1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 #include "raid-stripe-tree.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_head *href, 52 struct btrfs_delayed_ref_node *node, u64 parent, 53 u64 root_objectid, u64 owner_objectid, 54 u64 owner_offset, 55 struct btrfs_delayed_extent_op *extra_op); 56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 57 struct extent_buffer *leaf, 58 struct btrfs_extent_item *ei); 59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 60 u64 parent, u64 root_objectid, 61 u64 flags, u64 owner, u64 offset, 62 struct btrfs_key *ins, int ref_mod, u64 oref_root); 63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 64 struct btrfs_delayed_ref_node *node, 65 struct btrfs_delayed_extent_op *extent_op); 66 static int find_next_key(struct btrfs_path *path, int level, 67 struct btrfs_key *key); 68 69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 70 { 71 return (cache->flags & bits) == bits; 72 } 73 74 /* simple helper to search for an existing data extent at a given offset */ 75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 76 { 77 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 78 int ret; 79 struct btrfs_key key; 80 struct btrfs_path *path; 81 82 path = btrfs_alloc_path(); 83 if (!path) 84 return -ENOMEM; 85 86 key.objectid = start; 87 key.offset = len; 88 key.type = BTRFS_EXTENT_ITEM_KEY; 89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 90 btrfs_free_path(path); 91 return ret; 92 } 93 94 /* 95 * helper function to lookup reference count and flags of a tree block. 96 * 97 * the head node for delayed ref is used to store the sum of all the 98 * reference count modifications queued up in the rbtree. the head 99 * node may also store the extent flags to set. This way you can check 100 * to see what the reference count and extent flags would be if all of 101 * the delayed refs are not processed. 102 */ 103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 104 struct btrfs_fs_info *fs_info, u64 bytenr, 105 u64 offset, int metadata, u64 *refs, u64 *flags, 106 u64 *owning_root) 107 { 108 struct btrfs_root *extent_root; 109 struct btrfs_delayed_ref_head *head; 110 struct btrfs_delayed_ref_root *delayed_refs; 111 struct btrfs_path *path; 112 struct btrfs_extent_item *ei; 113 struct extent_buffer *leaf; 114 struct btrfs_key key; 115 u32 item_size; 116 u64 num_refs; 117 u64 extent_flags; 118 u64 owner = 0; 119 int ret; 120 121 /* 122 * If we don't have skinny metadata, don't bother doing anything 123 * different 124 */ 125 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 126 offset = fs_info->nodesize; 127 metadata = 0; 128 } 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 if (!trans) { 135 path->skip_locking = 1; 136 path->search_commit_root = 1; 137 } 138 139 search_again: 140 key.objectid = bytenr; 141 key.offset = offset; 142 if (metadata) 143 key.type = BTRFS_METADATA_ITEM_KEY; 144 else 145 key.type = BTRFS_EXTENT_ITEM_KEY; 146 147 extent_root = btrfs_extent_root(fs_info, bytenr); 148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 149 if (ret < 0) 150 goto out_free; 151 152 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 153 if (path->slots[0]) { 154 path->slots[0]--; 155 btrfs_item_key_to_cpu(path->nodes[0], &key, 156 path->slots[0]); 157 if (key.objectid == bytenr && 158 key.type == BTRFS_EXTENT_ITEM_KEY && 159 key.offset == fs_info->nodesize) 160 ret = 0; 161 } 162 } 163 164 if (ret == 0) { 165 leaf = path->nodes[0]; 166 item_size = btrfs_item_size(leaf, path->slots[0]); 167 if (item_size >= sizeof(*ei)) { 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_extent_item); 170 num_refs = btrfs_extent_refs(leaf, ei); 171 extent_flags = btrfs_extent_flags(leaf, ei); 172 owner = btrfs_get_extent_owner_root(fs_info, leaf, 173 path->slots[0]); 174 } else { 175 ret = -EUCLEAN; 176 btrfs_err(fs_info, 177 "unexpected extent item size, has %u expect >= %zu", 178 item_size, sizeof(*ei)); 179 if (trans) 180 btrfs_abort_transaction(trans, ret); 181 else 182 btrfs_handle_fs_error(fs_info, ret, NULL); 183 184 goto out_free; 185 } 186 187 BUG_ON(num_refs == 0); 188 } else { 189 num_refs = 0; 190 extent_flags = 0; 191 ret = 0; 192 } 193 194 if (!trans) 195 goto out; 196 197 delayed_refs = &trans->transaction->delayed_refs; 198 spin_lock(&delayed_refs->lock); 199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 200 if (head) { 201 if (!mutex_trylock(&head->mutex)) { 202 refcount_inc(&head->refs); 203 spin_unlock(&delayed_refs->lock); 204 205 btrfs_release_path(path); 206 207 /* 208 * Mutex was contended, block until it's released and try 209 * again 210 */ 211 mutex_lock(&head->mutex); 212 mutex_unlock(&head->mutex); 213 btrfs_put_delayed_ref_head(head); 214 goto search_again; 215 } 216 spin_lock(&head->lock); 217 if (head->extent_op && head->extent_op->update_flags) 218 extent_flags |= head->extent_op->flags_to_set; 219 else 220 BUG_ON(num_refs == 0); 221 222 num_refs += head->ref_mod; 223 spin_unlock(&head->lock); 224 mutex_unlock(&head->mutex); 225 } 226 spin_unlock(&delayed_refs->lock); 227 out: 228 WARN_ON(num_refs == 0); 229 if (refs) 230 *refs = num_refs; 231 if (flags) 232 *flags = extent_flags; 233 if (owning_root) 234 *owning_root = owner; 235 out_free: 236 btrfs_free_path(path); 237 return ret; 238 } 239 240 /* 241 * Back reference rules. Back refs have three main goals: 242 * 243 * 1) differentiate between all holders of references to an extent so that 244 * when a reference is dropped we can make sure it was a valid reference 245 * before freeing the extent. 246 * 247 * 2) Provide enough information to quickly find the holders of an extent 248 * if we notice a given block is corrupted or bad. 249 * 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 251 * maintenance. This is actually the same as #2, but with a slightly 252 * different use case. 253 * 254 * There are two kinds of back refs. The implicit back refs is optimized 255 * for pointers in non-shared tree blocks. For a given pointer in a block, 256 * back refs of this kind provide information about the block's owner tree 257 * and the pointer's key. These information allow us to find the block by 258 * b-tree searching. The full back refs is for pointers in tree blocks not 259 * referenced by their owner trees. The location of tree block is recorded 260 * in the back refs. Actually the full back refs is generic, and can be 261 * used in all cases the implicit back refs is used. The major shortcoming 262 * of the full back refs is its overhead. Every time a tree block gets 263 * COWed, we have to update back refs entry for all pointers in it. 264 * 265 * For a newly allocated tree block, we use implicit back refs for 266 * pointers in it. This means most tree related operations only involve 267 * implicit back refs. For a tree block created in old transaction, the 268 * only way to drop a reference to it is COW it. So we can detect the 269 * event that tree block loses its owner tree's reference and do the 270 * back refs conversion. 271 * 272 * When a tree block is COWed through a tree, there are four cases: 273 * 274 * The reference count of the block is one and the tree is the block's 275 * owner tree. Nothing to do in this case. 276 * 277 * The reference count of the block is one and the tree is not the 278 * block's owner tree. In this case, full back refs is used for pointers 279 * in the block. Remove these full back refs, add implicit back refs for 280 * every pointers in the new block. 281 * 282 * The reference count of the block is greater than one and the tree is 283 * the block's owner tree. In this case, implicit back refs is used for 284 * pointers in the block. Add full back refs for every pointers in the 285 * block, increase lower level extents' reference counts. The original 286 * implicit back refs are entailed to the new block. 287 * 288 * The reference count of the block is greater than one and the tree is 289 * not the block's owner tree. Add implicit back refs for every pointer in 290 * the new block, increase lower level extents' reference count. 291 * 292 * Back Reference Key composing: 293 * 294 * The key objectid corresponds to the first byte in the extent, 295 * The key type is used to differentiate between types of back refs. 296 * There are different meanings of the key offset for different types 297 * of back refs. 298 * 299 * File extents can be referenced by: 300 * 301 * - multiple snapshots, subvolumes, or different generations in one subvol 302 * - different files inside a single subvolume 303 * - different offsets inside a file (bookend extents in file.c) 304 * 305 * The extent ref structure for the implicit back refs has fields for: 306 * 307 * - Objectid of the subvolume root 308 * - objectid of the file holding the reference 309 * - original offset in the file 310 * - how many bookend extents 311 * 312 * The key offset for the implicit back refs is hash of the first 313 * three fields. 314 * 315 * The extent ref structure for the full back refs has field for: 316 * 317 * - number of pointers in the tree leaf 318 * 319 * The key offset for the implicit back refs is the first byte of 320 * the tree leaf 321 * 322 * When a file extent is allocated, The implicit back refs is used. 323 * the fields are filled in: 324 * 325 * (root_key.objectid, inode objectid, offset in file, 1) 326 * 327 * When a file extent is removed file truncation, we find the 328 * corresponding implicit back refs and check the following fields: 329 * 330 * (btrfs_header_owner(leaf), inode objectid, offset in file) 331 * 332 * Btree extents can be referenced by: 333 * 334 * - Different subvolumes 335 * 336 * Both the implicit back refs and the full back refs for tree blocks 337 * only consist of key. The key offset for the implicit back refs is 338 * objectid of block's owner tree. The key offset for the full back refs 339 * is the first byte of parent block. 340 * 341 * When implicit back refs is used, information about the lowest key and 342 * level of the tree block are required. These information are stored in 343 * tree block info structure. 344 */ 345 346 /* 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 350 */ 351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 352 struct btrfs_extent_inline_ref *iref, 353 enum btrfs_inline_ref_type is_data) 354 { 355 struct btrfs_fs_info *fs_info = eb->fs_info; 356 int type = btrfs_extent_inline_ref_type(eb, iref); 357 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 358 359 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 360 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 361 return type; 362 } 363 364 if (type == BTRFS_TREE_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_BLOCK_REF_KEY || 366 type == BTRFS_SHARED_DATA_REF_KEY || 367 type == BTRFS_EXTENT_DATA_REF_KEY) { 368 if (is_data == BTRFS_REF_TYPE_BLOCK) { 369 if (type == BTRFS_TREE_BLOCK_REF_KEY) 370 return type; 371 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 372 ASSERT(fs_info); 373 /* 374 * Every shared one has parent tree block, 375 * which must be aligned to sector size. 376 */ 377 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 WARN_ON(1); 400 btrfs_print_leaf(eb); 401 btrfs_err(fs_info, 402 "eb %llu iref 0x%lx invalid extent inline ref type %d", 403 eb->start, (unsigned long)iref, type); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(trans, leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else { 622 btrfs_err(trans->fs_info, 623 "unrecognized backref key (%llu %u %llu)", 624 key.objectid, key.type, key.offset); 625 btrfs_abort_transaction(trans, -EUCLEAN); 626 return -EUCLEAN; 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(trans, leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 if (iref) { 658 /* 659 * If type is invalid, we should have bailed out earlier than 660 * this call. 661 */ 662 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 663 ASSERT(type != BTRFS_REF_TYPE_INVALID); 664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 665 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 666 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 667 } else { 668 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 669 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 670 } 671 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 672 ref1 = btrfs_item_ptr(leaf, path->slots[0], 673 struct btrfs_extent_data_ref); 674 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 675 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 676 ref2 = btrfs_item_ptr(leaf, path->slots[0], 677 struct btrfs_shared_data_ref); 678 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 679 } else { 680 WARN_ON(1); 681 } 682 return num_refs; 683 } 684 685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 u64 bytenr, u64 parent, 688 u64 root_objectid) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = root_objectid; 701 } 702 703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 704 if (ret > 0) 705 ret = -ENOENT; 706 return ret; 707 } 708 709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 710 struct btrfs_path *path, 711 u64 bytenr, u64 parent, 712 u64 root_objectid) 713 { 714 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 715 struct btrfs_key key; 716 int ret; 717 718 key.objectid = bytenr; 719 if (parent) { 720 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 721 key.offset = parent; 722 } else { 723 key.type = BTRFS_TREE_BLOCK_REF_KEY; 724 key.offset = root_objectid; 725 } 726 727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 728 btrfs_release_path(path); 729 return ret; 730 } 731 732 static inline int extent_ref_type(u64 parent, u64 owner) 733 { 734 int type; 735 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 736 if (parent > 0) 737 type = BTRFS_SHARED_BLOCK_REF_KEY; 738 else 739 type = BTRFS_TREE_BLOCK_REF_KEY; 740 } else { 741 if (parent > 0) 742 type = BTRFS_SHARED_DATA_REF_KEY; 743 else 744 type = BTRFS_EXTENT_DATA_REF_KEY; 745 } 746 return type; 747 } 748 749 static int find_next_key(struct btrfs_path *path, int level, 750 struct btrfs_key *key) 751 752 { 753 for (; level < BTRFS_MAX_LEVEL; level++) { 754 if (!path->nodes[level]) 755 break; 756 if (path->slots[level] + 1 >= 757 btrfs_header_nritems(path->nodes[level])) 758 continue; 759 if (level == 0) 760 btrfs_item_key_to_cpu(path->nodes[level], key, 761 path->slots[level] + 1); 762 else 763 btrfs_node_key_to_cpu(path->nodes[level], key, 764 path->slots[level] + 1); 765 return 0; 766 } 767 return 1; 768 } 769 770 /* 771 * look for inline back ref. if back ref is found, *ref_ret is set 772 * to the address of inline back ref, and 0 is returned. 773 * 774 * if back ref isn't found, *ref_ret is set to the address where it 775 * should be inserted, and -ENOENT is returned. 776 * 777 * if insert is true and there are too many inline back refs, the path 778 * points to the extent item, and -EAGAIN is returned. 779 * 780 * NOTE: inline back refs are ordered in the same way that back ref 781 * items in the tree are ordered. 782 */ 783 static noinline_for_stack 784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 785 struct btrfs_path *path, 786 struct btrfs_extent_inline_ref **ref_ret, 787 u64 bytenr, u64 num_bytes, 788 u64 parent, u64 root_objectid, 789 u64 owner, u64 offset, int insert) 790 { 791 struct btrfs_fs_info *fs_info = trans->fs_info; 792 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 793 struct btrfs_key key; 794 struct extent_buffer *leaf; 795 struct btrfs_extent_item *ei; 796 struct btrfs_extent_inline_ref *iref; 797 u64 flags; 798 u64 item_size; 799 unsigned long ptr; 800 unsigned long end; 801 int extra_size; 802 int type; 803 int want; 804 int ret; 805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 806 int needed; 807 808 key.objectid = bytenr; 809 key.type = BTRFS_EXTENT_ITEM_KEY; 810 key.offset = num_bytes; 811 812 want = extent_ref_type(parent, owner); 813 if (insert) { 814 extra_size = btrfs_extent_inline_ref_size(want); 815 path->search_for_extension = 1; 816 path->keep_locks = 1; 817 } else 818 extra_size = -1; 819 820 /* 821 * Owner is our level, so we can just add one to get the level for the 822 * block we are interested in. 823 */ 824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 825 key.type = BTRFS_METADATA_ITEM_KEY; 826 key.offset = owner; 827 } 828 829 again: 830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 831 if (ret < 0) 832 goto out; 833 834 /* 835 * We may be a newly converted file system which still has the old fat 836 * extent entries for metadata, so try and see if we have one of those. 837 */ 838 if (ret > 0 && skinny_metadata) { 839 skinny_metadata = false; 840 if (path->slots[0]) { 841 path->slots[0]--; 842 btrfs_item_key_to_cpu(path->nodes[0], &key, 843 path->slots[0]); 844 if (key.objectid == bytenr && 845 key.type == BTRFS_EXTENT_ITEM_KEY && 846 key.offset == num_bytes) 847 ret = 0; 848 } 849 if (ret) { 850 key.objectid = bytenr; 851 key.type = BTRFS_EXTENT_ITEM_KEY; 852 key.offset = num_bytes; 853 btrfs_release_path(path); 854 goto again; 855 } 856 } 857 858 if (ret && !insert) { 859 ret = -ENOENT; 860 goto out; 861 } else if (WARN_ON(ret)) { 862 btrfs_print_leaf(path->nodes[0]); 863 btrfs_err(fs_info, 864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 865 bytenr, num_bytes, parent, root_objectid, owner, 866 offset); 867 ret = -EUCLEAN; 868 goto out; 869 } 870 871 leaf = path->nodes[0]; 872 item_size = btrfs_item_size(leaf, path->slots[0]); 873 if (unlikely(item_size < sizeof(*ei))) { 874 ret = -EUCLEAN; 875 btrfs_err(fs_info, 876 "unexpected extent item size, has %llu expect >= %zu", 877 item_size, sizeof(*ei)); 878 btrfs_abort_transaction(trans, ret); 879 goto out; 880 } 881 882 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 883 flags = btrfs_extent_flags(leaf, ei); 884 885 ptr = (unsigned long)(ei + 1); 886 end = (unsigned long)ei + item_size; 887 888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 889 ptr += sizeof(struct btrfs_tree_block_info); 890 BUG_ON(ptr > end); 891 } 892 893 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 894 needed = BTRFS_REF_TYPE_DATA; 895 else 896 needed = BTRFS_REF_TYPE_BLOCK; 897 898 ret = -ENOENT; 899 while (ptr < end) { 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 903 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 904 ptr += btrfs_extent_inline_ref_size(type); 905 continue; 906 } 907 if (type == BTRFS_REF_TYPE_INVALID) { 908 ret = -EUCLEAN; 909 goto out; 910 } 911 912 if (want < type) 913 break; 914 if (want > type) { 915 ptr += btrfs_extent_inline_ref_size(type); 916 continue; 917 } 918 919 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 920 struct btrfs_extent_data_ref *dref; 921 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 922 if (match_extent_data_ref(leaf, dref, root_objectid, 923 owner, offset)) { 924 ret = 0; 925 break; 926 } 927 if (hash_extent_data_ref_item(leaf, dref) < 928 hash_extent_data_ref(root_objectid, owner, offset)) 929 break; 930 } else { 931 u64 ref_offset; 932 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 933 if (parent > 0) { 934 if (parent == ref_offset) { 935 ret = 0; 936 break; 937 } 938 if (ref_offset < parent) 939 break; 940 } else { 941 if (root_objectid == ref_offset) { 942 ret = 0; 943 break; 944 } 945 if (ref_offset < root_objectid) 946 break; 947 } 948 } 949 ptr += btrfs_extent_inline_ref_size(type); 950 } 951 952 if (unlikely(ptr > end)) { 953 ret = -EUCLEAN; 954 btrfs_print_leaf(path->nodes[0]); 955 btrfs_crit(fs_info, 956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 957 path->slots[0], root_objectid, owner, offset, parent); 958 goto out; 959 } 960 961 if (ret == -ENOENT && insert) { 962 if (item_size + extra_size >= 963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 964 ret = -EAGAIN; 965 goto out; 966 } 967 /* 968 * To add new inline back ref, we have to make sure 969 * there is no corresponding back ref item. 970 * For simplicity, we just do not add new inline back 971 * ref if there is any kind of item for this block 972 */ 973 if (find_next_key(path, 0, &key) == 0 && 974 key.objectid == bytenr && 975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 976 ret = -EAGAIN; 977 goto out; 978 } 979 } 980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 981 out: 982 if (insert) { 983 path->keep_locks = 0; 984 path->search_for_extension = 0; 985 btrfs_unlock_up_safe(path, 1); 986 } 987 return ret; 988 } 989 990 /* 991 * helper to add new inline back ref 992 */ 993 static noinline_for_stack 994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 995 struct btrfs_path *path, 996 struct btrfs_extent_inline_ref *iref, 997 u64 parent, u64 root_objectid, 998 u64 owner, u64 offset, int refs_to_add, 999 struct btrfs_delayed_extent_op *extent_op) 1000 { 1001 struct extent_buffer *leaf; 1002 struct btrfs_extent_item *ei; 1003 unsigned long ptr; 1004 unsigned long end; 1005 unsigned long item_offset; 1006 u64 refs; 1007 int size; 1008 int type; 1009 1010 leaf = path->nodes[0]; 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 item_offset = (unsigned long)iref - (unsigned long)ei; 1013 1014 type = extent_ref_type(parent, owner); 1015 size = btrfs_extent_inline_ref_size(type); 1016 1017 btrfs_extend_item(trans, path, size); 1018 1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1020 refs = btrfs_extent_refs(leaf, ei); 1021 refs += refs_to_add; 1022 btrfs_set_extent_refs(leaf, ei, refs); 1023 if (extent_op) 1024 __run_delayed_extent_op(extent_op, leaf, ei); 1025 1026 ptr = (unsigned long)ei + item_offset; 1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1028 if (ptr < end - size) 1029 memmove_extent_buffer(leaf, ptr + size, ptr, 1030 end - size - ptr); 1031 1032 iref = (struct btrfs_extent_inline_ref *)ptr; 1033 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1035 struct btrfs_extent_data_ref *dref; 1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1042 struct btrfs_shared_data_ref *sref; 1043 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1048 } else { 1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1050 } 1051 btrfs_mark_buffer_dirty(trans, leaf); 1052 } 1053 1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1055 struct btrfs_path *path, 1056 struct btrfs_extent_inline_ref **ref_ret, 1057 u64 bytenr, u64 num_bytes, u64 parent, 1058 u64 root_objectid, u64 owner, u64 offset) 1059 { 1060 int ret; 1061 1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1063 num_bytes, parent, root_objectid, 1064 owner, offset, 0); 1065 if (ret != -ENOENT) 1066 return ret; 1067 1068 btrfs_release_path(path); 1069 *ref_ret = NULL; 1070 1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1073 root_objectid); 1074 } else { 1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1076 root_objectid, owner, offset); 1077 } 1078 return ret; 1079 } 1080 1081 /* 1082 * helper to update/remove inline back ref 1083 */ 1084 static noinline_for_stack int update_inline_extent_backref( 1085 struct btrfs_trans_handle *trans, 1086 struct btrfs_path *path, 1087 struct btrfs_extent_inline_ref *iref, 1088 int refs_to_mod, 1089 struct btrfs_delayed_extent_op *extent_op) 1090 { 1091 struct extent_buffer *leaf = path->nodes[0]; 1092 struct btrfs_fs_info *fs_info = leaf->fs_info; 1093 struct btrfs_extent_item *ei; 1094 struct btrfs_extent_data_ref *dref = NULL; 1095 struct btrfs_shared_data_ref *sref = NULL; 1096 unsigned long ptr; 1097 unsigned long end; 1098 u32 item_size; 1099 int size; 1100 int type; 1101 u64 refs; 1102 1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1104 refs = btrfs_extent_refs(leaf, ei); 1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1106 struct btrfs_key key; 1107 u32 extent_size; 1108 1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1110 if (key.type == BTRFS_METADATA_ITEM_KEY) 1111 extent_size = fs_info->nodesize; 1112 else 1113 extent_size = key.offset; 1114 btrfs_print_leaf(leaf); 1115 btrfs_err(fs_info, 1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1117 key.objectid, extent_size, refs_to_mod, refs); 1118 return -EUCLEAN; 1119 } 1120 refs += refs_to_mod; 1121 btrfs_set_extent_refs(leaf, ei, refs); 1122 if (extent_op) 1123 __run_delayed_extent_op(extent_op, leaf, ei); 1124 1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1126 /* 1127 * Function btrfs_get_extent_inline_ref_type() has already printed 1128 * error messages. 