1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1320 struct btrfs_path *path, 1321 struct btrfs_extent_inline_ref *iref) 1322 { 1323 struct btrfs_key key; 1324 struct extent_buffer *leaf; 1325 struct btrfs_extent_data_ref *ref1; 1326 struct btrfs_shared_data_ref *ref2; 1327 u32 num_refs = 0; 1328 1329 leaf = path->nodes[0]; 1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1331 if (iref) { 1332 if (btrfs_extent_inline_ref_type(leaf, iref) == 1333 BTRFS_EXTENT_DATA_REF_KEY) { 1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1336 } else { 1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1339 } 1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1341 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_extent_data_ref); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1345 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_shared_data_ref); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1350 struct btrfs_extent_ref_v0 *ref0; 1351 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1352 struct btrfs_extent_ref_v0); 1353 num_refs = btrfs_ref_count_v0(leaf, ref0); 1354 #endif 1355 } else { 1356 WARN_ON(1); 1357 } 1358 return num_refs; 1359 } 1360 1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1362 struct btrfs_root *root, 1363 struct btrfs_path *path, 1364 u64 bytenr, u64 parent, 1365 u64 root_objectid) 1366 { 1367 struct btrfs_key key; 1368 int ret; 1369 1370 key.objectid = bytenr; 1371 if (parent) { 1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1373 key.offset = parent; 1374 } else { 1375 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1376 key.offset = root_objectid; 1377 } 1378 1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1380 if (ret > 0) 1381 ret = -ENOENT; 1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1383 if (ret == -ENOENT && parent) { 1384 btrfs_release_path(path); 1385 key.type = BTRFS_EXTENT_REF_V0_KEY; 1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1387 if (ret > 0) 1388 ret = -ENOENT; 1389 } 1390 #endif 1391 return ret; 1392 } 1393 1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1395 struct btrfs_root *root, 1396 struct btrfs_path *path, 1397 u64 bytenr, u64 parent, 1398 u64 root_objectid) 1399 { 1400 struct btrfs_key key; 1401 int ret; 1402 1403 key.objectid = bytenr; 1404 if (parent) { 1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1406 key.offset = parent; 1407 } else { 1408 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1409 key.offset = root_objectid; 1410 } 1411 1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1413 btrfs_release_path(path); 1414 return ret; 1415 } 1416 1417 static inline int extent_ref_type(u64 parent, u64 owner) 1418 { 1419 int type; 1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1421 if (parent > 0) 1422 type = BTRFS_SHARED_BLOCK_REF_KEY; 1423 else 1424 type = BTRFS_TREE_BLOCK_REF_KEY; 1425 } else { 1426 if (parent > 0) 1427 type = BTRFS_SHARED_DATA_REF_KEY; 1428 else 1429 type = BTRFS_EXTENT_DATA_REF_KEY; 1430 } 1431 return type; 1432 } 1433 1434 static int find_next_key(struct btrfs_path *path, int level, 1435 struct btrfs_key *key) 1436 1437 { 1438 for (; level < BTRFS_MAX_LEVEL; level++) { 1439 if (!path->nodes[level]) 1440 break; 1441 if (path->slots[level] + 1 >= 1442 btrfs_header_nritems(path->nodes[level])) 1443 continue; 1444 if (level == 0) 1445 btrfs_item_key_to_cpu(path->nodes[level], key, 1446 path->slots[level] + 1); 1447 else 1448 btrfs_node_key_to_cpu(path->nodes[level], key, 1449 path->slots[level] + 1); 1450 return 0; 1451 } 1452 return 1; 1453 } 1454 1455 /* 1456 * look for inline back ref. if back ref is found, *ref_ret is set 1457 * to the address of inline back ref, and 0 is returned. 1458 * 1459 * if back ref isn't found, *ref_ret is set to the address where it 1460 * should be inserted, and -ENOENT is returned. 1461 * 1462 * if insert is true and there are too many inline back refs, the path 1463 * points to the extent item, and -EAGAIN is returned. 1464 * 1465 * NOTE: inline back refs are ordered in the same way that back ref 1466 * items in the tree are ordered. 1467 */ 1468 static noinline_for_stack 1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1470 struct btrfs_root *root, 1471 struct btrfs_path *path, 1472 struct btrfs_extent_inline_ref **ref_ret, 1473 u64 bytenr, u64 num_bytes, 1474 u64 parent, u64 root_objectid, 1475 u64 owner, u64 offset, int insert) 1476 { 1477 struct btrfs_key key; 1478 struct extent_buffer *leaf; 1479 struct btrfs_extent_item *ei; 1480 struct btrfs_extent_inline_ref *iref; 1481 u64 flags; 1482 u64 item_size; 1483 unsigned long ptr; 1484 unsigned long end; 1485 int extra_size; 1486 int type; 1487 int want; 1488 int ret; 1489 int err = 0; 1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1491 SKINNY_METADATA); 1492 1493 key.objectid = bytenr; 1494 key.type = BTRFS_EXTENT_ITEM_KEY; 1495 key.offset = num_bytes; 1496 1497 want = extent_ref_type(parent, owner); 1498 if (insert) { 1499 extra_size = btrfs_extent_inline_ref_size(want); 1500 path->keep_locks = 1; 1501 } else 1502 extra_size = -1; 1503 1504 /* 1505 * Owner is our parent level, so we can just add one to get the level 1506 * for the block we are interested in. 1507 */ 1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1509 key.type = BTRFS_METADATA_ITEM_KEY; 1510 key.offset = owner; 1511 } 1512 1513 again: 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1515 if (ret < 0) { 1516 err = ret; 1517 goto out; 1518 } 1519 1520 /* 1521 * We may be a newly converted file system which still has the old fat 1522 * extent entries for metadata, so try and see if we have one of those. 1523 */ 1524 if (ret > 0 && skinny_metadata) { 1525 skinny_metadata = false; 1526 if (path->slots[0]) { 1527 path->slots[0]--; 1528 btrfs_item_key_to_cpu(path->nodes[0], &key, 1529 path->slots[0]); 1530 if (key.objectid == bytenr && 1531 key.type == BTRFS_EXTENT_ITEM_KEY && 1532 key.offset == num_bytes) 1533 ret = 0; 1534 } 1535 if (ret) { 1536 key.objectid = bytenr; 1537 key.type = BTRFS_EXTENT_ITEM_KEY; 1538 key.offset = num_bytes; 1539 btrfs_release_path(path); 1540 goto again; 1541 } 1542 } 1543 1544 if (ret && !insert) { 1545 err = -ENOENT; 1546 goto out; 1547 } else if (WARN_ON(ret)) { 1548 err = -EIO; 1549 goto out; 1550 } 1551 1552 leaf = path->nodes[0]; 1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1555 if (item_size < sizeof(*ei)) { 1556 if (!insert) { 1557 err = -ENOENT; 1558 goto out; 1559 } 1560 ret = convert_extent_item_v0(trans, root, path, owner, 1561 extra_size); 1562 if (ret < 0) { 1563 err = ret; 1564 goto out; 1565 } 1566 leaf = path->nodes[0]; 1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1568 } 1569 #endif 1570 BUG_ON(item_size < sizeof(*ei)); 1571 1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1573 flags = btrfs_extent_flags(leaf, ei); 1574 1575 ptr = (unsigned long)(ei + 1); 1576 end = (unsigned long)ei + item_size; 1577 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1579 ptr += sizeof(struct btrfs_tree_block_info); 1580 BUG_ON(ptr > end); 1581 } 1582 1583 err = -ENOENT; 1584 while (1) { 1585 if (ptr >= end) { 1586 WARN_ON(ptr > end); 1587 break; 1588 } 1589 iref = (struct btrfs_extent_inline_ref *)ptr; 1590 type = btrfs_extent_inline_ref_type(leaf, iref); 1591 if (want < type) 1592 break; 1593 if (want > type) { 1594 ptr += btrfs_extent_inline_ref_size(type); 1595 continue; 1596 } 1597 1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1599 struct btrfs_extent_data_ref *dref; 1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1601 if (match_extent_data_ref(leaf, dref, root_objectid, 1602 owner, offset)) { 1603 err = 0; 1604 break; 1605 } 1606 if (hash_extent_data_ref_item(leaf, dref) < 1607 hash_extent_data_ref(root_objectid, owner, offset)) 1608 break; 1609 } else { 1610 u64 ref_offset; 1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1612 if (parent > 0) { 1613 if (parent == ref_offset) { 1614 err = 0; 1615 break; 1616 } 1617 if (ref_offset < parent) 1618 break; 1619 } else { 1620 if (root_objectid == ref_offset) { 1621 err = 0; 1622 break; 1623 } 1624 if (ref_offset < root_objectid) 1625 break; 1626 } 1627 } 1628 ptr += btrfs_extent_inline_ref_size(type); 1629 } 1630 if (err == -ENOENT && insert) { 1631 if (item_size + extra_size >= 1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1633 err = -EAGAIN; 1634 goto out; 1635 } 1636 /* 1637 * To add new inline back ref, we have to make sure 1638 * there is no corresponding back ref item. 1639 * For simplicity, we just do not add new inline back 1640 * ref if there is any kind of item for this block 1641 */ 1642 if (find_next_key(path, 0, &key) == 0 && 1643 key.objectid == bytenr && 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1645 err = -EAGAIN; 1646 goto out; 1647 } 1648 } 1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1650 out: 1651 if (insert) { 1652 path->keep_locks = 0; 1653 btrfs_unlock_up_safe(path, 1); 1654 } 1655 return err; 1656 } 1657 1658 /* 1659 * helper to add new inline back ref 1660 */ 1661 static noinline_for_stack 1662 void setup_inline_extent_backref(struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref *iref, 1665 u64 parent, u64 root_objectid, 1666 u64 owner, u64 offset, int refs_to_add, 1667 struct btrfs_delayed_extent_op *extent_op) 1668 { 1669 struct extent_buffer *leaf; 1670 struct btrfs_extent_item *ei; 1671 unsigned long ptr; 1672 unsigned long end; 1673 unsigned long item_offset; 1674 u64 refs; 1675 int size; 1676 int type; 1677 1678 leaf = path->nodes[0]; 1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1680 item_offset = (unsigned long)iref - (unsigned long)ei; 1681 1682 type = extent_ref_type(parent, owner); 1683 size = btrfs_extent_inline_ref_size(type); 1684 1685 btrfs_extend_item(root, path, size); 1686 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 refs = btrfs_extent_refs(leaf, ei); 1689 refs += refs_to_add; 1690 btrfs_set_extent_refs(leaf, ei, refs); 1691 if (extent_op) 1692 __run_delayed_extent_op(extent_op, leaf, ei); 1693 1694 ptr = (unsigned long)ei + item_offset; 1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1696 if (ptr < end - size) 1697 memmove_extent_buffer(leaf, ptr + size, ptr, 1698 end - size - ptr); 1699 1700 iref = (struct btrfs_extent_inline_ref *)ptr; 1701 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1703 struct btrfs_extent_data_ref *dref; 1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 struct btrfs_shared_data_ref *sref; 1711 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1716 } else { 1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1718 } 1719 btrfs_mark_buffer_dirty(leaf); 1720 } 1721 1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1723 struct btrfs_root *root, 1724 struct btrfs_path *path, 1725 struct btrfs_extent_inline_ref **ref_ret, 1726 u64 bytenr, u64 num_bytes, u64 parent, 1727 u64 root_objectid, u64 owner, u64 offset) 1728 { 1729 int ret; 1730 1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1732 bytenr, num_bytes, parent, 1733 root_objectid, owner, offset, 0); 1734 if (ret != -ENOENT) 1735 return ret; 1736 1737 btrfs_release_path(path); 1738 *ref_ret = NULL; 1739 1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1742 root_objectid); 1743 } else { 1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1745 root_objectid, owner, offset); 1746 } 1747 return ret; 1748 } 1749 1750 /* 1751 * helper to update/remove inline back ref 1752 */ 1753 static noinline_for_stack 1754 void update_inline_extent_backref(struct btrfs_root *root, 1755 struct btrfs_path *path, 1756 struct btrfs_extent_inline_ref *iref, 1757 int refs_to_mod, 1758 struct btrfs_delayed_extent_op *extent_op, 1759 int *last_ref) 1760 { 1761 struct extent_buffer *leaf; 1762 struct btrfs_extent_item *ei; 1763 struct btrfs_extent_data_ref *dref = NULL; 1764 struct btrfs_shared_data_ref *sref = NULL; 1765 unsigned long ptr; 1766 unsigned long end; 1767 u32 item_size; 1768 int size; 1769 int type; 1770 u64 refs; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 refs = btrfs_extent_refs(leaf, ei); 1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1776 refs += refs_to_mod; 1777 btrfs_set_extent_refs(leaf, ei, refs); 1778 if (extent_op) 1779 __run_delayed_extent_op(extent_op, leaf, ei); 1780 1781 type = btrfs_extent_inline_ref_type(leaf, iref); 1782 1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1785 refs = btrfs_extent_data_ref_count(leaf, dref); 1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1787 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1788 refs = btrfs_shared_data_ref_count(leaf, sref); 1789 } else { 1790 refs = 1; 1791 BUG_ON(refs_to_mod != -1); 1792 } 1793 1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1795 refs += refs_to_mod; 1796 1797 if (refs > 0) { 1798 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1799 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1800 else 1801 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1802 } else { 1803 *last_ref = 1; 1804 size = btrfs_extent_inline_ref_size(type); 1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1806 ptr = (unsigned long)iref; 1807 end = (unsigned long)ei + item_size; 1808 if (ptr + size < end) 1809 memmove_extent_buffer(leaf, ptr, ptr + size, 1810 end - ptr - size); 1811 item_size -= size; 1812 btrfs_truncate_item(root, path, item_size, 1); 1813 } 1814 btrfs_mark_buffer_dirty(leaf); 1815 } 1816 1817 static noinline_for_stack 1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_path *path, 1821 u64 bytenr, u64 num_bytes, u64 parent, 1822 u64 root_objectid, u64 owner, 1823 u64 offset, int refs_to_add, 1824 struct btrfs_delayed_extent_op *extent_op) 1825 { 1826 struct btrfs_extent_inline_ref *iref; 1827 int ret; 1828 1829 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1830 bytenr, num_bytes, parent, 1831 root_objectid, owner, offset, 1); 1832 if (ret == 0) { 1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1834 update_inline_extent_backref(root, path, iref, 1835 refs_to_add, extent_op, NULL); 1836 } else if (ret == -ENOENT) { 1837 setup_inline_extent_backref(root, path, iref, parent, 1838 root_objectid, owner, offset, 1839 refs_to_add, extent_op); 1840 ret = 0; 1841 } 1842 return ret; 1843 } 1844 1845 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, 1847 struct btrfs_path *path, 1848 u64 bytenr, u64 parent, u64 root_objectid, 1849 u64 owner, u64 offset, int refs_to_add) 1850 { 1851 int ret; 1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1853 BUG_ON(refs_to_add != 1); 1854 ret = insert_tree_block_ref(trans, root, path, bytenr, 1855 parent, root_objectid); 1856 } else { 1857 ret = insert_extent_data_ref(trans, root, path, bytenr, 1858 parent, root_objectid, 1859 owner, offset, refs_to_add); 1860 } 1861 return ret; 1862 } 1863 1864 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1865 struct btrfs_root *root, 1866 struct btrfs_path *path, 1867 struct btrfs_extent_inline_ref *iref, 1868 int refs_to_drop, int is_data, int *last_ref) 1869 { 1870 int ret = 0; 1871 1872 BUG_ON(!is_data && refs_to_drop != 1); 1873 if (iref) { 1874 update_inline_extent_backref(root, path, iref, 1875 -refs_to_drop, NULL, last_ref); 1876 } else if (is_data) { 1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1878 last_ref); 1879 } else { 1880 *last_ref = 1; 1881 ret = btrfs_del_item(trans, root, path); 1882 } 1883 return ret; 1884 } 1885 1886 static int btrfs_issue_discard(struct block_device *bdev, 1887 u64 start, u64 len) 1888 { 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1890 } 1891 1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1893 u64 num_bytes, u64 *actual_bytes) 1894 { 1895 int ret; 1896 u64 discarded_bytes = 0; 1897 struct btrfs_bio *bbio = NULL; 1898 1899 1900 /* Tell the block device(s) that the sectors can be discarded */ 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1902 bytenr, &num_bytes, &bbio, 0); 1903 /* Error condition is -ENOMEM */ 1904 if (!ret) { 1905 struct btrfs_bio_stripe *stripe = bbio->stripes; 1906 int i; 1907 1908 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1910 if (!stripe->dev->can_discard) 1911 continue; 1912 1913 ret = btrfs_issue_discard(stripe->dev->bdev, 1914 stripe->physical, 1915 stripe->length); 1916 if (!ret) 1917 discarded_bytes += stripe->length; 1918 else if (ret != -EOPNOTSUPP) 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1920 1921 /* 1922 * Just in case we get back EOPNOTSUPP for some reason, 1923 * just ignore the return value so we don't screw up 1924 * people calling discard_extent. 1925 */ 1926 ret = 0; 1927 } 1928 btrfs_put_bbio(bbio); 1929 } 1930 1931 if (actual_bytes) 1932 *actual_bytes = discarded_bytes; 1933 1934 1935 if (ret == -EOPNOTSUPP) 1936 ret = 0; 1937 return ret; 1938 } 1939 1940 /* Can return -ENOMEM */ 1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 u64 bytenr, u64 num_bytes, u64 parent, 1944 u64 root_objectid, u64 owner, u64 offset, 1945 int no_quota) 1946 { 1947 int ret; 1948 struct btrfs_fs_info *fs_info = root->fs_info; 1949 1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1951 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1952 1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1955 num_bytes, 1956 parent, root_objectid, (int)owner, 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1958 } else { 1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1960 num_bytes, 1961 parent, root_objectid, owner, offset, 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1963 } 1964 return ret; 1965 } 1966 1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1968 struct btrfs_root *root, 1969 struct btrfs_delayed_ref_node *node, 1970 u64 parent, u64 root_objectid, 1971 u64 owner, u64 offset, int refs_to_add, 1972 struct btrfs_delayed_extent_op *extent_op) 1973 { 1974 struct btrfs_fs_info *fs_info = root->fs_info; 1975 struct btrfs_path *path; 1976 struct extent_buffer *leaf; 1977 struct btrfs_extent_item *item; 1978 struct btrfs_key key; 1979 u64 bytenr = node->bytenr; 1980 u64 num_bytes = node->num_bytes; 1981 u64 refs; 1982 int ret; 1983 int no_quota = node->no_quota; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || !ret) 2000 goto out; 2001 2002 /* 2003 * Ok we had -EAGAIN which means we didn't have space to insert and 2004 * inline extent ref, so just update the reference count and add a 2005 * normal backref. 2006 */ 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2010 refs = btrfs_extent_refs(leaf, item); 2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2012 if (extent_op) 2013 __run_delayed_extent_op(extent_op, leaf, item); 2014 2015 btrfs_mark_buffer_dirty(leaf); 2016 btrfs_release_path(path); 2017 2018 path->reada = 1; 2019 path->leave_spinning = 1; 2020 /* now insert the actual backref */ 2021 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2022 path, bytenr, parent, root_objectid, 2023 owner, offset, refs_to_add); 2024 if (ret) 2025 btrfs_abort_transaction(trans, root, ret); 2026 out: 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2032 struct btrfs_root *root, 2033 struct btrfs_delayed_ref_node *node, 2034 struct btrfs_delayed_extent_op *extent_op, 2035 int insert_reserved) 2036 { 2037 int ret = 0; 2038 struct btrfs_delayed_data_ref *ref; 2039 struct btrfs_key ins; 2040 u64 parent = 0; 2041 u64 ref_root = 0; 2042 u64 flags = 0; 2043 2044 ins.objectid = node->bytenr; 2045 ins.offset = node->num_bytes; 2046 ins.type = BTRFS_EXTENT_ITEM_KEY; 2047 2048 ref = btrfs_delayed_node_to_data_ref(node); 2049 trace_run_delayed_data_ref(node, ref, node->action); 2050 2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2052 parent = ref->parent; 2053 ref_root = ref->root; 2054 2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2056 if (extent_op) 2057 flags |= extent_op->flags_to_set; 2058 ret = alloc_reserved_file_extent(trans, root, 2059 parent, ref_root, flags, 2060 ref->objectid, ref->offset, 2061 &ins, node->ref_mod); 2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2064 ref_root, ref->objectid, 2065 ref->offset, node->ref_mod, 2066 extent_op); 2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2068 ret = __btrfs_free_extent(trans, root, node, parent, 2069 ref_root, ref->objectid, 2070 ref->offset, node->ref_mod, 2071 extent_op); 2072 } else { 2073 BUG(); 2074 } 2075 return ret; 2076 } 2077 2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2079 struct extent_buffer *leaf, 2080 struct btrfs_extent_item *ei) 2081 { 2082 u64 flags = btrfs_extent_flags(leaf, ei); 2083 if (extent_op->update_flags) { 2084 flags |= extent_op->flags_to_set; 2085 btrfs_set_extent_flags(leaf, ei, flags); 2086 } 2087 2088 if (extent_op->update_key) { 2089 struct btrfs_tree_block_info *bi; 2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2091 bi = (struct btrfs_tree_block_info *)(ei + 1); 2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2093 } 2094 } 2095 2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2097 struct btrfs_root *root, 2098 struct btrfs_delayed_ref_node *node, 2099 struct btrfs_delayed_extent_op *extent_op) 2100 { 2101 struct btrfs_key key; 2102 struct btrfs_path *path; 2103 struct btrfs_extent_item *ei; 2104 struct extent_buffer *leaf; 2105 u32 item_size; 2106 int ret; 2107 int err = 0; 2108 int metadata = !extent_op->is_data; 2109 2110 if (trans->aborted) 2111 return 0; 2112 2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2114 metadata = 0; 2115 2116 path = btrfs_alloc_path(); 2117 if (!path) 2118 return -ENOMEM; 2119 2120 key.objectid = node->bytenr; 2121 2122 if (metadata) { 2123 key.type = BTRFS_METADATA_ITEM_KEY; 2124 key.offset = extent_op->level; 2125 } else { 2126 key.type = BTRFS_EXTENT_ITEM_KEY; 2127 key.offset = node->num_bytes; 2128 } 2129 2130 again: 2131 path->reada = 1; 2132 path->leave_spinning = 1; 2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2134 path, 0, 1); 2135 if (ret < 0) { 2136 err = ret; 2137 goto out; 2138 } 2139 if (ret > 0) { 2140 if (metadata) { 2141 if (path->slots[0] > 0) { 2142 path->slots[0]--; 2143 btrfs_item_key_to_cpu(path->nodes[0], &key, 2144 path->slots[0]); 2145 if (key.objectid == node->bytenr && 2146 key.type == BTRFS_EXTENT_ITEM_KEY && 2147 key.offset == node->num_bytes) 2148 ret = 0; 2149 } 2150 if (ret > 0) { 2151 btrfs_release_path(path); 2152 metadata = 0; 2153 2154 key.objectid = node->bytenr; 2155 key.offset = node->num_bytes; 2156 key.type = BTRFS_EXTENT_ITEM_KEY; 2157 goto again; 2158 } 2159 } else { 2160 err = -EIO; 2161 goto out; 2162 } 2163 } 2164 2165 leaf = path->nodes[0]; 2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2168 if (item_size < sizeof(*ei)) { 2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2170 path, (u64)-1, 0); 2171 if (ret < 0) { 2172 err = ret; 2173 goto out; 2174 } 2175 leaf = path->nodes[0]; 2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2177 } 2178 #endif 2179 BUG_ON(item_size < sizeof(*ei)); 2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2181 __run_delayed_extent_op(extent_op, leaf, ei); 2182 2183 btrfs_mark_buffer_dirty(leaf); 2184 out: 2185 btrfs_free_path(path); 2186 return err; 2187 } 2188 2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2190 struct btrfs_root *root, 2191 struct btrfs_delayed_ref_node *node, 2192 struct btrfs_delayed_extent_op *extent_op, 2193 int insert_reserved) 2194 { 2195 int ret = 0; 2196 struct btrfs_delayed_tree_ref *ref; 2197 struct btrfs_key ins; 2198 u64 parent = 0; 2199 u64 ref_root = 0; 2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2201 SKINNY_METADATA); 2202 2203 ref = btrfs_delayed_node_to_tree_ref(node); 2204 trace_run_delayed_tree_ref(node, ref, node->action); 2205 2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2207 parent = ref->parent; 2208 ref_root = ref->root; 2209 2210 ins.objectid = node->bytenr; 2211 if (skinny_metadata) { 2212 ins.offset = ref->level; 2213 ins.type = BTRFS_METADATA_ITEM_KEY; 2214 } else { 2215 ins.offset = node->num_bytes; 2216 ins.type = BTRFS_EXTENT_ITEM_KEY; 2217 } 2218 2219 BUG_ON(node->ref_mod != 1); 2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2221 BUG_ON(!extent_op || !extent_op->update_flags); 2222 ret = alloc_reserved_tree_block(trans, root, 2223 parent, ref_root, 2224 extent_op->flags_to_set, 2225 &extent_op->key, 2226 ref->level, &ins, 2227 node->no_quota); 2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2229 ret = __btrfs_inc_extent_ref(trans, root, node, 2230 parent, ref_root, 2231 ref->level, 0, 1, 2232 extent_op); 2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2234 ret = __btrfs_free_extent(trans, root, node, 2235 parent, ref_root, 2236 ref->level, 0, 1, extent_op); 2237 } else { 2238 BUG(); 2239 } 2240 return ret; 2241 } 2242 2243 /* helper function to actually process a single delayed ref entry */ 2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2245 struct btrfs_root *root, 2246 struct btrfs_delayed_ref_node *node, 2247 struct btrfs_delayed_extent_op *extent_op, 2248 int insert_reserved) 2249 { 2250 int ret = 0; 2251 2252 if (trans->aborted) { 2253 if (insert_reserved) 2254 btrfs_pin_extent(root, node->bytenr, 2255 node->num_bytes, 1); 2256 return 0; 2257 } 2258 2259 if (btrfs_delayed_ref_is_head(node)) { 2260 struct btrfs_delayed_ref_head *head; 2261 /* 2262 * we've hit the end of the chain and we were supposed 2263 * to insert this extent into the tree. But, it got 2264 * deleted before we ever needed to insert it, so all 2265 * we have to do is clean up the accounting 2266 */ 2267 BUG_ON(extent_op); 2268 head = btrfs_delayed_node_to_head(node); 2269 trace_run_delayed_ref_head(node, head, node->action); 2270 2271 if (insert_reserved) { 2272 btrfs_pin_extent(root, node->bytenr, 2273 node->num_bytes, 1); 2274 if (head->is_data) { 2275 ret = btrfs_del_csums(trans, root, 2276 node->bytenr, 2277 node->num_bytes); 2278 } 2279 } 2280 return ret; 2281 } 2282 2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2285 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2286 insert_reserved); 2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2288 node->type == BTRFS_SHARED_DATA_REF_KEY) 2289 ret = run_delayed_data_ref(trans, root, node, extent_op, 2290 insert_reserved); 2291 else 2292 BUG(); 2293 return ret; 2294 } 2295 2296 static inline struct btrfs_delayed_ref_node * 2297 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2298 { 2299 struct btrfs_delayed_ref_node *ref; 2300 2301 if (list_empty(&head->ref_list)) 2302 return NULL; 2303 2304 /* 2305 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2306 * This is to prevent a ref count from going down to zero, which deletes 2307 * the extent item from the extent tree, when there still are references 2308 * to add, which would fail because they would not find the extent item. 2309 */ 2310 list_for_each_entry(ref, &head->ref_list, list) { 2311 if (ref->action == BTRFS_ADD_DELAYED_REF) 2312 return ref; 2313 } 2314 2315 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2316 list); 2317 } 2318 2319 /* 2320 * Returns 0 on success or if called with an already aborted transaction. 2321 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2322 */ 2323 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2324 struct btrfs_root *root, 2325 unsigned long nr) 2326 { 2327 struct btrfs_delayed_ref_root *delayed_refs; 2328 struct btrfs_delayed_ref_node *ref; 2329 struct btrfs_delayed_ref_head *locked_ref = NULL; 2330 struct btrfs_delayed_extent_op *extent_op; 2331 struct btrfs_fs_info *fs_info = root->fs_info; 2332 ktime_t start = ktime_get(); 2333 int ret; 2334 unsigned long count = 0; 2335 unsigned long actual_count = 0; 2336 int must_insert_reserved = 0; 2337 2338 delayed_refs = &trans->transaction->delayed_refs; 2339 while (1) { 2340 if (!locked_ref) { 2341 if (count >= nr) 2342 break; 2343 2344 spin_lock(&delayed_refs->lock); 2345 locked_ref = btrfs_select_ref_head(trans); 2346 if (!locked_ref) { 2347 spin_unlock(&delayed_refs->lock); 2348 break; 2349 } 2350 2351 /* grab the lock that says we are going to process 2352 * all the refs for this head */ 2353 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2354 spin_unlock(&delayed_refs->lock); 2355 /* 2356 * we may have dropped the spin lock to get the head 2357 * mutex lock, and that might have given someone else 2358 * time to free the head. If that's true, it has been 2359 * removed from our list and we can move on. 2360 */ 2361 if (ret == -EAGAIN) { 2362 locked_ref = NULL; 2363 count++; 2364 continue; 2365 } 2366 } 2367 2368 spin_lock(&locked_ref->lock); 2369 2370 /* 2371 * locked_ref is the head node, so we have to go one 2372 * node back for any delayed ref updates 2373 */ 2374 ref = select_delayed_ref(locked_ref); 2375 2376 if (ref && ref->seq && 2377 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2378 spin_unlock(&locked_ref->lock); 2379 btrfs_delayed_ref_unlock(locked_ref); 2380 spin_lock(&delayed_refs->lock); 2381 locked_ref->processing = 0; 2382 delayed_refs->num_heads_ready++; 2383 spin_unlock(&delayed_refs->lock); 2384 locked_ref = NULL; 2385 cond_resched(); 2386 count++; 2387 continue; 2388 } 2389 2390 /* 2391 * record the must insert reserved flag before we 2392 * drop the spin lock. 2393 */ 2394 must_insert_reserved = locked_ref->must_insert_reserved; 2395 locked_ref->must_insert_reserved = 0; 2396 2397 extent_op = locked_ref->extent_op; 2398 locked_ref->extent_op = NULL; 2399 2400 if (!ref) { 2401 2402 2403 /* All delayed refs have been processed, Go ahead 2404 * and send the head node to run_one_delayed_ref, 2405 * so that any accounting fixes can happen 2406 */ 2407 ref = &locked_ref->node; 2408 2409 if (extent_op && must_insert_reserved) { 2410 btrfs_free_delayed_extent_op(extent_op); 2411 extent_op = NULL; 2412 } 2413 2414 if (extent_op) { 2415 spin_unlock(&locked_ref->lock); 2416 ret = run_delayed_extent_op(trans, root, 2417 ref, extent_op); 2418 btrfs_free_delayed_extent_op(extent_op); 2419 2420 if (ret) { 2421 /* 2422 * Need to reset must_insert_reserved if 2423 * there was an error so the abort stuff 2424 * can cleanup the reserved space 2425 * properly. 2426 */ 2427 if (must_insert_reserved) 2428 locked_ref->must_insert_reserved = 1; 2429 locked_ref->processing = 0; 2430 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2431 btrfs_delayed_ref_unlock(locked_ref); 2432 return ret; 2433 } 2434 continue; 2435 } 2436 2437 /* 2438 * Need to drop our head ref lock and re-aqcuire the 2439 * delayed ref lock and then re-check to make sure 2440 * nobody got added. 2441 */ 2442 spin_unlock(&locked_ref->lock); 2443 spin_lock(&delayed_refs->lock); 2444 spin_lock(&locked_ref->lock); 2445 if (!list_empty(&locked_ref->ref_list) || 2446 locked_ref->extent_op) { 2447 spin_unlock(&locked_ref->lock); 2448 spin_unlock(&delayed_refs->lock); 2449 continue; 2450 } 2451 ref->in_tree = 0; 2452 delayed_refs->num_heads--; 2453 rb_erase(&locked_ref->href_node, 2454 &delayed_refs->href_root); 2455 spin_unlock(&delayed_refs->lock); 2456 } else { 2457 actual_count++; 2458 ref->in_tree = 0; 2459 list_del(&ref->list); 2460 } 2461 atomic_dec(&delayed_refs->num_entries); 2462 2463 if (!btrfs_delayed_ref_is_head(ref)) { 2464 /* 2465 * when we play the delayed ref, also correct the 2466 * ref_mod on head 2467 */ 2468 switch (ref->action) { 2469 case BTRFS_ADD_DELAYED_REF: 2470 case BTRFS_ADD_DELAYED_EXTENT: 2471 locked_ref->node.ref_mod -= ref->ref_mod; 2472 break; 2473 case BTRFS_DROP_DELAYED_REF: 2474 locked_ref->node.ref_mod += ref->ref_mod; 2475 break; 2476 default: 2477 WARN_ON(1); 2478 } 2479 } 2480 spin_unlock(&locked_ref->lock); 2481 2482 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2483 must_insert_reserved); 2484 2485 btrfs_free_delayed_extent_op(extent_op); 2486 if (ret) { 2487 locked_ref->processing = 0; 2488 btrfs_delayed_ref_unlock(locked_ref); 2489 btrfs_put_delayed_ref(ref); 2490 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2491 return ret; 2492 } 2493 2494 /* 2495 * If this node is a head, that means all the refs in this head 2496 * have been dealt with, and we will pick the next head to deal 2497 * with, so we must unlock the head and drop it from the cluster 2498 * list before we release it. 2499 */ 2500 if (btrfs_delayed_ref_is_head(ref)) { 2501 if (locked_ref->is_data && 2502 locked_ref->total_ref_mod < 0) { 2503 spin_lock(&delayed_refs->lock); 2504 delayed_refs->pending_csums -= ref->num_bytes; 2505 spin_unlock(&delayed_refs->lock); 2506 } 2507 btrfs_delayed_ref_unlock(locked_ref); 2508 locked_ref = NULL; 2509 } 2510 btrfs_put_delayed_ref(ref); 2511 count++; 2512 cond_resched(); 2513 } 2514 2515 /* 2516 * We don't want to include ref heads since we can have empty ref heads 2517 * and those will drastically skew our runtime down since we just do 2518 * accounting, no actual extent tree updates. 