xref: /linux/fs/btrfs/extent-tree.c (revision cad151904379b302a62e8967b7db6ba2e883a212)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 #include "raid-stripe-tree.h"
46 
47 #undef SCRAMBLE_DELAYED_REFS
48 
49 
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 			       struct btrfs_delayed_ref_head *href,
52 			       struct btrfs_delayed_ref_node *node, u64 parent,
53 			       u64 root_objectid, u64 owner_objectid,
54 			       u64 owner_offset,
55 			       struct btrfs_delayed_extent_op *extra_op);
56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
57 				    struct extent_buffer *leaf,
58 				    struct btrfs_extent_item *ei);
59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
60 				      u64 parent, u64 root_objectid,
61 				      u64 flags, u64 owner, u64 offset,
62 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
64 				     struct btrfs_delayed_ref_node *node,
65 				     struct btrfs_delayed_extent_op *extent_op);
66 static int find_next_key(struct btrfs_path *path, int level,
67 			 struct btrfs_key *key);
68 
69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70 {
71 	return (cache->flags & bits) == bits;
72 }
73 
74 /* simple helper to search for an existing data extent at a given offset */
75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
76 {
77 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
78 	int ret;
79 	struct btrfs_key key;
80 	struct btrfs_path *path;
81 
82 	path = btrfs_alloc_path();
83 	if (!path)
84 		return -ENOMEM;
85 
86 	key.objectid = start;
87 	key.offset = len;
88 	key.type = BTRFS_EXTENT_ITEM_KEY;
89 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
90 	btrfs_free_path(path);
91 	return ret;
92 }
93 
94 /*
95  * helper function to lookup reference count and flags of a tree block.
96  *
97  * the head node for delayed ref is used to store the sum of all the
98  * reference count modifications queued up in the rbtree. the head
99  * node may also store the extent flags to set. This way you can check
100  * to see what the reference count and extent flags would be if all of
101  * the delayed refs are not processed.
102  */
103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
104 			     struct btrfs_fs_info *fs_info, u64 bytenr,
105 			     u64 offset, int metadata, u64 *refs, u64 *flags,
106 			     u64 *owning_root)
107 {
108 	struct btrfs_root *extent_root;
109 	struct btrfs_delayed_ref_head *head;
110 	struct btrfs_delayed_ref_root *delayed_refs;
111 	struct btrfs_path *path;
112 	struct btrfs_extent_item *ei;
113 	struct extent_buffer *leaf;
114 	struct btrfs_key key;
115 	u32 item_size;
116 	u64 num_refs;
117 	u64 extent_flags;
118 	u64 owner = 0;
119 	int ret;
120 
121 	/*
122 	 * If we don't have skinny metadata, don't bother doing anything
123 	 * different
124 	 */
125 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
126 		offset = fs_info->nodesize;
127 		metadata = 0;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	if (!trans) {
135 		path->skip_locking = 1;
136 		path->search_commit_root = 1;
137 	}
138 
139 search_again:
140 	key.objectid = bytenr;
141 	key.offset = offset;
142 	if (metadata)
143 		key.type = BTRFS_METADATA_ITEM_KEY;
144 	else
145 		key.type = BTRFS_EXTENT_ITEM_KEY;
146 
147 	extent_root = btrfs_extent_root(fs_info, bytenr);
148 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
149 	if (ret < 0)
150 		goto out_free;
151 
152 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
153 		if (path->slots[0]) {
154 			path->slots[0]--;
155 			btrfs_item_key_to_cpu(path->nodes[0], &key,
156 					      path->slots[0]);
157 			if (key.objectid == bytenr &&
158 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
159 			    key.offset == fs_info->nodesize)
160 				ret = 0;
161 		}
162 	}
163 
164 	if (ret == 0) {
165 		leaf = path->nodes[0];
166 		item_size = btrfs_item_size(leaf, path->slots[0]);
167 		if (item_size >= sizeof(*ei)) {
168 			ei = btrfs_item_ptr(leaf, path->slots[0],
169 					    struct btrfs_extent_item);
170 			num_refs = btrfs_extent_refs(leaf, ei);
171 			extent_flags = btrfs_extent_flags(leaf, ei);
172 			owner = btrfs_get_extent_owner_root(fs_info, leaf,
173 							    path->slots[0]);
174 		} else {
175 			ret = -EUCLEAN;
176 			btrfs_err(fs_info,
177 			"unexpected extent item size, has %u expect >= %zu",
178 				  item_size, sizeof(*ei));
179 			if (trans)
180 				btrfs_abort_transaction(trans, ret);
181 			else
182 				btrfs_handle_fs_error(fs_info, ret, NULL);
183 
184 			goto out_free;
185 		}
186 
187 		BUG_ON(num_refs == 0);
188 	} else {
189 		num_refs = 0;
190 		extent_flags = 0;
191 		ret = 0;
192 	}
193 
194 	if (!trans)
195 		goto out;
196 
197 	delayed_refs = &trans->transaction->delayed_refs;
198 	spin_lock(&delayed_refs->lock);
199 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
200 	if (head) {
201 		if (!mutex_trylock(&head->mutex)) {
202 			refcount_inc(&head->refs);
203 			spin_unlock(&delayed_refs->lock);
204 
205 			btrfs_release_path(path);
206 
207 			/*
208 			 * Mutex was contended, block until it's released and try
209 			 * again
210 			 */
211 			mutex_lock(&head->mutex);
212 			mutex_unlock(&head->mutex);
213 			btrfs_put_delayed_ref_head(head);
214 			goto search_again;
215 		}
216 		spin_lock(&head->lock);
217 		if (head->extent_op && head->extent_op->update_flags)
218 			extent_flags |= head->extent_op->flags_to_set;
219 		else
220 			BUG_ON(num_refs == 0);
221 
222 		num_refs += head->ref_mod;
223 		spin_unlock(&head->lock);
224 		mutex_unlock(&head->mutex);
225 	}
226 	spin_unlock(&delayed_refs->lock);
227 out:
228 	WARN_ON(num_refs == 0);
229 	if (refs)
230 		*refs = num_refs;
231 	if (flags)
232 		*flags = extent_flags;
233 	if (owning_root)
234 		*owning_root = owner;
235 out_free:
236 	btrfs_free_path(path);
237 	return ret;
238 }
239 
240 /*
241  * Back reference rules.  Back refs have three main goals:
242  *
243  * 1) differentiate between all holders of references to an extent so that
244  *    when a reference is dropped we can make sure it was a valid reference
245  *    before freeing the extent.
246  *
247  * 2) Provide enough information to quickly find the holders of an extent
248  *    if we notice a given block is corrupted or bad.
249  *
250  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251  *    maintenance.  This is actually the same as #2, but with a slightly
252  *    different use case.
253  *
254  * There are two kinds of back refs. The implicit back refs is optimized
255  * for pointers in non-shared tree blocks. For a given pointer in a block,
256  * back refs of this kind provide information about the block's owner tree
257  * and the pointer's key. These information allow us to find the block by
258  * b-tree searching. The full back refs is for pointers in tree blocks not
259  * referenced by their owner trees. The location of tree block is recorded
260  * in the back refs. Actually the full back refs is generic, and can be
261  * used in all cases the implicit back refs is used. The major shortcoming
262  * of the full back refs is its overhead. Every time a tree block gets
263  * COWed, we have to update back refs entry for all pointers in it.
264  *
265  * For a newly allocated tree block, we use implicit back refs for
266  * pointers in it. This means most tree related operations only involve
267  * implicit back refs. For a tree block created in old transaction, the
268  * only way to drop a reference to it is COW it. So we can detect the
269  * event that tree block loses its owner tree's reference and do the
270  * back refs conversion.
271  *
272  * When a tree block is COWed through a tree, there are four cases:
273  *
274  * The reference count of the block is one and the tree is the block's
275  * owner tree. Nothing to do in this case.
276  *
277  * The reference count of the block is one and the tree is not the
278  * block's owner tree. In this case, full back refs is used for pointers
279  * in the block. Remove these full back refs, add implicit back refs for
280  * every pointers in the new block.
281  *
282  * The reference count of the block is greater than one and the tree is
283  * the block's owner tree. In this case, implicit back refs is used for
284  * pointers in the block. Add full back refs for every pointers in the
285  * block, increase lower level extents' reference counts. The original
286  * implicit back refs are entailed to the new block.
287  *
288  * The reference count of the block is greater than one and the tree is
289  * not the block's owner tree. Add implicit back refs for every pointer in
290  * the new block, increase lower level extents' reference count.
291  *
292  * Back Reference Key composing:
293  *
294  * The key objectid corresponds to the first byte in the extent,
295  * The key type is used to differentiate between types of back refs.
296  * There are different meanings of the key offset for different types
297  * of back refs.
298  *
299  * File extents can be referenced by:
300  *
301  * - multiple snapshots, subvolumes, or different generations in one subvol
302  * - different files inside a single subvolume
303  * - different offsets inside a file (bookend extents in file.c)
304  *
305  * The extent ref structure for the implicit back refs has fields for:
306  *
307  * - Objectid of the subvolume root
308  * - objectid of the file holding the reference
309  * - original offset in the file
310  * - how many bookend extents
311  *
312  * The key offset for the implicit back refs is hash of the first
313  * three fields.
314  *
315  * The extent ref structure for the full back refs has field for:
316  *
317  * - number of pointers in the tree leaf
318  *
319  * The key offset for the implicit back refs is the first byte of
320  * the tree leaf
321  *
322  * When a file extent is allocated, The implicit back refs is used.
323  * the fields are filled in:
324  *
325  *     (root_key.objectid, inode objectid, offset in file, 1)
326  *
327  * When a file extent is removed file truncation, we find the
328  * corresponding implicit back refs and check the following fields:
329  *
330  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
331  *
332  * Btree extents can be referenced by:
333  *
334  * - Different subvolumes
335  *
336  * Both the implicit back refs and the full back refs for tree blocks
337  * only consist of key. The key offset for the implicit back refs is
338  * objectid of block's owner tree. The key offset for the full back refs
339  * is the first byte of parent block.
340  *
341  * When implicit back refs is used, information about the lowest key and
342  * level of the tree block are required. These information are stored in
343  * tree block info structure.
344  */
345 
346 /*
347  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350  */
351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 				     struct btrfs_extent_inline_ref *iref,
353 				     enum btrfs_inline_ref_type is_data)
354 {
355 	struct btrfs_fs_info *fs_info = eb->fs_info;
356 	int type = btrfs_extent_inline_ref_type(eb, iref);
357 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
358 
359 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
360 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
361 		return type;
362 	}
363 
364 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
366 	    type == BTRFS_SHARED_DATA_REF_KEY ||
367 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
368 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
369 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
370 				return type;
371 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
372 				ASSERT(fs_info);
373 				/*
374 				 * Every shared one has parent tree block,
375 				 * which must be aligned to sector size.
376 				 */
377 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	WARN_ON(1);
400 	btrfs_print_leaf(eb);
401 	btrfs_err(fs_info,
402 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
403 		  eb->start, (unsigned long)iref, type);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(trans, leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else {
622 		btrfs_err(trans->fs_info,
623 			  "unrecognized backref key (%llu %u %llu)",
624 			  key.objectid, key.type, key.offset);
625 		btrfs_abort_transaction(trans, -EUCLEAN);
626 		return -EUCLEAN;
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(trans, leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	if (iref) {
658 		/*
659 		 * If type is invalid, we should have bailed out earlier than
660 		 * this call.
661 		 */
662 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
663 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
664 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
665 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
666 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
667 		} else {
668 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
669 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
670 		}
671 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
672 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
673 				      struct btrfs_extent_data_ref);
674 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
676 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
677 				      struct btrfs_shared_data_ref);
678 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
679 	} else {
680 		WARN_ON(1);
681 	}
682 	return num_refs;
683 }
684 
685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
686 					  struct btrfs_path *path,
687 					  u64 bytenr, u64 parent,
688 					  u64 root_objectid)
689 {
690 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 	struct btrfs_key key;
692 	int ret;
693 
694 	key.objectid = bytenr;
695 	if (parent) {
696 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 		key.offset = parent;
698 	} else {
699 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 		key.offset = root_objectid;
701 	}
702 
703 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
704 	if (ret > 0)
705 		ret = -ENOENT;
706 	return ret;
707 }
708 
709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
710 					  struct btrfs_path *path,
711 					  u64 bytenr, u64 parent,
712 					  u64 root_objectid)
713 {
714 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
715 	struct btrfs_key key;
716 	int ret;
717 
718 	key.objectid = bytenr;
719 	if (parent) {
720 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
721 		key.offset = parent;
722 	} else {
723 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
724 		key.offset = root_objectid;
725 	}
726 
727 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
728 	btrfs_release_path(path);
729 	return ret;
730 }
731 
732 static inline int extent_ref_type(u64 parent, u64 owner)
733 {
734 	int type;
735 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
736 		if (parent > 0)
737 			type = BTRFS_SHARED_BLOCK_REF_KEY;
738 		else
739 			type = BTRFS_TREE_BLOCK_REF_KEY;
740 	} else {
741 		if (parent > 0)
742 			type = BTRFS_SHARED_DATA_REF_KEY;
743 		else
744 			type = BTRFS_EXTENT_DATA_REF_KEY;
745 	}
746 	return type;
747 }
748 
749 static int find_next_key(struct btrfs_path *path, int level,
750 			 struct btrfs_key *key)
751 
752 {
753 	for (; level < BTRFS_MAX_LEVEL; level++) {
754 		if (!path->nodes[level])
755 			break;
756 		if (path->slots[level] + 1 >=
757 		    btrfs_header_nritems(path->nodes[level]))
758 			continue;
759 		if (level == 0)
760 			btrfs_item_key_to_cpu(path->nodes[level], key,
761 					      path->slots[level] + 1);
762 		else
763 			btrfs_node_key_to_cpu(path->nodes[level], key,
764 					      path->slots[level] + 1);
765 		return 0;
766 	}
767 	return 1;
768 }
769 
770 /*
771  * look for inline back ref. if back ref is found, *ref_ret is set
772  * to the address of inline back ref, and 0 is returned.
773  *
774  * if back ref isn't found, *ref_ret is set to the address where it
775  * should be inserted, and -ENOENT is returned.
776  *
777  * if insert is true and there are too many inline back refs, the path
778  * points to the extent item, and -EAGAIN is returned.
779  *
780  * NOTE: inline back refs are ordered in the same way that back ref
781  *	 items in the tree are ordered.
782  */
783 static noinline_for_stack
784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
785 				 struct btrfs_path *path,
786 				 struct btrfs_extent_inline_ref **ref_ret,
787 				 u64 bytenr, u64 num_bytes,
788 				 u64 parent, u64 root_objectid,
789 				 u64 owner, u64 offset, int insert)
790 {
791 	struct btrfs_fs_info *fs_info = trans->fs_info;
792 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
793 	struct btrfs_key key;
794 	struct extent_buffer *leaf;
795 	struct btrfs_extent_item *ei;
796 	struct btrfs_extent_inline_ref *iref;
797 	u64 flags;
798 	u64 item_size;
799 	unsigned long ptr;
800 	unsigned long end;
801 	int extra_size;
802 	int type;
803 	int want;
804 	int ret;
805 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
806 	int needed;
807 
808 	key.objectid = bytenr;
809 	key.type = BTRFS_EXTENT_ITEM_KEY;
810 	key.offset = num_bytes;
811 
812 	want = extent_ref_type(parent, owner);
813 	if (insert) {
814 		extra_size = btrfs_extent_inline_ref_size(want);
815 		path->search_for_extension = 1;
816 		path->keep_locks = 1;
817 	} else
818 		extra_size = -1;
819 
820 	/*
821 	 * Owner is our level, so we can just add one to get the level for the
822 	 * block we are interested in.
823 	 */
824 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
825 		key.type = BTRFS_METADATA_ITEM_KEY;
826 		key.offset = owner;
827 	}
828 
829 again:
830 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
831 	if (ret < 0)
832 		goto out;
833 
834 	/*
835 	 * We may be a newly converted file system which still has the old fat
836 	 * extent entries for metadata, so try and see if we have one of those.
837 	 */
838 	if (ret > 0 && skinny_metadata) {
839 		skinny_metadata = false;
840 		if (path->slots[0]) {
841 			path->slots[0]--;
842 			btrfs_item_key_to_cpu(path->nodes[0], &key,
843 					      path->slots[0]);
844 			if (key.objectid == bytenr &&
845 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
846 			    key.offset == num_bytes)
847 				ret = 0;
848 		}
849 		if (ret) {
850 			key.objectid = bytenr;
851 			key.type = BTRFS_EXTENT_ITEM_KEY;
852 			key.offset = num_bytes;
853 			btrfs_release_path(path);
854 			goto again;
855 		}
856 	}
857 
858 	if (ret && !insert) {
859 		ret = -ENOENT;
860 		goto out;
861 	} else if (WARN_ON(ret)) {
862 		btrfs_print_leaf(path->nodes[0]);
863 		btrfs_err(fs_info,
864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
865 			  bytenr, num_bytes, parent, root_objectid, owner,
866 			  offset);
867 		ret = -EUCLEAN;
868 		goto out;
869 	}
870 
871 	leaf = path->nodes[0];
872 	item_size = btrfs_item_size(leaf, path->slots[0]);
873 	if (unlikely(item_size < sizeof(*ei))) {
874 		ret = -EUCLEAN;
875 		btrfs_err(fs_info,
876 			  "unexpected extent item size, has %llu expect >= %zu",
877 			  item_size, sizeof(*ei));
878 		btrfs_abort_transaction(trans, ret);
879 		goto out;
880 	}
881 
882 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
883 	flags = btrfs_extent_flags(leaf, ei);
884 
885 	ptr = (unsigned long)(ei + 1);
886 	end = (unsigned long)ei + item_size;
887 
888 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
889 		ptr += sizeof(struct btrfs_tree_block_info);
890 		BUG_ON(ptr > end);
891 	}
892 
893 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
894 		needed = BTRFS_REF_TYPE_DATA;
895 	else
896 		needed = BTRFS_REF_TYPE_BLOCK;
897 
898 	ret = -ENOENT;
899 	while (ptr < end) {
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
903 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
904 			ptr += btrfs_extent_inline_ref_size(type);
905 			continue;
906 		}
907 		if (type == BTRFS_REF_TYPE_INVALID) {
908 			ret = -EUCLEAN;
909 			goto out;
910 		}
911 
912 		if (want < type)
913 			break;
914 		if (want > type) {
915 			ptr += btrfs_extent_inline_ref_size(type);
916 			continue;
917 		}
918 
919 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
920 			struct btrfs_extent_data_ref *dref;
921 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
922 			if (match_extent_data_ref(leaf, dref, root_objectid,
923 						  owner, offset)) {
924 				ret = 0;
925 				break;
926 			}
927 			if (hash_extent_data_ref_item(leaf, dref) <
928 			    hash_extent_data_ref(root_objectid, owner, offset))
929 				break;
930 		} else {
931 			u64 ref_offset;
932 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
933 			if (parent > 0) {
934 				if (parent == ref_offset) {
935 					ret = 0;
936 					break;
937 				}
938 				if (ref_offset < parent)
939 					break;
940 			} else {
941 				if (root_objectid == ref_offset) {
942 					ret = 0;
943 					break;
944 				}
945 				if (ref_offset < root_objectid)
946 					break;
947 			}
948 		}
949 		ptr += btrfs_extent_inline_ref_size(type);
950 	}
951 
952 	if (unlikely(ptr > end)) {
953 		ret = -EUCLEAN;
954 		btrfs_print_leaf(path->nodes[0]);
955 		btrfs_crit(fs_info,
956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
957 			   path->slots[0], root_objectid, owner, offset, parent);
958 		goto out;
959 	}
960 
961 	if (ret == -ENOENT && insert) {
962 		if (item_size + extra_size >=
963 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
964 			ret = -EAGAIN;
965 			goto out;
966 		}
967 		/*
968 		 * To add new inline back ref, we have to make sure
969 		 * there is no corresponding back ref item.
970 		 * For simplicity, we just do not add new inline back
971 		 * ref if there is any kind of item for this block
972 		 */
973 		if (find_next_key(path, 0, &key) == 0 &&
974 		    key.objectid == bytenr &&
975 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 			ret = -EAGAIN;
977 			goto out;
978 		}
979 	}
980 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981 out:
982 	if (insert) {
983 		path->keep_locks = 0;
984 		path->search_for_extension = 0;
985 		btrfs_unlock_up_safe(path, 1);
986 	}
987 	return ret;
988 }
989 
990 /*
991  * helper to add new inline back ref
992  */
993 static noinline_for_stack
994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 				 struct btrfs_path *path,
996 				 struct btrfs_extent_inline_ref *iref,
997 				 u64 parent, u64 root_objectid,
998 				 u64 owner, u64 offset, int refs_to_add,
999 				 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 	struct extent_buffer *leaf;
1002 	struct btrfs_extent_item *ei;
1003 	unsigned long ptr;
1004 	unsigned long end;
1005 	unsigned long item_offset;
1006 	u64 refs;
1007 	int size;
1008 	int type;
1009 
1010 	leaf = path->nodes[0];
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	item_offset = (unsigned long)iref - (unsigned long)ei;
1013 
1014 	type = extent_ref_type(parent, owner);
1015 	size = btrfs_extent_inline_ref_size(type);
1016 
1017 	btrfs_extend_item(trans, path, size);
1018 
1019 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 	refs = btrfs_extent_refs(leaf, ei);
1021 	refs += refs_to_add;
1022 	btrfs_set_extent_refs(leaf, ei, refs);
1023 	if (extent_op)
1024 		__run_delayed_extent_op(extent_op, leaf, ei);
1025 
1026 	ptr = (unsigned long)ei + item_offset;
1027 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 	if (ptr < end - size)
1029 		memmove_extent_buffer(leaf, ptr + size, ptr,
1030 				      end - size - ptr);
1031 
1032 	iref = (struct btrfs_extent_inline_ref *)ptr;
1033 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 		struct btrfs_extent_data_ref *dref;
1036 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 		struct btrfs_shared_data_ref *sref;
1043 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 	} else {
1049 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 	}
1051 	btrfs_mark_buffer_dirty(trans, leaf);
1052 }
1053 
1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055 				 struct btrfs_path *path,
1056 				 struct btrfs_extent_inline_ref **ref_ret,
1057 				 u64 bytenr, u64 num_bytes, u64 parent,
1058 				 u64 root_objectid, u64 owner, u64 offset)
1059 {
1060 	int ret;
1061 
1062 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063 					   num_bytes, parent, root_objectid,
1064 					   owner, offset, 0);
1065 	if (ret != -ENOENT)
1066 		return ret;
1067 
1068 	btrfs_release_path(path);
1069 	*ref_ret = NULL;
1070 
1071 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 					    root_objectid);
1074 	} else {
1075 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076 					     root_objectid, owner, offset);
1077 	}
1078 	return ret;
1079 }
1080 
1081 /*
1082  * helper to update/remove inline back ref
1083  */
1084 static noinline_for_stack int update_inline_extent_backref(
1085 				  struct btrfs_trans_handle *trans,
1086 				  struct btrfs_path *path,
1087 				  struct btrfs_extent_inline_ref *iref,
1088 				  int refs_to_mod,
1089 				  struct btrfs_delayed_extent_op *extent_op)
1090 {
1091 	struct extent_buffer *leaf = path->nodes[0];
1092 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1093 	struct btrfs_extent_item *ei;
1094 	struct btrfs_extent_data_ref *dref = NULL;
1095 	struct btrfs_shared_data_ref *sref = NULL;
1096 	unsigned long ptr;
1097 	unsigned long end;
1098 	u32 item_size;
1099 	int size;
1100 	int type;
1101 	u64 refs;
1102 
1103 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 	refs = btrfs_extent_refs(leaf, ei);
1105 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106 		struct btrfs_key key;
1107 		u32 extent_size;
1108 
1109 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1111 			extent_size = fs_info->nodesize;
1112 		else
1113 			extent_size = key.offset;
1114 		btrfs_print_leaf(leaf);
1115 		btrfs_err(fs_info,
1116 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117 			  key.objectid, extent_size, refs_to_mod, refs);
1118 		return -EUCLEAN;
1119 	}
1120 	refs += refs_to_mod;
1121 	btrfs_set_extent_refs(leaf, ei, refs);
1122 	if (extent_op)
1123 		__run_delayed_extent_op(extent_op, leaf, ei);
1124 
1125 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126 	/*
1127 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1128 	 * error messages.