1129 */ 1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1131 return -EUCLEAN; 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 /* 1142 * For tree blocks we can only drop one ref for it, and tree 1143 * blocks should not have refs > 1. 1144 * 1145 * Furthermore if we're inserting a new inline backref, we 1146 * won't reach this path either. That would be 1147 * setup_inline_extent_backref(). 1148 */ 1149 if (unlikely(refs_to_mod != -1)) { 1150 struct btrfs_key key; 1151 1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1153 1154 btrfs_print_leaf(leaf); 1155 btrfs_err(fs_info, 1156 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1157 key.objectid, refs_to_mod); 1158 return -EUCLEAN; 1159 } 1160 } 1161 1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1163 struct btrfs_key key; 1164 u32 extent_size; 1165 1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1167 if (key.type == BTRFS_METADATA_ITEM_KEY) 1168 extent_size = fs_info->nodesize; 1169 else 1170 extent_size = key.offset; 1171 btrfs_print_leaf(leaf); 1172 btrfs_err(fs_info, 1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1174 (unsigned long)iref, key.objectid, extent_size, 1175 refs_to_mod, refs); 1176 return -EUCLEAN; 1177 } 1178 refs += refs_to_mod; 1179 1180 if (refs > 0) { 1181 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1182 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1183 else 1184 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1185 } else { 1186 size = btrfs_extent_inline_ref_size(type); 1187 item_size = btrfs_item_size(leaf, path->slots[0]); 1188 ptr = (unsigned long)iref; 1189 end = (unsigned long)ei + item_size; 1190 if (ptr + size < end) 1191 memmove_extent_buffer(leaf, ptr, ptr + size, 1192 end - ptr - size); 1193 item_size -= size; 1194 btrfs_truncate_item(trans, path, item_size, 1); 1195 } 1196 btrfs_mark_buffer_dirty(trans, leaf); 1197 return 0; 1198 } 1199 1200 static noinline_for_stack 1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1202 struct btrfs_path *path, 1203 u64 bytenr, u64 num_bytes, u64 parent, 1204 u64 root_objectid, u64 owner, 1205 u64 offset, int refs_to_add, 1206 struct btrfs_delayed_extent_op *extent_op) 1207 { 1208 struct btrfs_extent_inline_ref *iref; 1209 int ret; 1210 1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1212 num_bytes, parent, root_objectid, 1213 owner, offset, 1); 1214 if (ret == 0) { 1215 /* 1216 * We're adding refs to a tree block we already own, this 1217 * should not happen at all. 1218 */ 1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1220 btrfs_print_leaf(path->nodes[0]); 1221 btrfs_crit(trans->fs_info, 1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1223 bytenr, num_bytes, root_objectid, path->slots[0]); 1224 return -EUCLEAN; 1225 } 1226 ret = update_inline_extent_backref(trans, path, iref, 1227 refs_to_add, extent_op); 1228 } else if (ret == -ENOENT) { 1229 setup_inline_extent_backref(trans, path, iref, parent, 1230 root_objectid, owner, offset, 1231 refs_to_add, extent_op); 1232 ret = 0; 1233 } 1234 return ret; 1235 } 1236 1237 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1238 struct btrfs_root *root, 1239 struct btrfs_path *path, 1240 struct btrfs_extent_inline_ref *iref, 1241 int refs_to_drop, int is_data) 1242 { 1243 int ret = 0; 1244 1245 BUG_ON(!is_data && refs_to_drop != 1); 1246 if (iref) 1247 ret = update_inline_extent_backref(trans, path, iref, 1248 -refs_to_drop, NULL); 1249 else if (is_data) 1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1251 else 1252 ret = btrfs_del_item(trans, root, path); 1253 return ret; 1254 } 1255 1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1257 u64 *discarded_bytes) 1258 { 1259 int j, ret = 0; 1260 u64 bytes_left, end; 1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1262 1263 if (WARN_ON(start != aligned_start)) { 1264 len -= aligned_start - start; 1265 len = round_down(len, 1 << SECTOR_SHIFT); 1266 start = aligned_start; 1267 } 1268 1269 *discarded_bytes = 0; 1270 1271 if (!len) 1272 return 0; 1273 1274 end = start + len; 1275 bytes_left = len; 1276 1277 /* Skip any superblocks on this device. */ 1278 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1279 u64 sb_start = btrfs_sb_offset(j); 1280 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1281 u64 size = sb_start - start; 1282 1283 if (!in_range(sb_start, start, bytes_left) && 1284 !in_range(sb_end, start, bytes_left) && 1285 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1286 continue; 1287 1288 /* 1289 * Superblock spans beginning of range. Adjust start and 1290 * try again. 1291 */ 1292 if (sb_start <= start) { 1293 start += sb_end - start; 1294 if (start > end) { 1295 bytes_left = 0; 1296 break; 1297 } 1298 bytes_left = end - start; 1299 continue; 1300 } 1301 1302 if (size) { 1303 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1304 size >> SECTOR_SHIFT, 1305 GFP_NOFS); 1306 if (!ret) 1307 *discarded_bytes += size; 1308 else if (ret != -EOPNOTSUPP) 1309 return ret; 1310 } 1311 1312 start = sb_end; 1313 if (start > end) { 1314 bytes_left = 0; 1315 break; 1316 } 1317 bytes_left = end - start; 1318 } 1319 1320 if (bytes_left) { 1321 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1322 bytes_left >> SECTOR_SHIFT, 1323 GFP_NOFS); 1324 if (!ret) 1325 *discarded_bytes += bytes_left; 1326 } 1327 return ret; 1328 } 1329 1330 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1331 { 1332 struct btrfs_device *dev = stripe->dev; 1333 struct btrfs_fs_info *fs_info = dev->fs_info; 1334 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1335 u64 phys = stripe->physical; 1336 u64 len = stripe->length; 1337 u64 discarded = 0; 1338 int ret = 0; 1339 1340 /* Zone reset on a zoned filesystem */ 1341 if (btrfs_can_zone_reset(dev, phys, len)) { 1342 u64 src_disc; 1343 1344 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1345 if (ret) 1346 goto out; 1347 1348 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1349 dev != dev_replace->srcdev) 1350 goto out; 1351 1352 src_disc = discarded; 1353 1354 /* Send to replace target as well */ 1355 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1356 &discarded); 1357 discarded += src_disc; 1358 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1359 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1360 } else { 1361 ret = 0; 1362 *bytes = 0; 1363 } 1364 1365 out: 1366 *bytes = discarded; 1367 return ret; 1368 } 1369 1370 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1371 u64 num_bytes, u64 *actual_bytes) 1372 { 1373 int ret = 0; 1374 u64 discarded_bytes = 0; 1375 u64 end = bytenr + num_bytes; 1376 u64 cur = bytenr; 1377 1378 /* 1379 * Avoid races with device replace and make sure the devices in the 1380 * stripes don't go away while we are discarding. 1381 */ 1382 btrfs_bio_counter_inc_blocked(fs_info); 1383 while (cur < end) { 1384 struct btrfs_discard_stripe *stripes; 1385 unsigned int num_stripes; 1386 int i; 1387 1388 num_bytes = end - cur; 1389 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1390 if (IS_ERR(stripes)) { 1391 ret = PTR_ERR(stripes); 1392 if (ret == -EOPNOTSUPP) 1393 ret = 0; 1394 break; 1395 } 1396 1397 for (i = 0; i < num_stripes; i++) { 1398 struct btrfs_discard_stripe *stripe = stripes + i; 1399 u64 bytes; 1400 1401 if (!stripe->dev->bdev) { 1402 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1403 continue; 1404 } 1405 1406 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1407 &stripe->dev->dev_state)) 1408 continue; 1409 1410 ret = do_discard_extent(stripe, &bytes); 1411 if (ret) { 1412 /* 1413 * Keep going if discard is not supported by the 1414 * device. 1415 */ 1416 if (ret != -EOPNOTSUPP) 1417 break; 1418 ret = 0; 1419 } else { 1420 discarded_bytes += bytes; 1421 } 1422 } 1423 kfree(stripes); 1424 if (ret) 1425 break; 1426 cur += num_bytes; 1427 } 1428 btrfs_bio_counter_dec(fs_info); 1429 if (actual_bytes) 1430 *actual_bytes = discarded_bytes; 1431 return ret; 1432 } 1433 1434 /* Can return -ENOMEM */ 1435 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_ref *generic_ref) 1437 { 1438 struct btrfs_fs_info *fs_info = trans->fs_info; 1439 int ret; 1440 1441 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1442 generic_ref->action); 1443 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1444 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1445 1446 if (generic_ref->type == BTRFS_REF_METADATA) 1447 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1448 else 1449 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1450 1451 btrfs_ref_tree_mod(fs_info, generic_ref); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * Insert backreference for a given extent. 1458 * 1459 * The counterpart is in __btrfs_free_extent(), with examples and more details 1460 * how it works. 1461 * 1462 * @trans: Handle of transaction 1463 * 1464 * @node: The delayed ref node used to get the bytenr/length for 1465 * extent whose references are incremented. 1466 * 1467 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1468 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1469 * bytenr of the parent block. Since new extents are always 1470 * created with indirect references, this will only be the case 1471 * when relocating a shared extent. In that case, root_objectid 1472 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1473 * be 0 1474 * 1475 * @root_objectid: The id of the root where this modification has originated, 1476 * this can be either one of the well-known metadata trees or 1477 * the subvolume id which references this extent. 1478 * 1479 * @owner: For data extents it is the inode number of the owning file. 1480 * For metadata extents this parameter holds the level in the 1481 * tree of the extent. 1482 * 1483 * @offset: For metadata extents the offset is ignored and is currently 1484 * always passed as 0. For data extents it is the fileoffset 1485 * this extent belongs to. 1486 * 1487 * @extent_op Pointer to a structure, holding information necessary when 1488 * updating a tree block's flags 1489 * 1490 */ 1491 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1492 struct btrfs_delayed_ref_node *node, 1493 u64 parent, u64 root_objectid, 1494 u64 owner, u64 offset, 1495 struct btrfs_delayed_extent_op *extent_op) 1496 { 1497 struct btrfs_path *path; 1498 struct extent_buffer *leaf; 1499 struct btrfs_extent_item *item; 1500 struct btrfs_key key; 1501 u64 bytenr = node->bytenr; 1502 u64 num_bytes = node->num_bytes; 1503 u64 refs; 1504 int refs_to_add = node->ref_mod; 1505 int ret; 1506 1507 path = btrfs_alloc_path(); 1508 if (!path) 1509 return -ENOMEM; 1510 1511 /* this will setup the path even if it fails to insert the back ref */ 1512 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1513 parent, root_objectid, owner, 1514 offset, refs_to_add, extent_op); 1515 if ((ret < 0 && ret != -EAGAIN) || !ret) 1516 goto out; 1517 1518 /* 1519 * Ok we had -EAGAIN which means we didn't have space to insert and 1520 * inline extent ref, so just update the reference count and add a 1521 * normal backref. 1522 */ 1523 leaf = path->nodes[0]; 1524 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1525 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1526 refs = btrfs_extent_refs(leaf, item); 1527 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1528 if (extent_op) 1529 __run_delayed_extent_op(extent_op, leaf, item); 1530 1531 btrfs_mark_buffer_dirty(trans, leaf); 1532 btrfs_release_path(path); 1533 1534 /* now insert the actual backref */ 1535 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1536 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1537 root_objectid); 1538 else 1539 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1540 root_objectid, owner, offset, 1541 refs_to_add); 1542 1543 if (ret) 1544 btrfs_abort_transaction(trans, ret); 1545 out: 1546 btrfs_free_path(path); 1547 return ret; 1548 } 1549 1550 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1551 struct btrfs_delayed_ref_head *href) 1552 { 1553 u64 root = href->owning_root; 1554 1555 /* 1556 * Don't check must_insert_reserved, as this is called from contexts 1557 * where it has already been unset. 1558 */ 1559 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1560 !href->is_data || !is_fstree(root)) 1561 return; 1562 1563 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1564 BTRFS_QGROUP_RSV_DATA); 1565 } 1566 1567 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1568 struct btrfs_delayed_ref_head *href, 1569 struct btrfs_delayed_ref_node *node, 1570 struct btrfs_delayed_extent_op *extent_op, 1571 bool insert_reserved) 1572 { 1573 int ret = 0; 1574 struct btrfs_delayed_data_ref *ref; 1575 u64 parent = 0; 1576 u64 flags = 0; 1577 1578 ref = btrfs_delayed_node_to_data_ref(node); 1579 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1580 1581 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1582 parent = ref->parent; 1583 1584 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1585 struct btrfs_key key; 1586 struct btrfs_squota_delta delta = { 1587 .root = href->owning_root, 1588 .num_bytes = node->num_bytes, 1589 .is_data = true, 1590 .is_inc = true, 1591 .generation = trans->transid, 1592 }; 1593 1594 if (extent_op) 1595 flags |= extent_op->flags_to_set; 1596 1597 key.objectid = node->bytenr; 1598 key.type = BTRFS_EXTENT_ITEM_KEY; 1599 key.offset = node->num_bytes; 1600 1601 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1602 flags, ref->objectid, 1603 ref->offset, &key, 1604 node->ref_mod, href->owning_root); 1605 free_head_ref_squota_rsv(trans->fs_info, href); 1606 if (!ret) 1607 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1608 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1609 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1610 ref->objectid, ref->offset, 1611 extent_op); 1612 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1613 ret = __btrfs_free_extent(trans, href, node, parent, 1614 ref->root, ref->objectid, 1615 ref->offset, extent_op); 1616 } else { 1617 BUG(); 1618 } 1619 return ret; 1620 } 1621 1622 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1623 struct extent_buffer *leaf, 1624 struct btrfs_extent_item *ei) 1625 { 1626 u64 flags = btrfs_extent_flags(leaf, ei); 1627 if (extent_op->update_flags) { 1628 flags |= extent_op->flags_to_set; 1629 btrfs_set_extent_flags(leaf, ei, flags); 1630 } 1631 1632 if (extent_op->update_key) { 1633 struct btrfs_tree_block_info *bi; 1634 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1635 bi = (struct btrfs_tree_block_info *)(ei + 1); 1636 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1637 } 1638 } 1639 1640 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1641 struct btrfs_delayed_ref_head *head, 1642 struct btrfs_delayed_extent_op *extent_op) 1643 { 1644 struct btrfs_fs_info *fs_info = trans->fs_info; 1645 struct btrfs_root *root; 1646 struct btrfs_key key; 1647 struct btrfs_path *path; 1648 struct btrfs_extent_item *ei; 1649 struct extent_buffer *leaf; 1650 u32 item_size; 1651 int ret; 1652 int metadata = 1; 1653 1654 if (TRANS_ABORTED(trans)) 1655 return 0; 1656 1657 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1658 metadata = 0; 1659 1660 path = btrfs_alloc_path(); 1661 if (!path) 1662 return -ENOMEM; 1663 1664 key.objectid = head->bytenr; 1665 1666 if (metadata) { 1667 key.type = BTRFS_METADATA_ITEM_KEY; 1668 key.offset = extent_op->level; 1669 } else { 1670 key.type = BTRFS_EXTENT_ITEM_KEY; 1671 key.offset = head->num_bytes; 1672 } 1673 1674 root = btrfs_extent_root(fs_info, key.objectid); 1675 again: 1676 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1677 if (ret < 0) { 1678 goto out; 1679 } else if (ret > 0) { 1680 if (metadata) { 1681 if (path->slots[0] > 0) { 1682 path->slots[0]--; 1683 btrfs_item_key_to_cpu(path->nodes[0], &key, 1684 path->slots[0]); 1685 if (key.objectid == head->bytenr && 1686 key.type == BTRFS_EXTENT_ITEM_KEY && 1687 key.offset == head->num_bytes) 1688 ret = 0; 1689 } 1690 if (ret > 0) { 1691 btrfs_release_path(path); 1692 metadata = 0; 1693 1694 key.objectid = head->bytenr; 1695 key.offset = head->num_bytes; 1696 key.type = BTRFS_EXTENT_ITEM_KEY; 1697 goto again; 1698 } 1699 } else { 1700 ret = -EUCLEAN; 1701 btrfs_err(fs_info, 1702 "missing extent item for extent %llu num_bytes %llu level %d", 1703 head->bytenr, head->num_bytes, extent_op->level); 1704 goto out; 1705 } 1706 } 1707 1708 leaf = path->nodes[0]; 1709 item_size = btrfs_item_size(leaf, path->slots[0]); 1710 1711 if (unlikely(item_size < sizeof(*ei))) { 1712 ret = -EUCLEAN; 1713 btrfs_err(fs_info, 1714 "unexpected extent item size, has %u expect >= %zu", 1715 item_size, sizeof(*ei)); 1716 btrfs_abort_transaction(trans, ret); 1717 goto out; 1718 } 1719 1720 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1721 __run_delayed_extent_op(extent_op, leaf, ei); 1722 1723 btrfs_mark_buffer_dirty(trans, leaf); 1724 out: 1725 btrfs_free_path(path); 1726 return ret; 1727 } 1728 1729 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1730 struct btrfs_delayed_ref_head *href, 1731 struct btrfs_delayed_ref_node *node, 1732 struct btrfs_delayed_extent_op *extent_op, 1733 bool insert_reserved) 1734 { 1735 int ret = 0; 1736 struct btrfs_fs_info *fs_info = trans->fs_info; 1737 struct btrfs_delayed_tree_ref *ref; 1738 u64 parent = 0; 1739 u64 ref_root = 0; 1740 1741 ref = btrfs_delayed_node_to_tree_ref(node); 1742 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1743 1744 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1745 parent = ref->parent; 1746 ref_root = ref->root; 1747 1748 if (unlikely(node->ref_mod != 1)) { 1749 btrfs_err(trans->fs_info, 1750 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1751 node->bytenr, node->ref_mod, node->action, ref_root, 1752 parent); 1753 return -EUCLEAN; 1754 } 1755 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1756 struct btrfs_squota_delta delta = { 1757 .root = href->owning_root, 1758 .num_bytes = fs_info->nodesize, 1759 .is_data = false, 1760 .is_inc = true, 1761 .generation = trans->transid, 1762 }; 1763 1764 BUG_ON(!extent_op || !extent_op->update_flags); 1765 ret = alloc_reserved_tree_block(trans, node, extent_op); 1766 if (!ret) 1767 btrfs_record_squota_delta(fs_info, &delta); 1768 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1769 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1770 ref->level, 0, extent_op); 1771 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1772 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1773 ref->level, 0, extent_op); 1774 } else { 1775 BUG(); 1776 } 1777 return ret; 1778 } 1779 1780 /* helper function to actually process a single delayed ref entry */ 1781 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1782 struct btrfs_delayed_ref_head *href, 1783 struct btrfs_delayed_ref_node *node, 1784 struct btrfs_delayed_extent_op *extent_op, 1785 bool insert_reserved) 1786 { 1787 int ret = 0; 1788 1789 if (TRANS_ABORTED(trans)) { 1790 if (insert_reserved) { 1791 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1792 free_head_ref_squota_rsv(trans->fs_info, href); 1793 } 1794 return 0; 1795 } 1796 1797 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1798 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1799 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1800 insert_reserved); 1801 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1802 node->type == BTRFS_SHARED_DATA_REF_KEY) 1803 ret = run_delayed_data_ref(trans, href, node, extent_op, 1804 insert_reserved); 1805 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1806 ret = 0; 1807 else 1808 BUG(); 1809 if (ret && insert_reserved) 1810 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1811 if (ret < 0) 1812 btrfs_err(trans->fs_info, 1813 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1814 node->bytenr, node->num_bytes, node->type, 1815 node->action, node->ref_mod, ret); 1816 return ret; 1817 } 1818 1819 static inline struct btrfs_delayed_ref_node * 1820 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1821 { 1822 struct btrfs_delayed_ref_node *ref; 1823 1824 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1825 return NULL; 1826 1827 /* 1828 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1829 * This is to prevent a ref count from going down to zero, which deletes 1830 * the extent item from the extent tree, when there still are references 1831 * to add, which would fail because they would not find the extent item. 1832 */ 1833 if (!list_empty(&head->ref_add_list)) 1834 return list_first_entry(&head->ref_add_list, 1835 struct btrfs_delayed_ref_node, add_list); 1836 1837 ref = rb_entry(rb_first_cached(&head->ref_tree), 1838 struct btrfs_delayed_ref_node, ref_node); 1839 ASSERT(list_empty(&ref->add_list)); 1840 return ref; 1841 } 1842 1843 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1844 struct btrfs_delayed_ref_head *head) 1845 { 1846 spin_lock(&delayed_refs->lock); 1847 head->processing = false; 1848 delayed_refs->num_heads_ready++; 1849 spin_unlock(&delayed_refs->lock); 1850 btrfs_delayed_ref_unlock(head); 1851 } 1852 1853 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1854 struct btrfs_delayed_ref_head *head) 1855 { 1856 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1857 1858 if (!extent_op) 1859 return NULL; 1860 1861 if (head->must_insert_reserved) { 1862 head->extent_op = NULL; 1863 btrfs_free_delayed_extent_op(extent_op); 1864 return NULL; 1865 } 1866 return extent_op; 1867 } 1868 1869 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1870 struct btrfs_delayed_ref_head *head) 1871 { 1872 struct btrfs_delayed_extent_op *extent_op; 1873 int ret; 1874 1875 extent_op = cleanup_extent_op(head); 1876 if (!extent_op) 1877 return 0; 1878 head->extent_op = NULL; 1879 spin_unlock(&head->lock); 1880 ret = run_delayed_extent_op(trans, head, extent_op); 1881 btrfs_free_delayed_extent_op(extent_op); 1882 return ret ? ret : 1; 1883 } 1884 1885 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1886 struct btrfs_delayed_ref_root *delayed_refs, 1887 struct btrfs_delayed_ref_head *head) 1888 { 1889 u64 ret = 0; 1890 1891 /* 1892 * We had csum deletions accounted for in our delayed refs rsv, we need 1893 * to drop the csum leaves for this update from our delayed_refs_rsv. 1894 */ 1895 if (head->total_ref_mod < 0 && head->is_data) { 1896 int nr_csums; 1897 1898 spin_lock(&delayed_refs->lock); 1899 delayed_refs->pending_csums -= head->num_bytes; 1900 spin_unlock(&delayed_refs->lock); 1901 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1902 1903 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1904 1905 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1906 } 1907 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1908 if (head->must_insert_reserved) 1909 free_head_ref_squota_rsv(fs_info, head); 1910 1911 return ret; 1912 } 1913 1914 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1915 struct btrfs_delayed_ref_head *head, 1916 u64 *bytes_released) 1917 { 1918 1919 struct btrfs_fs_info *fs_info = trans->fs_info; 1920 struct btrfs_delayed_ref_root *delayed_refs; 1921 int ret; 1922 1923 delayed_refs = &trans->transaction->delayed_refs; 1924 1925 ret = run_and_cleanup_extent_op(trans, head); 1926 if (ret < 0) { 1927 unselect_delayed_ref_head(delayed_refs, head); 1928 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1929 return ret; 1930 } else if (ret) { 1931 return ret; 1932 } 1933 1934 /* 1935 * Need to drop our head ref lock and re-acquire the delayed ref lock 1936 * and then re-check to make sure nobody got added. 