1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_delayed_ref_node *node, u64 parent, 56 u64 root_objectid, u64 owner_objectid, 57 u64 owner_offset, int refs_to_drop, 58 struct btrfs_delayed_extent_op *extra_op); 59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 60 struct extent_buffer *leaf, 61 struct btrfs_extent_item *ei); 62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 63 u64 parent, u64 root_objectid, 64 u64 flags, u64 owner, u64 offset, 65 struct btrfs_key *ins, int ref_mod); 66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 67 struct btrfs_delayed_ref_node *node, 68 struct btrfs_delayed_extent_op *extent_op); 69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 70 int force); 71 static int find_next_key(struct btrfs_path *path, int level, 72 struct btrfs_key *key); 73 static void dump_space_info(struct btrfs_fs_info *fs_info, 74 struct btrfs_space_info *info, u64 bytes, 75 int dump_block_groups); 76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 77 u64 num_bytes); 78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 79 struct btrfs_space_info *space_info, 80 u64 num_bytes); 81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 82 struct btrfs_space_info *space_info, 83 u64 num_bytes); 84 85 static noinline int 86 block_group_cache_done(struct btrfs_block_group_cache *cache) 87 { 88 smp_mb(); 89 return cache->cached == BTRFS_CACHE_FINISHED || 90 cache->cached == BTRFS_CACHE_ERROR; 91 } 92 93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 94 { 95 return (cache->flags & bits) == bits; 96 } 97 98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 99 { 100 atomic_inc(&cache->count); 101 } 102 103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 104 { 105 if (atomic_dec_and_test(&cache->count)) { 106 WARN_ON(cache->pinned > 0); 107 WARN_ON(cache->reserved > 0); 108 109 /* 110 * If not empty, someone is still holding mutex of 111 * full_stripe_lock, which can only be released by caller. 112 * And it will definitely cause use-after-free when caller 113 * tries to release full stripe lock. 114 * 115 * No better way to resolve, but only to warn. 116 */ 117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 118 kfree(cache->free_space_ctl); 119 kfree(cache); 120 } 121 } 122 123 /* 124 * this adds the block group to the fs_info rb tree for the block group 125 * cache 126 */ 127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 128 struct btrfs_block_group_cache *block_group) 129 { 130 struct rb_node **p; 131 struct rb_node *parent = NULL; 132 struct btrfs_block_group_cache *cache; 133 134 spin_lock(&info->block_group_cache_lock); 135 p = &info->block_group_cache_tree.rb_node; 136 137 while (*p) { 138 parent = *p; 139 cache = rb_entry(parent, struct btrfs_block_group_cache, 140 cache_node); 141 if (block_group->key.objectid < cache->key.objectid) { 142 p = &(*p)->rb_left; 143 } else if (block_group->key.objectid > cache->key.objectid) { 144 p = &(*p)->rb_right; 145 } else { 146 spin_unlock(&info->block_group_cache_lock); 147 return -EEXIST; 148 } 149 } 150 151 rb_link_node(&block_group->cache_node, parent, p); 152 rb_insert_color(&block_group->cache_node, 153 &info->block_group_cache_tree); 154 155 if (info->first_logical_byte > block_group->key.objectid) 156 info->first_logical_byte = block_group->key.objectid; 157 158 spin_unlock(&info->block_group_cache_lock); 159 160 return 0; 161 } 162 163 /* 164 * This will return the block group at or after bytenr if contains is 0, else 165 * it will return the block group that contains the bytenr 166 */ 167 static struct btrfs_block_group_cache * 168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 169 int contains) 170 { 171 struct btrfs_block_group_cache *cache, *ret = NULL; 172 struct rb_node *n; 173 u64 end, start; 174 175 spin_lock(&info->block_group_cache_lock); 176 n = info->block_group_cache_tree.rb_node; 177 178 while (n) { 179 cache = rb_entry(n, struct btrfs_block_group_cache, 180 cache_node); 181 end = cache->key.objectid + cache->key.offset - 1; 182 start = cache->key.objectid; 183 184 if (bytenr < start) { 185 if (!contains && (!ret || start < ret->key.objectid)) 186 ret = cache; 187 n = n->rb_left; 188 } else if (bytenr > start) { 189 if (contains && bytenr <= end) { 190 ret = cache; 191 break; 192 } 193 n = n->rb_right; 194 } else { 195 ret = cache; 196 break; 197 } 198 } 199 if (ret) { 200 btrfs_get_block_group(ret); 201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 202 info->first_logical_byte = ret->key.objectid; 203 } 204 spin_unlock(&info->block_group_cache_lock); 205 206 return ret; 207 } 208 209 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 210 u64 start, u64 num_bytes) 211 { 212 u64 end = start + num_bytes - 1; 213 set_extent_bits(&fs_info->freed_extents[0], 214 start, end, EXTENT_UPTODATE); 215 set_extent_bits(&fs_info->freed_extents[1], 216 start, end, EXTENT_UPTODATE); 217 return 0; 218 } 219 220 static void free_excluded_extents(struct btrfs_block_group_cache *cache) 221 { 222 struct btrfs_fs_info *fs_info = cache->fs_info; 223 u64 start, end; 224 225 start = cache->key.objectid; 226 end = start + cache->key.offset - 1; 227 228 clear_extent_bits(&fs_info->freed_extents[0], 229 start, end, EXTENT_UPTODATE); 230 clear_extent_bits(&fs_info->freed_extents[1], 231 start, end, EXTENT_UPTODATE); 232 } 233 234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache) 235 { 236 struct btrfs_fs_info *fs_info = cache->fs_info; 237 u64 bytenr; 238 u64 *logical; 239 int stripe_len; 240 int i, nr, ret; 241 242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 244 cache->bytes_super += stripe_len; 245 ret = add_excluded_extent(fs_info, cache->key.objectid, 246 stripe_len); 247 if (ret) 248 return ret; 249 } 250 251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 252 bytenr = btrfs_sb_offset(i); 253 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 254 bytenr, &logical, &nr, &stripe_len); 255 if (ret) 256 return ret; 257 258 while (nr--) { 259 u64 start, len; 260 261 if (logical[nr] > cache->key.objectid + 262 cache->key.offset) 263 continue; 264 265 if (logical[nr] + stripe_len <= cache->key.objectid) 266 continue; 267 268 start = logical[nr]; 269 if (start < cache->key.objectid) { 270 start = cache->key.objectid; 271 len = (logical[nr] + stripe_len) - start; 272 } else { 273 len = min_t(u64, stripe_len, 274 cache->key.objectid + 275 cache->key.offset - start); 276 } 277 278 cache->bytes_super += len; 279 ret = add_excluded_extent(fs_info, start, len); 280 if (ret) { 281 kfree(logical); 282 return ret; 283 } 284 } 285 286 kfree(logical); 287 } 288 return 0; 289 } 290 291 static struct btrfs_caching_control * 292 get_caching_control(struct btrfs_block_group_cache *cache) 293 { 294 struct btrfs_caching_control *ctl; 295 296 spin_lock(&cache->lock); 297 if (!cache->caching_ctl) { 298 spin_unlock(&cache->lock); 299 return NULL; 300 } 301 302 ctl = cache->caching_ctl; 303 refcount_inc(&ctl->count); 304 spin_unlock(&cache->lock); 305 return ctl; 306 } 307 308 static void put_caching_control(struct btrfs_caching_control *ctl) 309 { 310 if (refcount_dec_and_test(&ctl->count)) 311 kfree(ctl); 312 } 313 314 #ifdef CONFIG_BTRFS_DEBUG 315 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 316 { 317 struct btrfs_fs_info *fs_info = block_group->fs_info; 318 u64 start = block_group->key.objectid; 319 u64 len = block_group->key.offset; 320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 321 fs_info->nodesize : fs_info->sectorsize; 322 u64 step = chunk << 1; 323 324 while (len > chunk) { 325 btrfs_remove_free_space(block_group, start, chunk); 326 start += step; 327 if (len < step) 328 len = 0; 329 else 330 len -= step; 331 } 332 } 333 #endif 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 u64 start, u64 end) 342 { 343 struct btrfs_fs_info *info = block_group->fs_info; 344 u64 extent_start, extent_end, size, total_added = 0; 345 int ret; 346 347 while (start < end) { 348 ret = find_first_extent_bit(info->pinned_extents, start, 349 &extent_start, &extent_end, 350 EXTENT_DIRTY | EXTENT_UPTODATE, 351 NULL); 352 if (ret) 353 break; 354 355 if (extent_start <= start) { 356 start = extent_end + 1; 357 } else if (extent_start > start && extent_start < end) { 358 size = extent_start - start; 359 total_added += size; 360 ret = btrfs_add_free_space(block_group, start, 361 size); 362 BUG_ON(ret); /* -ENOMEM or logic error */ 363 start = extent_end + 1; 364 } else { 365 break; 366 } 367 } 368 369 if (start < end) { 370 size = end - start; 371 total_added += size; 372 ret = btrfs_add_free_space(block_group, start, size); 373 BUG_ON(ret); /* -ENOMEM or logic error */ 374 } 375 376 return total_added; 377 } 378 379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 380 { 381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 382 struct btrfs_fs_info *fs_info = block_group->fs_info; 383 struct btrfs_root *extent_root = fs_info->extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret; 391 bool wakeup = true; 392 393 path = btrfs_alloc_path(); 394 if (!path) 395 return -ENOMEM; 396 397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 398 399 #ifdef CONFIG_BTRFS_DEBUG 400 /* 401 * If we're fragmenting we don't want to make anybody think we can 402 * allocate from this block group until we've had a chance to fragment 403 * the free space. 404 */ 405 if (btrfs_should_fragment_free_space(block_group)) 406 wakeup = false; 407 #endif 408 /* 409 * We don't want to deadlock with somebody trying to allocate a new 410 * extent for the extent root while also trying to search the extent 411 * root to add free space. So we skip locking and search the commit 412 * root, since its read-only 413 */ 414 path->skip_locking = 1; 415 path->search_commit_root = 1; 416 path->reada = READA_FORWARD; 417 418 key.objectid = last; 419 key.offset = 0; 420 key.type = BTRFS_EXTENT_ITEM_KEY; 421 422 next: 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto out; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched() || 444 rwsem_is_contended(&fs_info->commit_root_sem)) { 445 if (wakeup) 446 caching_ctl->progress = last; 447 btrfs_release_path(path); 448 up_read(&fs_info->commit_root_sem); 449 mutex_unlock(&caching_ctl->mutex); 450 cond_resched(); 451 mutex_lock(&caching_ctl->mutex); 452 down_read(&fs_info->commit_root_sem); 453 goto next; 454 } 455 456 ret = btrfs_next_leaf(extent_root, path); 457 if (ret < 0) 458 goto out; 459 if (ret) 460 break; 461 leaf = path->nodes[0]; 462 nritems = btrfs_header_nritems(leaf); 463 continue; 464 } 465 466 if (key.objectid < last) { 467 key.objectid = last; 468 key.offset = 0; 469 key.type = BTRFS_EXTENT_ITEM_KEY; 470 471 if (wakeup) 472 caching_ctl->progress = last; 473 btrfs_release_path(path); 474 goto next; 475 } 476 477 if (key.objectid < block_group->key.objectid) { 478 path->slots[0]++; 479 continue; 480 } 481 482 if (key.objectid >= block_group->key.objectid + 483 block_group->key.offset) 484 break; 485 486 if (key.type == BTRFS_EXTENT_ITEM_KEY || 487 key.type == BTRFS_METADATA_ITEM_KEY) { 488 total_found += add_new_free_space(block_group, last, 489 key.objectid); 490 if (key.type == BTRFS_METADATA_ITEM_KEY) 491 last = key.objectid + 492 fs_info->nodesize; 493 else 494 last = key.objectid + key.offset; 495 496 if (total_found > CACHING_CTL_WAKE_UP) { 497 total_found = 0; 498 if (wakeup) 499 wake_up(&caching_ctl->wait); 500 } 501 } 502 path->slots[0]++; 503 } 504 ret = 0; 505 506 total_found += add_new_free_space(block_group, last, 507 block_group->key.objectid + 508 block_group->key.offset); 509 caching_ctl->progress = (u64)-1; 510 511 out: 512 btrfs_free_path(path); 513 return ret; 514 } 515 516 static noinline void caching_thread(struct btrfs_work *work) 517 { 518 struct btrfs_block_group_cache *block_group; 519 struct btrfs_fs_info *fs_info; 520 struct btrfs_caching_control *caching_ctl; 521 int ret; 522 523 caching_ctl = container_of(work, struct btrfs_caching_control, work); 524 block_group = caching_ctl->block_group; 525 fs_info = block_group->fs_info; 526 527 mutex_lock(&caching_ctl->mutex); 528 down_read(&fs_info->commit_root_sem); 529 530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 531 ret = load_free_space_tree(caching_ctl); 532 else 533 ret = load_extent_tree_free(caching_ctl); 534 535 spin_lock(&block_group->lock); 536 block_group->caching_ctl = NULL; 537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 538 spin_unlock(&block_group->lock); 539 540 #ifdef CONFIG_BTRFS_DEBUG 541 if (btrfs_should_fragment_free_space(block_group)) { 542 u64 bytes_used; 543 544 spin_lock(&block_group->space_info->lock); 545 spin_lock(&block_group->lock); 546 bytes_used = block_group->key.offset - 547 btrfs_block_group_used(&block_group->item); 548 block_group->space_info->bytes_used += bytes_used >> 1; 549 spin_unlock(&block_group->lock); 550 spin_unlock(&block_group->space_info->lock); 551 fragment_free_space(block_group); 552 } 553 #endif 554 555 caching_ctl->progress = (u64)-1; 556 557 up_read(&fs_info->commit_root_sem); 558 free_excluded_extents(block_group); 559 mutex_unlock(&caching_ctl->mutex); 560 561 wake_up(&caching_ctl->wait); 562 563 put_caching_control(caching_ctl); 564 btrfs_put_block_group(block_group); 565 } 566 567 static int cache_block_group(struct btrfs_block_group_cache *cache, 568 int load_cache_only) 569 { 570 DEFINE_WAIT(wait); 571 struct btrfs_fs_info *fs_info = cache->fs_info; 572 struct btrfs_caching_control *caching_ctl; 573 int ret = 0; 574 575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 576 if (!caching_ctl) 577 return -ENOMEM; 578 579 INIT_LIST_HEAD(&caching_ctl->list); 580 mutex_init(&caching_ctl->mutex); 581 init_waitqueue_head(&caching_ctl->wait); 582 caching_ctl->block_group = cache; 583 caching_ctl->progress = cache->key.objectid; 584 refcount_set(&caching_ctl->count, 1); 585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 586 caching_thread, NULL, NULL); 587 588 spin_lock(&cache->lock); 589 /* 590 * This should be a rare occasion, but this could happen I think in the 591 * case where one thread starts to load the space cache info, and then 592 * some other thread starts a transaction commit which tries to do an 593 * allocation while the other thread is still loading the space cache 594 * info. The previous loop should have kept us from choosing this block 595 * group, but if we've moved to the state where we will wait on caching 596 * block groups we need to first check if we're doing a fast load here, 597 * so we can wait for it to finish, otherwise we could end up allocating 598 * from a block group who's cache gets evicted for one reason or 599 * another. 600 */ 601 while (cache->cached == BTRFS_CACHE_FAST) { 602 struct btrfs_caching_control *ctl; 603 604 ctl = cache->caching_ctl; 605 refcount_inc(&ctl->count); 606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 607 spin_unlock(&cache->lock); 608 609 schedule(); 610 611 finish_wait(&ctl->wait, &wait); 612 put_caching_control(ctl); 613 spin_lock(&cache->lock); 614 } 615 616 if (cache->cached != BTRFS_CACHE_NO) { 617 spin_unlock(&cache->lock); 618 kfree(caching_ctl); 619 return 0; 620 } 621 WARN_ON(cache->caching_ctl); 622 cache->caching_ctl = caching_ctl; 623 cache->cached = BTRFS_CACHE_FAST; 624 spin_unlock(&cache->lock); 625 626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 627 mutex_lock(&caching_ctl->mutex); 628 ret = load_free_space_cache(fs_info, cache); 629 630 spin_lock(&cache->lock); 631 if (ret == 1) { 632 cache->caching_ctl = NULL; 633 cache->cached = BTRFS_CACHE_FINISHED; 634 cache->last_byte_to_unpin = (u64)-1; 635 caching_ctl->progress = (u64)-1; 636 } else { 637 if (load_cache_only) { 638 cache->caching_ctl = NULL; 639 cache->cached = BTRFS_CACHE_NO; 640 } else { 641 cache->cached = BTRFS_CACHE_STARTED; 642 cache->has_caching_ctl = 1; 643 } 644 } 645 spin_unlock(&cache->lock); 646 #ifdef CONFIG_BTRFS_DEBUG 647 if (ret == 1 && 648 btrfs_should_fragment_free_space(cache)) { 649 u64 bytes_used; 650 651 spin_lock(&cache->space_info->lock); 652 spin_lock(&cache->lock); 653 bytes_used = cache->key.offset - 654 btrfs_block_group_used(&cache->item); 655 cache->space_info->bytes_used += bytes_used >> 1; 656 spin_unlock(&cache->lock); 657 spin_unlock(&cache->space_info->lock); 658 fragment_free_space(cache); 659 } 660 #endif 661 mutex_unlock(&caching_ctl->mutex); 662 663 wake_up(&caching_ctl->wait); 664 if (ret == 1) { 665 put_caching_control(caching_ctl); 666 free_excluded_extents(cache); 667 return 0; 668 } 669 } else { 670 /* 671 * We're either using the free space tree or no caching at all. 672 * Set cached to the appropriate value and wakeup any waiters. 673 */ 674 spin_lock(&cache->lock); 675 if (load_cache_only) { 676 cache->caching_ctl = NULL; 677 cache->cached = BTRFS_CACHE_NO; 678 } else { 679 cache->cached = BTRFS_CACHE_STARTED; 680 cache->has_caching_ctl = 1; 681 } 682 spin_unlock(&cache->lock); 683 wake_up(&caching_ctl->wait); 684 } 685 686 if (load_cache_only) { 687 put_caching_control(caching_ctl); 688 return 0; 689 } 690 691 down_write(&fs_info->commit_root_sem); 692 refcount_inc(&caching_ctl->count); 693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 694 up_write(&fs_info->commit_root_sem); 695 696 btrfs_get_block_group(cache); 697 698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 699 700 return ret; 701 } 702 703 /* 704 * return the block group that starts at or after bytenr 705 */ 706 static struct btrfs_block_group_cache * 707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 708 { 709 return block_group_cache_tree_search(info, bytenr, 0); 710 } 711 712 /* 713 * return the block group that contains the given bytenr 714 */ 715 struct btrfs_block_group_cache *btrfs_lookup_block_group( 716 struct btrfs_fs_info *info, 717 u64 bytenr) 718 { 719 return block_group_cache_tree_search(info, bytenr, 1); 720 } 721 722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 723 u64 flags) 724 { 725 struct list_head *head = &info->space_info; 726 struct btrfs_space_info *found; 727 728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 729 730 rcu_read_lock(); 731 list_for_each_entry_rcu(found, head, list) { 732 if (found->flags & flags) { 733 rcu_read_unlock(); 734 return found; 735 } 736 } 737 rcu_read_unlock(); 738 return NULL; 739 } 740 741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 742 bool metadata, u64 root_objectid) 743 { 744 struct btrfs_space_info *space_info; 745 u64 flags; 746 747 if (metadata) { 748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 749 flags = BTRFS_BLOCK_GROUP_SYSTEM; 750 else 751 flags = BTRFS_BLOCK_GROUP_METADATA; 752 } else { 753 flags = BTRFS_BLOCK_GROUP_DATA; 754 } 755 756 space_info = __find_space_info(fs_info, flags); 757 ASSERT(space_info); 758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes, 759 BTRFS_TOTAL_BYTES_PINNED_BATCH); 760 } 761 762 /* 763 * after adding space to the filesystem, we need to clear the full flags 764 * on all the space infos. 765 */ 766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 767 { 768 struct list_head *head = &info->space_info; 769 struct btrfs_space_info *found; 770 771 rcu_read_lock(); 772 list_for_each_entry_rcu(found, head, list) 773 found->full = 0; 774 rcu_read_unlock(); 775 } 776 777 /* simple helper to search for an existing data extent at a given offset */ 778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 779 { 780 int ret; 781 struct btrfs_key key; 782 struct btrfs_path *path; 783 784 path = btrfs_alloc_path(); 785 if (!path) 786 return -ENOMEM; 787 788 key.objectid = start; 789 key.offset = len; 790 key.type = BTRFS_EXTENT_ITEM_KEY; 791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 792 btrfs_free_path(path); 793 return ret; 794 } 795 796 /* 797 * helper function to lookup reference count and flags of a tree block. 798 * 799 * the head node for delayed ref is used to store the sum of all the 800 * reference count modifications queued up in the rbtree. the head 801 * node may also store the extent flags to set. This way you can check 802 * to see what the reference count and extent flags would be if all of 803 * the delayed refs are not processed. 804 */ 805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 806 struct btrfs_fs_info *fs_info, u64 bytenr, 807 u64 offset, int metadata, u64 *refs, u64 *flags) 808 { 809 struct btrfs_delayed_ref_head *head; 810 struct btrfs_delayed_ref_root *delayed_refs; 811 struct btrfs_path *path; 812 struct btrfs_extent_item *ei; 813 struct extent_buffer *leaf; 814 struct btrfs_key key; 815 u32 item_size; 816 u64 num_refs; 817 u64 extent_flags; 818 int ret; 819 820 /* 821 * If we don't have skinny metadata, don't bother doing anything 822 * different 823 */ 824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 825 offset = fs_info->nodesize; 826 metadata = 0; 827 } 828 829 path = btrfs_alloc_path(); 830 if (!path) 831 return -ENOMEM; 832 833 if (!trans) { 834 path->skip_locking = 1; 835 path->search_commit_root = 1; 836 } 837 838 search_again: 839 key.objectid = bytenr; 840 key.offset = offset; 841 if (metadata) 842 key.type = BTRFS_METADATA_ITEM_KEY; 843 else 844 key.type = BTRFS_EXTENT_ITEM_KEY; 845 846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 847 if (ret < 0) 848 goto out_free; 849 850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 851 if (path->slots[0]) { 852 path->slots[0]--; 853 btrfs_item_key_to_cpu(path->nodes[0], &key, 854 path->slots[0]); 855 if (key.objectid == bytenr && 856 key.type == BTRFS_EXTENT_ITEM_KEY && 857 key.offset == fs_info->nodesize) 858 ret = 0; 859 } 860 } 861 862 if (ret == 0) { 863 leaf = path->nodes[0]; 864 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 865 if (item_size >= sizeof(*ei)) { 866 ei = btrfs_item_ptr(leaf, path->slots[0], 867 struct btrfs_extent_item); 868 num_refs = btrfs_extent_refs(leaf, ei); 869 extent_flags = btrfs_extent_flags(leaf, ei); 870 } else { 871 ret = -EINVAL; 872 btrfs_print_v0_err(fs_info); 873 if (trans) 874 btrfs_abort_transaction(trans, ret); 875 else 876 btrfs_handle_fs_error(fs_info, ret, NULL); 877 878 goto out_free; 879 } 880 881 BUG_ON(num_refs == 0); 882 } else { 883 num_refs = 0; 884 extent_flags = 0; 885 ret = 0; 886 } 887 888 if (!trans) 889 goto out; 890 891 delayed_refs = &trans->transaction->delayed_refs; 892 spin_lock(&delayed_refs->lock); 893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 894 if (head) { 895 if (!mutex_trylock(&head->mutex)) { 896 refcount_inc(&head->refs); 897 spin_unlock(&delayed_refs->lock); 898 899 btrfs_release_path(path); 900 901 /* 902 * Mutex was contended, block until it's released and try 903 * again 904 */ 905 mutex_lock(&head->mutex); 906 mutex_unlock(&head->mutex); 907 btrfs_put_delayed_ref_head(head); 908 goto search_again; 909 } 910 spin_lock(&head->lock); 911 if (head->extent_op && head->extent_op->update_flags) 912 extent_flags |= head->extent_op->flags_to_set; 913 else 914 BUG_ON(num_refs == 0); 915 916 num_refs += head->ref_mod; 917 spin_unlock(&head->lock); 918 mutex_unlock(&head->mutex); 919 } 920 spin_unlock(&delayed_refs->lock); 921 out: 922 WARN_ON(num_refs == 0); 923 if (refs) 924 *refs = num_refs; 925 if (flags) 926 *flags = extent_flags; 927 out_free: 928 btrfs_free_path(path); 929 return ret; 930 } 931 932 /* 933 * Back reference rules. Back refs have three main goals: 934 * 935 * 1) differentiate between all holders of references to an extent so that 936 * when a reference is dropped we can make sure it was a valid reference 937 * before freeing the extent. 938 * 939 * 2) Provide enough information to quickly find the holders of an extent 940 * if we notice a given block is corrupted or bad. 941 * 942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 943 * maintenance. This is actually the same as #2, but with a slightly 944 * different use case. 945 * 946 * There are two kinds of back refs. The implicit back refs is optimized 947 * for pointers in non-shared tree blocks. For a given pointer in a block, 948 * back refs of this kind provide information about the block's owner tree 949 * and the pointer's key. These information allow us to find the block by 950 * b-tree searching. The full back refs is for pointers in tree blocks not 951 * referenced by their owner trees. The location of tree block is recorded 952 * in the back refs. Actually the full back refs is generic, and can be 953 * used in all cases the implicit back refs is used. The major shortcoming 954 * of the full back refs is its overhead. Every time a tree block gets 955 * COWed, we have to update back refs entry for all pointers in it. 956 * 957 * For a newly allocated tree block, we use implicit back refs for 958 * pointers in it. This means most tree related operations only involve 959 * implicit back refs. For a tree block created in old transaction, the 960 * only way to drop a reference to it is COW it. So we can detect the 961 * event that tree block loses its owner tree's reference and do the 962 * back refs conversion. 963 * 964 * When a tree block is COWed through a tree, there are four cases: 965 * 966 * The reference count of the block is one and the tree is the block's 967 * owner tree. Nothing to do in this case. 968 * 969 * The reference count of the block is one and the tree is not the 970 * block's owner tree. In this case, full back refs is used for pointers 971 * in the block. Remove these full back refs, add implicit back refs for 972 * every pointers in the new block. 973 * 974 * The reference count of the block is greater than one and the tree is 975 * the block's owner tree. In this case, implicit back refs is used for 976 * pointers in the block. Add full back refs for every pointers in the 977 * block, increase lower level extents' reference counts. The original 978 * implicit back refs are entailed to the new block. 979 * 980 * The reference count of the block is greater than one and the tree is 981 * not the block's owner tree. Add implicit back refs for every pointer in 982 * the new block, increase lower level extents' reference count. 983 * 984 * Back Reference Key composing: 985 * 986 * The key objectid corresponds to the first byte in the extent, 987 * The key type is used to differentiate between types of back refs. 988 * There are different meanings of the key offset for different types 989 * of back refs. 990 * 991 * File extents can be referenced by: 992 * 993 * - multiple snapshots, subvolumes, or different generations in one subvol 994 * - different files inside a single subvolume 995 * - different offsets inside a file (bookend extents in file.c) 996 * 997 * The extent ref structure for the implicit back refs has fields for: 998 * 999 * - Objectid of the subvolume root 1000 * - objectid of the file holding the reference 1001 * - original offset in the file 1002 * - how many bookend extents 1003 * 1004 * The key offset for the implicit back refs is hash of the first 1005 * three fields. 1006 * 1007 * The extent ref structure for the full back refs has field for: 1008 * 1009 * - number of pointers in the tree leaf 1010 * 1011 * The key offset for the implicit back refs is the first byte of 1012 * the tree leaf 1013 * 1014 * When a file extent is allocated, The implicit back refs is used. 1015 * the fields are filled in: 1016 * 1017 * (root_key.objectid, inode objectid, offset in file, 1) 1018 * 1019 * When a file extent is removed file truncation, we find the 1020 * corresponding implicit back refs and check the following fields: 1021 * 1022 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1023 * 1024 * Btree extents can be referenced by: 1025 * 1026 * - Different subvolumes 1027 * 1028 * Both the implicit back refs and the full back refs for tree blocks 1029 * only consist of key. The key offset for the implicit back refs is 1030 * objectid of block's owner tree. The key offset for the full back refs 1031 * is the first byte of parent block. 1032 * 1033 * When implicit back refs is used, information about the lowest key and 1034 * level of the tree block are required. These information are stored in 1035 * tree block info structure. 1036 */ 1037 1038 /* 1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1042 */ 1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1044 struct btrfs_extent_inline_ref *iref, 1045 enum btrfs_inline_ref_type is_data) 1046 { 1047 int type = btrfs_extent_inline_ref_type(eb, iref); 1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1049 1050 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1051 type == BTRFS_SHARED_BLOCK_REF_KEY || 1052 type == BTRFS_SHARED_DATA_REF_KEY || 1053 type == BTRFS_EXTENT_DATA_REF_KEY) { 1054 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1055 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1056 return type; 1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1058 ASSERT(eb->fs_info); 1059 /* 1060 * Every shared one has parent tree 1061 * block, which must be aligned to 1062 * nodesize. 1063 */ 1064 if (offset && 1065 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1066 return type; 1067 } 1068 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1069 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1070 return type; 1071 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1072 ASSERT(eb->fs_info); 1073 /* 1074 * Every shared one has parent tree 1075 * block, which must be aligned to 1076 * nodesize. 1077 */ 1078 if (offset && 1079 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1080 return type; 1081 } 1082 } else { 1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1084 return type; 1085 } 1086 } 1087 1088 btrfs_print_leaf((struct extent_buffer *)eb); 1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1090 eb->start, type); 1091 WARN_ON(1); 1092 1093 return BTRFS_REF_TYPE_INVALID; 1094 } 1095 1096 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1097 { 1098 u32 high_crc = ~(u32)0; 1099 u32 low_crc = ~(u32)0; 1100 __le64 lenum; 1101 1102 lenum = cpu_to_le64(root_objectid); 1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1104 lenum = cpu_to_le64(owner); 1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1106 lenum = cpu_to_le64(offset); 1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1108 1109 return ((u64)high_crc << 31) ^ (u64)low_crc; 1110 } 1111 1112 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1113 struct btrfs_extent_data_ref *ref) 1114 { 1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1116 btrfs_extent_data_ref_objectid(leaf, ref), 1117 btrfs_extent_data_ref_offset(leaf, ref)); 1118 } 1119 1120 static int match_extent_data_ref(struct extent_buffer *leaf, 1121 struct btrfs_extent_data_ref *ref, 1122 u64 root_objectid, u64 owner, u64 offset) 1123 { 1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1126 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1127 return 0; 1128 return 1; 1129 } 1130 1131 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1132 struct btrfs_path *path, 1133 u64 bytenr, u64 parent, 1134 u64 root_objectid, 1135 u64 owner, u64 offset) 1136 { 1137 struct btrfs_root *root = trans->fs_info->extent_root; 1138 struct btrfs_key key; 1139 struct btrfs_extent_data_ref *ref; 1140 struct extent_buffer *leaf; 1141 u32 nritems; 1142 int ret; 1143 int recow; 1144 int err = -ENOENT; 1145 1146 key.objectid = bytenr; 1147 if (parent) { 1148 key.type = BTRFS_SHARED_DATA_REF_KEY; 1149 key.offset = parent; 1150 } else { 1151 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1152 key.offset = hash_extent_data_ref(root_objectid, 1153 owner, offset); 1154 } 1155 again: 1156 recow = 0; 1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1158 if (ret < 0) { 1159 err = ret; 1160 goto fail; 1161 } 1162 1163 if (parent) { 1164 if (!ret) 1165 return 0; 1166 goto fail; 1167 } 1168 1169 leaf = path->nodes[0]; 1170 nritems = btrfs_header_nritems(leaf); 1171 while (1) { 1172 if (path->slots[0] >= nritems) { 1173 ret = btrfs_next_leaf(root, path); 1174 if (ret < 0) 1175 err = ret; 1176 if (ret) 1177 goto fail; 1178 1179 leaf = path->nodes[0]; 1180 nritems = btrfs_header_nritems(leaf); 1181 recow = 1; 1182 } 1183 1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1185 if (key.objectid != bytenr || 1186 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1187 goto fail; 1188 1189 ref = btrfs_item_ptr(leaf, path->slots[0], 1190 struct btrfs_extent_data_ref); 1191 1192 if (match_extent_data_ref(leaf, ref, root_objectid, 1193 owner, offset)) { 1194 if (recow) { 1195 btrfs_release_path(path); 1196 goto again; 1197 } 1198 err = 0; 1199 break; 1200 } 1201 path->slots[0]++; 1202 } 1203 fail: 1204 return err; 1205 } 1206 1207 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1208 struct btrfs_path *path, 1209 u64 bytenr, u64 parent, 1210 u64 root_objectid, u64 owner, 1211 u64 offset, int refs_to_add) 1212 { 1213 struct btrfs_root *root = trans->fs_info->extent_root; 1214 struct btrfs_key key; 1215 struct extent_buffer *leaf; 1216 u32 size; 1217 u32 num_refs; 1218 int ret; 1219 1220 key.objectid = bytenr; 1221 if (parent) { 1222 key.type = BTRFS_SHARED_DATA_REF_KEY; 1223 key.offset = parent; 1224 size = sizeof(struct btrfs_shared_data_ref); 1225 } else { 1226 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1227 key.offset = hash_extent_data_ref(root_objectid, 1228 owner, offset); 1229 size = sizeof(struct btrfs_extent_data_ref); 1230 } 1231 1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1233 if (ret && ret != -EEXIST) 1234 goto fail; 1235 1236 leaf = path->nodes[0]; 1237 if (parent) { 1238 struct btrfs_shared_data_ref *ref; 1239 ref = btrfs_item_ptr(leaf, path->slots[0], 1240 struct btrfs_shared_data_ref); 1241 if (ret == 0) { 1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1243 } else { 1244 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1245 num_refs += refs_to_add; 1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1247 } 1248 } else { 1249 struct btrfs_extent_data_ref *ref; 1250 while (ret == -EEXIST) { 1251 ref = btrfs_item_ptr(leaf, path->slots[0], 1252 struct btrfs_extent_data_ref); 1253 if (match_extent_data_ref(leaf, ref, root_objectid, 1254 owner, offset)) 1255 break; 1256 btrfs_release_path(path); 1257 key.offset++; 1258 ret = btrfs_insert_empty_item(trans, root, path, &key, 1259 size); 1260 if (ret && ret != -EEXIST) 1261 goto fail; 1262 1263 leaf = path->nodes[0]; 1264 } 1265 ref = btrfs_item_ptr(leaf, path->slots[0], 1266 struct btrfs_extent_data_ref); 1267 if (ret == 0) { 1268 btrfs_set_extent_data_ref_root(leaf, ref, 1269 root_objectid); 1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1273 } else { 1274 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1275 num_refs += refs_to_add; 1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1277 } 1278 } 1279 btrfs_mark_buffer_dirty(leaf); 1280 ret = 0; 1281 fail: 1282 btrfs_release_path(path); 1283 return ret; 1284 } 1285 1286 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1287 struct btrfs_path *path, 1288 int refs_to_drop, int *last_ref) 1289 { 1290 struct btrfs_key key; 1291 struct btrfs_extent_data_ref *ref1 = NULL; 1292 struct btrfs_shared_data_ref *ref2 = NULL; 1293 struct extent_buffer *leaf; 1294 u32 num_refs = 0; 1295 int ret = 0; 1296 1297 leaf = path->nodes[0]; 1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1299 1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1301 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_data_ref); 1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1305 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_shared_data_ref); 1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 1309 btrfs_print_v0_err(trans->fs_info); 1310 btrfs_abort_transaction(trans, -EINVAL); 1311 return -EINVAL; 1312 } else { 1313 BUG(); 1314 } 1315 1316 BUG_ON(num_refs < refs_to_drop); 1317 num_refs -= refs_to_drop; 1318 1319 if (num_refs == 0) { 1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1321 *last_ref = 1; 1322 } else { 1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1327 btrfs_mark_buffer_dirty(leaf); 1328 } 1329 return ret; 1330 } 1331 1332 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1333 struct btrfs_extent_inline_ref *iref) 1334 { 1335 struct btrfs_key key; 1336 struct extent_buffer *leaf; 1337 struct btrfs_extent_data_ref *ref1; 1338 struct btrfs_shared_data_ref *ref2; 1339 u32 num_refs = 0; 1340 int type; 1341 1342 leaf = path->nodes[0]; 1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1344 1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 1346 if (iref) { 1347 /* 1348 * If type is invalid, we should have bailed out earlier than 1349 * this call. 1350 */ 1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1352 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1356 } else { 1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1359 } 1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1361 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1362 struct btrfs_extent_data_ref); 1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1365 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1366 struct btrfs_shared_data_ref); 1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1368 } else { 1369 WARN_ON(1); 1370 } 1371 return num_refs; 1372 } 1373 1374 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1375 struct btrfs_path *path, 1376 u64 bytenr, u64 parent, 1377 u64 root_objectid) 1378 { 1379 struct btrfs_root *root = trans->fs_info->extent_root; 1380 struct btrfs_key key; 1381 int ret; 1382 1383 key.objectid = bytenr; 1384 if (parent) { 1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1386 key.offset = parent; 1387 } else { 1388 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1389 key.offset = root_objectid; 1390 } 1391 1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1393 if (ret > 0) 1394 ret = -ENOENT; 1395 return ret; 1396 } 1397 1398 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1399 struct btrfs_path *path, 1400 u64 bytenr, u64 parent, 1401 u64 root_objectid) 1402 { 1403 struct btrfs_key key; 1404 int ret; 1405 1406 key.objectid = bytenr; 1407 if (parent) { 1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1409 key.offset = parent; 1410 } else { 1411 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1412 key.offset = root_objectid; 1413 } 1414 1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 1416 path, &key, 0); 1417 btrfs_release_path(path); 1418 return ret; 1419 } 1420 1421 static inline int extent_ref_type(u64 parent, u64 owner) 1422 { 1423 int type; 1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1425 if (parent > 0) 1426 type = BTRFS_SHARED_BLOCK_REF_KEY; 1427 else 1428 type = BTRFS_TREE_BLOCK_REF_KEY; 1429 } else { 1430 if (parent > 0) 1431 type = BTRFS_SHARED_DATA_REF_KEY; 1432 else 1433 type = BTRFS_EXTENT_DATA_REF_KEY; 1434 } 1435 return type; 1436 } 1437 1438 static int find_next_key(struct btrfs_path *path, int level, 1439 struct btrfs_key *key) 1440 1441 { 1442 for (; level < BTRFS_MAX_LEVEL; level++) { 1443 if (!path->nodes[level]) 1444 break; 1445 if (path->slots[level] + 1 >= 1446 btrfs_header_nritems(path->nodes[level])) 1447 continue; 1448 if (level == 0) 1449 btrfs_item_key_to_cpu(path->nodes[level], key, 1450 path->slots[level] + 1); 1451 else 1452 btrfs_node_key_to_cpu(path->nodes[level], key, 1453 path->slots[level] + 1); 1454 return 0; 1455 } 1456 return 1; 1457 } 1458 1459 /* 1460 * look for inline back ref. if back ref is found, *ref_ret is set 1461 * to the address of inline back ref, and 0 is returned. 