xref: /linux/fs/btrfs/extent-tree.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 
39 #undef SCRAMBLE_DELAYED_REFS
40 
41 /*
42  * control flags for do_chunk_alloc's force field
43  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44  * if we really need one.
45  *
46  * CHUNK_ALLOC_LIMITED means to only try and allocate one
47  * if we have very few chunks already allocated.  This is
48  * used as part of the clustering code to help make sure
49  * we have a good pool of storage to cluster in, without
50  * filling the FS with empty chunks
51  *
52  * CHUNK_ALLOC_FORCE means it must try to allocate one
53  *
54  */
55 enum {
56 	CHUNK_ALLOC_NO_FORCE = 0,
57 	CHUNK_ALLOC_LIMITED = 1,
58 	CHUNK_ALLOC_FORCE = 2,
59 };
60 
61 /*
62  * Control how reservations are dealt with.
63  *
64  * RESERVE_FREE - freeing a reservation.
65  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66  *   ENOSPC accounting
67  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68  *   bytes_may_use as the ENOSPC accounting is done elsewhere
69  */
70 enum {
71 	RESERVE_FREE = 0,
72 	RESERVE_ALLOC = 1,
73 	RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75 
76 static int update_block_group(struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 			       u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 		     u64 bytenr, u64 num_bytes, int reserved);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED ||
116 		cache->cached == BTRFS_CACHE_ERROR;
117 }
118 
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 	return (cache->flags & bits) == bits;
122 }
123 
124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	atomic_inc(&cache->count);
127 }
128 
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	if (atomic_dec_and_test(&cache->count)) {
132 		WARN_ON(cache->pinned > 0);
133 		WARN_ON(cache->reserved > 0);
134 		kfree(cache->free_space_ctl);
135 		kfree(cache);
136 	}
137 }
138 
139 /*
140  * this adds the block group to the fs_info rb tree for the block group
141  * cache
142  */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 				struct btrfs_block_group_cache *block_group)
145 {
146 	struct rb_node **p;
147 	struct rb_node *parent = NULL;
148 	struct btrfs_block_group_cache *cache;
149 
150 	spin_lock(&info->block_group_cache_lock);
151 	p = &info->block_group_cache_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		cache = rb_entry(parent, struct btrfs_block_group_cache,
156 				 cache_node);
157 		if (block_group->key.objectid < cache->key.objectid) {
158 			p = &(*p)->rb_left;
159 		} else if (block_group->key.objectid > cache->key.objectid) {
160 			p = &(*p)->rb_right;
161 		} else {
162 			spin_unlock(&info->block_group_cache_lock);
163 			return -EEXIST;
164 		}
165 	}
166 
167 	rb_link_node(&block_group->cache_node, parent, p);
168 	rb_insert_color(&block_group->cache_node,
169 			&info->block_group_cache_tree);
170 
171 	if (info->first_logical_byte > block_group->key.objectid)
172 		info->first_logical_byte = block_group->key.objectid;
173 
174 	spin_unlock(&info->block_group_cache_lock);
175 
176 	return 0;
177 }
178 
179 /*
180  * This will return the block group at or after bytenr if contains is 0, else
181  * it will return the block group that contains the bytenr
182  */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 			      int contains)
186 {
187 	struct btrfs_block_group_cache *cache, *ret = NULL;
188 	struct rb_node *n;
189 	u64 end, start;
190 
191 	spin_lock(&info->block_group_cache_lock);
192 	n = info->block_group_cache_tree.rb_node;
193 
194 	while (n) {
195 		cache = rb_entry(n, struct btrfs_block_group_cache,
196 				 cache_node);
197 		end = cache->key.objectid + cache->key.offset - 1;
198 		start = cache->key.objectid;
199 
200 		if (bytenr < start) {
201 			if (!contains && (!ret || start < ret->key.objectid))
202 				ret = cache;
203 			n = n->rb_left;
204 		} else if (bytenr > start) {
205 			if (contains && bytenr <= end) {
206 				ret = cache;
207 				break;
208 			}
209 			n = n->rb_right;
210 		} else {
211 			ret = cache;
212 			break;
213 		}
214 	}
215 	if (ret) {
216 		btrfs_get_block_group(ret);
217 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 			info->first_logical_byte = ret->key.objectid;
219 	}
220 	spin_unlock(&info->block_group_cache_lock);
221 
222 	return ret;
223 }
224 
225 static int add_excluded_extent(struct btrfs_root *root,
226 			       u64 start, u64 num_bytes)
227 {
228 	u64 end = start + num_bytes - 1;
229 	set_extent_bits(&root->fs_info->freed_extents[0],
230 			start, end, EXTENT_UPTODATE, GFP_NOFS);
231 	set_extent_bits(&root->fs_info->freed_extents[1],
232 			start, end, EXTENT_UPTODATE, GFP_NOFS);
233 	return 0;
234 }
235 
236 static void free_excluded_extents(struct btrfs_root *root,
237 				  struct btrfs_block_group_cache *cache)
238 {
239 	u64 start, end;
240 
241 	start = cache->key.objectid;
242 	end = start + cache->key.offset - 1;
243 
244 	clear_extent_bits(&root->fs_info->freed_extents[0],
245 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
246 	clear_extent_bits(&root->fs_info->freed_extents[1],
247 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
248 }
249 
250 static int exclude_super_stripes(struct btrfs_root *root,
251 				 struct btrfs_block_group_cache *cache)
252 {
253 	u64 bytenr;
254 	u64 *logical;
255 	int stripe_len;
256 	int i, nr, ret;
257 
258 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 		cache->bytes_super += stripe_len;
261 		ret = add_excluded_extent(root, cache->key.objectid,
262 					  stripe_len);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 		bytenr = btrfs_sb_offset(i);
269 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 				       cache->key.objectid, bytenr,
271 				       0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(root, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (cache->cached != BTRFS_CACHE_STARTED) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	/* We're loading it the fast way, so we don't have a caching_ctl. */
320 	if (!cache->caching_ctl) {
321 		spin_unlock(&cache->lock);
322 		return NULL;
323 	}
324 
325 	ctl = cache->caching_ctl;
326 	atomic_inc(&ctl->count);
327 	spin_unlock(&cache->lock);
328 	return ctl;
329 }
330 
331 static void put_caching_control(struct btrfs_caching_control *ctl)
332 {
333 	if (atomic_dec_and_test(&ctl->count))
334 		kfree(ctl);
335 }
336 
337 /*
338  * this is only called by cache_block_group, since we could have freed extents
339  * we need to check the pinned_extents for any extents that can't be used yet
340  * since their free space will be released as soon as the transaction commits.
341  */
342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 			      struct btrfs_fs_info *info, u64 start, u64 end)
344 {
345 	u64 extent_start, extent_end, size, total_added = 0;
346 	int ret;
347 
348 	while (start < end) {
349 		ret = find_first_extent_bit(info->pinned_extents, start,
350 					    &extent_start, &extent_end,
351 					    EXTENT_DIRTY | EXTENT_UPTODATE,
352 					    NULL);
353 		if (ret)
354 			break;
355 
356 		if (extent_start <= start) {
357 			start = extent_end + 1;
358 		} else if (extent_start > start && extent_start < end) {
359 			size = extent_start - start;
360 			total_added += size;
361 			ret = btrfs_add_free_space(block_group, start,
362 						   size);
363 			BUG_ON(ret); /* -ENOMEM or logic error */
364 			start = extent_end + 1;
365 		} else {
366 			break;
367 		}
368 	}
369 
370 	if (start < end) {
371 		size = end - start;
372 		total_added += size;
373 		ret = btrfs_add_free_space(block_group, start, size);
374 		BUG_ON(ret); /* -ENOMEM or logic error */
375 	}
376 
377 	return total_added;
378 }
379 
380 static noinline void caching_thread(struct btrfs_work *work)
381 {
382 	struct btrfs_block_group_cache *block_group;
383 	struct btrfs_fs_info *fs_info;
384 	struct btrfs_caching_control *caching_ctl;
385 	struct btrfs_root *extent_root;
386 	struct btrfs_path *path;
387 	struct extent_buffer *leaf;
388 	struct btrfs_key key;
389 	u64 total_found = 0;
390 	u64 last = 0;
391 	u32 nritems;
392 	int ret = -ENOMEM;
393 
394 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 	block_group = caching_ctl->block_group;
396 	fs_info = block_group->fs_info;
397 	extent_root = fs_info->extent_root;
398 
399 	path = btrfs_alloc_path();
400 	if (!path)
401 		goto out;
402 
403 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
404 
405 	/*
406 	 * We don't want to deadlock with somebody trying to allocate a new
407 	 * extent for the extent root while also trying to search the extent
408 	 * root to add free space.  So we skip locking and search the commit
409 	 * root, since its read-only
410 	 */
411 	path->skip_locking = 1;
412 	path->search_commit_root = 1;
413 	path->reada = 1;
414 
415 	key.objectid = last;
416 	key.offset = 0;
417 	key.type = BTRFS_EXTENT_ITEM_KEY;
418 again:
419 	mutex_lock(&caching_ctl->mutex);
420 	/* need to make sure the commit_root doesn't disappear */
421 	down_read(&fs_info->extent_commit_sem);
422 
423 next:
424 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 	if (ret < 0)
426 		goto err;
427 
428 	leaf = path->nodes[0];
429 	nritems = btrfs_header_nritems(leaf);
430 
431 	while (1) {
432 		if (btrfs_fs_closing(fs_info) > 1) {
433 			last = (u64)-1;
434 			break;
435 		}
436 
437 		if (path->slots[0] < nritems) {
438 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 		} else {
440 			ret = find_next_key(path, 0, &key);
441 			if (ret)
442 				break;
443 
444 			if (need_resched()) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->extent_commit_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->leafsize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->extent_commit_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	caching_ctl->work.func = caching_thread;
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		ret = load_free_space_cache(fs_info, cache);
592 
593 		spin_lock(&cache->lock);
594 		if (ret == 1) {
595 			cache->caching_ctl = NULL;
596 			cache->cached = BTRFS_CACHE_FINISHED;
597 			cache->last_byte_to_unpin = (u64)-1;
598 		} else {
599 			if (load_cache_only) {
600 				cache->caching_ctl = NULL;
601 				cache->cached = BTRFS_CACHE_NO;
602 			} else {
603 				cache->cached = BTRFS_CACHE_STARTED;
604 			}
605 		}
606 		spin_unlock(&cache->lock);
607 		wake_up(&caching_ctl->wait);
608 		if (ret == 1) {
609 			put_caching_control(caching_ctl);
610 			free_excluded_extents(fs_info->extent_root, cache);
611 			return 0;
612 		}
613 	} else {
614 		/*
615 		 * We are not going to do the fast caching, set cached to the
616 		 * appropriate value and wakeup any waiters.
617 		 */
618 		spin_lock(&cache->lock);
619 		if (load_cache_only) {
620 			cache->caching_ctl = NULL;
621 			cache->cached = BTRFS_CACHE_NO;
622 		} else {
623 			cache->cached = BTRFS_CACHE_STARTED;
624 		}
625 		spin_unlock(&cache->lock);
626 		wake_up(&caching_ctl->wait);
627 	}
628 
629 	if (load_cache_only) {
630 		put_caching_control(caching_ctl);
631 		return 0;
632 	}
633 
634 	down_write(&fs_info->extent_commit_sem);
635 	atomic_inc(&caching_ctl->count);
636 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
637 	up_write(&fs_info->extent_commit_sem);
638 
639 	btrfs_get_block_group(cache);
640 
641 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
642 
643 	return ret;
644 }
645 
646 /*
647  * return the block group that starts at or after bytenr
648  */
649 static struct btrfs_block_group_cache *
650 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
651 {
652 	struct btrfs_block_group_cache *cache;
653 
654 	cache = block_group_cache_tree_search(info, bytenr, 0);
655 
656 	return cache;
657 }
658 
659 /*
660  * return the block group that contains the given bytenr
661  */
662 struct btrfs_block_group_cache *btrfs_lookup_block_group(
663 						 struct btrfs_fs_info *info,
664 						 u64 bytenr)
665 {
666 	struct btrfs_block_group_cache *cache;
667 
668 	cache = block_group_cache_tree_search(info, bytenr, 1);
669 
670 	return cache;
671 }
672 
673 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
674 						  u64 flags)
675 {
676 	struct list_head *head = &info->space_info;
677 	struct btrfs_space_info *found;
678 
679 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
680 
681 	rcu_read_lock();
682 	list_for_each_entry_rcu(found, head, list) {
683 		if (found->flags & flags) {
684 			rcu_read_unlock();
685 			return found;
686 		}
687 	}
688 	rcu_read_unlock();
689 	return NULL;
690 }
691 
692 /*
693  * after adding space to the filesystem, we need to clear the full flags
694  * on all the space infos.
695  */
696 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
697 {
698 	struct list_head *head = &info->space_info;
699 	struct btrfs_space_info *found;
700 
701 	rcu_read_lock();
702 	list_for_each_entry_rcu(found, head, list)
703 		found->full = 0;
704 	rcu_read_unlock();
705 }
706 
707 /* simple helper to search for an existing extent at a given offset */
708 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
709 {
710 	int ret;
711 	struct btrfs_key key;
712 	struct btrfs_path *path;
713 
714 	path = btrfs_alloc_path();
715 	if (!path)
716 		return -ENOMEM;
717 
718 	key.objectid = start;
719 	key.offset = len;
720 	key.type = BTRFS_EXTENT_ITEM_KEY;
721 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
722 				0, 0);
723 	if (ret > 0) {
724 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
725 		if (key.objectid == start &&
726 		    key.type == BTRFS_METADATA_ITEM_KEY)
727 			ret = 0;
728 	}
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->leafsize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 again:
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->leafsize)
797 				ret = 0;
798 		}
799 		if (ret) {
800 			key.objectid = bytenr;
801 			key.type = BTRFS_EXTENT_ITEM_KEY;
802 			key.offset = root->leafsize;
803 			btrfs_release_path(path);
804 			goto again;
805 		}
806 	}
807 
808 	if (ret == 0) {
809 		leaf = path->nodes[0];
810 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
811 		if (item_size >= sizeof(*ei)) {
812 			ei = btrfs_item_ptr(leaf, path->slots[0],
813 					    struct btrfs_extent_item);
814 			num_refs = btrfs_extent_refs(leaf, ei);
815 			extent_flags = btrfs_extent_flags(leaf, ei);
816 		} else {
817 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
818 			struct btrfs_extent_item_v0 *ei0;
819 			BUG_ON(item_size != sizeof(*ei0));
820 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
821 					     struct btrfs_extent_item_v0);
822 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
823 			/* FIXME: this isn't correct for data */
824 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
825 #else
826 			BUG();
827 #endif
828 		}
829 		BUG_ON(num_refs == 0);
830 	} else {
831 		num_refs = 0;
832 		extent_flags = 0;
833 		ret = 0;
834 	}
835 
836 	if (!trans)
837 		goto out;
838 
839 	delayed_refs = &trans->transaction->delayed_refs;
840 	spin_lock(&delayed_refs->lock);
841 	head = btrfs_find_delayed_ref_head(trans, bytenr);
842 	if (head) {
843 		if (!mutex_trylock(&head->mutex)) {
844 			atomic_inc(&head->node.refs);
845 			spin_unlock(&delayed_refs->lock);
846 
847 			btrfs_release_path(path);
848 
849 			/*
850 			 * Mutex was contended, block until it's released and try
851 			 * again
852 			 */
853 			mutex_lock(&head->mutex);
854 			mutex_unlock(&head->mutex);
855 			btrfs_put_delayed_ref(&head->node);
856 			goto search_again;
857 		}
858 		if (head->extent_op && head->extent_op->update_flags)
859 			extent_flags |= head->extent_op->flags_to_set;
860 		else
861 			BUG_ON(num_refs == 0);
862 
863 		num_refs += head->node.ref_mod;
864 		mutex_unlock(&head->mutex);
865 	}
866 	spin_unlock(&delayed_refs->lock);
867 out:
868 	WARN_ON(num_refs == 0);
869 	if (refs)
870 		*refs = num_refs;
871 	if (flags)
872 		*flags = extent_flags;
873 out_free:
874 	btrfs_free_path(path);
875 	return ret;
876 }
877 
878 /*
879  * Back reference rules.  Back refs have three main goals:
880  *
881  * 1) differentiate between all holders of references to an extent so that
882  *    when a reference is dropped we can make sure it was a valid reference
883  *    before freeing the extent.
884  *
885  * 2) Provide enough information to quickly find the holders of an extent
886  *    if we notice a given block is corrupted or bad.
887  *
888  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
889  *    maintenance.  This is actually the same as #2, but with a slightly
890  *    different use case.
891  *
892  * There are two kinds of back refs. The implicit back refs is optimized
893  * for pointers in non-shared tree blocks. For a given pointer in a block,
894  * back refs of this kind provide information about the block's owner tree
895  * and the pointer's key. These information allow us to find the block by
896  * b-tree searching. The full back refs is for pointers in tree blocks not
897  * referenced by their owner trees. The location of tree block is recorded
898  * in the back refs. Actually the full back refs is generic, and can be
899  * used in all cases the implicit back refs is used. The major shortcoming
900  * of the full back refs is its overhead. Every time a tree block gets
901  * COWed, we have to update back refs entry for all pointers in it.
902  *
903  * For a newly allocated tree block, we use implicit back refs for
904  * pointers in it. This means most tree related operations only involve
905  * implicit back refs. For a tree block created in old transaction, the
906  * only way to drop a reference to it is COW it. So we can detect the
907  * event that tree block loses its owner tree's reference and do the
908  * back refs conversion.
909  *
910  * When a tree block is COW'd through a tree, there are four cases:
911  *
912  * The reference count of the block is one and the tree is the block's
913  * owner tree. Nothing to do in this case.
914  *
915  * The reference count of the block is one and the tree is not the
916  * block's owner tree. In this case, full back refs is used for pointers
917  * in the block. Remove these full back refs, add implicit back refs for
918  * every pointers in the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * the block's owner tree. In this case, implicit back refs is used for
922  * pointers in the block. Add full back refs for every pointers in the
923  * block, increase lower level extents' reference counts. The original
924  * implicit back refs are entailed to the new block.
925  *
926  * The reference count of the block is greater than one and the tree is
927  * not the block's owner tree. Add implicit back refs for every pointer in
928  * the new block, increase lower level extents' reference count.
929  *
930  * Back Reference Key composing:
931  *
932  * The key objectid corresponds to the first byte in the extent,
933  * The key type is used to differentiate between types of back refs.
934  * There are different meanings of the key offset for different types
935  * of back refs.
936  *
937  * File extents can be referenced by:
938  *
939  * - multiple snapshots, subvolumes, or different generations in one subvol
940  * - different files inside a single subvolume
941  * - different offsets inside a file (bookend extents in file.c)
942  *
943  * The extent ref structure for the implicit back refs has fields for:
944  *
945  * - Objectid of the subvolume root
946  * - objectid of the file holding the reference
947  * - original offset in the file
948  * - how many bookend extents
949  *
950  * The key offset for the implicit back refs is hash of the first
951  * three fields.
952  *
953  * The extent ref structure for the full back refs has field for:
954  *
955  * - number of pointers in the tree leaf
956  *
957  * The key offset for the implicit back refs is the first byte of
958  * the tree leaf
959  *
960  * When a file extent is allocated, The implicit back refs is used.
961  * the fields are filled in:
962  *
963  *     (root_key.objectid, inode objectid, offset in file, 1)
964  *
965  * When a file extent is removed file truncation, we find the
966  * corresponding implicit back refs and check the following fields:
967  *
968  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
969  *
970  * Btree extents can be referenced by:
971  *
972  * - Different subvolumes
973  *
974  * Both the implicit back refs and the full back refs for tree blocks
975  * only consist of key. The key offset for the implicit back refs is
976  * objectid of block's owner tree. The key offset for the full back refs
977  * is the first byte of parent block.
978  *
979  * When implicit back refs is used, information about the lowest key and
980  * level of the tree block are required. These information are stored in
981  * tree block info structure.
982  */
983 
984 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
985 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
986 				  struct btrfs_root *root,
987 				  struct btrfs_path *path,
988 				  u64 owner, u32 extra_size)
989 {
990 	struct btrfs_extent_item *item;
991 	struct btrfs_extent_item_v0 *ei0;
992 	struct btrfs_extent_ref_v0 *ref0;
993 	struct btrfs_tree_block_info *bi;
994 	struct extent_buffer *leaf;
995 	struct btrfs_key key;
996 	struct btrfs_key found_key;
997 	u32 new_size = sizeof(*item);
998 	u64 refs;
999 	int ret;
1000 
1001 	leaf = path->nodes[0];
1002 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1003 
1004 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1005 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1006 			     struct btrfs_extent_item_v0);
1007 	refs = btrfs_extent_refs_v0(leaf, ei0);
1008 
1009 	if (owner == (u64)-1) {
1010 		while (1) {
1011 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1012 				ret = btrfs_next_leaf(root, path);
1013 				if (ret < 0)
1014 					return ret;
1015 				BUG_ON(ret > 0); /* Corruption */
1016 				leaf = path->nodes[0];
1017 			}
1018 			btrfs_item_key_to_cpu(leaf, &found_key,
1019 					      path->slots[0]);
1020 			BUG_ON(key.objectid != found_key.objectid);
1021 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1022 				path->slots[0]++;
1023 				continue;
1024 			}
1025 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1026 					      struct btrfs_extent_ref_v0);
1027 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1028 			break;
1029 		}
1030 	}
1031 	btrfs_release_path(path);
1032 
1033 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1034 		new_size += sizeof(*bi);
1035 
1036 	new_size -= sizeof(*ei0);
1037 	ret = btrfs_search_slot(trans, root, &key, path,
1038 				new_size + extra_size, 1);
1039 	if (ret < 0)
1040 		return ret;
1041 	BUG_ON(ret); /* Corruption */
1042 
1043 	btrfs_extend_item(root, path, new_size);
1044 
1045 	leaf = path->nodes[0];
1046 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1047 	btrfs_set_extent_refs(leaf, item, refs);
1048 	/* FIXME: get real generation */
1049 	btrfs_set_extent_generation(leaf, item, 0);
1050 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1051 		btrfs_set_extent_flags(leaf, item,
1052 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1053 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1054 		bi = (struct btrfs_tree_block_info *)(item + 1);
1055 		/* FIXME: get first key of the block */
1056 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1057 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1058 	} else {
1059 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1060 	}
1061 	btrfs_mark_buffer_dirty(leaf);
1062 	return 0;
1063 }
1064 #endif
1065 
1066 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1067 {
1068 	u32 high_crc = ~(u32)0;
1069 	u32 low_crc = ~(u32)0;
1070 	__le64 lenum;
1071 
1072 	lenum = cpu_to_le64(root_objectid);
1073 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1074 	lenum = cpu_to_le64(owner);
1075 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1076 	lenum = cpu_to_le64(offset);
1077 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078 
1079 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1080 }
1081 
1082 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1083 				     struct btrfs_extent_data_ref *ref)
1084 {
1085 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1086 				    btrfs_extent_data_ref_objectid(leaf, ref),
1087 				    btrfs_extent_data_ref_offset(leaf, ref));
1088 }
1089 
1090 static int match_extent_data_ref(struct extent_buffer *leaf,
1091 				 struct btrfs_extent_data_ref *ref,
1092 				 u64 root_objectid, u64 owner, u64 offset)
1093 {
1094 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1095 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1096 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1097 		return 0;
1098 	return 1;
1099 }
1100 
1101 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1102 					   struct btrfs_root *root,
1103 					   struct btrfs_path *path,
1104 					   u64 bytenr, u64 parent,
1105 					   u64 root_objectid,
1106 					   u64 owner, u64 offset)
1107 {
1108 	struct btrfs_key key;
1109 	struct btrfs_extent_data_ref *ref;
1110 	struct extent_buffer *leaf;
1111 	u32 nritems;
1112 	int ret;
1113 	int recow;
1114 	int err = -ENOENT;
1115 
1116 	key.objectid = bytenr;
1117 	if (parent) {
1118 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1119 		key.offset = parent;
1120 	} else {
1121 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1122 		key.offset = hash_extent_data_ref(root_objectid,
1123 						  owner, offset);
1124 	}
1125 again:
1126 	recow = 0;
1127 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1128 	if (ret < 0) {
1129 		err = ret;
1130 		goto fail;
1131 	}
1132 
1133 	if (parent) {
1134 		if (!ret)
1135 			return 0;
1136 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1137 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1138 		btrfs_release_path(path);
1139 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1140 		if (ret < 0) {
1141 			err = ret;
1142 			goto fail;
1143 		}
1144 		if (!ret)
1145 			return 0;
1146 #endif
1147 		goto fail;
1148 	}
1149 
1150 	leaf = path->nodes[0];
1151 	nritems = btrfs_header_nritems(leaf);
1152 	while (1) {
1153 		if (path->slots[0] >= nritems) {
1154 			ret = btrfs_next_leaf(root, path);
1155 			if (ret < 0)
1156 				err = ret;
1157 			if (ret)
1158 				goto fail;
1159 
1160 			leaf = path->nodes[0];
1161 			nritems = btrfs_header_nritems(leaf);
1162 			recow = 1;
1163 		}
1164 
1165 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1166 		if (key.objectid != bytenr ||
1167 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1168 			goto fail;
1169 
1170 		ref = btrfs_item_ptr(leaf, path->slots[0],
1171 				     struct btrfs_extent_data_ref);
1172 
1173 		if (match_extent_data_ref(leaf, ref, root_objectid,
1174 					  owner, offset)) {
1175 			if (recow) {
1176 				btrfs_release_path(path);
1177 				goto again;
1178 			}
1179 			err = 0;
1180 			break;
1181 		}
1182 		path->slots[0]++;
1183 	}
1184 fail:
1185 	return err;
1186 }
1187 
1188 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1189 					   struct btrfs_root *root,
1190 					   struct btrfs_path *path,
1191 					   u64 bytenr, u64 parent,
1192 					   u64 root_objectid, u64 owner,
1193 					   u64 offset, int refs_to_add)
1194 {
1195 	struct btrfs_key key;
1196 	struct extent_buffer *leaf;
1197 	u32 size;
1198 	u32 num_refs;
1199 	int ret;
1200 
1201 	key.objectid = bytenr;
1202 	if (parent) {
1203 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1204 		key.offset = parent;
1205 		size = sizeof(struct btrfs_shared_data_ref);
1206 	} else {
1207 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 		key.offset = hash_extent_data_ref(root_objectid,
1209 						  owner, offset);
1210 		size = sizeof(struct btrfs_extent_data_ref);
1211 	}
1212 
1213 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1214 	if (ret && ret != -EEXIST)
1215 		goto fail;
1216 
1217 	leaf = path->nodes[0];
1218 	if (parent) {
1219 		struct btrfs_shared_data_ref *ref;
1220 		ref = btrfs_item_ptr(leaf, path->slots[0],
1221 				     struct btrfs_shared_data_ref);
1222 		if (ret == 0) {
1223 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1224 		} else {
1225 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1226 			num_refs += refs_to_add;
1227 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1228 		}
1229 	} else {
1230 		struct btrfs_extent_data_ref *ref;
1231 		while (ret == -EEXIST) {
1232 			ref = btrfs_item_ptr(leaf, path->slots[0],
1233 					     struct btrfs_extent_data_ref);
1234 			if (match_extent_data_ref(leaf, ref, root_objectid,
1235 						  owner, offset))
1236 				break;
1237 			btrfs_release_path(path);
1238 			key.offset++;
1239 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1240 						      size);
1241 			if (ret && ret != -EEXIST)
1242 				goto fail;
1243 
1244 			leaf = path->nodes[0];
1245 		}
1246 		ref = btrfs_item_ptr(leaf, path->slots[0],
1247 				     struct btrfs_extent_data_ref);
1248 		if (ret == 0) {
1249 			btrfs_set_extent_data_ref_root(leaf, ref,
1250 						       root_objectid);
1251 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1252 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1253 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1254 		} else {
1255 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1256 			num_refs += refs_to_add;
1257 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1258 		}
1259 	}
1260 	btrfs_mark_buffer_dirty(leaf);
1261 	ret = 0;
1262 fail:
1263 	btrfs_release_path(path);
1264 	return ret;
1265 }
1266 
1267 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1268 					   struct btrfs_root *root,
1269 					   struct btrfs_path *path,
1270 					   int refs_to_drop)
1271 {
1272 	struct btrfs_key key;
1273 	struct btrfs_extent_data_ref *ref1 = NULL;
1274 	struct btrfs_shared_data_ref *ref2 = NULL;
1275 	struct extent_buffer *leaf;
1276 	u32 num_refs = 0;
1277 	int ret = 0;
1278 
1279 	leaf = path->nodes[0];
1280 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1281 
1282 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1283 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1284 				      struct btrfs_extent_data_ref);
1285 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1286 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1287 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_shared_data_ref);
1289 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1290 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1291 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1292 		struct btrfs_extent_ref_v0 *ref0;
1293 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1294 				      struct btrfs_extent_ref_v0);
1295 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1296 #endif
1297 	} else {
1298 		BUG();
1299 	}
1300 
1301 	BUG_ON(num_refs < refs_to_drop);
1302 	num_refs -= refs_to_drop;
1303 
1304 	if (num_refs == 0) {
1305 		ret = btrfs_del_item(trans, root, path);
1306 	} else {
1307 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1308 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1309 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1310 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1312 		else {
1313 			struct btrfs_extent_ref_v0 *ref0;
1314 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1315 					struct btrfs_extent_ref_v0);
1316 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1317 		}
1318 #endif
1319 		btrfs_mark_buffer_dirty(leaf);
1320 	}
1321 	return ret;
1322 }
1323 
1324 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1325 					  struct btrfs_path *path,
1326 					  struct btrfs_extent_inline_ref *iref)
1327 {
1328 	struct btrfs_key key;
1329 	struct extent_buffer *leaf;
1330 	struct btrfs_extent_data_ref *ref1;
1331 	struct btrfs_shared_data_ref *ref2;
1332 	u32 num_refs = 0;
1333 
1334 	leaf = path->nodes[0];
1335 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1336 	if (iref) {
1337 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1338 		    BTRFS_EXTENT_DATA_REF_KEY) {
1339 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1340 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1341 		} else {
1342 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1343 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1344 		}
1345 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1346 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_extent_data_ref);
1348 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1349 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1350 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_shared_data_ref);
1352 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1353 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1354 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1355 		struct btrfs_extent_ref_v0 *ref0;
1356 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1357 				      struct btrfs_extent_ref_v0);
1358 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1359 #endif
1360 	} else {
1361 		WARN_ON(1);
1362 	}
1363 	return num_refs;
1364 }
1365 
1366 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1367 					  struct btrfs_root *root,
1368 					  struct btrfs_path *path,
1369 					  u64 bytenr, u64 parent,
1370 					  u64 root_objectid)
1371 {
1372 	struct btrfs_key key;
1373 	int ret;
1374 
1375 	key.objectid = bytenr;
1376 	if (parent) {
1377 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1378 		key.offset = parent;
1379 	} else {
1380 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1381 		key.offset = root_objectid;
1382 	}
1383 
1384 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1385 	if (ret > 0)
1386 		ret = -ENOENT;
1387 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1388 	if (ret == -ENOENT && parent) {
1389 		btrfs_release_path(path);
1390 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1391 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1392 		if (ret > 0)
1393 			ret = -ENOENT;
1394 	}
1395 #endif
1396 	return ret;
1397 }
1398 
1399 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1400 					  struct btrfs_root *root,
1401 					  struct btrfs_path *path,
1402 					  u64 bytenr, u64 parent,
1403 					  u64 root_objectid)
1404 {
1405 	struct btrfs_key key;
1406 	int ret;
1407 
1408 	key.objectid = bytenr;
1409 	if (parent) {
1410 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1411 		key.offset = parent;
1412 	} else {
1413 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1414 		key.offset = root_objectid;
1415 	}
1416 
1417 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1418 	btrfs_release_path(path);
1419 	return ret;
1420 }
1421 
1422 static inline int extent_ref_type(u64 parent, u64 owner)
1423 {
1424 	int type;
1425 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1428 		else
1429 			type = BTRFS_TREE_BLOCK_REF_KEY;
1430 	} else {
1431 		if (parent > 0)
1432 			type = BTRFS_SHARED_DATA_REF_KEY;
1433 		else
1434 			type = BTRFS_EXTENT_DATA_REF_KEY;
1435 	}
1436 	return type;
1437 }
1438 
1439 static int find_next_key(struct btrfs_path *path, int level,
1440 			 struct btrfs_key *key)
1441 
1442 {
1443 	for (; level < BTRFS_MAX_LEVEL; level++) {
1444 		if (!path->nodes[level])
1445 			break;
1446 		if (path->slots[level] + 1 >=
1447 		    btrfs_header_nritems(path->nodes[level]))
1448 			continue;
1449 		if (level == 0)
1450 			btrfs_item_key_to_cpu(path->nodes[level], key,
1451 					      path->slots[level] + 1);
1452 		else
1453 			btrfs_node_key_to_cpu(path->nodes[level], key,
1454 					      path->slots[level] + 1);
1455 		return 0;
1456 	}
1457 	return 1;
1458 }
1459 
1460 /*
1461  * look for inline back ref. if back ref is found, *ref_ret is set
1462  * to the address of inline back ref, and 0 is returned.
1463  *
1464  * if back ref isn't found, *ref_ret is set to the address where it
1465  * should be inserted, and -ENOENT is returned.