1129 	 */
1130 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131 		return -EUCLEAN;
1132 
1133 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 		refs = btrfs_extent_data_ref_count(leaf, dref);
1136 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 		refs = btrfs_shared_data_ref_count(leaf, sref);
1139 	} else {
1140 		refs = 1;
1141 		/*
1142 		 * For tree blocks we can only drop one ref for it, and tree
1143 		 * blocks should not have refs > 1.
1144 		 *
1145 		 * Furthermore if we're inserting a new inline backref, we
1146 		 * won't reach this path either. That would be
1147 		 * setup_inline_extent_backref().
1148 		 */
1149 		if (unlikely(refs_to_mod != -1)) {
1150 			struct btrfs_key key;
1151 
1152 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153 
1154 			btrfs_print_leaf(leaf);
1155 			btrfs_err(fs_info,
1156 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1157 				  key.objectid, refs_to_mod);
1158 			return -EUCLEAN;
1159 		}
1160 	}
1161 
1162 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163 		struct btrfs_key key;
1164 		u32 extent_size;
1165 
1166 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1168 			extent_size = fs_info->nodesize;
1169 		else
1170 			extent_size = key.offset;
1171 		btrfs_print_leaf(leaf);
1172 		btrfs_err(fs_info,
1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174 			  (unsigned long)iref, key.objectid, extent_size,
1175 			  refs_to_mod, refs);
1176 		return -EUCLEAN;
1177 	}
1178 	refs += refs_to_mod;
1179 
1180 	if (refs > 0) {
1181 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183 		else
1184 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185 	} else {
1186 		size =  btrfs_extent_inline_ref_size(type);
1187 		item_size = btrfs_item_size(leaf, path->slots[0]);
1188 		ptr = (unsigned long)iref;
1189 		end = (unsigned long)ei + item_size;
1190 		if (ptr + size < end)
1191 			memmove_extent_buffer(leaf, ptr, ptr + size,
1192 					      end - ptr - size);
1193 		item_size -= size;
1194 		btrfs_truncate_item(trans, path, item_size, 1);
1195 	}
1196 	btrfs_mark_buffer_dirty(trans, leaf);
1197 	return 0;
1198 }
1199 
1200 static noinline_for_stack
1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202 				 struct btrfs_path *path,
1203 				 u64 bytenr, u64 num_bytes, u64 parent,
1204 				 u64 root_objectid, u64 owner,
1205 				 u64 offset, int refs_to_add,
1206 				 struct btrfs_delayed_extent_op *extent_op)
1207 {
1208 	struct btrfs_extent_inline_ref *iref;
1209 	int ret;
1210 
1211 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212 					   num_bytes, parent, root_objectid,
1213 					   owner, offset, 1);
1214 	if (ret == 0) {
1215 		/*
1216 		 * We're adding refs to a tree block we already own, this
1217 		 * should not happen at all.
1218 		 */
1219 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220 			btrfs_print_leaf(path->nodes[0]);
1221 			btrfs_crit(trans->fs_info,
1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1224 			return -EUCLEAN;
1225 		}
1226 		ret = update_inline_extent_backref(trans, path, iref,
1227 						   refs_to_add, extent_op);
1228 	} else if (ret == -ENOENT) {
1229 		setup_inline_extent_backref(trans, path, iref, parent,
1230 					    root_objectid, owner, offset,
1231 					    refs_to_add, extent_op);
1232 		ret = 0;
1233 	}
1234 	return ret;
1235 }
1236 
1237 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238 				 struct btrfs_root *root,
1239 				 struct btrfs_path *path,
1240 				 struct btrfs_extent_inline_ref *iref,
1241 				 int refs_to_drop, int is_data)
1242 {
1243 	int ret = 0;
1244 
1245 	BUG_ON(!is_data && refs_to_drop != 1);
1246 	if (iref)
1247 		ret = update_inline_extent_backref(trans, path, iref,
1248 						   -refs_to_drop, NULL);
1249 	else if (is_data)
1250 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251 	else
1252 		ret = btrfs_del_item(trans, root, path);
1253 	return ret;
1254 }
1255 
1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257 			       u64 *discarded_bytes)
1258 {
1259 	int j, ret = 0;
1260 	u64 bytes_left, end;
1261 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262 
1263 	if (WARN_ON(start != aligned_start)) {
1264 		len -= aligned_start - start;
1265 		len = round_down(len, 1 << SECTOR_SHIFT);
1266 		start = aligned_start;
1267 	}
1268 
1269 	*discarded_bytes = 0;
1270 
1271 	if (!len)
1272 		return 0;
1273 
1274 	end = start + len;
1275 	bytes_left = len;
1276 
1277 	/* Skip any superblocks on this device. */
1278 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1279 		u64 sb_start = btrfs_sb_offset(j);
1280 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1281 		u64 size = sb_start - start;
1282 
1283 		if (!in_range(sb_start, start, bytes_left) &&
1284 		    !in_range(sb_end, start, bytes_left) &&
1285 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1286 			continue;
1287 
1288 		/*
1289 		 * Superblock spans beginning of range.  Adjust start and
1290 		 * try again.
1291 		 */
1292 		if (sb_start <= start) {
1293 			start += sb_end - start;
1294 			if (start > end) {
1295 				bytes_left = 0;
1296 				break;
1297 			}
1298 			bytes_left = end - start;
1299 			continue;
1300 		}
1301 
1302 		if (size) {
1303 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1304 						   size >> SECTOR_SHIFT,
1305 						   GFP_NOFS);
1306 			if (!ret)
1307 				*discarded_bytes += size;
1308 			else if (ret != -EOPNOTSUPP)
1309 				return ret;
1310 		}
1311 
1312 		start = sb_end;
1313 		if (start > end) {
1314 			bytes_left = 0;
1315 			break;
1316 		}
1317 		bytes_left = end - start;
1318 	}
1319 
1320 	if (bytes_left) {
1321 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1322 					   bytes_left >> SECTOR_SHIFT,
1323 					   GFP_NOFS);
1324 		if (!ret)
1325 			*discarded_bytes += bytes_left;
1326 	}
1327 	return ret;
1328 }
1329 
1330 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1331 {
1332 	struct btrfs_device *dev = stripe->dev;
1333 	struct btrfs_fs_info *fs_info = dev->fs_info;
1334 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1335 	u64 phys = stripe->physical;
1336 	u64 len = stripe->length;
1337 	u64 discarded = 0;
1338 	int ret = 0;
1339 
1340 	/* Zone reset on a zoned filesystem */
1341 	if (btrfs_can_zone_reset(dev, phys, len)) {
1342 		u64 src_disc;
1343 
1344 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1345 		if (ret)
1346 			goto out;
1347 
1348 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1349 		    dev != dev_replace->srcdev)
1350 			goto out;
1351 
1352 		src_disc = discarded;
1353 
1354 		/* Send to replace target as well */
1355 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1356 					      &discarded);
1357 		discarded += src_disc;
1358 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1359 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1360 	} else {
1361 		ret = 0;
1362 		*bytes = 0;
1363 	}
1364 
1365 out:
1366 	*bytes = discarded;
1367 	return ret;
1368 }
1369 
1370 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1371 			 u64 num_bytes, u64 *actual_bytes)
1372 {
1373 	int ret = 0;
1374 	u64 discarded_bytes = 0;
1375 	u64 end = bytenr + num_bytes;
1376 	u64 cur = bytenr;
1377 
1378 	/*
1379 	 * Avoid races with device replace and make sure the devices in the
1380 	 * stripes don't go away while we are discarding.
1381 	 */
1382 	btrfs_bio_counter_inc_blocked(fs_info);
1383 	while (cur < end) {
1384 		struct btrfs_discard_stripe *stripes;
1385 		unsigned int num_stripes;
1386 		int i;
1387 
1388 		num_bytes = end - cur;
1389 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1390 		if (IS_ERR(stripes)) {
1391 			ret = PTR_ERR(stripes);
1392 			if (ret == -EOPNOTSUPP)
1393 				ret = 0;
1394 			break;
1395 		}
1396 
1397 		for (i = 0; i < num_stripes; i++) {
1398 			struct btrfs_discard_stripe *stripe = stripes + i;
1399 			u64 bytes;
1400 
1401 			if (!stripe->dev->bdev) {
1402 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1403 				continue;
1404 			}
1405 
1406 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1407 					&stripe->dev->dev_state))
1408 				continue;
1409 
1410 			ret = do_discard_extent(stripe, &bytes);
1411 			if (ret) {
1412 				/*
1413 				 * Keep going if discard is not supported by the
1414 				 * device.
1415 				 */
1416 				if (ret != -EOPNOTSUPP)
1417 					break;
1418 				ret = 0;
1419 			} else {
1420 				discarded_bytes += bytes;
1421 			}
1422 		}
1423 		kfree(stripes);
1424 		if (ret)
1425 			break;
1426 		cur += num_bytes;
1427 	}
1428 	btrfs_bio_counter_dec(fs_info);
1429 	if (actual_bytes)
1430 		*actual_bytes = discarded_bytes;
1431 	return ret;
1432 }
1433 
1434 /* Can return -ENOMEM */
1435 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1436 			 struct btrfs_ref *generic_ref)
1437 {
1438 	struct btrfs_fs_info *fs_info = trans->fs_info;
1439 	int ret;
1440 
1441 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1442 	       generic_ref->action);
1443 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1444 	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1445 
1446 	if (generic_ref->type == BTRFS_REF_METADATA)
1447 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1448 	else
1449 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1450 
1451 	btrfs_ref_tree_mod(fs_info, generic_ref);
1452 
1453 	return ret;
1454 }
1455 
1456 /*
1457  * Insert backreference for a given extent.
1458  *
1459  * The counterpart is in __btrfs_free_extent(), with examples and more details
1460  * how it works.
1461  *
1462  * @trans:	    Handle of transaction
1463  *
1464  * @node:	    The delayed ref node used to get the bytenr/length for
1465  *		    extent whose references are incremented.
1466  *
1467  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1468  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1469  *		    bytenr of the parent block. Since new extents are always
1470  *		    created with indirect references, this will only be the case
1471  *		    when relocating a shared extent. In that case, root_objectid
1472  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1473  *		    be 0
1474  *
1475  * @root_objectid:  The id of the root where this modification has originated,
1476  *		    this can be either one of the well-known metadata trees or
1477  *		    the subvolume id which references this extent.
1478  *
1479  * @owner:	    For data extents it is the inode number of the owning file.
1480  *		    For metadata extents this parameter holds the level in the
1481  *		    tree of the extent.
1482  *
1483  * @offset:	    For metadata extents the offset is ignored and is currently
1484  *		    always passed as 0. For data extents it is the fileoffset
1485  *		    this extent belongs to.
1486  *
1487  * @extent_op       Pointer to a structure, holding information necessary when
1488  *                  updating a tree block's flags
1489  *
1490  */
1491 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1492 				  struct btrfs_delayed_ref_node *node,
1493 				  u64 parent, u64 root_objectid,
1494 				  u64 owner, u64 offset,
1495 				  struct btrfs_delayed_extent_op *extent_op)
1496 {
1497 	struct btrfs_path *path;
1498 	struct extent_buffer *leaf;
1499 	struct btrfs_extent_item *item;
1500 	struct btrfs_key key;
1501 	u64 bytenr = node->bytenr;
1502 	u64 num_bytes = node->num_bytes;
1503 	u64 refs;
1504 	int refs_to_add = node->ref_mod;
1505 	int ret;
1506 
1507 	path = btrfs_alloc_path();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	/* this will setup the path even if it fails to insert the back ref */
1512 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1513 					   parent, root_objectid, owner,
1514 					   offset, refs_to_add, extent_op);
1515 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1516 		goto out;
1517 
1518 	/*
1519 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1520 	 * inline extent ref, so just update the reference count and add a
1521 	 * normal backref.
1522 	 */
1523 	leaf = path->nodes[0];
1524 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1525 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1526 	refs = btrfs_extent_refs(leaf, item);
1527 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1528 	if (extent_op)
1529 		__run_delayed_extent_op(extent_op, leaf, item);
1530 
1531 	btrfs_mark_buffer_dirty(trans, leaf);
1532 	btrfs_release_path(path);
1533 
1534 	/* now insert the actual backref */
1535 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1536 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1537 					    root_objectid);
1538 	else
1539 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1540 					     root_objectid, owner, offset,
1541 					     refs_to_add);
1542 
1543 	if (ret)
1544 		btrfs_abort_transaction(trans, ret);
1545 out:
1546 	btrfs_free_path(path);
1547 	return ret;
1548 }
1549 
1550 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1551 				     struct btrfs_delayed_ref_head *href)
1552 {
1553 	u64 root = href->owning_root;
1554 
1555 	/*
1556 	 * Don't check must_insert_reserved, as this is called from contexts
1557 	 * where it has already been unset.
1558 	 */
1559 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1560 	    !href->is_data || !is_fstree(root))
1561 		return;
1562 
1563 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1564 				  BTRFS_QGROUP_RSV_DATA);
1565 }
1566 
1567 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1568 				struct btrfs_delayed_ref_head *href,
1569 				struct btrfs_delayed_ref_node *node,
1570 				struct btrfs_delayed_extent_op *extent_op,
1571 				bool insert_reserved)
1572 {
1573 	int ret = 0;
1574 	struct btrfs_delayed_data_ref *ref;
1575 	u64 parent = 0;
1576 	u64 flags = 0;
1577 
1578 	ref = btrfs_delayed_node_to_data_ref(node);
1579 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1580 
1581 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1582 		parent = ref->parent;
1583 
1584 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1585 		struct btrfs_key key;
1586 		struct btrfs_squota_delta delta = {
1587 			.root = href->owning_root,
1588 			.num_bytes = node->num_bytes,
1589 			.is_data = true,
1590 			.is_inc	= true,
1591 			.generation = trans->transid,
1592 		};
1593 
1594 		if (extent_op)
1595 			flags |= extent_op->flags_to_set;
1596 
1597 		key.objectid = node->bytenr;
1598 		key.type = BTRFS_EXTENT_ITEM_KEY;
1599 		key.offset = node->num_bytes;
1600 
1601 		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1602 						 flags, ref->objectid,
1603 						 ref->offset, &key,
1604 						 node->ref_mod, href->owning_root);
1605 		free_head_ref_squota_rsv(trans->fs_info, href);
1606 		if (!ret)
1607 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1608 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1609 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1610 					     ref->objectid, ref->offset,
1611 					     extent_op);
1612 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1613 		ret = __btrfs_free_extent(trans, href, node, parent,
1614 					  ref->root, ref->objectid,
1615 					  ref->offset, extent_op);
1616 	} else {
1617 		BUG();
1618 	}
1619 	return ret;
1620 }
1621 
1622 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1623 				    struct extent_buffer *leaf,
1624 				    struct btrfs_extent_item *ei)
1625 {
1626 	u64 flags = btrfs_extent_flags(leaf, ei);
1627 	if (extent_op->update_flags) {
1628 		flags |= extent_op->flags_to_set;
1629 		btrfs_set_extent_flags(leaf, ei, flags);
1630 	}
1631 
1632 	if (extent_op->update_key) {
1633 		struct btrfs_tree_block_info *bi;
1634 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1635 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1636 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1637 	}
1638 }
1639 
1640 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1641 				 struct btrfs_delayed_ref_head *head,
1642 				 struct btrfs_delayed_extent_op *extent_op)
1643 {
1644 	struct btrfs_fs_info *fs_info = trans->fs_info;
1645 	struct btrfs_root *root;
1646 	struct btrfs_key key;
1647 	struct btrfs_path *path;
1648 	struct btrfs_extent_item *ei;
1649 	struct extent_buffer *leaf;
1650 	u32 item_size;
1651 	int ret;
1652 	int metadata = 1;
1653 
1654 	if (TRANS_ABORTED(trans))
1655 		return 0;
1656 
1657 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1658 		metadata = 0;
1659 
1660 	path = btrfs_alloc_path();
1661 	if (!path)
1662 		return -ENOMEM;
1663 
1664 	key.objectid = head->bytenr;
1665 
1666 	if (metadata) {
1667 		key.type = BTRFS_METADATA_ITEM_KEY;
1668 		key.offset = extent_op->level;
1669 	} else {
1670 		key.type = BTRFS_EXTENT_ITEM_KEY;
1671 		key.offset = head->num_bytes;
1672 	}
1673 
1674 	root = btrfs_extent_root(fs_info, key.objectid);
1675 again:
1676 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1677 	if (ret < 0) {
1678 		goto out;
1679 	} else if (ret > 0) {
1680 		if (metadata) {
1681 			if (path->slots[0] > 0) {
1682 				path->slots[0]--;
1683 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1684 						      path->slots[0]);
1685 				if (key.objectid == head->bytenr &&
1686 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1687 				    key.offset == head->num_bytes)
1688 					ret = 0;
1689 			}
1690 			if (ret > 0) {
1691 				btrfs_release_path(path);
1692 				metadata = 0;
1693 
1694 				key.objectid = head->bytenr;
1695 				key.offset = head->num_bytes;
1696 				key.type = BTRFS_EXTENT_ITEM_KEY;
1697 				goto again;
1698 			}
1699 		} else {
1700 			ret = -EUCLEAN;
1701 			btrfs_err(fs_info,
1702 		  "missing extent item for extent %llu num_bytes %llu level %d",
1703 				  head->bytenr, head->num_bytes, extent_op->level);
1704 			goto out;
1705 		}
1706 	}
1707 
1708 	leaf = path->nodes[0];
1709 	item_size = btrfs_item_size(leaf, path->slots[0]);
1710 
1711 	if (unlikely(item_size < sizeof(*ei))) {
1712 		ret = -EUCLEAN;
1713 		btrfs_err(fs_info,
1714 			  "unexpected extent item size, has %u expect >= %zu",
1715 			  item_size, sizeof(*ei));
1716 		btrfs_abort_transaction(trans, ret);
1717 		goto out;
1718 	}
1719 
1720 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1721 	__run_delayed_extent_op(extent_op, leaf, ei);
1722 
1723 	btrfs_mark_buffer_dirty(trans, leaf);
1724 out:
1725 	btrfs_free_path(path);
1726 	return ret;
1727 }
1728 
1729 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1730 				struct btrfs_delayed_ref_head *href,
1731 				struct btrfs_delayed_ref_node *node,
1732 				struct btrfs_delayed_extent_op *extent_op,
1733 				bool insert_reserved)
1734 {
1735 	int ret = 0;
1736 	struct btrfs_fs_info *fs_info = trans->fs_info;
1737 	struct btrfs_delayed_tree_ref *ref;
1738 	u64 parent = 0;
1739 	u64 ref_root = 0;
1740 
1741 	ref = btrfs_delayed_node_to_tree_ref(node);
1742 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1743 
1744 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1745 		parent = ref->parent;
1746 	ref_root = ref->root;
1747 
1748 	if (unlikely(node->ref_mod != 1)) {
1749 		btrfs_err(trans->fs_info,
1750 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1751 			  node->bytenr, node->ref_mod, node->action, ref_root,
1752 			  parent);
1753 		return -EUCLEAN;
1754 	}
1755 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1756 		struct btrfs_squota_delta delta = {
1757 			.root = href->owning_root,
1758 			.num_bytes = fs_info->nodesize,
1759 			.is_data = false,
1760 			.is_inc = true,
1761 			.generation = trans->transid,
1762 		};
1763 
1764 		BUG_ON(!extent_op || !extent_op->update_flags);
1765 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1766 		if (!ret)
1767 			btrfs_record_squota_delta(fs_info, &delta);
1768 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1769 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1770 					     ref->level, 0, extent_op);
1771 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1772 		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1773 					  ref->level, 0, extent_op);
1774 	} else {
1775 		BUG();
1776 	}
1777 	return ret;
1778 }
1779 
1780 /* helper function to actually process a single delayed ref entry */
1781 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1782 			       struct btrfs_delayed_ref_head *href,
1783 			       struct btrfs_delayed_ref_node *node,
1784 			       struct btrfs_delayed_extent_op *extent_op,
1785 			       bool insert_reserved)
1786 {
1787 	int ret = 0;
1788 
1789 	if (TRANS_ABORTED(trans)) {
1790 		if (insert_reserved) {
1791 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1792 			free_head_ref_squota_rsv(trans->fs_info, href);
1793 		}
1794 		return 0;
1795 	}
1796 
1797 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1798 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1799 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1800 					   insert_reserved);
1801 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1802 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1803 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1804 					   insert_reserved);
1805 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1806 		ret = 0;
1807 	else
1808 		BUG();
1809 	if (ret && insert_reserved)
1810 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1811 	if (ret < 0)
1812 		btrfs_err(trans->fs_info,
1813 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1814 			  node->bytenr, node->num_bytes, node->type,
1815 			  node->action, node->ref_mod, ret);
1816 	return ret;
1817 }
1818 
1819 static inline struct btrfs_delayed_ref_node *
1820 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1821 {
1822 	struct btrfs_delayed_ref_node *ref;
1823 
1824 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1825 		return NULL;
1826 
1827 	/*
1828 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1829 	 * This is to prevent a ref count from going down to zero, which deletes
1830 	 * the extent item from the extent tree, when there still are references
1831 	 * to add, which would fail because they would not find the extent item.