2519 */ 2520 if (actual_count > 0) { 2521 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2522 u64 avg; 2523 2524 /* 2525 * We weigh the current average higher than our current runtime 2526 * to avoid large swings in the average. 2527 */ 2528 spin_lock(&delayed_refs->lock); 2529 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2530 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2531 spin_unlock(&delayed_refs->lock); 2532 } 2533 return 0; 2534 } 2535 2536 #ifdef SCRAMBLE_DELAYED_REFS 2537 /* 2538 * Normally delayed refs get processed in ascending bytenr order. This 2539 * correlates in most cases to the order added. To expose dependencies on this 2540 * order, we start to process the tree in the middle instead of the beginning 2541 */ 2542 static u64 find_middle(struct rb_root *root) 2543 { 2544 struct rb_node *n = root->rb_node; 2545 struct btrfs_delayed_ref_node *entry; 2546 int alt = 1; 2547 u64 middle; 2548 u64 first = 0, last = 0; 2549 2550 n = rb_first(root); 2551 if (n) { 2552 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2553 first = entry->bytenr; 2554 } 2555 n = rb_last(root); 2556 if (n) { 2557 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2558 last = entry->bytenr; 2559 } 2560 n = root->rb_node; 2561 2562 while (n) { 2563 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2564 WARN_ON(!entry->in_tree); 2565 2566 middle = entry->bytenr; 2567 2568 if (alt) 2569 n = n->rb_left; 2570 else 2571 n = n->rb_right; 2572 2573 alt = 1 - alt; 2574 } 2575 return middle; 2576 } 2577 #endif 2578 2579 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2580 { 2581 u64 num_bytes; 2582 2583 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2584 sizeof(struct btrfs_extent_inline_ref)); 2585 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2586 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2587 2588 /* 2589 * We don't ever fill up leaves all the way so multiply by 2 just to be 2590 * closer to what we're really going to want to ouse. 2591 */ 2592 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2593 } 2594 2595 /* 2596 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2597 * would require to store the csums for that many bytes. 2598 */ 2599 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2600 { 2601 u64 csum_size; 2602 u64 num_csums_per_leaf; 2603 u64 num_csums; 2604 2605 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2606 num_csums_per_leaf = div64_u64(csum_size, 2607 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2608 num_csums = div64_u64(csum_bytes, root->sectorsize); 2609 num_csums += num_csums_per_leaf - 1; 2610 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2611 return num_csums; 2612 } 2613 2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2615 struct btrfs_root *root) 2616 { 2617 struct btrfs_block_rsv *global_rsv; 2618 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2619 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2620 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2621 u64 num_bytes, num_dirty_bgs_bytes; 2622 int ret = 0; 2623 2624 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2625 num_heads = heads_to_leaves(root, num_heads); 2626 if (num_heads > 1) 2627 num_bytes += (num_heads - 1) * root->nodesize; 2628 num_bytes <<= 1; 2629 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2630 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2631 num_dirty_bgs); 2632 global_rsv = &root->fs_info->global_block_rsv; 2633 2634 /* 2635 * If we can't allocate any more chunks lets make sure we have _lots_ of 2636 * wiggle room since running delayed refs can create more delayed refs. 2637 */ 2638 if (global_rsv->space_info->full) { 2639 num_dirty_bgs_bytes <<= 1; 2640 num_bytes <<= 1; 2641 } 2642 2643 spin_lock(&global_rsv->lock); 2644 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2645 ret = 1; 2646 spin_unlock(&global_rsv->lock); 2647 return ret; 2648 } 2649 2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2651 struct btrfs_root *root) 2652 { 2653 struct btrfs_fs_info *fs_info = root->fs_info; 2654 u64 num_entries = 2655 atomic_read(&trans->transaction->delayed_refs.num_entries); 2656 u64 avg_runtime; 2657 u64 val; 2658 2659 smp_mb(); 2660 avg_runtime = fs_info->avg_delayed_ref_runtime; 2661 val = num_entries * avg_runtime; 2662 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2663 return 1; 2664 if (val >= NSEC_PER_SEC / 2) 2665 return 2; 2666 2667 return btrfs_check_space_for_delayed_refs(trans, root); 2668 } 2669 2670 struct async_delayed_refs { 2671 struct btrfs_root *root; 2672 int count; 2673 int error; 2674 int sync; 2675 struct completion wait; 2676 struct btrfs_work work; 2677 }; 2678 2679 static void delayed_ref_async_start(struct btrfs_work *work) 2680 { 2681 struct async_delayed_refs *async; 2682 struct btrfs_trans_handle *trans; 2683 int ret; 2684 2685 async = container_of(work, struct async_delayed_refs, work); 2686 2687 trans = btrfs_join_transaction(async->root); 2688 if (IS_ERR(trans)) { 2689 async->error = PTR_ERR(trans); 2690 goto done; 2691 } 2692 2693 /* 2694 * trans->sync means that when we call end_transaciton, we won't 2695 * wait on delayed refs 2696 */ 2697 trans->sync = true; 2698 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2699 if (ret) 2700 async->error = ret; 2701 2702 ret = btrfs_end_transaction(trans, async->root); 2703 if (ret && !async->error) 2704 async->error = ret; 2705 done: 2706 if (async->sync) 2707 complete(&async->wait); 2708 else 2709 kfree(async); 2710 } 2711 2712 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2713 unsigned long count, int wait) 2714 { 2715 struct async_delayed_refs *async; 2716 int ret; 2717 2718 async = kmalloc(sizeof(*async), GFP_NOFS); 2719 if (!async) 2720 return -ENOMEM; 2721 2722 async->root = root->fs_info->tree_root; 2723 async->count = count; 2724 async->error = 0; 2725 if (wait) 2726 async->sync = 1; 2727 else 2728 async->sync = 0; 2729 init_completion(&async->wait); 2730 2731 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2732 delayed_ref_async_start, NULL, NULL); 2733 2734 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2735 2736 if (wait) { 2737 wait_for_completion(&async->wait); 2738 ret = async->error; 2739 kfree(async); 2740 return ret; 2741 } 2742 return 0; 2743 } 2744 2745 /* 2746 * this starts processing the delayed reference count updates and 2747 * extent insertions we have queued up so far. count can be 2748 * 0, which means to process everything in the tree at the start 2749 * of the run (but not newly added entries), or it can be some target 2750 * number you'd like to process. 2751 * 2752 * Returns 0 on success or if called with an aborted transaction 2753 * Returns <0 on error and aborts the transaction 2754 */ 2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2756 struct btrfs_root *root, unsigned long count) 2757 { 2758 struct rb_node *node; 2759 struct btrfs_delayed_ref_root *delayed_refs; 2760 struct btrfs_delayed_ref_head *head; 2761 int ret; 2762 int run_all = count == (unsigned long)-1; 2763 2764 /* We'll clean this up in btrfs_cleanup_transaction */ 2765 if (trans->aborted) 2766 return 0; 2767 2768 if (root == root->fs_info->extent_root) 2769 root = root->fs_info->tree_root; 2770 2771 delayed_refs = &trans->transaction->delayed_refs; 2772 if (count == 0) 2773 count = atomic_read(&delayed_refs->num_entries) * 2; 2774 2775 again: 2776 #ifdef SCRAMBLE_DELAYED_REFS 2777 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2778 #endif 2779 ret = __btrfs_run_delayed_refs(trans, root, count); 2780 if (ret < 0) { 2781 btrfs_abort_transaction(trans, root, ret); 2782 return ret; 2783 } 2784 2785 if (run_all) { 2786 if (!list_empty(&trans->new_bgs)) 2787 btrfs_create_pending_block_groups(trans, root); 2788 2789 spin_lock(&delayed_refs->lock); 2790 node = rb_first(&delayed_refs->href_root); 2791 if (!node) { 2792 spin_unlock(&delayed_refs->lock); 2793 goto out; 2794 } 2795 count = (unsigned long)-1; 2796 2797 while (node) { 2798 head = rb_entry(node, struct btrfs_delayed_ref_head, 2799 href_node); 2800 if (btrfs_delayed_ref_is_head(&head->node)) { 2801 struct btrfs_delayed_ref_node *ref; 2802 2803 ref = &head->node; 2804 atomic_inc(&ref->refs); 2805 2806 spin_unlock(&delayed_refs->lock); 2807 /* 2808 * Mutex was contended, block until it's 2809 * released and try again 2810 */ 2811 mutex_lock(&head->mutex); 2812 mutex_unlock(&head->mutex); 2813 2814 btrfs_put_delayed_ref(ref); 2815 cond_resched(); 2816 goto again; 2817 } else { 2818 WARN_ON(1); 2819 } 2820 node = rb_next(node); 2821 } 2822 spin_unlock(&delayed_refs->lock); 2823 cond_resched(); 2824 goto again; 2825 } 2826 out: 2827 assert_qgroups_uptodate(trans); 2828 return 0; 2829 } 2830 2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2832 struct btrfs_root *root, 2833 u64 bytenr, u64 num_bytes, u64 flags, 2834 int level, int is_data) 2835 { 2836 struct btrfs_delayed_extent_op *extent_op; 2837 int ret; 2838 2839 extent_op = btrfs_alloc_delayed_extent_op(); 2840 if (!extent_op) 2841 return -ENOMEM; 2842 2843 extent_op->flags_to_set = flags; 2844 extent_op->update_flags = 1; 2845 extent_op->update_key = 0; 2846 extent_op->is_data = is_data ? 1 : 0; 2847 extent_op->level = level; 2848 2849 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2850 num_bytes, extent_op); 2851 if (ret) 2852 btrfs_free_delayed_extent_op(extent_op); 2853 return ret; 2854 } 2855 2856 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, 2859 u64 objectid, u64 offset, u64 bytenr) 2860 { 2861 struct btrfs_delayed_ref_head *head; 2862 struct btrfs_delayed_ref_node *ref; 2863 struct btrfs_delayed_data_ref *data_ref; 2864 struct btrfs_delayed_ref_root *delayed_refs; 2865 int ret = 0; 2866 2867 delayed_refs = &trans->transaction->delayed_refs; 2868 spin_lock(&delayed_refs->lock); 2869 head = btrfs_find_delayed_ref_head(trans, bytenr); 2870 if (!head) { 2871 spin_unlock(&delayed_refs->lock); 2872 return 0; 2873 } 2874 2875 if (!mutex_trylock(&head->mutex)) { 2876 atomic_inc(&head->node.refs); 2877 spin_unlock(&delayed_refs->lock); 2878 2879 btrfs_release_path(path); 2880 2881 /* 2882 * Mutex was contended, block until it's released and let 2883 * caller try again 2884 */ 2885 mutex_lock(&head->mutex); 2886 mutex_unlock(&head->mutex); 2887 btrfs_put_delayed_ref(&head->node); 2888 return -EAGAIN; 2889 } 2890 spin_unlock(&delayed_refs->lock); 2891 2892 spin_lock(&head->lock); 2893 list_for_each_entry(ref, &head->ref_list, list) { 2894 /* If it's a shared ref we know a cross reference exists */ 2895 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2896 ret = 1; 2897 break; 2898 } 2899 2900 data_ref = btrfs_delayed_node_to_data_ref(ref); 2901 2902 /* 2903 * If our ref doesn't match the one we're currently looking at 2904 * then we have a cross reference. 2905 */ 2906 if (data_ref->root != root->root_key.objectid || 2907 data_ref->objectid != objectid || 2908 data_ref->offset != offset) { 2909 ret = 1; 2910 break; 2911 } 2912 } 2913 spin_unlock(&head->lock); 2914 mutex_unlock(&head->mutex); 2915 return ret; 2916 } 2917 2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2919 struct btrfs_root *root, 2920 struct btrfs_path *path, 2921 u64 objectid, u64 offset, u64 bytenr) 2922 { 2923 struct btrfs_root *extent_root = root->fs_info->extent_root; 2924 struct extent_buffer *leaf; 2925 struct btrfs_extent_data_ref *ref; 2926 struct btrfs_extent_inline_ref *iref; 2927 struct btrfs_extent_item *ei; 2928 struct btrfs_key key; 2929 u32 item_size; 2930 int ret; 2931 2932 key.objectid = bytenr; 2933 key.offset = (u64)-1; 2934 key.type = BTRFS_EXTENT_ITEM_KEY; 2935 2936 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2937 if (ret < 0) 2938 goto out; 2939 BUG_ON(ret == 0); /* Corruption */ 2940 2941 ret = -ENOENT; 2942 if (path->slots[0] == 0) 2943 goto out; 2944 2945 path->slots[0]--; 2946 leaf = path->nodes[0]; 2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2948 2949 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2950 goto out; 2951 2952 ret = 1; 2953 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2955 if (item_size < sizeof(*ei)) { 2956 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2957 goto out; 2958 } 2959 #endif 2960 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2961 2962 if (item_size != sizeof(*ei) + 2963 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2964 goto out; 2965 2966 if (btrfs_extent_generation(leaf, ei) <= 2967 btrfs_root_last_snapshot(&root->root_item)) 2968 goto out; 2969 2970 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2971 if (btrfs_extent_inline_ref_type(leaf, iref) != 2972 BTRFS_EXTENT_DATA_REF_KEY) 2973 goto out; 2974 2975 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2976 if (btrfs_extent_refs(leaf, ei) != 2977 btrfs_extent_data_ref_count(leaf, ref) || 2978 btrfs_extent_data_ref_root(leaf, ref) != 2979 root->root_key.objectid || 2980 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2981 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2982 goto out; 2983 2984 ret = 0; 2985 out: 2986 return ret; 2987 } 2988 2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2990 struct btrfs_root *root, 2991 u64 objectid, u64 offset, u64 bytenr) 2992 { 2993 struct btrfs_path *path; 2994 int ret; 2995 int ret2; 2996 2997 path = btrfs_alloc_path(); 2998 if (!path) 2999 return -ENOENT; 3000 3001 do { 3002 ret = check_committed_ref(trans, root, path, objectid, 3003 offset, bytenr); 3004 if (ret && ret != -ENOENT) 3005 goto out; 3006 3007 ret2 = check_delayed_ref(trans, root, path, objectid, 3008 offset, bytenr); 3009 } while (ret2 == -EAGAIN); 3010 3011 if (ret2 && ret2 != -ENOENT) { 3012 ret = ret2; 3013 goto out; 3014 } 3015 3016 if (ret != -ENOENT || ret2 != -ENOENT) 3017 ret = 0; 3018 out: 3019 btrfs_free_path(path); 3020 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3021 WARN_ON(ret > 0); 3022 return ret; 3023 } 3024 3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3026 struct btrfs_root *root, 3027 struct extent_buffer *buf, 3028 int full_backref, int inc) 3029 { 3030 u64 bytenr; 3031 u64 num_bytes; 3032 u64 parent; 3033 u64 ref_root; 3034 u32 nritems; 3035 struct btrfs_key key; 3036 struct btrfs_file_extent_item *fi; 3037 int i; 3038 int level; 3039 int ret = 0; 3040 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3041 u64, u64, u64, u64, u64, u64, int); 3042 3043 3044 if (btrfs_test_is_dummy_root(root)) 3045 return 0; 3046 3047 ref_root = btrfs_header_owner(buf); 3048 nritems = btrfs_header_nritems(buf); 3049 level = btrfs_header_level(buf); 3050 3051 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3052 return 0; 3053 3054 if (inc) 3055 process_func = btrfs_inc_extent_ref; 3056 else 3057 process_func = btrfs_free_extent; 3058 3059 if (full_backref) 3060 parent = buf->start; 3061 else 3062 parent = 0; 3063 3064 for (i = 0; i < nritems; i++) { 3065 if (level == 0) { 3066 btrfs_item_key_to_cpu(buf, &key, i); 3067 if (key.type != BTRFS_EXTENT_DATA_KEY) 3068 continue; 3069 fi = btrfs_item_ptr(buf, i, 3070 struct btrfs_file_extent_item); 3071 if (btrfs_file_extent_type(buf, fi) == 3072 BTRFS_FILE_EXTENT_INLINE) 3073 continue; 3074 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3075 if (bytenr == 0) 3076 continue; 3077 3078 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3079 key.offset -= btrfs_file_extent_offset(buf, fi); 3080 ret = process_func(trans, root, bytenr, num_bytes, 3081 parent, ref_root, key.objectid, 3082 key.offset, 1); 3083 if (ret) 3084 goto fail; 3085 } else { 3086 bytenr = btrfs_node_blockptr(buf, i); 3087 num_bytes = root->nodesize; 3088 ret = process_func(trans, root, bytenr, num_bytes, 3089 parent, ref_root, level - 1, 0, 3090 1); 3091 if (ret) 3092 goto fail; 3093 } 3094 } 3095 return 0; 3096 fail: 3097 return ret; 3098 } 3099 3100 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3101 struct extent_buffer *buf, int full_backref) 3102 { 3103 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3104 } 3105 3106 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3107 struct extent_buffer *buf, int full_backref) 3108 { 3109 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3110 } 3111 3112 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3113 struct btrfs_root *root, 3114 struct btrfs_path *path, 3115 struct btrfs_block_group_cache *cache) 3116 { 3117 int ret; 3118 struct btrfs_root *extent_root = root->fs_info->extent_root; 3119 unsigned long bi; 3120 struct extent_buffer *leaf; 3121 3122 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3123 if (ret) { 3124 if (ret > 0) 3125 ret = -ENOENT; 3126 goto fail; 3127 } 3128 3129 leaf = path->nodes[0]; 3130 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3131 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3132 btrfs_mark_buffer_dirty(leaf); 3133 fail: 3134 btrfs_release_path(path); 3135 return ret; 3136 3137 } 3138 3139 static struct btrfs_block_group_cache * 3140 next_block_group(struct btrfs_root *root, 3141 struct btrfs_block_group_cache *cache) 3142 { 3143 struct rb_node *node; 3144 3145 spin_lock(&root->fs_info->block_group_cache_lock); 3146 3147 /* If our block group was removed, we need a full search. */ 3148 if (RB_EMPTY_NODE(&cache->cache_node)) { 3149 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3150 3151 spin_unlock(&root->fs_info->block_group_cache_lock); 3152 btrfs_put_block_group(cache); 3153 cache = btrfs_lookup_first_block_group(root->fs_info, 3154 next_bytenr); 3155 return cache; 3156 } 3157 node = rb_next(&cache->cache_node); 3158 btrfs_put_block_group(cache); 3159 if (node) { 3160 cache = rb_entry(node, struct btrfs_block_group_cache, 3161 cache_node); 3162 btrfs_get_block_group(cache); 3163 } else 3164 cache = NULL; 3165 spin_unlock(&root->fs_info->block_group_cache_lock); 3166 return cache; 3167 } 3168 3169 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3170 struct btrfs_trans_handle *trans, 3171 struct btrfs_path *path) 3172 { 3173 struct btrfs_root *root = block_group->fs_info->tree_root; 3174 struct inode *inode = NULL; 3175 u64 alloc_hint = 0; 3176 int dcs = BTRFS_DC_ERROR; 3177 u64 num_pages = 0; 3178 int retries = 0; 3179 int ret = 0; 3180 3181 /* 3182 * If this block group is smaller than 100 megs don't bother caching the 3183 * block group. 3184 */ 3185 if (block_group->key.offset < (100 * 1024 * 1024)) { 3186 spin_lock(&block_group->lock); 3187 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3188 spin_unlock(&block_group->lock); 3189 return 0; 3190 } 3191 3192 if (trans->aborted) 3193 return 0; 3194 again: 3195 inode = lookup_free_space_inode(root, block_group, path); 3196 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3197 ret = PTR_ERR(inode); 3198 btrfs_release_path(path); 3199 goto out; 3200 } 3201 3202 if (IS_ERR(inode)) { 3203 BUG_ON(retries); 3204 retries++; 3205 3206 if (block_group->ro) 3207 goto out_free; 3208 3209 ret = create_free_space_inode(root, trans, block_group, path); 3210 if (ret) 3211 goto out_free; 3212 goto again; 3213 } 3214 3215 /* We've already setup this transaction, go ahead and exit */ 3216 if (block_group->cache_generation == trans->transid && 3217 i_size_read(inode)) { 3218 dcs = BTRFS_DC_SETUP; 3219 goto out_put; 3220 } 3221 3222 /* 3223 * We want to set the generation to 0, that way if anything goes wrong 3224 * from here on out we know not to trust this cache when we load up next 3225 * time. 3226 */ 3227 BTRFS_I(inode)->generation = 0; 3228 ret = btrfs_update_inode(trans, root, inode); 3229 if (ret) { 3230 /* 3231 * So theoretically we could recover from this, simply set the 3232 * super cache generation to 0 so we know to invalidate the 3233 * cache, but then we'd have to keep track of the block groups 3234 * that fail this way so we know we _have_ to reset this cache 3235 * before the next commit or risk reading stale cache. So to 3236 * limit our exposure to horrible edge cases lets just abort the 3237 * transaction, this only happens in really bad situations 3238 * anyway. 3239 */ 3240 btrfs_abort_transaction(trans, root, ret); 3241 goto out_put; 3242 } 3243 WARN_ON(ret); 3244 3245 if (i_size_read(inode) > 0) { 3246 ret = btrfs_check_trunc_cache_free_space(root, 3247 &root->fs_info->global_block_rsv); 3248 if (ret) 3249 goto out_put; 3250 3251 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3252 if (ret) 3253 goto out_put; 3254 } 3255 3256 spin_lock(&block_group->lock); 3257 if (block_group->cached != BTRFS_CACHE_FINISHED || 3258 !btrfs_test_opt(root, SPACE_CACHE)) { 3259 /* 3260 * don't bother trying to write stuff out _if_ 3261 * a) we're not cached, 3262 * b) we're with nospace_cache mount option. 3263 */ 3264 dcs = BTRFS_DC_WRITTEN; 3265 spin_unlock(&block_group->lock); 3266 goto out_put; 3267 } 3268 spin_unlock(&block_group->lock); 3269 3270 /* 3271 * Try to preallocate enough space based on how big the block group is. 3272 * Keep in mind this has to include any pinned space which could end up 3273 * taking up quite a bit since it's not folded into the other space 3274 * cache. 3275 */ 3276 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3277 if (!num_pages) 3278 num_pages = 1; 3279 3280 num_pages *= 16; 3281 num_pages *= PAGE_CACHE_SIZE; 3282 3283 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3284 if (ret) 3285 goto out_put; 3286 3287 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3288 num_pages, num_pages, 3289 &alloc_hint); 3290 if (!ret) 3291 dcs = BTRFS_DC_SETUP; 3292 btrfs_free_reserved_data_space(inode, num_pages); 3293 3294 out_put: 3295 iput(inode); 3296 out_free: 3297 btrfs_release_path(path); 3298 out: 3299 spin_lock(&block_group->lock); 3300 if (!ret && dcs == BTRFS_DC_SETUP) 3301 block_group->cache_generation = trans->transid; 3302 block_group->disk_cache_state = dcs; 3303 spin_unlock(&block_group->lock); 3304 3305 return ret; 3306 } 3307 3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3309 struct btrfs_root *root) 3310 { 3311 struct btrfs_block_group_cache *cache, *tmp; 3312 struct btrfs_transaction *cur_trans = trans->transaction; 3313 struct btrfs_path *path; 3314 3315 if (list_empty(&cur_trans->dirty_bgs) || 3316 !btrfs_test_opt(root, SPACE_CACHE)) 3317 return 0; 3318 3319 path = btrfs_alloc_path(); 3320 if (!path) 3321 return -ENOMEM; 3322 3323 /* Could add new block groups, use _safe just in case */ 3324 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3325 dirty_list) { 3326 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3327 cache_save_setup(cache, trans, path); 3328 } 3329 3330 btrfs_free_path(path); 3331 return 0; 3332 } 3333 3334 /* 3335 * transaction commit does final block group cache writeback during a 3336 * critical section where nothing is allowed to change the FS. This is 3337 * required in order for the cache to actually match the block group, 3338 * but can introduce a lot of latency into the commit. 3339 * 3340 * So, btrfs_start_dirty_block_groups is here to kick off block group 3341 * cache IO. There's a chance we'll have to redo some of it if the 3342 * block group changes again during the commit, but it greatly reduces 3343 * the commit latency by getting rid of the easy block groups while 3344 * we're still allowing others to join the commit. 3345 */ 3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3347 struct btrfs_root *root) 3348 { 3349 struct btrfs_block_group_cache *cache; 3350 struct btrfs_transaction *cur_trans = trans->transaction; 3351 int ret = 0; 3352 int should_put; 3353 struct btrfs_path *path = NULL; 3354 LIST_HEAD(dirty); 3355 struct list_head *io = &cur_trans->io_bgs; 3356 int num_started = 0; 3357 int loops = 0; 3358 3359 spin_lock(&cur_trans->dirty_bgs_lock); 3360 if (list_empty(&cur_trans->dirty_bgs)) { 3361 spin_unlock(&cur_trans->dirty_bgs_lock); 3362 return 0; 3363 } 3364 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3365 spin_unlock(&cur_trans->dirty_bgs_lock); 3366 3367 again: 3368 /* 3369 * make sure all the block groups on our dirty list actually 3370 * exist 3371 */ 3372 btrfs_create_pending_block_groups(trans, root); 3373 3374 if (!path) { 3375 path = btrfs_alloc_path(); 3376 if (!path) 3377 return -ENOMEM; 3378 } 3379 3380 /* 3381 * cache_write_mutex is here only to save us from balance or automatic 3382 * removal of empty block groups deleting this block group while we are 3383 * writing out the cache 3384 */ 3385 mutex_lock(&trans->transaction->cache_write_mutex); 3386 while (!list_empty(&dirty)) { 3387 cache = list_first_entry(&dirty, 3388 struct btrfs_block_group_cache, 3389 dirty_list); 3390 /* 3391 * this can happen if something re-dirties a block 3392 * group that is already under IO. Just wait for it to 3393 * finish and then do it all again 3394 */ 3395 if (!list_empty(&cache->io_list)) { 3396 list_del_init(&cache->io_list); 3397 btrfs_wait_cache_io(root, trans, cache, 3398 &cache->io_ctl, path, 3399 cache->key.objectid); 3400 btrfs_put_block_group(cache); 3401 } 3402 3403 3404 /* 3405 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3406 * if it should update the cache_state. Don't delete 3407 * until after we wait. 3408 * 3409 * Since we're not running in the commit critical section 3410 * we need the dirty_bgs_lock to protect from update_block_group 3411 */ 3412 spin_lock(&cur_trans->dirty_bgs_lock); 3413 list_del_init(&cache->dirty_list); 3414 spin_unlock(&cur_trans->dirty_bgs_lock); 3415 3416 should_put = 1; 3417 3418 cache_save_setup(cache, trans, path); 3419 3420 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3421 cache->io_ctl.inode = NULL; 3422 ret = btrfs_write_out_cache(root, trans, cache, path); 3423 if (ret == 0 && cache->io_ctl.inode) { 3424 num_started++; 3425 should_put = 0; 3426 3427 /* 3428 * the cache_write_mutex is protecting 3429 * the io_list 3430 */ 3431 list_add_tail(&cache->io_list, io); 3432 } else { 3433 /* 3434 * if we failed to write the cache, the 3435 * generation will be bad and life goes on 3436 */ 3437 ret = 0; 3438 } 3439 } 3440 if (!ret) { 3441 ret = write_one_cache_group(trans, root, path, cache); 3442 /* 3443 * Our block group might still be attached to the list 3444 * of new block groups in the transaction handle of some 3445 * other task (struct btrfs_trans_handle->new_bgs). This 3446 * means its block group item isn't yet in the extent 3447 * tree. If this happens ignore the error, as we will 3448 * try again later in the critical section of the 3449 * transaction commit. 3450 */ 3451 if (ret == -ENOENT) { 3452 ret = 0; 3453 spin_lock(&cur_trans->dirty_bgs_lock); 3454 if (list_empty(&cache->dirty_list)) { 3455 list_add_tail(&cache->dirty_list, 3456 &cur_trans->dirty_bgs); 3457 btrfs_get_block_group(cache); 3458 } 3459 spin_unlock(&cur_trans->dirty_bgs_lock); 3460 } else if (ret) { 3461 btrfs_abort_transaction(trans, root, ret); 3462 } 3463 } 3464 3465 /* if its not on the io list, we need to put the block group */ 3466 if (should_put) 3467 btrfs_put_block_group(cache); 3468 3469 if (ret) 3470 break; 3471 3472 /* 3473 * Avoid blocking other tasks for too long. It might even save 3474 * us from writing caches for block groups that are going to be 3475 * removed. 3476 */ 3477 mutex_unlock(&trans->transaction->cache_write_mutex); 3478 mutex_lock(&trans->transaction->cache_write_mutex); 3479 } 3480 mutex_unlock(&trans->transaction->cache_write_mutex); 3481 3482 /* 3483 * go through delayed refs for all the stuff we've just kicked off 3484 * and then loop back (just once) 3485 */ 3486 ret = btrfs_run_delayed_refs(trans, root, 0); 3487 if (!ret && loops == 0) { 3488 loops++; 3489 spin_lock(&cur_trans->dirty_bgs_lock); 3490 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3491 /* 3492 * dirty_bgs_lock protects us from concurrent block group 3493 * deletes too (not just cache_write_mutex). 3494 */ 3495 if (!list_empty(&dirty)) { 3496 spin_unlock(&cur_trans->dirty_bgs_lock); 3497 goto again; 3498 } 3499 spin_unlock(&cur_trans->dirty_bgs_lock); 3500 } 3501 3502 btrfs_free_path(path); 3503 return ret; 3504 } 3505 3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3507 struct btrfs_root *root) 3508 { 3509 struct btrfs_block_group_cache *cache; 3510 struct btrfs_transaction *cur_trans = trans->transaction; 3511 int ret = 0; 3512 int should_put; 3513 struct btrfs_path *path; 3514 struct list_head *io = &cur_trans->io_bgs; 3515 int num_started = 0; 3516 3517 path = btrfs_alloc_path(); 3518 if (!path) 3519 return -ENOMEM; 3520 3521 /* 3522 * We don't need the lock here since we are protected by the transaction 3523 * commit. We want to do the cache_save_setup first and then run the 3524 * delayed refs to make sure we have the best chance at doing this all 3525 * in one shot. 3526 */ 3527 while (!list_empty(&cur_trans->dirty_bgs)) { 3528 cache = list_first_entry(&cur_trans->dirty_bgs, 3529 struct btrfs_block_group_cache, 3530 dirty_list); 3531 3532 /* 3533 * this can happen if cache_save_setup re-dirties a block 3534 * group that is already under IO. Just wait for it to 3535 * finish and then do it all again 3536 */ 3537 if (!list_empty(&cache->io_list)) { 3538 list_del_init(&cache->io_list); 3539 btrfs_wait_cache_io(root, trans, cache, 3540 &cache->io_ctl, path, 3541 cache->key.objectid); 3542 btrfs_put_block_group(cache); 3543 } 3544 3545 /* 3546 * don't remove from the dirty list until after we've waited 3547 * on any pending IO 3548 */ 3549 list_del_init(&cache->dirty_list); 3550 should_put = 1; 3551 3552 cache_save_setup(cache, trans, path); 3553 3554 if (!ret) 3555 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3556 3557 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3558 cache->io_ctl.inode = NULL; 3559 ret = btrfs_write_out_cache(root, trans, cache, path); 3560 if (ret == 0 && cache->io_ctl.inode) { 3561 num_started++; 3562 should_put = 0; 3563 list_add_tail(&cache->io_list, io); 3564 } else { 3565 /* 3566 * if we failed to write the cache, the 3567 * generation will be bad and life goes on 3568 */ 3569 ret = 0; 3570 } 3571 } 3572 if (!ret) { 3573 ret = write_one_cache_group(trans, root, path, cache); 3574 if (ret) 3575 btrfs_abort_transaction(trans, root, ret); 3576 } 3577 3578 /* if its not on the io list, we need to put the block group */ 3579 if (should_put) 3580 btrfs_put_block_group(cache); 3581 } 3582 3583 while (!list_empty(io)) { 3584 cache = list_first_entry(io, struct btrfs_block_group_cache, 3585 io_list); 3586 list_del_init(&cache->io_list); 3587 btrfs_wait_cache_io(root, trans, cache, 3588 &cache->io_ctl, path, cache->key.objectid); 3589 btrfs_put_block_group(cache); 3590 } 3591 3592 btrfs_free_path(path); 3593 return ret; 3594 } 3595 3596 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3597 { 3598 struct btrfs_block_group_cache *block_group; 3599 int readonly = 0; 3600 3601 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3602 if (!block_group || block_group->ro) 3603 readonly = 1; 3604 if (block_group) 3605 btrfs_put_block_group(block_group); 3606 return readonly; 3607 } 3608 3609 static const char *alloc_name(u64 flags) 3610 { 3611 switch (flags) { 3612 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3613 return "mixed"; 3614 case BTRFS_BLOCK_GROUP_METADATA: 3615 return "metadata"; 3616 case BTRFS_BLOCK_GROUP_DATA: 3617 return "data"; 3618 case BTRFS_BLOCK_GROUP_SYSTEM: 3619 return "system"; 3620 default: 3621 WARN_ON(1); 3622 return "invalid-combination"; 3623 }; 3624 } 3625 3626 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3627 u64 total_bytes, u64 bytes_used, 3628 struct btrfs_space_info **space_info) 3629 { 3630 struct btrfs_space_info *found; 3631 int i; 3632 int factor; 3633 int ret; 3634 3635 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3636 BTRFS_BLOCK_GROUP_RAID10)) 3637 factor = 2; 3638 else 3639 factor = 1; 3640 3641 found = __find_space_info(info, flags); 3642 if (found) { 3643 spin_lock(&found->lock); 3644 found->total_bytes += total_bytes; 3645 found->disk_total += total_bytes * factor; 3646 found->bytes_used += bytes_used; 3647 found->disk_used += bytes_used * factor; 3648 if (total_bytes > 0) 3649 found->full = 0; 3650 spin_unlock(&found->lock); 3651 *space_info = found; 3652 return 0; 3653 } 3654 found = kzalloc(sizeof(*found), GFP_NOFS); 3655 if (!found) 3656 return -ENOMEM; 3657 3658 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3659 if (ret) { 3660 kfree(found); 3661 return ret; 3662 } 3663 3664 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3665 INIT_LIST_HEAD(&found->block_groups[i]); 3666 init_rwsem(&found->groups_sem); 3667 spin_lock_init(&found->lock); 3668 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3669 found->total_bytes = total_bytes; 3670 found->disk_total = total_bytes * factor; 3671 found->bytes_used = bytes_used; 3672 found->disk_used = bytes_used * factor; 3673 found->bytes_pinned = 0; 3674 found->bytes_reserved = 0; 3675 found->bytes_readonly = 0; 3676 found->bytes_may_use = 0; 3677 if (total_bytes > 0) 3678 found->full = 0; 3679 else 3680 found->full = 1; 3681 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3682 found->chunk_alloc = 0; 3683 found->flush = 0; 3684 init_waitqueue_head(&found->wait); 3685 INIT_LIST_HEAD(&found->ro_bgs); 3686 3687 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3688 info->space_info_kobj, "%s", 3689 alloc_name(found->flags)); 3690 if (ret) { 3691 kfree(found); 3692 return ret; 3693 } 3694 3695 *space_info = found; 3696 list_add_rcu(&found->list, &info->space_info); 3697 if (flags & BTRFS_BLOCK_GROUP_DATA) 3698 info->data_sinfo = found; 3699 3700 return ret; 3701 } 3702 3703 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3704 { 3705 u64 extra_flags = chunk_to_extended(flags) & 3706 BTRFS_EXTENDED_PROFILE_MASK; 3707 3708 write_seqlock(&fs_info->profiles_lock); 3709 if (flags & BTRFS_BLOCK_GROUP_DATA) 3710 fs_info->avail_data_alloc_bits |= extra_flags; 3711 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3712 fs_info->avail_metadata_alloc_bits |= extra_flags; 3713 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3714 fs_info->avail_system_alloc_bits |= extra_flags; 3715 write_sequnlock(&fs_info->profiles_lock); 3716 } 3717 3718 /* 3719 * returns target flags in extended format or 0 if restripe for this 3720 * chunk_type is not in progress 3721 * 3722 * should be called with either volume_mutex or balance_lock held 3723 */ 3724 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3725 { 3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3727 u64 target = 0; 3728 3729 if (!bctl) 3730 return 0; 3731 3732 if (flags & BTRFS_BLOCK_GROUP_DATA && 3733 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3734 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3735 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3736 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3737 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3738 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3739 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3740 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3741 } 3742 3743 return target; 3744 } 3745 3746 /* 3747 * @flags: available profiles in extended format (see ctree.h) 3748 * 3749 * Returns reduced profile in chunk format. If profile changing is in 3750 * progress (either running or paused) picks the target profile (if it's 3751 * already available), otherwise falls back to plain reducing. 