1937 */ 1938 spin_unlock(&head->lock); 1939 spin_lock(&delayed_refs->lock); 1940 spin_lock(&head->lock); 1941 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1942 spin_unlock(&head->lock); 1943 spin_unlock(&delayed_refs->lock); 1944 return 1; 1945 } 1946 btrfs_delete_ref_head(delayed_refs, head); 1947 spin_unlock(&head->lock); 1948 spin_unlock(&delayed_refs->lock); 1949 1950 if (head->must_insert_reserved) { 1951 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1952 if (head->is_data) { 1953 struct btrfs_root *csum_root; 1954 1955 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1956 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1957 head->num_bytes); 1958 } 1959 } 1960 1961 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1962 1963 trace_run_delayed_ref_head(fs_info, head, 0); 1964 btrfs_delayed_ref_unlock(head); 1965 btrfs_put_delayed_ref_head(head); 1966 return ret; 1967 } 1968 1969 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1970 struct btrfs_trans_handle *trans) 1971 { 1972 struct btrfs_delayed_ref_root *delayed_refs = 1973 &trans->transaction->delayed_refs; 1974 struct btrfs_delayed_ref_head *head = NULL; 1975 int ret; 1976 1977 spin_lock(&delayed_refs->lock); 1978 head = btrfs_select_ref_head(delayed_refs); 1979 if (!head) { 1980 spin_unlock(&delayed_refs->lock); 1981 return head; 1982 } 1983 1984 /* 1985 * Grab the lock that says we are going to process all the refs for 1986 * this head 1987 */ 1988 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1989 spin_unlock(&delayed_refs->lock); 1990 1991 /* 1992 * We may have dropped the spin lock to get the head mutex lock, and 1993 * that might have given someone else time to free the head. If that's 1994 * true, it has been removed from our list and we can move on. 1995 */ 1996 if (ret == -EAGAIN) 1997 head = ERR_PTR(-EAGAIN); 1998 1999 return head; 2000 } 2001 2002 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 2003 struct btrfs_delayed_ref_head *locked_ref, 2004 u64 *bytes_released) 2005 { 2006 struct btrfs_fs_info *fs_info = trans->fs_info; 2007 struct btrfs_delayed_ref_root *delayed_refs; 2008 struct btrfs_delayed_extent_op *extent_op; 2009 struct btrfs_delayed_ref_node *ref; 2010 bool must_insert_reserved; 2011 int ret; 2012 2013 delayed_refs = &trans->transaction->delayed_refs; 2014 2015 lockdep_assert_held(&locked_ref->mutex); 2016 lockdep_assert_held(&locked_ref->lock); 2017 2018 while ((ref = select_delayed_ref(locked_ref))) { 2019 if (ref->seq && 2020 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2021 spin_unlock(&locked_ref->lock); 2022 unselect_delayed_ref_head(delayed_refs, locked_ref); 2023 return -EAGAIN; 2024 } 2025 2026 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2027 RB_CLEAR_NODE(&ref->ref_node); 2028 if (!list_empty(&ref->add_list)) 2029 list_del(&ref->add_list); 2030 /* 2031 * When we play the delayed ref, also correct the ref_mod on 2032 * head 2033 */ 2034 switch (ref->action) { 2035 case BTRFS_ADD_DELAYED_REF: 2036 case BTRFS_ADD_DELAYED_EXTENT: 2037 locked_ref->ref_mod -= ref->ref_mod; 2038 break; 2039 case BTRFS_DROP_DELAYED_REF: 2040 locked_ref->ref_mod += ref->ref_mod; 2041 break; 2042 default: 2043 WARN_ON(1); 2044 } 2045 atomic_dec(&delayed_refs->num_entries); 2046 2047 /* 2048 * Record the must_insert_reserved flag before we drop the 2049 * spin lock. 2050 */ 2051 must_insert_reserved = locked_ref->must_insert_reserved; 2052 /* 2053 * Unsetting this on the head ref relinquishes ownership of 2054 * the rsv_bytes, so it is critical that every possible code 2055 * path from here forward frees all reserves including qgroup 2056 * reserve. 2057 */ 2058 locked_ref->must_insert_reserved = false; 2059 2060 extent_op = locked_ref->extent_op; 2061 locked_ref->extent_op = NULL; 2062 spin_unlock(&locked_ref->lock); 2063 2064 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2065 must_insert_reserved); 2066 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2067 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2068 2069 btrfs_free_delayed_extent_op(extent_op); 2070 if (ret) { 2071 unselect_delayed_ref_head(delayed_refs, locked_ref); 2072 btrfs_put_delayed_ref(ref); 2073 return ret; 2074 } 2075 2076 btrfs_put_delayed_ref(ref); 2077 cond_resched(); 2078 2079 spin_lock(&locked_ref->lock); 2080 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2081 } 2082 2083 return 0; 2084 } 2085 2086 /* 2087 * Returns 0 on success or if called with an already aborted transaction. 2088 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2089 */ 2090 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2091 u64 min_bytes) 2092 { 2093 struct btrfs_fs_info *fs_info = trans->fs_info; 2094 struct btrfs_delayed_ref_root *delayed_refs; 2095 struct btrfs_delayed_ref_head *locked_ref = NULL; 2096 int ret; 2097 unsigned long count = 0; 2098 unsigned long max_count = 0; 2099 u64 bytes_processed = 0; 2100 2101 delayed_refs = &trans->transaction->delayed_refs; 2102 if (min_bytes == 0) { 2103 max_count = delayed_refs->num_heads_ready; 2104 min_bytes = U64_MAX; 2105 } 2106 2107 do { 2108 if (!locked_ref) { 2109 locked_ref = btrfs_obtain_ref_head(trans); 2110 if (IS_ERR_OR_NULL(locked_ref)) { 2111 if (PTR_ERR(locked_ref) == -EAGAIN) { 2112 continue; 2113 } else { 2114 break; 2115 } 2116 } 2117 count++; 2118 } 2119 /* 2120 * We need to try and merge add/drops of the same ref since we 2121 * can run into issues with relocate dropping the implicit ref 2122 * and then it being added back again before the drop can 2123 * finish. If we merged anything we need to re-loop so we can 2124 * get a good ref. 2125 * Or we can get node references of the same type that weren't 2126 * merged when created due to bumps in the tree mod seq, and 2127 * we need to merge them to prevent adding an inline extent 2128 * backref before dropping it (triggering a BUG_ON at 2129 * insert_inline_extent_backref()). 2130 */ 2131 spin_lock(&locked_ref->lock); 2132 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2133 2134 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2135 if (ret < 0 && ret != -EAGAIN) { 2136 /* 2137 * Error, btrfs_run_delayed_refs_for_head already 2138 * unlocked everything so just bail out 2139 */ 2140 return ret; 2141 } else if (!ret) { 2142 /* 2143 * Success, perform the usual cleanup of a processed 2144 * head 2145 */ 2146 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2147 if (ret > 0 ) { 2148 /* We dropped our lock, we need to loop. */ 2149 ret = 0; 2150 continue; 2151 } else if (ret) { 2152 return ret; 2153 } 2154 } 2155 2156 /* 2157 * Either success case or btrfs_run_delayed_refs_for_head 2158 * returned -EAGAIN, meaning we need to select another head 2159 */ 2160 2161 locked_ref = NULL; 2162 cond_resched(); 2163 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2164 (max_count > 0 && count < max_count) || 2165 locked_ref); 2166 2167 return 0; 2168 } 2169 2170 #ifdef SCRAMBLE_DELAYED_REFS 2171 /* 2172 * Normally delayed refs get processed in ascending bytenr order. This 2173 * correlates in most cases to the order added. To expose dependencies on this 2174 * order, we start to process the tree in the middle instead of the beginning 2175 */ 2176 static u64 find_middle(struct rb_root *root) 2177 { 2178 struct rb_node *n = root->rb_node; 2179 struct btrfs_delayed_ref_node *entry; 2180 int alt = 1; 2181 u64 middle; 2182 u64 first = 0, last = 0; 2183 2184 n = rb_first(root); 2185 if (n) { 2186 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2187 first = entry->bytenr; 2188 } 2189 n = rb_last(root); 2190 if (n) { 2191 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2192 last = entry->bytenr; 2193 } 2194 n = root->rb_node; 2195 2196 while (n) { 2197 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2198 WARN_ON(!entry->in_tree); 2199 2200 middle = entry->bytenr; 2201 2202 if (alt) 2203 n = n->rb_left; 2204 else 2205 n = n->rb_right; 2206 2207 alt = 1 - alt; 2208 } 2209 return middle; 2210 } 2211 #endif 2212 2213 /* 2214 * Start processing the delayed reference count updates and extent insertions 2215 * we have queued up so far. 2216 * 2217 * @trans: Transaction handle. 2218 * @min_bytes: How many bytes of delayed references to process. After this 2219 * many bytes we stop processing delayed references if there are 2220 * any more. If 0 it means to run all existing delayed references, 2221 * but not new ones added after running all existing ones. 2222 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2223 * plus any new ones that are added. 2224 * 2225 * Returns 0 on success or if called with an aborted transaction 2226 * Returns <0 on error and aborts the transaction 2227 */ 2228 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2229 { 2230 struct btrfs_fs_info *fs_info = trans->fs_info; 2231 struct btrfs_delayed_ref_root *delayed_refs; 2232 int ret; 2233 2234 /* We'll clean this up in btrfs_cleanup_transaction */ 2235 if (TRANS_ABORTED(trans)) 2236 return 0; 2237 2238 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2239 return 0; 2240 2241 delayed_refs = &trans->transaction->delayed_refs; 2242 again: 2243 #ifdef SCRAMBLE_DELAYED_REFS 2244 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2245 #endif 2246 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2247 if (ret < 0) { 2248 btrfs_abort_transaction(trans, ret); 2249 return ret; 2250 } 2251 2252 if (min_bytes == U64_MAX) { 2253 btrfs_create_pending_block_groups(trans); 2254 2255 spin_lock(&delayed_refs->lock); 2256 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2257 spin_unlock(&delayed_refs->lock); 2258 return 0; 2259 } 2260 spin_unlock(&delayed_refs->lock); 2261 2262 cond_resched(); 2263 goto again; 2264 } 2265 2266 return 0; 2267 } 2268 2269 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2270 struct extent_buffer *eb, u64 flags) 2271 { 2272 struct btrfs_delayed_extent_op *extent_op; 2273 int level = btrfs_header_level(eb); 2274 int ret; 2275 2276 extent_op = btrfs_alloc_delayed_extent_op(); 2277 if (!extent_op) 2278 return -ENOMEM; 2279 2280 extent_op->flags_to_set = flags; 2281 extent_op->update_flags = true; 2282 extent_op->update_key = false; 2283 extent_op->level = level; 2284 2285 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2286 if (ret) 2287 btrfs_free_delayed_extent_op(extent_op); 2288 return ret; 2289 } 2290 2291 static noinline int check_delayed_ref(struct btrfs_root *root, 2292 struct btrfs_path *path, 2293 u64 objectid, u64 offset, u64 bytenr) 2294 { 2295 struct btrfs_delayed_ref_head *head; 2296 struct btrfs_delayed_ref_node *ref; 2297 struct btrfs_delayed_data_ref *data_ref; 2298 struct btrfs_delayed_ref_root *delayed_refs; 2299 struct btrfs_transaction *cur_trans; 2300 struct rb_node *node; 2301 int ret = 0; 2302 2303 spin_lock(&root->fs_info->trans_lock); 2304 cur_trans = root->fs_info->running_transaction; 2305 if (cur_trans) 2306 refcount_inc(&cur_trans->use_count); 2307 spin_unlock(&root->fs_info->trans_lock); 2308 if (!cur_trans) 2309 return 0; 2310 2311 delayed_refs = &cur_trans->delayed_refs; 2312 spin_lock(&delayed_refs->lock); 2313 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2314 if (!head) { 2315 spin_unlock(&delayed_refs->lock); 2316 btrfs_put_transaction(cur_trans); 2317 return 0; 2318 } 2319 2320 if (!mutex_trylock(&head->mutex)) { 2321 if (path->nowait) { 2322 spin_unlock(&delayed_refs->lock); 2323 btrfs_put_transaction(cur_trans); 2324 return -EAGAIN; 2325 } 2326 2327 refcount_inc(&head->refs); 2328 spin_unlock(&delayed_refs->lock); 2329 2330 btrfs_release_path(path); 2331 2332 /* 2333 * Mutex was contended, block until it's released and let 2334 * caller try again 2335 */ 2336 mutex_lock(&head->mutex); 2337 mutex_unlock(&head->mutex); 2338 btrfs_put_delayed_ref_head(head); 2339 btrfs_put_transaction(cur_trans); 2340 return -EAGAIN; 2341 } 2342 spin_unlock(&delayed_refs->lock); 2343 2344 spin_lock(&head->lock); 2345 /* 2346 * XXX: We should replace this with a proper search function in the 2347 * future. 2348 */ 2349 for (node = rb_first_cached(&head->ref_tree); node; 2350 node = rb_next(node)) { 2351 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2352 /* If it's a shared ref we know a cross reference exists */ 2353 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2354 ret = 1; 2355 break; 2356 } 2357 2358 data_ref = btrfs_delayed_node_to_data_ref(ref); 2359 2360 /* 2361 * If our ref doesn't match the one we're currently looking at 2362 * then we have a cross reference. 2363 */ 2364 if (data_ref->root != root->root_key.objectid || 2365 data_ref->objectid != objectid || 2366 data_ref->offset != offset) { 2367 ret = 1; 2368 break; 2369 } 2370 } 2371 spin_unlock(&head->lock); 2372 mutex_unlock(&head->mutex); 2373 btrfs_put_transaction(cur_trans); 2374 return ret; 2375 } 2376 2377 static noinline int check_committed_ref(struct btrfs_root *root, 2378 struct btrfs_path *path, 2379 u64 objectid, u64 offset, u64 bytenr, 2380 bool strict) 2381 { 2382 struct btrfs_fs_info *fs_info = root->fs_info; 2383 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2384 struct extent_buffer *leaf; 2385 struct btrfs_extent_data_ref *ref; 2386 struct btrfs_extent_inline_ref *iref; 2387 struct btrfs_extent_item *ei; 2388 struct btrfs_key key; 2389 u32 item_size; 2390 u32 expected_size; 2391 int type; 2392 int ret; 2393 2394 key.objectid = bytenr; 2395 key.offset = (u64)-1; 2396 key.type = BTRFS_EXTENT_ITEM_KEY; 2397 2398 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2399 if (ret < 0) 2400 goto out; 2401 BUG_ON(ret == 0); /* Corruption */ 2402 2403 ret = -ENOENT; 2404 if (path->slots[0] == 0) 2405 goto out; 2406 2407 path->slots[0]--; 2408 leaf = path->nodes[0]; 2409 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2410 2411 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2412 goto out; 2413 2414 ret = 1; 2415 item_size = btrfs_item_size(leaf, path->slots[0]); 2416 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2417 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2418 2419 /* No inline refs; we need to bail before checking for owner ref. */ 2420 if (item_size == sizeof(*ei)) 2421 goto out; 2422 2423 /* Check for an owner ref; skip over it to the real inline refs. */ 2424 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2425 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2426 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2427 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2428 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2429 } 2430 2431 /* If extent item has more than 1 inline ref then it's shared */ 2432 if (item_size != expected_size) 2433 goto out; 2434 2435 /* 2436 * If extent created before last snapshot => it's shared unless the 2437 * snapshot has been deleted. Use the heuristic if strict is false. 2438 */ 2439 if (!strict && 2440 (btrfs_extent_generation(leaf, ei) <= 2441 btrfs_root_last_snapshot(&root->root_item))) 2442 goto out; 2443 2444 /* If this extent has SHARED_DATA_REF then it's shared */ 2445 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2446 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2447 goto out; 2448 2449 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2450 if (btrfs_extent_refs(leaf, ei) != 2451 btrfs_extent_data_ref_count(leaf, ref) || 2452 btrfs_extent_data_ref_root(leaf, ref) != 2453 root->root_key.objectid || 2454 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2455 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2456 goto out; 2457 2458 ret = 0; 2459 out: 2460 return ret; 2461 } 2462 2463 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2464 u64 bytenr, bool strict, struct btrfs_path *path) 2465 { 2466 int ret; 2467 2468 do { 2469 ret = check_committed_ref(root, path, objectid, 2470 offset, bytenr, strict); 2471 if (ret && ret != -ENOENT) 2472 goto out; 2473 2474 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2475 } while (ret == -EAGAIN); 2476 2477 out: 2478 btrfs_release_path(path); 2479 if (btrfs_is_data_reloc_root(root)) 2480 WARN_ON(ret > 0); 2481 return ret; 2482 } 2483 2484 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2485 struct btrfs_root *root, 2486 struct extent_buffer *buf, 2487 int full_backref, int inc) 2488 { 2489 struct btrfs_fs_info *fs_info = root->fs_info; 2490 u64 bytenr; 2491 u64 num_bytes; 2492 u64 parent; 2493 u64 ref_root; 2494 u32 nritems; 2495 struct btrfs_key key; 2496 struct btrfs_file_extent_item *fi; 2497 struct btrfs_ref generic_ref = { 0 }; 2498 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2499 int i; 2500 int action; 2501 int level; 2502 int ret = 0; 2503 2504 if (btrfs_is_testing(fs_info)) 2505 return 0; 2506 2507 ref_root = btrfs_header_owner(buf); 2508 nritems = btrfs_header_nritems(buf); 2509 level = btrfs_header_level(buf); 2510 2511 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2512 return 0; 2513 2514 if (full_backref) 2515 parent = buf->start; 2516 else 2517 parent = 0; 2518 if (inc) 2519 action = BTRFS_ADD_DELAYED_REF; 2520 else 2521 action = BTRFS_DROP_DELAYED_REF; 2522 2523 for (i = 0; i < nritems; i++) { 2524 if (level == 0) { 2525 btrfs_item_key_to_cpu(buf, &key, i); 2526 if (key.type != BTRFS_EXTENT_DATA_KEY) 2527 continue; 2528 fi = btrfs_item_ptr(buf, i, 2529 struct btrfs_file_extent_item); 2530 if (btrfs_file_extent_type(buf, fi) == 2531 BTRFS_FILE_EXTENT_INLINE) 2532 continue; 2533 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2534 if (bytenr == 0) 2535 continue; 2536 2537 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2538 key.offset -= btrfs_file_extent_offset(buf, fi); 2539 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2540 num_bytes, parent, ref_root); 2541 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2542 key.offset, root->root_key.objectid, 2543 for_reloc); 2544 if (inc) 2545 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2546 else 2547 ret = btrfs_free_extent(trans, &generic_ref); 2548 if (ret) 2549 goto fail; 2550 } else { 2551 bytenr = btrfs_node_blockptr(buf, i); 2552 num_bytes = fs_info->nodesize; 2553 /* We don't know the owning_root, use 0. */ 2554 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2555 num_bytes, parent, 0); 2556 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2557 root->root_key.objectid, for_reloc); 2558 if (inc) 2559 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2560 else 2561 ret = btrfs_free_extent(trans, &generic_ref); 2562 if (ret) 2563 goto fail; 2564 } 2565 } 2566 return 0; 2567 fail: 2568 return ret; 2569 } 2570 2571 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2572 struct extent_buffer *buf, int full_backref) 2573 { 2574 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2575 } 2576 2577 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2578 struct extent_buffer *buf, int full_backref) 2579 { 2580 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2581 } 2582 2583 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2584 { 2585 struct btrfs_fs_info *fs_info = root->fs_info; 2586 u64 flags; 2587 u64 ret; 2588 2589 if (data) 2590 flags = BTRFS_BLOCK_GROUP_DATA; 2591 else if (root == fs_info->chunk_root) 2592 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2593 else 2594 flags = BTRFS_BLOCK_GROUP_METADATA; 2595 2596 ret = btrfs_get_alloc_profile(fs_info, flags); 2597 return ret; 2598 } 2599 2600 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2601 { 2602 struct rb_node *leftmost; 2603 u64 bytenr = 0; 2604 2605 read_lock(&fs_info->block_group_cache_lock); 2606 /* Get the block group with the lowest logical start address. */ 2607 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2608 if (leftmost) { 2609 struct btrfs_block_group *bg; 2610 2611 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2612 bytenr = bg->start; 2613 } 2614 read_unlock(&fs_info->block_group_cache_lock); 2615 2616 return bytenr; 2617 } 2618 2619 static int pin_down_extent(struct btrfs_trans_handle *trans, 2620 struct btrfs_block_group *cache, 2621 u64 bytenr, u64 num_bytes, int reserved) 2622 { 2623 struct btrfs_fs_info *fs_info = cache->fs_info; 2624 2625 spin_lock(&cache->space_info->lock); 2626 spin_lock(&cache->lock); 2627 cache->pinned += num_bytes; 2628 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2629 num_bytes); 2630 if (reserved) { 2631 cache->reserved -= num_bytes; 2632 cache->space_info->bytes_reserved -= num_bytes; 2633 } 2634 spin_unlock(&cache->lock); 2635 spin_unlock(&cache->space_info->lock); 2636 2637 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2638 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2639 return 0; 2640 } 2641 2642 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2643 u64 bytenr, u64 num_bytes, int reserved) 2644 { 2645 struct btrfs_block_group *cache; 2646 2647 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2648 BUG_ON(!cache); /* Logic error */ 2649 2650 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2651 2652 btrfs_put_block_group(cache); 2653 return 0; 2654 } 2655 2656 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2657 const struct extent_buffer *eb) 2658 { 2659 struct btrfs_block_group *cache; 2660 int ret; 2661 2662 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2663 if (!cache) 2664 return -EINVAL; 2665 2666 /* 2667 * Fully cache the free space first so that our pin removes the free space 2668 * from the cache. 