1466  *
1467  * if insert is true and there are too many inline back refs, the path
1468  * points to the extent item, and -EAGAIN is returned.
1469  *
1470  * NOTE: inline back refs are ordered in the same way that back ref
1471  *	 items in the tree are ordered.
1472  */
1473 static noinline_for_stack
1474 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1475 				 struct btrfs_root *root,
1476 				 struct btrfs_path *path,
1477 				 struct btrfs_extent_inline_ref **ref_ret,
1478 				 u64 bytenr, u64 num_bytes,
1479 				 u64 parent, u64 root_objectid,
1480 				 u64 owner, u64 offset, int insert)
1481 {
1482 	struct btrfs_key key;
1483 	struct extent_buffer *leaf;
1484 	struct btrfs_extent_item *ei;
1485 	struct btrfs_extent_inline_ref *iref;
1486 	u64 flags;
1487 	u64 item_size;
1488 	unsigned long ptr;
1489 	unsigned long end;
1490 	int extra_size;
1491 	int type;
1492 	int want;
1493 	int ret;
1494 	int err = 0;
1495 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1496 						 SKINNY_METADATA);
1497 
1498 	key.objectid = bytenr;
1499 	key.type = BTRFS_EXTENT_ITEM_KEY;
1500 	key.offset = num_bytes;
1501 
1502 	want = extent_ref_type(parent, owner);
1503 	if (insert) {
1504 		extra_size = btrfs_extent_inline_ref_size(want);
1505 		path->keep_locks = 1;
1506 	} else
1507 		extra_size = -1;
1508 
1509 	/*
1510 	 * Owner is our parent level, so we can just add one to get the level
1511 	 * for the block we are interested in.
1512 	 */
1513 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 		key.type = BTRFS_METADATA_ITEM_KEY;
1515 		key.offset = owner;
1516 	}
1517 
1518 again:
1519 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1520 	if (ret < 0) {
1521 		err = ret;
1522 		goto out;
1523 	}
1524 
1525 	/*
1526 	 * We may be a newly converted file system which still has the old fat
1527 	 * extent entries for metadata, so try and see if we have one of those.
1528 	 */
1529 	if (ret > 0 && skinny_metadata) {
1530 		skinny_metadata = false;
1531 		if (path->slots[0]) {
1532 			path->slots[0]--;
1533 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 					      path->slots[0]);
1535 			if (key.objectid == bytenr &&
1536 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 			    key.offset == num_bytes)
1538 				ret = 0;
1539 		}
1540 		if (ret) {
1541 			key.type = BTRFS_EXTENT_ITEM_KEY;
1542 			key.offset = num_bytes;
1543 			btrfs_release_path(path);
1544 			goto again;
1545 		}
1546 	}
1547 
1548 	if (ret && !insert) {
1549 		err = -ENOENT;
1550 		goto out;
1551 	} else if (WARN_ON(ret)) {
1552 		err = -EIO;
1553 		goto out;
1554 	}
1555 
1556 	leaf = path->nodes[0];
1557 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1558 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1559 	if (item_size < sizeof(*ei)) {
1560 		if (!insert) {
1561 			err = -ENOENT;
1562 			goto out;
1563 		}
1564 		ret = convert_extent_item_v0(trans, root, path, owner,
1565 					     extra_size);
1566 		if (ret < 0) {
1567 			err = ret;
1568 			goto out;
1569 		}
1570 		leaf = path->nodes[0];
1571 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1572 	}
1573 #endif
1574 	BUG_ON(item_size < sizeof(*ei));
1575 
1576 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1577 	flags = btrfs_extent_flags(leaf, ei);
1578 
1579 	ptr = (unsigned long)(ei + 1);
1580 	end = (unsigned long)ei + item_size;
1581 
1582 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1583 		ptr += sizeof(struct btrfs_tree_block_info);
1584 		BUG_ON(ptr > end);
1585 	}
1586 
1587 	err = -ENOENT;
1588 	while (1) {
1589 		if (ptr >= end) {
1590 			WARN_ON(ptr > end);
1591 			break;
1592 		}
1593 		iref = (struct btrfs_extent_inline_ref *)ptr;
1594 		type = btrfs_extent_inline_ref_type(leaf, iref);
1595 		if (want < type)
1596 			break;
1597 		if (want > type) {
1598 			ptr += btrfs_extent_inline_ref_size(type);
1599 			continue;
1600 		}
1601 
1602 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 			struct btrfs_extent_data_ref *dref;
1604 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 			if (match_extent_data_ref(leaf, dref, root_objectid,
1606 						  owner, offset)) {
1607 				err = 0;
1608 				break;
1609 			}
1610 			if (hash_extent_data_ref_item(leaf, dref) <
1611 			    hash_extent_data_ref(root_objectid, owner, offset))
1612 				break;
1613 		} else {
1614 			u64 ref_offset;
1615 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 			if (parent > 0) {
1617 				if (parent == ref_offset) {
1618 					err = 0;
1619 					break;
1620 				}
1621 				if (ref_offset < parent)
1622 					break;
1623 			} else {
1624 				if (root_objectid == ref_offset) {
1625 					err = 0;
1626 					break;
1627 				}
1628 				if (ref_offset < root_objectid)
1629 					break;
1630 			}
1631 		}
1632 		ptr += btrfs_extent_inline_ref_size(type);
1633 	}
1634 	if (err == -ENOENT && insert) {
1635 		if (item_size + extra_size >=
1636 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 			err = -EAGAIN;
1638 			goto out;
1639 		}
1640 		/*
1641 		 * To add new inline back ref, we have to make sure
1642 		 * there is no corresponding back ref item.
1643 		 * For simplicity, we just do not add new inline back
1644 		 * ref if there is any kind of item for this block
1645 		 */
1646 		if (find_next_key(path, 0, &key) == 0 &&
1647 		    key.objectid == bytenr &&
1648 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1649 			err = -EAGAIN;
1650 			goto out;
1651 		}
1652 	}
1653 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654 out:
1655 	if (insert) {
1656 		path->keep_locks = 0;
1657 		btrfs_unlock_up_safe(path, 1);
1658 	}
1659 	return err;
1660 }
1661 
1662 /*
1663  * helper to add new inline back ref
1664  */
1665 static noinline_for_stack
1666 void setup_inline_extent_backref(struct btrfs_root *root,
1667 				 struct btrfs_path *path,
1668 				 struct btrfs_extent_inline_ref *iref,
1669 				 u64 parent, u64 root_objectid,
1670 				 u64 owner, u64 offset, int refs_to_add,
1671 				 struct btrfs_delayed_extent_op *extent_op)
1672 {
1673 	struct extent_buffer *leaf;
1674 	struct btrfs_extent_item *ei;
1675 	unsigned long ptr;
1676 	unsigned long end;
1677 	unsigned long item_offset;
1678 	u64 refs;
1679 	int size;
1680 	int type;
1681 
1682 	leaf = path->nodes[0];
1683 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 	item_offset = (unsigned long)iref - (unsigned long)ei;
1685 
1686 	type = extent_ref_type(parent, owner);
1687 	size = btrfs_extent_inline_ref_size(type);
1688 
1689 	btrfs_extend_item(root, path, size);
1690 
1691 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 	refs = btrfs_extent_refs(leaf, ei);
1693 	refs += refs_to_add;
1694 	btrfs_set_extent_refs(leaf, ei, refs);
1695 	if (extent_op)
1696 		__run_delayed_extent_op(extent_op, leaf, ei);
1697 
1698 	ptr = (unsigned long)ei + item_offset;
1699 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 	if (ptr < end - size)
1701 		memmove_extent_buffer(leaf, ptr + size, ptr,
1702 				      end - size - ptr);
1703 
1704 	iref = (struct btrfs_extent_inline_ref *)ptr;
1705 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 		struct btrfs_extent_data_ref *dref;
1708 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 		struct btrfs_shared_data_ref *sref;
1715 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 	} else {
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 	}
1723 	btrfs_mark_buffer_dirty(leaf);
1724 }
1725 
1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1727 				 struct btrfs_root *root,
1728 				 struct btrfs_path *path,
1729 				 struct btrfs_extent_inline_ref **ref_ret,
1730 				 u64 bytenr, u64 num_bytes, u64 parent,
1731 				 u64 root_objectid, u64 owner, u64 offset)
1732 {
1733 	int ret;
1734 
1735 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1736 					   bytenr, num_bytes, parent,
1737 					   root_objectid, owner, offset, 0);
1738 	if (ret != -ENOENT)
1739 		return ret;
1740 
1741 	btrfs_release_path(path);
1742 	*ref_ret = NULL;
1743 
1744 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1745 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1746 					    root_objectid);
1747 	} else {
1748 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1749 					     root_objectid, owner, offset);
1750 	}
1751 	return ret;
1752 }
1753 
1754 /*
1755  * helper to update/remove inline back ref
1756  */
1757 static noinline_for_stack
1758 void update_inline_extent_backref(struct btrfs_root *root,
1759 				  struct btrfs_path *path,
1760 				  struct btrfs_extent_inline_ref *iref,
1761 				  int refs_to_mod,
1762 				  struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 	struct extent_buffer *leaf;
1765 	struct btrfs_extent_item *ei;
1766 	struct btrfs_extent_data_ref *dref = NULL;
1767 	struct btrfs_shared_data_ref *sref = NULL;
1768 	unsigned long ptr;
1769 	unsigned long end;
1770 	u32 item_size;
1771 	int size;
1772 	int type;
1773 	u64 refs;
1774 
1775 	leaf = path->nodes[0];
1776 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1777 	refs = btrfs_extent_refs(leaf, ei);
1778 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1779 	refs += refs_to_mod;
1780 	btrfs_set_extent_refs(leaf, ei, refs);
1781 	if (extent_op)
1782 		__run_delayed_extent_op(extent_op, leaf, ei);
1783 
1784 	type = btrfs_extent_inline_ref_type(leaf, iref);
1785 
1786 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1787 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1788 		refs = btrfs_extent_data_ref_count(leaf, dref);
1789 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1790 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1791 		refs = btrfs_shared_data_ref_count(leaf, sref);
1792 	} else {
1793 		refs = 1;
1794 		BUG_ON(refs_to_mod != -1);
1795 	}
1796 
1797 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1798 	refs += refs_to_mod;
1799 
1800 	if (refs > 0) {
1801 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1802 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1803 		else
1804 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1805 	} else {
1806 		size =  btrfs_extent_inline_ref_size(type);
1807 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1808 		ptr = (unsigned long)iref;
1809 		end = (unsigned long)ei + item_size;
1810 		if (ptr + size < end)
1811 			memmove_extent_buffer(leaf, ptr, ptr + size,
1812 					      end - ptr - size);
1813 		item_size -= size;
1814 		btrfs_truncate_item(root, path, item_size, 1);
1815 	}
1816 	btrfs_mark_buffer_dirty(leaf);
1817 }
1818 
1819 static noinline_for_stack
1820 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1821 				 struct btrfs_root *root,
1822 				 struct btrfs_path *path,
1823 				 u64 bytenr, u64 num_bytes, u64 parent,
1824 				 u64 root_objectid, u64 owner,
1825 				 u64 offset, int refs_to_add,
1826 				 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 	struct btrfs_extent_inline_ref *iref;
1829 	int ret;
1830 
1831 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1832 					   bytenr, num_bytes, parent,
1833 					   root_objectid, owner, offset, 1);
1834 	if (ret == 0) {
1835 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1836 		update_inline_extent_backref(root, path, iref,
1837 					     refs_to_add, extent_op);
1838 	} else if (ret == -ENOENT) {
1839 		setup_inline_extent_backref(root, path, iref, parent,
1840 					    root_objectid, owner, offset,
1841 					    refs_to_add, extent_op);
1842 		ret = 0;
1843 	}
1844 	return ret;
1845 }
1846 
1847 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1848 				 struct btrfs_root *root,
1849 				 struct btrfs_path *path,
1850 				 u64 bytenr, u64 parent, u64 root_objectid,
1851 				 u64 owner, u64 offset, int refs_to_add)
1852 {
1853 	int ret;
1854 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1855 		BUG_ON(refs_to_add != 1);
1856 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1857 					    parent, root_objectid);
1858 	} else {
1859 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1860 					     parent, root_objectid,
1861 					     owner, offset, refs_to_add);
1862 	}
1863 	return ret;
1864 }
1865 
1866 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1867 				 struct btrfs_root *root,
1868 				 struct btrfs_path *path,
1869 				 struct btrfs_extent_inline_ref *iref,
1870 				 int refs_to_drop, int is_data)
1871 {
1872 	int ret = 0;
1873 
1874 	BUG_ON(!is_data && refs_to_drop != 1);
1875 	if (iref) {
1876 		update_inline_extent_backref(root, path, iref,
1877 					     -refs_to_drop, NULL);
1878 	} else if (is_data) {
1879 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1880 	} else {
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 				u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		kfree(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1945 {
1946 	int ret;
1947 	struct btrfs_fs_info *fs_info = root->fs_info;
1948 
1949 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1950 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1951 
1952 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1953 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1954 					num_bytes,
1955 					parent, root_objectid, (int)owner,
1956 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1957 	} else {
1958 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1959 					num_bytes,
1960 					parent, root_objectid, owner, offset,
1961 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1962 	}
1963 	return ret;
1964 }
1965 
1966 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1967 				  struct btrfs_root *root,
1968 				  u64 bytenr, u64 num_bytes,
1969 				  u64 parent, u64 root_objectid,
1970 				  u64 owner, u64 offset, int refs_to_add,
1971 				  struct btrfs_delayed_extent_op *extent_op)
1972 {
1973 	struct btrfs_path *path;
1974 	struct extent_buffer *leaf;
1975 	struct btrfs_extent_item *item;
1976 	u64 refs;
1977 	int ret;
1978 
1979 	path = btrfs_alloc_path();
1980 	if (!path)
1981 		return -ENOMEM;
1982 
1983 	path->reada = 1;
1984 	path->leave_spinning = 1;
1985 	/* this will setup the path even if it fails to insert the back ref */
1986 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1987 					   path, bytenr, num_bytes, parent,
1988 					   root_objectid, owner, offset,
1989 					   refs_to_add, extent_op);
1990 	if (ret != -EAGAIN)
1991 		goto out;
1992 
1993 	leaf = path->nodes[0];
1994 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1995 	refs = btrfs_extent_refs(leaf, item);
1996 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1997 	if (extent_op)
1998 		__run_delayed_extent_op(extent_op, leaf, item);
1999 
2000 	btrfs_mark_buffer_dirty(leaf);
2001 	btrfs_release_path(path);
2002 
2003 	path->reada = 1;
2004 	path->leave_spinning = 1;
2005 
2006 	/* now insert the actual backref */
2007 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2008 				    path, bytenr, parent, root_objectid,
2009 				    owner, offset, refs_to_add);
2010 	if (ret)
2011 		btrfs_abort_transaction(trans, root, ret);
2012 out:
2013 	btrfs_free_path(path);
2014 	return ret;
2015 }
2016 
2017 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2018 				struct btrfs_root *root,
2019 				struct btrfs_delayed_ref_node *node,
2020 				struct btrfs_delayed_extent_op *extent_op,
2021 				int insert_reserved)
2022 {
2023 	int ret = 0;
2024 	struct btrfs_delayed_data_ref *ref;
2025 	struct btrfs_key ins;
2026 	u64 parent = 0;
2027 	u64 ref_root = 0;
2028 	u64 flags = 0;
2029 
2030 	ins.objectid = node->bytenr;
2031 	ins.offset = node->num_bytes;
2032 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2033 
2034 	ref = btrfs_delayed_node_to_data_ref(node);
2035 	trace_run_delayed_data_ref(node, ref, node->action);
2036 
2037 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2038 		parent = ref->parent;
2039 	else
2040 		ref_root = ref->root;
2041 
2042 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2043 		if (extent_op)
2044 			flags |= extent_op->flags_to_set;
2045 		ret = alloc_reserved_file_extent(trans, root,
2046 						 parent, ref_root, flags,
2047 						 ref->objectid, ref->offset,
2048 						 &ins, node->ref_mod);
2049 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2050 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2051 					     node->num_bytes, parent,
2052 					     ref_root, ref->objectid,
2053 					     ref->offset, node->ref_mod,
2054 					     extent_op);
2055 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2056 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2057 					  node->num_bytes, parent,
2058 					  ref_root, ref->objectid,
2059 					  ref->offset, node->ref_mod,
2060 					  extent_op);
2061 	} else {
2062 		BUG();
2063 	}
2064 	return ret;
2065 }
2066 
2067 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2068 				    struct extent_buffer *leaf,
2069 				    struct btrfs_extent_item *ei)
2070 {
2071 	u64 flags = btrfs_extent_flags(leaf, ei);
2072 	if (extent_op->update_flags) {
2073 		flags |= extent_op->flags_to_set;
2074 		btrfs_set_extent_flags(leaf, ei, flags);
2075 	}
2076 
2077 	if (extent_op->update_key) {
2078 		struct btrfs_tree_block_info *bi;
2079 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2080 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2081 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2082 	}
2083 }
2084 
2085 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2086 				 struct btrfs_root *root,
2087 				 struct btrfs_delayed_ref_node *node,
2088 				 struct btrfs_delayed_extent_op *extent_op)
2089 {
2090 	struct btrfs_key key;
2091 	struct btrfs_path *path;
2092 	struct btrfs_extent_item *ei;
2093 	struct extent_buffer *leaf;
2094 	u32 item_size;
2095 	int ret;
2096 	int err = 0;
2097 	int metadata = !extent_op->is_data;
2098 
2099 	if (trans->aborted)
2100 		return 0;
2101 
2102 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2103 		metadata = 0;
2104 
2105 	path = btrfs_alloc_path();
2106 	if (!path)
2107 		return -ENOMEM;
2108 
2109 	key.objectid = node->bytenr;
2110 
2111 	if (metadata) {
2112 		key.type = BTRFS_METADATA_ITEM_KEY;
2113 		key.offset = extent_op->level;
2114 	} else {
2115 		key.type = BTRFS_EXTENT_ITEM_KEY;
2116 		key.offset = node->num_bytes;
2117 	}
2118 
2119 again:
2120 	path->reada = 1;
2121 	path->leave_spinning = 1;
2122 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2123 				path, 0, 1);
2124 	if (ret < 0) {
2125 		err = ret;
2126 		goto out;
2127 	}
2128 	if (ret > 0) {
2129 		if (metadata) {
2130 			if (path->slots[0] > 0) {
2131 				path->slots[0]--;
2132 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2133 						      path->slots[0]);
2134 				if (key.objectid == node->bytenr &&
2135 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2136 				    key.offset == node->num_bytes)
2137 					ret = 0;
2138 			}
2139 			if (ret > 0) {
2140 				btrfs_release_path(path);
2141 				metadata = 0;
2142 
2143 				key.objectid = node->bytenr;
2144 				key.offset = node->num_bytes;
2145 				key.type = BTRFS_EXTENT_ITEM_KEY;
2146 				goto again;
2147 			}
2148 		} else {
2149 			err = -EIO;
2150 			goto out;
2151 		}
2152 	}
2153 
2154 	leaf = path->nodes[0];
2155 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2156 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2157 	if (item_size < sizeof(*ei)) {
2158 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2159 					     path, (u64)-1, 0);
2160 		if (ret < 0) {
2161 			err = ret;
2162 			goto out;
2163 		}
2164 		leaf = path->nodes[0];
2165 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2166 	}
2167 #endif
2168 	BUG_ON(item_size < sizeof(*ei));
2169 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2170 	__run_delayed_extent_op(extent_op, leaf, ei);
2171 
2172 	btrfs_mark_buffer_dirty(leaf);
2173 out:
2174 	btrfs_free_path(path);
2175 	return err;
2176 }
2177 
2178 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2179 				struct btrfs_root *root,
2180 				struct btrfs_delayed_ref_node *node,
2181 				struct btrfs_delayed_extent_op *extent_op,
2182 				int insert_reserved)
2183 {
2184 	int ret = 0;
2185 	struct btrfs_delayed_tree_ref *ref;
2186 	struct btrfs_key ins;
2187 	u64 parent = 0;
2188 	u64 ref_root = 0;
2189 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2190 						 SKINNY_METADATA);
2191 
2192 	ref = btrfs_delayed_node_to_tree_ref(node);
2193 	trace_run_delayed_tree_ref(node, ref, node->action);
2194 
2195 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2196 		parent = ref->parent;
2197 	else
2198 		ref_root = ref->root;
2199 
2200 	ins.objectid = node->bytenr;
2201 	if (skinny_metadata) {
2202 		ins.offset = ref->level;
2203 		ins.type = BTRFS_METADATA_ITEM_KEY;
2204 	} else {
2205 		ins.offset = node->num_bytes;
2206 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2207 	}
2208 
2209 	BUG_ON(node->ref_mod != 1);
2210 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2211 		BUG_ON(!extent_op || !extent_op->update_flags);
2212 		ret = alloc_reserved_tree_block(trans, root,
2213 						parent, ref_root,
2214 						extent_op->flags_to_set,
2215 						&extent_op->key,
2216 						ref->level, &ins);
2217 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2218 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2219 					     node->num_bytes, parent, ref_root,
2220 					     ref->level, 0, 1, extent_op);
2221 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2222 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2223 					  node->num_bytes, parent, ref_root,
2224 					  ref->level, 0, 1, extent_op);
2225 	} else {
2226 		BUG();
2227 	}
2228 	return ret;
2229 }
2230 
2231 /* helper function to actually process a single delayed ref entry */
2232 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2233 			       struct btrfs_root *root,
2234 			       struct btrfs_delayed_ref_node *node,
2235 			       struct btrfs_delayed_extent_op *extent_op,
2236 			       int insert_reserved)
2237 {
2238 	int ret = 0;
2239 
2240 	if (trans->aborted) {
2241 		if (insert_reserved)
2242 			btrfs_pin_extent(root, node->bytenr,
2243 					 node->num_bytes, 1);
2244 		return 0;
2245 	}
2246 
2247 	if (btrfs_delayed_ref_is_head(node)) {
2248 		struct btrfs_delayed_ref_head *head;
2249 		/*
2250 		 * we've hit the end of the chain and we were supposed
2251 		 * to insert this extent into the tree.  But, it got
2252 		 * deleted before we ever needed to insert it, so all
2253 		 * we have to do is clean up the accounting
2254 		 */
2255 		BUG_ON(extent_op);
2256 		head = btrfs_delayed_node_to_head(node);
2257 		trace_run_delayed_ref_head(node, head, node->action);
2258 
2259 		if (insert_reserved) {
2260 			btrfs_pin_extent(root, node->bytenr,
2261 					 node->num_bytes, 1);
2262 			if (head->is_data) {
2263 				ret = btrfs_del_csums(trans, root,
2264 						      node->bytenr,
2265 						      node->num_bytes);
2266 			}
2267 		}
2268 		return ret;
2269 	}
2270 
2271 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2272 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2273 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2274 					   insert_reserved);
2275 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2276 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2277 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2278 					   insert_reserved);
2279 	else
2280 		BUG();
2281 	return ret;
2282 }
2283 
2284 static noinline struct btrfs_delayed_ref_node *
2285 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2286 {
2287 	struct rb_node *node;
2288 	struct btrfs_delayed_ref_node *ref;
2289 	int action = BTRFS_ADD_DELAYED_REF;
2290 again:
2291 	/*
2292 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2293 	 * this prevents ref count from going down to zero when
2294 	 * there still are pending delayed ref.
2295 	 */
2296 	node = rb_prev(&head->node.rb_node);
2297 	while (1) {
2298 		if (!node)
2299 			break;
2300 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2301 				rb_node);
2302 		if (ref->bytenr != head->node.bytenr)
2303 			break;
2304 		if (ref->action == action)
2305 			return ref;
2306 		node = rb_prev(node);
2307 	}
2308 	if (action == BTRFS_ADD_DELAYED_REF) {
2309 		action = BTRFS_DROP_DELAYED_REF;
2310 		goto again;
2311 	}
2312 	return NULL;
2313 }
2314 
2315 /*
2316  * Returns 0 on success or if called with an already aborted transaction.
2317  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2318  */
2319 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2320 				       struct btrfs_root *root,
2321 				       struct list_head *cluster)
2322 {
2323 	struct btrfs_delayed_ref_root *delayed_refs;
2324 	struct btrfs_delayed_ref_node *ref;
2325 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2326 	struct btrfs_delayed_extent_op *extent_op;
2327 	struct btrfs_fs_info *fs_info = root->fs_info;
2328 	int ret;
2329 	int count = 0;
2330 	int must_insert_reserved = 0;
2331 
2332 	delayed_refs = &trans->transaction->delayed_refs;
2333 	while (1) {
2334 		if (!locked_ref) {
2335 			/* pick a new head ref from the cluster list */
2336 			if (list_empty(cluster))
2337 				break;
2338 
2339 			locked_ref = list_entry(cluster->next,
2340 				     struct btrfs_delayed_ref_head, cluster);
2341 
2342 			/* grab the lock that says we are going to process
2343 			 * all the refs for this head */
2344 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2345 
2346 			/*
2347 			 * we may have dropped the spin lock to get the head
2348 			 * mutex lock, and that might have given someone else
2349 			 * time to free the head.  If that's true, it has been
2350 			 * removed from our list and we can move on.
2351 			 */
2352 			if (ret == -EAGAIN) {
2353 				locked_ref = NULL;
2354 				count++;
2355 				continue;
2356 			}
2357 		}
2358 
2359 		/*
2360 		 * We need to try and merge add/drops of the same ref since we
2361 		 * can run into issues with relocate dropping the implicit ref
2362 		 * and then it being added back again before the drop can
2363 		 * finish.  If we merged anything we need to re-loop so we can
2364 		 * get a good ref.
2365 		 */
2366 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2367 					 locked_ref);
2368 
2369 		/*
2370 		 * locked_ref is the head node, so we have to go one
2371 		 * node back for any delayed ref updates
2372 		 */
2373 		ref = select_delayed_ref(locked_ref);
2374 
2375 		if (ref && ref->seq &&
2376 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2377 			/*
2378 			 * there are still refs with lower seq numbers in the
2379 			 * process of being added. Don't run this ref yet.
2380 			 */
2381 			list_del_init(&locked_ref->cluster);
2382 			btrfs_delayed_ref_unlock(locked_ref);
2383 			locked_ref = NULL;
2384 			delayed_refs->num_heads_ready++;
2385 			spin_unlock(&delayed_refs->lock);
2386 			cond_resched();
2387 			spin_lock(&delayed_refs->lock);
2388 			continue;
2389 		}
2390 
2391 		/*
2392 		 * record the must insert reserved flag before we
2393 		 * drop the spin lock.
2394 		 */
2395 		must_insert_reserved = locked_ref->must_insert_reserved;
2396 		locked_ref->must_insert_reserved = 0;
2397 
2398 		extent_op = locked_ref->extent_op;
2399 		locked_ref->extent_op = NULL;
2400 
2401 		if (!ref) {
2402 			/* All delayed refs have been processed, Go ahead
2403 			 * and send the head node to run_one_delayed_ref,
2404 			 * so that any accounting fixes can happen
2405 			 */
2406 			ref = &locked_ref->node;
2407 
2408 			if (extent_op && must_insert_reserved) {
2409 				btrfs_free_delayed_extent_op(extent_op);
2410 				extent_op = NULL;
2411 			}
2412 
2413 			if (extent_op) {
2414 				spin_unlock(&delayed_refs->lock);
2415 
2416 				ret = run_delayed_extent_op(trans, root,
2417 							    ref, extent_op);
2418 				btrfs_free_delayed_extent_op(extent_op);
2419 
2420 				if (ret) {
2421 					/*
2422 					 * Need to reset must_insert_reserved if
2423 					 * there was an error so the abort stuff
2424 					 * can cleanup the reserved space
2425 					 * properly.
2426 					 */
2427 					if (must_insert_reserved)
2428 						locked_ref->must_insert_reserved = 1;
2429 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2430 					spin_lock(&delayed_refs->lock);
2431 					btrfs_delayed_ref_unlock(locked_ref);
2432 					return ret;
2433 				}
2434 
2435 				goto next;
2436 			}
2437 		}
2438 
2439 		ref->in_tree = 0;
2440 		rb_erase(&ref->rb_node, &delayed_refs->root);
2441 		delayed_refs->num_entries--;
2442 		if (!btrfs_delayed_ref_is_head(ref)) {
2443 			/*
2444 			 * when we play the delayed ref, also correct the
2445 			 * ref_mod on head
2446 			 */
2447 			switch (ref->action) {
2448 			case BTRFS_ADD_DELAYED_REF:
2449 			case BTRFS_ADD_DELAYED_EXTENT:
2450 				locked_ref->node.ref_mod -= ref->ref_mod;
2451 				break;
2452 			case BTRFS_DROP_DELAYED_REF:
2453 				locked_ref->node.ref_mod += ref->ref_mod;
2454 				break;
2455 			default:
2456 				WARN_ON(1);
2457 			}
2458 		} else {
2459 			list_del_init(&locked_ref->cluster);
2460 		}
2461 		spin_unlock(&delayed_refs->lock);
2462 
2463 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2464 					  must_insert_reserved);
2465 
2466 		btrfs_free_delayed_extent_op(extent_op);
2467 		if (ret) {
2468 			btrfs_delayed_ref_unlock(locked_ref);
2469 			btrfs_put_delayed_ref(ref);
2470 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2471 			spin_lock(&delayed_refs->lock);
2472 			return ret;
2473 		}
2474 
2475 		/*
2476 		 * If this node is a head, that means all the refs in this head
2477 		 * have been dealt with, and we will pick the next head to deal
2478 		 * with, so we must unlock the head and drop it from the cluster
2479 		 * list before we release it.
2480 		 */
2481 		if (btrfs_delayed_ref_is_head(ref)) {
2482 			btrfs_delayed_ref_unlock(locked_ref);
2483 			locked_ref = NULL;
2484 		}
2485 		btrfs_put_delayed_ref(ref);
2486 		count++;
2487 next:
2488 		cond_resched();
2489 		spin_lock(&delayed_refs->lock);
2490 	}
2491 	return count;
2492 }
2493 
2494 #ifdef SCRAMBLE_DELAYED_REFS
2495 /*
2496  * Normally delayed refs get processed in ascending bytenr order. This
2497  * correlates in most cases to the order added. To expose dependencies on this
2498  * order, we start to process the tree in the middle instead of the beginning
2499  */
2500 static u64 find_middle(struct rb_root *root)
2501 {
2502 	struct rb_node *n = root->rb_node;
2503 	struct btrfs_delayed_ref_node *entry;
2504 	int alt = 1;
2505 	u64 middle;
2506 	u64 first = 0, last = 0;
2507 
2508 	n = rb_first(root);
2509 	if (n) {
2510 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2511 		first = entry->bytenr;
2512 	}
2513 	n = rb_last(root);
2514 	if (n) {
2515 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2516 		last = entry->bytenr;
2517 	}
2518 	n = root->rb_node;
2519 
2520 	while (n) {
2521 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2522 		WARN_ON(!entry->in_tree);
2523 
2524 		middle = entry->bytenr;
2525 
2526 		if (alt)
2527 			n = n->rb_left;
2528 		else
2529 			n = n->rb_right;
2530 
2531 		alt = 1 - alt;
2532 	}
2533 	return middle;
2534 }
2535 #endif
2536 
2537 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2538 					 struct btrfs_fs_info *fs_info)
2539 {
2540 	struct qgroup_update *qgroup_update;
2541 	int ret = 0;
2542 
2543 	if (list_empty(&trans->qgroup_ref_list) !=
2544 	    !trans->delayed_ref_elem.seq) {
2545 		/* list without seq or seq without list */
2546 		btrfs_err(fs_info,
2547 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2548 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2549 			(u32)(trans->delayed_ref_elem.seq >> 32),
2550 			(u32)trans->delayed_ref_elem.seq);
2551 		BUG();
2552 	}
2553 
2554 	if (!trans->delayed_ref_elem.seq)
2555 		return 0;
2556 
2557 	while (!list_empty(&trans->qgroup_ref_list)) {
2558 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2559 						 struct qgroup_update, list);
2560 		list_del(&qgroup_update->list);
2561 		if (!ret)
2562 			ret = btrfs_qgroup_account_ref(
2563 					trans, fs_info, qgroup_update->node,
2564 					qgroup_update->extent_op);
2565 		kfree(qgroup_update);
2566 	}
2567 
2568 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2569 
2570 	return ret;
2571 }
2572 
2573 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2574 		      int count)
2575 {
2576 	int val = atomic_read(&delayed_refs->ref_seq);
2577 
2578 	if (val < seq || val >= seq + count)
2579 		return 1;
2580 	return 0;
2581 }
2582 
2583 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2584 {
2585 	u64 num_bytes;
2586 
2587 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2588 			     sizeof(struct btrfs_extent_inline_ref));
2589 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2590 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2591 
2592 	/*
2593 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2594 	 * closer to what we're really going to want to ouse.
2595 	 */
2596 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2597 }
2598 
2599 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2600 				       struct btrfs_root *root)
2601 {
2602 	struct btrfs_block_rsv *global_rsv;
2603 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2604 	u64 num_bytes;
2605 	int ret = 0;
2606 
2607 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2608 	num_heads = heads_to_leaves(root, num_heads);
2609 	if (num_heads > 1)
2610 		num_bytes += (num_heads - 1) * root->leafsize;
2611 	num_bytes <<= 1;
2612 	global_rsv = &root->fs_info->global_block_rsv;
2613 
2614 	/*
2615 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2616 	 * wiggle room since running delayed refs can create more delayed refs.