3752 */ 3753 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3754 { 3755 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3756 u64 target; 3757 u64 tmp; 3758 3759 /* 3760 * see if restripe for this chunk_type is in progress, if so 3761 * try to reduce to the target profile 3762 */ 3763 spin_lock(&root->fs_info->balance_lock); 3764 target = get_restripe_target(root->fs_info, flags); 3765 if (target) { 3766 /* pick target profile only if it's already available */ 3767 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3768 spin_unlock(&root->fs_info->balance_lock); 3769 return extended_to_chunk(target); 3770 } 3771 } 3772 spin_unlock(&root->fs_info->balance_lock); 3773 3774 /* First, mask out the RAID levels which aren't possible */ 3775 if (num_devices == 1) 3776 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3777 BTRFS_BLOCK_GROUP_RAID5); 3778 if (num_devices < 3) 3779 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3780 if (num_devices < 4) 3781 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3782 3783 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3784 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3785 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3786 flags &= ~tmp; 3787 3788 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3789 tmp = BTRFS_BLOCK_GROUP_RAID6; 3790 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3791 tmp = BTRFS_BLOCK_GROUP_RAID5; 3792 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3793 tmp = BTRFS_BLOCK_GROUP_RAID10; 3794 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3795 tmp = BTRFS_BLOCK_GROUP_RAID1; 3796 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3797 tmp = BTRFS_BLOCK_GROUP_RAID0; 3798 3799 return extended_to_chunk(flags | tmp); 3800 } 3801 3802 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3803 { 3804 unsigned seq; 3805 u64 flags; 3806 3807 do { 3808 flags = orig_flags; 3809 seq = read_seqbegin(&root->fs_info->profiles_lock); 3810 3811 if (flags & BTRFS_BLOCK_GROUP_DATA) 3812 flags |= root->fs_info->avail_data_alloc_bits; 3813 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3814 flags |= root->fs_info->avail_system_alloc_bits; 3815 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3816 flags |= root->fs_info->avail_metadata_alloc_bits; 3817 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3818 3819 return btrfs_reduce_alloc_profile(root, flags); 3820 } 3821 3822 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3823 { 3824 u64 flags; 3825 u64 ret; 3826 3827 if (data) 3828 flags = BTRFS_BLOCK_GROUP_DATA; 3829 else if (root == root->fs_info->chunk_root) 3830 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3831 else 3832 flags = BTRFS_BLOCK_GROUP_METADATA; 3833 3834 ret = get_alloc_profile(root, flags); 3835 return ret; 3836 } 3837 3838 /* 3839 * This will check the space that the inode allocates from to make sure we have 3840 * enough space for bytes. 3841 */ 3842 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3843 { 3844 struct btrfs_space_info *data_sinfo; 3845 struct btrfs_root *root = BTRFS_I(inode)->root; 3846 struct btrfs_fs_info *fs_info = root->fs_info; 3847 u64 used; 3848 int ret = 0; 3849 int need_commit = 2; 3850 int have_pinned_space; 3851 3852 /* make sure bytes are sectorsize aligned */ 3853 bytes = ALIGN(bytes, root->sectorsize); 3854 3855 if (btrfs_is_free_space_inode(inode)) { 3856 need_commit = 0; 3857 ASSERT(current->journal_info); 3858 } 3859 3860 data_sinfo = fs_info->data_sinfo; 3861 if (!data_sinfo) 3862 goto alloc; 3863 3864 again: 3865 /* make sure we have enough space to handle the data first */ 3866 spin_lock(&data_sinfo->lock); 3867 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3868 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3869 data_sinfo->bytes_may_use; 3870 3871 if (used + bytes > data_sinfo->total_bytes) { 3872 struct btrfs_trans_handle *trans; 3873 3874 /* 3875 * if we don't have enough free bytes in this space then we need 3876 * to alloc a new chunk. 3877 */ 3878 if (!data_sinfo->full) { 3879 u64 alloc_target; 3880 3881 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3882 spin_unlock(&data_sinfo->lock); 3883 alloc: 3884 alloc_target = btrfs_get_alloc_profile(root, 1); 3885 /* 3886 * It is ugly that we don't call nolock join 3887 * transaction for the free space inode case here. 3888 * But it is safe because we only do the data space 3889 * reservation for the free space cache in the 3890 * transaction context, the common join transaction 3891 * just increase the counter of the current transaction 3892 * handler, doesn't try to acquire the trans_lock of 3893 * the fs. 3894 */ 3895 trans = btrfs_join_transaction(root); 3896 if (IS_ERR(trans)) 3897 return PTR_ERR(trans); 3898 3899 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3900 alloc_target, 3901 CHUNK_ALLOC_NO_FORCE); 3902 btrfs_end_transaction(trans, root); 3903 if (ret < 0) { 3904 if (ret != -ENOSPC) 3905 return ret; 3906 else { 3907 have_pinned_space = 1; 3908 goto commit_trans; 3909 } 3910 } 3911 3912 if (!data_sinfo) 3913 data_sinfo = fs_info->data_sinfo; 3914 3915 goto again; 3916 } 3917 3918 /* 3919 * If we don't have enough pinned space to deal with this 3920 * allocation, and no removed chunk in current transaction, 3921 * don't bother committing the transaction. 3922 */ 3923 have_pinned_space = percpu_counter_compare( 3924 &data_sinfo->total_bytes_pinned, 3925 used + bytes - data_sinfo->total_bytes); 3926 spin_unlock(&data_sinfo->lock); 3927 3928 /* commit the current transaction and try again */ 3929 commit_trans: 3930 if (need_commit && 3931 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3932 need_commit--; 3933 3934 if (need_commit > 0) 3935 btrfs_wait_ordered_roots(fs_info, -1); 3936 3937 trans = btrfs_join_transaction(root); 3938 if (IS_ERR(trans)) 3939 return PTR_ERR(trans); 3940 if (have_pinned_space >= 0 || 3941 trans->transaction->have_free_bgs || 3942 need_commit > 0) { 3943 ret = btrfs_commit_transaction(trans, root); 3944 if (ret) 3945 return ret; 3946 /* 3947 * make sure that all running delayed iput are 3948 * done 3949 */ 3950 down_write(&root->fs_info->delayed_iput_sem); 3951 up_write(&root->fs_info->delayed_iput_sem); 3952 goto again; 3953 } else { 3954 btrfs_end_transaction(trans, root); 3955 } 3956 } 3957 3958 trace_btrfs_space_reservation(root->fs_info, 3959 "space_info:enospc", 3960 data_sinfo->flags, bytes, 1); 3961 return -ENOSPC; 3962 } 3963 ret = btrfs_qgroup_reserve(root, write_bytes); 3964 if (ret) 3965 goto out; 3966 data_sinfo->bytes_may_use += bytes; 3967 trace_btrfs_space_reservation(root->fs_info, "space_info", 3968 data_sinfo->flags, bytes, 1); 3969 out: 3970 spin_unlock(&data_sinfo->lock); 3971 3972 return ret; 3973 } 3974 3975 /* 3976 * Called if we need to clear a data reservation for this inode. 3977 */ 3978 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3979 { 3980 struct btrfs_root *root = BTRFS_I(inode)->root; 3981 struct btrfs_space_info *data_sinfo; 3982 3983 /* make sure bytes are sectorsize aligned */ 3984 bytes = ALIGN(bytes, root->sectorsize); 3985 3986 data_sinfo = root->fs_info->data_sinfo; 3987 spin_lock(&data_sinfo->lock); 3988 WARN_ON(data_sinfo->bytes_may_use < bytes); 3989 data_sinfo->bytes_may_use -= bytes; 3990 trace_btrfs_space_reservation(root->fs_info, "space_info", 3991 data_sinfo->flags, bytes, 0); 3992 spin_unlock(&data_sinfo->lock); 3993 } 3994 3995 static void force_metadata_allocation(struct btrfs_fs_info *info) 3996 { 3997 struct list_head *head = &info->space_info; 3998 struct btrfs_space_info *found; 3999 4000 rcu_read_lock(); 4001 list_for_each_entry_rcu(found, head, list) { 4002 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4003 found->force_alloc = CHUNK_ALLOC_FORCE; 4004 } 4005 rcu_read_unlock(); 4006 } 4007 4008 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4009 { 4010 return (global->size << 1); 4011 } 4012 4013 static int should_alloc_chunk(struct btrfs_root *root, 4014 struct btrfs_space_info *sinfo, int force) 4015 { 4016 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4017 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4018 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4019 u64 thresh; 4020 4021 if (force == CHUNK_ALLOC_FORCE) 4022 return 1; 4023 4024 /* 4025 * We need to take into account the global rsv because for all intents 4026 * and purposes it's used space. Don't worry about locking the 4027 * global_rsv, it doesn't change except when the transaction commits. 4028 */ 4029 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4030 num_allocated += calc_global_rsv_need_space(global_rsv); 4031 4032 /* 4033 * in limited mode, we want to have some free space up to 4034 * about 1% of the FS size. 4035 */ 4036 if (force == CHUNK_ALLOC_LIMITED) { 4037 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4038 thresh = max_t(u64, 64 * 1024 * 1024, 4039 div_factor_fine(thresh, 1)); 4040 4041 if (num_bytes - num_allocated < thresh) 4042 return 1; 4043 } 4044 4045 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4046 return 0; 4047 return 1; 4048 } 4049 4050 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4051 { 4052 u64 num_dev; 4053 4054 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4055 BTRFS_BLOCK_GROUP_RAID0 | 4056 BTRFS_BLOCK_GROUP_RAID5 | 4057 BTRFS_BLOCK_GROUP_RAID6)) 4058 num_dev = root->fs_info->fs_devices->rw_devices; 4059 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4060 num_dev = 2; 4061 else 4062 num_dev = 1; /* DUP or single */ 4063 4064 return num_dev; 4065 } 4066 4067 /* 4068 * If @is_allocation is true, reserve space in the system space info necessary 4069 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4070 * removing a chunk. 4071 */ 4072 void check_system_chunk(struct btrfs_trans_handle *trans, 4073 struct btrfs_root *root, 4074 u64 type) 4075 { 4076 struct btrfs_space_info *info; 4077 u64 left; 4078 u64 thresh; 4079 int ret = 0; 4080 u64 num_devs; 4081 4082 /* 4083 * Needed because we can end up allocating a system chunk and for an 4084 * atomic and race free space reservation in the chunk block reserve. 4085 */ 4086 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4087 4088 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4089 spin_lock(&info->lock); 4090 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4091 info->bytes_reserved - info->bytes_readonly - 4092 info->bytes_may_use; 4093 spin_unlock(&info->lock); 4094 4095 num_devs = get_profile_num_devs(root, type); 4096 4097 /* num_devs device items to update and 1 chunk item to add or remove */ 4098 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4099 btrfs_calc_trans_metadata_size(root, 1); 4100 4101 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4102 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4103 left, thresh, type); 4104 dump_space_info(info, 0, 0); 4105 } 4106 4107 if (left < thresh) { 4108 u64 flags; 4109 4110 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4111 /* 4112 * Ignore failure to create system chunk. We might end up not 4113 * needing it, as we might not need to COW all nodes/leafs from 4114 * the paths we visit in the chunk tree (they were already COWed 4115 * or created in the current transaction for example). 4116 */ 4117 ret = btrfs_alloc_chunk(trans, root, flags); 4118 } 4119 4120 if (!ret) { 4121 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4122 &root->fs_info->chunk_block_rsv, 4123 thresh, BTRFS_RESERVE_NO_FLUSH); 4124 if (!ret) 4125 trans->chunk_bytes_reserved += thresh; 4126 } 4127 } 4128 4129 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4130 struct btrfs_root *extent_root, u64 flags, int force) 4131 { 4132 struct btrfs_space_info *space_info; 4133 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4134 int wait_for_alloc = 0; 4135 int ret = 0; 4136 4137 /* Don't re-enter if we're already allocating a chunk */ 4138 if (trans->allocating_chunk) 4139 return -ENOSPC; 4140 4141 space_info = __find_space_info(extent_root->fs_info, flags); 4142 if (!space_info) { 4143 ret = update_space_info(extent_root->fs_info, flags, 4144 0, 0, &space_info); 4145 BUG_ON(ret); /* -ENOMEM */ 4146 } 4147 BUG_ON(!space_info); /* Logic error */ 4148 4149 again: 4150 spin_lock(&space_info->lock); 4151 if (force < space_info->force_alloc) 4152 force = space_info->force_alloc; 4153 if (space_info->full) { 4154 if (should_alloc_chunk(extent_root, space_info, force)) 4155 ret = -ENOSPC; 4156 else 4157 ret = 0; 4158 spin_unlock(&space_info->lock); 4159 return ret; 4160 } 4161 4162 if (!should_alloc_chunk(extent_root, space_info, force)) { 4163 spin_unlock(&space_info->lock); 4164 return 0; 4165 } else if (space_info->chunk_alloc) { 4166 wait_for_alloc = 1; 4167 } else { 4168 space_info->chunk_alloc = 1; 4169 } 4170 4171 spin_unlock(&space_info->lock); 4172 4173 mutex_lock(&fs_info->chunk_mutex); 4174 4175 /* 4176 * The chunk_mutex is held throughout the entirety of a chunk 4177 * allocation, so once we've acquired the chunk_mutex we know that the 4178 * other guy is done and we need to recheck and see if we should 4179 * allocate. 4180 */ 4181 if (wait_for_alloc) { 4182 mutex_unlock(&fs_info->chunk_mutex); 4183 wait_for_alloc = 0; 4184 goto again; 4185 } 4186 4187 trans->allocating_chunk = true; 4188 4189 /* 4190 * If we have mixed data/metadata chunks we want to make sure we keep 4191 * allocating mixed chunks instead of individual chunks. 4192 */ 4193 if (btrfs_mixed_space_info(space_info)) 4194 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4195 4196 /* 4197 * if we're doing a data chunk, go ahead and make sure that 4198 * we keep a reasonable number of metadata chunks allocated in the 4199 * FS as well. 4200 */ 4201 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4202 fs_info->data_chunk_allocations++; 4203 if (!(fs_info->data_chunk_allocations % 4204 fs_info->metadata_ratio)) 4205 force_metadata_allocation(fs_info); 4206 } 4207 4208 /* 4209 * Check if we have enough space in SYSTEM chunk because we may need 4210 * to update devices. 4211 */ 4212 check_system_chunk(trans, extent_root, flags); 4213 4214 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4215 trans->allocating_chunk = false; 4216 4217 spin_lock(&space_info->lock); 4218 if (ret < 0 && ret != -ENOSPC) 4219 goto out; 4220 if (ret) 4221 space_info->full = 1; 4222 else 4223 ret = 1; 4224 4225 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4226 out: 4227 space_info->chunk_alloc = 0; 4228 spin_unlock(&space_info->lock); 4229 mutex_unlock(&fs_info->chunk_mutex); 4230 /* 4231 * When we allocate a new chunk we reserve space in the chunk block 4232 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4233 * add new nodes/leafs to it if we end up needing to do it when 4234 * inserting the chunk item and updating device items as part of the 4235 * second phase of chunk allocation, performed by 4236 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4237 * large number of new block groups to create in our transaction 4238 * handle's new_bgs list to avoid exhausting the chunk block reserve 4239 * in extreme cases - like having a single transaction create many new 4240 * block groups when starting to write out the free space caches of all 4241 * the block groups that were made dirty during the lifetime of the 4242 * transaction. 4243 */ 4244 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) { 4245 btrfs_create_pending_block_groups(trans, trans->root); 4246 btrfs_trans_release_chunk_metadata(trans); 4247 } 4248 return ret; 4249 } 4250 4251 static int can_overcommit(struct btrfs_root *root, 4252 struct btrfs_space_info *space_info, u64 bytes, 4253 enum btrfs_reserve_flush_enum flush) 4254 { 4255 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4256 u64 profile = btrfs_get_alloc_profile(root, 0); 4257 u64 space_size; 4258 u64 avail; 4259 u64 used; 4260 4261 used = space_info->bytes_used + space_info->bytes_reserved + 4262 space_info->bytes_pinned + space_info->bytes_readonly; 4263 4264 /* 4265 * We only want to allow over committing if we have lots of actual space 4266 * free, but if we don't have enough space to handle the global reserve 4267 * space then we could end up having a real enospc problem when trying 4268 * to allocate a chunk or some other such important allocation. 4269 */ 4270 spin_lock(&global_rsv->lock); 4271 space_size = calc_global_rsv_need_space(global_rsv); 4272 spin_unlock(&global_rsv->lock); 4273 if (used + space_size >= space_info->total_bytes) 4274 return 0; 4275 4276 used += space_info->bytes_may_use; 4277 4278 spin_lock(&root->fs_info->free_chunk_lock); 4279 avail = root->fs_info->free_chunk_space; 4280 spin_unlock(&root->fs_info->free_chunk_lock); 4281 4282 /* 4283 * If we have dup, raid1 or raid10 then only half of the free 4284 * space is actually useable. For raid56, the space info used 4285 * doesn't include the parity drive, so we don't have to 4286 * change the math 4287 */ 4288 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4289 BTRFS_BLOCK_GROUP_RAID1 | 4290 BTRFS_BLOCK_GROUP_RAID10)) 4291 avail >>= 1; 4292 4293 /* 4294 * If we aren't flushing all things, let us overcommit up to 4295 * 1/2th of the space. If we can flush, don't let us overcommit 4296 * too much, let it overcommit up to 1/8 of the space. 4297 */ 4298 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4299 avail >>= 3; 4300 else 4301 avail >>= 1; 4302 4303 if (used + bytes < space_info->total_bytes + avail) 4304 return 1; 4305 return 0; 4306 } 4307 4308 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4309 unsigned long nr_pages, int nr_items) 4310 { 4311 struct super_block *sb = root->fs_info->sb; 4312 4313 if (down_read_trylock(&sb->s_umount)) { 4314 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4315 up_read(&sb->s_umount); 4316 } else { 4317 /* 4318 * We needn't worry the filesystem going from r/w to r/o though 4319 * we don't acquire ->s_umount mutex, because the filesystem 4320 * should guarantee the delalloc inodes list be empty after 4321 * the filesystem is readonly(all dirty pages are written to 4322 * the disk). 4323 */ 4324 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4325 if (!current->journal_info) 4326 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4327 } 4328 } 4329 4330 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4331 { 4332 u64 bytes; 4333 int nr; 4334 4335 bytes = btrfs_calc_trans_metadata_size(root, 1); 4336 nr = (int)div64_u64(to_reclaim, bytes); 4337 if (!nr) 4338 nr = 1; 4339 return nr; 4340 } 4341 4342 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4343 4344 /* 4345 * shrink metadata reservation for delalloc 4346 */ 4347 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4348 bool wait_ordered) 4349 { 4350 struct btrfs_block_rsv *block_rsv; 4351 struct btrfs_space_info *space_info; 4352 struct btrfs_trans_handle *trans; 4353 u64 delalloc_bytes; 4354 u64 max_reclaim; 4355 long time_left; 4356 unsigned long nr_pages; 4357 int loops; 4358 int items; 4359 enum btrfs_reserve_flush_enum flush; 4360 4361 /* Calc the number of the pages we need flush for space reservation */ 4362 items = calc_reclaim_items_nr(root, to_reclaim); 4363 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4364 4365 trans = (struct btrfs_trans_handle *)current->journal_info; 4366 block_rsv = &root->fs_info->delalloc_block_rsv; 4367 space_info = block_rsv->space_info; 4368 4369 delalloc_bytes = percpu_counter_sum_positive( 4370 &root->fs_info->delalloc_bytes); 4371 if (delalloc_bytes == 0) { 4372 if (trans) 4373 return; 4374 if (wait_ordered) 4375 btrfs_wait_ordered_roots(root->fs_info, items); 4376 return; 4377 } 4378 4379 loops = 0; 4380 while (delalloc_bytes && loops < 3) { 4381 max_reclaim = min(delalloc_bytes, to_reclaim); 4382 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4383 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4384 /* 4385 * We need to wait for the async pages to actually start before 4386 * we do anything. 4387 */ 4388 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4389 if (!max_reclaim) 4390 goto skip_async; 4391 4392 if (max_reclaim <= nr_pages) 4393 max_reclaim = 0; 4394 else 4395 max_reclaim -= nr_pages; 4396 4397 wait_event(root->fs_info->async_submit_wait, 4398 atomic_read(&root->fs_info->async_delalloc_pages) <= 4399 (int)max_reclaim); 4400 skip_async: 4401 if (!trans) 4402 flush = BTRFS_RESERVE_FLUSH_ALL; 4403 else 4404 flush = BTRFS_RESERVE_NO_FLUSH; 4405 spin_lock(&space_info->lock); 4406 if (can_overcommit(root, space_info, orig, flush)) { 4407 spin_unlock(&space_info->lock); 4408 break; 4409 } 4410 spin_unlock(&space_info->lock); 4411 4412 loops++; 4413 if (wait_ordered && !trans) { 4414 btrfs_wait_ordered_roots(root->fs_info, items); 4415 } else { 4416 time_left = schedule_timeout_killable(1); 4417 if (time_left) 4418 break; 4419 } 4420 delalloc_bytes = percpu_counter_sum_positive( 4421 &root->fs_info->delalloc_bytes); 4422 } 4423 } 4424 4425 /** 4426 * maybe_commit_transaction - possibly commit the transaction if its ok to 4427 * @root - the root we're allocating for 4428 * @bytes - the number of bytes we want to reserve 4429 * @force - force the commit 4430 * 4431 * This will check to make sure that committing the transaction will actually 4432 * get us somewhere and then commit the transaction if it does. Otherwise it 4433 * will return -ENOSPC. 4434 */ 4435 static int may_commit_transaction(struct btrfs_root *root, 4436 struct btrfs_space_info *space_info, 4437 u64 bytes, int force) 4438 { 4439 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4440 struct btrfs_trans_handle *trans; 4441 4442 trans = (struct btrfs_trans_handle *)current->journal_info; 4443 if (trans) 4444 return -EAGAIN; 4445 4446 if (force) 4447 goto commit; 4448 4449 /* See if there is enough pinned space to make this reservation */ 4450 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4451 bytes) >= 0) 4452 goto commit; 4453 4454 /* 4455 * See if there is some space in the delayed insertion reservation for 4456 * this reservation. 4457 */ 4458 if (space_info != delayed_rsv->space_info) 4459 return -ENOSPC; 4460 4461 spin_lock(&delayed_rsv->lock); 4462 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4463 bytes - delayed_rsv->size) >= 0) { 4464 spin_unlock(&delayed_rsv->lock); 4465 return -ENOSPC; 4466 } 4467 spin_unlock(&delayed_rsv->lock); 4468 4469 commit: 4470 trans = btrfs_join_transaction(root); 4471 if (IS_ERR(trans)) 4472 return -ENOSPC; 4473 4474 return btrfs_commit_transaction(trans, root); 4475 } 4476 4477 enum flush_state { 4478 FLUSH_DELAYED_ITEMS_NR = 1, 4479 FLUSH_DELAYED_ITEMS = 2, 4480 FLUSH_DELALLOC = 3, 4481 FLUSH_DELALLOC_WAIT = 4, 4482 ALLOC_CHUNK = 5, 4483 COMMIT_TRANS = 6, 4484 }; 4485 4486 static int flush_space(struct btrfs_root *root, 4487 struct btrfs_space_info *space_info, u64 num_bytes, 4488 u64 orig_bytes, int state) 4489 { 4490 struct btrfs_trans_handle *trans; 4491 int nr; 4492 int ret = 0; 4493 4494 switch (state) { 4495 case FLUSH_DELAYED_ITEMS_NR: 4496 case FLUSH_DELAYED_ITEMS: 4497 if (state == FLUSH_DELAYED_ITEMS_NR) 4498 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4499 else 4500 nr = -1; 4501 4502 trans = btrfs_join_transaction(root); 4503 if (IS_ERR(trans)) { 4504 ret = PTR_ERR(trans); 4505 break; 4506 } 4507 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4508 btrfs_end_transaction(trans, root); 4509 break; 4510 case FLUSH_DELALLOC: 4511 case FLUSH_DELALLOC_WAIT: 4512 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4513 state == FLUSH_DELALLOC_WAIT); 4514 break; 4515 case ALLOC_CHUNK: 4516 trans = btrfs_join_transaction(root); 4517 if (IS_ERR(trans)) { 4518 ret = PTR_ERR(trans); 4519 break; 4520 } 4521 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4522 btrfs_get_alloc_profile(root, 0), 4523 CHUNK_ALLOC_NO_FORCE); 4524 btrfs_end_transaction(trans, root); 4525 if (ret == -ENOSPC) 4526 ret = 0; 4527 break; 4528 case COMMIT_TRANS: 4529 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4530 break; 4531 default: 4532 ret = -ENOSPC; 4533 break; 4534 } 4535 4536 return ret; 4537 } 4538 4539 static inline u64 4540 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4541 struct btrfs_space_info *space_info) 4542 { 4543 u64 used; 4544 u64 expected; 4545 u64 to_reclaim; 4546 4547 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4548 16 * 1024 * 1024); 4549 spin_lock(&space_info->lock); 4550 if (can_overcommit(root, space_info, to_reclaim, 4551 BTRFS_RESERVE_FLUSH_ALL)) { 4552 to_reclaim = 0; 4553 goto out; 4554 } 4555 4556 used = space_info->bytes_used + space_info->bytes_reserved + 4557 space_info->bytes_pinned + space_info->bytes_readonly + 4558 space_info->bytes_may_use; 4559 if (can_overcommit(root, space_info, 1024 * 1024, 4560 BTRFS_RESERVE_FLUSH_ALL)) 4561 expected = div_factor_fine(space_info->total_bytes, 95); 4562 else 4563 expected = div_factor_fine(space_info->total_bytes, 90); 4564 4565 if (used > expected) 4566 to_reclaim = used - expected; 4567 else 4568 to_reclaim = 0; 4569 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4570 space_info->bytes_reserved); 4571 out: 4572 spin_unlock(&space_info->lock); 4573 4574 return to_reclaim; 4575 } 4576 4577 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4578 struct btrfs_fs_info *fs_info, u64 used) 4579 { 4580 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4581 4582 /* If we're just plain full then async reclaim just slows us down. */ 4583 if (space_info->bytes_used >= thresh) 4584 return 0; 4585 4586 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4587 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4588 } 4589 4590 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4591 struct btrfs_fs_info *fs_info, 4592 int flush_state) 4593 { 4594 u64 used; 4595 4596 spin_lock(&space_info->lock); 4597 /* 4598 * We run out of space and have not got any free space via flush_space, 4599 * so don't bother doing async reclaim. 4600 */ 4601 if (flush_state > COMMIT_TRANS && space_info->full) { 4602 spin_unlock(&space_info->lock); 4603 return 0; 4604 } 4605 4606 used = space_info->bytes_used + space_info->bytes_reserved + 4607 space_info->bytes_pinned + space_info->bytes_readonly + 4608 space_info->bytes_may_use; 4609 if (need_do_async_reclaim(space_info, fs_info, used)) { 4610 spin_unlock(&space_info->lock); 4611 return 1; 4612 } 4613 spin_unlock(&space_info->lock); 4614 4615 return 0; 4616 } 4617 4618 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4619 { 4620 struct btrfs_fs_info *fs_info; 4621 struct btrfs_space_info *space_info; 4622 u64 to_reclaim; 4623 int flush_state; 4624 4625 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4626 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4627 4628 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4629 space_info); 4630 if (!to_reclaim) 4631 return; 4632 4633 flush_state = FLUSH_DELAYED_ITEMS_NR; 4634 do { 4635 flush_space(fs_info->fs_root, space_info, to_reclaim, 4636 to_reclaim, flush_state); 4637 flush_state++; 4638 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4639 flush_state)) 4640 return; 4641 } while (flush_state < COMMIT_TRANS); 4642 } 4643 4644 void btrfs_init_async_reclaim_work(struct work_struct *work) 4645 { 4646 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4647 } 4648 4649 /** 4650 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4651 * @root - the root we're allocating for 4652 * @block_rsv - the block_rsv we're allocating for 4653 * @orig_bytes - the number of bytes we want 4654 * @flush - whether or not we can flush to make our reservation 4655 * 4656 * This will reserve orgi_bytes number of bytes from the space info associated 4657 * with the block_rsv. If there is not enough space it will make an attempt to 4658 * flush out space to make room. It will do this by flushing delalloc if 4659 * possible or committing the transaction. If flush is 0 then no attempts to 4660 * regain reservations will be made and this will fail if there is not enough 4661 * space already. 4662 */ 4663 static int reserve_metadata_bytes(struct btrfs_root *root, 4664 struct btrfs_block_rsv *block_rsv, 4665 u64 orig_bytes, 4666 enum btrfs_reserve_flush_enum flush) 4667 { 4668 struct btrfs_space_info *space_info = block_rsv->space_info; 4669 u64 used; 4670 u64 num_bytes = orig_bytes; 4671 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4672 int ret = 0; 4673 bool flushing = false; 4674 4675 again: 4676 ret = 0; 4677 spin_lock(&space_info->lock); 4678 /* 4679 * We only want to wait if somebody other than us is flushing and we 4680 * are actually allowed to flush all things. 4681 */ 4682 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4683 space_info->flush) { 4684 spin_unlock(&space_info->lock); 4685 /* 4686 * If we have a trans handle we can't wait because the flusher 4687 * may have to commit the transaction, which would mean we would 4688 * deadlock since we are waiting for the flusher to finish, but 4689 * hold the current transaction open. 4690 */ 4691 if (current->journal_info) 4692 return -EAGAIN; 4693 ret = wait_event_killable(space_info->wait, !space_info->flush); 4694 /* Must have been killed, return */ 4695 if (ret) 4696 return -EINTR; 4697 4698 spin_lock(&space_info->lock); 4699 } 4700 4701 ret = -ENOSPC; 4702 used = space_info->bytes_used + space_info->bytes_reserved + 4703 space_info->bytes_pinned + space_info->bytes_readonly + 4704 space_info->bytes_may_use; 4705 4706 /* 4707 * The idea here is that we've not already over-reserved the block group 4708 * then we can go ahead and save our reservation first and then start 4709 * flushing if we need to. Otherwise if we've already overcommitted 4710 * lets start flushing stuff first and then come back and try to make 4711 * our reservation. 4712 */ 4713 if (used <= space_info->total_bytes) { 4714 if (used + orig_bytes <= space_info->total_bytes) { 4715 space_info->bytes_may_use += orig_bytes; 4716 trace_btrfs_space_reservation(root->fs_info, 4717 "space_info", space_info->flags, orig_bytes, 1); 4718 ret = 0; 4719 } else { 4720 /* 4721 * Ok set num_bytes to orig_bytes since we aren't 4722 * overocmmitted, this way we only try and reclaim what 4723 * we need. 4724 */ 4725 num_bytes = orig_bytes; 4726 } 4727 } else { 4728 /* 4729 * Ok we're over committed, set num_bytes to the overcommitted 4730 * amount plus the amount of bytes that we need for this 4731 * reservation. 