2669 */ 2670 ret = btrfs_cache_block_group(cache, true); 2671 if (ret) 2672 goto out; 2673 2674 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2675 2676 /* remove us from the free space cache (if we're there at all) */ 2677 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2678 out: 2679 btrfs_put_block_group(cache); 2680 return ret; 2681 } 2682 2683 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2684 u64 start, u64 num_bytes) 2685 { 2686 int ret; 2687 struct btrfs_block_group *block_group; 2688 2689 block_group = btrfs_lookup_block_group(fs_info, start); 2690 if (!block_group) 2691 return -EINVAL; 2692 2693 ret = btrfs_cache_block_group(block_group, true); 2694 if (ret) 2695 goto out; 2696 2697 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2698 out: 2699 btrfs_put_block_group(block_group); 2700 return ret; 2701 } 2702 2703 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2704 { 2705 struct btrfs_fs_info *fs_info = eb->fs_info; 2706 struct btrfs_file_extent_item *item; 2707 struct btrfs_key key; 2708 int found_type; 2709 int i; 2710 int ret = 0; 2711 2712 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2713 return 0; 2714 2715 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2716 btrfs_item_key_to_cpu(eb, &key, i); 2717 if (key.type != BTRFS_EXTENT_DATA_KEY) 2718 continue; 2719 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2720 found_type = btrfs_file_extent_type(eb, item); 2721 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2722 continue; 2723 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2724 continue; 2725 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2726 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2727 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2728 if (ret) 2729 break; 2730 } 2731 2732 return ret; 2733 } 2734 2735 static void 2736 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2737 { 2738 atomic_inc(&bg->reservations); 2739 } 2740 2741 /* 2742 * Returns the free cluster for the given space info and sets empty_cluster to 2743 * what it should be based on the mount options. 2744 */ 2745 static struct btrfs_free_cluster * 2746 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2747 struct btrfs_space_info *space_info, u64 *empty_cluster) 2748 { 2749 struct btrfs_free_cluster *ret = NULL; 2750 2751 *empty_cluster = 0; 2752 if (btrfs_mixed_space_info(space_info)) 2753 return ret; 2754 2755 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2756 ret = &fs_info->meta_alloc_cluster; 2757 if (btrfs_test_opt(fs_info, SSD)) 2758 *empty_cluster = SZ_2M; 2759 else 2760 *empty_cluster = SZ_64K; 2761 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2762 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2763 *empty_cluster = SZ_2M; 2764 ret = &fs_info->data_alloc_cluster; 2765 } 2766 2767 return ret; 2768 } 2769 2770 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2771 u64 start, u64 end, 2772 const bool return_free_space) 2773 { 2774 struct btrfs_block_group *cache = NULL; 2775 struct btrfs_space_info *space_info; 2776 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2777 struct btrfs_free_cluster *cluster = NULL; 2778 u64 len; 2779 u64 total_unpinned = 0; 2780 u64 empty_cluster = 0; 2781 bool readonly; 2782 2783 while (start <= end) { 2784 readonly = false; 2785 if (!cache || 2786 start >= cache->start + cache->length) { 2787 if (cache) 2788 btrfs_put_block_group(cache); 2789 total_unpinned = 0; 2790 cache = btrfs_lookup_block_group(fs_info, start); 2791 BUG_ON(!cache); /* Logic error */ 2792 2793 cluster = fetch_cluster_info(fs_info, 2794 cache->space_info, 2795 &empty_cluster); 2796 empty_cluster <<= 1; 2797 } 2798 2799 len = cache->start + cache->length - start; 2800 len = min(len, end + 1 - start); 2801 2802 if (return_free_space) 2803 btrfs_add_free_space(cache, start, len); 2804 2805 start += len; 2806 total_unpinned += len; 2807 space_info = cache->space_info; 2808 2809 /* 2810 * If this space cluster has been marked as fragmented and we've 2811 * unpinned enough in this block group to potentially allow a 2812 * cluster to be created inside of it go ahead and clear the 2813 * fragmented check. 2814 */ 2815 if (cluster && cluster->fragmented && 2816 total_unpinned > empty_cluster) { 2817 spin_lock(&cluster->lock); 2818 cluster->fragmented = 0; 2819 spin_unlock(&cluster->lock); 2820 } 2821 2822 spin_lock(&space_info->lock); 2823 spin_lock(&cache->lock); 2824 cache->pinned -= len; 2825 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2826 space_info->max_extent_size = 0; 2827 if (cache->ro) { 2828 space_info->bytes_readonly += len; 2829 readonly = true; 2830 } else if (btrfs_is_zoned(fs_info)) { 2831 /* Need reset before reusing in a zoned block group */ 2832 space_info->bytes_zone_unusable += len; 2833 readonly = true; 2834 } 2835 spin_unlock(&cache->lock); 2836 if (!readonly && return_free_space && 2837 global_rsv->space_info == space_info) { 2838 spin_lock(&global_rsv->lock); 2839 if (!global_rsv->full) { 2840 u64 to_add = min(len, global_rsv->size - 2841 global_rsv->reserved); 2842 2843 global_rsv->reserved += to_add; 2844 btrfs_space_info_update_bytes_may_use(fs_info, 2845 space_info, to_add); 2846 if (global_rsv->reserved >= global_rsv->size) 2847 global_rsv->full = 1; 2848 len -= to_add; 2849 } 2850 spin_unlock(&global_rsv->lock); 2851 } 2852 /* Add to any tickets we may have */ 2853 if (!readonly && return_free_space && len) 2854 btrfs_try_granting_tickets(fs_info, space_info); 2855 spin_unlock(&space_info->lock); 2856 } 2857 2858 if (cache) 2859 btrfs_put_block_group(cache); 2860 return 0; 2861 } 2862 2863 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2864 { 2865 struct btrfs_fs_info *fs_info = trans->fs_info; 2866 struct btrfs_block_group *block_group, *tmp; 2867 struct list_head *deleted_bgs; 2868 struct extent_io_tree *unpin; 2869 u64 start; 2870 u64 end; 2871 int ret; 2872 2873 unpin = &trans->transaction->pinned_extents; 2874 2875 while (!TRANS_ABORTED(trans)) { 2876 struct extent_state *cached_state = NULL; 2877 2878 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2879 if (!find_first_extent_bit(unpin, 0, &start, &end, 2880 EXTENT_DIRTY, &cached_state)) { 2881 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2882 break; 2883 } 2884 2885 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2886 ret = btrfs_discard_extent(fs_info, start, 2887 end + 1 - start, NULL); 2888 2889 clear_extent_dirty(unpin, start, end, &cached_state); 2890 unpin_extent_range(fs_info, start, end, true); 2891 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2892 free_extent_state(cached_state); 2893 cond_resched(); 2894 } 2895 2896 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2897 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2898 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2899 } 2900 2901 /* 2902 * Transaction is finished. We don't need the lock anymore. We 2903 * do need to clean up the block groups in case of a transaction 2904 * abort. 2905 */ 2906 deleted_bgs = &trans->transaction->deleted_bgs; 2907 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2908 u64 trimmed = 0; 2909 2910 ret = -EROFS; 2911 if (!TRANS_ABORTED(trans)) 2912 ret = btrfs_discard_extent(fs_info, 2913 block_group->start, 2914 block_group->length, 2915 &trimmed); 2916 2917 list_del_init(&block_group->bg_list); 2918 btrfs_unfreeze_block_group(block_group); 2919 btrfs_put_block_group(block_group); 2920 2921 if (ret) { 2922 const char *errstr = btrfs_decode_error(ret); 2923 btrfs_warn(fs_info, 2924 "discard failed while removing blockgroup: errno=%d %s", 2925 ret, errstr); 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /* 2933 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2934 * 2935 * @fs_info: the btrfs_fs_info for this mount 2936 * @leaf: a leaf in the extent tree containing the extent item 2937 * @slot: the slot in the leaf where the extent item is found 2938 * 2939 * Returns the objectid of the root that originally allocated the extent item 2940 * if the inline owner ref is expected and present, otherwise 0. 2941 * 2942 * If an extent item has an owner ref item, it will be the first inline ref 2943 * item. Therefore the logic is to check whether there are any inline ref 2944 * items, then check the type of the first one. 2945 */ 2946 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2947 struct extent_buffer *leaf, int slot) 2948 { 2949 struct btrfs_extent_item *ei; 2950 struct btrfs_extent_inline_ref *iref; 2951 struct btrfs_extent_owner_ref *oref; 2952 unsigned long ptr; 2953 unsigned long end; 2954 int type; 2955 2956 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2957 return 0; 2958 2959 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2960 ptr = (unsigned long)(ei + 1); 2961 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2962 2963 /* No inline ref items of any kind, can't check type. */ 2964 if (ptr == end) 2965 return 0; 2966 2967 iref = (struct btrfs_extent_inline_ref *)ptr; 2968 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2969 2970 /* We found an owner ref, get the root out of it. */ 2971 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2972 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2973 return btrfs_extent_owner_ref_root_id(leaf, oref); 2974 } 2975 2976 /* We have inline refs, but not an owner ref. */ 2977 return 0; 2978 } 2979 2980 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2981 u64 bytenr, struct btrfs_squota_delta *delta) 2982 { 2983 int ret; 2984 u64 num_bytes = delta->num_bytes; 2985 2986 if (delta->is_data) { 2987 struct btrfs_root *csum_root; 2988 2989 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2990 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2991 if (ret) { 2992 btrfs_abort_transaction(trans, ret); 2993 return ret; 2994 } 2995 2996 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2997 if (ret) { 2998 btrfs_abort_transaction(trans, ret); 2999 return ret; 3000 } 3001 } 3002 3003 ret = btrfs_record_squota_delta(trans->fs_info, delta); 3004 if (ret) { 3005 btrfs_abort_transaction(trans, ret); 3006 return ret; 3007 } 3008 3009 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3010 if (ret) { 3011 btrfs_abort_transaction(trans, ret); 3012 return ret; 3013 } 3014 3015 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3016 if (ret) 3017 btrfs_abort_transaction(trans, ret); 3018 3019 return ret; 3020 } 3021 3022 #define abort_and_dump(trans, path, fmt, args...) \ 3023 ({ \ 3024 btrfs_abort_transaction(trans, -EUCLEAN); \ 3025 btrfs_print_leaf(path->nodes[0]); \ 3026 btrfs_crit(trans->fs_info, fmt, ##args); \ 3027 }) 3028 3029 /* 3030 * Drop one or more refs of @node. 3031 * 3032 * 1. Locate the extent refs. 3033 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3034 * Locate it, then reduce the refs number or remove the ref line completely. 3035 * 3036 * 2. Update the refs count in EXTENT/METADATA_ITEM 3037 * 3038 * Inline backref case: 3039 * 3040 * in extent tree we have: 3041 * 3042 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3043 * refs 2 gen 6 flags DATA 3044 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3045 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3046 * 3047 * This function gets called with: 3048 * 3049 * node->bytenr = 13631488 3050 * node->num_bytes = 1048576 3051 * root_objectid = FS_TREE 3052 * owner_objectid = 257 3053 * owner_offset = 0 3054 * refs_to_drop = 1 3055 * 3056 * Then we should get some like: 3057 * 3058 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3059 * refs 1 gen 6 flags DATA 3060 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3061 * 3062 * Keyed backref case: 3063 * 3064 * in extent tree we have: 3065 * 3066 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3067 * refs 754 gen 6 flags DATA 3068 * [...] 3069 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3070 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3071 * 3072 * This function get called with: 3073 * 3074 * node->bytenr = 13631488 3075 * node->num_bytes = 1048576 3076 * root_objectid = FS_TREE 3077 * owner_objectid = 866 3078 * owner_offset = 0 3079 * refs_to_drop = 1 3080 * 3081 * Then we should get some like: 3082 * 3083 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3084 * refs 753 gen 6 flags DATA 3085 * 3086 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3087 */ 3088 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3089 struct btrfs_delayed_ref_head *href, 3090 struct btrfs_delayed_ref_node *node, u64 parent, 3091 u64 root_objectid, u64 owner_objectid, 3092 u64 owner_offset, 3093 struct btrfs_delayed_extent_op *extent_op) 3094 { 3095 struct btrfs_fs_info *info = trans->fs_info; 3096 struct btrfs_key key; 3097 struct btrfs_path *path; 3098 struct btrfs_root *extent_root; 3099 struct extent_buffer *leaf; 3100 struct btrfs_extent_item *ei; 3101 struct btrfs_extent_inline_ref *iref; 3102 int ret; 3103 int is_data; 3104 int extent_slot = 0; 3105 int found_extent = 0; 3106 int num_to_del = 1; 3107 int refs_to_drop = node->ref_mod; 3108 u32 item_size; 3109 u64 refs; 3110 u64 bytenr = node->bytenr; 3111 u64 num_bytes = node->num_bytes; 3112 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3113 u64 delayed_ref_root = href->owning_root; 3114 3115 extent_root = btrfs_extent_root(info, bytenr); 3116 ASSERT(extent_root); 3117 3118 path = btrfs_alloc_path(); 3119 if (!path) 3120 return -ENOMEM; 3121 3122 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3123 3124 if (!is_data && refs_to_drop != 1) { 3125 btrfs_crit(info, 3126 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3127 node->bytenr, refs_to_drop); 3128 ret = -EINVAL; 3129 btrfs_abort_transaction(trans, ret); 3130 goto out; 3131 } 3132 3133 if (is_data) 3134 skinny_metadata = false; 3135 3136 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3137 parent, root_objectid, owner_objectid, 3138 owner_offset); 3139 if (ret == 0) { 3140 /* 3141 * Either the inline backref or the SHARED_DATA_REF/ 3142 * SHARED_BLOCK_REF is found 3143 * 3144 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3145 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3146 */ 3147 extent_slot = path->slots[0]; 3148 while (extent_slot >= 0) { 3149 btrfs_item_key_to_cpu(path->nodes[0], &key, 3150 extent_slot); 3151 if (key.objectid != bytenr) 3152 break; 3153 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3154 key.offset == num_bytes) { 3155 found_extent = 1; 3156 break; 3157 } 3158 if (key.type == BTRFS_METADATA_ITEM_KEY && 3159 key.offset == owner_objectid) { 3160 found_extent = 1; 3161 break; 3162 } 3163 3164 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3165 if (path->slots[0] - extent_slot > 5) 3166 break; 3167 extent_slot--; 3168 } 3169 3170 if (!found_extent) { 3171 if (iref) { 3172 abort_and_dump(trans, path, 3173 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3174 path->slots[0]); 3175 ret = -EUCLEAN; 3176 goto out; 3177 } 3178 /* Must be SHARED_* item, remove the backref first */ 3179 ret = remove_extent_backref(trans, extent_root, path, 3180 NULL, refs_to_drop, is_data); 3181 if (ret) { 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 btrfs_release_path(path); 3186 3187 /* Slow path to locate EXTENT/METADATA_ITEM */ 3188 key.objectid = bytenr; 3189 key.type = BTRFS_EXTENT_ITEM_KEY; 3190 key.offset = num_bytes; 3191 3192 if (!is_data && skinny_metadata) { 3193 key.type = BTRFS_METADATA_ITEM_KEY; 3194 key.offset = owner_objectid; 3195 } 3196 3197 ret = btrfs_search_slot(trans, extent_root, 3198 &key, path, -1, 1); 3199 if (ret > 0 && skinny_metadata && path->slots[0]) { 3200 /* 3201 * Couldn't find our skinny metadata item, 3202 * see if we have ye olde extent item. 3203 */ 3204 path->slots[0]--; 3205 btrfs_item_key_to_cpu(path->nodes[0], &key, 3206 path->slots[0]); 3207 if (key.objectid == bytenr && 3208 key.type == BTRFS_EXTENT_ITEM_KEY && 3209 key.offset == num_bytes) 3210 ret = 0; 3211 } 3212 3213 if (ret > 0 && skinny_metadata) { 3214 skinny_metadata = false; 3215 key.objectid = bytenr; 3216 key.type = BTRFS_EXTENT_ITEM_KEY; 3217 key.offset = num_bytes; 3218 btrfs_release_path(path); 3219 ret = btrfs_search_slot(trans, extent_root, 3220 &key, path, -1, 1); 3221 } 3222 3223 if (ret) { 3224 if (ret > 0) 3225 btrfs_print_leaf(path->nodes[0]); 3226 btrfs_err(info, 3227 "umm, got %d back from search, was looking for %llu, slot %d", 3228 ret, bytenr, path->slots[0]); 3229 } 3230 if (ret < 0) { 3231 btrfs_abort_transaction(trans, ret); 3232 goto out; 3233 } 3234 extent_slot = path->slots[0]; 3235 } 3236 } else if (WARN_ON(ret == -ENOENT)) { 3237 abort_and_dump(trans, path, 3238 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3239 bytenr, parent, root_objectid, owner_objectid, 3240 owner_offset, path->slots[0]); 3241 goto out; 3242 } else { 3243 btrfs_abort_transaction(trans, ret); 3244 goto out; 3245 } 3246 3247 leaf = path->nodes[0]; 3248 item_size = btrfs_item_size(leaf, extent_slot); 3249 if (unlikely(item_size < sizeof(*ei))) { 3250 ret = -EUCLEAN; 3251 btrfs_err(trans->fs_info, 3252 "unexpected extent item size, has %u expect >= %zu", 3253 item_size, sizeof(*ei)); 3254 btrfs_abort_transaction(trans, ret); 3255 goto out; 3256 } 3257 ei = btrfs_item_ptr(leaf, extent_slot, 3258 struct btrfs_extent_item); 3259 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3260 key.type == BTRFS_EXTENT_ITEM_KEY) { 3261 struct btrfs_tree_block_info *bi; 3262 3263 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3264 abort_and_dump(trans, path, 3265 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3266 key.objectid, key.type, key.offset, 3267 path->slots[0], owner_objectid, item_size, 3268 sizeof(*ei) + sizeof(*bi)); 3269 ret = -EUCLEAN; 3270 goto out; 3271 } 3272 bi = (struct btrfs_tree_block_info *)(ei + 1); 3273 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3274 } 3275 3276 refs = btrfs_extent_refs(leaf, ei); 3277 if (refs < refs_to_drop) { 3278 abort_and_dump(trans, path, 3279 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3280 refs_to_drop, refs, bytenr, path->slots[0]); 3281 ret = -EUCLEAN; 3282 goto out; 3283 } 3284 refs -= refs_to_drop; 3285 3286 if (refs > 0) { 3287 if (extent_op) 3288 __run_delayed_extent_op(extent_op, leaf, ei); 3289 /* 3290 * In the case of inline back ref, reference count will 3291 * be updated by remove_extent_backref 3292 */ 3293 if (iref) { 3294 if (!found_extent) { 3295 abort_and_dump(trans, path, 3296 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3297 path->slots[0]); 3298 ret = -EUCLEAN; 3299 goto out; 3300 } 3301 } else { 3302 btrfs_set_extent_refs(leaf, ei, refs); 3303 btrfs_mark_buffer_dirty(trans, leaf); 3304 } 3305 if (found_extent) { 3306 ret = remove_extent_backref(trans, extent_root, path, 3307 iref, refs_to_drop, is_data); 3308 if (ret) { 3309 btrfs_abort_transaction(trans, ret); 3310 goto out; 3311 } 3312 } 3313 } else { 3314 struct btrfs_squota_delta delta = { 3315 .root = delayed_ref_root, 3316 .num_bytes = num_bytes, 3317 .is_data = is_data, 3318 .is_inc = false, 3319 .generation = btrfs_extent_generation(leaf, ei), 3320 }; 3321 3322 /* In this branch refs == 1 */ 3323 if (found_extent) { 3324 if (is_data && refs_to_drop != 3325 extent_data_ref_count(path, iref)) { 3326 abort_and_dump(trans, path, 3327 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3328 extent_data_ref_count(path, iref), 3329 refs_to_drop, path->slots[0]); 3330 ret = -EUCLEAN; 3331 goto out; 3332 } 3333 if (iref) { 3334 if (path->slots[0] != extent_slot) { 3335 abort_and_dump(trans, path, 3336 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3337 key.objectid, key.type, 3338 key.offset, path->slots[0]); 3339 ret = -EUCLEAN; 3340 goto out; 3341 } 3342 } else { 3343 /* 3344 * No inline ref, we must be at SHARED_* item, 3345 * And it's single ref, it must be: 3346 * | extent_slot ||extent_slot + 1| 3347 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3348 */ 3349 if (path->slots[0] != extent_slot + 1) { 3350 abort_and_dump(trans, path, 3351 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3352 path->slots[0]); 3353 ret = -EUCLEAN; 3354 goto out; 3355 } 3356 path->slots[0] = extent_slot; 3357 num_to_del = 2; 3358 } 3359 } 3360 /* 3361 * We can't infer the data owner from the delayed ref, so we need 3362 * to try to get it from the owning ref item. 3363 * 3364 * If it is not present, then that extent was not written under 3365 * simple quotas mode, so we don't need to account for its deletion. 