1832 	 */
1833 	if (!list_empty(&head->ref_add_list))
1834 		return list_first_entry(&head->ref_add_list,
1835 				struct btrfs_delayed_ref_node, add_list);
1836 
1837 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1838 		       struct btrfs_delayed_ref_node, ref_node);
1839 	ASSERT(list_empty(&ref->add_list));
1840 	return ref;
1841 }
1842 
1843 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1844 				      struct btrfs_delayed_ref_head *head)
1845 {
1846 	spin_lock(&delayed_refs->lock);
1847 	head->processing = false;
1848 	delayed_refs->num_heads_ready++;
1849 	spin_unlock(&delayed_refs->lock);
1850 	btrfs_delayed_ref_unlock(head);
1851 }
1852 
1853 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1854 				struct btrfs_delayed_ref_head *head)
1855 {
1856 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1857 
1858 	if (!extent_op)
1859 		return NULL;
1860 
1861 	if (head->must_insert_reserved) {
1862 		head->extent_op = NULL;
1863 		btrfs_free_delayed_extent_op(extent_op);
1864 		return NULL;
1865 	}
1866 	return extent_op;
1867 }
1868 
1869 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1870 				     struct btrfs_delayed_ref_head *head)
1871 {
1872 	struct btrfs_delayed_extent_op *extent_op;
1873 	int ret;
1874 
1875 	extent_op = cleanup_extent_op(head);
1876 	if (!extent_op)
1877 		return 0;
1878 	head->extent_op = NULL;
1879 	spin_unlock(&head->lock);
1880 	ret = run_delayed_extent_op(trans, head, extent_op);
1881 	btrfs_free_delayed_extent_op(extent_op);
1882 	return ret ? ret : 1;
1883 }
1884 
1885 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1886 				  struct btrfs_delayed_ref_root *delayed_refs,
1887 				  struct btrfs_delayed_ref_head *head)
1888 {
1889 	u64 ret = 0;
1890 
1891 	/*
1892 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1893 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1894 	 */
1895 	if (head->total_ref_mod < 0 && head->is_data) {
1896 		int nr_csums;
1897 
1898 		spin_lock(&delayed_refs->lock);
1899 		delayed_refs->pending_csums -= head->num_bytes;
1900 		spin_unlock(&delayed_refs->lock);
1901 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1902 
1903 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1904 
1905 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1906 	}
1907 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1908 	if (head->must_insert_reserved)
1909 		free_head_ref_squota_rsv(fs_info, head);
1910 
1911 	return ret;
1912 }
1913 
1914 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1915 			    struct btrfs_delayed_ref_head *head,
1916 			    u64 *bytes_released)
1917 {
1918 
1919 	struct btrfs_fs_info *fs_info = trans->fs_info;
1920 	struct btrfs_delayed_ref_root *delayed_refs;
1921 	int ret;
1922 
1923 	delayed_refs = &trans->transaction->delayed_refs;
1924 
1925 	ret = run_and_cleanup_extent_op(trans, head);
1926 	if (ret < 0) {
1927 		unselect_delayed_ref_head(delayed_refs, head);
1928 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1929 		return ret;
1930 	} else if (ret) {
1931 		return ret;
1932 	}
1933 
1934 	/*
1935 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1936 	 * and then re-check to make sure nobody got added.
1937 	 */
1938 	spin_unlock(&head->lock);
1939 	spin_lock(&delayed_refs->lock);
1940 	spin_lock(&head->lock);
1941 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1942 		spin_unlock(&head->lock);
1943 		spin_unlock(&delayed_refs->lock);
1944 		return 1;
1945 	}
1946 	btrfs_delete_ref_head(delayed_refs, head);
1947 	spin_unlock(&head->lock);
1948 	spin_unlock(&delayed_refs->lock);
1949 
1950 	if (head->must_insert_reserved) {
1951 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1952 		if (head->is_data) {
1953 			struct btrfs_root *csum_root;
1954 
1955 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1956 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1957 					      head->num_bytes);
1958 		}
1959 	}
1960 
1961 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1962 
1963 	trace_run_delayed_ref_head(fs_info, head, 0);
1964 	btrfs_delayed_ref_unlock(head);
1965 	btrfs_put_delayed_ref_head(head);
1966 	return ret;
1967 }
1968 
1969 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1970 					struct btrfs_trans_handle *trans)
1971 {
1972 	struct btrfs_delayed_ref_root *delayed_refs =
1973 		&trans->transaction->delayed_refs;
1974 	struct btrfs_delayed_ref_head *head = NULL;
1975 	int ret;
1976 
1977 	spin_lock(&delayed_refs->lock);
1978 	head = btrfs_select_ref_head(delayed_refs);
1979 	if (!head) {
1980 		spin_unlock(&delayed_refs->lock);
1981 		return head;
1982 	}
1983 
1984 	/*
1985 	 * Grab the lock that says we are going to process all the refs for
1986 	 * this head
1987 	 */
1988 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1989 	spin_unlock(&delayed_refs->lock);
1990 
1991 	/*
1992 	 * We may have dropped the spin lock to get the head mutex lock, and
1993 	 * that might have given someone else time to free the head.  If that's
1994 	 * true, it has been removed from our list and we can move on.
1995 	 */
1996 	if (ret == -EAGAIN)
1997 		head = ERR_PTR(-EAGAIN);
1998 
1999 	return head;
2000 }
2001 
2002 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2003 					   struct btrfs_delayed_ref_head *locked_ref,
2004 					   u64 *bytes_released)
2005 {
2006 	struct btrfs_fs_info *fs_info = trans->fs_info;
2007 	struct btrfs_delayed_ref_root *delayed_refs;
2008 	struct btrfs_delayed_extent_op *extent_op;
2009 	struct btrfs_delayed_ref_node *ref;
2010 	bool must_insert_reserved;
2011 	int ret;
2012 
2013 	delayed_refs = &trans->transaction->delayed_refs;
2014 
2015 	lockdep_assert_held(&locked_ref->mutex);
2016 	lockdep_assert_held(&locked_ref->lock);
2017 
2018 	while ((ref = select_delayed_ref(locked_ref))) {
2019 		if (ref->seq &&
2020 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2021 			spin_unlock(&locked_ref->lock);
2022 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2023 			return -EAGAIN;
2024 		}
2025 
2026 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2027 		RB_CLEAR_NODE(&ref->ref_node);
2028 		if (!list_empty(&ref->add_list))
2029 			list_del(&ref->add_list);
2030 		/*
2031 		 * When we play the delayed ref, also correct the ref_mod on
2032 		 * head
2033 		 */
2034 		switch (ref->action) {
2035 		case BTRFS_ADD_DELAYED_REF:
2036 		case BTRFS_ADD_DELAYED_EXTENT:
2037 			locked_ref->ref_mod -= ref->ref_mod;
2038 			break;
2039 		case BTRFS_DROP_DELAYED_REF:
2040 			locked_ref->ref_mod += ref->ref_mod;
2041 			break;
2042 		default:
2043 			WARN_ON(1);
2044 		}
2045 		atomic_dec(&delayed_refs->num_entries);
2046 
2047 		/*
2048 		 * Record the must_insert_reserved flag before we drop the
2049 		 * spin lock.
2050 		 */
2051 		must_insert_reserved = locked_ref->must_insert_reserved;
2052 		/*
2053 		 * Unsetting this on the head ref relinquishes ownership of
2054 		 * the rsv_bytes, so it is critical that every possible code
2055 		 * path from here forward frees all reserves including qgroup
2056 		 * reserve.
2057 		 */
2058 		locked_ref->must_insert_reserved = false;
2059 
2060 		extent_op = locked_ref->extent_op;
2061 		locked_ref->extent_op = NULL;
2062 		spin_unlock(&locked_ref->lock);
2063 
2064 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2065 					  must_insert_reserved);
2066 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2067 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2068 
2069 		btrfs_free_delayed_extent_op(extent_op);
2070 		if (ret) {
2071 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2072 			btrfs_put_delayed_ref(ref);
2073 			return ret;
2074 		}
2075 
2076 		btrfs_put_delayed_ref(ref);
2077 		cond_resched();
2078 
2079 		spin_lock(&locked_ref->lock);
2080 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 /*
2087  * Returns 0 on success or if called with an already aborted transaction.
2088  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2089  */
2090 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2091 					     u64 min_bytes)
2092 {
2093 	struct btrfs_fs_info *fs_info = trans->fs_info;
2094 	struct btrfs_delayed_ref_root *delayed_refs;
2095 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2096 	int ret;
2097 	unsigned long count = 0;
2098 	unsigned long max_count = 0;
2099 	u64 bytes_processed = 0;
2100 
2101 	delayed_refs = &trans->transaction->delayed_refs;
2102 	if (min_bytes == 0) {
2103 		max_count = delayed_refs->num_heads_ready;
2104 		min_bytes = U64_MAX;
2105 	}
2106 
2107 	do {
2108 		if (!locked_ref) {
2109 			locked_ref = btrfs_obtain_ref_head(trans);
2110 			if (IS_ERR_OR_NULL(locked_ref)) {
2111 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2112 					continue;
2113 				} else {
2114 					break;
2115 				}
2116 			}
2117 			count++;
2118 		}
2119 		/*
2120 		 * We need to try and merge add/drops of the same ref since we
2121 		 * can run into issues with relocate dropping the implicit ref
2122 		 * and then it being added back again before the drop can
2123 		 * finish.  If we merged anything we need to re-loop so we can
2124 		 * get a good ref.
2125 		 * Or we can get node references of the same type that weren't
2126 		 * merged when created due to bumps in the tree mod seq, and
2127 		 * we need to merge them to prevent adding an inline extent
2128 		 * backref before dropping it (triggering a BUG_ON at
2129 		 * insert_inline_extent_backref()).
2130 		 */
2131 		spin_lock(&locked_ref->lock);
2132 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2133 
2134 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2135 		if (ret < 0 && ret != -EAGAIN) {
2136 			/*
2137 			 * Error, btrfs_run_delayed_refs_for_head already
2138 			 * unlocked everything so just bail out
2139 			 */
2140 			return ret;
2141 		} else if (!ret) {
2142 			/*
2143 			 * Success, perform the usual cleanup of a processed
2144 			 * head
2145 			 */
2146 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2147 			if (ret > 0 ) {
2148 				/* We dropped our lock, we need to loop. */
2149 				ret = 0;
2150 				continue;
2151 			} else if (ret) {
2152 				return ret;
2153 			}
2154 		}
2155 
2156 		/*
2157 		 * Either success case or btrfs_run_delayed_refs_for_head
2158 		 * returned -EAGAIN, meaning we need to select another head
2159 		 */
2160 
2161 		locked_ref = NULL;
2162 		cond_resched();
2163 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2164 		 (max_count > 0 && count < max_count) ||
2165 		 locked_ref);
2166 
2167 	return 0;
2168 }
2169 
2170 #ifdef SCRAMBLE_DELAYED_REFS
2171 /*
2172  * Normally delayed refs get processed in ascending bytenr order. This
2173  * correlates in most cases to the order added. To expose dependencies on this
2174  * order, we start to process the tree in the middle instead of the beginning
2175  */
2176 static u64 find_middle(struct rb_root *root)
2177 {
2178 	struct rb_node *n = root->rb_node;
2179 	struct btrfs_delayed_ref_node *entry;
2180 	int alt = 1;
2181 	u64 middle;
2182 	u64 first = 0, last = 0;
2183 
2184 	n = rb_first(root);
2185 	if (n) {
2186 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2187 		first = entry->bytenr;
2188 	}
2189 	n = rb_last(root);
2190 	if (n) {
2191 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2192 		last = entry->bytenr;
2193 	}
2194 	n = root->rb_node;
2195 
2196 	while (n) {
2197 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2198 		WARN_ON(!entry->in_tree);
2199 
2200 		middle = entry->bytenr;
2201 
2202 		if (alt)
2203 			n = n->rb_left;
2204 		else
2205 			n = n->rb_right;
2206 
2207 		alt = 1 - alt;
2208 	}
2209 	return middle;
2210 }
2211 #endif
2212 
2213 /*
2214  * Start processing the delayed reference count updates and extent insertions
2215  * we have queued up so far.
2216  *
2217  * @trans:	Transaction handle.
2218  * @min_bytes:	How many bytes of delayed references to process. After this
2219  *		many bytes we stop processing delayed references if there are
2220  *		any more. If 0 it means to run all existing delayed references,
2221  *		but not new ones added after running all existing ones.
2222  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2223  *		plus any new ones that are added.
2224  *
2225  * Returns 0 on success or if called with an aborted transaction
2226  * Returns <0 on error and aborts the transaction
2227  */
2228 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2229 {
2230 	struct btrfs_fs_info *fs_info = trans->fs_info;
2231 	struct btrfs_delayed_ref_root *delayed_refs;
2232 	int ret;
2233 
2234 	/* We'll clean this up in btrfs_cleanup_transaction */
2235 	if (TRANS_ABORTED(trans))
2236 		return 0;
2237 
2238 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2239 		return 0;
2240 
2241 	delayed_refs = &trans->transaction->delayed_refs;
2242 again:
2243 #ifdef SCRAMBLE_DELAYED_REFS
2244 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2245 #endif
2246 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2247 	if (ret < 0) {
2248 		btrfs_abort_transaction(trans, ret);
2249 		return ret;
2250 	}
2251 
2252 	if (min_bytes == U64_MAX) {
2253 		btrfs_create_pending_block_groups(trans);
2254 
2255 		spin_lock(&delayed_refs->lock);
2256 		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2257 			spin_unlock(&delayed_refs->lock);
2258 			return 0;
2259 		}
2260 		spin_unlock(&delayed_refs->lock);
2261 
2262 		cond_resched();
2263 		goto again;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2270 				struct extent_buffer *eb, u64 flags)
2271 {
2272 	struct btrfs_delayed_extent_op *extent_op;
2273 	int level = btrfs_header_level(eb);
2274 	int ret;
2275 
2276 	extent_op = btrfs_alloc_delayed_extent_op();
2277 	if (!extent_op)
2278 		return -ENOMEM;
2279 
2280 	extent_op->flags_to_set = flags;
2281 	extent_op->update_flags = true;
2282 	extent_op->update_key = false;
2283 	extent_op->level = level;
2284 
2285 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2286 	if (ret)
2287 		btrfs_free_delayed_extent_op(extent_op);
2288 	return ret;
2289 }
2290 
2291 static noinline int check_delayed_ref(struct btrfs_root *root,
2292 				      struct btrfs_path *path,
2293 				      u64 objectid, u64 offset, u64 bytenr)
2294 {
2295 	struct btrfs_delayed_ref_head *head;
2296 	struct btrfs_delayed_ref_node *ref;
2297 	struct btrfs_delayed_data_ref *data_ref;
2298 	struct btrfs_delayed_ref_root *delayed_refs;
2299 	struct btrfs_transaction *cur_trans;
2300 	struct rb_node *node;
2301 	int ret = 0;
2302 
2303 	spin_lock(&root->fs_info->trans_lock);
2304 	cur_trans = root->fs_info->running_transaction;
2305 	if (cur_trans)
2306 		refcount_inc(&cur_trans->use_count);
2307 	spin_unlock(&root->fs_info->trans_lock);
2308 	if (!cur_trans)
2309 		return 0;
2310 
2311 	delayed_refs = &cur_trans->delayed_refs;
2312 	spin_lock(&delayed_refs->lock);
2313 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2314 	if (!head) {
2315 		spin_unlock(&delayed_refs->lock);
2316 		btrfs_put_transaction(cur_trans);
2317 		return 0;
2318 	}
2319 
2320 	if (!mutex_trylock(&head->mutex)) {
2321 		if (path->nowait) {
2322 			spin_unlock(&delayed_refs->lock);
2323 			btrfs_put_transaction(cur_trans);
2324 			return -EAGAIN;
2325 		}
2326 
2327 		refcount_inc(&head->refs);
2328 		spin_unlock(&delayed_refs->lock);
2329 
2330 		btrfs_release_path(path);
2331 
2332 		/*
2333 		 * Mutex was contended, block until it's released and let
2334 		 * caller try again
2335 		 */
2336 		mutex_lock(&head->mutex);
2337 		mutex_unlock(&head->mutex);
2338 		btrfs_put_delayed_ref_head(head);
2339 		btrfs_put_transaction(cur_trans);
2340 		return -EAGAIN;
2341 	}
2342 	spin_unlock(&delayed_refs->lock);
2343 
2344 	spin_lock(&head->lock);
2345 	/*
2346 	 * XXX: We should replace this with a proper search function in the
2347 	 * future.
2348 	 */
2349 	for (node = rb_first_cached(&head->ref_tree); node;
2350 	     node = rb_next(node)) {
2351 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2352 		/* If it's a shared ref we know a cross reference exists */
2353 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2354 			ret = 1;
2355 			break;
2356 		}
2357 
2358 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2359 
2360 		/*
2361 		 * If our ref doesn't match the one we're currently looking at
2362 		 * then we have a cross reference.
2363 		 */
2364 		if (data_ref->root != root->root_key.objectid ||
2365 		    data_ref->objectid != objectid ||
2366 		    data_ref->offset != offset) {
2367 			ret = 1;
2368 			break;
2369 		}
2370 	}
2371 	spin_unlock(&head->lock);
2372 	mutex_unlock(&head->mutex);
2373 	btrfs_put_transaction(cur_trans);
2374 	return ret;
2375 }
2376 
2377 static noinline int check_committed_ref(struct btrfs_root *root,
2378 					struct btrfs_path *path,
2379 					u64 objectid, u64 offset, u64 bytenr,
2380 					bool strict)
2381 {
2382 	struct btrfs_fs_info *fs_info = root->fs_info;
2383 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2384 	struct extent_buffer *leaf;
2385 	struct btrfs_extent_data_ref *ref;
2386 	struct btrfs_extent_inline_ref *iref;
2387 	struct btrfs_extent_item *ei;
2388 	struct btrfs_key key;
2389 	u32 item_size;
2390 	u32 expected_size;
2391 	int type;
2392 	int ret;
2393 
2394 	key.objectid = bytenr;
2395 	key.offset = (u64)-1;
2396 	key.type = BTRFS_EXTENT_ITEM_KEY;
2397 
2398 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2399 	if (ret < 0)
2400 		goto out;
2401 	BUG_ON(ret == 0); /* Corruption */
2402 
2403 	ret = -ENOENT;
2404 	if (path->slots[0] == 0)
2405 		goto out;
2406 
2407 	path->slots[0]--;
2408 	leaf = path->nodes[0];
2409 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2410 
2411 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2412 		goto out;
2413 
2414 	ret = 1;
2415 	item_size = btrfs_item_size(leaf, path->slots[0]);
2416 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2417 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2418 
2419 	/* No inline refs; we need to bail before checking for owner ref. */
2420 	if (item_size == sizeof(*ei))
2421 		goto out;
2422 
2423 	/* Check for an owner ref; skip over it to the real inline refs. */
2424 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2425 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2426 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2427 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2428 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2429 	}
2430 
2431 	/* If extent item has more than 1 inline ref then it's shared */
2432 	if (item_size != expected_size)
2433 		goto out;
2434 
2435 	/*
2436 	 * If extent created before last snapshot => it's shared unless the
2437 	 * snapshot has been deleted. Use the heuristic if strict is false.
2438 	 */
2439 	if (!strict &&
2440 	    (btrfs_extent_generation(leaf, ei) <=
2441 	     btrfs_root_last_snapshot(&root->root_item)))
2442 		goto out;
2443 
2444 	/* If this extent has SHARED_DATA_REF then it's shared */
2445 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2446 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2447 		goto out;
2448 
2449 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2450 	if (btrfs_extent_refs(leaf, ei) !=
2451 	    btrfs_extent_data_ref_count(leaf, ref) ||
2452 	    btrfs_extent_data_ref_root(leaf, ref) !=
2453 	    root->root_key.objectid ||
2454 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2455 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2456 		goto out;
2457 
2458 	ret = 0;
2459 out:
2460 	return ret;
2461 }
2462 
2463 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2464 			  u64 bytenr, bool strict, struct btrfs_path *path)
2465 {
2466 	int ret;
2467 
2468 	do {
2469 		ret = check_committed_ref(root, path, objectid,
2470 					  offset, bytenr, strict);
2471 		if (ret && ret != -ENOENT)
2472 			goto out;
2473 
2474 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2475 	} while (ret == -EAGAIN);
2476 
2477 out:
2478 	btrfs_release_path(path);
2479 	if (btrfs_is_data_reloc_root(root))
2480 		WARN_ON(ret > 0);
2481 	return ret;
2482 }
2483 
2484 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2485 			   struct btrfs_root *root,
2486 			   struct extent_buffer *buf,
2487 			   int full_backref, int inc)
2488 {
2489 	struct btrfs_fs_info *fs_info = root->fs_info;
2490 	u64 bytenr;
2491 	u64 num_bytes;
2492 	u64 parent;
2493 	u64 ref_root;
2494 	u32 nritems;
2495 	struct btrfs_key key;
2496 	struct btrfs_file_extent_item *fi;
2497 	struct btrfs_ref generic_ref = { 0 };
2498 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2499 	int i;
2500 	int action;
2501 	int level;
2502 	int ret = 0;
2503 
2504 	if (btrfs_is_testing(fs_info))
2505 		return 0;
2506 
2507 	ref_root = btrfs_header_owner(buf);
2508 	nritems = btrfs_header_nritems(buf);
2509 	level = btrfs_header_level(buf);
2510 
2511 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2512 		return 0;
2513 
2514 	if (full_backref)
2515 		parent = buf->start;
2516 	else
2517 		parent = 0;
2518 	if (inc)
2519 		action = BTRFS_ADD_DELAYED_REF;
2520 	else
2521 		action = BTRFS_DROP_DELAYED_REF;
2522 
2523 	for (i = 0; i < nritems; i++) {
2524 		if (level == 0) {
2525 			btrfs_item_key_to_cpu(buf, &key, i);
2526 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2527 				continue;
2528 			fi = btrfs_item_ptr(buf, i,
2529 					    struct btrfs_file_extent_item);
2530 			if (btrfs_file_extent_type(buf, fi) ==
2531 			    BTRFS_FILE_EXTENT_INLINE)
2532 				continue;
2533 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2534 			if (bytenr == 0)
2535 				continue;
2536 
2537 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2538 			key.offset -= btrfs_file_extent_offset(buf, fi);
2539 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2540 					       num_bytes, parent, ref_root);
2541 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2542 					    key.offset, root->root_key.objectid,
2543 					    for_reloc);
2544 			if (inc)
2545 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2546 			else
2547 				ret = btrfs_free_extent(trans, &generic_ref);
2548 			if (ret)
2549 				goto fail;
2550 		} else {
2551 			bytenr = btrfs_node_blockptr(buf, i);
2552 			num_bytes = fs_info->nodesize;
2553 			/* We don't know the owning_root, use 0. */
2554 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2555 					       num_bytes, parent, 0);
2556 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2557 					    root->root_key.objectid, for_reloc);
2558 			if (inc)
2559 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2560 			else
2561 				ret = btrfs_free_extent(trans, &generic_ref);
2562 			if (ret)
2563 				goto fail;
2564 		}
2565 	}
2566 	return 0;
2567 fail:
2568 	return ret;
2569 }
2570 
2571 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2572 		  struct extent_buffer *buf, int full_backref)
2573 {
2574 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2575 }
2576 
2577 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2578 		  struct extent_buffer *buf, int full_backref)
2579 {
2580 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2581 }
2582 
2583 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2584 {
2585 	struct btrfs_fs_info *fs_info = root->fs_info;
2586 	u64 flags;
2587 	u64 ret;
2588 
2589 	if (data)
2590 		flags = BTRFS_BLOCK_GROUP_DATA;
2591 	else if (root == fs_info->chunk_root)
2592 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2593 	else
2594 		flags = BTRFS_BLOCK_GROUP_METADATA;
2595 
2596 	ret = btrfs_get_alloc_profile(fs_info, flags);
2597 	return ret;
2598 }
2599 
2600 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2601 {
2602 	struct rb_node *leftmost;
2603 	u64 bytenr = 0;
2604 
2605 	read_lock(&fs_info->block_group_cache_lock);
2606 	/* Get the block group with the lowest logical start address. */
2607 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2608 	if (leftmost) {
2609 		struct btrfs_block_group *bg;
2610 
2611 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2612 		bytenr = bg->start;
2613 	}
2614 	read_unlock(&fs_info->block_group_cache_lock);
2615 
2616 	return bytenr;
2617 }
2618 
2619 static int pin_down_extent(struct btrfs_trans_handle *trans,
2620 			   struct btrfs_block_group *cache,
2621 			   u64 bytenr, u64 num_bytes, int reserved)
2622 {
2623 	struct btrfs_fs_info *fs_info = cache->fs_info;
2624 
2625 	spin_lock(&cache->space_info->lock);
2626 	spin_lock(&cache->lock);
2627 	cache->pinned += num_bytes;
2628 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2629 					     num_bytes);
2630 	if (reserved) {
2631 		cache->reserved -= num_bytes;
2632 		cache->space_info->bytes_reserved -= num_bytes;
2633 	}
2634 	spin_unlock(&cache->lock);
2635 	spin_unlock(&cache->space_info->lock);
2636 
2637 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2638 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2639 	return 0;
2640 }
2641 
2642 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2643 		     u64 bytenr, u64 num_bytes, int reserved)
2644 {
2645 	struct btrfs_block_group *cache;
2646 
2647 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2648 	BUG_ON(!cache); /* Logic error */
2649 
2650 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2651 
2652 	btrfs_put_block_group(cache);
2653 	return 0;
2654 }
2655 
2656 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2657 				    const struct extent_buffer *eb)
2658 {
2659 	struct btrfs_block_group *cache;
2660 	int ret;
2661 
2662 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2663 	if (!cache)
2664 		return -EINVAL;
2665 
2666 	/*
2667 	 * Fully cache the free space first so that our pin removes the free space
2668 	 * from the cache.