4732 */ 4733 num_bytes = used - space_info->total_bytes + 4734 (orig_bytes * 2); 4735 } 4736 4737 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4738 space_info->bytes_may_use += orig_bytes; 4739 trace_btrfs_space_reservation(root->fs_info, "space_info", 4740 space_info->flags, orig_bytes, 4741 1); 4742 ret = 0; 4743 } 4744 4745 /* 4746 * Couldn't make our reservation, save our place so while we're trying 4747 * to reclaim space we can actually use it instead of somebody else 4748 * stealing it from us. 4749 * 4750 * We make the other tasks wait for the flush only when we can flush 4751 * all things. 4752 */ 4753 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4754 flushing = true; 4755 space_info->flush = 1; 4756 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4757 used += orig_bytes; 4758 /* 4759 * We will do the space reservation dance during log replay, 4760 * which means we won't have fs_info->fs_root set, so don't do 4761 * the async reclaim as we will panic. 4762 */ 4763 if (!root->fs_info->log_root_recovering && 4764 need_do_async_reclaim(space_info, root->fs_info, used) && 4765 !work_busy(&root->fs_info->async_reclaim_work)) 4766 queue_work(system_unbound_wq, 4767 &root->fs_info->async_reclaim_work); 4768 } 4769 spin_unlock(&space_info->lock); 4770 4771 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4772 goto out; 4773 4774 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4775 flush_state); 4776 flush_state++; 4777 4778 /* 4779 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4780 * would happen. So skip delalloc flush. 4781 */ 4782 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4783 (flush_state == FLUSH_DELALLOC || 4784 flush_state == FLUSH_DELALLOC_WAIT)) 4785 flush_state = ALLOC_CHUNK; 4786 4787 if (!ret) 4788 goto again; 4789 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4790 flush_state < COMMIT_TRANS) 4791 goto again; 4792 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4793 flush_state <= COMMIT_TRANS) 4794 goto again; 4795 4796 out: 4797 if (ret == -ENOSPC && 4798 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4799 struct btrfs_block_rsv *global_rsv = 4800 &root->fs_info->global_block_rsv; 4801 4802 if (block_rsv != global_rsv && 4803 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4804 ret = 0; 4805 } 4806 if (ret == -ENOSPC) 4807 trace_btrfs_space_reservation(root->fs_info, 4808 "space_info:enospc", 4809 space_info->flags, orig_bytes, 1); 4810 if (flushing) { 4811 spin_lock(&space_info->lock); 4812 space_info->flush = 0; 4813 wake_up_all(&space_info->wait); 4814 spin_unlock(&space_info->lock); 4815 } 4816 return ret; 4817 } 4818 4819 static struct btrfs_block_rsv *get_block_rsv( 4820 const struct btrfs_trans_handle *trans, 4821 const struct btrfs_root *root) 4822 { 4823 struct btrfs_block_rsv *block_rsv = NULL; 4824 4825 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4826 block_rsv = trans->block_rsv; 4827 4828 if (root == root->fs_info->csum_root && trans->adding_csums) 4829 block_rsv = trans->block_rsv; 4830 4831 if (root == root->fs_info->uuid_root) 4832 block_rsv = trans->block_rsv; 4833 4834 if (!block_rsv) 4835 block_rsv = root->block_rsv; 4836 4837 if (!block_rsv) 4838 block_rsv = &root->fs_info->empty_block_rsv; 4839 4840 return block_rsv; 4841 } 4842 4843 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4844 u64 num_bytes) 4845 { 4846 int ret = -ENOSPC; 4847 spin_lock(&block_rsv->lock); 4848 if (block_rsv->reserved >= num_bytes) { 4849 block_rsv->reserved -= num_bytes; 4850 if (block_rsv->reserved < block_rsv->size) 4851 block_rsv->full = 0; 4852 ret = 0; 4853 } 4854 spin_unlock(&block_rsv->lock); 4855 return ret; 4856 } 4857 4858 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4859 u64 num_bytes, int update_size) 4860 { 4861 spin_lock(&block_rsv->lock); 4862 block_rsv->reserved += num_bytes; 4863 if (update_size) 4864 block_rsv->size += num_bytes; 4865 else if (block_rsv->reserved >= block_rsv->size) 4866 block_rsv->full = 1; 4867 spin_unlock(&block_rsv->lock); 4868 } 4869 4870 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4871 struct btrfs_block_rsv *dest, u64 num_bytes, 4872 int min_factor) 4873 { 4874 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4875 u64 min_bytes; 4876 4877 if (global_rsv->space_info != dest->space_info) 4878 return -ENOSPC; 4879 4880 spin_lock(&global_rsv->lock); 4881 min_bytes = div_factor(global_rsv->size, min_factor); 4882 if (global_rsv->reserved < min_bytes + num_bytes) { 4883 spin_unlock(&global_rsv->lock); 4884 return -ENOSPC; 4885 } 4886 global_rsv->reserved -= num_bytes; 4887 if (global_rsv->reserved < global_rsv->size) 4888 global_rsv->full = 0; 4889 spin_unlock(&global_rsv->lock); 4890 4891 block_rsv_add_bytes(dest, num_bytes, 1); 4892 return 0; 4893 } 4894 4895 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4896 struct btrfs_block_rsv *block_rsv, 4897 struct btrfs_block_rsv *dest, u64 num_bytes) 4898 { 4899 struct btrfs_space_info *space_info = block_rsv->space_info; 4900 4901 spin_lock(&block_rsv->lock); 4902 if (num_bytes == (u64)-1) 4903 num_bytes = block_rsv->size; 4904 block_rsv->size -= num_bytes; 4905 if (block_rsv->reserved >= block_rsv->size) { 4906 num_bytes = block_rsv->reserved - block_rsv->size; 4907 block_rsv->reserved = block_rsv->size; 4908 block_rsv->full = 1; 4909 } else { 4910 num_bytes = 0; 4911 } 4912 spin_unlock(&block_rsv->lock); 4913 4914 if (num_bytes > 0) { 4915 if (dest) { 4916 spin_lock(&dest->lock); 4917 if (!dest->full) { 4918 u64 bytes_to_add; 4919 4920 bytes_to_add = dest->size - dest->reserved; 4921 bytes_to_add = min(num_bytes, bytes_to_add); 4922 dest->reserved += bytes_to_add; 4923 if (dest->reserved >= dest->size) 4924 dest->full = 1; 4925 num_bytes -= bytes_to_add; 4926 } 4927 spin_unlock(&dest->lock); 4928 } 4929 if (num_bytes) { 4930 spin_lock(&space_info->lock); 4931 space_info->bytes_may_use -= num_bytes; 4932 trace_btrfs_space_reservation(fs_info, "space_info", 4933 space_info->flags, num_bytes, 0); 4934 spin_unlock(&space_info->lock); 4935 } 4936 } 4937 } 4938 4939 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4940 struct btrfs_block_rsv *dst, u64 num_bytes) 4941 { 4942 int ret; 4943 4944 ret = block_rsv_use_bytes(src, num_bytes); 4945 if (ret) 4946 return ret; 4947 4948 block_rsv_add_bytes(dst, num_bytes, 1); 4949 return 0; 4950 } 4951 4952 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4953 { 4954 memset(rsv, 0, sizeof(*rsv)); 4955 spin_lock_init(&rsv->lock); 4956 rsv->type = type; 4957 } 4958 4959 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4960 unsigned short type) 4961 { 4962 struct btrfs_block_rsv *block_rsv; 4963 struct btrfs_fs_info *fs_info = root->fs_info; 4964 4965 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4966 if (!block_rsv) 4967 return NULL; 4968 4969 btrfs_init_block_rsv(block_rsv, type); 4970 block_rsv->space_info = __find_space_info(fs_info, 4971 BTRFS_BLOCK_GROUP_METADATA); 4972 return block_rsv; 4973 } 4974 4975 void btrfs_free_block_rsv(struct btrfs_root *root, 4976 struct btrfs_block_rsv *rsv) 4977 { 4978 if (!rsv) 4979 return; 4980 btrfs_block_rsv_release(root, rsv, (u64)-1); 4981 kfree(rsv); 4982 } 4983 4984 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4985 { 4986 kfree(rsv); 4987 } 4988 4989 int btrfs_block_rsv_add(struct btrfs_root *root, 4990 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4991 enum btrfs_reserve_flush_enum flush) 4992 { 4993 int ret; 4994 4995 if (num_bytes == 0) 4996 return 0; 4997 4998 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4999 if (!ret) { 5000 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5001 return 0; 5002 } 5003 5004 return ret; 5005 } 5006 5007 int btrfs_block_rsv_check(struct btrfs_root *root, 5008 struct btrfs_block_rsv *block_rsv, int min_factor) 5009 { 5010 u64 num_bytes = 0; 5011 int ret = -ENOSPC; 5012 5013 if (!block_rsv) 5014 return 0; 5015 5016 spin_lock(&block_rsv->lock); 5017 num_bytes = div_factor(block_rsv->size, min_factor); 5018 if (block_rsv->reserved >= num_bytes) 5019 ret = 0; 5020 spin_unlock(&block_rsv->lock); 5021 5022 return ret; 5023 } 5024 5025 int btrfs_block_rsv_refill(struct btrfs_root *root, 5026 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5027 enum btrfs_reserve_flush_enum flush) 5028 { 5029 u64 num_bytes = 0; 5030 int ret = -ENOSPC; 5031 5032 if (!block_rsv) 5033 return 0; 5034 5035 spin_lock(&block_rsv->lock); 5036 num_bytes = min_reserved; 5037 if (block_rsv->reserved >= num_bytes) 5038 ret = 0; 5039 else 5040 num_bytes -= block_rsv->reserved; 5041 spin_unlock(&block_rsv->lock); 5042 5043 if (!ret) 5044 return 0; 5045 5046 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5047 if (!ret) { 5048 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5049 return 0; 5050 } 5051 5052 return ret; 5053 } 5054 5055 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5056 struct btrfs_block_rsv *dst_rsv, 5057 u64 num_bytes) 5058 { 5059 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5060 } 5061 5062 void btrfs_block_rsv_release(struct btrfs_root *root, 5063 struct btrfs_block_rsv *block_rsv, 5064 u64 num_bytes) 5065 { 5066 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5067 if (global_rsv == block_rsv || 5068 block_rsv->space_info != global_rsv->space_info) 5069 global_rsv = NULL; 5070 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5071 num_bytes); 5072 } 5073 5074 /* 5075 * helper to calculate size of global block reservation. 5076 * the desired value is sum of space used by extent tree, 5077 * checksum tree and root tree 5078 */ 5079 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5080 { 5081 struct btrfs_space_info *sinfo; 5082 u64 num_bytes; 5083 u64 meta_used; 5084 u64 data_used; 5085 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5086 5087 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5088 spin_lock(&sinfo->lock); 5089 data_used = sinfo->bytes_used; 5090 spin_unlock(&sinfo->lock); 5091 5092 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5093 spin_lock(&sinfo->lock); 5094 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5095 data_used = 0; 5096 meta_used = sinfo->bytes_used; 5097 spin_unlock(&sinfo->lock); 5098 5099 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5100 csum_size * 2; 5101 num_bytes += div_u64(data_used + meta_used, 50); 5102 5103 if (num_bytes * 3 > meta_used) 5104 num_bytes = div_u64(meta_used, 3); 5105 5106 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5107 } 5108 5109 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5110 { 5111 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5112 struct btrfs_space_info *sinfo = block_rsv->space_info; 5113 u64 num_bytes; 5114 5115 num_bytes = calc_global_metadata_size(fs_info); 5116 5117 spin_lock(&sinfo->lock); 5118 spin_lock(&block_rsv->lock); 5119 5120 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5121 5122 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5123 sinfo->bytes_reserved + sinfo->bytes_readonly + 5124 sinfo->bytes_may_use; 5125 5126 if (sinfo->total_bytes > num_bytes) { 5127 num_bytes = sinfo->total_bytes - num_bytes; 5128 block_rsv->reserved += num_bytes; 5129 sinfo->bytes_may_use += num_bytes; 5130 trace_btrfs_space_reservation(fs_info, "space_info", 5131 sinfo->flags, num_bytes, 1); 5132 } 5133 5134 if (block_rsv->reserved >= block_rsv->size) { 5135 num_bytes = block_rsv->reserved - block_rsv->size; 5136 sinfo->bytes_may_use -= num_bytes; 5137 trace_btrfs_space_reservation(fs_info, "space_info", 5138 sinfo->flags, num_bytes, 0); 5139 block_rsv->reserved = block_rsv->size; 5140 block_rsv->full = 1; 5141 } 5142 5143 spin_unlock(&block_rsv->lock); 5144 spin_unlock(&sinfo->lock); 5145 } 5146 5147 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5148 { 5149 struct btrfs_space_info *space_info; 5150 5151 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5152 fs_info->chunk_block_rsv.space_info = space_info; 5153 5154 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5155 fs_info->global_block_rsv.space_info = space_info; 5156 fs_info->delalloc_block_rsv.space_info = space_info; 5157 fs_info->trans_block_rsv.space_info = space_info; 5158 fs_info->empty_block_rsv.space_info = space_info; 5159 fs_info->delayed_block_rsv.space_info = space_info; 5160 5161 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5162 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5163 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5164 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5165 if (fs_info->quota_root) 5166 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5167 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5168 5169 update_global_block_rsv(fs_info); 5170 } 5171 5172 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5173 { 5174 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5175 (u64)-1); 5176 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5177 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5178 WARN_ON(fs_info->trans_block_rsv.size > 0); 5179 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5180 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5181 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5182 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5183 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5184 } 5185 5186 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5187 struct btrfs_root *root) 5188 { 5189 if (!trans->block_rsv) 5190 return; 5191 5192 if (!trans->bytes_reserved) 5193 return; 5194 5195 trace_btrfs_space_reservation(root->fs_info, "transaction", 5196 trans->transid, trans->bytes_reserved, 0); 5197 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5198 trans->bytes_reserved = 0; 5199 } 5200 5201 /* 5202 * To be called after all the new block groups attached to the transaction 5203 * handle have been created (btrfs_create_pending_block_groups()). 5204 */ 5205 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5206 { 5207 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5208 5209 if (!trans->chunk_bytes_reserved) 5210 return; 5211 5212 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5213 5214 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5215 trans->chunk_bytes_reserved); 5216 trans->chunk_bytes_reserved = 0; 5217 } 5218 5219 /* Can only return 0 or -ENOSPC */ 5220 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5221 struct inode *inode) 5222 { 5223 struct btrfs_root *root = BTRFS_I(inode)->root; 5224 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5225 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5226 5227 /* 5228 * We need to hold space in order to delete our orphan item once we've 5229 * added it, so this takes the reservation so we can release it later 5230 * when we are truly done with the orphan item. 5231 */ 5232 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5233 trace_btrfs_space_reservation(root->fs_info, "orphan", 5234 btrfs_ino(inode), num_bytes, 1); 5235 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5236 } 5237 5238 void btrfs_orphan_release_metadata(struct inode *inode) 5239 { 5240 struct btrfs_root *root = BTRFS_I(inode)->root; 5241 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5242 trace_btrfs_space_reservation(root->fs_info, "orphan", 5243 btrfs_ino(inode), num_bytes, 0); 5244 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5245 } 5246 5247 /* 5248 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5249 * root: the root of the parent directory 5250 * rsv: block reservation 5251 * items: the number of items that we need do reservation 5252 * qgroup_reserved: used to return the reserved size in qgroup 5253 * 5254 * This function is used to reserve the space for snapshot/subvolume 5255 * creation and deletion. Those operations are different with the 5256 * common file/directory operations, they change two fs/file trees 5257 * and root tree, the number of items that the qgroup reserves is 5258 * different with the free space reservation. So we can not use 5259 * the space reseravtion mechanism in start_transaction(). 5260 */ 5261 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5262 struct btrfs_block_rsv *rsv, 5263 int items, 5264 u64 *qgroup_reserved, 5265 bool use_global_rsv) 5266 { 5267 u64 num_bytes; 5268 int ret; 5269 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5270 5271 if (root->fs_info->quota_enabled) { 5272 /* One for parent inode, two for dir entries */ 5273 num_bytes = 3 * root->nodesize; 5274 ret = btrfs_qgroup_reserve(root, num_bytes); 5275 if (ret) 5276 return ret; 5277 } else { 5278 num_bytes = 0; 5279 } 5280 5281 *qgroup_reserved = num_bytes; 5282 5283 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5284 rsv->space_info = __find_space_info(root->fs_info, 5285 BTRFS_BLOCK_GROUP_METADATA); 5286 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5287 BTRFS_RESERVE_FLUSH_ALL); 5288 5289 if (ret == -ENOSPC && use_global_rsv) 5290 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5291 5292 if (ret) { 5293 if (*qgroup_reserved) 5294 btrfs_qgroup_free(root, *qgroup_reserved); 5295 } 5296 5297 return ret; 5298 } 5299 5300 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5301 struct btrfs_block_rsv *rsv, 5302 u64 qgroup_reserved) 5303 { 5304 btrfs_block_rsv_release(root, rsv, (u64)-1); 5305 } 5306 5307 /** 5308 * drop_outstanding_extent - drop an outstanding extent 5309 * @inode: the inode we're dropping the extent for 5310 * @num_bytes: the number of bytes we're relaseing. 5311 * 5312 * This is called when we are freeing up an outstanding extent, either called 5313 * after an error or after an extent is written. This will return the number of 5314 * reserved extents that need to be freed. This must be called with 5315 * BTRFS_I(inode)->lock held. 5316 */ 5317 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5318 { 5319 unsigned drop_inode_space = 0; 5320 unsigned dropped_extents = 0; 5321 unsigned num_extents = 0; 5322 5323 num_extents = (unsigned)div64_u64(num_bytes + 5324 BTRFS_MAX_EXTENT_SIZE - 1, 5325 BTRFS_MAX_EXTENT_SIZE); 5326 ASSERT(num_extents); 5327 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5328 BTRFS_I(inode)->outstanding_extents -= num_extents; 5329 5330 if (BTRFS_I(inode)->outstanding_extents == 0 && 5331 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5332 &BTRFS_I(inode)->runtime_flags)) 5333 drop_inode_space = 1; 5334 5335 /* 5336 * If we have more or the same amount of outsanding extents than we have 5337 * reserved then we need to leave the reserved extents count alone. 5338 */ 5339 if (BTRFS_I(inode)->outstanding_extents >= 5340 BTRFS_I(inode)->reserved_extents) 5341 return drop_inode_space; 5342 5343 dropped_extents = BTRFS_I(inode)->reserved_extents - 5344 BTRFS_I(inode)->outstanding_extents; 5345 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5346 return dropped_extents + drop_inode_space; 5347 } 5348 5349 /** 5350 * calc_csum_metadata_size - return the amount of metada space that must be 5351 * reserved/free'd for the given bytes. 5352 * @inode: the inode we're manipulating 5353 * @num_bytes: the number of bytes in question 5354 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5355 * 5356 * This adjusts the number of csum_bytes in the inode and then returns the 5357 * correct amount of metadata that must either be reserved or freed. We 5358 * calculate how many checksums we can fit into one leaf and then divide the 5359 * number of bytes that will need to be checksumed by this value to figure out 5360 * how many checksums will be required. If we are adding bytes then the number 5361 * may go up and we will return the number of additional bytes that must be 5362 * reserved. If it is going down we will return the number of bytes that must 5363 * be freed. 5364 * 5365 * This must be called with BTRFS_I(inode)->lock held. 5366 */ 5367 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5368 int reserve) 5369 { 5370 struct btrfs_root *root = BTRFS_I(inode)->root; 5371 u64 old_csums, num_csums; 5372 5373 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5374 BTRFS_I(inode)->csum_bytes == 0) 5375 return 0; 5376 5377 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5378 if (reserve) 5379 BTRFS_I(inode)->csum_bytes += num_bytes; 5380 else 5381 BTRFS_I(inode)->csum_bytes -= num_bytes; 5382 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5383 5384 /* No change, no need to reserve more */ 5385 if (old_csums == num_csums) 5386 return 0; 5387 5388 if (reserve) 5389 return btrfs_calc_trans_metadata_size(root, 5390 num_csums - old_csums); 5391 5392 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5393 } 5394 5395 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5396 { 5397 struct btrfs_root *root = BTRFS_I(inode)->root; 5398 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5399 u64 to_reserve = 0; 5400 u64 csum_bytes; 5401 unsigned nr_extents = 0; 5402 int extra_reserve = 0; 5403 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5404 int ret = 0; 5405 bool delalloc_lock = true; 5406 u64 to_free = 0; 5407 unsigned dropped; 5408 5409 /* If we are a free space inode we need to not flush since we will be in 5410 * the middle of a transaction commit. We also don't need the delalloc 5411 * mutex since we won't race with anybody. We need this mostly to make 5412 * lockdep shut its filthy mouth. 5413 */ 5414 if (btrfs_is_free_space_inode(inode)) { 5415 flush = BTRFS_RESERVE_NO_FLUSH; 5416 delalloc_lock = false; 5417 } 5418 5419 if (flush != BTRFS_RESERVE_NO_FLUSH && 5420 btrfs_transaction_in_commit(root->fs_info)) 5421 schedule_timeout(1); 5422 5423 if (delalloc_lock) 5424 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5425 5426 num_bytes = ALIGN(num_bytes, root->sectorsize); 5427 5428 spin_lock(&BTRFS_I(inode)->lock); 5429 nr_extents = (unsigned)div64_u64(num_bytes + 5430 BTRFS_MAX_EXTENT_SIZE - 1, 5431 BTRFS_MAX_EXTENT_SIZE); 5432 BTRFS_I(inode)->outstanding_extents += nr_extents; 5433 nr_extents = 0; 5434 5435 if (BTRFS_I(inode)->outstanding_extents > 5436 BTRFS_I(inode)->reserved_extents) 5437 nr_extents = BTRFS_I(inode)->outstanding_extents - 5438 BTRFS_I(inode)->reserved_extents; 5439 5440 /* 5441 * Add an item to reserve for updating the inode when we complete the 5442 * delalloc io. 5443 */ 5444 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5445 &BTRFS_I(inode)->runtime_flags)) { 5446 nr_extents++; 5447 extra_reserve = 1; 5448 } 5449 5450 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5451 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5452 csum_bytes = BTRFS_I(inode)->csum_bytes; 5453 spin_unlock(&BTRFS_I(inode)->lock); 5454 5455 if (root->fs_info->quota_enabled) { 5456 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5457 if (ret) 5458 goto out_fail; 5459 } 5460 5461 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5462 if (unlikely(ret)) { 5463 if (root->fs_info->quota_enabled) 5464 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5465 goto out_fail; 5466 } 5467 5468 spin_lock(&BTRFS_I(inode)->lock); 5469 if (extra_reserve) { 5470 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5471 &BTRFS_I(inode)->runtime_flags); 5472 nr_extents--; 5473 } 5474 BTRFS_I(inode)->reserved_extents += nr_extents; 5475 spin_unlock(&BTRFS_I(inode)->lock); 5476 5477 if (delalloc_lock) 5478 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5479 5480 if (to_reserve) 5481 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5482 btrfs_ino(inode), to_reserve, 1); 5483 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5484 5485 return 0; 5486 5487 out_fail: 5488 spin_lock(&BTRFS_I(inode)->lock); 5489 dropped = drop_outstanding_extent(inode, num_bytes); 5490 /* 5491 * If the inodes csum_bytes is the same as the original 5492 * csum_bytes then we know we haven't raced with any free()ers 5493 * so we can just reduce our inodes csum bytes and carry on. 5494 */ 5495 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5496 calc_csum_metadata_size(inode, num_bytes, 0); 5497 } else { 5498 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5499 u64 bytes; 5500 5501 /* 5502 * This is tricky, but first we need to figure out how much we 5503 * free'd from any free-ers that occured during this 5504 * reservation, so we reset ->csum_bytes to the csum_bytes 5505 * before we dropped our lock, and then call the free for the 5506 * number of bytes that were freed while we were trying our 5507 * reservation. 5508 */ 5509 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5510 BTRFS_I(inode)->csum_bytes = csum_bytes; 5511 to_free = calc_csum_metadata_size(inode, bytes, 0); 5512 5513 5514 /* 5515 * Now we need to see how much we would have freed had we not 5516 * been making this reservation and our ->csum_bytes were not 5517 * artificially inflated. 5518 */ 5519 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5520 bytes = csum_bytes - orig_csum_bytes; 5521 bytes = calc_csum_metadata_size(inode, bytes, 0); 5522 5523 /* 5524 * Now reset ->csum_bytes to what it should be. If bytes is 5525 * more than to_free then we would have free'd more space had we 5526 * not had an artificially high ->csum_bytes, so we need to free 5527 * the remainder. If bytes is the same or less then we don't 5528 * need to do anything, the other free-ers did the correct 5529 * thing. 5530 */ 5531 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5532 if (bytes > to_free) 5533 to_free = bytes - to_free; 5534 else 5535 to_free = 0; 5536 } 5537 spin_unlock(&BTRFS_I(inode)->lock); 5538 if (dropped) 5539 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5540 5541 if (to_free) { 5542 btrfs_block_rsv_release(root, block_rsv, to_free); 5543 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5544 btrfs_ino(inode), to_free, 0); 5545 } 5546 if (delalloc_lock) 5547 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5548 return ret; 5549 } 5550 5551 /** 5552 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5553 * @inode: the inode to release the reservation for 5554 * @num_bytes: the number of bytes we're releasing 5555 * 5556 * This will release the metadata reservation for an inode. This can be called 5557 * once we complete IO for a given set of bytes to release their metadata 5558 * reservations. 5559 */ 5560 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5561 { 5562 struct btrfs_root *root = BTRFS_I(inode)->root; 5563 u64 to_free = 0; 5564 unsigned dropped; 5565 5566 num_bytes = ALIGN(num_bytes, root->sectorsize); 5567 spin_lock(&BTRFS_I(inode)->lock); 5568 dropped = drop_outstanding_extent(inode, num_bytes); 5569 5570 if (num_bytes) 5571 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5572 spin_unlock(&BTRFS_I(inode)->lock); 5573 if (dropped > 0) 5574 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5575 5576 if (btrfs_test_is_dummy_root(root)) 5577 return; 5578 5579 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5580 btrfs_ino(inode), to_free, 0); 5581 5582 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5583 to_free); 5584 } 5585 5586 /** 5587 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5588 * @inode: inode we're writing to 5589 * @num_bytes: the number of bytes we want to allocate 5590 * 5591 * This will do the following things 5592 * 5593 * o reserve space in the data space info for num_bytes 5594 * o reserve space in the metadata space info based on number of outstanding 5595 * extents and how much csums will be needed 5596 * o add to the inodes ->delalloc_bytes 5597 * o add it to the fs_info's delalloc inodes list. 5598 * 5599 * This will return 0 for success and -ENOSPC if there is no space left. 5600 */ 5601 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5602 { 5603 int ret; 5604 5605 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5606 if (ret) 5607 return ret; 5608 5609 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5610 if (ret) { 5611 btrfs_free_reserved_data_space(inode, num_bytes); 5612 return ret; 5613 } 5614 5615 return 0; 5616 } 5617 5618 /** 5619 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5620 * @inode: inode we're releasing space for 5621 * @num_bytes: the number of bytes we want to free up 5622 * 5623 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5624 * called in the case that we don't need the metadata AND data reservations 5625 * anymore. So if there is an error or we insert an inline extent. 5626 * 5627 * This function will release the metadata space that was not used and will 5628 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5629 * list if there are no delalloc bytes left. 5630 */ 5631 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5632 { 5633 btrfs_delalloc_release_metadata(inode, num_bytes); 5634 btrfs_free_reserved_data_space(inode, num_bytes); 5635 } 5636 5637 static int update_block_group(struct btrfs_trans_handle *trans, 5638 struct btrfs_root *root, u64 bytenr, 5639 u64 num_bytes, int alloc) 5640 { 5641 struct btrfs_block_group_cache *cache = NULL; 5642 struct btrfs_fs_info *info = root->fs_info; 5643 u64 total = num_bytes; 5644 u64 old_val; 5645 u64 byte_in_group; 5646 int factor; 5647 5648 /* block accounting for super block */ 5649 spin_lock(&info->delalloc_root_lock); 5650 old_val = btrfs_super_bytes_used(info->super_copy); 5651 if (alloc) 5652 old_val += num_bytes; 5653 else 5654 old_val -= num_bytes; 5655 btrfs_set_super_bytes_used(info->super_copy, old_val); 5656 spin_unlock(&info->delalloc_root_lock); 5657 5658 while (total) { 5659 cache = btrfs_lookup_block_group(info, bytenr); 5660 if (!cache) 5661 return -ENOENT; 5662 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5663 BTRFS_BLOCK_GROUP_RAID1 | 5664 BTRFS_BLOCK_GROUP_RAID10)) 5665 factor = 2; 5666 else 5667 factor = 1; 5668 /* 5669 * If this block group has free space cache written out, we 5670 * need to make sure to load it if we are removing space. This 5671 * is because we need the unpinning stage to actually add the 5672 * space back to the block group, otherwise we will leak space. 5673 */ 5674 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5675 cache_block_group(cache, 1); 5676 5677 byte_in_group = bytenr - cache->key.objectid; 5678 WARN_ON(byte_in_group > cache->key.offset); 5679 5680 spin_lock(&cache->space_info->lock); 5681 spin_lock(&cache->lock); 5682 5683 if (btrfs_test_opt(root, SPACE_CACHE) && 5684 cache->disk_cache_state < BTRFS_DC_CLEAR) 5685 cache->disk_cache_state = BTRFS_DC_CLEAR; 5686 5687 old_val = btrfs_block_group_used(&cache->item); 5688 num_bytes = min(total, cache->key.offset - byte_in_group); 5689 if (alloc) { 5690 old_val += num_bytes; 5691 btrfs_set_block_group_used(&cache->item, old_val); 5692 cache->reserved -= num_bytes; 5693 cache->space_info->bytes_reserved -= num_bytes; 5694 cache->space_info->bytes_used += num_bytes; 5695 cache->space_info->disk_used += num_bytes * factor; 5696 spin_unlock(&cache->lock); 5697 spin_unlock(&cache->space_info->lock); 5698 } else { 5699 old_val -= num_bytes; 5700 btrfs_set_block_group_used(&cache->item, old_val); 5701 cache->pinned += num_bytes; 5702 cache->space_info->bytes_pinned += num_bytes; 5703 cache->space_info->bytes_used -= num_bytes; 5704 cache->space_info->disk_used -= num_bytes * factor; 5705 spin_unlock(&cache->lock); 5706 spin_unlock(&cache->space_info->lock); 5707 5708 set_extent_dirty(info->pinned_extents, 5709 bytenr, bytenr + num_bytes - 1, 5710 GFP_NOFS | __GFP_NOFAIL); 5711 /* 5712 * No longer have used bytes in this block group, queue 5713 * it for deletion. 