xref: /linux/fs/btrfs/extent-tree.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 
39 #undef SCRAMBLE_DELAYED_REFS
40 
41 /*
42  * control flags for do_chunk_alloc's force field
43  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44  * if we really need one.
45  *
46  * CHUNK_ALLOC_LIMITED means to only try and allocate one
47  * if we have very few chunks already allocated.  This is
48  * used as part of the clustering code to help make sure
49  * we have a good pool of storage to cluster in, without
50  * filling the FS with empty chunks
51  *
52  * CHUNK_ALLOC_FORCE means it must try to allocate one
53  *
54  */
55 enum {
56 	CHUNK_ALLOC_NO_FORCE = 0,
57 	CHUNK_ALLOC_LIMITED = 1,
58 	CHUNK_ALLOC_FORCE = 2,
59 };
60 
61 /*
62  * Control how reservations are dealt with.
63  *
64  * RESERVE_FREE - freeing a reservation.
65  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66  *   ENOSPC accounting
67  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68  *   bytes_may_use as the ENOSPC accounting is done elsewhere
69  */
70 enum {
71 	RESERVE_FREE = 0,
72 	RESERVE_ALLOC = 1,
73 	RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75 
76 static int update_block_group(struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 			       u64 num_bytes);
108 
109 static noinline int
110 block_group_cache_done(struct btrfs_block_group_cache *cache)
111 {
112 	smp_mb();
113 	return cache->cached == BTRFS_CACHE_FINISHED;
114 }
115 
116 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
117 {
118 	return (cache->flags & bits) == bits;
119 }
120 
121 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	atomic_inc(&cache->count);
124 }
125 
126 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
127 {
128 	if (atomic_dec_and_test(&cache->count)) {
129 		WARN_ON(cache->pinned > 0);
130 		WARN_ON(cache->reserved > 0);
131 		kfree(cache->free_space_ctl);
132 		kfree(cache);
133 	}
134 }
135 
136 /*
137  * this adds the block group to the fs_info rb tree for the block group
138  * cache
139  */
140 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
141 				struct btrfs_block_group_cache *block_group)
142 {
143 	struct rb_node **p;
144 	struct rb_node *parent = NULL;
145 	struct btrfs_block_group_cache *cache;
146 
147 	spin_lock(&info->block_group_cache_lock);
148 	p = &info->block_group_cache_tree.rb_node;
149 
150 	while (*p) {
151 		parent = *p;
152 		cache = rb_entry(parent, struct btrfs_block_group_cache,
153 				 cache_node);
154 		if (block_group->key.objectid < cache->key.objectid) {
155 			p = &(*p)->rb_left;
156 		} else if (block_group->key.objectid > cache->key.objectid) {
157 			p = &(*p)->rb_right;
158 		} else {
159 			spin_unlock(&info->block_group_cache_lock);
160 			return -EEXIST;
161 		}
162 	}
163 
164 	rb_link_node(&block_group->cache_node, parent, p);
165 	rb_insert_color(&block_group->cache_node,
166 			&info->block_group_cache_tree);
167 
168 	if (info->first_logical_byte > block_group->key.objectid)
169 		info->first_logical_byte = block_group->key.objectid;
170 
171 	spin_unlock(&info->block_group_cache_lock);
172 
173 	return 0;
174 }
175 
176 /*
177  * This will return the block group at or after bytenr if contains is 0, else
178  * it will return the block group that contains the bytenr
179  */
180 static struct btrfs_block_group_cache *
181 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
182 			      int contains)
183 {
184 	struct btrfs_block_group_cache *cache, *ret = NULL;
185 	struct rb_node *n;
186 	u64 end, start;
187 
188 	spin_lock(&info->block_group_cache_lock);
189 	n = info->block_group_cache_tree.rb_node;
190 
191 	while (n) {
192 		cache = rb_entry(n, struct btrfs_block_group_cache,
193 				 cache_node);
194 		end = cache->key.objectid + cache->key.offset - 1;
195 		start = cache->key.objectid;
196 
197 		if (bytenr < start) {
198 			if (!contains && (!ret || start < ret->key.objectid))
199 				ret = cache;
200 			n = n->rb_left;
201 		} else if (bytenr > start) {
202 			if (contains && bytenr <= end) {
203 				ret = cache;
204 				break;
205 			}
206 			n = n->rb_right;
207 		} else {
208 			ret = cache;
209 			break;
210 		}
211 	}
212 	if (ret) {
213 		btrfs_get_block_group(ret);
214 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
215 			info->first_logical_byte = ret->key.objectid;
216 	}
217 	spin_unlock(&info->block_group_cache_lock);
218 
219 	return ret;
220 }
221 
222 static int add_excluded_extent(struct btrfs_root *root,
223 			       u64 start, u64 num_bytes)
224 {
225 	u64 end = start + num_bytes - 1;
226 	set_extent_bits(&root->fs_info->freed_extents[0],
227 			start, end, EXTENT_UPTODATE, GFP_NOFS);
228 	set_extent_bits(&root->fs_info->freed_extents[1],
229 			start, end, EXTENT_UPTODATE, GFP_NOFS);
230 	return 0;
231 }
232 
233 static void free_excluded_extents(struct btrfs_root *root,
234 				  struct btrfs_block_group_cache *cache)
235 {
236 	u64 start, end;
237 
238 	start = cache->key.objectid;
239 	end = start + cache->key.offset - 1;
240 
241 	clear_extent_bits(&root->fs_info->freed_extents[0],
242 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
243 	clear_extent_bits(&root->fs_info->freed_extents[1],
244 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
245 }
246 
247 static int exclude_super_stripes(struct btrfs_root *root,
248 				 struct btrfs_block_group_cache *cache)
249 {
250 	u64 bytenr;
251 	u64 *logical;
252 	int stripe_len;
253 	int i, nr, ret;
254 
255 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
256 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
257 		cache->bytes_super += stripe_len;
258 		ret = add_excluded_extent(root, cache->key.objectid,
259 					  stripe_len);
260 		if (ret)
261 			return ret;
262 	}
263 
264 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
265 		bytenr = btrfs_sb_offset(i);
266 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
267 				       cache->key.objectid, bytenr,
268 				       0, &logical, &nr, &stripe_len);
269 		if (ret)
270 			return ret;
271 
272 		while (nr--) {
273 			cache->bytes_super += stripe_len;
274 			ret = add_excluded_extent(root, logical[nr],
275 						  stripe_len);
276 			if (ret) {
277 				kfree(logical);
278 				return ret;
279 			}
280 		}
281 
282 		kfree(logical);
283 	}
284 	return 0;
285 }
286 
287 static struct btrfs_caching_control *
288 get_caching_control(struct btrfs_block_group_cache *cache)
289 {
290 	struct btrfs_caching_control *ctl;
291 
292 	spin_lock(&cache->lock);
293 	if (cache->cached != BTRFS_CACHE_STARTED) {
294 		spin_unlock(&cache->lock);
295 		return NULL;
296 	}
297 
298 	/* We're loading it the fast way, so we don't have a caching_ctl. */
299 	if (!cache->caching_ctl) {
300 		spin_unlock(&cache->lock);
301 		return NULL;
302 	}
303 
304 	ctl = cache->caching_ctl;
305 	atomic_inc(&ctl->count);
306 	spin_unlock(&cache->lock);
307 	return ctl;
308 }
309 
310 static void put_caching_control(struct btrfs_caching_control *ctl)
311 {
312 	if (atomic_dec_and_test(&ctl->count))
313 		kfree(ctl);
314 }
315 
316 /*
317  * this is only called by cache_block_group, since we could have freed extents
318  * we need to check the pinned_extents for any extents that can't be used yet
319  * since their free space will be released as soon as the transaction commits.
320  */
321 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
322 			      struct btrfs_fs_info *info, u64 start, u64 end)
323 {
324 	u64 extent_start, extent_end, size, total_added = 0;
325 	int ret;
326 
327 	while (start < end) {
328 		ret = find_first_extent_bit(info->pinned_extents, start,
329 					    &extent_start, &extent_end,
330 					    EXTENT_DIRTY | EXTENT_UPTODATE,
331 					    NULL);
332 		if (ret)
333 			break;
334 
335 		if (extent_start <= start) {
336 			start = extent_end + 1;
337 		} else if (extent_start > start && extent_start < end) {
338 			size = extent_start - start;
339 			total_added += size;
340 			ret = btrfs_add_free_space(block_group, start,
341 						   size);
342 			BUG_ON(ret); /* -ENOMEM or logic error */
343 			start = extent_end + 1;
344 		} else {
345 			break;
346 		}
347 	}
348 
349 	if (start < end) {
350 		size = end - start;
351 		total_added += size;
352 		ret = btrfs_add_free_space(block_group, start, size);
353 		BUG_ON(ret); /* -ENOMEM or logic error */
354 	}
355 
356 	return total_added;
357 }
358 
359 static noinline void caching_thread(struct btrfs_work *work)
360 {
361 	struct btrfs_block_group_cache *block_group;
362 	struct btrfs_fs_info *fs_info;
363 	struct btrfs_caching_control *caching_ctl;
364 	struct btrfs_root *extent_root;
365 	struct btrfs_path *path;
366 	struct extent_buffer *leaf;
367 	struct btrfs_key key;
368 	u64 total_found = 0;
369 	u64 last = 0;
370 	u32 nritems;
371 	int ret = 0;
372 
373 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
374 	block_group = caching_ctl->block_group;
375 	fs_info = block_group->fs_info;
376 	extent_root = fs_info->extent_root;
377 
378 	path = btrfs_alloc_path();
379 	if (!path)
380 		goto out;
381 
382 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
383 
384 	/*
385 	 * We don't want to deadlock with somebody trying to allocate a new
386 	 * extent for the extent root while also trying to search the extent
387 	 * root to add free space.  So we skip locking and search the commit
388 	 * root, since its read-only
389 	 */
390 	path->skip_locking = 1;
391 	path->search_commit_root = 1;
392 	path->reada = 1;
393 
394 	key.objectid = last;
395 	key.offset = 0;
396 	key.type = BTRFS_EXTENT_ITEM_KEY;
397 again:
398 	mutex_lock(&caching_ctl->mutex);
399 	/* need to make sure the commit_root doesn't disappear */
400 	down_read(&fs_info->extent_commit_sem);
401 
402 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
403 	if (ret < 0)
404 		goto err;
405 
406 	leaf = path->nodes[0];
407 	nritems = btrfs_header_nritems(leaf);
408 
409 	while (1) {
410 		if (btrfs_fs_closing(fs_info) > 1) {
411 			last = (u64)-1;
412 			break;
413 		}
414 
415 		if (path->slots[0] < nritems) {
416 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
417 		} else {
418 			ret = find_next_key(path, 0, &key);
419 			if (ret)
420 				break;
421 
422 			if (need_resched() ||
423 			    btrfs_next_leaf(extent_root, path)) {
424 				caching_ctl->progress = last;
425 				btrfs_release_path(path);
426 				up_read(&fs_info->extent_commit_sem);
427 				mutex_unlock(&caching_ctl->mutex);
428 				cond_resched();
429 				goto again;
430 			}
431 			leaf = path->nodes[0];
432 			nritems = btrfs_header_nritems(leaf);
433 			continue;
434 		}
435 
436 		if (key.objectid < block_group->key.objectid) {
437 			path->slots[0]++;
438 			continue;
439 		}
440 
441 		if (key.objectid >= block_group->key.objectid +
442 		    block_group->key.offset)
443 			break;
444 
445 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
446 			total_found += add_new_free_space(block_group,
447 							  fs_info, last,
448 							  key.objectid);
449 			last = key.objectid + key.offset;
450 
451 			if (total_found > (1024 * 1024 * 2)) {
452 				total_found = 0;
453 				wake_up(&caching_ctl->wait);
454 			}
455 		}
456 		path->slots[0]++;
457 	}
458 	ret = 0;
459 
460 	total_found += add_new_free_space(block_group, fs_info, last,
461 					  block_group->key.objectid +
462 					  block_group->key.offset);
463 	caching_ctl->progress = (u64)-1;
464 
465 	spin_lock(&block_group->lock);
466 	block_group->caching_ctl = NULL;
467 	block_group->cached = BTRFS_CACHE_FINISHED;
468 	spin_unlock(&block_group->lock);
469 
470 err:
471 	btrfs_free_path(path);
472 	up_read(&fs_info->extent_commit_sem);
473 
474 	free_excluded_extents(extent_root, block_group);
475 
476 	mutex_unlock(&caching_ctl->mutex);
477 out:
478 	wake_up(&caching_ctl->wait);
479 
480 	put_caching_control(caching_ctl);
481 	btrfs_put_block_group(block_group);
482 }
483 
484 static int cache_block_group(struct btrfs_block_group_cache *cache,
485 			     int load_cache_only)
486 {
487 	DEFINE_WAIT(wait);
488 	struct btrfs_fs_info *fs_info = cache->fs_info;
489 	struct btrfs_caching_control *caching_ctl;
490 	int ret = 0;
491 
492 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
493 	if (!caching_ctl)
494 		return -ENOMEM;
495 
496 	INIT_LIST_HEAD(&caching_ctl->list);
497 	mutex_init(&caching_ctl->mutex);
498 	init_waitqueue_head(&caching_ctl->wait);
499 	caching_ctl->block_group = cache;
500 	caching_ctl->progress = cache->key.objectid;
501 	atomic_set(&caching_ctl->count, 1);
502 	caching_ctl->work.func = caching_thread;
503 
504 	spin_lock(&cache->lock);
505 	/*
506 	 * This should be a rare occasion, but this could happen I think in the
507 	 * case where one thread starts to load the space cache info, and then
508 	 * some other thread starts a transaction commit which tries to do an
509 	 * allocation while the other thread is still loading the space cache
510 	 * info.  The previous loop should have kept us from choosing this block
511 	 * group, but if we've moved to the state where we will wait on caching
512 	 * block groups we need to first check if we're doing a fast load here,
513 	 * so we can wait for it to finish, otherwise we could end up allocating
514 	 * from a block group who's cache gets evicted for one reason or
515 	 * another.
516 	 */
517 	while (cache->cached == BTRFS_CACHE_FAST) {
518 		struct btrfs_caching_control *ctl;
519 
520 		ctl = cache->caching_ctl;
521 		atomic_inc(&ctl->count);
522 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
523 		spin_unlock(&cache->lock);
524 
525 		schedule();
526 
527 		finish_wait(&ctl->wait, &wait);
528 		put_caching_control(ctl);
529 		spin_lock(&cache->lock);
530 	}
531 
532 	if (cache->cached != BTRFS_CACHE_NO) {
533 		spin_unlock(&cache->lock);
534 		kfree(caching_ctl);
535 		return 0;
536 	}
537 	WARN_ON(cache->caching_ctl);
538 	cache->caching_ctl = caching_ctl;
539 	cache->cached = BTRFS_CACHE_FAST;
540 	spin_unlock(&cache->lock);
541 
542 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
543 		ret = load_free_space_cache(fs_info, cache);
544 
545 		spin_lock(&cache->lock);
546 		if (ret == 1) {
547 			cache->caching_ctl = NULL;
548 			cache->cached = BTRFS_CACHE_FINISHED;
549 			cache->last_byte_to_unpin = (u64)-1;
550 		} else {
551 			if (load_cache_only) {
552 				cache->caching_ctl = NULL;
553 				cache->cached = BTRFS_CACHE_NO;
554 			} else {
555 				cache->cached = BTRFS_CACHE_STARTED;
556 			}
557 		}
558 		spin_unlock(&cache->lock);
559 		wake_up(&caching_ctl->wait);
560 		if (ret == 1) {
561 			put_caching_control(caching_ctl);
562 			free_excluded_extents(fs_info->extent_root, cache);
563 			return 0;
564 		}
565 	} else {
566 		/*
567 		 * We are not going to do the fast caching, set cached to the
568 		 * appropriate value and wakeup any waiters.
569 		 */
570 		spin_lock(&cache->lock);
571 		if (load_cache_only) {
572 			cache->caching_ctl = NULL;
573 			cache->cached = BTRFS_CACHE_NO;
574 		} else {
575 			cache->cached = BTRFS_CACHE_STARTED;
576 		}
577 		spin_unlock(&cache->lock);
578 		wake_up(&caching_ctl->wait);
579 	}
580 
581 	if (load_cache_only) {
582 		put_caching_control(caching_ctl);
583 		return 0;
584 	}
585 
586 	down_write(&fs_info->extent_commit_sem);
587 	atomic_inc(&caching_ctl->count);
588 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
589 	up_write(&fs_info->extent_commit_sem);
590 
591 	btrfs_get_block_group(cache);
592 
593 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
594 
595 	return ret;
596 }
597 
598 /*
599  * return the block group that starts at or after bytenr
600  */
601 static struct btrfs_block_group_cache *
602 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
603 {
604 	struct btrfs_block_group_cache *cache;
605 
606 	cache = block_group_cache_tree_search(info, bytenr, 0);
607 
608 	return cache;
609 }
610 
611 /*
612  * return the block group that contains the given bytenr
613  */
614 struct btrfs_block_group_cache *btrfs_lookup_block_group(
615 						 struct btrfs_fs_info *info,
616 						 u64 bytenr)
617 {
618 	struct btrfs_block_group_cache *cache;
619 
620 	cache = block_group_cache_tree_search(info, bytenr, 1);
621 
622 	return cache;
623 }
624 
625 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
626 						  u64 flags)
627 {
628 	struct list_head *head = &info->space_info;
629 	struct btrfs_space_info *found;
630 
631 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
632 
633 	rcu_read_lock();
634 	list_for_each_entry_rcu(found, head, list) {
635 		if (found->flags & flags) {
636 			rcu_read_unlock();
637 			return found;
638 		}
639 	}
640 	rcu_read_unlock();
641 	return NULL;
642 }
643 
644 /*
645  * after adding space to the filesystem, we need to clear the full flags
646  * on all the space infos.
647  */
648 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
649 {
650 	struct list_head *head = &info->space_info;
651 	struct btrfs_space_info *found;
652 
653 	rcu_read_lock();
654 	list_for_each_entry_rcu(found, head, list)
655 		found->full = 0;
656 	rcu_read_unlock();
657 }
658 
659 u64 btrfs_find_block_group(struct btrfs_root *root,
660 			   u64 search_start, u64 search_hint, int owner)
661 {
662 	struct btrfs_block_group_cache *cache;
663 	u64 used;
664 	u64 last = max(search_hint, search_start);
665 	u64 group_start = 0;
666 	int full_search = 0;
667 	int factor = 9;
668 	int wrapped = 0;
669 again:
670 	while (1) {
671 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
672 		if (!cache)
673 			break;
674 
675 		spin_lock(&cache->lock);
676 		last = cache->key.objectid + cache->key.offset;
677 		used = btrfs_block_group_used(&cache->item);
678 
679 		if ((full_search || !cache->ro) &&
680 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
681 			if (used + cache->pinned + cache->reserved <
682 			    div_factor(cache->key.offset, factor)) {
683 				group_start = cache->key.objectid;
684 				spin_unlock(&cache->lock);
685 				btrfs_put_block_group(cache);
686 				goto found;
687 			}
688 		}
689 		spin_unlock(&cache->lock);
690 		btrfs_put_block_group(cache);
691 		cond_resched();
692 	}
693 	if (!wrapped) {
694 		last = search_start;
695 		wrapped = 1;
696 		goto again;
697 	}
698 	if (!full_search && factor < 10) {
699 		last = search_start;
700 		full_search = 1;
701 		factor = 10;
702 		goto again;
703 	}
704 found:
705 	return group_start;
706 }
707 
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 	int ret;
712 	struct btrfs_key key;
713 	struct btrfs_path *path;
714 
715 	path = btrfs_alloc_path();
716 	if (!path)
717 		return -ENOMEM;
718 
719 	key.objectid = start;
720 	key.offset = len;
721 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
722 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 				0, 0);
724 	btrfs_free_path(path);
725 	return ret;
726 }
727 
728 /*
729  * helper function to lookup reference count and flags of extent.
730  *
731  * the head node for delayed ref is used to store the sum of all the
732  * reference count modifications queued up in the rbtree. the head
733  * node may also store the extent flags to set. This way you can check
734  * to see what the reference count and extent flags would be if all of
735  * the delayed refs are not processed.
736  */
737 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
738 			     struct btrfs_root *root, u64 bytenr,
739 			     u64 num_bytes, u64 *refs, u64 *flags)
740 {
741 	struct btrfs_delayed_ref_head *head;
742 	struct btrfs_delayed_ref_root *delayed_refs;
743 	struct btrfs_path *path;
744 	struct btrfs_extent_item *ei;
745 	struct extent_buffer *leaf;
746 	struct btrfs_key key;
747 	u32 item_size;
748 	u64 num_refs;
749 	u64 extent_flags;
750 	int ret;
751 
752 	path = btrfs_alloc_path();
753 	if (!path)
754 		return -ENOMEM;
755 
756 	key.objectid = bytenr;
757 	key.type = BTRFS_EXTENT_ITEM_KEY;
758 	key.offset = num_bytes;
759 	if (!trans) {
760 		path->skip_locking = 1;
761 		path->search_commit_root = 1;
762 	}
763 again:
764 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
765 				&key, path, 0, 0);
766 	if (ret < 0)
767 		goto out_free;
768 
769 	if (ret == 0) {
770 		leaf = path->nodes[0];
771 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
772 		if (item_size >= sizeof(*ei)) {
773 			ei = btrfs_item_ptr(leaf, path->slots[0],
774 					    struct btrfs_extent_item);
775 			num_refs = btrfs_extent_refs(leaf, ei);
776 			extent_flags = btrfs_extent_flags(leaf, ei);
777 		} else {
778 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
779 			struct btrfs_extent_item_v0 *ei0;
780 			BUG_ON(item_size != sizeof(*ei0));
781 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
782 					     struct btrfs_extent_item_v0);
783 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
784 			/* FIXME: this isn't correct for data */
785 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
786 #else
787 			BUG();
788 #endif
789 		}
790 		BUG_ON(num_refs == 0);
791 	} else {
792 		num_refs = 0;
793 		extent_flags = 0;
794 		ret = 0;
795 	}
796 
797 	if (!trans)
798 		goto out;
799 
800 	delayed_refs = &trans->transaction->delayed_refs;
801 	spin_lock(&delayed_refs->lock);
802 	head = btrfs_find_delayed_ref_head(trans, bytenr);
803 	if (head) {
804 		if (!mutex_trylock(&head->mutex)) {
805 			atomic_inc(&head->node.refs);
806 			spin_unlock(&delayed_refs->lock);
807 
808 			btrfs_release_path(path);
809 
810 			/*
811 			 * Mutex was contended, block until it's released and try
812 			 * again
813 			 */
814 			mutex_lock(&head->mutex);
815 			mutex_unlock(&head->mutex);
816 			btrfs_put_delayed_ref(&head->node);
817 			goto again;
818 		}
819 		if (head->extent_op && head->extent_op->update_flags)
820 			extent_flags |= head->extent_op->flags_to_set;
821 		else
822 			BUG_ON(num_refs == 0);
823 
824 		num_refs += head->node.ref_mod;
825 		mutex_unlock(&head->mutex);
826 	}
827 	spin_unlock(&delayed_refs->lock);
828 out:
829 	WARN_ON(num_refs == 0);
830 	if (refs)
831 		*refs = num_refs;
832 	if (flags)
833 		*flags = extent_flags;
834 out_free:
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 /*
840  * Back reference rules.  Back refs have three main goals:
841  *
842  * 1) differentiate between all holders of references to an extent so that
843  *    when a reference is dropped we can make sure it was a valid reference
844  *    before freeing the extent.
845  *
846  * 2) Provide enough information to quickly find the holders of an extent
847  *    if we notice a given block is corrupted or bad.
848  *
849  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
850  *    maintenance.  This is actually the same as #2, but with a slightly
851  *    different use case.
852  *
853  * There are two kinds of back refs. The implicit back refs is optimized
854  * for pointers in non-shared tree blocks. For a given pointer in a block,
855  * back refs of this kind provide information about the block's owner tree
856  * and the pointer's key. These information allow us to find the block by
857  * b-tree searching. The full back refs is for pointers in tree blocks not
858  * referenced by their owner trees. The location of tree block is recorded
859  * in the back refs. Actually the full back refs is generic, and can be
860  * used in all cases the implicit back refs is used. The major shortcoming
861  * of the full back refs is its overhead. Every time a tree block gets
862  * COWed, we have to update back refs entry for all pointers in it.
863  *
864  * For a newly allocated tree block, we use implicit back refs for
865  * pointers in it. This means most tree related operations only involve
866  * implicit back refs. For a tree block created in old transaction, the
867  * only way to drop a reference to it is COW it. So we can detect the
868  * event that tree block loses its owner tree's reference and do the
869  * back refs conversion.
870  *
871  * When a tree block is COW'd through a tree, there are four cases:
872  *
873  * The reference count of the block is one and the tree is the block's
874  * owner tree. Nothing to do in this case.
875  *
876  * The reference count of the block is one and the tree is not the
877  * block's owner tree. In this case, full back refs is used for pointers
878  * in the block. Remove these full back refs, add implicit back refs for
879  * every pointers in the new block.
880  *
881  * The reference count of the block is greater than one and the tree is
882  * the block's owner tree. In this case, implicit back refs is used for
883  * pointers in the block. Add full back refs for every pointers in the
884  * block, increase lower level extents' reference counts. The original
885  * implicit back refs are entailed to the new block.
886  *
887  * The reference count of the block is greater than one and the tree is
888  * not the block's owner tree. Add implicit back refs for every pointer in
889  * the new block, increase lower level extents' reference count.
890  *
891  * Back Reference Key composing:
892  *
893  * The key objectid corresponds to the first byte in the extent,
894  * The key type is used to differentiate between types of back refs.
895  * There are different meanings of the key offset for different types
896  * of back refs.
897  *
898  * File extents can be referenced by:
899  *
900  * - multiple snapshots, subvolumes, or different generations in one subvol
901  * - different files inside a single subvolume
902  * - different offsets inside a file (bookend extents in file.c)
903  *
904  * The extent ref structure for the implicit back refs has fields for:
905  *
906  * - Objectid of the subvolume root
907  * - objectid of the file holding the reference
908  * - original offset in the file
909  * - how many bookend extents
910  *
911  * The key offset for the implicit back refs is hash of the first
912  * three fields.
913  *
914  * The extent ref structure for the full back refs has field for:
915  *
916  * - number of pointers in the tree leaf
917  *
918  * The key offset for the implicit back refs is the first byte of
919  * the tree leaf
920  *
921  * When a file extent is allocated, The implicit back refs is used.
922  * the fields are filled in:
923  *
924  *     (root_key.objectid, inode objectid, offset in file, 1)
925  *
926  * When a file extent is removed file truncation, we find the
927  * corresponding implicit back refs and check the following fields:
928  *
929  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
930  *
931  * Btree extents can be referenced by:
932  *
933  * - Different subvolumes
934  *
935  * Both the implicit back refs and the full back refs for tree blocks
936  * only consist of key. The key offset for the implicit back refs is
937  * objectid of block's owner tree. The key offset for the full back refs
938  * is the first byte of parent block.
939  *
940  * When implicit back refs is used, information about the lowest key and
941  * level of the tree block are required. These information are stored in
942  * tree block info structure.