2617 	 */
2618 	if (global_rsv->space_info->full)
2619 		num_bytes <<= 1;
2620 
2621 	spin_lock(&global_rsv->lock);
2622 	if (global_rsv->reserved <= num_bytes)
2623 		ret = 1;
2624 	spin_unlock(&global_rsv->lock);
2625 	return ret;
2626 }
2627 
2628 /*
2629  * this starts processing the delayed reference count updates and
2630  * extent insertions we have queued up so far.  count can be
2631  * 0, which means to process everything in the tree at the start
2632  * of the run (but not newly added entries), or it can be some target
2633  * number you'd like to process.
2634  *
2635  * Returns 0 on success or if called with an aborted transaction
2636  * Returns <0 on error and aborts the transaction
2637  */
2638 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2639 			   struct btrfs_root *root, unsigned long count)
2640 {
2641 	struct rb_node *node;
2642 	struct btrfs_delayed_ref_root *delayed_refs;
2643 	struct btrfs_delayed_ref_node *ref;
2644 	struct list_head cluster;
2645 	int ret;
2646 	u64 delayed_start;
2647 	int run_all = count == (unsigned long)-1;
2648 	int run_most = 0;
2649 	int loops;
2650 
2651 	/* We'll clean this up in btrfs_cleanup_transaction */
2652 	if (trans->aborted)
2653 		return 0;
2654 
2655 	if (root == root->fs_info->extent_root)
2656 		root = root->fs_info->tree_root;
2657 
2658 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2659 
2660 	delayed_refs = &trans->transaction->delayed_refs;
2661 	INIT_LIST_HEAD(&cluster);
2662 	if (count == 0) {
2663 		count = delayed_refs->num_entries * 2;
2664 		run_most = 1;
2665 	}
2666 
2667 	if (!run_all && !run_most) {
2668 		int old;
2669 		int seq = atomic_read(&delayed_refs->ref_seq);
2670 
2671 progress:
2672 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2673 		if (old) {
2674 			DEFINE_WAIT(__wait);
2675 			if (delayed_refs->flushing ||
2676 			    !btrfs_should_throttle_delayed_refs(trans, root))
2677 				return 0;
2678 
2679 			prepare_to_wait(&delayed_refs->wait, &__wait,
2680 					TASK_UNINTERRUPTIBLE);
2681 
2682 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2683 			if (old) {
2684 				schedule();
2685 				finish_wait(&delayed_refs->wait, &__wait);
2686 
2687 				if (!refs_newer(delayed_refs, seq, 256))
2688 					goto progress;
2689 				else
2690 					return 0;
2691 			} else {
2692 				finish_wait(&delayed_refs->wait, &__wait);
2693 				goto again;
2694 			}
2695 		}
2696 
2697 	} else {
2698 		atomic_inc(&delayed_refs->procs_running_refs);
2699 	}
2700 
2701 again:
2702 	loops = 0;
2703 	spin_lock(&delayed_refs->lock);
2704 
2705 #ifdef SCRAMBLE_DELAYED_REFS
2706 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2707 #endif
2708 
2709 	while (1) {
2710 		if (!(run_all || run_most) &&
2711 		    !btrfs_should_throttle_delayed_refs(trans, root))
2712 			break;
2713 
2714 		/*
2715 		 * go find something we can process in the rbtree.  We start at
2716 		 * the beginning of the tree, and then build a cluster
2717 		 * of refs to process starting at the first one we are able to
2718 		 * lock
2719 		 */
2720 		delayed_start = delayed_refs->run_delayed_start;
2721 		ret = btrfs_find_ref_cluster(trans, &cluster,
2722 					     delayed_refs->run_delayed_start);
2723 		if (ret)
2724 			break;
2725 
2726 		ret = run_clustered_refs(trans, root, &cluster);
2727 		if (ret < 0) {
2728 			btrfs_release_ref_cluster(&cluster);
2729 			spin_unlock(&delayed_refs->lock);
2730 			btrfs_abort_transaction(trans, root, ret);
2731 			atomic_dec(&delayed_refs->procs_running_refs);
2732 			wake_up(&delayed_refs->wait);
2733 			return ret;
2734 		}
2735 
2736 		atomic_add(ret, &delayed_refs->ref_seq);
2737 
2738 		count -= min_t(unsigned long, ret, count);
2739 
2740 		if (count == 0)
2741 			break;
2742 
2743 		if (delayed_start >= delayed_refs->run_delayed_start) {
2744 			if (loops == 0) {
2745 				/*
2746 				 * btrfs_find_ref_cluster looped. let's do one
2747 				 * more cycle. if we don't run any delayed ref
2748 				 * during that cycle (because we can't because
2749 				 * all of them are blocked), bail out.
2750 				 */
2751 				loops = 1;
2752 			} else {
2753 				/*
2754 				 * no runnable refs left, stop trying
2755 				 */
2756 				BUG_ON(run_all);
2757 				break;
2758 			}
2759 		}
2760 		if (ret) {
2761 			/* refs were run, let's reset staleness detection */
2762 			loops = 0;
2763 		}
2764 	}
2765 
2766 	if (run_all) {
2767 		if (!list_empty(&trans->new_bgs)) {
2768 			spin_unlock(&delayed_refs->lock);
2769 			btrfs_create_pending_block_groups(trans, root);
2770 			spin_lock(&delayed_refs->lock);
2771 		}
2772 
2773 		node = rb_first(&delayed_refs->root);
2774 		if (!node)
2775 			goto out;
2776 		count = (unsigned long)-1;
2777 
2778 		while (node) {
2779 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2780 				       rb_node);
2781 			if (btrfs_delayed_ref_is_head(ref)) {
2782 				struct btrfs_delayed_ref_head *head;
2783 
2784 				head = btrfs_delayed_node_to_head(ref);
2785 				atomic_inc(&ref->refs);
2786 
2787 				spin_unlock(&delayed_refs->lock);
2788 				/*
2789 				 * Mutex was contended, block until it's
2790 				 * released and try again
2791 				 */
2792 				mutex_lock(&head->mutex);
2793 				mutex_unlock(&head->mutex);
2794 
2795 				btrfs_put_delayed_ref(ref);
2796 				cond_resched();
2797 				goto again;
2798 			}
2799 			node = rb_next(node);
2800 		}
2801 		spin_unlock(&delayed_refs->lock);
2802 		schedule_timeout(1);
2803 		goto again;
2804 	}
2805 out:
2806 	atomic_dec(&delayed_refs->procs_running_refs);
2807 	smp_mb();
2808 	if (waitqueue_active(&delayed_refs->wait))
2809 		wake_up(&delayed_refs->wait);
2810 
2811 	spin_unlock(&delayed_refs->lock);
2812 	assert_qgroups_uptodate(trans);
2813 	return 0;
2814 }
2815 
2816 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2817 				struct btrfs_root *root,
2818 				u64 bytenr, u64 num_bytes, u64 flags,
2819 				int level, int is_data)
2820 {
2821 	struct btrfs_delayed_extent_op *extent_op;
2822 	int ret;
2823 
2824 	extent_op = btrfs_alloc_delayed_extent_op();
2825 	if (!extent_op)
2826 		return -ENOMEM;
2827 
2828 	extent_op->flags_to_set = flags;
2829 	extent_op->update_flags = 1;
2830 	extent_op->update_key = 0;
2831 	extent_op->is_data = is_data ? 1 : 0;
2832 	extent_op->level = level;
2833 
2834 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2835 					  num_bytes, extent_op);
2836 	if (ret)
2837 		btrfs_free_delayed_extent_op(extent_op);
2838 	return ret;
2839 }
2840 
2841 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2842 				      struct btrfs_root *root,
2843 				      struct btrfs_path *path,
2844 				      u64 objectid, u64 offset, u64 bytenr)
2845 {
2846 	struct btrfs_delayed_ref_head *head;
2847 	struct btrfs_delayed_ref_node *ref;
2848 	struct btrfs_delayed_data_ref *data_ref;
2849 	struct btrfs_delayed_ref_root *delayed_refs;
2850 	struct rb_node *node;
2851 	int ret = 0;
2852 
2853 	ret = -ENOENT;
2854 	delayed_refs = &trans->transaction->delayed_refs;
2855 	spin_lock(&delayed_refs->lock);
2856 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2857 	if (!head)
2858 		goto out;
2859 
2860 	if (!mutex_trylock(&head->mutex)) {
2861 		atomic_inc(&head->node.refs);
2862 		spin_unlock(&delayed_refs->lock);
2863 
2864 		btrfs_release_path(path);
2865 
2866 		/*
2867 		 * Mutex was contended, block until it's released and let
2868 		 * caller try again
2869 		 */
2870 		mutex_lock(&head->mutex);
2871 		mutex_unlock(&head->mutex);
2872 		btrfs_put_delayed_ref(&head->node);
2873 		return -EAGAIN;
2874 	}
2875 
2876 	node = rb_prev(&head->node.rb_node);
2877 	if (!node)
2878 		goto out_unlock;
2879 
2880 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881 
2882 	if (ref->bytenr != bytenr)
2883 		goto out_unlock;
2884 
2885 	ret = 1;
2886 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2887 		goto out_unlock;
2888 
2889 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2890 
2891 	node = rb_prev(node);
2892 	if (node) {
2893 		int seq = ref->seq;
2894 
2895 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2896 		if (ref->bytenr == bytenr && ref->seq == seq)
2897 			goto out_unlock;
2898 	}
2899 
2900 	if (data_ref->root != root->root_key.objectid ||
2901 	    data_ref->objectid != objectid || data_ref->offset != offset)
2902 		goto out_unlock;
2903 
2904 	ret = 0;
2905 out_unlock:
2906 	mutex_unlock(&head->mutex);
2907 out:
2908 	spin_unlock(&delayed_refs->lock);
2909 	return ret;
2910 }
2911 
2912 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2913 					struct btrfs_root *root,
2914 					struct btrfs_path *path,
2915 					u64 objectid, u64 offset, u64 bytenr)
2916 {
2917 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2918 	struct extent_buffer *leaf;
2919 	struct btrfs_extent_data_ref *ref;
2920 	struct btrfs_extent_inline_ref *iref;
2921 	struct btrfs_extent_item *ei;
2922 	struct btrfs_key key;
2923 	u32 item_size;
2924 	int ret;
2925 
2926 	key.objectid = bytenr;
2927 	key.offset = (u64)-1;
2928 	key.type = BTRFS_EXTENT_ITEM_KEY;
2929 
2930 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2931 	if (ret < 0)
2932 		goto out;
2933 	BUG_ON(ret == 0); /* Corruption */
2934 
2935 	ret = -ENOENT;
2936 	if (path->slots[0] == 0)
2937 		goto out;
2938 
2939 	path->slots[0]--;
2940 	leaf = path->nodes[0];
2941 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2942 
2943 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2944 		goto out;
2945 
2946 	ret = 1;
2947 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2948 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2949 	if (item_size < sizeof(*ei)) {
2950 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2951 		goto out;
2952 	}
2953 #endif
2954 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2955 
2956 	if (item_size != sizeof(*ei) +
2957 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2958 		goto out;
2959 
2960 	if (btrfs_extent_generation(leaf, ei) <=
2961 	    btrfs_root_last_snapshot(&root->root_item))
2962 		goto out;
2963 
2964 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2965 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2966 	    BTRFS_EXTENT_DATA_REF_KEY)
2967 		goto out;
2968 
2969 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2970 	if (btrfs_extent_refs(leaf, ei) !=
2971 	    btrfs_extent_data_ref_count(leaf, ref) ||
2972 	    btrfs_extent_data_ref_root(leaf, ref) !=
2973 	    root->root_key.objectid ||
2974 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2975 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2976 		goto out;
2977 
2978 	ret = 0;
2979 out:
2980 	return ret;
2981 }
2982 
2983 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2984 			  struct btrfs_root *root,
2985 			  u64 objectid, u64 offset, u64 bytenr)
2986 {
2987 	struct btrfs_path *path;
2988 	int ret;
2989 	int ret2;
2990 
2991 	path = btrfs_alloc_path();
2992 	if (!path)
2993 		return -ENOENT;
2994 
2995 	do {
2996 		ret = check_committed_ref(trans, root, path, objectid,
2997 					  offset, bytenr);
2998 		if (ret && ret != -ENOENT)
2999 			goto out;
3000 
3001 		ret2 = check_delayed_ref(trans, root, path, objectid,
3002 					 offset, bytenr);
3003 	} while (ret2 == -EAGAIN);
3004 
3005 	if (ret2 && ret2 != -ENOENT) {
3006 		ret = ret2;
3007 		goto out;
3008 	}
3009 
3010 	if (ret != -ENOENT || ret2 != -ENOENT)
3011 		ret = 0;
3012 out:
3013 	btrfs_free_path(path);
3014 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3015 		WARN_ON(ret > 0);
3016 	return ret;
3017 }
3018 
3019 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3020 			   struct btrfs_root *root,
3021 			   struct extent_buffer *buf,
3022 			   int full_backref, int inc, int for_cow)
3023 {
3024 	u64 bytenr;
3025 	u64 num_bytes;
3026 	u64 parent;
3027 	u64 ref_root;
3028 	u32 nritems;
3029 	struct btrfs_key key;
3030 	struct btrfs_file_extent_item *fi;
3031 	int i;
3032 	int level;
3033 	int ret = 0;
3034 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3035 			    u64, u64, u64, u64, u64, u64, int);
3036 
3037 	ref_root = btrfs_header_owner(buf);
3038 	nritems = btrfs_header_nritems(buf);
3039 	level = btrfs_header_level(buf);
3040 
3041 	if (!root->ref_cows && level == 0)
3042 		return 0;
3043 
3044 	if (inc)
3045 		process_func = btrfs_inc_extent_ref;
3046 	else
3047 		process_func = btrfs_free_extent;
3048 
3049 	if (full_backref)
3050 		parent = buf->start;
3051 	else
3052 		parent = 0;
3053 
3054 	for (i = 0; i < nritems; i++) {
3055 		if (level == 0) {
3056 			btrfs_item_key_to_cpu(buf, &key, i);
3057 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3058 				continue;
3059 			fi = btrfs_item_ptr(buf, i,
3060 					    struct btrfs_file_extent_item);
3061 			if (btrfs_file_extent_type(buf, fi) ==
3062 			    BTRFS_FILE_EXTENT_INLINE)
3063 				continue;
3064 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3065 			if (bytenr == 0)
3066 				continue;
3067 
3068 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3069 			key.offset -= btrfs_file_extent_offset(buf, fi);
3070 			ret = process_func(trans, root, bytenr, num_bytes,
3071 					   parent, ref_root, key.objectid,
3072 					   key.offset, for_cow);
3073 			if (ret)
3074 				goto fail;
3075 		} else {
3076 			bytenr = btrfs_node_blockptr(buf, i);
3077 			num_bytes = btrfs_level_size(root, level - 1);
3078 			ret = process_func(trans, root, bytenr, num_bytes,
3079 					   parent, ref_root, level - 1, 0,
3080 					   for_cow);
3081 			if (ret)
3082 				goto fail;
3083 		}
3084 	}
3085 	return 0;
3086 fail:
3087 	return ret;
3088 }
3089 
3090 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3091 		  struct extent_buffer *buf, int full_backref, int for_cow)
3092 {
3093 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3094 }
3095 
3096 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3097 		  struct extent_buffer *buf, int full_backref, int for_cow)
3098 {
3099 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3100 }
3101 
3102 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3103 				 struct btrfs_root *root,
3104 				 struct btrfs_path *path,
3105 				 struct btrfs_block_group_cache *cache)
3106 {
3107 	int ret;
3108 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3109 	unsigned long bi;
3110 	struct extent_buffer *leaf;
3111 
3112 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3113 	if (ret < 0)
3114 		goto fail;
3115 	BUG_ON(ret); /* Corruption */
3116 
3117 	leaf = path->nodes[0];
3118 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3119 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3120 	btrfs_mark_buffer_dirty(leaf);
3121 	btrfs_release_path(path);
3122 fail:
3123 	if (ret) {
3124 		btrfs_abort_transaction(trans, root, ret);
3125 		return ret;
3126 	}
3127 	return 0;
3128 
3129 }
3130 
3131 static struct btrfs_block_group_cache *
3132 next_block_group(struct btrfs_root *root,
3133 		 struct btrfs_block_group_cache *cache)
3134 {
3135 	struct rb_node *node;
3136 	spin_lock(&root->fs_info->block_group_cache_lock);
3137 	node = rb_next(&cache->cache_node);
3138 	btrfs_put_block_group(cache);
3139 	if (node) {
3140 		cache = rb_entry(node, struct btrfs_block_group_cache,
3141 				 cache_node);
3142 		btrfs_get_block_group(cache);
3143 	} else
3144 		cache = NULL;
3145 	spin_unlock(&root->fs_info->block_group_cache_lock);
3146 	return cache;
3147 }
3148 
3149 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3150 			    struct btrfs_trans_handle *trans,
3151 			    struct btrfs_path *path)
3152 {
3153 	struct btrfs_root *root = block_group->fs_info->tree_root;
3154 	struct inode *inode = NULL;
3155 	u64 alloc_hint = 0;
3156 	int dcs = BTRFS_DC_ERROR;
3157 	int num_pages = 0;
3158 	int retries = 0;
3159 	int ret = 0;
3160 
3161 	/*
3162 	 * If this block group is smaller than 100 megs don't bother caching the
3163 	 * block group.
3164 	 */
3165 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3166 		spin_lock(&block_group->lock);
3167 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3168 		spin_unlock(&block_group->lock);
3169 		return 0;
3170 	}
3171 
3172 again:
3173 	inode = lookup_free_space_inode(root, block_group, path);
3174 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3175 		ret = PTR_ERR(inode);
3176 		btrfs_release_path(path);
3177 		goto out;
3178 	}
3179 
3180 	if (IS_ERR(inode)) {
3181 		BUG_ON(retries);
3182 		retries++;
3183 
3184 		if (block_group->ro)
3185 			goto out_free;
3186 
3187 		ret = create_free_space_inode(root, trans, block_group, path);
3188 		if (ret)
3189 			goto out_free;
3190 		goto again;
3191 	}
3192 
3193 	/* We've already setup this transaction, go ahead and exit */
3194 	if (block_group->cache_generation == trans->transid &&
3195 	    i_size_read(inode)) {
3196 		dcs = BTRFS_DC_SETUP;
3197 		goto out_put;
3198 	}
3199 
3200 	/*
3201 	 * We want to set the generation to 0, that way if anything goes wrong
3202 	 * from here on out we know not to trust this cache when we load up next
3203 	 * time.
3204 	 */
3205 	BTRFS_I(inode)->generation = 0;
3206 	ret = btrfs_update_inode(trans, root, inode);
3207 	WARN_ON(ret);
3208 
3209 	if (i_size_read(inode) > 0) {
3210 		ret = btrfs_check_trunc_cache_free_space(root,
3211 					&root->fs_info->global_block_rsv);
3212 		if (ret)
3213 			goto out_put;
3214 
3215 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3216 		if (ret)
3217 			goto out_put;
3218 	}
3219 
3220 	spin_lock(&block_group->lock);
3221 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3222 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3223 		/*
3224 		 * don't bother trying to write stuff out _if_
3225 		 * a) we're not cached,
3226 		 * b) we're with nospace_cache mount option.
3227 		 */
3228 		dcs = BTRFS_DC_WRITTEN;
3229 		spin_unlock(&block_group->lock);
3230 		goto out_put;
3231 	}
3232 	spin_unlock(&block_group->lock);
3233 
3234 	/*
3235 	 * Try to preallocate enough space based on how big the block group is.
3236 	 * Keep in mind this has to include any pinned space which could end up
3237 	 * taking up quite a bit since it's not folded into the other space
3238 	 * cache.
3239 	 */
3240 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3241 	if (!num_pages)
3242 		num_pages = 1;
3243 
3244 	num_pages *= 16;
3245 	num_pages *= PAGE_CACHE_SIZE;
3246 
3247 	ret = btrfs_check_data_free_space(inode, num_pages);
3248 	if (ret)
3249 		goto out_put;
3250 
3251 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3252 					      num_pages, num_pages,
3253 					      &alloc_hint);
3254 	if (!ret)
3255 		dcs = BTRFS_DC_SETUP;
3256 	btrfs_free_reserved_data_space(inode, num_pages);
3257 
3258 out_put:
3259 	iput(inode);
3260 out_free:
3261 	btrfs_release_path(path);
3262 out:
3263 	spin_lock(&block_group->lock);
3264 	if (!ret && dcs == BTRFS_DC_SETUP)
3265 		block_group->cache_generation = trans->transid;
3266 	block_group->disk_cache_state = dcs;
3267 	spin_unlock(&block_group->lock);
3268 
3269 	return ret;
3270 }
3271 
3272 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3273 				   struct btrfs_root *root)
3274 {
3275 	struct btrfs_block_group_cache *cache;
3276 	int err = 0;
3277 	struct btrfs_path *path;
3278 	u64 last = 0;
3279 
3280 	path = btrfs_alloc_path();
3281 	if (!path)
3282 		return -ENOMEM;
3283 
3284 again:
3285 	while (1) {
3286 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3287 		while (cache) {
3288 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3289 				break;
3290 			cache = next_block_group(root, cache);
3291 		}
3292 		if (!cache) {
3293 			if (last == 0)
3294 				break;
3295 			last = 0;
3296 			continue;
3297 		}
3298 		err = cache_save_setup(cache, trans, path);
3299 		last = cache->key.objectid + cache->key.offset;
3300 		btrfs_put_block_group(cache);
3301 	}
3302 
3303 	while (1) {
3304 		if (last == 0) {
3305 			err = btrfs_run_delayed_refs(trans, root,
3306 						     (unsigned long)-1);
3307 			if (err) /* File system offline */
3308 				goto out;
3309 		}
3310 
3311 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3312 		while (cache) {
3313 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3314 				btrfs_put_block_group(cache);
3315 				goto again;
3316 			}
3317 
3318 			if (cache->dirty)
3319 				break;
3320 			cache = next_block_group(root, cache);
3321 		}
3322 		if (!cache) {
3323 			if (last == 0)
3324 				break;
3325 			last = 0;
3326 			continue;
3327 		}
3328 
3329 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3330 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3331 		cache->dirty = 0;
3332 		last = cache->key.objectid + cache->key.offset;
3333 
3334 		err = write_one_cache_group(trans, root, path, cache);
3335 		btrfs_put_block_group(cache);
3336 		if (err) /* File system offline */
3337 			goto out;
3338 	}
3339 
3340 	while (1) {
3341 		/*
3342 		 * I don't think this is needed since we're just marking our
3343 		 * preallocated extent as written, but just in case it can't
3344 		 * hurt.
3345 		 */
3346 		if (last == 0) {
3347 			err = btrfs_run_delayed_refs(trans, root,
3348 						     (unsigned long)-1);
3349 			if (err) /* File system offline */
3350 				goto out;
3351 		}
3352 
3353 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3354 		while (cache) {
3355 			/*
3356 			 * Really this shouldn't happen, but it could if we
3357 			 * couldn't write the entire preallocated extent and
3358 			 * splitting the extent resulted in a new block.
3359 			 */
3360 			if (cache->dirty) {
3361 				btrfs_put_block_group(cache);
3362 				goto again;
3363 			}
3364 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3365 				break;
3366 			cache = next_block_group(root, cache);
3367 		}
3368 		if (!cache) {
3369 			if (last == 0)
3370 				break;
3371 			last = 0;
3372 			continue;
3373 		}
3374 
3375 		err = btrfs_write_out_cache(root, trans, cache, path);
3376 
3377 		/*
3378 		 * If we didn't have an error then the cache state is still
3379 		 * NEED_WRITE, so we can set it to WRITTEN.
3380 		 */
3381 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3382 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3383 		last = cache->key.objectid + cache->key.offset;
3384 		btrfs_put_block_group(cache);
3385 	}
3386 out:
3387 
3388 	btrfs_free_path(path);
3389 	return err;
3390 }
3391 
3392 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3393 {
3394 	struct btrfs_block_group_cache *block_group;
3395 	int readonly = 0;
3396 
3397 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3398 	if (!block_group || block_group->ro)
3399 		readonly = 1;
3400 	if (block_group)
3401 		btrfs_put_block_group(block_group);
3402 	return readonly;
3403 }
3404 
3405 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3406 			     u64 total_bytes, u64 bytes_used,
3407 			     struct btrfs_space_info **space_info)
3408 {
3409 	struct btrfs_space_info *found;
3410 	int i;
3411 	int factor;
3412 	int ret;
3413 
3414 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3415 		     BTRFS_BLOCK_GROUP_RAID10))
3416 		factor = 2;
3417 	else
3418 		factor = 1;
3419 
3420 	found = __find_space_info(info, flags);
3421 	if (found) {
3422 		spin_lock(&found->lock);
3423 		found->total_bytes += total_bytes;
3424 		found->disk_total += total_bytes * factor;
3425 		found->bytes_used += bytes_used;
3426 		found->disk_used += bytes_used * factor;
3427 		found->full = 0;
3428 		spin_unlock(&found->lock);
3429 		*space_info = found;
3430 		return 0;
3431 	}
3432 	found = kzalloc(sizeof(*found), GFP_NOFS);
3433 	if (!found)
3434 		return -ENOMEM;
3435 
3436 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3437 	if (ret) {
3438 		kfree(found);
3439 		return ret;
3440 	}
3441 
3442 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3443 		INIT_LIST_HEAD(&found->block_groups[i]);
3444 	init_rwsem(&found->groups_sem);
3445 	spin_lock_init(&found->lock);
3446 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3447 	found->total_bytes = total_bytes;
3448 	found->disk_total = total_bytes * factor;
3449 	found->bytes_used = bytes_used;
3450 	found->disk_used = bytes_used * factor;
3451 	found->bytes_pinned = 0;
3452 	found->bytes_reserved = 0;
3453 	found->bytes_readonly = 0;
3454 	found->bytes_may_use = 0;
3455 	found->full = 0;
3456 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3457 	found->chunk_alloc = 0;
3458 	found->flush = 0;
3459 	init_waitqueue_head(&found->wait);
3460 	*space_info = found;
3461 	list_add_rcu(&found->list, &info->space_info);
3462 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3463 		info->data_sinfo = found;
3464 	return 0;
3465 }
3466 
3467 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3468 {
3469 	u64 extra_flags = chunk_to_extended(flags) &
3470 				BTRFS_EXTENDED_PROFILE_MASK;
3471 
3472 	write_seqlock(&fs_info->profiles_lock);
3473 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3474 		fs_info->avail_data_alloc_bits |= extra_flags;
3475 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3476 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3477 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3478 		fs_info->avail_system_alloc_bits |= extra_flags;
3479 	write_sequnlock(&fs_info->profiles_lock);
3480 }
3481 
3482 /*
3483  * returns target flags in extended format or 0 if restripe for this
3484  * chunk_type is not in progress
3485  *
3486  * should be called with either volume_mutex or balance_lock held
3487  */
3488 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3489 {
3490 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3491 	u64 target = 0;
3492 
3493 	if (!bctl)
3494 		return 0;
3495 
3496 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3497 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3498 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3499 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3500 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3501 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3502 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3503 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3504 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3505 	}
3506 
3507 	return target;
3508 }
3509 
3510 /*
3511  * @flags: available profiles in extended format (see ctree.h)
3512  *
3513  * Returns reduced profile in chunk format.  If profile changing is in
3514  * progress (either running or paused) picks the target profile (if it's
3515  * already available), otherwise falls back to plain reducing.
3516  */
3517 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3518 {
3519 	/*
3520 	 * we add in the count of missing devices because we want
3521 	 * to make sure that any RAID levels on a degraded FS
3522 	 * continue to be honored.
3523 	 */
3524 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3525 		root->fs_info->fs_devices->missing_devices;
3526 	u64 target;
3527 	u64 tmp;
3528 
3529 	/*
3530 	 * see if restripe for this chunk_type is in progress, if so
3531 	 * try to reduce to the target profile
3532 	 */
3533 	spin_lock(&root->fs_info->balance_lock);
3534 	target = get_restripe_target(root->fs_info, flags);
3535 	if (target) {
3536 		/* pick target profile only if it's already available */
3537 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3538 			spin_unlock(&root->fs_info->balance_lock);
3539 			return extended_to_chunk(target);
3540 		}
3541 	}
3542 	spin_unlock(&root->fs_info->balance_lock);
3543 
3544 	/* First, mask out the RAID levels which aren't possible */
3545 	if (num_devices == 1)
3546 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3547 			   BTRFS_BLOCK_GROUP_RAID5);
3548 	if (num_devices < 3)
3549 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3550 	if (num_devices < 4)
3551 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3552 
3553 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3554 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3555 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3556 	flags &= ~tmp;
3557 
3558 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3559 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3560 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3561 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3562 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3563 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3564 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3565 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3566 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3567 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3568 
3569 	return extended_to_chunk(flags | tmp);
3570 }
3571 
3572 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3573 {
3574 	unsigned seq;
3575 
3576 	do {
3577 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3578 
3579 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3580 			flags |= root->fs_info->avail_data_alloc_bits;
3581 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3582 			flags |= root->fs_info->avail_system_alloc_bits;
3583 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3584 			flags |= root->fs_info->avail_metadata_alloc_bits;
3585 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3586 
3587 	return btrfs_reduce_alloc_profile(root, flags);
3588 }
3589 
3590 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3591 {
3592 	u64 flags;
3593 	u64 ret;
3594 
3595 	if (data)
3596 		flags = BTRFS_BLOCK_GROUP_DATA;
3597 	else if (root == root->fs_info->chunk_root)
3598 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3599 	else
3600 		flags = BTRFS_BLOCK_GROUP_METADATA;
3601 
3602 	ret = get_alloc_profile(root, flags);
3603 	return ret;
3604 }
3605 
3606 /*
3607  * This will check the space that the inode allocates from to make sure we have
3608  * enough space for bytes.
3609  */
3610 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3611 {
3612 	struct btrfs_space_info *data_sinfo;
3613 	struct btrfs_root *root = BTRFS_I(inode)->root;
3614 	struct btrfs_fs_info *fs_info = root->fs_info;
3615 	u64 used;
3616 	int ret = 0, committed = 0, alloc_chunk = 1;
3617 
3618 	/* make sure bytes are sectorsize aligned */
3619 	bytes = ALIGN(bytes, root->sectorsize);
3620 
3621 	if (btrfs_is_free_space_inode(inode)) {
3622 		committed = 1;
3623 		ASSERT(current->journal_info);
3624 	}
3625 
3626 	data_sinfo = fs_info->data_sinfo;
3627 	if (!data_sinfo)
3628 		goto alloc;
3629 
3630 again:
3631 	/* make sure we have enough space to handle the data first */
3632 	spin_lock(&data_sinfo->lock);
3633 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3634 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3635 		data_sinfo->bytes_may_use;
3636 
3637 	if (used + bytes > data_sinfo->total_bytes) {
3638 		struct btrfs_trans_handle *trans;
3639 
3640 		/*
3641 		 * if we don't have enough free bytes in this space then we need
3642 		 * to alloc a new chunk.
3643 		 */
3644 		if (!data_sinfo->full && alloc_chunk) {
3645 			u64 alloc_target;
3646 
3647 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3648 			spin_unlock(&data_sinfo->lock);
3649 alloc:
3650 			alloc_target = btrfs_get_alloc_profile(root, 1);
3651 			/*
3652 			 * It is ugly that we don't call nolock join
3653 			 * transaction for the free space inode case here.
3654 			 * But it is safe because we only do the data space
3655 			 * reservation for the free space cache in the
3656 			 * transaction context, the common join transaction
3657 			 * just increase the counter of the current transaction
3658 			 * handler, doesn't try to acquire the trans_lock of
3659 			 * the fs.
3660 			 */
3661 			trans = btrfs_join_transaction(root);
3662 			if (IS_ERR(trans))
3663 				return PTR_ERR(trans);
3664 
3665 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3666 					     alloc_target,
3667 					     CHUNK_ALLOC_NO_FORCE);
3668 			btrfs_end_transaction(trans, root);
3669 			if (ret < 0) {
3670 				if (ret != -ENOSPC)
3671 					return ret;
3672 				else
3673 					goto commit_trans;
3674 			}
3675 
3676 			if (!data_sinfo)
3677 				data_sinfo = fs_info->data_sinfo;
3678 
3679 			goto again;
3680 		}
3681 
3682 		/*
3683 		 * If we don't have enough pinned space to deal with this
3684 		 * allocation don't bother committing the transaction.
3685 		 */
3686 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3687 					   bytes) < 0)
3688 			committed = 1;
3689 		spin_unlock(&data_sinfo->lock);
3690 
3691 		/* commit the current transaction and try again */
3692 commit_trans:
3693 		if (!committed &&
3694 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3695 			committed = 1;
3696 
3697 			trans = btrfs_join_transaction(root);
3698 			if (IS_ERR(trans))
3699 				return PTR_ERR(trans);
3700 			ret = btrfs_commit_transaction(trans, root);
3701 			if (ret)
3702 				return ret;
3703 			goto again;
3704 		}
3705 
3706 		trace_btrfs_space_reservation(root->fs_info,
3707 					      "space_info:enospc",
3708 					      data_sinfo->flags, bytes, 1);
3709 		return -ENOSPC;
3710 	}
3711 	data_sinfo->bytes_may_use += bytes;
3712 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3713 				      data_sinfo->flags, bytes, 1);
3714 	spin_unlock(&data_sinfo->lock);
3715 
3716 	return 0;
3717 }
3718 
3719 /*
3720  * Called if we need to clear a data reservation for this inode.