3366 */ 3367 if (is_data) 3368 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3369 leaf, extent_slot); 3370 3371 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3372 num_to_del); 3373 if (ret) { 3374 btrfs_abort_transaction(trans, ret); 3375 goto out; 3376 } 3377 btrfs_release_path(path); 3378 3379 ret = do_free_extent_accounting(trans, bytenr, &delta); 3380 } 3381 btrfs_release_path(path); 3382 3383 out: 3384 btrfs_free_path(path); 3385 return ret; 3386 } 3387 3388 /* 3389 * when we free an block, it is possible (and likely) that we free the last 3390 * delayed ref for that extent as well. This searches the delayed ref tree for 3391 * a given extent, and if there are no other delayed refs to be processed, it 3392 * removes it from the tree. 3393 */ 3394 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3395 u64 bytenr) 3396 { 3397 struct btrfs_delayed_ref_head *head; 3398 struct btrfs_delayed_ref_root *delayed_refs; 3399 int ret = 0; 3400 3401 delayed_refs = &trans->transaction->delayed_refs; 3402 spin_lock(&delayed_refs->lock); 3403 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3404 if (!head) 3405 goto out_delayed_unlock; 3406 3407 spin_lock(&head->lock); 3408 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3409 goto out; 3410 3411 if (cleanup_extent_op(head) != NULL) 3412 goto out; 3413 3414 /* 3415 * waiting for the lock here would deadlock. If someone else has it 3416 * locked they are already in the process of dropping it anyway 3417 */ 3418 if (!mutex_trylock(&head->mutex)) 3419 goto out; 3420 3421 btrfs_delete_ref_head(delayed_refs, head); 3422 head->processing = false; 3423 3424 spin_unlock(&head->lock); 3425 spin_unlock(&delayed_refs->lock); 3426 3427 BUG_ON(head->extent_op); 3428 if (head->must_insert_reserved) 3429 ret = 1; 3430 3431 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3432 mutex_unlock(&head->mutex); 3433 btrfs_put_delayed_ref_head(head); 3434 return ret; 3435 out: 3436 spin_unlock(&head->lock); 3437 3438 out_delayed_unlock: 3439 spin_unlock(&delayed_refs->lock); 3440 return 0; 3441 } 3442 3443 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3444 u64 root_id, 3445 struct extent_buffer *buf, 3446 u64 parent, int last_ref) 3447 { 3448 struct btrfs_fs_info *fs_info = trans->fs_info; 3449 struct btrfs_ref generic_ref = { 0 }; 3450 struct btrfs_block_group *bg; 3451 int ret; 3452 3453 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3454 buf->start, buf->len, parent, btrfs_header_owner(buf)); 3455 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3456 root_id, 0, false); 3457 3458 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3459 btrfs_ref_tree_mod(fs_info, &generic_ref); 3460 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3461 BUG_ON(ret); /* -ENOMEM */ 3462 } 3463 3464 if (!last_ref) 3465 return; 3466 3467 if (btrfs_header_generation(buf) != trans->transid) 3468 goto out; 3469 3470 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3471 ret = check_ref_cleanup(trans, buf->start); 3472 if (!ret) 3473 goto out; 3474 } 3475 3476 bg = btrfs_lookup_block_group(fs_info, buf->start); 3477 3478 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3479 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3480 btrfs_put_block_group(bg); 3481 goto out; 3482 } 3483 3484 /* 3485 * If there are tree mod log users we may have recorded mod log 3486 * operations for this node. If we re-allocate this node we 3487 * could replay operations on this node that happened when it 3488 * existed in a completely different root. For example if it 3489 * was part of root A, then was reallocated to root B, and we 3490 * are doing a btrfs_old_search_slot(root b), we could replay 3491 * operations that happened when the block was part of root A, 3492 * giving us an inconsistent view of the btree. 3493 * 3494 * We are safe from races here because at this point no other 3495 * node or root points to this extent buffer, so if after this 3496 * check a new tree mod log user joins we will not have an 3497 * existing log of operations on this node that we have to 3498 * contend with. 3499 */ 3500 3501 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3502 || btrfs_is_zoned(fs_info)) { 3503 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3504 btrfs_put_block_group(bg); 3505 goto out; 3506 } 3507 3508 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3509 3510 btrfs_add_free_space(bg, buf->start, buf->len); 3511 btrfs_free_reserved_bytes(bg, buf->len, 0); 3512 btrfs_put_block_group(bg); 3513 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3514 3515 out: 3516 3517 /* 3518 * Deleting the buffer, clear the corrupt flag since it doesn't 3519 * matter anymore. 3520 */ 3521 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3522 } 3523 3524 /* Can return -ENOMEM */ 3525 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3526 { 3527 struct btrfs_fs_info *fs_info = trans->fs_info; 3528 int ret; 3529 3530 if (btrfs_is_testing(fs_info)) 3531 return 0; 3532 3533 /* 3534 * tree log blocks never actually go into the extent allocation 3535 * tree, just update pinning info and exit early. 3536 */ 3537 if ((ref->type == BTRFS_REF_METADATA && 3538 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3539 (ref->type == BTRFS_REF_DATA && 3540 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3541 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3542 ret = 0; 3543 } else if (ref->type == BTRFS_REF_METADATA) { 3544 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3545 } else { 3546 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3547 } 3548 3549 if (!((ref->type == BTRFS_REF_METADATA && 3550 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3551 (ref->type == BTRFS_REF_DATA && 3552 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3553 btrfs_ref_tree_mod(fs_info, ref); 3554 3555 return ret; 3556 } 3557 3558 enum btrfs_loop_type { 3559 /* 3560 * Start caching block groups but do not wait for progress or for them 3561 * to be done. 3562 */ 3563 LOOP_CACHING_NOWAIT, 3564 3565 /* 3566 * Wait for the block group free_space >= the space we're waiting for if 3567 * the block group isn't cached. 3568 */ 3569 LOOP_CACHING_WAIT, 3570 3571 /* 3572 * Allow allocations to happen from block groups that do not yet have a 3573 * size classification. 3574 */ 3575 LOOP_UNSET_SIZE_CLASS, 3576 3577 /* 3578 * Allocate a chunk and then retry the allocation. 3579 */ 3580 LOOP_ALLOC_CHUNK, 3581 3582 /* 3583 * Ignore the size class restrictions for this allocation. 3584 */ 3585 LOOP_WRONG_SIZE_CLASS, 3586 3587 /* 3588 * Ignore the empty size, only try to allocate the number of bytes 3589 * needed for this allocation. 3590 */ 3591 LOOP_NO_EMPTY_SIZE, 3592 }; 3593 3594 static inline void 3595 btrfs_lock_block_group(struct btrfs_block_group *cache, 3596 int delalloc) 3597 { 3598 if (delalloc) 3599 down_read(&cache->data_rwsem); 3600 } 3601 3602 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3603 int delalloc) 3604 { 3605 btrfs_get_block_group(cache); 3606 if (delalloc) 3607 down_read(&cache->data_rwsem); 3608 } 3609 3610 static struct btrfs_block_group *btrfs_lock_cluster( 3611 struct btrfs_block_group *block_group, 3612 struct btrfs_free_cluster *cluster, 3613 int delalloc) 3614 __acquires(&cluster->refill_lock) 3615 { 3616 struct btrfs_block_group *used_bg = NULL; 3617 3618 spin_lock(&cluster->refill_lock); 3619 while (1) { 3620 used_bg = cluster->block_group; 3621 if (!used_bg) 3622 return NULL; 3623 3624 if (used_bg == block_group) 3625 return used_bg; 3626 3627 btrfs_get_block_group(used_bg); 3628 3629 if (!delalloc) 3630 return used_bg; 3631 3632 if (down_read_trylock(&used_bg->data_rwsem)) 3633 return used_bg; 3634 3635 spin_unlock(&cluster->refill_lock); 3636 3637 /* We should only have one-level nested. */ 3638 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3639 3640 spin_lock(&cluster->refill_lock); 3641 if (used_bg == cluster->block_group) 3642 return used_bg; 3643 3644 up_read(&used_bg->data_rwsem); 3645 btrfs_put_block_group(used_bg); 3646 } 3647 } 3648 3649 static inline void 3650 btrfs_release_block_group(struct btrfs_block_group *cache, 3651 int delalloc) 3652 { 3653 if (delalloc) 3654 up_read(&cache->data_rwsem); 3655 btrfs_put_block_group(cache); 3656 } 3657 3658 /* 3659 * Helper function for find_free_extent(). 3660 * 3661 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3662 * Return >0 to inform caller that we find nothing 3663 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3664 */ 3665 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3666 struct find_free_extent_ctl *ffe_ctl, 3667 struct btrfs_block_group **cluster_bg_ret) 3668 { 3669 struct btrfs_block_group *cluster_bg; 3670 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3671 u64 aligned_cluster; 3672 u64 offset; 3673 int ret; 3674 3675 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3676 if (!cluster_bg) 3677 goto refill_cluster; 3678 if (cluster_bg != bg && (cluster_bg->ro || 3679 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3680 goto release_cluster; 3681 3682 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3683 ffe_ctl->num_bytes, cluster_bg->start, 3684 &ffe_ctl->max_extent_size); 3685 if (offset) { 3686 /* We have a block, we're done */ 3687 spin_unlock(&last_ptr->refill_lock); 3688 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3689 *cluster_bg_ret = cluster_bg; 3690 ffe_ctl->found_offset = offset; 3691 return 0; 3692 } 3693 WARN_ON(last_ptr->block_group != cluster_bg); 3694 3695 release_cluster: 3696 /* 3697 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3698 * lets just skip it and let the allocator find whatever block it can 3699 * find. If we reach this point, we will have tried the cluster 3700 * allocator plenty of times and not have found anything, so we are 3701 * likely way too fragmented for the clustering stuff to find anything. 3702 * 3703 * However, if the cluster is taken from the current block group, 3704 * release the cluster first, so that we stand a better chance of 3705 * succeeding in the unclustered allocation. 3706 */ 3707 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3708 spin_unlock(&last_ptr->refill_lock); 3709 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3710 return -ENOENT; 3711 } 3712 3713 /* This cluster didn't work out, free it and start over */ 3714 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3715 3716 if (cluster_bg != bg) 3717 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3718 3719 refill_cluster: 3720 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3721 spin_unlock(&last_ptr->refill_lock); 3722 return -ENOENT; 3723 } 3724 3725 aligned_cluster = max_t(u64, 3726 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3727 bg->full_stripe_len); 3728 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3729 ffe_ctl->num_bytes, aligned_cluster); 3730 if (ret == 0) { 3731 /* Now pull our allocation out of this cluster */ 3732 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3733 ffe_ctl->num_bytes, ffe_ctl->search_start, 3734 &ffe_ctl->max_extent_size); 3735 if (offset) { 3736 /* We found one, proceed */ 3737 spin_unlock(&last_ptr->refill_lock); 3738 ffe_ctl->found_offset = offset; 3739 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3740 return 0; 3741 } 3742 } 3743 /* 3744 * At this point we either didn't find a cluster or we weren't able to 3745 * allocate a block from our cluster. Free the cluster we've been 3746 * trying to use, and go to the next block group. 3747 */ 3748 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3749 spin_unlock(&last_ptr->refill_lock); 3750 return 1; 3751 } 3752 3753 /* 3754 * Return >0 to inform caller that we find nothing 3755 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3756 */ 3757 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3758 struct find_free_extent_ctl *ffe_ctl) 3759 { 3760 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3761 u64 offset; 3762 3763 /* 3764 * We are doing an unclustered allocation, set the fragmented flag so 3765 * we don't bother trying to setup a cluster again until we get more 3766 * space. 3767 */ 3768 if (unlikely(last_ptr)) { 3769 spin_lock(&last_ptr->lock); 3770 last_ptr->fragmented = 1; 3771 spin_unlock(&last_ptr->lock); 3772 } 3773 if (ffe_ctl->cached) { 3774 struct btrfs_free_space_ctl *free_space_ctl; 3775 3776 free_space_ctl = bg->free_space_ctl; 3777 spin_lock(&free_space_ctl->tree_lock); 3778 if (free_space_ctl->free_space < 3779 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3780 ffe_ctl->empty_size) { 3781 ffe_ctl->total_free_space = max_t(u64, 3782 ffe_ctl->total_free_space, 3783 free_space_ctl->free_space); 3784 spin_unlock(&free_space_ctl->tree_lock); 3785 return 1; 3786 } 3787 spin_unlock(&free_space_ctl->tree_lock); 3788 } 3789 3790 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3791 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3792 &ffe_ctl->max_extent_size); 3793 if (!offset) 3794 return 1; 3795 ffe_ctl->found_offset = offset; 3796 return 0; 3797 } 3798 3799 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3800 struct find_free_extent_ctl *ffe_ctl, 3801 struct btrfs_block_group **bg_ret) 3802 { 3803 int ret; 3804 3805 /* We want to try and use the cluster allocator, so lets look there */ 3806 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3807 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3808 if (ret >= 0) 3809 return ret; 3810 /* ret == -ENOENT case falls through */ 3811 } 3812 3813 return find_free_extent_unclustered(block_group, ffe_ctl); 3814 } 3815 3816 /* 3817 * Tree-log block group locking 3818 * ============================ 3819 * 3820 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3821 * indicates the starting address of a block group, which is reserved only 3822 * for tree-log metadata. 3823 * 3824 * Lock nesting 3825 * ============ 3826 * 3827 * space_info::lock 3828 * block_group::lock 3829 * fs_info::treelog_bg_lock 3830 */ 3831 3832 /* 3833 * Simple allocator for sequential-only block group. It only allows sequential 3834 * allocation. No need to play with trees. This function also reserves the 3835 * bytes as in btrfs_add_reserved_bytes. 3836 */ 3837 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3838 struct find_free_extent_ctl *ffe_ctl, 3839 struct btrfs_block_group **bg_ret) 3840 { 3841 struct btrfs_fs_info *fs_info = block_group->fs_info; 3842 struct btrfs_space_info *space_info = block_group->space_info; 3843 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3844 u64 start = block_group->start; 3845 u64 num_bytes = ffe_ctl->num_bytes; 3846 u64 avail; 3847 u64 bytenr = block_group->start; 3848 u64 log_bytenr; 3849 u64 data_reloc_bytenr; 3850 int ret = 0; 3851 bool skip = false; 3852 3853 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3854 3855 /* 3856 * Do not allow non-tree-log blocks in the dedicated tree-log block 3857 * group, and vice versa. 3858 */ 3859 spin_lock(&fs_info->treelog_bg_lock); 3860 log_bytenr = fs_info->treelog_bg; 3861 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3862 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3863 skip = true; 3864 spin_unlock(&fs_info->treelog_bg_lock); 3865 if (skip) 3866 return 1; 3867 3868 /* 3869 * Do not allow non-relocation blocks in the dedicated relocation block 3870 * group, and vice versa. 3871 */ 3872 spin_lock(&fs_info->relocation_bg_lock); 3873 data_reloc_bytenr = fs_info->data_reloc_bg; 3874 if (data_reloc_bytenr && 3875 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3876 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3877 skip = true; 3878 spin_unlock(&fs_info->relocation_bg_lock); 3879 if (skip) 3880 return 1; 3881 3882 /* Check RO and no space case before trying to activate it */ 3883 spin_lock(&block_group->lock); 3884 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3885 ret = 1; 3886 /* 3887 * May need to clear fs_info->{treelog,data_reloc}_bg. 3888 * Return the error after taking the locks. 3889 */ 3890 } 3891 spin_unlock(&block_group->lock); 3892 3893 /* Metadata block group is activated at write time. */ 3894 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3895 !btrfs_zone_activate(block_group)) { 3896 ret = 1; 3897 /* 3898 * May need to clear fs_info->{treelog,data_reloc}_bg. 3899 * Return the error after taking the locks. 3900 */ 3901 } 3902 3903 spin_lock(&space_info->lock); 3904 spin_lock(&block_group->lock); 3905 spin_lock(&fs_info->treelog_bg_lock); 3906 spin_lock(&fs_info->relocation_bg_lock); 3907 3908 if (ret) 3909 goto out; 3910 3911 ASSERT(!ffe_ctl->for_treelog || 3912 block_group->start == fs_info->treelog_bg || 3913 fs_info->treelog_bg == 0); 3914 ASSERT(!ffe_ctl->for_data_reloc || 3915 block_group->start == fs_info->data_reloc_bg || 3916 fs_info->data_reloc_bg == 0); 3917 3918 if (block_group->ro || 3919 (!ffe_ctl->for_data_reloc && 3920 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3921 ret = 1; 3922 goto out; 3923 } 3924 3925 /* 3926 * Do not allow currently using block group to be tree-log dedicated 3927 * block group. 3928 */ 3929 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3930 (block_group->used || block_group->reserved)) { 3931 ret = 1; 3932 goto out; 3933 } 3934 3935 /* 3936 * Do not allow currently used block group to be the data relocation 3937 * dedicated block group. 3938 */ 3939 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3940 (block_group->used || block_group->reserved)) { 3941 ret = 1; 3942 goto out; 3943 } 3944 3945 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3946 avail = block_group->zone_capacity - block_group->alloc_offset; 3947 if (avail < num_bytes) { 3948 if (ffe_ctl->max_extent_size < avail) { 3949 /* 3950 * With sequential allocator, free space is always 3951 * contiguous 3952 */ 3953 ffe_ctl->max_extent_size = avail; 3954 ffe_ctl->total_free_space = avail; 3955 } 3956 ret = 1; 3957 goto out; 3958 } 3959 3960 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3961 fs_info->treelog_bg = block_group->start; 3962 3963 if (ffe_ctl->for_data_reloc) { 3964 if (!fs_info->data_reloc_bg) 3965 fs_info->data_reloc_bg = block_group->start; 3966 /* 3967 * Do not allow allocations from this block group, unless it is 3968 * for data relocation. Compared to increasing the ->ro, setting 3969 * the ->zoned_data_reloc_ongoing flag still allows nocow 3970 * writers to come in. See btrfs_inc_nocow_writers(). 3971 * 3972 * We need to disable an allocation to avoid an allocation of 3973 * regular (non-relocation data) extent. With mix of relocation 3974 * extents and regular extents, we can dispatch WRITE commands 3975 * (for relocation extents) and ZONE APPEND commands (for 3976 * regular extents) at the same time to the same zone, which 3977 * easily break the write pointer. 3978 * 3979 * Also, this flag avoids this block group to be zone finished. 3980 */ 3981 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3982 } 3983 3984 ffe_ctl->found_offset = start + block_group->alloc_offset; 3985 block_group->alloc_offset += num_bytes; 3986 spin_lock(&ctl->tree_lock); 3987 ctl->free_space -= num_bytes; 3988 spin_unlock(&ctl->tree_lock); 3989 3990 /* 3991 * We do not check if found_offset is aligned to stripesize. The 3992 * address is anyway rewritten when using zone append writing. 3993 */ 3994 3995 ffe_ctl->search_start = ffe_ctl->found_offset; 3996 3997 out: 3998 if (ret && ffe_ctl->for_treelog) 3999 fs_info->treelog_bg = 0; 4000 if (ret && ffe_ctl->for_data_reloc) 4001 fs_info->data_reloc_bg = 0; 4002 spin_unlock(&fs_info->relocation_bg_lock); 4003 spin_unlock(&fs_info->treelog_bg_lock); 4004 spin_unlock(&block_group->lock); 4005 spin_unlock(&space_info->lock); 4006 return ret; 4007 } 4008 4009 static int do_allocation(struct btrfs_block_group *block_group, 4010 struct find_free_extent_ctl *ffe_ctl, 4011 struct btrfs_block_group **bg_ret) 4012 { 4013 switch (ffe_ctl->policy) { 4014 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4015 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4016 case BTRFS_EXTENT_ALLOC_ZONED: 4017 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4018 default: 4019 BUG(); 4020 } 4021 } 4022 4023 static void release_block_group(struct btrfs_block_group *block_group, 4024 struct find_free_extent_ctl *ffe_ctl, 4025 int delalloc) 4026 { 4027 switch (ffe_ctl->policy) { 4028 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4029 ffe_ctl->retry_uncached = false; 4030 break; 4031 case BTRFS_EXTENT_ALLOC_ZONED: 4032 /* Nothing to do */ 4033 break; 4034 default: 4035 BUG(); 4036 } 4037 4038 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4039 ffe_ctl->index); 4040 btrfs_release_block_group(block_group, delalloc); 4041 } 4042 4043 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4044 struct btrfs_key *ins) 4045 { 4046 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4047 4048 if (!ffe_ctl->use_cluster && last_ptr) { 4049 spin_lock(&last_ptr->lock); 4050 last_ptr->window_start = ins->objectid; 4051 spin_unlock(&last_ptr->lock); 4052 } 4053 } 4054 4055 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4056 struct btrfs_key *ins) 4057 { 4058 switch (ffe_ctl->policy) { 4059 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4060 found_extent_clustered(ffe_ctl, ins); 4061 break; 4062 case BTRFS_EXTENT_ALLOC_ZONED: 4063 /* Nothing to do */ 4064 break; 4065 default: 4066 BUG(); 4067 } 4068 } 4069 4070 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4071 struct find_free_extent_ctl *ffe_ctl) 4072 { 4073 /* Block group's activeness is not a requirement for METADATA block groups. */ 4074 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4075 return 0; 4076 4077 /* If we can activate new zone, just allocate a chunk and use it */ 4078 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4079 return 0; 4080 4081 /* 4082 * We already reached the max active zones. Try to finish one block 4083 * group to make a room for a new block group. This is only possible 4084 * for a data block group because btrfs_zone_finish() may need to wait 4085 * for a running transaction which can cause a deadlock for metadata 4086 * allocation. 4087 */ 4088 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4089 int ret = btrfs_zone_finish_one_bg(fs_info); 4090 4091 if (ret == 1) 4092 return 0; 4093 else if (ret < 0) 4094 return ret; 4095 } 4096 4097 /* 4098 * If we have enough free space left in an already active block group 4099 * and we can't activate any other zone now, do not allow allocating a 4100 * new chunk and let find_free_extent() retry with a smaller size. 4101 */ 4102 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4103 return -ENOSPC; 4104 4105 /* 4106 * Even min_alloc_size is not left in any block groups. Since we cannot 4107 * activate a new block group, allocating it may not help. Let's tell a 4108 * caller to try again and hope it progress something by writing some 4109 * parts of the region. That is only possible for data block groups, 4110 * where a part of the region can be written. 