943  */
944 
945 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
946 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
947 				  struct btrfs_root *root,
948 				  struct btrfs_path *path,
949 				  u64 owner, u32 extra_size)
950 {
951 	struct btrfs_extent_item *item;
952 	struct btrfs_extent_item_v0 *ei0;
953 	struct btrfs_extent_ref_v0 *ref0;
954 	struct btrfs_tree_block_info *bi;
955 	struct extent_buffer *leaf;
956 	struct btrfs_key key;
957 	struct btrfs_key found_key;
958 	u32 new_size = sizeof(*item);
959 	u64 refs;
960 	int ret;
961 
962 	leaf = path->nodes[0];
963 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
964 
965 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
966 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
967 			     struct btrfs_extent_item_v0);
968 	refs = btrfs_extent_refs_v0(leaf, ei0);
969 
970 	if (owner == (u64)-1) {
971 		while (1) {
972 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
973 				ret = btrfs_next_leaf(root, path);
974 				if (ret < 0)
975 					return ret;
976 				BUG_ON(ret > 0); /* Corruption */
977 				leaf = path->nodes[0];
978 			}
979 			btrfs_item_key_to_cpu(leaf, &found_key,
980 					      path->slots[0]);
981 			BUG_ON(key.objectid != found_key.objectid);
982 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
983 				path->slots[0]++;
984 				continue;
985 			}
986 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
987 					      struct btrfs_extent_ref_v0);
988 			owner = btrfs_ref_objectid_v0(leaf, ref0);
989 			break;
990 		}
991 	}
992 	btrfs_release_path(path);
993 
994 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
995 		new_size += sizeof(*bi);
996 
997 	new_size -= sizeof(*ei0);
998 	ret = btrfs_search_slot(trans, root, &key, path,
999 				new_size + extra_size, 1);
1000 	if (ret < 0)
1001 		return ret;
1002 	BUG_ON(ret); /* Corruption */
1003 
1004 	btrfs_extend_item(trans, root, path, new_size);
1005 
1006 	leaf = path->nodes[0];
1007 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008 	btrfs_set_extent_refs(leaf, item, refs);
1009 	/* FIXME: get real generation */
1010 	btrfs_set_extent_generation(leaf, item, 0);
1011 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1012 		btrfs_set_extent_flags(leaf, item,
1013 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1014 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1015 		bi = (struct btrfs_tree_block_info *)(item + 1);
1016 		/* FIXME: get first key of the block */
1017 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1018 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1019 	} else {
1020 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1021 	}
1022 	btrfs_mark_buffer_dirty(leaf);
1023 	return 0;
1024 }
1025 #endif
1026 
1027 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1028 {
1029 	u32 high_crc = ~(u32)0;
1030 	u32 low_crc = ~(u32)0;
1031 	__le64 lenum;
1032 
1033 	lenum = cpu_to_le64(root_objectid);
1034 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1035 	lenum = cpu_to_le64(owner);
1036 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1037 	lenum = cpu_to_le64(offset);
1038 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1039 
1040 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1041 }
1042 
1043 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1044 				     struct btrfs_extent_data_ref *ref)
1045 {
1046 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1047 				    btrfs_extent_data_ref_objectid(leaf, ref),
1048 				    btrfs_extent_data_ref_offset(leaf, ref));
1049 }
1050 
1051 static int match_extent_data_ref(struct extent_buffer *leaf,
1052 				 struct btrfs_extent_data_ref *ref,
1053 				 u64 root_objectid, u64 owner, u64 offset)
1054 {
1055 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1056 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1057 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1058 		return 0;
1059 	return 1;
1060 }
1061 
1062 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1063 					   struct btrfs_root *root,
1064 					   struct btrfs_path *path,
1065 					   u64 bytenr, u64 parent,
1066 					   u64 root_objectid,
1067 					   u64 owner, u64 offset)
1068 {
1069 	struct btrfs_key key;
1070 	struct btrfs_extent_data_ref *ref;
1071 	struct extent_buffer *leaf;
1072 	u32 nritems;
1073 	int ret;
1074 	int recow;
1075 	int err = -ENOENT;
1076 
1077 	key.objectid = bytenr;
1078 	if (parent) {
1079 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1080 		key.offset = parent;
1081 	} else {
1082 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1083 		key.offset = hash_extent_data_ref(root_objectid,
1084 						  owner, offset);
1085 	}
1086 again:
1087 	recow = 0;
1088 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 	if (ret < 0) {
1090 		err = ret;
1091 		goto fail;
1092 	}
1093 
1094 	if (parent) {
1095 		if (!ret)
1096 			return 0;
1097 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1098 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1099 		btrfs_release_path(path);
1100 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1101 		if (ret < 0) {
1102 			err = ret;
1103 			goto fail;
1104 		}
1105 		if (!ret)
1106 			return 0;
1107 #endif
1108 		goto fail;
1109 	}
1110 
1111 	leaf = path->nodes[0];
1112 	nritems = btrfs_header_nritems(leaf);
1113 	while (1) {
1114 		if (path->slots[0] >= nritems) {
1115 			ret = btrfs_next_leaf(root, path);
1116 			if (ret < 0)
1117 				err = ret;
1118 			if (ret)
1119 				goto fail;
1120 
1121 			leaf = path->nodes[0];
1122 			nritems = btrfs_header_nritems(leaf);
1123 			recow = 1;
1124 		}
1125 
1126 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1127 		if (key.objectid != bytenr ||
1128 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1129 			goto fail;
1130 
1131 		ref = btrfs_item_ptr(leaf, path->slots[0],
1132 				     struct btrfs_extent_data_ref);
1133 
1134 		if (match_extent_data_ref(leaf, ref, root_objectid,
1135 					  owner, offset)) {
1136 			if (recow) {
1137 				btrfs_release_path(path);
1138 				goto again;
1139 			}
1140 			err = 0;
1141 			break;
1142 		}
1143 		path->slots[0]++;
1144 	}
1145 fail:
1146 	return err;
1147 }
1148 
1149 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1150 					   struct btrfs_root *root,
1151 					   struct btrfs_path *path,
1152 					   u64 bytenr, u64 parent,
1153 					   u64 root_objectid, u64 owner,
1154 					   u64 offset, int refs_to_add)
1155 {
1156 	struct btrfs_key key;
1157 	struct extent_buffer *leaf;
1158 	u32 size;
1159 	u32 num_refs;
1160 	int ret;
1161 
1162 	key.objectid = bytenr;
1163 	if (parent) {
1164 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1165 		key.offset = parent;
1166 		size = sizeof(struct btrfs_shared_data_ref);
1167 	} else {
1168 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1169 		key.offset = hash_extent_data_ref(root_objectid,
1170 						  owner, offset);
1171 		size = sizeof(struct btrfs_extent_data_ref);
1172 	}
1173 
1174 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1175 	if (ret && ret != -EEXIST)
1176 		goto fail;
1177 
1178 	leaf = path->nodes[0];
1179 	if (parent) {
1180 		struct btrfs_shared_data_ref *ref;
1181 		ref = btrfs_item_ptr(leaf, path->slots[0],
1182 				     struct btrfs_shared_data_ref);
1183 		if (ret == 0) {
1184 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1185 		} else {
1186 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1187 			num_refs += refs_to_add;
1188 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1189 		}
1190 	} else {
1191 		struct btrfs_extent_data_ref *ref;
1192 		while (ret == -EEXIST) {
1193 			ref = btrfs_item_ptr(leaf, path->slots[0],
1194 					     struct btrfs_extent_data_ref);
1195 			if (match_extent_data_ref(leaf, ref, root_objectid,
1196 						  owner, offset))
1197 				break;
1198 			btrfs_release_path(path);
1199 			key.offset++;
1200 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1201 						      size);
1202 			if (ret && ret != -EEXIST)
1203 				goto fail;
1204 
1205 			leaf = path->nodes[0];
1206 		}
1207 		ref = btrfs_item_ptr(leaf, path->slots[0],
1208 				     struct btrfs_extent_data_ref);
1209 		if (ret == 0) {
1210 			btrfs_set_extent_data_ref_root(leaf, ref,
1211 						       root_objectid);
1212 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1213 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1214 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1215 		} else {
1216 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1217 			num_refs += refs_to_add;
1218 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1219 		}
1220 	}
1221 	btrfs_mark_buffer_dirty(leaf);
1222 	ret = 0;
1223 fail:
1224 	btrfs_release_path(path);
1225 	return ret;
1226 }
1227 
1228 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1229 					   struct btrfs_root *root,
1230 					   struct btrfs_path *path,
1231 					   int refs_to_drop)
1232 {
1233 	struct btrfs_key key;
1234 	struct btrfs_extent_data_ref *ref1 = NULL;
1235 	struct btrfs_shared_data_ref *ref2 = NULL;
1236 	struct extent_buffer *leaf;
1237 	u32 num_refs = 0;
1238 	int ret = 0;
1239 
1240 	leaf = path->nodes[0];
1241 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1242 
1243 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1244 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1245 				      struct btrfs_extent_data_ref);
1246 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1247 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1248 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1249 				      struct btrfs_shared_data_ref);
1250 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1252 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1253 		struct btrfs_extent_ref_v0 *ref0;
1254 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1255 				      struct btrfs_extent_ref_v0);
1256 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1257 #endif
1258 	} else {
1259 		BUG();
1260 	}
1261 
1262 	BUG_ON(num_refs < refs_to_drop);
1263 	num_refs -= refs_to_drop;
1264 
1265 	if (num_refs == 0) {
1266 		ret = btrfs_del_item(trans, root, path);
1267 	} else {
1268 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1269 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1270 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1271 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1273 		else {
1274 			struct btrfs_extent_ref_v0 *ref0;
1275 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1276 					struct btrfs_extent_ref_v0);
1277 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1278 		}
1279 #endif
1280 		btrfs_mark_buffer_dirty(leaf);
1281 	}
1282 	return ret;
1283 }
1284 
1285 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1286 					  struct btrfs_path *path,
1287 					  struct btrfs_extent_inline_ref *iref)
1288 {
1289 	struct btrfs_key key;
1290 	struct extent_buffer *leaf;
1291 	struct btrfs_extent_data_ref *ref1;
1292 	struct btrfs_shared_data_ref *ref2;
1293 	u32 num_refs = 0;
1294 
1295 	leaf = path->nodes[0];
1296 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1297 	if (iref) {
1298 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1299 		    BTRFS_EXTENT_DATA_REF_KEY) {
1300 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1301 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1302 		} else {
1303 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1304 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1305 		}
1306 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1307 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1308 				      struct btrfs_extent_data_ref);
1309 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1311 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1312 				      struct btrfs_shared_data_ref);
1313 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1316 		struct btrfs_extent_ref_v0 *ref0;
1317 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 				      struct btrfs_extent_ref_v0);
1319 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1320 #endif
1321 	} else {
1322 		WARN_ON(1);
1323 	}
1324 	return num_refs;
1325 }
1326 
1327 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1328 					  struct btrfs_root *root,
1329 					  struct btrfs_path *path,
1330 					  u64 bytenr, u64 parent,
1331 					  u64 root_objectid)
1332 {
1333 	struct btrfs_key key;
1334 	int ret;
1335 
1336 	key.objectid = bytenr;
1337 	if (parent) {
1338 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 		key.offset = parent;
1340 	} else {
1341 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1342 		key.offset = root_objectid;
1343 	}
1344 
1345 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1346 	if (ret > 0)
1347 		ret = -ENOENT;
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	if (ret == -ENOENT && parent) {
1350 		btrfs_release_path(path);
1351 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1352 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1353 		if (ret > 0)
1354 			ret = -ENOENT;
1355 	}
1356 #endif
1357 	return ret;
1358 }
1359 
1360 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1361 					  struct btrfs_root *root,
1362 					  struct btrfs_path *path,
1363 					  u64 bytenr, u64 parent,
1364 					  u64 root_objectid)
1365 {
1366 	struct btrfs_key key;
1367 	int ret;
1368 
1369 	key.objectid = bytenr;
1370 	if (parent) {
1371 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1372 		key.offset = parent;
1373 	} else {
1374 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1375 		key.offset = root_objectid;
1376 	}
1377 
1378 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1379 	btrfs_release_path(path);
1380 	return ret;
1381 }
1382 
1383 static inline int extent_ref_type(u64 parent, u64 owner)
1384 {
1385 	int type;
1386 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1387 		if (parent > 0)
1388 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1389 		else
1390 			type = BTRFS_TREE_BLOCK_REF_KEY;
1391 	} else {
1392 		if (parent > 0)
1393 			type = BTRFS_SHARED_DATA_REF_KEY;
1394 		else
1395 			type = BTRFS_EXTENT_DATA_REF_KEY;
1396 	}
1397 	return type;
1398 }
1399 
1400 static int find_next_key(struct btrfs_path *path, int level,
1401 			 struct btrfs_key *key)
1402 
1403 {
1404 	for (; level < BTRFS_MAX_LEVEL; level++) {
1405 		if (!path->nodes[level])
1406 			break;
1407 		if (path->slots[level] + 1 >=
1408 		    btrfs_header_nritems(path->nodes[level]))
1409 			continue;
1410 		if (level == 0)
1411 			btrfs_item_key_to_cpu(path->nodes[level], key,
1412 					      path->slots[level] + 1);
1413 		else
1414 			btrfs_node_key_to_cpu(path->nodes[level], key,
1415 					      path->slots[level] + 1);
1416 		return 0;
1417 	}
1418 	return 1;
1419 }
1420 
1421 /*
1422  * look for inline back ref. if back ref is found, *ref_ret is set
1423  * to the address of inline back ref, and 0 is returned.
1424  *
1425  * if back ref isn't found, *ref_ret is set to the address where it
1426  * should be inserted, and -ENOENT is returned.
1427  *
1428  * if insert is true and there are too many inline back refs, the path
1429  * points to the extent item, and -EAGAIN is returned.
1430  *
1431  * NOTE: inline back refs are ordered in the same way that back ref
1432  *	 items in the tree are ordered.
1433  */
1434 static noinline_for_stack
1435 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1436 				 struct btrfs_root *root,
1437 				 struct btrfs_path *path,
1438 				 struct btrfs_extent_inline_ref **ref_ret,
1439 				 u64 bytenr, u64 num_bytes,
1440 				 u64 parent, u64 root_objectid,
1441 				 u64 owner, u64 offset, int insert)
1442 {
1443 	struct btrfs_key key;
1444 	struct extent_buffer *leaf;
1445 	struct btrfs_extent_item *ei;
1446 	struct btrfs_extent_inline_ref *iref;
1447 	u64 flags;
1448 	u64 item_size;
1449 	unsigned long ptr;
1450 	unsigned long end;
1451 	int extra_size;
1452 	int type;
1453 	int want;
1454 	int ret;
1455 	int err = 0;
1456 
1457 	key.objectid = bytenr;
1458 	key.type = BTRFS_EXTENT_ITEM_KEY;
1459 	key.offset = num_bytes;
1460 
1461 	want = extent_ref_type(parent, owner);
1462 	if (insert) {
1463 		extra_size = btrfs_extent_inline_ref_size(want);
1464 		path->keep_locks = 1;
1465 	} else
1466 		extra_size = -1;
1467 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1468 	if (ret < 0) {
1469 		err = ret;
1470 		goto out;
1471 	}
1472 	if (ret && !insert) {
1473 		err = -ENOENT;
1474 		goto out;
1475 	} else if (ret) {
1476 		err = -EIO;
1477 		WARN_ON(1);
1478 		goto out;
1479 	}
1480 
1481 	leaf = path->nodes[0];
1482 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1483 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1484 	if (item_size < sizeof(*ei)) {
1485 		if (!insert) {
1486 			err = -ENOENT;
1487 			goto out;
1488 		}
1489 		ret = convert_extent_item_v0(trans, root, path, owner,
1490 					     extra_size);
1491 		if (ret < 0) {
1492 			err = ret;
1493 			goto out;
1494 		}
1495 		leaf = path->nodes[0];
1496 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1497 	}
1498 #endif
1499 	BUG_ON(item_size < sizeof(*ei));
1500 
1501 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1502 	flags = btrfs_extent_flags(leaf, ei);
1503 
1504 	ptr = (unsigned long)(ei + 1);
1505 	end = (unsigned long)ei + item_size;
1506 
1507 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1508 		ptr += sizeof(struct btrfs_tree_block_info);
1509 		BUG_ON(ptr > end);
1510 	} else {
1511 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1512 	}
1513 
1514 	err = -ENOENT;
1515 	while (1) {
1516 		if (ptr >= end) {
1517 			WARN_ON(ptr > end);
1518 			break;
1519 		}
1520 		iref = (struct btrfs_extent_inline_ref *)ptr;
1521 		type = btrfs_extent_inline_ref_type(leaf, iref);
1522 		if (want < type)
1523 			break;
1524 		if (want > type) {
1525 			ptr += btrfs_extent_inline_ref_size(type);
1526 			continue;
1527 		}
1528 
1529 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1530 			struct btrfs_extent_data_ref *dref;
1531 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1532 			if (match_extent_data_ref(leaf, dref, root_objectid,
1533 						  owner, offset)) {
1534 				err = 0;
1535 				break;
1536 			}
1537 			if (hash_extent_data_ref_item(leaf, dref) <
1538 			    hash_extent_data_ref(root_objectid, owner, offset))
1539 				break;
1540 		} else {
1541 			u64 ref_offset;
1542 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1543 			if (parent > 0) {
1544 				if (parent == ref_offset) {
1545 					err = 0;
1546 					break;
1547 				}
1548 				if (ref_offset < parent)
1549 					break;
1550 			} else {
1551 				if (root_objectid == ref_offset) {
1552 					err = 0;
1553 					break;
1554 				}
1555 				if (ref_offset < root_objectid)
1556 					break;
1557 			}
1558 		}
1559 		ptr += btrfs_extent_inline_ref_size(type);
1560 	}
1561 	if (err == -ENOENT && insert) {
1562 		if (item_size + extra_size >=
1563 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1564 			err = -EAGAIN;
1565 			goto out;
1566 		}
1567 		/*
1568 		 * To add new inline back ref, we have to make sure
1569 		 * there is no corresponding back ref item.
1570 		 * For simplicity, we just do not add new inline back
1571 		 * ref if there is any kind of item for this block
1572 		 */
1573 		if (find_next_key(path, 0, &key) == 0 &&
1574 		    key.objectid == bytenr &&
1575 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1576 			err = -EAGAIN;
1577 			goto out;
1578 		}
1579 	}
1580 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1581 out:
1582 	if (insert) {
1583 		path->keep_locks = 0;
1584 		btrfs_unlock_up_safe(path, 1);
1585 	}
1586 	return err;
1587 }
1588 
1589 /*
1590  * helper to add new inline back ref
1591  */
1592 static noinline_for_stack
1593 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1594 				 struct btrfs_root *root,
1595 				 struct btrfs_path *path,
1596 				 struct btrfs_extent_inline_ref *iref,
1597 				 u64 parent, u64 root_objectid,
1598 				 u64 owner, u64 offset, int refs_to_add,
1599 				 struct btrfs_delayed_extent_op *extent_op)
1600 {
1601 	struct extent_buffer *leaf;
1602 	struct btrfs_extent_item *ei;
1603 	unsigned long ptr;
1604 	unsigned long end;
1605 	unsigned long item_offset;
1606 	u64 refs;
1607 	int size;
1608 	int type;
1609 
1610 	leaf = path->nodes[0];
1611 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1612 	item_offset = (unsigned long)iref - (unsigned long)ei;
1613 
1614 	type = extent_ref_type(parent, owner);
1615 	size = btrfs_extent_inline_ref_size(type);
1616 
1617 	btrfs_extend_item(trans, root, path, size);
1618 
1619 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1620 	refs = btrfs_extent_refs(leaf, ei);
1621 	refs += refs_to_add;
1622 	btrfs_set_extent_refs(leaf, ei, refs);
1623 	if (extent_op)
1624 		__run_delayed_extent_op(extent_op, leaf, ei);
1625 
1626 	ptr = (unsigned long)ei + item_offset;
1627 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1628 	if (ptr < end - size)
1629 		memmove_extent_buffer(leaf, ptr + size, ptr,
1630 				      end - size - ptr);
1631 
1632 	iref = (struct btrfs_extent_inline_ref *)ptr;
1633 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1634 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1635 		struct btrfs_extent_data_ref *dref;
1636 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1637 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1638 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1639 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1640 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1641 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1642 		struct btrfs_shared_data_ref *sref;
1643 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1644 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1645 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1646 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1647 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 	} else {
1649 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1650 	}
1651 	btrfs_mark_buffer_dirty(leaf);
1652 }
1653 
1654 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1655 				 struct btrfs_root *root,
1656 				 struct btrfs_path *path,
1657 				 struct btrfs_extent_inline_ref **ref_ret,
1658 				 u64 bytenr, u64 num_bytes, u64 parent,
1659 				 u64 root_objectid, u64 owner, u64 offset)
1660 {
1661 	int ret;
1662 
1663 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1664 					   bytenr, num_bytes, parent,
1665 					   root_objectid, owner, offset, 0);
1666 	if (ret != -ENOENT)
1667 		return ret;
1668 
1669 	btrfs_release_path(path);
1670 	*ref_ret = NULL;
1671 
1672 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1673 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1674 					    root_objectid);
1675 	} else {
1676 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1677 					     root_objectid, owner, offset);
1678 	}
1679 	return ret;
1680 }
1681 
1682 /*
1683  * helper to update/remove inline back ref
1684  */
1685 static noinline_for_stack
1686 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1687 				  struct btrfs_root *root,
1688 				  struct btrfs_path *path,
1689 				  struct btrfs_extent_inline_ref *iref,
1690 				  int refs_to_mod,
1691 				  struct btrfs_delayed_extent_op *extent_op)
1692 {
1693 	struct extent_buffer *leaf;
1694 	struct btrfs_extent_item *ei;
1695 	struct btrfs_extent_data_ref *dref = NULL;
1696 	struct btrfs_shared_data_ref *sref = NULL;
1697 	unsigned long ptr;
1698 	unsigned long end;
1699 	u32 item_size;
1700 	int size;
1701 	int type;
1702 	u64 refs;
1703 
1704 	leaf = path->nodes[0];
1705 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706 	refs = btrfs_extent_refs(leaf, ei);
1707 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1708 	refs += refs_to_mod;
1709 	btrfs_set_extent_refs(leaf, ei, refs);
1710 	if (extent_op)
1711 		__run_delayed_extent_op(extent_op, leaf, ei);
1712 
1713 	type = btrfs_extent_inline_ref_type(leaf, iref);
1714 
1715 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1716 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1717 		refs = btrfs_extent_data_ref_count(leaf, dref);
1718 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		refs = btrfs_shared_data_ref_count(leaf, sref);
1721 	} else {
1722 		refs = 1;
1723 		BUG_ON(refs_to_mod != -1);
1724 	}
1725 
1726 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1727 	refs += refs_to_mod;
1728 
1729 	if (refs > 0) {
1730 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1731 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1732 		else
1733 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1734 	} else {
1735 		size =  btrfs_extent_inline_ref_size(type);
1736 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1737 		ptr = (unsigned long)iref;
1738 		end = (unsigned long)ei + item_size;
1739 		if (ptr + size < end)
1740 			memmove_extent_buffer(leaf, ptr, ptr + size,
1741 					      end - ptr - size);
1742 		item_size -= size;
1743 		btrfs_truncate_item(trans, root, path, item_size, 1);
1744 	}
1745 	btrfs_mark_buffer_dirty(leaf);
1746 }
1747 
1748 static noinline_for_stack
1749 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1750 				 struct btrfs_root *root,
1751 				 struct btrfs_path *path,
1752 				 u64 bytenr, u64 num_bytes, u64 parent,
1753 				 u64 root_objectid, u64 owner,
1754 				 u64 offset, int refs_to_add,
1755 				 struct btrfs_delayed_extent_op *extent_op)
1756 {
1757 	struct btrfs_extent_inline_ref *iref;
1758 	int ret;
1759 
1760 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1761 					   bytenr, num_bytes, parent,
1762 					   root_objectid, owner, offset, 1);
1763 	if (ret == 0) {
1764 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1765 		update_inline_extent_backref(trans, root, path, iref,
1766 					     refs_to_add, extent_op);
1767 	} else if (ret == -ENOENT) {
1768 		setup_inline_extent_backref(trans, root, path, iref, parent,
1769 					    root_objectid, owner, offset,
1770 					    refs_to_add, extent_op);
1771 		ret = 0;
1772 	}
1773 	return ret;
1774 }
1775 
1776 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1777 				 struct btrfs_root *root,
1778 				 struct btrfs_path *path,
1779 				 u64 bytenr, u64 parent, u64 root_objectid,
1780 				 u64 owner, u64 offset, int refs_to_add)
1781 {
1782 	int ret;
1783 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1784 		BUG_ON(refs_to_add != 1);
1785 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1786 					    parent, root_objectid);
1787 	} else {
1788 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1789 					     parent, root_objectid,
1790 					     owner, offset, refs_to_add);
1791 	}
1792 	return ret;
1793 }
1794 
1795 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1796 				 struct btrfs_root *root,
1797 				 struct btrfs_path *path,
1798 				 struct btrfs_extent_inline_ref *iref,
1799 				 int refs_to_drop, int is_data)
1800 {
1801 	int ret = 0;
1802 
1803 	BUG_ON(!is_data && refs_to_drop != 1);
1804 	if (iref) {
1805 		update_inline_extent_backref(trans, root, path, iref,
1806 					     -refs_to_drop, NULL);
1807 	} else if (is_data) {
1808 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1809 	} else {
1810 		ret = btrfs_del_item(trans, root, path);
1811 	}
1812 	return ret;
1813 }
1814 
1815 static int btrfs_issue_discard(struct block_device *bdev,
1816 				u64 start, u64 len)
1817 {
1818 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1819 }
1820 
1821 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1822 				u64 num_bytes, u64 *actual_bytes)
1823 {
1824 	int ret;
1825 	u64 discarded_bytes = 0;
1826 	struct btrfs_bio *bbio = NULL;
1827 
1828 
1829 	/* Tell the block device(s) that the sectors can be discarded */
1830 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1831 			      bytenr, &num_bytes, &bbio, 0);
1832 	/* Error condition is -ENOMEM */
1833 	if (!ret) {
1834 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1835 		int i;
1836 
1837 
1838 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1839 			if (!stripe->dev->can_discard)
1840 				continue;
1841 
1842 			ret = btrfs_issue_discard(stripe->dev->bdev,
1843 						  stripe->physical,
1844 						  stripe->length);
1845 			if (!ret)
1846 				discarded_bytes += stripe->length;
1847 			else if (ret != -EOPNOTSUPP)
1848 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1849 
1850 			/*
1851 			 * Just in case we get back EOPNOTSUPP for some reason,
1852 			 * just ignore the return value so we don't screw up
1853 			 * people calling discard_extent.
1854 			 */
1855 			ret = 0;
1856 		}
1857 		kfree(bbio);
1858 	}
1859 
1860 	if (actual_bytes)
1861 		*actual_bytes = discarded_bytes;
1862 
1863 
1864 	if (ret == -EOPNOTSUPP)
1865 		ret = 0;
1866 	return ret;
1867 }
1868 
1869 /* Can return -ENOMEM */
1870 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1871 			 struct btrfs_root *root,
1872 			 u64 bytenr, u64 num_bytes, u64 parent,
1873 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1874 {
1875 	int ret;
1876 	struct btrfs_fs_info *fs_info = root->fs_info;
1877 
1878 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1879 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1880 
1881 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1882 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1883 					num_bytes,
1884 					parent, root_objectid, (int)owner,
1885 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1886 	} else {
1887 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1888 					num_bytes,
1889 					parent, root_objectid, owner, offset,
1890 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 	}
1892 	return ret;
1893 }
1894 
1895 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1896 				  struct btrfs_root *root,
1897 				  u64 bytenr, u64 num_bytes,
1898 				  u64 parent, u64 root_objectid,
1899 				  u64 owner, u64 offset, int refs_to_add,
1900 				  struct btrfs_delayed_extent_op *extent_op)
1901 {
1902 	struct btrfs_path *path;
1903 	struct extent_buffer *leaf;
1904 	struct btrfs_extent_item *item;
1905 	u64 refs;
1906 	int ret;
1907 	int err = 0;
1908 
1909 	path = btrfs_alloc_path();
1910 	if (!path)
1911 		return -ENOMEM;
1912 
1913 	path->reada = 1;
1914 	path->leave_spinning = 1;
1915 	/* this will setup the path even if it fails to insert the back ref */
1916 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1917 					   path, bytenr, num_bytes, parent,
1918 					   root_objectid, owner, offset,
1919 					   refs_to_add, extent_op);
1920 	if (ret == 0)
1921 		goto out;
1922 
1923 	if (ret != -EAGAIN) {
1924 		err = ret;
1925 		goto out;
1926 	}
1927 
1928 	leaf = path->nodes[0];
1929 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1930 	refs = btrfs_extent_refs(leaf, item);
1931 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1932 	if (extent_op)
1933 		__run_delayed_extent_op(extent_op, leaf, item);
1934 
1935 	btrfs_mark_buffer_dirty(leaf);
1936 	btrfs_release_path(path);
1937 
1938 	path->reada = 1;
1939 	path->leave_spinning = 1;
1940 
1941 	/* now insert the actual backref */
1942 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1943 				    path, bytenr, parent, root_objectid,
1944 				    owner, offset, refs_to_add);
1945 	if (ret)
1946 		btrfs_abort_transaction(trans, root, ret);
1947 out:
1948 	btrfs_free_path(path);
1949 	return err;
1950 }
1951 
1952 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1953 				struct btrfs_root *root,
1954 				struct btrfs_delayed_ref_node *node,
1955 				struct btrfs_delayed_extent_op *extent_op,
1956 				int insert_reserved)
1957 {
1958 	int ret = 0;
1959 	struct btrfs_delayed_data_ref *ref;
1960 	struct btrfs_key ins;
1961 	u64 parent = 0;
1962 	u64 ref_root = 0;
1963 	u64 flags = 0;
1964 
1965 	ins.objectid = node->bytenr;
1966 	ins.offset = node->num_bytes;
1967 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1968 
1969 	ref = btrfs_delayed_node_to_data_ref(node);
1970 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1971 		parent = ref->parent;
1972 	else
1973 		ref_root = ref->root;
1974 
1975 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1976 		if (extent_op) {
1977 			BUG_ON(extent_op->update_key);
1978 			flags |= extent_op->flags_to_set;
1979 		}
1980 		ret = alloc_reserved_file_extent(trans, root,
1981 						 parent, ref_root, flags,
1982 						 ref->objectid, ref->offset,
1983 						 &ins, node->ref_mod);
1984 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1985 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1986 					     node->num_bytes, parent,
1987 					     ref_root, ref->objectid,
1988 					     ref->offset, node->ref_mod,
1989 					     extent_op);
1990 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1991 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1992 					  node->num_bytes, parent,
1993 					  ref_root, ref->objectid,
1994 					  ref->offset, node->ref_mod,
1995 					  extent_op);
1996 	} else {
1997 		BUG();
1998 	}
1999 	return ret;
2000 }
2001 
2002 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2003 				    struct extent_buffer *leaf,
2004 				    struct btrfs_extent_item *ei)
2005 {
2006 	u64 flags = btrfs_extent_flags(leaf, ei);
2007 	if (extent_op->update_flags) {
2008 		flags |= extent_op->flags_to_set;
2009 		btrfs_set_extent_flags(leaf, ei, flags);
2010 	}
2011 
2012 	if (extent_op->update_key) {
2013 		struct btrfs_tree_block_info *bi;
2014 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2015 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2016 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2017 	}
2018 }
2019 
2020 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2021 				 struct btrfs_root *root,
2022 				 struct btrfs_delayed_ref_node *node,
2023 				 struct btrfs_delayed_extent_op *extent_op)
2024 {
2025 	struct btrfs_key key;
2026 	struct btrfs_path *path;
2027 	struct btrfs_extent_item *ei;
2028 	struct extent_buffer *leaf;
2029 	u32 item_size;
2030 	int ret;
2031 	int err = 0;
2032 
2033 	if (trans->aborted)
2034 		return 0;
2035 
2036 	path = btrfs_alloc_path();
2037 	if (!path)
2038 		return -ENOMEM;
2039 
2040 	key.objectid = node->bytenr;
2041 	key.type = BTRFS_EXTENT_ITEM_KEY;
2042 	key.offset = node->num_bytes;
2043 
2044 	path->reada = 1;
2045 	path->leave_spinning = 1;
2046 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2047 				path, 0, 1);
2048 	if (ret < 0) {
2049 		err = ret;
2050 		goto out;
2051 	}
2052 	if (ret > 0) {
2053 		err = -EIO;
2054 		goto out;
2055 	}
2056 
2057 	leaf = path->nodes[0];
2058 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2059 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2060 	if (item_size < sizeof(*ei)) {
2061 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2062 					     path, (u64)-1, 0);
2063 		if (ret < 0) {
2064 			err = ret;
2065 			goto out;
2066 		}
2067 		leaf = path->nodes[0];
2068 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2069 	}
2070 #endif
2071 	BUG_ON(item_size < sizeof(*ei));
2072 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2073 	__run_delayed_extent_op(extent_op, leaf, ei);
2074 
2075 	btrfs_mark_buffer_dirty(leaf);
2076 out:
2077 	btrfs_free_path(path);
2078 	return err;
2079 }
2080 
2081 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2082 				struct btrfs_root *root,
2083 				struct btrfs_delayed_ref_node *node,
2084 				struct btrfs_delayed_extent_op *extent_op,
2085 				int insert_reserved)
2086 {
2087 	int ret = 0;
2088 	struct btrfs_delayed_tree_ref *ref;
2089 	struct btrfs_key ins;
2090 	u64 parent = 0;
2091 	u64 ref_root = 0;
2092 
2093 	ins.objectid = node->bytenr;
2094 	ins.offset = node->num_bytes;
2095 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2096 
2097 	ref = btrfs_delayed_node_to_tree_ref(node);
2098 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2099 		parent = ref->parent;
2100 	else
2101 		ref_root = ref->root;
2102 
2103 	BUG_ON(node->ref_mod != 1);
2104 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2105 		BUG_ON(!extent_op || !extent_op->update_flags ||
2106 		       !extent_op->update_key);
2107 		ret = alloc_reserved_tree_block(trans, root,
2108 						parent, ref_root,
2109 						extent_op->flags_to_set,
2110 						&extent_op->key,
2111 						ref->level, &ins);
2112 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2113 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2114 					     node->num_bytes, parent, ref_root,
2115 					     ref->level, 0, 1, extent_op);
2116 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2117 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2118 					  node->num_bytes, parent, ref_root,
2119 					  ref->level, 0, 1, extent_op);
2120 	} else {
2121 		BUG();
2122 	}
2123 	return ret;
2124 }
2125 
2126 /* helper function to actually process a single delayed ref entry */
2127 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2128 			       struct btrfs_root *root,
2129 			       struct btrfs_delayed_ref_node *node,
2130 			       struct btrfs_delayed_extent_op *extent_op,
2131 			       int insert_reserved)
2132 {
2133 	int ret = 0;
2134 
2135 	if (trans->aborted)
2136 		return 0;
2137 
2138 	if (btrfs_delayed_ref_is_head(node)) {
2139 		struct btrfs_delayed_ref_head *head;
2140 		/*
2141 		 * we've hit the end of the chain and we were supposed
2142 		 * to insert this extent into the tree.  But, it got
2143 		 * deleted before we ever needed to insert it, so all
2144 		 * we have to do is clean up the accounting
2145 		 */
2146 		BUG_ON(extent_op);
2147 		head = btrfs_delayed_node_to_head(node);
2148 		if (insert_reserved) {
2149 			btrfs_pin_extent(root, node->bytenr,
2150 					 node->num_bytes, 1);
2151 			if (head->is_data) {
2152 				ret = btrfs_del_csums(trans, root,
2153 						      node->bytenr,
2154 						      node->num_bytes);
2155 			}
2156 		}
2157 		return ret;
2158 	}
2159 
2160 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2161 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2162 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2163 					   insert_reserved);
2164 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2165 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2166 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2167 					   insert_reserved);
2168 	else
2169 		BUG();
2170 	return ret;
2171 }
2172 
2173 static noinline struct btrfs_delayed_ref_node *
2174 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2175 {
2176 	struct rb_node *node;
2177 	struct btrfs_delayed_ref_node *ref;
2178 	int action = BTRFS_ADD_DELAYED_REF;
2179 again:
2180 	/*
2181 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2182 	 * this prevents ref count from going down to zero when
2183 	 * there still are pending delayed ref.
2184 	 */
2185 	node = rb_prev(&head->node.rb_node);
2186 	while (1) {
2187 		if (!node)
2188 			break;
2189 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2190 				rb_node);
2191 		if (ref->bytenr != head->node.bytenr)
2192 			break;
2193 		if (ref->action == action)
2194 			return ref;
2195 		node = rb_prev(node);
2196 	}
2197 	if (action == BTRFS_ADD_DELAYED_REF) {
2198 		action = BTRFS_DROP_DELAYED_REF;
2199 		goto again;
2200 	}
2201 	return NULL;
2202 }
2203 
2204 /*
2205  * Returns 0 on success or if called with an already aborted transaction.
2206  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2207  */
2208 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2209 				       struct btrfs_root *root,
2210 				       struct list_head *cluster)
2211 {
2212 	struct btrfs_delayed_ref_root *delayed_refs;
2213 	struct btrfs_delayed_ref_node *ref;
2214 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2215 	struct btrfs_delayed_extent_op *extent_op;
2216 	struct btrfs_fs_info *fs_info = root->fs_info;
2217 	int ret;
2218 	int count = 0;
2219 	int must_insert_reserved = 0;
2220 
2221 	delayed_refs = &trans->transaction->delayed_refs;
2222 	while (1) {
2223 		if (!locked_ref) {
2224 			/* pick a new head ref from the cluster list */
2225 			if (list_empty(cluster))
2226 				break;
2227 
2228 			locked_ref = list_entry(cluster->next,
2229 				     struct btrfs_delayed_ref_head, cluster);
2230 
2231 			/* grab the lock that says we are going to process
2232 			 * all the refs for this head */
2233 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2234 
2235 			/*
2236 			 * we may have dropped the spin lock to get the head
2237 			 * mutex lock, and that might have given someone else
2238 			 * time to free the head.  If that's true, it has been
2239 			 * removed from our list and we can move on.
2240 			 */
2241 			if (ret == -EAGAIN) {
2242 				locked_ref = NULL;
2243 				count++;
2244 				continue;
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * We need to try and merge add/drops of the same ref since we
2250 		 * can run into issues with relocate dropping the implicit ref
2251 		 * and then it being added back again before the drop can
2252 		 * finish.  If we merged anything we need to re-loop so we can
2253 		 * get a good ref.