2669 	 */
2670 	ret = btrfs_cache_block_group(cache, true);
2671 	if (ret)
2672 		goto out;
2673 
2674 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2675 
2676 	/* remove us from the free space cache (if we're there at all) */
2677 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2678 out:
2679 	btrfs_put_block_group(cache);
2680 	return ret;
2681 }
2682 
2683 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2684 				   u64 start, u64 num_bytes)
2685 {
2686 	int ret;
2687 	struct btrfs_block_group *block_group;
2688 
2689 	block_group = btrfs_lookup_block_group(fs_info, start);
2690 	if (!block_group)
2691 		return -EINVAL;
2692 
2693 	ret = btrfs_cache_block_group(block_group, true);
2694 	if (ret)
2695 		goto out;
2696 
2697 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2698 out:
2699 	btrfs_put_block_group(block_group);
2700 	return ret;
2701 }
2702 
2703 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2704 {
2705 	struct btrfs_fs_info *fs_info = eb->fs_info;
2706 	struct btrfs_file_extent_item *item;
2707 	struct btrfs_key key;
2708 	int found_type;
2709 	int i;
2710 	int ret = 0;
2711 
2712 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2713 		return 0;
2714 
2715 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2716 		btrfs_item_key_to_cpu(eb, &key, i);
2717 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2718 			continue;
2719 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2720 		found_type = btrfs_file_extent_type(eb, item);
2721 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2722 			continue;
2723 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2724 			continue;
2725 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2726 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2727 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2728 		if (ret)
2729 			break;
2730 	}
2731 
2732 	return ret;
2733 }
2734 
2735 static void
2736 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2737 {
2738 	atomic_inc(&bg->reservations);
2739 }
2740 
2741 /*
2742  * Returns the free cluster for the given space info and sets empty_cluster to
2743  * what it should be based on the mount options.
2744  */
2745 static struct btrfs_free_cluster *
2746 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2747 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2748 {
2749 	struct btrfs_free_cluster *ret = NULL;
2750 
2751 	*empty_cluster = 0;
2752 	if (btrfs_mixed_space_info(space_info))
2753 		return ret;
2754 
2755 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2756 		ret = &fs_info->meta_alloc_cluster;
2757 		if (btrfs_test_opt(fs_info, SSD))
2758 			*empty_cluster = SZ_2M;
2759 		else
2760 			*empty_cluster = SZ_64K;
2761 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2762 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2763 		*empty_cluster = SZ_2M;
2764 		ret = &fs_info->data_alloc_cluster;
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2771 			      u64 start, u64 end,
2772 			      const bool return_free_space)
2773 {
2774 	struct btrfs_block_group *cache = NULL;
2775 	struct btrfs_space_info *space_info;
2776 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2777 	struct btrfs_free_cluster *cluster = NULL;
2778 	u64 len;
2779 	u64 total_unpinned = 0;
2780 	u64 empty_cluster = 0;
2781 	bool readonly;
2782 
2783 	while (start <= end) {
2784 		readonly = false;
2785 		if (!cache ||
2786 		    start >= cache->start + cache->length) {
2787 			if (cache)
2788 				btrfs_put_block_group(cache);
2789 			total_unpinned = 0;
2790 			cache = btrfs_lookup_block_group(fs_info, start);
2791 			BUG_ON(!cache); /* Logic error */
2792 
2793 			cluster = fetch_cluster_info(fs_info,
2794 						     cache->space_info,
2795 						     &empty_cluster);
2796 			empty_cluster <<= 1;
2797 		}
2798 
2799 		len = cache->start + cache->length - start;
2800 		len = min(len, end + 1 - start);
2801 
2802 		if (return_free_space)
2803 			btrfs_add_free_space(cache, start, len);
2804 
2805 		start += len;
2806 		total_unpinned += len;
2807 		space_info = cache->space_info;
2808 
2809 		/*
2810 		 * If this space cluster has been marked as fragmented and we've
2811 		 * unpinned enough in this block group to potentially allow a
2812 		 * cluster to be created inside of it go ahead and clear the
2813 		 * fragmented check.
2814 		 */
2815 		if (cluster && cluster->fragmented &&
2816 		    total_unpinned > empty_cluster) {
2817 			spin_lock(&cluster->lock);
2818 			cluster->fragmented = 0;
2819 			spin_unlock(&cluster->lock);
2820 		}
2821 
2822 		spin_lock(&space_info->lock);
2823 		spin_lock(&cache->lock);
2824 		cache->pinned -= len;
2825 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2826 		space_info->max_extent_size = 0;
2827 		if (cache->ro) {
2828 			space_info->bytes_readonly += len;
2829 			readonly = true;
2830 		} else if (btrfs_is_zoned(fs_info)) {
2831 			/* Need reset before reusing in a zoned block group */
2832 			space_info->bytes_zone_unusable += len;
2833 			readonly = true;
2834 		}
2835 		spin_unlock(&cache->lock);
2836 		if (!readonly && return_free_space &&
2837 		    global_rsv->space_info == space_info) {
2838 			spin_lock(&global_rsv->lock);
2839 			if (!global_rsv->full) {
2840 				u64 to_add = min(len, global_rsv->size -
2841 						      global_rsv->reserved);
2842 
2843 				global_rsv->reserved += to_add;
2844 				btrfs_space_info_update_bytes_may_use(fs_info,
2845 						space_info, to_add);
2846 				if (global_rsv->reserved >= global_rsv->size)
2847 					global_rsv->full = 1;
2848 				len -= to_add;
2849 			}
2850 			spin_unlock(&global_rsv->lock);
2851 		}
2852 		/* Add to any tickets we may have */
2853 		if (!readonly && return_free_space && len)
2854 			btrfs_try_granting_tickets(fs_info, space_info);
2855 		spin_unlock(&space_info->lock);
2856 	}
2857 
2858 	if (cache)
2859 		btrfs_put_block_group(cache);
2860 	return 0;
2861 }
2862 
2863 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2864 {
2865 	struct btrfs_fs_info *fs_info = trans->fs_info;
2866 	struct btrfs_block_group *block_group, *tmp;
2867 	struct list_head *deleted_bgs;
2868 	struct extent_io_tree *unpin;
2869 	u64 start;
2870 	u64 end;
2871 	int ret;
2872 
2873 	unpin = &trans->transaction->pinned_extents;
2874 
2875 	while (!TRANS_ABORTED(trans)) {
2876 		struct extent_state *cached_state = NULL;
2877 
2878 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2879 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2880 					   EXTENT_DIRTY, &cached_state)) {
2881 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2882 			break;
2883 		}
2884 
2885 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2886 			ret = btrfs_discard_extent(fs_info, start,
2887 						   end + 1 - start, NULL);
2888 
2889 		clear_extent_dirty(unpin, start, end, &cached_state);
2890 		unpin_extent_range(fs_info, start, end, true);
2891 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2892 		free_extent_state(cached_state);
2893 		cond_resched();
2894 	}
2895 
2896 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2897 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2898 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2899 	}
2900 
2901 	/*
2902 	 * Transaction is finished.  We don't need the lock anymore.  We
2903 	 * do need to clean up the block groups in case of a transaction
2904 	 * abort.
2905 	 */
2906 	deleted_bgs = &trans->transaction->deleted_bgs;
2907 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2908 		u64 trimmed = 0;
2909 
2910 		ret = -EROFS;
2911 		if (!TRANS_ABORTED(trans))
2912 			ret = btrfs_discard_extent(fs_info,
2913 						   block_group->start,
2914 						   block_group->length,
2915 						   &trimmed);
2916 
2917 		list_del_init(&block_group->bg_list);
2918 		btrfs_unfreeze_block_group(block_group);
2919 		btrfs_put_block_group(block_group);
2920 
2921 		if (ret) {
2922 			const char *errstr = btrfs_decode_error(ret);
2923 			btrfs_warn(fs_info,
2924 			   "discard failed while removing blockgroup: errno=%d %s",
2925 				   ret, errstr);
2926 		}
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /*
2933  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2934  *
2935  * @fs_info:	the btrfs_fs_info for this mount
2936  * @leaf:	a leaf in the extent tree containing the extent item
2937  * @slot:	the slot in the leaf where the extent item is found
2938  *
2939  * Returns the objectid of the root that originally allocated the extent item
2940  * if the inline owner ref is expected and present, otherwise 0.
2941  *
2942  * If an extent item has an owner ref item, it will be the first inline ref
2943  * item. Therefore the logic is to check whether there are any inline ref
2944  * items, then check the type of the first one.
2945  */
2946 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2947 				struct extent_buffer *leaf, int slot)
2948 {
2949 	struct btrfs_extent_item *ei;
2950 	struct btrfs_extent_inline_ref *iref;
2951 	struct btrfs_extent_owner_ref *oref;
2952 	unsigned long ptr;
2953 	unsigned long end;
2954 	int type;
2955 
2956 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2957 		return 0;
2958 
2959 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2960 	ptr = (unsigned long)(ei + 1);
2961 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2962 
2963 	/* No inline ref items of any kind, can't check type. */
2964 	if (ptr == end)
2965 		return 0;
2966 
2967 	iref = (struct btrfs_extent_inline_ref *)ptr;
2968 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2969 
2970 	/* We found an owner ref, get the root out of it. */
2971 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2972 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2973 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2974 	}
2975 
2976 	/* We have inline refs, but not an owner ref. */
2977 	return 0;
2978 }
2979 
2980 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2981 				     u64 bytenr, struct btrfs_squota_delta *delta)
2982 {
2983 	int ret;
2984 	u64 num_bytes = delta->num_bytes;
2985 
2986 	if (delta->is_data) {
2987 		struct btrfs_root *csum_root;
2988 
2989 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2990 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2991 		if (ret) {
2992 			btrfs_abort_transaction(trans, ret);
2993 			return ret;
2994 		}
2995 
2996 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2997 		if (ret) {
2998 			btrfs_abort_transaction(trans, ret);
2999 			return ret;
3000 		}
3001 	}
3002 
3003 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
3004 	if (ret) {
3005 		btrfs_abort_transaction(trans, ret);
3006 		return ret;
3007 	}
3008 
3009 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3010 	if (ret) {
3011 		btrfs_abort_transaction(trans, ret);
3012 		return ret;
3013 	}
3014 
3015 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3016 	if (ret)
3017 		btrfs_abort_transaction(trans, ret);
3018 
3019 	return ret;
3020 }
3021 
3022 #define abort_and_dump(trans, path, fmt, args...)	\
3023 ({							\
3024 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3025 	btrfs_print_leaf(path->nodes[0]);		\
3026 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3027 })
3028 
3029 /*
3030  * Drop one or more refs of @node.
3031  *
3032  * 1. Locate the extent refs.
3033  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3034  *    Locate it, then reduce the refs number or remove the ref line completely.
3035  *
3036  * 2. Update the refs count in EXTENT/METADATA_ITEM
3037  *
3038  * Inline backref case:
3039  *
3040  * in extent tree we have:
3041  *
3042  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3043  *		refs 2 gen 6 flags DATA
3044  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3045  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3046  *
3047  * This function gets called with:
3048  *
3049  *    node->bytenr = 13631488
3050  *    node->num_bytes = 1048576
3051  *    root_objectid = FS_TREE
3052  *    owner_objectid = 257
3053  *    owner_offset = 0
3054  *    refs_to_drop = 1
3055  *
3056  * Then we should get some like:
3057  *
3058  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3059  *		refs 1 gen 6 flags DATA
3060  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3061  *
3062  * Keyed backref case:
3063  *
3064  * in extent tree we have:
3065  *
3066  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3067  *		refs 754 gen 6 flags DATA
3068  *	[...]
3069  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3070  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3071  *
3072  * This function get called with:
3073  *
3074  *    node->bytenr = 13631488
3075  *    node->num_bytes = 1048576
3076  *    root_objectid = FS_TREE
3077  *    owner_objectid = 866
3078  *    owner_offset = 0
3079  *    refs_to_drop = 1
3080  *
3081  * Then we should get some like:
3082  *
3083  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3084  *		refs 753 gen 6 flags DATA
3085  *
3086  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3087  */
3088 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3089 			       struct btrfs_delayed_ref_head *href,
3090 			       struct btrfs_delayed_ref_node *node, u64 parent,
3091 			       u64 root_objectid, u64 owner_objectid,
3092 			       u64 owner_offset,
3093 			       struct btrfs_delayed_extent_op *extent_op)
3094 {
3095 	struct btrfs_fs_info *info = trans->fs_info;
3096 	struct btrfs_key key;
3097 	struct btrfs_path *path;
3098 	struct btrfs_root *extent_root;
3099 	struct extent_buffer *leaf;
3100 	struct btrfs_extent_item *ei;
3101 	struct btrfs_extent_inline_ref *iref;
3102 	int ret;
3103 	int is_data;
3104 	int extent_slot = 0;
3105 	int found_extent = 0;
3106 	int num_to_del = 1;
3107 	int refs_to_drop = node->ref_mod;
3108 	u32 item_size;
3109 	u64 refs;
3110 	u64 bytenr = node->bytenr;
3111 	u64 num_bytes = node->num_bytes;
3112 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3113 	u64 delayed_ref_root = href->owning_root;
3114 
3115 	extent_root = btrfs_extent_root(info, bytenr);
3116 	ASSERT(extent_root);
3117 
3118 	path = btrfs_alloc_path();
3119 	if (!path)
3120 		return -ENOMEM;
3121 
3122 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3123 
3124 	if (!is_data && refs_to_drop != 1) {
3125 		btrfs_crit(info,
3126 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3127 			   node->bytenr, refs_to_drop);
3128 		ret = -EINVAL;
3129 		btrfs_abort_transaction(trans, ret);
3130 		goto out;
3131 	}
3132 
3133 	if (is_data)
3134 		skinny_metadata = false;
3135 
3136 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3137 				    parent, root_objectid, owner_objectid,
3138 				    owner_offset);
3139 	if (ret == 0) {
3140 		/*
3141 		 * Either the inline backref or the SHARED_DATA_REF/
3142 		 * SHARED_BLOCK_REF is found
3143 		 *
3144 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3145 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3146 		 */
3147 		extent_slot = path->slots[0];
3148 		while (extent_slot >= 0) {
3149 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3150 					      extent_slot);
3151 			if (key.objectid != bytenr)
3152 				break;
3153 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3154 			    key.offset == num_bytes) {
3155 				found_extent = 1;
3156 				break;
3157 			}
3158 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3159 			    key.offset == owner_objectid) {
3160 				found_extent = 1;
3161 				break;
3162 			}
3163 
3164 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3165 			if (path->slots[0] - extent_slot > 5)
3166 				break;
3167 			extent_slot--;
3168 		}
3169 
3170 		if (!found_extent) {
3171 			if (iref) {
3172 				abort_and_dump(trans, path,
3173 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3174 					   path->slots[0]);
3175 				ret = -EUCLEAN;
3176 				goto out;
3177 			}
3178 			/* Must be SHARED_* item, remove the backref first */
3179 			ret = remove_extent_backref(trans, extent_root, path,
3180 						    NULL, refs_to_drop, is_data);
3181 			if (ret) {
3182 				btrfs_abort_transaction(trans, ret);
3183 				goto out;
3184 			}
3185 			btrfs_release_path(path);
3186 
3187 			/* Slow path to locate EXTENT/METADATA_ITEM */
3188 			key.objectid = bytenr;
3189 			key.type = BTRFS_EXTENT_ITEM_KEY;
3190 			key.offset = num_bytes;
3191 
3192 			if (!is_data && skinny_metadata) {
3193 				key.type = BTRFS_METADATA_ITEM_KEY;
3194 				key.offset = owner_objectid;
3195 			}
3196 
3197 			ret = btrfs_search_slot(trans, extent_root,
3198 						&key, path, -1, 1);
3199 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3200 				/*
3201 				 * Couldn't find our skinny metadata item,
3202 				 * see if we have ye olde extent item.
3203 				 */
3204 				path->slots[0]--;
3205 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3206 						      path->slots[0]);
3207 				if (key.objectid == bytenr &&
3208 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3209 				    key.offset == num_bytes)
3210 					ret = 0;
3211 			}
3212 
3213 			if (ret > 0 && skinny_metadata) {
3214 				skinny_metadata = false;
3215 				key.objectid = bytenr;
3216 				key.type = BTRFS_EXTENT_ITEM_KEY;
3217 				key.offset = num_bytes;
3218 				btrfs_release_path(path);
3219 				ret = btrfs_search_slot(trans, extent_root,
3220 							&key, path, -1, 1);
3221 			}
3222 
3223 			if (ret) {
3224 				if (ret > 0)
3225 					btrfs_print_leaf(path->nodes[0]);
3226 				btrfs_err(info,
3227 			"umm, got %d back from search, was looking for %llu, slot %d",
3228 					  ret, bytenr, path->slots[0]);
3229 			}
3230 			if (ret < 0) {
3231 				btrfs_abort_transaction(trans, ret);
3232 				goto out;
3233 			}
3234 			extent_slot = path->slots[0];
3235 		}
3236 	} else if (WARN_ON(ret == -ENOENT)) {
3237 		abort_and_dump(trans, path,
3238 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3239 			       bytenr, parent, root_objectid, owner_objectid,
3240 			       owner_offset, path->slots[0]);
3241 		goto out;
3242 	} else {
3243 		btrfs_abort_transaction(trans, ret);
3244 		goto out;
3245 	}
3246 
3247 	leaf = path->nodes[0];
3248 	item_size = btrfs_item_size(leaf, extent_slot);
3249 	if (unlikely(item_size < sizeof(*ei))) {
3250 		ret = -EUCLEAN;
3251 		btrfs_err(trans->fs_info,
3252 			  "unexpected extent item size, has %u expect >= %zu",
3253 			  item_size, sizeof(*ei));
3254 		btrfs_abort_transaction(trans, ret);
3255 		goto out;
3256 	}
3257 	ei = btrfs_item_ptr(leaf, extent_slot,
3258 			    struct btrfs_extent_item);
3259 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3260 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3261 		struct btrfs_tree_block_info *bi;
3262 
3263 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3264 			abort_and_dump(trans, path,
3265 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3266 				       key.objectid, key.type, key.offset,
3267 				       path->slots[0], owner_objectid, item_size,
3268 				       sizeof(*ei) + sizeof(*bi));
3269 			ret = -EUCLEAN;
3270 			goto out;
3271 		}
3272 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3273 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3274 	}
3275 
3276 	refs = btrfs_extent_refs(leaf, ei);
3277 	if (refs < refs_to_drop) {
3278 		abort_and_dump(trans, path,
3279 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3280 			       refs_to_drop, refs, bytenr, path->slots[0]);
3281 		ret = -EUCLEAN;
3282 		goto out;
3283 	}
3284 	refs -= refs_to_drop;
3285 
3286 	if (refs > 0) {
3287 		if (extent_op)
3288 			__run_delayed_extent_op(extent_op, leaf, ei);
3289 		/*
3290 		 * In the case of inline back ref, reference count will
3291 		 * be updated by remove_extent_backref
3292 		 */
3293 		if (iref) {
3294 			if (!found_extent) {
3295 				abort_and_dump(trans, path,
3296 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3297 					       path->slots[0]);
3298 				ret = -EUCLEAN;
3299 				goto out;
3300 			}
3301 		} else {
3302 			btrfs_set_extent_refs(leaf, ei, refs);
3303 			btrfs_mark_buffer_dirty(trans, leaf);
3304 		}
3305 		if (found_extent) {
3306 			ret = remove_extent_backref(trans, extent_root, path,
3307 						    iref, refs_to_drop, is_data);
3308 			if (ret) {
3309 				btrfs_abort_transaction(trans, ret);
3310 				goto out;
3311 			}
3312 		}
3313 	} else {
3314 		struct btrfs_squota_delta delta = {
3315 			.root = delayed_ref_root,
3316 			.num_bytes = num_bytes,
3317 			.is_data = is_data,
3318 			.is_inc = false,
3319 			.generation = btrfs_extent_generation(leaf, ei),
3320 		};
3321 
3322 		/* In this branch refs == 1 */
3323 		if (found_extent) {
3324 			if (is_data && refs_to_drop !=
3325 			    extent_data_ref_count(path, iref)) {
3326 				abort_and_dump(trans, path,
3327 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3328 					       extent_data_ref_count(path, iref),
3329 					       refs_to_drop, path->slots[0]);
3330 				ret = -EUCLEAN;
3331 				goto out;
3332 			}
3333 			if (iref) {
3334 				if (path->slots[0] != extent_slot) {
3335 					abort_and_dump(trans, path,
3336 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3337 						       key.objectid, key.type,
3338 						       key.offset, path->slots[0]);
3339 					ret = -EUCLEAN;
3340 					goto out;
3341 				}
3342 			} else {
3343 				/*
3344 				 * No inline ref, we must be at SHARED_* item,
3345 				 * And it's single ref, it must be:
3346 				 * |	extent_slot	  ||extent_slot + 1|
3347 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3348 				 */
3349 				if (path->slots[0] != extent_slot + 1) {
3350 					abort_and_dump(trans, path,
3351 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3352 						       path->slots[0]);
3353 					ret = -EUCLEAN;
3354 					goto out;
3355 				}
3356 				path->slots[0] = extent_slot;
3357 				num_to_del = 2;
3358 			}
3359 		}
3360 		/*
3361 		 * We can't infer the data owner from the delayed ref, so we need
3362 		 * to try to get it from the owning ref item.
3363 		 *
3364 		 * If it is not present, then that extent was not written under
3365 		 * simple quotas mode, so we don't need to account for its deletion.
3366 		 */
3367 		if (is_data)
3368 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3369 								 leaf, extent_slot);
3370 
3371 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3372 				      num_to_del);
3373 		if (ret) {
3374 			btrfs_abort_transaction(trans, ret);
3375 			goto out;
3376 		}
3377 		btrfs_release_path(path);
3378 
3379 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3380 	}
3381 	btrfs_release_path(path);
3382 
3383 out:
3384 	btrfs_free_path(path);
3385 	return ret;
3386 }
3387 
3388 /*
3389  * when we free an block, it is possible (and likely) that we free the last
3390  * delayed ref for that extent as well.  This searches the delayed ref tree for
3391  * a given extent, and if there are no other delayed refs to be processed, it
3392  * removes it from the tree.