4111 */ 4112 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4113 return -EAGAIN; 4114 4115 /* 4116 * We cannot activate a new block group and no enough space left in any 4117 * block groups. So, allocating a new block group may not help. But, 4118 * there is nothing to do anyway, so let's go with it. 4119 */ 4120 return 0; 4121 } 4122 4123 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4124 struct find_free_extent_ctl *ffe_ctl) 4125 { 4126 switch (ffe_ctl->policy) { 4127 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4128 return 0; 4129 case BTRFS_EXTENT_ALLOC_ZONED: 4130 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4131 default: 4132 BUG(); 4133 } 4134 } 4135 4136 /* 4137 * Return >0 means caller needs to re-search for free extent 4138 * Return 0 means we have the needed free extent. 4139 * Return <0 means we failed to locate any free extent. 4140 */ 4141 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4142 struct btrfs_key *ins, 4143 struct find_free_extent_ctl *ffe_ctl, 4144 bool full_search) 4145 { 4146 struct btrfs_root *root = fs_info->chunk_root; 4147 int ret; 4148 4149 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4150 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4151 ffe_ctl->orig_have_caching_bg = true; 4152 4153 if (ins->objectid) { 4154 found_extent(ffe_ctl, ins); 4155 return 0; 4156 } 4157 4158 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4159 return 1; 4160 4161 ffe_ctl->index++; 4162 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4163 return 1; 4164 4165 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4166 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4167 ffe_ctl->index = 0; 4168 /* 4169 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4170 * any uncached bgs and we've already done a full search 4171 * through. 4172 */ 4173 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4174 (!ffe_ctl->orig_have_caching_bg && full_search)) 4175 ffe_ctl->loop++; 4176 ffe_ctl->loop++; 4177 4178 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4179 struct btrfs_trans_handle *trans; 4180 int exist = 0; 4181 4182 /* Check if allocation policy allows to create a new chunk */ 4183 ret = can_allocate_chunk(fs_info, ffe_ctl); 4184 if (ret) 4185 return ret; 4186 4187 trans = current->journal_info; 4188 if (trans) 4189 exist = 1; 4190 else 4191 trans = btrfs_join_transaction(root); 4192 4193 if (IS_ERR(trans)) { 4194 ret = PTR_ERR(trans); 4195 return ret; 4196 } 4197 4198 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4199 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4200 4201 /* Do not bail out on ENOSPC since we can do more. */ 4202 if (ret == -ENOSPC) { 4203 ret = 0; 4204 ffe_ctl->loop++; 4205 } 4206 else if (ret < 0) 4207 btrfs_abort_transaction(trans, ret); 4208 else 4209 ret = 0; 4210 if (!exist) 4211 btrfs_end_transaction(trans); 4212 if (ret) 4213 return ret; 4214 } 4215 4216 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4217 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4218 return -ENOSPC; 4219 4220 /* 4221 * Don't loop again if we already have no empty_size and 4222 * no empty_cluster. 4223 */ 4224 if (ffe_ctl->empty_size == 0 && 4225 ffe_ctl->empty_cluster == 0) 4226 return -ENOSPC; 4227 ffe_ctl->empty_size = 0; 4228 ffe_ctl->empty_cluster = 0; 4229 } 4230 return 1; 4231 } 4232 return -ENOSPC; 4233 } 4234 4235 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4236 struct btrfs_block_group *bg) 4237 { 4238 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4239 return true; 4240 if (!btrfs_block_group_should_use_size_class(bg)) 4241 return true; 4242 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4243 return true; 4244 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4245 bg->size_class == BTRFS_BG_SZ_NONE) 4246 return true; 4247 return ffe_ctl->size_class == bg->size_class; 4248 } 4249 4250 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4251 struct find_free_extent_ctl *ffe_ctl, 4252 struct btrfs_space_info *space_info, 4253 struct btrfs_key *ins) 4254 { 4255 /* 4256 * If our free space is heavily fragmented we may not be able to make 4257 * big contiguous allocations, so instead of doing the expensive search 4258 * for free space, simply return ENOSPC with our max_extent_size so we 4259 * can go ahead and search for a more manageable chunk. 4260 * 4261 * If our max_extent_size is large enough for our allocation simply 4262 * disable clustering since we will likely not be able to find enough 4263 * space to create a cluster and induce latency trying. 4264 */ 4265 if (space_info->max_extent_size) { 4266 spin_lock(&space_info->lock); 4267 if (space_info->max_extent_size && 4268 ffe_ctl->num_bytes > space_info->max_extent_size) { 4269 ins->offset = space_info->max_extent_size; 4270 spin_unlock(&space_info->lock); 4271 return -ENOSPC; 4272 } else if (space_info->max_extent_size) { 4273 ffe_ctl->use_cluster = false; 4274 } 4275 spin_unlock(&space_info->lock); 4276 } 4277 4278 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4279 &ffe_ctl->empty_cluster); 4280 if (ffe_ctl->last_ptr) { 4281 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4282 4283 spin_lock(&last_ptr->lock); 4284 if (last_ptr->block_group) 4285 ffe_ctl->hint_byte = last_ptr->window_start; 4286 if (last_ptr->fragmented) { 4287 /* 4288 * We still set window_start so we can keep track of the 4289 * last place we found an allocation to try and save 4290 * some time. 4291 */ 4292 ffe_ctl->hint_byte = last_ptr->window_start; 4293 ffe_ctl->use_cluster = false; 4294 } 4295 spin_unlock(&last_ptr->lock); 4296 } 4297 4298 return 0; 4299 } 4300 4301 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4302 struct find_free_extent_ctl *ffe_ctl, 4303 struct btrfs_space_info *space_info, 4304 struct btrfs_key *ins) 4305 { 4306 switch (ffe_ctl->policy) { 4307 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4308 return prepare_allocation_clustered(fs_info, ffe_ctl, 4309 space_info, ins); 4310 case BTRFS_EXTENT_ALLOC_ZONED: 4311 if (ffe_ctl->for_treelog) { 4312 spin_lock(&fs_info->treelog_bg_lock); 4313 if (fs_info->treelog_bg) 4314 ffe_ctl->hint_byte = fs_info->treelog_bg; 4315 spin_unlock(&fs_info->treelog_bg_lock); 4316 } 4317 if (ffe_ctl->for_data_reloc) { 4318 spin_lock(&fs_info->relocation_bg_lock); 4319 if (fs_info->data_reloc_bg) 4320 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4321 spin_unlock(&fs_info->relocation_bg_lock); 4322 } 4323 return 0; 4324 default: 4325 BUG(); 4326 } 4327 } 4328 4329 /* 4330 * walks the btree of allocated extents and find a hole of a given size. 4331 * The key ins is changed to record the hole: 4332 * ins->objectid == start position 4333 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4334 * ins->offset == the size of the hole. 4335 * Any available blocks before search_start are skipped. 4336 * 4337 * If there is no suitable free space, we will record the max size of 4338 * the free space extent currently. 4339 * 4340 * The overall logic and call chain: 4341 * 4342 * find_free_extent() 4343 * |- Iterate through all block groups 4344 * | |- Get a valid block group 4345 * | |- Try to do clustered allocation in that block group 4346 * | |- Try to do unclustered allocation in that block group 4347 * | |- Check if the result is valid 4348 * | | |- If valid, then exit 4349 * | |- Jump to next block group 4350 * | 4351 * |- Push harder to find free extents 4352 * |- If not found, re-iterate all block groups 4353 */ 4354 static noinline int find_free_extent(struct btrfs_root *root, 4355 struct btrfs_key *ins, 4356 struct find_free_extent_ctl *ffe_ctl) 4357 { 4358 struct btrfs_fs_info *fs_info = root->fs_info; 4359 int ret = 0; 4360 int cache_block_group_error = 0; 4361 struct btrfs_block_group *block_group = NULL; 4362 struct btrfs_space_info *space_info; 4363 bool full_search = false; 4364 4365 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4366 4367 ffe_ctl->search_start = 0; 4368 /* For clustered allocation */ 4369 ffe_ctl->empty_cluster = 0; 4370 ffe_ctl->last_ptr = NULL; 4371 ffe_ctl->use_cluster = true; 4372 ffe_ctl->have_caching_bg = false; 4373 ffe_ctl->orig_have_caching_bg = false; 4374 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4375 ffe_ctl->loop = 0; 4376 ffe_ctl->retry_uncached = false; 4377 ffe_ctl->cached = 0; 4378 ffe_ctl->max_extent_size = 0; 4379 ffe_ctl->total_free_space = 0; 4380 ffe_ctl->found_offset = 0; 4381 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4382 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4383 4384 if (btrfs_is_zoned(fs_info)) 4385 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4386 4387 ins->type = BTRFS_EXTENT_ITEM_KEY; 4388 ins->objectid = 0; 4389 ins->offset = 0; 4390 4391 trace_find_free_extent(root, ffe_ctl); 4392 4393 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4394 if (!space_info) { 4395 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4396 return -ENOSPC; 4397 } 4398 4399 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4400 if (ret < 0) 4401 return ret; 4402 4403 ffe_ctl->search_start = max(ffe_ctl->search_start, 4404 first_logical_byte(fs_info)); 4405 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4406 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4407 block_group = btrfs_lookup_block_group(fs_info, 4408 ffe_ctl->search_start); 4409 /* 4410 * we don't want to use the block group if it doesn't match our 4411 * allocation bits, or if its not cached. 4412 * 4413 * However if we are re-searching with an ideal block group 4414 * picked out then we don't care that the block group is cached. 4415 */ 4416 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4417 block_group->cached != BTRFS_CACHE_NO) { 4418 down_read(&space_info->groups_sem); 4419 if (list_empty(&block_group->list) || 4420 block_group->ro) { 4421 /* 4422 * someone is removing this block group, 4423 * we can't jump into the have_block_group 4424 * target because our list pointers are not 4425 * valid 4426 */ 4427 btrfs_put_block_group(block_group); 4428 up_read(&space_info->groups_sem); 4429 } else { 4430 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4431 block_group->flags); 4432 btrfs_lock_block_group(block_group, 4433 ffe_ctl->delalloc); 4434 ffe_ctl->hinted = true; 4435 goto have_block_group; 4436 } 4437 } else if (block_group) { 4438 btrfs_put_block_group(block_group); 4439 } 4440 } 4441 search: 4442 trace_find_free_extent_search_loop(root, ffe_ctl); 4443 ffe_ctl->have_caching_bg = false; 4444 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4445 ffe_ctl->index == 0) 4446 full_search = true; 4447 down_read(&space_info->groups_sem); 4448 list_for_each_entry(block_group, 4449 &space_info->block_groups[ffe_ctl->index], list) { 4450 struct btrfs_block_group *bg_ret; 4451 4452 ffe_ctl->hinted = false; 4453 /* If the block group is read-only, we can skip it entirely. */ 4454 if (unlikely(block_group->ro)) { 4455 if (ffe_ctl->for_treelog) 4456 btrfs_clear_treelog_bg(block_group); 4457 if (ffe_ctl->for_data_reloc) 4458 btrfs_clear_data_reloc_bg(block_group); 4459 continue; 4460 } 4461 4462 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4463 ffe_ctl->search_start = block_group->start; 4464 4465 /* 4466 * this can happen if we end up cycling through all the 4467 * raid types, but we want to make sure we only allocate 4468 * for the proper type. 4469 */ 4470 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4471 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4472 BTRFS_BLOCK_GROUP_RAID1_MASK | 4473 BTRFS_BLOCK_GROUP_RAID56_MASK | 4474 BTRFS_BLOCK_GROUP_RAID10; 4475 4476 /* 4477 * if they asked for extra copies and this block group 4478 * doesn't provide them, bail. This does allow us to 4479 * fill raid0 from raid1. 4480 */ 4481 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4482 goto loop; 4483 4484 /* 4485 * This block group has different flags than we want. 4486 * It's possible that we have MIXED_GROUP flag but no 4487 * block group is mixed. Just skip such block group. 4488 */ 4489 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4490 continue; 4491 } 4492 4493 have_block_group: 4494 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4495 ffe_ctl->cached = btrfs_block_group_done(block_group); 4496 if (unlikely(!ffe_ctl->cached)) { 4497 ffe_ctl->have_caching_bg = true; 4498 ret = btrfs_cache_block_group(block_group, false); 4499 4500 /* 4501 * If we get ENOMEM here or something else we want to 4502 * try other block groups, because it may not be fatal. 4503 * However if we can't find anything else we need to 4504 * save our return here so that we return the actual 4505 * error that caused problems, not ENOSPC. 4506 */ 4507 if (ret < 0) { 4508 if (!cache_block_group_error) 4509 cache_block_group_error = ret; 4510 ret = 0; 4511 goto loop; 4512 } 4513 ret = 0; 4514 } 4515 4516 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4517 if (!cache_block_group_error) 4518 cache_block_group_error = -EIO; 4519 goto loop; 4520 } 4521 4522 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4523 goto loop; 4524 4525 bg_ret = NULL; 4526 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4527 if (ret > 0) 4528 goto loop; 4529 4530 if (bg_ret && bg_ret != block_group) { 4531 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4532 block_group = bg_ret; 4533 } 4534 4535 /* Checks */ 4536 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4537 fs_info->stripesize); 4538 4539 /* move on to the next group */ 4540 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4541 block_group->start + block_group->length) { 4542 btrfs_add_free_space_unused(block_group, 4543 ffe_ctl->found_offset, 4544 ffe_ctl->num_bytes); 4545 goto loop; 4546 } 4547 4548 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4549 btrfs_add_free_space_unused(block_group, 4550 ffe_ctl->found_offset, 4551 ffe_ctl->search_start - ffe_ctl->found_offset); 4552 4553 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4554 ffe_ctl->num_bytes, 4555 ffe_ctl->delalloc, 4556 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4557 if (ret == -EAGAIN) { 4558 btrfs_add_free_space_unused(block_group, 4559 ffe_ctl->found_offset, 4560 ffe_ctl->num_bytes); 4561 goto loop; 4562 } 4563 btrfs_inc_block_group_reservations(block_group); 4564 4565 /* we are all good, lets return */ 4566 ins->objectid = ffe_ctl->search_start; 4567 ins->offset = ffe_ctl->num_bytes; 4568 4569 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4570 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4571 break; 4572 loop: 4573 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4574 !ffe_ctl->retry_uncached) { 4575 ffe_ctl->retry_uncached = true; 4576 btrfs_wait_block_group_cache_progress(block_group, 4577 ffe_ctl->num_bytes + 4578 ffe_ctl->empty_cluster + 4579 ffe_ctl->empty_size); 4580 goto have_block_group; 4581 } 4582 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4583 cond_resched(); 4584 } 4585 up_read(&space_info->groups_sem); 4586 4587 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4588 if (ret > 0) 4589 goto search; 4590 4591 if (ret == -ENOSPC && !cache_block_group_error) { 4592 /* 4593 * Use ffe_ctl->total_free_space as fallback if we can't find 4594 * any contiguous hole. 4595 */ 4596 if (!ffe_ctl->max_extent_size) 4597 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4598 spin_lock(&space_info->lock); 4599 space_info->max_extent_size = ffe_ctl->max_extent_size; 4600 spin_unlock(&space_info->lock); 4601 ins->offset = ffe_ctl->max_extent_size; 4602 } else if (ret == -ENOSPC) { 4603 ret = cache_block_group_error; 4604 } 4605 return ret; 4606 } 4607 4608 /* 4609 * Entry point to the extent allocator. Tries to find a hole that is at least 4610 * as big as @num_bytes. 4611 * 4612 * @root - The root that will contain this extent 4613 * 4614 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4615 * is used for accounting purposes. This value differs 4616 * from @num_bytes only in the case of compressed extents. 4617 * 4618 * @num_bytes - Number of bytes to allocate on-disk. 4619 * 4620 * @min_alloc_size - Indicates the minimum amount of space that the 4621 * allocator should try to satisfy. In some cases 4622 * @num_bytes may be larger than what is required and if 4623 * the filesystem is fragmented then allocation fails. 4624 * However, the presence of @min_alloc_size gives a 4625 * chance to try and satisfy the smaller allocation. 4626 * 4627 * @empty_size - A hint that you plan on doing more COW. This is the 4628 * size in bytes the allocator should try to find free 4629 * next to the block it returns. This is just a hint and 4630 * may be ignored by the allocator. 4631 * 4632 * @hint_byte - Hint to the allocator to start searching above the byte 4633 * address passed. It might be ignored. 4634 * 4635 * @ins - This key is modified to record the found hole. It will 4636 * have the following values: 4637 * ins->objectid == start position 4638 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4639 * ins->offset == the size of the hole. 4640 * 4641 * @is_data - Boolean flag indicating whether an extent is 4642 * allocated for data (true) or metadata (false) 4643 * 4644 * @delalloc - Boolean flag indicating whether this allocation is for 4645 * delalloc or not. If 'true' data_rwsem of block groups 4646 * is going to be acquired. 4647 * 4648 * 4649 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4650 * case -ENOSPC is returned then @ins->offset will contain the size of the 4651 * largest available hole the allocator managed to find. 4652 */ 4653 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4654 u64 num_bytes, u64 min_alloc_size, 4655 u64 empty_size, u64 hint_byte, 4656 struct btrfs_key *ins, int is_data, int delalloc) 4657 { 4658 struct btrfs_fs_info *fs_info = root->fs_info; 4659 struct find_free_extent_ctl ffe_ctl = {}; 4660 bool final_tried = num_bytes == min_alloc_size; 4661 u64 flags; 4662 int ret; 4663 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4664 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4665 4666 flags = get_alloc_profile_by_root(root, is_data); 4667 again: 4668 WARN_ON(num_bytes < fs_info->sectorsize); 4669 4670 ffe_ctl.ram_bytes = ram_bytes; 4671 ffe_ctl.num_bytes = num_bytes; 4672 ffe_ctl.min_alloc_size = min_alloc_size; 4673 ffe_ctl.empty_size = empty_size; 4674 ffe_ctl.flags = flags; 4675 ffe_ctl.delalloc = delalloc; 4676 ffe_ctl.hint_byte = hint_byte; 4677 ffe_ctl.for_treelog = for_treelog; 4678 ffe_ctl.for_data_reloc = for_data_reloc; 4679 4680 ret = find_free_extent(root, ins, &ffe_ctl); 4681 if (!ret && !is_data) { 4682 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4683 } else if (ret == -ENOSPC) { 4684 if (!final_tried && ins->offset) { 4685 num_bytes = min(num_bytes >> 1, ins->offset); 4686 num_bytes = round_down(num_bytes, 4687 fs_info->sectorsize); 4688 num_bytes = max(num_bytes, min_alloc_size); 4689 ram_bytes = num_bytes; 4690 if (num_bytes == min_alloc_size) 4691 final_tried = true; 4692 goto again; 4693 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4694 struct btrfs_space_info *sinfo; 4695 4696 sinfo = btrfs_find_space_info(fs_info, flags); 4697 btrfs_err(fs_info, 4698 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4699 flags, num_bytes, for_treelog, for_data_reloc); 4700 if (sinfo) 4701 btrfs_dump_space_info(fs_info, sinfo, 4702 num_bytes, 1); 4703 } 4704 } 4705 4706 return ret; 4707 } 4708 4709 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4710 u64 start, u64 len, int delalloc) 4711 { 4712 struct btrfs_block_group *cache; 4713 4714 cache = btrfs_lookup_block_group(fs_info, start); 4715 if (!cache) { 4716 btrfs_err(fs_info, "Unable to find block group for %llu", 4717 start); 4718 return -ENOSPC; 4719 } 4720 4721 btrfs_add_free_space(cache, start, len); 4722 btrfs_free_reserved_bytes(cache, len, delalloc); 4723 trace_btrfs_reserved_extent_free(fs_info, start, len); 4724 4725 btrfs_put_block_group(cache); 4726 return 0; 4727 } 4728 4729 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4730 const struct extent_buffer *eb) 4731 { 4732 struct btrfs_block_group *cache; 4733 int ret = 0; 4734 4735 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4736 if (!cache) { 4737 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4738 eb->start); 4739 return -ENOSPC; 4740 } 4741 4742 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4743 btrfs_put_block_group(cache); 4744 return ret; 4745 } 4746 4747 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4748 u64 num_bytes) 4749 { 4750 struct btrfs_fs_info *fs_info = trans->fs_info; 4751 int ret; 4752 4753 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4754 if (ret) 4755 return ret; 4756 4757 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4758 if (ret) { 4759 ASSERT(!ret); 4760 btrfs_err(fs_info, "update block group failed for %llu %llu", 4761 bytenr, num_bytes); 4762 return ret; 4763 } 4764 4765 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4766 return 0; 4767 } 4768 4769 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4770 u64 parent, u64 root_objectid, 4771 u64 flags, u64 owner, u64 offset, 4772 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4773 { 4774 struct btrfs_fs_info *fs_info = trans->fs_info; 4775 struct btrfs_root *extent_root; 4776 int ret; 4777 struct btrfs_extent_item *extent_item; 4778 struct btrfs_extent_owner_ref *oref; 4779 struct btrfs_extent_inline_ref *iref; 4780 struct btrfs_path *path; 4781 struct extent_buffer *leaf; 4782 int type; 4783 u32 size; 4784 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4785 4786 if (parent > 0) 4787 type = BTRFS_SHARED_DATA_REF_KEY; 4788 else 4789 type = BTRFS_EXTENT_DATA_REF_KEY; 4790 4791 size = sizeof(*extent_item); 4792 if (simple_quota) 4793 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4794 size += btrfs_extent_inline_ref_size(type); 4795 4796 path = btrfs_alloc_path(); 4797 if (!path) 4798 return -ENOMEM; 4799 4800 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4801 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4802 if (ret) { 4803 btrfs_free_path(path); 4804 return ret; 4805 } 4806 4807 leaf = path->nodes[0]; 4808 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4809 struct btrfs_extent_item); 4810 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4811 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4812 btrfs_set_extent_flags(leaf, extent_item, 4813 flags | BTRFS_EXTENT_FLAG_DATA); 4814 4815 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4816 if (simple_quota) { 4817 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4818 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4819 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4820 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4821 } 4822 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4823 4824 if (parent > 0) { 4825 struct btrfs_shared_data_ref *ref; 4826 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4827 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4828 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4829 } else { 4830 struct btrfs_extent_data_ref *ref; 4831 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4832 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4833 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4834 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4835 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4836 } 4837 4838 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4839 btrfs_free_path(path); 4840 4841 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4842 } 4843 4844 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4845 struct btrfs_delayed_ref_node *node, 4846 struct btrfs_delayed_extent_op *extent_op) 4847 { 4848 struct btrfs_fs_info *fs_info = trans->fs_info; 4849 struct btrfs_root *extent_root; 4850 int ret; 4851 struct btrfs_extent_item *extent_item; 4852 struct btrfs_key extent_key; 4853 struct btrfs_tree_block_info *block_info; 4854 struct btrfs_extent_inline_ref *iref; 4855 struct btrfs_path *path; 4856 struct extent_buffer *leaf; 4857 struct btrfs_delayed_tree_ref *ref; 4858 u32 size = sizeof(*extent_item) + sizeof(*iref); 4859 u64 flags = extent_op->flags_to_set; 4860 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4861 4862 ref = btrfs_delayed_node_to_tree_ref(node); 4863 4864 extent_key.objectid = node->bytenr; 4865 if (skinny_metadata) { 4866 extent_key.offset = ref->level; 4867 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4868 } else { 4869 extent_key.offset = node->num_bytes; 4870 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4871 size += sizeof(*block_info); 4872 } 4873 4874 path = btrfs_alloc_path(); 4875 if (!path) 4876 return -ENOMEM; 4877 4878 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4879 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4880 size); 4881 if (ret) { 4882 btrfs_free_path(path); 4883 return ret; 4884 } 4885 4886 leaf = path->nodes[0]; 4887 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4888 struct btrfs_extent_item); 4889 btrfs_set_extent_refs(leaf, extent_item, 1); 4890 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4891 btrfs_set_extent_flags(leaf, extent_item, 4892 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4893 4894 if (skinny_metadata) { 4895 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4896 } else { 4897 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4898 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4899 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4900 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4901 } 4902 4903 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4904 btrfs_set_extent_inline_ref_type(leaf, iref, 4905 BTRFS_SHARED_BLOCK_REF_KEY); 4906 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4907 } else { 4908 btrfs_set_extent_inline_ref_type(leaf, iref, 4909 BTRFS_TREE_BLOCK_REF_KEY); 4910 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4911 } 4912 4913 btrfs_mark_buffer_dirty(trans, leaf); 4914 btrfs_free_path(path); 4915 4916 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4917 } 4918 4919 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4920 struct btrfs_root *root, u64 owner, 4921 u64 offset, u64 ram_bytes, 4922 struct btrfs_key *ins) 4923 { 4924 struct btrfs_ref generic_ref = { 0 }; 4925 u64 root_objectid = root->root_key.objectid; 4926 u64 owning_root = root_objectid; 4927 4928 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 4929 4930 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4931 owning_root = root->relocation_src_root; 4932 4933 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4934 ins->objectid, ins->offset, 0, owning_root); 4935 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4936 offset, 0, false); 4937 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4938 4939 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4940 } 4941 4942 /* 4943 * this is used by the tree logging recovery code. It records that 4944 * an extent has been allocated and makes sure to clear the free 4945 * space cache bits as well 4946 */ 4947 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4948 u64 root_objectid, u64 owner, u64 offset, 4949 struct btrfs_key *ins) 4950 { 4951 struct btrfs_fs_info *fs_info = trans->fs_info; 4952 int ret; 4953 struct btrfs_block_group *block_group; 4954 struct btrfs_space_info *space_info; 4955 struct btrfs_squota_delta delta = { 4956 .root = root_objectid, 4957 .num_bytes = ins->offset, 4958 .generation = trans->transid, 4959 .is_data = true, 4960 .is_inc = true, 4961 }; 4962 4963 /* 4964 * Mixed block groups will exclude before processing the log so we only 4965 * need to do the exclude dance if this fs isn't mixed. 4966 */ 4967 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4968 ret = __exclude_logged_extent(fs_info, ins->objectid, 4969 ins->offset); 4970 if (ret) 4971 return ret; 4972 } 4973 4974 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4975 if (!block_group) 4976 return -EINVAL; 4977 4978 space_info = block_group->space_info; 4979 spin_lock(&space_info->lock); 4980 spin_lock(&block_group->lock); 4981 space_info->bytes_reserved += ins->offset; 4982 block_group->reserved += ins->offset; 4983 spin_unlock(&block_group->lock); 4984 spin_unlock(&space_info->lock); 4985 4986 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4987 offset, ins, 1, root_objectid); 4988 if (ret) 4989 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4990 ret = btrfs_record_squota_delta(fs_info, &delta); 4991 btrfs_put_block_group(block_group); 4992 return ret; 4993 } 4994 4995 #ifdef CONFIG_BTRFS_DEBUG 4996 /* 4997 * Extra safety check in case the extent tree is corrupted and extent allocator 4998 * chooses to use a tree block which is already used and locked. 4999 */ 5000 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5001 { 5002 if (eb->lock_owner == current->pid) { 5003 btrfs_err_rl(eb->fs_info, 5004 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5005 eb->start, btrfs_header_owner(eb), current->pid); 5006 return true; 5007 } 5008 return false; 5009 } 5010 #else 5011 static bool check_eb_lock_owner(struct extent_buffer *eb) 5012 { 5013 return false; 5014 } 5015 #endif 5016 5017 static struct extent_buffer * 5018 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5019 u64 bytenr, int level, u64 owner, 5020 enum btrfs_lock_nesting nest) 5021 { 5022 struct btrfs_fs_info *fs_info = root->fs_info; 5023 struct extent_buffer *buf; 5024 u64 lockdep_owner = owner; 5025 5026 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5027 if (IS_ERR(buf)) 5028 return buf; 5029 5030 if (check_eb_lock_owner(buf)) { 5031 free_extent_buffer(buf); 5032 return ERR_PTR(-EUCLEAN); 5033 } 5034 5035 /* 5036 * The reloc trees are just snapshots, so we need them to appear to be 5037 * just like any other fs tree WRT lockdep. 5038 * 5039 * The exception however is in replace_path() in relocation, where we 5040 * hold the lock on the original fs root and then search for the reloc 5041 * root. At that point we need to make sure any reloc root buffers are 5042 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5043 * lockdep happy. 5044 */ 5045 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5046 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5047 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5048 5049 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5050 btrfs_set_header_generation(buf, trans->transid); 5051 5052 /* 5053 * This needs to stay, because we could allocate a freed block from an 5054 * old tree into a new tree, so we need to make sure this new block is 5055 * set to the appropriate level and owner. 5056 */ 5057 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5058 5059 __btrfs_tree_lock(buf, nest); 5060 btrfs_clear_buffer_dirty(trans, buf); 5061 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5062 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5063 5064 set_extent_buffer_uptodate(buf); 5065 5066 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5067 btrfs_set_header_level(buf, level); 5068 btrfs_set_header_bytenr(buf, buf->start); 5069 btrfs_set_header_generation(buf, trans->transid); 5070 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5071 btrfs_set_header_owner(buf, owner); 5072 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5073 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5074 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5075 buf->log_index = root->log_transid % 2; 5076 /* 5077 * we allow two log transactions at a time, use different 5078 * EXTENT bit to differentiate dirty pages. 5079 */ 5080 if (buf->log_index == 0) 5081 set_extent_bit(&root->dirty_log_pages, buf->start, 5082 buf->start + buf->len - 1, 5083 EXTENT_DIRTY, NULL); 5084 else 5085 set_extent_bit(&root->dirty_log_pages, buf->start, 5086 buf->start + buf->len - 1, 5087 EXTENT_NEW, NULL); 5088 } else { 5089 buf->log_index = -1; 5090 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5091 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5092 } 5093 /* this returns a buffer locked for blocking */ 5094 return buf; 5095 } 5096 5097 /* 5098 * finds a free extent and does all the dirty work required for allocation 5099 * returns the tree buffer or an ERR_PTR on error. 5100 */ 5101 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5102 struct btrfs_root *root, 5103 u64 parent, u64 root_objectid, 5104 const struct btrfs_disk_key *key, 5105 int level, u64 hint, 5106 u64 empty_size, 5107 u64 reloc_src_root, 5108 enum btrfs_lock_nesting nest) 5109 { 5110 struct btrfs_fs_info *fs_info = root->fs_info; 5111 struct btrfs_key ins; 5112 struct btrfs_block_rsv *block_rsv; 5113 struct extent_buffer *buf; 5114 struct btrfs_delayed_extent_op *extent_op; 5115 struct btrfs_ref generic_ref = { 0 }; 5116 u64 flags = 0; 5117 int ret; 5118 u32 blocksize = fs_info->nodesize; 5119 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5120 u64 owning_root; 5121 5122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5123 if (btrfs_is_testing(fs_info)) { 5124 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5125 level, root_objectid, nest); 5126 if (!IS_ERR(buf)) 5127 root->alloc_bytenr += blocksize; 5128 return buf; 5129 } 5130 #endif 5131 5132 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5133 if (IS_ERR(block_rsv)) 5134 return ERR_CAST(block_rsv); 5135 5136 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5137 empty_size, hint, &ins, 0, 0); 5138 if (ret) 5139 goto out_unuse; 5140 5141 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5142 root_objectid, nest); 5143 if (IS_ERR(buf)) { 5144 ret = PTR_ERR(buf); 5145 goto out_free_reserved; 5146 } 5147 owning_root = btrfs_header_owner(buf); 5148 5149 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5150 if (parent == 0) 5151 parent = ins.objectid; 5152 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5153 owning_root = reloc_src_root; 5154 } else 5155 BUG_ON(parent > 0); 5156 5157 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5158 extent_op = btrfs_alloc_delayed_extent_op(); 5159 if (!extent_op) { 5160 ret = -ENOMEM; 5161 goto out_free_buf; 5162 } 5163 if (key) 5164 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5165 else 5166 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5167 extent_op->flags_to_set = flags; 5168 extent_op->update_key = skinny_metadata ? false : true; 5169 extent_op->update_flags = true; 5170 extent_op->level = level; 5171 5172 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5173 ins.objectid, ins.offset, parent, owning_root); 5174 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5175 root->root_key.objectid, false); 5176 btrfs_ref_tree_mod(fs_info, &generic_ref); 5177 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5178 if (ret) 5179 goto out_free_delayed; 5180 } 5181 return buf; 5182 5183 out_free_delayed: 5184 btrfs_free_delayed_extent_op(extent_op); 5185 out_free_buf: 5186 btrfs_tree_unlock(buf); 5187 free_extent_buffer(buf); 5188 out_free_reserved: 5189 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5190 out_unuse: 5191 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5192 return ERR_PTR(ret); 5193 } 5194 5195 struct walk_control { 5196 u64 refs[BTRFS_MAX_LEVEL]; 5197 u64 flags[BTRFS_MAX_LEVEL]; 5198 struct btrfs_key update_progress; 5199 struct btrfs_key drop_progress; 5200 int drop_level; 5201 int stage; 5202 int level; 5203 int shared_level; 5204 int update_ref; 5205 int keep_locks; 5206 int reada_slot; 5207 int reada_count; 5208 int restarted; 5209 }; 5210 5211 #define DROP_REFERENCE 1 5212 #define UPDATE_BACKREF 2 5213 5214 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5215 struct btrfs_root *root, 5216 struct walk_control *wc, 5217 struct btrfs_path *path) 5218 { 5219 struct btrfs_fs_info *fs_info = root->fs_info; 5220 u64 bytenr; 5221 u64 generation; 5222 u64 refs; 5223 u64 flags; 5224 u32 nritems; 5225 struct btrfs_key key; 5226 struct extent_buffer *eb; 5227 int ret; 5228 int slot; 5229 int nread = 0; 5230 5231 if (path->slots[wc->level] < wc->reada_slot) { 5232 wc->reada_count = wc->reada_count * 2 / 3; 5233 wc->reada_count = max(wc->reada_count, 2); 5234 } else { 5235 wc->reada_count = wc->reada_count * 3 / 2; 5236 wc->reada_count = min_t(int, wc->reada_count, 5237 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5238 } 5239 5240 eb = path->nodes[wc->level]; 5241 nritems = btrfs_header_nritems(eb); 5242 5243 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5244 if (nread >= wc->reada_count) 5245 break; 5246 5247 cond_resched(); 5248 bytenr = btrfs_node_blockptr(eb, slot); 5249 generation = btrfs_node_ptr_generation(eb, slot); 5250 5251 if (slot == path->slots[wc->level]) 5252 goto reada; 5253 5254 if (wc->stage == UPDATE_BACKREF && 5255 generation <= root->root_key.offset) 5256 continue; 5257 5258 /* We don't lock the tree block, it's OK to be racy here */ 5259 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5260 wc->level - 1, 1, &refs, 5261 &flags, NULL); 5262 /* We don't care about errors in readahead. */ 5263 if (ret < 0) 5264 continue; 5265 BUG_ON(refs == 0); 5266 5267 if (wc->stage == DROP_REFERENCE) { 5268 if (refs == 1) 5269 goto reada; 5270 5271 if (wc->level == 1 && 5272 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5273 continue; 5274 if (!wc->update_ref || 5275 generation <= root->root_key.offset) 5276 continue; 5277 btrfs_node_key_to_cpu(eb, &key, slot); 5278 ret = btrfs_comp_cpu_keys(&key, 5279 &wc->update_progress); 5280 if (ret < 0) 5281 continue; 5282 } else { 5283 if (wc->level == 1 && 5284 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5285 continue; 5286 } 5287 reada: 5288 btrfs_readahead_node_child(eb, slot); 5289 nread++; 5290 } 5291 wc->reada_slot = slot; 5292 } 5293 5294 /* 5295 * helper to process tree block while walking down the tree. 5296 * 5297 * when wc->stage == UPDATE_BACKREF, this function updates 5298 * back refs for pointers in the block. 5299 * 5300 * NOTE: return value 1 means we should stop walking down. 5301 */ 5302 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5303 struct btrfs_root *root, 5304 struct btrfs_path *path, 5305 struct walk_control *wc, int lookup_info) 5306 { 5307 struct btrfs_fs_info *fs_info = root->fs_info; 5308 int level = wc->level; 5309 struct extent_buffer *eb = path->nodes[level]; 5310 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5311 int ret; 5312 5313 if (wc->stage == UPDATE_BACKREF && 5314 btrfs_header_owner(eb) != root->root_key.objectid) 5315 return 1; 5316 5317 /* 5318 * when reference count of tree block is 1, it won't increase 5319 * again. once full backref flag is set, we never clear it. 5320 */ 5321 if (lookup_info && 5322 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5323 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5324 BUG_ON(!path->locks[level]); 5325 ret = btrfs_lookup_extent_info(trans, fs_info, 5326 eb->start, level, 1, 5327 &wc->refs[level], 5328 &wc->flags[level], 5329 NULL); 5330 BUG_ON(ret == -ENOMEM); 5331 if (ret) 5332 return ret; 5333 BUG_ON(wc->refs[level] == 0); 5334 } 5335 5336 if (wc->stage == DROP_REFERENCE) { 5337 if (wc->refs[level] > 1) 5338 return 1; 5339 5340 if (path->locks[level] && !wc->keep_locks) { 5341 btrfs_tree_unlock_rw(eb, path->locks[level]); 5342 path->locks[level] = 0; 5343 } 5344 return 0; 5345 } 5346 5347 /* wc->stage == UPDATE_BACKREF */ 5348 if (!(wc->flags[level] & flag)) { 5349 BUG_ON(!path->locks[level]); 5350 ret = btrfs_inc_ref(trans, root, eb, 1); 5351 BUG_ON(ret); /* -ENOMEM */ 5352 ret = btrfs_dec_ref(trans, root, eb, 0); 5353 BUG_ON(ret); /* -ENOMEM */ 5354 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5355 BUG_ON(ret); /* -ENOMEM */ 5356 wc->flags[level] |= flag; 5357 } 5358 5359 /* 5360 * the block is shared by multiple trees, so it's not good to 5361 * keep the tree lock 5362 */ 5363 if (path->locks[level] && level > 0) { 5364 btrfs_tree_unlock_rw(eb, path->locks[level]); 5365 path->locks[level] = 0; 5366 } 5367 return 0; 5368 } 5369 5370 /* 5371 * This is used to verify a ref exists for this root to deal with a bug where we 5372 * would have a drop_progress key that hadn't been updated properly. 5373 */ 5374 static int check_ref_exists(struct btrfs_trans_handle *trans, 5375 struct btrfs_root *root, u64 bytenr, u64 parent, 5376 int level) 5377 { 5378 struct btrfs_path *path; 5379 struct btrfs_extent_inline_ref *iref; 5380 int ret; 5381 5382 path = btrfs_alloc_path(); 5383 if (!path) 5384 return -ENOMEM; 5385 5386 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5387 root->fs_info->nodesize, parent, 5388 root->root_key.objectid, level, 0); 5389 btrfs_free_path(path); 5390 if (ret == -ENOENT) 5391 return 0; 5392 if (ret < 0) 5393 return ret; 5394 return 1; 5395 } 5396 5397 /* 5398 * helper to process tree block pointer. 5399 * 5400 * when wc->stage == DROP_REFERENCE, this function checks 5401 * reference count of the block pointed to. if the block 5402 * is shared and we need update back refs for the subtree 5403 * rooted at the block, this function changes wc->stage to 5404 * UPDATE_BACKREF. if the block is shared and there is no 5405 * need to update back, this function drops the reference 5406 * to the block. 5407 * 5408 * NOTE: return value 1 means we should stop walking down. 5409 */ 5410 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5411 struct btrfs_root *root, 5412 struct btrfs_path *path, 5413 struct walk_control *wc, int *lookup_info) 5414 { 5415 struct btrfs_fs_info *fs_info = root->fs_info; 5416 u64 bytenr; 5417 u64 generation; 5418 u64 parent; 5419 u64 owner_root = 0; 5420 struct btrfs_tree_parent_check check = { 0 }; 5421 struct btrfs_key key; 5422 struct btrfs_ref ref = { 0 }; 5423 struct extent_buffer *next; 5424 int level = wc->level; 5425 int reada = 0; 5426 int ret = 0; 5427 bool need_account = false; 5428 5429 generation = btrfs_node_ptr_generation(path->nodes[level], 5430 path->slots[level]); 5431 /* 5432 * if the lower level block was created before the snapshot 5433 * was created, we know there is no need to update back refs 5434 * for the subtree 5435 */ 5436 if (wc->stage == UPDATE_BACKREF && 5437 generation <= root->root_key.offset) { 5438 *lookup_info = 1; 5439 return 1; 5440 } 5441 5442 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5443 5444 check.level = level - 1; 5445 check.transid = generation; 5446 check.owner_root = root->root_key.objectid; 5447 check.has_first_key = true; 5448 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5449 path->slots[level]); 5450 5451 next = find_extent_buffer(fs_info, bytenr); 5452 if (!next) { 5453 next = btrfs_find_create_tree_block(fs_info, bytenr, 5454 root->root_key.objectid, level - 1); 5455 if (IS_ERR(next)) 5456 return PTR_ERR(next); 5457 reada = 1; 5458 } 5459 btrfs_tree_lock(next); 5460 5461 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5462 &wc->refs[level - 1], 5463 &wc->flags[level - 1], 5464 &owner_root); 5465 if (ret < 0) 5466 goto out_unlock; 5467 5468 if (unlikely(wc->refs[level - 1] == 0)) { 5469 btrfs_err(fs_info, "Missing references."); 5470 ret = -EIO; 5471 goto out_unlock; 5472 } 5473 *lookup_info = 0; 5474 5475 if (wc->stage == DROP_REFERENCE) { 5476 if (wc->refs[level - 1] > 1) { 5477 need_account = true; 5478 if (level == 1 && 5479 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5480 goto skip; 5481 5482 if (!wc->update_ref || 5483 generation <= root->root_key.offset) 5484 goto skip; 5485 5486 btrfs_node_key_to_cpu(path->nodes[level], &key, 5487 path->slots[level]); 5488 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5489 if (ret < 0) 5490 goto skip; 5491 5492 wc->stage = UPDATE_BACKREF; 5493 wc->shared_level = level - 1; 5494 } 5495 } else { 5496 if (level == 1 && 5497 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5498 goto skip; 5499 } 5500 5501 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5502 btrfs_tree_unlock(next); 5503 free_extent_buffer(next); 5504 next = NULL; 5505 *lookup_info = 1; 5506 } 5507 5508 if (!next) { 5509 if (reada && level == 1) 5510 reada_walk_down(trans, root, wc, path); 5511 next = read_tree_block(fs_info, bytenr, &check); 5512 if (IS_ERR(next)) { 5513 return PTR_ERR(next); 5514 } else if (!extent_buffer_uptodate(next)) { 5515 free_extent_buffer(next); 5516 return -EIO; 5517 } 5518 btrfs_tree_lock(next); 5519 } 5520 5521 level--; 5522 ASSERT(level == btrfs_header_level(next)); 5523 if (level != btrfs_header_level(next)) { 5524 btrfs_err(root->fs_info, "mismatched level"); 5525 ret = -EIO; 5526 goto out_unlock; 5527 } 5528 path->nodes[level] = next; 5529 path->slots[level] = 0; 5530 path->locks[level] = BTRFS_WRITE_LOCK; 5531 wc->level = level; 5532 if (wc->level == 1) 5533 wc->reada_slot = 0; 5534 return 0; 5535 skip: 5536 wc->refs[level - 1] = 0; 5537 wc->flags[level - 1] = 0; 5538 if (wc->stage == DROP_REFERENCE) { 5539 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5540 parent = path->nodes[level]->start; 5541 } else { 5542 ASSERT(root->root_key.objectid == 5543 btrfs_header_owner(path->nodes[level])); 5544 if (root->root_key.objectid != 5545 btrfs_header_owner(path->nodes[level])) { 5546 btrfs_err(root->fs_info, 5547 "mismatched block owner"); 5548 ret = -EIO; 5549 goto out_unlock; 5550 } 5551 parent = 0; 5552 } 5553 5554 /* 5555 * If we had a drop_progress we need to verify the refs are set 5556 * as expected. If we find our ref then we know that from here 5557 * on out everything should be correct, and we can clear the 5558 * ->restarted flag. 5559 */ 5560 if (wc->restarted) { 5561 ret = check_ref_exists(trans, root, bytenr, parent, 5562 level - 1); 5563 if (ret < 0) 5564 goto out_unlock; 5565 if (ret == 0) 5566 goto no_delete; 5567 ret = 0; 5568 wc->restarted = 0; 5569 } 5570 5571 /* 5572 * Reloc tree doesn't contribute to qgroup numbers, and we have 5573 * already accounted them at merge time (replace_path), 5574 * thus we could skip expensive subtree trace here. 5575 */ 5576 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5577 need_account) { 5578 ret = btrfs_qgroup_trace_subtree(trans, next, 5579 generation, level - 1); 5580 if (ret) { 5581 btrfs_err_rl(fs_info, 5582 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5583 ret); 5584 } 5585 } 5586 5587 /* 5588 * We need to update the next key in our walk control so we can 5589 * update the drop_progress key accordingly. We don't care if 5590 * find_next_key doesn't find a key because that means we're at 5591 * the end and are going to clean up now. 5592 */ 5593 wc->drop_level = level; 5594 find_next_key(path, level, &wc->drop_progress); 5595 5596 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5597 fs_info->nodesize, parent, owner_root); 5598 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5599 0, false); 5600 ret = btrfs_free_extent(trans, &ref); 5601 if (ret) 5602 goto out_unlock; 5603 } 5604 no_delete: 5605 *lookup_info = 1; 5606 ret = 1; 5607 5608 out_unlock: 5609 btrfs_tree_unlock(next); 5610 free_extent_buffer(next); 5611 5612 return ret; 5613 } 5614 5615 /* 5616 * helper to process tree block while walking up the tree. 5617 * 5618 * when wc->stage == DROP_REFERENCE, this function drops 5619 * reference count on the block. 