flag)) { 4824 BUG_ON(!path->locks[level]); 4825 ret = btrfs_inc_ref(trans, root, eb, 1); 4826 BUG_ON(ret); /* -ENOMEM */ 4827 ret = btrfs_dec_ref(trans, root, eb, 0); 4828 BUG_ON(ret); /* -ENOMEM */ 4829 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4830 btrfs_header_level(eb), 0); 4831 BUG_ON(ret); /* -ENOMEM */ 4832 wc->flags[level] |= flag; 4833 } 4834 4835 /* 4836 * the block is shared by multiple trees, so it's not good to 4837 * keep the tree lock 4838 */ 4839 if (path->locks[level] && level > 0) { 4840 btrfs_tree_unlock_rw(eb, path->locks[level]); 4841 path->locks[level] = 0; 4842 } 4843 return 0; 4844 } 4845 4846 /* 4847 * This is used to verify a ref exists for this root to deal with a bug where we 4848 * would have a drop_progress key that hadn't been updated properly. 4849 */ 4850 static int check_ref_exists(struct btrfs_trans_handle *trans, 4851 struct btrfs_root *root, u64 bytenr, u64 parent, 4852 int level) 4853 { 4854 struct btrfs_path *path; 4855 struct btrfs_extent_inline_ref *iref; 4856 int ret; 4857 4858 path = btrfs_alloc_path(); 4859 if (!path) 4860 return -ENOMEM; 4861 4862 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4863 root->fs_info->nodesize, parent, 4864 root->root_key.objectid, level, 0); 4865 btrfs_free_path(path); 4866 if (ret == -ENOENT) 4867 return 0; 4868 if (ret < 0) 4869 return ret; 4870 return 1; 4871 } 4872 4873 /* 4874 * helper to process tree block pointer. 4875 * 4876 * when wc->stage == DROP_REFERENCE, this function checks 4877 * reference count of the block pointed to. if the block 4878 * is shared and we need update back refs for the subtree 4879 * rooted at the block, this function changes wc->stage to 4880 * UPDATE_BACKREF. if the block is shared and there is no 4881 * need to update back, this function drops the reference 4882 * to the block. 4883 * 4884 * NOTE: return value 1 means we should stop walking down. 4885 */ 4886 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4887 struct btrfs_root *root, 4888 struct btrfs_path *path, 4889 struct walk_control *wc, int *lookup_info) 4890 { 4891 struct btrfs_fs_info *fs_info = root->fs_info; 4892 u64 bytenr; 4893 u64 generation; 4894 u64 parent; 4895 struct btrfs_key key; 4896 struct btrfs_key first_key; 4897 struct btrfs_ref ref = { 0 }; 4898 struct extent_buffer *next; 4899 int level = wc->level; 4900 int reada = 0; 4901 int ret = 0; 4902 bool need_account = false; 4903 4904 generation = btrfs_node_ptr_generation(path->nodes[level], 4905 path->slots[level]); 4906 /* 4907 * if the lower level block was created before the snapshot 4908 * was created, we know there is no need to update back refs 4909 * for the subtree 4910 */ 4911 if (wc->stage == UPDATE_BACKREF && 4912 generation <= root->root_key.offset) { 4913 *lookup_info = 1; 4914 return 1; 4915 } 4916 4917 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4918 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4919 path->slots[level]); 4920 4921 next = find_extent_buffer(fs_info, bytenr); 4922 if (!next) { 4923 next = btrfs_find_create_tree_block(fs_info, bytenr); 4924 if (IS_ERR(next)) 4925 return PTR_ERR(next); 4926 4927 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4928 level - 1); 4929 reada = 1; 4930 } 4931 btrfs_tree_lock(next); 4932 btrfs_set_lock_blocking_write(next); 4933 4934 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4935 &wc->refs[level - 1], 4936 &wc->flags[level - 1]); 4937 if (ret < 0) 4938 goto out_unlock; 4939 4940 if (unlikely(wc->refs[level - 1] == 0)) { 4941 btrfs_err(fs_info, "Missing references."); 4942 ret = -EIO; 4943 goto out_unlock; 4944 } 4945 *lookup_info = 0; 4946 4947 if (wc->stage == DROP_REFERENCE) { 4948 if (wc->refs[level - 1] > 1) { 4949 need_account = true; 4950 if (level == 1 && 4951 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4952 goto skip; 4953 4954 if (!wc->update_ref || 4955 generation <= root->root_key.offset) 4956 goto skip; 4957 4958 btrfs_node_key_to_cpu(path->nodes[level], &key, 