3393  */
3394 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3395 				      u64 bytenr)
3396 {
3397 	struct btrfs_delayed_ref_head *head;
3398 	struct btrfs_delayed_ref_root *delayed_refs;
3399 	int ret = 0;
3400 
3401 	delayed_refs = &trans->transaction->delayed_refs;
3402 	spin_lock(&delayed_refs->lock);
3403 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3404 	if (!head)
3405 		goto out_delayed_unlock;
3406 
3407 	spin_lock(&head->lock);
3408 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3409 		goto out;
3410 
3411 	if (cleanup_extent_op(head) != NULL)
3412 		goto out;
3413 
3414 	/*
3415 	 * waiting for the lock here would deadlock.  If someone else has it
3416 	 * locked they are already in the process of dropping it anyway
3417 	 */
3418 	if (!mutex_trylock(&head->mutex))
3419 		goto out;
3420 
3421 	btrfs_delete_ref_head(delayed_refs, head);
3422 	head->processing = false;
3423 
3424 	spin_unlock(&head->lock);
3425 	spin_unlock(&delayed_refs->lock);
3426 
3427 	BUG_ON(head->extent_op);
3428 	if (head->must_insert_reserved)
3429 		ret = 1;
3430 
3431 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3432 	mutex_unlock(&head->mutex);
3433 	btrfs_put_delayed_ref_head(head);
3434 	return ret;
3435 out:
3436 	spin_unlock(&head->lock);
3437 
3438 out_delayed_unlock:
3439 	spin_unlock(&delayed_refs->lock);
3440 	return 0;
3441 }
3442 
3443 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3444 			   u64 root_id,
3445 			   struct extent_buffer *buf,
3446 			   u64 parent, int last_ref)
3447 {
3448 	struct btrfs_fs_info *fs_info = trans->fs_info;
3449 	struct btrfs_ref generic_ref = { 0 };
3450 	struct btrfs_block_group *bg;
3451 	int ret;
3452 
3453 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3454 			       buf->start, buf->len, parent, btrfs_header_owner(buf));
3455 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3456 			    root_id, 0, false);
3457 
3458 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3459 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3460 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3461 		BUG_ON(ret); /* -ENOMEM */
3462 	}
3463 
3464 	if (!last_ref)
3465 		return;
3466 
3467 	if (btrfs_header_generation(buf) != trans->transid)
3468 		goto out;
3469 
3470 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3471 		ret = check_ref_cleanup(trans, buf->start);
3472 		if (!ret)
3473 			goto out;
3474 	}
3475 
3476 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3477 
3478 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3479 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3480 		btrfs_put_block_group(bg);
3481 		goto out;
3482 	}
3483 
3484 	/*
3485 	 * If there are tree mod log users we may have recorded mod log
3486 	 * operations for this node.  If we re-allocate this node we
3487 	 * could replay operations on this node that happened when it
3488 	 * existed in a completely different root.  For example if it
3489 	 * was part of root A, then was reallocated to root B, and we
3490 	 * are doing a btrfs_old_search_slot(root b), we could replay
3491 	 * operations that happened when the block was part of root A,
3492 	 * giving us an inconsistent view of the btree.
3493 	 *
3494 	 * We are safe from races here because at this point no other
3495 	 * node or root points to this extent buffer, so if after this
3496 	 * check a new tree mod log user joins we will not have an
3497 	 * existing log of operations on this node that we have to
3498 	 * contend with.
3499 	 */
3500 
3501 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3502 		     || btrfs_is_zoned(fs_info)) {
3503 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3504 		btrfs_put_block_group(bg);
3505 		goto out;
3506 	}
3507 
3508 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3509 
3510 	btrfs_add_free_space(bg, buf->start, buf->len);
3511 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3512 	btrfs_put_block_group(bg);
3513 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3514 
3515 out:
3516 
3517 	/*
3518 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3519 	 * matter anymore.
3520 	 */
3521 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3522 }
3523 
3524 /* Can return -ENOMEM */
3525 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3526 {
3527 	struct btrfs_fs_info *fs_info = trans->fs_info;
3528 	int ret;
3529 
3530 	if (btrfs_is_testing(fs_info))
3531 		return 0;
3532 
3533 	/*
3534 	 * tree log blocks never actually go into the extent allocation
3535 	 * tree, just update pinning info and exit early.
3536 	 */
3537 	if ((ref->type == BTRFS_REF_METADATA &&
3538 	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3539 	    (ref->type == BTRFS_REF_DATA &&
3540 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3541 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3542 		ret = 0;
3543 	} else if (ref->type == BTRFS_REF_METADATA) {
3544 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3545 	} else {
3546 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3547 	}
3548 
3549 	if (!((ref->type == BTRFS_REF_METADATA &&
3550 	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3551 	      (ref->type == BTRFS_REF_DATA &&
3552 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3553 		btrfs_ref_tree_mod(fs_info, ref);
3554 
3555 	return ret;
3556 }
3557 
3558 enum btrfs_loop_type {
3559 	/*
3560 	 * Start caching block groups but do not wait for progress or for them
3561 	 * to be done.
3562 	 */
3563 	LOOP_CACHING_NOWAIT,
3564 
3565 	/*
3566 	 * Wait for the block group free_space >= the space we're waiting for if
3567 	 * the block group isn't cached.
3568 	 */
3569 	LOOP_CACHING_WAIT,
3570 
3571 	/*
3572 	 * Allow allocations to happen from block groups that do not yet have a
3573 	 * size classification.
3574 	 */
3575 	LOOP_UNSET_SIZE_CLASS,
3576 
3577 	/*
3578 	 * Allocate a chunk and then retry the allocation.
3579 	 */
3580 	LOOP_ALLOC_CHUNK,
3581 
3582 	/*
3583 	 * Ignore the size class restrictions for this allocation.
3584 	 */
3585 	LOOP_WRONG_SIZE_CLASS,
3586 
3587 	/*
3588 	 * Ignore the empty size, only try to allocate the number of bytes
3589 	 * needed for this allocation.
3590 	 */
3591 	LOOP_NO_EMPTY_SIZE,
3592 };
3593 
3594 static inline void
3595 btrfs_lock_block_group(struct btrfs_block_group *cache,
3596 		       int delalloc)
3597 {
3598 	if (delalloc)
3599 		down_read(&cache->data_rwsem);
3600 }
3601 
3602 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3603 		       int delalloc)
3604 {
3605 	btrfs_get_block_group(cache);
3606 	if (delalloc)
3607 		down_read(&cache->data_rwsem);
3608 }
3609 
3610 static struct btrfs_block_group *btrfs_lock_cluster(
3611 		   struct btrfs_block_group *block_group,
3612 		   struct btrfs_free_cluster *cluster,
3613 		   int delalloc)
3614 	__acquires(&cluster->refill_lock)
3615 {
3616 	struct btrfs_block_group *used_bg = NULL;
3617 
3618 	spin_lock(&cluster->refill_lock);
3619 	while (1) {
3620 		used_bg = cluster->block_group;
3621 		if (!used_bg)
3622 			return NULL;
3623 
3624 		if (used_bg == block_group)
3625 			return used_bg;
3626 
3627 		btrfs_get_block_group(used_bg);
3628 
3629 		if (!delalloc)
3630 			return used_bg;
3631 
3632 		if (down_read_trylock(&used_bg->data_rwsem))
3633 			return used_bg;
3634 
3635 		spin_unlock(&cluster->refill_lock);
3636 
3637 		/* We should only have one-level nested. */
3638 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3639 
3640 		spin_lock(&cluster->refill_lock);
3641 		if (used_bg == cluster->block_group)
3642 			return used_bg;
3643 
3644 		up_read(&used_bg->data_rwsem);
3645 		btrfs_put_block_group(used_bg);
3646 	}
3647 }
3648 
3649 static inline void
3650 btrfs_release_block_group(struct btrfs_block_group *cache,
3651 			 int delalloc)
3652 {
3653 	if (delalloc)
3654 		up_read(&cache->data_rwsem);
3655 	btrfs_put_block_group(cache);
3656 }
3657 
3658 /*
3659  * Helper function for find_free_extent().
3660  *
3661  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3662  * Return >0 to inform caller that we find nothing
3663  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3664  */
3665 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3666 				      struct find_free_extent_ctl *ffe_ctl,
3667 				      struct btrfs_block_group **cluster_bg_ret)
3668 {
3669 	struct btrfs_block_group *cluster_bg;
3670 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3671 	u64 aligned_cluster;
3672 	u64 offset;
3673 	int ret;
3674 
3675 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3676 	if (!cluster_bg)
3677 		goto refill_cluster;
3678 	if (cluster_bg != bg && (cluster_bg->ro ||
3679 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3680 		goto release_cluster;
3681 
3682 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3683 			ffe_ctl->num_bytes, cluster_bg->start,
3684 			&ffe_ctl->max_extent_size);
3685 	if (offset) {
3686 		/* We have a block, we're done */
3687 		spin_unlock(&last_ptr->refill_lock);
3688 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3689 		*cluster_bg_ret = cluster_bg;
3690 		ffe_ctl->found_offset = offset;
3691 		return 0;
3692 	}
3693 	WARN_ON(last_ptr->block_group != cluster_bg);
3694 
3695 release_cluster:
3696 	/*
3697 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3698 	 * lets just skip it and let the allocator find whatever block it can
3699 	 * find. If we reach this point, we will have tried the cluster
3700 	 * allocator plenty of times and not have found anything, so we are
3701 	 * likely way too fragmented for the clustering stuff to find anything.
3702 	 *
3703 	 * However, if the cluster is taken from the current block group,
3704 	 * release the cluster first, so that we stand a better chance of
3705 	 * succeeding in the unclustered allocation.
3706 	 */
3707 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3708 		spin_unlock(&last_ptr->refill_lock);
3709 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3710 		return -ENOENT;
3711 	}
3712 
3713 	/* This cluster didn't work out, free it and start over */
3714 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3715 
3716 	if (cluster_bg != bg)
3717 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3718 
3719 refill_cluster:
3720 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3721 		spin_unlock(&last_ptr->refill_lock);
3722 		return -ENOENT;
3723 	}
3724 
3725 	aligned_cluster = max_t(u64,
3726 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3727 			bg->full_stripe_len);
3728 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3729 			ffe_ctl->num_bytes, aligned_cluster);
3730 	if (ret == 0) {
3731 		/* Now pull our allocation out of this cluster */
3732 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3733 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3734 				&ffe_ctl->max_extent_size);
3735 		if (offset) {
3736 			/* We found one, proceed */
3737 			spin_unlock(&last_ptr->refill_lock);
3738 			ffe_ctl->found_offset = offset;
3739 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3740 			return 0;
3741 		}
3742 	}
3743 	/*
3744 	 * At this point we either didn't find a cluster or we weren't able to
3745 	 * allocate a block from our cluster.  Free the cluster we've been
3746 	 * trying to use, and go to the next block group.
3747 	 */
3748 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3749 	spin_unlock(&last_ptr->refill_lock);
3750 	return 1;
3751 }
3752 
3753 /*
3754  * Return >0 to inform caller that we find nothing
3755  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3756  */
3757 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3758 					struct find_free_extent_ctl *ffe_ctl)
3759 {
3760 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3761 	u64 offset;
3762 
3763 	/*
3764 	 * We are doing an unclustered allocation, set the fragmented flag so
3765 	 * we don't bother trying to setup a cluster again until we get more
3766 	 * space.
3767 	 */
3768 	if (unlikely(last_ptr)) {
3769 		spin_lock(&last_ptr->lock);
3770 		last_ptr->fragmented = 1;
3771 		spin_unlock(&last_ptr->lock);
3772 	}
3773 	if (ffe_ctl->cached) {
3774 		struct btrfs_free_space_ctl *free_space_ctl;
3775 
3776 		free_space_ctl = bg->free_space_ctl;
3777 		spin_lock(&free_space_ctl->tree_lock);
3778 		if (free_space_ctl->free_space <
3779 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3780 		    ffe_ctl->empty_size) {
3781 			ffe_ctl->total_free_space = max_t(u64,
3782 					ffe_ctl->total_free_space,
3783 					free_space_ctl->free_space);
3784 			spin_unlock(&free_space_ctl->tree_lock);
3785 			return 1;
3786 		}
3787 		spin_unlock(&free_space_ctl->tree_lock);
3788 	}
3789 
3790 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3791 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3792 			&ffe_ctl->max_extent_size);
3793 	if (!offset)
3794 		return 1;
3795 	ffe_ctl->found_offset = offset;
3796 	return 0;
3797 }
3798 
3799 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3800 				   struct find_free_extent_ctl *ffe_ctl,
3801 				   struct btrfs_block_group **bg_ret)
3802 {
3803 	int ret;
3804 
3805 	/* We want to try and use the cluster allocator, so lets look there */
3806 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3807 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3808 		if (ret >= 0)
3809 			return ret;
3810 		/* ret == -ENOENT case falls through */
3811 	}
3812 
3813 	return find_free_extent_unclustered(block_group, ffe_ctl);
3814 }
3815 
3816 /*
3817  * Tree-log block group locking
3818  * ============================
3819  *
3820  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3821  * indicates the starting address of a block group, which is reserved only
3822  * for tree-log metadata.
3823  *
3824  * Lock nesting
3825  * ============
3826  *
3827  * space_info::lock
3828  *   block_group::lock
3829  *     fs_info::treelog_bg_lock
3830  */
3831 
3832 /*
3833  * Simple allocator for sequential-only block group. It only allows sequential
3834  * allocation. No need to play with trees. This function also reserves the
3835  * bytes as in btrfs_add_reserved_bytes.
3836  */
3837 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3838 			       struct find_free_extent_ctl *ffe_ctl,
3839 			       struct btrfs_block_group **bg_ret)
3840 {
3841 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3842 	struct btrfs_space_info *space_info = block_group->space_info;
3843 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3844 	u64 start = block_group->start;
3845 	u64 num_bytes = ffe_ctl->num_bytes;
3846 	u64 avail;
3847 	u64 bytenr = block_group->start;
3848 	u64 log_bytenr;
3849 	u64 data_reloc_bytenr;
3850 	int ret = 0;
3851 	bool skip = false;
3852 
3853 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3854 
3855 	/*
3856 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3857 	 * group, and vice versa.
3858 	 */
3859 	spin_lock(&fs_info->treelog_bg_lock);
3860 	log_bytenr = fs_info->treelog_bg;
3861 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3862 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3863 		skip = true;
3864 	spin_unlock(&fs_info->treelog_bg_lock);
3865 	if (skip)
3866 		return 1;
3867 
3868 	/*
3869 	 * Do not allow non-relocation blocks in the dedicated relocation block
3870 	 * group, and vice versa.
3871 	 */
3872 	spin_lock(&fs_info->relocation_bg_lock);
3873 	data_reloc_bytenr = fs_info->data_reloc_bg;
3874 	if (data_reloc_bytenr &&
3875 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3876 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3877 		skip = true;
3878 	spin_unlock(&fs_info->relocation_bg_lock);
3879 	if (skip)
3880 		return 1;
3881 
3882 	/* Check RO and no space case before trying to activate it */
3883 	spin_lock(&block_group->lock);
3884 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3885 		ret = 1;
3886 		/*
3887 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3888 		 * Return the error after taking the locks.
3889 		 */
3890 	}
3891 	spin_unlock(&block_group->lock);
3892 
3893 	/* Metadata block group is activated at write time. */
3894 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3895 	    !btrfs_zone_activate(block_group)) {
3896 		ret = 1;
3897 		/*
3898 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3899 		 * Return the error after taking the locks.
3900 		 */
3901 	}
3902 
3903 	spin_lock(&space_info->lock);
3904 	spin_lock(&block_group->lock);
3905 	spin_lock(&fs_info->treelog_bg_lock);
3906 	spin_lock(&fs_info->relocation_bg_lock);
3907 
3908 	if (ret)
3909 		goto out;
3910 
3911 	ASSERT(!ffe_ctl->for_treelog ||
3912 	       block_group->start == fs_info->treelog_bg ||
3913 	       fs_info->treelog_bg == 0);
3914 	ASSERT(!ffe_ctl->for_data_reloc ||
3915 	       block_group->start == fs_info->data_reloc_bg ||
3916 	       fs_info->data_reloc_bg == 0);
3917 
3918 	if (block_group->ro ||
3919 	    (!ffe_ctl->for_data_reloc &&
3920 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3921 		ret = 1;
3922 		goto out;
3923 	}
3924 
3925 	/*
3926 	 * Do not allow currently using block group to be tree-log dedicated
3927 	 * block group.
3928 	 */
3929 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3930 	    (block_group->used || block_group->reserved)) {
3931 		ret = 1;
3932 		goto out;
3933 	}
3934 
3935 	/*
3936 	 * Do not allow currently used block group to be the data relocation
3937 	 * dedicated block group.
3938 	 */
3939 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3940 	    (block_group->used || block_group->reserved)) {
3941 		ret = 1;
3942 		goto out;
3943 	}
3944 
3945 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3946 	avail = block_group->zone_capacity - block_group->alloc_offset;
3947 	if (avail < num_bytes) {
3948 		if (ffe_ctl->max_extent_size < avail) {
3949 			/*
3950 			 * With sequential allocator, free space is always
3951 			 * contiguous
3952 			 */
3953 			ffe_ctl->max_extent_size = avail;
3954 			ffe_ctl->total_free_space = avail;
3955 		}
3956 		ret = 1;
3957 		goto out;
3958 	}
3959 
3960 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3961 		fs_info->treelog_bg = block_group->start;
3962 
3963 	if (ffe_ctl->for_data_reloc) {
3964 		if (!fs_info->data_reloc_bg)
3965 			fs_info->data_reloc_bg = block_group->start;
3966 		/*
3967 		 * Do not allow allocations from this block group, unless it is
3968 		 * for data relocation. Compared to increasing the ->ro, setting
3969 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3970 		 * writers to come in. See btrfs_inc_nocow_writers().
3971 		 *
3972 		 * We need to disable an allocation to avoid an allocation of
3973 		 * regular (non-relocation data) extent. With mix of relocation
3974 		 * extents and regular extents, we can dispatch WRITE commands
3975 		 * (for relocation extents) and ZONE APPEND commands (for
3976 		 * regular extents) at the same time to the same zone, which
3977 		 * easily break the write pointer.
3978 		 *
3979 		 * Also, this flag avoids this block group to be zone finished.
3980 		 */
3981 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3982 	}
3983 
3984 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3985 	block_group->alloc_offset += num_bytes;
3986 	spin_lock(&ctl->tree_lock);
3987 	ctl->free_space -= num_bytes;
3988 	spin_unlock(&ctl->tree_lock);
3989 
3990 	/*
3991 	 * We do not check if found_offset is aligned to stripesize. The
3992 	 * address is anyway rewritten when using zone append writing.
3993 	 */
3994 
3995 	ffe_ctl->search_start = ffe_ctl->found_offset;
3996 
3997 out:
3998 	if (ret && ffe_ctl->for_treelog)
3999 		fs_info->treelog_bg = 0;
4000 	if (ret && ffe_ctl->for_data_reloc)
4001 		fs_info->data_reloc_bg = 0;
4002 	spin_unlock(&fs_info->relocation_bg_lock);
4003 	spin_unlock(&fs_info->treelog_bg_lock);
4004 	spin_unlock(&block_group->lock);
4005 	spin_unlock(&space_info->lock);
4006 	return ret;
4007 }
4008 
4009 static int do_allocation(struct btrfs_block_group *block_group,
4010 			 struct find_free_extent_ctl *ffe_ctl,
4011 			 struct btrfs_block_group **bg_ret)
4012 {
4013 	switch (ffe_ctl->policy) {
4014 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4015 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4016 	case BTRFS_EXTENT_ALLOC_ZONED:
4017 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4018 	default:
4019 		BUG();
4020 	}
4021 }
4022 
4023 static void release_block_group(struct btrfs_block_group *block_group,
4024 				struct find_free_extent_ctl *ffe_ctl,
4025 				int delalloc)
4026 {
4027 	switch (ffe_ctl->policy) {
4028 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4029 		ffe_ctl->retry_uncached = false;
4030 		break;
4031 	case BTRFS_EXTENT_ALLOC_ZONED:
4032 		/* Nothing to do */
4033 		break;
4034 	default:
4035 		BUG();
4036 	}
4037 
4038 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4039 	       ffe_ctl->index);
4040 	btrfs_release_block_group(block_group, delalloc);
4041 }
4042 
4043 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4044 				   struct btrfs_key *ins)
4045 {
4046 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4047 
4048 	if (!ffe_ctl->use_cluster && last_ptr) {
4049 		spin_lock(&last_ptr->lock);
4050 		last_ptr->window_start = ins->objectid;
4051 		spin_unlock(&last_ptr->lock);
4052 	}
4053 }
4054 
4055 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4056 			 struct btrfs_key *ins)
4057 {
4058 	switch (ffe_ctl->policy) {
4059 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4060 		found_extent_clustered(ffe_ctl, ins);
4061 		break;
4062 	case BTRFS_EXTENT_ALLOC_ZONED:
4063 		/* Nothing to do */
4064 		break;
4065 	default:
4066 		BUG();
4067 	}
4068 }
4069 
4070 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4071 				    struct find_free_extent_ctl *ffe_ctl)
4072 {
4073 	/* Block group's activeness is not a requirement for METADATA block groups. */
4074 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4075 		return 0;
4076 
4077 	/* If we can activate new zone, just allocate a chunk and use it */
4078 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4079 		return 0;
4080 
4081 	/*
4082 	 * We already reached the max active zones. Try to finish one block
4083 	 * group to make a room for a new block group. This is only possible
4084 	 * for a data block group because btrfs_zone_finish() may need to wait
4085 	 * for a running transaction which can cause a deadlock for metadata
4086 	 * allocation.
4087 	 */
4088 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4089 		int ret = btrfs_zone_finish_one_bg(fs_info);
4090 
4091 		if (ret == 1)
4092 			return 0;
4093 		else if (ret < 0)
4094 			return ret;
4095 	}
4096 
4097 	/*
4098 	 * If we have enough free space left in an already active block group
4099 	 * and we can't activate any other zone now, do not allow allocating a
4100 	 * new chunk and let find_free_extent() retry with a smaller size.
4101 	 */
4102 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4103 		return -ENOSPC;
4104 
4105 	/*
4106 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4107 	 * activate a new block group, allocating it may not help. Let's tell a
4108 	 * caller to try again and hope it progress something by writing some
4109 	 * parts of the region. That is only possible for data block groups,
4110 	 * where a part of the region can be written.
4111 	 */
4112 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4113 		return -EAGAIN;
4114 
4115 	/*
4116 	 * We cannot activate a new block group and no enough space left in any
4117 	 * block groups. So, allocating a new block group may not help. But,
4118 	 * there is nothing to do anyway, so let's go with it.
4119 	 */
4120 	return 0;
4121 }
4122 
4123 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4124 			      struct find_free_extent_ctl *ffe_ctl)
4125 {
4126 	switch (ffe_ctl->policy) {
4127 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4128 		return 0;
4129 	case BTRFS_EXTENT_ALLOC_ZONED:
4130 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4131 	default:
4132 		BUG();
4133 	}
4134 }
4135 
4136 /*
4137  * Return >0 means caller needs to re-search for free extent
4138  * Return 0 means we have the needed free extent.
4139  * Return <0 means we failed to locate any free extent.