1462 * 1463 * if back ref isn't found, *ref_ret is set to the address where it 1464 * should be inserted, and -ENOENT is returned. 1465 * 1466 * if insert is true and there are too many inline back refs, the path 1467 * points to the extent item, and -EAGAIN is returned. 1468 * 1469 * NOTE: inline back refs are ordered in the same way that back ref 1470 * items in the tree are ordered. 1471 */ 1472 static noinline_for_stack 1473 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1474 struct btrfs_path *path, 1475 struct btrfs_extent_inline_ref **ref_ret, 1476 u64 bytenr, u64 num_bytes, 1477 u64 parent, u64 root_objectid, 1478 u64 owner, u64 offset, int insert) 1479 { 1480 struct btrfs_fs_info *fs_info = trans->fs_info; 1481 struct btrfs_root *root = fs_info->extent_root; 1482 struct btrfs_key key; 1483 struct extent_buffer *leaf; 1484 struct btrfs_extent_item *ei; 1485 struct btrfs_extent_inline_ref *iref; 1486 u64 flags; 1487 u64 item_size; 1488 unsigned long ptr; 1489 unsigned long end; 1490 int extra_size; 1491 int type; 1492 int want; 1493 int ret; 1494 int err = 0; 1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1496 int needed; 1497 1498 key.objectid = bytenr; 1499 key.type = BTRFS_EXTENT_ITEM_KEY; 1500 key.offset = num_bytes; 1501 1502 want = extent_ref_type(parent, owner); 1503 if (insert) { 1504 extra_size = btrfs_extent_inline_ref_size(want); 1505 path->keep_locks = 1; 1506 } else 1507 extra_size = -1; 1508 1509 /* 1510 * Owner is our level, so we can just add one to get the level for the 1511 * block we are interested in. 1512 */ 1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1514 key.type = BTRFS_METADATA_ITEM_KEY; 1515 key.offset = owner; 1516 } 1517 1518 again: 1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1520 if (ret < 0) { 1521 err = ret; 1522 goto out; 1523 } 1524 1525 /* 1526 * We may be a newly converted file system which still has the old fat 1527 * extent entries for metadata, so try and see if we have one of those. 1528 */ 1529 if (ret > 0 && skinny_metadata) { 1530 skinny_metadata = false; 1531 if (path->slots[0]) { 1532 path->slots[0]--; 1533 btrfs_item_key_to_cpu(path->nodes[0], &key, 1534 path->slots[0]); 1535 if (key.objectid == bytenr && 1536 key.type == BTRFS_EXTENT_ITEM_KEY && 1537 key.offset == num_bytes) 1538 ret = 0; 1539 } 1540 if (ret) { 1541 key.objectid = bytenr; 1542 key.type = BTRFS_EXTENT_ITEM_KEY; 1543 key.offset = num_bytes; 1544 btrfs_release_path(path); 1545 goto again; 1546 } 1547 } 1548 1549 if (ret && !insert) { 1550 err = -ENOENT; 1551 goto out; 1552 } else if (WARN_ON(ret)) { 1553 err = -EIO; 1554 goto out; 1555 } 1556 1557 leaf = path->nodes[0]; 1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1559 if (unlikely(item_size < sizeof(*ei))) { 1560 err = -EINVAL; 1561 btrfs_print_v0_err(fs_info); 1562 btrfs_abort_transaction(trans, err); 1563 goto out; 1564 } 1565 1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1567 flags = btrfs_extent_flags(leaf, ei); 1568 1569 ptr = (unsigned long)(ei + 1); 1570 end = (unsigned long)ei + item_size; 1571 1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1573 ptr += sizeof(struct btrfs_tree_block_info); 1574 BUG_ON(ptr > end); 1575 } 1576 1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1578 needed = BTRFS_REF_TYPE_DATA; 1579 else 1580 needed = BTRFS_REF_TYPE_BLOCK; 1581 1582 err = -ENOENT; 1583 while (1) { 1584 if (ptr >= end) { 1585 WARN_ON(ptr > end); 1586 break; 1587 } 1588 iref = (struct btrfs_extent_inline_ref *)ptr; 1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1590 if (type == BTRFS_REF_TYPE_INVALID) { 1591 err = -EUCLEAN; 1592 goto out; 1593 } 1594 1595 if (want < type) 1596 break; 1597 if (want > type) { 1598 ptr += btrfs_extent_inline_ref_size(type); 1599 continue; 1600 } 1601 1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1603 struct btrfs_extent_data_ref *dref; 1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1605 if (match_extent_data_ref(leaf, dref, root_objectid, 1606 owner, offset)) { 1607 err = 0; 1608 break; 1609 } 1610 if (hash_extent_data_ref_item(leaf, dref) < 1611 hash_extent_data_ref(root_objectid, owner, offset)) 1612 break; 1613 } else { 1614 u64 ref_offset; 1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1616 if (parent > 0) { 1617 if (parent == ref_offset) { 1618 err = 0; 1619 break; 1620 } 1621 if (ref_offset < parent) 1622 break; 1623 } else { 1624 if (root_objectid == ref_offset) { 1625 err = 0; 1626 break; 1627 } 1628 if (ref_offset < root_objectid) 1629 break; 1630 } 1631 } 1632 ptr += btrfs_extent_inline_ref_size(type); 1633 } 1634 if (err == -ENOENT && insert) { 1635 if (item_size + extra_size >= 1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1637 err = -EAGAIN; 1638 goto out; 1639 } 1640 /* 1641 * To add new inline back ref, we have to make sure 1642 * there is no corresponding back ref item. 1643 * For simplicity, we just do not add new inline back 1644 * ref if there is any kind of item for this block 1645 */ 1646 if (find_next_key(path, 0, &key) == 0 && 1647 key.objectid == bytenr && 1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1649 err = -EAGAIN; 1650 goto out; 1651 } 1652 } 1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1654 out: 1655 if (insert) { 1656 path->keep_locks = 0; 1657 btrfs_unlock_up_safe(path, 1); 1658 } 1659 return err; 1660 } 1661 1662 /* 1663 * helper to add new inline back ref 1664 */ 1665 static noinline_for_stack 1666 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1667 struct btrfs_path *path, 1668 struct btrfs_extent_inline_ref *iref, 1669 u64 parent, u64 root_objectid, 1670 u64 owner, u64 offset, int refs_to_add, 1671 struct btrfs_delayed_extent_op *extent_op) 1672 { 1673 struct extent_buffer *leaf; 1674 struct btrfs_extent_item *ei; 1675 unsigned long ptr; 1676 unsigned long end; 1677 unsigned long item_offset; 1678 u64 refs; 1679 int size; 1680 int type; 1681 1682 leaf = path->nodes[0]; 1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1684 item_offset = (unsigned long)iref - (unsigned long)ei; 1685 1686 type = extent_ref_type(parent, owner); 1687 size = btrfs_extent_inline_ref_size(type); 1688 1689 btrfs_extend_item(fs_info, path, size); 1690 1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1692 refs = btrfs_extent_refs(leaf, ei); 1693 refs += refs_to_add; 1694 btrfs_set_extent_refs(leaf, ei, refs); 1695 if (extent_op) 1696 __run_delayed_extent_op(extent_op, leaf, ei); 1697 1698 ptr = (unsigned long)ei + item_offset; 1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1700 if (ptr < end - size) 1701 memmove_extent_buffer(leaf, ptr + size, ptr, 1702 end - size - ptr); 1703 1704 iref = (struct btrfs_extent_inline_ref *)ptr; 1705 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1707 struct btrfs_extent_data_ref *dref; 1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1714 struct btrfs_shared_data_ref *sref; 1715 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1720 } else { 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1722 } 1723 btrfs_mark_buffer_dirty(leaf); 1724 } 1725 1726 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1727 struct btrfs_path *path, 1728 struct btrfs_extent_inline_ref **ref_ret, 1729 u64 bytenr, u64 num_bytes, u64 parent, 1730 u64 root_objectid, u64 owner, u64 offset) 1731 { 1732 int ret; 1733 1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1735 num_bytes, parent, root_objectid, 1736 owner, offset, 0); 1737 if (ret != -ENOENT) 1738 return ret; 1739 1740 btrfs_release_path(path); 1741 *ref_ret = NULL; 1742 1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1745 root_objectid); 1746 } else { 1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1748 root_objectid, owner, offset); 1749 } 1750 return ret; 1751 } 1752 1753 /* 1754 * helper to update/remove inline back ref 1755 */ 1756 static noinline_for_stack 1757 void update_inline_extent_backref(struct btrfs_path *path, 1758 struct btrfs_extent_inline_ref *iref, 1759 int refs_to_mod, 1760 struct btrfs_delayed_extent_op *extent_op, 1761 int *last_ref) 1762 { 1763 struct extent_buffer *leaf = path->nodes[0]; 1764 struct btrfs_fs_info *fs_info = leaf->fs_info; 1765 struct btrfs_extent_item *ei; 1766 struct btrfs_extent_data_ref *dref = NULL; 1767 struct btrfs_shared_data_ref *sref = NULL; 1768 unsigned long ptr; 1769 unsigned long end; 1770 u32 item_size; 1771 int size; 1772 int type; 1773 u64 refs; 1774 1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1776 refs = btrfs_extent_refs(leaf, ei); 1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1778 refs += refs_to_mod; 1779 btrfs_set_extent_refs(leaf, ei, refs); 1780 if (extent_op) 1781 __run_delayed_extent_op(extent_op, leaf, ei); 1782 1783 /* 1784 * If type is invalid, we should have bailed out after 1785 * lookup_inline_extent_backref(). 1786 */ 1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1788 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 *last_ref = 1; 1811 size = btrfs_extent_inline_ref_size(type); 1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1813 ptr = (unsigned long)iref; 1814 end = (unsigned long)ei + item_size; 1815 if (ptr + size < end) 1816 memmove_extent_buffer(leaf, ptr, ptr + size, 1817 end - ptr - size); 1818 item_size -= size; 1819 btrfs_truncate_item(fs_info, path, item_size, 1); 1820 } 1821 btrfs_mark_buffer_dirty(leaf); 1822 } 1823 1824 static noinline_for_stack 1825 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1836 num_bytes, parent, root_objectid, 1837 owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(path, iref, refs_to_add, 1841 extent_op, NULL); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_path *path, 1853 u64 bytenr, u64 parent, u64 root_objectid, 1854 u64 owner, u64 offset, int refs_to_add) 1855 { 1856 int ret; 1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1858 BUG_ON(refs_to_add != 1); 1859 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1860 root_objectid); 1861 } else { 1862 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1863 root_objectid, owner, offset, 1864 refs_to_add); 1865 } 1866 return ret; 1867 } 1868 1869 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1870 struct btrfs_path *path, 1871 struct btrfs_extent_inline_ref *iref, 1872 int refs_to_drop, int is_data, int *last_ref) 1873 { 1874 int ret = 0; 1875 1876 BUG_ON(!is_data && refs_to_drop != 1); 1877 if (iref) { 1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1879 last_ref); 1880 } else if (is_data) { 1881 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1882 last_ref); 1883 } else { 1884 *last_ref = 1; 1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1886 } 1887 return ret; 1888 } 1889 1890 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1891 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1892 u64 *discarded_bytes) 1893 { 1894 int j, ret = 0; 1895 u64 bytes_left, end; 1896 u64 aligned_start = ALIGN(start, 1 << 9); 1897 1898 if (WARN_ON(start != aligned_start)) { 1899 len -= aligned_start - start; 1900 len = round_down(len, 1 << 9); 1901 start = aligned_start; 1902 } 1903 1904 *discarded_bytes = 0; 1905 1906 if (!len) 1907 return 0; 1908 1909 end = start + len; 1910 bytes_left = len; 1911 1912 /* Skip any superblocks on this device. */ 1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1914 u64 sb_start = btrfs_sb_offset(j); 1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1916 u64 size = sb_start - start; 1917 1918 if (!in_range(sb_start, start, bytes_left) && 1919 !in_range(sb_end, start, bytes_left) && 1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1921 continue; 1922 1923 /* 1924 * Superblock spans beginning of range. Adjust start and 1925 * try again. 1926 */ 1927 if (sb_start <= start) { 1928 start += sb_end - start; 1929 if (start > end) { 1930 bytes_left = 0; 1931 break; 1932 } 1933 bytes_left = end - start; 1934 continue; 1935 } 1936 1937 if (size) { 1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1939 GFP_NOFS, 0); 1940 if (!ret) 1941 *discarded_bytes += size; 1942 else if (ret != -EOPNOTSUPP) 1943 return ret; 1944 } 1945 1946 start = sb_end; 1947 if (start > end) { 1948 bytes_left = 0; 1949 break; 1950 } 1951 bytes_left = end - start; 1952 } 1953 1954 if (bytes_left) { 1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1956 GFP_NOFS, 0); 1957 if (!ret) 1958 *discarded_bytes += bytes_left; 1959 } 1960 return ret; 1961 } 1962 1963 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1964 u64 num_bytes, u64 *actual_bytes) 1965 { 1966 int ret; 1967 u64 discarded_bytes = 0; 1968 struct btrfs_bio *bbio = NULL; 1969 1970 1971 /* 1972 * Avoid races with device replace and make sure our bbio has devices 1973 * associated to its stripes that don't go away while we are discarding. 1974 */ 1975 btrfs_bio_counter_inc_blocked(fs_info); 1976 /* Tell the block device(s) that the sectors can be discarded */ 1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 1978 &bbio, 0); 1979 /* Error condition is -ENOMEM */ 1980 if (!ret) { 1981 struct btrfs_bio_stripe *stripe = bbio->stripes; 1982 int i; 1983 1984 1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1986 u64 bytes; 1987 struct request_queue *req_q; 1988 1989 if (!stripe->dev->bdev) { 1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1991 continue; 1992 } 1993 req_q = bdev_get_queue(stripe->dev->bdev); 1994 if (!blk_queue_discard(req_q)) 1995 continue; 1996 1997 ret = btrfs_issue_discard(stripe->dev->bdev, 1998 stripe->physical, 1999 stripe->length, 2000 &bytes); 2001 if (!ret) 2002 discarded_bytes += bytes; 2003 else if (ret != -EOPNOTSUPP) 2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2005 2006 /* 2007 * Just in case we get back EOPNOTSUPP for some reason, 2008 * just ignore the return value so we don't screw up 2009 * people calling discard_extent. 2010 */ 2011 ret = 0; 2012 } 2013 btrfs_put_bbio(bbio); 2014 } 2015 btrfs_bio_counter_dec(fs_info); 2016 2017 if (actual_bytes) 2018 *actual_bytes = discarded_bytes; 2019 2020 2021 if (ret == -EOPNOTSUPP) 2022 ret = 0; 2023 return ret; 2024 } 2025 2026 /* Can return -ENOMEM */ 2027 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2028 struct btrfs_root *root, 2029 u64 bytenr, u64 num_bytes, u64 parent, 2030 u64 root_objectid, u64 owner, u64 offset) 2031 { 2032 struct btrfs_fs_info *fs_info = root->fs_info; 2033 int old_ref_mod, new_ref_mod; 2034 int ret; 2035 2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2037 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2038 2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2040 owner, offset, BTRFS_ADD_DELAYED_REF); 2041 2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr, 2044 num_bytes, parent, 2045 root_objectid, (int)owner, 2046 BTRFS_ADD_DELAYED_REF, NULL, 2047 &old_ref_mod, &new_ref_mod); 2048 } else { 2049 ret = btrfs_add_delayed_data_ref(trans, bytenr, 2050 num_bytes, parent, 2051 root_objectid, owner, offset, 2052 0, BTRFS_ADD_DELAYED_REF, 2053 &old_ref_mod, &new_ref_mod); 2054 } 2055 2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) { 2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 2058 2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid); 2060 } 2061 2062 return ret; 2063 } 2064 2065 /* 2066 * __btrfs_inc_extent_ref - insert backreference for a given extent 2067 * 2068 * @trans: Handle of transaction 2069 * 2070 * @node: The delayed ref node used to get the bytenr/length for 2071 * extent whose references are incremented. 2072 * 2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 2075 * bytenr of the parent block. Since new extents are always 2076 * created with indirect references, this will only be the case 2077 * when relocating a shared extent. In that case, root_objectid 2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 2079 * be 0 2080 * 2081 * @root_objectid: The id of the root where this modification has originated, 2082 * this can be either one of the well-known metadata trees or 2083 * the subvolume id which references this extent. 2084 * 2085 * @owner: For data extents it is the inode number of the owning file. 2086 * For metadata extents this parameter holds the level in the 2087 * tree of the extent. 2088 * 2089 * @offset: For metadata extents the offset is ignored and is currently 2090 * always passed as 0. For data extents it is the fileoffset 2091 * this extent belongs to. 2092 * 2093 * @refs_to_add Number of references to add 2094 * 2095 * @extent_op Pointer to a structure, holding information necessary when 2096 * updating a tree block's flags 2097 * 2098 */ 2099 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2100 struct btrfs_delayed_ref_node *node, 2101 u64 parent, u64 root_objectid, 2102 u64 owner, u64 offset, int refs_to_add, 2103 struct btrfs_delayed_extent_op *extent_op) 2104 { 2105 struct btrfs_path *path; 2106 struct extent_buffer *leaf; 2107 struct btrfs_extent_item *item; 2108 struct btrfs_key key; 2109 u64 bytenr = node->bytenr; 2110 u64 num_bytes = node->num_bytes; 2111 u64 refs; 2112 int ret; 2113 2114 path = btrfs_alloc_path(); 2115 if (!path) 2116 return -ENOMEM; 2117 2118 path->reada = READA_FORWARD; 2119 path->leave_spinning = 1; 2120 /* this will setup the path even if it fails to insert the back ref */ 2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 2122 parent, root_objectid, owner, 2123 offset, refs_to_add, extent_op); 2124 if ((ret < 0 && ret != -EAGAIN) || !ret) 2125 goto out; 2126 2127 /* 2128 * Ok we had -EAGAIN which means we didn't have space to insert and 2129 * inline extent ref, so just update the reference count and add a 2130 * normal backref. 2131 */ 2132 leaf = path->nodes[0]; 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2135 refs = btrfs_extent_refs(leaf, item); 2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2137 if (extent_op) 2138 __run_delayed_extent_op(extent_op, leaf, item); 2139 2140 btrfs_mark_buffer_dirty(leaf); 2141 btrfs_release_path(path); 2142 2143 path->reada = READA_FORWARD; 2144 path->leave_spinning = 1; 2145 /* now insert the actual backref */ 2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, 2147 owner, offset, refs_to_add); 2148 if (ret) 2149 btrfs_abort_transaction(trans, ret); 2150 out: 2151 btrfs_free_path(path); 2152 return ret; 2153 } 2154 2155 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2156 struct btrfs_delayed_ref_node *node, 2157 struct btrfs_delayed_extent_op *extent_op, 2158 int insert_reserved) 2159 { 2160 int ret = 0; 2161 struct btrfs_delayed_data_ref *ref; 2162 struct btrfs_key ins; 2163 u64 parent = 0; 2164 u64 ref_root = 0; 2165 u64 flags = 0; 2166 2167 ins.objectid = node->bytenr; 2168 ins.offset = node->num_bytes; 2169 ins.type = BTRFS_EXTENT_ITEM_KEY; 2170 2171 ref = btrfs_delayed_node_to_data_ref(node); 2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 2173 2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2175 parent = ref->parent; 2176 ref_root = ref->root; 2177 2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2179 if (extent_op) 2180 flags |= extent_op->flags_to_set; 2181 ret = alloc_reserved_file_extent(trans, parent, ref_root, 2182 flags, ref->objectid, 2183 ref->offset, &ins, 2184 node->ref_mod); 2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 2187 ref->objectid, ref->offset, 2188 node->ref_mod, extent_op); 2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2190 ret = __btrfs_free_extent(trans, node, parent, 2191 ref_root, ref->objectid, 2192 ref->offset, node->ref_mod, 2193 extent_op); 2194 } else { 2195 BUG(); 2196 } 2197 return ret; 2198 } 2199 2200 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2201 struct extent_buffer *leaf, 2202 struct btrfs_extent_item *ei) 2203 { 2204 u64 flags = btrfs_extent_flags(leaf, ei); 2205 if (extent_op->update_flags) { 2206 flags |= extent_op->flags_to_set; 2207 btrfs_set_extent_flags(leaf, ei, flags); 2208 } 2209 2210 if (extent_op->update_key) { 2211 struct btrfs_tree_block_info *bi; 2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2213 bi = (struct btrfs_tree_block_info *)(ei + 1); 2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2215 } 2216 } 2217 2218 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2219 struct btrfs_delayed_ref_head *head, 2220 struct btrfs_delayed_extent_op *extent_op) 2221 { 2222 struct btrfs_fs_info *fs_info = trans->fs_info; 2223 struct btrfs_key key; 2224 struct btrfs_path *path; 2225 struct btrfs_extent_item *ei; 2226 struct extent_buffer *leaf; 2227 u32 item_size; 2228 int ret; 2229 int err = 0; 2230 int metadata = !extent_op->is_data; 2231 2232 if (trans->aborted) 2233 return 0; 2234 2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2236 metadata = 0; 2237 2238 path = btrfs_alloc_path(); 2239 if (!path) 2240 return -ENOMEM; 2241 2242 key.objectid = head->bytenr; 2243 2244 if (metadata) { 2245 key.type = BTRFS_METADATA_ITEM_KEY; 2246 key.offset = extent_op->level; 2247 } else { 2248 key.type = BTRFS_EXTENT_ITEM_KEY; 2249 key.offset = head->num_bytes; 2250 } 2251 2252 again: 2253 path->reada = READA_FORWARD; 2254 path->leave_spinning = 1; 2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2256 if (ret < 0) { 2257 err = ret; 2258 goto out; 2259 } 2260 if (ret > 0) { 2261 if (metadata) { 2262 if (path->slots[0] > 0) { 2263 path->slots[0]--; 2264 btrfs_item_key_to_cpu(path->nodes[0], &key, 2265 path->slots[0]); 2266 if (key.objectid == head->bytenr && 2267 key.type == BTRFS_EXTENT_ITEM_KEY && 2268 key.offset == head->num_bytes) 2269 ret = 0; 2270 } 2271 if (ret > 0) { 2272 btrfs_release_path(path); 2273 metadata = 0; 2274 2275 key.objectid = head->bytenr; 2276 key.offset = head->num_bytes; 2277 key.type = BTRFS_EXTENT_ITEM_KEY; 2278 goto again; 2279 } 2280 } else { 2281 err = -EIO; 2282 goto out; 2283 } 2284 } 2285 2286 leaf = path->nodes[0]; 2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2288 2289 if (unlikely(item_size < sizeof(*ei))) { 2290 err = -EINVAL; 2291 btrfs_print_v0_err(fs_info); 2292 btrfs_abort_transaction(trans, err); 2293 goto out; 2294 } 2295 2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2297 __run_delayed_extent_op(extent_op, leaf, ei); 2298 2299 btrfs_mark_buffer_dirty(leaf); 2300 out: 2301 btrfs_free_path(path); 2302 return err; 2303 } 2304 2305 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2306 struct btrfs_delayed_ref_node *node, 2307 struct btrfs_delayed_extent_op *extent_op, 2308 int insert_reserved) 2309 { 2310 int ret = 0; 2311 struct btrfs_delayed_tree_ref *ref; 2312 u64 parent = 0; 2313 u64 ref_root = 0; 2314 2315 ref = btrfs_delayed_node_to_tree_ref(node); 2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 2317 2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2319 parent = ref->parent; 2320 ref_root = ref->root; 2321 2322 if (node->ref_mod != 1) { 2323 btrfs_err(trans->fs_info, 2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2325 node->bytenr, node->ref_mod, node->action, ref_root, 2326 parent); 2327 return -EIO; 2328 } 2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2330 BUG_ON(!extent_op || !extent_op->update_flags); 2331 ret = alloc_reserved_tree_block(trans, node, extent_op); 2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 2334 ref->level, 0, 1, extent_op); 2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2336 ret = __btrfs_free_extent(trans, node, parent, ref_root, 2337 ref->level, 0, 1, extent_op); 2338 } else { 2339 BUG(); 2340 } 2341 return ret; 2342 } 2343 2344 /* helper function to actually process a single delayed ref entry */ 2345 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2346 struct btrfs_delayed_ref_node *node, 2347 struct btrfs_delayed_extent_op *extent_op, 2348 int insert_reserved) 2349 { 2350 int ret = 0; 2351 2352 if (trans->aborted) { 2353 if (insert_reserved) 2354 btrfs_pin_extent(trans->fs_info, node->bytenr, 2355 node->num_bytes, 1); 2356 return 0; 2357 } 2358 2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2361 ret = run_delayed_tree_ref(trans, node, extent_op, 2362 insert_reserved); 2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2364 node->type == BTRFS_SHARED_DATA_REF_KEY) 2365 ret = run_delayed_data_ref(trans, node, extent_op, 2366 insert_reserved); 2367 else 2368 BUG(); 2369 return ret; 2370 } 2371 2372 static inline struct btrfs_delayed_ref_node * 2373 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2374 { 2375 struct btrfs_delayed_ref_node *ref; 2376 2377 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 2378 return NULL; 2379 2380 /* 2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2382 * This is to prevent a ref count from going down to zero, which deletes 2383 * the extent item from the extent tree, when there still are references 2384 * to add, which would fail because they would not find the extent item. 2385 */ 2386 if (!list_empty(&head->ref_add_list)) 2387 return list_first_entry(&head->ref_add_list, 2388 struct btrfs_delayed_ref_node, add_list); 2389 2390 ref = rb_entry(rb_first_cached(&head->ref_tree), 2391 struct btrfs_delayed_ref_node, ref_node); 2392 ASSERT(list_empty(&ref->add_list)); 2393 return ref; 2394 } 2395 2396 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2397 struct btrfs_delayed_ref_head *head) 2398 { 2399 spin_lock(&delayed_refs->lock); 2400 head->processing = 0; 2401 delayed_refs->num_heads_ready++; 2402 spin_unlock(&delayed_refs->lock); 2403 btrfs_delayed_ref_unlock(head); 2404 } 2405 2406 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2407 struct btrfs_delayed_ref_head *head) 2408 { 2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2410 int ret; 2411 2412 if (!extent_op) 2413 return 0; 2414 head->extent_op = NULL; 2415 if (head->must_insert_reserved) { 2416 btrfs_free_delayed_extent_op(extent_op); 2417 return 0; 2418 } 2419 spin_unlock(&head->lock); 2420 ret = run_delayed_extent_op(trans, head, extent_op); 2421 btrfs_free_delayed_extent_op(extent_op); 2422 return ret ? ret : 1; 2423 } 2424 2425 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2426 struct btrfs_delayed_ref_head *head) 2427 { 2428 2429 struct btrfs_fs_info *fs_info = trans->fs_info; 2430 struct btrfs_delayed_ref_root *delayed_refs; 2431 int ret; 2432 2433 delayed_refs = &trans->transaction->delayed_refs; 2434 2435 ret = cleanup_extent_op(trans, head); 2436 if (ret < 0) { 2437 unselect_delayed_ref_head(delayed_refs, head); 2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2439 return ret; 2440 } else if (ret) { 2441 return ret; 2442 } 2443 2444 /* 2445 * Need to drop our head ref lock and re-acquire the delayed ref lock 2446 * and then re-check to make sure nobody got added. 2447 */ 2448 spin_unlock(&head->lock); 2449 spin_lock(&delayed_refs->lock); 2450 spin_lock(&head->lock); 2451 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 2452 spin_unlock(&head->lock); 2453 spin_unlock(&delayed_refs->lock); 2454 return 1; 2455 } 2456 delayed_refs->num_heads--; 2457 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 2458 RB_CLEAR_NODE(&head->href_node); 2459 spin_unlock(&head->lock); 2460 spin_unlock(&delayed_refs->lock); 2461 atomic_dec(&delayed_refs->num_entries); 2462 2463 trace_run_delayed_ref_head(fs_info, head, 0); 2464 2465 if (head->total_ref_mod < 0) { 2466 struct btrfs_space_info *space_info; 2467 u64 flags; 2468 2469 if (head->is_data) 2470 flags = BTRFS_BLOCK_GROUP_DATA; 2471 else if (head->is_system) 2472 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2473 else 2474 flags = BTRFS_BLOCK_GROUP_METADATA; 2475 space_info = __find_space_info(fs_info, flags); 2476 ASSERT(space_info); 2477 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2478 -head->num_bytes, 2479 BTRFS_TOTAL_BYTES_PINNED_BATCH); 2480 2481 if (head->is_data) { 2482 spin_lock(&delayed_refs->lock); 2483 delayed_refs->pending_csums -= head->num_bytes; 2484 spin_unlock(&delayed_refs->lock); 2485 } 2486 } 2487 2488 if (head->must_insert_reserved) { 2489 btrfs_pin_extent(fs_info, head->bytenr, 2490 head->num_bytes, 1); 2491 if (head->is_data) { 2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2493 head->num_bytes); 2494 } 2495 } 2496 2497 /* Also free its reserved qgroup space */ 2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2499 head->qgroup_reserved); 2500 btrfs_delayed_ref_unlock(head); 2501 btrfs_put_delayed_ref_head(head); 2502 return 0; 2503 } 2504 2505 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 2506 struct btrfs_trans_handle *trans) 2507 { 2508 struct btrfs_delayed_ref_root *delayed_refs = 2509 &trans->transaction->delayed_refs; 2510 struct btrfs_delayed_ref_head *head = NULL; 2511 int ret; 2512 2513 spin_lock(&delayed_refs->lock); 2514 head = btrfs_select_ref_head(delayed_refs); 2515 if (!head) { 2516 spin_unlock(&delayed_refs->lock); 2517 return head; 2518 } 2519 2520 /* 2521 * Grab the lock that says we are going to process all the refs for 2522 * this head 2523 */ 2524 ret = btrfs_delayed_ref_lock(delayed_refs, head); 2525 spin_unlock(&delayed_refs->lock); 2526 2527 /* 2528 * We may have dropped the spin lock to get the head mutex lock, and 2529 * that might have given someone else time to free the head. If that's 2530 * true, it has been removed from our list and we can move on. 2531 */ 2532 if (ret == -EAGAIN) 2533 head = ERR_PTR(-EAGAIN); 2534 2535 return head; 2536 } 2537 2538 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 2539 struct btrfs_delayed_ref_head *locked_ref, 2540 unsigned long *run_refs) 2541 { 2542 struct btrfs_fs_info *fs_info = trans->fs_info; 2543 struct btrfs_delayed_ref_root *delayed_refs; 2544 struct btrfs_delayed_extent_op *extent_op; 2545 struct btrfs_delayed_ref_node *ref; 2546 int must_insert_reserved = 0; 2547 int ret; 2548 2549 delayed_refs = &trans->transaction->delayed_refs; 2550 2551 lockdep_assert_held(&locked_ref->mutex); 2552 lockdep_assert_held(&locked_ref->lock); 2553 2554 while ((ref = select_delayed_ref(locked_ref))) { 2555 if (ref->seq && 2556 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2557 spin_unlock(&locked_ref->lock); 2558 unselect_delayed_ref_head(delayed_refs, locked_ref); 2559 return -EAGAIN; 2560 } 2561 2562 (*run_refs)++; 2563 ref->in_tree = 0; 2564 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2565 RB_CLEAR_NODE(&ref->ref_node); 2566 if (!list_empty(&ref->add_list)) 2567 list_del(&ref->add_list); 2568 /* 2569 * When we play the delayed ref, also correct the ref_mod on 2570 * head 2571 */ 2572 switch (ref->action) { 2573 case BTRFS_ADD_DELAYED_REF: 2574 case BTRFS_ADD_DELAYED_EXTENT: 2575 locked_ref->ref_mod -= ref->ref_mod; 2576 break; 2577 case BTRFS_DROP_DELAYED_REF: 2578 locked_ref->ref_mod += ref->ref_mod; 2579 break; 2580 default: 2581 WARN_ON(1); 2582 } 2583 atomic_dec(&delayed_refs->num_entries); 2584 2585 /* 2586 * Record the must_insert_reserved flag before we drop the 2587 * spin lock. 2588 */ 2589 must_insert_reserved = locked_ref->must_insert_reserved; 2590 locked_ref->must_insert_reserved = 0; 2591 2592 extent_op = locked_ref->extent_op; 2593 locked_ref->extent_op = NULL; 2594 spin_unlock(&locked_ref->lock); 2595 2596 ret = run_one_delayed_ref(trans, ref, extent_op, 2597 must_insert_reserved); 2598 2599 btrfs_free_delayed_extent_op(extent_op); 2600 if (ret) { 2601 unselect_delayed_ref_head(delayed_refs, locked_ref); 2602 btrfs_put_delayed_ref(ref); 2603 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2604 ret); 2605 return ret; 2606 } 2607 2608 btrfs_put_delayed_ref(ref); 2609 cond_resched(); 2610 2611 spin_lock(&locked_ref->lock); 2612 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2613 } 2614 2615 return 0; 2616 } 2617 2618 /* 2619 * Returns 0 on success or if called with an already aborted transaction. 