4959 path->slots[level]); 4960 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4961 if (ret < 0) 4962 goto skip; 4963 4964 wc->stage = UPDATE_BACKREF; 4965 wc->shared_level = level - 1; 4966 } 4967 } else { 4968 if (level == 1 && 4969 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4970 goto skip; 4971 } 4972 4973 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4974 btrfs_tree_unlock(next); 4975 free_extent_buffer(next); 4976 next = NULL; 4977 *lookup_info = 1; 4978 } 4979 4980 if (!next) { 4981 if (reada && level == 1) 4982 reada_walk_down(trans, root, wc, path); 4983 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4984 &first_key); 4985 if (IS_ERR(next)) { 4986 return PTR_ERR(next); 4987 } else if (!extent_buffer_uptodate(next)) { 4988 free_extent_buffer(next); 4989 return -EIO; 4990 } 4991 btrfs_tree_lock(next); 4992 btrfs_set_lock_blocking_write(next); 4993 } 4994 4995 level--; 4996 ASSERT(level == btrfs_header_level(next)); 4997 if (level != btrfs_header_level(next)) { 4998 btrfs_err(root->fs_info, "mismatched level"); 4999 ret = -EIO; 5000 goto out_unlock; 5001 } 5002 path->nodes[level] = next; 5003 path->slots[level] = 0; 5004 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5005 wc->level = level; 5006 if (wc->level == 1) 5007 wc->reada_slot = 0; 5008 return 0; 5009 skip: 5010 wc->refs[level - 1] = 0; 5011 wc->flags[level - 1] = 0; 5012 if (wc->stage == DROP_REFERENCE) { 5013 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5014 parent = path->nodes[level]->start; 5015 } else { 5016 ASSERT(root->root_key.objectid == 5017 btrfs_header_owner(path->nodes[level])); 5018 if (root->root_key.objectid != 5019 btrfs_header_owner(path->nodes[level])) { 5020 btrfs_err(root->fs_info, 5021 "mismatched block owner"); 5022 ret = -EIO; 5023 goto out_unlock; 5024 } 5025 parent = 0; 5026 } 5027 5028 /* 5029 * If we had a drop_progress we need to verify the refs are set 5030 * as expected. If we find our ref then we know that from here 5031 * on out everything should be correct, and we can clear the 5032 * ->restarted flag. 5033 */ 5034 if (wc->restarted) { 5035 ret = check_ref_exists(trans, root, bytenr, parent, 5036 level - 1); 5037 if (ret < 0) 5038 goto out_unlock; 5039 if (ret == 0) 5040 goto no_delete; 5041 ret = 0; 5042 wc->restarted = 0; 5043 } 5044 5045 /* 5046 * Reloc tree doesn't contribute to qgroup numbers, and we have 5047 * already accounted them at merge time (replace_path), 5048 * thus we could skip expensive subtree trace here. 5049 */ 5050 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5051 need_account) { 5052 ret = btrfs_qgroup_trace_subtree(trans, next, 5053 generation, level - 1); 5054 if (ret) { 5055 btrfs_err_rl(fs_info, 5056 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5057 ret); 5058 } 5059 } 5060 5061 /* 5062 * We need to update the next key in our walk control so we can 5063 * update the drop_progress key accordingly. We don't care if 5064 * find_next_key doesn't find a key because that means we're at 5065 * the end and are going to clean up now. 5066 */ 5067 wc->drop_level = level; 5068 find_next_key(path, level, &wc->drop_progress); 5069 5070 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5071 fs_info->nodesize, parent); 5072 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5073 ret = btrfs_free_extent(trans, &ref); 5074 if (ret) 5075 goto out_unlock; 5076 } 5077 no_delete: 5078 *lookup_info = 1; 5079 ret = 1; 5080 5081 out_unlock: 5082 btrfs_tree_unlock(next); 5083 free_extent_buffer(next); 5084 5085 return ret; 5086 } 5087 5088 /* 5089 * helper to process tree block while walking up the tree. 5090 * 5091 * when wc->stage == DROP_REFERENCE, this function drops 5092 * reference count on the block. 5093 * 5094 * when wc->stage == UPDATE_BACKREF, this function changes 5095 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5096 * to UPDATE_BACKREF previously while processing the block. 