2254 		 */
2255 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2256 					 locked_ref);
2257 
2258 		/*
2259 		 * locked_ref is the head node, so we have to go one
2260 		 * node back for any delayed ref updates
2261 		 */
2262 		ref = select_delayed_ref(locked_ref);
2263 
2264 		if (ref && ref->seq &&
2265 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2266 			/*
2267 			 * there are still refs with lower seq numbers in the
2268 			 * process of being added. Don't run this ref yet.
2269 			 */
2270 			list_del_init(&locked_ref->cluster);
2271 			btrfs_delayed_ref_unlock(locked_ref);
2272 			locked_ref = NULL;
2273 			delayed_refs->num_heads_ready++;
2274 			spin_unlock(&delayed_refs->lock);
2275 			cond_resched();
2276 			spin_lock(&delayed_refs->lock);
2277 			continue;
2278 		}
2279 
2280 		/*
2281 		 * record the must insert reserved flag before we
2282 		 * drop the spin lock.
2283 		 */
2284 		must_insert_reserved = locked_ref->must_insert_reserved;
2285 		locked_ref->must_insert_reserved = 0;
2286 
2287 		extent_op = locked_ref->extent_op;
2288 		locked_ref->extent_op = NULL;
2289 
2290 		if (!ref) {
2291 			/* All delayed refs have been processed, Go ahead
2292 			 * and send the head node to run_one_delayed_ref,
2293 			 * so that any accounting fixes can happen
2294 			 */
2295 			ref = &locked_ref->node;
2296 
2297 			if (extent_op && must_insert_reserved) {
2298 				btrfs_free_delayed_extent_op(extent_op);
2299 				extent_op = NULL;
2300 			}
2301 
2302 			if (extent_op) {
2303 				spin_unlock(&delayed_refs->lock);
2304 
2305 				ret = run_delayed_extent_op(trans, root,
2306 							    ref, extent_op);
2307 				btrfs_free_delayed_extent_op(extent_op);
2308 
2309 				if (ret) {
2310 					printk(KERN_DEBUG
2311 					       "btrfs: run_delayed_extent_op "
2312 					       "returned %d\n", ret);
2313 					spin_lock(&delayed_refs->lock);
2314 					btrfs_delayed_ref_unlock(locked_ref);
2315 					return ret;
2316 				}
2317 
2318 				goto next;
2319 			}
2320 		}
2321 
2322 		ref->in_tree = 0;
2323 		rb_erase(&ref->rb_node, &delayed_refs->root);
2324 		delayed_refs->num_entries--;
2325 		if (!btrfs_delayed_ref_is_head(ref)) {
2326 			/*
2327 			 * when we play the delayed ref, also correct the
2328 			 * ref_mod on head
2329 			 */
2330 			switch (ref->action) {
2331 			case BTRFS_ADD_DELAYED_REF:
2332 			case BTRFS_ADD_DELAYED_EXTENT:
2333 				locked_ref->node.ref_mod -= ref->ref_mod;
2334 				break;
2335 			case BTRFS_DROP_DELAYED_REF:
2336 				locked_ref->node.ref_mod += ref->ref_mod;
2337 				break;
2338 			default:
2339 				WARN_ON(1);
2340 			}
2341 		}
2342 		spin_unlock(&delayed_refs->lock);
2343 
2344 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2345 					  must_insert_reserved);
2346 
2347 		btrfs_free_delayed_extent_op(extent_op);
2348 		if (ret) {
2349 			btrfs_delayed_ref_unlock(locked_ref);
2350 			btrfs_put_delayed_ref(ref);
2351 			printk(KERN_DEBUG
2352 			       "btrfs: run_one_delayed_ref returned %d\n", ret);
2353 			spin_lock(&delayed_refs->lock);
2354 			return ret;
2355 		}
2356 
2357 		/*
2358 		 * If this node is a head, that means all the refs in this head
2359 		 * have been dealt with, and we will pick the next head to deal
2360 		 * with, so we must unlock the head and drop it from the cluster
2361 		 * list before we release it.
2362 		 */
2363 		if (btrfs_delayed_ref_is_head(ref)) {
2364 			list_del_init(&locked_ref->cluster);
2365 			btrfs_delayed_ref_unlock(locked_ref);
2366 			locked_ref = NULL;
2367 		}
2368 		btrfs_put_delayed_ref(ref);
2369 		count++;
2370 next:
2371 		cond_resched();
2372 		spin_lock(&delayed_refs->lock);
2373 	}
2374 	return count;
2375 }
2376 
2377 #ifdef SCRAMBLE_DELAYED_REFS
2378 /*
2379  * Normally delayed refs get processed in ascending bytenr order. This
2380  * correlates in most cases to the order added. To expose dependencies on this
2381  * order, we start to process the tree in the middle instead of the beginning
2382  */
2383 static u64 find_middle(struct rb_root *root)
2384 {
2385 	struct rb_node *n = root->rb_node;
2386 	struct btrfs_delayed_ref_node *entry;
2387 	int alt = 1;
2388 	u64 middle;
2389 	u64 first = 0, last = 0;
2390 
2391 	n = rb_first(root);
2392 	if (n) {
2393 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2394 		first = entry->bytenr;
2395 	}
2396 	n = rb_last(root);
2397 	if (n) {
2398 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2399 		last = entry->bytenr;
2400 	}
2401 	n = root->rb_node;
2402 
2403 	while (n) {
2404 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2405 		WARN_ON(!entry->in_tree);
2406 
2407 		middle = entry->bytenr;
2408 
2409 		if (alt)
2410 			n = n->rb_left;
2411 		else
2412 			n = n->rb_right;
2413 
2414 		alt = 1 - alt;
2415 	}
2416 	return middle;
2417 }
2418 #endif
2419 
2420 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2421 					 struct btrfs_fs_info *fs_info)
2422 {
2423 	struct qgroup_update *qgroup_update;
2424 	int ret = 0;
2425 
2426 	if (list_empty(&trans->qgroup_ref_list) !=
2427 	    !trans->delayed_ref_elem.seq) {
2428 		/* list without seq or seq without list */
2429 		printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2430 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2431 			trans->delayed_ref_elem.seq);
2432 		BUG();
2433 	}
2434 
2435 	if (!trans->delayed_ref_elem.seq)
2436 		return 0;
2437 
2438 	while (!list_empty(&trans->qgroup_ref_list)) {
2439 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2440 						 struct qgroup_update, list);
2441 		list_del(&qgroup_update->list);
2442 		if (!ret)
2443 			ret = btrfs_qgroup_account_ref(
2444 					trans, fs_info, qgroup_update->node,
2445 					qgroup_update->extent_op);
2446 		kfree(qgroup_update);
2447 	}
2448 
2449 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2450 
2451 	return ret;
2452 }
2453 
2454 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2455 		      int count)
2456 {
2457 	int val = atomic_read(&delayed_refs->ref_seq);
2458 
2459 	if (val < seq || val >= seq + count)
2460 		return 1;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * this starts processing the delayed reference count updates and
2466  * extent insertions we have queued up so far.  count can be
2467  * 0, which means to process everything in the tree at the start
2468  * of the run (but not newly added entries), or it can be some target
2469  * number you'd like to process.
2470  *
2471  * Returns 0 on success or if called with an aborted transaction
2472  * Returns <0 on error and aborts the transaction
2473  */
2474 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2475 			   struct btrfs_root *root, unsigned long count)
2476 {
2477 	struct rb_node *node;
2478 	struct btrfs_delayed_ref_root *delayed_refs;
2479 	struct btrfs_delayed_ref_node *ref;
2480 	struct list_head cluster;
2481 	int ret;
2482 	u64 delayed_start;
2483 	int run_all = count == (unsigned long)-1;
2484 	int run_most = 0;
2485 	int loops;
2486 
2487 	/* We'll clean this up in btrfs_cleanup_transaction */
2488 	if (trans->aborted)
2489 		return 0;
2490 
2491 	if (root == root->fs_info->extent_root)
2492 		root = root->fs_info->tree_root;
2493 
2494 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2495 
2496 	delayed_refs = &trans->transaction->delayed_refs;
2497 	INIT_LIST_HEAD(&cluster);
2498 	if (count == 0) {
2499 		count = delayed_refs->num_entries * 2;
2500 		run_most = 1;
2501 	}
2502 
2503 	if (!run_all && !run_most) {
2504 		int old;
2505 		int seq = atomic_read(&delayed_refs->ref_seq);
2506 
2507 progress:
2508 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2509 		if (old) {
2510 			DEFINE_WAIT(__wait);
2511 			if (delayed_refs->num_entries < 16348)
2512 				return 0;
2513 
2514 			prepare_to_wait(&delayed_refs->wait, &__wait,
2515 					TASK_UNINTERRUPTIBLE);
2516 
2517 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2518 			if (old) {
2519 				schedule();
2520 				finish_wait(&delayed_refs->wait, &__wait);
2521 
2522 				if (!refs_newer(delayed_refs, seq, 256))
2523 					goto progress;
2524 				else
2525 					return 0;
2526 			} else {
2527 				finish_wait(&delayed_refs->wait, &__wait);
2528 				goto again;
2529 			}
2530 		}
2531 
2532 	} else {
2533 		atomic_inc(&delayed_refs->procs_running_refs);
2534 	}
2535 
2536 again:
2537 	loops = 0;
2538 	spin_lock(&delayed_refs->lock);
2539 
2540 #ifdef SCRAMBLE_DELAYED_REFS
2541 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2542 #endif
2543 
2544 	while (1) {
2545 		if (!(run_all || run_most) &&
2546 		    delayed_refs->num_heads_ready < 64)
2547 			break;
2548 
2549 		/*
2550 		 * go find something we can process in the rbtree.  We start at
2551 		 * the beginning of the tree, and then build a cluster
2552 		 * of refs to process starting at the first one we are able to
2553 		 * lock
2554 		 */
2555 		delayed_start = delayed_refs->run_delayed_start;
2556 		ret = btrfs_find_ref_cluster(trans, &cluster,
2557 					     delayed_refs->run_delayed_start);
2558 		if (ret)
2559 			break;
2560 
2561 		ret = run_clustered_refs(trans, root, &cluster);
2562 		if (ret < 0) {
2563 			btrfs_release_ref_cluster(&cluster);
2564 			spin_unlock(&delayed_refs->lock);
2565 			btrfs_abort_transaction(trans, root, ret);
2566 			atomic_dec(&delayed_refs->procs_running_refs);
2567 			return ret;
2568 		}
2569 
2570 		atomic_add(ret, &delayed_refs->ref_seq);
2571 
2572 		count -= min_t(unsigned long, ret, count);
2573 
2574 		if (count == 0)
2575 			break;
2576 
2577 		if (delayed_start >= delayed_refs->run_delayed_start) {
2578 			if (loops == 0) {
2579 				/*
2580 				 * btrfs_find_ref_cluster looped. let's do one
2581 				 * more cycle. if we don't run any delayed ref
2582 				 * during that cycle (because we can't because
2583 				 * all of them are blocked), bail out.
2584 				 */
2585 				loops = 1;
2586 			} else {
2587 				/*
2588 				 * no runnable refs left, stop trying
2589 				 */
2590 				BUG_ON(run_all);
2591 				break;
2592 			}
2593 		}
2594 		if (ret) {
2595 			/* refs were run, let's reset staleness detection */
2596 			loops = 0;
2597 		}
2598 	}
2599 
2600 	if (run_all) {
2601 		if (!list_empty(&trans->new_bgs)) {
2602 			spin_unlock(&delayed_refs->lock);
2603 			btrfs_create_pending_block_groups(trans, root);
2604 			spin_lock(&delayed_refs->lock);
2605 		}
2606 
2607 		node = rb_first(&delayed_refs->root);
2608 		if (!node)
2609 			goto out;
2610 		count = (unsigned long)-1;
2611 
2612 		while (node) {
2613 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2614 				       rb_node);
2615 			if (btrfs_delayed_ref_is_head(ref)) {
2616 				struct btrfs_delayed_ref_head *head;
2617 
2618 				head = btrfs_delayed_node_to_head(ref);
2619 				atomic_inc(&ref->refs);
2620 
2621 				spin_unlock(&delayed_refs->lock);
2622 				/*
2623 				 * Mutex was contended, block until it's
2624 				 * released and try again
2625 				 */
2626 				mutex_lock(&head->mutex);
2627 				mutex_unlock(&head->mutex);
2628 
2629 				btrfs_put_delayed_ref(ref);
2630 				cond_resched();
2631 				goto again;
2632 			}
2633 			node = rb_next(node);
2634 		}
2635 		spin_unlock(&delayed_refs->lock);
2636 		schedule_timeout(1);
2637 		goto again;
2638 	}
2639 out:
2640 	atomic_dec(&delayed_refs->procs_running_refs);
2641 	smp_mb();
2642 	if (waitqueue_active(&delayed_refs->wait))
2643 		wake_up(&delayed_refs->wait);
2644 
2645 	spin_unlock(&delayed_refs->lock);
2646 	assert_qgroups_uptodate(trans);
2647 	return 0;
2648 }
2649 
2650 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2651 				struct btrfs_root *root,
2652 				u64 bytenr, u64 num_bytes, u64 flags,
2653 				int is_data)
2654 {
2655 	struct btrfs_delayed_extent_op *extent_op;
2656 	int ret;
2657 
2658 	extent_op = btrfs_alloc_delayed_extent_op();
2659 	if (!extent_op)
2660 		return -ENOMEM;
2661 
2662 	extent_op->flags_to_set = flags;
2663 	extent_op->update_flags = 1;
2664 	extent_op->update_key = 0;
2665 	extent_op->is_data = is_data ? 1 : 0;
2666 
2667 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2668 					  num_bytes, extent_op);
2669 	if (ret)
2670 		btrfs_free_delayed_extent_op(extent_op);
2671 	return ret;
2672 }
2673 
2674 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2675 				      struct btrfs_root *root,
2676 				      struct btrfs_path *path,
2677 				      u64 objectid, u64 offset, u64 bytenr)
2678 {
2679 	struct btrfs_delayed_ref_head *head;
2680 	struct btrfs_delayed_ref_node *ref;
2681 	struct btrfs_delayed_data_ref *data_ref;
2682 	struct btrfs_delayed_ref_root *delayed_refs;
2683 	struct rb_node *node;
2684 	int ret = 0;
2685 
2686 	ret = -ENOENT;
2687 	delayed_refs = &trans->transaction->delayed_refs;
2688 	spin_lock(&delayed_refs->lock);
2689 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2690 	if (!head)
2691 		goto out;
2692 
2693 	if (!mutex_trylock(&head->mutex)) {
2694 		atomic_inc(&head->node.refs);
2695 		spin_unlock(&delayed_refs->lock);
2696 
2697 		btrfs_release_path(path);
2698 
2699 		/*
2700 		 * Mutex was contended, block until it's released and let
2701 		 * caller try again
2702 		 */
2703 		mutex_lock(&head->mutex);
2704 		mutex_unlock(&head->mutex);
2705 		btrfs_put_delayed_ref(&head->node);
2706 		return -EAGAIN;
2707 	}
2708 
2709 	node = rb_prev(&head->node.rb_node);
2710 	if (!node)
2711 		goto out_unlock;
2712 
2713 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2714 
2715 	if (ref->bytenr != bytenr)
2716 		goto out_unlock;
2717 
2718 	ret = 1;
2719 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2720 		goto out_unlock;
2721 
2722 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2723 
2724 	node = rb_prev(node);
2725 	if (node) {
2726 		int seq = ref->seq;
2727 
2728 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2729 		if (ref->bytenr == bytenr && ref->seq == seq)
2730 			goto out_unlock;
2731 	}
2732 
2733 	if (data_ref->root != root->root_key.objectid ||
2734 	    data_ref->objectid != objectid || data_ref->offset != offset)
2735 		goto out_unlock;
2736 
2737 	ret = 0;
2738 out_unlock:
2739 	mutex_unlock(&head->mutex);
2740 out:
2741 	spin_unlock(&delayed_refs->lock);
2742 	return ret;
2743 }
2744 
2745 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2746 					struct btrfs_root *root,
2747 					struct btrfs_path *path,
2748 					u64 objectid, u64 offset, u64 bytenr)
2749 {
2750 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2751 	struct extent_buffer *leaf;
2752 	struct btrfs_extent_data_ref *ref;
2753 	struct btrfs_extent_inline_ref *iref;
2754 	struct btrfs_extent_item *ei;
2755 	struct btrfs_key key;
2756 	u32 item_size;
2757 	int ret;
2758 
2759 	key.objectid = bytenr;
2760 	key.offset = (u64)-1;
2761 	key.type = BTRFS_EXTENT_ITEM_KEY;
2762 
2763 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2764 	if (ret < 0)
2765 		goto out;
2766 	BUG_ON(ret == 0); /* Corruption */
2767 
2768 	ret = -ENOENT;
2769 	if (path->slots[0] == 0)
2770 		goto out;
2771 
2772 	path->slots[0]--;
2773 	leaf = path->nodes[0];
2774 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2775 
2776 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2777 		goto out;
2778 
2779 	ret = 1;
2780 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2781 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2782 	if (item_size < sizeof(*ei)) {
2783 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2784 		goto out;
2785 	}
2786 #endif
2787 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2788 
2789 	if (item_size != sizeof(*ei) +
2790 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2791 		goto out;
2792 
2793 	if (btrfs_extent_generation(leaf, ei) <=
2794 	    btrfs_root_last_snapshot(&root->root_item))
2795 		goto out;
2796 
2797 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2798 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2799 	    BTRFS_EXTENT_DATA_REF_KEY)
2800 		goto out;
2801 
2802 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2803 	if (btrfs_extent_refs(leaf, ei) !=
2804 	    btrfs_extent_data_ref_count(leaf, ref) ||
2805 	    btrfs_extent_data_ref_root(leaf, ref) !=
2806 	    root->root_key.objectid ||
2807 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2808 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2809 		goto out;
2810 
2811 	ret = 0;
2812 out:
2813 	return ret;
2814 }
2815 
2816 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2817 			  struct btrfs_root *root,
2818 			  u64 objectid, u64 offset, u64 bytenr)
2819 {
2820 	struct btrfs_path *path;
2821 	int ret;
2822 	int ret2;
2823 
2824 	path = btrfs_alloc_path();
2825 	if (!path)
2826 		return -ENOENT;
2827 
2828 	do {
2829 		ret = check_committed_ref(trans, root, path, objectid,
2830 					  offset, bytenr);
2831 		if (ret && ret != -ENOENT)
2832 			goto out;
2833 
2834 		ret2 = check_delayed_ref(trans, root, path, objectid,
2835 					 offset, bytenr);
2836 	} while (ret2 == -EAGAIN);
2837 
2838 	if (ret2 && ret2 != -ENOENT) {
2839 		ret = ret2;
2840 		goto out;
2841 	}
2842 
2843 	if (ret != -ENOENT || ret2 != -ENOENT)
2844 		ret = 0;
2845 out:
2846 	btrfs_free_path(path);
2847 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2848 		WARN_ON(ret > 0);
2849 	return ret;
2850 }
2851 
2852 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2853 			   struct btrfs_root *root,
2854 			   struct extent_buffer *buf,
2855 			   int full_backref, int inc, int for_cow)
2856 {
2857 	u64 bytenr;
2858 	u64 num_bytes;
2859 	u64 parent;
2860 	u64 ref_root;
2861 	u32 nritems;
2862 	struct btrfs_key key;
2863 	struct btrfs_file_extent_item *fi;
2864 	int i;
2865 	int level;
2866 	int ret = 0;
2867 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2868 			    u64, u64, u64, u64, u64, u64, int);
2869 
2870 	ref_root = btrfs_header_owner(buf);
2871 	nritems = btrfs_header_nritems(buf);
2872 	level = btrfs_header_level(buf);
2873 
2874 	if (!root->ref_cows && level == 0)
2875 		return 0;
2876 
2877 	if (inc)
2878 		process_func = btrfs_inc_extent_ref;
2879 	else
2880 		process_func = btrfs_free_extent;
2881 
2882 	if (full_backref)
2883 		parent = buf->start;
2884 	else
2885 		parent = 0;
2886 
2887 	for (i = 0; i < nritems; i++) {
2888 		if (level == 0) {
2889 			btrfs_item_key_to_cpu(buf, &key, i);
2890 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2891 				continue;
2892 			fi = btrfs_item_ptr(buf, i,
2893 					    struct btrfs_file_extent_item);
2894 			if (btrfs_file_extent_type(buf, fi) ==
2895 			    BTRFS_FILE_EXTENT_INLINE)
2896 				continue;
2897 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2898 			if (bytenr == 0)
2899 				continue;
2900 
2901 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2902 			key.offset -= btrfs_file_extent_offset(buf, fi);
2903 			ret = process_func(trans, root, bytenr, num_bytes,
2904 					   parent, ref_root, key.objectid,
2905 					   key.offset, for_cow);
2906 			if (ret)
2907 				goto fail;
2908 		} else {
2909 			bytenr = btrfs_node_blockptr(buf, i);
2910 			num_bytes = btrfs_level_size(root, level - 1);
2911 			ret = process_func(trans, root, bytenr, num_bytes,
2912 					   parent, ref_root, level - 1, 0,
2913 					   for_cow);
2914 			if (ret)
2915 				goto fail;
2916 		}
2917 	}
2918 	return 0;
2919 fail:
2920 	return ret;
2921 }
2922 
2923 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2924 		  struct extent_buffer *buf, int full_backref, int for_cow)
2925 {
2926 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2927 }
2928 
2929 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2930 		  struct extent_buffer *buf, int full_backref, int for_cow)
2931 {
2932 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2933 }
2934 
2935 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2936 				 struct btrfs_root *root,
2937 				 struct btrfs_path *path,
2938 				 struct btrfs_block_group_cache *cache)
2939 {
2940 	int ret;
2941 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2942 	unsigned long bi;
2943 	struct extent_buffer *leaf;
2944 
2945 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2946 	if (ret < 0)
2947 		goto fail;
2948 	BUG_ON(ret); /* Corruption */
2949 
2950 	leaf = path->nodes[0];
2951 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2952 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2953 	btrfs_mark_buffer_dirty(leaf);
2954 	btrfs_release_path(path);
2955 fail:
2956 	if (ret) {
2957 		btrfs_abort_transaction(trans, root, ret);
2958 		return ret;
2959 	}
2960 	return 0;
2961 
2962 }
2963 
2964 static struct btrfs_block_group_cache *
2965 next_block_group(struct btrfs_root *root,
2966 		 struct btrfs_block_group_cache *cache)
2967 {
2968 	struct rb_node *node;
2969 	spin_lock(&root->fs_info->block_group_cache_lock);
2970 	node = rb_next(&cache->cache_node);
2971 	btrfs_put_block_group(cache);
2972 	if (node) {
2973 		cache = rb_entry(node, struct btrfs_block_group_cache,
2974 				 cache_node);
2975 		btrfs_get_block_group(cache);
2976 	} else
2977 		cache = NULL;
2978 	spin_unlock(&root->fs_info->block_group_cache_lock);
2979 	return cache;
2980 }
2981 
2982 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2983 			    struct btrfs_trans_handle *trans,
2984 			    struct btrfs_path *path)
2985 {
2986 	struct btrfs_root *root = block_group->fs_info->tree_root;
2987 	struct inode *inode = NULL;
2988 	u64 alloc_hint = 0;
2989 	int dcs = BTRFS_DC_ERROR;
2990 	int num_pages = 0;
2991 	int retries = 0;
2992 	int ret = 0;
2993 
2994 	/*
2995 	 * If this block group is smaller than 100 megs don't bother caching the
2996 	 * block group.
2997 	 */
2998 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2999 		spin_lock(&block_group->lock);
3000 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3001 		spin_unlock(&block_group->lock);
3002 		return 0;
3003 	}
3004 
3005 again:
3006 	inode = lookup_free_space_inode(root, block_group, path);
3007 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3008 		ret = PTR_ERR(inode);
3009 		btrfs_release_path(path);
3010 		goto out;
3011 	}
3012 
3013 	if (IS_ERR(inode)) {
3014 		BUG_ON(retries);
3015 		retries++;
3016 
3017 		if (block_group->ro)
3018 			goto out_free;
3019 
3020 		ret = create_free_space_inode(root, trans, block_group, path);
3021 		if (ret)
3022 			goto out_free;
3023 		goto again;
3024 	}
3025 
3026 	/* We've already setup this transaction, go ahead and exit */
3027 	if (block_group->cache_generation == trans->transid &&
3028 	    i_size_read(inode)) {
3029 		dcs = BTRFS_DC_SETUP;
3030 		goto out_put;
3031 	}
3032 
3033 	/*
3034 	 * We want to set the generation to 0, that way if anything goes wrong
3035 	 * from here on out we know not to trust this cache when we load up next
3036 	 * time.
3037 	 */
3038 	BTRFS_I(inode)->generation = 0;
3039 	ret = btrfs_update_inode(trans, root, inode);
3040 	WARN_ON(ret);
3041 
3042 	if (i_size_read(inode) > 0) {
3043 		ret = btrfs_truncate_free_space_cache(root, trans, path,
3044 						      inode);
3045 		if (ret)
3046 			goto out_put;
3047 	}
3048 
3049 	spin_lock(&block_group->lock);
3050 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3051 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3052 		/*
3053 		 * don't bother trying to write stuff out _if_
3054 		 * a) we're not cached,
3055 		 * b) we're with nospace_cache mount option.
3056 		 */
3057 		dcs = BTRFS_DC_WRITTEN;
3058 		spin_unlock(&block_group->lock);
3059 		goto out_put;
3060 	}
3061 	spin_unlock(&block_group->lock);
3062 
3063 	/*
3064 	 * Try to preallocate enough space based on how big the block group is.
3065 	 * Keep in mind this has to include any pinned space which could end up
3066 	 * taking up quite a bit since it's not folded into the other space
3067 	 * cache.
3068 	 */
3069 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3070 	if (!num_pages)
3071 		num_pages = 1;
3072 
3073 	num_pages *= 16;
3074 	num_pages *= PAGE_CACHE_SIZE;
3075 
3076 	ret = btrfs_check_data_free_space(inode, num_pages);
3077 	if (ret)
3078 		goto out_put;
3079 
3080 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3081 					      num_pages, num_pages,
3082 					      &alloc_hint);
3083 	if (!ret)
3084 		dcs = BTRFS_DC_SETUP;
3085 	btrfs_free_reserved_data_space(inode, num_pages);
3086 
3087 out_put:
3088 	iput(inode);
3089 out_free:
3090 	btrfs_release_path(path);
3091 out:
3092 	spin_lock(&block_group->lock);
3093 	if (!ret && dcs == BTRFS_DC_SETUP)
3094 		block_group->cache_generation = trans->transid;
3095 	block_group->disk_cache_state = dcs;
3096 	spin_unlock(&block_group->lock);
3097 
3098 	return ret;
3099 }
3100 
3101 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3102 				   struct btrfs_root *root)
3103 {
3104 	struct btrfs_block_group_cache *cache;
3105 	int err = 0;
3106 	struct btrfs_path *path;
3107 	u64 last = 0;
3108 
3109 	path = btrfs_alloc_path();
3110 	if (!path)
3111 		return -ENOMEM;
3112 
3113 again:
3114 	while (1) {
3115 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3116 		while (cache) {
3117 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3118 				break;
3119 			cache = next_block_group(root, cache);
3120 		}
3121 		if (!cache) {
3122 			if (last == 0)
3123 				break;
3124 			last = 0;
3125 			continue;
3126 		}
3127 		err = cache_save_setup(cache, trans, path);
3128 		last = cache->key.objectid + cache->key.offset;
3129 		btrfs_put_block_group(cache);
3130 	}
3131 
3132 	while (1) {
3133 		if (last == 0) {
3134 			err = btrfs_run_delayed_refs(trans, root,
3135 						     (unsigned long)-1);
3136 			if (err) /* File system offline */
3137 				goto out;
3138 		}
3139 
3140 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3141 		while (cache) {
3142 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3143 				btrfs_put_block_group(cache);
3144 				goto again;
3145 			}
3146 
3147 			if (cache->dirty)
3148 				break;
3149 			cache = next_block_group(root, cache);
3150 		}
3151 		if (!cache) {
3152 			if (last == 0)
3153 				break;
3154 			last = 0;
3155 			continue;
3156 		}
3157 
3158 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3159 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3160 		cache->dirty = 0;
3161 		last = cache->key.objectid + cache->key.offset;
3162 
3163 		err = write_one_cache_group(trans, root, path, cache);
3164 		if (err) /* File system offline */
3165 			goto out;
3166 
3167 		btrfs_put_block_group(cache);
3168 	}
3169 
3170 	while (1) {
3171 		/*
3172 		 * I don't think this is needed since we're just marking our
3173 		 * preallocated extent as written, but just in case it can't
3174 		 * hurt.
3175 		 */
3176 		if (last == 0) {
3177 			err = btrfs_run_delayed_refs(trans, root,
3178 						     (unsigned long)-1);
3179 			if (err) /* File system offline */
3180 				goto out;
3181 		}
3182 
3183 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3184 		while (cache) {
3185 			/*
3186 			 * Really this shouldn't happen, but it could if we
3187 			 * couldn't write the entire preallocated extent and
3188 			 * splitting the extent resulted in a new block.
3189 			 */
3190 			if (cache->dirty) {
3191 				btrfs_put_block_group(cache);
3192 				goto again;
3193 			}
3194 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3195 				break;
3196 			cache = next_block_group(root, cache);
3197 		}
3198 		if (!cache) {
3199 			if (last == 0)
3200 				break;
3201 			last = 0;
3202 			continue;
3203 		}
3204 
3205 		err = btrfs_write_out_cache(root, trans, cache, path);
3206 
3207 		/*
3208 		 * If we didn't have an error then the cache state is still
3209 		 * NEED_WRITE, so we can set it to WRITTEN.
3210 		 */
3211 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3212 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3213 		last = cache->key.objectid + cache->key.offset;
3214 		btrfs_put_block_group(cache);
3215 	}
3216 out:
3217 
3218 	btrfs_free_path(path);
3219 	return err;
3220 }
3221 
3222 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3223 {
3224 	struct btrfs_block_group_cache *block_group;
3225 	int readonly = 0;
3226 
3227 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3228 	if (!block_group || block_group->ro)
3229 		readonly = 1;
3230 	if (block_group)
3231 		btrfs_put_block_group(block_group);
3232 	return readonly;
3233 }
3234 
3235 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3236 			     u64 total_bytes, u64 bytes_used,
3237 			     struct btrfs_space_info **space_info)
3238 {
3239 	struct btrfs_space_info *found;
3240 	int i;
3241 	int factor;
3242 
3243 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3244 		     BTRFS_BLOCK_GROUP_RAID10))
3245 		factor = 2;
3246 	else
3247 		factor = 1;
3248 
3249 	found = __find_space_info(info, flags);
3250 	if (found) {
3251 		spin_lock(&found->lock);
3252 		found->total_bytes += total_bytes;
3253 		found->disk_total += total_bytes * factor;
3254 		found->bytes_used += bytes_used;
3255 		found->disk_used += bytes_used * factor;
3256 		found->full = 0;
3257 		spin_unlock(&found->lock);
3258 		*space_info = found;
3259 		return 0;
3260 	}
3261 	found = kzalloc(sizeof(*found), GFP_NOFS);
3262 	if (!found)
3263 		return -ENOMEM;
3264 
3265 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3266 		INIT_LIST_HEAD(&found->block_groups[i]);
3267 	init_rwsem(&found->groups_sem);
3268 	spin_lock_init(&found->lock);
3269 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3270 	found->total_bytes = total_bytes;
3271 	found->disk_total = total_bytes * factor;
3272 	found->bytes_used = bytes_used;
3273 	found->disk_used = bytes_used * factor;
3274 	found->bytes_pinned = 0;
3275 	found->bytes_reserved = 0;
3276 	found->bytes_readonly = 0;
3277 	found->bytes_may_use = 0;
3278 	found->full = 0;
3279 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3280 	found->chunk_alloc = 0;
3281 	found->flush = 0;
3282 	init_waitqueue_head(&found->wait);
3283 	*space_info = found;
3284 	list_add_rcu(&found->list, &info->space_info);
3285 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3286 		info->data_sinfo = found;
3287 	return 0;
3288 }
3289 
3290 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3291 {
3292 	u64 extra_flags = chunk_to_extended(flags) &
3293 				BTRFS_EXTENDED_PROFILE_MASK;
3294 
3295 	write_seqlock(&fs_info->profiles_lock);
3296 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3297 		fs_info->avail_data_alloc_bits |= extra_flags;
3298 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3299 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3300 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3301 		fs_info->avail_system_alloc_bits |= extra_flags;
3302 	write_sequnlock(&fs_info->profiles_lock);
3303 }
3304 
3305 /*
3306  * returns target flags in extended format or 0 if restripe for this
3307  * chunk_type is not in progress
3308  *
3309  * should be called with either volume_mutex or balance_lock held
3310  */
3311 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3312 {
3313 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3314 	u64 target = 0;
3315 
3316 	if (!bctl)
3317 		return 0;
3318 
3319 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3320 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3321 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3322 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3323 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3324 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3325 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3326 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3327 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3328 	}
3329 
3330 	return target;
3331 }
3332 
3333 /*
3334  * @flags: available profiles in extended format (see ctree.h)
3335  *
3336  * Returns reduced profile in chunk format.  If profile changing is in
3337  * progress (either running or paused) picks the target profile (if it's
3338  * already available), otherwise falls back to plain reducing.