2620 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2621 */ 2622 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2623 unsigned long nr) 2624 { 2625 struct btrfs_fs_info *fs_info = trans->fs_info; 2626 struct btrfs_delayed_ref_root *delayed_refs; 2627 struct btrfs_delayed_ref_head *locked_ref = NULL; 2628 ktime_t start = ktime_get(); 2629 int ret; 2630 unsigned long count = 0; 2631 unsigned long actual_count = 0; 2632 2633 delayed_refs = &trans->transaction->delayed_refs; 2634 do { 2635 if (!locked_ref) { 2636 locked_ref = btrfs_obtain_ref_head(trans); 2637 if (IS_ERR_OR_NULL(locked_ref)) { 2638 if (PTR_ERR(locked_ref) == -EAGAIN) { 2639 continue; 2640 } else { 2641 break; 2642 } 2643 } 2644 count++; 2645 } 2646 /* 2647 * We need to try and merge add/drops of the same ref since we 2648 * can run into issues with relocate dropping the implicit ref 2649 * and then it being added back again before the drop can 2650 * finish. If we merged anything we need to re-loop so we can 2651 * get a good ref. 2652 * Or we can get node references of the same type that weren't 2653 * merged when created due to bumps in the tree mod seq, and 2654 * we need to merge them to prevent adding an inline extent 2655 * backref before dropping it (triggering a BUG_ON at 2656 * insert_inline_extent_backref()). 2657 */ 2658 spin_lock(&locked_ref->lock); 2659 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2660 2661 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2662 &actual_count); 2663 if (ret < 0 && ret != -EAGAIN) { 2664 /* 2665 * Error, btrfs_run_delayed_refs_for_head already 2666 * unlocked everything so just bail out 2667 */ 2668 return ret; 2669 } else if (!ret) { 2670 /* 2671 * Success, perform the usual cleanup of a processed 2672 * head 2673 */ 2674 ret = cleanup_ref_head(trans, locked_ref); 2675 if (ret > 0 ) { 2676 /* We dropped our lock, we need to loop. */ 2677 ret = 0; 2678 continue; 2679 } else if (ret) { 2680 return ret; 2681 } 2682 } 2683 2684 /* 2685 * Either success case or btrfs_run_delayed_refs_for_head 2686 * returned -EAGAIN, meaning we need to select another head 2687 */ 2688 2689 locked_ref = NULL; 2690 cond_resched(); 2691 } while ((nr != -1 && count < nr) || locked_ref); 2692 2693 /* 2694 * We don't want to include ref heads since we can have empty ref heads 2695 * and those will drastically skew our runtime down since we just do 2696 * accounting, no actual extent tree updates. 2697 */ 2698 if (actual_count > 0) { 2699 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2700 u64 avg; 2701 2702 /* 2703 * We weigh the current average higher than our current runtime 2704 * to avoid large swings in the average. 2705 */ 2706 spin_lock(&delayed_refs->lock); 2707 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2708 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2709 spin_unlock(&delayed_refs->lock); 2710 } 2711 return 0; 2712 } 2713 2714 #ifdef SCRAMBLE_DELAYED_REFS 2715 /* 2716 * Normally delayed refs get processed in ascending bytenr order. This 2717 * correlates in most cases to the order added. To expose dependencies on this 2718 * order, we start to process the tree in the middle instead of the beginning 2719 */ 2720 static u64 find_middle(struct rb_root *root) 2721 { 2722 struct rb_node *n = root->rb_node; 2723 struct btrfs_delayed_ref_node *entry; 2724 int alt = 1; 2725 u64 middle; 2726 u64 first = 0, last = 0; 2727 2728 n = rb_first(root); 2729 if (n) { 2730 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2731 first = entry->bytenr; 2732 } 2733 n = rb_last(root); 2734 if (n) { 2735 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2736 last = entry->bytenr; 2737 } 2738 n = root->rb_node; 2739 2740 while (n) { 2741 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2742 WARN_ON(!entry->in_tree); 2743 2744 middle = entry->bytenr; 2745 2746 if (alt) 2747 n = n->rb_left; 2748 else 2749 n = n->rb_right; 2750 2751 alt = 1 - alt; 2752 } 2753 return middle; 2754 } 2755 #endif 2756 2757 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2758 { 2759 u64 num_bytes; 2760 2761 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2762 sizeof(struct btrfs_extent_inline_ref)); 2763 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2764 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2765 2766 /* 2767 * We don't ever fill up leaves all the way so multiply by 2 just to be 2768 * closer to what we're really going to want to use. 2769 */ 2770 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2771 } 2772 2773 /* 2774 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2775 * would require to store the csums for that many bytes. 2776 */ 2777 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2778 { 2779 u64 csum_size; 2780 u64 num_csums_per_leaf; 2781 u64 num_csums; 2782 2783 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2784 num_csums_per_leaf = div64_u64(csum_size, 2785 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2786 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2787 num_csums += num_csums_per_leaf - 1; 2788 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2789 return num_csums; 2790 } 2791 2792 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans) 2793 { 2794 struct btrfs_fs_info *fs_info = trans->fs_info; 2795 struct btrfs_block_rsv *global_rsv; 2796 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2797 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2798 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2799 u64 num_bytes, num_dirty_bgs_bytes; 2800 int ret = 0; 2801 2802 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2803 num_heads = heads_to_leaves(fs_info, num_heads); 2804 if (num_heads > 1) 2805 num_bytes += (num_heads - 1) * fs_info->nodesize; 2806 num_bytes <<= 1; 2807 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2808 fs_info->nodesize; 2809 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2810 num_dirty_bgs); 2811 global_rsv = &fs_info->global_block_rsv; 2812 2813 /* 2814 * If we can't allocate any more chunks lets make sure we have _lots_ of 2815 * wiggle room since running delayed refs can create more delayed refs. 2816 */ 2817 if (global_rsv->space_info->full) { 2818 num_dirty_bgs_bytes <<= 1; 2819 num_bytes <<= 1; 2820 } 2821 2822 spin_lock(&global_rsv->lock); 2823 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2824 ret = 1; 2825 spin_unlock(&global_rsv->lock); 2826 return ret; 2827 } 2828 2829 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans) 2830 { 2831 u64 num_entries = 2832 atomic_read(&trans->transaction->delayed_refs.num_entries); 2833 u64 avg_runtime; 2834 u64 val; 2835 2836 smp_mb(); 2837 avg_runtime = trans->fs_info->avg_delayed_ref_runtime; 2838 val = num_entries * avg_runtime; 2839 if (val >= NSEC_PER_SEC) 2840 return 1; 2841 if (val >= NSEC_PER_SEC / 2) 2842 return 2; 2843 2844 return btrfs_check_space_for_delayed_refs(trans); 2845 } 2846 2847 struct async_delayed_refs { 2848 struct btrfs_root *root; 2849 u64 transid; 2850 int count; 2851 int error; 2852 int sync; 2853 struct completion wait; 2854 struct btrfs_work work; 2855 }; 2856 2857 static inline struct async_delayed_refs * 2858 to_async_delayed_refs(struct btrfs_work *work) 2859 { 2860 return container_of(work, struct async_delayed_refs, work); 2861 } 2862 2863 static void delayed_ref_async_start(struct btrfs_work *work) 2864 { 2865 struct async_delayed_refs *async = to_async_delayed_refs(work); 2866 struct btrfs_trans_handle *trans; 2867 struct btrfs_fs_info *fs_info = async->root->fs_info; 2868 int ret; 2869 2870 /* if the commit is already started, we don't need to wait here */ 2871 if (btrfs_transaction_blocked(fs_info)) 2872 goto done; 2873 2874 trans = btrfs_join_transaction(async->root); 2875 if (IS_ERR(trans)) { 2876 async->error = PTR_ERR(trans); 2877 goto done; 2878 } 2879 2880 /* 2881 * trans->sync means that when we call end_transaction, we won't 2882 * wait on delayed refs 2883 */ 2884 trans->sync = true; 2885 2886 /* Don't bother flushing if we got into a different transaction */ 2887 if (trans->transid > async->transid) 2888 goto end; 2889 2890 ret = btrfs_run_delayed_refs(trans, async->count); 2891 if (ret) 2892 async->error = ret; 2893 end: 2894 ret = btrfs_end_transaction(trans); 2895 if (ret && !async->error) 2896 async->error = ret; 2897 done: 2898 if (async->sync) 2899 complete(&async->wait); 2900 else 2901 kfree(async); 2902 } 2903 2904 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2905 unsigned long count, u64 transid, int wait) 2906 { 2907 struct async_delayed_refs *async; 2908 int ret; 2909 2910 async = kmalloc(sizeof(*async), GFP_NOFS); 2911 if (!async) 2912 return -ENOMEM; 2913 2914 async->root = fs_info->tree_root; 2915 async->count = count; 2916 async->error = 0; 2917 async->transid = transid; 2918 if (wait) 2919 async->sync = 1; 2920 else 2921 async->sync = 0; 2922 init_completion(&async->wait); 2923 2924 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2925 delayed_ref_async_start, NULL, NULL); 2926 2927 btrfs_queue_work(fs_info->extent_workers, &async->work); 2928 2929 if (wait) { 2930 wait_for_completion(&async->wait); 2931 ret = async->error; 2932 kfree(async); 2933 return ret; 2934 } 2935 return 0; 2936 } 2937 2938 /* 2939 * this starts processing the delayed reference count updates and 2940 * extent insertions we have queued up so far. count can be 2941 * 0, which means to process everything in the tree at the start 2942 * of the run (but not newly added entries), or it can be some target 2943 * number you'd like to process. 2944 * 2945 * Returns 0 on success or if called with an aborted transaction 2946 * Returns <0 on error and aborts the transaction 2947 */ 2948 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2949 unsigned long count) 2950 { 2951 struct btrfs_fs_info *fs_info = trans->fs_info; 2952 struct rb_node *node; 2953 struct btrfs_delayed_ref_root *delayed_refs; 2954 struct btrfs_delayed_ref_head *head; 2955 int ret; 2956 int run_all = count == (unsigned long)-1; 2957 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2958 2959 /* We'll clean this up in btrfs_cleanup_transaction */ 2960 if (trans->aborted) 2961 return 0; 2962 2963 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2964 return 0; 2965 2966 delayed_refs = &trans->transaction->delayed_refs; 2967 if (count == 0) 2968 count = atomic_read(&delayed_refs->num_entries) * 2; 2969 2970 again: 2971 #ifdef SCRAMBLE_DELAYED_REFS 2972 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2973 #endif 2974 trans->can_flush_pending_bgs = false; 2975 ret = __btrfs_run_delayed_refs(trans, count); 2976 if (ret < 0) { 2977 btrfs_abort_transaction(trans, ret); 2978 return ret; 2979 } 2980 2981 if (run_all) { 2982 if (!list_empty(&trans->new_bgs)) 2983 btrfs_create_pending_block_groups(trans); 2984 2985 spin_lock(&delayed_refs->lock); 2986 node = rb_first_cached(&delayed_refs->href_root); 2987 if (!node) { 2988 spin_unlock(&delayed_refs->lock); 2989 goto out; 2990 } 2991 head = rb_entry(node, struct btrfs_delayed_ref_head, 2992 href_node); 2993 refcount_inc(&head->refs); 2994 spin_unlock(&delayed_refs->lock); 2995 2996 /* Mutex was contended, block until it's released and retry. */ 2997 mutex_lock(&head->mutex); 2998 mutex_unlock(&head->mutex); 2999 3000 btrfs_put_delayed_ref_head(head); 3001 cond_resched(); 3002 goto again; 3003 } 3004 out: 3005 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3006 return 0; 3007 } 3008 3009 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3010 struct btrfs_fs_info *fs_info, 3011 u64 bytenr, u64 num_bytes, u64 flags, 3012 int level, int is_data) 3013 { 3014 struct btrfs_delayed_extent_op *extent_op; 3015 int ret; 3016 3017 extent_op = btrfs_alloc_delayed_extent_op(); 3018 if (!extent_op) 3019 return -ENOMEM; 3020 3021 extent_op->flags_to_set = flags; 3022 extent_op->update_flags = true; 3023 extent_op->update_key = false; 3024 extent_op->is_data = is_data ? true : false; 3025 extent_op->level = level; 3026 3027 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3028 num_bytes, extent_op); 3029 if (ret) 3030 btrfs_free_delayed_extent_op(extent_op); 3031 return ret; 3032 } 3033 3034 static noinline int check_delayed_ref(struct btrfs_root *root, 3035 struct btrfs_path *path, 3036 u64 objectid, u64 offset, u64 bytenr) 3037 { 3038 struct btrfs_delayed_ref_head *head; 3039 struct btrfs_delayed_ref_node *ref; 3040 struct btrfs_delayed_data_ref *data_ref; 3041 struct btrfs_delayed_ref_root *delayed_refs; 3042 struct btrfs_transaction *cur_trans; 3043 struct rb_node *node; 3044 int ret = 0; 3045 3046 spin_lock(&root->fs_info->trans_lock); 3047 cur_trans = root->fs_info->running_transaction; 3048 if (cur_trans) 3049 refcount_inc(&cur_trans->use_count); 3050 spin_unlock(&root->fs_info->trans_lock); 3051 if (!cur_trans) 3052 return 0; 3053 3054 delayed_refs = &cur_trans->delayed_refs; 3055 spin_lock(&delayed_refs->lock); 3056 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3057 if (!head) { 3058 spin_unlock(&delayed_refs->lock); 3059 btrfs_put_transaction(cur_trans); 3060 return 0; 3061 } 3062 3063 if (!mutex_trylock(&head->mutex)) { 3064 refcount_inc(&head->refs); 3065 spin_unlock(&delayed_refs->lock); 3066 3067 btrfs_release_path(path); 3068 3069 /* 3070 * Mutex was contended, block until it's released and let 3071 * caller try again 3072 */ 3073 mutex_lock(&head->mutex); 3074 mutex_unlock(&head->mutex); 3075 btrfs_put_delayed_ref_head(head); 3076 btrfs_put_transaction(cur_trans); 3077 return -EAGAIN; 3078 } 3079 spin_unlock(&delayed_refs->lock); 3080 3081 spin_lock(&head->lock); 3082 /* 3083 * XXX: We should replace this with a proper search function in the 3084 * future. 3085 */ 3086 for (node = rb_first_cached(&head->ref_tree); node; 3087 node = rb_next(node)) { 3088 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3089 /* If it's a shared ref we know a cross reference exists */ 3090 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3091 ret = 1; 3092 break; 3093 } 3094 3095 data_ref = btrfs_delayed_node_to_data_ref(ref); 3096 3097 /* 3098 * If our ref doesn't match the one we're currently looking at 3099 * then we have a cross reference. 3100 */ 3101 if (data_ref->root != root->root_key.objectid || 3102 data_ref->objectid != objectid || 3103 data_ref->offset != offset) { 3104 ret = 1; 3105 break; 3106 } 3107 } 3108 spin_unlock(&head->lock); 3109 mutex_unlock(&head->mutex); 3110 btrfs_put_transaction(cur_trans); 3111 return ret; 3112 } 3113 3114 static noinline int check_committed_ref(struct btrfs_root *root, 3115 struct btrfs_path *path, 3116 u64 objectid, u64 offset, u64 bytenr) 3117 { 3118 struct btrfs_fs_info *fs_info = root->fs_info; 3119 struct btrfs_root *extent_root = fs_info->extent_root; 3120 struct extent_buffer *leaf; 3121 struct btrfs_extent_data_ref *ref; 3122 struct btrfs_extent_inline_ref *iref; 3123 struct btrfs_extent_item *ei; 3124 struct btrfs_key key; 3125 u32 item_size; 3126 int type; 3127 int ret; 3128 3129 key.objectid = bytenr; 3130 key.offset = (u64)-1; 3131 key.type = BTRFS_EXTENT_ITEM_KEY; 3132 3133 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3134 if (ret < 0) 3135 goto out; 3136 BUG_ON(ret == 0); /* Corruption */ 3137 3138 ret = -ENOENT; 3139 if (path->slots[0] == 0) 3140 goto out; 3141 3142 path->slots[0]--; 3143 leaf = path->nodes[0]; 3144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3145 3146 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3147 goto out; 3148 3149 ret = 1; 3150 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3151 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3152 3153 if (item_size != sizeof(*ei) + 3154 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3155 goto out; 3156 3157 if (btrfs_extent_generation(leaf, ei) <= 3158 btrfs_root_last_snapshot(&root->root_item)) 3159 goto out; 3160 3161 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3162 3163 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3164 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3165 goto out; 3166 3167 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3168 if (btrfs_extent_refs(leaf, ei) != 3169 btrfs_extent_data_ref_count(leaf, ref) || 3170 btrfs_extent_data_ref_root(leaf, ref) != 3171 root->root_key.objectid || 3172 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3173 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3174 goto out; 3175 3176 ret = 0; 3177 out: 3178 return ret; 3179 } 3180 3181 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3182 u64 bytenr) 3183 { 3184 struct btrfs_path *path; 3185 int ret; 3186 3187 path = btrfs_alloc_path(); 3188 if (!path) 3189 return -ENOMEM; 3190 3191 do { 3192 ret = check_committed_ref(root, path, objectid, 3193 offset, bytenr); 3194 if (ret && ret != -ENOENT) 3195 goto out; 3196 3197 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 3198 } while (ret == -EAGAIN); 3199 3200 out: 3201 btrfs_free_path(path); 3202 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3203 WARN_ON(ret > 0); 3204 return ret; 3205 } 3206 3207 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3208 struct btrfs_root *root, 3209 struct extent_buffer *buf, 3210 int full_backref, int inc) 3211 { 3212 struct btrfs_fs_info *fs_info = root->fs_info; 3213 u64 bytenr; 3214 u64 num_bytes; 3215 u64 parent; 3216 u64 ref_root; 3217 u32 nritems; 3218 struct btrfs_key key; 3219 struct btrfs_file_extent_item *fi; 3220 int i; 3221 int level; 3222 int ret = 0; 3223 int (*process_func)(struct btrfs_trans_handle *, 3224 struct btrfs_root *, 3225 u64, u64, u64, u64, u64, u64); 3226 3227 3228 if (btrfs_is_testing(fs_info)) 3229 return 0; 3230 3231 ref_root = btrfs_header_owner(buf); 3232 nritems = btrfs_header_nritems(buf); 3233 level = btrfs_header_level(buf); 3234 3235 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3236 return 0; 3237 3238 if (inc) 3239 process_func = btrfs_inc_extent_ref; 3240 else 3241 process_func = btrfs_free_extent; 3242 3243 if (full_backref) 3244 parent = buf->start; 3245 else 3246 parent = 0; 3247 3248 for (i = 0; i < nritems; i++) { 3249 if (level == 0) { 3250 btrfs_item_key_to_cpu(buf, &key, i); 3251 if (key.type != BTRFS_EXTENT_DATA_KEY) 3252 continue; 3253 fi = btrfs_item_ptr(buf, i, 3254 struct btrfs_file_extent_item); 3255 if (btrfs_file_extent_type(buf, fi) == 3256 BTRFS_FILE_EXTENT_INLINE) 3257 continue; 3258 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3259 if (bytenr == 0) 3260 continue; 3261 3262 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3263 key.offset -= btrfs_file_extent_offset(buf, fi); 3264 ret = process_func(trans, root, bytenr, num_bytes, 3265 parent, ref_root, key.objectid, 3266 key.offset); 3267 if (ret) 3268 goto fail; 3269 } else { 3270 bytenr = btrfs_node_blockptr(buf, i); 3271 num_bytes = fs_info->nodesize; 3272 ret = process_func(trans, root, bytenr, num_bytes, 3273 parent, ref_root, level - 1, 0); 3274 if (ret) 3275 goto fail; 3276 } 3277 } 3278 return 0; 3279 fail: 3280 return ret; 3281 } 3282 3283 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3284 struct extent_buffer *buf, int full_backref) 3285 { 3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3287 } 3288 3289 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3290 struct extent_buffer *buf, int full_backref) 3291 { 3292 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3293 } 3294 3295 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3296 struct btrfs_fs_info *fs_info, 3297 struct btrfs_path *path, 3298 struct btrfs_block_group_cache *cache) 3299 { 3300 int ret; 3301 struct btrfs_root *extent_root = fs_info->extent_root; 3302 unsigned long bi; 3303 struct extent_buffer *leaf; 3304 3305 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3306 if (ret) { 3307 if (ret > 0) 3308 ret = -ENOENT; 3309 goto fail; 3310 } 3311 3312 leaf = path->nodes[0]; 3313 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3314 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3315 btrfs_mark_buffer_dirty(leaf); 3316 fail: 3317 btrfs_release_path(path); 3318 return ret; 3319 3320 } 3321 3322 static struct btrfs_block_group_cache * 3323 next_block_group(struct btrfs_fs_info *fs_info, 3324 struct btrfs_block_group_cache *cache) 3325 { 3326 struct rb_node *node; 3327 3328 spin_lock(&fs_info->block_group_cache_lock); 3329 3330 /* If our block group was removed, we need a full search. */ 3331 if (RB_EMPTY_NODE(&cache->cache_node)) { 3332 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3333 3334 spin_unlock(&fs_info->block_group_cache_lock); 3335 btrfs_put_block_group(cache); 3336 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3337 } 3338 node = rb_next(&cache->cache_node); 3339 btrfs_put_block_group(cache); 3340 if (node) { 3341 cache = rb_entry(node, struct btrfs_block_group_cache, 3342 cache_node); 3343 btrfs_get_block_group(cache); 3344 } else 3345 cache = NULL; 3346 spin_unlock(&fs_info->block_group_cache_lock); 3347 return cache; 3348 } 3349 3350 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3351 struct btrfs_trans_handle *trans, 3352 struct btrfs_path *path) 3353 { 3354 struct btrfs_fs_info *fs_info = block_group->fs_info; 3355 struct btrfs_root *root = fs_info->tree_root; 3356 struct inode *inode = NULL; 3357 struct extent_changeset *data_reserved = NULL; 3358 u64 alloc_hint = 0; 3359 int dcs = BTRFS_DC_ERROR; 3360 u64 num_pages = 0; 3361 int retries = 0; 3362 int ret = 0; 3363 3364 /* 3365 * If this block group is smaller than 100 megs don't bother caching the 3366 * block group. 3367 */ 3368 if (block_group->key.offset < (100 * SZ_1M)) { 3369 spin_lock(&block_group->lock); 3370 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3371 spin_unlock(&block_group->lock); 3372 return 0; 3373 } 3374 3375 if (trans->aborted) 3376 return 0; 3377 again: 3378 inode = lookup_free_space_inode(fs_info, block_group, path); 3379 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3380 ret = PTR_ERR(inode); 3381 btrfs_release_path(path); 3382 goto out; 3383 } 3384 3385 if (IS_ERR(inode)) { 3386 BUG_ON(retries); 3387 retries++; 3388 3389 if (block_group->ro) 3390 goto out_free; 3391 3392 ret = create_free_space_inode(fs_info, trans, block_group, 3393 path); 3394 if (ret) 3395 goto out_free; 3396 goto again; 3397 } 3398 3399 /* 3400 * We want to set the generation to 0, that way if anything goes wrong 3401 * from here on out we know not to trust this cache when we load up next 3402 * time. 3403 */ 3404 BTRFS_I(inode)->generation = 0; 3405 ret = btrfs_update_inode(trans, root, inode); 3406 if (ret) { 3407 /* 3408 * So theoretically we could recover from this, simply set the 3409 * super cache generation to 0 so we know to invalidate the 3410 * cache, but then we'd have to keep track of the block groups 3411 * that fail this way so we know we _have_ to reset this cache 3412 * before the next commit or risk reading stale cache. So to 3413 * limit our exposure to horrible edge cases lets just abort the 3414 * transaction, this only happens in really bad situations 3415 * anyway. 3416 */ 3417 btrfs_abort_transaction(trans, ret); 3418 goto out_put; 3419 } 3420 WARN_ON(ret); 3421 3422 /* We've already setup this transaction, go ahead and exit */ 3423 if (block_group->cache_generation == trans->transid && 3424 i_size_read(inode)) { 3425 dcs = BTRFS_DC_SETUP; 3426 goto out_put; 3427 } 3428 3429 if (i_size_read(inode) > 0) { 3430 ret = btrfs_check_trunc_cache_free_space(fs_info, 3431 &fs_info->global_block_rsv); 3432 if (ret) 3433 goto out_put; 3434 3435 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3436 if (ret) 3437 goto out_put; 3438 } 3439 3440 spin_lock(&block_group->lock); 3441 if (block_group->cached != BTRFS_CACHE_FINISHED || 3442 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3443 /* 3444 * don't bother trying to write stuff out _if_ 3445 * a) we're not cached, 3446 * b) we're with nospace_cache mount option, 3447 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3448 */ 3449 dcs = BTRFS_DC_WRITTEN; 3450 spin_unlock(&block_group->lock); 3451 goto out_put; 3452 } 3453 spin_unlock(&block_group->lock); 3454 3455 /* 3456 * We hit an ENOSPC when setting up the cache in this transaction, just 3457 * skip doing the setup, we've already cleared the cache so we're safe. 3458 */ 3459 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3460 ret = -ENOSPC; 3461 goto out_put; 3462 } 3463 3464 /* 3465 * Try to preallocate enough space based on how big the block group is. 3466 * Keep in mind this has to include any pinned space which could end up 3467 * taking up quite a bit since it's not folded into the other space 3468 * cache. 3469 */ 3470 num_pages = div_u64(block_group->key.offset, SZ_256M); 3471 if (!num_pages) 3472 num_pages = 1; 3473 3474 num_pages *= 16; 3475 num_pages *= PAGE_SIZE; 3476 3477 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3478 if (ret) 3479 goto out_put; 3480 3481 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3482 num_pages, num_pages, 3483 &alloc_hint); 3484 /* 3485 * Our cache requires contiguous chunks so that we don't modify a bunch 3486 * of metadata or split extents when writing the cache out, which means 3487 * we can enospc if we are heavily fragmented in addition to just normal 3488 * out of space conditions. So if we hit this just skip setting up any 3489 * other block groups for this transaction, maybe we'll unpin enough 3490 * space the next time around. 3491 */ 3492 if (!ret) 3493 dcs = BTRFS_DC_SETUP; 3494 else if (ret == -ENOSPC) 3495 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3496 3497 out_put: 3498 iput(inode); 3499 out_free: 3500 btrfs_release_path(path); 3501 out: 3502 spin_lock(&block_group->lock); 3503 if (!ret && dcs == BTRFS_DC_SETUP) 3504 block_group->cache_generation = trans->transid; 3505 block_group->disk_cache_state = dcs; 3506 spin_unlock(&block_group->lock); 3507 3508 extent_changeset_free(data_reserved); 3509 return ret; 3510 } 3511 3512 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3513 struct btrfs_fs_info *fs_info) 3514 { 3515 struct btrfs_block_group_cache *cache, *tmp; 3516 struct btrfs_transaction *cur_trans = trans->transaction; 3517 struct btrfs_path *path; 3518 3519 if (list_empty(&cur_trans->dirty_bgs) || 3520 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3521 return 0; 3522 3523 path = btrfs_alloc_path(); 3524 if (!path) 3525 return -ENOMEM; 3526 3527 /* Could add new block groups, use _safe just in case */ 3528 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3529 dirty_list) { 3530 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3531 cache_save_setup(cache, trans, path); 3532 } 3533 3534 btrfs_free_path(path); 3535 return 0; 3536 } 3537 3538 /* 3539 * transaction commit does final block group cache writeback during a 3540 * critical section where nothing is allowed to change the FS. This is 3541 * required in order for the cache to actually match the block group, 3542 * but can introduce a lot of latency into the commit. 3543 * 3544 * So, btrfs_start_dirty_block_groups is here to kick off block group 3545 * cache IO. There's a chance we'll have to redo some of it if the 3546 * block group changes again during the commit, but it greatly reduces 3547 * the commit latency by getting rid of the easy block groups while 3548 * we're still allowing others to join the commit. 3549 */ 3550 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3551 { 3552 struct btrfs_fs_info *fs_info = trans->fs_info; 3553 struct btrfs_block_group_cache *cache; 3554 struct btrfs_transaction *cur_trans = trans->transaction; 3555 int ret = 0; 3556 int should_put; 3557 struct btrfs_path *path = NULL; 3558 LIST_HEAD(dirty); 3559 struct list_head *io = &cur_trans->io_bgs; 3560 int num_started = 0; 3561 int loops = 0; 3562 3563 spin_lock(&cur_trans->dirty_bgs_lock); 3564 if (list_empty(&cur_trans->dirty_bgs)) { 3565 spin_unlock(&cur_trans->dirty_bgs_lock); 3566 return 0; 3567 } 3568 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3569 spin_unlock(&cur_trans->dirty_bgs_lock); 3570 3571 again: 3572 /* 3573 * make sure all the block groups on our dirty list actually 3574 * exist 3575 */ 3576 btrfs_create_pending_block_groups(trans); 3577 3578 if (!path) { 3579 path = btrfs_alloc_path(); 3580 if (!path) 3581 return -ENOMEM; 3582 } 3583 3584 /* 3585 * cache_write_mutex is here only to save us from balance or automatic 3586 * removal of empty block groups deleting this block group while we are 3587 * writing out the cache 3588 */ 3589 mutex_lock(&trans->transaction->cache_write_mutex); 3590 while (!list_empty(&dirty)) { 3591 cache = list_first_entry(&dirty, 3592 struct btrfs_block_group_cache, 3593 dirty_list); 3594 /* 3595 * this can happen if something re-dirties a block 3596 * group that is already under IO. Just wait for it to 3597 * finish and then do it all again 3598 */ 3599 if (!list_empty(&cache->io_list)) { 3600 list_del_init(&cache->io_list); 3601 btrfs_wait_cache_io(trans, cache, path); 3602 btrfs_put_block_group(cache); 3603 } 3604 3605 3606 /* 3607 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3608 * if it should update the cache_state. Don't delete 3609 * until after we wait. 3610 * 3611 * Since we're not running in the commit critical section 3612 * we need the dirty_bgs_lock to protect from update_block_group 3613 */ 3614 spin_lock(&cur_trans->dirty_bgs_lock); 3615 list_del_init(&cache->dirty_list); 3616 spin_unlock(&cur_trans->dirty_bgs_lock); 3617 3618 should_put = 1; 3619 3620 cache_save_setup(cache, trans, path); 3621 3622 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3623 cache->io_ctl.inode = NULL; 3624 ret = btrfs_write_out_cache(fs_info, trans, 3625 cache, path); 3626 if (ret == 0 && cache->io_ctl.inode) { 3627 num_started++; 3628 should_put = 0; 3629 3630 /* 3631 * The cache_write_mutex is protecting the 3632 * io_list, also refer to the definition of 3633 * btrfs_transaction::io_bgs for more details 3634 */ 3635 list_add_tail(&cache->io_list, io); 3636 } else { 3637 /* 3638 * if we failed to write the cache, the 3639 * generation will be bad and life goes on 3640 */ 3641 ret = 0; 3642 } 3643 } 3644 if (!ret) { 3645 ret = write_one_cache_group(trans, fs_info, 3646 path, cache); 3647 /* 3648 * Our block group might still be attached to the list 3649 * of new block groups in the transaction handle of some 3650 * other task (struct btrfs_trans_handle->new_bgs). This 3651 * means its block group item isn't yet in the extent 3652 * tree. If this happens ignore the error, as we will 3653 * try again later in the critical section of the 3654 * transaction commit. 3655 */ 3656 if (ret == -ENOENT) { 3657 ret = 0; 3658 spin_lock(&cur_trans->dirty_bgs_lock); 3659 if (list_empty(&cache->dirty_list)) { 3660 list_add_tail(&cache->dirty_list, 3661 &cur_trans->dirty_bgs); 3662 btrfs_get_block_group(cache); 3663 } 3664 spin_unlock(&cur_trans->dirty_bgs_lock); 3665 } else if (ret) { 3666 btrfs_abort_transaction(trans, ret); 3667 } 3668 } 3669 3670 /* if its not on the io list, we need to put the block group */ 3671 if (should_put) 3672 btrfs_put_block_group(cache); 3673 3674 if (ret) 3675 break; 3676 3677 /* 3678 * Avoid blocking other tasks for too long. It might even save 3679 * us from writing caches for block groups that are going to be 3680 * removed. 3681 */ 3682 mutex_unlock(&trans->transaction->cache_write_mutex); 3683 mutex_lock(&trans->transaction->cache_write_mutex); 3684 } 3685 mutex_unlock(&trans->transaction->cache_write_mutex); 3686 3687 /* 3688 * go through delayed refs for all the stuff we've just kicked off 3689 * and then loop back (just once) 3690 */ 3691 ret = btrfs_run_delayed_refs(trans, 0); 3692 if (!ret && loops == 0) { 3693 loops++; 3694 spin_lock(&cur_trans->dirty_bgs_lock); 3695 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3696 /* 3697 * dirty_bgs_lock protects us from concurrent block group 3698 * deletes too (not just cache_write_mutex). 3699 */ 3700 if (!list_empty(&dirty)) { 3701 spin_unlock(&cur_trans->dirty_bgs_lock); 3702 goto again; 3703 } 3704 spin_unlock(&cur_trans->dirty_bgs_lock); 3705 } else if (ret < 0) { 3706 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3707 } 3708 3709 btrfs_free_path(path); 3710 return ret; 3711 } 3712 3713 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3714 struct btrfs_fs_info *fs_info) 3715 { 3716 struct btrfs_block_group_cache *cache; 3717 struct btrfs_transaction *cur_trans = trans->transaction; 3718 int ret = 0; 3719 int should_put; 3720 struct btrfs_path *path; 3721 struct list_head *io = &cur_trans->io_bgs; 3722 int num_started = 0; 3723 3724 path = btrfs_alloc_path(); 3725 if (!path) 3726 return -ENOMEM; 3727 3728 /* 3729 * Even though we are in the critical section of the transaction commit, 3730 * we can still have concurrent tasks adding elements to this 3731 * transaction's list of dirty block groups. These tasks correspond to 3732 * endio free space workers started when writeback finishes for a 3733 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3734 * allocate new block groups as a result of COWing nodes of the root 3735 * tree when updating the free space inode. The writeback for the space 3736 * caches is triggered by an earlier call to 3737 * btrfs_start_dirty_block_groups() and iterations of the following 3738 * loop. 3739 * Also we want to do the cache_save_setup first and then run the 3740 * delayed refs to make sure we have the best chance at doing this all 3741 * in one shot. 3742 */ 3743 spin_lock(&cur_trans->dirty_bgs_lock); 3744 while (!list_empty(&cur_trans->dirty_bgs)) { 3745 cache = list_first_entry(&cur_trans->dirty_bgs, 3746 struct btrfs_block_group_cache, 3747 dirty_list); 3748 3749 /* 3750 * this can happen if cache_save_setup re-dirties a block 3751 * group that is already under IO. Just wait for it to 3752 * finish and then do it all again 3753 */ 3754 if (!list_empty(&cache->io_list)) { 3755 spin_unlock(&cur_trans->dirty_bgs_lock); 3756 list_del_init(&cache->io_list); 3757 btrfs_wait_cache_io(trans, cache, path); 3758 btrfs_put_block_group(cache); 3759 spin_lock(&cur_trans->dirty_bgs_lock); 3760 } 3761 3762 /* 3763 * don't remove from the dirty list until after we've waited 3764 * on any pending IO 3765 */ 3766 list_del_init(&cache->dirty_list); 3767 spin_unlock(&cur_trans->dirty_bgs_lock); 3768 should_put = 1; 3769 3770 cache_save_setup(cache, trans, path); 3771 3772 if (!ret) 3773 ret = btrfs_run_delayed_refs(trans, 3774 (unsigned long) -1); 3775 3776 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3777 cache->io_ctl.inode = NULL; 3778 ret = btrfs_write_out_cache(fs_info, trans, 3779 cache, path); 3780 if (ret == 0 && cache->io_ctl.inode) { 3781 num_started++; 3782 should_put = 0; 3783 list_add_tail(&cache->io_list, io); 3784 } else { 3785 /* 3786 * if we failed to write the cache, the 3787 * generation will be bad and life goes on 3788 */ 3789 ret = 0; 3790 } 3791 } 3792 if (!ret) { 3793 ret = write_one_cache_group(trans, fs_info, 3794 path, cache); 3795 /* 3796 * One of the free space endio workers might have 3797 * created a new block group while updating a free space 3798 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3799 * and hasn't released its transaction handle yet, in 3800 * which case the new block group is still attached to 3801 * its transaction handle and its creation has not 3802 * finished yet (no block group item in the extent tree 3803 * yet, etc). If this is the case, wait for all free 3804 * space endio workers to finish and retry. This is a 3805 * a very rare case so no need for a more efficient and 3806 * complex approach. 