5714 */ 5715 if (old_val == 0) { 5716 spin_lock(&info->unused_bgs_lock); 5717 if (list_empty(&cache->bg_list)) { 5718 btrfs_get_block_group(cache); 5719 list_add_tail(&cache->bg_list, 5720 &info->unused_bgs); 5721 } 5722 spin_unlock(&info->unused_bgs_lock); 5723 } 5724 } 5725 5726 spin_lock(&trans->transaction->dirty_bgs_lock); 5727 if (list_empty(&cache->dirty_list)) { 5728 list_add_tail(&cache->dirty_list, 5729 &trans->transaction->dirty_bgs); 5730 trans->transaction->num_dirty_bgs++; 5731 btrfs_get_block_group(cache); 5732 } 5733 spin_unlock(&trans->transaction->dirty_bgs_lock); 5734 5735 btrfs_put_block_group(cache); 5736 total -= num_bytes; 5737 bytenr += num_bytes; 5738 } 5739 return 0; 5740 } 5741 5742 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5743 { 5744 struct btrfs_block_group_cache *cache; 5745 u64 bytenr; 5746 5747 spin_lock(&root->fs_info->block_group_cache_lock); 5748 bytenr = root->fs_info->first_logical_byte; 5749 spin_unlock(&root->fs_info->block_group_cache_lock); 5750 5751 if (bytenr < (u64)-1) 5752 return bytenr; 5753 5754 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5755 if (!cache) 5756 return 0; 5757 5758 bytenr = cache->key.objectid; 5759 btrfs_put_block_group(cache); 5760 5761 return bytenr; 5762 } 5763 5764 static int pin_down_extent(struct btrfs_root *root, 5765 struct btrfs_block_group_cache *cache, 5766 u64 bytenr, u64 num_bytes, int reserved) 5767 { 5768 spin_lock(&cache->space_info->lock); 5769 spin_lock(&cache->lock); 5770 cache->pinned += num_bytes; 5771 cache->space_info->bytes_pinned += num_bytes; 5772 if (reserved) { 5773 cache->reserved -= num_bytes; 5774 cache->space_info->bytes_reserved -= num_bytes; 5775 } 5776 spin_unlock(&cache->lock); 5777 spin_unlock(&cache->space_info->lock); 5778 5779 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5780 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5781 if (reserved) 5782 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5783 return 0; 5784 } 5785 5786 /* 5787 * this function must be called within transaction 5788 */ 5789 int btrfs_pin_extent(struct btrfs_root *root, 5790 u64 bytenr, u64 num_bytes, int reserved) 5791 { 5792 struct btrfs_block_group_cache *cache; 5793 5794 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5795 BUG_ON(!cache); /* Logic error */ 5796 5797 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5798 5799 btrfs_put_block_group(cache); 5800 return 0; 5801 } 5802 5803 /* 5804 * this function must be called within transaction 5805 */ 5806 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5807 u64 bytenr, u64 num_bytes) 5808 { 5809 struct btrfs_block_group_cache *cache; 5810 int ret; 5811 5812 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5813 if (!cache) 5814 return -EINVAL; 5815 5816 /* 5817 * pull in the free space cache (if any) so that our pin 5818 * removes the free space from the cache. We have load_only set 5819 * to one because the slow code to read in the free extents does check 5820 * the pinned extents. 5821 */ 5822 cache_block_group(cache, 1); 5823 5824 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5825 5826 /* remove us from the free space cache (if we're there at all) */ 5827 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5828 btrfs_put_block_group(cache); 5829 return ret; 5830 } 5831 5832 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5833 { 5834 int ret; 5835 struct btrfs_block_group_cache *block_group; 5836 struct btrfs_caching_control *caching_ctl; 5837 5838 block_group = btrfs_lookup_block_group(root->fs_info, start); 5839 if (!block_group) 5840 return -EINVAL; 5841 5842 cache_block_group(block_group, 0); 5843 caching_ctl = get_caching_control(block_group); 5844 5845 if (!caching_ctl) { 5846 /* Logic error */ 5847 BUG_ON(!block_group_cache_done(block_group)); 5848 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5849 } else { 5850 mutex_lock(&caching_ctl->mutex); 5851 5852 if (start >= caching_ctl->progress) { 5853 ret = add_excluded_extent(root, start, num_bytes); 5854 } else if (start + num_bytes <= caching_ctl->progress) { 5855 ret = btrfs_remove_free_space(block_group, 5856 start, num_bytes); 5857 } else { 5858 num_bytes = caching_ctl->progress - start; 5859 ret = btrfs_remove_free_space(block_group, 5860 start, num_bytes); 5861 if (ret) 5862 goto out_lock; 5863 5864 num_bytes = (start + num_bytes) - 5865 caching_ctl->progress; 5866 start = caching_ctl->progress; 5867 ret = add_excluded_extent(root, start, num_bytes); 5868 } 5869 out_lock: 5870 mutex_unlock(&caching_ctl->mutex); 5871 put_caching_control(caching_ctl); 5872 } 5873 btrfs_put_block_group(block_group); 5874 return ret; 5875 } 5876 5877 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5878 struct extent_buffer *eb) 5879 { 5880 struct btrfs_file_extent_item *item; 5881 struct btrfs_key key; 5882 int found_type; 5883 int i; 5884 5885 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5886 return 0; 5887 5888 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5889 btrfs_item_key_to_cpu(eb, &key, i); 5890 if (key.type != BTRFS_EXTENT_DATA_KEY) 5891 continue; 5892 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5893 found_type = btrfs_file_extent_type(eb, item); 5894 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5895 continue; 5896 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5897 continue; 5898 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5899 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5900 __exclude_logged_extent(log, key.objectid, key.offset); 5901 } 5902 5903 return 0; 5904 } 5905 5906 /** 5907 * btrfs_update_reserved_bytes - update the block_group and space info counters 5908 * @cache: The cache we are manipulating 5909 * @num_bytes: The number of bytes in question 5910 * @reserve: One of the reservation enums 5911 * @delalloc: The blocks are allocated for the delalloc write 5912 * 5913 * This is called by the allocator when it reserves space, or by somebody who is 5914 * freeing space that was never actually used on disk. For example if you 5915 * reserve some space for a new leaf in transaction A and before transaction A 5916 * commits you free that leaf, you call this with reserve set to 0 in order to 5917 * clear the reservation. 5918 * 5919 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5920 * ENOSPC accounting. For data we handle the reservation through clearing the 5921 * delalloc bits in the io_tree. We have to do this since we could end up 5922 * allocating less disk space for the amount of data we have reserved in the 5923 * case of compression. 5924 * 5925 * If this is a reservation and the block group has become read only we cannot 5926 * make the reservation and return -EAGAIN, otherwise this function always 5927 * succeeds. 5928 */ 5929 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5930 u64 num_bytes, int reserve, int delalloc) 5931 { 5932 struct btrfs_space_info *space_info = cache->space_info; 5933 int ret = 0; 5934 5935 spin_lock(&space_info->lock); 5936 spin_lock(&cache->lock); 5937 if (reserve != RESERVE_FREE) { 5938 if (cache->ro) { 5939 ret = -EAGAIN; 5940 } else { 5941 cache->reserved += num_bytes; 5942 space_info->bytes_reserved += num_bytes; 5943 if (reserve == RESERVE_ALLOC) { 5944 trace_btrfs_space_reservation(cache->fs_info, 5945 "space_info", space_info->flags, 5946 num_bytes, 0); 5947 space_info->bytes_may_use -= num_bytes; 5948 } 5949 5950 if (delalloc) 5951 cache->delalloc_bytes += num_bytes; 5952 } 5953 } else { 5954 if (cache->ro) 5955 space_info->bytes_readonly += num_bytes; 5956 cache->reserved -= num_bytes; 5957 space_info->bytes_reserved -= num_bytes; 5958 5959 if (delalloc) 5960 cache->delalloc_bytes -= num_bytes; 5961 } 5962 spin_unlock(&cache->lock); 5963 spin_unlock(&space_info->lock); 5964 return ret; 5965 } 5966 5967 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5968 struct btrfs_root *root) 5969 { 5970 struct btrfs_fs_info *fs_info = root->fs_info; 5971 struct btrfs_caching_control *next; 5972 struct btrfs_caching_control *caching_ctl; 5973 struct btrfs_block_group_cache *cache; 5974 5975 down_write(&fs_info->commit_root_sem); 5976 5977 list_for_each_entry_safe(caching_ctl, next, 5978 &fs_info->caching_block_groups, list) { 5979 cache = caching_ctl->block_group; 5980 if (block_group_cache_done(cache)) { 5981 cache->last_byte_to_unpin = (u64)-1; 5982 list_del_init(&caching_ctl->list); 5983 put_caching_control(caching_ctl); 5984 } else { 5985 cache->last_byte_to_unpin = caching_ctl->progress; 5986 } 5987 } 5988 5989 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5990 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5991 else 5992 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5993 5994 up_write(&fs_info->commit_root_sem); 5995 5996 update_global_block_rsv(fs_info); 5997 } 5998 5999 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6000 const bool return_free_space) 6001 { 6002 struct btrfs_fs_info *fs_info = root->fs_info; 6003 struct btrfs_block_group_cache *cache = NULL; 6004 struct btrfs_space_info *space_info; 6005 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6006 u64 len; 6007 bool readonly; 6008 6009 while (start <= end) { 6010 readonly = false; 6011 if (!cache || 6012 start >= cache->key.objectid + cache->key.offset) { 6013 if (cache) 6014 btrfs_put_block_group(cache); 6015 cache = btrfs_lookup_block_group(fs_info, start); 6016 BUG_ON(!cache); /* Logic error */ 6017 } 6018 6019 len = cache->key.objectid + cache->key.offset - start; 6020 len = min(len, end + 1 - start); 6021 6022 if (start < cache->last_byte_to_unpin) { 6023 len = min(len, cache->last_byte_to_unpin - start); 6024 if (return_free_space) 6025 btrfs_add_free_space(cache, start, len); 6026 } 6027 6028 start += len; 6029 space_info = cache->space_info; 6030 6031 spin_lock(&space_info->lock); 6032 spin_lock(&cache->lock); 6033 cache->pinned -= len; 6034 space_info->bytes_pinned -= len; 6035 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6036 if (cache->ro) { 6037 space_info->bytes_readonly += len; 6038 readonly = true; 6039 } 6040 spin_unlock(&cache->lock); 6041 if (!readonly && global_rsv->space_info == space_info) { 6042 spin_lock(&global_rsv->lock); 6043 if (!global_rsv->full) { 6044 len = min(len, global_rsv->size - 6045 global_rsv->reserved); 6046 global_rsv->reserved += len; 6047 space_info->bytes_may_use += len; 6048 if (global_rsv->reserved >= global_rsv->size) 6049 global_rsv->full = 1; 6050 } 6051 spin_unlock(&global_rsv->lock); 6052 } 6053 spin_unlock(&space_info->lock); 6054 } 6055 6056 if (cache) 6057 btrfs_put_block_group(cache); 6058 return 0; 6059 } 6060 6061 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6062 struct btrfs_root *root) 6063 { 6064 struct btrfs_fs_info *fs_info = root->fs_info; 6065 struct extent_io_tree *unpin; 6066 u64 start; 6067 u64 end; 6068 int ret; 6069 6070 if (trans->aborted) 6071 return 0; 6072 6073 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6074 unpin = &fs_info->freed_extents[1]; 6075 else 6076 unpin = &fs_info->freed_extents[0]; 6077 6078 while (1) { 6079 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6080 ret = find_first_extent_bit(unpin, 0, &start, &end, 6081 EXTENT_DIRTY, NULL); 6082 if (ret) { 6083 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6084 break; 6085 } 6086 6087 if (btrfs_test_opt(root, DISCARD)) 6088 ret = btrfs_discard_extent(root, start, 6089 end + 1 - start, NULL); 6090 6091 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6092 unpin_extent_range(root, start, end, true); 6093 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6094 cond_resched(); 6095 } 6096 6097 return 0; 6098 } 6099 6100 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6101 u64 owner, u64 root_objectid) 6102 { 6103 struct btrfs_space_info *space_info; 6104 u64 flags; 6105 6106 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6107 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6108 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6109 else 6110 flags = BTRFS_BLOCK_GROUP_METADATA; 6111 } else { 6112 flags = BTRFS_BLOCK_GROUP_DATA; 6113 } 6114 6115 space_info = __find_space_info(fs_info, flags); 6116 BUG_ON(!space_info); /* Logic bug */ 6117 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6118 } 6119 6120 6121 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6122 struct btrfs_root *root, 6123 struct btrfs_delayed_ref_node *node, u64 parent, 6124 u64 root_objectid, u64 owner_objectid, 6125 u64 owner_offset, int refs_to_drop, 6126 struct btrfs_delayed_extent_op *extent_op) 6127 { 6128 struct btrfs_key key; 6129 struct btrfs_path *path; 6130 struct btrfs_fs_info *info = root->fs_info; 6131 struct btrfs_root *extent_root = info->extent_root; 6132 struct extent_buffer *leaf; 6133 struct btrfs_extent_item *ei; 6134 struct btrfs_extent_inline_ref *iref; 6135 int ret; 6136 int is_data; 6137 int extent_slot = 0; 6138 int found_extent = 0; 6139 int num_to_del = 1; 6140 int no_quota = node->no_quota; 6141 u32 item_size; 6142 u64 refs; 6143 u64 bytenr = node->bytenr; 6144 u64 num_bytes = node->num_bytes; 6145 int last_ref = 0; 6146 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6147 SKINNY_METADATA); 6148 6149 if (!info->quota_enabled || !is_fstree(root_objectid)) 6150 no_quota = 1; 6151 6152 path = btrfs_alloc_path(); 6153 if (!path) 6154 return -ENOMEM; 6155 6156 path->reada = 1; 6157 path->leave_spinning = 1; 6158 6159 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6160 BUG_ON(!is_data && refs_to_drop != 1); 6161 6162 if (is_data) 6163 skinny_metadata = 0; 6164 6165 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6166 bytenr, num_bytes, parent, 6167 root_objectid, owner_objectid, 6168 owner_offset); 6169 if (ret == 0) { 6170 extent_slot = path->slots[0]; 6171 while (extent_slot >= 0) { 6172 btrfs_item_key_to_cpu(path->nodes[0], &key, 6173 extent_slot); 6174 if (key.objectid != bytenr) 6175 break; 6176 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6177 key.offset == num_bytes) { 6178 found_extent = 1; 6179 break; 6180 } 6181 if (key.type == BTRFS_METADATA_ITEM_KEY && 6182 key.offset == owner_objectid) { 6183 found_extent = 1; 6184 break; 6185 } 6186 if (path->slots[0] - extent_slot > 5) 6187 break; 6188 extent_slot--; 6189 } 6190 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6191 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6192 if (found_extent && item_size < sizeof(*ei)) 6193 found_extent = 0; 6194 #endif 6195 if (!found_extent) { 6196 BUG_ON(iref); 6197 ret = remove_extent_backref(trans, extent_root, path, 6198 NULL, refs_to_drop, 6199 is_data, &last_ref); 6200 if (ret) { 6201 btrfs_abort_transaction(trans, extent_root, ret); 6202 goto out; 6203 } 6204 btrfs_release_path(path); 6205 path->leave_spinning = 1; 6206 6207 key.objectid = bytenr; 6208 key.type = BTRFS_EXTENT_ITEM_KEY; 6209 key.offset = num_bytes; 6210 6211 if (!is_data && skinny_metadata) { 6212 key.type = BTRFS_METADATA_ITEM_KEY; 6213 key.offset = owner_objectid; 6214 } 6215 6216 ret = btrfs_search_slot(trans, extent_root, 6217 &key, path, -1, 1); 6218 if (ret > 0 && skinny_metadata && path->slots[0]) { 6219 /* 6220 * Couldn't find our skinny metadata item, 6221 * see if we have ye olde extent item. 6222 */ 6223 path->slots[0]--; 6224 btrfs_item_key_to_cpu(path->nodes[0], &key, 6225 path->slots[0]); 6226 if (key.objectid == bytenr && 6227 key.type == BTRFS_EXTENT_ITEM_KEY && 6228 key.offset == num_bytes) 6229 ret = 0; 6230 } 6231 6232 if (ret > 0 && skinny_metadata) { 6233 skinny_metadata = false; 6234 key.objectid = bytenr; 6235 key.type = BTRFS_EXTENT_ITEM_KEY; 6236 key.offset = num_bytes; 6237 btrfs_release_path(path); 6238 ret = btrfs_search_slot(trans, extent_root, 6239 &key, path, -1, 1); 6240 } 6241 6242 if (ret) { 6243 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6244 ret, bytenr); 6245 if (ret > 0) 6246 btrfs_print_leaf(extent_root, 6247 path->nodes[0]); 6248 } 6249 if (ret < 0) { 6250 btrfs_abort_transaction(trans, extent_root, ret); 6251 goto out; 6252 } 6253 extent_slot = path->slots[0]; 6254 } 6255 } else if (WARN_ON(ret == -ENOENT)) { 6256 btrfs_print_leaf(extent_root, path->nodes[0]); 6257 btrfs_err(info, 6258 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6259 bytenr, parent, root_objectid, owner_objectid, 6260 owner_offset); 6261 btrfs_abort_transaction(trans, extent_root, ret); 6262 goto out; 6263 } else { 6264 btrfs_abort_transaction(trans, extent_root, ret); 6265 goto out; 6266 } 6267 6268 leaf = path->nodes[0]; 6269 item_size = btrfs_item_size_nr(leaf, extent_slot); 6270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6271 if (item_size < sizeof(*ei)) { 6272 BUG_ON(found_extent || extent_slot != path->slots[0]); 6273 ret = convert_extent_item_v0(trans, extent_root, path, 6274 owner_objectid, 0); 6275 if (ret < 0) { 6276 btrfs_abort_transaction(trans, extent_root, ret); 6277 goto out; 6278 } 6279 6280 btrfs_release_path(path); 6281 path->leave_spinning = 1; 6282 6283 key.objectid = bytenr; 6284 key.type = BTRFS_EXTENT_ITEM_KEY; 6285 key.offset = num_bytes; 6286 6287 ret = btrfs_search_slot(trans, extent_root, &key, path, 6288 -1, 1); 6289 if (ret) { 6290 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6291 ret, bytenr); 6292 btrfs_print_leaf(extent_root, path->nodes[0]); 6293 } 6294 if (ret < 0) { 6295 btrfs_abort_transaction(trans, extent_root, ret); 6296 goto out; 6297 } 6298 6299 extent_slot = path->slots[0]; 6300 leaf = path->nodes[0]; 6301 item_size = btrfs_item_size_nr(leaf, extent_slot); 6302 } 6303 #endif 6304 BUG_ON(item_size < sizeof(*ei)); 6305 ei = btrfs_item_ptr(leaf, extent_slot, 6306 struct btrfs_extent_item); 6307 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6308 key.type == BTRFS_EXTENT_ITEM_KEY) { 6309 struct btrfs_tree_block_info *bi; 6310 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6311 bi = (struct btrfs_tree_block_info *)(ei + 1); 6312 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6313 } 6314 6315 refs = btrfs_extent_refs(leaf, ei); 6316 if (refs < refs_to_drop) { 6317 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6318 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6319 ret = -EINVAL; 6320 btrfs_abort_transaction(trans, extent_root, ret); 6321 goto out; 6322 } 6323 refs -= refs_to_drop; 6324 6325 if (refs > 0) { 6326 if (extent_op) 6327 __run_delayed_extent_op(extent_op, leaf, ei); 6328 /* 6329 * In the case of inline back ref, reference count will 6330 * be updated by remove_extent_backref 6331 */ 6332 if (iref) { 6333 BUG_ON(!found_extent); 6334 } else { 6335 btrfs_set_extent_refs(leaf, ei, refs); 6336 btrfs_mark_buffer_dirty(leaf); 6337 } 6338 if (found_extent) { 6339 ret = remove_extent_backref(trans, extent_root, path, 6340 iref, refs_to_drop, 6341 is_data, &last_ref); 6342 if (ret) { 6343 btrfs_abort_transaction(trans, extent_root, ret); 6344 goto out; 6345 } 6346 } 6347 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6348 root_objectid); 6349 } else { 6350 if (found_extent) { 6351 BUG_ON(is_data && refs_to_drop != 6352 extent_data_ref_count(root, path, iref)); 6353 if (iref) { 6354 BUG_ON(path->slots[0] != extent_slot); 6355 } else { 6356 BUG_ON(path->slots[0] != extent_slot + 1); 6357 path->slots[0] = extent_slot; 6358 num_to_del = 2; 6359 } 6360 } 6361 6362 last_ref = 1; 6363 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6364 num_to_del); 6365 if (ret) { 6366 btrfs_abort_transaction(trans, extent_root, ret); 6367 goto out; 6368 } 6369 btrfs_release_path(path); 6370 6371 if (is_data) { 6372 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6373 if (ret) { 6374 btrfs_abort_transaction(trans, extent_root, ret); 6375 goto out; 6376 } 6377 } 6378 6379 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6380 if (ret) { 6381 btrfs_abort_transaction(trans, extent_root, ret); 6382 goto out; 6383 } 6384 } 6385 btrfs_release_path(path); 6386 6387 out: 6388 btrfs_free_path(path); 6389 return ret; 6390 } 6391 6392 /* 6393 * when we free an block, it is possible (and likely) that we free the last 6394 * delayed ref for that extent as well. This searches the delayed ref tree for 6395 * a given extent, and if there are no other delayed refs to be processed, it 6396 * removes it from the tree. 6397 */ 6398 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6399 struct btrfs_root *root, u64 bytenr) 6400 { 6401 struct btrfs_delayed_ref_head *head; 6402 struct btrfs_delayed_ref_root *delayed_refs; 6403 int ret = 0; 6404 6405 delayed_refs = &trans->transaction->delayed_refs; 6406 spin_lock(&delayed_refs->lock); 6407 head = btrfs_find_delayed_ref_head(trans, bytenr); 6408 if (!head) 6409 goto out_delayed_unlock; 6410 6411 spin_lock(&head->lock); 6412 if (!list_empty(&head->ref_list)) 6413 goto out; 6414 6415 if (head->extent_op) { 6416 if (!head->must_insert_reserved) 6417 goto out; 6418 btrfs_free_delayed_extent_op(head->extent_op); 6419 head->extent_op = NULL; 6420 } 6421 6422 /* 6423 * waiting for the lock here would deadlock. If someone else has it 6424 * locked they are already in the process of dropping it anyway 6425 */ 6426 if (!mutex_trylock(&head->mutex)) 6427 goto out; 6428 6429 /* 6430 * at this point we have a head with no other entries. Go 6431 * ahead and process it. 6432 */ 6433 head->node.in_tree = 0; 6434 rb_erase(&head->href_node, &delayed_refs->href_root); 6435 6436 atomic_dec(&delayed_refs->num_entries); 6437 6438 /* 6439 * we don't take a ref on the node because we're removing it from the 6440 * tree, so we just steal the ref the tree was holding. 6441 */ 6442 delayed_refs->num_heads--; 6443 if (head->processing == 0) 6444 delayed_refs->num_heads_ready--; 6445 head->processing = 0; 6446 spin_unlock(&head->lock); 6447 spin_unlock(&delayed_refs->lock); 6448 6449 BUG_ON(head->extent_op); 6450 if (head->must_insert_reserved) 6451 ret = 1; 6452 6453 mutex_unlock(&head->mutex); 6454 btrfs_put_delayed_ref(&head->node); 6455 return ret; 6456 out: 6457 spin_unlock(&head->lock); 6458 6459 out_delayed_unlock: 6460 spin_unlock(&delayed_refs->lock); 6461 return 0; 6462 } 6463 6464 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6465 struct btrfs_root *root, 6466 struct extent_buffer *buf, 6467 u64 parent, int last_ref) 6468 { 6469 int pin = 1; 6470 int ret; 6471 6472 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6473 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6474 buf->start, buf->len, 6475 parent, root->root_key.objectid, 6476 btrfs_header_level(buf), 6477 BTRFS_DROP_DELAYED_REF, NULL, 0); 6478 BUG_ON(ret); /* -ENOMEM */ 6479 } 6480 6481 if (!last_ref) 6482 return; 6483 6484 if (btrfs_header_generation(buf) == trans->transid) { 6485 struct btrfs_block_group_cache *cache; 6486 6487 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6488 ret = check_ref_cleanup(trans, root, buf->start); 6489 if (!ret) 6490 goto out; 6491 } 6492 6493 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6494 6495 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6496 pin_down_extent(root, cache, buf->start, buf->len, 1); 6497 btrfs_put_block_group(cache); 6498 goto out; 6499 } 6500 6501 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6502 6503 btrfs_add_free_space(cache, buf->start, buf->len); 6504 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6505 btrfs_put_block_group(cache); 6506 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6507 pin = 0; 6508 } 6509 out: 6510 if (pin) 6511 add_pinned_bytes(root->fs_info, buf->len, 6512 btrfs_header_level(buf), 6513 root->root_key.objectid); 6514 6515 /* 6516 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6517 * anymore. 6518 */ 6519 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6520 } 6521 6522 /* Can return -ENOMEM */ 6523 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6524 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6525 u64 owner, u64 offset, int no_quota) 6526 { 6527 int ret; 6528 struct btrfs_fs_info *fs_info = root->fs_info; 6529 6530 if (btrfs_test_is_dummy_root(root)) 6531 return 0; 6532 6533 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6534 6535 /* 6536 * tree log blocks never actually go into the extent allocation 6537 * tree, just update pinning info and exit early. 6538 */ 6539 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6540 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6541 /* unlocks the pinned mutex */ 6542 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6543 ret = 0; 6544 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6545 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6546 num_bytes, 6547 parent, root_objectid, (int)owner, 6548 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6549 } else { 6550 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6551 num_bytes, 6552 parent, root_objectid, owner, 6553 offset, BTRFS_DROP_DELAYED_REF, 6554 NULL, no_quota); 6555 } 6556 return ret; 6557 } 6558 6559 /* 6560 * when we wait for progress in the block group caching, its because 6561 * our allocation attempt failed at least once. So, we must sleep 6562 * and let some progress happen before we try again. 6563 * 6564 * This function will sleep at least once waiting for new free space to 6565 * show up, and then it will check the block group free space numbers 6566 * for our min num_bytes. Another option is to have it go ahead 6567 * and look in the rbtree for a free extent of a given size, but this 6568 * is a good start. 6569 * 6570 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6571 * any of the information in this block group. 6572 */ 6573 static noinline void 6574 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6575 u64 num_bytes) 6576 { 6577 struct btrfs_caching_control *caching_ctl; 6578 6579 caching_ctl = get_caching_control(cache); 6580 if (!caching_ctl) 6581 return; 6582 6583 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6584 (cache->free_space_ctl->free_space >= num_bytes)); 6585 6586 put_caching_control(caching_ctl); 6587 } 6588 6589 static noinline int 6590 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6591 { 6592 struct btrfs_caching_control *caching_ctl; 6593 int ret = 0; 6594 6595 caching_ctl = get_caching_control(cache); 6596 if (!caching_ctl) 6597 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6598 6599 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6600 if (cache->cached == BTRFS_CACHE_ERROR) 6601 ret = -EIO; 6602 put_caching_control(caching_ctl); 6603 return ret; 6604 } 6605 6606 int __get_raid_index(u64 flags) 6607 { 6608 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6609 return BTRFS_RAID_RAID10; 6610 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6611 return BTRFS_RAID_RAID1; 6612 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6613 return BTRFS_RAID_DUP; 6614 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6615 return BTRFS_RAID_RAID0; 6616 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6617 return BTRFS_RAID_RAID5; 6618 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6619 return BTRFS_RAID_RAID6; 6620 6621 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6622 } 6623 6624 int get_block_group_index(struct btrfs_block_group_cache *cache) 6625 { 6626 return __get_raid_index(cache->flags); 6627 } 6628 6629 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6630 [BTRFS_RAID_RAID10] = "raid10", 6631 [BTRFS_RAID_RAID1] = "raid1", 6632 [BTRFS_RAID_DUP] = "dup", 6633 [BTRFS_RAID_RAID0] = "raid0", 6634 [BTRFS_RAID_SINGLE] = "single", 6635 [BTRFS_RAID_RAID5] = "raid5", 6636 [BTRFS_RAID_RAID6] = "raid6", 6637 }; 6638 6639 static const char *get_raid_name(enum btrfs_raid_types type) 6640 { 6641 if (type >= BTRFS_NR_RAID_TYPES) 6642 return NULL; 6643 6644 return btrfs_raid_type_names[type]; 6645 } 6646 6647 enum btrfs_loop_type { 6648 LOOP_CACHING_NOWAIT = 0, 6649 LOOP_CACHING_WAIT = 1, 6650 LOOP_ALLOC_CHUNK = 2, 6651 LOOP_NO_EMPTY_SIZE = 3, 6652 }; 6653 6654 static inline void 6655 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6656 int delalloc) 6657 { 6658 if (delalloc) 6659 down_read(&cache->data_rwsem); 6660 } 6661 6662 static inline void 6663 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6664 int delalloc) 6665 { 6666 btrfs_get_block_group(cache); 6667 if (delalloc) 6668 down_read(&cache->data_rwsem); 6669 } 6670 6671 static struct btrfs_block_group_cache * 6672 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6673 struct btrfs_free_cluster *cluster, 6674 int delalloc) 6675 { 6676 struct btrfs_block_group_cache *used_bg; 6677 bool locked = false; 6678 again: 6679 spin_lock(&cluster->refill_lock); 6680 if (locked) { 6681 if (used_bg == cluster->block_group) 6682 return used_bg; 6683 6684 up_read(&used_bg->data_rwsem); 6685 btrfs_put_block_group(used_bg); 6686 } 6687 6688 used_bg = cluster->block_group; 6689 if (!used_bg) 6690 return NULL; 6691 6692 if (used_bg == block_group) 6693 return used_bg; 6694 6695 btrfs_get_block_group(used_bg); 6696 6697 if (!delalloc) 6698 return used_bg; 6699 6700 if (down_read_trylock(&used_bg->data_rwsem)) 6701 return used_bg; 6702 6703 spin_unlock(&cluster->refill_lock); 6704 down_read(&used_bg->data_rwsem); 6705 locked = true; 6706 goto again; 6707 } 6708 6709 static inline void 6710 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6711 int delalloc) 6712 { 6713 if (delalloc) 6714 up_read(&cache->data_rwsem); 6715 btrfs_put_block_group(cache); 6716 } 6717 6718 /* 6719 * walks the btree of allocated extents and find a hole of a given size. 6720 * The key ins is changed to record the hole: 6721 * ins->objectid == start position 6722 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6723 * ins->offset == the size of the hole. 6724 * Any available blocks before search_start are skipped. 6725 * 6726 * If there is no suitable free space, we will record the max size of 6727 * the free space extent currently. 6728 */ 6729 static noinline int find_free_extent(struct btrfs_root *orig_root, 6730 u64 num_bytes, u64 empty_size, 6731 u64 hint_byte, struct btrfs_key *ins, 6732 u64 flags, int delalloc) 6733 { 6734 int ret = 0; 6735 struct btrfs_root *root = orig_root->fs_info->extent_root; 6736 struct btrfs_free_cluster *last_ptr = NULL; 6737 struct btrfs_block_group_cache *block_group = NULL; 6738 u64 search_start = 0; 6739 u64 max_extent_size = 0; 6740 int empty_cluster = 2 * 1024 * 1024; 6741 struct btrfs_space_info *space_info; 6742 int loop = 0; 6743 int index = __get_raid_index(flags); 6744 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6745 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6746 bool failed_cluster_refill = false; 6747 bool failed_alloc = false; 6748 bool use_cluster = true; 6749 bool have_caching_bg = false; 6750 6751 WARN_ON(num_bytes < root->sectorsize); 6752 ins->type = BTRFS_EXTENT_ITEM_KEY; 6753 ins->objectid = 0; 6754 ins->offset = 0; 6755 6756 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6757 6758 space_info = __find_space_info(root->fs_info, flags); 6759 if (!space_info) { 6760 btrfs_err(root->fs_info, "No space info for %llu", flags); 6761 return -ENOSPC; 6762 } 6763 6764 /* 6765 * If the space info is for both data and metadata it means we have a 6766 * small filesystem and we can't use the clustering stuff. 6767 */ 6768 if (btrfs_mixed_space_info(space_info)) 6769 use_cluster = false; 6770 6771 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6772 last_ptr = &root->fs_info->meta_alloc_cluster; 6773 if (!btrfs_test_opt(root, SSD)) 6774 empty_cluster = 64 * 1024; 6775 } 6776 6777 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6778 btrfs_test_opt(root, SSD)) { 6779 last_ptr = &root->fs_info->data_alloc_cluster; 6780 } 6781 6782 if (last_ptr) { 6783 spin_lock(&last_ptr->lock); 6784 if (last_ptr->block_group) 6785 hint_byte = last_ptr->window_start; 6786 spin_unlock(&last_ptr->lock); 6787 } 6788 6789 search_start = max(search_start, first_logical_byte(root, 0)); 6790 search_start = max(search_start, hint_byte); 6791 6792 if (!last_ptr) 6793 empty_cluster = 0; 6794 6795 if (search_start == hint_byte) { 6796 block_group = btrfs_lookup_block_group(root->fs_info, 6797 search_start); 6798 /* 6799 * we don't want to use the block group if it doesn't match our 6800 * allocation bits, or if its not cached. 6801 * 6802 * However if we are re-searching with an ideal block group 6803 * picked out then we don't care that the block group is cached. 6804 */ 6805 if (block_group && block_group_bits(block_group, flags) && 6806 block_group->cached != BTRFS_CACHE_NO) { 6807 down_read(&space_info->groups_sem); 6808 if (list_empty(&block_group->list) || 6809 block_group->ro) { 6810 /* 6811 * someone is removing this block group, 6812 * we can't jump into the have_block_group 6813 * target because our list pointers are not 6814 * valid 6815 */ 6816 btrfs_put_block_group(block_group); 6817 up_read(&space_info->groups_sem); 6818 } else { 6819 index = get_block_group_index(block_group); 6820 btrfs_lock_block_group(block_group, delalloc); 6821 goto have_block_group; 6822 } 6823 } else if (block_group) { 6824 btrfs_put_block_group(block_group); 6825 } 6826 } 6827 search: 6828 have_caching_bg = false; 6829 down_read(&space_info->groups_sem); 6830 list_for_each_entry(block_group, &space_info->block_groups[index], 6831 list) { 6832 u64 offset; 6833 int cached; 6834 6835 btrfs_grab_block_group(block_group, delalloc); 6836 search_start = block_group->key.objectid; 6837 6838 /* 6839 * this can happen if we end up cycling through all the 6840 * raid types, but we want to make sure we only allocate 6841 * for the proper type. 6842 */ 6843 if (!block_group_bits(block_group, flags)) { 6844 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6845 BTRFS_BLOCK_GROUP_RAID1 | 6846 BTRFS_BLOCK_GROUP_RAID5 | 6847 BTRFS_BLOCK_GROUP_RAID6 | 6848 BTRFS_BLOCK_GROUP_RAID10; 6849 6850 /* 6851 * if they asked for extra copies and this block group 6852 * doesn't provide them, bail. This does allow us to 6853 * fill raid0 from raid1. 