3339  */
3340 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3341 {
3342 	/*
3343 	 * we add in the count of missing devices because we want
3344 	 * to make sure that any RAID levels on a degraded FS
3345 	 * continue to be honored.
3346 	 */
3347 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3348 		root->fs_info->fs_devices->missing_devices;
3349 	u64 target;
3350 	u64 tmp;
3351 
3352 	/*
3353 	 * see if restripe for this chunk_type is in progress, if so
3354 	 * try to reduce to the target profile
3355 	 */
3356 	spin_lock(&root->fs_info->balance_lock);
3357 	target = get_restripe_target(root->fs_info, flags);
3358 	if (target) {
3359 		/* pick target profile only if it's already available */
3360 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3361 			spin_unlock(&root->fs_info->balance_lock);
3362 			return extended_to_chunk(target);
3363 		}
3364 	}
3365 	spin_unlock(&root->fs_info->balance_lock);
3366 
3367 	/* First, mask out the RAID levels which aren't possible */
3368 	if (num_devices == 1)
3369 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3370 			   BTRFS_BLOCK_GROUP_RAID5);
3371 	if (num_devices < 3)
3372 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3373 	if (num_devices < 4)
3374 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3375 
3376 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3377 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3378 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3379 	flags &= ~tmp;
3380 
3381 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3382 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3383 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3384 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3385 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3386 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3387 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3388 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3389 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3390 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3391 
3392 	return extended_to_chunk(flags | tmp);
3393 }
3394 
3395 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3396 {
3397 	unsigned seq;
3398 
3399 	do {
3400 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3401 
3402 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3403 			flags |= root->fs_info->avail_data_alloc_bits;
3404 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3405 			flags |= root->fs_info->avail_system_alloc_bits;
3406 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3407 			flags |= root->fs_info->avail_metadata_alloc_bits;
3408 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3409 
3410 	return btrfs_reduce_alloc_profile(root, flags);
3411 }
3412 
3413 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3414 {
3415 	u64 flags;
3416 	u64 ret;
3417 
3418 	if (data)
3419 		flags = BTRFS_BLOCK_GROUP_DATA;
3420 	else if (root == root->fs_info->chunk_root)
3421 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3422 	else
3423 		flags = BTRFS_BLOCK_GROUP_METADATA;
3424 
3425 	ret = get_alloc_profile(root, flags);
3426 	return ret;
3427 }
3428 
3429 /*
3430  * This will check the space that the inode allocates from to make sure we have
3431  * enough space for bytes.
3432  */
3433 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3434 {
3435 	struct btrfs_space_info *data_sinfo;
3436 	struct btrfs_root *root = BTRFS_I(inode)->root;
3437 	struct btrfs_fs_info *fs_info = root->fs_info;
3438 	u64 used;
3439 	int ret = 0, committed = 0, alloc_chunk = 1;
3440 
3441 	/* make sure bytes are sectorsize aligned */
3442 	bytes = ALIGN(bytes, root->sectorsize);
3443 
3444 	if (root == root->fs_info->tree_root ||
3445 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3446 		alloc_chunk = 0;
3447 		committed = 1;
3448 	}
3449 
3450 	data_sinfo = fs_info->data_sinfo;
3451 	if (!data_sinfo)
3452 		goto alloc;
3453 
3454 again:
3455 	/* make sure we have enough space to handle the data first */
3456 	spin_lock(&data_sinfo->lock);
3457 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3458 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3459 		data_sinfo->bytes_may_use;
3460 
3461 	if (used + bytes > data_sinfo->total_bytes) {
3462 		struct btrfs_trans_handle *trans;
3463 
3464 		/*
3465 		 * if we don't have enough free bytes in this space then we need
3466 		 * to alloc a new chunk.
3467 		 */
3468 		if (!data_sinfo->full && alloc_chunk) {
3469 			u64 alloc_target;
3470 
3471 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3472 			spin_unlock(&data_sinfo->lock);
3473 alloc:
3474 			alloc_target = btrfs_get_alloc_profile(root, 1);
3475 			trans = btrfs_join_transaction(root);
3476 			if (IS_ERR(trans))
3477 				return PTR_ERR(trans);
3478 
3479 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3480 					     alloc_target,
3481 					     CHUNK_ALLOC_NO_FORCE);
3482 			btrfs_end_transaction(trans, root);
3483 			if (ret < 0) {
3484 				if (ret != -ENOSPC)
3485 					return ret;
3486 				else
3487 					goto commit_trans;
3488 			}
3489 
3490 			if (!data_sinfo)
3491 				data_sinfo = fs_info->data_sinfo;
3492 
3493 			goto again;
3494 		}
3495 
3496 		/*
3497 		 * If we have less pinned bytes than we want to allocate then
3498 		 * don't bother committing the transaction, it won't help us.
3499 		 */
3500 		if (data_sinfo->bytes_pinned < bytes)
3501 			committed = 1;
3502 		spin_unlock(&data_sinfo->lock);
3503 
3504 		/* commit the current transaction and try again */
3505 commit_trans:
3506 		if (!committed &&
3507 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3508 			committed = 1;
3509 			trans = btrfs_join_transaction(root);
3510 			if (IS_ERR(trans))
3511 				return PTR_ERR(trans);
3512 			ret = btrfs_commit_transaction(trans, root);
3513 			if (ret)
3514 				return ret;
3515 			goto again;
3516 		}
3517 
3518 		return -ENOSPC;
3519 	}
3520 	data_sinfo->bytes_may_use += bytes;
3521 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3522 				      data_sinfo->flags, bytes, 1);
3523 	spin_unlock(&data_sinfo->lock);
3524 
3525 	return 0;
3526 }
3527 
3528 /*
3529  * Called if we need to clear a data reservation for this inode.
3530  */
3531 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3532 {
3533 	struct btrfs_root *root = BTRFS_I(inode)->root;
3534 	struct btrfs_space_info *data_sinfo;
3535 
3536 	/* make sure bytes are sectorsize aligned */
3537 	bytes = ALIGN(bytes, root->sectorsize);
3538 
3539 	data_sinfo = root->fs_info->data_sinfo;
3540 	spin_lock(&data_sinfo->lock);
3541 	data_sinfo->bytes_may_use -= bytes;
3542 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3543 				      data_sinfo->flags, bytes, 0);
3544 	spin_unlock(&data_sinfo->lock);
3545 }
3546 
3547 static void force_metadata_allocation(struct btrfs_fs_info *info)
3548 {
3549 	struct list_head *head = &info->space_info;
3550 	struct btrfs_space_info *found;
3551 
3552 	rcu_read_lock();
3553 	list_for_each_entry_rcu(found, head, list) {
3554 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3555 			found->force_alloc = CHUNK_ALLOC_FORCE;
3556 	}
3557 	rcu_read_unlock();
3558 }
3559 
3560 static int should_alloc_chunk(struct btrfs_root *root,
3561 			      struct btrfs_space_info *sinfo, int force)
3562 {
3563 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3564 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3565 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3566 	u64 thresh;
3567 
3568 	if (force == CHUNK_ALLOC_FORCE)
3569 		return 1;
3570 
3571 	/*
3572 	 * We need to take into account the global rsv because for all intents
3573 	 * and purposes it's used space.  Don't worry about locking the
3574 	 * global_rsv, it doesn't change except when the transaction commits.
3575 	 */
3576 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3577 		num_allocated += global_rsv->size;
3578 
3579 	/*
3580 	 * in limited mode, we want to have some free space up to
3581 	 * about 1% of the FS size.
3582 	 */
3583 	if (force == CHUNK_ALLOC_LIMITED) {
3584 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3585 		thresh = max_t(u64, 64 * 1024 * 1024,
3586 			       div_factor_fine(thresh, 1));
3587 
3588 		if (num_bytes - num_allocated < thresh)
3589 			return 1;
3590 	}
3591 
3592 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3593 		return 0;
3594 	return 1;
3595 }
3596 
3597 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3598 {
3599 	u64 num_dev;
3600 
3601 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3602 		    BTRFS_BLOCK_GROUP_RAID0 |
3603 		    BTRFS_BLOCK_GROUP_RAID5 |
3604 		    BTRFS_BLOCK_GROUP_RAID6))
3605 		num_dev = root->fs_info->fs_devices->rw_devices;
3606 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3607 		num_dev = 2;
3608 	else
3609 		num_dev = 1;	/* DUP or single */
3610 
3611 	/* metadata for updaing devices and chunk tree */
3612 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3613 }
3614 
3615 static void check_system_chunk(struct btrfs_trans_handle *trans,
3616 			       struct btrfs_root *root, u64 type)
3617 {
3618 	struct btrfs_space_info *info;
3619 	u64 left;
3620 	u64 thresh;
3621 
3622 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3623 	spin_lock(&info->lock);
3624 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3625 		info->bytes_reserved - info->bytes_readonly;
3626 	spin_unlock(&info->lock);
3627 
3628 	thresh = get_system_chunk_thresh(root, type);
3629 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3630 		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3631 		       left, thresh, type);
3632 		dump_space_info(info, 0, 0);
3633 	}
3634 
3635 	if (left < thresh) {
3636 		u64 flags;
3637 
3638 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3639 		btrfs_alloc_chunk(trans, root, flags);
3640 	}
3641 }
3642 
3643 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3644 			  struct btrfs_root *extent_root, u64 flags, int force)
3645 {
3646 	struct btrfs_space_info *space_info;
3647 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3648 	int wait_for_alloc = 0;
3649 	int ret = 0;
3650 
3651 	/* Don't re-enter if we're already allocating a chunk */
3652 	if (trans->allocating_chunk)
3653 		return -ENOSPC;
3654 
3655 	space_info = __find_space_info(extent_root->fs_info, flags);
3656 	if (!space_info) {
3657 		ret = update_space_info(extent_root->fs_info, flags,
3658 					0, 0, &space_info);
3659 		BUG_ON(ret); /* -ENOMEM */
3660 	}
3661 	BUG_ON(!space_info); /* Logic error */
3662 
3663 again:
3664 	spin_lock(&space_info->lock);
3665 	if (force < space_info->force_alloc)
3666 		force = space_info->force_alloc;
3667 	if (space_info->full) {
3668 		spin_unlock(&space_info->lock);
3669 		return 0;
3670 	}
3671 
3672 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3673 		spin_unlock(&space_info->lock);
3674 		return 0;
3675 	} else if (space_info->chunk_alloc) {
3676 		wait_for_alloc = 1;
3677 	} else {
3678 		space_info->chunk_alloc = 1;
3679 	}
3680 
3681 	spin_unlock(&space_info->lock);
3682 
3683 	mutex_lock(&fs_info->chunk_mutex);
3684 
3685 	/*
3686 	 * The chunk_mutex is held throughout the entirety of a chunk
3687 	 * allocation, so once we've acquired the chunk_mutex we know that the
3688 	 * other guy is done and we need to recheck and see if we should
3689 	 * allocate.
3690 	 */
3691 	if (wait_for_alloc) {
3692 		mutex_unlock(&fs_info->chunk_mutex);
3693 		wait_for_alloc = 0;
3694 		goto again;
3695 	}
3696 
3697 	trans->allocating_chunk = true;
3698 
3699 	/*
3700 	 * If we have mixed data/metadata chunks we want to make sure we keep
3701 	 * allocating mixed chunks instead of individual chunks.
3702 	 */
3703 	if (btrfs_mixed_space_info(space_info))
3704 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3705 
3706 	/*
3707 	 * if we're doing a data chunk, go ahead and make sure that
3708 	 * we keep a reasonable number of metadata chunks allocated in the
3709 	 * FS as well.
3710 	 */
3711 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3712 		fs_info->data_chunk_allocations++;
3713 		if (!(fs_info->data_chunk_allocations %
3714 		      fs_info->metadata_ratio))
3715 			force_metadata_allocation(fs_info);
3716 	}
3717 
3718 	/*
3719 	 * Check if we have enough space in SYSTEM chunk because we may need
3720 	 * to update devices.
3721 	 */
3722 	check_system_chunk(trans, extent_root, flags);
3723 
3724 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3725 	trans->allocating_chunk = false;
3726 
3727 	spin_lock(&space_info->lock);
3728 	if (ret < 0 && ret != -ENOSPC)
3729 		goto out;
3730 	if (ret)
3731 		space_info->full = 1;
3732 	else
3733 		ret = 1;
3734 
3735 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3736 out:
3737 	space_info->chunk_alloc = 0;
3738 	spin_unlock(&space_info->lock);
3739 	mutex_unlock(&fs_info->chunk_mutex);
3740 	return ret;
3741 }
3742 
3743 static int can_overcommit(struct btrfs_root *root,
3744 			  struct btrfs_space_info *space_info, u64 bytes,
3745 			  enum btrfs_reserve_flush_enum flush)
3746 {
3747 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3748 	u64 profile = btrfs_get_alloc_profile(root, 0);
3749 	u64 rsv_size = 0;
3750 	u64 avail;
3751 	u64 used;
3752 	u64 to_add;
3753 
3754 	used = space_info->bytes_used + space_info->bytes_reserved +
3755 		space_info->bytes_pinned + space_info->bytes_readonly;
3756 
3757 	spin_lock(&global_rsv->lock);
3758 	rsv_size = global_rsv->size;
3759 	spin_unlock(&global_rsv->lock);
3760 
3761 	/*
3762 	 * We only want to allow over committing if we have lots of actual space
3763 	 * free, but if we don't have enough space to handle the global reserve
3764 	 * space then we could end up having a real enospc problem when trying
3765 	 * to allocate a chunk or some other such important allocation.
3766 	 */
3767 	rsv_size <<= 1;
3768 	if (used + rsv_size >= space_info->total_bytes)
3769 		return 0;
3770 
3771 	used += space_info->bytes_may_use;
3772 
3773 	spin_lock(&root->fs_info->free_chunk_lock);
3774 	avail = root->fs_info->free_chunk_space;
3775 	spin_unlock(&root->fs_info->free_chunk_lock);
3776 
3777 	/*
3778 	 * If we have dup, raid1 or raid10 then only half of the free
3779 	 * space is actually useable.  For raid56, the space info used
3780 	 * doesn't include the parity drive, so we don't have to
3781 	 * change the math
3782 	 */
3783 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3784 		       BTRFS_BLOCK_GROUP_RAID1 |
3785 		       BTRFS_BLOCK_GROUP_RAID10))
3786 		avail >>= 1;
3787 
3788 	to_add = space_info->total_bytes;
3789 
3790 	/*
3791 	 * If we aren't flushing all things, let us overcommit up to
3792 	 * 1/2th of the space. If we can flush, don't let us overcommit
3793 	 * too much, let it overcommit up to 1/8 of the space.
3794 	 */
3795 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3796 		to_add >>= 3;
3797 	else
3798 		to_add >>= 1;
3799 
3800 	/*
3801 	 * Limit the overcommit to the amount of free space we could possibly
3802 	 * allocate for chunks.
3803 	 */
3804 	to_add = min(avail, to_add);
3805 
3806 	if (used + bytes < space_info->total_bytes + to_add)
3807 		return 1;
3808 	return 0;
3809 }
3810 
3811 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3812 				  unsigned long nr_pages)
3813 {
3814 	struct super_block *sb = root->fs_info->sb;
3815 	int started;
3816 
3817 	/* If we can not start writeback, just sync all the delalloc file. */
3818 	started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3819 						      WB_REASON_FS_FREE_SPACE);
3820 	if (!started) {
3821 		/*
3822 		 * We needn't worry the filesystem going from r/w to r/o though
3823 		 * we don't acquire ->s_umount mutex, because the filesystem
3824 		 * should guarantee the delalloc inodes list be empty after
3825 		 * the filesystem is readonly(all dirty pages are written to
3826 		 * the disk).
3827 		 */
3828 		btrfs_start_delalloc_inodes(root, 0);
3829 		btrfs_wait_ordered_extents(root, 0);
3830 	}
3831 }
3832 
3833 /*
3834  * shrink metadata reservation for delalloc
3835  */
3836 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3837 			    bool wait_ordered)
3838 {
3839 	struct btrfs_block_rsv *block_rsv;
3840 	struct btrfs_space_info *space_info;
3841 	struct btrfs_trans_handle *trans;
3842 	u64 delalloc_bytes;
3843 	u64 max_reclaim;
3844 	long time_left;
3845 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3846 	int loops = 0;
3847 	enum btrfs_reserve_flush_enum flush;
3848 
3849 	trans = (struct btrfs_trans_handle *)current->journal_info;
3850 	block_rsv = &root->fs_info->delalloc_block_rsv;
3851 	space_info = block_rsv->space_info;
3852 
3853 	smp_mb();
3854 	delalloc_bytes = percpu_counter_sum_positive(
3855 						&root->fs_info->delalloc_bytes);
3856 	if (delalloc_bytes == 0) {
3857 		if (trans)
3858 			return;
3859 		btrfs_wait_ordered_extents(root, 0);
3860 		return;
3861 	}
3862 
3863 	while (delalloc_bytes && loops < 3) {
3864 		max_reclaim = min(delalloc_bytes, to_reclaim);
3865 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3866 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
3867 		/*
3868 		 * We need to wait for the async pages to actually start before
3869 		 * we do anything.
3870 		 */
3871 		wait_event(root->fs_info->async_submit_wait,
3872 			   !atomic_read(&root->fs_info->async_delalloc_pages));
3873 
3874 		if (!trans)
3875 			flush = BTRFS_RESERVE_FLUSH_ALL;
3876 		else
3877 			flush = BTRFS_RESERVE_NO_FLUSH;
3878 		spin_lock(&space_info->lock);
3879 		if (can_overcommit(root, space_info, orig, flush)) {
3880 			spin_unlock(&space_info->lock);
3881 			break;
3882 		}
3883 		spin_unlock(&space_info->lock);
3884 
3885 		loops++;
3886 		if (wait_ordered && !trans) {
3887 			btrfs_wait_ordered_extents(root, 0);
3888 		} else {
3889 			time_left = schedule_timeout_killable(1);
3890 			if (time_left)
3891 				break;
3892 		}
3893 		smp_mb();
3894 		delalloc_bytes = percpu_counter_sum_positive(
3895 						&root->fs_info->delalloc_bytes);
3896 	}
3897 }
3898 
3899 /**
3900  * maybe_commit_transaction - possibly commit the transaction if its ok to
3901  * @root - the root we're allocating for
3902  * @bytes - the number of bytes we want to reserve
3903  * @force - force the commit
3904  *
3905  * This will check to make sure that committing the transaction will actually
3906  * get us somewhere and then commit the transaction if it does.  Otherwise it
3907  * will return -ENOSPC.
3908  */
3909 static int may_commit_transaction(struct btrfs_root *root,
3910 				  struct btrfs_space_info *space_info,
3911 				  u64 bytes, int force)
3912 {
3913 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3914 	struct btrfs_trans_handle *trans;
3915 
3916 	trans = (struct btrfs_trans_handle *)current->journal_info;
3917 	if (trans)
3918 		return -EAGAIN;
3919 
3920 	if (force)
3921 		goto commit;
3922 
3923 	/* See if there is enough pinned space to make this reservation */
3924 	spin_lock(&space_info->lock);
3925 	if (space_info->bytes_pinned >= bytes) {
3926 		spin_unlock(&space_info->lock);
3927 		goto commit;
3928 	}
3929 	spin_unlock(&space_info->lock);
3930 
3931 	/*
3932 	 * See if there is some space in the delayed insertion reservation for
3933 	 * this reservation.
3934 	 */
3935 	if (space_info != delayed_rsv->space_info)
3936 		return -ENOSPC;
3937 
3938 	spin_lock(&space_info->lock);
3939 	spin_lock(&delayed_rsv->lock);
3940 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3941 		spin_unlock(&delayed_rsv->lock);
3942 		spin_unlock(&space_info->lock);
3943 		return -ENOSPC;
3944 	}
3945 	spin_unlock(&delayed_rsv->lock);
3946 	spin_unlock(&space_info->lock);
3947 
3948 commit:
3949 	trans = btrfs_join_transaction(root);
3950 	if (IS_ERR(trans))
3951 		return -ENOSPC;
3952 
3953 	return btrfs_commit_transaction(trans, root);
3954 }
3955 
3956 enum flush_state {
3957 	FLUSH_DELAYED_ITEMS_NR	=	1,
3958 	FLUSH_DELAYED_ITEMS	=	2,
3959 	FLUSH_DELALLOC		=	3,
3960 	FLUSH_DELALLOC_WAIT	=	4,
3961 	ALLOC_CHUNK		=	5,
3962 	COMMIT_TRANS		=	6,
3963 };
3964 
3965 static int flush_space(struct btrfs_root *root,
3966 		       struct btrfs_space_info *space_info, u64 num_bytes,
3967 		       u64 orig_bytes, int state)
3968 {
3969 	struct btrfs_trans_handle *trans;
3970 	int nr;
3971 	int ret = 0;
3972 
3973 	switch (state) {
3974 	case FLUSH_DELAYED_ITEMS_NR:
3975 	case FLUSH_DELAYED_ITEMS:
3976 		if (state == FLUSH_DELAYED_ITEMS_NR) {
3977 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3978 
3979 			nr = (int)div64_u64(num_bytes, bytes);
3980 			if (!nr)
3981 				nr = 1;
3982 			nr *= 2;
3983 		} else {
3984 			nr = -1;
3985 		}
3986 		trans = btrfs_join_transaction(root);
3987 		if (IS_ERR(trans)) {
3988 			ret = PTR_ERR(trans);
3989 			break;
3990 		}
3991 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
3992 		btrfs_end_transaction(trans, root);
3993 		break;
3994 	case FLUSH_DELALLOC:
3995 	case FLUSH_DELALLOC_WAIT:
3996 		shrink_delalloc(root, num_bytes, orig_bytes,
3997 				state == FLUSH_DELALLOC_WAIT);
3998 		break;
3999 	case ALLOC_CHUNK:
4000 		trans = btrfs_join_transaction(root);
4001 		if (IS_ERR(trans)) {
4002 			ret = PTR_ERR(trans);
4003 			break;
4004 		}
4005 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4006 				     btrfs_get_alloc_profile(root, 0),
4007 				     CHUNK_ALLOC_NO_FORCE);
4008 		btrfs_end_transaction(trans, root);
4009 		if (ret == -ENOSPC)
4010 			ret = 0;
4011 		break;
4012 	case COMMIT_TRANS:
4013 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4014 		break;
4015 	default:
4016 		ret = -ENOSPC;
4017 		break;
4018 	}
4019 
4020 	return ret;
4021 }
4022 /**
4023  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4024  * @root - the root we're allocating for
4025  * @block_rsv - the block_rsv we're allocating for
4026  * @orig_bytes - the number of bytes we want
4027  * @flush - whether or not we can flush to make our reservation
4028  *
4029  * This will reserve orgi_bytes number of bytes from the space info associated
4030  * with the block_rsv.  If there is not enough space it will make an attempt to
4031  * flush out space to make room.  It will do this by flushing delalloc if
4032  * possible or committing the transaction.  If flush is 0 then no attempts to
4033  * regain reservations will be made and this will fail if there is not enough
4034  * space already.
4035  */
4036 static int reserve_metadata_bytes(struct btrfs_root *root,
4037 				  struct btrfs_block_rsv *block_rsv,
4038 				  u64 orig_bytes,
4039 				  enum btrfs_reserve_flush_enum flush)
4040 {
4041 	struct btrfs_space_info *space_info = block_rsv->space_info;
4042 	u64 used;
4043 	u64 num_bytes = orig_bytes;
4044 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4045 	int ret = 0;
4046 	bool flushing = false;
4047 
4048 again:
4049 	ret = 0;
4050 	spin_lock(&space_info->lock);
4051 	/*
4052 	 * We only want to wait if somebody other than us is flushing and we
4053 	 * are actually allowed to flush all things.
4054 	 */
4055 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4056 	       space_info->flush) {
4057 		spin_unlock(&space_info->lock);
4058 		/*
4059 		 * If we have a trans handle we can't wait because the flusher
4060 		 * may have to commit the transaction, which would mean we would
4061 		 * deadlock since we are waiting for the flusher to finish, but
4062 		 * hold the current transaction open.
4063 		 */
4064 		if (current->journal_info)
4065 			return -EAGAIN;
4066 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4067 		/* Must have been killed, return */
4068 		if (ret)
4069 			return -EINTR;
4070 
4071 		spin_lock(&space_info->lock);
4072 	}
4073 
4074 	ret = -ENOSPC;
4075 	used = space_info->bytes_used + space_info->bytes_reserved +
4076 		space_info->bytes_pinned + space_info->bytes_readonly +
4077 		space_info->bytes_may_use;
4078 
4079 	/*
4080 	 * The idea here is that we've not already over-reserved the block group
4081 	 * then we can go ahead and save our reservation first and then start
4082 	 * flushing if we need to.  Otherwise if we've already overcommitted
4083 	 * lets start flushing stuff first and then come back and try to make
4084 	 * our reservation.
4085 	 */
4086 	if (used <= space_info->total_bytes) {
4087 		if (used + orig_bytes <= space_info->total_bytes) {
4088 			space_info->bytes_may_use += orig_bytes;
4089 			trace_btrfs_space_reservation(root->fs_info,
4090 				"space_info", space_info->flags, orig_bytes, 1);
4091 			ret = 0;
4092 		} else {
4093 			/*
4094 			 * Ok set num_bytes to orig_bytes since we aren't
4095 			 * overocmmitted, this way we only try and reclaim what
4096 			 * we need.
4097 			 */
4098 			num_bytes = orig_bytes;
4099 		}
4100 	} else {
4101 		/*
4102 		 * Ok we're over committed, set num_bytes to the overcommitted
4103 		 * amount plus the amount of bytes that we need for this
4104 		 * reservation.
4105 		 */
4106 		num_bytes = used - space_info->total_bytes +
4107 			(orig_bytes * 2);
4108 	}
4109 
4110 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4111 		space_info->bytes_may_use += orig_bytes;
4112 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4113 					      space_info->flags, orig_bytes,
4114 					      1);
4115 		ret = 0;
4116 	}
4117 
4118 	/*
4119 	 * Couldn't make our reservation, save our place so while we're trying
4120 	 * to reclaim space we can actually use it instead of somebody else
4121 	 * stealing it from us.
4122 	 *
4123 	 * We make the other tasks wait for the flush only when we can flush
4124 	 * all things.
4125 	 */
4126 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4127 		flushing = true;
4128 		space_info->flush = 1;
4129 	}
4130 
4131 	spin_unlock(&space_info->lock);
4132 
4133 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4134 		goto out;
4135 
4136 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4137 			  flush_state);
4138 	flush_state++;
4139 
4140 	/*
4141 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4142 	 * would happen. So skip delalloc flush.
4143 	 */
4144 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4145 	    (flush_state == FLUSH_DELALLOC ||
4146 	     flush_state == FLUSH_DELALLOC_WAIT))
4147 		flush_state = ALLOC_CHUNK;
4148 
4149 	if (!ret)
4150 		goto again;
4151 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4152 		 flush_state < COMMIT_TRANS)
4153 		goto again;
4154 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4155 		 flush_state <= COMMIT_TRANS)
4156 		goto again;
4157 
4158 out:
4159 	if (ret == -ENOSPC &&
4160 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4161 		struct btrfs_block_rsv *global_rsv =
4162 			&root->fs_info->global_block_rsv;
4163 
4164 		if (block_rsv != global_rsv &&
4165 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4166 			ret = 0;
4167 	}
4168 	if (flushing) {
4169 		spin_lock(&space_info->lock);
4170 		space_info->flush = 0;
4171 		wake_up_all(&space_info->wait);
4172 		spin_unlock(&space_info->lock);
4173 	}
4174 	return ret;
4175 }
4176 
4177 static struct btrfs_block_rsv *get_block_rsv(
4178 					const struct btrfs_trans_handle *trans,
4179 					const struct btrfs_root *root)
4180 {
4181 	struct btrfs_block_rsv *block_rsv = NULL;
4182 
4183 	if (root->ref_cows)
4184 		block_rsv = trans->block_rsv;
4185 
4186 	if (root == root->fs_info->csum_root && trans->adding_csums)
4187 		block_rsv = trans->block_rsv;
4188 
4189 	if (!block_rsv)
4190 		block_rsv = root->block_rsv;
4191 
4192 	if (!block_rsv)
4193 		block_rsv = &root->fs_info->empty_block_rsv;
4194 
4195 	return block_rsv;
4196 }
4197 
4198 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4199 			       u64 num_bytes)
4200 {
4201 	int ret = -ENOSPC;
4202 	spin_lock(&block_rsv->lock);
4203 	if (block_rsv->reserved >= num_bytes) {
4204 		block_rsv->reserved -= num_bytes;
4205 		if (block_rsv->reserved < block_rsv->size)
4206 			block_rsv->full = 0;
4207 		ret = 0;
4208 	}
4209 	spin_unlock(&block_rsv->lock);
4210 	return ret;
4211 }
4212 
4213 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4214 				u64 num_bytes, int update_size)
4215 {
4216 	spin_lock(&block_rsv->lock);
4217 	block_rsv->reserved += num_bytes;
4218 	if (update_size)
4219 		block_rsv->size += num_bytes;
4220 	else if (block_rsv->reserved >= block_rsv->size)
4221 		block_rsv->full = 1;
4222 	spin_unlock(&block_rsv->lock);
4223 }
4224 
4225 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4226 				    struct btrfs_block_rsv *block_rsv,
4227 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4228 {
4229 	struct btrfs_space_info *space_info = block_rsv->space_info;
4230 
4231 	spin_lock(&block_rsv->lock);
4232 	if (num_bytes == (u64)-1)
4233 		num_bytes = block_rsv->size;
4234 	block_rsv->size -= num_bytes;
4235 	if (block_rsv->reserved >= block_rsv->size) {
4236 		num_bytes = block_rsv->reserved - block_rsv->size;
4237 		block_rsv->reserved = block_rsv->size;
4238 		block_rsv->full = 1;
4239 	} else {
4240 		num_bytes = 0;
4241 	}
4242 	spin_unlock(&block_rsv->lock);
4243 
4244 	if (num_bytes > 0) {
4245 		if (dest) {
4246 			spin_lock(&dest->lock);
4247 			if (!dest->full) {
4248 				u64 bytes_to_add;
4249 
4250 				bytes_to_add = dest->size - dest->reserved;
4251 				bytes_to_add = min(num_bytes, bytes_to_add);
4252 				dest->reserved += bytes_to_add;
4253 				if (dest->reserved >= dest->size)
4254 					dest->full = 1;
4255 				num_bytes -= bytes_to_add;
4256 			}
4257 			spin_unlock(&dest->lock);
4258 		}
4259 		if (num_bytes) {
4260 			spin_lock(&space_info->lock);
4261 			space_info->bytes_may_use -= num_bytes;
4262 			trace_btrfs_space_reservation(fs_info, "space_info",
4263 					space_info->flags, num_bytes, 0);
4264 			space_info->reservation_progress++;
4265 			spin_unlock(&space_info->lock);
4266 		}
4267 	}
4268 }
4269 
4270 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4271 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4272 {
4273 	int ret;
4274 
4275 	ret = block_rsv_use_bytes(src, num_bytes);
4276 	if (ret)
4277 		return ret;
4278 
4279 	block_rsv_add_bytes(dst, num_bytes, 1);
4280 	return 0;
4281 }
4282 
4283 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4284 {
4285 	memset(rsv, 0, sizeof(*rsv));
4286 	spin_lock_init(&rsv->lock);
4287 	rsv->type = type;
4288 }
4289 
4290 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4291 					      unsigned short type)
4292 {
4293 	struct btrfs_block_rsv *block_rsv;
4294 	struct btrfs_fs_info *fs_info = root->fs_info;
4295 
4296 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4297 	if (!block_rsv)
4298 		return NULL;
4299 
4300 	btrfs_init_block_rsv(block_rsv, type);
4301 	block_rsv->space_info = __find_space_info(fs_info,
4302 						  BTRFS_BLOCK_GROUP_METADATA);
4303 	return block_rsv;
4304 }
4305 
4306 void btrfs_free_block_rsv(struct btrfs_root *root,
4307 			  struct btrfs_block_rsv *rsv)
4308 {
4309 	if (!rsv)
4310 		return;
4311 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4312 	kfree(rsv);
4313 }
4314 
4315 int btrfs_block_rsv_add(struct btrfs_root *root,
4316 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4317 			enum btrfs_reserve_flush_enum flush)
4318 {
4319 	int ret;
4320 
4321 	if (num_bytes == 0)
4322 		return 0;
4323 
4324 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4325 	if (!ret) {
4326 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4327 		return 0;
4328 	}
4329 
4330 	return ret;
4331 }
4332 
4333 int btrfs_block_rsv_check(struct btrfs_root *root,
4334 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4335 {
4336 	u64 num_bytes = 0;
4337 	int ret = -ENOSPC;
4338 
4339 	if (!block_rsv)
4340 		return 0;
4341 
4342 	spin_lock(&block_rsv->lock);
4343 	num_bytes = div_factor(block_rsv->size, min_factor);
4344 	if (block_rsv->reserved >= num_bytes)
4345 		ret = 0;
4346 	spin_unlock(&block_rsv->lock);
4347 
4348 	return ret;
4349 }
4350 
4351 int btrfs_block_rsv_refill(struct btrfs_root *root,
4352 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4353 			   enum btrfs_reserve_flush_enum flush)
4354 {
4355 	u64 num_bytes = 0;
4356 	int ret = -ENOSPC;
4357 
4358 	if (!block_rsv)
4359 		return 0;
4360 
4361 	spin_lock(&block_rsv->lock);
4362 	num_bytes = min_reserved;
4363 	if (block_rsv->reserved >= num_bytes)
4364 		ret = 0;
4365 	else
4366 		num_bytes -= block_rsv->reserved;
4367 	spin_unlock(&block_rsv->lock);
4368 
4369 	if (!ret)
4370 		return 0;
4371 
4372 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4373 	if (!ret) {
4374 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4375 		return 0;
4376 	}
4377 
4378 	return ret;
4379 }
4380 
4381 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4382 			    struct btrfs_block_rsv *dst_rsv,
4383 			    u64 num_bytes)
4384 {
4385 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4386 }
4387 
4388 void btrfs_block_rsv_release(struct btrfs_root *root,
4389 			     struct btrfs_block_rsv *block_rsv,
4390 			     u64 num_bytes)
4391 {
4392 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4393 	if (global_rsv->full || global_rsv == block_rsv ||
4394 	    block_rsv->space_info != global_rsv->space_info)
4395 		global_rsv = NULL;
4396 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4397 				num_bytes);
4398 }
4399 
4400 /*
4401  * helper to calculate size of global block reservation.