3807 */ 3808 if (ret == -ENOENT) { 3809 wait_event(cur_trans->writer_wait, 3810 atomic_read(&cur_trans->num_writers) == 1); 3811 ret = write_one_cache_group(trans, fs_info, 3812 path, cache); 3813 } 3814 if (ret) 3815 btrfs_abort_transaction(trans, ret); 3816 } 3817 3818 /* if its not on the io list, we need to put the block group */ 3819 if (should_put) 3820 btrfs_put_block_group(cache); 3821 spin_lock(&cur_trans->dirty_bgs_lock); 3822 } 3823 spin_unlock(&cur_trans->dirty_bgs_lock); 3824 3825 /* 3826 * Refer to the definition of io_bgs member for details why it's safe 3827 * to use it without any locking 3828 */ 3829 while (!list_empty(io)) { 3830 cache = list_first_entry(io, struct btrfs_block_group_cache, 3831 io_list); 3832 list_del_init(&cache->io_list); 3833 btrfs_wait_cache_io(trans, cache, path); 3834 btrfs_put_block_group(cache); 3835 } 3836 3837 btrfs_free_path(path); 3838 return ret; 3839 } 3840 3841 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3842 { 3843 struct btrfs_block_group_cache *block_group; 3844 int readonly = 0; 3845 3846 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3847 if (!block_group || block_group->ro) 3848 readonly = 1; 3849 if (block_group) 3850 btrfs_put_block_group(block_group); 3851 return readonly; 3852 } 3853 3854 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3855 { 3856 struct btrfs_block_group_cache *bg; 3857 bool ret = true; 3858 3859 bg = btrfs_lookup_block_group(fs_info, bytenr); 3860 if (!bg) 3861 return false; 3862 3863 spin_lock(&bg->lock); 3864 if (bg->ro) 3865 ret = false; 3866 else 3867 atomic_inc(&bg->nocow_writers); 3868 spin_unlock(&bg->lock); 3869 3870 /* no put on block group, done by btrfs_dec_nocow_writers */ 3871 if (!ret) 3872 btrfs_put_block_group(bg); 3873 3874 return ret; 3875 3876 } 3877 3878 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3879 { 3880 struct btrfs_block_group_cache *bg; 3881 3882 bg = btrfs_lookup_block_group(fs_info, bytenr); 3883 ASSERT(bg); 3884 if (atomic_dec_and_test(&bg->nocow_writers)) 3885 wake_up_var(&bg->nocow_writers); 3886 /* 3887 * Once for our lookup and once for the lookup done by a previous call 3888 * to btrfs_inc_nocow_writers() 3889 */ 3890 btrfs_put_block_group(bg); 3891 btrfs_put_block_group(bg); 3892 } 3893 3894 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3895 { 3896 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 3897 } 3898 3899 static const char *alloc_name(u64 flags) 3900 { 3901 switch (flags) { 3902 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3903 return "mixed"; 3904 case BTRFS_BLOCK_GROUP_METADATA: 3905 return "metadata"; 3906 case BTRFS_BLOCK_GROUP_DATA: 3907 return "data"; 3908 case BTRFS_BLOCK_GROUP_SYSTEM: 3909 return "system"; 3910 default: 3911 WARN_ON(1); 3912 return "invalid-combination"; 3913 }; 3914 } 3915 3916 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 3917 { 3918 3919 struct btrfs_space_info *space_info; 3920 int i; 3921 int ret; 3922 3923 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 3924 if (!space_info) 3925 return -ENOMEM; 3926 3927 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 3928 GFP_KERNEL); 3929 if (ret) { 3930 kfree(space_info); 3931 return ret; 3932 } 3933 3934 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3935 INIT_LIST_HEAD(&space_info->block_groups[i]); 3936 init_rwsem(&space_info->groups_sem); 3937 spin_lock_init(&space_info->lock); 3938 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3939 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3940 init_waitqueue_head(&space_info->wait); 3941 INIT_LIST_HEAD(&space_info->ro_bgs); 3942 INIT_LIST_HEAD(&space_info->tickets); 3943 INIT_LIST_HEAD(&space_info->priority_tickets); 3944 3945 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 3946 info->space_info_kobj, "%s", 3947 alloc_name(space_info->flags)); 3948 if (ret) { 3949 percpu_counter_destroy(&space_info->total_bytes_pinned); 3950 kfree(space_info); 3951 return ret; 3952 } 3953 3954 list_add_rcu(&space_info->list, &info->space_info); 3955 if (flags & BTRFS_BLOCK_GROUP_DATA) 3956 info->data_sinfo = space_info; 3957 3958 return ret; 3959 } 3960 3961 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 3962 u64 total_bytes, u64 bytes_used, 3963 u64 bytes_readonly, 3964 struct btrfs_space_info **space_info) 3965 { 3966 struct btrfs_space_info *found; 3967 int factor; 3968 3969 factor = btrfs_bg_type_to_factor(flags); 3970 3971 found = __find_space_info(info, flags); 3972 ASSERT(found); 3973 spin_lock(&found->lock); 3974 found->total_bytes += total_bytes; 3975 found->disk_total += total_bytes * factor; 3976 found->bytes_used += bytes_used; 3977 found->disk_used += bytes_used * factor; 3978 found->bytes_readonly += bytes_readonly; 3979 if (total_bytes > 0) 3980 found->full = 0; 3981 space_info_add_new_bytes(info, found, total_bytes - 3982 bytes_used - bytes_readonly); 3983 spin_unlock(&found->lock); 3984 *space_info = found; 3985 } 3986 3987 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3988 { 3989 u64 extra_flags = chunk_to_extended(flags) & 3990 BTRFS_EXTENDED_PROFILE_MASK; 3991 3992 write_seqlock(&fs_info->profiles_lock); 3993 if (flags & BTRFS_BLOCK_GROUP_DATA) 3994 fs_info->avail_data_alloc_bits |= extra_flags; 3995 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3996 fs_info->avail_metadata_alloc_bits |= extra_flags; 3997 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3998 fs_info->avail_system_alloc_bits |= extra_flags; 3999 write_sequnlock(&fs_info->profiles_lock); 4000 } 4001 4002 /* 4003 * returns target flags in extended format or 0 if restripe for this 4004 * chunk_type is not in progress 4005 * 4006 * should be called with balance_lock held 4007 */ 4008 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4009 { 4010 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4011 u64 target = 0; 4012 4013 if (!bctl) 4014 return 0; 4015 4016 if (flags & BTRFS_BLOCK_GROUP_DATA && 4017 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4018 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4019 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4020 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4021 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4022 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4023 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4024 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4025 } 4026 4027 return target; 4028 } 4029 4030 /* 4031 * @flags: available profiles in extended format (see ctree.h) 4032 * 4033 * Returns reduced profile in chunk format. If profile changing is in 4034 * progress (either running or paused) picks the target profile (if it's 4035 * already available), otherwise falls back to plain reducing. 4036 */ 4037 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4038 { 4039 u64 num_devices = fs_info->fs_devices->rw_devices; 4040 u64 target; 4041 u64 raid_type; 4042 u64 allowed = 0; 4043 4044 /* 4045 * see if restripe for this chunk_type is in progress, if so 4046 * try to reduce to the target profile 4047 */ 4048 spin_lock(&fs_info->balance_lock); 4049 target = get_restripe_target(fs_info, flags); 4050 if (target) { 4051 /* pick target profile only if it's already available */ 4052 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4053 spin_unlock(&fs_info->balance_lock); 4054 return extended_to_chunk(target); 4055 } 4056 } 4057 spin_unlock(&fs_info->balance_lock); 4058 4059 /* First, mask out the RAID levels which aren't possible */ 4060 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4061 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4062 allowed |= btrfs_raid_array[raid_type].bg_flag; 4063 } 4064 allowed &= flags; 4065 4066 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4067 allowed = BTRFS_BLOCK_GROUP_RAID6; 4068 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4069 allowed = BTRFS_BLOCK_GROUP_RAID5; 4070 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4071 allowed = BTRFS_BLOCK_GROUP_RAID10; 4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4073 allowed = BTRFS_BLOCK_GROUP_RAID1; 4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4075 allowed = BTRFS_BLOCK_GROUP_RAID0; 4076 4077 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4078 4079 return extended_to_chunk(flags | allowed); 4080 } 4081 4082 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4083 { 4084 unsigned seq; 4085 u64 flags; 4086 4087 do { 4088 flags = orig_flags; 4089 seq = read_seqbegin(&fs_info->profiles_lock); 4090 4091 if (flags & BTRFS_BLOCK_GROUP_DATA) 4092 flags |= fs_info->avail_data_alloc_bits; 4093 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4094 flags |= fs_info->avail_system_alloc_bits; 4095 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4096 flags |= fs_info->avail_metadata_alloc_bits; 4097 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4098 4099 return btrfs_reduce_alloc_profile(fs_info, flags); 4100 } 4101 4102 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4103 { 4104 struct btrfs_fs_info *fs_info = root->fs_info; 4105 u64 flags; 4106 u64 ret; 4107 4108 if (data) 4109 flags = BTRFS_BLOCK_GROUP_DATA; 4110 else if (root == fs_info->chunk_root) 4111 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4112 else 4113 flags = BTRFS_BLOCK_GROUP_METADATA; 4114 4115 ret = get_alloc_profile(fs_info, flags); 4116 return ret; 4117 } 4118 4119 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4120 { 4121 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4122 } 4123 4124 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4125 { 4126 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4127 } 4128 4129 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4130 { 4131 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4132 } 4133 4134 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4135 bool may_use_included) 4136 { 4137 ASSERT(s_info); 4138 return s_info->bytes_used + s_info->bytes_reserved + 4139 s_info->bytes_pinned + s_info->bytes_readonly + 4140 (may_use_included ? s_info->bytes_may_use : 0); 4141 } 4142 4143 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4144 { 4145 struct btrfs_root *root = inode->root; 4146 struct btrfs_fs_info *fs_info = root->fs_info; 4147 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4148 u64 used; 4149 int ret = 0; 4150 int need_commit = 2; 4151 int have_pinned_space; 4152 4153 /* make sure bytes are sectorsize aligned */ 4154 bytes = ALIGN(bytes, fs_info->sectorsize); 4155 4156 if (btrfs_is_free_space_inode(inode)) { 4157 need_commit = 0; 4158 ASSERT(current->journal_info); 4159 } 4160 4161 again: 4162 /* make sure we have enough space to handle the data first */ 4163 spin_lock(&data_sinfo->lock); 4164 used = btrfs_space_info_used(data_sinfo, true); 4165 4166 if (used + bytes > data_sinfo->total_bytes) { 4167 struct btrfs_trans_handle *trans; 4168 4169 /* 4170 * if we don't have enough free bytes in this space then we need 4171 * to alloc a new chunk. 4172 */ 4173 if (!data_sinfo->full) { 4174 u64 alloc_target; 4175 4176 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4177 spin_unlock(&data_sinfo->lock); 4178 4179 alloc_target = btrfs_data_alloc_profile(fs_info); 4180 /* 4181 * It is ugly that we don't call nolock join 4182 * transaction for the free space inode case here. 4183 * But it is safe because we only do the data space 4184 * reservation for the free space cache in the 4185 * transaction context, the common join transaction 4186 * just increase the counter of the current transaction 4187 * handler, doesn't try to acquire the trans_lock of 4188 * the fs. 4189 */ 4190 trans = btrfs_join_transaction(root); 4191 if (IS_ERR(trans)) 4192 return PTR_ERR(trans); 4193 4194 ret = do_chunk_alloc(trans, alloc_target, 4195 CHUNK_ALLOC_NO_FORCE); 4196 btrfs_end_transaction(trans); 4197 if (ret < 0) { 4198 if (ret != -ENOSPC) 4199 return ret; 4200 else { 4201 have_pinned_space = 1; 4202 goto commit_trans; 4203 } 4204 } 4205 4206 goto again; 4207 } 4208 4209 /* 4210 * If we don't have enough pinned space to deal with this 4211 * allocation, and no removed chunk in current transaction, 4212 * don't bother committing the transaction. 4213 */ 4214 have_pinned_space = __percpu_counter_compare( 4215 &data_sinfo->total_bytes_pinned, 4216 used + bytes - data_sinfo->total_bytes, 4217 BTRFS_TOTAL_BYTES_PINNED_BATCH); 4218 spin_unlock(&data_sinfo->lock); 4219 4220 /* commit the current transaction and try again */ 4221 commit_trans: 4222 if (need_commit) { 4223 need_commit--; 4224 4225 if (need_commit > 0) { 4226 btrfs_start_delalloc_roots(fs_info, -1); 4227 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4228 (u64)-1); 4229 } 4230 4231 trans = btrfs_join_transaction(root); 4232 if (IS_ERR(trans)) 4233 return PTR_ERR(trans); 4234 if (have_pinned_space >= 0 || 4235 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4236 &trans->transaction->flags) || 4237 need_commit > 0) { 4238 ret = btrfs_commit_transaction(trans); 4239 if (ret) 4240 return ret; 4241 /* 4242 * The cleaner kthread might still be doing iput 4243 * operations. Wait for it to finish so that 4244 * more space is released. 4245 */ 4246 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4247 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4248 goto again; 4249 } else { 4250 btrfs_end_transaction(trans); 4251 } 4252 } 4253 4254 trace_btrfs_space_reservation(fs_info, 4255 "space_info:enospc", 4256 data_sinfo->flags, bytes, 1); 4257 return -ENOSPC; 4258 } 4259 data_sinfo->bytes_may_use += bytes; 4260 trace_btrfs_space_reservation(fs_info, "space_info", 4261 data_sinfo->flags, bytes, 1); 4262 spin_unlock(&data_sinfo->lock); 4263 4264 return 0; 4265 } 4266 4267 int btrfs_check_data_free_space(struct inode *inode, 4268 struct extent_changeset **reserved, u64 start, u64 len) 4269 { 4270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4271 int ret; 4272 4273 /* align the range */ 4274 len = round_up(start + len, fs_info->sectorsize) - 4275 round_down(start, fs_info->sectorsize); 4276 start = round_down(start, fs_info->sectorsize); 4277 4278 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4279 if (ret < 0) 4280 return ret; 4281 4282 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4283 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4284 if (ret < 0) 4285 btrfs_free_reserved_data_space_noquota(inode, start, len); 4286 else 4287 ret = 0; 4288 return ret; 4289 } 4290 4291 /* 4292 * Called if we need to clear a data reservation for this inode 4293 * Normally in a error case. 4294 * 4295 * This one will *NOT* use accurate qgroup reserved space API, just for case 4296 * which we can't sleep and is sure it won't affect qgroup reserved space. 4297 * Like clear_bit_hook(). 4298 */ 4299 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4300 u64 len) 4301 { 4302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4303 struct btrfs_space_info *data_sinfo; 4304 4305 /* Make sure the range is aligned to sectorsize */ 4306 len = round_up(start + len, fs_info->sectorsize) - 4307 round_down(start, fs_info->sectorsize); 4308 start = round_down(start, fs_info->sectorsize); 4309 4310 data_sinfo = fs_info->data_sinfo; 4311 spin_lock(&data_sinfo->lock); 4312 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4313 data_sinfo->bytes_may_use = 0; 4314 else 4315 data_sinfo->bytes_may_use -= len; 4316 trace_btrfs_space_reservation(fs_info, "space_info", 4317 data_sinfo->flags, len, 0); 4318 spin_unlock(&data_sinfo->lock); 4319 } 4320 4321 /* 4322 * Called if we need to clear a data reservation for this inode 4323 * Normally in a error case. 4324 * 4325 * This one will handle the per-inode data rsv map for accurate reserved 4326 * space framework. 4327 */ 4328 void btrfs_free_reserved_data_space(struct inode *inode, 4329 struct extent_changeset *reserved, u64 start, u64 len) 4330 { 4331 struct btrfs_root *root = BTRFS_I(inode)->root; 4332 4333 /* Make sure the range is aligned to sectorsize */ 4334 len = round_up(start + len, root->fs_info->sectorsize) - 4335 round_down(start, root->fs_info->sectorsize); 4336 start = round_down(start, root->fs_info->sectorsize); 4337 4338 btrfs_free_reserved_data_space_noquota(inode, start, len); 4339 btrfs_qgroup_free_data(inode, reserved, start, len); 4340 } 4341 4342 static void force_metadata_allocation(struct btrfs_fs_info *info) 4343 { 4344 struct list_head *head = &info->space_info; 4345 struct btrfs_space_info *found; 4346 4347 rcu_read_lock(); 4348 list_for_each_entry_rcu(found, head, list) { 4349 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4350 found->force_alloc = CHUNK_ALLOC_FORCE; 4351 } 4352 rcu_read_unlock(); 4353 } 4354 4355 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4356 { 4357 return (global->size << 1); 4358 } 4359 4360 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4361 struct btrfs_space_info *sinfo, int force) 4362 { 4363 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4364 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4365 u64 thresh; 4366 4367 if (force == CHUNK_ALLOC_FORCE) 4368 return 1; 4369 4370 /* 4371 * We need to take into account the global rsv because for all intents 4372 * and purposes it's used space. Don't worry about locking the 4373 * global_rsv, it doesn't change except when the transaction commits. 4374 */ 4375 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4376 bytes_used += calc_global_rsv_need_space(global_rsv); 4377 4378 /* 4379 * in limited mode, we want to have some free space up to 4380 * about 1% of the FS size. 4381 */ 4382 if (force == CHUNK_ALLOC_LIMITED) { 4383 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4384 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4385 4386 if (sinfo->total_bytes - bytes_used < thresh) 4387 return 1; 4388 } 4389 4390 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4391 return 0; 4392 return 1; 4393 } 4394 4395 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4396 { 4397 u64 num_dev; 4398 4399 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4400 BTRFS_BLOCK_GROUP_RAID0 | 4401 BTRFS_BLOCK_GROUP_RAID5 | 4402 BTRFS_BLOCK_GROUP_RAID6)) 4403 num_dev = fs_info->fs_devices->rw_devices; 4404 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4405 num_dev = 2; 4406 else 4407 num_dev = 1; /* DUP or single */ 4408 4409 return num_dev; 4410 } 4411 4412 /* 4413 * If @is_allocation is true, reserve space in the system space info necessary 4414 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4415 * removing a chunk. 4416 */ 4417 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) 4418 { 4419 struct btrfs_fs_info *fs_info = trans->fs_info; 4420 struct btrfs_space_info *info; 4421 u64 left; 4422 u64 thresh; 4423 int ret = 0; 4424 u64 num_devs; 4425 4426 /* 4427 * Needed because we can end up allocating a system chunk and for an 4428 * atomic and race free space reservation in the chunk block reserve. 4429 */ 4430 lockdep_assert_held(&fs_info->chunk_mutex); 4431 4432 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4433 spin_lock(&info->lock); 4434 left = info->total_bytes - btrfs_space_info_used(info, true); 4435 spin_unlock(&info->lock); 4436 4437 num_devs = get_profile_num_devs(fs_info, type); 4438 4439 /* num_devs device items to update and 1 chunk item to add or remove */ 4440 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4441 btrfs_calc_trans_metadata_size(fs_info, 1); 4442 4443 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4444 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4445 left, thresh, type); 4446 dump_space_info(fs_info, info, 0, 0); 4447 } 4448 4449 if (left < thresh) { 4450 u64 flags = btrfs_system_alloc_profile(fs_info); 4451 4452 /* 4453 * Ignore failure to create system chunk. We might end up not 4454 * needing it, as we might not need to COW all nodes/leafs from 4455 * the paths we visit in the chunk tree (they were already COWed 4456 * or created in the current transaction for example). 4457 */ 4458 ret = btrfs_alloc_chunk(trans, flags); 4459 } 4460 4461 if (!ret) { 4462 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4463 &fs_info->chunk_block_rsv, 4464 thresh, BTRFS_RESERVE_NO_FLUSH); 4465 if (!ret) 4466 trans->chunk_bytes_reserved += thresh; 4467 } 4468 } 4469 4470 /* 4471 * If force is CHUNK_ALLOC_FORCE: 4472 * - return 1 if it successfully allocates a chunk, 4473 * - return errors including -ENOSPC otherwise. 4474 * If force is NOT CHUNK_ALLOC_FORCE: 4475 * - return 0 if it doesn't need to allocate a new chunk, 4476 * - return 1 if it successfully allocates a chunk, 4477 * - return errors including -ENOSPC otherwise. 4478 */ 4479 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, 4480 int force) 4481 { 4482 struct btrfs_fs_info *fs_info = trans->fs_info; 4483 struct btrfs_space_info *space_info; 4484 bool wait_for_alloc = false; 4485 bool should_alloc = false; 4486 int ret = 0; 4487 4488 /* Don't re-enter if we're already allocating a chunk */ 4489 if (trans->allocating_chunk) 4490 return -ENOSPC; 4491 4492 space_info = __find_space_info(fs_info, flags); 4493 ASSERT(space_info); 4494 4495 do { 4496 spin_lock(&space_info->lock); 4497 if (force < space_info->force_alloc) 4498 force = space_info->force_alloc; 4499 should_alloc = should_alloc_chunk(fs_info, space_info, force); 4500 if (space_info->full) { 4501 /* No more free physical space */ 4502 if (should_alloc) 4503 ret = -ENOSPC; 4504 else 4505 ret = 0; 4506 spin_unlock(&space_info->lock); 4507 return ret; 4508 } else if (!should_alloc) { 4509 spin_unlock(&space_info->lock); 4510 return 0; 4511 } else if (space_info->chunk_alloc) { 4512 /* 4513 * Someone is already allocating, so we need to block 4514 * until this someone is finished and then loop to 4515 * recheck if we should continue with our allocation 4516 * attempt. 4517 */ 4518 wait_for_alloc = true; 4519 spin_unlock(&space_info->lock); 4520 mutex_lock(&fs_info->chunk_mutex); 4521 mutex_unlock(&fs_info->chunk_mutex); 4522 } else { 4523 /* Proceed with allocation */ 4524 space_info->chunk_alloc = 1; 4525 wait_for_alloc = false; 4526 spin_unlock(&space_info->lock); 4527 } 4528 4529 cond_resched(); 4530 } while (wait_for_alloc); 4531 4532 mutex_lock(&fs_info->chunk_mutex); 4533 trans->allocating_chunk = true; 4534 4535 /* 4536 * If we have mixed data/metadata chunks we want to make sure we keep 4537 * allocating mixed chunks instead of individual chunks. 4538 */ 4539 if (btrfs_mixed_space_info(space_info)) 4540 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4541 4542 /* 4543 * if we're doing a data chunk, go ahead and make sure that 4544 * we keep a reasonable number of metadata chunks allocated in the 4545 * FS as well. 4546 */ 4547 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4548 fs_info->data_chunk_allocations++; 4549 if (!(fs_info->data_chunk_allocations % 4550 fs_info->metadata_ratio)) 4551 force_metadata_allocation(fs_info); 4552 } 4553 4554 /* 4555 * Check if we have enough space in SYSTEM chunk because we may need 4556 * to update devices. 4557 */ 4558 check_system_chunk(trans, flags); 4559 4560 ret = btrfs_alloc_chunk(trans, flags); 4561 trans->allocating_chunk = false; 4562 4563 spin_lock(&space_info->lock); 4564 if (ret < 0) { 4565 if (ret == -ENOSPC) 4566 space_info->full = 1; 4567 else 4568 goto out; 4569 } else { 4570 ret = 1; 4571 } 4572 4573 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4574 out: 4575 space_info->chunk_alloc = 0; 4576 spin_unlock(&space_info->lock); 4577 mutex_unlock(&fs_info->chunk_mutex); 4578 /* 4579 * When we allocate a new chunk we reserve space in the chunk block 4580 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4581 * add new nodes/leafs to it if we end up needing to do it when 4582 * inserting the chunk item and updating device items as part of the 4583 * second phase of chunk allocation, performed by 4584 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4585 * large number of new block groups to create in our transaction 4586 * handle's new_bgs list to avoid exhausting the chunk block reserve 4587 * in extreme cases - like having a single transaction create many new 4588 * block groups when starting to write out the free space caches of all 4589 * the block groups that were made dirty during the lifetime of the 4590 * transaction. 4591 */ 4592 if (trans->can_flush_pending_bgs && 4593 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4594 btrfs_create_pending_block_groups(trans); 4595 btrfs_trans_release_chunk_metadata(trans); 4596 } 4597 return ret; 4598 } 4599 4600 static int can_overcommit(struct btrfs_fs_info *fs_info, 4601 struct btrfs_space_info *space_info, u64 bytes, 4602 enum btrfs_reserve_flush_enum flush, 4603 bool system_chunk) 4604 { 4605 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4606 u64 profile; 4607 u64 space_size; 4608 u64 avail; 4609 u64 used; 4610 int factor; 4611 4612 /* Don't overcommit when in mixed mode. */ 4613 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4614 return 0; 4615 4616 if (system_chunk) 4617 profile = btrfs_system_alloc_profile(fs_info); 4618 else 4619 profile = btrfs_metadata_alloc_profile(fs_info); 4620 4621 used = btrfs_space_info_used(space_info, false); 4622 4623 /* 4624 * We only want to allow over committing if we have lots of actual space 4625 * free, but if we don't have enough space to handle the global reserve 4626 * space then we could end up having a real enospc problem when trying 4627 * to allocate a chunk or some other such important allocation. 4628 */ 4629 spin_lock(&global_rsv->lock); 4630 space_size = calc_global_rsv_need_space(global_rsv); 4631 spin_unlock(&global_rsv->lock); 4632 if (used + space_size >= space_info->total_bytes) 4633 return 0; 4634 4635 used += space_info->bytes_may_use; 4636 4637 avail = atomic64_read(&fs_info->free_chunk_space); 4638 4639 /* 4640 * If we have dup, raid1 or raid10 then only half of the free 4641 * space is actually useable. For raid56, the space info used 4642 * doesn't include the parity drive, so we don't have to 4643 * change the math 4644 */ 4645 factor = btrfs_bg_type_to_factor(profile); 4646 avail = div_u64(avail, factor); 4647 4648 /* 4649 * If we aren't flushing all things, let us overcommit up to 4650 * 1/2th of the space. If we can flush, don't let us overcommit 4651 * too much, let it overcommit up to 1/8 of the space. 4652 */ 4653 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4654 avail >>= 3; 4655 else 4656 avail >>= 1; 4657 4658 if (used + bytes < space_info->total_bytes + avail) 4659 return 1; 4660 return 0; 4661 } 4662 4663 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4664 unsigned long nr_pages, int nr_items) 4665 { 4666 struct super_block *sb = fs_info->sb; 4667 4668 if (down_read_trylock(&sb->s_umount)) { 4669 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4670 up_read(&sb->s_umount); 4671 } else { 4672 /* 4673 * We needn't worry the filesystem going from r/w to r/o though 4674 * we don't acquire ->s_umount mutex, because the filesystem 4675 * should guarantee the delalloc inodes list be empty after 4676 * the filesystem is readonly(all dirty pages are written to 4677 * the disk). 4678 */ 4679 btrfs_start_delalloc_roots(fs_info, nr_items); 4680 if (!current->journal_info) 4681 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4682 } 4683 } 4684 4685 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4686 u64 to_reclaim) 4687 { 4688 u64 bytes; 4689 u64 nr; 4690 4691 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4692 nr = div64_u64(to_reclaim, bytes); 4693 if (!nr) 4694 nr = 1; 4695 return nr; 4696 } 4697 4698 #define EXTENT_SIZE_PER_ITEM SZ_256K 4699 4700 /* 4701 * shrink metadata reservation for delalloc 4702 */ 4703 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4704 u64 orig, bool wait_ordered) 4705 { 4706 struct btrfs_space_info *space_info; 4707 struct btrfs_trans_handle *trans; 4708 u64 delalloc_bytes; 4709 u64 max_reclaim; 4710 u64 items; 4711 long time_left; 4712 unsigned long nr_pages; 4713 int loops; 4714 4715 /* Calc the number of the pages we need flush for space reservation */ 4716 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4717 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4718 4719 trans = (struct btrfs_trans_handle *)current->journal_info; 4720 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4721 4722 delalloc_bytes = percpu_counter_sum_positive( 4723 &fs_info->delalloc_bytes); 4724 if (delalloc_bytes == 0) { 4725 if (trans) 4726 return; 4727 if (wait_ordered) 4728 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4729 return; 4730 } 4731 4732 loops = 0; 4733 while (delalloc_bytes && loops < 3) { 4734 max_reclaim = min(delalloc_bytes, to_reclaim); 4735 nr_pages = max_reclaim >> PAGE_SHIFT; 4736 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4737 /* 4738 * We need to wait for the async pages to actually start before 4739 * we do anything. 4740 */ 4741 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4742 if (!max_reclaim) 4743 goto skip_async; 4744 4745 if (max_reclaim <= nr_pages) 4746 max_reclaim = 0; 4747 else 4748 max_reclaim -= nr_pages; 4749 4750 wait_event(fs_info->async_submit_wait, 4751 atomic_read(&fs_info->async_delalloc_pages) <= 4752 (int)max_reclaim); 4753 skip_async: 4754 spin_lock(&space_info->lock); 4755 if (list_empty(&space_info->tickets) && 4756 list_empty(&space_info->priority_tickets)) { 4757 spin_unlock(&space_info->lock); 4758 break; 4759 } 4760 spin_unlock(&space_info->lock); 4761 4762 loops++; 4763 if (wait_ordered && !trans) { 4764 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4765 } else { 4766 time_left = schedule_timeout_killable(1); 4767 if (time_left) 4768 break; 4769 } 4770 delalloc_bytes = percpu_counter_sum_positive( 4771 &fs_info->delalloc_bytes); 4772 } 4773 } 4774 4775 struct reserve_ticket { 4776 u64 bytes; 4777 int error; 4778 struct list_head list; 4779 wait_queue_head_t wait; 4780 }; 4781 4782 /** 4783 * maybe_commit_transaction - possibly commit the transaction if its ok to 4784 * @root - the root we're allocating for 4785 * @bytes - the number of bytes we want to reserve 4786 * @force - force the commit 4787 * 4788 * This will check to make sure that committing the transaction will actually 4789 * get us somewhere and then commit the transaction if it does. Otherwise it 4790 * will return -ENOSPC. 4791 */ 4792 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4793 struct btrfs_space_info *space_info) 4794 { 4795 struct reserve_ticket *ticket = NULL; 4796 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4797 struct btrfs_trans_handle *trans; 4798 u64 bytes; 4799 4800 trans = (struct btrfs_trans_handle *)current->journal_info; 4801 if (trans) 4802 return -EAGAIN; 4803 4804 spin_lock(&space_info->lock); 4805 if (!list_empty(&space_info->priority_tickets)) 4806 ticket = list_first_entry(&space_info->priority_tickets, 4807 struct reserve_ticket, list); 4808 else if (!list_empty(&space_info->tickets)) 4809 ticket = list_first_entry(&space_info->tickets, 4810 struct reserve_ticket, list); 4811 bytes = (ticket) ? ticket->bytes : 0; 4812 spin_unlock(&space_info->lock); 4813 4814 if (!bytes) 4815 return 0; 4816 4817 /* See if there is enough pinned space to make this reservation */ 4818 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 4819 bytes, 4820 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 4821 goto commit; 4822 4823 /* 4824 * See if there is some space in the delayed insertion reservation for 4825 * this reservation. 4826 */ 4827 if (space_info != delayed_rsv->space_info) 4828 return -ENOSPC; 4829 4830 spin_lock(&delayed_rsv->lock); 4831 if (delayed_rsv->size > bytes) 4832 bytes = 0; 4833 else 4834 bytes -= delayed_rsv->size; 4835 spin_unlock(&delayed_rsv->lock); 4836 4837 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 4838 bytes, 4839 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) { 4840 return -ENOSPC; 4841 } 4842 4843 commit: 4844 trans = btrfs_join_transaction(fs_info->extent_root); 4845 if (IS_ERR(trans)) 4846 return -ENOSPC; 4847 4848 return btrfs_commit_transaction(trans); 4849 } 4850 4851 /* 4852 * Try to flush some data based on policy set by @state. This is only advisory 4853 * and may fail for various reasons. The caller is supposed to examine the 4854 * state of @space_info to detect the outcome. 4855 */ 4856 static void flush_space(struct btrfs_fs_info *fs_info, 4857 struct btrfs_space_info *space_info, u64 num_bytes, 4858 int state) 4859 { 4860 struct btrfs_root *root = fs_info->extent_root; 4861 struct btrfs_trans_handle *trans; 4862 int nr; 4863 int ret = 0; 4864 4865 switch (state) { 4866 case FLUSH_DELAYED_ITEMS_NR: 4867 case FLUSH_DELAYED_ITEMS: 4868 if (state == FLUSH_DELAYED_ITEMS_NR) 4869 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4870 else 4871 nr = -1; 4872 4873 trans = btrfs_join_transaction(root); 4874 if (IS_ERR(trans)) { 4875 ret = PTR_ERR(trans); 4876 break; 4877 } 4878 ret = btrfs_run_delayed_items_nr(trans, nr); 4879 btrfs_end_transaction(trans); 4880 break; 4881 case FLUSH_DELALLOC: 4882 case FLUSH_DELALLOC_WAIT: 4883 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4884 state == FLUSH_DELALLOC_WAIT); 4885 break; 4886 case ALLOC_CHUNK: 4887 trans = btrfs_join_transaction(root); 4888 if (IS_ERR(trans)) { 4889 ret = PTR_ERR(trans); 4890 break; 4891 } 4892 ret = do_chunk_alloc(trans, 4893 btrfs_metadata_alloc_profile(fs_info), 4894 CHUNK_ALLOC_NO_FORCE); 4895 btrfs_end_transaction(trans); 4896 if (ret > 0 || ret == -ENOSPC) 4897 ret = 0; 4898 break; 4899 case COMMIT_TRANS: 4900 ret = may_commit_transaction(fs_info, space_info); 4901 break; 4902 default: 4903 ret = -ENOSPC; 4904 break; 4905 } 4906 4907 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 4908 ret); 4909 return; 4910 } 4911 4912 static inline u64 4913 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 4914 struct btrfs_space_info *space_info, 4915 bool system_chunk) 4916 { 4917 struct reserve_ticket *ticket; 4918 u64 used; 4919 u64 expected; 4920 u64 to_reclaim = 0; 4921 4922 list_for_each_entry(ticket, &space_info->tickets, list) 4923 to_reclaim += ticket->bytes; 4924 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4925 to_reclaim += ticket->bytes; 4926 if (to_reclaim) 4927 return to_reclaim; 4928 4929 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4930 if (can_overcommit(fs_info, space_info, to_reclaim, 4931 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4932 return 0; 4933 4934 used = btrfs_space_info_used(space_info, true); 4935 4936 if (can_overcommit(fs_info, space_info, SZ_1M, 4937 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4938 expected = div_factor_fine(space_info->total_bytes, 95); 4939 else 4940 expected = div_factor_fine(space_info->total_bytes, 90); 4941 4942 if (used > expected) 4943 to_reclaim = used - expected; 4944 else 4945 to_reclaim = 0; 4946 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4947 space_info->bytes_reserved); 4948 return to_reclaim; 4949 } 4950 4951 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 4952 struct btrfs_space_info *space_info, 4953 u64 used, bool system_chunk) 4954 { 4955 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4956 4957 /* If we're just plain full then async reclaim just slows us down. */ 4958 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4959 return 0; 4960 4961 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 4962 system_chunk)) 4963 return 0; 4964 4965 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4966 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4967 } 4968 4969 static void wake_all_tickets(struct list_head *head) 4970 { 4971 struct reserve_ticket *ticket; 4972 4973 while (!list_empty(head)) { 4974 ticket = list_first_entry(head, struct reserve_ticket, list); 4975 list_del_init(&ticket->list); 4976 ticket->error = -ENOSPC; 4977 wake_up(&ticket->wait); 4978 } 4979 } 4980 4981 /* 4982 * This is for normal flushers, we can wait all goddamned day if we want to. We 4983 * will loop and continuously try to flush as long as we are making progress. 