5097 * 5098 * NOTE: return value 1 means we should stop walking up. 5099 */ 5100 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5101 struct btrfs_root *root, 5102 struct btrfs_path *path, 5103 struct walk_control *wc) 5104 { 5105 struct btrfs_fs_info *fs_info = root->fs_info; 5106 int ret; 5107 int level = wc->level; 5108 struct extent_buffer *eb = path->nodes[level]; 5109 u64 parent = 0; 5110 5111 if (wc->stage == UPDATE_BACKREF) { 5112 BUG_ON(wc->shared_level < level); 5113 if (level < wc->shared_level) 5114 goto out; 5115 5116 ret = find_next_key(path, level + 1, &wc->update_progress); 5117 if (ret > 0) 5118 wc->update_ref = 0; 5119 5120 wc->stage = DROP_REFERENCE; 5121 wc->shared_level = -1; 5122 path->slots[level] = 0; 5123 5124 /* 5125 * check reference count again if the block isn't locked. 5126 * we should start walking down the tree again if reference 5127 * count is one. 5128 */ 5129 if (!path->locks[level]) { 5130 BUG_ON(level == 0); 5131 btrfs_tree_lock(eb); 5132 btrfs_set_lock_blocking_write(eb); 5133 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5134 5135 ret = btrfs_lookup_extent_info(trans, fs_info, 5136 eb->start, level, 1, 5137 &wc->refs[level], 5138 &wc->flags[level]); 5139 if (ret < 0) { 5140 btrfs_tree_unlock_rw(eb, path->locks[level]); 5141 path->locks[level] = 0; 5142 return ret; 5143 } 5144 BUG_ON(wc->refs[level] == 0); 5145 if (wc->refs[level] == 1) { 5146 btrfs_tree_unlock_rw(eb, path->locks[level]); 5147 path->locks[level] = 0; 5148 return 1; 5149 } 5150 } 5151 } 5152 5153 /* wc->stage == DROP_REFERENCE */ 5154 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5155 5156 if (wc->refs[level] == 1) { 5157 if (level == 0) { 5158 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5159 ret = btrfs_dec_ref(trans, root, eb, 1); 5160 else 5161 ret = btrfs_dec_ref(trans, root, eb, 0); 5162 BUG_ON(ret); /* -ENOMEM */ 5163 if (is_fstree(root->root_key.objectid)) { 5164 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5165 if (ret) { 5166 btrfs_err_rl(fs_info, 5167 "error %d accounting leaf items, quota is out of sync, rescan required", 5168 ret); 5169 } 5170 } 5171 } 5172 /* make block locked assertion in btrfs_clean_tree_block happy */ 5173 if (!path->locks[level] && 5174 btrfs_header_generation(eb) == trans->transid) { 5175 btrfs_tree_lock(eb); 5176 btrfs_set_lock_blocking_write(eb); 5177 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5178 } 5179 btrfs_clean_tree_block(eb); 5180 } 5181 5182 if (eb == root->node) { 5183 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5184 parent = eb->start; 5185 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5186 goto owner_mismatch; 5187 } else { 5188 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5189 parent = path->nodes[level + 1]->start; 5190 else if (root->root_key.objectid != 5191 btrfs_header_owner(path->nodes[level + 1])) 5192 goto owner_mismatch; 5193 } 5194 5195 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5196 out: 5197 wc->refs[level] = 0; 5198 wc->flags[level] = 0; 5199 return 0; 5200 5201 owner_mismatch: 5202 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5203 btrfs_header_owner(eb), root->root_key.objectid); 5204 return -EUCLEAN; 5205 } 5206 5207 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5208 struct btrfs_root *root, 5209 struct btrfs_path *path, 5210 struct walk_control *wc) 5211 { 5212 int level = wc->level; 5213 int lookup_info = 1; 5214 int ret; 5215 5216 while (level >= 0) { 5217 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5218 if (ret > 0) 5219 break; 5220 5221 if (level == 0) 5222 break; 5223 5224 if (path->slots[level] >= 5225 btrfs_header_nritems(path->nodes[level])) 5226 break; 5227 5228 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5229 if (ret > 0) { 5230 path->slots[level]++; 5231 continue; 5232 } else if (ret < 0) 5233 return ret; 5234 level = wc->level; 5235 } 5236 return 0; 5237 } 5238 5239 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5240 struct btrfs_root *root, 5241 struct btrfs_path *path, 5242 struct walk_control *wc, int max_level) 5243 { 5244 int level = wc->level; 5245 int ret; 5246 5247 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5248 while (level < max_level && path->nodes[level]) { 5249 wc->level = level; 5250 if (path->slots[level] + 1 < 5251 btrfs_header_nritems(path->nodes[level])) { 5252 path->slots[level]++; 5253 return 0; 5254 } else { 5255 ret = walk_up_proc(trans, root, path, wc); 5256 if (ret > 0) 5257 return 0; 5258 if (ret < 0) 5259 return ret; 5260 5261 if (path->locks[level]) { 5262 btrfs_tree_unlock_rw(path->nodes[level], 5263 path->locks[level]); 5264 path->locks[level] = 0; 5265 } 5266 free_extent_buffer(path->nodes[level]); 5267 path->nodes[level] = NULL; 5268 level++; 5269 } 5270 } 5271 return 1; 5272 } 5273 5274 /* 5275 * drop a subvolume tree. 5276 * 5277 * this function traverses the tree freeing any blocks that only 5278 * referenced by the tree. 5279 * 5280 * when a shared tree block is found. this function decreases its 5281 * reference count by one. if update_ref is true, this function 5282 * also make sure backrefs for the shared block and all lower level 5283 * blocks are properly updated. 5284 * 5285 * If called with for_reloc == 0, may exit early with -EAGAIN 5286 */ 5287 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5288 { 5289 struct btrfs_fs_info *fs_info = root->fs_info; 5290 struct btrfs_path *path; 5291 struct btrfs_trans_handle *trans; 5292 struct btrfs_root *tree_root = fs_info->tree_root; 5293 struct btrfs_root_item *root_item = &root->root_item; 5294 struct walk_control *wc; 5295 struct btrfs_key key; 5296 int err = 0; 5297 int ret; 5298 int level; 5299 bool root_dropped = false; 5300 5301 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5302 5303 path = btrfs_alloc_path(); 5304 if (!path) { 5305 err = -ENOMEM; 5306 goto out; 5307 } 5308 5309 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5310 if (!wc) { 5311 btrfs_free_path(path); 5312 err = -ENOMEM; 5313 goto out; 5314 } 5315 5316 trans = btrfs_start_transaction(tree_root, 0); 5317 if (IS_ERR(trans)) { 5318 err = PTR_ERR(trans); 5319 goto out_free; 5320 } 5321 5322 err = btrfs_run_delayed_items(trans); 5323 if (err) 5324 goto out_end_trans; 5325 5326 /* 5327 * This will help us catch people modifying the fs tree while we're 5328 * dropping it. It is unsafe to mess with the fs tree while it's being 5329 * dropped as we unlock the root node and parent nodes as we walk down 5330 * the tree, assuming nothing will change. If something does change 5331 * then we'll have stale information and drop references to blocks we've 5332 * already dropped. 5333 */ 5334 set_bit(BTRFS_ROOT_DELETING, &root->state); 5335 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5336 level = btrfs_header_level(root->node); 5337 path->nodes[level] = btrfs_lock_root_node(root); 5338 btrfs_set_lock_blocking_write(path->nodes[level]); 5339 path->slots[level] = 0; 5340 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5341 memset(&wc->update_progress, 0, 5342 sizeof(wc->update_progress)); 5343 } else { 5344 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5345 memcpy(&wc->update_progress, &key, 5346 sizeof(wc->update_progress)); 5347 5348 level = root_item->drop_level; 5349 BUG_ON(level == 0); 5350 path->lowest_level = level; 5351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5352 path->lowest_level = 0; 5353 if (ret < 0) { 5354 err = ret; 5355 goto out_end_trans; 5356 } 5357 WARN_ON(ret > 0); 5358 5359 /* 5360 * unlock our path, this is safe because only this 5361 * function is allowed to delete this snapshot 5362 */ 5363 btrfs_unlock_up_safe(path, 0); 5364 5365 level = btrfs_header_level(root->node); 5366 while (1) { 5367 btrfs_tree_lock(path->nodes[level]); 5368 btrfs_set_lock_blocking_write(path->nodes[level]); 5369 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5370 5371 ret = btrfs_lookup_extent_info(trans, fs_info, 5372 path->nodes[level]->start, 5373 level, 1, &wc->refs[level], 5374 &wc->flags[level]); 5375 