4402  * the desired value is sum of space used by extent tree,
4403  * checksum tree and root tree
4404  */
4405 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4406 {
4407 	struct btrfs_space_info *sinfo;
4408 	u64 num_bytes;
4409 	u64 meta_used;
4410 	u64 data_used;
4411 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4412 
4413 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4414 	spin_lock(&sinfo->lock);
4415 	data_used = sinfo->bytes_used;
4416 	spin_unlock(&sinfo->lock);
4417 
4418 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4419 	spin_lock(&sinfo->lock);
4420 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4421 		data_used = 0;
4422 	meta_used = sinfo->bytes_used;
4423 	spin_unlock(&sinfo->lock);
4424 
4425 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4426 		    csum_size * 2;
4427 	num_bytes += div64_u64(data_used + meta_used, 50);
4428 
4429 	if (num_bytes * 3 > meta_used)
4430 		num_bytes = div64_u64(meta_used, 3);
4431 
4432 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4433 }
4434 
4435 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4436 {
4437 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4438 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4439 	u64 num_bytes;
4440 
4441 	num_bytes = calc_global_metadata_size(fs_info);
4442 
4443 	spin_lock(&sinfo->lock);
4444 	spin_lock(&block_rsv->lock);
4445 
4446 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4447 
4448 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4449 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4450 		    sinfo->bytes_may_use;
4451 
4452 	if (sinfo->total_bytes > num_bytes) {
4453 		num_bytes = sinfo->total_bytes - num_bytes;
4454 		block_rsv->reserved += num_bytes;
4455 		sinfo->bytes_may_use += num_bytes;
4456 		trace_btrfs_space_reservation(fs_info, "space_info",
4457 				      sinfo->flags, num_bytes, 1);
4458 	}
4459 
4460 	if (block_rsv->reserved >= block_rsv->size) {
4461 		num_bytes = block_rsv->reserved - block_rsv->size;
4462 		sinfo->bytes_may_use -= num_bytes;
4463 		trace_btrfs_space_reservation(fs_info, "space_info",
4464 				      sinfo->flags, num_bytes, 0);
4465 		sinfo->reservation_progress++;
4466 		block_rsv->reserved = block_rsv->size;
4467 		block_rsv->full = 1;
4468 	}
4469 
4470 	spin_unlock(&block_rsv->lock);
4471 	spin_unlock(&sinfo->lock);
4472 }
4473 
4474 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4475 {
4476 	struct btrfs_space_info *space_info;
4477 
4478 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4479 	fs_info->chunk_block_rsv.space_info = space_info;
4480 
4481 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4482 	fs_info->global_block_rsv.space_info = space_info;
4483 	fs_info->delalloc_block_rsv.space_info = space_info;
4484 	fs_info->trans_block_rsv.space_info = space_info;
4485 	fs_info->empty_block_rsv.space_info = space_info;
4486 	fs_info->delayed_block_rsv.space_info = space_info;
4487 
4488 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4489 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4490 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4491 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4492 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4493 
4494 	update_global_block_rsv(fs_info);
4495 }
4496 
4497 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4498 {
4499 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4500 				(u64)-1);
4501 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4502 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4503 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4504 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4505 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4506 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4507 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4508 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4509 }
4510 
4511 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4512 				  struct btrfs_root *root)
4513 {
4514 	if (!trans->block_rsv)
4515 		return;
4516 
4517 	if (!trans->bytes_reserved)
4518 		return;
4519 
4520 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4521 				      trans->transid, trans->bytes_reserved, 0);
4522 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4523 	trans->bytes_reserved = 0;
4524 }
4525 
4526 /* Can only return 0 or -ENOSPC */
4527 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4528 				  struct inode *inode)
4529 {
4530 	struct btrfs_root *root = BTRFS_I(inode)->root;
4531 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4532 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4533 
4534 	/*
4535 	 * We need to hold space in order to delete our orphan item once we've
4536 	 * added it, so this takes the reservation so we can release it later
4537 	 * when we are truly done with the orphan item.
4538 	 */
4539 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4540 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4541 				      btrfs_ino(inode), num_bytes, 1);
4542 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4543 }
4544 
4545 void btrfs_orphan_release_metadata(struct inode *inode)
4546 {
4547 	struct btrfs_root *root = BTRFS_I(inode)->root;
4548 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4549 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4550 				      btrfs_ino(inode), num_bytes, 0);
4551 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4552 }
4553 
4554 /*
4555  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4556  * root: the root of the parent directory
4557  * rsv: block reservation
4558  * items: the number of items that we need do reservation
4559  * qgroup_reserved: used to return the reserved size in qgroup
4560  *
4561  * This function is used to reserve the space for snapshot/subvolume
4562  * creation and deletion. Those operations are different with the
4563  * common file/directory operations, they change two fs/file trees
4564  * and root tree, the number of items that the qgroup reserves is
4565  * different with the free space reservation. So we can not use
4566  * the space reseravtion mechanism in start_transaction().
4567  */
4568 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4569 				     struct btrfs_block_rsv *rsv,
4570 				     int items,
4571 				     u64 *qgroup_reserved)
4572 {
4573 	u64 num_bytes;
4574 	int ret;
4575 
4576 	if (root->fs_info->quota_enabled) {
4577 		/* One for parent inode, two for dir entries */
4578 		num_bytes = 3 * root->leafsize;
4579 		ret = btrfs_qgroup_reserve(root, num_bytes);
4580 		if (ret)
4581 			return ret;
4582 	} else {
4583 		num_bytes = 0;
4584 	}
4585 
4586 	*qgroup_reserved = num_bytes;
4587 
4588 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4589 	rsv->space_info = __find_space_info(root->fs_info,
4590 					    BTRFS_BLOCK_GROUP_METADATA);
4591 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4592 				  BTRFS_RESERVE_FLUSH_ALL);
4593 	if (ret) {
4594 		if (*qgroup_reserved)
4595 			btrfs_qgroup_free(root, *qgroup_reserved);
4596 	}
4597 
4598 	return ret;
4599 }
4600 
4601 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4602 				      struct btrfs_block_rsv *rsv,
4603 				      u64 qgroup_reserved)
4604 {
4605 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4606 	if (qgroup_reserved)
4607 		btrfs_qgroup_free(root, qgroup_reserved);
4608 }
4609 
4610 /**
4611  * drop_outstanding_extent - drop an outstanding extent
4612  * @inode: the inode we're dropping the extent for
4613  *
4614  * This is called when we are freeing up an outstanding extent, either called
4615  * after an error or after an extent is written.  This will return the number of
4616  * reserved extents that need to be freed.  This must be called with
4617  * BTRFS_I(inode)->lock held.
4618  */
4619 static unsigned drop_outstanding_extent(struct inode *inode)
4620 {
4621 	unsigned drop_inode_space = 0;
4622 	unsigned dropped_extents = 0;
4623 
4624 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4625 	BTRFS_I(inode)->outstanding_extents--;
4626 
4627 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4628 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4629 			       &BTRFS_I(inode)->runtime_flags))
4630 		drop_inode_space = 1;
4631 
4632 	/*
4633 	 * If we have more or the same amount of outsanding extents than we have
4634 	 * reserved then we need to leave the reserved extents count alone.
4635 	 */
4636 	if (BTRFS_I(inode)->outstanding_extents >=
4637 	    BTRFS_I(inode)->reserved_extents)
4638 		return drop_inode_space;
4639 
4640 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4641 		BTRFS_I(inode)->outstanding_extents;
4642 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4643 	return dropped_extents + drop_inode_space;
4644 }
4645 
4646 /**
4647  * calc_csum_metadata_size - return the amount of metada space that must be
4648  *	reserved/free'd for the given bytes.
4649  * @inode: the inode we're manipulating
4650  * @num_bytes: the number of bytes in question
4651  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4652  *
4653  * This adjusts the number of csum_bytes in the inode and then returns the
4654  * correct amount of metadata that must either be reserved or freed.  We
4655  * calculate how many checksums we can fit into one leaf and then divide the
4656  * number of bytes that will need to be checksumed by this value to figure out
4657  * how many checksums will be required.  If we are adding bytes then the number
4658  * may go up and we will return the number of additional bytes that must be
4659  * reserved.  If it is going down we will return the number of bytes that must
4660  * be freed.
4661  *
4662  * This must be called with BTRFS_I(inode)->lock held.
4663  */
4664 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4665 				   int reserve)
4666 {
4667 	struct btrfs_root *root = BTRFS_I(inode)->root;
4668 	u64 csum_size;
4669 	int num_csums_per_leaf;
4670 	int num_csums;
4671 	int old_csums;
4672 
4673 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4674 	    BTRFS_I(inode)->csum_bytes == 0)
4675 		return 0;
4676 
4677 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4678 	if (reserve)
4679 		BTRFS_I(inode)->csum_bytes += num_bytes;
4680 	else
4681 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4682 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4683 	num_csums_per_leaf = (int)div64_u64(csum_size,
4684 					    sizeof(struct btrfs_csum_item) +
4685 					    sizeof(struct btrfs_disk_key));
4686 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4687 	num_csums = num_csums + num_csums_per_leaf - 1;
4688 	num_csums = num_csums / num_csums_per_leaf;
4689 
4690 	old_csums = old_csums + num_csums_per_leaf - 1;
4691 	old_csums = old_csums / num_csums_per_leaf;
4692 
4693 	/* No change, no need to reserve more */
4694 	if (old_csums == num_csums)
4695 		return 0;
4696 
4697 	if (reserve)
4698 		return btrfs_calc_trans_metadata_size(root,
4699 						      num_csums - old_csums);
4700 
4701 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4702 }
4703 
4704 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4705 {
4706 	struct btrfs_root *root = BTRFS_I(inode)->root;
4707 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4708 	u64 to_reserve = 0;
4709 	u64 csum_bytes;
4710 	unsigned nr_extents = 0;
4711 	int extra_reserve = 0;
4712 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4713 	int ret = 0;
4714 	bool delalloc_lock = true;
4715 	u64 to_free = 0;
4716 	unsigned dropped;
4717 
4718 	/* If we are a free space inode we need to not flush since we will be in
4719 	 * the middle of a transaction commit.  We also don't need the delalloc
4720 	 * mutex since we won't race with anybody.  We need this mostly to make
4721 	 * lockdep shut its filthy mouth.
4722 	 */
4723 	if (btrfs_is_free_space_inode(inode)) {
4724 		flush = BTRFS_RESERVE_NO_FLUSH;
4725 		delalloc_lock = false;
4726 	}
4727 
4728 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4729 	    btrfs_transaction_in_commit(root->fs_info))
4730 		schedule_timeout(1);
4731 
4732 	if (delalloc_lock)
4733 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4734 
4735 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4736 
4737 	spin_lock(&BTRFS_I(inode)->lock);
4738 	BTRFS_I(inode)->outstanding_extents++;
4739 
4740 	if (BTRFS_I(inode)->outstanding_extents >
4741 	    BTRFS_I(inode)->reserved_extents)
4742 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4743 			BTRFS_I(inode)->reserved_extents;
4744 
4745 	/*
4746 	 * Add an item to reserve for updating the inode when we complete the
4747 	 * delalloc io.
4748 	 */
4749 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4750 		      &BTRFS_I(inode)->runtime_flags)) {
4751 		nr_extents++;
4752 		extra_reserve = 1;
4753 	}
4754 
4755 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4756 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4757 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4758 	spin_unlock(&BTRFS_I(inode)->lock);
4759 
4760 	if (root->fs_info->quota_enabled) {
4761 		ret = btrfs_qgroup_reserve(root, num_bytes +
4762 					   nr_extents * root->leafsize);
4763 		if (ret)
4764 			goto out_fail;
4765 	}
4766 
4767 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4768 	if (unlikely(ret)) {
4769 		if (root->fs_info->quota_enabled)
4770 			btrfs_qgroup_free(root, num_bytes +
4771 						nr_extents * root->leafsize);
4772 		goto out_fail;
4773 	}
4774 
4775 	spin_lock(&BTRFS_I(inode)->lock);
4776 	if (extra_reserve) {
4777 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4778 			&BTRFS_I(inode)->runtime_flags);
4779 		nr_extents--;
4780 	}
4781 	BTRFS_I(inode)->reserved_extents += nr_extents;
4782 	spin_unlock(&BTRFS_I(inode)->lock);
4783 
4784 	if (delalloc_lock)
4785 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4786 
4787 	if (to_reserve)
4788 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4789 					      btrfs_ino(inode), to_reserve, 1);
4790 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4791 
4792 	return 0;
4793 
4794 out_fail:
4795 	spin_lock(&BTRFS_I(inode)->lock);
4796 	dropped = drop_outstanding_extent(inode);
4797 	/*
4798 	 * If the inodes csum_bytes is the same as the original
4799 	 * csum_bytes then we know we haven't raced with any free()ers
4800 	 * so we can just reduce our inodes csum bytes and carry on.
4801 	 */
4802 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4803 		calc_csum_metadata_size(inode, num_bytes, 0);
4804 	} else {
4805 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4806 		u64 bytes;
4807 
4808 		/*
4809 		 * This is tricky, but first we need to figure out how much we
4810 		 * free'd from any free-ers that occured during this
4811 		 * reservation, so we reset ->csum_bytes to the csum_bytes
4812 		 * before we dropped our lock, and then call the free for the
4813 		 * number of bytes that were freed while we were trying our
4814 		 * reservation.
4815 		 */
4816 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4817 		BTRFS_I(inode)->csum_bytes = csum_bytes;
4818 		to_free = calc_csum_metadata_size(inode, bytes, 0);
4819 
4820 
4821 		/*
4822 		 * Now we need to see how much we would have freed had we not
4823 		 * been making this reservation and our ->csum_bytes were not
4824 		 * artificially inflated.
4825 		 */
4826 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4827 		bytes = csum_bytes - orig_csum_bytes;
4828 		bytes = calc_csum_metadata_size(inode, bytes, 0);
4829 
4830 		/*
4831 		 * Now reset ->csum_bytes to what it should be.  If bytes is
4832 		 * more than to_free then we would have free'd more space had we
4833 		 * not had an artificially high ->csum_bytes, so we need to free
4834 		 * the remainder.  If bytes is the same or less then we don't
4835 		 * need to do anything, the other free-ers did the correct
4836 		 * thing.
4837 		 */
4838 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4839 		if (bytes > to_free)
4840 			to_free = bytes - to_free;
4841 		else
4842 			to_free = 0;
4843 	}
4844 	spin_unlock(&BTRFS_I(inode)->lock);
4845 	if (dropped)
4846 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4847 
4848 	if (to_free) {
4849 		btrfs_block_rsv_release(root, block_rsv, to_free);
4850 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
4851 					      btrfs_ino(inode), to_free, 0);
4852 	}
4853 	if (delalloc_lock)
4854 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4855 	return ret;
4856 }
4857 
4858 /**
4859  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4860  * @inode: the inode to release the reservation for
4861  * @num_bytes: the number of bytes we're releasing
4862  *
4863  * This will release the metadata reservation for an inode.  This can be called
4864  * once we complete IO for a given set of bytes to release their metadata
4865  * reservations.
4866  */
4867 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4868 {
4869 	struct btrfs_root *root = BTRFS_I(inode)->root;
4870 	u64 to_free = 0;
4871 	unsigned dropped;
4872 
4873 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4874 	spin_lock(&BTRFS_I(inode)->lock);
4875 	dropped = drop_outstanding_extent(inode);
4876 
4877 	if (num_bytes)
4878 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4879 	spin_unlock(&BTRFS_I(inode)->lock);
4880 	if (dropped > 0)
4881 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4882 
4883 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4884 				      btrfs_ino(inode), to_free, 0);
4885 	if (root->fs_info->quota_enabled) {
4886 		btrfs_qgroup_free(root, num_bytes +
4887 					dropped * root->leafsize);
4888 	}
4889 
4890 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4891 				to_free);
4892 }
4893 
4894 /**
4895  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4896  * @inode: inode we're writing to
4897  * @num_bytes: the number of bytes we want to allocate
4898  *
4899  * This will do the following things
4900  *
4901  * o reserve space in the data space info for num_bytes
4902  * o reserve space in the metadata space info based on number of outstanding
4903  *   extents and how much csums will be needed
4904  * o add to the inodes ->delalloc_bytes
4905  * o add it to the fs_info's delalloc inodes list.
4906  *
4907  * This will return 0 for success and -ENOSPC if there is no space left.
4908  */
4909 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4910 {
4911 	int ret;
4912 
4913 	ret = btrfs_check_data_free_space(inode, num_bytes);
4914 	if (ret)
4915 		return ret;
4916 
4917 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4918 	if (ret) {
4919 		btrfs_free_reserved_data_space(inode, num_bytes);
4920 		return ret;
4921 	}
4922 
4923 	return 0;
4924 }
4925 
4926 /**
4927  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4928  * @inode: inode we're releasing space for
4929  * @num_bytes: the number of bytes we want to free up
4930  *
4931  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4932  * called in the case that we don't need the metadata AND data reservations
4933  * anymore.  So if there is an error or we insert an inline extent.
4934  *
4935  * This function will release the metadata space that was not used and will
4936  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4937  * list if there are no delalloc bytes left.
4938  */
4939 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4940 {
4941 	btrfs_delalloc_release_metadata(inode, num_bytes);
4942 	btrfs_free_reserved_data_space(inode, num_bytes);
4943 }
4944 
4945 static int update_block_group(struct btrfs_root *root,
4946 			      u64 bytenr, u64 num_bytes, int alloc)
4947 {
4948 	struct btrfs_block_group_cache *cache = NULL;
4949 	struct btrfs_fs_info *info = root->fs_info;
4950 	u64 total = num_bytes;
4951 	u64 old_val;
4952 	u64 byte_in_group;
4953 	int factor;
4954 
4955 	/* block accounting for super block */
4956 	spin_lock(&info->delalloc_lock);
4957 	old_val = btrfs_super_bytes_used(info->super_copy);
4958 	if (alloc)
4959 		old_val += num_bytes;
4960 	else
4961 		old_val -= num_bytes;
4962 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4963 	spin_unlock(&info->delalloc_lock);
4964 
4965 	while (total) {
4966 		cache = btrfs_lookup_block_group(info, bytenr);
4967 		if (!cache)
4968 			return -ENOENT;
4969 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4970 				    BTRFS_BLOCK_GROUP_RAID1 |
4971 				    BTRFS_BLOCK_GROUP_RAID10))
4972 			factor = 2;
4973 		else
4974 			factor = 1;
4975 		/*
4976 		 * If this block group has free space cache written out, we
4977 		 * need to make sure to load it if we are removing space.  This
4978 		 * is because we need the unpinning stage to actually add the
4979 		 * space back to the block group, otherwise we will leak space.
4980 		 */
4981 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4982 			cache_block_group(cache, 1);
4983 
4984 		byte_in_group = bytenr - cache->key.objectid;
4985 		WARN_ON(byte_in_group > cache->key.offset);
4986 
4987 		spin_lock(&cache->space_info->lock);
4988 		spin_lock(&cache->lock);
4989 
4990 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4991 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4992 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4993 
4994 		cache->dirty = 1;
4995 		old_val = btrfs_block_group_used(&cache->item);
4996 		num_bytes = min(total, cache->key.offset - byte_in_group);
4997 		if (alloc) {
4998 			old_val += num_bytes;
4999 			btrfs_set_block_group_used(&cache->item, old_val);
5000 			cache->reserved -= num_bytes;
5001 			cache->space_info->bytes_reserved -= num_bytes;
5002 			cache->space_info->bytes_used += num_bytes;
5003 			cache->space_info->disk_used += num_bytes * factor;
5004 			spin_unlock(&cache->lock);
5005 			spin_unlock(&cache->space_info->lock);
5006 		} else {
5007 			old_val -= num_bytes;
5008 			btrfs_set_block_group_used(&cache->item, old_val);
5009 			cache->pinned += num_bytes;
5010 			cache->space_info->bytes_pinned += num_bytes;
5011 			cache->space_info->bytes_used -= num_bytes;
5012 			cache->space_info->disk_used -= num_bytes * factor;
5013 			spin_unlock(&cache->lock);
5014 			spin_unlock(&cache->space_info->lock);
5015 
5016 			set_extent_dirty(info->pinned_extents,
5017 					 bytenr, bytenr + num_bytes - 1,
5018 					 GFP_NOFS | __GFP_NOFAIL);
5019 		}
5020 		btrfs_put_block_group(cache);
5021 		total -= num_bytes;
5022 		bytenr += num_bytes;
5023 	}
5024 	return 0;
5025 }
5026 
5027 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5028 {
5029 	struct btrfs_block_group_cache *cache;
5030 	u64 bytenr;
5031 
5032 	spin_lock(&root->fs_info->block_group_cache_lock);
5033 	bytenr = root->fs_info->first_logical_byte;
5034 	spin_unlock(&root->fs_info->block_group_cache_lock);
5035 
5036 	if (bytenr < (u64)-1)
5037 		return bytenr;
5038 
5039 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5040 	if (!cache)
5041 		return 0;
5042 
5043 	bytenr = cache->key.objectid;
5044 	btrfs_put_block_group(cache);
5045 
5046 	return bytenr;
5047 }
5048 
5049 static int pin_down_extent(struct btrfs_root *root,
5050 			   struct btrfs_block_group_cache *cache,
5051 			   u64 bytenr, u64 num_bytes, int reserved)
5052 {
5053 	spin_lock(&cache->space_info->lock);
5054 	spin_lock(&cache->lock);
5055 	cache->pinned += num_bytes;
5056 	cache->space_info->bytes_pinned += num_bytes;
5057 	if (reserved) {
5058 		cache->reserved -= num_bytes;
5059 		cache->space_info->bytes_reserved -= num_bytes;
5060 	}
5061 	spin_unlock(&cache->lock);
5062 	spin_unlock(&cache->space_info->lock);
5063 
5064 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5065 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5066 	return 0;
5067 }
5068 
5069 /*
5070  * this function must be called within transaction
5071  */
5072 int btrfs_pin_extent(struct btrfs_root *root,
5073 		     u64 bytenr, u64 num_bytes, int reserved)
5074 {
5075 	struct btrfs_block_group_cache *cache;
5076 
5077 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5078 	BUG_ON(!cache); /* Logic error */
5079 
5080 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5081 
5082 	btrfs_put_block_group(cache);
5083 	return 0;
5084 }
5085 
5086 /*
5087  * this function must be called within transaction
5088  */
5089 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5090 				    u64 bytenr, u64 num_bytes)
5091 {
5092 	struct btrfs_block_group_cache *cache;
5093 
5094 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5095 	BUG_ON(!cache); /* Logic error */
5096 
5097 	/*
5098 	 * pull in the free space cache (if any) so that our pin
5099 	 * removes the free space from the cache.  We have load_only set
5100 	 * to one because the slow code to read in the free extents does check
5101 	 * the pinned extents.
5102 	 */
5103 	cache_block_group(cache, 1);
5104 
5105 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5106 
5107 	/* remove us from the free space cache (if we're there at all) */
5108 	btrfs_remove_free_space(cache, bytenr, num_bytes);
5109 	btrfs_put_block_group(cache);
5110 	return 0;
5111 }
5112 
5113 /**
5114  * btrfs_update_reserved_bytes - update the block_group and space info counters
5115  * @cache:	The cache we are manipulating
5116  * @num_bytes:	The number of bytes in question
5117  * @reserve:	One of the reservation enums
5118  *
5119  * This is called by the allocator when it reserves space, or by somebody who is
5120  * freeing space that was never actually used on disk.  For example if you
5121  * reserve some space for a new leaf in transaction A and before transaction A
5122  * commits you free that leaf, you call this with reserve set to 0 in order to
5123  * clear the reservation.
5124  *
5125  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5126  * ENOSPC accounting.  For data we handle the reservation through clearing the
5127  * delalloc bits in the io_tree.  We have to do this since we could end up
5128  * allocating less disk space for the amount of data we have reserved in the
5129  * case of compression.
5130  *
5131  * If this is a reservation and the block group has become read only we cannot
5132  * make the reservation and return -EAGAIN, otherwise this function always
5133  * succeeds.
5134  */
5135 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5136 				       u64 num_bytes, int reserve)
5137 {
5138 	struct btrfs_space_info *space_info = cache->space_info;
5139 	int ret = 0;
5140 
5141 	spin_lock(&space_info->lock);
5142 	spin_lock(&cache->lock);
5143 	if (reserve != RESERVE_FREE) {
5144 		if (cache->ro) {
5145 			ret = -EAGAIN;
5146 		} else {
5147 			cache->reserved += num_bytes;
5148 			space_info->bytes_reserved += num_bytes;
5149 			if (reserve == RESERVE_ALLOC) {
5150 				trace_btrfs_space_reservation(cache->fs_info,
5151 						"space_info", space_info->flags,
5152 						num_bytes, 0);
5153 				space_info->bytes_may_use -= num_bytes;
5154 			}
5155 		}
5156 	} else {
5157 		if (cache->ro)
5158 			space_info->bytes_readonly += num_bytes;
5159 		cache->reserved -= num_bytes;
5160 		space_info->bytes_reserved -= num_bytes;
5161 		space_info->reservation_progress++;
5162 	}
5163 	spin_unlock(&cache->lock);
5164 	spin_unlock(&space_info->lock);
5165 	return ret;
5166 }
5167 
5168 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5169 				struct btrfs_root *root)
5170 {
5171 	struct btrfs_fs_info *fs_info = root->fs_info;
5172 	struct btrfs_caching_control *next;
5173 	struct btrfs_caching_control *caching_ctl;
5174 	struct btrfs_block_group_cache *cache;
5175 
5176 	down_write(&fs_info->extent_commit_sem);
5177 
5178 	list_for_each_entry_safe(caching_ctl, next,
5179 				 &fs_info->caching_block_groups, list) {
5180 		cache = caching_ctl->block_group;
5181 		if (block_group_cache_done(cache)) {
5182 			cache->last_byte_to_unpin = (u64)-1;
5183 			list_del_init(&caching_ctl->list);
5184 			put_caching_control(caching_ctl);
5185 		} else {
5186 			cache->last_byte_to_unpin = caching_ctl->progress;
5187 		}
5188 	}
5189 
5190 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5191 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5192 	else
5193 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5194 
5195 	up_write(&fs_info->extent_commit_sem);
5196 
5197 	update_global_block_rsv(fs_info);
5198 }
5199 
5200 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5201 {
5202 	struct btrfs_fs_info *fs_info = root->fs_info;
5203 	struct btrfs_block_group_cache *cache = NULL;
5204 	struct btrfs_space_info *space_info;
5205 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5206 	u64 len;
5207 	bool readonly;
5208 
5209 	while (start <= end) {
5210 		readonly = false;
5211 		if (!cache ||
5212 		    start >= cache->key.objectid + cache->key.offset) {
5213 			if (cache)
5214 				btrfs_put_block_group(cache);
5215 			cache = btrfs_lookup_block_group(fs_info, start);
5216 			BUG_ON(!cache); /* Logic error */
5217 		}
5218 
5219 		len = cache->key.objectid + cache->key.offset - start;
5220 		len = min(len, end + 1 - start);
5221 
5222 		if (start < cache->last_byte_to_unpin) {
5223 			len = min(len, cache->last_byte_to_unpin - start);
5224 			btrfs_add_free_space(cache, start, len);
5225 		}
5226 
5227 		start += len;
5228 		space_info = cache->space_info;
5229 
5230 		spin_lock(&space_info->lock);
5231 		spin_lock(&cache->lock);
5232 		cache->pinned -= len;
5233 		space_info->bytes_pinned -= len;
5234 		if (cache->ro) {
5235 			space_info->bytes_readonly += len;
5236 			readonly = true;
5237 		}
5238 		spin_unlock(&cache->lock);
5239 		if (!readonly && global_rsv->space_info == space_info) {
5240 			spin_lock(&global_rsv->lock);
5241 			if (!global_rsv->full) {
5242 				len = min(len, global_rsv->size -
5243 					  global_rsv->reserved);
5244 				global_rsv->reserved += len;
5245 				space_info->bytes_may_use += len;
5246 				if (global_rsv->reserved >= global_rsv->size)
5247 					global_rsv->full = 1;
5248 			}
5249 			spin_unlock(&global_rsv->lock);
5250 		}
5251 		spin_unlock(&space_info->lock);
5252 	}
5253 
5254 	if (cache)
5255 		btrfs_put_block_group(cache);
5256 	return 0;
5257 }
5258 
5259 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5260 			       struct btrfs_root *root)
5261 {
5262 	struct btrfs_fs_info *fs_info = root->fs_info;
5263 	struct extent_io_tree *unpin;
5264 	u64 start;
5265 	u64 end;
5266 	int ret;
5267 
5268 	if (trans->aborted)
5269 		return 0;
5270 
5271 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5272 		unpin = &fs_info->freed_extents[1];
5273 	else
5274 		unpin = &fs_info->freed_extents[0];
5275 
5276 	while (1) {
5277 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5278 					    EXTENT_DIRTY, NULL);
5279 		if (ret)
5280 			break;
5281 
5282 		if (btrfs_test_opt(root, DISCARD))
5283 			ret = btrfs_discard_extent(root, start,
5284 						   end + 1 - start, NULL);
5285 
5286 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5287 		unpin_extent_range(root, start, end);
5288 		cond_resched();
5289 	}
5290 
5291 	return 0;
5292 }
5293 
5294 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5295 				struct btrfs_root *root,
5296 				u64 bytenr, u64 num_bytes, u64 parent,
5297 				u64 root_objectid, u64 owner_objectid,
5298 				u64 owner_offset, int refs_to_drop,
5299 				struct btrfs_delayed_extent_op *extent_op)
5300 {
5301 	struct btrfs_key key;
5302 	struct btrfs_path *path;
5303 	struct btrfs_fs_info *info = root->fs_info;
5304 	struct btrfs_root *extent_root = info->extent_root;
5305 	struct extent_buffer *leaf;
5306 	struct btrfs_extent_item *ei;
5307 	struct btrfs_extent_inline_ref *iref;
5308 	int ret;
5309 	int is_data;
5310 	int extent_slot = 0;
5311 	int found_extent = 0;
5312 	int num_to_del = 1;
5313 	u32 item_size;
5314 	u64 refs;
5315 
5316 	path = btrfs_alloc_path();
5317 	if (!path)
5318 		return -ENOMEM;
5319 
5320 	path->reada = 1;
5321 	path->leave_spinning = 1;
5322 
5323 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5324 	BUG_ON(!is_data && refs_to_drop != 1);
5325 
5326 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5327 				    bytenr, num_bytes, parent,
5328 				    root_objectid, owner_objectid,
5329 				    owner_offset);
5330 	if (ret == 0) {
5331 		extent_slot = path->slots[0];
5332 		while (extent_slot >= 0) {
5333 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5334 					      extent_slot);
5335 			if (key.objectid != bytenr)
5336 				break;
5337 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5338 			    key.offset == num_bytes) {
5339 				found_extent = 1;
5340 				break;
5341 			}
5342 			if (path->slots[0] - extent_slot > 5)
5343 				break;
5344 			extent_slot--;
5345 		}
5346 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5347 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5348 		if (found_extent && item_size < sizeof(*ei))
5349 			found_extent = 0;
5350 #endif
5351 		if (!found_extent) {
5352 			BUG_ON(iref);
5353 			ret = remove_extent_backref(trans, extent_root, path,
5354 						    NULL, refs_to_drop,
5355 						    is_data);
5356 			if (ret) {
5357 				btrfs_abort_transaction(trans, extent_root, ret);
5358 				goto out;
5359 			}
5360 			btrfs_release_path(path);
5361 			path->leave_spinning = 1;
5362 
5363 			key.objectid = bytenr;
5364 			key.type = BTRFS_EXTENT_ITEM_KEY;
5365 			key.offset = num_bytes;
5366 
5367 			ret = btrfs_search_slot(trans, extent_root,
5368 						&key, path, -1, 1);
5369 			if (ret) {
5370 				printk(KERN_ERR "umm, got %d back from search"
5371 				       ", was looking for %llu\n", ret,
5372 				       (unsigned long long)bytenr);
5373 				if (ret > 0)
5374 					btrfs_print_leaf(extent_root,
5375 							 path->nodes[0]);
5376 			}
5377 			if (ret < 0) {
5378 				btrfs_abort_transaction(trans, extent_root, ret);
5379 				goto out;
5380 			}
5381 			extent_slot = path->slots[0];
5382 		}
5383 	} else if (ret == -ENOENT) {
5384 		btrfs_print_leaf(extent_root, path->nodes[0]);
5385 		WARN_ON(1);
5386 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5387 		       "parent %llu root %llu  owner %llu offset %llu\n",
5388 		       (unsigned long long)bytenr,
5389 		       (unsigned long long)parent,
5390 		       (unsigned long long)root_objectid,
5391 		       (unsigned long long)owner_objectid,
5392 		       (unsigned long long)owner_offset);
5393 	} else {
5394 		btrfs_abort_transaction(trans, extent_root, ret);
5395 		goto out;
5396 	}
5397 
5398 	leaf = path->nodes[0];
5399 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5400 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5401 	if (item_size < sizeof(*ei)) {
5402 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5403 		ret = convert_extent_item_v0(trans, extent_root, path,
5404 					     owner_objectid, 0);
5405 		if (ret < 0) {
5406 			btrfs_abort_transaction(trans, extent_root, ret);
5407 			goto out;
5408 		}
5409 
5410 		btrfs_release_path(path);
5411 		path->leave_spinning = 1;
5412 
5413 		key.objectid = bytenr;
5414 		key.type = BTRFS_EXTENT_ITEM_KEY;
5415 		key.offset = num_bytes;
5416 
5417 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5418 					-1, 1);
5419 		if (ret) {
5420 			printk(KERN_ERR "umm, got %d back from search"
5421 			       ", was looking for %llu\n", ret,
5422 			       (unsigned long long)bytenr);
5423 			btrfs_print_leaf(extent_root, path->nodes[0]);
5424 		}
5425 		if (ret < 0) {
5426 			btrfs_abort_transaction(trans, extent_root, ret);
5427 			goto out;
5428 		}
5429 
5430 		extent_slot = path->slots[0];
5431 		leaf = path->nodes[0];
5432 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5433 	}
5434 #endif
5435 	BUG_ON(item_size < sizeof(*ei));
5436 	ei = btrfs_item_ptr(leaf, extent_slot,
5437 			    struct btrfs_extent_item);
5438 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5439 		struct btrfs_tree_block_info *bi;
5440 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5441 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5442 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5443 	}
5444 
5445 	refs = btrfs_extent_refs(leaf, ei);
5446 	BUG_ON(refs < refs_to_drop);
5447 	refs -= refs_to_drop;
5448 
5449 	if (refs > 0) {
5450 		if (extent_op)
5451 			__run_delayed_extent_op(extent_op, leaf, ei);
5452 		/*
5453 		 * In the case of inline back ref, reference count will
5454 		 * be updated by remove_extent_backref
5455 		 */
5456 		if (iref) {
5457 			BUG_ON(!found_extent);
5458 		} else {
5459 			btrfs_set_extent_refs(leaf, ei, refs);
5460 			btrfs_mark_buffer_dirty(leaf);
5461 		}
5462 		if (found_extent) {
5463 			ret = remove_extent_backref(trans, extent_root, path,
5464 						    iref, refs_to_drop,
5465 						    is_data);
5466 			if (ret) {
5467 				btrfs_abort_transaction(trans, extent_root, ret);
5468 				goto out;
5469 			}
5470 		}
5471 	} else {
5472 		if (found_extent) {
5473 			BUG_ON(is_data && refs_to_drop !=
5474 			       extent_data_ref_count(root, path, iref));
5475 			if (iref) {
5476 				BUG_ON(path->slots[0] != extent_slot);
5477 			} else {
5478 				BUG_ON(path->slots[0] != extent_slot + 1);
5479 				path->slots[0] = extent_slot;
5480 				num_to_del = 2;
5481 			}
5482 		}
5483 
5484 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5485 				      num_to_del);
5486 		if (ret) {
5487 			btrfs_abort_transaction(trans, extent_root, ret);
5488 			goto out;
5489 		}
5490 		btrfs_release_path(path);
5491 
5492 		if (is_data) {
5493 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5494 			if (ret) {
5495 				btrfs_abort_transaction(trans, extent_root, ret);
5496 				goto out;
5497 			}
5498 		}
5499 
5500 		ret = update_block_group(root, bytenr, num_bytes, 0);
5501 		if (ret) {
5502 			btrfs_abort_transaction(trans, extent_root, ret);
5503 			goto out;
5504 		}
5505 	}
5506 out:
5507 	btrfs_free_path(path);
5508 	return ret;
5509 }
5510 
5511 /*
5512  * when we free an block, it is possible (and likely) that we free the last
5513  * delayed ref for that extent as well.  This searches the delayed ref tree for
5514  * a given extent, and if there are no other delayed refs to be processed, it
5515  * removes it from the tree.