4984 * We count progress as clearing off tickets each time we have to loop. 4985 */ 4986 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4987 { 4988 struct btrfs_fs_info *fs_info; 4989 struct btrfs_space_info *space_info; 4990 u64 to_reclaim; 4991 int flush_state; 4992 int commit_cycles = 0; 4993 u64 last_tickets_id; 4994 4995 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4996 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4997 4998 spin_lock(&space_info->lock); 4999 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5000 false); 5001 if (!to_reclaim) { 5002 space_info->flush = 0; 5003 spin_unlock(&space_info->lock); 5004 return; 5005 } 5006 last_tickets_id = space_info->tickets_id; 5007 spin_unlock(&space_info->lock); 5008 5009 flush_state = FLUSH_DELAYED_ITEMS_NR; 5010 do { 5011 flush_space(fs_info, space_info, to_reclaim, flush_state); 5012 spin_lock(&space_info->lock); 5013 if (list_empty(&space_info->tickets)) { 5014 space_info->flush = 0; 5015 spin_unlock(&space_info->lock); 5016 return; 5017 } 5018 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5019 space_info, 5020 false); 5021 if (last_tickets_id == space_info->tickets_id) { 5022 flush_state++; 5023 } else { 5024 last_tickets_id = space_info->tickets_id; 5025 flush_state = FLUSH_DELAYED_ITEMS_NR; 5026 if (commit_cycles) 5027 commit_cycles--; 5028 } 5029 5030 if (flush_state > COMMIT_TRANS) { 5031 commit_cycles++; 5032 if (commit_cycles > 2) { 5033 wake_all_tickets(&space_info->tickets); 5034 space_info->flush = 0; 5035 } else { 5036 flush_state = FLUSH_DELAYED_ITEMS_NR; 5037 } 5038 } 5039 spin_unlock(&space_info->lock); 5040 } while (flush_state <= COMMIT_TRANS); 5041 } 5042 5043 void btrfs_init_async_reclaim_work(struct work_struct *work) 5044 { 5045 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5046 } 5047 5048 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5049 struct btrfs_space_info *space_info, 5050 struct reserve_ticket *ticket) 5051 { 5052 u64 to_reclaim; 5053 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5054 5055 spin_lock(&space_info->lock); 5056 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5057 false); 5058 if (!to_reclaim) { 5059 spin_unlock(&space_info->lock); 5060 return; 5061 } 5062 spin_unlock(&space_info->lock); 5063 5064 do { 5065 flush_space(fs_info, space_info, to_reclaim, flush_state); 5066 flush_state++; 5067 spin_lock(&space_info->lock); 5068 if (ticket->bytes == 0) { 5069 spin_unlock(&space_info->lock); 5070 return; 5071 } 5072 spin_unlock(&space_info->lock); 5073 5074 /* 5075 * Priority flushers can't wait on delalloc without 5076 * deadlocking. 5077 */ 5078 if (flush_state == FLUSH_DELALLOC || 5079 flush_state == FLUSH_DELALLOC_WAIT) 5080 flush_state = ALLOC_CHUNK; 5081 } while (flush_state < COMMIT_TRANS); 5082 } 5083 5084 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5085 struct btrfs_space_info *space_info, 5086 struct reserve_ticket *ticket, u64 orig_bytes) 5087 5088 { 5089 DEFINE_WAIT(wait); 5090 int ret = 0; 5091 5092 spin_lock(&space_info->lock); 5093 while (ticket->bytes > 0 && ticket->error == 0) { 5094 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5095 if (ret) { 5096 ret = -EINTR; 5097 break; 5098 } 5099 spin_unlock(&space_info->lock); 5100 5101 schedule(); 5102 5103 finish_wait(&ticket->wait, &wait); 5104 spin_lock(&space_info->lock); 5105 } 5106 if (!ret) 5107 ret = ticket->error; 5108 if (!list_empty(&ticket->list)) 5109 list_del_init(&ticket->list); 5110 if (ticket->bytes && ticket->bytes < orig_bytes) { 5111 u64 num_bytes = orig_bytes - ticket->bytes; 5112 space_info->bytes_may_use -= num_bytes; 5113 trace_btrfs_space_reservation(fs_info, "space_info", 5114 space_info->flags, num_bytes, 0); 5115 } 5116 spin_unlock(&space_info->lock); 5117 5118 return ret; 5119 } 5120 5121 /** 5122 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5123 * @root - the root we're allocating for 5124 * @space_info - the space info we want to allocate from 5125 * @orig_bytes - the number of bytes we want 5126 * @flush - whether or not we can flush to make our reservation 5127 * 5128 * This will reserve orig_bytes number of bytes from the space info associated 5129 * with the block_rsv. If there is not enough space it will make an attempt to 5130 * flush out space to make room. It will do this by flushing delalloc if 5131 * possible or committing the transaction. If flush is 0 then no attempts to 5132 * regain reservations will be made and this will fail if there is not enough 5133 * space already. 5134 */ 5135 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5136 struct btrfs_space_info *space_info, 5137 u64 orig_bytes, 5138 enum btrfs_reserve_flush_enum flush, 5139 bool system_chunk) 5140 { 5141 struct reserve_ticket ticket; 5142 u64 used; 5143 int ret = 0; 5144 5145 ASSERT(orig_bytes); 5146 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5147 5148 spin_lock(&space_info->lock); 5149 ret = -ENOSPC; 5150 used = btrfs_space_info_used(space_info, true); 5151 5152 /* 5153 * If we have enough space then hooray, make our reservation and carry 5154 * on. If not see if we can overcommit, and if we can, hooray carry on. 5155 * If not things get more complicated. 5156 */ 5157 if (used + orig_bytes <= space_info->total_bytes) { 5158 space_info->bytes_may_use += orig_bytes; 5159 trace_btrfs_space_reservation(fs_info, "space_info", 5160 space_info->flags, orig_bytes, 1); 5161 ret = 0; 5162 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5163 system_chunk)) { 5164 space_info->bytes_may_use += orig_bytes; 5165 trace_btrfs_space_reservation(fs_info, "space_info", 5166 space_info->flags, orig_bytes, 1); 5167 ret = 0; 5168 } 5169 5170 /* 5171 * If we couldn't make a reservation then setup our reservation ticket 5172 * and kick the async worker if it's not already running. 5173 * 5174 * If we are a priority flusher then we just need to add our ticket to 5175 * the list and we will do our own flushing further down. 5176 */ 5177 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5178 ticket.bytes = orig_bytes; 5179 ticket.error = 0; 5180 init_waitqueue_head(&ticket.wait); 5181 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5182 list_add_tail(&ticket.list, &space_info->tickets); 5183 if (!space_info->flush) { 5184 space_info->flush = 1; 5185 trace_btrfs_trigger_flush(fs_info, 5186 space_info->flags, 5187 orig_bytes, flush, 5188 "enospc"); 5189 queue_work(system_unbound_wq, 5190 &fs_info->async_reclaim_work); 5191 } 5192 } else { 5193 list_add_tail(&ticket.list, 5194 &space_info->priority_tickets); 5195 } 5196 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5197 used += orig_bytes; 5198 /* 5199 * We will do the space reservation dance during log replay, 5200 * which means we won't have fs_info->fs_root set, so don't do 5201 * the async reclaim as we will panic. 5202 */ 5203 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5204 need_do_async_reclaim(fs_info, space_info, 5205 used, system_chunk) && 5206 !work_busy(&fs_info->async_reclaim_work)) { 5207 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5208 orig_bytes, flush, "preempt"); 5209 queue_work(system_unbound_wq, 5210 &fs_info->async_reclaim_work); 5211 } 5212 } 5213 spin_unlock(&space_info->lock); 5214 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5215 return ret; 5216 5217 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5218 return wait_reserve_ticket(fs_info, space_info, &ticket, 5219 orig_bytes); 5220 5221 ret = 0; 5222 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5223 spin_lock(&space_info->lock); 5224 if (ticket.bytes) { 5225 if (ticket.bytes < orig_bytes) { 5226 u64 num_bytes = orig_bytes - ticket.bytes; 5227 space_info->bytes_may_use -= num_bytes; 5228 trace_btrfs_space_reservation(fs_info, "space_info", 5229 space_info->flags, 5230 num_bytes, 0); 5231 5232 } 5233 list_del_init(&ticket.list); 5234 ret = -ENOSPC; 5235 } 5236 spin_unlock(&space_info->lock); 5237 ASSERT(list_empty(&ticket.list)); 5238 return ret; 5239 } 5240 5241 /** 5242 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5243 * @root - the root we're allocating for 5244 * @block_rsv - the block_rsv we're allocating for 5245 * @orig_bytes - the number of bytes we want 5246 * @flush - whether or not we can flush to make our reservation 5247 * 5248 * This will reserve orgi_bytes number of bytes from the space info associated 5249 * with the block_rsv. If there is not enough space it will make an attempt to 5250 * flush out space to make room. It will do this by flushing delalloc if 5251 * possible or committing the transaction. If flush is 0 then no attempts to 5252 * regain reservations will be made and this will fail if there is not enough 5253 * space already. 5254 */ 5255 static int reserve_metadata_bytes(struct btrfs_root *root, 5256 struct btrfs_block_rsv *block_rsv, 5257 u64 orig_bytes, 5258 enum btrfs_reserve_flush_enum flush) 5259 { 5260 struct btrfs_fs_info *fs_info = root->fs_info; 5261 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5262 int ret; 5263 bool system_chunk = (root == fs_info->chunk_root); 5264 5265 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5266 orig_bytes, flush, system_chunk); 5267 if (ret == -ENOSPC && 5268 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5269 if (block_rsv != global_rsv && 5270 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5271 ret = 0; 5272 } 5273 if (ret == -ENOSPC) { 5274 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5275 block_rsv->space_info->flags, 5276 orig_bytes, 1); 5277 5278 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5279 dump_space_info(fs_info, block_rsv->space_info, 5280 orig_bytes, 0); 5281 } 5282 return ret; 5283 } 5284 5285 static struct btrfs_block_rsv *get_block_rsv( 5286 const struct btrfs_trans_handle *trans, 5287 const struct btrfs_root *root) 5288 { 5289 struct btrfs_fs_info *fs_info = root->fs_info; 5290 struct btrfs_block_rsv *block_rsv = NULL; 5291 5292 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5293 (root == fs_info->csum_root && trans->adding_csums) || 5294 (root == fs_info->uuid_root)) 5295 block_rsv = trans->block_rsv; 5296 5297 if (!block_rsv) 5298 block_rsv = root->block_rsv; 5299 5300 if (!block_rsv) 5301 block_rsv = &fs_info->empty_block_rsv; 5302 5303 return block_rsv; 5304 } 5305 5306 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5307 u64 num_bytes) 5308 { 5309 int ret = -ENOSPC; 5310 spin_lock(&block_rsv->lock); 5311 if (block_rsv->reserved >= num_bytes) { 5312 block_rsv->reserved -= num_bytes; 5313 if (block_rsv->reserved < block_rsv->size) 5314 block_rsv->full = 0; 5315 ret = 0; 5316 } 5317 spin_unlock(&block_rsv->lock); 5318 return ret; 5319 } 5320 5321 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5322 u64 num_bytes, bool update_size) 5323 { 5324 spin_lock(&block_rsv->lock); 5325 block_rsv->reserved += num_bytes; 5326 if (update_size) 5327 block_rsv->size += num_bytes; 5328 else if (block_rsv->reserved >= block_rsv->size) 5329 block_rsv->full = 1; 5330 spin_unlock(&block_rsv->lock); 5331 } 5332 5333 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5334 struct btrfs_block_rsv *dest, u64 num_bytes, 5335 int min_factor) 5336 { 5337 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5338 u64 min_bytes; 5339 5340 if (global_rsv->space_info != dest->space_info) 5341 return -ENOSPC; 5342 5343 spin_lock(&global_rsv->lock); 5344 min_bytes = div_factor(global_rsv->size, min_factor); 5345 if (global_rsv->reserved < min_bytes + num_bytes) { 5346 spin_unlock(&global_rsv->lock); 5347 return -ENOSPC; 5348 } 5349 global_rsv->reserved -= num_bytes; 5350 if (global_rsv->reserved < global_rsv->size) 5351 global_rsv->full = 0; 5352 spin_unlock(&global_rsv->lock); 5353 5354 block_rsv_add_bytes(dest, num_bytes, true); 5355 return 0; 5356 } 5357 5358 /* 5359 * This is for space we already have accounted in space_info->bytes_may_use, so 5360 * basically when we're returning space from block_rsv's. 5361 */ 5362 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5363 struct btrfs_space_info *space_info, 5364 u64 num_bytes) 5365 { 5366 struct reserve_ticket *ticket; 5367 struct list_head *head; 5368 u64 used; 5369 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5370 bool check_overcommit = false; 5371 5372 spin_lock(&space_info->lock); 5373 head = &space_info->priority_tickets; 5374 5375 /* 5376 * If we are over our limit then we need to check and see if we can 5377 * overcommit, and if we can't then we just need to free up our space 5378 * and not satisfy any requests. 5379 */ 5380 used = btrfs_space_info_used(space_info, true); 5381 if (used - num_bytes >= space_info->total_bytes) 5382 check_overcommit = true; 5383 again: 5384 while (!list_empty(head) && num_bytes) { 5385 ticket = list_first_entry(head, struct reserve_ticket, 5386 list); 5387 /* 5388 * We use 0 bytes because this space is already reserved, so 5389 * adding the ticket space would be a double count. 5390 */ 5391 if (check_overcommit && 5392 !can_overcommit(fs_info, space_info, 0, flush, false)) 5393 break; 5394 if (num_bytes >= ticket->bytes) { 5395 list_del_init(&ticket->list); 5396 num_bytes -= ticket->bytes; 5397 ticket->bytes = 0; 5398 space_info->tickets_id++; 5399 wake_up(&ticket->wait); 5400 } else { 5401 ticket->bytes -= num_bytes; 5402 num_bytes = 0; 5403 } 5404 } 5405 5406 if (num_bytes && head == &space_info->priority_tickets) { 5407 head = &space_info->tickets; 5408 flush = BTRFS_RESERVE_FLUSH_ALL; 5409 goto again; 5410 } 5411 space_info->bytes_may_use -= num_bytes; 5412 trace_btrfs_space_reservation(fs_info, "space_info", 5413 space_info->flags, num_bytes, 0); 5414 spin_unlock(&space_info->lock); 5415 } 5416 5417 /* 5418 * This is for newly allocated space that isn't accounted in 5419 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5420 * we use this helper. 5421 */ 5422 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5423 struct btrfs_space_info *space_info, 5424 u64 num_bytes) 5425 { 5426 struct reserve_ticket *ticket; 5427 struct list_head *head = &space_info->priority_tickets; 5428 5429 again: 5430 while (!list_empty(head) && num_bytes) { 5431 ticket = list_first_entry(head, struct reserve_ticket, 5432 list); 5433 if (num_bytes >= ticket->bytes) { 5434 trace_btrfs_space_reservation(fs_info, "space_info", 5435 space_info->flags, 5436 ticket->bytes, 1); 5437 list_del_init(&ticket->list); 5438 num_bytes -= ticket->bytes; 5439 space_info->bytes_may_use += ticket->bytes; 5440 ticket->bytes = 0; 5441 space_info->tickets_id++; 5442 wake_up(&ticket->wait); 5443 } else { 5444 trace_btrfs_space_reservation(fs_info, "space_info", 5445 space_info->flags, 5446 num_bytes, 1); 5447 space_info->bytes_may_use += num_bytes; 5448 ticket->bytes -= num_bytes; 5449 num_bytes = 0; 5450 } 5451 } 5452 5453 if (num_bytes && head == &space_info->priority_tickets) { 5454 head = &space_info->tickets; 5455 goto again; 5456 } 5457 } 5458 5459 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5460 struct btrfs_block_rsv *block_rsv, 5461 struct btrfs_block_rsv *dest, u64 num_bytes, 5462 u64 *qgroup_to_release_ret) 5463 { 5464 struct btrfs_space_info *space_info = block_rsv->space_info; 5465 u64 qgroup_to_release = 0; 5466 u64 ret; 5467 5468 spin_lock(&block_rsv->lock); 5469 if (num_bytes == (u64)-1) { 5470 num_bytes = block_rsv->size; 5471 qgroup_to_release = block_rsv->qgroup_rsv_size; 5472 } 5473 block_rsv->size -= num_bytes; 5474 if (block_rsv->reserved >= block_rsv->size) { 5475 num_bytes = block_rsv->reserved - block_rsv->size; 5476 block_rsv->reserved = block_rsv->size; 5477 block_rsv->full = 1; 5478 } else { 5479 num_bytes = 0; 5480 } 5481 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 5482 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 5483 block_rsv->qgroup_rsv_size; 5484 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 5485 } else { 5486 qgroup_to_release = 0; 5487 } 5488 spin_unlock(&block_rsv->lock); 5489 5490 ret = num_bytes; 5491 if (num_bytes > 0) { 5492 if (dest) { 5493 spin_lock(&dest->lock); 5494 if (!dest->full) { 5495 u64 bytes_to_add; 5496 5497 bytes_to_add = dest->size - dest->reserved; 5498 bytes_to_add = min(num_bytes, bytes_to_add); 5499 dest->reserved += bytes_to_add; 5500 if (dest->reserved >= dest->size) 5501 dest->full = 1; 5502 num_bytes -= bytes_to_add; 5503 } 5504 spin_unlock(&dest->lock); 5505 } 5506 if (num_bytes) 5507 space_info_add_old_bytes(fs_info, space_info, 5508 num_bytes); 5509 } 5510 if (qgroup_to_release_ret) 5511 *qgroup_to_release_ret = qgroup_to_release; 5512 return ret; 5513 } 5514 5515 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5516 struct btrfs_block_rsv *dst, u64 num_bytes, 5517 bool update_size) 5518 { 5519 int ret; 5520 5521 ret = block_rsv_use_bytes(src, num_bytes); 5522 if (ret) 5523 return ret; 5524 5525 block_rsv_add_bytes(dst, num_bytes, update_size); 5526 return 0; 5527 } 5528 5529 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5530 { 5531 memset(rsv, 0, sizeof(*rsv)); 5532 spin_lock_init(&rsv->lock); 5533 rsv->type = type; 5534 } 5535 5536 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5537 struct btrfs_block_rsv *rsv, 5538 unsigned short type) 5539 { 5540 btrfs_init_block_rsv(rsv, type); 5541 rsv->space_info = __find_space_info(fs_info, 5542 BTRFS_BLOCK_GROUP_METADATA); 5543 } 5544 5545 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5546 unsigned short type) 5547 { 5548 struct btrfs_block_rsv *block_rsv; 5549 5550 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5551 if (!block_rsv) 5552 return NULL; 5553 5554 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5555 return block_rsv; 5556 } 5557 5558 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5559 struct btrfs_block_rsv *rsv) 5560 { 5561 if (!rsv) 5562 return; 5563 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5564 kfree(rsv); 5565 } 5566 5567 int btrfs_block_rsv_add(struct btrfs_root *root, 5568 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5569 enum btrfs_reserve_flush_enum flush) 5570 { 5571 int ret; 5572 5573 if (num_bytes == 0) 5574 return 0; 5575 5576 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5577 if (!ret) 5578 block_rsv_add_bytes(block_rsv, num_bytes, true); 5579 5580 return ret; 5581 } 5582 5583 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5584 { 5585 u64 num_bytes = 0; 5586 int ret = -ENOSPC; 5587 5588 if (!block_rsv) 5589 return 0; 5590 5591 spin_lock(&block_rsv->lock); 5592 num_bytes = div_factor(block_rsv->size, min_factor); 5593 if (block_rsv->reserved >= num_bytes) 5594 ret = 0; 5595 spin_unlock(&block_rsv->lock); 5596 5597 return ret; 5598 } 5599 5600 int btrfs_block_rsv_refill(struct btrfs_root *root, 5601 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5602 enum btrfs_reserve_flush_enum flush) 5603 { 5604 u64 num_bytes = 0; 5605 int ret = -ENOSPC; 5606 5607 if (!block_rsv) 5608 return 0; 5609 5610 spin_lock(&block_rsv->lock); 5611 num_bytes = min_reserved; 5612 if (block_rsv->reserved >= num_bytes) 5613 ret = 0; 5614 else 5615 num_bytes -= block_rsv->reserved; 5616 spin_unlock(&block_rsv->lock); 5617 5618 if (!ret) 5619 return 0; 5620 5621 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5622 if (!ret) { 5623 block_rsv_add_bytes(block_rsv, num_bytes, false); 5624 return 0; 5625 } 5626 5627 return ret; 5628 } 5629 5630 /** 5631 * btrfs_inode_rsv_refill - refill the inode block rsv. 5632 * @inode - the inode we are refilling. 5633 * @flush - the flusing restriction. 5634 * 5635 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5636 * block_rsv->size as the minimum size. We'll either refill the missing amount 5637 * or return if we already have enough space. This will also handle the resreve 5638 * tracepoint for the reserved amount. 5639 */ 5640 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5641 enum btrfs_reserve_flush_enum flush) 5642 { 5643 struct btrfs_root *root = inode->root; 5644 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5645 u64 num_bytes = 0; 5646 u64 qgroup_num_bytes = 0; 5647 int ret = -ENOSPC; 5648 5649 spin_lock(&block_rsv->lock); 5650 if (block_rsv->reserved < block_rsv->size) 5651 num_bytes = block_rsv->size - block_rsv->reserved; 5652 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) 5653 qgroup_num_bytes = block_rsv->qgroup_rsv_size - 5654 block_rsv->qgroup_rsv_reserved; 5655 spin_unlock(&block_rsv->lock); 5656 5657 if (num_bytes == 0) 5658 return 0; 5659 5660 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); 5661 if (ret) 5662 return ret; 5663 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5664 if (!ret) { 5665 block_rsv_add_bytes(block_rsv, num_bytes, false); 5666 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5667 btrfs_ino(inode), num_bytes, 1); 5668 5669 /* Don't forget to increase qgroup_rsv_reserved */ 5670 spin_lock(&block_rsv->lock); 5671 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; 5672 spin_unlock(&block_rsv->lock); 5673 } else 5674 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5675 return ret; 5676 } 5677 5678 /** 5679 * btrfs_inode_rsv_release - release any excessive reservation. 5680 * @inode - the inode we need to release from. 5681 * @qgroup_free - free or convert qgroup meta. 5682 * Unlike normal operation, qgroup meta reservation needs to know if we are 5683 * freeing qgroup reservation or just converting it into per-trans. Normally 5684 * @qgroup_free is true for error handling, and false for normal release. 5685 * 5686 * This is the same as btrfs_block_rsv_release, except that it handles the 5687 * tracepoint for the reservation. 5688 */ 5689 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5690 { 5691 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5692 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5693 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5694 u64 released = 0; 5695 u64 qgroup_to_release = 0; 5696 5697 /* 5698 * Since we statically set the block_rsv->size we just want to say we 5699 * are releasing 0 bytes, and then we'll just get the reservation over 5700 * the size free'd. 5701 */ 5702 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, 5703 &qgroup_to_release); 5704 if (released > 0) 5705 trace_btrfs_space_reservation(fs_info, "delalloc", 5706 btrfs_ino(inode), released, 0); 5707 if (qgroup_free) 5708 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 5709 else 5710 btrfs_qgroup_convert_reserved_meta(inode->root, 5711 qgroup_to_release); 5712 } 5713 5714 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5715 struct btrfs_block_rsv *block_rsv, 5716 u64 num_bytes) 5717 { 5718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5719 5720 if (global_rsv == block_rsv || 5721 block_rsv->space_info != global_rsv->space_info) 5722 global_rsv = NULL; 5723 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); 5724 } 5725 5726 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5727 { 5728 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5729 struct btrfs_space_info *sinfo = block_rsv->space_info; 5730 u64 num_bytes; 5731 5732 /* 5733 * The global block rsv is based on the size of the extent tree, the 5734 * checksum tree and the root tree. If the fs is empty we want to set 5735 * it to a minimal amount for safety. 5736 */ 5737 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5738 btrfs_root_used(&fs_info->csum_root->root_item) + 5739 btrfs_root_used(&fs_info->tree_root->root_item); 5740 num_bytes = max_t(u64, num_bytes, SZ_16M); 5741 5742 spin_lock(&sinfo->lock); 5743 spin_lock(&block_rsv->lock); 5744 5745 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5746 5747 if (block_rsv->reserved < block_rsv->size) { 5748 num_bytes = btrfs_space_info_used(sinfo, true); 5749 if (sinfo->total_bytes > num_bytes) { 5750 num_bytes = sinfo->total_bytes - num_bytes; 5751 num_bytes = min(num_bytes, 5752 block_rsv->size - block_rsv->reserved); 5753 block_rsv->reserved += num_bytes; 5754 sinfo->bytes_may_use += num_bytes; 5755 trace_btrfs_space_reservation(fs_info, "space_info", 5756 sinfo->flags, num_bytes, 5757 1); 5758 } 5759 } else if (block_rsv->reserved > block_rsv->size) { 5760 num_bytes = block_rsv->reserved - block_rsv->size; 5761 sinfo->bytes_may_use -= num_bytes; 5762 trace_btrfs_space_reservation(fs_info, "space_info", 5763 sinfo->flags, num_bytes, 0); 5764 block_rsv->reserved = block_rsv->size; 5765 } 5766 5767 if (block_rsv->reserved == block_rsv->size) 5768 block_rsv->full = 1; 5769 else 5770 block_rsv->full = 0; 5771 5772 spin_unlock(&block_rsv->lock); 5773 spin_unlock(&sinfo->lock); 5774 } 5775 5776 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5777 { 5778 struct btrfs_space_info *space_info; 5779 5780 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5781 fs_info->chunk_block_rsv.space_info = space_info; 5782 5783 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5784 fs_info->global_block_rsv.space_info = space_info; 5785 fs_info->trans_block_rsv.space_info = space_info; 5786 fs_info->empty_block_rsv.space_info = space_info; 5787 fs_info->delayed_block_rsv.space_info = space_info; 5788 5789 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5790 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5791 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5792 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5793 if (fs_info->quota_root) 5794 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5795 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5796 5797 update_global_block_rsv(fs_info); 5798 } 5799 5800 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5801 { 5802 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5803 (u64)-1, NULL); 5804 WARN_ON(fs_info->trans_block_rsv.size > 0); 5805 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5806 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5807 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5808 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5809 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5810 } 5811 5812 5813 /* 5814 * To be called after all the new block groups attached to the transaction 5815 * handle have been created (btrfs_create_pending_block_groups()). 5816 */ 5817 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5818 { 5819 struct btrfs_fs_info *fs_info = trans->fs_info; 5820 5821 if (!trans->chunk_bytes_reserved) 5822 return; 5823 5824 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5825 5826 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5827 trans->chunk_bytes_reserved, NULL); 5828 trans->chunk_bytes_reserved = 0; 5829 } 5830 5831 /* 5832 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5833 * root: the root of the parent directory 5834 * rsv: block reservation 5835 * items: the number of items that we need do reservation 5836 * use_global_rsv: allow fallback to the global block reservation 5837 * 5838 * This function is used to reserve the space for snapshot/subvolume 5839 * creation and deletion. Those operations are different with the 5840 * common file/directory operations, they change two fs/file trees 5841 * and root tree, the number of items that the qgroup reserves is 5842 * different with the free space reservation. So we can not use 5843 * the space reservation mechanism in start_transaction(). 5844 */ 5845 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5846 struct btrfs_block_rsv *rsv, int items, 5847 bool use_global_rsv) 5848 { 5849 u64 qgroup_num_bytes = 0; 5850 u64 num_bytes; 5851 int ret; 5852 struct btrfs_fs_info *fs_info = root->fs_info; 5853 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5854 5855 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5856 /* One for parent inode, two for dir entries */ 5857 qgroup_num_bytes = 3 * fs_info->nodesize; 5858 ret = btrfs_qgroup_reserve_meta_prealloc(root, 5859 qgroup_num_bytes, true); 5860 if (ret) 5861 return ret; 5862 } 5863 5864 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5865 rsv->space_info = __find_space_info(fs_info, 5866 BTRFS_BLOCK_GROUP_METADATA); 5867 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5868 BTRFS_RESERVE_FLUSH_ALL); 5869 5870 if (ret == -ENOSPC && use_global_rsv) 5871 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true); 5872 5873 if (ret && qgroup_num_bytes) 5874 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5875 5876 return ret; 5877 } 5878 5879 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5880 struct btrfs_block_rsv *rsv) 5881 { 5882 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5883 } 5884 5885 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 5886 struct btrfs_inode *inode) 5887 { 5888 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5889 u64 reserve_size = 0; 5890 u64 qgroup_rsv_size = 0; 5891 u64 csum_leaves; 5892 unsigned outstanding_extents; 5893 5894 lockdep_assert_held(&inode->lock); 5895 outstanding_extents = inode->outstanding_extents; 5896 if (outstanding_extents) 5897 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 5898 outstanding_extents + 1); 5899 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 5900 inode->csum_bytes); 5901 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 5902 csum_leaves); 5903 /* 5904 * For qgroup rsv, the calculation is very simple: 5905 * account one nodesize for each outstanding extent 5906 * 5907 * This is overestimating in most cases. 5908 */ 5909 qgroup_rsv_size = outstanding_extents * fs_info->nodesize; 5910 5911 spin_lock(&block_rsv->lock); 5912 block_rsv->size = reserve_size; 5913 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 5914 spin_unlock(&block_rsv->lock); 5915 } 5916 5917 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 5918 { 5919 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5920 unsigned nr_extents; 5921 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5922 int ret = 0; 5923 bool delalloc_lock = true; 5924 5925 /* If we are a free space inode we need to not flush since we will be in 5926 * the middle of a transaction commit. We also don't need the delalloc 5927 * mutex since we won't race with anybody. We need this mostly to make 5928 * lockdep shut its filthy mouth. 5929 * 5930 * If we have a transaction open (can happen if we call truncate_block 5931 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5932 */ 5933 if (btrfs_is_free_space_inode(inode)) { 5934 flush = BTRFS_RESERVE_NO_FLUSH; 5935 delalloc_lock = false; 5936 } else { 5937 if (current->journal_info) 5938 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5939 5940 if (btrfs_transaction_in_commit(fs_info)) 5941 schedule_timeout(1); 5942 } 5943 5944 if (delalloc_lock) 5945 mutex_lock(&inode->delalloc_mutex); 5946 5947 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 5948 5949 /* Add our new extents and calculate the new rsv size. */ 5950 spin_lock(&inode->lock); 5951 nr_extents = count_max_extents(num_bytes); 5952 btrfs_mod_outstanding_extents(inode, nr_extents); 5953 inode->csum_bytes += num_bytes; 5954 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 5955 spin_unlock(&inode->lock); 5956 5957 ret = btrfs_inode_rsv_refill(inode, flush); 5958 if (unlikely(ret)) 5959 goto out_fail; 5960 5961 if (delalloc_lock) 5962 mutex_unlock(&inode->delalloc_mutex); 5963 return 0; 5964 5965 out_fail: 5966 spin_lock(&inode->lock); 5967 nr_extents = count_max_extents(num_bytes); 5968 btrfs_mod_outstanding_extents(inode, -nr_extents); 5969 inode->csum_bytes -= num_bytes; 5970 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 5971 spin_unlock(&inode->lock); 5972 5973 btrfs_inode_rsv_release(inode, true); 5974 if (delalloc_lock) 5975 mutex_unlock(&inode->delalloc_mutex); 5976 return ret; 5977 } 5978 5979 /** 5980 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5981 * @inode: the inode to release the reservation for. 5982 * @num_bytes: the number of bytes we are releasing. 5983 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 5984 * 5985 * This will release the metadata reservation for an inode. This can be called 5986 * once we complete IO for a given set of bytes to release their metadata 5987 * reservations, or on error for the same reason. 5988 */ 5989 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 5990 bool qgroup_free) 5991 { 5992 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5993 5994 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 5995 spin_lock(&inode->lock); 5996 inode->csum_bytes -= num_bytes; 5997 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 5998 spin_unlock(&inode->lock); 5999 6000 if (btrfs_is_testing(fs_info)) 6001 return; 6002 6003 btrfs_inode_rsv_release(inode, qgroup_free); 6004 } 6005 6006 /** 6007 * btrfs_delalloc_release_extents - release our outstanding_extents 6008 * @inode: the inode to balance the reservation for. 6009 * @num_bytes: the number of bytes we originally reserved with 6010 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6011 * 6012 * When we reserve space we increase outstanding_extents for the extents we may 6013 * add. Once we've set the range as delalloc or created our ordered extents we 6014 * have outstanding_extents to track the real usage, so we use this to free our 6015 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6016 * with btrfs_delalloc_reserve_metadata. 6017 */ 6018 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6019 bool qgroup_free) 6020 { 6021 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6022 unsigned num_extents; 6023 6024 spin_lock(&inode->lock); 6025 num_extents = count_max_extents(num_bytes); 6026 btrfs_mod_outstanding_extents(inode, -num_extents); 6027 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6028 spin_unlock(&inode->lock); 6029 6030 if (btrfs_is_testing(fs_info)) 6031 return; 6032 6033 btrfs_inode_rsv_release(inode, qgroup_free); 6034 } 6035 6036 /** 6037 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6038 * delalloc 6039 * @inode: inode we're writing to 6040 * @start: start range we are writing to 6041 * @len: how long the range we are writing to 6042 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6043 * current reservation. 6044 * 6045 * This will do the following things 6046 * 6047 * o reserve space in data space info for num bytes 6048 * and reserve precious corresponding qgroup space 6049 * (Done in check_data_free_space) 6050 * 6051 * o reserve space for metadata space, based on the number of outstanding 6052 * extents and how much csums will be needed 6053 * also reserve metadata space in a per root over-reserve method. 