3721  */
3722 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3723 {
3724 	struct btrfs_root *root = BTRFS_I(inode)->root;
3725 	struct btrfs_space_info *data_sinfo;
3726 
3727 	/* make sure bytes are sectorsize aligned */
3728 	bytes = ALIGN(bytes, root->sectorsize);
3729 
3730 	data_sinfo = root->fs_info->data_sinfo;
3731 	spin_lock(&data_sinfo->lock);
3732 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3733 	data_sinfo->bytes_may_use -= bytes;
3734 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3735 				      data_sinfo->flags, bytes, 0);
3736 	spin_unlock(&data_sinfo->lock);
3737 }
3738 
3739 static void force_metadata_allocation(struct btrfs_fs_info *info)
3740 {
3741 	struct list_head *head = &info->space_info;
3742 	struct btrfs_space_info *found;
3743 
3744 	rcu_read_lock();
3745 	list_for_each_entry_rcu(found, head, list) {
3746 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3747 			found->force_alloc = CHUNK_ALLOC_FORCE;
3748 	}
3749 	rcu_read_unlock();
3750 }
3751 
3752 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3753 {
3754 	return (global->size << 1);
3755 }
3756 
3757 static int should_alloc_chunk(struct btrfs_root *root,
3758 			      struct btrfs_space_info *sinfo, int force)
3759 {
3760 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3761 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3762 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3763 	u64 thresh;
3764 
3765 	if (force == CHUNK_ALLOC_FORCE)
3766 		return 1;
3767 
3768 	/*
3769 	 * We need to take into account the global rsv because for all intents
3770 	 * and purposes it's used space.  Don't worry about locking the
3771 	 * global_rsv, it doesn't change except when the transaction commits.
3772 	 */
3773 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3774 		num_allocated += calc_global_rsv_need_space(global_rsv);
3775 
3776 	/*
3777 	 * in limited mode, we want to have some free space up to
3778 	 * about 1% of the FS size.
3779 	 */
3780 	if (force == CHUNK_ALLOC_LIMITED) {
3781 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3782 		thresh = max_t(u64, 64 * 1024 * 1024,
3783 			       div_factor_fine(thresh, 1));
3784 
3785 		if (num_bytes - num_allocated < thresh)
3786 			return 1;
3787 	}
3788 
3789 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3790 		return 0;
3791 	return 1;
3792 }
3793 
3794 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3795 {
3796 	u64 num_dev;
3797 
3798 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3799 		    BTRFS_BLOCK_GROUP_RAID0 |
3800 		    BTRFS_BLOCK_GROUP_RAID5 |
3801 		    BTRFS_BLOCK_GROUP_RAID6))
3802 		num_dev = root->fs_info->fs_devices->rw_devices;
3803 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3804 		num_dev = 2;
3805 	else
3806 		num_dev = 1;	/* DUP or single */
3807 
3808 	/* metadata for updaing devices and chunk tree */
3809 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3810 }
3811 
3812 static void check_system_chunk(struct btrfs_trans_handle *trans,
3813 			       struct btrfs_root *root, u64 type)
3814 {
3815 	struct btrfs_space_info *info;
3816 	u64 left;
3817 	u64 thresh;
3818 
3819 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3820 	spin_lock(&info->lock);
3821 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3822 		info->bytes_reserved - info->bytes_readonly;
3823 	spin_unlock(&info->lock);
3824 
3825 	thresh = get_system_chunk_thresh(root, type);
3826 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3827 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3828 			left, thresh, type);
3829 		dump_space_info(info, 0, 0);
3830 	}
3831 
3832 	if (left < thresh) {
3833 		u64 flags;
3834 
3835 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3836 		btrfs_alloc_chunk(trans, root, flags);
3837 	}
3838 }
3839 
3840 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3841 			  struct btrfs_root *extent_root, u64 flags, int force)
3842 {
3843 	struct btrfs_space_info *space_info;
3844 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3845 	int wait_for_alloc = 0;
3846 	int ret = 0;
3847 
3848 	/* Don't re-enter if we're already allocating a chunk */
3849 	if (trans->allocating_chunk)
3850 		return -ENOSPC;
3851 
3852 	space_info = __find_space_info(extent_root->fs_info, flags);
3853 	if (!space_info) {
3854 		ret = update_space_info(extent_root->fs_info, flags,
3855 					0, 0, &space_info);
3856 		BUG_ON(ret); /* -ENOMEM */
3857 	}
3858 	BUG_ON(!space_info); /* Logic error */
3859 
3860 again:
3861 	spin_lock(&space_info->lock);
3862 	if (force < space_info->force_alloc)
3863 		force = space_info->force_alloc;
3864 	if (space_info->full) {
3865 		if (should_alloc_chunk(extent_root, space_info, force))
3866 			ret = -ENOSPC;
3867 		else
3868 			ret = 0;
3869 		spin_unlock(&space_info->lock);
3870 		return ret;
3871 	}
3872 
3873 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3874 		spin_unlock(&space_info->lock);
3875 		return 0;
3876 	} else if (space_info->chunk_alloc) {
3877 		wait_for_alloc = 1;
3878 	} else {
3879 		space_info->chunk_alloc = 1;
3880 	}
3881 
3882 	spin_unlock(&space_info->lock);
3883 
3884 	mutex_lock(&fs_info->chunk_mutex);
3885 
3886 	/*
3887 	 * The chunk_mutex is held throughout the entirety of a chunk
3888 	 * allocation, so once we've acquired the chunk_mutex we know that the
3889 	 * other guy is done and we need to recheck and see if we should
3890 	 * allocate.
3891 	 */
3892 	if (wait_for_alloc) {
3893 		mutex_unlock(&fs_info->chunk_mutex);
3894 		wait_for_alloc = 0;
3895 		goto again;
3896 	}
3897 
3898 	trans->allocating_chunk = true;
3899 
3900 	/*
3901 	 * If we have mixed data/metadata chunks we want to make sure we keep
3902 	 * allocating mixed chunks instead of individual chunks.
3903 	 */
3904 	if (btrfs_mixed_space_info(space_info))
3905 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3906 
3907 	/*
3908 	 * if we're doing a data chunk, go ahead and make sure that
3909 	 * we keep a reasonable number of metadata chunks allocated in the
3910 	 * FS as well.
3911 	 */
3912 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3913 		fs_info->data_chunk_allocations++;
3914 		if (!(fs_info->data_chunk_allocations %
3915 		      fs_info->metadata_ratio))
3916 			force_metadata_allocation(fs_info);
3917 	}
3918 
3919 	/*
3920 	 * Check if we have enough space in SYSTEM chunk because we may need
3921 	 * to update devices.
3922 	 */
3923 	check_system_chunk(trans, extent_root, flags);
3924 
3925 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3926 	trans->allocating_chunk = false;
3927 
3928 	spin_lock(&space_info->lock);
3929 	if (ret < 0 && ret != -ENOSPC)
3930 		goto out;
3931 	if (ret)
3932 		space_info->full = 1;
3933 	else
3934 		ret = 1;
3935 
3936 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3937 out:
3938 	space_info->chunk_alloc = 0;
3939 	spin_unlock(&space_info->lock);
3940 	mutex_unlock(&fs_info->chunk_mutex);
3941 	return ret;
3942 }
3943 
3944 static int can_overcommit(struct btrfs_root *root,
3945 			  struct btrfs_space_info *space_info, u64 bytes,
3946 			  enum btrfs_reserve_flush_enum flush)
3947 {
3948 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3949 	u64 profile = btrfs_get_alloc_profile(root, 0);
3950 	u64 space_size;
3951 	u64 avail;
3952 	u64 used;
3953 
3954 	used = space_info->bytes_used + space_info->bytes_reserved +
3955 		space_info->bytes_pinned + space_info->bytes_readonly;
3956 
3957 	/*
3958 	 * We only want to allow over committing if we have lots of actual space
3959 	 * free, but if we don't have enough space to handle the global reserve
3960 	 * space then we could end up having a real enospc problem when trying
3961 	 * to allocate a chunk or some other such important allocation.
3962 	 */
3963 	spin_lock(&global_rsv->lock);
3964 	space_size = calc_global_rsv_need_space(global_rsv);
3965 	spin_unlock(&global_rsv->lock);
3966 	if (used + space_size >= space_info->total_bytes)
3967 		return 0;
3968 
3969 	used += space_info->bytes_may_use;
3970 
3971 	spin_lock(&root->fs_info->free_chunk_lock);
3972 	avail = root->fs_info->free_chunk_space;
3973 	spin_unlock(&root->fs_info->free_chunk_lock);
3974 
3975 	/*
3976 	 * If we have dup, raid1 or raid10 then only half of the free
3977 	 * space is actually useable.  For raid56, the space info used
3978 	 * doesn't include the parity drive, so we don't have to
3979 	 * change the math
3980 	 */
3981 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3982 		       BTRFS_BLOCK_GROUP_RAID1 |
3983 		       BTRFS_BLOCK_GROUP_RAID10))
3984 		avail >>= 1;
3985 
3986 	/*
3987 	 * If we aren't flushing all things, let us overcommit up to
3988 	 * 1/2th of the space. If we can flush, don't let us overcommit
3989 	 * too much, let it overcommit up to 1/8 of the space.
3990 	 */
3991 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3992 		avail >>= 3;
3993 	else
3994 		avail >>= 1;
3995 
3996 	if (used + bytes < space_info->total_bytes + avail)
3997 		return 1;
3998 	return 0;
3999 }
4000 
4001 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4002 					 unsigned long nr_pages)
4003 {
4004 	struct super_block *sb = root->fs_info->sb;
4005 
4006 	if (down_read_trylock(&sb->s_umount)) {
4007 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4008 		up_read(&sb->s_umount);
4009 	} else {
4010 		/*
4011 		 * We needn't worry the filesystem going from r/w to r/o though
4012 		 * we don't acquire ->s_umount mutex, because the filesystem
4013 		 * should guarantee the delalloc inodes list be empty after
4014 		 * the filesystem is readonly(all dirty pages are written to
4015 		 * the disk).
4016 		 */
4017 		btrfs_start_delalloc_roots(root->fs_info, 0);
4018 		if (!current->journal_info)
4019 			btrfs_wait_ordered_roots(root->fs_info, -1);
4020 	}
4021 }
4022 
4023 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4024 {
4025 	u64 bytes;
4026 	int nr;
4027 
4028 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4029 	nr = (int)div64_u64(to_reclaim, bytes);
4030 	if (!nr)
4031 		nr = 1;
4032 	return nr;
4033 }
4034 
4035 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4036 
4037 /*
4038  * shrink metadata reservation for delalloc
4039  */
4040 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4041 			    bool wait_ordered)
4042 {
4043 	struct btrfs_block_rsv *block_rsv;
4044 	struct btrfs_space_info *space_info;
4045 	struct btrfs_trans_handle *trans;
4046 	u64 delalloc_bytes;
4047 	u64 max_reclaim;
4048 	long time_left;
4049 	unsigned long nr_pages;
4050 	int loops;
4051 	int items;
4052 	enum btrfs_reserve_flush_enum flush;
4053 
4054 	/* Calc the number of the pages we need flush for space reservation */
4055 	items = calc_reclaim_items_nr(root, to_reclaim);
4056 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4057 
4058 	trans = (struct btrfs_trans_handle *)current->journal_info;
4059 	block_rsv = &root->fs_info->delalloc_block_rsv;
4060 	space_info = block_rsv->space_info;
4061 
4062 	delalloc_bytes = percpu_counter_sum_positive(
4063 						&root->fs_info->delalloc_bytes);
4064 	if (delalloc_bytes == 0) {
4065 		if (trans)
4066 			return;
4067 		if (wait_ordered)
4068 			btrfs_wait_ordered_roots(root->fs_info, items);
4069 		return;
4070 	}
4071 
4072 	loops = 0;
4073 	while (delalloc_bytes && loops < 3) {
4074 		max_reclaim = min(delalloc_bytes, to_reclaim);
4075 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4076 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4077 		/*
4078 		 * We need to wait for the async pages to actually start before
4079 		 * we do anything.
4080 		 */
4081 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4082 		if (!max_reclaim)
4083 			goto skip_async;
4084 
4085 		if (max_reclaim <= nr_pages)
4086 			max_reclaim = 0;
4087 		else
4088 			max_reclaim -= nr_pages;
4089 
4090 		wait_event(root->fs_info->async_submit_wait,
4091 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4092 			   (int)max_reclaim);
4093 skip_async:
4094 		if (!trans)
4095 			flush = BTRFS_RESERVE_FLUSH_ALL;
4096 		else
4097 			flush = BTRFS_RESERVE_NO_FLUSH;
4098 		spin_lock(&space_info->lock);
4099 		if (can_overcommit(root, space_info, orig, flush)) {
4100 			spin_unlock(&space_info->lock);
4101 			break;
4102 		}
4103 		spin_unlock(&space_info->lock);
4104 
4105 		loops++;
4106 		if (wait_ordered && !trans) {
4107 			btrfs_wait_ordered_roots(root->fs_info, items);
4108 		} else {
4109 			time_left = schedule_timeout_killable(1);
4110 			if (time_left)
4111 				break;
4112 		}
4113 		delalloc_bytes = percpu_counter_sum_positive(
4114 						&root->fs_info->delalloc_bytes);
4115 	}
4116 }
4117 
4118 /**
4119  * maybe_commit_transaction - possibly commit the transaction if its ok to
4120  * @root - the root we're allocating for
4121  * @bytes - the number of bytes we want to reserve
4122  * @force - force the commit
4123  *
4124  * This will check to make sure that committing the transaction will actually
4125  * get us somewhere and then commit the transaction if it does.  Otherwise it
4126  * will return -ENOSPC.
4127  */
4128 static int may_commit_transaction(struct btrfs_root *root,
4129 				  struct btrfs_space_info *space_info,
4130 				  u64 bytes, int force)
4131 {
4132 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4133 	struct btrfs_trans_handle *trans;
4134 
4135 	trans = (struct btrfs_trans_handle *)current->journal_info;
4136 	if (trans)
4137 		return -EAGAIN;
4138 
4139 	if (force)
4140 		goto commit;
4141 
4142 	/* See if there is enough pinned space to make this reservation */
4143 	spin_lock(&space_info->lock);
4144 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4145 				   bytes) >= 0) {
4146 		spin_unlock(&space_info->lock);
4147 		goto commit;
4148 	}
4149 	spin_unlock(&space_info->lock);
4150 
4151 	/*
4152 	 * See if there is some space in the delayed insertion reservation for
4153 	 * this reservation.
4154 	 */
4155 	if (space_info != delayed_rsv->space_info)
4156 		return -ENOSPC;
4157 
4158 	spin_lock(&space_info->lock);
4159 	spin_lock(&delayed_rsv->lock);
4160 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4161 				   bytes - delayed_rsv->size) >= 0) {
4162 		spin_unlock(&delayed_rsv->lock);
4163 		spin_unlock(&space_info->lock);
4164 		return -ENOSPC;
4165 	}
4166 	spin_unlock(&delayed_rsv->lock);
4167 	spin_unlock(&space_info->lock);
4168 
4169 commit:
4170 	trans = btrfs_join_transaction(root);
4171 	if (IS_ERR(trans))
4172 		return -ENOSPC;
4173 
4174 	return btrfs_commit_transaction(trans, root);
4175 }
4176 
4177 enum flush_state {
4178 	FLUSH_DELAYED_ITEMS_NR	=	1,
4179 	FLUSH_DELAYED_ITEMS	=	2,
4180 	FLUSH_DELALLOC		=	3,
4181 	FLUSH_DELALLOC_WAIT	=	4,
4182 	ALLOC_CHUNK		=	5,
4183 	COMMIT_TRANS		=	6,
4184 };
4185 
4186 static int flush_space(struct btrfs_root *root,
4187 		       struct btrfs_space_info *space_info, u64 num_bytes,
4188 		       u64 orig_bytes, int state)
4189 {
4190 	struct btrfs_trans_handle *trans;
4191 	int nr;
4192 	int ret = 0;
4193 
4194 	switch (state) {
4195 	case FLUSH_DELAYED_ITEMS_NR:
4196 	case FLUSH_DELAYED_ITEMS:
4197 		if (state == FLUSH_DELAYED_ITEMS_NR)
4198 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4199 		else
4200 			nr = -1;
4201 
4202 		trans = btrfs_join_transaction(root);
4203 		if (IS_ERR(trans)) {
4204 			ret = PTR_ERR(trans);
4205 			break;
4206 		}
4207 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4208 		btrfs_end_transaction(trans, root);
4209 		break;
4210 	case FLUSH_DELALLOC:
4211 	case FLUSH_DELALLOC_WAIT:
4212 		shrink_delalloc(root, num_bytes, orig_bytes,
4213 				state == FLUSH_DELALLOC_WAIT);
4214 		break;
4215 	case ALLOC_CHUNK:
4216 		trans = btrfs_join_transaction(root);
4217 		if (IS_ERR(trans)) {
4218 			ret = PTR_ERR(trans);
4219 			break;
4220 		}
4221 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4222 				     btrfs_get_alloc_profile(root, 0),
4223 				     CHUNK_ALLOC_NO_FORCE);
4224 		btrfs_end_transaction(trans, root);
4225 		if (ret == -ENOSPC)
4226 			ret = 0;
4227 		break;
4228 	case COMMIT_TRANS:
4229 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4230 		break;
4231 	default:
4232 		ret = -ENOSPC;
4233 		break;
4234 	}
4235 
4236 	return ret;
4237 }
4238 /**
4239  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4240  * @root - the root we're allocating for
4241  * @block_rsv - the block_rsv we're allocating for
4242  * @orig_bytes - the number of bytes we want
4243  * @flush - whether or not we can flush to make our reservation
4244  *
4245  * This will reserve orgi_bytes number of bytes from the space info associated
4246  * with the block_rsv.  If there is not enough space it will make an attempt to
4247  * flush out space to make room.  It will do this by flushing delalloc if
4248  * possible or committing the transaction.  If flush is 0 then no attempts to
4249  * regain reservations will be made and this will fail if there is not enough
4250  * space already.
4251  */
4252 static int reserve_metadata_bytes(struct btrfs_root *root,
4253 				  struct btrfs_block_rsv *block_rsv,
4254 				  u64 orig_bytes,
4255 				  enum btrfs_reserve_flush_enum flush)
4256 {
4257 	struct btrfs_space_info *space_info = block_rsv->space_info;
4258 	u64 used;
4259 	u64 num_bytes = orig_bytes;
4260 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4261 	int ret = 0;
4262 	bool flushing = false;
4263 
4264 again:
4265 	ret = 0;
4266 	spin_lock(&space_info->lock);
4267 	/*
4268 	 * We only want to wait if somebody other than us is flushing and we
4269 	 * are actually allowed to flush all things.
4270 	 */
4271 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4272 	       space_info->flush) {
4273 		spin_unlock(&space_info->lock);
4274 		/*
4275 		 * If we have a trans handle we can't wait because the flusher
4276 		 * may have to commit the transaction, which would mean we would
4277 		 * deadlock since we are waiting for the flusher to finish, but
4278 		 * hold the current transaction open.
4279 		 */
4280 		if (current->journal_info)
4281 			return -EAGAIN;
4282 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4283 		/* Must have been killed, return */
4284 		if (ret)
4285 			return -EINTR;
4286 
4287 		spin_lock(&space_info->lock);
4288 	}
4289 
4290 	ret = -ENOSPC;
4291 	used = space_info->bytes_used + space_info->bytes_reserved +
4292 		space_info->bytes_pinned + space_info->bytes_readonly +
4293 		space_info->bytes_may_use;
4294 
4295 	/*
4296 	 * The idea here is that we've not already over-reserved the block group
4297 	 * then we can go ahead and save our reservation first and then start
4298 	 * flushing if we need to.  Otherwise if we've already overcommitted
4299 	 * lets start flushing stuff first and then come back and try to make
4300 	 * our reservation.
4301 	 */
4302 	if (used <= space_info->total_bytes) {
4303 		if (used + orig_bytes <= space_info->total_bytes) {
4304 			space_info->bytes_may_use += orig_bytes;
4305 			trace_btrfs_space_reservation(root->fs_info,
4306 				"space_info", space_info->flags, orig_bytes, 1);
4307 			ret = 0;
4308 		} else {
4309 			/*
4310 			 * Ok set num_bytes to orig_bytes since we aren't
4311 			 * overocmmitted, this way we only try and reclaim what
4312 			 * we need.
4313 			 */
4314 			num_bytes = orig_bytes;
4315 		}
4316 	} else {
4317 		/*
4318 		 * Ok we're over committed, set num_bytes to the overcommitted
4319 		 * amount plus the amount of bytes that we need for this
4320 		 * reservation.
4321 		 */
4322 		num_bytes = used - space_info->total_bytes +
4323 			(orig_bytes * 2);
4324 	}
4325 
4326 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4327 		space_info->bytes_may_use += orig_bytes;
4328 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4329 					      space_info->flags, orig_bytes,
4330 					      1);
4331 		ret = 0;
4332 	}
4333 
4334 	/*
4335 	 * Couldn't make our reservation, save our place so while we're trying
4336 	 * to reclaim space we can actually use it instead of somebody else
4337 	 * stealing it from us.
4338 	 *
4339 	 * We make the other tasks wait for the flush only when we can flush
4340 	 * all things.
4341 	 */
4342 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4343 		flushing = true;
4344 		space_info->flush = 1;
4345 	}
4346 
4347 	spin_unlock(&space_info->lock);
4348 
4349 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4350 		goto out;
4351 
4352 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4353 			  flush_state);
4354 	flush_state++;
4355 
4356 	/*
4357 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4358 	 * would happen. So skip delalloc flush.
4359 	 */
4360 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4361 	    (flush_state == FLUSH_DELALLOC ||
4362 	     flush_state == FLUSH_DELALLOC_WAIT))
4363 		flush_state = ALLOC_CHUNK;
4364 
4365 	if (!ret)
4366 		goto again;
4367 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4368 		 flush_state < COMMIT_TRANS)
4369 		goto again;
4370 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4371 		 flush_state <= COMMIT_TRANS)
4372 		goto again;
4373 
4374 out:
4375 	if (ret == -ENOSPC &&
4376 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4377 		struct btrfs_block_rsv *global_rsv =
4378 			&root->fs_info->global_block_rsv;
4379 
4380 		if (block_rsv != global_rsv &&
4381 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4382 			ret = 0;
4383 	}
4384 	if (ret == -ENOSPC)
4385 		trace_btrfs_space_reservation(root->fs_info,
4386 					      "space_info:enospc",
4387 					      space_info->flags, orig_bytes, 1);
4388 	if (flushing) {
4389 		spin_lock(&space_info->lock);
4390 		space_info->flush = 0;
4391 		wake_up_all(&space_info->wait);
4392 		spin_unlock(&space_info->lock);
4393 	}
4394 	return ret;
4395 }
4396 
4397 static struct btrfs_block_rsv *get_block_rsv(
4398 					const struct btrfs_trans_handle *trans,
4399 					const struct btrfs_root *root)
4400 {
4401 	struct btrfs_block_rsv *block_rsv = NULL;
4402 
4403 	if (root->ref_cows)
4404 		block_rsv = trans->block_rsv;
4405 
4406 	if (root == root->fs_info->csum_root && trans->adding_csums)
4407 		block_rsv = trans->block_rsv;
4408 
4409 	if (root == root->fs_info->uuid_root)
4410 		block_rsv = trans->block_rsv;
4411 
4412 	if (!block_rsv)
4413 		block_rsv = root->block_rsv;
4414 
4415 	if (!block_rsv)
4416 		block_rsv = &root->fs_info->empty_block_rsv;
4417 
4418 	return block_rsv;
4419 }
4420 
4421 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4422 			       u64 num_bytes)
4423 {
4424 	int ret = -ENOSPC;
4425 	spin_lock(&block_rsv->lock);
4426 	if (block_rsv->reserved >= num_bytes) {
4427 		block_rsv->reserved -= num_bytes;
4428 		if (block_rsv->reserved < block_rsv->size)
4429 			block_rsv->full = 0;
4430 		ret = 0;
4431 	}
4432 	spin_unlock(&block_rsv->lock);
4433 	return ret;
4434 }
4435 
4436 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4437 				u64 num_bytes, int update_size)
4438 {
4439 	spin_lock(&block_rsv->lock);
4440 	block_rsv->reserved += num_bytes;
4441 	if (update_size)
4442 		block_rsv->size += num_bytes;
4443 	else if (block_rsv->reserved >= block_rsv->size)
4444 		block_rsv->full = 1;
4445 	spin_unlock(&block_rsv->lock);
4446 }
4447 
4448 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4449 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4450 			     int min_factor)
4451 {
4452 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4453 	u64 min_bytes;
4454 
4455 	if (global_rsv->space_info != dest->space_info)
4456 		return -ENOSPC;
4457 
4458 	spin_lock(&global_rsv->lock);
4459 	min_bytes = div_factor(global_rsv->size, min_factor);
4460 	if (global_rsv->reserved < min_bytes + num_bytes) {
4461 		spin_unlock(&global_rsv->lock);
4462 		return -ENOSPC;
4463 	}
4464 	global_rsv->reserved -= num_bytes;
4465 	if (global_rsv->reserved < global_rsv->size)
4466 		global_rsv->full = 0;
4467 	spin_unlock(&global_rsv->lock);
4468 
4469 	block_rsv_add_bytes(dest, num_bytes, 1);
4470 	return 0;
4471 }
4472 
4473 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4474 				    struct btrfs_block_rsv *block_rsv,
4475 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4476 {
4477 	struct btrfs_space_info *space_info = block_rsv->space_info;
4478 
4479 	spin_lock(&block_rsv->lock);
4480 	if (num_bytes == (u64)-1)
4481 		num_bytes = block_rsv->size;
4482 	block_rsv->size -= num_bytes;
4483 	if (block_rsv->reserved >= block_rsv->size) {
4484 		num_bytes = block_rsv->reserved - block_rsv->size;
4485 		block_rsv->reserved = block_rsv->size;
4486 		block_rsv->full = 1;
4487 	} else {
4488 		num_bytes = 0;
4489 	}
4490 	spin_unlock(&block_rsv->lock);
4491 
4492 	if (num_bytes > 0) {
4493 		if (dest) {
4494 			spin_lock(&dest->lock);
4495 			if (!dest->full) {
4496 				u64 bytes_to_add;
4497 
4498 				bytes_to_add = dest->size - dest->reserved;
4499 				bytes_to_add = min(num_bytes, bytes_to_add);
4500 				dest->reserved += bytes_to_add;
4501 				if (dest->reserved >= dest->size)
4502 					dest->full = 1;
4503 				num_bytes -= bytes_to_add;
4504 			}
4505 			spin_unlock(&dest->lock);
4506 		}
4507 		if (num_bytes) {
4508 			spin_lock(&space_info->lock);
4509 			space_info->bytes_may_use -= num_bytes;
4510 			trace_btrfs_space_reservation(fs_info, "space_info",
4511 					space_info->flags, num_bytes, 0);
4512 			spin_unlock(&space_info->lock);
4513 		}
4514 	}
4515 }
4516 
4517 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4518 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4519 {
4520 	int ret;
4521 
4522 	ret = block_rsv_use_bytes(src, num_bytes);
4523 	if (ret)
4524 		return ret;
4525 
4526 	block_rsv_add_bytes(dst, num_bytes, 1);
4527 	return 0;
4528 }
4529 
4530 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4531 {
4532 	memset(rsv, 0, sizeof(*rsv));
4533 	spin_lock_init(&rsv->lock);
4534 	rsv->type = type;
4535 }
4536 
4537 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4538 					      unsigned short type)
4539 {
4540 	struct btrfs_block_rsv *block_rsv;
4541 	struct btrfs_fs_info *fs_info = root->fs_info;
4542 
4543 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4544 	if (!block_rsv)
4545 		return NULL;
4546 
4547 	btrfs_init_block_rsv(block_rsv, type);
4548 	block_rsv->space_info = __find_space_info(fs_info,
4549 						  BTRFS_BLOCK_GROUP_METADATA);
4550 	return block_rsv;
4551 }
4552 
4553 void btrfs_free_block_rsv(struct btrfs_root *root,
4554 			  struct btrfs_block_rsv *rsv)
4555 {
4556 	if (!rsv)
4557 		return;
4558 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4559 	kfree(rsv);
4560 }
4561 
4562 int btrfs_block_rsv_add(struct btrfs_root *root,
4563 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4564 			enum btrfs_reserve_flush_enum flush)
4565 {
4566 	int ret;
4567 
4568 	if (num_bytes == 0)
4569 		return 0;
4570 
4571 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4572 	if (!ret) {
4573 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4574 		return 0;
4575 	}
4576 
4577 	return ret;
4578 }
4579 
4580 int btrfs_block_rsv_check(struct btrfs_root *root,
4581 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4582 {
4583 	u64 num_bytes = 0;
4584 	int ret = -ENOSPC;
4585 
4586 	if (!block_rsv)
4587 		return 0;
4588 
4589 	spin_lock(&block_rsv->lock);
4590 	num_bytes = div_factor(block_rsv->size, min_factor);
4591 	if (block_rsv->reserved >= num_bytes)
4592 		ret = 0;
4593 	spin_unlock(&block_rsv->lock);
4594 
4595 	return ret;
4596 }
4597 
4598 int btrfs_block_rsv_refill(struct btrfs_root *root,
4599 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4600 			   enum btrfs_reserve_flush_enum flush)
4601 {
4602 	u64 num_bytes = 0;
4603 	int ret = -ENOSPC;
4604 
4605 	if (!block_rsv)
4606 		return 0;
4607 
4608 	spin_lock(&block_rsv->lock);
4609 	num_bytes = min_reserved;
4610 	if (block_rsv->reserved >= num_bytes)
4611 		ret = 0;
4612 	else
4613 		num_bytes -= block_rsv->reserved;
4614 	spin_unlock(&block_rsv->lock);
4615 
4616 	if (!ret)
4617 		return 0;
4618 
4619 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4620 	if (!ret) {
4621 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4622 		return 0;
4623 	}
4624 
4625 	return ret;
4626 }
4627 
4628 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4629 			    struct btrfs_block_rsv *dst_rsv,
4630 			    u64 num_bytes)
4631 {
4632 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4633 }
4634 
4635 void btrfs_block_rsv_release(struct btrfs_root *root,
4636 			     struct btrfs_block_rsv *block_rsv,
4637 			     u64 num_bytes)
4638 {
4639 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4640 	if (global_rsv->full || global_rsv == block_rsv ||
4641 	    block_rsv->space_info != global_rsv->space_info)
4642 		global_rsv = NULL;
4643 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4644 				num_bytes);
4645 }
4646 
4647 /*
4648  * helper to calculate size of global block reservation.
4649  * the desired value is sum of space used by extent tree,
4650  * checksum tree and root tree
4651  */
4652 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4653 {
4654 	struct btrfs_space_info *sinfo;
4655 	u64 num_bytes;
4656 	u64 meta_used;
4657 	u64 data_used;
4658 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4659 
4660 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4661 	spin_lock(&sinfo->lock);
4662 	data_used = sinfo->bytes_used;
4663 	spin_unlock(&sinfo->lock);
4664 
4665 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4666 	spin_lock(&sinfo->lock);
4667 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4668 		data_used = 0;
4669 	meta_used = sinfo->bytes_used;
4670 	spin_unlock(&sinfo->lock);
4671 
4672 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4673 		    csum_size * 2;
4674 	num_bytes += div64_u64(data_used + meta_used, 50);
4675 
4676 	if (num_bytes * 3 > meta_used)
4677 		num_bytes = div64_u64(meta_used, 3);
4678 
4679 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4680 }
4681 
4682 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4683 {
4684 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4685 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4686 	u64 num_bytes;
4687 
4688 	num_bytes = calc_global_metadata_size(fs_info);
4689 
4690 	spin_lock(&sinfo->lock);
4691 	spin_lock(&block_rsv->lock);
4692 
4693 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4694 
4695 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4696 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4697 		    sinfo->bytes_may_use;
4698 
4699 	if (sinfo->total_bytes > num_bytes) {
4700 		num_bytes = sinfo->total_bytes - num_bytes;
4701 		block_rsv->reserved += num_bytes;
4702 		sinfo->bytes_may_use += num_bytes;
4703 		trace_btrfs_space_reservation(fs_info, "space_info",
4704 				      sinfo->flags, num_bytes, 1);
4705 	}
4706 
4707 	if (block_rsv->reserved >= block_rsv->size) {
4708 		num_bytes = block_rsv->reserved - block_rsv->size;
4709 		sinfo->bytes_may_use -= num_bytes;
4710 		trace_btrfs_space_reservation(fs_info, "space_info",
4711 				      sinfo->flags, num_bytes, 0);
4712 		block_rsv->reserved = block_rsv->size;
4713 		block_rsv->full = 1;
4714 	}
4715 
4716 	spin_unlock(&block_rsv->lock);
4717 	spin_unlock(&sinfo->lock);
4718 }
4719 
4720 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4721 {
4722 	struct btrfs_space_info *space_info;
4723 
4724 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4725 	fs_info->chunk_block_rsv.space_info = space_info;
4726 
4727 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4728 	fs_info->global_block_rsv.space_info = space_info;
4729 	fs_info->delalloc_block_rsv.space_info = space_info;
4730 	fs_info->trans_block_rsv.space_info = space_info;
4731 	fs_info->empty_block_rsv.space_info = space_info;
4732 	fs_info->delayed_block_rsv.space_info = space_info;
4733 
4734 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4735 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4736 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4737 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4738 	if (fs_info->quota_root)
4739 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4740 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4741 
4742 	update_global_block_rsv(fs_info);
4743 }
4744 
4745 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4746 {
4747 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4748 				(u64)-1);
4749 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4750 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4751 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4752 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4753 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4754 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4755 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4756 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4757 }
4758 
4759 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4760 				  struct btrfs_root *root)
4761 {
4762 	if (!trans->block_rsv)
4763 		return;
4764 
4765 	if (!trans->bytes_reserved)
4766 		return;
4767 
4768 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4769 				      trans->transid, trans->bytes_reserved, 0);
4770 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4771 	trans->bytes_reserved = 0;
4772 }
4773 
4774 /* Can only return 0 or -ENOSPC */
4775 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4776 				  struct inode *inode)
4777 {
4778 	struct btrfs_root *root = BTRFS_I(inode)->root;
4779 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4780 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4781 
4782 	/*
4783 	 * We need to hold space in order to delete our orphan item once we've
4784 	 * added it, so this takes the reservation so we can release it later
4785 	 * when we are truly done with the orphan item.