5516  */
5517 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5518 				      struct btrfs_root *root, u64 bytenr)
5519 {
5520 	struct btrfs_delayed_ref_head *head;
5521 	struct btrfs_delayed_ref_root *delayed_refs;
5522 	struct btrfs_delayed_ref_node *ref;
5523 	struct rb_node *node;
5524 	int ret = 0;
5525 
5526 	delayed_refs = &trans->transaction->delayed_refs;
5527 	spin_lock(&delayed_refs->lock);
5528 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5529 	if (!head)
5530 		goto out;
5531 
5532 	node = rb_prev(&head->node.rb_node);
5533 	if (!node)
5534 		goto out;
5535 
5536 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5537 
5538 	/* there are still entries for this ref, we can't drop it */
5539 	if (ref->bytenr == bytenr)
5540 		goto out;
5541 
5542 	if (head->extent_op) {
5543 		if (!head->must_insert_reserved)
5544 			goto out;
5545 		btrfs_free_delayed_extent_op(head->extent_op);
5546 		head->extent_op = NULL;
5547 	}
5548 
5549 	/*
5550 	 * waiting for the lock here would deadlock.  If someone else has it
5551 	 * locked they are already in the process of dropping it anyway
5552 	 */
5553 	if (!mutex_trylock(&head->mutex))
5554 		goto out;
5555 
5556 	/*
5557 	 * at this point we have a head with no other entries.  Go
5558 	 * ahead and process it.
5559 	 */
5560 	head->node.in_tree = 0;
5561 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5562 
5563 	delayed_refs->num_entries--;
5564 
5565 	/*
5566 	 * we don't take a ref on the node because we're removing it from the
5567 	 * tree, so we just steal the ref the tree was holding.
5568 	 */
5569 	delayed_refs->num_heads--;
5570 	if (list_empty(&head->cluster))
5571 		delayed_refs->num_heads_ready--;
5572 
5573 	list_del_init(&head->cluster);
5574 	spin_unlock(&delayed_refs->lock);
5575 
5576 	BUG_ON(head->extent_op);
5577 	if (head->must_insert_reserved)
5578 		ret = 1;
5579 
5580 	mutex_unlock(&head->mutex);
5581 	btrfs_put_delayed_ref(&head->node);
5582 	return ret;
5583 out:
5584 	spin_unlock(&delayed_refs->lock);
5585 	return 0;
5586 }
5587 
5588 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5589 			   struct btrfs_root *root,
5590 			   struct extent_buffer *buf,
5591 			   u64 parent, int last_ref)
5592 {
5593 	struct btrfs_block_group_cache *cache = NULL;
5594 	int ret;
5595 
5596 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5597 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5598 					buf->start, buf->len,
5599 					parent, root->root_key.objectid,
5600 					btrfs_header_level(buf),
5601 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5602 		BUG_ON(ret); /* -ENOMEM */
5603 	}
5604 
5605 	if (!last_ref)
5606 		return;
5607 
5608 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5609 
5610 	if (btrfs_header_generation(buf) == trans->transid) {
5611 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5612 			ret = check_ref_cleanup(trans, root, buf->start);
5613 			if (!ret)
5614 				goto out;
5615 		}
5616 
5617 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5618 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5619 			goto out;
5620 		}
5621 
5622 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5623 
5624 		btrfs_add_free_space(cache, buf->start, buf->len);
5625 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5626 	}
5627 out:
5628 	/*
5629 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5630 	 * anymore.
5631 	 */
5632 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5633 	btrfs_put_block_group(cache);
5634 }
5635 
5636 /* Can return -ENOMEM */
5637 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5638 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5639 		      u64 owner, u64 offset, int for_cow)
5640 {
5641 	int ret;
5642 	struct btrfs_fs_info *fs_info = root->fs_info;
5643 
5644 	/*
5645 	 * tree log blocks never actually go into the extent allocation
5646 	 * tree, just update pinning info and exit early.
5647 	 */
5648 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5649 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5650 		/* unlocks the pinned mutex */
5651 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5652 		ret = 0;
5653 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5654 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5655 					num_bytes,
5656 					parent, root_objectid, (int)owner,
5657 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5658 	} else {
5659 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5660 						num_bytes,
5661 						parent, root_objectid, owner,
5662 						offset, BTRFS_DROP_DELAYED_REF,
5663 						NULL, for_cow);
5664 	}
5665 	return ret;
5666 }
5667 
5668 static u64 stripe_align(struct btrfs_root *root,
5669 			struct btrfs_block_group_cache *cache,
5670 			u64 val, u64 num_bytes)
5671 {
5672 	u64 ret = ALIGN(val, root->stripesize);
5673 	return ret;
5674 }
5675 
5676 /*
5677  * when we wait for progress in the block group caching, its because
5678  * our allocation attempt failed at least once.  So, we must sleep
5679  * and let some progress happen before we try again.
5680  *
5681  * This function will sleep at least once waiting for new free space to
5682  * show up, and then it will check the block group free space numbers
5683  * for our min num_bytes.  Another option is to have it go ahead
5684  * and look in the rbtree for a free extent of a given size, but this
5685  * is a good start.
5686  */
5687 static noinline int
5688 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5689 				u64 num_bytes)
5690 {
5691 	struct btrfs_caching_control *caching_ctl;
5692 
5693 	caching_ctl = get_caching_control(cache);
5694 	if (!caching_ctl)
5695 		return 0;
5696 
5697 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5698 		   (cache->free_space_ctl->free_space >= num_bytes));
5699 
5700 	put_caching_control(caching_ctl);
5701 	return 0;
5702 }
5703 
5704 static noinline int
5705 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5706 {
5707 	struct btrfs_caching_control *caching_ctl;
5708 
5709 	caching_ctl = get_caching_control(cache);
5710 	if (!caching_ctl)
5711 		return 0;
5712 
5713 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5714 
5715 	put_caching_control(caching_ctl);
5716 	return 0;
5717 }
5718 
5719 int __get_raid_index(u64 flags)
5720 {
5721 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5722 		return BTRFS_RAID_RAID10;
5723 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5724 		return BTRFS_RAID_RAID1;
5725 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5726 		return BTRFS_RAID_DUP;
5727 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5728 		return BTRFS_RAID_RAID0;
5729 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5730 		return BTRFS_RAID_RAID5;
5731 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5732 		return BTRFS_RAID_RAID6;
5733 
5734 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5735 }
5736 
5737 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5738 {
5739 	return __get_raid_index(cache->flags);
5740 }
5741 
5742 enum btrfs_loop_type {
5743 	LOOP_CACHING_NOWAIT = 0,
5744 	LOOP_CACHING_WAIT = 1,
5745 	LOOP_ALLOC_CHUNK = 2,
5746 	LOOP_NO_EMPTY_SIZE = 3,
5747 };
5748 
5749 /*
5750  * walks the btree of allocated extents and find a hole of a given size.
5751  * The key ins is changed to record the hole:
5752  * ins->objectid == block start
5753  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5754  * ins->offset == number of blocks
5755  * Any available blocks before search_start are skipped.
5756  */
5757 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5758 				     struct btrfs_root *orig_root,
5759 				     u64 num_bytes, u64 empty_size,
5760 				     u64 hint_byte, struct btrfs_key *ins,
5761 				     u64 data)
5762 {
5763 	int ret = 0;
5764 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5765 	struct btrfs_free_cluster *last_ptr = NULL;
5766 	struct btrfs_block_group_cache *block_group = NULL;
5767 	struct btrfs_block_group_cache *used_block_group;
5768 	u64 search_start = 0;
5769 	int empty_cluster = 2 * 1024 * 1024;
5770 	struct btrfs_space_info *space_info;
5771 	int loop = 0;
5772 	int index = __get_raid_index(data);
5773 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5774 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5775 	bool found_uncached_bg = false;
5776 	bool failed_cluster_refill = false;
5777 	bool failed_alloc = false;
5778 	bool use_cluster = true;
5779 	bool have_caching_bg = false;
5780 
5781 	WARN_ON(num_bytes < root->sectorsize);
5782 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5783 	ins->objectid = 0;
5784 	ins->offset = 0;
5785 
5786 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5787 
5788 	space_info = __find_space_info(root->fs_info, data);
5789 	if (!space_info) {
5790 		printk(KERN_ERR "No space info for %llu\n", data);
5791 		return -ENOSPC;
5792 	}
5793 
5794 	/*
5795 	 * If the space info is for both data and metadata it means we have a
5796 	 * small filesystem and we can't use the clustering stuff.
5797 	 */
5798 	if (btrfs_mixed_space_info(space_info))
5799 		use_cluster = false;
5800 
5801 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5802 		last_ptr = &root->fs_info->meta_alloc_cluster;
5803 		if (!btrfs_test_opt(root, SSD))
5804 			empty_cluster = 64 * 1024;
5805 	}
5806 
5807 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5808 	    btrfs_test_opt(root, SSD)) {
5809 		last_ptr = &root->fs_info->data_alloc_cluster;
5810 	}
5811 
5812 	if (last_ptr) {
5813 		spin_lock(&last_ptr->lock);
5814 		if (last_ptr->block_group)
5815 			hint_byte = last_ptr->window_start;
5816 		spin_unlock(&last_ptr->lock);
5817 	}
5818 
5819 	search_start = max(search_start, first_logical_byte(root, 0));
5820 	search_start = max(search_start, hint_byte);
5821 
5822 	if (!last_ptr)
5823 		empty_cluster = 0;
5824 
5825 	if (search_start == hint_byte) {
5826 		block_group = btrfs_lookup_block_group(root->fs_info,
5827 						       search_start);
5828 		used_block_group = block_group;
5829 		/*
5830 		 * we don't want to use the block group if it doesn't match our
5831 		 * allocation bits, or if its not cached.
5832 		 *
5833 		 * However if we are re-searching with an ideal block group
5834 		 * picked out then we don't care that the block group is cached.
5835 		 */
5836 		if (block_group && block_group_bits(block_group, data) &&
5837 		    block_group->cached != BTRFS_CACHE_NO) {
5838 			down_read(&space_info->groups_sem);
5839 			if (list_empty(&block_group->list) ||
5840 			    block_group->ro) {
5841 				/*
5842 				 * someone is removing this block group,
5843 				 * we can't jump into the have_block_group
5844 				 * target because our list pointers are not
5845 				 * valid
5846 				 */
5847 				btrfs_put_block_group(block_group);
5848 				up_read(&space_info->groups_sem);
5849 			} else {
5850 				index = get_block_group_index(block_group);
5851 				goto have_block_group;
5852 			}
5853 		} else if (block_group) {
5854 			btrfs_put_block_group(block_group);
5855 		}
5856 	}
5857 search:
5858 	have_caching_bg = false;
5859 	down_read(&space_info->groups_sem);
5860 	list_for_each_entry(block_group, &space_info->block_groups[index],
5861 			    list) {
5862 		u64 offset;
5863 		int cached;
5864 
5865 		used_block_group = block_group;
5866 		btrfs_get_block_group(block_group);
5867 		search_start = block_group->key.objectid;
5868 
5869 		/*
5870 		 * this can happen if we end up cycling through all the
5871 		 * raid types, but we want to make sure we only allocate
5872 		 * for the proper type.
5873 		 */
5874 		if (!block_group_bits(block_group, data)) {
5875 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5876 				BTRFS_BLOCK_GROUP_RAID1 |
5877 				BTRFS_BLOCK_GROUP_RAID5 |
5878 				BTRFS_BLOCK_GROUP_RAID6 |
5879 				BTRFS_BLOCK_GROUP_RAID10;
5880 
5881 			/*
5882 			 * if they asked for extra copies and this block group
5883 			 * doesn't provide them, bail.  This does allow us to
5884 			 * fill raid0 from raid1.
5885 			 */
5886 			if ((data & extra) && !(block_group->flags & extra))
5887 				goto loop;
5888 		}
5889 
5890 have_block_group:
5891 		cached = block_group_cache_done(block_group);
5892 		if (unlikely(!cached)) {
5893 			found_uncached_bg = true;
5894 			ret = cache_block_group(block_group, 0);
5895 			BUG_ON(ret < 0);
5896 			ret = 0;
5897 		}
5898 
5899 		if (unlikely(block_group->ro))
5900 			goto loop;
5901 
5902 		/*
5903 		 * Ok we want to try and use the cluster allocator, so
5904 		 * lets look there
5905 		 */
5906 		if (last_ptr) {
5907 			unsigned long aligned_cluster;
5908 			/*
5909 			 * the refill lock keeps out other
5910 			 * people trying to start a new cluster
5911 			 */
5912 			spin_lock(&last_ptr->refill_lock);
5913 			used_block_group = last_ptr->block_group;
5914 			if (used_block_group != block_group &&
5915 			    (!used_block_group ||
5916 			     used_block_group->ro ||
5917 			     !block_group_bits(used_block_group, data))) {
5918 				used_block_group = block_group;
5919 				goto refill_cluster;
5920 			}
5921 
5922 			if (used_block_group != block_group)
5923 				btrfs_get_block_group(used_block_group);
5924 
5925 			offset = btrfs_alloc_from_cluster(used_block_group,
5926 			  last_ptr, num_bytes, used_block_group->key.objectid);
5927 			if (offset) {
5928 				/* we have a block, we're done */
5929 				spin_unlock(&last_ptr->refill_lock);
5930 				trace_btrfs_reserve_extent_cluster(root,
5931 					block_group, search_start, num_bytes);
5932 				goto checks;
5933 			}
5934 
5935 			WARN_ON(last_ptr->block_group != used_block_group);
5936 			if (used_block_group != block_group) {
5937 				btrfs_put_block_group(used_block_group);
5938 				used_block_group = block_group;
5939 			}
5940 refill_cluster:
5941 			BUG_ON(used_block_group != block_group);
5942 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5943 			 * set up a new clusters, so lets just skip it
5944 			 * and let the allocator find whatever block
5945 			 * it can find.  If we reach this point, we
5946 			 * will have tried the cluster allocator
5947 			 * plenty of times and not have found
5948 			 * anything, so we are likely way too
5949 			 * fragmented for the clustering stuff to find
5950 			 * anything.
5951 			 *
5952 			 * However, if the cluster is taken from the
5953 			 * current block group, release the cluster
5954 			 * first, so that we stand a better chance of
5955 			 * succeeding in the unclustered
5956 			 * allocation.  */
5957 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5958 			    last_ptr->block_group != block_group) {
5959 				spin_unlock(&last_ptr->refill_lock);
5960 				goto unclustered_alloc;
5961 			}
5962 
5963 			/*
5964 			 * this cluster didn't work out, free it and
5965 			 * start over
5966 			 */
5967 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5968 
5969 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5970 				spin_unlock(&last_ptr->refill_lock);
5971 				goto unclustered_alloc;
5972 			}
5973 
5974 			aligned_cluster = max_t(unsigned long,
5975 						empty_cluster + empty_size,
5976 					      block_group->full_stripe_len);
5977 
5978 			/* allocate a cluster in this block group */
5979 			ret = btrfs_find_space_cluster(trans, root,
5980 					       block_group, last_ptr,
5981 					       search_start, num_bytes,
5982 					       aligned_cluster);
5983 			if (ret == 0) {
5984 				/*
5985 				 * now pull our allocation out of this
5986 				 * cluster
5987 				 */
5988 				offset = btrfs_alloc_from_cluster(block_group,
5989 						  last_ptr, num_bytes,
5990 						  search_start);
5991 				if (offset) {
5992 					/* we found one, proceed */
5993 					spin_unlock(&last_ptr->refill_lock);
5994 					trace_btrfs_reserve_extent_cluster(root,
5995 						block_group, search_start,
5996 						num_bytes);
5997 					goto checks;
5998 				}
5999 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6000 				   && !failed_cluster_refill) {
6001 				spin_unlock(&last_ptr->refill_lock);
6002 
6003 				failed_cluster_refill = true;
6004 				wait_block_group_cache_progress(block_group,
6005 				       num_bytes + empty_cluster + empty_size);
6006 				goto have_block_group;
6007 			}
6008 
6009 			/*
6010 			 * at this point we either didn't find a cluster
6011 			 * or we weren't able to allocate a block from our
6012 			 * cluster.  Free the cluster we've been trying
6013 			 * to use, and go to the next block group
6014 			 */
6015 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6016 			spin_unlock(&last_ptr->refill_lock);
6017 			goto loop;
6018 		}
6019 
6020 unclustered_alloc:
6021 		spin_lock(&block_group->free_space_ctl->tree_lock);
6022 		if (cached &&
6023 		    block_group->free_space_ctl->free_space <
6024 		    num_bytes + empty_cluster + empty_size) {
6025 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6026 			goto loop;
6027 		}
6028 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6029 
6030 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6031 						    num_bytes, empty_size);
6032 		/*
6033 		 * If we didn't find a chunk, and we haven't failed on this
6034 		 * block group before, and this block group is in the middle of
6035 		 * caching and we are ok with waiting, then go ahead and wait
6036 		 * for progress to be made, and set failed_alloc to true.
6037 		 *
6038 		 * If failed_alloc is true then we've already waited on this
6039 		 * block group once and should move on to the next block group.
6040 		 */
6041 		if (!offset && !failed_alloc && !cached &&
6042 		    loop > LOOP_CACHING_NOWAIT) {
6043 			wait_block_group_cache_progress(block_group,
6044 						num_bytes + empty_size);
6045 			failed_alloc = true;
6046 			goto have_block_group;
6047 		} else if (!offset) {
6048 			if (!cached)
6049 				have_caching_bg = true;
6050 			goto loop;
6051 		}
6052 checks:
6053 		search_start = stripe_align(root, used_block_group,
6054 					    offset, num_bytes);
6055 
6056 		/* move on to the next group */
6057 		if (search_start + num_bytes >
6058 		    used_block_group->key.objectid + used_block_group->key.offset) {
6059 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6060 			goto loop;
6061 		}
6062 
6063 		if (offset < search_start)
6064 			btrfs_add_free_space(used_block_group, offset,
6065 					     search_start - offset);
6066 		BUG_ON(offset > search_start);
6067 
6068 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6069 						  alloc_type);
6070 		if (ret == -EAGAIN) {
6071 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6072 			goto loop;
6073 		}
6074 
6075 		/* we are all good, lets return */
6076 		ins->objectid = search_start;
6077 		ins->offset = num_bytes;
6078 
6079 		trace_btrfs_reserve_extent(orig_root, block_group,
6080 					   search_start, num_bytes);
6081 		if (used_block_group != block_group)
6082 			btrfs_put_block_group(used_block_group);
6083 		btrfs_put_block_group(block_group);
6084 		break;
6085 loop:
6086 		failed_cluster_refill = false;
6087 		failed_alloc = false;
6088 		BUG_ON(index != get_block_group_index(block_group));
6089 		if (used_block_group != block_group)
6090 			btrfs_put_block_group(used_block_group);
6091 		btrfs_put_block_group(block_group);
6092 	}
6093 	up_read(&space_info->groups_sem);
6094 
6095 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6096 		goto search;
6097 
6098 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6099 		goto search;
6100 
6101 	/*
6102 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6103 	 *			caching kthreads as we move along
6104 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6105 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6106 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6107 	 *			again
6108 	 */
6109 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6110 		index = 0;
6111 		loop++;
6112 		if (loop == LOOP_ALLOC_CHUNK) {
6113 			ret = do_chunk_alloc(trans, root, data,
6114 					     CHUNK_ALLOC_FORCE);
6115 			/*
6116 			 * Do not bail out on ENOSPC since we
6117 			 * can do more things.
6118 			 */
6119 			if (ret < 0 && ret != -ENOSPC) {
6120 				btrfs_abort_transaction(trans,
6121 							root, ret);
6122 				goto out;
6123 			}
6124 		}
6125 
6126 		if (loop == LOOP_NO_EMPTY_SIZE) {
6127 			empty_size = 0;
6128 			empty_cluster = 0;
6129 		}
6130 
6131 		goto search;
6132 	} else if (!ins->objectid) {
6133 		ret = -ENOSPC;
6134 	} else if (ins->objectid) {
6135 		ret = 0;
6136 	}
6137 out:
6138 
6139 	return ret;
6140 }
6141 
6142 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6143 			    int dump_block_groups)
6144 {
6145 	struct btrfs_block_group_cache *cache;
6146 	int index = 0;
6147 
6148 	spin_lock(&info->lock);
6149 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6150 	       (unsigned long long)info->flags,
6151 	       (unsigned long long)(info->total_bytes - info->bytes_used -
6152 				    info->bytes_pinned - info->bytes_reserved -
6153 				    info->bytes_readonly),
6154 	       (info->full) ? "" : "not ");
6155 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6156 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6157 	       (unsigned long long)info->total_bytes,
6158 	       (unsigned long long)info->bytes_used,
6159 	       (unsigned long long)info->bytes_pinned,
6160 	       (unsigned long long)info->bytes_reserved,
6161 	       (unsigned long long)info->bytes_may_use,
6162 	       (unsigned long long)info->bytes_readonly);
6163 	spin_unlock(&info->lock);
6164 
6165 	if (!dump_block_groups)
6166 		return;
6167 
6168 	down_read(&info->groups_sem);
6169 again:
6170 	list_for_each_entry(cache, &info->block_groups[index], list) {
6171 		spin_lock(&cache->lock);
6172 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6173 		       (unsigned long long)cache->key.objectid,
6174 		       (unsigned long long)cache->key.offset,
6175 		       (unsigned long long)btrfs_block_group_used(&cache->item),
6176 		       (unsigned long long)cache->pinned,
6177 		       (unsigned long long)cache->reserved,
6178 		       cache->ro ? "[readonly]" : "");
6179 		btrfs_dump_free_space(cache, bytes);
6180 		spin_unlock(&cache->lock);
6181 	}
6182 	if (++index < BTRFS_NR_RAID_TYPES)
6183 		goto again;
6184 	up_read(&info->groups_sem);
6185 }
6186 
6187 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6188 			 struct btrfs_root *root,
6189 			 u64 num_bytes, u64 min_alloc_size,
6190 			 u64 empty_size, u64 hint_byte,
6191 			 struct btrfs_key *ins, u64 data)
6192 {
6193 	bool final_tried = false;
6194 	int ret;
6195 
6196 	data = btrfs_get_alloc_profile(root, data);
6197 again:
6198 	WARN_ON(num_bytes < root->sectorsize);
6199 	ret = find_free_extent(trans, root, num_bytes, empty_size,
6200 			       hint_byte, ins, data);
6201 
6202 	if (ret == -ENOSPC) {
6203 		if (!final_tried) {
6204 			num_bytes = num_bytes >> 1;
6205 			num_bytes = round_down(num_bytes, root->sectorsize);
6206 			num_bytes = max(num_bytes, min_alloc_size);
6207 			if (num_bytes == min_alloc_size)
6208 				final_tried = true;
6209 			goto again;
6210 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6211 			struct btrfs_space_info *sinfo;
6212 
6213 			sinfo = __find_space_info(root->fs_info, data);
6214 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
6215 			       "wanted %llu\n", (unsigned long long)data,
6216 			       (unsigned long long)num_bytes);
6217 			if (sinfo)
6218 				dump_space_info(sinfo, num_bytes, 1);
6219 		}
6220 	}
6221 
6222 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6223 
6224 	return ret;
6225 }
6226 
6227 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6228 					u64 start, u64 len, int pin)
6229 {
6230 	struct btrfs_block_group_cache *cache;
6231 	int ret = 0;
6232 
6233 	cache = btrfs_lookup_block_group(root->fs_info, start);
6234 	if (!cache) {
6235 		printk(KERN_ERR "Unable to find block group for %llu\n",
6236 		       (unsigned long long)start);
6237 		return -ENOSPC;
6238 	}
6239 
6240 	if (btrfs_test_opt(root, DISCARD))
6241 		ret = btrfs_discard_extent(root, start, len, NULL);
6242 
6243 	if (pin)
6244 		pin_down_extent(root, cache, start, len, 1);
6245 	else {
6246 		btrfs_add_free_space(cache, start, len);
6247 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6248 	}
6249 	btrfs_put_block_group(cache);
6250 
6251 	trace_btrfs_reserved_extent_free(root, start, len);
6252 
6253 	return ret;
6254 }
6255 
6256 int btrfs_free_reserved_extent(struct btrfs_root *root,
6257 					u64 start, u64 len)
6258 {
6259 	return __btrfs_free_reserved_extent(root, start, len, 0);
6260 }
6261 
6262 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6263 				       u64 start, u64 len)
6264 {
6265 	return __btrfs_free_reserved_extent(root, start, len, 1);
6266 }
6267 
6268 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6269 				      struct btrfs_root *root,
6270 				      u64 parent, u64 root_objectid,
6271 				      u64 flags, u64 owner, u64 offset,
6272 				      struct btrfs_key *ins, int ref_mod)
6273 {
6274 	int ret;
6275 	struct btrfs_fs_info *fs_info = root->fs_info;
6276 	struct btrfs_extent_item *extent_item;
6277 	struct btrfs_extent_inline_ref *iref;
6278 	struct btrfs_path *path;
6279 	struct extent_buffer *leaf;
6280 	int type;
6281 	u32 size;
6282 
6283 	if (parent > 0)
6284 		type = BTRFS_SHARED_DATA_REF_KEY;
6285 	else
6286 		type = BTRFS_EXTENT_DATA_REF_KEY;
6287 
6288 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6289 
6290 	path = btrfs_alloc_path();
6291 	if (!path)
6292 		return -ENOMEM;
6293 
6294 	path->leave_spinning = 1;
6295 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6296 				      ins, size);
6297 	if (ret) {
6298 		btrfs_free_path(path);
6299 		return ret;
6300 	}
6301 
6302 	leaf = path->nodes[0];
6303 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6304 				     struct btrfs_extent_item);
6305 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6306 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6307 	btrfs_set_extent_flags(leaf, extent_item,
6308 			       flags | BTRFS_EXTENT_FLAG_DATA);
6309 
6310 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6311 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6312 	if (parent > 0) {
6313 		struct btrfs_shared_data_ref *ref;
6314 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6315 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6316 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6317 	} else {
6318 		struct btrfs_extent_data_ref *ref;
6319 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6320 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6321 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6322 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6323 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6324 	}
6325 
6326 	btrfs_mark_buffer_dirty(path->nodes[0]);
6327 	btrfs_free_path(path);
6328 
6329 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6330 	if (ret) { /* -ENOENT, logic error */
6331 		printk(KERN_ERR "btrfs update block group failed for %llu "
6332 		       "%llu\n", (unsigned long long)ins->objectid,
6333 		       (unsigned long long)ins->offset);
6334 		BUG();
6335 	}
6336 	return ret;
6337 }
6338 
6339 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6340 				     struct btrfs_root *root,
6341 				     u64 parent, u64 root_objectid,
6342 				     u64 flags, struct btrfs_disk_key *key,
6343 				     int level, struct btrfs_key *ins)
6344 {
6345 	int ret;
6346 	struct btrfs_fs_info *fs_info = root->fs_info;
6347 	struct btrfs_extent_item *extent_item;
6348 	struct btrfs_tree_block_info *block_info;
6349 	struct btrfs_extent_inline_ref *iref;
6350 	struct btrfs_path *path;
6351 	struct extent_buffer *leaf;
6352 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6353 
6354 	path = btrfs_alloc_path();
6355 	if (!path)
6356 		return -ENOMEM;
6357 
6358 	path->leave_spinning = 1;
6359 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6360 				      ins, size);
6361 	if (ret) {
6362 		btrfs_free_path(path);
6363 		return ret;
6364 	}
6365 
6366 	leaf = path->nodes[0];
6367 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6368 				     struct btrfs_extent_item);
6369 	btrfs_set_extent_refs(leaf, extent_item, 1);
6370 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6371 	btrfs_set_extent_flags(leaf, extent_item,
6372 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6373 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6374 
6375 	btrfs_set_tree_block_key(leaf, block_info, key);
6376 	btrfs_set_tree_block_level(leaf, block_info, level);
6377 
6378 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6379 	if (parent > 0) {
6380 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6381 		btrfs_set_extent_inline_ref_type(leaf, iref,
6382 						 BTRFS_SHARED_BLOCK_REF_KEY);
6383 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6384 	} else {
6385 		btrfs_set_extent_inline_ref_type(leaf, iref,
6386 						 BTRFS_TREE_BLOCK_REF_KEY);
6387 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6388 	}
6389 
6390 	btrfs_mark_buffer_dirty(leaf);
6391 	btrfs_free_path(path);
6392 
6393 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6394 	if (ret) { /* -ENOENT, logic error */
6395 		printk(KERN_ERR "btrfs update block group failed for %llu "
6396 		       "%llu\n", (unsigned long long)ins->objectid,
6397 		       (unsigned long long)ins->offset);
6398 		BUG();
6399 	}
6400 	return ret;
6401 }
6402 
6403 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6404 				     struct btrfs_root *root,
6405 				     u64 root_objectid, u64 owner,
6406 				     u64 offset, struct btrfs_key *ins)
6407 {
6408 	int ret;
6409 
6410 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6411 
6412 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6413 					 ins->offset, 0,
6414 					 root_objectid, owner, offset,
6415 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6416 	return ret;
6417 }
6418 
6419 /*
6420  * this is used by the tree logging recovery code.  It records that
6421  * an extent has been allocated and makes sure to clear the free
6422  * space cache bits as well
6423  */
6424 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6425 				   struct btrfs_root *root,
6426 				   u64 root_objectid, u64 owner, u64 offset,
6427 				   struct btrfs_key *ins)
6428 {
6429 	int ret;
6430 	struct btrfs_block_group_cache *block_group;
6431 	struct btrfs_caching_control *caching_ctl;
6432 	u64 start = ins->objectid;
6433 	u64 num_bytes = ins->offset;
6434 
6435 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6436 	cache_block_group(block_group, 0);
6437 	caching_ctl = get_caching_control(block_group);
6438 
6439 	if (!caching_ctl) {
6440 		BUG_ON(!block_group_cache_done(block_group));
6441 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6442 		BUG_ON(ret); /* -ENOMEM */
6443 	} else {
6444 		mutex_lock(&caching_ctl->mutex);
6445 
6446 		if (start >= caching_ctl->progress) {
6447 			ret = add_excluded_extent(root, start, num_bytes);
6448 			BUG_ON(ret); /* -ENOMEM */
6449 		} else if (start + num_bytes <= caching_ctl->progress) {
6450 			ret = btrfs_remove_free_space(block_group,
6451 						      start, num_bytes);
6452 			BUG_ON(ret); /* -ENOMEM */
6453 		} else {
6454 			num_bytes = caching_ctl->progress - start;
6455 			ret = btrfs_remove_free_space(block_group,
6456 						      start, num_bytes);
6457 			BUG_ON(ret); /* -ENOMEM */
6458 
6459 			start = caching_ctl->progress;
6460 			num_bytes = ins->objectid + ins->offset -
6461 				    caching_ctl->progress;
6462 			ret = add_excluded_extent(root, start, num_bytes);
6463 			BUG_ON(ret); /* -ENOMEM */
6464 		}
6465 
6466 		mutex_unlock(&caching_ctl->mutex);
6467 		put_caching_control(caching_ctl);
6468 	}
6469 
6470 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6471 					  RESERVE_ALLOC_NO_ACCOUNT);
6472 	BUG_ON(ret); /* logic error */
6473 	btrfs_put_block_group(block_group);
6474 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6475 					 0, owner, offset, ins, 1);
6476 	return ret;
6477 }
6478 
6479 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6480 					    struct btrfs_root *root,
6481 					    u64 bytenr, u32 blocksize,
6482 					    int level)
6483 {
6484 	struct extent_buffer *buf;
6485 
6486 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6487 	if (!buf)
6488 		return ERR_PTR(-ENOMEM);
6489 	btrfs_set_header_generation(buf, trans->transid);
6490 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6491 	btrfs_tree_lock(buf);
6492 	clean_tree_block(trans, root, buf);
6493 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6494 
6495 	btrfs_set_lock_blocking(buf);
6496 	btrfs_set_buffer_uptodate(buf);
6497 
6498 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6499 		/*
6500 		 * we allow two log transactions at a time, use different
6501 		 * EXENT bit to differentiate dirty pages.