6054 * o add to the inodes->delalloc_bytes 6055 * o add it to the fs_info's delalloc inodes list. 6056 * (Above 3 all done in delalloc_reserve_metadata) 6057 * 6058 * Return 0 for success 6059 * Return <0 for error(-ENOSPC or -EQUOT) 6060 */ 6061 int btrfs_delalloc_reserve_space(struct inode *inode, 6062 struct extent_changeset **reserved, u64 start, u64 len) 6063 { 6064 int ret; 6065 6066 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6067 if (ret < 0) 6068 return ret; 6069 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6070 if (ret < 0) 6071 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6072 return ret; 6073 } 6074 6075 /** 6076 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6077 * @inode: inode we're releasing space for 6078 * @start: start position of the space already reserved 6079 * @len: the len of the space already reserved 6080 * @release_bytes: the len of the space we consumed or didn't use 6081 * 6082 * This function will release the metadata space that was not used and will 6083 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6084 * list if there are no delalloc bytes left. 6085 * Also it will handle the qgroup reserved space. 6086 */ 6087 void btrfs_delalloc_release_space(struct inode *inode, 6088 struct extent_changeset *reserved, 6089 u64 start, u64 len, bool qgroup_free) 6090 { 6091 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6092 btrfs_free_reserved_data_space(inode, reserved, start, len); 6093 } 6094 6095 static int update_block_group(struct btrfs_trans_handle *trans, 6096 struct btrfs_fs_info *info, u64 bytenr, 6097 u64 num_bytes, int alloc) 6098 { 6099 struct btrfs_block_group_cache *cache = NULL; 6100 u64 total = num_bytes; 6101 u64 old_val; 6102 u64 byte_in_group; 6103 int factor; 6104 6105 /* block accounting for super block */ 6106 spin_lock(&info->delalloc_root_lock); 6107 old_val = btrfs_super_bytes_used(info->super_copy); 6108 if (alloc) 6109 old_val += num_bytes; 6110 else 6111 old_val -= num_bytes; 6112 btrfs_set_super_bytes_used(info->super_copy, old_val); 6113 spin_unlock(&info->delalloc_root_lock); 6114 6115 while (total) { 6116 cache = btrfs_lookup_block_group(info, bytenr); 6117 if (!cache) 6118 return -ENOENT; 6119 factor = btrfs_bg_type_to_factor(cache->flags); 6120 6121 /* 6122 * If this block group has free space cache written out, we 6123 * need to make sure to load it if we are removing space. This 6124 * is because we need the unpinning stage to actually add the 6125 * space back to the block group, otherwise we will leak space. 6126 */ 6127 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6128 cache_block_group(cache, 1); 6129 6130 byte_in_group = bytenr - cache->key.objectid; 6131 WARN_ON(byte_in_group > cache->key.offset); 6132 6133 spin_lock(&cache->space_info->lock); 6134 spin_lock(&cache->lock); 6135 6136 if (btrfs_test_opt(info, SPACE_CACHE) && 6137 cache->disk_cache_state < BTRFS_DC_CLEAR) 6138 cache->disk_cache_state = BTRFS_DC_CLEAR; 6139 6140 old_val = btrfs_block_group_used(&cache->item); 6141 num_bytes = min(total, cache->key.offset - byte_in_group); 6142 if (alloc) { 6143 old_val += num_bytes; 6144 btrfs_set_block_group_used(&cache->item, old_val); 6145 cache->reserved -= num_bytes; 6146 cache->space_info->bytes_reserved -= num_bytes; 6147 cache->space_info->bytes_used += num_bytes; 6148 cache->space_info->disk_used += num_bytes * factor; 6149 spin_unlock(&cache->lock); 6150 spin_unlock(&cache->space_info->lock); 6151 } else { 6152 old_val -= num_bytes; 6153 btrfs_set_block_group_used(&cache->item, old_val); 6154 cache->pinned += num_bytes; 6155 cache->space_info->bytes_pinned += num_bytes; 6156 cache->space_info->bytes_used -= num_bytes; 6157 cache->space_info->disk_used -= num_bytes * factor; 6158 spin_unlock(&cache->lock); 6159 spin_unlock(&cache->space_info->lock); 6160 6161 trace_btrfs_space_reservation(info, "pinned", 6162 cache->space_info->flags, 6163 num_bytes, 1); 6164 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 6165 num_bytes, 6166 BTRFS_TOTAL_BYTES_PINNED_BATCH); 6167 set_extent_dirty(info->pinned_extents, 6168 bytenr, bytenr + num_bytes - 1, 6169 GFP_NOFS | __GFP_NOFAIL); 6170 } 6171 6172 spin_lock(&trans->transaction->dirty_bgs_lock); 6173 if (list_empty(&cache->dirty_list)) { 6174 list_add_tail(&cache->dirty_list, 6175 &trans->transaction->dirty_bgs); 6176 trans->transaction->num_dirty_bgs++; 6177 btrfs_get_block_group(cache); 6178 } 6179 spin_unlock(&trans->transaction->dirty_bgs_lock); 6180 6181 /* 6182 * No longer have used bytes in this block group, queue it for 6183 * deletion. We do this after adding the block group to the 6184 * dirty list to avoid races between cleaner kthread and space 6185 * cache writeout. 6186 */ 6187 if (!alloc && old_val == 0) 6188 btrfs_mark_bg_unused(cache); 6189 6190 btrfs_put_block_group(cache); 6191 total -= num_bytes; 6192 bytenr += num_bytes; 6193 } 6194 return 0; 6195 } 6196 6197 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6198 { 6199 struct btrfs_block_group_cache *cache; 6200 u64 bytenr; 6201 6202 spin_lock(&fs_info->block_group_cache_lock); 6203 bytenr = fs_info->first_logical_byte; 6204 spin_unlock(&fs_info->block_group_cache_lock); 6205 6206 if (bytenr < (u64)-1) 6207 return bytenr; 6208 6209 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6210 if (!cache) 6211 return 0; 6212 6213 bytenr = cache->key.objectid; 6214 btrfs_put_block_group(cache); 6215 6216 return bytenr; 6217 } 6218 6219 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6220 struct btrfs_block_group_cache *cache, 6221 u64 bytenr, u64 num_bytes, int reserved) 6222 { 6223 spin_lock(&cache->space_info->lock); 6224 spin_lock(&cache->lock); 6225 cache->pinned += num_bytes; 6226 cache->space_info->bytes_pinned += num_bytes; 6227 if (reserved) { 6228 cache->reserved -= num_bytes; 6229 cache->space_info->bytes_reserved -= num_bytes; 6230 } 6231 spin_unlock(&cache->lock); 6232 spin_unlock(&cache->space_info->lock); 6233 6234 trace_btrfs_space_reservation(fs_info, "pinned", 6235 cache->space_info->flags, num_bytes, 1); 6236 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 6237 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 6238 set_extent_dirty(fs_info->pinned_extents, bytenr, 6239 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6240 return 0; 6241 } 6242 6243 /* 6244 * this function must be called within transaction 6245 */ 6246 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6247 u64 bytenr, u64 num_bytes, int reserved) 6248 { 6249 struct btrfs_block_group_cache *cache; 6250 6251 cache = btrfs_lookup_block_group(fs_info, bytenr); 6252 BUG_ON(!cache); /* Logic error */ 6253 6254 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6255 6256 btrfs_put_block_group(cache); 6257 return 0; 6258 } 6259 6260 /* 6261 * this function must be called within transaction 6262 */ 6263 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6264 u64 bytenr, u64 num_bytes) 6265 { 6266 struct btrfs_block_group_cache *cache; 6267 int ret; 6268 6269 cache = btrfs_lookup_block_group(fs_info, bytenr); 6270 if (!cache) 6271 return -EINVAL; 6272 6273 /* 6274 * pull in the free space cache (if any) so that our pin 6275 * removes the free space from the cache. We have load_only set 6276 * to one because the slow code to read in the free extents does check 6277 * the pinned extents. 6278 */ 6279 cache_block_group(cache, 1); 6280 6281 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6282 6283 /* remove us from the free space cache (if we're there at all) */ 6284 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6285 btrfs_put_block_group(cache); 6286 return ret; 6287 } 6288 6289 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6290 u64 start, u64 num_bytes) 6291 { 6292 int ret; 6293 struct btrfs_block_group_cache *block_group; 6294 struct btrfs_caching_control *caching_ctl; 6295 6296 block_group = btrfs_lookup_block_group(fs_info, start); 6297 if (!block_group) 6298 return -EINVAL; 6299 6300 cache_block_group(block_group, 0); 6301 caching_ctl = get_caching_control(block_group); 6302 6303 if (!caching_ctl) { 6304 /* Logic error */ 6305 BUG_ON(!block_group_cache_done(block_group)); 6306 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6307 } else { 6308 mutex_lock(&caching_ctl->mutex); 6309 6310 if (start >= caching_ctl->progress) { 6311 ret = add_excluded_extent(fs_info, start, num_bytes); 6312 } else if (start + num_bytes <= caching_ctl->progress) { 6313 ret = btrfs_remove_free_space(block_group, 6314 start, num_bytes); 6315 } else { 6316 num_bytes = caching_ctl->progress - start; 6317 ret = btrfs_remove_free_space(block_group, 6318 start, num_bytes); 6319 if (ret) 6320 goto out_lock; 6321 6322 num_bytes = (start + num_bytes) - 6323 caching_ctl->progress; 6324 start = caching_ctl->progress; 6325 ret = add_excluded_extent(fs_info, start, num_bytes); 6326 } 6327 out_lock: 6328 mutex_unlock(&caching_ctl->mutex); 6329 put_caching_control(caching_ctl); 6330 } 6331 btrfs_put_block_group(block_group); 6332 return ret; 6333 } 6334 6335 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6336 struct extent_buffer *eb) 6337 { 6338 struct btrfs_file_extent_item *item; 6339 struct btrfs_key key; 6340 int found_type; 6341 int i; 6342 int ret = 0; 6343 6344 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6345 return 0; 6346 6347 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6348 btrfs_item_key_to_cpu(eb, &key, i); 6349 if (key.type != BTRFS_EXTENT_DATA_KEY) 6350 continue; 6351 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6352 found_type = btrfs_file_extent_type(eb, item); 6353 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6354 continue; 6355 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6356 continue; 6357 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6358 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6359 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 6360 if (ret) 6361 break; 6362 } 6363 6364 return ret; 6365 } 6366 6367 static void 6368 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6369 { 6370 atomic_inc(&bg->reservations); 6371 } 6372 6373 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6374 const u64 start) 6375 { 6376 struct btrfs_block_group_cache *bg; 6377 6378 bg = btrfs_lookup_block_group(fs_info, start); 6379 ASSERT(bg); 6380 if (atomic_dec_and_test(&bg->reservations)) 6381 wake_up_var(&bg->reservations); 6382 btrfs_put_block_group(bg); 6383 } 6384 6385 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6386 { 6387 struct btrfs_space_info *space_info = bg->space_info; 6388 6389 ASSERT(bg->ro); 6390 6391 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6392 return; 6393 6394 /* 6395 * Our block group is read only but before we set it to read only, 6396 * some task might have had allocated an extent from it already, but it 6397 * has not yet created a respective ordered extent (and added it to a 6398 * root's list of ordered extents). 6399 * Therefore wait for any task currently allocating extents, since the 6400 * block group's reservations counter is incremented while a read lock 6401 * on the groups' semaphore is held and decremented after releasing 6402 * the read access on that semaphore and creating the ordered extent. 6403 */ 6404 down_write(&space_info->groups_sem); 6405 up_write(&space_info->groups_sem); 6406 6407 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6408 } 6409 6410 /** 6411 * btrfs_add_reserved_bytes - update the block_group and space info counters 6412 * @cache: The cache we are manipulating 6413 * @ram_bytes: The number of bytes of file content, and will be same to 6414 * @num_bytes except for the compress path. 6415 * @num_bytes: The number of bytes in question 6416 * @delalloc: The blocks are allocated for the delalloc write 6417 * 6418 * This is called by the allocator when it reserves space. If this is a 6419 * reservation and the block group has become read only we cannot make the 6420 * reservation and return -EAGAIN, otherwise this function always succeeds. 6421 */ 6422 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6423 u64 ram_bytes, u64 num_bytes, int delalloc) 6424 { 6425 struct btrfs_space_info *space_info = cache->space_info; 6426 int ret = 0; 6427 6428 spin_lock(&space_info->lock); 6429 spin_lock(&cache->lock); 6430 if (cache->ro) { 6431 ret = -EAGAIN; 6432 } else { 6433 cache->reserved += num_bytes; 6434 space_info->bytes_reserved += num_bytes; 6435 space_info->bytes_may_use -= ram_bytes; 6436 if (delalloc) 6437 cache->delalloc_bytes += num_bytes; 6438 } 6439 spin_unlock(&cache->lock); 6440 spin_unlock(&space_info->lock); 6441 return ret; 6442 } 6443 6444 /** 6445 * btrfs_free_reserved_bytes - update the block_group and space info counters 6446 * @cache: The cache we are manipulating 6447 * @num_bytes: The number of bytes in question 6448 * @delalloc: The blocks are allocated for the delalloc write 6449 * 6450 * This is called by somebody who is freeing space that was never actually used 6451 * on disk. For example if you reserve some space for a new leaf in transaction 6452 * A and before transaction A commits you free that leaf, you call this with 6453 * reserve set to 0 in order to clear the reservation. 6454 */ 6455 6456 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6457 u64 num_bytes, int delalloc) 6458 { 6459 struct btrfs_space_info *space_info = cache->space_info; 6460 6461 spin_lock(&space_info->lock); 6462 spin_lock(&cache->lock); 6463 if (cache->ro) 6464 space_info->bytes_readonly += num_bytes; 6465 cache->reserved -= num_bytes; 6466 space_info->bytes_reserved -= num_bytes; 6467 6468 if (delalloc) 6469 cache->delalloc_bytes -= num_bytes; 6470 spin_unlock(&cache->lock); 6471 spin_unlock(&space_info->lock); 6472 } 6473 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6474 { 6475 struct btrfs_caching_control *next; 6476 struct btrfs_caching_control *caching_ctl; 6477 struct btrfs_block_group_cache *cache; 6478 6479 down_write(&fs_info->commit_root_sem); 6480 6481 list_for_each_entry_safe(caching_ctl, next, 6482 &fs_info->caching_block_groups, list) { 6483 cache = caching_ctl->block_group; 6484 if (block_group_cache_done(cache)) { 6485 cache->last_byte_to_unpin = (u64)-1; 6486 list_del_init(&caching_ctl->list); 6487 put_caching_control(caching_ctl); 6488 } else { 6489 cache->last_byte_to_unpin = caching_ctl->progress; 6490 } 6491 } 6492 6493 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6494 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6495 else 6496 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6497 6498 up_write(&fs_info->commit_root_sem); 6499 6500 update_global_block_rsv(fs_info); 6501 } 6502 6503 /* 6504 * Returns the free cluster for the given space info and sets empty_cluster to 6505 * what it should be based on the mount options. 6506 */ 6507 static struct btrfs_free_cluster * 6508 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6509 struct btrfs_space_info *space_info, u64 *empty_cluster) 6510 { 6511 struct btrfs_free_cluster *ret = NULL; 6512 6513 *empty_cluster = 0; 6514 if (btrfs_mixed_space_info(space_info)) 6515 return ret; 6516 6517 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6518 ret = &fs_info->meta_alloc_cluster; 6519 if (btrfs_test_opt(fs_info, SSD)) 6520 *empty_cluster = SZ_2M; 6521 else 6522 *empty_cluster = SZ_64K; 6523 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6524 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6525 *empty_cluster = SZ_2M; 6526 ret = &fs_info->data_alloc_cluster; 6527 } 6528 6529 return ret; 6530 } 6531 6532 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6533 u64 start, u64 end, 6534 const bool return_free_space) 6535 { 6536 struct btrfs_block_group_cache *cache = NULL; 6537 struct btrfs_space_info *space_info; 6538 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6539 struct btrfs_free_cluster *cluster = NULL; 6540 u64 len; 6541 u64 total_unpinned = 0; 6542 u64 empty_cluster = 0; 6543 bool readonly; 6544 6545 while (start <= end) { 6546 readonly = false; 6547 if (!cache || 6548 start >= cache->key.objectid + cache->key.offset) { 6549 if (cache) 6550 btrfs_put_block_group(cache); 6551 total_unpinned = 0; 6552 cache = btrfs_lookup_block_group(fs_info, start); 6553 BUG_ON(!cache); /* Logic error */ 6554 6555 cluster = fetch_cluster_info(fs_info, 6556 cache->space_info, 6557 &empty_cluster); 6558 empty_cluster <<= 1; 6559 } 6560 6561 len = cache->key.objectid + cache->key.offset - start; 6562 len = min(len, end + 1 - start); 6563 6564 if (start < cache->last_byte_to_unpin) { 6565 len = min(len, cache->last_byte_to_unpin - start); 6566 if (return_free_space) 6567 btrfs_add_free_space(cache, start, len); 6568 } 6569 6570 start += len; 6571 total_unpinned += len; 6572 space_info = cache->space_info; 6573 6574 /* 6575 * If this space cluster has been marked as fragmented and we've 6576 * unpinned enough in this block group to potentially allow a 6577 * cluster to be created inside of it go ahead and clear the 6578 * fragmented check. 6579 */ 6580 if (cluster && cluster->fragmented && 6581 total_unpinned > empty_cluster) { 6582 spin_lock(&cluster->lock); 6583 cluster->fragmented = 0; 6584 spin_unlock(&cluster->lock); 6585 } 6586 6587 spin_lock(&space_info->lock); 6588 spin_lock(&cache->lock); 6589 cache->pinned -= len; 6590 space_info->bytes_pinned -= len; 6591 6592 trace_btrfs_space_reservation(fs_info, "pinned", 6593 space_info->flags, len, 0); 6594 space_info->max_extent_size = 0; 6595 percpu_counter_add_batch(&space_info->total_bytes_pinned, 6596 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 6597 if (cache->ro) { 6598 space_info->bytes_readonly += len; 6599 readonly = true; 6600 } 6601 spin_unlock(&cache->lock); 6602 if (!readonly && return_free_space && 6603 global_rsv->space_info == space_info) { 6604 u64 to_add = len; 6605 6606 spin_lock(&global_rsv->lock); 6607 if (!global_rsv->full) { 6608 to_add = min(len, global_rsv->size - 6609 global_rsv->reserved); 6610 global_rsv->reserved += to_add; 6611 space_info->bytes_may_use += to_add; 6612 if (global_rsv->reserved >= global_rsv->size) 6613 global_rsv->full = 1; 6614 trace_btrfs_space_reservation(fs_info, 6615 "space_info", 6616 space_info->flags, 6617 to_add, 1); 6618 len -= to_add; 6619 } 6620 spin_unlock(&global_rsv->lock); 6621 /* Add to any tickets we may have */ 6622 if (len) 6623 space_info_add_new_bytes(fs_info, space_info, 6624 len); 6625 } 6626 spin_unlock(&space_info->lock); 6627 } 6628 6629 if (cache) 6630 btrfs_put_block_group(cache); 6631 return 0; 6632 } 6633 6634 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6635 { 6636 struct btrfs_fs_info *fs_info = trans->fs_info; 6637 struct btrfs_block_group_cache *block_group, *tmp; 6638 struct list_head *deleted_bgs; 6639 struct extent_io_tree *unpin; 6640 u64 start; 6641 u64 end; 6642 int ret; 6643 6644 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6645 unpin = &fs_info->freed_extents[1]; 6646 else 6647 unpin = &fs_info->freed_extents[0]; 6648 6649 while (!trans->aborted) { 6650 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6651 ret = find_first_extent_bit(unpin, 0, &start, &end, 6652 EXTENT_DIRTY, NULL); 6653 if (ret) { 6654 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6655 break; 6656 } 6657 6658 if (btrfs_test_opt(fs_info, DISCARD)) 6659 ret = btrfs_discard_extent(fs_info, start, 6660 end + 1 - start, NULL); 6661 6662 clear_extent_dirty(unpin, start, end); 6663 unpin_extent_range(fs_info, start, end, true); 6664 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6665 cond_resched(); 6666 } 6667 6668 /* 6669 * Transaction is finished. We don't need the lock anymore. We 6670 * do need to clean up the block groups in case of a transaction 6671 * abort. 6672 */ 6673 deleted_bgs = &trans->transaction->deleted_bgs; 6674 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6675 u64 trimmed = 0; 6676 6677 ret = -EROFS; 6678 if (!trans->aborted) 6679 ret = btrfs_discard_extent(fs_info, 6680 block_group->key.objectid, 6681 block_group->key.offset, 6682 &trimmed); 6683 6684 list_del_init(&block_group->bg_list); 6685 btrfs_put_block_group_trimming(block_group); 6686 btrfs_put_block_group(block_group); 6687 6688 if (ret) { 6689 const char *errstr = btrfs_decode_error(ret); 6690 btrfs_warn(fs_info, 6691 "discard failed while removing blockgroup: errno=%d %s", 6692 ret, errstr); 6693 } 6694 } 6695 6696 return 0; 6697 } 6698 6699 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6700 struct btrfs_delayed_ref_node *node, u64 parent, 6701 u64 root_objectid, u64 owner_objectid, 6702 u64 owner_offset, int refs_to_drop, 6703 struct btrfs_delayed_extent_op *extent_op) 6704 { 6705 struct btrfs_fs_info *info = trans->fs_info; 6706 struct btrfs_key key; 6707 struct btrfs_path *path; 6708 struct btrfs_root *extent_root = info->extent_root; 6709 struct extent_buffer *leaf; 6710 struct btrfs_extent_item *ei; 6711 struct btrfs_extent_inline_ref *iref; 6712 int ret; 6713 int is_data; 6714 int extent_slot = 0; 6715 int found_extent = 0; 6716 int num_to_del = 1; 6717 u32 item_size; 6718 u64 refs; 6719 u64 bytenr = node->bytenr; 6720 u64 num_bytes = node->num_bytes; 6721 int last_ref = 0; 6722 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6723 6724 path = btrfs_alloc_path(); 6725 if (!path) 6726 return -ENOMEM; 6727 6728 path->reada = READA_FORWARD; 6729 path->leave_spinning = 1; 6730 6731 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6732 BUG_ON(!is_data && refs_to_drop != 1); 6733 6734 if (is_data) 6735 skinny_metadata = false; 6736 6737 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 6738 parent, root_objectid, owner_objectid, 6739 owner_offset); 6740 if (ret == 0) { 6741 extent_slot = path->slots[0]; 6742 while (extent_slot >= 0) { 6743 btrfs_item_key_to_cpu(path->nodes[0], &key, 6744 extent_slot); 6745 if (key.objectid != bytenr) 6746 break; 6747 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6748 key.offset == num_bytes) { 6749 found_extent = 1; 6750 break; 6751 } 6752 if (key.type == BTRFS_METADATA_ITEM_KEY && 6753 key.offset == owner_objectid) { 6754 found_extent = 1; 6755 break; 6756 } 6757 if (path->slots[0] - extent_slot > 5) 6758 break; 6759 extent_slot--; 6760 } 6761 6762 if (!found_extent) { 6763 BUG_ON(iref); 6764 ret = remove_extent_backref(trans, path, NULL, 6765 refs_to_drop, 6766 is_data, &last_ref); 6767 if (ret) { 6768 btrfs_abort_transaction(trans, ret); 6769 goto out; 6770 } 6771 btrfs_release_path(path); 6772 path->leave_spinning = 1; 6773 6774 key.objectid = bytenr; 6775 key.type = BTRFS_EXTENT_ITEM_KEY; 6776 key.offset = num_bytes; 6777 6778 if (!is_data && skinny_metadata) { 6779 key.type = BTRFS_METADATA_ITEM_KEY; 6780 key.offset = owner_objectid; 6781 } 6782 6783 ret = btrfs_search_slot(trans, extent_root, 6784 &key, path, -1, 1); 6785 if (ret > 0 && skinny_metadata && path->slots[0]) { 6786 /* 6787 * Couldn't find our skinny metadata item, 6788 * see if we have ye olde extent item. 6789 */ 6790 path->slots[0]--; 6791 btrfs_item_key_to_cpu(path->nodes[0], &key, 6792 path->slots[0]); 6793 if (key.objectid == bytenr && 6794 key.type == BTRFS_EXTENT_ITEM_KEY && 6795 key.offset == num_bytes) 6796 ret = 0; 6797 } 6798 6799 if (ret > 0 && skinny_metadata) { 6800 skinny_metadata = false; 6801 key.objectid = bytenr; 6802 key.type = BTRFS_EXTENT_ITEM_KEY; 6803 key.offset = num_bytes; 6804 btrfs_release_path(path); 6805 ret = btrfs_search_slot(trans, extent_root, 6806 &key, path, -1, 1); 6807 } 6808 6809 if (ret) { 6810 btrfs_err(info, 6811 "umm, got %d back from search, was looking for %llu", 6812 ret, bytenr); 6813 if (ret > 0) 6814 btrfs_print_leaf(path->nodes[0]); 6815 } 6816 if (ret < 0) { 6817 btrfs_abort_transaction(trans, ret); 6818 goto out; 6819 } 6820 extent_slot = path->slots[0]; 6821 } 6822 } else if (WARN_ON(ret == -ENOENT)) { 6823 btrfs_print_leaf(path->nodes[0]); 6824 btrfs_err(info, 6825 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6826 bytenr, parent, root_objectid, owner_objectid, 6827 owner_offset); 6828 btrfs_abort_transaction(trans, ret); 6829 goto out; 6830 } else { 6831 btrfs_abort_transaction(trans, ret); 6832 goto out; 6833 } 6834 6835 leaf = path->nodes[0]; 6836 item_size = btrfs_item_size_nr(leaf, extent_slot); 6837 if (unlikely(item_size < sizeof(*ei))) { 6838 ret = -EINVAL; 6839 btrfs_print_v0_err(info); 6840 btrfs_abort_transaction(trans, ret); 6841 goto out; 6842 } 6843 ei = btrfs_item_ptr(leaf, extent_slot, 6844 struct btrfs_extent_item); 6845 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6846 key.type == BTRFS_EXTENT_ITEM_KEY) { 6847 struct btrfs_tree_block_info *bi; 6848 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6849 bi = (struct btrfs_tree_block_info *)(ei + 1); 6850 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6851 } 6852 6853 refs = btrfs_extent_refs(leaf, ei); 6854 if (refs < refs_to_drop) { 6855 btrfs_err(info, 6856 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 6857 refs_to_drop, refs, bytenr); 6858 ret = -EINVAL; 6859 btrfs_abort_transaction(trans, ret); 6860 goto out; 6861 } 6862 refs -= refs_to_drop; 6863 6864 if (refs > 0) { 6865 if (extent_op) 6866 __run_delayed_extent_op(extent_op, leaf, ei); 6867 /* 6868 * In the case of inline back ref, reference count will 6869 * be updated by remove_extent_backref 6870 */ 6871 if (iref) { 6872 BUG_ON(!found_extent); 6873 } else { 6874 btrfs_set_extent_refs(leaf, ei, refs); 6875 btrfs_mark_buffer_dirty(leaf); 6876 } 6877 if (found_extent) { 6878 ret = remove_extent_backref(trans, path, iref, 6879 refs_to_drop, is_data, 6880 &last_ref); 6881 if (ret) { 6882 btrfs_abort_transaction(trans, ret); 6883 goto out; 6884 } 6885 } 6886 } else { 6887 if (found_extent) { 6888 BUG_ON(is_data && refs_to_drop != 6889 extent_data_ref_count(path, iref)); 6890 if (iref) { 6891 BUG_ON(path->slots[0] != extent_slot); 6892 } else { 6893 BUG_ON(path->slots[0] != extent_slot + 1); 6894 path->slots[0] = extent_slot; 6895 num_to_del = 2; 6896 } 6897 } 6898 6899 last_ref = 1; 6900 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6901 num_to_del); 6902 if (ret) { 6903 btrfs_abort_transaction(trans, ret); 6904 goto out; 6905 } 6906 btrfs_release_path(path); 6907 6908 if (is_data) { 6909 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 6910 if (ret) { 6911 btrfs_abort_transaction(trans, ret); 6912 goto out; 6913 } 6914 } 6915 6916 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 6917 if (ret) { 6918 btrfs_abort_transaction(trans, ret); 6919 goto out; 6920 } 6921 6922 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 6923 if (ret) { 6924 btrfs_abort_transaction(trans, ret); 6925 goto out; 6926 } 6927 } 6928 btrfs_release_path(path); 6929 6930 out: 6931 btrfs_free_path(path); 6932 return ret; 6933 } 6934 6935 /* 6936 * when we free an block, it is possible (and likely) that we free the last 6937 * delayed ref for that extent as well. This searches the delayed ref tree for 6938 * a given extent, and if there are no other delayed refs to be processed, it 6939 * removes it from the tree. 6940 */ 6941 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6942 u64 bytenr) 6943 { 6944 struct btrfs_delayed_ref_head *head; 6945 struct btrfs_delayed_ref_root *delayed_refs; 6946 int ret = 0; 6947 6948 delayed_refs = &trans->transaction->delayed_refs; 6949 spin_lock(&delayed_refs->lock); 6950 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 6951 if (!head) 6952 goto out_delayed_unlock; 6953 6954 spin_lock(&head->lock); 6955 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 6956 goto out; 6957 6958 if (head->extent_op) { 6959 if (!head->must_insert_reserved) 6960 goto out; 6961 btrfs_free_delayed_extent_op(head->extent_op); 6962 head->extent_op = NULL; 6963 } 6964 6965 /* 6966 * waiting for the lock here would deadlock. If someone else has it 6967 * locked they are already in the process of dropping it anyway 6968 */ 6969 if (!mutex_trylock(&head->mutex)) 6970 goto out; 6971 6972 /* 6973 * at this point we have a head with no other entries. Go 6974 * ahead and process it. 6975 */ 6976 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 6977 RB_CLEAR_NODE(&head->href_node); 6978 atomic_dec(&delayed_refs->num_entries); 6979 6980 /* 6981 * we don't take a ref on the node because we're removing it from the 6982 * tree, so we just steal the ref the tree was holding. 6983 */ 6984 delayed_refs->num_heads--; 6985 if (head->processing == 0) 6986 delayed_refs->num_heads_ready--; 6987 head->processing = 0; 6988 spin_unlock(&head->lock); 6989 spin_unlock(&delayed_refs->lock); 6990 6991 BUG_ON(head->extent_op); 6992 if (head->must_insert_reserved) 6993 ret = 1; 6994 6995 mutex_unlock(&head->mutex); 6996 btrfs_put_delayed_ref_head(head); 6997 return ret; 6998 out: 6999 spin_unlock(&head->lock); 7000 7001 out_delayed_unlock: 7002 spin_unlock(&delayed_refs->lock); 7003 return 0; 7004 } 7005 7006 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7007 struct btrfs_root *root, 7008 struct extent_buffer *buf, 7009 u64 parent, int last_ref) 7010 { 7011 struct btrfs_fs_info *fs_info = root->fs_info; 7012 int pin = 1; 7013 int ret; 7014 7015 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7016 int old_ref_mod, new_ref_mod; 7017 7018 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7019 root->root_key.objectid, 7020 btrfs_header_level(buf), 0, 7021 BTRFS_DROP_DELAYED_REF); 7022 ret = btrfs_add_delayed_tree_ref(trans, buf->start, 7023 buf->len, parent, 7024 root->root_key.objectid, 7025 btrfs_header_level(buf), 7026 BTRFS_DROP_DELAYED_REF, NULL, 7027 &old_ref_mod, &new_ref_mod); 7028 BUG_ON(ret); /* -ENOMEM */ 7029 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7030 } 7031 7032 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7033 struct btrfs_block_group_cache *cache; 7034 7035 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7036 ret = check_ref_cleanup(trans, buf->start); 7037 if (!ret) 7038 goto out; 7039 } 7040 7041 pin = 0; 7042 cache = btrfs_lookup_block_group(fs_info, buf->start); 7043 7044 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7045 pin_down_extent(fs_info, cache, buf->start, 7046 buf->len, 1); 7047 btrfs_put_block_group(cache); 7048 goto out; 7049 } 7050 7051 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7052 7053 btrfs_add_free_space(cache, buf->start, buf->len); 7054 btrfs_free_reserved_bytes(cache, buf->len, 0); 7055 btrfs_put_block_group(cache); 7056 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7057 } 7058 out: 7059 if (pin) 7060 add_pinned_bytes(fs_info, buf->len, true, 7061 root->root_key.objectid); 7062 7063 if (last_ref) { 7064 /* 7065 * Deleting the buffer, clear the corrupt flag since it doesn't 7066 * matter anymore. 7067 */ 7068 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7069 } 7070 } 7071 7072 /* Can return -ENOMEM */ 7073 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7074 struct btrfs_root *root, 7075 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7076 u64 owner, u64 offset) 7077 { 7078 struct btrfs_fs_info *fs_info = root->fs_info; 7079 int old_ref_mod, new_ref_mod; 7080 int ret; 7081 7082 if (btrfs_is_testing(fs_info)) 7083 return 0; 7084 7085 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7086 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7087 root_objectid, owner, offset, 7088 BTRFS_DROP_DELAYED_REF); 7089 7090 /* 7091 * tree log blocks never actually go into the extent allocation 7092 * tree, just update pinning info and exit early. 7093 */ 7094 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7095 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7096 /* unlocks the pinned mutex */ 7097 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7098 old_ref_mod = new_ref_mod = 0; 7099 ret = 0; 7100 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7101 ret = btrfs_add_delayed_tree_ref(trans, bytenr, 7102 num_bytes, parent, 7103 root_objectid, (int)owner, 7104 BTRFS_DROP_DELAYED_REF, NULL, 7105 &old_ref_mod, &new_ref_mod); 7106 } else { 7107 ret = btrfs_add_delayed_data_ref(trans, bytenr, 7108 num_bytes, parent, 7109 root_objectid, owner, offset, 7110 0, BTRFS_DROP_DELAYED_REF, 7111 &old_ref_mod, &new_ref_mod); 7112 } 7113 7114 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) { 7115 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 7116 7117 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid); 7118 } 7119 7120 return ret; 7121 } 7122 7123 /* 7124 * when we wait for progress in the block group caching, its because 7125 * our allocation attempt failed at least once. So, we must sleep 7126 * and let some progress happen before we try again. 7127 * 7128 * This function will sleep at least once waiting for new free space to 7129 * show up, and then it will check the block group free space numbers 7130 * for our min num_bytes. Another option is to have it go ahead 7131 * and look in the rbtree for a free extent of a given size, but this 7132 * is a good start. 7133 * 7134 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7135 * any of the information in this block group. 7136 */ 7137 static noinline void 7138 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7139 u64 num_bytes) 7140 { 7141 struct btrfs_caching_control *caching_ctl; 7142 7143 caching_ctl = get_caching_control(cache); 7144 if (!caching_ctl) 7145 return; 7146 7147 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7148 (cache->free_space_ctl->free_space >= num_bytes)); 7149 7150 put_caching_control(caching_ctl); 7151 } 7152 7153 static noinline int 7154 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7155 { 7156 struct btrfs_caching_control *caching_ctl; 7157 int ret = 0; 7158 7159 caching_ctl = get_caching_control(cache); 7160 if (!caching_ctl) 7161 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7162 7163 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7164 if (cache->cached == BTRFS_CACHE_ERROR) 7165 ret = -EIO; 7166 put_caching_control(caching_ctl); 7167 return ret; 7168 } 7169 7170 enum btrfs_loop_type { 7171 LOOP_CACHING_NOWAIT = 0, 7172 LOOP_CACHING_WAIT = 1, 7173 LOOP_ALLOC_CHUNK = 2, 7174 LOOP_NO_EMPTY_SIZE = 3, 7175 }; 7176 7177 static inline void 7178 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7179 int delalloc) 7180 { 7181 if (delalloc) 7182 down_read(&cache->data_rwsem); 7183 } 7184 7185 static inline void 7186 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7187 int delalloc) 7188 { 7189 btrfs_get_block_group(cache); 7190 if (delalloc) 7191 down_read(&cache->data_rwsem); 7192 } 7193 7194 static struct btrfs_block_group_cache * 7195 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7196 struct btrfs_free_cluster *cluster, 7197 int delalloc) 7198 { 7199 struct btrfs_block_group_cache *used_bg = NULL; 7200 7201 spin_lock(&cluster->refill_lock); 7202 while (1) { 7203 used_bg = cluster->block_group; 7204 if (!used_bg) 7205 return NULL; 7206 7207 if (used_bg == block_group) 7208 return used_bg; 7209 7210 btrfs_get_block_group(used_bg); 7211 7212 if (!delalloc) 7213 return used_bg; 7214 7215 if (down_read_trylock(&used_bg->data_rwsem)) 7216 return used_bg; 7217 7218 spin_unlock(&cluster->refill_lock); 7219 7220 /* We should only have one-level nested. */ 7221 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7222 7223 spin_lock(&cluster->refill_lock); 7224 if (used_bg == cluster->block_group) 7225 return used_bg; 7226 7227 up_read(&used_bg->data_rwsem); 7228 btrfs_put_block_group(used_bg); 7229 } 7230 } 7231 7232 static inline void 7233 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7234 int delalloc) 7235 { 7236 if (delalloc) 7237 up_read(&cache->data_rwsem); 7238 btrfs_put_block_group(cache); 7239 } 7240 7241 /* 7242 * walks the btree of allocated extents and find a hole of a given size. 7243 * The key ins is changed to record the hole: 7244 * ins->objectid == start position 7245 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7246 * ins->offset == the size of the hole. 7247 * Any available blocks before search_start are skipped. 