5620 * 5621 * when wc->stage == UPDATE_BACKREF, this function changes 5622 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5623 * to UPDATE_BACKREF previously while processing the block. 5624 * 5625 * NOTE: return value 1 means we should stop walking up. 5626 */ 5627 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5628 struct btrfs_root *root, 5629 struct btrfs_path *path, 5630 struct walk_control *wc) 5631 { 5632 struct btrfs_fs_info *fs_info = root->fs_info; 5633 int ret; 5634 int level = wc->level; 5635 struct extent_buffer *eb = path->nodes[level]; 5636 u64 parent = 0; 5637 5638 if (wc->stage == UPDATE_BACKREF) { 5639 BUG_ON(wc->shared_level < level); 5640 if (level < wc->shared_level) 5641 goto out; 5642 5643 ret = find_next_key(path, level + 1, &wc->update_progress); 5644 if (ret > 0) 5645 wc->update_ref = 0; 5646 5647 wc->stage = DROP_REFERENCE; 5648 wc->shared_level = -1; 5649 path->slots[level] = 0; 5650 5651 /* 5652 * check reference count again if the block isn't locked. 5653 * we should start walking down the tree again if reference 5654 * count is one. 5655 */ 5656 if (!path->locks[level]) { 5657 BUG_ON(level == 0); 5658 btrfs_tree_lock(eb); 5659 path->locks[level] = BTRFS_WRITE_LOCK; 5660 5661 ret = btrfs_lookup_extent_info(trans, fs_info, 5662 eb->start, level, 1, 5663 &wc->refs[level], 5664 &wc->flags[level], 5665 NULL); 5666 if (ret < 0) { 5667 btrfs_tree_unlock_rw(eb, path->locks[level]); 5668 path->locks[level] = 0; 5669 return ret; 5670 } 5671 BUG_ON(wc->refs[level] == 0); 5672 if (wc->refs[level] == 1) { 5673 btrfs_tree_unlock_rw(eb, path->locks[level]); 5674 path->locks[level] = 0; 5675 return 1; 5676 } 5677 } 5678 } 5679 5680 /* wc->stage == DROP_REFERENCE */ 5681 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5682 5683 if (wc->refs[level] == 1) { 5684 if (level == 0) { 5685 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5686 ret = btrfs_dec_ref(trans, root, eb, 1); 5687 else 5688 ret = btrfs_dec_ref(trans, root, eb, 0); 5689 BUG_ON(ret); /* -ENOMEM */ 5690 if (is_fstree(root->root_key.objectid)) { 5691 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5692 if (ret) { 5693 btrfs_err_rl(fs_info, 5694 "error %d accounting leaf items, quota is out of sync, rescan required", 5695 ret); 5696 } 5697 } 5698 } 5699 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5700 if (!path->locks[level]) { 5701 btrfs_tree_lock(eb); 5702 path->locks[level] = BTRFS_WRITE_LOCK; 5703 } 5704 btrfs_clear_buffer_dirty(trans, eb); 5705 } 5706 5707 if (eb == root->node) { 5708 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5709 parent = eb->start; 5710 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5711 goto owner_mismatch; 5712 } else { 5713 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5714 parent = path->nodes[level + 1]->start; 5715 else if (root->root_key.objectid != 5716 btrfs_header_owner(path->nodes[level + 1])) 5717 goto owner_mismatch; 5718 } 5719 5720 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5721 wc->refs[level] == 1); 5722 out: 5723 wc->refs[level] = 0; 5724 wc->flags[level] = 0; 5725 return 0; 5726 5727 owner_mismatch: 5728 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5729 btrfs_header_owner(eb), root->root_key.objectid); 5730 return -EUCLEAN; 5731 } 5732 5733 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5734 struct btrfs_root *root, 5735 struct btrfs_path *path, 5736 struct walk_control *wc) 5737 { 5738 int level = wc->level; 5739 int lookup_info = 1; 5740 int ret = 0; 5741 5742 while (level >= 0) { 5743 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5744 if (ret) 5745 break; 5746 5747 if (level == 0) 5748 break; 5749 5750 if (path->slots[level] >= 5751 btrfs_header_nritems(path->nodes[level])) 5752 break; 5753 5754 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5755 if (ret > 0) { 5756 path->slots[level]++; 5757 continue; 5758 } else if (ret < 0) 5759 break; 5760 level = wc->level; 5761 } 5762 return (ret == 1) ? 0 : ret; 5763 } 5764 5765 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5766 struct btrfs_root *root, 5767 struct btrfs_path *path, 5768 struct walk_control *wc, int max_level) 5769 { 5770 int level = wc->level; 5771 int ret; 5772 5773 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5774 while (level < max_level && path->nodes[level]) { 5775 wc->level = level; 5776 if (path->slots[level] + 1 < 5777 btrfs_header_nritems(path->nodes[level])) { 5778 path->slots[level]++; 5779 return 0; 5780 } else { 5781 ret = walk_up_proc(trans, root, path, wc); 5782 if (ret > 0) 5783 return 0; 5784 if (ret < 0) 5785 return ret; 5786 5787 if (path->locks[level]) { 5788 btrfs_tree_unlock_rw(path->nodes[level], 5789 path->locks[level]); 5790 path->locks[level] = 0; 5791 } 5792 free_extent_buffer(path->nodes[level]); 5793 path->nodes[level] = NULL; 5794 level++; 5795 } 5796 } 5797 return 1; 5798 } 5799 5800 /* 5801 * drop a subvolume tree. 5802 * 5803 * this function traverses the tree freeing any blocks that only 5804 * referenced by the tree. 5805 * 5806 * when a shared tree block is found. this function decreases its 5807 * reference count by one. if update_ref is true, this function 5808 * also make sure backrefs for the shared block and all lower level 5809 * blocks are properly updated. 5810 * 5811 * If called with for_reloc == 0, may exit early with -EAGAIN 5812 */ 5813 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5814 { 5815 const bool is_reloc_root = (root->root_key.objectid == 5816 BTRFS_TREE_RELOC_OBJECTID); 5817 struct btrfs_fs_info *fs_info = root->fs_info; 5818 struct btrfs_path *path; 5819 struct btrfs_trans_handle *trans; 5820 struct btrfs_root *tree_root = fs_info->tree_root; 5821 struct btrfs_root_item *root_item = &root->root_item; 5822 struct walk_control *wc; 5823 struct btrfs_key key; 5824 int err = 0; 5825 int ret; 5826 int level; 5827 bool root_dropped = false; 5828 bool unfinished_drop = false; 5829 5830 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5831 5832 path = btrfs_alloc_path(); 5833 if (!path) { 5834 err = -ENOMEM; 5835 goto out; 5836 } 5837 5838 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5839 if (!wc) { 5840 btrfs_free_path(path); 5841 err = -ENOMEM; 5842 goto out; 5843 } 5844 5845 /* 5846 * Use join to avoid potential EINTR from transaction start. See 5847 * wait_reserve_ticket and the whole reservation callchain. 5848 */ 5849 if (for_reloc) 5850 trans = btrfs_join_transaction(tree_root); 5851 else 5852 trans = btrfs_start_transaction(tree_root, 0); 5853 if (IS_ERR(trans)) { 5854 err = PTR_ERR(trans); 5855 goto out_free; 5856 } 5857 5858 err = btrfs_run_delayed_items(trans); 5859 if (err) 5860 goto out_end_trans; 5861 5862 /* 5863 * This will help us catch people modifying the fs tree while we're 5864 * dropping it. It is unsafe to mess with the fs tree while it's being 5865 * dropped as we unlock the root node and parent nodes as we walk down 5866 * the tree, assuming nothing will change. If something does change 5867 * then we'll have stale information and drop references to blocks we've 5868 * already dropped. 5869 */ 5870 set_bit(BTRFS_ROOT_DELETING, &root->state); 5871 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5872 5873 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5874 level = btrfs_header_level(root->node); 5875 path->nodes[level] = btrfs_lock_root_node(root); 5876 path->slots[level] = 0; 5877 path->locks[level] = BTRFS_WRITE_LOCK; 5878 memset(&wc->update_progress, 0, 5879 sizeof(wc->update_progress)); 5880 } else { 5881 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5882 memcpy(&wc->update_progress, &key, 5883 sizeof(wc->update_progress)); 5884 5885 level = btrfs_root_drop_level(root_item); 5886 BUG_ON(level == 0); 5887 path->lowest_level = level; 5888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5889 path->lowest_level = 0; 5890 if (ret < 0) { 5891 err = ret; 5892 goto out_end_trans; 5893 } 5894 WARN_ON(ret > 0); 5895 5896 /* 5897 * unlock our path, this is safe because only this 5898 * function is allowed to delete this snapshot 5899 */ 5900 btrfs_unlock_up_safe(path, 0); 5901 5902 level = btrfs_header_level(root->node); 5903 while (1) { 5904 btrfs_tree_lock(path->nodes[level]); 5905 path->locks[level] = BTRFS_WRITE_LOCK; 5906 5907 ret = btrfs_lookup_extent_info(trans, fs_info, 5908 path->nodes[level]->start, 5909 level, 1, &wc->refs[level], 5910 &wc->flags[level], NULL); 5911 if (ret < 0) { 5912 err = ret; 5913 goto out_end_trans; 5914 } 5915 BUG_ON(wc->refs[level] == 0); 5916 5917 if (level == btrfs_root_drop_level(root_item)) 5918 break; 5919 5920 btrfs_tree_unlock(path->nodes[level]); 5921 path->locks[level] = 0; 5922 WARN_ON(wc->refs[level] != 1); 5923 level--; 5924 } 5925 } 5926 5927 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5928 wc->level = level; 5929 wc->shared_level = -1; 5930 wc->stage = DROP_REFERENCE; 5931 wc->update_ref = update_ref; 5932 wc->keep_locks = 0; 5933 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5934 5935 while (1) { 5936 5937 ret = walk_down_tree(trans, root, path, wc); 5938 if (ret < 0) { 5939 btrfs_abort_transaction(trans, ret); 5940 err = ret; 5941 break; 5942 } 5943 5944 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5945 if (ret < 0) { 5946 btrfs_abort_transaction(trans, ret); 5947 err = ret; 5948 break; 5949 } 5950 5951 if (ret > 0) { 5952 BUG_ON(wc->stage != DROP_REFERENCE); 5953 break; 5954 } 5955 5956 if (wc->stage == DROP_REFERENCE) { 5957 wc->drop_level = wc->level; 5958 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5959 &wc->drop_progress, 5960 path->slots[wc->drop_level]); 5961 } 5962 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5963 &wc->drop_progress); 5964 btrfs_set_root_drop_level(root_item, wc->drop_level); 5965 5966 BUG_ON(wc->level == 0); 5967 if (btrfs_should_end_transaction(trans) || 5968 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5969 ret = btrfs_update_root(trans, tree_root, 5970 &root->root_key, 5971 root_item); 5972 if (ret) { 5973 btrfs_abort_transaction(trans, ret); 5974 err = ret; 5975 goto out_end_trans; 5976 } 5977 5978 if (!is_reloc_root) 5979 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5980 5981 btrfs_end_transaction_throttle(trans); 5982 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5983 btrfs_debug(fs_info, 5984 "drop snapshot early exit"); 5985 err = -EAGAIN; 5986 goto out_free; 5987 } 5988 5989 /* 5990 * Use join to avoid potential EINTR from transaction 5991 * start. See wait_reserve_ticket and the whole 5992 * reservation callchain. 5993 */ 5994 if (for_reloc) 5995 trans = btrfs_join_transaction(tree_root); 5996 else 5997 trans = btrfs_start_transaction(tree_root, 0); 5998 if (IS_ERR(trans)) { 5999 err = PTR_ERR(trans); 6000 goto out_free; 6001 } 6002 } 6003 } 6004 btrfs_release_path(path); 6005 if (err) 6006 goto out_end_trans; 6007 6008 ret = btrfs_del_root(trans, &root->root_key); 6009 if (ret) { 6010 btrfs_abort_transaction(trans, ret); 6011 err = ret; 6012 goto out_end_trans; 6013 } 6014 6015 if (!is_reloc_root) { 6016 ret = btrfs_find_root(tree_root, &root->root_key, path, 6017 NULL, NULL); 6018 if (ret < 0) { 6019 btrfs_abort_transaction(trans, ret); 6020 err = ret; 6021 goto out_end_trans; 6022 } else if (ret > 0) { 6023 /* if we fail to delete the orphan item this time 6024 * around, it'll get picked up the next time. 6025 * 6026 * The most common failure here is just -ENOENT. 6027 */ 6028 btrfs_del_orphan_item(trans, tree_root, 6029 root->root_key.objectid); 6030 } 6031 } 6032 6033 /* 6034 * This subvolume is going to be completely dropped, and won't be 6035 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6036 * commit transaction time. So free it here manually. 6037 */ 6038 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6039 btrfs_qgroup_free_meta_all_pertrans(root); 6040 6041 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6042 btrfs_add_dropped_root(trans, root); 6043 else 6044 btrfs_put_root(root); 6045 root_dropped = true; 6046 out_end_trans: 6047 if (!is_reloc_root) 6048 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6049 6050 btrfs_end_transaction_throttle(trans); 6051 out_free: 6052 kfree(wc); 6053 btrfs_free_path(path); 6054 out: 6055 /* 6056 * We were an unfinished drop root, check to see if there are any 6057 * pending, and if not clear and wake up any waiters. 6058 */ 6059 if (!err && unfinished_drop) 6060 btrfs_maybe_wake_unfinished_drop(fs_info); 6061 6062 /* 6063 * So if we need to stop dropping the snapshot for whatever reason we 6064 * need to make sure to add it back to the dead root list so that we 6065 * keep trying to do the work later. This also cleans up roots if we 6066 * don't have it in the radix (like when we recover after a power fail 6067 * or unmount) so we don't leak memory. 6068 */ 6069 if (!for_reloc && !root_dropped) 6070 btrfs_add_dead_root(root); 6071 return err; 6072 } 6073 6074 /* 6075 * drop subtree rooted at tree block 'node'. 6076 * 6077 * NOTE: this function will unlock and release tree block 'node' 6078 * only used by relocation code 6079 */ 6080 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6081 struct btrfs_root *root, 6082 struct extent_buffer *node, 6083 struct extent_buffer *parent) 6084 { 6085 struct btrfs_fs_info *fs_info = root->fs_info; 6086 struct btrfs_path *path; 6087 struct walk_control *wc; 6088 int level; 6089 int parent_level; 6090 int ret = 0; 6091 int wret; 6092 6093 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6094 6095 path = btrfs_alloc_path(); 6096 if (!path) 6097 return -ENOMEM; 6098 6099 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6100 if (!wc) { 6101 btrfs_free_path(path); 6102 return -ENOMEM; 6103 } 6104 6105 btrfs_assert_tree_write_locked(parent); 6106 parent_level = btrfs_header_level(parent); 6107 atomic_inc(&parent->refs); 6108 path->nodes[parent_level] = parent; 6109 path->slots[parent_level] = btrfs_header_nritems(parent); 6110 6111 btrfs_assert_tree_write_locked(node); 6112 level = btrfs_header_level(node); 6113 path->nodes[level] = node; 6114 path->slots[level] = 0; 6115 path->locks[level] = BTRFS_WRITE_LOCK; 6116 6117 wc->refs[parent_level] = 1; 6118 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6119 wc->level = level; 6120 wc->shared_level = -1; 6121 wc->stage = DROP_REFERENCE; 6122 wc->update_ref = 0; 6123 wc->keep_locks = 1; 6124 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6125 6126 while (1) { 6127 wret = walk_down_tree(trans, root, path, wc); 6128 if (wret < 0) { 6129 ret = wret; 6130 break; 6131 } 6132 6133 wret = walk_up_tree(trans, root, path, wc, parent_level); 6134 if (wret < 0) 6135 ret = wret; 6136 if (wret != 0) 6137 break; 6138 } 6139 6140 kfree(wc); 6141 btrfs_free_path(path); 6142 return ret; 6143 } 6144 6145 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6146 u64 start, u64 end) 6147 { 6148 return unpin_extent_range(fs_info, start, end, false); 6149 } 6150 6151 /* 6152 * It used to be that old block groups would be left around forever. 6153 * Iterating over them would be enough to trim unused space. Since we 6154 * now automatically remove them, we also need to iterate over unallocated 6155 * space. 6156 * 6157 * We don't want a transaction for this since the discard may take a 6158 * substantial amount of time. We don't require that a transaction be 6159 * running, but we do need to take a running transaction into account 6160 * to ensure that we're not discarding chunks that were released or 6161 * allocated in the current transaction. 6162 * 6163 * Holding the chunks lock will prevent other threads from allocating 6164 * or releasing chunks, but it won't prevent a running transaction 6165 * from committing and releasing the memory that the pending chunks 6166 * list head uses. For that, we need to take a reference to the 6167 * transaction and hold the commit root sem. We only need to hold 6168 * it while performing the free space search since we have already 6169 * held back allocations. 6170 */ 6171 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6172 { 6173 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6174 int ret; 6175 6176 *trimmed = 0; 6177 6178 /* Discard not supported = nothing to do. */ 6179 if (!bdev_max_discard_sectors(device->bdev)) 6180 return 0; 6181 6182 /* Not writable = nothing to do. */ 6183 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6184 return 0; 6185 6186 /* No free space = nothing to do. */ 6187 if (device->total_bytes <= device->bytes_used) 6188 return 0; 6189 6190 ret = 0; 6191 6192 while (1) { 6193 struct btrfs_fs_info *fs_info = device->fs_info; 6194 u64 bytes; 6195 6196 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6197 if (ret) 6198 break; 6199 6200 find_first_clear_extent_bit(&device->alloc_state, start, 6201 &start, &end, 6202 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6203 6204 /* Check if there are any CHUNK_* bits left */ 6205 if (start > device->total_bytes) { 6206 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6207 btrfs_warn_in_rcu(fs_info, 6208 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6209 start, end - start + 1, 6210 btrfs_dev_name(device), 6211 device->total_bytes); 6212 mutex_unlock(&fs_info->chunk_mutex); 6213 ret = 0; 6214 break; 6215 } 6216 6217 /* Ensure we skip the reserved space on each device. */ 6218 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6219 6220 /* 6221 * If find_first_clear_extent_bit find a range that spans the 6222 * end of the device it will set end to -1, in this case it's up 6223 * to the caller to trim the value to the size of the device. 6224 */ 6225 end = min(end, device->total_bytes - 1); 6226 6227 len = end - start + 1; 6228 6229 /* We didn't find any extents */ 6230 if (!len) { 6231 mutex_unlock(&fs_info->chunk_mutex); 6232 ret = 0; 6233 break; 6234 } 6235 6236 ret = btrfs_issue_discard(device->bdev, start, len, 6237 &bytes); 6238 if (!ret) 6239 set_extent_bit(&device->alloc_state, start, 6240 start + bytes - 1, CHUNK_TRIMMED, NULL); 6241 mutex_unlock(&fs_info->chunk_mutex); 6242 6243 if (ret) 6244 break; 6245 6246 start += len; 6247 *trimmed += bytes; 6248 6249 if (fatal_signal_pending(current)) { 6250 ret = -ERESTARTSYS; 6251 break; 6252 } 6253 6254 cond_resched(); 6255 } 6256 6257 return ret; 6258 } 6259 6260 /* 6261 * Trim the whole filesystem by: 6262 * 1) trimming the free space in each block group 6263 * 2) trimming the unallocated space on each device 6264 * 6265 * This will also continue trimming even if a block group or device encounters 6266 * an error. The return value will be the last error, or 0 if nothing bad 6267 * happens. 6268 */ 6269 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6270 { 6271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6272 struct btrfs_block_group *cache = NULL; 6273 struct btrfs_device *device; 6274 u64 group_trimmed; 6275 u64 range_end = U64_MAX; 6276 u64 start; 6277 u64 end; 6278 u64 trimmed = 0; 6279 u64 bg_failed = 0; 6280 u64 dev_failed = 0; 6281 int bg_ret = 0; 6282 int dev_ret = 0; 6283 int ret = 0; 6284 6285 if (range->start == U64_MAX) 6286 return -EINVAL; 6287 6288 /* 6289 * Check range overflow if range->len is set. 6290 * The default range->len is U64_MAX. 6291 */ 6292 if (range->len != U64_MAX && 6293 check_add_overflow(range->start, range->len, &range_end)) 6294 return -EINVAL; 6295 6296 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6297 for (; cache; cache = btrfs_next_block_group(cache)) { 6298 if (cache->start >= range_end) { 6299 btrfs_put_block_group(cache); 6300 break; 6301 } 6302 6303 start = max(range->start, cache->start); 6304 end = min(range_end, cache->start + cache->length); 6305 6306 if (end - start >= range->minlen) { 6307 if (!btrfs_block_group_done(cache)) { 6308 ret = btrfs_cache_block_group(cache, true); 6309 if (ret) { 6310 bg_failed++; 6311 bg_ret = ret; 6312 continue; 6313 } 6314 } 6315 ret = btrfs_trim_block_group(cache, 6316 &group_trimmed, 6317 start, 6318 end, 6319 range->minlen); 6320 6321 trimmed += group_trimmed; 6322 if (ret) { 6323 bg_failed++; 6324 bg_ret = ret; 6325 continue; 6326 } 6327 } 6328 } 6329 6330 if (bg_failed) 6331 btrfs_warn(fs_info, 6332 "failed to trim %llu block group(s), last error %d", 6333 bg_failed, bg_ret); 6334 6335 mutex_lock(&fs_devices->device_list_mutex); 6336 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6337 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6338 continue; 6339 6340 ret = btrfs_trim_free_extents(device, &group_trimmed); 6341 if (ret) { 6342 dev_failed++; 6343 dev_ret = ret; 6344 break; 6345 } 6346 6347 trimmed += group_trimmed; 6348 } 6349 mutex_unlock(&fs_devices->device_list_mutex); 6350 6351 if (dev_failed) 6352 btrfs_warn(fs_info, 6353 "failed to trim %llu device(s), last error %d", 6354 dev_failed, dev_ret); 6355 range->len = trimmed; 6356 if (bg_ret) 6357 return bg_ret; 6358 return dev_ret; 6359 } 6360