6502 		 */
6503 		if (root->log_transid % 2 == 0)
6504 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6505 					buf->start + buf->len - 1, GFP_NOFS);
6506 		else
6507 			set_extent_new(&root->dirty_log_pages, buf->start,
6508 					buf->start + buf->len - 1, GFP_NOFS);
6509 	} else {
6510 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6511 			 buf->start + buf->len - 1, GFP_NOFS);
6512 	}
6513 	trans->blocks_used++;
6514 	/* this returns a buffer locked for blocking */
6515 	return buf;
6516 }
6517 
6518 static struct btrfs_block_rsv *
6519 use_block_rsv(struct btrfs_trans_handle *trans,
6520 	      struct btrfs_root *root, u32 blocksize)
6521 {
6522 	struct btrfs_block_rsv *block_rsv;
6523 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6524 	int ret;
6525 
6526 	block_rsv = get_block_rsv(trans, root);
6527 
6528 	if (block_rsv->size == 0) {
6529 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6530 					     BTRFS_RESERVE_NO_FLUSH);
6531 		/*
6532 		 * If we couldn't reserve metadata bytes try and use some from
6533 		 * the global reserve.
6534 		 */
6535 		if (ret && block_rsv != global_rsv) {
6536 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6537 			if (!ret)
6538 				return global_rsv;
6539 			return ERR_PTR(ret);
6540 		} else if (ret) {
6541 			return ERR_PTR(ret);
6542 		}
6543 		return block_rsv;
6544 	}
6545 
6546 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6547 	if (!ret)
6548 		return block_rsv;
6549 	if (ret && !block_rsv->failfast) {
6550 		if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6551 			static DEFINE_RATELIMIT_STATE(_rs,
6552 					DEFAULT_RATELIMIT_INTERVAL * 10,
6553 					/*DEFAULT_RATELIMIT_BURST*/ 1);
6554 			if (__ratelimit(&_rs))
6555 				WARN(1, KERN_DEBUG
6556 					"btrfs: block rsv returned %d\n", ret);
6557 		}
6558 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6559 					     BTRFS_RESERVE_NO_FLUSH);
6560 		if (!ret) {
6561 			return block_rsv;
6562 		} else if (ret && block_rsv != global_rsv) {
6563 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6564 			if (!ret)
6565 				return global_rsv;
6566 		}
6567 	}
6568 
6569 	return ERR_PTR(-ENOSPC);
6570 }
6571 
6572 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6573 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6574 {
6575 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6576 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6577 }
6578 
6579 /*
6580  * finds a free extent and does all the dirty work required for allocation
6581  * returns the key for the extent through ins, and a tree buffer for
6582  * the first block of the extent through buf.
6583  *
6584  * returns the tree buffer or NULL.
6585  */
6586 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6587 					struct btrfs_root *root, u32 blocksize,
6588 					u64 parent, u64 root_objectid,
6589 					struct btrfs_disk_key *key, int level,
6590 					u64 hint, u64 empty_size)
6591 {
6592 	struct btrfs_key ins;
6593 	struct btrfs_block_rsv *block_rsv;
6594 	struct extent_buffer *buf;
6595 	u64 flags = 0;
6596 	int ret;
6597 
6598 
6599 	block_rsv = use_block_rsv(trans, root, blocksize);
6600 	if (IS_ERR(block_rsv))
6601 		return ERR_CAST(block_rsv);
6602 
6603 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6604 				   empty_size, hint, &ins, 0);
6605 	if (ret) {
6606 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6607 		return ERR_PTR(ret);
6608 	}
6609 
6610 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6611 				    blocksize, level);
6612 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6613 
6614 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6615 		if (parent == 0)
6616 			parent = ins.objectid;
6617 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6618 	} else
6619 		BUG_ON(parent > 0);
6620 
6621 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6622 		struct btrfs_delayed_extent_op *extent_op;
6623 		extent_op = btrfs_alloc_delayed_extent_op();
6624 		BUG_ON(!extent_op); /* -ENOMEM */
6625 		if (key)
6626 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6627 		else
6628 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6629 		extent_op->flags_to_set = flags;
6630 		extent_op->update_key = 1;
6631 		extent_op->update_flags = 1;
6632 		extent_op->is_data = 0;
6633 
6634 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6635 					ins.objectid,
6636 					ins.offset, parent, root_objectid,
6637 					level, BTRFS_ADD_DELAYED_EXTENT,
6638 					extent_op, 0);
6639 		BUG_ON(ret); /* -ENOMEM */
6640 	}
6641 	return buf;
6642 }
6643 
6644 struct walk_control {
6645 	u64 refs[BTRFS_MAX_LEVEL];
6646 	u64 flags[BTRFS_MAX_LEVEL];
6647 	struct btrfs_key update_progress;
6648 	int stage;
6649 	int level;
6650 	int shared_level;
6651 	int update_ref;
6652 	int keep_locks;
6653 	int reada_slot;
6654 	int reada_count;
6655 	int for_reloc;
6656 };
6657 
6658 #define DROP_REFERENCE	1
6659 #define UPDATE_BACKREF	2
6660 
6661 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6662 				     struct btrfs_root *root,
6663 				     struct walk_control *wc,
6664 				     struct btrfs_path *path)
6665 {
6666 	u64 bytenr;
6667 	u64 generation;
6668 	u64 refs;
6669 	u64 flags;
6670 	u32 nritems;
6671 	u32 blocksize;
6672 	struct btrfs_key key;
6673 	struct extent_buffer *eb;
6674 	int ret;
6675 	int slot;
6676 	int nread = 0;
6677 
6678 	if (path->slots[wc->level] < wc->reada_slot) {
6679 		wc->reada_count = wc->reada_count * 2 / 3;
6680 		wc->reada_count = max(wc->reada_count, 2);
6681 	} else {
6682 		wc->reada_count = wc->reada_count * 3 / 2;
6683 		wc->reada_count = min_t(int, wc->reada_count,
6684 					BTRFS_NODEPTRS_PER_BLOCK(root));
6685 	}
6686 
6687 	eb = path->nodes[wc->level];
6688 	nritems = btrfs_header_nritems(eb);
6689 	blocksize = btrfs_level_size(root, wc->level - 1);
6690 
6691 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6692 		if (nread >= wc->reada_count)
6693 			break;
6694 
6695 		cond_resched();
6696 		bytenr = btrfs_node_blockptr(eb, slot);
6697 		generation = btrfs_node_ptr_generation(eb, slot);
6698 
6699 		if (slot == path->slots[wc->level])
6700 			goto reada;
6701 
6702 		if (wc->stage == UPDATE_BACKREF &&
6703 		    generation <= root->root_key.offset)
6704 			continue;
6705 
6706 		/* We don't lock the tree block, it's OK to be racy here */
6707 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6708 					       &refs, &flags);
6709 		/* We don't care about errors in readahead. */
6710 		if (ret < 0)
6711 			continue;
6712 		BUG_ON(refs == 0);
6713 
6714 		if (wc->stage == DROP_REFERENCE) {
6715 			if (refs == 1)
6716 				goto reada;
6717 
6718 			if (wc->level == 1 &&
6719 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6720 				continue;
6721 			if (!wc->update_ref ||
6722 			    generation <= root->root_key.offset)
6723 				continue;
6724 			btrfs_node_key_to_cpu(eb, &key, slot);
6725 			ret = btrfs_comp_cpu_keys(&key,
6726 						  &wc->update_progress);
6727 			if (ret < 0)
6728 				continue;
6729 		} else {
6730 			if (wc->level == 1 &&
6731 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6732 				continue;
6733 		}
6734 reada:
6735 		ret = readahead_tree_block(root, bytenr, blocksize,
6736 					   generation);
6737 		if (ret)
6738 			break;
6739 		nread++;
6740 	}
6741 	wc->reada_slot = slot;
6742 }
6743 
6744 /*
6745  * helper to process tree block while walking down the tree.
6746  *
6747  * when wc->stage == UPDATE_BACKREF, this function updates
6748  * back refs for pointers in the block.
6749  *
6750  * NOTE: return value 1 means we should stop walking down.
6751  */
6752 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6753 				   struct btrfs_root *root,
6754 				   struct btrfs_path *path,
6755 				   struct walk_control *wc, int lookup_info)
6756 {
6757 	int level = wc->level;
6758 	struct extent_buffer *eb = path->nodes[level];
6759 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6760 	int ret;
6761 
6762 	if (wc->stage == UPDATE_BACKREF &&
6763 	    btrfs_header_owner(eb) != root->root_key.objectid)
6764 		return 1;
6765 
6766 	/*
6767 	 * when reference count of tree block is 1, it won't increase
6768 	 * again. once full backref flag is set, we never clear it.
6769 	 */
6770 	if (lookup_info &&
6771 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6772 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6773 		BUG_ON(!path->locks[level]);
6774 		ret = btrfs_lookup_extent_info(trans, root,
6775 					       eb->start, eb->len,
6776 					       &wc->refs[level],
6777 					       &wc->flags[level]);
6778 		BUG_ON(ret == -ENOMEM);
6779 		if (ret)
6780 			return ret;
6781 		BUG_ON(wc->refs[level] == 0);
6782 	}
6783 
6784 	if (wc->stage == DROP_REFERENCE) {
6785 		if (wc->refs[level] > 1)
6786 			return 1;
6787 
6788 		if (path->locks[level] && !wc->keep_locks) {
6789 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6790 			path->locks[level] = 0;
6791 		}
6792 		return 0;
6793 	}
6794 
6795 	/* wc->stage == UPDATE_BACKREF */
6796 	if (!(wc->flags[level] & flag)) {
6797 		BUG_ON(!path->locks[level]);
6798 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6799 		BUG_ON(ret); /* -ENOMEM */
6800 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6801 		BUG_ON(ret); /* -ENOMEM */
6802 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6803 						  eb->len, flag, 0);
6804 		BUG_ON(ret); /* -ENOMEM */
6805 		wc->flags[level] |= flag;
6806 	}
6807 
6808 	/*
6809 	 * the block is shared by multiple trees, so it's not good to
6810 	 * keep the tree lock
6811 	 */
6812 	if (path->locks[level] && level > 0) {
6813 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6814 		path->locks[level] = 0;
6815 	}
6816 	return 0;
6817 }
6818 
6819 /*
6820  * helper to process tree block pointer.
6821  *
6822  * when wc->stage == DROP_REFERENCE, this function checks
6823  * reference count of the block pointed to. if the block
6824  * is shared and we need update back refs for the subtree
6825  * rooted at the block, this function changes wc->stage to
6826  * UPDATE_BACKREF. if the block is shared and there is no
6827  * need to update back, this function drops the reference
6828  * to the block.
6829  *
6830  * NOTE: return value 1 means we should stop walking down.
6831  */
6832 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6833 				 struct btrfs_root *root,
6834 				 struct btrfs_path *path,
6835 				 struct walk_control *wc, int *lookup_info)
6836 {
6837 	u64 bytenr;
6838 	u64 generation;
6839 	u64 parent;
6840 	u32 blocksize;
6841 	struct btrfs_key key;
6842 	struct extent_buffer *next;
6843 	int level = wc->level;
6844 	int reada = 0;
6845 	int ret = 0;
6846 
6847 	generation = btrfs_node_ptr_generation(path->nodes[level],
6848 					       path->slots[level]);
6849 	/*
6850 	 * if the lower level block was created before the snapshot
6851 	 * was created, we know there is no need to update back refs
6852 	 * for the subtree
6853 	 */
6854 	if (wc->stage == UPDATE_BACKREF &&
6855 	    generation <= root->root_key.offset) {
6856 		*lookup_info = 1;
6857 		return 1;
6858 	}
6859 
6860 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6861 	blocksize = btrfs_level_size(root, level - 1);
6862 
6863 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6864 	if (!next) {
6865 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6866 		if (!next)
6867 			return -ENOMEM;
6868 		reada = 1;
6869 	}
6870 	btrfs_tree_lock(next);
6871 	btrfs_set_lock_blocking(next);
6872 
6873 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6874 				       &wc->refs[level - 1],
6875 				       &wc->flags[level - 1]);
6876 	if (ret < 0) {
6877 		btrfs_tree_unlock(next);
6878 		return ret;
6879 	}
6880 
6881 	BUG_ON(wc->refs[level - 1] == 0);
6882 	*lookup_info = 0;
6883 
6884 	if (wc->stage == DROP_REFERENCE) {
6885 		if (wc->refs[level - 1] > 1) {
6886 			if (level == 1 &&
6887 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6888 				goto skip;
6889 
6890 			if (!wc->update_ref ||
6891 			    generation <= root->root_key.offset)
6892 				goto skip;
6893 
6894 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6895 					      path->slots[level]);
6896 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6897 			if (ret < 0)
6898 				goto skip;
6899 
6900 			wc->stage = UPDATE_BACKREF;
6901 			wc->shared_level = level - 1;
6902 		}
6903 	} else {
6904 		if (level == 1 &&
6905 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6906 			goto skip;
6907 	}
6908 
6909 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6910 		btrfs_tree_unlock(next);
6911 		free_extent_buffer(next);
6912 		next = NULL;
6913 		*lookup_info = 1;
6914 	}
6915 
6916 	if (!next) {
6917 		if (reada && level == 1)
6918 			reada_walk_down(trans, root, wc, path);
6919 		next = read_tree_block(root, bytenr, blocksize, generation);
6920 		if (!next)
6921 			return -EIO;
6922 		btrfs_tree_lock(next);
6923 		btrfs_set_lock_blocking(next);
6924 	}
6925 
6926 	level--;
6927 	BUG_ON(level != btrfs_header_level(next));
6928 	path->nodes[level] = next;
6929 	path->slots[level] = 0;
6930 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6931 	wc->level = level;
6932 	if (wc->level == 1)
6933 		wc->reada_slot = 0;
6934 	return 0;
6935 skip:
6936 	wc->refs[level - 1] = 0;
6937 	wc->flags[level - 1] = 0;
6938 	if (wc->stage == DROP_REFERENCE) {
6939 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6940 			parent = path->nodes[level]->start;
6941 		} else {
6942 			BUG_ON(root->root_key.objectid !=
6943 			       btrfs_header_owner(path->nodes[level]));
6944 			parent = 0;
6945 		}
6946 
6947 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6948 				root->root_key.objectid, level - 1, 0, 0);
6949 		BUG_ON(ret); /* -ENOMEM */
6950 	}
6951 	btrfs_tree_unlock(next);
6952 	free_extent_buffer(next);
6953 	*lookup_info = 1;
6954 	return 1;
6955 }
6956 
6957 /*
6958  * helper to process tree block while walking up the tree.
6959  *
6960  * when wc->stage == DROP_REFERENCE, this function drops
6961  * reference count on the block.
6962  *
6963  * when wc->stage == UPDATE_BACKREF, this function changes
6964  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6965  * to UPDATE_BACKREF previously while processing the block.
6966  *
6967  * NOTE: return value 1 means we should stop walking up.
6968  */
6969 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6970 				 struct btrfs_root *root,
6971 				 struct btrfs_path *path,
6972 				 struct walk_control *wc)
6973 {
6974 	int ret;
6975 	int level = wc->level;
6976 	struct extent_buffer *eb = path->nodes[level];
6977 	u64 parent = 0;
6978 
6979 	if (wc->stage == UPDATE_BACKREF) {
6980 		BUG_ON(wc->shared_level < level);
6981 		if (level < wc->shared_level)
6982 			goto out;
6983 
6984 		ret = find_next_key(path, level + 1, &wc->update_progress);
6985 		if (ret > 0)
6986 			wc->update_ref = 0;
6987 
6988 		wc->stage = DROP_REFERENCE;
6989 		wc->shared_level = -1;
6990 		path->slots[level] = 0;
6991 
6992 		/*
6993 		 * check reference count again if the block isn't locked.
6994 		 * we should start walking down the tree again if reference
6995 		 * count is one.
6996 		 */
6997 		if (!path->locks[level]) {
6998 			BUG_ON(level == 0);
6999 			btrfs_tree_lock(eb);
7000 			btrfs_set_lock_blocking(eb);
7001 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7002 
7003 			ret = btrfs_lookup_extent_info(trans, root,
7004 						       eb->start, eb->len,
7005 						       &wc->refs[level],
7006 						       &wc->flags[level]);
7007 			if (ret < 0) {
7008 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7009 				path->locks[level] = 0;
7010 				return ret;
7011 			}
7012 			BUG_ON(wc->refs[level] == 0);
7013 			if (wc->refs[level] == 1) {
7014 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7015 				path->locks[level] = 0;
7016 				return 1;
7017 			}
7018 		}
7019 	}
7020 
7021 	/* wc->stage == DROP_REFERENCE */
7022 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7023 
7024 	if (wc->refs[level] == 1) {
7025 		if (level == 0) {
7026 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7027 				ret = btrfs_dec_ref(trans, root, eb, 1,
7028 						    wc->for_reloc);
7029 			else
7030 				ret = btrfs_dec_ref(trans, root, eb, 0,
7031 						    wc->for_reloc);
7032 			BUG_ON(ret); /* -ENOMEM */
7033 		}
7034 		/* make block locked assertion in clean_tree_block happy */
7035 		if (!path->locks[level] &&
7036 		    btrfs_header_generation(eb) == trans->transid) {
7037 			btrfs_tree_lock(eb);
7038 			btrfs_set_lock_blocking(eb);
7039 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7040 		}
7041 		clean_tree_block(trans, root, eb);
7042 	}
7043 
7044 	if (eb == root->node) {
7045 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7046 			parent = eb->start;
7047 		else
7048 			BUG_ON(root->root_key.objectid !=
7049 			       btrfs_header_owner(eb));
7050 	} else {
7051 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7052 			parent = path->nodes[level + 1]->start;
7053 		else
7054 			BUG_ON(root->root_key.objectid !=
7055 			       btrfs_header_owner(path->nodes[level + 1]));
7056 	}
7057 
7058 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7059 out:
7060 	wc->refs[level] = 0;
7061 	wc->flags[level] = 0;
7062 	return 0;
7063 }
7064 
7065 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7066 				   struct btrfs_root *root,
7067 				   struct btrfs_path *path,
7068 				   struct walk_control *wc)
7069 {
7070 	int level = wc->level;
7071 	int lookup_info = 1;
7072 	int ret;
7073 
7074 	while (level >= 0) {
7075 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7076 		if (ret > 0)
7077 			break;
7078 
7079 		if (level == 0)
7080 			break;
7081 
7082 		if (path->slots[level] >=
7083 		    btrfs_header_nritems(path->nodes[level]))
7084 			break;
7085 
7086 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7087 		if (ret > 0) {
7088 			path->slots[level]++;
7089 			continue;
7090 		} else if (ret < 0)
7091 			return ret;
7092 		level = wc->level;
7093 	}
7094 	return 0;
7095 }
7096 
7097 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7098 				 struct btrfs_root *root,
7099 				 struct btrfs_path *path,
7100 				 struct walk_control *wc, int max_level)
7101 {
7102 	int level = wc->level;
7103 	int ret;
7104 
7105 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7106 	while (level < max_level && path->nodes[level]) {
7107 		wc->level = level;
7108 		if (path->slots[level] + 1 <
7109 		    btrfs_header_nritems(path->nodes[level])) {
7110 			path->slots[level]++;
7111 			return 0;
7112 		} else {
7113 			ret = walk_up_proc(trans, root, path, wc);
7114 			if (ret > 0)
7115 				return 0;
7116 
7117 			if (path->locks[level]) {
7118 				btrfs_tree_unlock_rw(path->nodes[level],
7119 						     path->locks[level]);
7120 				path->locks[level] = 0;
7121 			}
7122 			free_extent_buffer(path->nodes[level]);
7123 			path->nodes[level] = NULL;
7124 			level++;
7125 		}
7126 	}
7127 	return 1;
7128 }
7129 
7130 /*
7131  * drop a subvolume tree.
7132  *
7133  * this function traverses the tree freeing any blocks that only
7134  * referenced by the tree.
7135  *
7136  * when a shared tree block is found. this function decreases its
7137  * reference count by one. if update_ref is true, this function
7138  * also make sure backrefs for the shared block and all lower level
7139  * blocks are properly updated.
7140  */
7141 int btrfs_drop_snapshot(struct btrfs_root *root,
7142 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7143 			 int for_reloc)
7144 {
7145 	struct btrfs_path *path;
7146 	struct btrfs_trans_handle *trans;
7147 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7148 	struct btrfs_root_item *root_item = &root->root_item;
7149 	struct walk_control *wc;
7150 	struct btrfs_key key;
7151 	int err = 0;
7152 	int ret;
7153 	int level;
7154 
7155 	path = btrfs_alloc_path();
7156 	if (!path) {
7157 		err = -ENOMEM;
7158 		goto out;
7159 	}
7160 
7161 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7162 	if (!wc) {
7163 		btrfs_free_path(path);
7164 		err = -ENOMEM;
7165 		goto out;
7166 	}
7167 
7168 	trans = btrfs_start_transaction(tree_root, 0);
7169 	if (IS_ERR(trans)) {
7170 		err = PTR_ERR(trans);
7171 		goto out_free;
7172 	}
7173 
7174 	if (block_rsv)
7175 		trans->block_rsv = block_rsv;
7176 
7177 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7178 		level = btrfs_header_level(root->node);
7179 		path->nodes[level] = btrfs_lock_root_node(root);
7180 		btrfs_set_lock_blocking(path->nodes[level]);
7181 		path->slots[level] = 0;
7182 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7183 		memset(&wc->update_progress, 0,
7184 		       sizeof(wc->update_progress));
7185 	} else {
7186 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7187 		memcpy(&wc->update_progress, &key,
7188 		       sizeof(wc->update_progress));
7189 
7190 		level = root_item->drop_level;
7191 		BUG_ON(level == 0);
7192 		path->lowest_level = level;
7193 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7194 		path->lowest_level = 0;
7195 		if (ret < 0) {
7196 			err = ret;
7197 			goto out_end_trans;
7198 		}
7199 		WARN_ON(ret > 0);
7200 
7201 		/*
7202 		 * unlock our path, this is safe because only this
7203 		 * function is allowed to delete this snapshot
7204 		 */
7205 		btrfs_unlock_up_safe(path, 0);
7206 
7207 		level = btrfs_header_level(root->node);
7208 		while (1) {
7209 			btrfs_tree_lock(path->nodes[level]);
7210 			btrfs_set_lock_blocking(path->nodes[level]);
7211 
7212 			ret = btrfs_lookup_extent_info(trans, root,
7213 						path->nodes[level]->start,
7214 						path->nodes[level]->len,
7215 						&wc->refs[level],
7216 						&wc->flags[level]);
7217 			if (ret < 0) {
7218 				err = ret;
7219 				goto out_end_trans;
7220 			}
7221 			BUG_ON(wc->refs[level] == 0);
7222 
7223 			if (level == root_item->drop_level)
7224 				break;
7225 
7226 			btrfs_tree_unlock(path->nodes[level]);
7227 			WARN_ON(wc->refs[level] != 1);
7228 			level--;
7229 		}
7230 	}
7231 
7232 	wc->level = level;
7233 	wc->shared_level = -1;
7234 	wc->stage = DROP_REFERENCE;
7235 	wc->update_ref = update_ref;
7236 	wc->keep_locks = 0;
7237 	wc->for_reloc = for_reloc;
7238 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7239 
7240 	while (1) {
7241 		ret = walk_down_tree(trans, root, path, wc);
7242 		if (ret < 0) {
7243 			err = ret;
7244 			break;
7245 		}
7246 
7247 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7248 		if (ret < 0) {
7249 			err = ret;
7250 			break;
7251 		}
7252 
7253 		if (ret > 0) {
7254 			BUG_ON(wc->stage != DROP_REFERENCE);
7255 			break;
7256 		}
7257 
7258 		if (wc->stage == DROP_REFERENCE) {
7259 			level = wc->level;
7260 			btrfs_node_key(path->nodes[level],
7261 				       &root_item->drop_progress,
7262 				       path->slots[level]);
7263 			root_item->drop_level = level;
7264 		}
7265 
7266 		BUG_ON(wc->level == 0);
7267 		if (btrfs_should_end_transaction(trans, tree_root)) {
7268 			ret = btrfs_update_root(trans, tree_root,
7269 						&root->root_key,
7270 						root_item);
7271 			if (ret) {
7272 				btrfs_abort_transaction(trans, tree_root, ret);
7273 				err = ret;
7274 				goto out_end_trans;
7275 			}
7276 
7277 			btrfs_end_transaction_throttle(trans, tree_root);
7278 			trans = btrfs_start_transaction(tree_root, 0);
7279 			if (IS_ERR(trans)) {
7280 				err = PTR_ERR(trans);
7281 				goto out_free;
7282 			}
7283 			if (block_rsv)
7284 				trans->block_rsv = block_rsv;
7285 		}
7286 	}
7287 	btrfs_release_path(path);
7288 	if (err)
7289 		goto out_end_trans;
7290 
7291 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7292 	if (ret) {
7293 		btrfs_abort_transaction(trans, tree_root, ret);
7294 		goto out_end_trans;
7295 	}
7296 
7297 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7298 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7299 					   NULL, NULL);
7300 		if (ret < 0) {
7301 			btrfs_abort_transaction(trans, tree_root, ret);
7302 			err = ret;
7303 			goto out_end_trans;
7304 		} else if (ret > 0) {
7305 			/* if we fail to delete the orphan item this time
7306 			 * around, it'll get picked up the next time.
7307 			 *
7308 			 * The most common failure here is just -ENOENT.
7309 			 */
7310 			btrfs_del_orphan_item(trans, tree_root,
7311 					      root->root_key.objectid);
7312 		}
7313 	}
7314 
7315 	if (root->in_radix) {
7316 		btrfs_free_fs_root(tree_root->fs_info, root);
7317 	} else {
7318 		free_extent_buffer(root->node);
7319 		free_extent_buffer(root->commit_root);
7320 		kfree(root);
7321 	}
7322 out_end_trans:
7323 	btrfs_end_transaction_throttle(trans, tree_root);
7324 out_free:
7325 	kfree(wc);
7326 	btrfs_free_path(path);
7327 out:
7328 	if (err)
7329 		btrfs_std_error(root->fs_info, err);
7330 	return err;
7331 }
7332 
7333 /*
7334  * drop subtree rooted at tree block 'node'.
7335  *
7336  * NOTE: this function will unlock and release tree block 'node'
7337  * only used by relocation code
7338  */
7339 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7340 			struct btrfs_root *root,
7341 			struct extent_buffer *node,
7342 			struct extent_buffer *parent)
7343 {
7344 	struct btrfs_path *path;
7345 	struct walk_control *wc;
7346 	int level;
7347 	int parent_level;
7348 	int ret = 0;
7349 	int wret;
7350 
7351 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7352 
7353 	path = btrfs_alloc_path();
7354 	if (!path)
7355 		return -ENOMEM;
7356 
7357 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7358 	if (!wc) {
7359 		btrfs_free_path(path);
7360 		return -ENOMEM;
7361 	}
7362 
7363 	btrfs_assert_tree_locked(parent);
7364 	parent_level = btrfs_header_level(parent);
7365 	extent_buffer_get(parent);
7366 	path->nodes[parent_level] = parent;
7367 	path->slots[parent_level] = btrfs_header_nritems(parent);
7368 
7369 	btrfs_assert_tree_locked(node);
7370 	level = btrfs_header_level(node);
7371 	path->nodes[level] = node;
7372 	path->slots[level] = 0;
7373 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7374 
7375 	wc->refs[parent_level] = 1;
7376 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7377 	wc->level = level;
7378 	wc->shared_level = -1;
7379 	wc->stage = DROP_REFERENCE;
7380 	wc->update_ref = 0;
7381 	wc->keep_locks = 1;
7382 	wc->for_reloc = 1;
7383 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7384 
7385 	while (1) {
7386 		wret = walk_down_tree(trans, root, path, wc);
7387 		if (wret < 0) {
7388 			ret = wret;
7389 			break;
7390 		}
7391 
7392 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7393 		if (wret < 0)
7394 			ret = wret;
7395 		if (wret != 0)
7396 			break;
7397 	}
7398 
7399 	kfree(wc);
7400 	btrfs_free_path(path);
7401 	return ret;
7402 }
7403 
7404 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7405 {
7406 	u64 num_devices;
7407 	u64 stripped;
7408 
7409 	/*
7410 	 * if restripe for this chunk_type is on pick target profile and
7411 	 * return, otherwise do the usual balance
7412 	 */
7413 	stripped = get_restripe_target(root->fs_info, flags);
7414 	if (stripped)
7415 		return extended_to_chunk(stripped);
7416 
7417 	/*
7418 	 * we add in the count of missing devices because we want
7419 	 * to make sure that any RAID levels on a degraded FS
7420 	 * continue to be honored.