7248 * 7249 * If there is no suitable free space, we will record the max size of 7250 * the free space extent currently. 7251 */ 7252 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7253 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7254 u64 hint_byte, struct btrfs_key *ins, 7255 u64 flags, int delalloc) 7256 { 7257 int ret = 0; 7258 struct btrfs_root *root = fs_info->extent_root; 7259 struct btrfs_free_cluster *last_ptr = NULL; 7260 struct btrfs_block_group_cache *block_group = NULL; 7261 u64 search_start = 0; 7262 u64 max_extent_size = 0; 7263 u64 empty_cluster = 0; 7264 struct btrfs_space_info *space_info; 7265 int loop = 0; 7266 int index = btrfs_bg_flags_to_raid_index(flags); 7267 bool failed_cluster_refill = false; 7268 bool failed_alloc = false; 7269 bool use_cluster = true; 7270 bool have_caching_bg = false; 7271 bool orig_have_caching_bg = false; 7272 bool full_search = false; 7273 7274 WARN_ON(num_bytes < fs_info->sectorsize); 7275 ins->type = BTRFS_EXTENT_ITEM_KEY; 7276 ins->objectid = 0; 7277 ins->offset = 0; 7278 7279 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7280 7281 space_info = __find_space_info(fs_info, flags); 7282 if (!space_info) { 7283 btrfs_err(fs_info, "No space info for %llu", flags); 7284 return -ENOSPC; 7285 } 7286 7287 /* 7288 * If our free space is heavily fragmented we may not be able to make 7289 * big contiguous allocations, so instead of doing the expensive search 7290 * for free space, simply return ENOSPC with our max_extent_size so we 7291 * can go ahead and search for a more manageable chunk. 7292 * 7293 * If our max_extent_size is large enough for our allocation simply 7294 * disable clustering since we will likely not be able to find enough 7295 * space to create a cluster and induce latency trying. 7296 */ 7297 if (unlikely(space_info->max_extent_size)) { 7298 spin_lock(&space_info->lock); 7299 if (space_info->max_extent_size && 7300 num_bytes > space_info->max_extent_size) { 7301 ins->offset = space_info->max_extent_size; 7302 spin_unlock(&space_info->lock); 7303 return -ENOSPC; 7304 } else if (space_info->max_extent_size) { 7305 use_cluster = false; 7306 } 7307 spin_unlock(&space_info->lock); 7308 } 7309 7310 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7311 if (last_ptr) { 7312 spin_lock(&last_ptr->lock); 7313 if (last_ptr->block_group) 7314 hint_byte = last_ptr->window_start; 7315 if (last_ptr->fragmented) { 7316 /* 7317 * We still set window_start so we can keep track of the 7318 * last place we found an allocation to try and save 7319 * some time. 7320 */ 7321 hint_byte = last_ptr->window_start; 7322 use_cluster = false; 7323 } 7324 spin_unlock(&last_ptr->lock); 7325 } 7326 7327 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7328 search_start = max(search_start, hint_byte); 7329 if (search_start == hint_byte) { 7330 block_group = btrfs_lookup_block_group(fs_info, search_start); 7331 /* 7332 * we don't want to use the block group if it doesn't match our 7333 * allocation bits, or if its not cached. 7334 * 7335 * However if we are re-searching with an ideal block group 7336 * picked out then we don't care that the block group is cached. 7337 */ 7338 if (block_group && block_group_bits(block_group, flags) && 7339 block_group->cached != BTRFS_CACHE_NO) { 7340 down_read(&space_info->groups_sem); 7341 if (list_empty(&block_group->list) || 7342 block_group->ro) { 7343 /* 7344 * someone is removing this block group, 7345 * we can't jump into the have_block_group 7346 * target because our list pointers are not 7347 * valid 7348 */ 7349 btrfs_put_block_group(block_group); 7350 up_read(&space_info->groups_sem); 7351 } else { 7352 index = btrfs_bg_flags_to_raid_index( 7353 block_group->flags); 7354 btrfs_lock_block_group(block_group, delalloc); 7355 goto have_block_group; 7356 } 7357 } else if (block_group) { 7358 btrfs_put_block_group(block_group); 7359 } 7360 } 7361 search: 7362 have_caching_bg = false; 7363 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7364 full_search = true; 7365 down_read(&space_info->groups_sem); 7366 list_for_each_entry(block_group, &space_info->block_groups[index], 7367 list) { 7368 u64 offset; 7369 int cached; 7370 7371 /* If the block group is read-only, we can skip it entirely. */ 7372 if (unlikely(block_group->ro)) 7373 continue; 7374 7375 btrfs_grab_block_group(block_group, delalloc); 7376 search_start = block_group->key.objectid; 7377 7378 /* 7379 * this can happen if we end up cycling through all the 7380 * raid types, but we want to make sure we only allocate 7381 * for the proper type. 7382 */ 7383 if (!block_group_bits(block_group, flags)) { 7384 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7385 BTRFS_BLOCK_GROUP_RAID1 | 7386 BTRFS_BLOCK_GROUP_RAID5 | 7387 BTRFS_BLOCK_GROUP_RAID6 | 7388 BTRFS_BLOCK_GROUP_RAID10; 7389 7390 /* 7391 * if they asked for extra copies and this block group 7392 * doesn't provide them, bail. This does allow us to 7393 * fill raid0 from raid1. 7394 */ 7395 if ((flags & extra) && !(block_group->flags & extra)) 7396 goto loop; 7397 } 7398 7399 have_block_group: 7400 cached = block_group_cache_done(block_group); 7401 if (unlikely(!cached)) { 7402 have_caching_bg = true; 7403 ret = cache_block_group(block_group, 0); 7404 BUG_ON(ret < 0); 7405 ret = 0; 7406 } 7407 7408 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7409 goto loop; 7410 7411 /* 7412 * Ok we want to try and use the cluster allocator, so 7413 * lets look there 7414 */ 7415 if (last_ptr && use_cluster) { 7416 struct btrfs_block_group_cache *used_block_group; 7417 unsigned long aligned_cluster; 7418 /* 7419 * the refill lock keeps out other 7420 * people trying to start a new cluster 7421 */ 7422 used_block_group = btrfs_lock_cluster(block_group, 7423 last_ptr, 7424 delalloc); 7425 if (!used_block_group) 7426 goto refill_cluster; 7427 7428 if (used_block_group != block_group && 7429 (used_block_group->ro || 7430 !block_group_bits(used_block_group, flags))) 7431 goto release_cluster; 7432 7433 offset = btrfs_alloc_from_cluster(used_block_group, 7434 last_ptr, 7435 num_bytes, 7436 used_block_group->key.objectid, 7437 &max_extent_size); 7438 if (offset) { 7439 /* we have a block, we're done */ 7440 spin_unlock(&last_ptr->refill_lock); 7441 trace_btrfs_reserve_extent_cluster( 7442 used_block_group, 7443 search_start, num_bytes); 7444 if (used_block_group != block_group) { 7445 btrfs_release_block_group(block_group, 7446 delalloc); 7447 block_group = used_block_group; 7448 } 7449 goto checks; 7450 } 7451 7452 WARN_ON(last_ptr->block_group != used_block_group); 7453 release_cluster: 7454 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7455 * set up a new clusters, so lets just skip it 7456 * and let the allocator find whatever block 7457 * it can find. If we reach this point, we 7458 * will have tried the cluster allocator 7459 * plenty of times and not have found 7460 * anything, so we are likely way too 7461 * fragmented for the clustering stuff to find 7462 * anything. 7463 * 7464 * However, if the cluster is taken from the 7465 * current block group, release the cluster 7466 * first, so that we stand a better chance of 7467 * succeeding in the unclustered 7468 * allocation. */ 7469 if (loop >= LOOP_NO_EMPTY_SIZE && 7470 used_block_group != block_group) { 7471 spin_unlock(&last_ptr->refill_lock); 7472 btrfs_release_block_group(used_block_group, 7473 delalloc); 7474 goto unclustered_alloc; 7475 } 7476 7477 /* 7478 * this cluster didn't work out, free it and 7479 * start over 7480 */ 7481 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7482 7483 if (used_block_group != block_group) 7484 btrfs_release_block_group(used_block_group, 7485 delalloc); 7486 refill_cluster: 7487 if (loop >= LOOP_NO_EMPTY_SIZE) { 7488 spin_unlock(&last_ptr->refill_lock); 7489 goto unclustered_alloc; 7490 } 7491 7492 aligned_cluster = max_t(unsigned long, 7493 empty_cluster + empty_size, 7494 block_group->full_stripe_len); 7495 7496 /* allocate a cluster in this block group */ 7497 ret = btrfs_find_space_cluster(fs_info, block_group, 7498 last_ptr, search_start, 7499 num_bytes, 7500 aligned_cluster); 7501 if (ret == 0) { 7502 /* 7503 * now pull our allocation out of this 7504 * cluster 7505 */ 7506 offset = btrfs_alloc_from_cluster(block_group, 7507 last_ptr, 7508 num_bytes, 7509 search_start, 7510 &max_extent_size); 7511 if (offset) { 7512 /* we found one, proceed */ 7513 spin_unlock(&last_ptr->refill_lock); 7514 trace_btrfs_reserve_extent_cluster( 7515 block_group, search_start, 7516 num_bytes); 7517 goto checks; 7518 } 7519 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7520 && !failed_cluster_refill) { 7521 spin_unlock(&last_ptr->refill_lock); 7522 7523 failed_cluster_refill = true; 7524 wait_block_group_cache_progress(block_group, 7525 num_bytes + empty_cluster + empty_size); 7526 goto have_block_group; 7527 } 7528 7529 /* 7530 * at this point we either didn't find a cluster 7531 * or we weren't able to allocate a block from our 7532 * cluster. Free the cluster we've been trying 7533 * to use, and go to the next block group 7534 */ 7535 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7536 spin_unlock(&last_ptr->refill_lock); 7537 goto loop; 7538 } 7539 7540 unclustered_alloc: 7541 /* 7542 * We are doing an unclustered alloc, set the fragmented flag so 7543 * we don't bother trying to setup a cluster again until we get 7544 * more space. 7545 */ 7546 if (unlikely(last_ptr)) { 7547 spin_lock(&last_ptr->lock); 7548 last_ptr->fragmented = 1; 7549 spin_unlock(&last_ptr->lock); 7550 } 7551 if (cached) { 7552 struct btrfs_free_space_ctl *ctl = 7553 block_group->free_space_ctl; 7554 7555 spin_lock(&ctl->tree_lock); 7556 if (ctl->free_space < 7557 num_bytes + empty_cluster + empty_size) { 7558 if (ctl->free_space > max_extent_size) 7559 max_extent_size = ctl->free_space; 7560 spin_unlock(&ctl->tree_lock); 7561 goto loop; 7562 } 7563 spin_unlock(&ctl->tree_lock); 7564 } 7565 7566 offset = btrfs_find_space_for_alloc(block_group, search_start, 7567 num_bytes, empty_size, 7568 &max_extent_size); 7569 /* 7570 * If we didn't find a chunk, and we haven't failed on this 7571 * block group before, and this block group is in the middle of 7572 * caching and we are ok with waiting, then go ahead and wait 7573 * for progress to be made, and set failed_alloc to true. 7574 * 7575 * If failed_alloc is true then we've already waited on this 7576 * block group once and should move on to the next block group. 7577 */ 7578 if (!offset && !failed_alloc && !cached && 7579 loop > LOOP_CACHING_NOWAIT) { 7580 wait_block_group_cache_progress(block_group, 7581 num_bytes + empty_size); 7582 failed_alloc = true; 7583 goto have_block_group; 7584 } else if (!offset) { 7585 goto loop; 7586 } 7587 checks: 7588 search_start = round_up(offset, fs_info->stripesize); 7589 7590 /* move on to the next group */ 7591 if (search_start + num_bytes > 7592 block_group->key.objectid + block_group->key.offset) { 7593 btrfs_add_free_space(block_group, offset, num_bytes); 7594 goto loop; 7595 } 7596 7597 if (offset < search_start) 7598 btrfs_add_free_space(block_group, offset, 7599 search_start - offset); 7600 7601 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7602 num_bytes, delalloc); 7603 if (ret == -EAGAIN) { 7604 btrfs_add_free_space(block_group, offset, num_bytes); 7605 goto loop; 7606 } 7607 btrfs_inc_block_group_reservations(block_group); 7608 7609 /* we are all good, lets return */ 7610 ins->objectid = search_start; 7611 ins->offset = num_bytes; 7612 7613 trace_btrfs_reserve_extent(block_group, search_start, num_bytes); 7614 btrfs_release_block_group(block_group, delalloc); 7615 break; 7616 loop: 7617 failed_cluster_refill = false; 7618 failed_alloc = false; 7619 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7620 index); 7621 btrfs_release_block_group(block_group, delalloc); 7622 cond_resched(); 7623 } 7624 up_read(&space_info->groups_sem); 7625 7626 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7627 && !orig_have_caching_bg) 7628 orig_have_caching_bg = true; 7629 7630 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7631 goto search; 7632 7633 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7634 goto search; 7635 7636 /* 7637 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7638 * caching kthreads as we move along 7639 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7640 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7641 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7642 * again 7643 */ 7644 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7645 index = 0; 7646 if (loop == LOOP_CACHING_NOWAIT) { 7647 /* 7648 * We want to skip the LOOP_CACHING_WAIT step if we 7649 * don't have any uncached bgs and we've already done a 7650 * full search through. 7651 */ 7652 if (orig_have_caching_bg || !full_search) 7653 loop = LOOP_CACHING_WAIT; 7654 else 7655 loop = LOOP_ALLOC_CHUNK; 7656 } else { 7657 loop++; 7658 } 7659 7660 if (loop == LOOP_ALLOC_CHUNK) { 7661 struct btrfs_trans_handle *trans; 7662 int exist = 0; 7663 7664 trans = current->journal_info; 7665 if (trans) 7666 exist = 1; 7667 else 7668 trans = btrfs_join_transaction(root); 7669 7670 if (IS_ERR(trans)) { 7671 ret = PTR_ERR(trans); 7672 goto out; 7673 } 7674 7675 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE); 7676 7677 /* 7678 * If we can't allocate a new chunk we've already looped 7679 * through at least once, move on to the NO_EMPTY_SIZE 7680 * case. 7681 */ 7682 if (ret == -ENOSPC) 7683 loop = LOOP_NO_EMPTY_SIZE; 7684 7685 /* 7686 * Do not bail out on ENOSPC since we 7687 * can do more things. 7688 */ 7689 if (ret < 0 && ret != -ENOSPC) 7690 btrfs_abort_transaction(trans, ret); 7691 else 7692 ret = 0; 7693 if (!exist) 7694 btrfs_end_transaction(trans); 7695 if (ret) 7696 goto out; 7697 } 7698 7699 if (loop == LOOP_NO_EMPTY_SIZE) { 7700 /* 7701 * Don't loop again if we already have no empty_size and 7702 * no empty_cluster. 7703 */ 7704 if (empty_size == 0 && 7705 empty_cluster == 0) { 7706 ret = -ENOSPC; 7707 goto out; 7708 } 7709 empty_size = 0; 7710 empty_cluster = 0; 7711 } 7712 7713 goto search; 7714 } else if (!ins->objectid) { 7715 ret = -ENOSPC; 7716 } else if (ins->objectid) { 7717 if (!use_cluster && last_ptr) { 7718 spin_lock(&last_ptr->lock); 7719 last_ptr->window_start = ins->objectid; 7720 spin_unlock(&last_ptr->lock); 7721 } 7722 ret = 0; 7723 } 7724 out: 7725 if (ret == -ENOSPC) { 7726 spin_lock(&space_info->lock); 7727 space_info->max_extent_size = max_extent_size; 7728 spin_unlock(&space_info->lock); 7729 ins->offset = max_extent_size; 7730 } 7731 return ret; 7732 } 7733 7734 static void dump_space_info(struct btrfs_fs_info *fs_info, 7735 struct btrfs_space_info *info, u64 bytes, 7736 int dump_block_groups) 7737 { 7738 struct btrfs_block_group_cache *cache; 7739 int index = 0; 7740 7741 spin_lock(&info->lock); 7742 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7743 info->flags, 7744 info->total_bytes - btrfs_space_info_used(info, true), 7745 info->full ? "" : "not "); 7746 btrfs_info(fs_info, 7747 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7748 info->total_bytes, info->bytes_used, info->bytes_pinned, 7749 info->bytes_reserved, info->bytes_may_use, 7750 info->bytes_readonly); 7751 spin_unlock(&info->lock); 7752 7753 if (!dump_block_groups) 7754 return; 7755 7756 down_read(&info->groups_sem); 7757 again: 7758 list_for_each_entry(cache, &info->block_groups[index], list) { 7759 spin_lock(&cache->lock); 7760 btrfs_info(fs_info, 7761 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7762 cache->key.objectid, cache->key.offset, 7763 btrfs_block_group_used(&cache->item), cache->pinned, 7764 cache->reserved, cache->ro ? "[readonly]" : ""); 7765 btrfs_dump_free_space(cache, bytes); 7766 spin_unlock(&cache->lock); 7767 } 7768 if (++index < BTRFS_NR_RAID_TYPES) 7769 goto again; 7770 up_read(&info->groups_sem); 7771 } 7772 7773 /* 7774 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7775 * hole that is at least as big as @num_bytes. 7776 * 7777 * @root - The root that will contain this extent 7778 * 7779 * @ram_bytes - The amount of space in ram that @num_bytes take. This 7780 * is used for accounting purposes. This value differs 7781 * from @num_bytes only in the case of compressed extents. 7782 * 7783 * @num_bytes - Number of bytes to allocate on-disk. 7784 * 7785 * @min_alloc_size - Indicates the minimum amount of space that the 7786 * allocator should try to satisfy. In some cases 7787 * @num_bytes may be larger than what is required and if 7788 * the filesystem is fragmented then allocation fails. 7789 * However, the presence of @min_alloc_size gives a 7790 * chance to try and satisfy the smaller allocation. 7791 * 7792 * @empty_size - A hint that you plan on doing more COW. This is the 7793 * size in bytes the allocator should try to find free 7794 * next to the block it returns. This is just a hint and 7795 * may be ignored by the allocator. 7796 * 7797 * @hint_byte - Hint to the allocator to start searching above the byte 7798 * address passed. It might be ignored. 7799 * 7800 * @ins - This key is modified to record the found hole. It will 7801 * have the following values: 7802 * ins->objectid == start position 7803 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7804 * ins->offset == the size of the hole. 7805 * 7806 * @is_data - Boolean flag indicating whether an extent is 7807 * allocated for data (true) or metadata (false) 7808 * 7809 * @delalloc - Boolean flag indicating whether this allocation is for 7810 * delalloc or not. If 'true' data_rwsem of block groups 7811 * is going to be acquired. 7812 * 7813 * 7814 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 7815 * case -ENOSPC is returned then @ins->offset will contain the size of the 7816 * largest available hole the allocator managed to find. 7817 */ 7818 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7819 u64 num_bytes, u64 min_alloc_size, 7820 u64 empty_size, u64 hint_byte, 7821 struct btrfs_key *ins, int is_data, int delalloc) 7822 { 7823 struct btrfs_fs_info *fs_info = root->fs_info; 7824 bool final_tried = num_bytes == min_alloc_size; 7825 u64 flags; 7826 int ret; 7827 7828 flags = get_alloc_profile_by_root(root, is_data); 7829 again: 7830 WARN_ON(num_bytes < fs_info->sectorsize); 7831 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 7832 hint_byte, ins, flags, delalloc); 7833 if (!ret && !is_data) { 7834 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 7835 } else if (ret == -ENOSPC) { 7836 if (!final_tried && ins->offset) { 7837 num_bytes = min(num_bytes >> 1, ins->offset); 7838 num_bytes = round_down(num_bytes, 7839 fs_info->sectorsize); 7840 num_bytes = max(num_bytes, min_alloc_size); 7841 ram_bytes = num_bytes; 7842 if (num_bytes == min_alloc_size) 7843 final_tried = true; 7844 goto again; 7845 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 7846 struct btrfs_space_info *sinfo; 7847 7848 sinfo = __find_space_info(fs_info, flags); 7849 btrfs_err(fs_info, 7850 "allocation failed flags %llu, wanted %llu", 7851 flags, num_bytes); 7852 if (sinfo) 7853 dump_space_info(fs_info, sinfo, num_bytes, 1); 7854 } 7855 } 7856 7857 return ret; 7858 } 7859 7860 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 7861 u64 start, u64 len, 7862 int pin, int delalloc) 7863 { 7864 struct btrfs_block_group_cache *cache; 7865 int ret = 0; 7866 7867 cache = btrfs_lookup_block_group(fs_info, start); 7868 if (!cache) { 7869 btrfs_err(fs_info, "Unable to find block group for %llu", 7870 start); 7871 return -ENOSPC; 7872 } 7873 7874 if (pin) 7875 pin_down_extent(fs_info, cache, start, len, 1); 7876 else { 7877 if (btrfs_test_opt(fs_info, DISCARD)) 7878 ret = btrfs_discard_extent(fs_info, start, len, NULL); 7879 btrfs_add_free_space(cache, start, len); 7880 btrfs_free_reserved_bytes(cache, len, delalloc); 7881 trace_btrfs_reserved_extent_free(fs_info, start, len); 7882 } 7883 7884 btrfs_put_block_group(cache); 7885 return ret; 7886 } 7887 7888 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 7889 u64 start, u64 len, int delalloc) 7890 { 7891 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 7892 } 7893 7894 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 7895 u64 start, u64 len) 7896 { 7897 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 7898 } 7899 7900 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7901 u64 parent, u64 root_objectid, 7902 u64 flags, u64 owner, u64 offset, 7903 struct btrfs_key *ins, int ref_mod) 7904 { 7905 struct btrfs_fs_info *fs_info = trans->fs_info; 7906 int ret; 7907 struct btrfs_extent_item *extent_item; 7908 struct btrfs_extent_inline_ref *iref; 7909 struct btrfs_path *path; 7910 struct extent_buffer *leaf; 7911 int type; 7912 u32 size; 7913 7914 if (parent > 0) 7915 type = BTRFS_SHARED_DATA_REF_KEY; 7916 else 7917 type = BTRFS_EXTENT_DATA_REF_KEY; 7918 7919 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7920 7921 path = btrfs_alloc_path(); 7922 if (!path) 7923 return -ENOMEM; 7924 7925 path->leave_spinning = 1; 7926 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7927 ins, size); 7928 if (ret) { 7929 btrfs_free_path(path); 7930 return ret; 7931 } 7932 7933 leaf = path->nodes[0]; 7934 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7935 struct btrfs_extent_item); 7936 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7937 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7938 btrfs_set_extent_flags(leaf, extent_item, 7939 flags | BTRFS_EXTENT_FLAG_DATA); 7940 7941 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7942 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7943 if (parent > 0) { 7944 struct btrfs_shared_data_ref *ref; 7945 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7946 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7947 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7948 } else { 7949 struct btrfs_extent_data_ref *ref; 7950 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7951 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7952 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7953 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7954 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7955 } 7956 7957 btrfs_mark_buffer_dirty(path->nodes[0]); 7958 btrfs_free_path(path); 7959 7960 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 7961 if (ret) 7962 return ret; 7963 7964 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 7965 if (ret) { /* -ENOENT, logic error */ 7966 btrfs_err(fs_info, "update block group failed for %llu %llu", 7967 ins->objectid, ins->offset); 7968 BUG(); 7969 } 7970 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 7971 return ret; 7972 } 7973 7974 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7975 struct btrfs_delayed_ref_node *node, 7976 struct btrfs_delayed_extent_op *extent_op) 7977 { 7978 struct btrfs_fs_info *fs_info = trans->fs_info; 7979 int ret; 7980 struct btrfs_extent_item *extent_item; 7981 struct btrfs_key extent_key; 7982 struct btrfs_tree_block_info *block_info; 7983 struct btrfs_extent_inline_ref *iref; 7984 struct btrfs_path *path; 7985 struct extent_buffer *leaf; 7986 struct btrfs_delayed_tree_ref *ref; 7987 u32 size = sizeof(*extent_item) + sizeof(*iref); 7988 u64 num_bytes; 7989 u64 flags = extent_op->flags_to_set; 7990 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 7991 7992 ref = btrfs_delayed_node_to_tree_ref(node); 7993 7994 extent_key.objectid = node->bytenr; 7995 if (skinny_metadata) { 7996 extent_key.offset = ref->level; 7997 extent_key.type = BTRFS_METADATA_ITEM_KEY; 7998 num_bytes = fs_info->nodesize; 7999 } else { 8000 extent_key.offset = node->num_bytes; 8001 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 8002 size += sizeof(*block_info); 8003 num_bytes = node->num_bytes; 8004 } 8005 8006 path = btrfs_alloc_path(); 8007 if (!path) { 8008 btrfs_free_and_pin_reserved_extent(fs_info, 8009 extent_key.objectid, 8010 fs_info->nodesize); 8011 return -ENOMEM; 8012 } 8013 8014 path->leave_spinning = 1; 8015 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8016 &extent_key, size); 8017 if (ret) { 8018 btrfs_free_path(path); 8019 btrfs_free_and_pin_reserved_extent(fs_info, 8020 extent_key.objectid, 8021 fs_info->nodesize); 8022 return ret; 8023 } 8024 8025 leaf = path->nodes[0]; 8026 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8027 struct btrfs_extent_item); 8028 btrfs_set_extent_refs(leaf, extent_item, 1); 8029 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8030 btrfs_set_extent_flags(leaf, extent_item, 8031 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8032 8033 if (skinny_metadata) { 8034 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8035 } else { 8036 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8037 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 8038 btrfs_set_tree_block_level(leaf, block_info, ref->level); 8039 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8040 } 8041 8042 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 8043 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8044 btrfs_set_extent_inline_ref_type(leaf, iref, 8045 BTRFS_SHARED_BLOCK_REF_KEY); 8046 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 8047 } else { 8048 btrfs_set_extent_inline_ref_type(leaf, iref, 8049 BTRFS_TREE_BLOCK_REF_KEY); 8050 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 8051 } 8052 8053 btrfs_mark_buffer_dirty(leaf); 8054 btrfs_free_path(path); 8055 8056 ret = remove_from_free_space_tree(trans, extent_key.objectid, 8057 num_bytes); 8058 if (ret) 8059 return ret; 8060 8061 ret = update_block_group(trans, fs_info, extent_key.objectid, 8062 fs_info->nodesize, 1); 8063 if (ret) { /* -ENOENT, logic error */ 8064 btrfs_err(fs_info, "update block group failed for %llu %llu", 8065 extent_key.objectid, extent_key.offset); 8066 BUG(); 8067 } 8068 8069 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 8070 fs_info->nodesize); 8071 return ret; 8072 } 8073 8074 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8075 struct btrfs_root *root, u64 owner, 8076 u64 offset, u64 ram_bytes, 8077 struct btrfs_key *ins) 8078 { 8079 int ret; 8080 8081 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8082 8083 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8084 root->root_key.objectid, owner, offset, 8085 BTRFS_ADD_DELAYED_EXTENT); 8086 8087 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, 8088 ins->offset, 0, 8089 root->root_key.objectid, owner, 8090 offset, ram_bytes, 8091 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8092 return ret; 8093 } 8094 8095 /* 8096 * this is used by the tree logging recovery code. It records that 8097 * an extent has been allocated and makes sure to clear the free 8098 * space cache bits as well 8099 */ 8100 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8101 u64 root_objectid, u64 owner, u64 offset, 8102 struct btrfs_key *ins) 8103 { 8104 struct btrfs_fs_info *fs_info = trans->fs_info; 8105 int ret; 8106 struct btrfs_block_group_cache *block_group; 8107 struct btrfs_space_info *space_info; 8108 8109 /* 8110 * Mixed block groups will exclude before processing the log so we only 8111 * need to do the exclude dance if this fs isn't mixed. 8112 */ 8113 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8114 ret = __exclude_logged_extent(fs_info, ins->objectid, 8115 ins->offset); 8116 if (ret) 8117 return ret; 8118 } 8119 8120 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8121 if (!block_group) 8122 return -EINVAL; 8123 8124 space_info = block_group->space_info; 8125 spin_lock(&space_info->lock); 8126 spin_lock(&block_group->lock); 8127 space_info->bytes_reserved += ins->offset; 8128 block_group->reserved += ins->offset; 8129 spin_unlock(&block_group->lock); 8130 spin_unlock(&space_info->lock); 8131 8132 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 8133 offset, ins, 1); 8134 btrfs_put_block_group(block_group); 8135 return ret; 8136 } 8137 8138 static struct extent_buffer * 8139 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8140 u64 bytenr, int level, u64 owner) 8141 { 8142 struct btrfs_fs_info *fs_info = root->fs_info; 8143 struct extent_buffer *buf; 8144 8145 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8146 if (IS_ERR(buf)) 8147 return buf; 8148 8149 /* 8150 * Extra safety check in case the extent tree is corrupted and extent 8151 * allocator chooses to use a tree block which is already used and 8152 * locked. 8153 */ 8154 if (buf->lock_owner == current->pid) { 8155 btrfs_err_rl(fs_info, 8156 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 8157 buf->start, btrfs_header_owner(buf), current->pid); 8158 free_extent_buffer(buf); 8159 return ERR_PTR(-EUCLEAN); 8160 } 8161 8162 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8163 btrfs_tree_lock(buf); 8164 clean_tree_block(fs_info, buf); 8165 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8166 8167 btrfs_set_lock_blocking(buf); 8168 set_extent_buffer_uptodate(buf); 8169 8170 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 8171 btrfs_set_header_level(buf, level); 8172 btrfs_set_header_bytenr(buf, buf->start); 8173 btrfs_set_header_generation(buf, trans->transid); 8174 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 8175 btrfs_set_header_owner(buf, owner); 8176 write_extent_buffer_fsid(buf, fs_info->fsid); 8177 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 8178 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8179 buf->log_index = root->log_transid % 2; 8180 /* 8181 * we allow two log transactions at a time, use different 8182 * EXENT bit to differentiate dirty pages. 8183 */ 8184 if (buf->log_index == 0) 8185 set_extent_dirty(&root->dirty_log_pages, buf->start, 8186 buf->start + buf->len - 1, GFP_NOFS); 8187 else 8188 set_extent_new(&root->dirty_log_pages, buf->start, 8189 buf->start + buf->len - 1); 8190 } else { 8191 buf->log_index = -1; 8192 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8193 buf->start + buf->len - 1, GFP_NOFS); 8194 } 8195 trans->dirty = true; 8196 /* this returns a buffer locked for blocking */ 8197 return buf; 8198 } 8199 8200 static struct btrfs_block_rsv * 8201 use_block_rsv(struct btrfs_trans_handle *trans, 8202 struct btrfs_root *root, u32 blocksize) 8203 { 8204 struct btrfs_fs_info *fs_info = root->fs_info; 8205 struct btrfs_block_rsv *block_rsv; 8206 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8207 int ret; 8208 bool global_updated = false; 8209 8210 block_rsv = get_block_rsv(trans, root); 8211 8212 if (unlikely(block_rsv->size == 0)) 8213 goto try_reserve; 8214 again: 8215 ret = block_rsv_use_bytes(block_rsv, blocksize); 8216 if (!ret) 8217 return block_rsv; 8218 8219 if (block_rsv->failfast) 8220 return ERR_PTR(ret); 8221 8222 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8223 global_updated = true; 8224 update_global_block_rsv(fs_info); 8225 goto again; 8226 } 8227 8228 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8229 static DEFINE_RATELIMIT_STATE(_rs, 8230 DEFAULT_RATELIMIT_INTERVAL * 10, 8231 /*DEFAULT_RATELIMIT_BURST*/ 1); 8232 if (__ratelimit(&_rs)) 8233 WARN(1, KERN_DEBUG 8234 "BTRFS: block rsv returned %d\n", ret); 8235 } 8236 try_reserve: 8237 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8238 BTRFS_RESERVE_NO_FLUSH); 8239 if (!ret) 8240 return block_rsv; 8241 /* 8242 * If we couldn't reserve metadata bytes try and use some from 8243 * the global reserve if its space type is the same as the global 8244 * reservation. 8245 */ 8246 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8247 block_rsv->space_info == global_rsv->space_info) { 8248 ret = block_rsv_use_bytes(global_rsv, blocksize); 8249 if (!ret) 8250 return global_rsv; 8251 } 8252 return ERR_PTR(ret); 8253 } 8254 8255 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8256 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8257 { 8258 block_rsv_add_bytes(block_rsv, blocksize, false); 8259 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); 8260 } 8261 8262 /* 8263 * finds a free extent and does all the dirty work required for allocation 8264 * returns the tree buffer or an ERR_PTR on error. 8265 */ 8266 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8267 struct btrfs_root *root, 8268 u64 parent, u64 root_objectid, 8269 const struct btrfs_disk_key *key, 8270 int level, u64 hint, 8271 u64 empty_size) 8272 { 8273 struct btrfs_fs_info *fs_info = root->fs_info; 8274 struct btrfs_key ins; 8275 struct btrfs_block_rsv *block_rsv; 8276 struct extent_buffer *buf; 8277 struct btrfs_delayed_extent_op *extent_op; 8278 u64 flags = 0; 8279 int ret; 8280 u32 blocksize = fs_info->nodesize; 8281 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8282 8283 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8284 if (btrfs_is_testing(fs_info)) { 8285 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8286 level, root_objectid); 8287 if (!IS_ERR(buf)) 8288 root->alloc_bytenr += blocksize; 8289 return buf; 8290 } 8291 #endif 8292 8293 block_rsv = use_block_rsv(trans, root, blocksize); 8294 if (IS_ERR(block_rsv)) 8295 return ERR_CAST(block_rsv); 8296 8297 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8298 empty_size, hint, &ins, 0, 0); 8299 if (ret) 8300 goto out_unuse; 8301 8302 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 8303 root_objectid); 8304 if (IS_ERR(buf)) { 8305 ret = PTR_ERR(buf); 8306 goto out_free_reserved; 8307 } 8308 8309 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8310 if (parent == 0) 8311 parent = ins.objectid; 8312 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8313 } else 8314 BUG_ON(parent > 0); 8315 8316 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8317 extent_op = btrfs_alloc_delayed_extent_op(); 8318 if (!extent_op) { 8319 ret = -ENOMEM; 8320 goto out_free_buf; 8321 } 8322 if (key) 8323 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8324 else 8325 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8326 extent_op->flags_to_set = flags; 8327 extent_op->update_key = skinny_metadata ? false : true; 8328 extent_op->update_flags = true; 8329 extent_op->is_data = false; 8330 extent_op->level = level; 8331 8332 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8333 root_objectid, level, 0, 8334 BTRFS_ADD_DELAYED_EXTENT); 8335 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, 8336 ins.offset, parent, 8337 root_objectid, level, 8338 BTRFS_ADD_DELAYED_EXTENT, 8339 extent_op, NULL, NULL); 8340 if (ret) 8341 goto out_free_delayed; 8342 } 8343 return buf; 8344 8345 out_free_delayed: 8346 btrfs_free_delayed_extent_op(extent_op); 8347 out_free_buf: 8348 free_extent_buffer(buf); 8349 out_free_reserved: 8350 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8351 out_unuse: 8352 unuse_block_rsv(fs_info, block_rsv, blocksize); 8353 return ERR_PTR(ret); 8354 } 8355 8356 struct walk_control { 8357 u64 refs[BTRFS_MAX_LEVEL]; 8358 u64 flags[BTRFS_MAX_LEVEL]; 8359 struct btrfs_key update_progress; 8360 int stage; 8361 int level; 8362 int shared_level; 8363 int update_ref; 8364 int keep_locks; 8365 int reada_slot; 8366 int reada_count; 8367 }; 8368 8369 #define DROP_REFERENCE 1 8370 #define UPDATE_BACKREF 2 8371 8372 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8373 struct btrfs_root *root, 8374 struct walk_control *wc, 8375 struct btrfs_path *path) 8376 { 8377 struct btrfs_fs_info *fs_info = root->fs_info; 8378 u64 bytenr; 8379 u64 generation; 8380 u64 refs; 8381 u64 flags; 8382 u32 nritems; 8383 struct btrfs_key key; 8384 struct extent_buffer *eb; 8385 int ret; 8386 int slot; 8387 int nread = 0; 8388 8389 if (path->slots[wc->level] < wc->reada_slot) { 8390 wc->reada_count = wc->reada_count * 2 / 3; 8391 wc->reada_count = max(wc->reada_count, 2); 8392 } else { 8393 wc->reada_count = wc->reada_count * 3 / 2; 8394 wc->reada_count = min_t(int, wc->reada_count, 8395 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8396 } 8397 8398 eb = path->nodes[wc->level]; 8399 nritems = btrfs_header_nritems(eb); 8400 8401 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8402 if (nread >= wc->reada_count) 8403 break; 8404 8405 cond_resched(); 8406 bytenr = btrfs_node_blockptr(eb, slot); 8407 generation = btrfs_node_ptr_generation(eb, slot); 8408 8409 if (slot == path->slots[wc->level]) 8410 goto reada; 8411 8412 if (wc->stage == UPDATE_BACKREF && 8413 generation <= root->root_key.offset) 8414 continue; 8415 8416 /* We don't lock the tree block, it's OK to be racy here */ 8417 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8418 wc->level - 1, 1, &refs, 8419 &flags); 8420 /* We don't care about errors in readahead. */ 8421 if (ret < 0) 8422 continue; 8423 BUG_ON(refs == 0); 8424 8425 if (wc->stage == DROP_REFERENCE) { 8426 if (refs == 1) 8427 goto reada; 8428 8429 if (wc->level == 1 && 8430 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8431 continue; 8432 if (!wc->update_ref || 8433 generation <= root->root_key.offset) 8434 continue; 8435 btrfs_node_key_to_cpu(eb, &key, slot); 8436 ret = btrfs_comp_cpu_keys(&key, 8437 &wc->update_progress); 8438 if (ret < 0) 8439 continue; 8440 } else { 8441 if (wc->level == 1 && 8442 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8443 continue; 8444 } 8445 reada: 8446 readahead_tree_block(fs_info, bytenr); 8447 nread++; 8448 } 8449 wc->reada_slot = slot; 8450 } 8451 8452 /* 8453 * helper to process tree block while walking down the tree. 8454 * 8455 * when wc->stage == UPDATE_BACKREF, this function updates 8456 * back refs for pointers in the block. 