4140  */
4141 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4142 					struct btrfs_key *ins,
4143 					struct find_free_extent_ctl *ffe_ctl,
4144 					bool full_search)
4145 {
4146 	struct btrfs_root *root = fs_info->chunk_root;
4147 	int ret;
4148 
4149 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4150 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4151 		ffe_ctl->orig_have_caching_bg = true;
4152 
4153 	if (ins->objectid) {
4154 		found_extent(ffe_ctl, ins);
4155 		return 0;
4156 	}
4157 
4158 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4159 		return 1;
4160 
4161 	ffe_ctl->index++;
4162 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4163 		return 1;
4164 
4165 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4166 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4167 		ffe_ctl->index = 0;
4168 		/*
4169 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4170 		 * any uncached bgs and we've already done a full search
4171 		 * through.
4172 		 */
4173 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4174 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4175 			ffe_ctl->loop++;
4176 		ffe_ctl->loop++;
4177 
4178 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4179 			struct btrfs_trans_handle *trans;
4180 			int exist = 0;
4181 
4182 			/* Check if allocation policy allows to create a new chunk */
4183 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4184 			if (ret)
4185 				return ret;
4186 
4187 			trans = current->journal_info;
4188 			if (trans)
4189 				exist = 1;
4190 			else
4191 				trans = btrfs_join_transaction(root);
4192 
4193 			if (IS_ERR(trans)) {
4194 				ret = PTR_ERR(trans);
4195 				return ret;
4196 			}
4197 
4198 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4199 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4200 
4201 			/* Do not bail out on ENOSPC since we can do more. */
4202 			if (ret == -ENOSPC) {
4203 				ret = 0;
4204 				ffe_ctl->loop++;
4205 			}
4206 			else if (ret < 0)
4207 				btrfs_abort_transaction(trans, ret);
4208 			else
4209 				ret = 0;
4210 			if (!exist)
4211 				btrfs_end_transaction(trans);
4212 			if (ret)
4213 				return ret;
4214 		}
4215 
4216 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4217 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4218 				return -ENOSPC;
4219 
4220 			/*
4221 			 * Don't loop again if we already have no empty_size and
4222 			 * no empty_cluster.
4223 			 */
4224 			if (ffe_ctl->empty_size == 0 &&
4225 			    ffe_ctl->empty_cluster == 0)
4226 				return -ENOSPC;
4227 			ffe_ctl->empty_size = 0;
4228 			ffe_ctl->empty_cluster = 0;
4229 		}
4230 		return 1;
4231 	}
4232 	return -ENOSPC;
4233 }
4234 
4235 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4236 					      struct btrfs_block_group *bg)
4237 {
4238 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4239 		return true;
4240 	if (!btrfs_block_group_should_use_size_class(bg))
4241 		return true;
4242 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4243 		return true;
4244 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4245 	    bg->size_class == BTRFS_BG_SZ_NONE)
4246 		return true;
4247 	return ffe_ctl->size_class == bg->size_class;
4248 }
4249 
4250 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4251 					struct find_free_extent_ctl *ffe_ctl,
4252 					struct btrfs_space_info *space_info,
4253 					struct btrfs_key *ins)
4254 {
4255 	/*
4256 	 * If our free space is heavily fragmented we may not be able to make
4257 	 * big contiguous allocations, so instead of doing the expensive search
4258 	 * for free space, simply return ENOSPC with our max_extent_size so we
4259 	 * can go ahead and search for a more manageable chunk.
4260 	 *
4261 	 * If our max_extent_size is large enough for our allocation simply
4262 	 * disable clustering since we will likely not be able to find enough
4263 	 * space to create a cluster and induce latency trying.
4264 	 */
4265 	if (space_info->max_extent_size) {
4266 		spin_lock(&space_info->lock);
4267 		if (space_info->max_extent_size &&
4268 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4269 			ins->offset = space_info->max_extent_size;
4270 			spin_unlock(&space_info->lock);
4271 			return -ENOSPC;
4272 		} else if (space_info->max_extent_size) {
4273 			ffe_ctl->use_cluster = false;
4274 		}
4275 		spin_unlock(&space_info->lock);
4276 	}
4277 
4278 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4279 					       &ffe_ctl->empty_cluster);
4280 	if (ffe_ctl->last_ptr) {
4281 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4282 
4283 		spin_lock(&last_ptr->lock);
4284 		if (last_ptr->block_group)
4285 			ffe_ctl->hint_byte = last_ptr->window_start;
4286 		if (last_ptr->fragmented) {
4287 			/*
4288 			 * We still set window_start so we can keep track of the
4289 			 * last place we found an allocation to try and save
4290 			 * some time.
4291 			 */
4292 			ffe_ctl->hint_byte = last_ptr->window_start;
4293 			ffe_ctl->use_cluster = false;
4294 		}
4295 		spin_unlock(&last_ptr->lock);
4296 	}
4297 
4298 	return 0;
4299 }
4300 
4301 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4302 			      struct find_free_extent_ctl *ffe_ctl,
4303 			      struct btrfs_space_info *space_info,
4304 			      struct btrfs_key *ins)
4305 {
4306 	switch (ffe_ctl->policy) {
4307 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4308 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4309 						    space_info, ins);
4310 	case BTRFS_EXTENT_ALLOC_ZONED:
4311 		if (ffe_ctl->for_treelog) {
4312 			spin_lock(&fs_info->treelog_bg_lock);
4313 			if (fs_info->treelog_bg)
4314 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4315 			spin_unlock(&fs_info->treelog_bg_lock);
4316 		}
4317 		if (ffe_ctl->for_data_reloc) {
4318 			spin_lock(&fs_info->relocation_bg_lock);
4319 			if (fs_info->data_reloc_bg)
4320 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4321 			spin_unlock(&fs_info->relocation_bg_lock);
4322 		}
4323 		return 0;
4324 	default:
4325 		BUG();
4326 	}
4327 }
4328 
4329 /*
4330  * walks the btree of allocated extents and find a hole of a given size.
4331  * The key ins is changed to record the hole:
4332  * ins->objectid == start position
4333  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4334  * ins->offset == the size of the hole.
4335  * Any available blocks before search_start are skipped.
4336  *
4337  * If there is no suitable free space, we will record the max size of
4338  * the free space extent currently.
4339  *
4340  * The overall logic and call chain:
4341  *
4342  * find_free_extent()
4343  * |- Iterate through all block groups
4344  * |  |- Get a valid block group
4345  * |  |- Try to do clustered allocation in that block group
4346  * |  |- Try to do unclustered allocation in that block group
4347  * |  |- Check if the result is valid
4348  * |  |  |- If valid, then exit
4349  * |  |- Jump to next block group
4350  * |
4351  * |- Push harder to find free extents
4352  *    |- If not found, re-iterate all block groups
4353  */
4354 static noinline int find_free_extent(struct btrfs_root *root,
4355 				     struct btrfs_key *ins,
4356 				     struct find_free_extent_ctl *ffe_ctl)
4357 {
4358 	struct btrfs_fs_info *fs_info = root->fs_info;
4359 	int ret = 0;
4360 	int cache_block_group_error = 0;
4361 	struct btrfs_block_group *block_group = NULL;
4362 	struct btrfs_space_info *space_info;
4363 	bool full_search = false;
4364 
4365 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4366 
4367 	ffe_ctl->search_start = 0;
4368 	/* For clustered allocation */
4369 	ffe_ctl->empty_cluster = 0;
4370 	ffe_ctl->last_ptr = NULL;
4371 	ffe_ctl->use_cluster = true;
4372 	ffe_ctl->have_caching_bg = false;
4373 	ffe_ctl->orig_have_caching_bg = false;
4374 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4375 	ffe_ctl->loop = 0;
4376 	ffe_ctl->retry_uncached = false;
4377 	ffe_ctl->cached = 0;
4378 	ffe_ctl->max_extent_size = 0;
4379 	ffe_ctl->total_free_space = 0;
4380 	ffe_ctl->found_offset = 0;
4381 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4382 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4383 
4384 	if (btrfs_is_zoned(fs_info))
4385 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4386 
4387 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4388 	ins->objectid = 0;
4389 	ins->offset = 0;
4390 
4391 	trace_find_free_extent(root, ffe_ctl);
4392 
4393 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4394 	if (!space_info) {
4395 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4396 		return -ENOSPC;
4397 	}
4398 
4399 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4400 	if (ret < 0)
4401 		return ret;
4402 
4403 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4404 				    first_logical_byte(fs_info));
4405 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4406 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4407 		block_group = btrfs_lookup_block_group(fs_info,
4408 						       ffe_ctl->search_start);
4409 		/*
4410 		 * we don't want to use the block group if it doesn't match our
4411 		 * allocation bits, or if its not cached.
4412 		 *
4413 		 * However if we are re-searching with an ideal block group
4414 		 * picked out then we don't care that the block group is cached.
4415 		 */
4416 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4417 		    block_group->cached != BTRFS_CACHE_NO) {
4418 			down_read(&space_info->groups_sem);
4419 			if (list_empty(&block_group->list) ||
4420 			    block_group->ro) {
4421 				/*
4422 				 * someone is removing this block group,
4423 				 * we can't jump into the have_block_group
4424 				 * target because our list pointers are not
4425 				 * valid
4426 				 */
4427 				btrfs_put_block_group(block_group);
4428 				up_read(&space_info->groups_sem);
4429 			} else {
4430 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4431 							block_group->flags);
4432 				btrfs_lock_block_group(block_group,
4433 						       ffe_ctl->delalloc);
4434 				ffe_ctl->hinted = true;
4435 				goto have_block_group;
4436 			}
4437 		} else if (block_group) {
4438 			btrfs_put_block_group(block_group);
4439 		}
4440 	}
4441 search:
4442 	trace_find_free_extent_search_loop(root, ffe_ctl);
4443 	ffe_ctl->have_caching_bg = false;
4444 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4445 	    ffe_ctl->index == 0)
4446 		full_search = true;
4447 	down_read(&space_info->groups_sem);
4448 	list_for_each_entry(block_group,
4449 			    &space_info->block_groups[ffe_ctl->index], list) {
4450 		struct btrfs_block_group *bg_ret;
4451 
4452 		ffe_ctl->hinted = false;
4453 		/* If the block group is read-only, we can skip it entirely. */
4454 		if (unlikely(block_group->ro)) {
4455 			if (ffe_ctl->for_treelog)
4456 				btrfs_clear_treelog_bg(block_group);
4457 			if (ffe_ctl->for_data_reloc)
4458 				btrfs_clear_data_reloc_bg(block_group);
4459 			continue;
4460 		}
4461 
4462 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4463 		ffe_ctl->search_start = block_group->start;
4464 
4465 		/*
4466 		 * this can happen if we end up cycling through all the
4467 		 * raid types, but we want to make sure we only allocate
4468 		 * for the proper type.
4469 		 */
4470 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4471 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4472 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4473 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4474 				BTRFS_BLOCK_GROUP_RAID10;
4475 
4476 			/*
4477 			 * if they asked for extra copies and this block group
4478 			 * doesn't provide them, bail.  This does allow us to
4479 			 * fill raid0 from raid1.
4480 			 */
4481 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4482 				goto loop;
4483 
4484 			/*
4485 			 * This block group has different flags than we want.
4486 			 * It's possible that we have MIXED_GROUP flag but no
4487 			 * block group is mixed.  Just skip such block group.
4488 			 */
4489 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4490 			continue;
4491 		}
4492 
4493 have_block_group:
4494 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4495 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4496 		if (unlikely(!ffe_ctl->cached)) {
4497 			ffe_ctl->have_caching_bg = true;
4498 			ret = btrfs_cache_block_group(block_group, false);
4499 
4500 			/*
4501 			 * If we get ENOMEM here or something else we want to
4502 			 * try other block groups, because it may not be fatal.
4503 			 * However if we can't find anything else we need to
4504 			 * save our return here so that we return the actual
4505 			 * error that caused problems, not ENOSPC.
4506 			 */
4507 			if (ret < 0) {
4508 				if (!cache_block_group_error)
4509 					cache_block_group_error = ret;
4510 				ret = 0;
4511 				goto loop;
4512 			}
4513 			ret = 0;
4514 		}
4515 
4516 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4517 			if (!cache_block_group_error)
4518 				cache_block_group_error = -EIO;
4519 			goto loop;
4520 		}
4521 
4522 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4523 			goto loop;
4524 
4525 		bg_ret = NULL;
4526 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4527 		if (ret > 0)
4528 			goto loop;
4529 
4530 		if (bg_ret && bg_ret != block_group) {
4531 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4532 			block_group = bg_ret;
4533 		}
4534 
4535 		/* Checks */
4536 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4537 						 fs_info->stripesize);
4538 
4539 		/* move on to the next group */
4540 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4541 		    block_group->start + block_group->length) {
4542 			btrfs_add_free_space_unused(block_group,
4543 					    ffe_ctl->found_offset,
4544 					    ffe_ctl->num_bytes);
4545 			goto loop;
4546 		}
4547 
4548 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4549 			btrfs_add_free_space_unused(block_group,
4550 					ffe_ctl->found_offset,
4551 					ffe_ctl->search_start - ffe_ctl->found_offset);
4552 
4553 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4554 					       ffe_ctl->num_bytes,
4555 					       ffe_ctl->delalloc,
4556 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4557 		if (ret == -EAGAIN) {
4558 			btrfs_add_free_space_unused(block_group,
4559 					ffe_ctl->found_offset,
4560 					ffe_ctl->num_bytes);
4561 			goto loop;
4562 		}
4563 		btrfs_inc_block_group_reservations(block_group);
4564 
4565 		/* we are all good, lets return */
4566 		ins->objectid = ffe_ctl->search_start;
4567 		ins->offset = ffe_ctl->num_bytes;
4568 
4569 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4570 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4571 		break;
4572 loop:
4573 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4574 		    !ffe_ctl->retry_uncached) {
4575 			ffe_ctl->retry_uncached = true;
4576 			btrfs_wait_block_group_cache_progress(block_group,
4577 						ffe_ctl->num_bytes +
4578 						ffe_ctl->empty_cluster +
4579 						ffe_ctl->empty_size);
4580 			goto have_block_group;
4581 		}
4582 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4583 		cond_resched();
4584 	}
4585 	up_read(&space_info->groups_sem);
4586 
4587 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4588 	if (ret > 0)
4589 		goto search;
4590 
4591 	if (ret == -ENOSPC && !cache_block_group_error) {
4592 		/*
4593 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4594 		 * any contiguous hole.
4595 		 */
4596 		if (!ffe_ctl->max_extent_size)
4597 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4598 		spin_lock(&space_info->lock);
4599 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4600 		spin_unlock(&space_info->lock);
4601 		ins->offset = ffe_ctl->max_extent_size;
4602 	} else if (ret == -ENOSPC) {
4603 		ret = cache_block_group_error;
4604 	}
4605 	return ret;
4606 }
4607 
4608 /*
4609  * Entry point to the extent allocator. Tries to find a hole that is at least
4610  * as big as @num_bytes.
4611  *
4612  * @root           -	The root that will contain this extent
4613  *
4614  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4615  *			is used for accounting purposes. This value differs
4616  *			from @num_bytes only in the case of compressed extents.
4617  *
4618  * @num_bytes      -	Number of bytes to allocate on-disk.
4619  *
4620  * @min_alloc_size -	Indicates the minimum amount of space that the
4621  *			allocator should try to satisfy. In some cases
4622  *			@num_bytes may be larger than what is required and if
4623  *			the filesystem is fragmented then allocation fails.
4624  *			However, the presence of @min_alloc_size gives a
4625  *			chance to try and satisfy the smaller allocation.
4626  *
4627  * @empty_size     -	A hint that you plan on doing more COW. This is the
4628  *			size in bytes the allocator should try to find free
4629  *			next to the block it returns.  This is just a hint and
4630  *			may be ignored by the allocator.
4631  *
4632  * @hint_byte      -	Hint to the allocator to start searching above the byte
4633  *			address passed. It might be ignored.
4634  *
4635  * @ins            -	This key is modified to record the found hole. It will
4636  *			have the following values:
4637  *			ins->objectid == start position
4638  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4639  *			ins->offset == the size of the hole.
4640  *
4641  * @is_data        -	Boolean flag indicating whether an extent is
4642  *			allocated for data (true) or metadata (false)
4643  *
4644  * @delalloc       -	Boolean flag indicating whether this allocation is for
4645  *			delalloc or not. If 'true' data_rwsem of block groups
4646  *			is going to be acquired.
4647  *
4648  *
4649  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4650  * case -ENOSPC is returned then @ins->offset will contain the size of the
4651  * largest available hole the allocator managed to find.
4652  */
4653 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4654 			 u64 num_bytes, u64 min_alloc_size,
4655 			 u64 empty_size, u64 hint_byte,
4656 			 struct btrfs_key *ins, int is_data, int delalloc)
4657 {
4658 	struct btrfs_fs_info *fs_info = root->fs_info;
4659 	struct find_free_extent_ctl ffe_ctl = {};
4660 	bool final_tried = num_bytes == min_alloc_size;
4661 	u64 flags;
4662 	int ret;
4663 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4664 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4665 
4666 	flags = get_alloc_profile_by_root(root, is_data);
4667 again:
4668 	WARN_ON(num_bytes < fs_info->sectorsize);
4669 
4670 	ffe_ctl.ram_bytes = ram_bytes;
4671 	ffe_ctl.num_bytes = num_bytes;
4672 	ffe_ctl.min_alloc_size = min_alloc_size;
4673 	ffe_ctl.empty_size = empty_size;
4674 	ffe_ctl.flags = flags;
4675 	ffe_ctl.delalloc = delalloc;
4676 	ffe_ctl.hint_byte = hint_byte;
4677 	ffe_ctl.for_treelog = for_treelog;
4678 	ffe_ctl.for_data_reloc = for_data_reloc;
4679 
4680 	ret = find_free_extent(root, ins, &ffe_ctl);
4681 	if (!ret && !is_data) {
4682 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4683 	} else if (ret == -ENOSPC) {
4684 		if (!final_tried && ins->offset) {
4685 			num_bytes = min(num_bytes >> 1, ins->offset);
4686 			num_bytes = round_down(num_bytes,
4687 					       fs_info->sectorsize);
4688 			num_bytes = max(num_bytes, min_alloc_size);
4689 			ram_bytes = num_bytes;
4690 			if (num_bytes == min_alloc_size)
4691 				final_tried = true;
4692 			goto again;
4693 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4694 			struct btrfs_space_info *sinfo;
4695 
4696 			sinfo = btrfs_find_space_info(fs_info, flags);
4697 			btrfs_err(fs_info,
4698 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4699 				  flags, num_bytes, for_treelog, for_data_reloc);
4700 			if (sinfo)
4701 				btrfs_dump_space_info(fs_info, sinfo,
4702 						      num_bytes, 1);
4703 		}
4704 	}
4705 
4706 	return ret;
4707 }
4708 
4709 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4710 			       u64 start, u64 len, int delalloc)
4711 {
4712 	struct btrfs_block_group *cache;
4713 
4714 	cache = btrfs_lookup_block_group(fs_info, start);
4715 	if (!cache) {
4716 		btrfs_err(fs_info, "Unable to find block group for %llu",
4717 			  start);
4718 		return -ENOSPC;
4719 	}
4720 
4721 	btrfs_add_free_space(cache, start, len);
4722 	btrfs_free_reserved_bytes(cache, len, delalloc);
4723 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4724 
4725 	btrfs_put_block_group(cache);
4726 	return 0;
4727 }
4728 
4729 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4730 			      const struct extent_buffer *eb)
4731 {
4732 	struct btrfs_block_group *cache;
4733 	int ret = 0;
4734 
4735 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4736 	if (!cache) {
4737 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4738 			  eb->start);
4739 		return -ENOSPC;
4740 	}
4741 
4742 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4743 	btrfs_put_block_group(cache);
4744 	return ret;
4745 }
4746 
4747 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4748 				 u64 num_bytes)
4749 {
4750 	struct btrfs_fs_info *fs_info = trans->fs_info;
4751 	int ret;
4752 
4753 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4754 	if (ret)
4755 		return ret;
4756 
4757 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4758 	if (ret) {
4759 		ASSERT(!ret);
4760 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4761 			  bytenr, num_bytes);
4762 		return ret;
4763 	}
4764 
4765 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4766 	return 0;
4767 }
4768 
4769 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4770 				      u64 parent, u64 root_objectid,
4771 				      u64 flags, u64 owner, u64 offset,
4772 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4773 {
4774 	struct btrfs_fs_info *fs_info = trans->fs_info;
4775 	struct btrfs_root *extent_root;
4776 	int ret;
4777 	struct btrfs_extent_item *extent_item;
4778 	struct btrfs_extent_owner_ref *oref;
4779 	struct btrfs_extent_inline_ref *iref;
4780 	struct btrfs_path *path;
4781 	struct extent_buffer *leaf;
4782 	int type;
4783 	u32 size;
4784 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4785 
4786 	if (parent > 0)
4787 		type = BTRFS_SHARED_DATA_REF_KEY;
4788 	else
4789 		type = BTRFS_EXTENT_DATA_REF_KEY;
4790 
4791 	size = sizeof(*extent_item);
4792 	if (simple_quota)
4793 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4794 	size += btrfs_extent_inline_ref_size(type);
4795 
4796 	path = btrfs_alloc_path();
4797 	if (!path)
4798 		return -ENOMEM;
4799 
4800 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4801 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4802 	if (ret) {
4803 		btrfs_free_path(path);
4804 		return ret;
4805 	}
4806 
4807 	leaf = path->nodes[0];
4808 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4809 				     struct btrfs_extent_item);
4810 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4811 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4812 	btrfs_set_extent_flags(leaf, extent_item,
4813 			       flags | BTRFS_EXTENT_FLAG_DATA);
4814 
4815 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4816 	if (simple_quota) {
4817 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4818 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4819 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4820 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4821 	}
4822 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4823 
4824 	if (parent > 0) {
4825 		struct btrfs_shared_data_ref *ref;
4826 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4827 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4828 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4829 	} else {
4830 		struct btrfs_extent_data_ref *ref;
4831 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4832 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4833 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4834 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4835 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4836 	}
4837 
4838 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4839 	btrfs_free_path(path);
4840 
4841 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4842 }
4843 
4844 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4845 				     struct btrfs_delayed_ref_node *node,
4846 				     struct btrfs_delayed_extent_op *extent_op)
4847 {
4848 	struct btrfs_fs_info *fs_info = trans->fs_info;
4849 	struct btrfs_root *extent_root;
4850 	int ret;
4851 	struct btrfs_extent_item *extent_item;
4852 	struct btrfs_key extent_key;
4853 	struct btrfs_tree_block_info *block_info;
4854 	struct btrfs_extent_inline_ref *iref;
4855 	struct btrfs_path *path;
4856 	struct extent_buffer *leaf;
4857 	struct btrfs_delayed_tree_ref *ref;
4858 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4859 	u64 flags = extent_op->flags_to_set;
4860 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4861 
4862 	ref = btrfs_delayed_node_to_tree_ref(node);
4863 
4864 	extent_key.objectid = node->bytenr;
4865 	if (skinny_metadata) {
4866 		extent_key.offset = ref->level;
4867 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4868 	} else {
4869 		extent_key.offset = node->num_bytes;
4870 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4871 		size += sizeof(*block_info);
4872 	}
4873 
4874 	path = btrfs_alloc_path();
4875 	if (!path)
4876 		return -ENOMEM;
4877 
4878 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4879 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4880 				      size);
4881 	if (ret) {
4882 		btrfs_free_path(path);
4883 		return ret;
4884 	}
4885 
4886 	leaf = path->nodes[0];
4887 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4888 				     struct btrfs_extent_item);
4889 	btrfs_set_extent_refs(leaf, extent_item, 1);
4890 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4891 	btrfs_set_extent_flags(leaf, extent_item,
4892 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4893 
4894 	if (skinny_metadata) {
4895 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4896 	} else {
4897 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4898 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4899 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4900 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4901 	}
4902 
4903 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4904 		btrfs_set_extent_inline_ref_type(leaf, iref,
4905 						 BTRFS_SHARED_BLOCK_REF_KEY);
4906 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4907 	} else {
4908 		btrfs_set_extent_inline_ref_type(leaf, iref,
4909 						 BTRFS_TREE_BLOCK_REF_KEY);
4910 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4911 	}
4912 
4913 	btrfs_mark_buffer_dirty(trans, leaf);
4914 	btrfs_free_path(path);
4915 
4916 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4917 }
4918 
4919 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4920 				     struct btrfs_root *root, u64 owner,
4921 				     u64 offset, u64 ram_bytes,
4922 				     struct btrfs_key *ins)
4923 {
4924 	struct btrfs_ref generic_ref = { 0 };
4925 	u64 root_objectid = root->root_key.objectid;
4926 	u64 owning_root = root_objectid;
4927 
4928 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4929 
4930 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4931 		owning_root = root->relocation_src_root;
4932 
4933 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4934 			       ins->objectid, ins->offset, 0, owning_root);
4935 	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4936 			    offset, 0, false);
4937 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4938 
4939 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4940 }
4941 
4942 /*
4943  * this is used by the tree logging recovery code.  It records that
4944  * an extent has been allocated and makes sure to clear the free
4945  * space cache bits as well
4946  */
4947 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4948 				   u64 root_objectid, u64 owner, u64 offset,
4949 				   struct btrfs_key *ins)
4950 {
4951 	struct btrfs_fs_info *fs_info = trans->fs_info;
4952 	int ret;
4953 	struct btrfs_block_group *block_group;
4954 	struct btrfs_space_info *space_info;
4955 	struct btrfs_squota_delta delta = {
4956 		.root = root_objectid,
4957 		.num_bytes = ins->offset,
4958 		.generation = trans->transid,
4959 		.is_data = true,
4960 		.is_inc = true,
4961 	};
4962 
4963 	/*
4964 	 * Mixed block groups will exclude before processing the log so we only
4965 	 * need to do the exclude dance if this fs isn't mixed.