4786 	 */
4787 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4788 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4789 				      btrfs_ino(inode), num_bytes, 1);
4790 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4791 }
4792 
4793 void btrfs_orphan_release_metadata(struct inode *inode)
4794 {
4795 	struct btrfs_root *root = BTRFS_I(inode)->root;
4796 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4797 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4798 				      btrfs_ino(inode), num_bytes, 0);
4799 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4800 }
4801 
4802 /*
4803  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4804  * root: the root of the parent directory
4805  * rsv: block reservation
4806  * items: the number of items that we need do reservation
4807  * qgroup_reserved: used to return the reserved size in qgroup
4808  *
4809  * This function is used to reserve the space for snapshot/subvolume
4810  * creation and deletion. Those operations are different with the
4811  * common file/directory operations, they change two fs/file trees
4812  * and root tree, the number of items that the qgroup reserves is
4813  * different with the free space reservation. So we can not use
4814  * the space reseravtion mechanism in start_transaction().
4815  */
4816 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4817 				     struct btrfs_block_rsv *rsv,
4818 				     int items,
4819 				     u64 *qgroup_reserved,
4820 				     bool use_global_rsv)
4821 {
4822 	u64 num_bytes;
4823 	int ret;
4824 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4825 
4826 	if (root->fs_info->quota_enabled) {
4827 		/* One for parent inode, two for dir entries */
4828 		num_bytes = 3 * root->leafsize;
4829 		ret = btrfs_qgroup_reserve(root, num_bytes);
4830 		if (ret)
4831 			return ret;
4832 	} else {
4833 		num_bytes = 0;
4834 	}
4835 
4836 	*qgroup_reserved = num_bytes;
4837 
4838 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4839 	rsv->space_info = __find_space_info(root->fs_info,
4840 					    BTRFS_BLOCK_GROUP_METADATA);
4841 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4842 				  BTRFS_RESERVE_FLUSH_ALL);
4843 
4844 	if (ret == -ENOSPC && use_global_rsv)
4845 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4846 
4847 	if (ret) {
4848 		if (*qgroup_reserved)
4849 			btrfs_qgroup_free(root, *qgroup_reserved);
4850 	}
4851 
4852 	return ret;
4853 }
4854 
4855 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4856 				      struct btrfs_block_rsv *rsv,
4857 				      u64 qgroup_reserved)
4858 {
4859 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4860 	if (qgroup_reserved)
4861 		btrfs_qgroup_free(root, qgroup_reserved);
4862 }
4863 
4864 /**
4865  * drop_outstanding_extent - drop an outstanding extent
4866  * @inode: the inode we're dropping the extent for
4867  *
4868  * This is called when we are freeing up an outstanding extent, either called
4869  * after an error or after an extent is written.  This will return the number of
4870  * reserved extents that need to be freed.  This must be called with
4871  * BTRFS_I(inode)->lock held.
4872  */
4873 static unsigned drop_outstanding_extent(struct inode *inode)
4874 {
4875 	unsigned drop_inode_space = 0;
4876 	unsigned dropped_extents = 0;
4877 
4878 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4879 	BTRFS_I(inode)->outstanding_extents--;
4880 
4881 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4882 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4883 			       &BTRFS_I(inode)->runtime_flags))
4884 		drop_inode_space = 1;
4885 
4886 	/*
4887 	 * If we have more or the same amount of outsanding extents than we have
4888 	 * reserved then we need to leave the reserved extents count alone.
4889 	 */
4890 	if (BTRFS_I(inode)->outstanding_extents >=
4891 	    BTRFS_I(inode)->reserved_extents)
4892 		return drop_inode_space;
4893 
4894 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4895 		BTRFS_I(inode)->outstanding_extents;
4896 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4897 	return dropped_extents + drop_inode_space;
4898 }
4899 
4900 /**
4901  * calc_csum_metadata_size - return the amount of metada space that must be
4902  *	reserved/free'd for the given bytes.
4903  * @inode: the inode we're manipulating
4904  * @num_bytes: the number of bytes in question
4905  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4906  *
4907  * This adjusts the number of csum_bytes in the inode and then returns the
4908  * correct amount of metadata that must either be reserved or freed.  We
4909  * calculate how many checksums we can fit into one leaf and then divide the
4910  * number of bytes that will need to be checksumed by this value to figure out
4911  * how many checksums will be required.  If we are adding bytes then the number
4912  * may go up and we will return the number of additional bytes that must be
4913  * reserved.  If it is going down we will return the number of bytes that must
4914  * be freed.
4915  *
4916  * This must be called with BTRFS_I(inode)->lock held.
4917  */
4918 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4919 				   int reserve)
4920 {
4921 	struct btrfs_root *root = BTRFS_I(inode)->root;
4922 	u64 csum_size;
4923 	int num_csums_per_leaf;
4924 	int num_csums;
4925 	int old_csums;
4926 
4927 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4928 	    BTRFS_I(inode)->csum_bytes == 0)
4929 		return 0;
4930 
4931 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4932 	if (reserve)
4933 		BTRFS_I(inode)->csum_bytes += num_bytes;
4934 	else
4935 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4936 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4937 	num_csums_per_leaf = (int)div64_u64(csum_size,
4938 					    sizeof(struct btrfs_csum_item) +
4939 					    sizeof(struct btrfs_disk_key));
4940 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4941 	num_csums = num_csums + num_csums_per_leaf - 1;
4942 	num_csums = num_csums / num_csums_per_leaf;
4943 
4944 	old_csums = old_csums + num_csums_per_leaf - 1;
4945 	old_csums = old_csums / num_csums_per_leaf;
4946 
4947 	/* No change, no need to reserve more */
4948 	if (old_csums == num_csums)
4949 		return 0;
4950 
4951 	if (reserve)
4952 		return btrfs_calc_trans_metadata_size(root,
4953 						      num_csums - old_csums);
4954 
4955 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4956 }
4957 
4958 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4959 {
4960 	struct btrfs_root *root = BTRFS_I(inode)->root;
4961 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4962 	u64 to_reserve = 0;
4963 	u64 csum_bytes;
4964 	unsigned nr_extents = 0;
4965 	int extra_reserve = 0;
4966 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4967 	int ret = 0;
4968 	bool delalloc_lock = true;
4969 	u64 to_free = 0;
4970 	unsigned dropped;
4971 
4972 	/* If we are a free space inode we need to not flush since we will be in
4973 	 * the middle of a transaction commit.  We also don't need the delalloc
4974 	 * mutex since we won't race with anybody.  We need this mostly to make
4975 	 * lockdep shut its filthy mouth.
4976 	 */
4977 	if (btrfs_is_free_space_inode(inode)) {
4978 		flush = BTRFS_RESERVE_NO_FLUSH;
4979 		delalloc_lock = false;
4980 	}
4981 
4982 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4983 	    btrfs_transaction_in_commit(root->fs_info))
4984 		schedule_timeout(1);
4985 
4986 	if (delalloc_lock)
4987 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4988 
4989 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4990 
4991 	spin_lock(&BTRFS_I(inode)->lock);
4992 	BTRFS_I(inode)->outstanding_extents++;
4993 
4994 	if (BTRFS_I(inode)->outstanding_extents >
4995 	    BTRFS_I(inode)->reserved_extents)
4996 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4997 			BTRFS_I(inode)->reserved_extents;
4998 
4999 	/*
5000 	 * Add an item to reserve for updating the inode when we complete the
5001 	 * delalloc io.
5002 	 */
5003 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5004 		      &BTRFS_I(inode)->runtime_flags)) {
5005 		nr_extents++;
5006 		extra_reserve = 1;
5007 	}
5008 
5009 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5010 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5011 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5012 	spin_unlock(&BTRFS_I(inode)->lock);
5013 
5014 	if (root->fs_info->quota_enabled) {
5015 		ret = btrfs_qgroup_reserve(root, num_bytes +
5016 					   nr_extents * root->leafsize);
5017 		if (ret)
5018 			goto out_fail;
5019 	}
5020 
5021 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5022 	if (unlikely(ret)) {
5023 		if (root->fs_info->quota_enabled)
5024 			btrfs_qgroup_free(root, num_bytes +
5025 						nr_extents * root->leafsize);
5026 		goto out_fail;
5027 	}
5028 
5029 	spin_lock(&BTRFS_I(inode)->lock);
5030 	if (extra_reserve) {
5031 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5032 			&BTRFS_I(inode)->runtime_flags);
5033 		nr_extents--;
5034 	}
5035 	BTRFS_I(inode)->reserved_extents += nr_extents;
5036 	spin_unlock(&BTRFS_I(inode)->lock);
5037 
5038 	if (delalloc_lock)
5039 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5040 
5041 	if (to_reserve)
5042 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5043 					      btrfs_ino(inode), to_reserve, 1);
5044 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5045 
5046 	return 0;
5047 
5048 out_fail:
5049 	spin_lock(&BTRFS_I(inode)->lock);
5050 	dropped = drop_outstanding_extent(inode);
5051 	/*
5052 	 * If the inodes csum_bytes is the same as the original
5053 	 * csum_bytes then we know we haven't raced with any free()ers
5054 	 * so we can just reduce our inodes csum bytes and carry on.
5055 	 */
5056 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5057 		calc_csum_metadata_size(inode, num_bytes, 0);
5058 	} else {
5059 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5060 		u64 bytes;
5061 
5062 		/*
5063 		 * This is tricky, but first we need to figure out how much we
5064 		 * free'd from any free-ers that occured during this
5065 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5066 		 * before we dropped our lock, and then call the free for the
5067 		 * number of bytes that were freed while we were trying our
5068 		 * reservation.
5069 		 */
5070 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5071 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5072 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5073 
5074 
5075 		/*
5076 		 * Now we need to see how much we would have freed had we not
5077 		 * been making this reservation and our ->csum_bytes were not
5078 		 * artificially inflated.
5079 		 */
5080 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5081 		bytes = csum_bytes - orig_csum_bytes;
5082 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5083 
5084 		/*
5085 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5086 		 * more than to_free then we would have free'd more space had we
5087 		 * not had an artificially high ->csum_bytes, so we need to free
5088 		 * the remainder.  If bytes is the same or less then we don't
5089 		 * need to do anything, the other free-ers did the correct
5090 		 * thing.
5091 		 */
5092 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5093 		if (bytes > to_free)
5094 			to_free = bytes - to_free;
5095 		else
5096 			to_free = 0;
5097 	}
5098 	spin_unlock(&BTRFS_I(inode)->lock);
5099 	if (dropped)
5100 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5101 
5102 	if (to_free) {
5103 		btrfs_block_rsv_release(root, block_rsv, to_free);
5104 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5105 					      btrfs_ino(inode), to_free, 0);
5106 	}
5107 	if (delalloc_lock)
5108 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5109 	return ret;
5110 }
5111 
5112 /**
5113  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5114  * @inode: the inode to release the reservation for
5115  * @num_bytes: the number of bytes we're releasing
5116  *
5117  * This will release the metadata reservation for an inode.  This can be called
5118  * once we complete IO for a given set of bytes to release their metadata
5119  * reservations.
5120  */
5121 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5122 {
5123 	struct btrfs_root *root = BTRFS_I(inode)->root;
5124 	u64 to_free = 0;
5125 	unsigned dropped;
5126 
5127 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5128 	spin_lock(&BTRFS_I(inode)->lock);
5129 	dropped = drop_outstanding_extent(inode);
5130 
5131 	if (num_bytes)
5132 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5133 	spin_unlock(&BTRFS_I(inode)->lock);
5134 	if (dropped > 0)
5135 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5136 
5137 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5138 				      btrfs_ino(inode), to_free, 0);
5139 	if (root->fs_info->quota_enabled) {
5140 		btrfs_qgroup_free(root, num_bytes +
5141 					dropped * root->leafsize);
5142 	}
5143 
5144 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5145 				to_free);
5146 }
5147 
5148 /**
5149  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5150  * @inode: inode we're writing to
5151  * @num_bytes: the number of bytes we want to allocate
5152  *
5153  * This will do the following things
5154  *
5155  * o reserve space in the data space info for num_bytes
5156  * o reserve space in the metadata space info based on number of outstanding
5157  *   extents and how much csums will be needed
5158  * o add to the inodes ->delalloc_bytes
5159  * o add it to the fs_info's delalloc inodes list.
5160  *
5161  * This will return 0 for success and -ENOSPC if there is no space left.
5162  */
5163 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5164 {
5165 	int ret;
5166 
5167 	ret = btrfs_check_data_free_space(inode, num_bytes);
5168 	if (ret)
5169 		return ret;
5170 
5171 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5172 	if (ret) {
5173 		btrfs_free_reserved_data_space(inode, num_bytes);
5174 		return ret;
5175 	}
5176 
5177 	return 0;
5178 }
5179 
5180 /**
5181  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5182  * @inode: inode we're releasing space for
5183  * @num_bytes: the number of bytes we want to free up
5184  *
5185  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5186  * called in the case that we don't need the metadata AND data reservations
5187  * anymore.  So if there is an error or we insert an inline extent.
5188  *
5189  * This function will release the metadata space that was not used and will
5190  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5191  * list if there are no delalloc bytes left.
5192  */
5193 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5194 {
5195 	btrfs_delalloc_release_metadata(inode, num_bytes);
5196 	btrfs_free_reserved_data_space(inode, num_bytes);
5197 }
5198 
5199 static int update_block_group(struct btrfs_root *root,
5200 			      u64 bytenr, u64 num_bytes, int alloc)
5201 {
5202 	struct btrfs_block_group_cache *cache = NULL;
5203 	struct btrfs_fs_info *info = root->fs_info;
5204 	u64 total = num_bytes;
5205 	u64 old_val;
5206 	u64 byte_in_group;
5207 	int factor;
5208 
5209 	/* block accounting for super block */
5210 	spin_lock(&info->delalloc_root_lock);
5211 	old_val = btrfs_super_bytes_used(info->super_copy);
5212 	if (alloc)
5213 		old_val += num_bytes;
5214 	else
5215 		old_val -= num_bytes;
5216 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5217 	spin_unlock(&info->delalloc_root_lock);
5218 
5219 	while (total) {
5220 		cache = btrfs_lookup_block_group(info, bytenr);
5221 		if (!cache)
5222 			return -ENOENT;
5223 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5224 				    BTRFS_BLOCK_GROUP_RAID1 |
5225 				    BTRFS_BLOCK_GROUP_RAID10))
5226 			factor = 2;
5227 		else
5228 			factor = 1;
5229 		/*
5230 		 * If this block group has free space cache written out, we
5231 		 * need to make sure to load it if we are removing space.  This
5232 		 * is because we need the unpinning stage to actually add the
5233 		 * space back to the block group, otherwise we will leak space.
5234 		 */
5235 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5236 			cache_block_group(cache, 1);
5237 
5238 		byte_in_group = bytenr - cache->key.objectid;
5239 		WARN_ON(byte_in_group > cache->key.offset);
5240 
5241 		spin_lock(&cache->space_info->lock);
5242 		spin_lock(&cache->lock);
5243 
5244 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5245 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5246 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5247 
5248 		cache->dirty = 1;
5249 		old_val = btrfs_block_group_used(&cache->item);
5250 		num_bytes = min(total, cache->key.offset - byte_in_group);
5251 		if (alloc) {
5252 			old_val += num_bytes;
5253 			btrfs_set_block_group_used(&cache->item, old_val);
5254 			cache->reserved -= num_bytes;
5255 			cache->space_info->bytes_reserved -= num_bytes;
5256 			cache->space_info->bytes_used += num_bytes;
5257 			cache->space_info->disk_used += num_bytes * factor;
5258 			spin_unlock(&cache->lock);
5259 			spin_unlock(&cache->space_info->lock);
5260 		} else {
5261 			old_val -= num_bytes;
5262 			btrfs_set_block_group_used(&cache->item, old_val);
5263 			cache->pinned += num_bytes;
5264 			cache->space_info->bytes_pinned += num_bytes;
5265 			cache->space_info->bytes_used -= num_bytes;
5266 			cache->space_info->disk_used -= num_bytes * factor;
5267 			spin_unlock(&cache->lock);
5268 			spin_unlock(&cache->space_info->lock);
5269 
5270 			set_extent_dirty(info->pinned_extents,
5271 					 bytenr, bytenr + num_bytes - 1,
5272 					 GFP_NOFS | __GFP_NOFAIL);
5273 		}
5274 		btrfs_put_block_group(cache);
5275 		total -= num_bytes;
5276 		bytenr += num_bytes;
5277 	}
5278 	return 0;
5279 }
5280 
5281 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5282 {
5283 	struct btrfs_block_group_cache *cache;
5284 	u64 bytenr;
5285 
5286 	spin_lock(&root->fs_info->block_group_cache_lock);
5287 	bytenr = root->fs_info->first_logical_byte;
5288 	spin_unlock(&root->fs_info->block_group_cache_lock);
5289 
5290 	if (bytenr < (u64)-1)
5291 		return bytenr;
5292 
5293 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5294 	if (!cache)
5295 		return 0;
5296 
5297 	bytenr = cache->key.objectid;
5298 	btrfs_put_block_group(cache);
5299 
5300 	return bytenr;
5301 }
5302 
5303 static int pin_down_extent(struct btrfs_root *root,
5304 			   struct btrfs_block_group_cache *cache,
5305 			   u64 bytenr, u64 num_bytes, int reserved)
5306 {
5307 	spin_lock(&cache->space_info->lock);
5308 	spin_lock(&cache->lock);
5309 	cache->pinned += num_bytes;
5310 	cache->space_info->bytes_pinned += num_bytes;
5311 	if (reserved) {
5312 		cache->reserved -= num_bytes;
5313 		cache->space_info->bytes_reserved -= num_bytes;
5314 	}
5315 	spin_unlock(&cache->lock);
5316 	spin_unlock(&cache->space_info->lock);
5317 
5318 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5319 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5320 	if (reserved)
5321 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5322 	return 0;
5323 }
5324 
5325 /*
5326  * this function must be called within transaction
5327  */
5328 int btrfs_pin_extent(struct btrfs_root *root,
5329 		     u64 bytenr, u64 num_bytes, int reserved)
5330 {
5331 	struct btrfs_block_group_cache *cache;
5332 
5333 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5334 	BUG_ON(!cache); /* Logic error */
5335 
5336 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5337 
5338 	btrfs_put_block_group(cache);
5339 	return 0;
5340 }
5341 
5342 /*
5343  * this function must be called within transaction
5344  */
5345 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5346 				    u64 bytenr, u64 num_bytes)
5347 {
5348 	struct btrfs_block_group_cache *cache;
5349 	int ret;
5350 
5351 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5352 	if (!cache)
5353 		return -EINVAL;
5354 
5355 	/*
5356 	 * pull in the free space cache (if any) so that our pin
5357 	 * removes the free space from the cache.  We have load_only set
5358 	 * to one because the slow code to read in the free extents does check
5359 	 * the pinned extents.
5360 	 */
5361 	cache_block_group(cache, 1);
5362 
5363 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5364 
5365 	/* remove us from the free space cache (if we're there at all) */
5366 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5367 	btrfs_put_block_group(cache);
5368 	return ret;
5369 }
5370 
5371 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5372 {
5373 	int ret;
5374 	struct btrfs_block_group_cache *block_group;
5375 	struct btrfs_caching_control *caching_ctl;
5376 
5377 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5378 	if (!block_group)
5379 		return -EINVAL;
5380 
5381 	cache_block_group(block_group, 0);
5382 	caching_ctl = get_caching_control(block_group);
5383 
5384 	if (!caching_ctl) {
5385 		/* Logic error */
5386 		BUG_ON(!block_group_cache_done(block_group));
5387 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5388 	} else {
5389 		mutex_lock(&caching_ctl->mutex);
5390 
5391 		if (start >= caching_ctl->progress) {
5392 			ret = add_excluded_extent(root, start, num_bytes);
5393 		} else if (start + num_bytes <= caching_ctl->progress) {
5394 			ret = btrfs_remove_free_space(block_group,
5395 						      start, num_bytes);
5396 		} else {
5397 			num_bytes = caching_ctl->progress - start;
5398 			ret = btrfs_remove_free_space(block_group,
5399 						      start, num_bytes);
5400 			if (ret)
5401 				goto out_lock;
5402 
5403 			num_bytes = (start + num_bytes) -
5404 				caching_ctl->progress;
5405 			start = caching_ctl->progress;
5406 			ret = add_excluded_extent(root, start, num_bytes);
5407 		}
5408 out_lock:
5409 		mutex_unlock(&caching_ctl->mutex);
5410 		put_caching_control(caching_ctl);
5411 	}
5412 	btrfs_put_block_group(block_group);
5413 	return ret;
5414 }
5415 
5416 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5417 				 struct extent_buffer *eb)
5418 {
5419 	struct btrfs_file_extent_item *item;
5420 	struct btrfs_key key;
5421 	int found_type;
5422 	int i;
5423 
5424 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5425 		return 0;
5426 
5427 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5428 		btrfs_item_key_to_cpu(eb, &key, i);
5429 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5430 			continue;
5431 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5432 		found_type = btrfs_file_extent_type(eb, item);
5433 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5434 			continue;
5435 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5436 			continue;
5437 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5438 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5439 		__exclude_logged_extent(log, key.objectid, key.offset);
5440 	}
5441 
5442 	return 0;
5443 }
5444 
5445 /**
5446  * btrfs_update_reserved_bytes - update the block_group and space info counters
5447  * @cache:	The cache we are manipulating
5448  * @num_bytes:	The number of bytes in question
5449  * @reserve:	One of the reservation enums
5450  *
5451  * This is called by the allocator when it reserves space, or by somebody who is
5452  * freeing space that was never actually used on disk.  For example if you
5453  * reserve some space for a new leaf in transaction A and before transaction A
5454  * commits you free that leaf, you call this with reserve set to 0 in order to
5455  * clear the reservation.
5456  *
5457  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5458  * ENOSPC accounting.  For data we handle the reservation through clearing the
5459  * delalloc bits in the io_tree.  We have to do this since we could end up
5460  * allocating less disk space for the amount of data we have reserved in the
5461  * case of compression.
5462  *
5463  * If this is a reservation and the block group has become read only we cannot
5464  * make the reservation and return -EAGAIN, otherwise this function always
5465  * succeeds.
5466  */
5467 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5468 				       u64 num_bytes, int reserve)
5469 {
5470 	struct btrfs_space_info *space_info = cache->space_info;
5471 	int ret = 0;
5472 
5473 	spin_lock(&space_info->lock);
5474 	spin_lock(&cache->lock);
5475 	if (reserve != RESERVE_FREE) {
5476 		if (cache->ro) {
5477 			ret = -EAGAIN;
5478 		} else {
5479 			cache->reserved += num_bytes;
5480 			space_info->bytes_reserved += num_bytes;
5481 			if (reserve == RESERVE_ALLOC) {
5482 				trace_btrfs_space_reservation(cache->fs_info,
5483 						"space_info", space_info->flags,
5484 						num_bytes, 0);
5485 				space_info->bytes_may_use -= num_bytes;
5486 			}
5487 		}
5488 	} else {
5489 		if (cache->ro)
5490 			space_info->bytes_readonly += num_bytes;
5491 		cache->reserved -= num_bytes;
5492 		space_info->bytes_reserved -= num_bytes;
5493 	}
5494 	spin_unlock(&cache->lock);
5495 	spin_unlock(&space_info->lock);
5496 	return ret;
5497 }
5498 
5499 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5500 				struct btrfs_root *root)
5501 {
5502 	struct btrfs_fs_info *fs_info = root->fs_info;
5503 	struct btrfs_caching_control *next;
5504 	struct btrfs_caching_control *caching_ctl;
5505 	struct btrfs_block_group_cache *cache;
5506 	struct btrfs_space_info *space_info;
5507 
5508 	down_write(&fs_info->extent_commit_sem);
5509 
5510 	list_for_each_entry_safe(caching_ctl, next,
5511 				 &fs_info->caching_block_groups, list) {
5512 		cache = caching_ctl->block_group;
5513 		if (block_group_cache_done(cache)) {
5514 			cache->last_byte_to_unpin = (u64)-1;
5515 			list_del_init(&caching_ctl->list);
5516 			put_caching_control(caching_ctl);
5517 		} else {
5518 			cache->last_byte_to_unpin = caching_ctl->progress;
5519 		}
5520 	}
5521 
5522 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5523 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5524 	else
5525 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5526 
5527 	up_write(&fs_info->extent_commit_sem);
5528 
5529 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5530 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5531 
5532 	update_global_block_rsv(fs_info);
5533 }
5534 
5535 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5536 {
5537 	struct btrfs_fs_info *fs_info = root->fs_info;
5538 	struct btrfs_block_group_cache *cache = NULL;
5539 	struct btrfs_space_info *space_info;
5540 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5541 	u64 len;
5542 	bool readonly;
5543 
5544 	while (start <= end) {
5545 		readonly = false;
5546 		if (!cache ||
5547 		    start >= cache->key.objectid + cache->key.offset) {
5548 			if (cache)
5549 				btrfs_put_block_group(cache);
5550 			cache = btrfs_lookup_block_group(fs_info, start);
5551 			BUG_ON(!cache); /* Logic error */
5552 		}
5553 
5554 		len = cache->key.objectid + cache->key.offset - start;
5555 		len = min(len, end + 1 - start);
5556 
5557 		if (start < cache->last_byte_to_unpin) {
5558 			len = min(len, cache->last_byte_to_unpin - start);
5559 			btrfs_add_free_space(cache, start, len);
5560 		}
5561 
5562 		start += len;
5563 		space_info = cache->space_info;
5564 
5565 		spin_lock(&space_info->lock);
5566 		spin_lock(&cache->lock);
5567 		cache->pinned -= len;
5568 		space_info->bytes_pinned -= len;
5569 		if (cache->ro) {
5570 			space_info->bytes_readonly += len;
5571 			readonly = true;
5572 		}
5573 		spin_unlock(&cache->lock);
5574 		if (!readonly && global_rsv->space_info == space_info) {
5575 			spin_lock(&global_rsv->lock);
5576 			if (!global_rsv->full) {
5577 				len = min(len, global_rsv->size -
5578 					  global_rsv->reserved);
5579 				global_rsv->reserved += len;
5580 				space_info->bytes_may_use += len;
5581 				if (global_rsv->reserved >= global_rsv->size)
5582 					global_rsv->full = 1;
5583 			}
5584 			spin_unlock(&global_rsv->lock);
5585 		}
5586 		spin_unlock(&space_info->lock);
5587 	}
5588 
5589 	if (cache)
5590 		btrfs_put_block_group(cache);
5591 	return 0;
5592 }
5593 
5594 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5595 			       struct btrfs_root *root)
5596 {
5597 	struct btrfs_fs_info *fs_info = root->fs_info;
5598 	struct extent_io_tree *unpin;
5599 	u64 start;
5600 	u64 end;
5601 	int ret;
5602 
5603 	if (trans->aborted)
5604 		return 0;
5605 
5606 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5607 		unpin = &fs_info->freed_extents[1];
5608 	else
5609 		unpin = &fs_info->freed_extents[0];
5610 
5611 	while (1) {
5612 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5613 					    EXTENT_DIRTY, NULL);
5614 		if (ret)
5615 			break;
5616 
5617 		if (btrfs_test_opt(root, DISCARD))
5618 			ret = btrfs_discard_extent(root, start,
5619 						   end + 1 - start, NULL);
5620 
5621 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5622 		unpin_extent_range(root, start, end);
5623 		cond_resched();
5624 	}
5625 
5626 	return 0;
5627 }
5628 
5629 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5630 			     u64 owner, u64 root_objectid)
5631 {
5632 	struct btrfs_space_info *space_info;
5633 	u64 flags;
5634 
5635 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5636 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5637 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5638 		else
5639 			flags = BTRFS_BLOCK_GROUP_METADATA;
5640 	} else {
5641 		flags = BTRFS_BLOCK_GROUP_DATA;
5642 	}
5643 
5644 	space_info = __find_space_info(fs_info, flags);
5645 	BUG_ON(!space_info); /* Logic bug */
5646 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5647 }
5648 
5649 
5650 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5651 				struct btrfs_root *root,
5652 				u64 bytenr, u64 num_bytes, u64 parent,
5653 				u64 root_objectid, u64 owner_objectid,
5654 				u64 owner_offset, int refs_to_drop,
5655 				struct btrfs_delayed_extent_op *extent_op)
5656 {
5657 	struct btrfs_key key;
5658 	struct btrfs_path *path;
5659 	struct btrfs_fs_info *info = root->fs_info;
5660 	struct btrfs_root *extent_root = info->extent_root;
5661 	struct extent_buffer *leaf;
5662 	struct btrfs_extent_item *ei;
5663 	struct btrfs_extent_inline_ref *iref;
5664 	int ret;
5665 	int is_data;
5666 	int extent_slot = 0;
5667 	int found_extent = 0;
5668 	int num_to_del = 1;
5669 	u32 item_size;
5670 	u64 refs;
5671 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5672 						 SKINNY_METADATA);
5673 
5674 	path = btrfs_alloc_path();
5675 	if (!path)
5676 		return -ENOMEM;
5677 
5678 	path->reada = 1;
5679 	path->leave_spinning = 1;
5680 
5681 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5682 	BUG_ON(!is_data && refs_to_drop != 1);
5683 
5684 	if (is_data)
5685 		skinny_metadata = 0;
5686 
5687 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5688 				    bytenr, num_bytes, parent,
5689 				    root_objectid, owner_objectid,
5690 				    owner_offset);
5691 	if (ret == 0) {
5692 		extent_slot = path->slots[0];
5693 		while (extent_slot >= 0) {
5694 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5695 					      extent_slot);
5696 			if (key.objectid != bytenr)
5697 				break;
5698 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5699 			    key.offset == num_bytes) {
5700 				found_extent = 1;
5701 				break;
5702 			}
5703 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5704 			    key.offset == owner_objectid) {
5705 				found_extent = 1;
5706 				break;
5707 			}
5708 			if (path->slots[0] - extent_slot > 5)
5709 				break;
5710 			extent_slot--;
5711 		}
5712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5713 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5714 		if (found_extent && item_size < sizeof(*ei))
5715 			found_extent = 0;
5716 #endif
5717 		if (!found_extent) {
5718 			BUG_ON(iref);
5719 			ret = remove_extent_backref(trans, extent_root, path,
5720 						    NULL, refs_to_drop,
5721 						    is_data);
5722 			if (ret) {
5723 				btrfs_abort_transaction(trans, extent_root, ret);
5724 				goto out;
5725 			}
5726 			btrfs_release_path(path);
5727 			path->leave_spinning = 1;
5728 
5729 			key.objectid = bytenr;
5730 			key.type = BTRFS_EXTENT_ITEM_KEY;
5731 			key.offset = num_bytes;
5732 
5733 			if (!is_data && skinny_metadata) {
5734 				key.type = BTRFS_METADATA_ITEM_KEY;
5735 				key.offset = owner_objectid;
5736 			}
5737 
5738 			ret = btrfs_search_slot(trans, extent_root,
5739 						&key, path, -1, 1);
5740 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5741 				/*
5742 				 * Couldn't find our skinny metadata item,
5743 				 * see if we have ye olde extent item.