if (ret < 0) { 5376 err = ret; 5377 goto out_end_trans; 5378 } 5379 BUG_ON(wc->refs[level] == 0); 5380 5381 if (level == root_item->drop_level) 5382 break; 5383 5384 btrfs_tree_unlock(path->nodes[level]); 5385 path->locks[level] = 0; 5386 WARN_ON(wc->refs[level] != 1); 5387 level--; 5388 } 5389 } 5390 5391 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5392 wc->level = level; 5393 wc->shared_level = -1; 5394 wc->stage = DROP_REFERENCE; 5395 wc->update_ref = update_ref; 5396 wc->keep_locks = 0; 5397 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5398 5399 while (1) { 5400 5401 ret = walk_down_tree(trans, root, path, wc); 5402 if (ret < 0) { 5403 err = ret; 5404 break; 5405 } 5406 5407 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5408 if (ret < 0) { 5409 err = ret; 5410 break; 5411 } 5412 5413 if (ret > 0) { 5414 BUG_ON(wc->stage != DROP_REFERENCE); 5415 break; 5416 } 5417 5418 if (wc->stage == DROP_REFERENCE) { 5419 wc->drop_level = wc->level; 5420 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5421 &wc->drop_progress, 5422 path->slots[wc->drop_level]); 5423 } 5424 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5425 &wc->drop_progress); 5426 root_item->drop_level = wc->drop_level; 5427 5428 BUG_ON(wc->level == 0); 5429 if (btrfs_should_end_transaction(trans) || 5430 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5431 ret = btrfs_update_root(trans, tree_root, 5432 &root->root_key, 5433 root_item); 5434 if (ret) { 5435 btrfs_abort_transaction(trans, ret); 5436 err = ret; 5437 goto out_end_trans; 5438 } 5439 5440 btrfs_end_transaction_throttle(trans); 5441 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5442 btrfs_debug(fs_info, 5443 "drop snapshot early exit"); 5444 err = -EAGAIN; 5445 goto out_free; 5446 } 5447 5448 trans = btrfs_start_transaction(tree_root, 0); 5449 if (IS_ERR(trans)) { 5450 err = PTR_ERR(trans); 5451 goto out_free; 5452 } 5453 } 5454 } 5455 btrfs_release_path(path); 5456 if (err) 5457 goto out_end_trans; 5458 5459 ret = btrfs_del_root(trans, &root->root_key); 5460 if (ret) { 5461 btrfs_abort_transaction(trans, ret); 5462 err = ret; 5463 goto out_end_trans; 5464 } 5465 5466 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5467 ret = btrfs_find_root(tree_root, &root->root_key, path, 5468 NULL, NULL); 5469 if (ret < 0) { 5470 btrfs_abort_transaction(trans, ret); 5471 err = ret; 5472 goto out_end_trans; 5473 } else if (ret > 0) { 5474 /* if we fail to delete the orphan item this time 5475 * around, it'll get picked up the next time. 5476 * 5477 * The most common failure here is just -ENOENT. 5478 */ 5479 btrfs_del_orphan_item(trans, tree_root, 5480 root->root_key.objectid); 5481 } 5482 } 5483 5484 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5485 btrfs_add_dropped_root(trans, root); 5486 else 5487 btrfs_put_root(root); 5488 root_dropped = true; 5489 out_end_trans: 5490 btrfs_end_transaction_throttle(trans); 5491 out_free: 5492 kfree(wc); 5493 btrfs_free_path(path); 5494 out: 5495 /* 5496 * So if we need to stop dropping the snapshot for whatever reason we 5497 * need to make sure to add it back to the dead root list so that we 5498 * keep trying to do the work later. This also cleans up roots if we 5499 * don't have it in the radix (like when we recover after a power fail 5500 * or unmount) so we don't leak memory. 5501 */ 5502 if (!for_reloc && !root_dropped) 5503 btrfs_add_dead_root(root); 5504 if (err && err != -EAGAIN) 5505 btrfs_handle_fs_error(fs_info, err, NULL); 5506 return err; 5507 } 5508 5509 /* 5510 * drop subtree rooted at tree block 'node'. 