6854 */ 6855 if ((flags & extra) && !(block_group->flags & extra)) 6856 goto loop; 6857 } 6858 6859 have_block_group: 6860 cached = block_group_cache_done(block_group); 6861 if (unlikely(!cached)) { 6862 ret = cache_block_group(block_group, 0); 6863 BUG_ON(ret < 0); 6864 ret = 0; 6865 } 6866 6867 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6868 goto loop; 6869 if (unlikely(block_group->ro)) 6870 goto loop; 6871 6872 /* 6873 * Ok we want to try and use the cluster allocator, so 6874 * lets look there 6875 */ 6876 if (last_ptr) { 6877 struct btrfs_block_group_cache *used_block_group; 6878 unsigned long aligned_cluster; 6879 /* 6880 * the refill lock keeps out other 6881 * people trying to start a new cluster 6882 */ 6883 used_block_group = btrfs_lock_cluster(block_group, 6884 last_ptr, 6885 delalloc); 6886 if (!used_block_group) 6887 goto refill_cluster; 6888 6889 if (used_block_group != block_group && 6890 (used_block_group->ro || 6891 !block_group_bits(used_block_group, flags))) 6892 goto release_cluster; 6893 6894 offset = btrfs_alloc_from_cluster(used_block_group, 6895 last_ptr, 6896 num_bytes, 6897 used_block_group->key.objectid, 6898 &max_extent_size); 6899 if (offset) { 6900 /* we have a block, we're done */ 6901 spin_unlock(&last_ptr->refill_lock); 6902 trace_btrfs_reserve_extent_cluster(root, 6903 used_block_group, 6904 search_start, num_bytes); 6905 if (used_block_group != block_group) { 6906 btrfs_release_block_group(block_group, 6907 delalloc); 6908 block_group = used_block_group; 6909 } 6910 goto checks; 6911 } 6912 6913 WARN_ON(last_ptr->block_group != used_block_group); 6914 release_cluster: 6915 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6916 * set up a new clusters, so lets just skip it 6917 * and let the allocator find whatever block 6918 * it can find. If we reach this point, we 6919 * will have tried the cluster allocator 6920 * plenty of times and not have found 6921 * anything, so we are likely way too 6922 * fragmented for the clustering stuff to find 6923 * anything. 6924 * 6925 * However, if the cluster is taken from the 6926 * current block group, release the cluster 6927 * first, so that we stand a better chance of 6928 * succeeding in the unclustered 6929 * allocation. */ 6930 if (loop >= LOOP_NO_EMPTY_SIZE && 6931 used_block_group != block_group) { 6932 spin_unlock(&last_ptr->refill_lock); 6933 btrfs_release_block_group(used_block_group, 6934 delalloc); 6935 goto unclustered_alloc; 6936 } 6937 6938 /* 6939 * this cluster didn't work out, free it and 6940 * start over 6941 */ 6942 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6943 6944 if (used_block_group != block_group) 6945 btrfs_release_block_group(used_block_group, 6946 delalloc); 6947 refill_cluster: 6948 if (loop >= LOOP_NO_EMPTY_SIZE) { 6949 spin_unlock(&last_ptr->refill_lock); 6950 goto unclustered_alloc; 6951 } 6952 6953 aligned_cluster = max_t(unsigned long, 6954 empty_cluster + empty_size, 6955 block_group->full_stripe_len); 6956 6957 /* allocate a cluster in this block group */ 6958 ret = btrfs_find_space_cluster(root, block_group, 6959 last_ptr, search_start, 6960 num_bytes, 6961 aligned_cluster); 6962 if (ret == 0) { 6963 /* 6964 * now pull our allocation out of this 6965 * cluster 6966 */ 6967 offset = btrfs_alloc_from_cluster(block_group, 6968 last_ptr, 6969 num_bytes, 6970 search_start, 6971 &max_extent_size); 6972 if (offset) { 6973 /* we found one, proceed */ 6974 spin_unlock(&last_ptr->refill_lock); 6975 trace_btrfs_reserve_extent_cluster(root, 6976 block_group, search_start, 6977 num_bytes); 6978 goto checks; 6979 } 6980 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6981 && !failed_cluster_refill) { 6982 spin_unlock(&last_ptr->refill_lock); 6983 6984 failed_cluster_refill = true; 6985 wait_block_group_cache_progress(block_group, 6986 num_bytes + empty_cluster + empty_size); 6987 goto have_block_group; 6988 } 6989 6990 /* 6991 * at this point we either didn't find a cluster 6992 * or we weren't able to allocate a block from our 6993 * cluster. Free the cluster we've been trying 6994 * to use, and go to the next block group 6995 */ 6996 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6997 spin_unlock(&last_ptr->refill_lock); 6998 goto loop; 6999 } 7000 7001 unclustered_alloc: 7002 spin_lock(&block_group->free_space_ctl->tree_lock); 7003 if (cached && 7004 block_group->free_space_ctl->free_space < 7005 num_bytes + empty_cluster + empty_size) { 7006 if (block_group->free_space_ctl->free_space > 7007 max_extent_size) 7008 max_extent_size = 7009 block_group->free_space_ctl->free_space; 7010 spin_unlock(&block_group->free_space_ctl->tree_lock); 7011 goto loop; 7012 } 7013 spin_unlock(&block_group->free_space_ctl->tree_lock); 7014 7015 offset = btrfs_find_space_for_alloc(block_group, search_start, 7016 num_bytes, empty_size, 7017 &max_extent_size); 7018 /* 7019 * If we didn't find a chunk, and we haven't failed on this 7020 * block group before, and this block group is in the middle of 7021 * caching and we are ok with waiting, then go ahead and wait 7022 * for progress to be made, and set failed_alloc to true. 7023 * 7024 * If failed_alloc is true then we've already waited on this 7025 * block group once and should move on to the next block group. 7026 */ 7027 if (!offset && !failed_alloc && !cached && 7028 loop > LOOP_CACHING_NOWAIT) { 7029 wait_block_group_cache_progress(block_group, 7030 num_bytes + empty_size); 7031 failed_alloc = true; 7032 goto have_block_group; 7033 } else if (!offset) { 7034 if (!cached) 7035 have_caching_bg = true; 7036 goto loop; 7037 } 7038 checks: 7039 search_start = ALIGN(offset, root->stripesize); 7040 7041 /* move on to the next group */ 7042 if (search_start + num_bytes > 7043 block_group->key.objectid + block_group->key.offset) { 7044 btrfs_add_free_space(block_group, offset, num_bytes); 7045 goto loop; 7046 } 7047 7048 if (offset < search_start) 7049 btrfs_add_free_space(block_group, offset, 7050 search_start - offset); 7051 BUG_ON(offset > search_start); 7052 7053 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7054 alloc_type, delalloc); 7055 if (ret == -EAGAIN) { 7056 btrfs_add_free_space(block_group, offset, num_bytes); 7057 goto loop; 7058 } 7059 7060 /* we are all good, lets return */ 7061 ins->objectid = search_start; 7062 ins->offset = num_bytes; 7063 7064 trace_btrfs_reserve_extent(orig_root, block_group, 7065 search_start, num_bytes); 7066 btrfs_release_block_group(block_group, delalloc); 7067 break; 7068 loop: 7069 failed_cluster_refill = false; 7070 failed_alloc = false; 7071 BUG_ON(index != get_block_group_index(block_group)); 7072 btrfs_release_block_group(block_group, delalloc); 7073 } 7074 up_read(&space_info->groups_sem); 7075 7076 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7077 goto search; 7078 7079 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7080 goto search; 7081 7082 /* 7083 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7084 * caching kthreads as we move along 7085 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7086 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7087 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7088 * again 7089 */ 7090 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7091 index = 0; 7092 loop++; 7093 if (loop == LOOP_ALLOC_CHUNK) { 7094 struct btrfs_trans_handle *trans; 7095 int exist = 0; 7096 7097 trans = current->journal_info; 7098 if (trans) 7099 exist = 1; 7100 else 7101 trans = btrfs_join_transaction(root); 7102 7103 if (IS_ERR(trans)) { 7104 ret = PTR_ERR(trans); 7105 goto out; 7106 } 7107 7108 ret = do_chunk_alloc(trans, root, flags, 7109 CHUNK_ALLOC_FORCE); 7110 /* 7111 * Do not bail out on ENOSPC since we 7112 * can do more things. 7113 */ 7114 if (ret < 0 && ret != -ENOSPC) 7115 btrfs_abort_transaction(trans, 7116 root, ret); 7117 else 7118 ret = 0; 7119 if (!exist) 7120 btrfs_end_transaction(trans, root); 7121 if (ret) 7122 goto out; 7123 } 7124 7125 if (loop == LOOP_NO_EMPTY_SIZE) { 7126 empty_size = 0; 7127 empty_cluster = 0; 7128 } 7129 7130 goto search; 7131 } else if (!ins->objectid) { 7132 ret = -ENOSPC; 7133 } else if (ins->objectid) { 7134 ret = 0; 7135 } 7136 out: 7137 if (ret == -ENOSPC) 7138 ins->offset = max_extent_size; 7139 return ret; 7140 } 7141 7142 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7143 int dump_block_groups) 7144 { 7145 struct btrfs_block_group_cache *cache; 7146 int index = 0; 7147 7148 spin_lock(&info->lock); 7149 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7150 info->flags, 7151 info->total_bytes - info->bytes_used - info->bytes_pinned - 7152 info->bytes_reserved - info->bytes_readonly, 7153 (info->full) ? "" : "not "); 7154 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7155 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7156 info->total_bytes, info->bytes_used, info->bytes_pinned, 7157 info->bytes_reserved, info->bytes_may_use, 7158 info->bytes_readonly); 7159 spin_unlock(&info->lock); 7160 7161 if (!dump_block_groups) 7162 return; 7163 7164 down_read(&info->groups_sem); 7165 again: 7166 list_for_each_entry(cache, &info->block_groups[index], list) { 7167 spin_lock(&cache->lock); 7168 printk(KERN_INFO "BTRFS: " 7169 "block group %llu has %llu bytes, " 7170 "%llu used %llu pinned %llu reserved %s\n", 7171 cache->key.objectid, cache->key.offset, 7172 btrfs_block_group_used(&cache->item), cache->pinned, 7173 cache->reserved, cache->ro ? "[readonly]" : ""); 7174 btrfs_dump_free_space(cache, bytes); 7175 spin_unlock(&cache->lock); 7176 } 7177 if (++index < BTRFS_NR_RAID_TYPES) 7178 goto again; 7179 up_read(&info->groups_sem); 7180 } 7181 7182 int btrfs_reserve_extent(struct btrfs_root *root, 7183 u64 num_bytes, u64 min_alloc_size, 7184 u64 empty_size, u64 hint_byte, 7185 struct btrfs_key *ins, int is_data, int delalloc) 7186 { 7187 bool final_tried = false; 7188 u64 flags; 7189 int ret; 7190 7191 flags = btrfs_get_alloc_profile(root, is_data); 7192 again: 7193 WARN_ON(num_bytes < root->sectorsize); 7194 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7195 flags, delalloc); 7196 7197 if (ret == -ENOSPC) { 7198 if (!final_tried && ins->offset) { 7199 num_bytes = min(num_bytes >> 1, ins->offset); 7200 num_bytes = round_down(num_bytes, root->sectorsize); 7201 num_bytes = max(num_bytes, min_alloc_size); 7202 if (num_bytes == min_alloc_size) 7203 final_tried = true; 7204 goto again; 7205 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7206 struct btrfs_space_info *sinfo; 7207 7208 sinfo = __find_space_info(root->fs_info, flags); 7209 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7210 flags, num_bytes); 7211 if (sinfo) 7212 dump_space_info(sinfo, num_bytes, 1); 7213 } 7214 } 7215 7216 return ret; 7217 } 7218 7219 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7220 u64 start, u64 len, 7221 int pin, int delalloc) 7222 { 7223 struct btrfs_block_group_cache *cache; 7224 int ret = 0; 7225 7226 cache = btrfs_lookup_block_group(root->fs_info, start); 7227 if (!cache) { 7228 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7229 start); 7230 return -ENOSPC; 7231 } 7232 7233 if (pin) 7234 pin_down_extent(root, cache, start, len, 1); 7235 else { 7236 if (btrfs_test_opt(root, DISCARD)) 7237 ret = btrfs_discard_extent(root, start, len, NULL); 7238 btrfs_add_free_space(cache, start, len); 7239 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7240 } 7241 7242 btrfs_put_block_group(cache); 7243 7244 trace_btrfs_reserved_extent_free(root, start, len); 7245 7246 return ret; 7247 } 7248 7249 int btrfs_free_reserved_extent(struct btrfs_root *root, 7250 u64 start, u64 len, int delalloc) 7251 { 7252 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7253 } 7254 7255 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7256 u64 start, u64 len) 7257 { 7258 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7259 } 7260 7261 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7262 struct btrfs_root *root, 7263 u64 parent, u64 root_objectid, 7264 u64 flags, u64 owner, u64 offset, 7265 struct btrfs_key *ins, int ref_mod) 7266 { 7267 int ret; 7268 struct btrfs_fs_info *fs_info = root->fs_info; 7269 struct btrfs_extent_item *extent_item; 7270 struct btrfs_extent_inline_ref *iref; 7271 struct btrfs_path *path; 7272 struct extent_buffer *leaf; 7273 int type; 7274 u32 size; 7275 7276 if (parent > 0) 7277 type = BTRFS_SHARED_DATA_REF_KEY; 7278 else 7279 type = BTRFS_EXTENT_DATA_REF_KEY; 7280 7281 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7282 7283 path = btrfs_alloc_path(); 7284 if (!path) 7285 return -ENOMEM; 7286 7287 path->leave_spinning = 1; 7288 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7289 ins, size); 7290 if (ret) { 7291 btrfs_free_path(path); 7292 return ret; 7293 } 7294 7295 leaf = path->nodes[0]; 7296 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7297 struct btrfs_extent_item); 7298 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7299 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7300 btrfs_set_extent_flags(leaf, extent_item, 7301 flags | BTRFS_EXTENT_FLAG_DATA); 7302 7303 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7304 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7305 if (parent > 0) { 7306 struct btrfs_shared_data_ref *ref; 7307 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7308 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7309 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7310 } else { 7311 struct btrfs_extent_data_ref *ref; 7312 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7313 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7314 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7315 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7316 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7317 } 7318 7319 btrfs_mark_buffer_dirty(path->nodes[0]); 7320 btrfs_free_path(path); 7321 7322 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7323 if (ret) { /* -ENOENT, logic error */ 7324 btrfs_err(fs_info, "update block group failed for %llu %llu", 7325 ins->objectid, ins->offset); 7326 BUG(); 7327 } 7328 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7329 return ret; 7330 } 7331 7332 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7333 struct btrfs_root *root, 7334 u64 parent, u64 root_objectid, 7335 u64 flags, struct btrfs_disk_key *key, 7336 int level, struct btrfs_key *ins, 7337 int no_quota) 7338 { 7339 int ret; 7340 struct btrfs_fs_info *fs_info = root->fs_info; 7341 struct btrfs_extent_item *extent_item; 7342 struct btrfs_tree_block_info *block_info; 7343 struct btrfs_extent_inline_ref *iref; 7344 struct btrfs_path *path; 7345 struct extent_buffer *leaf; 7346 u32 size = sizeof(*extent_item) + sizeof(*iref); 7347 u64 num_bytes = ins->offset; 7348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7349 SKINNY_METADATA); 7350 7351 if (!skinny_metadata) 7352 size += sizeof(*block_info); 7353 7354 path = btrfs_alloc_path(); 7355 if (!path) { 7356 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7357 root->nodesize); 7358 return -ENOMEM; 7359 } 7360 7361 path->leave_spinning = 1; 7362 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7363 ins, size); 7364 if (ret) { 7365 btrfs_free_path(path); 7366 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7367 root->nodesize); 7368 return ret; 7369 } 7370 7371 leaf = path->nodes[0]; 7372 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7373 struct btrfs_extent_item); 7374 btrfs_set_extent_refs(leaf, extent_item, 1); 7375 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7376 btrfs_set_extent_flags(leaf, extent_item, 7377 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7378 7379 if (skinny_metadata) { 7380 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7381 num_bytes = root->nodesize; 7382 } else { 7383 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7384 btrfs_set_tree_block_key(leaf, block_info, key); 7385 btrfs_set_tree_block_level(leaf, block_info, level); 7386 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7387 } 7388 7389 if (parent > 0) { 7390 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7391 btrfs_set_extent_inline_ref_type(leaf, iref, 7392 BTRFS_SHARED_BLOCK_REF_KEY); 7393 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7394 } else { 7395 btrfs_set_extent_inline_ref_type(leaf, iref, 7396 BTRFS_TREE_BLOCK_REF_KEY); 7397 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7398 } 7399 7400 btrfs_mark_buffer_dirty(leaf); 7401 btrfs_free_path(path); 7402 7403 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7404 1); 7405 if (ret) { /* -ENOENT, logic error */ 7406 btrfs_err(fs_info, "update block group failed for %llu %llu", 7407 ins->objectid, ins->offset); 7408 BUG(); 7409 } 7410 7411 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7412 return ret; 7413 } 7414 7415 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7416 struct btrfs_root *root, 7417 u64 root_objectid, u64 owner, 7418 u64 offset, struct btrfs_key *ins) 7419 { 7420 int ret; 7421 7422 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7423 7424 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7425 ins->offset, 0, 7426 root_objectid, owner, offset, 7427 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7428 return ret; 7429 } 7430 7431 /* 7432 * this is used by the tree logging recovery code. It records that 7433 * an extent has been allocated and makes sure to clear the free 7434 * space cache bits as well 7435 */ 7436 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7437 struct btrfs_root *root, 7438 u64 root_objectid, u64 owner, u64 offset, 7439 struct btrfs_key *ins) 7440 { 7441 int ret; 7442 struct btrfs_block_group_cache *block_group; 7443 7444 /* 7445 * Mixed block groups will exclude before processing the log so we only 7446 * need to do the exlude dance if this fs isn't mixed. 7447 */ 7448 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7449 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7450 if (ret) 7451 return ret; 7452 } 7453 7454 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7455 if (!block_group) 7456 return -EINVAL; 7457 7458 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7459 RESERVE_ALLOC_NO_ACCOUNT, 0); 7460 BUG_ON(ret); /* logic error */ 7461 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7462 0, owner, offset, ins, 1); 7463 btrfs_put_block_group(block_group); 7464 return ret; 7465 } 7466 7467 static struct extent_buffer * 7468 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7469 u64 bytenr, int level) 7470 { 7471 struct extent_buffer *buf; 7472 7473 buf = btrfs_find_create_tree_block(root, bytenr); 7474 if (!buf) 7475 return ERR_PTR(-ENOMEM); 7476 btrfs_set_header_generation(buf, trans->transid); 7477 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7478 btrfs_tree_lock(buf); 7479 clean_tree_block(trans, root->fs_info, buf); 7480 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7481 7482 btrfs_set_lock_blocking(buf); 7483 btrfs_set_buffer_uptodate(buf); 7484 7485 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7486 buf->log_index = root->log_transid % 2; 7487 /* 7488 * we allow two log transactions at a time, use different 7489 * EXENT bit to differentiate dirty pages. 7490 */ 7491 if (buf->log_index == 0) 7492 set_extent_dirty(&root->dirty_log_pages, buf->start, 7493 buf->start + buf->len - 1, GFP_NOFS); 7494 else 7495 set_extent_new(&root->dirty_log_pages, buf->start, 7496 buf->start + buf->len - 1, GFP_NOFS); 7497 } else { 7498 buf->log_index = -1; 7499 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7500 buf->start + buf->len - 1, GFP_NOFS); 7501 } 7502 trans->blocks_used++; 7503 /* this returns a buffer locked for blocking */ 7504 return buf; 7505 } 7506 7507 static struct btrfs_block_rsv * 7508 use_block_rsv(struct btrfs_trans_handle *trans, 7509 struct btrfs_root *root, u32 blocksize) 7510 { 7511 struct btrfs_block_rsv *block_rsv; 7512 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7513 int ret; 7514 bool global_updated = false; 7515 7516 block_rsv = get_block_rsv(trans, root); 7517 7518 if (unlikely(block_rsv->size == 0)) 7519 goto try_reserve; 7520 again: 7521 ret = block_rsv_use_bytes(block_rsv, blocksize); 7522 if (!ret) 7523 return block_rsv; 7524 7525 if (block_rsv->failfast) 7526 return ERR_PTR(ret); 7527 7528 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7529 global_updated = true; 7530 update_global_block_rsv(root->fs_info); 7531 goto again; 7532 } 7533 7534 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7535 static DEFINE_RATELIMIT_STATE(_rs, 7536 DEFAULT_RATELIMIT_INTERVAL * 10, 7537 /*DEFAULT_RATELIMIT_BURST*/ 1); 7538 if (__ratelimit(&_rs)) 7539 WARN(1, KERN_DEBUG 7540 "BTRFS: block rsv returned %d\n", ret); 7541 } 7542 try_reserve: 7543 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7544 BTRFS_RESERVE_NO_FLUSH); 7545 if (!ret) 7546 return block_rsv; 7547 /* 7548 * If we couldn't reserve metadata bytes try and use some from 7549 * the global reserve if its space type is the same as the global 7550 * reservation. 7551 */ 7552 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7553 block_rsv->space_info == global_rsv->space_info) { 7554 ret = block_rsv_use_bytes(global_rsv, blocksize); 7555 if (!ret) 7556 return global_rsv; 7557 } 7558 return ERR_PTR(ret); 7559 } 7560 7561 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7562 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7563 { 7564 block_rsv_add_bytes(block_rsv, blocksize, 0); 7565 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7566 } 7567 7568 /* 7569 * finds a free extent and does all the dirty work required for allocation 7570 * returns the key for the extent through ins, and a tree buffer for 7571 * the first block of the extent through buf. 7572 * 7573 * returns the tree buffer or an ERR_PTR on error. 7574 */ 7575 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7576 struct btrfs_root *root, 7577 u64 parent, u64 root_objectid, 7578 struct btrfs_disk_key *key, int level, 7579 u64 hint, u64 empty_size) 7580 { 7581 struct btrfs_key ins; 7582 struct btrfs_block_rsv *block_rsv; 7583 struct extent_buffer *buf; 7584 struct btrfs_delayed_extent_op *extent_op; 7585 u64 flags = 0; 7586 int ret; 7587 u32 blocksize = root->nodesize; 7588 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7589 SKINNY_METADATA); 7590 7591 if (btrfs_test_is_dummy_root(root)) { 7592 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7593 level); 7594 if (!IS_ERR(buf)) 7595 root->alloc_bytenr += blocksize; 7596 return buf; 7597 } 7598 7599 block_rsv = use_block_rsv(trans, root, blocksize); 7600 if (IS_ERR(block_rsv)) 7601 return ERR_CAST(block_rsv); 7602 7603 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7604 empty_size, hint, &ins, 0, 0); 7605 if (ret) 7606 goto out_unuse; 7607 7608 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7609 if (IS_ERR(buf)) { 7610 ret = PTR_ERR(buf); 7611 goto out_free_reserved; 7612 } 7613 7614 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7615 if (parent == 0) 7616 parent = ins.objectid; 7617 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7618 } else 7619 BUG_ON(parent > 0); 7620 7621 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7622 extent_op = btrfs_alloc_delayed_extent_op(); 7623 if (!extent_op) { 7624 ret = -ENOMEM; 7625 goto out_free_buf; 7626 } 7627 if (key) 7628 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7629 else 7630 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7631 extent_op->flags_to_set = flags; 7632 if (skinny_metadata) 7633 extent_op->update_key = 0; 7634 else 7635 extent_op->update_key = 1; 7636 extent_op->update_flags = 1; 7637 extent_op->is_data = 0; 7638 extent_op->level = level; 7639 7640 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7641 ins.objectid, ins.offset, 7642 parent, root_objectid, level, 7643 BTRFS_ADD_DELAYED_EXTENT, 7644 extent_op, 0); 7645 if (ret) 7646 goto out_free_delayed; 7647 } 7648 return buf; 7649 7650 out_free_delayed: 7651 btrfs_free_delayed_extent_op(extent_op); 7652 out_free_buf: 7653 free_extent_buffer(buf); 7654 out_free_reserved: 7655 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7656 out_unuse: 7657 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7658 return ERR_PTR(ret); 7659 } 7660 7661 struct walk_control { 7662 u64 refs[BTRFS_MAX_LEVEL]; 7663 u64 flags[BTRFS_MAX_LEVEL]; 7664 struct btrfs_key update_progress; 7665 int stage; 7666 int level; 7667 int shared_level; 7668 int update_ref; 7669 int keep_locks; 7670 int reada_slot; 7671 int reada_count; 7672 int for_reloc; 7673 }; 7674 7675 #define DROP_REFERENCE 1 7676 #define UPDATE_BACKREF 2 7677 7678 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7679 struct btrfs_root *root, 7680 struct walk_control *wc, 7681 struct btrfs_path *path) 7682 { 7683 u64 bytenr; 7684 u64 generation; 7685 u64 refs; 7686 u64 flags; 7687 u32 nritems; 7688 u32 blocksize; 7689 struct btrfs_key key; 7690 struct extent_buffer *eb; 7691 int ret; 7692 int slot; 7693 int nread = 0; 7694 7695 if (path->slots[wc->level] < wc->reada_slot) { 7696 wc->reada_count = wc->reada_count * 2 / 3; 7697 wc->reada_count = max(wc->reada_count, 2); 7698 } else { 7699 wc->reada_count = wc->reada_count * 3 / 2; 7700 wc->reada_count = min_t(int, wc->reada_count, 7701 BTRFS_NODEPTRS_PER_BLOCK(root)); 7702 } 7703 7704 eb = path->nodes[wc->level]; 7705 nritems = btrfs_header_nritems(eb); 7706 blocksize = root->nodesize; 7707 7708 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7709 if (nread >= wc->reada_count) 7710 break; 7711 7712 cond_resched(); 7713 bytenr = btrfs_node_blockptr(eb, slot); 7714 generation = btrfs_node_ptr_generation(eb, slot); 7715 7716 if (slot == path->slots[wc->level]) 7717 goto reada; 7718 7719 if (wc->stage == UPDATE_BACKREF && 7720 generation <= root->root_key.offset) 7721 continue; 7722 7723 /* We don't lock the tree block, it's OK to be racy here */ 7724 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7725 wc->level - 1, 1, &refs, 7726 &flags); 7727 /* We don't care about errors in readahead. */ 7728 if (ret < 0) 7729 continue; 7730 BUG_ON(refs == 0); 7731 7732 if (wc->stage == DROP_REFERENCE) { 7733 if (refs == 1) 7734 goto reada; 7735 7736 if (wc->level == 1 && 7737 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7738 continue; 7739 if (!wc->update_ref || 7740 generation <= root->root_key.offset) 7741 continue; 7742 btrfs_node_key_to_cpu(eb, &key, slot); 7743 ret = btrfs_comp_cpu_keys(&key, 7744 &wc->update_progress); 7745 if (ret < 0) 7746 continue; 7747 } else { 7748 if (wc->level == 1 && 7749 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7750 continue; 7751 } 7752 reada: 7753 readahead_tree_block(root, bytenr); 7754 nread++; 7755 } 7756 wc->reada_slot = slot; 7757 } 7758 7759 /* 7760 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7761 * for later qgroup accounting. 7762 * 7763 * Current, this function does nothing. 7764 */ 7765 static int account_leaf_items(struct btrfs_trans_handle *trans, 7766 struct btrfs_root *root, 7767 struct extent_buffer *eb) 7768 { 7769 int nr = btrfs_header_nritems(eb); 7770 int i, extent_type; 7771 struct btrfs_key key; 7772 struct btrfs_file_extent_item *fi; 7773 u64 bytenr, num_bytes; 7774 7775 for (i = 0; i < nr; i++) { 7776 btrfs_item_key_to_cpu(eb, &key, i); 7777 7778 if (key.type != BTRFS_EXTENT_DATA_KEY) 7779 continue; 7780 7781 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7782 /* filter out non qgroup-accountable extents */ 7783 extent_type = btrfs_file_extent_type(eb, fi); 7784 7785 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7786 continue; 7787 7788 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7789 if (!bytenr) 7790 continue; 7791 7792 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7793 } 7794 return 0; 7795 } 7796 7797 /* 7798 * Walk up the tree from the bottom, freeing leaves and any interior 7799 * nodes which have had all slots visited. If a node (leaf or 7800 * interior) is freed, the node above it will have it's slot 7801 * incremented. The root node will never be freed. 7802 * 7803 * At the end of this function, we should have a path which has all 7804 * slots incremented to the next position for a search. If we need to 7805 * read a new node it will be NULL and the node above it will have the 7806 * correct slot selected for a later read. 7807 * 7808 * If we increment the root nodes slot counter past the number of 7809 * elements, 1 is returned to signal completion of the search. 7810 */ 7811 static int adjust_slots_upwards(struct btrfs_root *root, 7812 struct btrfs_path *path, int root_level) 7813 { 7814 int level = 0; 7815 int nr, slot; 7816 struct extent_buffer *eb; 7817 7818 if (root_level == 0) 7819 return 1; 7820 7821 while (level <= root_level) { 7822 eb = path->nodes[level]; 7823 nr = btrfs_header_nritems(eb); 7824 path->slots[level]++; 7825 slot = path->slots[level]; 7826 if (slot >= nr || level == 0) { 7827 /* 7828 * Don't free the root - we will detect this 7829 * condition after our loop and return a 7830 * positive value for caller to stop walking the tree. 7831 */ 7832 if (level != root_level) { 7833 btrfs_tree_unlock_rw(eb, path->locks[level]); 7834 path->locks[level] = 0; 7835 7836 free_extent_buffer(eb); 7837 path->nodes[level] = NULL; 7838 path->slots[level] = 0; 7839 } 7840 } else { 7841 /* 7842 * We have a valid slot to walk back down 7843 * from. Stop here so caller can process these 7844 * new nodes. 7845 */ 7846 break; 7847 } 7848 7849 level++; 7850 } 7851 7852 eb = path->nodes[root_level]; 7853 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7854 return 1; 7855 7856 return 0; 7857 } 7858 7859 /* 7860 * root_eb is the subtree root and is locked before this function is called. 7861 * TODO: Modify this function to mark all (including complete shared node) 7862 * to dirty_extent_root to allow it get accounted in qgroup. 7863 */ 7864 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7865 struct btrfs_root *root, 7866 struct extent_buffer *root_eb, 7867 u64 root_gen, 7868 int root_level) 7869 { 7870 int ret = 0; 7871 int level; 7872 struct extent_buffer *eb = root_eb; 7873 struct btrfs_path *path = NULL; 7874 7875 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7876 BUG_ON(root_eb == NULL); 7877 7878 if (!root->fs_info->quota_enabled) 7879 return 0; 7880 7881 if (!extent_buffer_uptodate(root_eb)) { 7882 ret = btrfs_read_buffer(root_eb, root_gen); 7883 if (ret) 7884 goto out; 7885 } 7886 7887 if (root_level == 0) { 7888 ret = account_leaf_items(trans, root, root_eb); 7889 goto out; 7890 } 7891 7892 path = btrfs_alloc_path(); 7893 if (!path) 7894 return -ENOMEM; 7895 7896 /* 7897 * Walk down the tree. Missing extent blocks are filled in as 7898 * we go. Metadata is accounted every time we read a new 7899 * extent block. 7900 * 7901 * When we reach a leaf, we account for file extent items in it, 7902 * walk back up the tree (adjusting slot pointers as we go) 7903 * and restart the search process. 7904 */ 7905 extent_buffer_get(root_eb); /* For path */ 7906 path->nodes[root_level] = root_eb; 7907 path->slots[root_level] = 0; 7908 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7909 walk_down: 7910 level = root_level; 7911 while (level >= 0) { 7912 if (path->nodes[level] == NULL) { 7913 int parent_slot; 7914 u64 child_gen; 7915 u64 child_bytenr; 7916 7917 /* We need to get child blockptr/gen from 7918 * parent before we can read it. */ 7919 eb = path->nodes[level + 1]; 7920 parent_slot = path->slots[level + 1]; 7921 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7922 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7923 7924 eb = read_tree_block(root, child_bytenr, child_gen); 7925 if (IS_ERR(eb)) { 7926 ret = PTR_ERR(eb); 7927 goto out; 7928 } else if (!extent_buffer_uptodate(eb)) { 7929 free_extent_buffer(eb); 7930 ret = -EIO; 7931 goto out; 7932 } 7933 7934 path->nodes[level] = eb; 7935 path->slots[level] = 0; 7936 7937 btrfs_tree_read_lock(eb); 7938 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7939 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7940 } 7941 7942 if (level == 0) { 7943 ret = account_leaf_items(trans, root, path->nodes[level]); 7944 if (ret) 7945 goto out; 7946 7947 /* Nonzero return here means we completed our search */ 7948 ret = adjust_slots_upwards(root, path, root_level); 7949 if (ret) 7950 break; 7951 7952 /* Restart search with new slots */ 7953 goto walk_down; 7954 } 7955 7956 level--; 7957 } 7958 7959 ret = 0; 7960 out: 7961 btrfs_free_path(path); 7962 7963 return ret; 7964 } 7965 7966 /* 7967 * helper to process tree block while walking down the tree. 7968 * 7969 * when wc->stage == UPDATE_BACKREF, this function updates 7970 * back refs for pointers in the block. 