5744 				 */
5745 				path->slots[0]--;
5746 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5747 						      path->slots[0]);
5748 				if (key.objectid == bytenr &&
5749 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5750 				    key.offset == num_bytes)
5751 					ret = 0;
5752 			}
5753 
5754 			if (ret > 0 && skinny_metadata) {
5755 				skinny_metadata = false;
5756 				key.type = BTRFS_EXTENT_ITEM_KEY;
5757 				key.offset = num_bytes;
5758 				btrfs_release_path(path);
5759 				ret = btrfs_search_slot(trans, extent_root,
5760 							&key, path, -1, 1);
5761 			}
5762 
5763 			if (ret) {
5764 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5765 					ret, bytenr);
5766 				if (ret > 0)
5767 					btrfs_print_leaf(extent_root,
5768 							 path->nodes[0]);
5769 			}
5770 			if (ret < 0) {
5771 				btrfs_abort_transaction(trans, extent_root, ret);
5772 				goto out;
5773 			}
5774 			extent_slot = path->slots[0];
5775 		}
5776 	} else if (WARN_ON(ret == -ENOENT)) {
5777 		btrfs_print_leaf(extent_root, path->nodes[0]);
5778 		btrfs_err(info,
5779 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5780 			bytenr, parent, root_objectid, owner_objectid,
5781 			owner_offset);
5782 	} else {
5783 		btrfs_abort_transaction(trans, extent_root, ret);
5784 		goto out;
5785 	}
5786 
5787 	leaf = path->nodes[0];
5788 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5789 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5790 	if (item_size < sizeof(*ei)) {
5791 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5792 		ret = convert_extent_item_v0(trans, extent_root, path,
5793 					     owner_objectid, 0);
5794 		if (ret < 0) {
5795 			btrfs_abort_transaction(trans, extent_root, ret);
5796 			goto out;
5797 		}
5798 
5799 		btrfs_release_path(path);
5800 		path->leave_spinning = 1;
5801 
5802 		key.objectid = bytenr;
5803 		key.type = BTRFS_EXTENT_ITEM_KEY;
5804 		key.offset = num_bytes;
5805 
5806 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5807 					-1, 1);
5808 		if (ret) {
5809 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5810 				ret, bytenr);
5811 			btrfs_print_leaf(extent_root, path->nodes[0]);
5812 		}
5813 		if (ret < 0) {
5814 			btrfs_abort_transaction(trans, extent_root, ret);
5815 			goto out;
5816 		}
5817 
5818 		extent_slot = path->slots[0];
5819 		leaf = path->nodes[0];
5820 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5821 	}
5822 #endif
5823 	BUG_ON(item_size < sizeof(*ei));
5824 	ei = btrfs_item_ptr(leaf, extent_slot,
5825 			    struct btrfs_extent_item);
5826 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5827 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5828 		struct btrfs_tree_block_info *bi;
5829 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5830 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5831 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5832 	}
5833 
5834 	refs = btrfs_extent_refs(leaf, ei);
5835 	if (refs < refs_to_drop) {
5836 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5837 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5838 		ret = -EINVAL;
5839 		btrfs_abort_transaction(trans, extent_root, ret);
5840 		goto out;
5841 	}
5842 	refs -= refs_to_drop;
5843 
5844 	if (refs > 0) {
5845 		if (extent_op)
5846 			__run_delayed_extent_op(extent_op, leaf, ei);
5847 		/*
5848 		 * In the case of inline back ref, reference count will
5849 		 * be updated by remove_extent_backref
5850 		 */
5851 		if (iref) {
5852 			BUG_ON(!found_extent);
5853 		} else {
5854 			btrfs_set_extent_refs(leaf, ei, refs);
5855 			btrfs_mark_buffer_dirty(leaf);
5856 		}
5857 		if (found_extent) {
5858 			ret = remove_extent_backref(trans, extent_root, path,
5859 						    iref, refs_to_drop,
5860 						    is_data);
5861 			if (ret) {
5862 				btrfs_abort_transaction(trans, extent_root, ret);
5863 				goto out;
5864 			}
5865 		}
5866 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5867 				 root_objectid);
5868 	} else {
5869 		if (found_extent) {
5870 			BUG_ON(is_data && refs_to_drop !=
5871 			       extent_data_ref_count(root, path, iref));
5872 			if (iref) {
5873 				BUG_ON(path->slots[0] != extent_slot);
5874 			} else {
5875 				BUG_ON(path->slots[0] != extent_slot + 1);
5876 				path->slots[0] = extent_slot;
5877 				num_to_del = 2;
5878 			}
5879 		}
5880 
5881 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5882 				      num_to_del);
5883 		if (ret) {
5884 			btrfs_abort_transaction(trans, extent_root, ret);
5885 			goto out;
5886 		}
5887 		btrfs_release_path(path);
5888 
5889 		if (is_data) {
5890 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5891 			if (ret) {
5892 				btrfs_abort_transaction(trans, extent_root, ret);
5893 				goto out;
5894 			}
5895 		}
5896 
5897 		ret = update_block_group(root, bytenr, num_bytes, 0);
5898 		if (ret) {
5899 			btrfs_abort_transaction(trans, extent_root, ret);
5900 			goto out;
5901 		}
5902 	}
5903 out:
5904 	btrfs_free_path(path);
5905 	return ret;
5906 }
5907 
5908 /*
5909  * when we free an block, it is possible (and likely) that we free the last
5910  * delayed ref for that extent as well.  This searches the delayed ref tree for
5911  * a given extent, and if there are no other delayed refs to be processed, it
5912  * removes it from the tree.
5913  */
5914 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5915 				      struct btrfs_root *root, u64 bytenr)
5916 {
5917 	struct btrfs_delayed_ref_head *head;
5918 	struct btrfs_delayed_ref_root *delayed_refs;
5919 	struct btrfs_delayed_ref_node *ref;
5920 	struct rb_node *node;
5921 	int ret = 0;
5922 
5923 	delayed_refs = &trans->transaction->delayed_refs;
5924 	spin_lock(&delayed_refs->lock);
5925 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5926 	if (!head)
5927 		goto out;
5928 
5929 	node = rb_prev(&head->node.rb_node);
5930 	if (!node)
5931 		goto out;
5932 
5933 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5934 
5935 	/* there are still entries for this ref, we can't drop it */
5936 	if (ref->bytenr == bytenr)
5937 		goto out;
5938 
5939 	if (head->extent_op) {
5940 		if (!head->must_insert_reserved)
5941 			goto out;
5942 		btrfs_free_delayed_extent_op(head->extent_op);
5943 		head->extent_op = NULL;
5944 	}
5945 
5946 	/*
5947 	 * waiting for the lock here would deadlock.  If someone else has it
5948 	 * locked they are already in the process of dropping it anyway
5949 	 */
5950 	if (!mutex_trylock(&head->mutex))
5951 		goto out;
5952 
5953 	/*
5954 	 * at this point we have a head with no other entries.  Go
5955 	 * ahead and process it.
5956 	 */
5957 	head->node.in_tree = 0;
5958 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5959 
5960 	delayed_refs->num_entries--;
5961 
5962 	/*
5963 	 * we don't take a ref on the node because we're removing it from the
5964 	 * tree, so we just steal the ref the tree was holding.
5965 	 */
5966 	delayed_refs->num_heads--;
5967 	if (list_empty(&head->cluster))
5968 		delayed_refs->num_heads_ready--;
5969 
5970 	list_del_init(&head->cluster);
5971 	spin_unlock(&delayed_refs->lock);
5972 
5973 	BUG_ON(head->extent_op);
5974 	if (head->must_insert_reserved)
5975 		ret = 1;
5976 
5977 	mutex_unlock(&head->mutex);
5978 	btrfs_put_delayed_ref(&head->node);
5979 	return ret;
5980 out:
5981 	spin_unlock(&delayed_refs->lock);
5982 	return 0;
5983 }
5984 
5985 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5986 			   struct btrfs_root *root,
5987 			   struct extent_buffer *buf,
5988 			   u64 parent, int last_ref)
5989 {
5990 	struct btrfs_block_group_cache *cache = NULL;
5991 	int pin = 1;
5992 	int ret;
5993 
5994 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5995 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5996 					buf->start, buf->len,
5997 					parent, root->root_key.objectid,
5998 					btrfs_header_level(buf),
5999 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6000 		BUG_ON(ret); /* -ENOMEM */
6001 	}
6002 
6003 	if (!last_ref)
6004 		return;
6005 
6006 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6007 
6008 	if (btrfs_header_generation(buf) == trans->transid) {
6009 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6010 			ret = check_ref_cleanup(trans, root, buf->start);
6011 			if (!ret)
6012 				goto out;
6013 		}
6014 
6015 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6016 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6017 			goto out;
6018 		}
6019 
6020 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6021 
6022 		btrfs_add_free_space(cache, buf->start, buf->len);
6023 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6024 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6025 		pin = 0;
6026 	}
6027 out:
6028 	if (pin)
6029 		add_pinned_bytes(root->fs_info, buf->len,
6030 				 btrfs_header_level(buf),
6031 				 root->root_key.objectid);
6032 
6033 	/*
6034 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6035 	 * anymore.
6036 	 */
6037 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6038 	btrfs_put_block_group(cache);
6039 }
6040 
6041 /* Can return -ENOMEM */
6042 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6043 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6044 		      u64 owner, u64 offset, int for_cow)
6045 {
6046 	int ret;
6047 	struct btrfs_fs_info *fs_info = root->fs_info;
6048 
6049 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6050 
6051 	/*
6052 	 * tree log blocks never actually go into the extent allocation
6053 	 * tree, just update pinning info and exit early.
6054 	 */
6055 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6056 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6057 		/* unlocks the pinned mutex */
6058 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6059 		ret = 0;
6060 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6061 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6062 					num_bytes,
6063 					parent, root_objectid, (int)owner,
6064 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6065 	} else {
6066 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6067 						num_bytes,
6068 						parent, root_objectid, owner,
6069 						offset, BTRFS_DROP_DELAYED_REF,
6070 						NULL, for_cow);
6071 	}
6072 	return ret;
6073 }
6074 
6075 static u64 stripe_align(struct btrfs_root *root,
6076 			struct btrfs_block_group_cache *cache,
6077 			u64 val, u64 num_bytes)
6078 {
6079 	u64 ret = ALIGN(val, root->stripesize);
6080 	return ret;
6081 }
6082 
6083 /*
6084  * when we wait for progress in the block group caching, its because
6085  * our allocation attempt failed at least once.  So, we must sleep
6086  * and let some progress happen before we try again.
6087  *
6088  * This function will sleep at least once waiting for new free space to
6089  * show up, and then it will check the block group free space numbers
6090  * for our min num_bytes.  Another option is to have it go ahead
6091  * and look in the rbtree for a free extent of a given size, but this
6092  * is a good start.
6093  *
6094  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6095  * any of the information in this block group.
6096  */
6097 static noinline void
6098 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6099 				u64 num_bytes)
6100 {
6101 	struct btrfs_caching_control *caching_ctl;
6102 
6103 	caching_ctl = get_caching_control(cache);
6104 	if (!caching_ctl)
6105 		return;
6106 
6107 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6108 		   (cache->free_space_ctl->free_space >= num_bytes));
6109 
6110 	put_caching_control(caching_ctl);
6111 }
6112 
6113 static noinline int
6114 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6115 {
6116 	struct btrfs_caching_control *caching_ctl;
6117 	int ret = 0;
6118 
6119 	caching_ctl = get_caching_control(cache);
6120 	if (!caching_ctl)
6121 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6122 
6123 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6124 	if (cache->cached == BTRFS_CACHE_ERROR)
6125 		ret = -EIO;
6126 	put_caching_control(caching_ctl);
6127 	return ret;
6128 }
6129 
6130 int __get_raid_index(u64 flags)
6131 {
6132 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6133 		return BTRFS_RAID_RAID10;
6134 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6135 		return BTRFS_RAID_RAID1;
6136 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6137 		return BTRFS_RAID_DUP;
6138 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6139 		return BTRFS_RAID_RAID0;
6140 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6141 		return BTRFS_RAID_RAID5;
6142 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6143 		return BTRFS_RAID_RAID6;
6144 
6145 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6146 }
6147 
6148 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6149 {
6150 	return __get_raid_index(cache->flags);
6151 }
6152 
6153 enum btrfs_loop_type {
6154 	LOOP_CACHING_NOWAIT = 0,
6155 	LOOP_CACHING_WAIT = 1,
6156 	LOOP_ALLOC_CHUNK = 2,
6157 	LOOP_NO_EMPTY_SIZE = 3,
6158 };
6159 
6160 /*
6161  * walks the btree of allocated extents and find a hole of a given size.
6162  * The key ins is changed to record the hole:
6163  * ins->objectid == start position
6164  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6165  * ins->offset == the size of the hole.
6166  * Any available blocks before search_start are skipped.
6167  *
6168  * If there is no suitable free space, we will record the max size of
6169  * the free space extent currently.
6170  */
6171 static noinline int find_free_extent(struct btrfs_root *orig_root,
6172 				     u64 num_bytes, u64 empty_size,
6173 				     u64 hint_byte, struct btrfs_key *ins,
6174 				     u64 flags)
6175 {
6176 	int ret = 0;
6177 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6178 	struct btrfs_free_cluster *last_ptr = NULL;
6179 	struct btrfs_block_group_cache *block_group = NULL;
6180 	struct btrfs_block_group_cache *used_block_group;
6181 	u64 search_start = 0;
6182 	u64 max_extent_size = 0;
6183 	int empty_cluster = 2 * 1024 * 1024;
6184 	struct btrfs_space_info *space_info;
6185 	int loop = 0;
6186 	int index = __get_raid_index(flags);
6187 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6188 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6189 	bool found_uncached_bg = false;
6190 	bool failed_cluster_refill = false;
6191 	bool failed_alloc = false;
6192 	bool use_cluster = true;
6193 	bool have_caching_bg = false;
6194 
6195 	WARN_ON(num_bytes < root->sectorsize);
6196 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6197 	ins->objectid = 0;
6198 	ins->offset = 0;
6199 
6200 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6201 
6202 	space_info = __find_space_info(root->fs_info, flags);
6203 	if (!space_info) {
6204 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6205 		return -ENOSPC;
6206 	}
6207 
6208 	/*
6209 	 * If the space info is for both data and metadata it means we have a
6210 	 * small filesystem and we can't use the clustering stuff.
6211 	 */
6212 	if (btrfs_mixed_space_info(space_info))
6213 		use_cluster = false;
6214 
6215 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6216 		last_ptr = &root->fs_info->meta_alloc_cluster;
6217 		if (!btrfs_test_opt(root, SSD))
6218 			empty_cluster = 64 * 1024;
6219 	}
6220 
6221 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6222 	    btrfs_test_opt(root, SSD)) {
6223 		last_ptr = &root->fs_info->data_alloc_cluster;
6224 	}
6225 
6226 	if (last_ptr) {
6227 		spin_lock(&last_ptr->lock);
6228 		if (last_ptr->block_group)
6229 			hint_byte = last_ptr->window_start;
6230 		spin_unlock(&last_ptr->lock);
6231 	}
6232 
6233 	search_start = max(search_start, first_logical_byte(root, 0));
6234 	search_start = max(search_start, hint_byte);
6235 
6236 	if (!last_ptr)
6237 		empty_cluster = 0;
6238 
6239 	if (search_start == hint_byte) {
6240 		block_group = btrfs_lookup_block_group(root->fs_info,
6241 						       search_start);
6242 		used_block_group = block_group;
6243 		/*
6244 		 * we don't want to use the block group if it doesn't match our
6245 		 * allocation bits, or if its not cached.
6246 		 *
6247 		 * However if we are re-searching with an ideal block group
6248 		 * picked out then we don't care that the block group is cached.
6249 		 */
6250 		if (block_group && block_group_bits(block_group, flags) &&
6251 		    block_group->cached != BTRFS_CACHE_NO) {
6252 			down_read(&space_info->groups_sem);
6253 			if (list_empty(&block_group->list) ||
6254 			    block_group->ro) {
6255 				/*
6256 				 * someone is removing this block group,
6257 				 * we can't jump into the have_block_group
6258 				 * target because our list pointers are not
6259 				 * valid
6260 				 */
6261 				btrfs_put_block_group(block_group);
6262 				up_read(&space_info->groups_sem);
6263 			} else {
6264 				index = get_block_group_index(block_group);
6265 				goto have_block_group;
6266 			}
6267 		} else if (block_group) {
6268 			btrfs_put_block_group(block_group);
6269 		}
6270 	}
6271 search:
6272 	have_caching_bg = false;
6273 	down_read(&space_info->groups_sem);
6274 	list_for_each_entry(block_group, &space_info->block_groups[index],
6275 			    list) {
6276 		u64 offset;
6277 		int cached;
6278 
6279 		used_block_group = block_group;
6280 		btrfs_get_block_group(block_group);
6281 		search_start = block_group->key.objectid;
6282 
6283 		/*
6284 		 * this can happen if we end up cycling through all the
6285 		 * raid types, but we want to make sure we only allocate
6286 		 * for the proper type.
6287 		 */
6288 		if (!block_group_bits(block_group, flags)) {
6289 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6290 				BTRFS_BLOCK_GROUP_RAID1 |
6291 				BTRFS_BLOCK_GROUP_RAID5 |
6292 				BTRFS_BLOCK_GROUP_RAID6 |
6293 				BTRFS_BLOCK_GROUP_RAID10;
6294 
6295 			/*
6296 			 * if they asked for extra copies and this block group
6297 			 * doesn't provide them, bail.  This does allow us to
6298 			 * fill raid0 from raid1.
6299 			 */
6300 			if ((flags & extra) && !(block_group->flags & extra))
6301 				goto loop;
6302 		}
6303 
6304 have_block_group:
6305 		cached = block_group_cache_done(block_group);
6306 		if (unlikely(!cached)) {
6307 			found_uncached_bg = true;
6308 			ret = cache_block_group(block_group, 0);
6309 			BUG_ON(ret < 0);
6310 			ret = 0;
6311 		}
6312 
6313 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6314 			goto loop;
6315 		if (unlikely(block_group->ro))
6316 			goto loop;
6317 
6318 		/*
6319 		 * Ok we want to try and use the cluster allocator, so
6320 		 * lets look there
6321 		 */
6322 		if (last_ptr) {
6323 			unsigned long aligned_cluster;
6324 			/*
6325 			 * the refill lock keeps out other
6326 			 * people trying to start a new cluster
6327 			 */
6328 			spin_lock(&last_ptr->refill_lock);
6329 			used_block_group = last_ptr->block_group;
6330 			if (used_block_group != block_group &&
6331 			    (!used_block_group ||
6332 			     used_block_group->ro ||
6333 			     !block_group_bits(used_block_group, flags))) {
6334 				used_block_group = block_group;
6335 				goto refill_cluster;
6336 			}
6337 
6338 			if (used_block_group != block_group)
6339 				btrfs_get_block_group(used_block_group);
6340 
6341 			offset = btrfs_alloc_from_cluster(used_block_group,
6342 						last_ptr,
6343 						num_bytes,
6344 						used_block_group->key.objectid,
6345 						&max_extent_size);
6346 			if (offset) {
6347 				/* we have a block, we're done */
6348 				spin_unlock(&last_ptr->refill_lock);
6349 				trace_btrfs_reserve_extent_cluster(root,
6350 					block_group, search_start, num_bytes);
6351 				goto checks;
6352 			}
6353 
6354 			WARN_ON(last_ptr->block_group != used_block_group);
6355 			if (used_block_group != block_group) {
6356 				btrfs_put_block_group(used_block_group);
6357 				used_block_group = block_group;
6358 			}
6359 refill_cluster:
6360 			BUG_ON(used_block_group != block_group);
6361 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6362 			 * set up a new clusters, so lets just skip it
6363 			 * and let the allocator find whatever block
6364 			 * it can find.  If we reach this point, we
6365 			 * will have tried the cluster allocator
6366 			 * plenty of times and not have found
6367 			 * anything, so we are likely way too
6368 			 * fragmented for the clustering stuff to find
6369 			 * anything.
6370 			 *
6371 			 * However, if the cluster is taken from the
6372 			 * current block group, release the cluster
6373 			 * first, so that we stand a better chance of
6374 			 * succeeding in the unclustered
6375 			 * allocation.  */
6376 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6377 			    last_ptr->block_group != block_group) {
6378 				spin_unlock(&last_ptr->refill_lock);
6379 				goto unclustered_alloc;
6380 			}
6381 
6382 			/*
6383 			 * this cluster didn't work out, free it and
6384 			 * start over
6385 			 */
6386 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6387 
6388 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6389 				spin_unlock(&last_ptr->refill_lock);
6390 				goto unclustered_alloc;
6391 			}
6392 
6393 			aligned_cluster = max_t(unsigned long,
6394 						empty_cluster + empty_size,
6395 					      block_group->full_stripe_len);
6396 
6397 			/* allocate a cluster in this block group */
6398 			ret = btrfs_find_space_cluster(root, block_group,
6399 						       last_ptr, search_start,
6400 						       num_bytes,
6401 						       aligned_cluster);
6402 			if (ret == 0) {
6403 				/*
6404 				 * now pull our allocation out of this
6405 				 * cluster
6406 				 */
6407 				offset = btrfs_alloc_from_cluster(block_group,
6408 							last_ptr,
6409 							num_bytes,
6410 							search_start,
6411 							&max_extent_size);
6412 				if (offset) {
6413 					/* we found one, proceed */
6414 					spin_unlock(&last_ptr->refill_lock);
6415 					trace_btrfs_reserve_extent_cluster(root,
6416 						block_group, search_start,
6417 						num_bytes);
6418 					goto checks;
6419 				}
6420 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6421 				   && !failed_cluster_refill) {
6422 				spin_unlock(&last_ptr->refill_lock);
6423 
6424 				failed_cluster_refill = true;
6425 				wait_block_group_cache_progress(block_group,
6426 				       num_bytes + empty_cluster + empty_size);
6427 				goto have_block_group;
6428 			}
6429 
6430 			/*
6431 			 * at this point we either didn't find a cluster
6432 			 * or we weren't able to allocate a block from our
6433 			 * cluster.  Free the cluster we've been trying
6434 			 * to use, and go to the next block group
6435 			 */
6436 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6437 			spin_unlock(&last_ptr->refill_lock);
6438 			goto loop;
6439 		}
6440 
6441 unclustered_alloc:
6442 		spin_lock(&block_group->free_space_ctl->tree_lock);
6443 		if (cached &&
6444 		    block_group->free_space_ctl->free_space <
6445 		    num_bytes + empty_cluster + empty_size) {
6446 			if (block_group->free_space_ctl->free_space >
6447 			    max_extent_size)
6448 				max_extent_size =
6449 					block_group->free_space_ctl->free_space;
6450 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6451 			goto loop;
6452 		}
6453 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6454 
6455 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6456 						    num_bytes, empty_size,
6457 						    &max_extent_size);
6458 		/*
6459 		 * If we didn't find a chunk, and we haven't failed on this
6460 		 * block group before, and this block group is in the middle of
6461 		 * caching and we are ok with waiting, then go ahead and wait
6462 		 * for progress to be made, and set failed_alloc to true.
6463 		 *
6464 		 * If failed_alloc is true then we've already waited on this
6465 		 * block group once and should move on to the next block group.
6466 		 */
6467 		if (!offset && !failed_alloc && !cached &&
6468 		    loop > LOOP_CACHING_NOWAIT) {
6469 			wait_block_group_cache_progress(block_group,
6470 						num_bytes + empty_size);
6471 			failed_alloc = true;
6472 			goto have_block_group;
6473 		} else if (!offset) {
6474 			if (!cached)
6475 				have_caching_bg = true;
6476 			goto loop;
6477 		}
6478 checks:
6479 		search_start = stripe_align(root, used_block_group,
6480 					    offset, num_bytes);
6481 
6482 		/* move on to the next group */
6483 		if (search_start + num_bytes >
6484 		    used_block_group->key.objectid + used_block_group->key.offset) {
6485 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6486 			goto loop;
6487 		}
6488 
6489 		if (offset < search_start)
6490 			btrfs_add_free_space(used_block_group, offset,
6491 					     search_start - offset);
6492 		BUG_ON(offset > search_start);
6493 
6494 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6495 						  alloc_type);
6496 		if (ret == -EAGAIN) {
6497 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6498 			goto loop;
6499 		}
6500 
6501 		/* we are all good, lets return */
6502 		ins->objectid = search_start;
6503 		ins->offset = num_bytes;
6504 
6505 		trace_btrfs_reserve_extent(orig_root, block_group,
6506 					   search_start, num_bytes);
6507 		if (used_block_group != block_group)
6508 			btrfs_put_block_group(used_block_group);
6509 		btrfs_put_block_group(block_group);
6510 		break;
6511 loop:
6512 		failed_cluster_refill = false;
6513 		failed_alloc = false;
6514 		BUG_ON(index != get_block_group_index(block_group));
6515 		if (used_block_group != block_group)
6516 			btrfs_put_block_group(used_block_group);
6517 		btrfs_put_block_group(block_group);
6518 	}
6519 	up_read(&space_info->groups_sem);
6520 
6521 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6522 		goto search;
6523 
6524 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6525 		goto search;
6526 
6527 	/*
6528 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6529 	 *			caching kthreads as we move along
6530 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6531 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6532 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6533 	 *			again
6534 	 */
6535 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6536 		index = 0;
6537 		loop++;
6538 		if (loop == LOOP_ALLOC_CHUNK) {
6539 			struct btrfs_trans_handle *trans;
6540 
6541 			trans = btrfs_join_transaction(root);
6542 			if (IS_ERR(trans)) {
6543 				ret = PTR_ERR(trans);
6544 				goto out;
6545 			}
6546 
6547 			ret = do_chunk_alloc(trans, root, flags,
6548 					     CHUNK_ALLOC_FORCE);
6549 			/*
6550 			 * Do not bail out on ENOSPC since we
6551 			 * can do more things.
6552 			 */
6553 			if (ret < 0 && ret != -ENOSPC)
6554 				btrfs_abort_transaction(trans,
6555 							root, ret);
6556 			else
6557 				ret = 0;
6558 			btrfs_end_transaction(trans, root);
6559 			if (ret)
6560 				goto out;
6561 		}
6562 
6563 		if (loop == LOOP_NO_EMPTY_SIZE) {
6564 			empty_size = 0;
6565 			empty_cluster = 0;
6566 		}
6567 
6568 		goto search;
6569 	} else if (!ins->objectid) {
6570 		ret = -ENOSPC;
6571 	} else if (ins->objectid) {
6572 		ret = 0;
6573 	}
6574 out:
6575 	if (ret == -ENOSPC)
6576 		ins->offset = max_extent_size;
6577 	return ret;
6578 }
6579 
6580 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6581 			    int dump_block_groups)
6582 {
6583 	struct btrfs_block_group_cache *cache;
6584 	int index = 0;
6585 
6586 	spin_lock(&info->lock);
6587 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6588 	       info->flags,
6589 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6590 	       info->bytes_reserved - info->bytes_readonly,
6591 	       (info->full) ? "" : "not ");
6592 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6593 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6594 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6595 	       info->bytes_reserved, info->bytes_may_use,
6596 	       info->bytes_readonly);
6597 	spin_unlock(&info->lock);
6598 
6599 	if (!dump_block_groups)
6600 		return;
6601 
6602 	down_read(&info->groups_sem);
6603 again:
6604 	list_for_each_entry(cache, &info->block_groups[index], list) {
6605 		spin_lock(&cache->lock);
6606 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6607 		       cache->key.objectid, cache->key.offset,
6608 		       btrfs_block_group_used(&cache->item), cache->pinned,
6609 		       cache->reserved, cache->ro ? "[readonly]" : "");
6610 		btrfs_dump_free_space(cache, bytes);
6611 		spin_unlock(&cache->lock);
6612 	}
6613 	if (++index < BTRFS_NR_RAID_TYPES)
6614 		goto again;
6615 	up_read(&info->groups_sem);
6616 }
6617 
6618 int btrfs_reserve_extent(struct btrfs_root *root,
6619 			 u64 num_bytes, u64 min_alloc_size,
6620 			 u64 empty_size, u64 hint_byte,
6621 			 struct btrfs_key *ins, int is_data)
6622 {
6623 	bool final_tried = false;
6624 	u64 flags;
6625 	int ret;
6626 
6627 	flags = btrfs_get_alloc_profile(root, is_data);
6628 again:
6629 	WARN_ON(num_bytes < root->sectorsize);
6630 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6631 			       flags);
6632 
6633 	if (ret == -ENOSPC) {
6634 		if (!final_tried && ins->offset) {
6635 			num_bytes = min(num_bytes >> 1, ins->offset);
6636 			num_bytes = round_down(num_bytes, root->sectorsize);
6637 			num_bytes = max(num_bytes, min_alloc_size);
6638 			if (num_bytes == min_alloc_size)
6639 				final_tried = true;
6640 			goto again;
6641 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6642 			struct btrfs_space_info *sinfo;
6643 
6644 			sinfo = __find_space_info(root->fs_info, flags);
6645 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6646 				flags, num_bytes);
6647 			if (sinfo)
6648 				dump_space_info(sinfo, num_bytes, 1);
6649 		}
6650 	}
6651 
6652 	return ret;
6653 }
6654 
6655 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6656 					u64 start, u64 len, int pin)
6657 {
6658 	struct btrfs_block_group_cache *cache;
6659 	int ret = 0;
6660 
6661 	cache = btrfs_lookup_block_group(root->fs_info, start);
6662 	if (!cache) {
6663 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6664 			start);
6665 		return -ENOSPC;
6666 	}
6667 
6668 	if (btrfs_test_opt(root, DISCARD))
6669 		ret = btrfs_discard_extent(root, start, len, NULL);
6670 
6671 	if (pin)
6672 		pin_down_extent(root, cache, start, len, 1);
6673 	else {
6674 		btrfs_add_free_space(cache, start, len);
6675 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6676 	}
6677 	btrfs_put_block_group(cache);
6678 
6679 	trace_btrfs_reserved_extent_free(root, start, len);
6680 
6681 	return ret;
6682 }
6683 
6684 int btrfs_free_reserved_extent(struct btrfs_root *root,
6685 					u64 start, u64 len)
6686 {
6687 	return __btrfs_free_reserved_extent(root, start, len, 0);
6688 }
6689 
6690 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6691 				       u64 start, u64 len)
6692 {
6693 	return __btrfs_free_reserved_extent(root, start, len, 1);
6694 }
6695 
6696 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6697 				      struct btrfs_root *root,
6698 				      u64 parent, u64 root_objectid,
6699 				      u64 flags, u64 owner, u64 offset,
6700 				      struct btrfs_key *ins, int ref_mod)
6701 {
6702 	int ret;
6703 	struct btrfs_fs_info *fs_info = root->fs_info;
6704 	struct btrfs_extent_item *extent_item;
6705 	struct btrfs_extent_inline_ref *iref;
6706 	struct btrfs_path *path;
6707 	struct extent_buffer *leaf;
6708 	int type;
6709 	u32 size;
6710 
6711 	if (parent > 0)
6712 		type = BTRFS_SHARED_DATA_REF_KEY;
6713 	else
6714 		type = BTRFS_EXTENT_DATA_REF_KEY;
6715 
6716 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6717 
6718 	path = btrfs_alloc_path();
6719 	if (!path)
6720 		return -ENOMEM;
6721 
6722 	path->leave_spinning = 1;
6723 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6724 				      ins, size);
6725 	if (ret) {
6726 		btrfs_free_path(path);
6727 		return ret;
6728 	}
6729 
6730 	leaf = path->nodes[0];
6731 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6732 				     struct btrfs_extent_item);
6733 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6734 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6735 	btrfs_set_extent_flags(leaf, extent_item,
6736 			       flags | BTRFS_EXTENT_FLAG_DATA);
6737 
6738 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6739 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6740 	if (parent > 0) {
6741 		struct btrfs_shared_data_ref *ref;
6742 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6743 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6744 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6745 	} else {
6746 		struct btrfs_extent_data_ref *ref;
6747 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6748 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6749 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6750 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6751 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6752 	}
6753 
6754 	btrfs_mark_buffer_dirty(path->nodes[0]);
6755 	btrfs_free_path(path);
6756 
6757 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6758 	if (ret) { /* -ENOENT, logic error */
6759 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6760 			ins->objectid, ins->offset);
6761 		BUG();
6762 	}
6763 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6764 	return ret;
6765 }
6766 
6767 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6768 				     struct btrfs_root *root,
6769 				     u64 parent, u64 root_objectid,
6770 				     u64 flags, struct btrfs_disk_key *key,
6771 				     int level, struct btrfs_key *ins)
6772 {
6773 	int ret;
6774 	struct btrfs_fs_info *fs_info = root->fs_info;
6775 	struct btrfs_extent_item *extent_item;
6776 	struct btrfs_tree_block_info *block_info;
6777 	struct btrfs_extent_inline_ref *iref;
6778 	struct btrfs_path *path;
6779 	struct extent_buffer *leaf;
6780 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6781 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6782 						 SKINNY_METADATA);
6783 
6784 	if (!skinny_metadata)
6785 		size += sizeof(*block_info);
6786 
6787 	path = btrfs_alloc_path();
6788 	if (!path) {
6789 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6790 						   root->leafsize);
6791 		return -ENOMEM;
6792 	}
6793 
6794 	path->leave_spinning = 1;
6795 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6796 				      ins, size);
6797 	if (ret) {
6798 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6799 						   root->leafsize);
6800 		btrfs_free_path(path);
6801 		return ret;
6802 	}
6803 
6804 	leaf = path->nodes[0];
6805 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6806 				     struct btrfs_extent_item);
6807 	btrfs_set_extent_refs(leaf, extent_item, 1);
6808 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6809 	btrfs_set_extent_flags(leaf, extent_item,
6810 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6811 
6812 	if (skinny_metadata) {
6813 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6814 	} else {
6815 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6816 		btrfs_set_tree_block_key(leaf, block_info, key);
6817 		btrfs_set_tree_block_level(leaf, block_info, level);
6818 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6819 	}
6820 
6821 	if (parent > 0) {
6822 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6823 		btrfs_set_extent_inline_ref_type(leaf, iref,
6824 						 BTRFS_SHARED_BLOCK_REF_KEY);
6825 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6826 	} else {
6827 		btrfs_set_extent_inline_ref_type(leaf, iref,
6828 						 BTRFS_TREE_BLOCK_REF_KEY);
6829 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6830 	}
6831 
6832 	btrfs_mark_buffer_dirty(leaf);
6833 	btrfs_free_path(path);
6834 
6835 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6836 	if (ret) { /* -ENOENT, logic error */
6837 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6838 			ins->objectid, ins->offset);
6839 		BUG();
6840 	}
6841 
6842 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6843 	return ret;
6844 }
6845 
6846 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6847 				     struct btrfs_root *root,
6848 				     u64 root_objectid, u64 owner,
6849 				     u64 offset, struct btrfs_key *ins)
6850 {
6851 	int ret;
6852 
6853 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6854 
6855 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6856 					 ins->offset, 0,
6857 					 root_objectid, owner, offset,
6858 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6859 	return ret;
6860 }
6861 
6862 /*
6863  * this is used by the tree logging recovery code.  It records that
6864  * an extent has been allocated and makes sure to clear the free
6865  * space cache bits as well
6866  */
6867 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6868 				   struct btrfs_root *root,
6869 				   u64 root_objectid, u64 owner, u64 offset,
6870 				   struct btrfs_key *ins)
6871 {
6872 	int ret;
6873 	struct btrfs_block_group_cache *block_group;
6874 
6875 	/*
6876 	 * Mixed block groups will exclude before processing the log so we only
6877 	 * need to do the exlude dance if this fs isn't mixed.