4966 	 */
4967 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4968 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4969 					      ins->offset);
4970 		if (ret)
4971 			return ret;
4972 	}
4973 
4974 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4975 	if (!block_group)
4976 		return -EINVAL;
4977 
4978 	space_info = block_group->space_info;
4979 	spin_lock(&space_info->lock);
4980 	spin_lock(&block_group->lock);
4981 	space_info->bytes_reserved += ins->offset;
4982 	block_group->reserved += ins->offset;
4983 	spin_unlock(&block_group->lock);
4984 	spin_unlock(&space_info->lock);
4985 
4986 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4987 					 offset, ins, 1, root_objectid);
4988 	if (ret)
4989 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4990 	ret = btrfs_record_squota_delta(fs_info, &delta);
4991 	btrfs_put_block_group(block_group);
4992 	return ret;
4993 }
4994 
4995 #ifdef CONFIG_BTRFS_DEBUG
4996 /*
4997  * Extra safety check in case the extent tree is corrupted and extent allocator
4998  * chooses to use a tree block which is already used and locked.
4999  */
5000 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5001 {
5002 	if (eb->lock_owner == current->pid) {
5003 		btrfs_err_rl(eb->fs_info,
5004 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5005 			     eb->start, btrfs_header_owner(eb), current->pid);
5006 		return true;
5007 	}
5008 	return false;
5009 }
5010 #else
5011 static bool check_eb_lock_owner(struct extent_buffer *eb)
5012 {
5013 	return false;
5014 }
5015 #endif
5016 
5017 static struct extent_buffer *
5018 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5019 		      u64 bytenr, int level, u64 owner,
5020 		      enum btrfs_lock_nesting nest)
5021 {
5022 	struct btrfs_fs_info *fs_info = root->fs_info;
5023 	struct extent_buffer *buf;
5024 	u64 lockdep_owner = owner;
5025 
5026 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5027 	if (IS_ERR(buf))
5028 		return buf;
5029 
5030 	if (check_eb_lock_owner(buf)) {
5031 		free_extent_buffer(buf);
5032 		return ERR_PTR(-EUCLEAN);
5033 	}
5034 
5035 	/*
5036 	 * The reloc trees are just snapshots, so we need them to appear to be
5037 	 * just like any other fs tree WRT lockdep.
5038 	 *
5039 	 * The exception however is in replace_path() in relocation, where we
5040 	 * hold the lock on the original fs root and then search for the reloc
5041 	 * root.  At that point we need to make sure any reloc root buffers are
5042 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5043 	 * lockdep happy.
5044 	 */
5045 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5046 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5047 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5048 
5049 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5050 	btrfs_set_header_generation(buf, trans->transid);
5051 
5052 	/*
5053 	 * This needs to stay, because we could allocate a freed block from an
5054 	 * old tree into a new tree, so we need to make sure this new block is
5055 	 * set to the appropriate level and owner.
5056 	 */
5057 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5058 
5059 	__btrfs_tree_lock(buf, nest);
5060 	btrfs_clear_buffer_dirty(trans, buf);
5061 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5062 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5063 
5064 	set_extent_buffer_uptodate(buf);
5065 
5066 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5067 	btrfs_set_header_level(buf, level);
5068 	btrfs_set_header_bytenr(buf, buf->start);
5069 	btrfs_set_header_generation(buf, trans->transid);
5070 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5071 	btrfs_set_header_owner(buf, owner);
5072 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5073 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5074 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5075 		buf->log_index = root->log_transid % 2;
5076 		/*
5077 		 * we allow two log transactions at a time, use different
5078 		 * EXTENT bit to differentiate dirty pages.
5079 		 */
5080 		if (buf->log_index == 0)
5081 			set_extent_bit(&root->dirty_log_pages, buf->start,
5082 				       buf->start + buf->len - 1,
5083 				       EXTENT_DIRTY, NULL);
5084 		else
5085 			set_extent_bit(&root->dirty_log_pages, buf->start,
5086 				       buf->start + buf->len - 1,
5087 				       EXTENT_NEW, NULL);
5088 	} else {
5089 		buf->log_index = -1;
5090 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5091 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5092 	}
5093 	/* this returns a buffer locked for blocking */
5094 	return buf;
5095 }
5096 
5097 /*
5098  * finds a free extent and does all the dirty work required for allocation
5099  * returns the tree buffer or an ERR_PTR on error.
5100  */
5101 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5102 					     struct btrfs_root *root,
5103 					     u64 parent, u64 root_objectid,
5104 					     const struct btrfs_disk_key *key,
5105 					     int level, u64 hint,
5106 					     u64 empty_size,
5107 					     u64 reloc_src_root,
5108 					     enum btrfs_lock_nesting nest)
5109 {
5110 	struct btrfs_fs_info *fs_info = root->fs_info;
5111 	struct btrfs_key ins;
5112 	struct btrfs_block_rsv *block_rsv;
5113 	struct extent_buffer *buf;
5114 	struct btrfs_delayed_extent_op *extent_op;
5115 	struct btrfs_ref generic_ref = { 0 };
5116 	u64 flags = 0;
5117 	int ret;
5118 	u32 blocksize = fs_info->nodesize;
5119 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5120 	u64 owning_root;
5121 
5122 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5123 	if (btrfs_is_testing(fs_info)) {
5124 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5125 					    level, root_objectid, nest);
5126 		if (!IS_ERR(buf))
5127 			root->alloc_bytenr += blocksize;
5128 		return buf;
5129 	}
5130 #endif
5131 
5132 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5133 	if (IS_ERR(block_rsv))
5134 		return ERR_CAST(block_rsv);
5135 
5136 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5137 				   empty_size, hint, &ins, 0, 0);
5138 	if (ret)
5139 		goto out_unuse;
5140 
5141 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5142 				    root_objectid, nest);
5143 	if (IS_ERR(buf)) {
5144 		ret = PTR_ERR(buf);
5145 		goto out_free_reserved;
5146 	}
5147 	owning_root = btrfs_header_owner(buf);
5148 
5149 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5150 		if (parent == 0)
5151 			parent = ins.objectid;
5152 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5153 		owning_root = reloc_src_root;
5154 	} else
5155 		BUG_ON(parent > 0);
5156 
5157 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5158 		extent_op = btrfs_alloc_delayed_extent_op();
5159 		if (!extent_op) {
5160 			ret = -ENOMEM;
5161 			goto out_free_buf;
5162 		}
5163 		if (key)
5164 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5165 		else
5166 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5167 		extent_op->flags_to_set = flags;
5168 		extent_op->update_key = skinny_metadata ? false : true;
5169 		extent_op->update_flags = true;
5170 		extent_op->level = level;
5171 
5172 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5173 				       ins.objectid, ins.offset, parent, owning_root);
5174 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5175 				    root->root_key.objectid, false);
5176 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5177 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5178 		if (ret)
5179 			goto out_free_delayed;
5180 	}
5181 	return buf;
5182 
5183 out_free_delayed:
5184 	btrfs_free_delayed_extent_op(extent_op);
5185 out_free_buf:
5186 	btrfs_tree_unlock(buf);
5187 	free_extent_buffer(buf);
5188 out_free_reserved:
5189 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5190 out_unuse:
5191 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5192 	return ERR_PTR(ret);
5193 }
5194 
5195 struct walk_control {
5196 	u64 refs[BTRFS_MAX_LEVEL];
5197 	u64 flags[BTRFS_MAX_LEVEL];
5198 	struct btrfs_key update_progress;
5199 	struct btrfs_key drop_progress;
5200 	int drop_level;
5201 	int stage;
5202 	int level;
5203 	int shared_level;
5204 	int update_ref;
5205 	int keep_locks;
5206 	int reada_slot;
5207 	int reada_count;
5208 	int restarted;
5209 };
5210 
5211 #define DROP_REFERENCE	1
5212 #define UPDATE_BACKREF	2
5213 
5214 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5215 				     struct btrfs_root *root,
5216 				     struct walk_control *wc,
5217 				     struct btrfs_path *path)
5218 {
5219 	struct btrfs_fs_info *fs_info = root->fs_info;
5220 	u64 bytenr;
5221 	u64 generation;
5222 	u64 refs;
5223 	u64 flags;
5224 	u32 nritems;
5225 	struct btrfs_key key;
5226 	struct extent_buffer *eb;
5227 	int ret;
5228 	int slot;
5229 	int nread = 0;
5230 
5231 	if (path->slots[wc->level] < wc->reada_slot) {
5232 		wc->reada_count = wc->reada_count * 2 / 3;
5233 		wc->reada_count = max(wc->reada_count, 2);
5234 	} else {
5235 		wc->reada_count = wc->reada_count * 3 / 2;
5236 		wc->reada_count = min_t(int, wc->reada_count,
5237 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5238 	}
5239 
5240 	eb = path->nodes[wc->level];
5241 	nritems = btrfs_header_nritems(eb);
5242 
5243 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5244 		if (nread >= wc->reada_count)
5245 			break;
5246 
5247 		cond_resched();
5248 		bytenr = btrfs_node_blockptr(eb, slot);
5249 		generation = btrfs_node_ptr_generation(eb, slot);
5250 
5251 		if (slot == path->slots[wc->level])
5252 			goto reada;
5253 
5254 		if (wc->stage == UPDATE_BACKREF &&
5255 		    generation <= root->root_key.offset)
5256 			continue;
5257 
5258 		/* We don't lock the tree block, it's OK to be racy here */
5259 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5260 					       wc->level - 1, 1, &refs,
5261 					       &flags, NULL);
5262 		/* We don't care about errors in readahead. */
5263 		if (ret < 0)
5264 			continue;
5265 		BUG_ON(refs == 0);
5266 
5267 		if (wc->stage == DROP_REFERENCE) {
5268 			if (refs == 1)
5269 				goto reada;
5270 
5271 			if (wc->level == 1 &&
5272 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5273 				continue;
5274 			if (!wc->update_ref ||
5275 			    generation <= root->root_key.offset)
5276 				continue;
5277 			btrfs_node_key_to_cpu(eb, &key, slot);
5278 			ret = btrfs_comp_cpu_keys(&key,
5279 						  &wc->update_progress);
5280 			if (ret < 0)
5281 				continue;
5282 		} else {
5283 			if (wc->level == 1 &&
5284 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5285 				continue;
5286 		}
5287 reada:
5288 		btrfs_readahead_node_child(eb, slot);
5289 		nread++;
5290 	}
5291 	wc->reada_slot = slot;
5292 }
5293 
5294 /*
5295  * helper to process tree block while walking down the tree.
5296  *
5297  * when wc->stage == UPDATE_BACKREF, this function updates
5298  * back refs for pointers in the block.
5299  *
5300  * NOTE: return value 1 means we should stop walking down.
5301  */
5302 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5303 				   struct btrfs_root *root,
5304 				   struct btrfs_path *path,
5305 				   struct walk_control *wc, int lookup_info)
5306 {
5307 	struct btrfs_fs_info *fs_info = root->fs_info;
5308 	int level = wc->level;
5309 	struct extent_buffer *eb = path->nodes[level];
5310 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5311 	int ret;
5312 
5313 	if (wc->stage == UPDATE_BACKREF &&
5314 	    btrfs_header_owner(eb) != root->root_key.objectid)
5315 		return 1;
5316 
5317 	/*
5318 	 * when reference count of tree block is 1, it won't increase
5319 	 * again. once full backref flag is set, we never clear it.
5320 	 */
5321 	if (lookup_info &&
5322 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5323 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5324 		BUG_ON(!path->locks[level]);
5325 		ret = btrfs_lookup_extent_info(trans, fs_info,
5326 					       eb->start, level, 1,
5327 					       &wc->refs[level],
5328 					       &wc->flags[level],
5329 					       NULL);
5330 		BUG_ON(ret == -ENOMEM);
5331 		if (ret)
5332 			return ret;
5333 		BUG_ON(wc->refs[level] == 0);
5334 	}
5335 
5336 	if (wc->stage == DROP_REFERENCE) {
5337 		if (wc->refs[level] > 1)
5338 			return 1;
5339 
5340 		if (path->locks[level] && !wc->keep_locks) {
5341 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5342 			path->locks[level] = 0;
5343 		}
5344 		return 0;
5345 	}
5346 
5347 	/* wc->stage == UPDATE_BACKREF */
5348 	if (!(wc->flags[level] & flag)) {
5349 		BUG_ON(!path->locks[level]);
5350 		ret = btrfs_inc_ref(trans, root, eb, 1);
5351 		BUG_ON(ret); /* -ENOMEM */
5352 		ret = btrfs_dec_ref(trans, root, eb, 0);
5353 		BUG_ON(ret); /* -ENOMEM */
5354 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5355 		BUG_ON(ret); /* -ENOMEM */
5356 		wc->flags[level] |= flag;
5357 	}
5358 
5359 	/*
5360 	 * the block is shared by multiple trees, so it's not good to
5361 	 * keep the tree lock
5362 	 */
5363 	if (path->locks[level] && level > 0) {
5364 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5365 		path->locks[level] = 0;
5366 	}
5367 	return 0;
5368 }
5369 
5370 /*
5371  * This is used to verify a ref exists for this root to deal with a bug where we
5372  * would have a drop_progress key that hadn't been updated properly.
5373  */
5374 static int check_ref_exists(struct btrfs_trans_handle *trans,
5375 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5376 			    int level)
5377 {
5378 	struct btrfs_path *path;
5379 	struct btrfs_extent_inline_ref *iref;
5380 	int ret;
5381 
5382 	path = btrfs_alloc_path();
5383 	if (!path)
5384 		return -ENOMEM;
5385 
5386 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5387 				    root->fs_info->nodesize, parent,
5388 				    root->root_key.objectid, level, 0);
5389 	btrfs_free_path(path);
5390 	if (ret == -ENOENT)
5391 		return 0;
5392 	if (ret < 0)
5393 		return ret;
5394 	return 1;
5395 }
5396 
5397 /*
5398  * helper to process tree block pointer.
5399  *
5400  * when wc->stage == DROP_REFERENCE, this function checks
5401  * reference count of the block pointed to. if the block
5402  * is shared and we need update back refs for the subtree
5403  * rooted at the block, this function changes wc->stage to
5404  * UPDATE_BACKREF. if the block is shared and there is no
5405  * need to update back, this function drops the reference
5406  * to the block.
5407  *
5408  * NOTE: return value 1 means we should stop walking down.
5409  */
5410 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5411 				 struct btrfs_root *root,
5412 				 struct btrfs_path *path,
5413 				 struct walk_control *wc, int *lookup_info)
5414 {
5415 	struct btrfs_fs_info *fs_info = root->fs_info;
5416 	u64 bytenr;
5417 	u64 generation;
5418 	u64 parent;
5419 	u64 owner_root = 0;
5420 	struct btrfs_tree_parent_check check = { 0 };
5421 	struct btrfs_key key;
5422 	struct btrfs_ref ref = { 0 };
5423 	struct extent_buffer *next;
5424 	int level = wc->level;
5425 	int reada = 0;
5426 	int ret = 0;
5427 	bool need_account = false;
5428 
5429 	generation = btrfs_node_ptr_generation(path->nodes[level],
5430 					       path->slots[level]);
5431 	/*
5432 	 * if the lower level block was created before the snapshot
5433 	 * was created, we know there is no need to update back refs
5434 	 * for the subtree
5435 	 */
5436 	if (wc->stage == UPDATE_BACKREF &&
5437 	    generation <= root->root_key.offset) {
5438 		*lookup_info = 1;
5439 		return 1;
5440 	}
5441 
5442 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5443 
5444 	check.level = level - 1;
5445 	check.transid = generation;
5446 	check.owner_root = root->root_key.objectid;
5447 	check.has_first_key = true;
5448 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5449 			      path->slots[level]);
5450 
5451 	next = find_extent_buffer(fs_info, bytenr);
5452 	if (!next) {
5453 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5454 				root->root_key.objectid, level - 1);
5455 		if (IS_ERR(next))
5456 			return PTR_ERR(next);
5457 		reada = 1;
5458 	}
5459 	btrfs_tree_lock(next);
5460 
5461 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5462 				       &wc->refs[level - 1],
5463 				       &wc->flags[level - 1],
5464 				       &owner_root);
5465 	if (ret < 0)
5466 		goto out_unlock;
5467 
5468 	if (unlikely(wc->refs[level - 1] == 0)) {
5469 		btrfs_err(fs_info, "Missing references.");
5470 		ret = -EIO;
5471 		goto out_unlock;
5472 	}
5473 	*lookup_info = 0;
5474 
5475 	if (wc->stage == DROP_REFERENCE) {
5476 		if (wc->refs[level - 1] > 1) {
5477 			need_account = true;
5478 			if (level == 1 &&
5479 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5480 				goto skip;
5481 
5482 			if (!wc->update_ref ||
5483 			    generation <= root->root_key.offset)
5484 				goto skip;
5485 
5486 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5487 					      path->slots[level]);
5488 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5489 			if (ret < 0)
5490 				goto skip;
5491 
5492 			wc->stage = UPDATE_BACKREF;
5493 			wc->shared_level = level - 1;
5494 		}
5495 	} else {
5496 		if (level == 1 &&
5497 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5498 			goto skip;
5499 	}
5500 
5501 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5502 		btrfs_tree_unlock(next);
5503 		free_extent_buffer(next);
5504 		next = NULL;
5505 		*lookup_info = 1;
5506 	}
5507 
5508 	if (!next) {
5509 		if (reada && level == 1)
5510 			reada_walk_down(trans, root, wc, path);
5511 		next = read_tree_block(fs_info, bytenr, &check);
5512 		if (IS_ERR(next)) {
5513 			return PTR_ERR(next);
5514 		} else if (!extent_buffer_uptodate(next)) {
5515 			free_extent_buffer(next);
5516 			return -EIO;
5517 		}
5518 		btrfs_tree_lock(next);
5519 	}
5520 
5521 	level--;
5522 	ASSERT(level == btrfs_header_level(next));
5523 	if (level != btrfs_header_level(next)) {
5524 		btrfs_err(root->fs_info, "mismatched level");
5525 		ret = -EIO;
5526 		goto out_unlock;
5527 	}
5528 	path->nodes[level] = next;
5529 	path->slots[level] = 0;
5530 	path->locks[level] = BTRFS_WRITE_LOCK;
5531 	wc->level = level;
5532 	if (wc->level == 1)
5533 		wc->reada_slot = 0;
5534 	return 0;
5535 skip:
5536 	wc->refs[level - 1] = 0;
5537 	wc->flags[level - 1] = 0;
5538 	if (wc->stage == DROP_REFERENCE) {
5539 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5540 			parent = path->nodes[level]->start;
5541 		} else {
5542 			ASSERT(root->root_key.objectid ==
5543 			       btrfs_header_owner(path->nodes[level]));
5544 			if (root->root_key.objectid !=
5545 			    btrfs_header_owner(path->nodes[level])) {
5546 				btrfs_err(root->fs_info,
5547 						"mismatched block owner");
5548 				ret = -EIO;
5549 				goto out_unlock;
5550 			}
5551 			parent = 0;
5552 		}
5553 
5554 		/*
5555 		 * If we had a drop_progress we need to verify the refs are set
5556 		 * as expected.  If we find our ref then we know that from here
5557 		 * on out everything should be correct, and we can clear the
5558 		 * ->restarted flag.
5559 		 */
5560 		if (wc->restarted) {
5561 			ret = check_ref_exists(trans, root, bytenr, parent,
5562 					       level - 1);
5563 			if (ret < 0)
5564 				goto out_unlock;
5565 			if (ret == 0)
5566 				goto no_delete;
5567 			ret = 0;
5568 			wc->restarted = 0;
5569 		}
5570 
5571 		/*
5572 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5573 		 * already accounted them at merge time (replace_path),
5574 		 * thus we could skip expensive subtree trace here.
5575 		 */
5576 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5577 		    need_account) {
5578 			ret = btrfs_qgroup_trace_subtree(trans, next,
5579 							 generation, level - 1);
5580 			if (ret) {
5581 				btrfs_err_rl(fs_info,
5582 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5583 					     ret);
5584 			}
5585 		}
5586 
5587 		/*
5588 		 * We need to update the next key in our walk control so we can
5589 		 * update the drop_progress key accordingly.  We don't care if
5590 		 * find_next_key doesn't find a key because that means we're at
5591 		 * the end and are going to clean up now.
5592 		 */
5593 		wc->drop_level = level;
5594 		find_next_key(path, level, &wc->drop_progress);
5595 
5596 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5597 				       fs_info->nodesize, parent, owner_root);
5598 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5599 				    0, false);
5600 		ret = btrfs_free_extent(trans, &ref);
5601 		if (ret)
5602 			goto out_unlock;
5603 	}
5604 no_delete:
5605 	*lookup_info = 1;
5606 	ret = 1;
5607 
5608 out_unlock:
5609 	btrfs_tree_unlock(next);
5610 	free_extent_buffer(next);
5611 
5612 	return ret;
5613 }
5614 
5615 /*
5616  * helper to process tree block while walking up the tree.