7971 * 7972 * NOTE: return value 1 means we should stop walking down. 7973 */ 7974 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7975 struct btrfs_root *root, 7976 struct btrfs_path *path, 7977 struct walk_control *wc, int lookup_info) 7978 { 7979 int level = wc->level; 7980 struct extent_buffer *eb = path->nodes[level]; 7981 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7982 int ret; 7983 7984 if (wc->stage == UPDATE_BACKREF && 7985 btrfs_header_owner(eb) != root->root_key.objectid) 7986 return 1; 7987 7988 /* 7989 * when reference count of tree block is 1, it won't increase 7990 * again. once full backref flag is set, we never clear it. 7991 */ 7992 if (lookup_info && 7993 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7994 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7995 BUG_ON(!path->locks[level]); 7996 ret = btrfs_lookup_extent_info(trans, root, 7997 eb->start, level, 1, 7998 &wc->refs[level], 7999 &wc->flags[level]); 8000 BUG_ON(ret == -ENOMEM); 8001 if (ret) 8002 return ret; 8003 BUG_ON(wc->refs[level] == 0); 8004 } 8005 8006 if (wc->stage == DROP_REFERENCE) { 8007 if (wc->refs[level] > 1) 8008 return 1; 8009 8010 if (path->locks[level] && !wc->keep_locks) { 8011 btrfs_tree_unlock_rw(eb, path->locks[level]); 8012 path->locks[level] = 0; 8013 } 8014 return 0; 8015 } 8016 8017 /* wc->stage == UPDATE_BACKREF */ 8018 if (!(wc->flags[level] & flag)) { 8019 BUG_ON(!path->locks[level]); 8020 ret = btrfs_inc_ref(trans, root, eb, 1); 8021 BUG_ON(ret); /* -ENOMEM */ 8022 ret = btrfs_dec_ref(trans, root, eb, 0); 8023 BUG_ON(ret); /* -ENOMEM */ 8024 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8025 eb->len, flag, 8026 btrfs_header_level(eb), 0); 8027 BUG_ON(ret); /* -ENOMEM */ 8028 wc->flags[level] |= flag; 8029 } 8030 8031 /* 8032 * the block is shared by multiple trees, so it's not good to 8033 * keep the tree lock 8034 */ 8035 if (path->locks[level] && level > 0) { 8036 btrfs_tree_unlock_rw(eb, path->locks[level]); 8037 path->locks[level] = 0; 8038 } 8039 return 0; 8040 } 8041 8042 /* 8043 * helper to process tree block pointer. 8044 * 8045 * when wc->stage == DROP_REFERENCE, this function checks 8046 * reference count of the block pointed to. if the block 8047 * is shared and we need update back refs for the subtree 8048 * rooted at the block, this function changes wc->stage to 8049 * UPDATE_BACKREF. if the block is shared and there is no 8050 * need to update back, this function drops the reference 8051 * to the block. 8052 * 8053 * NOTE: return value 1 means we should stop walking down. 8054 */ 8055 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8056 struct btrfs_root *root, 8057 struct btrfs_path *path, 8058 struct walk_control *wc, int *lookup_info) 8059 { 8060 u64 bytenr; 8061 u64 generation; 8062 u64 parent; 8063 u32 blocksize; 8064 struct btrfs_key key; 8065 struct extent_buffer *next; 8066 int level = wc->level; 8067 int reada = 0; 8068 int ret = 0; 8069 bool need_account = false; 8070 8071 generation = btrfs_node_ptr_generation(path->nodes[level], 8072 path->slots[level]); 8073 /* 8074 * if the lower level block was created before the snapshot 8075 * was created, we know there is no need to update back refs 8076 * for the subtree 8077 */ 8078 if (wc->stage == UPDATE_BACKREF && 8079 generation <= root->root_key.offset) { 8080 *lookup_info = 1; 8081 return 1; 8082 } 8083 8084 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8085 blocksize = root->nodesize; 8086 8087 next = btrfs_find_tree_block(root->fs_info, bytenr); 8088 if (!next) { 8089 next = btrfs_find_create_tree_block(root, bytenr); 8090 if (!next) 8091 return -ENOMEM; 8092 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8093 level - 1); 8094 reada = 1; 8095 } 8096 btrfs_tree_lock(next); 8097 btrfs_set_lock_blocking(next); 8098 8099 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8100 &wc->refs[level - 1], 8101 &wc->flags[level - 1]); 8102 if (ret < 0) { 8103 btrfs_tree_unlock(next); 8104 return ret; 8105 } 8106 8107 if (unlikely(wc->refs[level - 1] == 0)) { 8108 btrfs_err(root->fs_info, "Missing references."); 8109 BUG(); 8110 } 8111 *lookup_info = 0; 8112 8113 if (wc->stage == DROP_REFERENCE) { 8114 if (wc->refs[level - 1] > 1) { 8115 need_account = true; 8116 if (level == 1 && 8117 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8118 goto skip; 8119 8120 if (!wc->update_ref || 8121 generation <= root->root_key.offset) 8122 goto skip; 8123 8124 btrfs_node_key_to_cpu(path->nodes[level], &key, 8125 path->slots[level]); 8126 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8127 if (ret < 0) 8128 goto skip; 8129 8130 wc->stage = UPDATE_BACKREF; 8131 wc->shared_level = level - 1; 8132 } 8133 } else { 8134 if (level == 1 && 8135 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8136 goto skip; 8137 } 8138 8139 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8140 btrfs_tree_unlock(next); 8141 free_extent_buffer(next); 8142 next = NULL; 8143 *lookup_info = 1; 8144 } 8145 8146 if (!next) { 8147 if (reada && level == 1) 8148 reada_walk_down(trans, root, wc, path); 8149 next = read_tree_block(root, bytenr, generation); 8150 if (IS_ERR(next)) { 8151 return PTR_ERR(next); 8152 } else if (!extent_buffer_uptodate(next)) { 8153 free_extent_buffer(next); 8154 return -EIO; 8155 } 8156 btrfs_tree_lock(next); 8157 btrfs_set_lock_blocking(next); 8158 } 8159 8160 level--; 8161 BUG_ON(level != btrfs_header_level(next)); 8162 path->nodes[level] = next; 8163 path->slots[level] = 0; 8164 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8165 wc->level = level; 8166 if (wc->level == 1) 8167 wc->reada_slot = 0; 8168 return 0; 8169 skip: 8170 wc->refs[level - 1] = 0; 8171 wc->flags[level - 1] = 0; 8172 if (wc->stage == DROP_REFERENCE) { 8173 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8174 parent = path->nodes[level]->start; 8175 } else { 8176 BUG_ON(root->root_key.objectid != 8177 btrfs_header_owner(path->nodes[level])); 8178 parent = 0; 8179 } 8180 8181 if (need_account) { 8182 ret = account_shared_subtree(trans, root, next, 8183 generation, level - 1); 8184 if (ret) { 8185 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8186 "%d accounting shared subtree. Quota " 8187 "is out of sync, rescan required.\n", 8188 root->fs_info->sb->s_id, ret); 8189 } 8190 } 8191 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8192 root->root_key.objectid, level - 1, 0, 0); 8193 BUG_ON(ret); /* -ENOMEM */ 8194 } 8195 btrfs_tree_unlock(next); 8196 free_extent_buffer(next); 8197 *lookup_info = 1; 8198 return 1; 8199 } 8200 8201 /* 8202 * helper to process tree block while walking up the tree. 8203 * 8204 * when wc->stage == DROP_REFERENCE, this function drops 8205 * reference count on the block. 8206 * 8207 * when wc->stage == UPDATE_BACKREF, this function changes 8208 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8209 * to UPDATE_BACKREF previously while processing the block. 8210 * 8211 * NOTE: return value 1 means we should stop walking up. 8212 */ 8213 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8214 struct btrfs_root *root, 8215 struct btrfs_path *path, 8216 struct walk_control *wc) 8217 { 8218 int ret; 8219 int level = wc->level; 8220 struct extent_buffer *eb = path->nodes[level]; 8221 u64 parent = 0; 8222 8223 if (wc->stage == UPDATE_BACKREF) { 8224 BUG_ON(wc->shared_level < level); 8225 if (level < wc->shared_level) 8226 goto out; 8227 8228 ret = find_next_key(path, level + 1, &wc->update_progress); 8229 if (ret > 0) 8230 wc->update_ref = 0; 8231 8232 wc->stage = DROP_REFERENCE; 8233 wc->shared_level = -1; 8234 path->slots[level] = 0; 8235 8236 /* 8237 * check reference count again if the block isn't locked. 8238 * we should start walking down the tree again if reference 8239 * count is one. 8240 */ 8241 if (!path->locks[level]) { 8242 BUG_ON(level == 0); 8243 btrfs_tree_lock(eb); 8244 btrfs_set_lock_blocking(eb); 8245 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8246 8247 ret = btrfs_lookup_extent_info(trans, root, 8248 eb->start, level, 1, 8249 &wc->refs[level], 8250 &wc->flags[level]); 8251 if (ret < 0) { 8252 btrfs_tree_unlock_rw(eb, path->locks[level]); 8253 path->locks[level] = 0; 8254 return ret; 8255 } 8256 BUG_ON(wc->refs[level] == 0); 8257 if (wc->refs[level] == 1) { 8258 btrfs_tree_unlock_rw(eb, path->locks[level]); 8259 path->locks[level] = 0; 8260 return 1; 8261 } 8262 } 8263 } 8264 8265 /* wc->stage == DROP_REFERENCE */ 8266 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8267 8268 if (wc->refs[level] == 1) { 8269 if (level == 0) { 8270 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8271 ret = btrfs_dec_ref(trans, root, eb, 1); 8272 else 8273 ret = btrfs_dec_ref(trans, root, eb, 0); 8274 BUG_ON(ret); /* -ENOMEM */ 8275 ret = account_leaf_items(trans, root, eb); 8276 if (ret) { 8277 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8278 "%d accounting leaf items. Quota " 8279 "is out of sync, rescan required.\n", 8280 root->fs_info->sb->s_id, ret); 8281 } 8282 } 8283 /* make block locked assertion in clean_tree_block happy */ 8284 if (!path->locks[level] && 8285 btrfs_header_generation(eb) == trans->transid) { 8286 btrfs_tree_lock(eb); 8287 btrfs_set_lock_blocking(eb); 8288 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8289 } 8290 clean_tree_block(trans, root->fs_info, eb); 8291 } 8292 8293 if (eb == root->node) { 8294 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8295 parent = eb->start; 8296 else 8297 BUG_ON(root->root_key.objectid != 8298 btrfs_header_owner(eb)); 8299 } else { 8300 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8301 parent = path->nodes[level + 1]->start; 8302 else 8303 BUG_ON(root->root_key.objectid != 8304 btrfs_header_owner(path->nodes[level + 1])); 8305 } 8306 8307 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8308 out: 8309 wc->refs[level] = 0; 8310 wc->flags[level] = 0; 8311 return 0; 8312 } 8313 8314 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8315 struct btrfs_root *root, 8316 struct btrfs_path *path, 8317 struct walk_control *wc) 8318 { 8319 int level = wc->level; 8320 int lookup_info = 1; 8321 int ret; 8322 8323 while (level >= 0) { 8324 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8325 if (ret > 0) 8326 break; 8327 8328 if (level == 0) 8329 break; 8330 8331 if (path->slots[level] >= 8332 btrfs_header_nritems(path->nodes[level])) 8333 break; 8334 8335 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8336 if (ret > 0) { 8337 path->slots[level]++; 8338 continue; 8339 } else if (ret < 0) 8340 return ret; 8341 level = wc->level; 8342 } 8343 return 0; 8344 } 8345 8346 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8347 struct btrfs_root *root, 8348 struct btrfs_path *path, 8349 struct walk_control *wc, int max_level) 8350 { 8351 int level = wc->level; 8352 int ret; 8353 8354 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8355 while (level < max_level && path->nodes[level]) { 8356 wc->level = level; 8357 if (path->slots[level] + 1 < 8358 btrfs_header_nritems(path->nodes[level])) { 8359 path->slots[level]++; 8360 return 0; 8361 } else { 8362 ret = walk_up_proc(trans, root, path, wc); 8363 if (ret > 0) 8364 return 0; 8365 8366 if (path->locks[level]) { 8367 btrfs_tree_unlock_rw(path->nodes[level], 8368 path->locks[level]); 8369 path->locks[level] = 0; 8370 } 8371 free_extent_buffer(path->nodes[level]); 8372 path->nodes[level] = NULL; 8373 level++; 8374 } 8375 } 8376 return 1; 8377 } 8378 8379 /* 8380 * drop a subvolume tree. 8381 * 8382 * this function traverses the tree freeing any blocks that only 8383 * referenced by the tree. 8384 * 8385 * when a shared tree block is found. this function decreases its 8386 * reference count by one. if update_ref is true, this function 8387 * also make sure backrefs for the shared block and all lower level 8388 * blocks are properly updated. 8389 * 8390 * If called with for_reloc == 0, may exit early with -EAGAIN 8391 */ 8392 int btrfs_drop_snapshot(struct btrfs_root *root, 8393 struct btrfs_block_rsv *block_rsv, int update_ref, 8394 int for_reloc) 8395 { 8396 struct btrfs_path *path; 8397 struct btrfs_trans_handle *trans; 8398 struct btrfs_root *tree_root = root->fs_info->tree_root; 8399 struct btrfs_root_item *root_item = &root->root_item; 8400 struct walk_control *wc; 8401 struct btrfs_key key; 8402 int err = 0; 8403 int ret; 8404 int level; 8405 bool root_dropped = false; 8406 8407 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8408 8409 path = btrfs_alloc_path(); 8410 if (!path) { 8411 err = -ENOMEM; 8412 goto out; 8413 } 8414 8415 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8416 if (!wc) { 8417 btrfs_free_path(path); 8418 err = -ENOMEM; 8419 goto out; 8420 } 8421 8422 trans = btrfs_start_transaction(tree_root, 0); 8423 if (IS_ERR(trans)) { 8424 err = PTR_ERR(trans); 8425 goto out_free; 8426 } 8427 8428 if (block_rsv) 8429 trans->block_rsv = block_rsv; 8430 8431 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8432 level = btrfs_header_level(root->node); 8433 path->nodes[level] = btrfs_lock_root_node(root); 8434 btrfs_set_lock_blocking(path->nodes[level]); 8435 path->slots[level] = 0; 8436 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8437 memset(&wc->update_progress, 0, 8438 sizeof(wc->update_progress)); 8439 } else { 8440 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8441 memcpy(&wc->update_progress, &key, 8442 sizeof(wc->update_progress)); 8443 8444 level = root_item->drop_level; 8445 BUG_ON(level == 0); 8446 path->lowest_level = level; 8447 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8448 path->lowest_level = 0; 8449 if (ret < 0) { 8450 err = ret; 8451 goto out_end_trans; 8452 } 8453 WARN_ON(ret > 0); 8454 8455 /* 8456 * unlock our path, this is safe because only this 8457 * function is allowed to delete this snapshot 8458 */ 8459 btrfs_unlock_up_safe(path, 0); 8460 8461 level = btrfs_header_level(root->node); 8462 while (1) { 8463 btrfs_tree_lock(path->nodes[level]); 8464 btrfs_set_lock_blocking(path->nodes[level]); 8465 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8466 8467 ret = btrfs_lookup_extent_info(trans, root, 8468 path->nodes[level]->start, 8469 level, 1, &wc->refs[level], 8470 &wc->flags[level]); 8471 if (ret < 0) { 8472 err = ret; 8473 goto out_end_trans; 8474 } 8475 BUG_ON(wc->refs[level] == 0); 8476 8477 if (level == root_item->drop_level) 8478 break; 8479 8480 btrfs_tree_unlock(path->nodes[level]); 8481 path->locks[level] = 0; 8482 WARN_ON(wc->refs[level] != 1); 8483 level--; 8484 } 8485 } 8486 8487 wc->level = level; 8488 wc->shared_level = -1; 8489 wc->stage = DROP_REFERENCE; 8490 wc->update_ref = update_ref; 8491 wc->keep_locks = 0; 8492 wc->for_reloc = for_reloc; 8493 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8494 8495 while (1) { 8496 8497 ret = walk_down_tree(trans, root, path, wc); 8498 if (ret < 0) { 8499 err = ret; 8500 break; 8501 } 8502 8503 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8504 if (ret < 0) { 8505 err = ret; 8506 break; 8507 } 8508 8509 if (ret > 0) { 8510 BUG_ON(wc->stage != DROP_REFERENCE); 8511 break; 8512 } 8513 8514 if (wc->stage == DROP_REFERENCE) { 8515 level = wc->level; 8516 btrfs_node_key(path->nodes[level], 8517 &root_item->drop_progress, 8518 path->slots[level]); 8519 root_item->drop_level = level; 8520 } 8521 8522 BUG_ON(wc->level == 0); 8523 if (btrfs_should_end_transaction(trans, tree_root) || 8524 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8525 ret = btrfs_update_root(trans, tree_root, 8526 &root->root_key, 8527 root_item); 8528 if (ret) { 8529 btrfs_abort_transaction(trans, tree_root, ret); 8530 err = ret; 8531 goto out_end_trans; 8532 } 8533 8534 btrfs_end_transaction_throttle(trans, tree_root); 8535 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8536 pr_debug("BTRFS: drop snapshot early exit\n"); 8537 err = -EAGAIN; 8538 goto out_free; 8539 } 8540 8541 trans = btrfs_start_transaction(tree_root, 0); 8542 if (IS_ERR(trans)) { 8543 err = PTR_ERR(trans); 8544 goto out_free; 8545 } 8546 if (block_rsv) 8547 trans->block_rsv = block_rsv; 8548 } 8549 } 8550 btrfs_release_path(path); 8551 if (err) 8552 goto out_end_trans; 8553 8554 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8555 if (ret) { 8556 btrfs_abort_transaction(trans, tree_root, ret); 8557 goto out_end_trans; 8558 } 8559 8560 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8561 ret = btrfs_find_root(tree_root, &root->root_key, path, 8562 NULL, NULL); 8563 if (ret < 0) { 8564 btrfs_abort_transaction(trans, tree_root, ret); 8565 err = ret; 8566 goto out_end_trans; 8567 } else if (ret > 0) { 8568 /* if we fail to delete the orphan item this time 8569 * around, it'll get picked up the next time. 8570 * 8571 * The most common failure here is just -ENOENT. 8572 */ 8573 btrfs_del_orphan_item(trans, tree_root, 8574 root->root_key.objectid); 8575 } 8576 } 8577 8578 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8579 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8580 } else { 8581 free_extent_buffer(root->node); 8582 free_extent_buffer(root->commit_root); 8583 btrfs_put_fs_root(root); 8584 } 8585 root_dropped = true; 8586 out_end_trans: 8587 btrfs_end_transaction_throttle(trans, tree_root); 8588 out_free: 8589 kfree(wc); 8590 btrfs_free_path(path); 8591 out: 8592 /* 8593 * So if we need to stop dropping the snapshot for whatever reason we 8594 * need to make sure to add it back to the dead root list so that we 8595 * keep trying to do the work later. This also cleans up roots if we 8596 * don't have it in the radix (like when we recover after a power fail 8597 * or unmount) so we don't leak memory. 8598 */ 8599 if (!for_reloc && root_dropped == false) 8600 btrfs_add_dead_root(root); 8601 if (err && err != -EAGAIN) 8602 btrfs_std_error(root->fs_info, err); 8603 return err; 8604 } 8605 8606 /* 8607 * drop subtree rooted at tree block 'node'. 8608 * 8609 * NOTE: this function will unlock and release tree block 'node' 8610 * only used by relocation code 8611 */ 8612 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8613 struct btrfs_root *root, 8614 struct extent_buffer *node, 8615 struct extent_buffer *parent) 8616 { 8617 struct btrfs_path *path; 8618 struct walk_control *wc; 8619 int level; 8620 int parent_level; 8621 int ret = 0; 8622 int wret; 8623 8624 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8625 8626 path = btrfs_alloc_path(); 8627 if (!path) 8628 return -ENOMEM; 8629 8630 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8631 if (!wc) { 8632 btrfs_free_path(path); 8633 return -ENOMEM; 8634 } 8635 8636 btrfs_assert_tree_locked(parent); 8637 parent_level = btrfs_header_level(parent); 8638 extent_buffer_get(parent); 8639 path->nodes[parent_level] = parent; 8640 path->slots[parent_level] = btrfs_header_nritems(parent); 8641 8642 btrfs_assert_tree_locked(node); 8643 level = btrfs_header_level(node); 8644 path->nodes[level] = node; 8645 path->slots[level] = 0; 8646 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8647 8648 wc->refs[parent_level] = 1; 8649 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8650 wc->level = level; 8651 wc->shared_level = -1; 8652 wc->stage = DROP_REFERENCE; 8653 wc->update_ref = 0; 8654 wc->keep_locks = 1; 8655 wc->for_reloc = 1; 8656 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8657 8658 while (1) { 8659 wret = walk_down_tree(trans, root, path, wc); 8660 if (wret < 0) { 8661 ret = wret; 8662 break; 8663 } 8664 8665 wret = walk_up_tree(trans, root, path, wc, parent_level); 8666 if (wret < 0) 8667 ret = wret; 8668 if (wret != 0) 8669 break; 8670 } 8671 8672 kfree(wc); 8673 btrfs_free_path(path); 8674 return ret; 8675 } 8676 8677 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8678 { 8679 u64 num_devices; 8680 u64 stripped; 8681 8682 /* 8683 * if restripe for this chunk_type is on pick target profile and 8684 * return, otherwise do the usual balance 8685 */ 8686 stripped = get_restripe_target(root->fs_info, flags); 8687 if (stripped) 8688 return extended_to_chunk(stripped); 8689 8690 num_devices = root->fs_info->fs_devices->rw_devices; 8691 8692 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8693 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8694 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8695 8696 if (num_devices == 1) { 8697 stripped |= BTRFS_BLOCK_GROUP_DUP; 8698 stripped = flags & ~stripped; 8699 8700 /* turn raid0 into single device chunks */ 8701 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8702 return stripped; 8703 8704 /* turn mirroring into duplication */ 8705 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8706 BTRFS_BLOCK_GROUP_RAID10)) 8707 return stripped | BTRFS_BLOCK_GROUP_DUP; 8708 } else { 8709 /* they already had raid on here, just return */ 8710 if (flags & stripped) 8711 return flags; 8712 8713 stripped |= BTRFS_BLOCK_GROUP_DUP; 8714 stripped = flags & ~stripped; 8715 8716 /* switch duplicated blocks with raid1 */ 8717 if (flags & BTRFS_BLOCK_GROUP_DUP) 8718 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8719 8720 /* this is drive concat, leave it alone */ 8721 } 8722 8723 return flags; 8724 } 8725 8726 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8727 { 8728 struct btrfs_space_info *sinfo = cache->space_info; 8729 u64 num_bytes; 8730 u64 min_allocable_bytes; 8731 int ret = -ENOSPC; 8732 8733 8734 /* 8735 * We need some metadata space and system metadata space for 8736 * allocating chunks in some corner cases until we force to set 8737 * it to be readonly. 8738 */ 8739 if ((sinfo->flags & 8740 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8741 !force) 8742 min_allocable_bytes = 1 * 1024 * 1024; 8743 else 8744 min_allocable_bytes = 0; 8745 8746 spin_lock(&sinfo->lock); 8747 spin_lock(&cache->lock); 8748 8749 if (cache->ro) { 8750 ret = 0; 8751 goto out; 8752 } 8753 8754 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8755 cache->bytes_super - btrfs_block_group_used(&cache->item); 8756 8757 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8758 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8759 min_allocable_bytes <= sinfo->total_bytes) { 8760 sinfo->bytes_readonly += num_bytes; 8761 cache->ro = 1; 8762 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8763 ret = 0; 8764 } 8765 out: 8766 spin_unlock(&cache->lock); 8767 spin_unlock(&sinfo->lock); 8768 return ret; 8769 } 8770 8771 int btrfs_set_block_group_ro(struct btrfs_root *root, 8772 struct btrfs_block_group_cache *cache) 8773 8774 { 8775 struct btrfs_trans_handle *trans; 8776 u64 alloc_flags; 8777 int ret; 8778 8779 BUG_ON(cache->ro); 8780 8781 again: 8782 trans = btrfs_join_transaction(root); 8783 if (IS_ERR(trans)) 8784 return PTR_ERR(trans); 8785 8786 /* 8787 * we're not allowed to set block groups readonly after the dirty 8788 * block groups cache has started writing. If it already started, 8789 * back off and let this transaction commit 8790 */ 8791 mutex_lock(&root->fs_info->ro_block_group_mutex); 8792 if (trans->transaction->dirty_bg_run) { 8793 u64 transid = trans->transid; 8794 8795 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8796 btrfs_end_transaction(trans, root); 8797 8798 ret = btrfs_wait_for_commit(root, transid); 8799 if (ret) 8800 return ret; 8801 goto again; 8802 } 8803 8804 /* 8805 * if we are changing raid levels, try to allocate a corresponding 8806 * block group with the new raid level. 8807 */ 8808 alloc_flags = update_block_group_flags(root, cache->flags); 8809 if (alloc_flags != cache->flags) { 8810 ret = do_chunk_alloc(trans, root, alloc_flags, 8811 CHUNK_ALLOC_FORCE); 8812 /* 8813 * ENOSPC is allowed here, we may have enough space 8814 * already allocated at the new raid level to 8815 * carry on 8816 */ 8817 if (ret == -ENOSPC) 8818 ret = 0; 8819 if (ret < 0) 8820 goto out; 8821 } 8822 8823 ret = set_block_group_ro(cache, 0); 8824 if (!ret) 8825 goto out; 8826 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8827 ret = do_chunk_alloc(trans, root, alloc_flags, 8828 CHUNK_ALLOC_FORCE); 8829 if (ret < 0) 8830 goto out; 8831 ret = set_block_group_ro(cache, 0); 8832 out: 8833 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8834 alloc_flags = update_block_group_flags(root, cache->flags); 8835 lock_chunks(root->fs_info->chunk_root); 8836 check_system_chunk(trans, root, alloc_flags); 8837 unlock_chunks(root->fs_info->chunk_root); 8838 } 8839 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8840 8841 btrfs_end_transaction(trans, root); 8842 return ret; 8843 } 8844 8845 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8846 struct btrfs_root *root, u64 type) 8847 { 8848 u64 alloc_flags = get_alloc_profile(root, type); 8849 return do_chunk_alloc(trans, root, alloc_flags, 8850 CHUNK_ALLOC_FORCE); 8851 } 8852 8853 /* 8854 * helper to account the unused space of all the readonly block group in the 8855 * space_info. takes mirrors into account. 8856 */ 8857 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8858 { 8859 struct btrfs_block_group_cache *block_group; 8860 u64 free_bytes = 0; 8861 int factor; 8862 8863 /* It's df, we don't care if it's racey */ 8864 if (list_empty(&sinfo->ro_bgs)) 8865 return 0; 8866 8867 spin_lock(&sinfo->lock); 8868 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8869 spin_lock(&block_group->lock); 8870 8871 if (!block_group->ro) { 8872 spin_unlock(&block_group->lock); 8873 continue; 8874 } 8875 8876 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8877 BTRFS_BLOCK_GROUP_RAID10 | 8878 BTRFS_BLOCK_GROUP_DUP)) 8879 factor = 2; 8880 else 8881 factor = 1; 8882 8883 free_bytes += (block_group->key.offset - 8884 btrfs_block_group_used(&block_group->item)) * 8885 factor; 8886 8887 spin_unlock(&block_group->lock); 8888 } 8889 spin_unlock(&sinfo->lock); 8890 8891 return free_bytes; 8892 } 8893 8894 void btrfs_set_block_group_rw(struct btrfs_root *root, 8895 struct btrfs_block_group_cache *cache) 8896 { 8897 struct btrfs_space_info *sinfo = cache->space_info; 8898 u64 num_bytes; 8899 8900 BUG_ON(!cache->ro); 8901 8902 spin_lock(&sinfo->lock); 8903 spin_lock(&cache->lock); 8904 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8905 cache->bytes_super - btrfs_block_group_used(&cache->item); 8906 sinfo->bytes_readonly -= num_bytes; 8907 cache->ro = 0; 8908 list_del_init(&cache->ro_list); 8909 spin_unlock(&cache->lock); 8910 spin_unlock(&sinfo->lock); 8911 } 8912 8913 /* 8914 * checks to see if its even possible to relocate this block group. 8915 * 8916 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8917 * ok to go ahead and try. 8918 */ 8919 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8920 { 8921 struct btrfs_block_group_cache *block_group; 8922 struct btrfs_space_info *space_info; 8923 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8924 struct btrfs_device *device; 8925 struct btrfs_trans_handle *trans; 8926 u64 min_free; 8927 u64 dev_min = 1; 8928 u64 dev_nr = 0; 8929 u64 target; 8930 int index; 8931 int full = 0; 8932 int ret = 0; 8933 8934 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8935 8936 /* odd, couldn't find the block group, leave it alone */ 8937 if (!block_group) 8938 return -1; 8939 8940 min_free = btrfs_block_group_used(&block_group->item); 8941 8942 /* no bytes used, we're good */ 8943 if (!min_free) 8944 goto out; 8945 8946 space_info = block_group->space_info; 8947 spin_lock(&space_info->lock); 8948 8949 full = space_info->full; 8950 8951 /* 8952 * if this is the last block group we have in this space, we can't 8953 * relocate it unless we're able to allocate a new chunk below. 8954 * 8955 * Otherwise, we need to make sure we have room in the space to handle 8956 * all of the extents from this block group. If we can, we're good 8957 */ 8958 if ((space_info->total_bytes != block_group->key.offset) && 8959 (space_info->bytes_used + space_info->bytes_reserved + 8960 space_info->bytes_pinned + space_info->bytes_readonly + 8961 min_free < space_info->total_bytes)) { 8962 spin_unlock(&space_info->lock); 8963 goto out; 8964 } 8965 spin_unlock(&space_info->lock); 8966 8967 /* 8968 * ok we don't have enough space, but maybe we have free space on our 8969 * devices to allocate new chunks for relocation, so loop through our 8970 * alloc devices and guess if we have enough space. if this block 8971 * group is going to be restriped, run checks against the target 8972 * profile instead of the current one. 8973 */ 8974 ret = -1; 8975 8976 /* 8977 * index: 8978 * 0: raid10 8979 * 1: raid1 8980 * 2: dup 8981 * 3: raid0 8982 * 4: single 8983 */ 8984 target = get_restripe_target(root->fs_info, block_group->flags); 8985 if (target) { 8986 index = __get_raid_index(extended_to_chunk(target)); 8987 } else { 8988 /* 8989 * this is just a balance, so if we were marked as full 8990 * we know there is no space for a new chunk 8991 */ 8992 if (full) 8993 goto out; 8994 8995 index = get_block_group_index(block_group); 8996 } 8997 8998 if (index == BTRFS_RAID_RAID10) { 8999 dev_min = 4; 9000 /* Divide by 2 */ 9001 min_free >>= 1; 9002 } else if (index == BTRFS_RAID_RAID1) { 9003 dev_min = 2; 9004 } else if (index == BTRFS_RAID_DUP) { 9005 /* Multiply by 2 */ 9006 min_free <<= 1; 9007 } else if (index == BTRFS_RAID_RAID0) { 9008 dev_min = fs_devices->rw_devices; 9009 min_free = div64_u64(min_free, dev_min); 9010 } 9011 9012 /* We need to do this so that we can look at pending chunks */ 9013 trans = btrfs_join_transaction(root); 9014 if (IS_ERR(trans)) { 9015 ret = PTR_ERR(trans); 9016 goto out; 9017 } 9018 9019 mutex_lock(&root->fs_info->chunk_mutex); 9020 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9021 u64 dev_offset; 9022 9023 /* 9024 * check to make sure we can actually find a chunk with enough 9025 * space to fit our block group in. 9026 */ 9027 if (device->total_bytes > device->bytes_used + min_free && 9028 !device->is_tgtdev_for_dev_replace) { 9029 ret = find_free_dev_extent(trans, device, min_free, 9030 &dev_offset, NULL); 9031 if (!ret) 9032 dev_nr++; 9033 9034 if (dev_nr >= dev_min) 9035 break; 9036 9037 ret = -1; 9038 } 9039 } 9040 mutex_unlock(&root->fs_info->chunk_mutex); 9041 btrfs_end_transaction(trans, root); 9042 out: 9043 btrfs_put_block_group(block_group); 9044 return ret; 9045 } 9046 9047 static int find_first_block_group(struct btrfs_root *root, 9048 struct btrfs_path *path, struct btrfs_key *key) 9049 { 9050 int ret = 0; 9051 struct btrfs_key found_key; 9052 struct extent_buffer *leaf; 9053 int slot; 9054 9055 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9056 if (ret < 0) 9057 goto out; 9058 9059 while (1) { 9060 slot = path->slots[0]; 9061 leaf = path->nodes[0]; 9062 if (slot >= btrfs_header_nritems(leaf)) { 9063 ret = btrfs_next_leaf(root, path); 9064 if (ret == 0) 9065 continue; 9066 if (ret < 0) 9067 goto out; 9068 break; 9069 } 9070 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9071 9072 if (found_key.objectid >= key->objectid && 9073 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9074 ret = 0; 9075 goto out; 9076 } 9077 path->slots[0]++; 9078 } 9079 out: 9080 return ret; 9081 } 9082 9083 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9084 { 9085 struct btrfs_block_group_cache *block_group; 9086 u64 last = 0; 9087 9088 while (1) { 9089 struct inode *inode; 9090 9091 block_group = btrfs_lookup_first_block_group(info, last); 9092 while (block_group) { 9093 spin_lock(&block_group->lock); 9094 if (block_group->iref) 9095 break; 9096 spin_unlock(&block_group->lock); 9097 block_group = next_block_group(info->tree_root, 9098 block_group); 9099 } 9100 if (!block_group) { 9101 if (last == 0) 9102 break; 9103 last = 0; 9104 continue; 9105 } 9106 9107 inode = block_group->inode; 9108 block_group->iref = 0; 9109 block_group->inode = NULL; 9110 spin_unlock(&block_group->lock); 9111 iput(inode); 9112 last = block_group->key.objectid + block_group->key.offset; 9113 btrfs_put_block_group(block_group); 9114 } 9115 } 9116 9117 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9118 { 9119 struct btrfs_block_group_cache *block_group; 9120 struct btrfs_space_info *space_info; 9121 struct btrfs_caching_control *caching_ctl; 9122 struct rb_node *n; 9123 9124 down_write(&info->commit_root_sem); 9125 while (!list_empty(&info->caching_block_groups)) { 9126 caching_ctl = list_entry(info->caching_block_groups.next, 9127 struct btrfs_caching_control, list); 9128 list_del(&caching_ctl->list); 9129 put_caching_control(caching_ctl); 9130 } 9131 up_write(&info->commit_root_sem); 9132 9133 spin_lock(&info->unused_bgs_lock); 9134 while (!list_empty(&info->unused_bgs)) { 9135 block_group = list_first_entry(&info->unused_bgs, 9136 struct btrfs_block_group_cache, 9137 bg_list); 9138 list_del_init(&block_group->bg_list); 9139 btrfs_put_block_group(block_group); 9140 } 9141 spin_unlock(&info->unused_bgs_lock); 9142 9143 spin_lock(&info->block_group_cache_lock); 9144 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9145 block_group = rb_entry(n, struct btrfs_block_group_cache, 9146 cache_node); 9147 rb_erase(&block_group->cache_node, 9148 &info->block_group_cache_tree); 9149 RB_CLEAR_NODE(&block_group->cache_node); 9150 spin_unlock(&info->block_group_cache_lock); 9151 9152 down_write(&block_group->space_info->groups_sem); 9153 list_del(&block_group->list); 9154 up_write(&block_group->space_info->groups_sem); 9155 9156 if (block_group->cached == BTRFS_CACHE_STARTED) 9157 wait_block_group_cache_done(block_group); 9158 9159 /* 9160 * We haven't cached this block group, which means we could 9161 * possibly have excluded extents on this block group. 