6878 	 */
6879 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6880 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6881 		if (ret)
6882 			return ret;
6883 	}
6884 
6885 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6886 	if (!block_group)
6887 		return -EINVAL;
6888 
6889 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6890 					  RESERVE_ALLOC_NO_ACCOUNT);
6891 	BUG_ON(ret); /* logic error */
6892 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6893 					 0, owner, offset, ins, 1);
6894 	btrfs_put_block_group(block_group);
6895 	return ret;
6896 }
6897 
6898 static struct extent_buffer *
6899 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6900 		      u64 bytenr, u32 blocksize, int level)
6901 {
6902 	struct extent_buffer *buf;
6903 
6904 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6905 	if (!buf)
6906 		return ERR_PTR(-ENOMEM);
6907 	btrfs_set_header_generation(buf, trans->transid);
6908 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6909 	btrfs_tree_lock(buf);
6910 	clean_tree_block(trans, root, buf);
6911 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6912 
6913 	btrfs_set_lock_blocking(buf);
6914 	btrfs_set_buffer_uptodate(buf);
6915 
6916 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6917 		/*
6918 		 * we allow two log transactions at a time, use different
6919 		 * EXENT bit to differentiate dirty pages.
6920 		 */
6921 		if (root->log_transid % 2 == 0)
6922 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6923 					buf->start + buf->len - 1, GFP_NOFS);
6924 		else
6925 			set_extent_new(&root->dirty_log_pages, buf->start,
6926 					buf->start + buf->len - 1, GFP_NOFS);
6927 	} else {
6928 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6929 			 buf->start + buf->len - 1, GFP_NOFS);
6930 	}
6931 	trans->blocks_used++;
6932 	/* this returns a buffer locked for blocking */
6933 	return buf;
6934 }
6935 
6936 static struct btrfs_block_rsv *
6937 use_block_rsv(struct btrfs_trans_handle *trans,
6938 	      struct btrfs_root *root, u32 blocksize)
6939 {
6940 	struct btrfs_block_rsv *block_rsv;
6941 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6942 	int ret;
6943 	bool global_updated = false;
6944 
6945 	block_rsv = get_block_rsv(trans, root);
6946 
6947 	if (unlikely(block_rsv->size == 0))
6948 		goto try_reserve;
6949 again:
6950 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6951 	if (!ret)
6952 		return block_rsv;
6953 
6954 	if (block_rsv->failfast)
6955 		return ERR_PTR(ret);
6956 
6957 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6958 		global_updated = true;
6959 		update_global_block_rsv(root->fs_info);
6960 		goto again;
6961 	}
6962 
6963 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6964 		static DEFINE_RATELIMIT_STATE(_rs,
6965 				DEFAULT_RATELIMIT_INTERVAL * 10,
6966 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6967 		if (__ratelimit(&_rs))
6968 			WARN(1, KERN_DEBUG
6969 				"btrfs: block rsv returned %d\n", ret);
6970 	}
6971 try_reserve:
6972 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6973 				     BTRFS_RESERVE_NO_FLUSH);
6974 	if (!ret)
6975 		return block_rsv;
6976 	/*
6977 	 * If we couldn't reserve metadata bytes try and use some from
6978 	 * the global reserve if its space type is the same as the global
6979 	 * reservation.
6980 	 */
6981 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6982 	    block_rsv->space_info == global_rsv->space_info) {
6983 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6984 		if (!ret)
6985 			return global_rsv;
6986 	}
6987 	return ERR_PTR(ret);
6988 }
6989 
6990 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6991 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6992 {
6993 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6994 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6995 }
6996 
6997 /*
6998  * finds a free extent and does all the dirty work required for allocation
6999  * returns the key for the extent through ins, and a tree buffer for
7000  * the first block of the extent through buf.
7001  *
7002  * returns the tree buffer or NULL.
7003  */
7004 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7005 					struct btrfs_root *root, u32 blocksize,
7006 					u64 parent, u64 root_objectid,
7007 					struct btrfs_disk_key *key, int level,
7008 					u64 hint, u64 empty_size)
7009 {
7010 	struct btrfs_key ins;
7011 	struct btrfs_block_rsv *block_rsv;
7012 	struct extent_buffer *buf;
7013 	u64 flags = 0;
7014 	int ret;
7015 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7016 						 SKINNY_METADATA);
7017 
7018 	block_rsv = use_block_rsv(trans, root, blocksize);
7019 	if (IS_ERR(block_rsv))
7020 		return ERR_CAST(block_rsv);
7021 
7022 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7023 				   empty_size, hint, &ins, 0);
7024 	if (ret) {
7025 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7026 		return ERR_PTR(ret);
7027 	}
7028 
7029 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7030 				    blocksize, level);
7031 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7032 
7033 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7034 		if (parent == 0)
7035 			parent = ins.objectid;
7036 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7037 	} else
7038 		BUG_ON(parent > 0);
7039 
7040 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7041 		struct btrfs_delayed_extent_op *extent_op;
7042 		extent_op = btrfs_alloc_delayed_extent_op();
7043 		BUG_ON(!extent_op); /* -ENOMEM */
7044 		if (key)
7045 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7046 		else
7047 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7048 		extent_op->flags_to_set = flags;
7049 		if (skinny_metadata)
7050 			extent_op->update_key = 0;
7051 		else
7052 			extent_op->update_key = 1;
7053 		extent_op->update_flags = 1;
7054 		extent_op->is_data = 0;
7055 		extent_op->level = level;
7056 
7057 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7058 					ins.objectid,
7059 					ins.offset, parent, root_objectid,
7060 					level, BTRFS_ADD_DELAYED_EXTENT,
7061 					extent_op, 0);
7062 		BUG_ON(ret); /* -ENOMEM */
7063 	}
7064 	return buf;
7065 }
7066 
7067 struct walk_control {
7068 	u64 refs[BTRFS_MAX_LEVEL];
7069 	u64 flags[BTRFS_MAX_LEVEL];
7070 	struct btrfs_key update_progress;
7071 	int stage;
7072 	int level;
7073 	int shared_level;
7074 	int update_ref;
7075 	int keep_locks;
7076 	int reada_slot;
7077 	int reada_count;
7078 	int for_reloc;
7079 };
7080 
7081 #define DROP_REFERENCE	1
7082 #define UPDATE_BACKREF	2
7083 
7084 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7085 				     struct btrfs_root *root,
7086 				     struct walk_control *wc,
7087 				     struct btrfs_path *path)
7088 {
7089 	u64 bytenr;
7090 	u64 generation;
7091 	u64 refs;
7092 	u64 flags;
7093 	u32 nritems;
7094 	u32 blocksize;
7095 	struct btrfs_key key;
7096 	struct extent_buffer *eb;
7097 	int ret;
7098 	int slot;
7099 	int nread = 0;
7100 
7101 	if (path->slots[wc->level] < wc->reada_slot) {
7102 		wc->reada_count = wc->reada_count * 2 / 3;
7103 		wc->reada_count = max(wc->reada_count, 2);
7104 	} else {
7105 		wc->reada_count = wc->reada_count * 3 / 2;
7106 		wc->reada_count = min_t(int, wc->reada_count,
7107 					BTRFS_NODEPTRS_PER_BLOCK(root));
7108 	}
7109 
7110 	eb = path->nodes[wc->level];
7111 	nritems = btrfs_header_nritems(eb);
7112 	blocksize = btrfs_level_size(root, wc->level - 1);
7113 
7114 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7115 		if (nread >= wc->reada_count)
7116 			break;
7117 
7118 		cond_resched();
7119 		bytenr = btrfs_node_blockptr(eb, slot);
7120 		generation = btrfs_node_ptr_generation(eb, slot);
7121 
7122 		if (slot == path->slots[wc->level])
7123 			goto reada;
7124 
7125 		if (wc->stage == UPDATE_BACKREF &&
7126 		    generation <= root->root_key.offset)
7127 			continue;
7128 
7129 		/* We don't lock the tree block, it's OK to be racy here */
7130 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7131 					       wc->level - 1, 1, &refs,
7132 					       &flags);
7133 		/* We don't care about errors in readahead. */
7134 		if (ret < 0)
7135 			continue;
7136 		BUG_ON(refs == 0);
7137 
7138 		if (wc->stage == DROP_REFERENCE) {
7139 			if (refs == 1)
7140 				goto reada;
7141 
7142 			if (wc->level == 1 &&
7143 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7144 				continue;
7145 			if (!wc->update_ref ||
7146 			    generation <= root->root_key.offset)
7147 				continue;
7148 			btrfs_node_key_to_cpu(eb, &key, slot);
7149 			ret = btrfs_comp_cpu_keys(&key,
7150 						  &wc->update_progress);
7151 			if (ret < 0)
7152 				continue;
7153 		} else {
7154 			if (wc->level == 1 &&
7155 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7156 				continue;
7157 		}
7158 reada:
7159 		ret = readahead_tree_block(root, bytenr, blocksize,
7160 					   generation);
7161 		if (ret)
7162 			break;
7163 		nread++;
7164 	}
7165 	wc->reada_slot = slot;
7166 }
7167 
7168 /*
7169  * helper to process tree block while walking down the tree.
7170  *
7171  * when wc->stage == UPDATE_BACKREF, this function updates
7172  * back refs for pointers in the block.
7173  *
7174  * NOTE: return value 1 means we should stop walking down.
7175  */
7176 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7177 				   struct btrfs_root *root,
7178 				   struct btrfs_path *path,
7179 				   struct walk_control *wc, int lookup_info)
7180 {
7181 	int level = wc->level;
7182 	struct extent_buffer *eb = path->nodes[level];
7183 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7184 	int ret;
7185 
7186 	if (wc->stage == UPDATE_BACKREF &&
7187 	    btrfs_header_owner(eb) != root->root_key.objectid)
7188 		return 1;
7189 
7190 	/*
7191 	 * when reference count of tree block is 1, it won't increase
7192 	 * again. once full backref flag is set, we never clear it.
7193 	 */
7194 	if (lookup_info &&
7195 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7196 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7197 		BUG_ON(!path->locks[level]);
7198 		ret = btrfs_lookup_extent_info(trans, root,
7199 					       eb->start, level, 1,
7200 					       &wc->refs[level],
7201 					       &wc->flags[level]);
7202 		BUG_ON(ret == -ENOMEM);
7203 		if (ret)
7204 			return ret;
7205 		BUG_ON(wc->refs[level] == 0);
7206 	}
7207 
7208 	if (wc->stage == DROP_REFERENCE) {
7209 		if (wc->refs[level] > 1)
7210 			return 1;
7211 
7212 		if (path->locks[level] && !wc->keep_locks) {
7213 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7214 			path->locks[level] = 0;
7215 		}
7216 		return 0;
7217 	}
7218 
7219 	/* wc->stage == UPDATE_BACKREF */
7220 	if (!(wc->flags[level] & flag)) {
7221 		BUG_ON(!path->locks[level]);
7222 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7223 		BUG_ON(ret); /* -ENOMEM */
7224 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7225 		BUG_ON(ret); /* -ENOMEM */
7226 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7227 						  eb->len, flag,
7228 						  btrfs_header_level(eb), 0);
7229 		BUG_ON(ret); /* -ENOMEM */
7230 		wc->flags[level] |= flag;
7231 	}
7232 
7233 	/*
7234 	 * the block is shared by multiple trees, so it's not good to
7235 	 * keep the tree lock
7236 	 */
7237 	if (path->locks[level] && level > 0) {
7238 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7239 		path->locks[level] = 0;
7240 	}
7241 	return 0;
7242 }
7243 
7244 /*
7245  * helper to process tree block pointer.
7246  *
7247  * when wc->stage == DROP_REFERENCE, this function checks
7248  * reference count of the block pointed to. if the block
7249  * is shared and we need update back refs for the subtree
7250  * rooted at the block, this function changes wc->stage to
7251  * UPDATE_BACKREF. if the block is shared and there is no
7252  * need to update back, this function drops the reference
7253  * to the block.
7254  *
7255  * NOTE: return value 1 means we should stop walking down.
7256  */
7257 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7258 				 struct btrfs_root *root,
7259 				 struct btrfs_path *path,
7260 				 struct walk_control *wc, int *lookup_info)
7261 {
7262 	u64 bytenr;
7263 	u64 generation;
7264 	u64 parent;
7265 	u32 blocksize;
7266 	struct btrfs_key key;
7267 	struct extent_buffer *next;
7268 	int level = wc->level;
7269 	int reada = 0;
7270 	int ret = 0;
7271 
7272 	generation = btrfs_node_ptr_generation(path->nodes[level],
7273 					       path->slots[level]);
7274 	/*
7275 	 * if the lower level block was created before the snapshot
7276 	 * was created, we know there is no need to update back refs
7277 	 * for the subtree
7278 	 */
7279 	if (wc->stage == UPDATE_BACKREF &&
7280 	    generation <= root->root_key.offset) {
7281 		*lookup_info = 1;
7282 		return 1;
7283 	}
7284 
7285 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7286 	blocksize = btrfs_level_size(root, level - 1);
7287 
7288 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7289 	if (!next) {
7290 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7291 		if (!next)
7292 			return -ENOMEM;
7293 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7294 					       level - 1);
7295 		reada = 1;
7296 	}
7297 	btrfs_tree_lock(next);
7298 	btrfs_set_lock_blocking(next);
7299 
7300 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7301 				       &wc->refs[level - 1],
7302 				       &wc->flags[level - 1]);
7303 	if (ret < 0) {
7304 		btrfs_tree_unlock(next);
7305 		return ret;
7306 	}
7307 
7308 	if (unlikely(wc->refs[level - 1] == 0)) {
7309 		btrfs_err(root->fs_info, "Missing references.");
7310 		BUG();
7311 	}
7312 	*lookup_info = 0;
7313 
7314 	if (wc->stage == DROP_REFERENCE) {
7315 		if (wc->refs[level - 1] > 1) {
7316 			if (level == 1 &&
7317 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7318 				goto skip;
7319 
7320 			if (!wc->update_ref ||
7321 			    generation <= root->root_key.offset)
7322 				goto skip;
7323 
7324 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7325 					      path->slots[level]);
7326 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7327 			if (ret < 0)
7328 				goto skip;
7329 
7330 			wc->stage = UPDATE_BACKREF;
7331 			wc->shared_level = level - 1;
7332 		}
7333 	} else {
7334 		if (level == 1 &&
7335 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7336 			goto skip;
7337 	}
7338 
7339 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7340 		btrfs_tree_unlock(next);
7341 		free_extent_buffer(next);
7342 		next = NULL;
7343 		*lookup_info = 1;
7344 	}
7345 
7346 	if (!next) {
7347 		if (reada && level == 1)
7348 			reada_walk_down(trans, root, wc, path);
7349 		next = read_tree_block(root, bytenr, blocksize, generation);
7350 		if (!next || !extent_buffer_uptodate(next)) {
7351 			free_extent_buffer(next);
7352 			return -EIO;
7353 		}
7354 		btrfs_tree_lock(next);
7355 		btrfs_set_lock_blocking(next);
7356 	}
7357 
7358 	level--;
7359 	BUG_ON(level != btrfs_header_level(next));
7360 	path->nodes[level] = next;
7361 	path->slots[level] = 0;
7362 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7363 	wc->level = level;
7364 	if (wc->level == 1)
7365 		wc->reada_slot = 0;
7366 	return 0;
7367 skip:
7368 	wc->refs[level - 1] = 0;
7369 	wc->flags[level - 1] = 0;
7370 	if (wc->stage == DROP_REFERENCE) {
7371 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7372 			parent = path->nodes[level]->start;
7373 		} else {
7374 			BUG_ON(root->root_key.objectid !=
7375 			       btrfs_header_owner(path->nodes[level]));
7376 			parent = 0;
7377 		}
7378 
7379 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7380 				root->root_key.objectid, level - 1, 0, 0);
7381 		BUG_ON(ret); /* -ENOMEM */
7382 	}
7383 	btrfs_tree_unlock(next);
7384 	free_extent_buffer(next);
7385 	*lookup_info = 1;
7386 	return 1;
7387 }
7388 
7389 /*
7390  * helper to process tree block while walking up the tree.
7391  *
7392  * when wc->stage == DROP_REFERENCE, this function drops
7393  * reference count on the block.
7394  *
7395  * when wc->stage == UPDATE_BACKREF, this function changes
7396  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7397  * to UPDATE_BACKREF previously while processing the block.
7398  *
7399  * NOTE: return value 1 means we should stop walking up.
7400  */
7401 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7402 				 struct btrfs_root *root,
7403 				 struct btrfs_path *path,
7404 				 struct walk_control *wc)
7405 {
7406 	int ret;
7407 	int level = wc->level;
7408 	struct extent_buffer *eb = path->nodes[level];
7409 	u64 parent = 0;
7410 
7411 	if (wc->stage == UPDATE_BACKREF) {
7412 		BUG_ON(wc->shared_level < level);
7413 		if (level < wc->shared_level)
7414 			goto out;
7415 
7416 		ret = find_next_key(path, level + 1, &wc->update_progress);
7417 		if (ret > 0)
7418 			wc->update_ref = 0;
7419 
7420 		wc->stage = DROP_REFERENCE;
7421 		wc->shared_level = -1;
7422 		path->slots[level] = 0;
7423 
7424 		/*
7425 		 * check reference count again if the block isn't locked.
7426 		 * we should start walking down the tree again if reference
7427 		 * count is one.
7428 		 */
7429 		if (!path->locks[level]) {
7430 			BUG_ON(level == 0);
7431 			btrfs_tree_lock(eb);
7432 			btrfs_set_lock_blocking(eb);
7433 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7434 
7435 			ret = btrfs_lookup_extent_info(trans, root,
7436 						       eb->start, level, 1,
7437 						       &wc->refs[level],
7438 						       &wc->flags[level]);
7439 			if (ret < 0) {
7440 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7441 				path->locks[level] = 0;
7442 				return ret;
7443 			}
7444 			BUG_ON(wc->refs[level] == 0);
7445 			if (wc->refs[level] == 1) {
7446 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7447 				path->locks[level] = 0;
7448 				return 1;
7449 			}
7450 		}
7451 	}
7452 
7453 	/* wc->stage == DROP_REFERENCE */
7454 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7455 
7456 	if (wc->refs[level] == 1) {
7457 		if (level == 0) {
7458 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7459 				ret = btrfs_dec_ref(trans, root, eb, 1,
7460 						    wc->for_reloc);
7461 			else
7462 				ret = btrfs_dec_ref(trans, root, eb, 0,
7463 						    wc->for_reloc);
7464 			BUG_ON(ret); /* -ENOMEM */
7465 		}
7466 		/* make block locked assertion in clean_tree_block happy */
7467 		if (!path->locks[level] &&
7468 		    btrfs_header_generation(eb) == trans->transid) {
7469 			btrfs_tree_lock(eb);
7470 			btrfs_set_lock_blocking(eb);
7471 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7472 		}
7473 		clean_tree_block(trans, root, eb);
7474 	}
7475 
7476 	if (eb == root->node) {
7477 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7478 			parent = eb->start;
7479 		else
7480 			BUG_ON(root->root_key.objectid !=
7481 			       btrfs_header_owner(eb));
7482 	} else {
7483 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7484 			parent = path->nodes[level + 1]->start;
7485 		else
7486 			BUG_ON(root->root_key.objectid !=
7487 			       btrfs_header_owner(path->nodes[level + 1]));
7488 	}
7489 
7490 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7491 out:
7492 	wc->refs[level] = 0;
7493 	wc->flags[level] = 0;
7494 	return 0;
7495 }
7496 
7497 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7498 				   struct btrfs_root *root,
7499 				   struct btrfs_path *path,
7500 				   struct walk_control *wc)
7501 {
7502 	int level = wc->level;
7503 	int lookup_info = 1;
7504 	int ret;
7505 
7506 	while (level >= 0) {
7507 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7508 		if (ret > 0)
7509 			break;
7510 
7511 		if (level == 0)
7512 			break;
7513 
7514 		if (path->slots[level] >=
7515 		    btrfs_header_nritems(path->nodes[level]))
7516 			break;
7517 
7518 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7519 		if (ret > 0) {
7520 			path->slots[level]++;
7521 			continue;
7522 		} else if (ret < 0)
7523 			return ret;
7524 		level = wc->level;
7525 	}
7526 	return 0;
7527 }
7528 
7529 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7530 				 struct btrfs_root *root,
7531 				 struct btrfs_path *path,
7532 				 struct walk_control *wc, int max_level)
7533 {
7534 	int level = wc->level;
7535 	int ret;
7536 
7537 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7538 	while (level < max_level && path->nodes[level]) {
7539 		wc->level = level;
7540 		if (path->slots[level] + 1 <
7541 		    btrfs_header_nritems(path->nodes[level])) {
7542 			path->slots[level]++;
7543 			return 0;
7544 		} else {
7545 			ret = walk_up_proc(trans, root, path, wc);
7546 			if (ret > 0)
7547 				return 0;
7548 
7549 			if (path->locks[level]) {
7550 				btrfs_tree_unlock_rw(path->nodes[level],
7551 						     path->locks[level]);
7552 				path->locks[level] = 0;
7553 			}
7554 			free_extent_buffer(path->nodes[level]);
7555 			path->nodes[level] = NULL;
7556 			level++;
7557 		}
7558 	}
7559 	return 1;
7560 }
7561 
7562 /*
7563  * drop a subvolume tree.
7564  *
7565  * this function traverses the tree freeing any blocks that only
7566  * referenced by the tree.
7567  *
7568  * when a shared tree block is found. this function decreases its
7569  * reference count by one. if update_ref is true, this function
7570  * also make sure backrefs for the shared block and all lower level
7571  * blocks are properly updated.
7572  *
7573  * If called with for_reloc == 0, may exit early with -EAGAIN
7574  */
7575 int btrfs_drop_snapshot(struct btrfs_root *root,
7576 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7577 			 int for_reloc)
7578 {
7579 	struct btrfs_path *path;
7580 	struct btrfs_trans_handle *trans;
7581 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7582 	struct btrfs_root_item *root_item = &root->root_item;
7583 	struct walk_control *wc;
7584 	struct btrfs_key key;
7585 	int err = 0;
7586 	int ret;
7587 	int level;
7588 	bool root_dropped = false;
7589 
7590 	path = btrfs_alloc_path();
7591 	if (!path) {
7592 		err = -ENOMEM;
7593 		goto out;
7594 	}
7595 
7596 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7597 	if (!wc) {
7598 		btrfs_free_path(path);
7599 		err = -ENOMEM;
7600 		goto out;
7601 	}
7602 
7603 	trans = btrfs_start_transaction(tree_root, 0);
7604 	if (IS_ERR(trans)) {
7605 		err = PTR_ERR(trans);
7606 		goto out_free;
7607 	}
7608 
7609 	if (block_rsv)
7610 		trans->block_rsv = block_rsv;
7611 
7612 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7613 		level = btrfs_header_level(root->node);
7614 		path->nodes[level] = btrfs_lock_root_node(root);
7615 		btrfs_set_lock_blocking(path->nodes[level]);
7616 		path->slots[level] = 0;
7617 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7618 		memset(&wc->update_progress, 0,
7619 		       sizeof(wc->update_progress));
7620 	} else {
7621 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7622 		memcpy(&wc->update_progress, &key,
7623 		       sizeof(wc->update_progress));
7624 
7625 		level = root_item->drop_level;
7626 		BUG_ON(level == 0);
7627 		path->lowest_level = level;
7628 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7629 		path->lowest_level = 0;
7630 		if (ret < 0) {
7631 			err = ret;
7632 			goto out_end_trans;
7633 		}
7634 		WARN_ON(ret > 0);
7635 
7636 		/*
7637 		 * unlock our path, this is safe because only this
7638 		 * function is allowed to delete this snapshot
7639 		 */
7640 		btrfs_unlock_up_safe(path, 0);
7641 
7642 		level = btrfs_header_level(root->node);
7643 		while (1) {
7644 			btrfs_tree_lock(path->nodes[level]);
7645 			btrfs_set_lock_blocking(path->nodes[level]);
7646 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7647 
7648 			ret = btrfs_lookup_extent_info(trans, root,
7649 						path->nodes[level]->start,
7650 						level, 1, &wc->refs[level],
7651 						&wc->flags[level]);
7652 			if (ret < 0) {
7653 				err = ret;
7654 				goto out_end_trans;
7655 			}
7656 			BUG_ON(wc->refs[level] == 0);
7657 
7658 			if (level == root_item->drop_level)
7659 				break;
7660 
7661 			btrfs_tree_unlock(path->nodes[level]);
7662 			path->locks[level] = 0;
7663 			WARN_ON(wc->refs[level] != 1);
7664 			level--;
7665 		}
7666 	}
7667 
7668 	wc->level = level;
7669 	wc->shared_level = -1;
7670 	wc->stage = DROP_REFERENCE;
7671 	wc->update_ref = update_ref;
7672 	wc->keep_locks = 0;
7673 	wc->for_reloc = for_reloc;
7674 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7675 
7676 	while (1) {
7677 
7678 		ret = walk_down_tree(trans, root, path, wc);
7679 		if (ret < 0) {
7680 			err = ret;
7681 			break;
7682 		}
7683 
7684 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7685 		if (ret < 0) {
7686 			err = ret;
7687 			break;
7688 		}
7689 
7690 		if (ret > 0) {
7691 			BUG_ON(wc->stage != DROP_REFERENCE);
7692 			break;
7693 		}
7694 
7695 		if (wc->stage == DROP_REFERENCE) {
7696 			level = wc->level;
7697 			btrfs_node_key(path->nodes[level],
7698 				       &root_item->drop_progress,
7699 				       path->slots[level]);
7700 			root_item->drop_level = level;
7701 		}
7702 
7703 		BUG_ON(wc->level == 0);
7704 		if (btrfs_should_end_transaction(trans, tree_root) ||
7705 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7706 			ret = btrfs_update_root(trans, tree_root,
7707 						&root->root_key,
7708 						root_item);
7709 			if (ret) {
7710 				btrfs_abort_transaction(trans, tree_root, ret);
7711 				err = ret;
7712 				goto out_end_trans;
7713 			}
7714 
7715 			btrfs_end_transaction_throttle(trans, tree_root);
7716 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7717 				pr_debug("btrfs: drop snapshot early exit\n");
7718 				err = -EAGAIN;
7719 				goto out_free;
7720 			}
7721 
7722 			trans = btrfs_start_transaction(tree_root, 0);
7723 			if (IS_ERR(trans)) {
7724 				err = PTR_ERR(trans);
7725 				goto out_free;
7726 			}
7727 			if (block_rsv)
7728 				trans->block_rsv = block_rsv;
7729 		}
7730 	}
7731 	btrfs_release_path(path);
7732 	if (err)
7733 		goto out_end_trans;
7734 
7735 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7736 	if (ret) {
7737 		btrfs_abort_transaction(trans, tree_root, ret);
7738 		goto out_end_trans;
7739 	}
7740 
7741 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7742 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7743 				      NULL, NULL);
7744 		if (ret < 0) {
7745 			btrfs_abort_transaction(trans, tree_root, ret);
7746 			err = ret;
7747 			goto out_end_trans;
7748 		} else if (ret > 0) {
7749 			/* if we fail to delete the orphan item this time
7750 			 * around, it'll get picked up the next time.
7751 			 *
7752 			 * The most common failure here is just -ENOENT.
7753 			 */
7754 			btrfs_del_orphan_item(trans, tree_root,
7755 					      root->root_key.objectid);
7756 		}
7757 	}
7758 
7759 	if (root->in_radix) {
7760 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7761 	} else {
7762 		free_extent_buffer(root->node);
7763 		free_extent_buffer(root->commit_root);
7764 		btrfs_put_fs_root(root);
7765 	}
7766 	root_dropped = true;
7767 out_end_trans:
7768 	btrfs_end_transaction_throttle(trans, tree_root);
7769 out_free:
7770 	kfree(wc);
7771 	btrfs_free_path(path);
7772 out:
7773 	/*
7774 	 * So if we need to stop dropping the snapshot for whatever reason we
7775 	 * need to make sure to add it back to the dead root list so that we
7776 	 * keep trying to do the work later.  This also cleans up roots if we
7777 	 * don't have it in the radix (like when we recover after a power fail
7778 	 * or unmount) so we don't leak memory.
7779 	 */
7780 	if (!for_reloc && root_dropped == false)
7781 		btrfs_add_dead_root(root);
7782 	if (err)
7783 		btrfs_std_error(root->fs_info, err);
7784 	return err;
7785 }
7786 
7787 /*
7788  * drop subtree rooted at tree block 'node'.
7789  *
7790  * NOTE: this function will unlock and release tree block 'node'
7791  * only used by relocation code
7792  */
7793 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7794 			struct btrfs_root *root,
7795 			struct extent_buffer *node,
7796 			struct extent_buffer *parent)
7797 {
7798 	struct btrfs_path *path;
7799 	struct walk_control *wc;
7800 	int level;
7801 	int parent_level;
7802 	int ret = 0;
7803 	int wret;
7804 
7805 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7806 
7807 	path = btrfs_alloc_path();
7808 	if (!path)
7809 		return -ENOMEM;
7810 
7811 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7812 	if (!wc) {
7813 		btrfs_free_path(path);
7814 		return -ENOMEM;
7815 	}
7816 
7817 	btrfs_assert_tree_locked(parent);
7818 	parent_level = btrfs_header_level(parent);
7819 	extent_buffer_get(parent);
7820 	path->nodes[parent_level] = parent;
7821 	path->slots[parent_level] = btrfs_header_nritems(parent);
7822 
7823 	btrfs_assert_tree_locked(node);
7824 	level = btrfs_header_level(node);
7825 	path->nodes[level] = node;
7826 	path->slots[level] = 0;
7827 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7828 
7829 	wc->refs[parent_level] = 1;
7830 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7831 	wc->level = level;
7832 	wc->shared_level = -1;
7833 	wc->stage = DROP_REFERENCE;
7834 	wc->update_ref = 0;
7835 	wc->keep_locks = 1;
7836 	wc->for_reloc = 1;
7837 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7838 
7839 	while (1) {
7840 		wret = walk_down_tree(trans, root, path, wc);
7841 		if (wret < 0) {
7842 			ret = wret;
7843 			break;
7844 		}
7845 
7846 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7847 		if (wret < 0)
7848 			ret = wret;
7849 		if (wret != 0)
7850 			break;
7851 	}
7852 
7853 	kfree(wc);
7854 	btrfs_free_path(path);
7855 	return ret;
7856 }
7857 
7858 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7859 {
7860 	u64 num_devices;
7861 	u64 stripped;
7862 
7863 	/*
7864 	 * if restripe for this chunk_type is on pick target profile and
7865 	 * return, otherwise do the usual balance
7866 	 */
7867 	stripped = get_restripe_target(root->fs_info, flags);
7868 	if (stripped)
7869 		return extended_to_chunk(stripped);
7870 
7871 	/*
7872 	 * we add in the count of missing devices because we want
7873 	 * to make sure that any RAID levels on a degraded FS
7874 	 * continue to be honored.
7875 	 */
7876 	num_devices = root->fs_info->fs_devices->rw_devices +
7877 		root->fs_info->fs_devices->missing_devices;
7878 
7879 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7880 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7881 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7882 
7883 	if (num_devices == 1) {
7884 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7885 		stripped = flags & ~stripped;
7886 
7887 		/* turn raid0 into single device chunks */
7888 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7889 			return stripped;
7890 
7891 		/* turn mirroring into duplication */
7892 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7893 			     BTRFS_BLOCK_GROUP_RAID10))
7894 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7895 	} else {
7896 		/* they already had raid on here, just return */
7897 		if (flags & stripped)
7898 			return flags;
7899 
7900 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7901 		stripped = flags & ~stripped;
7902 
7903 		/* switch duplicated blocks with raid1 */
7904 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7905 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7906 
7907 		/* this is drive concat, leave it alone */
7908 	}
7909 
7910 	return flags;
7911 }
7912 
7913 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7914 {
7915 	struct btrfs_space_info *sinfo = cache->space_info;
7916 	u64 num_bytes;
7917 	u64 min_allocable_bytes;
7918 	int ret = -ENOSPC;
7919 
7920 
7921 	/*
7922 	 * We need some metadata space and system metadata space for
7923 	 * allocating chunks in some corner cases until we force to set
7924 	 * it to be readonly.