5511 * 5512 * NOTE: this function will unlock and release tree block 'node' 5513 * only used by relocation code 5514 */ 5515 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5516 struct btrfs_root *root, 5517 struct extent_buffer *node, 5518 struct extent_buffer *parent) 5519 { 5520 struct btrfs_fs_info *fs_info = root->fs_info; 5521 struct btrfs_path *path; 5522 struct walk_control *wc; 5523 int level; 5524 int parent_level; 5525 int ret = 0; 5526 int wret; 5527 5528 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5529 5530 path = btrfs_alloc_path(); 5531 if (!path) 5532 return -ENOMEM; 5533 5534 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5535 if (!wc) { 5536 btrfs_free_path(path); 5537 return -ENOMEM; 5538 } 5539 5540 btrfs_assert_tree_locked(parent); 5541 parent_level = btrfs_header_level(parent); 5542 atomic_inc(&parent->refs); 5543 path->nodes[parent_level] = parent; 5544 path->slots[parent_level] = btrfs_header_nritems(parent); 5545 5546 btrfs_assert_tree_locked(node); 5547 level = btrfs_header_level(node); 5548 path->nodes[level] = node; 5549 path->slots[level] = 0; 5550 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5551 5552 wc->refs[parent_level] = 1; 5553 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5554 wc->level = level; 5555 wc->shared_level = -1; 5556 wc->stage = DROP_REFERENCE; 5557 wc->update_ref = 0; 5558 wc->keep_locks = 1; 5559 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5560 5561 while (1) { 5562 wret = walk_down_tree(trans, root, path, wc); 5563 if (wret < 0) { 5564 ret = wret; 5565 break; 5566 } 5567 5568 wret = walk_up_tree(trans, root, path, wc, parent_level); 5569 if (wret < 0) 5570 ret = wret; 5571 if (wret != 0) 5572 break; 5573 } 5574 5575 kfree(wc); 5576 btrfs_free_path(path); 5577 return ret; 5578 } 5579 5580 /* 5581 * helper to account the unused space of all the readonly block group in the 5582 * space_info. takes mirrors into account. 5583 */ 5584 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5585 { 5586 struct btrfs_block_group *block_group; 5587 u64 free_bytes = 0; 5588 int factor; 5589 5590 /* It's df, we don't care if it's racy */ 5591 if (list_empty(&sinfo->ro_bgs)) 5592 return 0; 5593 5594 spin_lock(&sinfo->lock); 5595 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5596 spin_lock(&block_group->lock); 5597 5598 if (!block_group->ro) { 5599 spin_unlock(&block_group->lock); 5600 continue; 5601 } 5602 5603 factor = btrfs_bg_type_to_factor(block_group->flags); 5604 free_bytes += (block_group->length - 5605 block_group->used) * factor; 5606 5607 spin_unlock(&block_group->lock); 5608 } 5609 spin_unlock(&sinfo->lock); 5610 5611 return free_bytes; 5612 } 5613 5614 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5615 u64 start, u64 end) 5616 { 5617 return unpin_extent_range(fs_info, start, end, false); 5618 } 5619 5620 /* 5621 * It used to be that old block groups would be left around forever. 5622 * Iterating over them would be enough to trim unused space. Since we 5623 * now automatically remove them, we also need to iterate over unallocated 5624 * space. 5625 * 5626 * We don't want a transaction for this since the discard may take a 5627 * substantial amount of time. We don't require that a transaction be 5628 * running, but we do need to take a running transaction into account 5629 * to ensure that we're not discarding chunks that were released or 5630 * allocated in the current transaction. 5631 * 5632 * Holding the chunks lock will prevent other threads from allocating 5633 * or releasing chunks, but it won't prevent a running transaction 5634 * from committing and releasing the memory that the pending chunks 5635 * list head uses. For that, we need to take a reference to the 5636 * transaction and hold the commit root sem. We only need to hold 5637 * it while performing the free space search since we have already 5638 * held back allocations. 