9162 */ 9163 if (block_group->cached == BTRFS_CACHE_NO || 9164 block_group->cached == BTRFS_CACHE_ERROR) 9165 free_excluded_extents(info->extent_root, block_group); 9166 9167 btrfs_remove_free_space_cache(block_group); 9168 btrfs_put_block_group(block_group); 9169 9170 spin_lock(&info->block_group_cache_lock); 9171 } 9172 spin_unlock(&info->block_group_cache_lock); 9173 9174 /* now that all the block groups are freed, go through and 9175 * free all the space_info structs. This is only called during 9176 * the final stages of unmount, and so we know nobody is 9177 * using them. We call synchronize_rcu() once before we start, 9178 * just to be on the safe side. 9179 */ 9180 synchronize_rcu(); 9181 9182 release_global_block_rsv(info); 9183 9184 while (!list_empty(&info->space_info)) { 9185 int i; 9186 9187 space_info = list_entry(info->space_info.next, 9188 struct btrfs_space_info, 9189 list); 9190 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9191 if (WARN_ON(space_info->bytes_pinned > 0 || 9192 space_info->bytes_reserved > 0 || 9193 space_info->bytes_may_use > 0)) { 9194 dump_space_info(space_info, 0, 0); 9195 } 9196 } 9197 list_del(&space_info->list); 9198 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9199 struct kobject *kobj; 9200 kobj = space_info->block_group_kobjs[i]; 9201 space_info->block_group_kobjs[i] = NULL; 9202 if (kobj) { 9203 kobject_del(kobj); 9204 kobject_put(kobj); 9205 } 9206 } 9207 kobject_del(&space_info->kobj); 9208 kobject_put(&space_info->kobj); 9209 } 9210 return 0; 9211 } 9212 9213 static void __link_block_group(struct btrfs_space_info *space_info, 9214 struct btrfs_block_group_cache *cache) 9215 { 9216 int index = get_block_group_index(cache); 9217 bool first = false; 9218 9219 down_write(&space_info->groups_sem); 9220 if (list_empty(&space_info->block_groups[index])) 9221 first = true; 9222 list_add_tail(&cache->list, &space_info->block_groups[index]); 9223 up_write(&space_info->groups_sem); 9224 9225 if (first) { 9226 struct raid_kobject *rkobj; 9227 int ret; 9228 9229 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9230 if (!rkobj) 9231 goto out_err; 9232 rkobj->raid_type = index; 9233 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9234 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9235 "%s", get_raid_name(index)); 9236 if (ret) { 9237 kobject_put(&rkobj->kobj); 9238 goto out_err; 9239 } 9240 space_info->block_group_kobjs[index] = &rkobj->kobj; 9241 } 9242 9243 return; 9244 out_err: 9245 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9246 } 9247 9248 static struct btrfs_block_group_cache * 9249 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9250 { 9251 struct btrfs_block_group_cache *cache; 9252 9253 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9254 if (!cache) 9255 return NULL; 9256 9257 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9258 GFP_NOFS); 9259 if (!cache->free_space_ctl) { 9260 kfree(cache); 9261 return NULL; 9262 } 9263 9264 cache->key.objectid = start; 9265 cache->key.offset = size; 9266 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9267 9268 cache->sectorsize = root->sectorsize; 9269 cache->fs_info = root->fs_info; 9270 cache->full_stripe_len = btrfs_full_stripe_len(root, 9271 &root->fs_info->mapping_tree, 9272 start); 9273 atomic_set(&cache->count, 1); 9274 spin_lock_init(&cache->lock); 9275 init_rwsem(&cache->data_rwsem); 9276 INIT_LIST_HEAD(&cache->list); 9277 INIT_LIST_HEAD(&cache->cluster_list); 9278 INIT_LIST_HEAD(&cache->bg_list); 9279 INIT_LIST_HEAD(&cache->ro_list); 9280 INIT_LIST_HEAD(&cache->dirty_list); 9281 INIT_LIST_HEAD(&cache->io_list); 9282 btrfs_init_free_space_ctl(cache); 9283 atomic_set(&cache->trimming, 0); 9284 9285 return cache; 9286 } 9287 9288 int btrfs_read_block_groups(struct btrfs_root *root) 9289 { 9290 struct btrfs_path *path; 9291 int ret; 9292 struct btrfs_block_group_cache *cache; 9293 struct btrfs_fs_info *info = root->fs_info; 9294 struct btrfs_space_info *space_info; 9295 struct btrfs_key key; 9296 struct btrfs_key found_key; 9297 struct extent_buffer *leaf; 9298 int need_clear = 0; 9299 u64 cache_gen; 9300 9301 root = info->extent_root; 9302 key.objectid = 0; 9303 key.offset = 0; 9304 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9305 path = btrfs_alloc_path(); 9306 if (!path) 9307 return -ENOMEM; 9308 path->reada = 1; 9309 9310 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9311 if (btrfs_test_opt(root, SPACE_CACHE) && 9312 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9313 need_clear = 1; 9314 if (btrfs_test_opt(root, CLEAR_CACHE)) 9315 need_clear = 1; 9316 9317 while (1) { 9318 ret = find_first_block_group(root, path, &key); 9319 if (ret > 0) 9320 break; 9321 if (ret != 0) 9322 goto error; 9323 9324 leaf = path->nodes[0]; 9325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9326 9327 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9328 found_key.offset); 9329 if (!cache) { 9330 ret = -ENOMEM; 9331 goto error; 9332 } 9333 9334 if (need_clear) { 9335 /* 9336 * When we mount with old space cache, we need to 9337 * set BTRFS_DC_CLEAR and set dirty flag. 9338 * 9339 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9340 * truncate the old free space cache inode and 9341 * setup a new one. 9342 * b) Setting 'dirty flag' makes sure that we flush 9343 * the new space cache info onto disk. 9344 */ 9345 if (btrfs_test_opt(root, SPACE_CACHE)) 9346 cache->disk_cache_state = BTRFS_DC_CLEAR; 9347 } 9348 9349 read_extent_buffer(leaf, &cache->item, 9350 btrfs_item_ptr_offset(leaf, path->slots[0]), 9351 sizeof(cache->item)); 9352 cache->flags = btrfs_block_group_flags(&cache->item); 9353 9354 key.objectid = found_key.objectid + found_key.offset; 9355 btrfs_release_path(path); 9356 9357 /* 9358 * We need to exclude the super stripes now so that the space 9359 * info has super bytes accounted for, otherwise we'll think 9360 * we have more space than we actually do. 9361 */ 9362 ret = exclude_super_stripes(root, cache); 9363 if (ret) { 9364 /* 9365 * We may have excluded something, so call this just in 9366 * case. 9367 */ 9368 free_excluded_extents(root, cache); 9369 btrfs_put_block_group(cache); 9370 goto error; 9371 } 9372 9373 /* 9374 * check for two cases, either we are full, and therefore 9375 * don't need to bother with the caching work since we won't 9376 * find any space, or we are empty, and we can just add all 9377 * the space in and be done with it. This saves us _alot_ of 9378 * time, particularly in the full case. 9379 */ 9380 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9381 cache->last_byte_to_unpin = (u64)-1; 9382 cache->cached = BTRFS_CACHE_FINISHED; 9383 free_excluded_extents(root, cache); 9384 } else if (btrfs_block_group_used(&cache->item) == 0) { 9385 cache->last_byte_to_unpin = (u64)-1; 9386 cache->cached = BTRFS_CACHE_FINISHED; 9387 add_new_free_space(cache, root->fs_info, 9388 found_key.objectid, 9389 found_key.objectid + 9390 found_key.offset); 9391 free_excluded_extents(root, cache); 9392 } 9393 9394 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9395 if (ret) { 9396 btrfs_remove_free_space_cache(cache); 9397 btrfs_put_block_group(cache); 9398 goto error; 9399 } 9400 9401 ret = update_space_info(info, cache->flags, found_key.offset, 9402 btrfs_block_group_used(&cache->item), 9403 &space_info); 9404 if (ret) { 9405 btrfs_remove_free_space_cache(cache); 9406 spin_lock(&info->block_group_cache_lock); 9407 rb_erase(&cache->cache_node, 9408 &info->block_group_cache_tree); 9409 RB_CLEAR_NODE(&cache->cache_node); 9410 spin_unlock(&info->block_group_cache_lock); 9411 btrfs_put_block_group(cache); 9412 goto error; 9413 } 9414 9415 cache->space_info = space_info; 9416 spin_lock(&cache->space_info->lock); 9417 cache->space_info->bytes_readonly += cache->bytes_super; 9418 spin_unlock(&cache->space_info->lock); 9419 9420 __link_block_group(space_info, cache); 9421 9422 set_avail_alloc_bits(root->fs_info, cache->flags); 9423 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9424 set_block_group_ro(cache, 1); 9425 } else if (btrfs_block_group_used(&cache->item) == 0) { 9426 spin_lock(&info->unused_bgs_lock); 9427 /* Should always be true but just in case. */ 9428 if (list_empty(&cache->bg_list)) { 9429 btrfs_get_block_group(cache); 9430 list_add_tail(&cache->bg_list, 9431 &info->unused_bgs); 9432 } 9433 spin_unlock(&info->unused_bgs_lock); 9434 } 9435 } 9436 9437 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9438 if (!(get_alloc_profile(root, space_info->flags) & 9439 (BTRFS_BLOCK_GROUP_RAID10 | 9440 BTRFS_BLOCK_GROUP_RAID1 | 9441 BTRFS_BLOCK_GROUP_RAID5 | 9442 BTRFS_BLOCK_GROUP_RAID6 | 9443 BTRFS_BLOCK_GROUP_DUP))) 9444 continue; 9445 /* 9446 * avoid allocating from un-mirrored block group if there are 9447 * mirrored block groups. 9448 */ 9449 list_for_each_entry(cache, 9450 &space_info->block_groups[BTRFS_RAID_RAID0], 9451 list) 9452 set_block_group_ro(cache, 1); 9453 list_for_each_entry(cache, 9454 &space_info->block_groups[BTRFS_RAID_SINGLE], 9455 list) 9456 set_block_group_ro(cache, 1); 9457 } 9458 9459 init_global_block_rsv(info); 9460 ret = 0; 9461 error: 9462 btrfs_free_path(path); 9463 return ret; 9464 } 9465 9466 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9467 struct btrfs_root *root) 9468 { 9469 struct btrfs_block_group_cache *block_group, *tmp; 9470 struct btrfs_root *extent_root = root->fs_info->extent_root; 9471 struct btrfs_block_group_item item; 9472 struct btrfs_key key; 9473 int ret = 0; 9474 9475 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9476 if (ret) 9477 goto next; 9478 9479 spin_lock(&block_group->lock); 9480 memcpy(&item, &block_group->item, sizeof(item)); 9481 memcpy(&key, &block_group->key, sizeof(key)); 9482 spin_unlock(&block_group->lock); 9483 9484 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9485 sizeof(item)); 9486 if (ret) 9487 btrfs_abort_transaction(trans, extent_root, ret); 9488 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9489 key.objectid, key.offset); 9490 if (ret) 9491 btrfs_abort_transaction(trans, extent_root, ret); 9492 next: 9493 list_del_init(&block_group->bg_list); 9494 } 9495 } 9496 9497 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9498 struct btrfs_root *root, u64 bytes_used, 9499 u64 type, u64 chunk_objectid, u64 chunk_offset, 9500 u64 size) 9501 { 9502 int ret; 9503 struct btrfs_root *extent_root; 9504 struct btrfs_block_group_cache *cache; 9505 9506 extent_root = root->fs_info->extent_root; 9507 9508 btrfs_set_log_full_commit(root->fs_info, trans); 9509 9510 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9511 if (!cache) 9512 return -ENOMEM; 9513 9514 btrfs_set_block_group_used(&cache->item, bytes_used); 9515 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9516 btrfs_set_block_group_flags(&cache->item, type); 9517 9518 cache->flags = type; 9519 cache->last_byte_to_unpin = (u64)-1; 9520 cache->cached = BTRFS_CACHE_FINISHED; 9521 ret = exclude_super_stripes(root, cache); 9522 if (ret) { 9523 /* 9524 * We may have excluded something, so call this just in 9525 * case. 9526 */ 9527 free_excluded_extents(root, cache); 9528 btrfs_put_block_group(cache); 9529 return ret; 9530 } 9531 9532 add_new_free_space(cache, root->fs_info, chunk_offset, 9533 chunk_offset + size); 9534 9535 free_excluded_extents(root, cache); 9536 9537 /* 9538 * Call to ensure the corresponding space_info object is created and 9539 * assigned to our block group, but don't update its counters just yet. 9540 * We want our bg to be added to the rbtree with its ->space_info set. 9541 */ 9542 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9543 &cache->space_info); 9544 if (ret) { 9545 btrfs_remove_free_space_cache(cache); 9546 btrfs_put_block_group(cache); 9547 return ret; 9548 } 9549 9550 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9551 if (ret) { 9552 btrfs_remove_free_space_cache(cache); 9553 btrfs_put_block_group(cache); 9554 return ret; 9555 } 9556 9557 /* 9558 * Now that our block group has its ->space_info set and is inserted in 9559 * the rbtree, update the space info's counters. 9560 */ 9561 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9562 &cache->space_info); 9563 if (ret) { 9564 btrfs_remove_free_space_cache(cache); 9565 spin_lock(&root->fs_info->block_group_cache_lock); 9566 rb_erase(&cache->cache_node, 9567 &root->fs_info->block_group_cache_tree); 9568 RB_CLEAR_NODE(&cache->cache_node); 9569 spin_unlock(&root->fs_info->block_group_cache_lock); 9570 btrfs_put_block_group(cache); 9571 return ret; 9572 } 9573 update_global_block_rsv(root->fs_info); 9574 9575 spin_lock(&cache->space_info->lock); 9576 cache->space_info->bytes_readonly += cache->bytes_super; 9577 spin_unlock(&cache->space_info->lock); 9578 9579 __link_block_group(cache->space_info, cache); 9580 9581 list_add_tail(&cache->bg_list, &trans->new_bgs); 9582 9583 set_avail_alloc_bits(extent_root->fs_info, type); 9584 9585 return 0; 9586 } 9587 9588 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9589 { 9590 u64 extra_flags = chunk_to_extended(flags) & 9591 BTRFS_EXTENDED_PROFILE_MASK; 9592 9593 write_seqlock(&fs_info->profiles_lock); 9594 if (flags & BTRFS_BLOCK_GROUP_DATA) 9595 fs_info->avail_data_alloc_bits &= ~extra_flags; 9596 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9597 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9598 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9599 fs_info->avail_system_alloc_bits &= ~extra_flags; 9600 write_sequnlock(&fs_info->profiles_lock); 9601 } 9602 9603 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9604 struct btrfs_root *root, u64 group_start, 9605 struct extent_map *em) 9606 { 9607 struct btrfs_path *path; 9608 struct btrfs_block_group_cache *block_group; 9609 struct btrfs_free_cluster *cluster; 9610 struct btrfs_root *tree_root = root->fs_info->tree_root; 9611 struct btrfs_key key; 9612 struct inode *inode; 9613 struct kobject *kobj = NULL; 9614 int ret; 9615 int index; 9616 int factor; 9617 struct btrfs_caching_control *caching_ctl = NULL; 9618 bool remove_em; 9619 9620 root = root->fs_info->extent_root; 9621 9622 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9623 BUG_ON(!block_group); 9624 BUG_ON(!block_group->ro); 9625 9626 /* 9627 * Free the reserved super bytes from this block group before 9628 * remove it. 9629 */ 9630 free_excluded_extents(root, block_group); 9631 9632 memcpy(&key, &block_group->key, sizeof(key)); 9633 index = get_block_group_index(block_group); 9634 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9635 BTRFS_BLOCK_GROUP_RAID1 | 9636 BTRFS_BLOCK_GROUP_RAID10)) 9637 factor = 2; 9638 else 9639 factor = 1; 9640 9641 /* make sure this block group isn't part of an allocation cluster */ 9642 cluster = &root->fs_info->data_alloc_cluster; 9643 spin_lock(&cluster->refill_lock); 9644 btrfs_return_cluster_to_free_space(block_group, cluster); 9645 spin_unlock(&cluster->refill_lock); 9646 9647 /* 9648 * make sure this block group isn't part of a metadata 9649 * allocation cluster 9650 */ 9651 cluster = &root->fs_info->meta_alloc_cluster; 9652 spin_lock(&cluster->refill_lock); 9653 btrfs_return_cluster_to_free_space(block_group, cluster); 9654 spin_unlock(&cluster->refill_lock); 9655 9656 path = btrfs_alloc_path(); 9657 if (!path) { 9658 ret = -ENOMEM; 9659 goto out; 9660 } 9661 9662 /* 9663 * get the inode first so any iput calls done for the io_list 9664 * aren't the final iput (no unlinks allowed now) 9665 */ 9666 inode = lookup_free_space_inode(tree_root, block_group, path); 9667 9668 mutex_lock(&trans->transaction->cache_write_mutex); 9669 /* 9670 * make sure our free spache cache IO is done before remove the 9671 * free space inode 9672 */ 9673 spin_lock(&trans->transaction->dirty_bgs_lock); 9674 if (!list_empty(&block_group->io_list)) { 9675 list_del_init(&block_group->io_list); 9676 9677 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9678 9679 spin_unlock(&trans->transaction->dirty_bgs_lock); 9680 btrfs_wait_cache_io(root, trans, block_group, 9681 &block_group->io_ctl, path, 9682 block_group->key.objectid); 9683 btrfs_put_block_group(block_group); 9684 spin_lock(&trans->transaction->dirty_bgs_lock); 9685 } 9686 9687 if (!list_empty(&block_group->dirty_list)) { 9688 list_del_init(&block_group->dirty_list); 9689 btrfs_put_block_group(block_group); 9690 } 9691 spin_unlock(&trans->transaction->dirty_bgs_lock); 9692 mutex_unlock(&trans->transaction->cache_write_mutex); 9693 9694 if (!IS_ERR(inode)) { 9695 ret = btrfs_orphan_add(trans, inode); 9696 if (ret) { 9697 btrfs_add_delayed_iput(inode); 9698 goto out; 9699 } 9700 clear_nlink(inode); 9701 /* One for the block groups ref */ 9702 spin_lock(&block_group->lock); 9703 if (block_group->iref) { 9704 block_group->iref = 0; 9705 block_group->inode = NULL; 9706 spin_unlock(&block_group->lock); 9707 iput(inode); 9708 } else { 9709 spin_unlock(&block_group->lock); 9710 } 9711 /* One for our lookup ref */ 9712 btrfs_add_delayed_iput(inode); 9713 } 9714 9715 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9716 key.offset = block_group->key.objectid; 9717 key.type = 0; 9718 9719 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9720 if (ret < 0) 9721 goto out; 9722 if (ret > 0) 9723 btrfs_release_path(path); 9724 if (ret == 0) { 9725 ret = btrfs_del_item(trans, tree_root, path); 9726 if (ret) 9727 goto out; 9728 btrfs_release_path(path); 9729 } 9730 9731 spin_lock(&root->fs_info->block_group_cache_lock); 9732 rb_erase(&block_group->cache_node, 9733 &root->fs_info->block_group_cache_tree); 9734 RB_CLEAR_NODE(&block_group->cache_node); 9735 9736 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9737 root->fs_info->first_logical_byte = (u64)-1; 9738 spin_unlock(&root->fs_info->block_group_cache_lock); 9739 9740 down_write(&block_group->space_info->groups_sem); 9741 /* 9742 * we must use list_del_init so people can check to see if they 9743 * are still on the list after taking the semaphore 9744 */ 9745 list_del_init(&block_group->list); 9746 if (list_empty(&block_group->space_info->block_groups[index])) { 9747 kobj = block_group->space_info->block_group_kobjs[index]; 9748 block_group->space_info->block_group_kobjs[index] = NULL; 9749 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9750 } 9751 up_write(&block_group->space_info->groups_sem); 9752 if (kobj) { 9753 kobject_del(kobj); 9754 kobject_put(kobj); 9755 } 9756 9757 if (block_group->has_caching_ctl) 9758 caching_ctl = get_caching_control(block_group); 9759 if (block_group->cached == BTRFS_CACHE_STARTED) 9760 wait_block_group_cache_done(block_group); 9761 if (block_group->has_caching_ctl) { 9762 down_write(&root->fs_info->commit_root_sem); 9763 if (!caching_ctl) { 9764 struct btrfs_caching_control *ctl; 9765 9766 list_for_each_entry(ctl, 9767 &root->fs_info->caching_block_groups, list) 9768 if (ctl->block_group == block_group) { 9769 caching_ctl = ctl; 9770 atomic_inc(&caching_ctl->count); 9771 break; 9772 } 9773 } 9774 if (caching_ctl) 9775 list_del_init(&caching_ctl->list); 9776 up_write(&root->fs_info->commit_root_sem); 9777 if (caching_ctl) { 9778 /* Once for the caching bgs list and once for us. */ 9779 put_caching_control(caching_ctl); 9780 put_caching_control(caching_ctl); 9781 } 9782 } 9783 9784 spin_lock(&trans->transaction->dirty_bgs_lock); 9785 if (!list_empty(&block_group->dirty_list)) { 9786 WARN_ON(1); 9787 } 9788 if (!list_empty(&block_group->io_list)) { 9789 WARN_ON(1); 9790 } 9791 spin_unlock(&trans->transaction->dirty_bgs_lock); 9792 btrfs_remove_free_space_cache(block_group); 9793 9794 spin_lock(&block_group->space_info->lock); 9795 list_del_init(&block_group->ro_list); 9796 9797 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9798 WARN_ON(block_group->space_info->total_bytes 9799 < block_group->key.offset); 9800 WARN_ON(block_group->space_info->bytes_readonly 9801 < block_group->key.offset); 9802 WARN_ON(block_group->space_info->disk_total 9803 < block_group->key.offset * factor); 9804 } 9805 block_group->space_info->total_bytes -= block_group->key.offset; 9806 block_group->space_info->bytes_readonly -= block_group->key.offset; 9807 block_group->space_info->disk_total -= block_group->key.offset * factor; 9808 9809 spin_unlock(&block_group->space_info->lock); 9810 9811 memcpy(&key, &block_group->key, sizeof(key)); 9812 9813 lock_chunks(root); 9814 if (!list_empty(&em->list)) { 9815 /* We're in the transaction->pending_chunks list. */ 9816 free_extent_map(em); 9817 } 9818 spin_lock(&block_group->lock); 9819 block_group->removed = 1; 9820 /* 9821 * At this point trimming can't start on this block group, because we 9822 * removed the block group from the tree fs_info->block_group_cache_tree 9823 * so no one can't find it anymore and even if someone already got this 9824 * block group before we removed it from the rbtree, they have already 9825 * incremented block_group->trimming - if they didn't, they won't find 9826 * any free space entries because we already removed them all when we 9827 * called btrfs_remove_free_space_cache(). 9828 * 9829 * And we must not remove the extent map from the fs_info->mapping_tree 9830 * to prevent the same logical address range and physical device space 9831 * ranges from being reused for a new block group. This is because our 9832 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9833 * completely transactionless, so while it is trimming a range the 9834 * currently running transaction might finish and a new one start, 9835 * allowing for new block groups to be created that can reuse the same 9836 * physical device locations unless we take this special care. 9837 */ 9838 remove_em = (atomic_read(&block_group->trimming) == 0); 9839 /* 9840 * Make sure a trimmer task always sees the em in the pinned_chunks list 9841 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9842 * before checking block_group->removed). 9843 */ 9844 if (!remove_em) { 9845 /* 9846 * Our em might be in trans->transaction->pending_chunks which 9847 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9848 * and so is the fs_info->pinned_chunks list. 9849 * 9850 * So at this point we must be holding the chunk_mutex to avoid 9851 * any races with chunk allocation (more specifically at 9852 * volumes.c:contains_pending_extent()), to ensure it always 9853 * sees the em, either in the pending_chunks list or in the 9854 * pinned_chunks list. 9855 */ 9856 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9857 } 9858 spin_unlock(&block_group->lock); 9859 9860 if (remove_em) { 9861 struct extent_map_tree *em_tree; 9862 9863 em_tree = &root->fs_info->mapping_tree.map_tree; 9864 write_lock(&em_tree->lock); 9865 /* 9866 * The em might be in the pending_chunks list, so make sure the 9867 * chunk mutex is locked, since remove_extent_mapping() will 9868 * delete us from that list. 9869 */ 9870 remove_extent_mapping(em_tree, em); 9871 write_unlock(&em_tree->lock); 9872 /* once for the tree */ 9873 free_extent_map(em); 9874 } 9875 9876 unlock_chunks(root); 9877 9878 btrfs_put_block_group(block_group); 9879 btrfs_put_block_group(block_group); 9880 9881 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9882 if (ret > 0) 9883 ret = -EIO; 9884 if (ret < 0) 9885 goto out; 9886 9887 ret = btrfs_del_item(trans, root, path); 9888 out: 9889 btrfs_free_path(path); 9890 return ret; 9891 } 9892 9893 /* 9894 * Process the unused_bgs list and remove any that don't have any allocated 9895 * space inside of them. 9896 */ 9897 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9898 { 9899 struct btrfs_block_group_cache *block_group; 9900 struct btrfs_space_info *space_info; 9901 struct btrfs_root *root = fs_info->extent_root; 9902 struct btrfs_trans_handle *trans; 9903 int ret = 0; 9904 9905 if (!fs_info->open) 9906 return; 9907 9908 spin_lock(&fs_info->unused_bgs_lock); 9909 while (!list_empty(&fs_info->unused_bgs)) { 9910 u64 start, end; 9911 9912 block_group = list_first_entry(&fs_info->unused_bgs, 9913 struct btrfs_block_group_cache, 9914 bg_list); 9915 space_info = block_group->space_info; 9916 list_del_init(&block_group->bg_list); 9917 if (ret || btrfs_mixed_space_info(space_info)) { 9918 btrfs_put_block_group(block_group); 9919 continue; 9920 } 9921 spin_unlock(&fs_info->unused_bgs_lock); 9922 9923 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 9924 9925 /* Don't want to race with allocators so take the groups_sem */ 9926 down_write(&space_info->groups_sem); 9927 spin_lock(&block_group->lock); 9928 if (block_group->reserved || 9929 btrfs_block_group_used(&block_group->item) || 9930 block_group->ro) { 9931 /* 9932 * We want to bail if we made new allocations or have 9933 * outstanding allocations in this block group. We do 9934 * the ro check in case balance is currently acting on 9935 * this block group. 9936 */ 9937 spin_unlock(&block_group->lock); 9938 up_write(&space_info->groups_sem); 9939 goto next; 9940 } 9941 spin_unlock(&block_group->lock); 9942 9943 /* We don't want to force the issue, only flip if it's ok. */ 9944 ret = set_block_group_ro(block_group, 0); 9945 up_write(&space_info->groups_sem); 9946 if (ret < 0) { 9947 ret = 0; 9948 goto next; 9949 } 9950 9951 /* 9952 * Want to do this before we do anything else so we can recover 9953 * properly if we fail to join the transaction. 9954 */ 9955 /* 1 for btrfs_orphan_reserve_metadata() */ 9956 trans = btrfs_start_transaction(root, 1); 9957 if (IS_ERR(trans)) { 9958 btrfs_set_block_group_rw(root, block_group); 9959 ret = PTR_ERR(trans); 9960 goto next; 9961 } 9962 9963 /* 9964 * We could have pending pinned extents for this block group, 9965 * just delete them, we don't care about them anymore. 9966 */ 9967 start = block_group->key.objectid; 9968 end = start + block_group->key.offset - 1; 9969 /* 9970 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9971 * btrfs_finish_extent_commit(). If we are at transaction N, 9972 * another task might be running finish_extent_commit() for the 9973 * previous transaction N - 1, and have seen a range belonging 9974 * to the block group in freed_extents[] before we were able to 9975 * clear the whole block group range from freed_extents[]. This 9976 * means that task can lookup for the block group after we 9977 * unpinned it from freed_extents[] and removed it, leading to 9978 * a BUG_ON() at btrfs_unpin_extent_range(). 9979 */ 9980 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9981 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9982 EXTENT_DIRTY, GFP_NOFS); 9983 if (ret) { 9984 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9985 btrfs_set_block_group_rw(root, block_group); 9986 goto end_trans; 9987 } 9988 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9989 EXTENT_DIRTY, GFP_NOFS); 9990 if (ret) { 9991 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9992 btrfs_set_block_group_rw(root, block_group); 9993 goto end_trans; 9994 } 9995 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9996 9997 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9998 spin_lock(&space_info->lock); 9999 spin_lock(&block_group->lock); 10000 10001 space_info->bytes_pinned -= block_group->pinned; 10002 space_info->bytes_readonly += block_group->pinned; 10003 percpu_counter_add(&space_info->total_bytes_pinned, 10004 -block_group->pinned); 10005 block_group->pinned = 0; 10006 10007 spin_unlock(&block_group->lock); 10008 spin_unlock(&space_info->lock); 10009 10010 /* 10011 * Btrfs_remove_chunk will abort the transaction if things go 10012 * horribly wrong. 10013 */ 10014 ret = btrfs_remove_chunk(trans, root, 10015 block_group->key.objectid); 10016 end_trans: 10017 btrfs_end_transaction(trans, root); 10018 next: 10019 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 10020 btrfs_put_block_group(block_group); 10021 spin_lock(&fs_info->unused_bgs_lock); 10022 } 10023 spin_unlock(&fs_info->unused_bgs_lock); 10024 } 10025 10026 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10027 { 10028 struct btrfs_space_info *space_info; 10029 struct btrfs_super_block *disk_super; 10030 u64 features; 10031 u64 flags; 10032 int mixed = 0; 10033 int ret; 10034 10035 disk_super = fs_info->super_copy; 10036 if (!btrfs_super_root(disk_super)) 10037 return 1; 10038 10039 features = btrfs_super_incompat_flags(disk_super); 10040 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10041 mixed = 1; 10042 10043 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10044 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10045 if (ret) 10046 goto out; 10047 10048 if (mixed) { 10049 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10050 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10051 } else { 10052 flags = BTRFS_BLOCK_GROUP_METADATA; 10053 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10054 if (ret) 10055 goto out; 10056 10057 flags = BTRFS_BLOCK_GROUP_DATA; 10058 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10059 } 10060 out: 10061 return ret; 10062 } 10063 10064 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10065 { 10066 return unpin_extent_range(root, start, end, false); 10067 } 10068 10069 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10070 { 10071 struct btrfs_fs_info *fs_info = root->fs_info; 10072 struct btrfs_block_group_cache *cache = NULL; 10073 u64 group_trimmed; 10074 u64 start; 10075 u64 end; 10076 u64 trimmed = 0; 10077 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10078 int ret = 0; 10079 10080 /* 10081 * try to trim all FS space, our block group may start from non-zero. 10082 */ 10083 if (range->len == total_bytes) 10084 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10085 else 10086 cache = btrfs_lookup_block_group(fs_info, range->start); 10087 10088 while (cache) { 10089 if (cache->key.objectid >= (range->start + range->len)) { 10090 btrfs_put_block_group(cache); 10091 break; 10092 } 10093 10094 start = max(range->start, cache->key.objectid); 10095 end = min(range->start + range->len, 10096 cache->key.objectid + cache->key.offset); 10097 10098 if (end - start >= range->minlen) { 10099 if (!block_group_cache_done(cache)) { 10100 ret = cache_block_group(cache, 0); 10101 if (ret) { 10102 btrfs_put_block_group(cache); 10103 break; 10104 } 10105 ret = wait_block_group_cache_done(cache); 10106 if (ret) { 10107 btrfs_put_block_group(cache); 10108 break; 10109 } 10110 } 10111 ret = btrfs_trim_block_group(cache, 10112 &group_trimmed, 10113 start, 10114 end, 10115 range->minlen); 10116 10117 trimmed += group_trimmed; 10118 if (ret) { 10119 btrfs_put_block_group(cache); 10120 break; 10121 } 10122 } 10123 10124 cache = next_block_group(fs_info->tree_root, cache); 10125 } 10126 10127 range->len = trimmed; 10128 return ret; 10129 } 10130 10131 /* 10132 * btrfs_{start,end}_write_no_snapshoting() are similar to 10133 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10134 * data into the page cache through nocow before the subvolume is snapshoted, 10135 * but flush the data into disk after the snapshot creation, or to prevent 10136 * operations while snapshoting is ongoing and that cause the snapshot to be 10137 * inconsistent (writes followed by expanding truncates for example). 10138 */ 10139 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10140 { 10141 percpu_counter_dec(&root->subv_writers->counter); 10142 /* 10143 * Make sure counter is updated before we wake up 10144 * waiters. 10145 */ 10146 smp_mb(); 10147 if (waitqueue_active(&root->subv_writers->wait)) 10148 wake_up(&root->subv_writers->wait); 10149 } 10150 10151 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10152 { 10153 if (atomic_read(&root->will_be_snapshoted)) 10154 return 0; 10155 10156 percpu_counter_inc(&root->subv_writers->counter); 10157 /* 10158 * Make sure counter is updated before we check for snapshot creation. 10159 */ 10160 smp_mb(); 10161 if (atomic_read(&root->will_be_snapshoted)) { 10162 btrfs_end_write_no_snapshoting(root); 10163 return 0; 10164 } 10165 return 1; 10166 } 10167