7925 	 */
7926 	if ((sinfo->flags &
7927 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7928 	    !force)
7929 		min_allocable_bytes = 1 * 1024 * 1024;
7930 	else
7931 		min_allocable_bytes = 0;
7932 
7933 	spin_lock(&sinfo->lock);
7934 	spin_lock(&cache->lock);
7935 
7936 	if (cache->ro) {
7937 		ret = 0;
7938 		goto out;
7939 	}
7940 
7941 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7942 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7943 
7944 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7945 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7946 	    min_allocable_bytes <= sinfo->total_bytes) {
7947 		sinfo->bytes_readonly += num_bytes;
7948 		cache->ro = 1;
7949 		ret = 0;
7950 	}
7951 out:
7952 	spin_unlock(&cache->lock);
7953 	spin_unlock(&sinfo->lock);
7954 	return ret;
7955 }
7956 
7957 int btrfs_set_block_group_ro(struct btrfs_root *root,
7958 			     struct btrfs_block_group_cache *cache)
7959 
7960 {
7961 	struct btrfs_trans_handle *trans;
7962 	u64 alloc_flags;
7963 	int ret;
7964 
7965 	BUG_ON(cache->ro);
7966 
7967 	trans = btrfs_join_transaction(root);
7968 	if (IS_ERR(trans))
7969 		return PTR_ERR(trans);
7970 
7971 	alloc_flags = update_block_group_flags(root, cache->flags);
7972 	if (alloc_flags != cache->flags) {
7973 		ret = do_chunk_alloc(trans, root, alloc_flags,
7974 				     CHUNK_ALLOC_FORCE);
7975 		if (ret < 0)
7976 			goto out;
7977 	}
7978 
7979 	ret = set_block_group_ro(cache, 0);
7980 	if (!ret)
7981 		goto out;
7982 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7983 	ret = do_chunk_alloc(trans, root, alloc_flags,
7984 			     CHUNK_ALLOC_FORCE);
7985 	if (ret < 0)
7986 		goto out;
7987 	ret = set_block_group_ro(cache, 0);
7988 out:
7989 	btrfs_end_transaction(trans, root);
7990 	return ret;
7991 }
7992 
7993 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7994 			    struct btrfs_root *root, u64 type)
7995 {
7996 	u64 alloc_flags = get_alloc_profile(root, type);
7997 	return do_chunk_alloc(trans, root, alloc_flags,
7998 			      CHUNK_ALLOC_FORCE);
7999 }
8000 
8001 /*
8002  * helper to account the unused space of all the readonly block group in the
8003  * list. takes mirrors into account.
8004  */
8005 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8006 {
8007 	struct btrfs_block_group_cache *block_group;
8008 	u64 free_bytes = 0;
8009 	int factor;
8010 
8011 	list_for_each_entry(block_group, groups_list, list) {
8012 		spin_lock(&block_group->lock);
8013 
8014 		if (!block_group->ro) {
8015 			spin_unlock(&block_group->lock);
8016 			continue;
8017 		}
8018 
8019 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8020 					  BTRFS_BLOCK_GROUP_RAID10 |
8021 					  BTRFS_BLOCK_GROUP_DUP))
8022 			factor = 2;
8023 		else
8024 			factor = 1;
8025 
8026 		free_bytes += (block_group->key.offset -
8027 			       btrfs_block_group_used(&block_group->item)) *
8028 			       factor;
8029 
8030 		spin_unlock(&block_group->lock);
8031 	}
8032 
8033 	return free_bytes;
8034 }
8035 
8036 /*
8037  * helper to account the unused space of all the readonly block group in the
8038  * space_info. takes mirrors into account.
8039  */
8040 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8041 {
8042 	int i;
8043 	u64 free_bytes = 0;
8044 
8045 	spin_lock(&sinfo->lock);
8046 
8047 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8048 		if (!list_empty(&sinfo->block_groups[i]))
8049 			free_bytes += __btrfs_get_ro_block_group_free_space(
8050 						&sinfo->block_groups[i]);
8051 
8052 	spin_unlock(&sinfo->lock);
8053 
8054 	return free_bytes;
8055 }
8056 
8057 void btrfs_set_block_group_rw(struct btrfs_root *root,
8058 			      struct btrfs_block_group_cache *cache)
8059 {
8060 	struct btrfs_space_info *sinfo = cache->space_info;
8061 	u64 num_bytes;
8062 
8063 	BUG_ON(!cache->ro);
8064 
8065 	spin_lock(&sinfo->lock);
8066 	spin_lock(&cache->lock);
8067 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8068 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8069 	sinfo->bytes_readonly -= num_bytes;
8070 	cache->ro = 0;
8071 	spin_unlock(&cache->lock);
8072 	spin_unlock(&sinfo->lock);
8073 }
8074 
8075 /*
8076  * checks to see if its even possible to relocate this block group.
8077  *
8078  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8079  * ok to go ahead and try.
8080  */
8081 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8082 {
8083 	struct btrfs_block_group_cache *block_group;
8084 	struct btrfs_space_info *space_info;
8085 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8086 	struct btrfs_device *device;
8087 	struct btrfs_trans_handle *trans;
8088 	u64 min_free;
8089 	u64 dev_min = 1;
8090 	u64 dev_nr = 0;
8091 	u64 target;
8092 	int index;
8093 	int full = 0;
8094 	int ret = 0;
8095 
8096 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8097 
8098 	/* odd, couldn't find the block group, leave it alone */
8099 	if (!block_group)
8100 		return -1;
8101 
8102 	min_free = btrfs_block_group_used(&block_group->item);
8103 
8104 	/* no bytes used, we're good */
8105 	if (!min_free)
8106 		goto out;
8107 
8108 	space_info = block_group->space_info;
8109 	spin_lock(&space_info->lock);
8110 
8111 	full = space_info->full;
8112 
8113 	/*
8114 	 * if this is the last block group we have in this space, we can't
8115 	 * relocate it unless we're able to allocate a new chunk below.
8116 	 *
8117 	 * Otherwise, we need to make sure we have room in the space to handle
8118 	 * all of the extents from this block group.  If we can, we're good
8119 	 */
8120 	if ((space_info->total_bytes != block_group->key.offset) &&
8121 	    (space_info->bytes_used + space_info->bytes_reserved +
8122 	     space_info->bytes_pinned + space_info->bytes_readonly +
8123 	     min_free < space_info->total_bytes)) {
8124 		spin_unlock(&space_info->lock);
8125 		goto out;
8126 	}
8127 	spin_unlock(&space_info->lock);
8128 
8129 	/*
8130 	 * ok we don't have enough space, but maybe we have free space on our
8131 	 * devices to allocate new chunks for relocation, so loop through our
8132 	 * alloc devices and guess if we have enough space.  if this block
8133 	 * group is going to be restriped, run checks against the target
8134 	 * profile instead of the current one.
8135 	 */
8136 	ret = -1;
8137 
8138 	/*
8139 	 * index:
8140 	 *      0: raid10
8141 	 *      1: raid1
8142 	 *      2: dup
8143 	 *      3: raid0
8144 	 *      4: single
8145 	 */
8146 	target = get_restripe_target(root->fs_info, block_group->flags);
8147 	if (target) {
8148 		index = __get_raid_index(extended_to_chunk(target));
8149 	} else {
8150 		/*
8151 		 * this is just a balance, so if we were marked as full
8152 		 * we know there is no space for a new chunk
8153 		 */
8154 		if (full)
8155 			goto out;
8156 
8157 		index = get_block_group_index(block_group);
8158 	}
8159 
8160 	if (index == BTRFS_RAID_RAID10) {
8161 		dev_min = 4;
8162 		/* Divide by 2 */
8163 		min_free >>= 1;
8164 	} else if (index == BTRFS_RAID_RAID1) {
8165 		dev_min = 2;
8166 	} else if (index == BTRFS_RAID_DUP) {
8167 		/* Multiply by 2 */
8168 		min_free <<= 1;
8169 	} else if (index == BTRFS_RAID_RAID0) {
8170 		dev_min = fs_devices->rw_devices;
8171 		do_div(min_free, dev_min);
8172 	}
8173 
8174 	/* We need to do this so that we can look at pending chunks */
8175 	trans = btrfs_join_transaction(root);
8176 	if (IS_ERR(trans)) {
8177 		ret = PTR_ERR(trans);
8178 		goto out;
8179 	}
8180 
8181 	mutex_lock(&root->fs_info->chunk_mutex);
8182 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8183 		u64 dev_offset;
8184 
8185 		/*
8186 		 * check to make sure we can actually find a chunk with enough
8187 		 * space to fit our block group in.
8188 		 */
8189 		if (device->total_bytes > device->bytes_used + min_free &&
8190 		    !device->is_tgtdev_for_dev_replace) {
8191 			ret = find_free_dev_extent(trans, device, min_free,
8192 						   &dev_offset, NULL);
8193 			if (!ret)
8194 				dev_nr++;
8195 
8196 			if (dev_nr >= dev_min)
8197 				break;
8198 
8199 			ret = -1;
8200 		}
8201 	}
8202 	mutex_unlock(&root->fs_info->chunk_mutex);
8203 	btrfs_end_transaction(trans, root);
8204 out:
8205 	btrfs_put_block_group(block_group);
8206 	return ret;
8207 }
8208 
8209 static int find_first_block_group(struct btrfs_root *root,
8210 		struct btrfs_path *path, struct btrfs_key *key)
8211 {
8212 	int ret = 0;
8213 	struct btrfs_key found_key;
8214 	struct extent_buffer *leaf;
8215 	int slot;
8216 
8217 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8218 	if (ret < 0)
8219 		goto out;
8220 
8221 	while (1) {
8222 		slot = path->slots[0];
8223 		leaf = path->nodes[0];
8224 		if (slot >= btrfs_header_nritems(leaf)) {
8225 			ret = btrfs_next_leaf(root, path);
8226 			if (ret == 0)
8227 				continue;
8228 			if (ret < 0)
8229 				goto out;
8230 			break;
8231 		}
8232 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8233 
8234 		if (found_key.objectid >= key->objectid &&
8235 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8236 			ret = 0;
8237 			goto out;
8238 		}
8239 		path->slots[0]++;
8240 	}
8241 out:
8242 	return ret;
8243 }
8244 
8245 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8246 {
8247 	struct btrfs_block_group_cache *block_group;
8248 	u64 last = 0;
8249 
8250 	while (1) {
8251 		struct inode *inode;
8252 
8253 		block_group = btrfs_lookup_first_block_group(info, last);
8254 		while (block_group) {
8255 			spin_lock(&block_group->lock);
8256 			if (block_group->iref)
8257 				break;
8258 			spin_unlock(&block_group->lock);
8259 			block_group = next_block_group(info->tree_root,
8260 						       block_group);
8261 		}
8262 		if (!block_group) {
8263 			if (last == 0)
8264 				break;
8265 			last = 0;
8266 			continue;
8267 		}
8268 
8269 		inode = block_group->inode;
8270 		block_group->iref = 0;
8271 		block_group->inode = NULL;
8272 		spin_unlock(&block_group->lock);
8273 		iput(inode);
8274 		last = block_group->key.objectid + block_group->key.offset;
8275 		btrfs_put_block_group(block_group);
8276 	}
8277 }
8278 
8279 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8280 {
8281 	struct btrfs_block_group_cache *block_group;
8282 	struct btrfs_space_info *space_info;
8283 	struct btrfs_caching_control *caching_ctl;
8284 	struct rb_node *n;
8285 
8286 	down_write(&info->extent_commit_sem);
8287 	while (!list_empty(&info->caching_block_groups)) {
8288 		caching_ctl = list_entry(info->caching_block_groups.next,
8289 					 struct btrfs_caching_control, list);
8290 		list_del(&caching_ctl->list);
8291 		put_caching_control(caching_ctl);
8292 	}
8293 	up_write(&info->extent_commit_sem);
8294 
8295 	spin_lock(&info->block_group_cache_lock);
8296 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8297 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8298 				       cache_node);
8299 		rb_erase(&block_group->cache_node,
8300 			 &info->block_group_cache_tree);
8301 		spin_unlock(&info->block_group_cache_lock);
8302 
8303 		down_write(&block_group->space_info->groups_sem);
8304 		list_del(&block_group->list);
8305 		up_write(&block_group->space_info->groups_sem);
8306 
8307 		if (block_group->cached == BTRFS_CACHE_STARTED)
8308 			wait_block_group_cache_done(block_group);
8309 
8310 		/*
8311 		 * We haven't cached this block group, which means we could
8312 		 * possibly have excluded extents on this block group.
8313 		 */
8314 		if (block_group->cached == BTRFS_CACHE_NO ||
8315 		    block_group->cached == BTRFS_CACHE_ERROR)
8316 			free_excluded_extents(info->extent_root, block_group);
8317 
8318 		btrfs_remove_free_space_cache(block_group);
8319 		btrfs_put_block_group(block_group);
8320 
8321 		spin_lock(&info->block_group_cache_lock);
8322 	}
8323 	spin_unlock(&info->block_group_cache_lock);
8324 
8325 	/* now that all the block groups are freed, go through and
8326 	 * free all the space_info structs.  This is only called during
8327 	 * the final stages of unmount, and so we know nobody is
8328 	 * using them.  We call synchronize_rcu() once before we start,
8329 	 * just to be on the safe side.
8330 	 */
8331 	synchronize_rcu();
8332 
8333 	release_global_block_rsv(info);
8334 
8335 	while (!list_empty(&info->space_info)) {
8336 		space_info = list_entry(info->space_info.next,
8337 					struct btrfs_space_info,
8338 					list);
8339 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8340 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8341 			    space_info->bytes_reserved > 0 ||
8342 			    space_info->bytes_may_use > 0)) {
8343 				dump_space_info(space_info, 0, 0);
8344 			}
8345 		}
8346 		percpu_counter_destroy(&space_info->total_bytes_pinned);
8347 		list_del(&space_info->list);
8348 		kfree(space_info);
8349 	}
8350 	return 0;
8351 }
8352 
8353 static void __link_block_group(struct btrfs_space_info *space_info,
8354 			       struct btrfs_block_group_cache *cache)
8355 {
8356 	int index = get_block_group_index(cache);
8357 
8358 	down_write(&space_info->groups_sem);
8359 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8360 	up_write(&space_info->groups_sem);
8361 }
8362 
8363 int btrfs_read_block_groups(struct btrfs_root *root)
8364 {
8365 	struct btrfs_path *path;
8366 	int ret;
8367 	struct btrfs_block_group_cache *cache;
8368 	struct btrfs_fs_info *info = root->fs_info;
8369 	struct btrfs_space_info *space_info;
8370 	struct btrfs_key key;
8371 	struct btrfs_key found_key;
8372 	struct extent_buffer *leaf;
8373 	int need_clear = 0;
8374 	u64 cache_gen;
8375 
8376 	root = info->extent_root;
8377 	key.objectid = 0;
8378 	key.offset = 0;
8379 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8380 	path = btrfs_alloc_path();
8381 	if (!path)
8382 		return -ENOMEM;
8383 	path->reada = 1;
8384 
8385 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8386 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8387 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8388 		need_clear = 1;
8389 	if (btrfs_test_opt(root, CLEAR_CACHE))
8390 		need_clear = 1;
8391 
8392 	while (1) {
8393 		ret = find_first_block_group(root, path, &key);
8394 		if (ret > 0)
8395 			break;
8396 		if (ret != 0)
8397 			goto error;
8398 		leaf = path->nodes[0];
8399 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8400 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8401 		if (!cache) {
8402 			ret = -ENOMEM;
8403 			goto error;
8404 		}
8405 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8406 						GFP_NOFS);
8407 		if (!cache->free_space_ctl) {
8408 			kfree(cache);
8409 			ret = -ENOMEM;
8410 			goto error;
8411 		}
8412 
8413 		atomic_set(&cache->count, 1);
8414 		spin_lock_init(&cache->lock);
8415 		cache->fs_info = info;
8416 		INIT_LIST_HEAD(&cache->list);
8417 		INIT_LIST_HEAD(&cache->cluster_list);
8418 
8419 		if (need_clear) {
8420 			/*
8421 			 * When we mount with old space cache, we need to
8422 			 * set BTRFS_DC_CLEAR and set dirty flag.
8423 			 *
8424 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8425 			 *    truncate the old free space cache inode and
8426 			 *    setup a new one.
8427 			 * b) Setting 'dirty flag' makes sure that we flush
8428 			 *    the new space cache info onto disk.
8429 			 */
8430 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8431 			if (btrfs_test_opt(root, SPACE_CACHE))
8432 				cache->dirty = 1;
8433 		}
8434 
8435 		read_extent_buffer(leaf, &cache->item,
8436 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8437 				   sizeof(cache->item));
8438 		memcpy(&cache->key, &found_key, sizeof(found_key));
8439 
8440 		key.objectid = found_key.objectid + found_key.offset;
8441 		btrfs_release_path(path);
8442 		cache->flags = btrfs_block_group_flags(&cache->item);
8443 		cache->sectorsize = root->sectorsize;
8444 		cache->full_stripe_len = btrfs_full_stripe_len(root,
8445 					       &root->fs_info->mapping_tree,
8446 					       found_key.objectid);
8447 		btrfs_init_free_space_ctl(cache);
8448 
8449 		/*
8450 		 * We need to exclude the super stripes now so that the space
8451 		 * info has super bytes accounted for, otherwise we'll think
8452 		 * we have more space than we actually do.
8453 		 */
8454 		ret = exclude_super_stripes(root, cache);
8455 		if (ret) {
8456 			/*
8457 			 * We may have excluded something, so call this just in
8458 			 * case.
8459 			 */
8460 			free_excluded_extents(root, cache);
8461 			kfree(cache->free_space_ctl);
8462 			kfree(cache);
8463 			goto error;
8464 		}
8465 
8466 		/*
8467 		 * check for two cases, either we are full, and therefore
8468 		 * don't need to bother with the caching work since we won't
8469 		 * find any space, or we are empty, and we can just add all
8470 		 * the space in and be done with it.  This saves us _alot_ of
8471 		 * time, particularly in the full case.
8472 		 */
8473 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8474 			cache->last_byte_to_unpin = (u64)-1;
8475 			cache->cached = BTRFS_CACHE_FINISHED;
8476 			free_excluded_extents(root, cache);
8477 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8478 			cache->last_byte_to_unpin = (u64)-1;
8479 			cache->cached = BTRFS_CACHE_FINISHED;
8480 			add_new_free_space(cache, root->fs_info,
8481 					   found_key.objectid,
8482 					   found_key.objectid +
8483 					   found_key.offset);
8484 			free_excluded_extents(root, cache);
8485 		}
8486 
8487 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8488 		if (ret) {
8489 			btrfs_remove_free_space_cache(cache);
8490 			btrfs_put_block_group(cache);
8491 			goto error;
8492 		}
8493 
8494 		ret = update_space_info(info, cache->flags, found_key.offset,
8495 					btrfs_block_group_used(&cache->item),
8496 					&space_info);
8497 		if (ret) {
8498 			btrfs_remove_free_space_cache(cache);
8499 			spin_lock(&info->block_group_cache_lock);
8500 			rb_erase(&cache->cache_node,
8501 				 &info->block_group_cache_tree);
8502 			spin_unlock(&info->block_group_cache_lock);
8503 			btrfs_put_block_group(cache);
8504 			goto error;
8505 		}
8506 
8507 		cache->space_info = space_info;
8508 		spin_lock(&cache->space_info->lock);
8509 		cache->space_info->bytes_readonly += cache->bytes_super;
8510 		spin_unlock(&cache->space_info->lock);
8511 
8512 		__link_block_group(space_info, cache);
8513 
8514 		set_avail_alloc_bits(root->fs_info, cache->flags);
8515 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8516 			set_block_group_ro(cache, 1);
8517 	}
8518 
8519 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8520 		if (!(get_alloc_profile(root, space_info->flags) &
8521 		      (BTRFS_BLOCK_GROUP_RAID10 |
8522 		       BTRFS_BLOCK_GROUP_RAID1 |
8523 		       BTRFS_BLOCK_GROUP_RAID5 |
8524 		       BTRFS_BLOCK_GROUP_RAID6 |
8525 		       BTRFS_BLOCK_GROUP_DUP)))
8526 			continue;
8527 		/*
8528 		 * avoid allocating from un-mirrored block group if there are
8529 		 * mirrored block groups.
8530 		 */
8531 		list_for_each_entry(cache,
8532 				&space_info->block_groups[BTRFS_RAID_RAID0],
8533 				list)
8534 			set_block_group_ro(cache, 1);
8535 		list_for_each_entry(cache,
8536 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8537 				list)
8538 			set_block_group_ro(cache, 1);
8539 	}
8540 
8541 	init_global_block_rsv(info);
8542 	ret = 0;
8543 error:
8544 	btrfs_free_path(path);
8545 	return ret;
8546 }
8547 
8548 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8549 				       struct btrfs_root *root)
8550 {
8551 	struct btrfs_block_group_cache *block_group, *tmp;
8552 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8553 	struct btrfs_block_group_item item;
8554 	struct btrfs_key key;
8555 	int ret = 0;
8556 
8557 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8558 				 new_bg_list) {
8559 		list_del_init(&block_group->new_bg_list);
8560 
8561 		if (ret)
8562 			continue;
8563 
8564 		spin_lock(&block_group->lock);
8565 		memcpy(&item, &block_group->item, sizeof(item));
8566 		memcpy(&key, &block_group->key, sizeof(key));
8567 		spin_unlock(&block_group->lock);
8568 
8569 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8570 					sizeof(item));
8571 		if (ret)
8572 			btrfs_abort_transaction(trans, extent_root, ret);
8573 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8574 					       key.objectid, key.offset);
8575 		if (ret)
8576 			btrfs_abort_transaction(trans, extent_root, ret);
8577 	}
8578 }
8579 
8580 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8581 			   struct btrfs_root *root, u64 bytes_used,
8582 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8583 			   u64 size)
8584 {
8585 	int ret;
8586 	struct btrfs_root *extent_root;
8587 	struct btrfs_block_group_cache *cache;
8588 
8589 	extent_root = root->fs_info->extent_root;
8590 
8591 	root->fs_info->last_trans_log_full_commit = trans->transid;
8592 
8593 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8594 	if (!cache)
8595 		return -ENOMEM;
8596 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8597 					GFP_NOFS);
8598 	if (!cache->free_space_ctl) {
8599 		kfree(cache);
8600 		return -ENOMEM;
8601 	}
8602 
8603 	cache->key.objectid = chunk_offset;
8604 	cache->key.offset = size;
8605 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8606 	cache->sectorsize = root->sectorsize;
8607 	cache->fs_info = root->fs_info;
8608 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8609 					       &root->fs_info->mapping_tree,
8610 					       chunk_offset);
8611 
8612 	atomic_set(&cache->count, 1);
8613 	spin_lock_init(&cache->lock);
8614 	INIT_LIST_HEAD(&cache->list);
8615 	INIT_LIST_HEAD(&cache->cluster_list);
8616 	INIT_LIST_HEAD(&cache->new_bg_list);
8617 
8618 	btrfs_init_free_space_ctl(cache);
8619 
8620 	btrfs_set_block_group_used(&cache->item, bytes_used);
8621 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8622 	cache->flags = type;
8623 	btrfs_set_block_group_flags(&cache->item, type);
8624 
8625 	cache->last_byte_to_unpin = (u64)-1;
8626 	cache->cached = BTRFS_CACHE_FINISHED;
8627 	ret = exclude_super_stripes(root, cache);
8628 	if (ret) {
8629 		/*
8630 		 * We may have excluded something, so call this just in
8631 		 * case.
8632 		 */
8633 		free_excluded_extents(root, cache);
8634 		kfree(cache->free_space_ctl);
8635 		kfree(cache);
8636 		return ret;
8637 	}
8638 
8639 	add_new_free_space(cache, root->fs_info, chunk_offset,
8640 			   chunk_offset + size);
8641 
8642 	free_excluded_extents(root, cache);
8643 
8644 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8645 	if (ret) {
8646 		btrfs_remove_free_space_cache(cache);
8647 		btrfs_put_block_group(cache);
8648 		return ret;
8649 	}
8650 
8651 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8652 				&cache->space_info);
8653 	if (ret) {
8654 		btrfs_remove_free_space_cache(cache);
8655 		spin_lock(&root->fs_info->block_group_cache_lock);
8656 		rb_erase(&cache->cache_node,
8657 			 &root->fs_info->block_group_cache_tree);
8658 		spin_unlock(&root->fs_info->block_group_cache_lock);
8659 		btrfs_put_block_group(cache);
8660 		return ret;
8661 	}
8662 	update_global_block_rsv(root->fs_info);
8663 
8664 	spin_lock(&cache->space_info->lock);
8665 	cache->space_info->bytes_readonly += cache->bytes_super;
8666 	spin_unlock(&cache->space_info->lock);
8667 
8668 	__link_block_group(cache->space_info, cache);
8669 
8670 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8671 
8672 	set_avail_alloc_bits(extent_root->fs_info, type);
8673 
8674 	return 0;
8675 }
8676 
8677 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8678 {
8679 	u64 extra_flags = chunk_to_extended(flags) &
8680 				BTRFS_EXTENDED_PROFILE_MASK;
8681 
8682 	write_seqlock(&fs_info->profiles_lock);
8683 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8684 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8685 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8686 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8687 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8688 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8689 	write_sequnlock(&fs_info->profiles_lock);
8690 }
8691 
8692 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8693 			     struct btrfs_root *root, u64 group_start)
8694 {
8695 	struct btrfs_path *path;
8696 	struct btrfs_block_group_cache *block_group;
8697 	struct btrfs_free_cluster *cluster;
8698 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8699 	struct btrfs_key key;
8700 	struct inode *inode;
8701 	int ret;
8702 	int index;
8703 	int factor;
8704 
8705 	root = root->fs_info->extent_root;
8706 
8707 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8708 	BUG_ON(!block_group);
8709 	BUG_ON(!block_group->ro);
8710 
8711 	/*
8712 	 * Free the reserved super bytes from this block group before
8713 	 * remove it.
8714 	 */
8715 	free_excluded_extents(root, block_group);
8716 
8717 	memcpy(&key, &block_group->key, sizeof(key));
8718 	index = get_block_group_index(block_group);
8719 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8720 				  BTRFS_BLOCK_GROUP_RAID1 |
8721 				  BTRFS_BLOCK_GROUP_RAID10))
8722 		factor = 2;
8723 	else
8724 		factor = 1;
8725 
8726 	/* make sure this block group isn't part of an allocation cluster */
8727 	cluster = &root->fs_info->data_alloc_cluster;
8728 	spin_lock(&cluster->refill_lock);
8729 	btrfs_return_cluster_to_free_space(block_group, cluster);
8730 	spin_unlock(&cluster->refill_lock);
8731 
8732 	/*
8733 	 * make sure this block group isn't part of a metadata
8734 	 * allocation cluster
8735 	 */
8736 	cluster = &root->fs_info->meta_alloc_cluster;
8737 	spin_lock(&cluster->refill_lock);
8738 	btrfs_return_cluster_to_free_space(block_group, cluster);
8739 	spin_unlock(&cluster->refill_lock);
8740 
8741 	path = btrfs_alloc_path();
8742 	if (!path) {
8743 		ret = -ENOMEM;
8744 		goto out;
8745 	}
8746 
8747 	inode = lookup_free_space_inode(tree_root, block_group, path);
8748 	if (!IS_ERR(inode)) {
8749 		ret = btrfs_orphan_add(trans, inode);
8750 		if (ret) {
8751 			btrfs_add_delayed_iput(inode);
8752 			goto out;
8753 		}
8754 		clear_nlink(inode);
8755 		/* One for the block groups ref */
8756 		spin_lock(&block_group->lock);
8757 		if (block_group->iref) {
8758 			block_group->iref = 0;
8759 			block_group->inode = NULL;
8760 			spin_unlock(&block_group->lock);
8761 			iput(inode);
8762 		} else {
8763 			spin_unlock(&block_group->lock);
8764 		}
8765 		/* One for our lookup ref */
8766 		btrfs_add_delayed_iput(inode);
8767 	}
8768 
8769 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8770 	key.offset = block_group->key.objectid;
8771 	key.type = 0;
8772 
8773 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8774 	if (ret < 0)
8775 		goto out;
8776 	if (ret > 0)
8777 		btrfs_release_path(path);
8778 	if (ret == 0) {
8779 		ret = btrfs_del_item(trans, tree_root, path);
8780 		if (ret)
8781 			goto out;
8782 		btrfs_release_path(path);
8783 	}
8784 
8785 	spin_lock(&root->fs_info->block_group_cache_lock);
8786 	rb_erase(&block_group->cache_node,
8787 		 &root->fs_info->block_group_cache_tree);
8788 
8789 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8790 		root->fs_info->first_logical_byte = (u64)-1;
8791 	spin_unlock(&root->fs_info->block_group_cache_lock);
8792 
8793 	down_write(&block_group->space_info->groups_sem);
8794 	/*
8795 	 * we must use list_del_init so people can check to see if they
8796 	 * are still on the list after taking the semaphore
8797 	 */
8798 	list_del_init(&block_group->list);
8799 	if (list_empty(&block_group->space_info->block_groups[index]))
8800 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8801 	up_write(&block_group->space_info->groups_sem);
8802 
8803 	if (block_group->cached == BTRFS_CACHE_STARTED)
8804 		wait_block_group_cache_done(block_group);
8805 
8806 	btrfs_remove_free_space_cache(block_group);
8807 
8808 	spin_lock(&block_group->space_info->lock);
8809 	block_group->space_info->total_bytes -= block_group->key.offset;
8810 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8811 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8812 	spin_unlock(&block_group->space_info->lock);
8813 
8814 	memcpy(&key, &block_group->key, sizeof(key));
8815 
8816 	btrfs_clear_space_info_full(root->fs_info);
8817 
8818 	btrfs_put_block_group(block_group);
8819 	btrfs_put_block_group(block_group);
8820 
8821 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8822 	if (ret > 0)
8823 		ret = -EIO;
8824 	if (ret < 0)
8825 		goto out;
8826 
8827 	ret = btrfs_del_item(trans, root, path);
8828 out:
8829 	btrfs_free_path(path);
8830 	return ret;
8831 }
8832 
8833 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8834 {
8835 	struct btrfs_space_info *space_info;
8836 	struct btrfs_super_block *disk_super;
8837 	u64 features;
8838 	u64 flags;
8839 	int mixed = 0;
8840 	int ret;
8841 
8842 	disk_super = fs_info->super_copy;
8843 	if (!btrfs_super_root(disk_super))
8844 		return 1;
8845 
8846 	features = btrfs_super_incompat_flags(disk_super);
8847 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8848 		mixed = 1;
8849 
8850 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8851 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8852 	if (ret)
8853 		goto out;
8854 
8855 	if (mixed) {
8856 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8857 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8858 	} else {
8859 		flags = BTRFS_BLOCK_GROUP_METADATA;
8860 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8861 		if (ret)
8862 			goto out;
8863 
8864 		flags = BTRFS_BLOCK_GROUP_DATA;
8865 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8866 	}
8867 out:
8868 	return ret;
8869 }
8870 
8871 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8872 {
8873 	return unpin_extent_range(root, start, end);
8874 }
8875 
8876 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8877 			       u64 num_bytes, u64 *actual_bytes)
8878 {
8879 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8880 }
8881 
8882 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8883 {
8884 	struct btrfs_fs_info *fs_info = root->fs_info;
8885 	struct btrfs_block_group_cache *cache = NULL;
8886 	u64 group_trimmed;
8887 	u64 start;
8888 	u64 end;
8889 	u64 trimmed = 0;
8890 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8891 	int ret = 0;
8892 
8893 	/*
8894 	 * try to trim all FS space, our block group may start from non-zero.
8895 	 */
8896 	if (range->len == total_bytes)
8897 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8898 	else
8899 		cache = btrfs_lookup_block_group(fs_info, range->start);
8900 
8901 	while (cache) {
8902 		if (cache->key.objectid >= (range->start + range->len)) {
8903 			btrfs_put_block_group(cache);
8904 			break;
8905 		}
8906 
8907 		start = max(range->start, cache->key.objectid);
8908 		end = min(range->start + range->len,
8909 				cache->key.objectid + cache->key.offset);
8910 
8911 		if (end - start >= range->minlen) {
8912 			if (!block_group_cache_done(cache)) {
8913 				ret = cache_block_group(cache, 0);
8914 				if (ret) {
8915 					btrfs_put_block_group(cache);
8916 					break;
8917 				}
8918 				ret = wait_block_group_cache_done(cache);
8919 				if (ret) {
8920 					btrfs_put_block_group(cache);
8921 					break;
8922 				}
8923 			}
8924 			ret = btrfs_trim_block_group(cache,
8925 						     &group_trimmed,
8926 						     start,
8927 						     end,
8928 						     range->minlen);
8929 
8930 			trimmed += group_trimmed;
8931 			if (ret) {
8932 				btrfs_put_block_group(cache);
8933 				break;
8934 			}
8935 		}
8936 
8937 		cache = next_block_group(fs_info->tree_root, cache);
8938 	}
8939 
8940 	range->len = trimmed;
8941 	return ret;
8942 }
8943