5639 */ 5640 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5641 { 5642 u64 start = SZ_1M, len = 0, end = 0; 5643 int ret; 5644 5645 *trimmed = 0; 5646 5647 /* Discard not supported = nothing to do. */ 5648 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5649 return 0; 5650 5651 /* Not writable = nothing to do. */ 5652 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5653 return 0; 5654 5655 /* No free space = nothing to do. */ 5656 if (device->total_bytes <= device->bytes_used) 5657 return 0; 5658 5659 ret = 0; 5660 5661 while (1) { 5662 struct btrfs_fs_info *fs_info = device->fs_info; 5663 u64 bytes; 5664 5665 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5666 if (ret) 5667 break; 5668 5669 find_first_clear_extent_bit(&device->alloc_state, start, 5670 &start, &end, 5671 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5672 5673 /* Ensure we skip the reserved area in the first 1M */ 5674 start = max_t(u64, start, SZ_1M); 5675 5676 /* 5677 * If find_first_clear_extent_bit find a range that spans the 5678 * end of the device it will set end to -1, in this case it's up 5679 * to the caller to trim the value to the size of the device. 5680 */ 5681 end = min(end, device->total_bytes - 1); 5682 5683 len = end - start + 1; 5684 5685 /* We didn't find any extents */ 5686 if (!len) { 5687 mutex_unlock(&fs_info->chunk_mutex); 5688 ret = 0; 5689 break; 5690 } 5691 5692 ret = btrfs_issue_discard(device->bdev, start, len, 5693 &bytes); 5694 if (!ret) 5695 set_extent_bits(&device->alloc_state, start, 5696 start + bytes - 1, 5697 CHUNK_TRIMMED); 5698 mutex_unlock(&fs_info->chunk_mutex); 5699 5700 if (ret) 5701 break; 5702 5703 start += len; 5704 *trimmed += bytes; 5705 5706 if (fatal_signal_pending(current)) { 5707 ret = -ERESTARTSYS; 5708 break; 5709 } 5710 5711 cond_resched(); 5712 } 5713 5714 return ret; 5715 } 5716 5717 /* 5718 * Trim the whole filesystem by: 5719 * 1) trimming the free space in each block group 5720 * 2) trimming the unallocated space on each device 5721 * 5722 * This will also continue trimming even if a block group or device encounters 5723 * an error. The return value will be the last error, or 0 if nothing bad 5724 * happens. 5725 */ 5726 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5727 { 5728 struct btrfs_block_group *cache = NULL; 5729 struct btrfs_device *device; 5730 struct list_head *devices; 5731 u64 group_trimmed; 5732 u64 range_end = U64_MAX; 5733 u64 start; 5734 u64 end; 5735 u64 trimmed = 0; 5736 u64 bg_failed = 0; 5737 u64 dev_failed = 0; 5738 int bg_ret = 0; 5739 int dev_ret = 0; 5740 int ret = 0; 5741 5742 /* 5743 * Check range overflow if range->len is set. 5744 * The default range->len is U64_MAX. 5745 */ 5746 if (range->len != U64_MAX && 5747 check_add_overflow(range->start, range->len, &range_end)) 5748 return -EINVAL; 5749 5750 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5751 for (; cache; cache = btrfs_next_block_group(cache)) { 5752 if (cache->start >= range_end) { 5753 btrfs_put_block_group(cache); 5754 break; 5755 } 5756 5757 start = max(range->start, cache->start); 5758 end = min(range_end, cache->start + cache->length); 5759 5760 if (end - start >= range->minlen) { 5761 if (!btrfs_block_group_done(cache)) { 5762 ret = btrfs_cache_block_group(cache, 0); 5763 if (ret) { 5764 bg_failed++; 5765 bg_ret = ret; 5766 continue; 5767 } 5768 ret = btrfs_wait_block_group_cache_done(cache); 5769 if (ret) { 5770 bg_failed++; 5771 bg_ret = ret; 5772 continue; 5773 } 5774 } 5775 ret = btrfs_trim_block_group(cache, 5776 &group_trimmed, 5777 start, 5778 end, 5779 range->minlen); 5780 5781 trimmed += group_trimmed; 5782 if (ret) { 5783 bg_failed++; 5784 bg_ret = ret; 5785 continue; 5786 } 5787 } 5788 } 5789 5790 if (bg_failed) 5791 btrfs_warn(fs_info, 5792 "failed to trim %llu block group(s), last error %d", 5793 bg_failed, bg_ret); 5794 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5795 devices = &fs_info->fs_devices->devices; 5796 list_for_each_entry(device, devices, dev_list) { 5797 ret = btrfs_trim_free_extents(device, &group_trimmed); 5798 if (ret) { 5799 dev_failed++; 5800 dev_ret = ret; 5801 break; 5802 } 5803 5804 trimmed += group_trimmed; 5805 } 5806 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5807 5808 if (dev_failed) 5809 btrfs_warn(fs_info, 5810 "failed to trim %llu device(s), last error %d", 5811 dev_failed, dev_ret); 5812 range->len = trimmed; 5813 if (bg_ret) 5814 return bg_ret; 5815 return dev_ret; 5816 } 5817