5617  *
5618  * when wc->stage == DROP_REFERENCE, this function drops
5619  * reference count on the block.
5620  *
5621  * when wc->stage == UPDATE_BACKREF, this function changes
5622  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5623  * to UPDATE_BACKREF previously while processing the block.
5624  *
5625  * NOTE: return value 1 means we should stop walking up.
5626  */
5627 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5628 				 struct btrfs_root *root,
5629 				 struct btrfs_path *path,
5630 				 struct walk_control *wc)
5631 {
5632 	struct btrfs_fs_info *fs_info = root->fs_info;
5633 	int ret;
5634 	int level = wc->level;
5635 	struct extent_buffer *eb = path->nodes[level];
5636 	u64 parent = 0;
5637 
5638 	if (wc->stage == UPDATE_BACKREF) {
5639 		BUG_ON(wc->shared_level < level);
5640 		if (level < wc->shared_level)
5641 			goto out;
5642 
5643 		ret = find_next_key(path, level + 1, &wc->update_progress);
5644 		if (ret > 0)
5645 			wc->update_ref = 0;
5646 
5647 		wc->stage = DROP_REFERENCE;
5648 		wc->shared_level = -1;
5649 		path->slots[level] = 0;
5650 
5651 		/*
5652 		 * check reference count again if the block isn't locked.
5653 		 * we should start walking down the tree again if reference
5654 		 * count is one.
5655 		 */
5656 		if (!path->locks[level]) {
5657 			BUG_ON(level == 0);
5658 			btrfs_tree_lock(eb);
5659 			path->locks[level] = BTRFS_WRITE_LOCK;
5660 
5661 			ret = btrfs_lookup_extent_info(trans, fs_info,
5662 						       eb->start, level, 1,
5663 						       &wc->refs[level],
5664 						       &wc->flags[level],
5665 						       NULL);
5666 			if (ret < 0) {
5667 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5668 				path->locks[level] = 0;
5669 				return ret;
5670 			}
5671 			BUG_ON(wc->refs[level] == 0);
5672 			if (wc->refs[level] == 1) {
5673 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5674 				path->locks[level] = 0;
5675 				return 1;
5676 			}
5677 		}
5678 	}
5679 
5680 	/* wc->stage == DROP_REFERENCE */
5681 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5682 
5683 	if (wc->refs[level] == 1) {
5684 		if (level == 0) {
5685 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5686 				ret = btrfs_dec_ref(trans, root, eb, 1);
5687 			else
5688 				ret = btrfs_dec_ref(trans, root, eb, 0);
5689 			BUG_ON(ret); /* -ENOMEM */
5690 			if (is_fstree(root->root_key.objectid)) {
5691 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5692 				if (ret) {
5693 					btrfs_err_rl(fs_info,
5694 	"error %d accounting leaf items, quota is out of sync, rescan required",
5695 					     ret);
5696 				}
5697 			}
5698 		}
5699 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5700 		if (!path->locks[level]) {
5701 			btrfs_tree_lock(eb);
5702 			path->locks[level] = BTRFS_WRITE_LOCK;
5703 		}
5704 		btrfs_clear_buffer_dirty(trans, eb);
5705 	}
5706 
5707 	if (eb == root->node) {
5708 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5709 			parent = eb->start;
5710 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5711 			goto owner_mismatch;
5712 	} else {
5713 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5714 			parent = path->nodes[level + 1]->start;
5715 		else if (root->root_key.objectid !=
5716 			 btrfs_header_owner(path->nodes[level + 1]))
5717 			goto owner_mismatch;
5718 	}
5719 
5720 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5721 			      wc->refs[level] == 1);
5722 out:
5723 	wc->refs[level] = 0;
5724 	wc->flags[level] = 0;
5725 	return 0;
5726 
5727 owner_mismatch:
5728 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5729 		     btrfs_header_owner(eb), root->root_key.objectid);
5730 	return -EUCLEAN;
5731 }
5732 
5733 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5734 				   struct btrfs_root *root,
5735 				   struct btrfs_path *path,
5736 				   struct walk_control *wc)
5737 {
5738 	int level = wc->level;
5739 	int lookup_info = 1;
5740 	int ret = 0;
5741 
5742 	while (level >= 0) {
5743 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5744 		if (ret)
5745 			break;
5746 
5747 		if (level == 0)
5748 			break;
5749 
5750 		if (path->slots[level] >=
5751 		    btrfs_header_nritems(path->nodes[level]))
5752 			break;
5753 
5754 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5755 		if (ret > 0) {
5756 			path->slots[level]++;
5757 			continue;
5758 		} else if (ret < 0)
5759 			break;
5760 		level = wc->level;
5761 	}
5762 	return (ret == 1) ? 0 : ret;
5763 }
5764 
5765 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5766 				 struct btrfs_root *root,
5767 				 struct btrfs_path *path,
5768 				 struct walk_control *wc, int max_level)
5769 {
5770 	int level = wc->level;
5771 	int ret;
5772 
5773 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5774 	while (level < max_level && path->nodes[level]) {
5775 		wc->level = level;
5776 		if (path->slots[level] + 1 <
5777 		    btrfs_header_nritems(path->nodes[level])) {
5778 			path->slots[level]++;
5779 			return 0;
5780 		} else {
5781 			ret = walk_up_proc(trans, root, path, wc);
5782 			if (ret > 0)
5783 				return 0;
5784 			if (ret < 0)
5785 				return ret;
5786 
5787 			if (path->locks[level]) {
5788 				btrfs_tree_unlock_rw(path->nodes[level],
5789 						     path->locks[level]);
5790 				path->locks[level] = 0;
5791 			}
5792 			free_extent_buffer(path->nodes[level]);
5793 			path->nodes[level] = NULL;
5794 			level++;
5795 		}
5796 	}
5797 	return 1;
5798 }
5799 
5800 /*
5801  * drop a subvolume tree.
5802  *
5803  * this function traverses the tree freeing any blocks that only
5804  * referenced by the tree.
5805  *
5806  * when a shared tree block is found. this function decreases its
5807  * reference count by one. if update_ref is true, this function
5808  * also make sure backrefs for the shared block and all lower level
5809  * blocks are properly updated.
5810  *
5811  * If called with for_reloc == 0, may exit early with -EAGAIN
5812  */
5813 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5814 {
5815 	const bool is_reloc_root = (root->root_key.objectid ==
5816 				    BTRFS_TREE_RELOC_OBJECTID);
5817 	struct btrfs_fs_info *fs_info = root->fs_info;
5818 	struct btrfs_path *path;
5819 	struct btrfs_trans_handle *trans;
5820 	struct btrfs_root *tree_root = fs_info->tree_root;
5821 	struct btrfs_root_item *root_item = &root->root_item;
5822 	struct walk_control *wc;
5823 	struct btrfs_key key;
5824 	int err = 0;
5825 	int ret;
5826 	int level;
5827 	bool root_dropped = false;
5828 	bool unfinished_drop = false;
5829 
5830 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5831 
5832 	path = btrfs_alloc_path();
5833 	if (!path) {
5834 		err = -ENOMEM;
5835 		goto out;
5836 	}
5837 
5838 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5839 	if (!wc) {
5840 		btrfs_free_path(path);
5841 		err = -ENOMEM;
5842 		goto out;
5843 	}
5844 
5845 	/*
5846 	 * Use join to avoid potential EINTR from transaction start. See
5847 	 * wait_reserve_ticket and the whole reservation callchain.
5848 	 */
5849 	if (for_reloc)
5850 		trans = btrfs_join_transaction(tree_root);
5851 	else
5852 		trans = btrfs_start_transaction(tree_root, 0);
5853 	if (IS_ERR(trans)) {
5854 		err = PTR_ERR(trans);
5855 		goto out_free;
5856 	}
5857 
5858 	err = btrfs_run_delayed_items(trans);
5859 	if (err)
5860 		goto out_end_trans;
5861 
5862 	/*
5863 	 * This will help us catch people modifying the fs tree while we're
5864 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5865 	 * dropped as we unlock the root node and parent nodes as we walk down
5866 	 * the tree, assuming nothing will change.  If something does change
5867 	 * then we'll have stale information and drop references to blocks we've
5868 	 * already dropped.
5869 	 */
5870 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5871 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5872 
5873 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5874 		level = btrfs_header_level(root->node);
5875 		path->nodes[level] = btrfs_lock_root_node(root);
5876 		path->slots[level] = 0;
5877 		path->locks[level] = BTRFS_WRITE_LOCK;
5878 		memset(&wc->update_progress, 0,
5879 		       sizeof(wc->update_progress));
5880 	} else {
5881 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5882 		memcpy(&wc->update_progress, &key,
5883 		       sizeof(wc->update_progress));
5884 
5885 		level = btrfs_root_drop_level(root_item);
5886 		BUG_ON(level == 0);
5887 		path->lowest_level = level;
5888 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5889 		path->lowest_level = 0;
5890 		if (ret < 0) {
5891 			err = ret;
5892 			goto out_end_trans;
5893 		}
5894 		WARN_ON(ret > 0);
5895 
5896 		/*
5897 		 * unlock our path, this is safe because only this
5898 		 * function is allowed to delete this snapshot
5899 		 */
5900 		btrfs_unlock_up_safe(path, 0);
5901 
5902 		level = btrfs_header_level(root->node);
5903 		while (1) {
5904 			btrfs_tree_lock(path->nodes[level]);
5905 			path->locks[level] = BTRFS_WRITE_LOCK;
5906 
5907 			ret = btrfs_lookup_extent_info(trans, fs_info,
5908 						path->nodes[level]->start,
5909 						level, 1, &wc->refs[level],
5910 						&wc->flags[level], NULL);
5911 			if (ret < 0) {
5912 				err = ret;
5913 				goto out_end_trans;
5914 			}
5915 			BUG_ON(wc->refs[level] == 0);
5916 
5917 			if (level == btrfs_root_drop_level(root_item))
5918 				break;
5919 
5920 			btrfs_tree_unlock(path->nodes[level]);
5921 			path->locks[level] = 0;
5922 			WARN_ON(wc->refs[level] != 1);
5923 			level--;
5924 		}
5925 	}
5926 
5927 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5928 	wc->level = level;
5929 	wc->shared_level = -1;
5930 	wc->stage = DROP_REFERENCE;
5931 	wc->update_ref = update_ref;
5932 	wc->keep_locks = 0;
5933 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5934 
5935 	while (1) {
5936 
5937 		ret = walk_down_tree(trans, root, path, wc);
5938 		if (ret < 0) {
5939 			btrfs_abort_transaction(trans, ret);
5940 			err = ret;
5941 			break;
5942 		}
5943 
5944 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5945 		if (ret < 0) {
5946 			btrfs_abort_transaction(trans, ret);
5947 			err = ret;
5948 			break;
5949 		}
5950 
5951 		if (ret > 0) {
5952 			BUG_ON(wc->stage != DROP_REFERENCE);
5953 			break;
5954 		}
5955 
5956 		if (wc->stage == DROP_REFERENCE) {
5957 			wc->drop_level = wc->level;
5958 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5959 					      &wc->drop_progress,
5960 					      path->slots[wc->drop_level]);
5961 		}
5962 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5963 				      &wc->drop_progress);
5964 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5965 
5966 		BUG_ON(wc->level == 0);
5967 		if (btrfs_should_end_transaction(trans) ||
5968 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5969 			ret = btrfs_update_root(trans, tree_root,
5970 						&root->root_key,
5971 						root_item);
5972 			if (ret) {
5973 				btrfs_abort_transaction(trans, ret);
5974 				err = ret;
5975 				goto out_end_trans;
5976 			}
5977 
5978 			if (!is_reloc_root)
5979 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5980 
5981 			btrfs_end_transaction_throttle(trans);
5982 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5983 				btrfs_debug(fs_info,
5984 					    "drop snapshot early exit");
5985 				err = -EAGAIN;
5986 				goto out_free;
5987 			}
5988 
5989 		       /*
5990 			* Use join to avoid potential EINTR from transaction
5991 			* start. See wait_reserve_ticket and the whole
5992 			* reservation callchain.
5993 			*/
5994 			if (for_reloc)
5995 				trans = btrfs_join_transaction(tree_root);
5996 			else
5997 				trans = btrfs_start_transaction(tree_root, 0);
5998 			if (IS_ERR(trans)) {
5999 				err = PTR_ERR(trans);
6000 				goto out_free;
6001 			}
6002 		}
6003 	}
6004 	btrfs_release_path(path);
6005 	if (err)
6006 		goto out_end_trans;
6007 
6008 	ret = btrfs_del_root(trans, &root->root_key);
6009 	if (ret) {
6010 		btrfs_abort_transaction(trans, ret);
6011 		err = ret;
6012 		goto out_end_trans;
6013 	}
6014 
6015 	if (!is_reloc_root) {
6016 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6017 				      NULL, NULL);
6018 		if (ret < 0) {
6019 			btrfs_abort_transaction(trans, ret);
6020 			err = ret;
6021 			goto out_end_trans;
6022 		} else if (ret > 0) {
6023 			/* if we fail to delete the orphan item this time
6024 			 * around, it'll get picked up the next time.
6025 			 *
6026 			 * The most common failure here is just -ENOENT.
6027 			 */
6028 			btrfs_del_orphan_item(trans, tree_root,
6029 					      root->root_key.objectid);
6030 		}
6031 	}
6032 
6033 	/*
6034 	 * This subvolume is going to be completely dropped, and won't be
6035 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6036 	 * commit transaction time.  So free it here manually.
6037 	 */
6038 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6039 	btrfs_qgroup_free_meta_all_pertrans(root);
6040 
6041 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6042 		btrfs_add_dropped_root(trans, root);
6043 	else
6044 		btrfs_put_root(root);
6045 	root_dropped = true;
6046 out_end_trans:
6047 	if (!is_reloc_root)
6048 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6049 
6050 	btrfs_end_transaction_throttle(trans);
6051 out_free:
6052 	kfree(wc);
6053 	btrfs_free_path(path);
6054 out:
6055 	/*
6056 	 * We were an unfinished drop root, check to see if there are any
6057 	 * pending, and if not clear and wake up any waiters.
6058 	 */
6059 	if (!err && unfinished_drop)
6060 		btrfs_maybe_wake_unfinished_drop(fs_info);
6061 
6062 	/*
6063 	 * So if we need to stop dropping the snapshot for whatever reason we
6064 	 * need to make sure to add it back to the dead root list so that we
6065 	 * keep trying to do the work later.  This also cleans up roots if we
6066 	 * don't have it in the radix (like when we recover after a power fail
6067 	 * or unmount) so we don't leak memory.
6068 	 */
6069 	if (!for_reloc && !root_dropped)
6070 		btrfs_add_dead_root(root);
6071 	return err;
6072 }
6073 
6074 /*
6075  * drop subtree rooted at tree block 'node'.
6076  *
6077  * NOTE: this function will unlock and release tree block 'node'
6078  * only used by relocation code
6079  */
6080 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6081 			struct btrfs_root *root,
6082 			struct extent_buffer *node,
6083 			struct extent_buffer *parent)
6084 {
6085 	struct btrfs_fs_info *fs_info = root->fs_info;
6086 	struct btrfs_path *path;
6087 	struct walk_control *wc;
6088 	int level;
6089 	int parent_level;
6090 	int ret = 0;
6091 	int wret;
6092 
6093 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6094 
6095 	path = btrfs_alloc_path();
6096 	if (!path)
6097 		return -ENOMEM;
6098 
6099 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6100 	if (!wc) {
6101 		btrfs_free_path(path);
6102 		return -ENOMEM;
6103 	}
6104 
6105 	btrfs_assert_tree_write_locked(parent);
6106 	parent_level = btrfs_header_level(parent);
6107 	atomic_inc(&parent->refs);
6108 	path->nodes[parent_level] = parent;
6109 	path->slots[parent_level] = btrfs_header_nritems(parent);
6110 
6111 	btrfs_assert_tree_write_locked(node);
6112 	level = btrfs_header_level(node);
6113 	path->nodes[level] = node;
6114 	path->slots[level] = 0;
6115 	path->locks[level] = BTRFS_WRITE_LOCK;
6116 
6117 	wc->refs[parent_level] = 1;
6118 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6119 	wc->level = level;
6120 	wc->shared_level = -1;
6121 	wc->stage = DROP_REFERENCE;
6122 	wc->update_ref = 0;
6123 	wc->keep_locks = 1;
6124 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6125 
6126 	while (1) {
6127 		wret = walk_down_tree(trans, root, path, wc);
6128 		if (wret < 0) {
6129 			ret = wret;
6130 			break;
6131 		}
6132 
6133 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6134 		if (wret < 0)
6135 			ret = wret;
6136 		if (wret != 0)
6137 			break;
6138 	}
6139 
6140 	kfree(wc);
6141 	btrfs_free_path(path);
6142 	return ret;
6143 }
6144 
6145 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6146 				   u64 start, u64 end)
6147 {
6148 	return unpin_extent_range(fs_info, start, end, false);
6149 }
6150 
6151 /*
6152  * It used to be that old block groups would be left around forever.
6153  * Iterating over them would be enough to trim unused space.  Since we
6154  * now automatically remove them, we also need to iterate over unallocated
6155  * space.
6156  *
6157  * We don't want a transaction for this since the discard may take a
6158  * substantial amount of time.  We don't require that a transaction be
6159  * running, but we do need to take a running transaction into account
6160  * to ensure that we're not discarding chunks that were released or
6161  * allocated in the current transaction.
6162  *
6163  * Holding the chunks lock will prevent other threads from allocating
6164  * or releasing chunks, but it won't prevent a running transaction
6165  * from committing and releasing the memory that the pending chunks
6166  * list head uses.  For that, we need to take a reference to the
6167  * transaction and hold the commit root sem.  We only need to hold
6168  * it while performing the free space search since we have already
6169  * held back allocations.
6170  */
6171 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6172 {
6173 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6174 	int ret;
6175 
6176 	*trimmed = 0;
6177 
6178 	/* Discard not supported = nothing to do. */
6179 	if (!bdev_max_discard_sectors(device->bdev))
6180 		return 0;
6181 
6182 	/* Not writable = nothing to do. */
6183 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6184 		return 0;
6185 
6186 	/* No free space = nothing to do. */
6187 	if (device->total_bytes <= device->bytes_used)
6188 		return 0;
6189 
6190 	ret = 0;
6191 
6192 	while (1) {
6193 		struct btrfs_fs_info *fs_info = device->fs_info;
6194 		u64 bytes;
6195 
6196 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6197 		if (ret)
6198 			break;
6199 
6200 		find_first_clear_extent_bit(&device->alloc_state, start,
6201 					    &start, &end,
6202 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6203 
6204 		/* Check if there are any CHUNK_* bits left */
6205 		if (start > device->total_bytes) {
6206 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6207 			btrfs_warn_in_rcu(fs_info,
6208 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6209 					  start, end - start + 1,
6210 					  btrfs_dev_name(device),
6211 					  device->total_bytes);
6212 			mutex_unlock(&fs_info->chunk_mutex);
6213 			ret = 0;
6214 			break;
6215 		}
6216 
6217 		/* Ensure we skip the reserved space on each device. */
6218 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6219 
6220 		/*
6221 		 * If find_first_clear_extent_bit find a range that spans the
6222 		 * end of the device it will set end to -1, in this case it's up
6223 		 * to the caller to trim the value to the size of the device.
6224 		 */
6225 		end = min(end, device->total_bytes - 1);
6226 
6227 		len = end - start + 1;
6228 
6229 		/* We didn't find any extents */
6230 		if (!len) {
6231 			mutex_unlock(&fs_info->chunk_mutex);
6232 			ret = 0;
6233 			break;
6234 		}
6235 
6236 		ret = btrfs_issue_discard(device->bdev, start, len,
6237 					  &bytes);
6238 		if (!ret)
6239 			set_extent_bit(&device->alloc_state, start,
6240 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6241 		mutex_unlock(&fs_info->chunk_mutex);
6242 
6243 		if (ret)
6244 			break;
6245 
6246 		start += len;
6247 		*trimmed += bytes;
6248 
6249 		if (fatal_signal_pending(current)) {
6250 			ret = -ERESTARTSYS;
6251 			break;
6252 		}
6253 
6254 		cond_resched();
6255 	}
6256 
6257 	return ret;
6258 }
6259 
6260 /*
6261  * Trim the whole filesystem by:
6262  * 1) trimming the free space in each block group
6263  * 2) trimming the unallocated space on each device
6264  *
6265  * This will also continue trimming even if a block group or device encounters
6266  * an error.  The return value will be the last error, or 0 if nothing bad
6267  * happens.
6268  */
6269 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6270 {
6271 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6272 	struct btrfs_block_group *cache = NULL;
6273 	struct btrfs_device *device;
6274 	u64 group_trimmed;
6275 	u64 range_end = U64_MAX;
6276 	u64 start;
6277 	u64 end;
6278 	u64 trimmed = 0;
6279 	u64 bg_failed = 0;
6280 	u64 dev_failed = 0;
6281 	int bg_ret = 0;
6282 	int dev_ret = 0;
6283 	int ret = 0;
6284 
6285 	if (range->start == U64_MAX)
6286 		return -EINVAL;
6287 
6288 	/*
6289 	 * Check range overflow if range->len is set.
6290 	 * The default range->len is U64_MAX.
6291 	 */
6292 	if (range->len != U64_MAX &&
6293 	    check_add_overflow(range->start, range->len, &range_end))
6294 		return -EINVAL;
6295 
6296 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6297 	for (; cache; cache = btrfs_next_block_group(cache)) {
6298 		if (cache->start >= range_end) {
6299 			btrfs_put_block_group(cache);
6300 			break;
6301 		}
6302 
6303 		start = max(range->start, cache->start);
6304 		end = min(range_end, cache->start + cache->length);
6305 
6306 		if (end - start >= range->minlen) {
6307 			if (!btrfs_block_group_done(cache)) {
6308 				ret = btrfs_cache_block_group(cache, true);
6309 				if (ret) {
6310 					bg_failed++;
6311 					bg_ret = ret;
6312 					continue;
6313 				}
6314 			}
6315 			ret = btrfs_trim_block_group(cache,
6316 						     &group_trimmed,
6317 						     start,
6318 						     end,
6319 						     range->minlen);
6320 
6321 			trimmed += group_trimmed;
6322 			if (ret) {
6323 				bg_failed++;
6324 				bg_ret = ret;
6325 				continue;
6326 			}
6327 		}
6328 	}
6329 
6330 	if (bg_failed)
6331 		btrfs_warn(fs_info,
6332 			"failed to trim %llu block group(s), last error %d",
6333 			bg_failed, bg_ret);
6334 
6335 	mutex_lock(&fs_devices->device_list_mutex);
6336 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6337 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6338 			continue;
6339 
6340 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6341 		if (ret) {
6342 			dev_failed++;
6343 			dev_ret = ret;
6344 			break;
6345 		}
6346 
6347 		trimmed += group_trimmed;
6348 	}
6349 	mutex_unlock(&fs_devices->device_list_mutex);
6350 
6351 	if (dev_failed)
6352 		btrfs_warn(fs_info,
6353 			"failed to trim %llu device(s), last error %d",
6354 			dev_failed, dev_ret);
6355 	range->len = trimmed;
6356 	if (bg_ret)
6357 		return bg_ret;
6358 	return dev_ret;
6359 }
6360