7421 	 */
7422 	num_devices = root->fs_info->fs_devices->rw_devices +
7423 		root->fs_info->fs_devices->missing_devices;
7424 
7425 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7426 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7427 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7428 
7429 	if (num_devices == 1) {
7430 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7431 		stripped = flags & ~stripped;
7432 
7433 		/* turn raid0 into single device chunks */
7434 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7435 			return stripped;
7436 
7437 		/* turn mirroring into duplication */
7438 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7439 			     BTRFS_BLOCK_GROUP_RAID10))
7440 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7441 	} else {
7442 		/* they already had raid on here, just return */
7443 		if (flags & stripped)
7444 			return flags;
7445 
7446 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7447 		stripped = flags & ~stripped;
7448 
7449 		/* switch duplicated blocks with raid1 */
7450 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7451 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7452 
7453 		/* this is drive concat, leave it alone */
7454 	}
7455 
7456 	return flags;
7457 }
7458 
7459 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7460 {
7461 	struct btrfs_space_info *sinfo = cache->space_info;
7462 	u64 num_bytes;
7463 	u64 min_allocable_bytes;
7464 	int ret = -ENOSPC;
7465 
7466 
7467 	/*
7468 	 * We need some metadata space and system metadata space for
7469 	 * allocating chunks in some corner cases until we force to set
7470 	 * it to be readonly.
7471 	 */
7472 	if ((sinfo->flags &
7473 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7474 	    !force)
7475 		min_allocable_bytes = 1 * 1024 * 1024;
7476 	else
7477 		min_allocable_bytes = 0;
7478 
7479 	spin_lock(&sinfo->lock);
7480 	spin_lock(&cache->lock);
7481 
7482 	if (cache->ro) {
7483 		ret = 0;
7484 		goto out;
7485 	}
7486 
7487 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7488 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7489 
7490 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7491 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7492 	    min_allocable_bytes <= sinfo->total_bytes) {
7493 		sinfo->bytes_readonly += num_bytes;
7494 		cache->ro = 1;
7495 		ret = 0;
7496 	}
7497 out:
7498 	spin_unlock(&cache->lock);
7499 	spin_unlock(&sinfo->lock);
7500 	return ret;
7501 }
7502 
7503 int btrfs_set_block_group_ro(struct btrfs_root *root,
7504 			     struct btrfs_block_group_cache *cache)
7505 
7506 {
7507 	struct btrfs_trans_handle *trans;
7508 	u64 alloc_flags;
7509 	int ret;
7510 
7511 	BUG_ON(cache->ro);
7512 
7513 	trans = btrfs_join_transaction(root);
7514 	if (IS_ERR(trans))
7515 		return PTR_ERR(trans);
7516 
7517 	alloc_flags = update_block_group_flags(root, cache->flags);
7518 	if (alloc_flags != cache->flags) {
7519 		ret = do_chunk_alloc(trans, root, alloc_flags,
7520 				     CHUNK_ALLOC_FORCE);
7521 		if (ret < 0)
7522 			goto out;
7523 	}
7524 
7525 	ret = set_block_group_ro(cache, 0);
7526 	if (!ret)
7527 		goto out;
7528 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7529 	ret = do_chunk_alloc(trans, root, alloc_flags,
7530 			     CHUNK_ALLOC_FORCE);
7531 	if (ret < 0)
7532 		goto out;
7533 	ret = set_block_group_ro(cache, 0);
7534 out:
7535 	btrfs_end_transaction(trans, root);
7536 	return ret;
7537 }
7538 
7539 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7540 			    struct btrfs_root *root, u64 type)
7541 {
7542 	u64 alloc_flags = get_alloc_profile(root, type);
7543 	return do_chunk_alloc(trans, root, alloc_flags,
7544 			      CHUNK_ALLOC_FORCE);
7545 }
7546 
7547 /*
7548  * helper to account the unused space of all the readonly block group in the
7549  * list. takes mirrors into account.
7550  */
7551 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7552 {
7553 	struct btrfs_block_group_cache *block_group;
7554 	u64 free_bytes = 0;
7555 	int factor;
7556 
7557 	list_for_each_entry(block_group, groups_list, list) {
7558 		spin_lock(&block_group->lock);
7559 
7560 		if (!block_group->ro) {
7561 			spin_unlock(&block_group->lock);
7562 			continue;
7563 		}
7564 
7565 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7566 					  BTRFS_BLOCK_GROUP_RAID10 |
7567 					  BTRFS_BLOCK_GROUP_DUP))
7568 			factor = 2;
7569 		else
7570 			factor = 1;
7571 
7572 		free_bytes += (block_group->key.offset -
7573 			       btrfs_block_group_used(&block_group->item)) *
7574 			       factor;
7575 
7576 		spin_unlock(&block_group->lock);
7577 	}
7578 
7579 	return free_bytes;
7580 }
7581 
7582 /*
7583  * helper to account the unused space of all the readonly block group in the
7584  * space_info. takes mirrors into account.
7585  */
7586 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7587 {
7588 	int i;
7589 	u64 free_bytes = 0;
7590 
7591 	spin_lock(&sinfo->lock);
7592 
7593 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7594 		if (!list_empty(&sinfo->block_groups[i]))
7595 			free_bytes += __btrfs_get_ro_block_group_free_space(
7596 						&sinfo->block_groups[i]);
7597 
7598 	spin_unlock(&sinfo->lock);
7599 
7600 	return free_bytes;
7601 }
7602 
7603 void btrfs_set_block_group_rw(struct btrfs_root *root,
7604 			      struct btrfs_block_group_cache *cache)
7605 {
7606 	struct btrfs_space_info *sinfo = cache->space_info;
7607 	u64 num_bytes;
7608 
7609 	BUG_ON(!cache->ro);
7610 
7611 	spin_lock(&sinfo->lock);
7612 	spin_lock(&cache->lock);
7613 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7614 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7615 	sinfo->bytes_readonly -= num_bytes;
7616 	cache->ro = 0;
7617 	spin_unlock(&cache->lock);
7618 	spin_unlock(&sinfo->lock);
7619 }
7620 
7621 /*
7622  * checks to see if its even possible to relocate this block group.
7623  *
7624  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7625  * ok to go ahead and try.
7626  */
7627 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7628 {
7629 	struct btrfs_block_group_cache *block_group;
7630 	struct btrfs_space_info *space_info;
7631 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7632 	struct btrfs_device *device;
7633 	u64 min_free;
7634 	u64 dev_min = 1;
7635 	u64 dev_nr = 0;
7636 	u64 target;
7637 	int index;
7638 	int full = 0;
7639 	int ret = 0;
7640 
7641 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7642 
7643 	/* odd, couldn't find the block group, leave it alone */
7644 	if (!block_group)
7645 		return -1;
7646 
7647 	min_free = btrfs_block_group_used(&block_group->item);
7648 
7649 	/* no bytes used, we're good */
7650 	if (!min_free)
7651 		goto out;
7652 
7653 	space_info = block_group->space_info;
7654 	spin_lock(&space_info->lock);
7655 
7656 	full = space_info->full;
7657 
7658 	/*
7659 	 * if this is the last block group we have in this space, we can't
7660 	 * relocate it unless we're able to allocate a new chunk below.
7661 	 *
7662 	 * Otherwise, we need to make sure we have room in the space to handle
7663 	 * all of the extents from this block group.  If we can, we're good
7664 	 */
7665 	if ((space_info->total_bytes != block_group->key.offset) &&
7666 	    (space_info->bytes_used + space_info->bytes_reserved +
7667 	     space_info->bytes_pinned + space_info->bytes_readonly +
7668 	     min_free < space_info->total_bytes)) {
7669 		spin_unlock(&space_info->lock);
7670 		goto out;
7671 	}
7672 	spin_unlock(&space_info->lock);
7673 
7674 	/*
7675 	 * ok we don't have enough space, but maybe we have free space on our
7676 	 * devices to allocate new chunks for relocation, so loop through our
7677 	 * alloc devices and guess if we have enough space.  if this block
7678 	 * group is going to be restriped, run checks against the target
7679 	 * profile instead of the current one.
7680 	 */
7681 	ret = -1;
7682 
7683 	/*
7684 	 * index:
7685 	 *      0: raid10
7686 	 *      1: raid1
7687 	 *      2: dup
7688 	 *      3: raid0
7689 	 *      4: single
7690 	 */
7691 	target = get_restripe_target(root->fs_info, block_group->flags);
7692 	if (target) {
7693 		index = __get_raid_index(extended_to_chunk(target));
7694 	} else {
7695 		/*
7696 		 * this is just a balance, so if we were marked as full
7697 		 * we know there is no space for a new chunk
7698 		 */
7699 		if (full)
7700 			goto out;
7701 
7702 		index = get_block_group_index(block_group);
7703 	}
7704 
7705 	if (index == BTRFS_RAID_RAID10) {
7706 		dev_min = 4;
7707 		/* Divide by 2 */
7708 		min_free >>= 1;
7709 	} else if (index == BTRFS_RAID_RAID1) {
7710 		dev_min = 2;
7711 	} else if (index == BTRFS_RAID_DUP) {
7712 		/* Multiply by 2 */
7713 		min_free <<= 1;
7714 	} else if (index == BTRFS_RAID_RAID0) {
7715 		dev_min = fs_devices->rw_devices;
7716 		do_div(min_free, dev_min);
7717 	}
7718 
7719 	mutex_lock(&root->fs_info->chunk_mutex);
7720 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7721 		u64 dev_offset;
7722 
7723 		/*
7724 		 * check to make sure we can actually find a chunk with enough
7725 		 * space to fit our block group in.
7726 		 */
7727 		if (device->total_bytes > device->bytes_used + min_free &&
7728 		    !device->is_tgtdev_for_dev_replace) {
7729 			ret = find_free_dev_extent(device, min_free,
7730 						   &dev_offset, NULL);
7731 			if (!ret)
7732 				dev_nr++;
7733 
7734 			if (dev_nr >= dev_min)
7735 				break;
7736 
7737 			ret = -1;
7738 		}
7739 	}
7740 	mutex_unlock(&root->fs_info->chunk_mutex);
7741 out:
7742 	btrfs_put_block_group(block_group);
7743 	return ret;
7744 }
7745 
7746 static int find_first_block_group(struct btrfs_root *root,
7747 		struct btrfs_path *path, struct btrfs_key *key)
7748 {
7749 	int ret = 0;
7750 	struct btrfs_key found_key;
7751 	struct extent_buffer *leaf;
7752 	int slot;
7753 
7754 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7755 	if (ret < 0)
7756 		goto out;
7757 
7758 	while (1) {
7759 		slot = path->slots[0];
7760 		leaf = path->nodes[0];
7761 		if (slot >= btrfs_header_nritems(leaf)) {
7762 			ret = btrfs_next_leaf(root, path);
7763 			if (ret == 0)
7764 				continue;
7765 			if (ret < 0)
7766 				goto out;
7767 			break;
7768 		}
7769 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7770 
7771 		if (found_key.objectid >= key->objectid &&
7772 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7773 			ret = 0;
7774 			goto out;
7775 		}
7776 		path->slots[0]++;
7777 	}
7778 out:
7779 	return ret;
7780 }
7781 
7782 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7783 {
7784 	struct btrfs_block_group_cache *block_group;
7785 	u64 last = 0;
7786 
7787 	while (1) {
7788 		struct inode *inode;
7789 
7790 		block_group = btrfs_lookup_first_block_group(info, last);
7791 		while (block_group) {
7792 			spin_lock(&block_group->lock);
7793 			if (block_group->iref)
7794 				break;
7795 			spin_unlock(&block_group->lock);
7796 			block_group = next_block_group(info->tree_root,
7797 						       block_group);
7798 		}
7799 		if (!block_group) {
7800 			if (last == 0)
7801 				break;
7802 			last = 0;
7803 			continue;
7804 		}
7805 
7806 		inode = block_group->inode;
7807 		block_group->iref = 0;
7808 		block_group->inode = NULL;
7809 		spin_unlock(&block_group->lock);
7810 		iput(inode);
7811 		last = block_group->key.objectid + block_group->key.offset;
7812 		btrfs_put_block_group(block_group);
7813 	}
7814 }
7815 
7816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7817 {
7818 	struct btrfs_block_group_cache *block_group;
7819 	struct btrfs_space_info *space_info;
7820 	struct btrfs_caching_control *caching_ctl;
7821 	struct rb_node *n;
7822 
7823 	down_write(&info->extent_commit_sem);
7824 	while (!list_empty(&info->caching_block_groups)) {
7825 		caching_ctl = list_entry(info->caching_block_groups.next,
7826 					 struct btrfs_caching_control, list);
7827 		list_del(&caching_ctl->list);
7828 		put_caching_control(caching_ctl);
7829 	}
7830 	up_write(&info->extent_commit_sem);
7831 
7832 	spin_lock(&info->block_group_cache_lock);
7833 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7834 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7835 				       cache_node);
7836 		rb_erase(&block_group->cache_node,
7837 			 &info->block_group_cache_tree);
7838 		spin_unlock(&info->block_group_cache_lock);
7839 
7840 		down_write(&block_group->space_info->groups_sem);
7841 		list_del(&block_group->list);
7842 		up_write(&block_group->space_info->groups_sem);
7843 
7844 		if (block_group->cached == BTRFS_CACHE_STARTED)
7845 			wait_block_group_cache_done(block_group);
7846 
7847 		/*
7848 		 * We haven't cached this block group, which means we could
7849 		 * possibly have excluded extents on this block group.
7850 		 */
7851 		if (block_group->cached == BTRFS_CACHE_NO)
7852 			free_excluded_extents(info->extent_root, block_group);
7853 
7854 		btrfs_remove_free_space_cache(block_group);
7855 		btrfs_put_block_group(block_group);
7856 
7857 		spin_lock(&info->block_group_cache_lock);
7858 	}
7859 	spin_unlock(&info->block_group_cache_lock);
7860 
7861 	/* now that all the block groups are freed, go through and
7862 	 * free all the space_info structs.  This is only called during
7863 	 * the final stages of unmount, and so we know nobody is
7864 	 * using them.  We call synchronize_rcu() once before we start,
7865 	 * just to be on the safe side.
7866 	 */
7867 	synchronize_rcu();
7868 
7869 	release_global_block_rsv(info);
7870 
7871 	while(!list_empty(&info->space_info)) {
7872 		space_info = list_entry(info->space_info.next,
7873 					struct btrfs_space_info,
7874 					list);
7875 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
7876 			if (space_info->bytes_pinned > 0 ||
7877 			    space_info->bytes_reserved > 0 ||
7878 			    space_info->bytes_may_use > 0) {
7879 				WARN_ON(1);
7880 				dump_space_info(space_info, 0, 0);
7881 			}
7882 		}
7883 		list_del(&space_info->list);
7884 		kfree(space_info);
7885 	}
7886 	return 0;
7887 }
7888 
7889 static void __link_block_group(struct btrfs_space_info *space_info,
7890 			       struct btrfs_block_group_cache *cache)
7891 {
7892 	int index = get_block_group_index(cache);
7893 
7894 	down_write(&space_info->groups_sem);
7895 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7896 	up_write(&space_info->groups_sem);
7897 }
7898 
7899 int btrfs_read_block_groups(struct btrfs_root *root)
7900 {
7901 	struct btrfs_path *path;
7902 	int ret;
7903 	struct btrfs_block_group_cache *cache;
7904 	struct btrfs_fs_info *info = root->fs_info;
7905 	struct btrfs_space_info *space_info;
7906 	struct btrfs_key key;
7907 	struct btrfs_key found_key;
7908 	struct extent_buffer *leaf;
7909 	int need_clear = 0;
7910 	u64 cache_gen;
7911 
7912 	root = info->extent_root;
7913 	key.objectid = 0;
7914 	key.offset = 0;
7915 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7916 	path = btrfs_alloc_path();
7917 	if (!path)
7918 		return -ENOMEM;
7919 	path->reada = 1;
7920 
7921 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7922 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7923 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7924 		need_clear = 1;
7925 	if (btrfs_test_opt(root, CLEAR_CACHE))
7926 		need_clear = 1;
7927 
7928 	while (1) {
7929 		ret = find_first_block_group(root, path, &key);
7930 		if (ret > 0)
7931 			break;
7932 		if (ret != 0)
7933 			goto error;
7934 		leaf = path->nodes[0];
7935 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7936 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7937 		if (!cache) {
7938 			ret = -ENOMEM;
7939 			goto error;
7940 		}
7941 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7942 						GFP_NOFS);
7943 		if (!cache->free_space_ctl) {
7944 			kfree(cache);
7945 			ret = -ENOMEM;
7946 			goto error;
7947 		}
7948 
7949 		atomic_set(&cache->count, 1);
7950 		spin_lock_init(&cache->lock);
7951 		cache->fs_info = info;
7952 		INIT_LIST_HEAD(&cache->list);
7953 		INIT_LIST_HEAD(&cache->cluster_list);
7954 
7955 		if (need_clear) {
7956 			/*
7957 			 * When we mount with old space cache, we need to
7958 			 * set BTRFS_DC_CLEAR and set dirty flag.
7959 			 *
7960 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7961 			 *    truncate the old free space cache inode and
7962 			 *    setup a new one.
7963 			 * b) Setting 'dirty flag' makes sure that we flush
7964 			 *    the new space cache info onto disk.
7965 			 */
7966 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7967 			if (btrfs_test_opt(root, SPACE_CACHE))
7968 				cache->dirty = 1;
7969 		}
7970 
7971 		read_extent_buffer(leaf, &cache->item,
7972 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7973 				   sizeof(cache->item));
7974 		memcpy(&cache->key, &found_key, sizeof(found_key));
7975 
7976 		key.objectid = found_key.objectid + found_key.offset;
7977 		btrfs_release_path(path);
7978 		cache->flags = btrfs_block_group_flags(&cache->item);
7979 		cache->sectorsize = root->sectorsize;
7980 		cache->full_stripe_len = btrfs_full_stripe_len(root,
7981 					       &root->fs_info->mapping_tree,
7982 					       found_key.objectid);
7983 		btrfs_init_free_space_ctl(cache);
7984 
7985 		/*
7986 		 * We need to exclude the super stripes now so that the space
7987 		 * info has super bytes accounted for, otherwise we'll think
7988 		 * we have more space than we actually do.
7989 		 */
7990 		ret = exclude_super_stripes(root, cache);
7991 		if (ret) {
7992 			/*
7993 			 * We may have excluded something, so call this just in
7994 			 * case.
7995 			 */
7996 			free_excluded_extents(root, cache);
7997 			kfree(cache->free_space_ctl);
7998 			kfree(cache);
7999 			goto error;
8000 		}
8001 
8002 		/*
8003 		 * check for two cases, either we are full, and therefore
8004 		 * don't need to bother with the caching work since we won't
8005 		 * find any space, or we are empty, and we can just add all
8006 		 * the space in and be done with it.  This saves us _alot_ of
8007 		 * time, particularly in the full case.
8008 		 */
8009 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8010 			cache->last_byte_to_unpin = (u64)-1;
8011 			cache->cached = BTRFS_CACHE_FINISHED;
8012 			free_excluded_extents(root, cache);
8013 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8014 			cache->last_byte_to_unpin = (u64)-1;
8015 			cache->cached = BTRFS_CACHE_FINISHED;
8016 			add_new_free_space(cache, root->fs_info,
8017 					   found_key.objectid,
8018 					   found_key.objectid +
8019 					   found_key.offset);
8020 			free_excluded_extents(root, cache);
8021 		}
8022 
8023 		ret = update_space_info(info, cache->flags, found_key.offset,
8024 					btrfs_block_group_used(&cache->item),
8025 					&space_info);
8026 		BUG_ON(ret); /* -ENOMEM */
8027 		cache->space_info = space_info;
8028 		spin_lock(&cache->space_info->lock);
8029 		cache->space_info->bytes_readonly += cache->bytes_super;
8030 		spin_unlock(&cache->space_info->lock);
8031 
8032 		__link_block_group(space_info, cache);
8033 
8034 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8035 		BUG_ON(ret); /* Logic error */
8036 
8037 		set_avail_alloc_bits(root->fs_info, cache->flags);
8038 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8039 			set_block_group_ro(cache, 1);
8040 	}
8041 
8042 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8043 		if (!(get_alloc_profile(root, space_info->flags) &
8044 		      (BTRFS_BLOCK_GROUP_RAID10 |
8045 		       BTRFS_BLOCK_GROUP_RAID1 |
8046 		       BTRFS_BLOCK_GROUP_RAID5 |
8047 		       BTRFS_BLOCK_GROUP_RAID6 |
8048 		       BTRFS_BLOCK_GROUP_DUP)))
8049 			continue;
8050 		/*
8051 		 * avoid allocating from un-mirrored block group if there are
8052 		 * mirrored block groups.
8053 		 */
8054 		list_for_each_entry(cache, &space_info->block_groups[3], list)
8055 			set_block_group_ro(cache, 1);
8056 		list_for_each_entry(cache, &space_info->block_groups[4], list)
8057 			set_block_group_ro(cache, 1);
8058 	}
8059 
8060 	init_global_block_rsv(info);
8061 	ret = 0;
8062 error:
8063 	btrfs_free_path(path);
8064 	return ret;
8065 }
8066 
8067 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8068 				       struct btrfs_root *root)
8069 {
8070 	struct btrfs_block_group_cache *block_group, *tmp;
8071 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8072 	struct btrfs_block_group_item item;
8073 	struct btrfs_key key;
8074 	int ret = 0;
8075 
8076 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8077 				 new_bg_list) {
8078 		list_del_init(&block_group->new_bg_list);
8079 
8080 		if (ret)
8081 			continue;
8082 
8083 		spin_lock(&block_group->lock);
8084 		memcpy(&item, &block_group->item, sizeof(item));
8085 		memcpy(&key, &block_group->key, sizeof(key));
8086 		spin_unlock(&block_group->lock);
8087 
8088 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8089 					sizeof(item));
8090 		if (ret)
8091 			btrfs_abort_transaction(trans, extent_root, ret);
8092 	}
8093 }
8094 
8095 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8096 			   struct btrfs_root *root, u64 bytes_used,
8097 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8098 			   u64 size)
8099 {
8100 	int ret;
8101 	struct btrfs_root *extent_root;
8102 	struct btrfs_block_group_cache *cache;
8103 
8104 	extent_root = root->fs_info->extent_root;
8105 
8106 	root->fs_info->last_trans_log_full_commit = trans->transid;
8107 
8108 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8109 	if (!cache)
8110 		return -ENOMEM;
8111 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8112 					GFP_NOFS);
8113 	if (!cache->free_space_ctl) {
8114 		kfree(cache);
8115 		return -ENOMEM;
8116 	}
8117 
8118 	cache->key.objectid = chunk_offset;
8119 	cache->key.offset = size;
8120 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8121 	cache->sectorsize = root->sectorsize;
8122 	cache->fs_info = root->fs_info;
8123 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8124 					       &root->fs_info->mapping_tree,
8125 					       chunk_offset);
8126 
8127 	atomic_set(&cache->count, 1);
8128 	spin_lock_init(&cache->lock);
8129 	INIT_LIST_HEAD(&cache->list);
8130 	INIT_LIST_HEAD(&cache->cluster_list);
8131 	INIT_LIST_HEAD(&cache->new_bg_list);
8132 
8133 	btrfs_init_free_space_ctl(cache);
8134 
8135 	btrfs_set_block_group_used(&cache->item, bytes_used);
8136 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8137 	cache->flags = type;
8138 	btrfs_set_block_group_flags(&cache->item, type);
8139 
8140 	cache->last_byte_to_unpin = (u64)-1;
8141 	cache->cached = BTRFS_CACHE_FINISHED;
8142 	ret = exclude_super_stripes(root, cache);
8143 	if (ret) {
8144 		/*
8145 		 * We may have excluded something, so call this just in
8146 		 * case.
8147 		 */
8148 		free_excluded_extents(root, cache);
8149 		kfree(cache->free_space_ctl);
8150 		kfree(cache);
8151 		return ret;
8152 	}
8153 
8154 	add_new_free_space(cache, root->fs_info, chunk_offset,
8155 			   chunk_offset + size);
8156 
8157 	free_excluded_extents(root, cache);
8158 
8159 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8160 				&cache->space_info);
8161 	BUG_ON(ret); /* -ENOMEM */
8162 	update_global_block_rsv(root->fs_info);
8163 
8164 	spin_lock(&cache->space_info->lock);
8165 	cache->space_info->bytes_readonly += cache->bytes_super;
8166 	spin_unlock(&cache->space_info->lock);
8167 
8168 	__link_block_group(cache->space_info, cache);
8169 
8170 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8171 	BUG_ON(ret); /* Logic error */
8172 
8173 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8174 
8175 	set_avail_alloc_bits(extent_root->fs_info, type);
8176 
8177 	return 0;
8178 }
8179 
8180 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8181 {
8182 	u64 extra_flags = chunk_to_extended(flags) &
8183 				BTRFS_EXTENDED_PROFILE_MASK;
8184 
8185 	write_seqlock(&fs_info->profiles_lock);
8186 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8187 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8188 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8189 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8190 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8191 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8192 	write_sequnlock(&fs_info->profiles_lock);
8193 }
8194 
8195 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8196 			     struct btrfs_root *root, u64 group_start)
8197 {
8198 	struct btrfs_path *path;
8199 	struct btrfs_block_group_cache *block_group;
8200 	struct btrfs_free_cluster *cluster;
8201 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8202 	struct btrfs_key key;
8203 	struct inode *inode;
8204 	int ret;
8205 	int index;
8206 	int factor;
8207 
8208 	root = root->fs_info->extent_root;
8209 
8210 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8211 	BUG_ON(!block_group);
8212 	BUG_ON(!block_group->ro);
8213 
8214 	/*
8215 	 * Free the reserved super bytes from this block group before
8216 	 * remove it.
8217 	 */
8218 	free_excluded_extents(root, block_group);
8219 
8220 	memcpy(&key, &block_group->key, sizeof(key));
8221 	index = get_block_group_index(block_group);
8222 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8223 				  BTRFS_BLOCK_GROUP_RAID1 |
8224 				  BTRFS_BLOCK_GROUP_RAID10))
8225 		factor = 2;
8226 	else
8227 		factor = 1;
8228 
8229 	/* make sure this block group isn't part of an allocation cluster */
8230 	cluster = &root->fs_info->data_alloc_cluster;
8231 	spin_lock(&cluster->refill_lock);
8232 	btrfs_return_cluster_to_free_space(block_group, cluster);
8233 	spin_unlock(&cluster->refill_lock);
8234 
8235 	/*
8236 	 * make sure this block group isn't part of a metadata
8237 	 * allocation cluster
8238 	 */
8239 	cluster = &root->fs_info->meta_alloc_cluster;
8240 	spin_lock(&cluster->refill_lock);
8241 	btrfs_return_cluster_to_free_space(block_group, cluster);
8242 	spin_unlock(&cluster->refill_lock);
8243 
8244 	path = btrfs_alloc_path();
8245 	if (!path) {
8246 		ret = -ENOMEM;
8247 		goto out;
8248 	}
8249 
8250 	inode = lookup_free_space_inode(tree_root, block_group, path);
8251 	if (!IS_ERR(inode)) {
8252 		ret = btrfs_orphan_add(trans, inode);
8253 		if (ret) {
8254 			btrfs_add_delayed_iput(inode);
8255 			goto out;
8256 		}
8257 		clear_nlink(inode);
8258 		/* One for the block groups ref */
8259 		spin_lock(&block_group->lock);
8260 		if (block_group->iref) {
8261 			block_group->iref = 0;
8262 			block_group->inode = NULL;
8263 			spin_unlock(&block_group->lock);
8264 			iput(inode);
8265 		} else {
8266 			spin_unlock(&block_group->lock);
8267 		}
8268 		/* One for our lookup ref */
8269 		btrfs_add_delayed_iput(inode);
8270 	}
8271 
8272 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8273 	key.offset = block_group->key.objectid;
8274 	key.type = 0;
8275 
8276 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8277 	if (ret < 0)
8278 		goto out;
8279 	if (ret > 0)
8280 		btrfs_release_path(path);
8281 	if (ret == 0) {
8282 		ret = btrfs_del_item(trans, tree_root, path);
8283 		if (ret)
8284 			goto out;
8285 		btrfs_release_path(path);
8286 	}
8287 
8288 	spin_lock(&root->fs_info->block_group_cache_lock);
8289 	rb_erase(&block_group->cache_node,
8290 		 &root->fs_info->block_group_cache_tree);
8291 
8292 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8293 		root->fs_info->first_logical_byte = (u64)-1;
8294 	spin_unlock(&root->fs_info->block_group_cache_lock);
8295 
8296 	down_write(&block_group->space_info->groups_sem);
8297 	/*
8298 	 * we must use list_del_init so people can check to see if they
8299 	 * are still on the list after taking the semaphore
8300 	 */
8301 	list_del_init(&block_group->list);
8302 	if (list_empty(&block_group->space_info->block_groups[index]))
8303 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8304 	up_write(&block_group->space_info->groups_sem);
8305 
8306 	if (block_group->cached == BTRFS_CACHE_STARTED)
8307 		wait_block_group_cache_done(block_group);
8308 
8309 	btrfs_remove_free_space_cache(block_group);
8310 
8311 	spin_lock(&block_group->space_info->lock);
8312 	block_group->space_info->total_bytes -= block_group->key.offset;
8313 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8314 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8315 	spin_unlock(&block_group->space_info->lock);
8316 
8317 	memcpy(&key, &block_group->key, sizeof(key));
8318 
8319 	btrfs_clear_space_info_full(root->fs_info);
8320 
8321 	btrfs_put_block_group(block_group);
8322 	btrfs_put_block_group(block_group);
8323 
8324 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8325 	if (ret > 0)
8326 		ret = -EIO;
8327 	if (ret < 0)
8328 		goto out;
8329 
8330 	ret = btrfs_del_item(trans, root, path);
8331 out:
8332 	btrfs_free_path(path);
8333 	return ret;
8334 }
8335 
8336 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8337 {
8338 	struct btrfs_space_info *space_info;
8339 	struct btrfs_super_block *disk_super;
8340 	u64 features;
8341 	u64 flags;
8342 	int mixed = 0;
8343 	int ret;
8344 
8345 	disk_super = fs_info->super_copy;
8346 	if (!btrfs_super_root(disk_super))
8347 		return 1;
8348 
8349 	features = btrfs_super_incompat_flags(disk_super);
8350 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8351 		mixed = 1;
8352 
8353 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8354 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8355 	if (ret)
8356 		goto out;
8357 
8358 	if (mixed) {
8359 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8360 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8361 	} else {
8362 		flags = BTRFS_BLOCK_GROUP_METADATA;
8363 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8364 		if (ret)
8365 			goto out;
8366 
8367 		flags = BTRFS_BLOCK_GROUP_DATA;
8368 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8369 	}
8370 out:
8371 	return ret;
8372 }
8373 
8374 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8375 {
8376 	return unpin_extent_range(root, start, end);
8377 }
8378 
8379 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8380 			       u64 num_bytes, u64 *actual_bytes)
8381 {
8382 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8383 }
8384 
8385 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8386 {
8387 	struct btrfs_fs_info *fs_info = root->fs_info;
8388 	struct btrfs_block_group_cache *cache = NULL;
8389 	u64 group_trimmed;
8390 	u64 start;
8391 	u64 end;
8392 	u64 trimmed = 0;
8393 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8394 	int ret = 0;
8395 
8396 	/*
8397 	 * try to trim all FS space, our block group may start from non-zero.
8398 	 */
8399 	if (range->len == total_bytes)
8400 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8401 	else
8402 		cache = btrfs_lookup_block_group(fs_info, range->start);
8403 
8404 	while (cache) {
8405 		if (cache->key.objectid >= (range->start + range->len)) {
8406 			btrfs_put_block_group(cache);
8407 			break;
8408 		}
8409 
8410 		start = max(range->start, cache->key.objectid);
8411 		end = min(range->start + range->len,
8412 				cache->key.objectid + cache->key.offset);
8413 
8414 		if (end - start >= range->minlen) {
8415 			if (!block_group_cache_done(cache)) {
8416 				ret = cache_block_group(cache, 0);
8417 				if (!ret)
8418 					wait_block_group_cache_done(cache);
8419 			}
8420 			ret = btrfs_trim_block_group(cache,
8421 						     &group_trimmed,
8422 						     start,
8423 						     end,
8424 						     range->minlen);
8425 
8426 			trimmed += group_trimmed;
8427 			if (ret) {
8428 				btrfs_put_block_group(cache);
8429 				break;
8430 			}
8431 		}
8432 
8433 		cache = next_block_group(fs_info->tree_root, cache);
8434 	}
8435 
8436 	range->len = trimmed;
8437 	return ret;
8438 }
8439