8457 * 8458 * NOTE: return value 1 means we should stop walking down. 8459 */ 8460 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8461 struct btrfs_root *root, 8462 struct btrfs_path *path, 8463 struct walk_control *wc, int lookup_info) 8464 { 8465 struct btrfs_fs_info *fs_info = root->fs_info; 8466 int level = wc->level; 8467 struct extent_buffer *eb = path->nodes[level]; 8468 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8469 int ret; 8470 8471 if (wc->stage == UPDATE_BACKREF && 8472 btrfs_header_owner(eb) != root->root_key.objectid) 8473 return 1; 8474 8475 /* 8476 * when reference count of tree block is 1, it won't increase 8477 * again. once full backref flag is set, we never clear it. 8478 */ 8479 if (lookup_info && 8480 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8481 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8482 BUG_ON(!path->locks[level]); 8483 ret = btrfs_lookup_extent_info(trans, fs_info, 8484 eb->start, level, 1, 8485 &wc->refs[level], 8486 &wc->flags[level]); 8487 BUG_ON(ret == -ENOMEM); 8488 if (ret) 8489 return ret; 8490 BUG_ON(wc->refs[level] == 0); 8491 } 8492 8493 if (wc->stage == DROP_REFERENCE) { 8494 if (wc->refs[level] > 1) 8495 return 1; 8496 8497 if (path->locks[level] && !wc->keep_locks) { 8498 btrfs_tree_unlock_rw(eb, path->locks[level]); 8499 path->locks[level] = 0; 8500 } 8501 return 0; 8502 } 8503 8504 /* wc->stage == UPDATE_BACKREF */ 8505 if (!(wc->flags[level] & flag)) { 8506 BUG_ON(!path->locks[level]); 8507 ret = btrfs_inc_ref(trans, root, eb, 1); 8508 BUG_ON(ret); /* -ENOMEM */ 8509 ret = btrfs_dec_ref(trans, root, eb, 0); 8510 BUG_ON(ret); /* -ENOMEM */ 8511 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8512 eb->len, flag, 8513 btrfs_header_level(eb), 0); 8514 BUG_ON(ret); /* -ENOMEM */ 8515 wc->flags[level] |= flag; 8516 } 8517 8518 /* 8519 * the block is shared by multiple trees, so it's not good to 8520 * keep the tree lock 8521 */ 8522 if (path->locks[level] && level > 0) { 8523 btrfs_tree_unlock_rw(eb, path->locks[level]); 8524 path->locks[level] = 0; 8525 } 8526 return 0; 8527 } 8528 8529 /* 8530 * helper to process tree block pointer. 8531 * 8532 * when wc->stage == DROP_REFERENCE, this function checks 8533 * reference count of the block pointed to. if the block 8534 * is shared and we need update back refs for the subtree 8535 * rooted at the block, this function changes wc->stage to 8536 * UPDATE_BACKREF. if the block is shared and there is no 8537 * need to update back, this function drops the reference 8538 * to the block. 8539 * 8540 * NOTE: return value 1 means we should stop walking down. 8541 */ 8542 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8543 struct btrfs_root *root, 8544 struct btrfs_path *path, 8545 struct walk_control *wc, int *lookup_info) 8546 { 8547 struct btrfs_fs_info *fs_info = root->fs_info; 8548 u64 bytenr; 8549 u64 generation; 8550 u64 parent; 8551 u32 blocksize; 8552 struct btrfs_key key; 8553 struct btrfs_key first_key; 8554 struct extent_buffer *next; 8555 int level = wc->level; 8556 int reada = 0; 8557 int ret = 0; 8558 bool need_account = false; 8559 8560 generation = btrfs_node_ptr_generation(path->nodes[level], 8561 path->slots[level]); 8562 /* 8563 * if the lower level block was created before the snapshot 8564 * was created, we know there is no need to update back refs 8565 * for the subtree 8566 */ 8567 if (wc->stage == UPDATE_BACKREF && 8568 generation <= root->root_key.offset) { 8569 *lookup_info = 1; 8570 return 1; 8571 } 8572 8573 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8574 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8575 path->slots[level]); 8576 blocksize = fs_info->nodesize; 8577 8578 next = find_extent_buffer(fs_info, bytenr); 8579 if (!next) { 8580 next = btrfs_find_create_tree_block(fs_info, bytenr); 8581 if (IS_ERR(next)) 8582 return PTR_ERR(next); 8583 8584 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8585 level - 1); 8586 reada = 1; 8587 } 8588 btrfs_tree_lock(next); 8589 btrfs_set_lock_blocking(next); 8590 8591 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8592 &wc->refs[level - 1], 8593 &wc->flags[level - 1]); 8594 if (ret < 0) 8595 goto out_unlock; 8596 8597 if (unlikely(wc->refs[level - 1] == 0)) { 8598 btrfs_err(fs_info, "Missing references."); 8599 ret = -EIO; 8600 goto out_unlock; 8601 } 8602 *lookup_info = 0; 8603 8604 if (wc->stage == DROP_REFERENCE) { 8605 if (wc->refs[level - 1] > 1) { 8606 need_account = true; 8607 if (level == 1 && 8608 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8609 goto skip; 8610 8611 if (!wc->update_ref || 8612 generation <= root->root_key.offset) 8613 goto skip; 8614 8615 btrfs_node_key_to_cpu(path->nodes[level], &key, 8616 path->slots[level]); 8617 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8618 if (ret < 0) 8619 goto skip; 8620 8621 wc->stage = UPDATE_BACKREF; 8622 wc->shared_level = level - 1; 8623 } 8624 } else { 8625 if (level == 1 && 8626 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8627 goto skip; 8628 } 8629 8630 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8631 btrfs_tree_unlock(next); 8632 free_extent_buffer(next); 8633 next = NULL; 8634 *lookup_info = 1; 8635 } 8636 8637 if (!next) { 8638 if (reada && level == 1) 8639 reada_walk_down(trans, root, wc, path); 8640 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8641 &first_key); 8642 if (IS_ERR(next)) { 8643 return PTR_ERR(next); 8644 } else if (!extent_buffer_uptodate(next)) { 8645 free_extent_buffer(next); 8646 return -EIO; 8647 } 8648 btrfs_tree_lock(next); 8649 btrfs_set_lock_blocking(next); 8650 } 8651 8652 level--; 8653 ASSERT(level == btrfs_header_level(next)); 8654 if (level != btrfs_header_level(next)) { 8655 btrfs_err(root->fs_info, "mismatched level"); 8656 ret = -EIO; 8657 goto out_unlock; 8658 } 8659 path->nodes[level] = next; 8660 path->slots[level] = 0; 8661 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8662 wc->level = level; 8663 if (wc->level == 1) 8664 wc->reada_slot = 0; 8665 return 0; 8666 skip: 8667 wc->refs[level - 1] = 0; 8668 wc->flags[level - 1] = 0; 8669 if (wc->stage == DROP_REFERENCE) { 8670 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8671 parent = path->nodes[level]->start; 8672 } else { 8673 ASSERT(root->root_key.objectid == 8674 btrfs_header_owner(path->nodes[level])); 8675 if (root->root_key.objectid != 8676 btrfs_header_owner(path->nodes[level])) { 8677 btrfs_err(root->fs_info, 8678 "mismatched block owner"); 8679 ret = -EIO; 8680 goto out_unlock; 8681 } 8682 parent = 0; 8683 } 8684 8685 /* 8686 * Reloc tree doesn't contribute to qgroup numbers, and we have 8687 * already accounted them at merge time (replace_path), 8688 * thus we could skip expensive subtree trace here. 8689 */ 8690 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 8691 need_account) { 8692 ret = btrfs_qgroup_trace_subtree(trans, next, 8693 generation, level - 1); 8694 if (ret) { 8695 btrfs_err_rl(fs_info, 8696 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8697 ret); 8698 } 8699 } 8700 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8701 parent, root->root_key.objectid, 8702 level - 1, 0); 8703 if (ret) 8704 goto out_unlock; 8705 } 8706 8707 *lookup_info = 1; 8708 ret = 1; 8709 8710 out_unlock: 8711 btrfs_tree_unlock(next); 8712 free_extent_buffer(next); 8713 8714 return ret; 8715 } 8716 8717 /* 8718 * helper to process tree block while walking up the tree. 8719 * 8720 * when wc->stage == DROP_REFERENCE, this function drops 8721 * reference count on the block. 8722 * 8723 * when wc->stage == UPDATE_BACKREF, this function changes 8724 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8725 * to UPDATE_BACKREF previously while processing the block. 8726 * 8727 * NOTE: return value 1 means we should stop walking up. 8728 */ 8729 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8730 struct btrfs_root *root, 8731 struct btrfs_path *path, 8732 struct walk_control *wc) 8733 { 8734 struct btrfs_fs_info *fs_info = root->fs_info; 8735 int ret; 8736 int level = wc->level; 8737 struct extent_buffer *eb = path->nodes[level]; 8738 u64 parent = 0; 8739 8740 if (wc->stage == UPDATE_BACKREF) { 8741 BUG_ON(wc->shared_level < level); 8742 if (level < wc->shared_level) 8743 goto out; 8744 8745 ret = find_next_key(path, level + 1, &wc->update_progress); 8746 if (ret > 0) 8747 wc->update_ref = 0; 8748 8749 wc->stage = DROP_REFERENCE; 8750 wc->shared_level = -1; 8751 path->slots[level] = 0; 8752 8753 /* 8754 * check reference count again if the block isn't locked. 8755 * we should start walking down the tree again if reference 8756 * count is one. 8757 */ 8758 if (!path->locks[level]) { 8759 BUG_ON(level == 0); 8760 btrfs_tree_lock(eb); 8761 btrfs_set_lock_blocking(eb); 8762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8763 8764 ret = btrfs_lookup_extent_info(trans, fs_info, 8765 eb->start, level, 1, 8766 &wc->refs[level], 8767 &wc->flags[level]); 8768 if (ret < 0) { 8769 btrfs_tree_unlock_rw(eb, path->locks[level]); 8770 path->locks[level] = 0; 8771 return ret; 8772 } 8773 BUG_ON(wc->refs[level] == 0); 8774 if (wc->refs[level] == 1) { 8775 btrfs_tree_unlock_rw(eb, path->locks[level]); 8776 path->locks[level] = 0; 8777 return 1; 8778 } 8779 } 8780 } 8781 8782 /* wc->stage == DROP_REFERENCE */ 8783 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8784 8785 if (wc->refs[level] == 1) { 8786 if (level == 0) { 8787 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8788 ret = btrfs_dec_ref(trans, root, eb, 1); 8789 else 8790 ret = btrfs_dec_ref(trans, root, eb, 0); 8791 BUG_ON(ret); /* -ENOMEM */ 8792 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 8793 if (ret) { 8794 btrfs_err_rl(fs_info, 8795 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8796 ret); 8797 } 8798 } 8799 /* make block locked assertion in clean_tree_block happy */ 8800 if (!path->locks[level] && 8801 btrfs_header_generation(eb) == trans->transid) { 8802 btrfs_tree_lock(eb); 8803 btrfs_set_lock_blocking(eb); 8804 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8805 } 8806 clean_tree_block(fs_info, eb); 8807 } 8808 8809 if (eb == root->node) { 8810 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8811 parent = eb->start; 8812 else if (root->root_key.objectid != btrfs_header_owner(eb)) 8813 goto owner_mismatch; 8814 } else { 8815 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8816 parent = path->nodes[level + 1]->start; 8817 else if (root->root_key.objectid != 8818 btrfs_header_owner(path->nodes[level + 1])) 8819 goto owner_mismatch; 8820 } 8821 8822 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8823 out: 8824 wc->refs[level] = 0; 8825 wc->flags[level] = 0; 8826 return 0; 8827 8828 owner_mismatch: 8829 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 8830 btrfs_header_owner(eb), root->root_key.objectid); 8831 return -EUCLEAN; 8832 } 8833 8834 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8835 struct btrfs_root *root, 8836 struct btrfs_path *path, 8837 struct walk_control *wc) 8838 { 8839 int level = wc->level; 8840 int lookup_info = 1; 8841 int ret; 8842 8843 while (level >= 0) { 8844 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8845 if (ret > 0) 8846 break; 8847 8848 if (level == 0) 8849 break; 8850 8851 if (path->slots[level] >= 8852 btrfs_header_nritems(path->nodes[level])) 8853 break; 8854 8855 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8856 if (ret > 0) { 8857 path->slots[level]++; 8858 continue; 8859 } else if (ret < 0) 8860 return ret; 8861 level = wc->level; 8862 } 8863 return 0; 8864 } 8865 8866 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8867 struct btrfs_root *root, 8868 struct btrfs_path *path, 8869 struct walk_control *wc, int max_level) 8870 { 8871 int level = wc->level; 8872 int ret; 8873 8874 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8875 while (level < max_level && path->nodes[level]) { 8876 wc->level = level; 8877 if (path->slots[level] + 1 < 8878 btrfs_header_nritems(path->nodes[level])) { 8879 path->slots[level]++; 8880 return 0; 8881 } else { 8882 ret = walk_up_proc(trans, root, path, wc); 8883 if (ret > 0) 8884 return 0; 8885 if (ret < 0) 8886 return ret; 8887 8888 if (path->locks[level]) { 8889 btrfs_tree_unlock_rw(path->nodes[level], 8890 path->locks[level]); 8891 path->locks[level] = 0; 8892 } 8893 free_extent_buffer(path->nodes[level]); 8894 path->nodes[level] = NULL; 8895 level++; 8896 } 8897 } 8898 return 1; 8899 } 8900 8901 /* 8902 * drop a subvolume tree. 8903 * 8904 * this function traverses the tree freeing any blocks that only 8905 * referenced by the tree. 8906 * 8907 * when a shared tree block is found. this function decreases its 8908 * reference count by one. if update_ref is true, this function 8909 * also make sure backrefs for the shared block and all lower level 8910 * blocks are properly updated. 8911 * 8912 * If called with for_reloc == 0, may exit early with -EAGAIN 8913 */ 8914 int btrfs_drop_snapshot(struct btrfs_root *root, 8915 struct btrfs_block_rsv *block_rsv, int update_ref, 8916 int for_reloc) 8917 { 8918 struct btrfs_fs_info *fs_info = root->fs_info; 8919 struct btrfs_path *path; 8920 struct btrfs_trans_handle *trans; 8921 struct btrfs_root *tree_root = fs_info->tree_root; 8922 struct btrfs_root_item *root_item = &root->root_item; 8923 struct walk_control *wc; 8924 struct btrfs_key key; 8925 int err = 0; 8926 int ret; 8927 int level; 8928 bool root_dropped = false; 8929 8930 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 8931 8932 path = btrfs_alloc_path(); 8933 if (!path) { 8934 err = -ENOMEM; 8935 goto out; 8936 } 8937 8938 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8939 if (!wc) { 8940 btrfs_free_path(path); 8941 err = -ENOMEM; 8942 goto out; 8943 } 8944 8945 trans = btrfs_start_transaction(tree_root, 0); 8946 if (IS_ERR(trans)) { 8947 err = PTR_ERR(trans); 8948 goto out_free; 8949 } 8950 8951 if (block_rsv) 8952 trans->block_rsv = block_rsv; 8953 8954 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8955 level = btrfs_header_level(root->node); 8956 path->nodes[level] = btrfs_lock_root_node(root); 8957 btrfs_set_lock_blocking(path->nodes[level]); 8958 path->slots[level] = 0; 8959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8960 memset(&wc->update_progress, 0, 8961 sizeof(wc->update_progress)); 8962 } else { 8963 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8964 memcpy(&wc->update_progress, &key, 8965 sizeof(wc->update_progress)); 8966 8967 level = root_item->drop_level; 8968 BUG_ON(level == 0); 8969 path->lowest_level = level; 8970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8971 path->lowest_level = 0; 8972 if (ret < 0) { 8973 err = ret; 8974 goto out_end_trans; 8975 } 8976 WARN_ON(ret > 0); 8977 8978 /* 8979 * unlock our path, this is safe because only this 8980 * function is allowed to delete this snapshot 8981 */ 8982 btrfs_unlock_up_safe(path, 0); 8983 8984 level = btrfs_header_level(root->node); 8985 while (1) { 8986 btrfs_tree_lock(path->nodes[level]); 8987 btrfs_set_lock_blocking(path->nodes[level]); 8988 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8989 8990 ret = btrfs_lookup_extent_info(trans, fs_info, 8991 path->nodes[level]->start, 8992 level, 1, &wc->refs[level], 8993 &wc->flags[level]); 8994 if (ret < 0) { 8995 err = ret; 8996 goto out_end_trans; 8997 } 8998 BUG_ON(wc->refs[level] == 0); 8999 9000 if (level == root_item->drop_level) 9001 break; 9002 9003 btrfs_tree_unlock(path->nodes[level]); 9004 path->locks[level] = 0; 9005 WARN_ON(wc->refs[level] != 1); 9006 level--; 9007 } 9008 } 9009 9010 wc->level = level; 9011 wc->shared_level = -1; 9012 wc->stage = DROP_REFERENCE; 9013 wc->update_ref = update_ref; 9014 wc->keep_locks = 0; 9015 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9016 9017 while (1) { 9018 9019 ret = walk_down_tree(trans, root, path, wc); 9020 if (ret < 0) { 9021 err = ret; 9022 break; 9023 } 9024 9025 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9026 if (ret < 0) { 9027 err = ret; 9028 break; 9029 } 9030 9031 if (ret > 0) { 9032 BUG_ON(wc->stage != DROP_REFERENCE); 9033 break; 9034 } 9035 9036 if (wc->stage == DROP_REFERENCE) { 9037 level = wc->level; 9038 btrfs_node_key(path->nodes[level], 9039 &root_item->drop_progress, 9040 path->slots[level]); 9041 root_item->drop_level = level; 9042 } 9043 9044 BUG_ON(wc->level == 0); 9045 if (btrfs_should_end_transaction(trans) || 9046 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9047 ret = btrfs_update_root(trans, tree_root, 9048 &root->root_key, 9049 root_item); 9050 if (ret) { 9051 btrfs_abort_transaction(trans, ret); 9052 err = ret; 9053 goto out_end_trans; 9054 } 9055 9056 btrfs_end_transaction_throttle(trans); 9057 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9058 btrfs_debug(fs_info, 9059 "drop snapshot early exit"); 9060 err = -EAGAIN; 9061 goto out_free; 9062 } 9063 9064 trans = btrfs_start_transaction(tree_root, 0); 9065 if (IS_ERR(trans)) { 9066 err = PTR_ERR(trans); 9067 goto out_free; 9068 } 9069 if (block_rsv) 9070 trans->block_rsv = block_rsv; 9071 } 9072 } 9073 btrfs_release_path(path); 9074 if (err) 9075 goto out_end_trans; 9076 9077 ret = btrfs_del_root(trans, &root->root_key); 9078 if (ret) { 9079 btrfs_abort_transaction(trans, ret); 9080 err = ret; 9081 goto out_end_trans; 9082 } 9083 9084 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9085 ret = btrfs_find_root(tree_root, &root->root_key, path, 9086 NULL, NULL); 9087 if (ret < 0) { 9088 btrfs_abort_transaction(trans, ret); 9089 err = ret; 9090 goto out_end_trans; 9091 } else if (ret > 0) { 9092 /* if we fail to delete the orphan item this time 9093 * around, it'll get picked up the next time. 9094 * 9095 * The most common failure here is just -ENOENT. 9096 */ 9097 btrfs_del_orphan_item(trans, tree_root, 9098 root->root_key.objectid); 9099 } 9100 } 9101 9102 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9103 btrfs_add_dropped_root(trans, root); 9104 } else { 9105 free_extent_buffer(root->node); 9106 free_extent_buffer(root->commit_root); 9107 btrfs_put_fs_root(root); 9108 } 9109 root_dropped = true; 9110 out_end_trans: 9111 btrfs_end_transaction_throttle(trans); 9112 out_free: 9113 kfree(wc); 9114 btrfs_free_path(path); 9115 out: 9116 /* 9117 * So if we need to stop dropping the snapshot for whatever reason we 9118 * need to make sure to add it back to the dead root list so that we 9119 * keep trying to do the work later. This also cleans up roots if we 9120 * don't have it in the radix (like when we recover after a power fail 9121 * or unmount) so we don't leak memory. 9122 */ 9123 if (!for_reloc && !root_dropped) 9124 btrfs_add_dead_root(root); 9125 if (err && err != -EAGAIN) 9126 btrfs_handle_fs_error(fs_info, err, NULL); 9127 return err; 9128 } 9129 9130 /* 9131 * drop subtree rooted at tree block 'node'. 9132 * 9133 * NOTE: this function will unlock and release tree block 'node' 9134 * only used by relocation code 9135 */ 9136 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9137 struct btrfs_root *root, 9138 struct extent_buffer *node, 9139 struct extent_buffer *parent) 9140 { 9141 struct btrfs_fs_info *fs_info = root->fs_info; 9142 struct btrfs_path *path; 9143 struct walk_control *wc; 9144 int level; 9145 int parent_level; 9146 int ret = 0; 9147 int wret; 9148 9149 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9150 9151 path = btrfs_alloc_path(); 9152 if (!path) 9153 return -ENOMEM; 9154 9155 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9156 if (!wc) { 9157 btrfs_free_path(path); 9158 return -ENOMEM; 9159 } 9160 9161 btrfs_assert_tree_locked(parent); 9162 parent_level = btrfs_header_level(parent); 9163 extent_buffer_get(parent); 9164 path->nodes[parent_level] = parent; 9165 path->slots[parent_level] = btrfs_header_nritems(parent); 9166 9167 btrfs_assert_tree_locked(node); 9168 level = btrfs_header_level(node); 9169 path->nodes[level] = node; 9170 path->slots[level] = 0; 9171 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9172 9173 wc->refs[parent_level] = 1; 9174 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9175 wc->level = level; 9176 wc->shared_level = -1; 9177 wc->stage = DROP_REFERENCE; 9178 wc->update_ref = 0; 9179 wc->keep_locks = 1; 9180 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9181 9182 while (1) { 9183 wret = walk_down_tree(trans, root, path, wc); 9184 if (wret < 0) { 9185 ret = wret; 9186 break; 9187 } 9188 9189 wret = walk_up_tree(trans, root, path, wc, parent_level); 9190 if (wret < 0) 9191 ret = wret; 9192 if (wret != 0) 9193 break; 9194 } 9195 9196 kfree(wc); 9197 btrfs_free_path(path); 9198 return ret; 9199 } 9200 9201 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9202 { 9203 u64 num_devices; 9204 u64 stripped; 9205 9206 /* 9207 * if restripe for this chunk_type is on pick target profile and 9208 * return, otherwise do the usual balance 9209 */ 9210 stripped = get_restripe_target(fs_info, flags); 9211 if (stripped) 9212 return extended_to_chunk(stripped); 9213 9214 num_devices = fs_info->fs_devices->rw_devices; 9215 9216 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9217 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9219 9220 if (num_devices == 1) { 9221 stripped |= BTRFS_BLOCK_GROUP_DUP; 9222 stripped = flags & ~stripped; 9223 9224 /* turn raid0 into single device chunks */ 9225 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9226 return stripped; 9227 9228 /* turn mirroring into duplication */ 9229 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9230 BTRFS_BLOCK_GROUP_RAID10)) 9231 return stripped | BTRFS_BLOCK_GROUP_DUP; 9232 } else { 9233 /* they already had raid on here, just return */ 9234 if (flags & stripped) 9235 return flags; 9236 9237 stripped |= BTRFS_BLOCK_GROUP_DUP; 9238 stripped = flags & ~stripped; 9239 9240 /* switch duplicated blocks with raid1 */ 9241 if (flags & BTRFS_BLOCK_GROUP_DUP) 9242 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9243 9244 /* this is drive concat, leave it alone */ 9245 } 9246 9247 return flags; 9248 } 9249 9250 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9251 { 9252 struct btrfs_space_info *sinfo = cache->space_info; 9253 u64 num_bytes; 9254 u64 min_allocable_bytes; 9255 int ret = -ENOSPC; 9256 9257 /* 9258 * We need some metadata space and system metadata space for 9259 * allocating chunks in some corner cases until we force to set 9260 * it to be readonly. 9261 */ 9262 if ((sinfo->flags & 9263 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9264 !force) 9265 min_allocable_bytes = SZ_1M; 9266 else 9267 min_allocable_bytes = 0; 9268 9269 spin_lock(&sinfo->lock); 9270 spin_lock(&cache->lock); 9271 9272 if (cache->ro) { 9273 cache->ro++; 9274 ret = 0; 9275 goto out; 9276 } 9277 9278 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9279 cache->bytes_super - btrfs_block_group_used(&cache->item); 9280 9281 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9282 min_allocable_bytes <= sinfo->total_bytes) { 9283 sinfo->bytes_readonly += num_bytes; 9284 cache->ro++; 9285 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9286 ret = 0; 9287 } 9288 out: 9289 spin_unlock(&cache->lock); 9290 spin_unlock(&sinfo->lock); 9291 return ret; 9292 } 9293 9294 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache) 9295 9296 { 9297 struct btrfs_fs_info *fs_info = cache->fs_info; 9298 struct btrfs_trans_handle *trans; 9299 u64 alloc_flags; 9300 int ret; 9301 9302 again: 9303 trans = btrfs_join_transaction(fs_info->extent_root); 9304 if (IS_ERR(trans)) 9305 return PTR_ERR(trans); 9306 9307 /* 9308 * we're not allowed to set block groups readonly after the dirty 9309 * block groups cache has started writing. If it already started, 9310 * back off and let this transaction commit 9311 */ 9312 mutex_lock(&fs_info->ro_block_group_mutex); 9313 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9314 u64 transid = trans->transid; 9315 9316 mutex_unlock(&fs_info->ro_block_group_mutex); 9317 btrfs_end_transaction(trans); 9318 9319 ret = btrfs_wait_for_commit(fs_info, transid); 9320 if (ret) 9321 return ret; 9322 goto again; 9323 } 9324 9325 /* 9326 * if we are changing raid levels, try to allocate a corresponding 9327 * block group with the new raid level. 9328 */ 9329 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9330 if (alloc_flags != cache->flags) { 9331 ret = do_chunk_alloc(trans, alloc_flags, 9332 CHUNK_ALLOC_FORCE); 9333 /* 9334 * ENOSPC is allowed here, we may have enough space 9335 * already allocated at the new raid level to 9336 * carry on 9337 */ 9338 if (ret == -ENOSPC) 9339 ret = 0; 9340 if (ret < 0) 9341 goto out; 9342 } 9343 9344 ret = inc_block_group_ro(cache, 0); 9345 if (!ret) 9346 goto out; 9347 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9348 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 9349 if (ret < 0) 9350 goto out; 9351 ret = inc_block_group_ro(cache, 0); 9352 out: 9353 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9354 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9355 mutex_lock(&fs_info->chunk_mutex); 9356 check_system_chunk(trans, alloc_flags); 9357 mutex_unlock(&fs_info->chunk_mutex); 9358 } 9359 mutex_unlock(&fs_info->ro_block_group_mutex); 9360 9361 btrfs_end_transaction(trans); 9362 return ret; 9363 } 9364 9365 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) 9366 { 9367 u64 alloc_flags = get_alloc_profile(trans->fs_info, type); 9368 9369 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); 9370 } 9371 9372 /* 9373 * helper to account the unused space of all the readonly block group in the 9374 * space_info. takes mirrors into account. 9375 */ 9376 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9377 { 9378 struct btrfs_block_group_cache *block_group; 9379 u64 free_bytes = 0; 9380 int factor; 9381 9382 /* It's df, we don't care if it's racy */ 9383 if (list_empty(&sinfo->ro_bgs)) 9384 return 0; 9385 9386 spin_lock(&sinfo->lock); 9387 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9388 spin_lock(&block_group->lock); 9389 9390 if (!block_group->ro) { 9391 spin_unlock(&block_group->lock); 9392 continue; 9393 } 9394 9395 factor = btrfs_bg_type_to_factor(block_group->flags); 9396 free_bytes += (block_group->key.offset - 9397 btrfs_block_group_used(&block_group->item)) * 9398 factor; 9399 9400 spin_unlock(&block_group->lock); 9401 } 9402 spin_unlock(&sinfo->lock); 9403 9404 return free_bytes; 9405 } 9406 9407 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9408 { 9409 struct btrfs_space_info *sinfo = cache->space_info; 9410 u64 num_bytes; 9411 9412 BUG_ON(!cache->ro); 9413 9414 spin_lock(&sinfo->lock); 9415 spin_lock(&cache->lock); 9416 if (!--cache->ro) { 9417 num_bytes = cache->key.offset - cache->reserved - 9418 cache->pinned - cache->bytes_super - 9419 btrfs_block_group_used(&cache->item); 9420 sinfo->bytes_readonly -= num_bytes; 9421 list_del_init(&cache->ro_list); 9422 } 9423 spin_unlock(&cache->lock); 9424 spin_unlock(&sinfo->lock); 9425 } 9426 9427 /* 9428 * checks to see if its even possible to relocate this block group. 9429 * 9430 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9431 * ok to go ahead and try. 9432 */ 9433 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9434 { 9435 struct btrfs_root *root = fs_info->extent_root; 9436 struct btrfs_block_group_cache *block_group; 9437 struct btrfs_space_info *space_info; 9438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9439 struct btrfs_device *device; 9440 struct btrfs_trans_handle *trans; 9441 u64 min_free; 9442 u64 dev_min = 1; 9443 u64 dev_nr = 0; 9444 u64 target; 9445 int debug; 9446 int index; 9447 int full = 0; 9448 int ret = 0; 9449 9450 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9451 9452 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9453 9454 /* odd, couldn't find the block group, leave it alone */ 9455 if (!block_group) { 9456 if (debug) 9457 btrfs_warn(fs_info, 9458 "can't find block group for bytenr %llu", 9459 bytenr); 9460 return -1; 9461 } 9462 9463 min_free = btrfs_block_group_used(&block_group->item); 9464 9465 /* no bytes used, we're good */ 9466 if (!min_free) 9467 goto out; 9468 9469 space_info = block_group->space_info; 9470 spin_lock(&space_info->lock); 9471 9472 full = space_info->full; 9473 9474 /* 9475 * if this is the last block group we have in this space, we can't 9476 * relocate it unless we're able to allocate a new chunk below. 9477 * 9478 * Otherwise, we need to make sure we have room in the space to handle 9479 * all of the extents from this block group. If we can, we're good 9480 */ 9481 if ((space_info->total_bytes != block_group->key.offset) && 9482 (btrfs_space_info_used(space_info, false) + min_free < 9483 space_info->total_bytes)) { 9484 spin_unlock(&space_info->lock); 9485 goto out; 9486 } 9487 spin_unlock(&space_info->lock); 9488 9489 /* 9490 * ok we don't have enough space, but maybe we have free space on our 9491 * devices to allocate new chunks for relocation, so loop through our 9492 * alloc devices and guess if we have enough space. if this block 9493 * group is going to be restriped, run checks against the target 9494 * profile instead of the current one. 9495 */ 9496 ret = -1; 9497 9498 /* 9499 * index: 9500 * 0: raid10 9501 * 1: raid1 9502 * 2: dup 9503 * 3: raid0 9504 * 4: single 9505 */ 9506 target = get_restripe_target(fs_info, block_group->flags); 9507 if (target) { 9508 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9509 } else { 9510 /* 9511 * this is just a balance, so if we were marked as full 9512 * we know there is no space for a new chunk 9513 */ 9514 if (full) { 9515 if (debug) 9516 btrfs_warn(fs_info, 9517 "no space to alloc new chunk for block group %llu", 9518 block_group->key.objectid); 9519 goto out; 9520 } 9521 9522 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9523 } 9524 9525 if (index == BTRFS_RAID_RAID10) { 9526 dev_min = 4; 9527 /* Divide by 2 */ 9528 min_free >>= 1; 9529 } else if (index == BTRFS_RAID_RAID1) { 9530 dev_min = 2; 9531 } else if (index == BTRFS_RAID_DUP) { 9532 /* Multiply by 2 */ 9533 min_free <<= 1; 9534 } else if (index == BTRFS_RAID_RAID0) { 9535 dev_min = fs_devices->rw_devices; 9536 min_free = div64_u64(min_free, dev_min); 9537 } 9538 9539 /* We need to do this so that we can look at pending chunks */ 9540 trans = btrfs_join_transaction(root); 9541 if (IS_ERR(trans)) { 9542 ret = PTR_ERR(trans); 9543 goto out; 9544 } 9545 9546 mutex_lock(&fs_info->chunk_mutex); 9547 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9548 u64 dev_offset; 9549 9550 /* 9551 * check to make sure we can actually find a chunk with enough 9552 * space to fit our block group in. 9553 */ 9554 if (device->total_bytes > device->bytes_used + min_free && 9555 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9556 ret = find_free_dev_extent(trans, device, min_free, 9557 &dev_offset, NULL); 9558 if (!ret) 9559 dev_nr++; 9560 9561 if (dev_nr >= dev_min) 9562 break; 9563 9564 ret = -1; 9565 } 9566 } 9567 if (debug && ret == -1) 9568 btrfs_warn(fs_info, 9569 "no space to allocate a new chunk for block group %llu", 9570 block_group->key.objectid); 9571 mutex_unlock(&fs_info->chunk_mutex); 9572 btrfs_end_transaction(trans); 9573 out: 9574 btrfs_put_block_group(block_group); 9575 return ret; 9576 } 9577 9578 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9579 struct btrfs_path *path, 9580 struct btrfs_key *key) 9581 { 9582 struct btrfs_root *root = fs_info->extent_root; 9583 int ret = 0; 9584 struct btrfs_key found_key; 9585 struct extent_buffer *leaf; 9586 struct btrfs_block_group_item bg; 9587 u64 flags; 9588 int slot; 9589 9590 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9591 if (ret < 0) 9592 goto out; 9593 9594 while (1) { 9595 slot = path->slots[0]; 9596 leaf = path->nodes[0]; 9597 if (slot >= btrfs_header_nritems(leaf)) { 9598 ret = btrfs_next_leaf(root, path); 9599 if (ret == 0) 9600 continue; 9601 if (ret < 0) 9602 goto out; 9603 break; 9604 } 9605 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9606 9607 if (found_key.objectid >= key->objectid && 9608 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9609 struct extent_map_tree *em_tree; 9610 struct extent_map *em; 9611 9612 em_tree = &root->fs_info->mapping_tree.map_tree; 9613 read_lock(&em_tree->lock); 9614 em = lookup_extent_mapping(em_tree, found_key.objectid, 9615 found_key.offset); 9616 read_unlock(&em_tree->lock); 9617 if (!em) { 9618 btrfs_err(fs_info, 9619 "logical %llu len %llu found bg but no related chunk", 9620 found_key.objectid, found_key.offset); 9621 ret = -ENOENT; 9622 } else if (em->start != found_key.objectid || 9623 em->len != found_key.offset) { 9624 btrfs_err(fs_info, 9625 "block group %llu len %llu mismatch with chunk %llu len %llu", 9626 found_key.objectid, found_key.offset, 9627 em->start, em->len); 9628 ret = -EUCLEAN; 9629 } else { 9630 read_extent_buffer(leaf, &bg, 9631 btrfs_item_ptr_offset(leaf, slot), 9632 sizeof(bg)); 9633 flags = btrfs_block_group_flags(&bg) & 9634 BTRFS_BLOCK_GROUP_TYPE_MASK; 9635 9636 if (flags != (em->map_lookup->type & 9637 BTRFS_BLOCK_GROUP_TYPE_MASK)) { 9638 btrfs_err(fs_info, 9639 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", 9640 found_key.objectid, 9641 found_key.offset, flags, 9642 (BTRFS_BLOCK_GROUP_TYPE_MASK & 9643 em->map_lookup->type)); 9644 ret = -EUCLEAN; 9645 } else { 9646 ret = 0; 9647 } 9648 } 9649 free_extent_map(em); 9650 goto out; 9651 } 9652 path->slots[0]++; 9653 } 9654 out: 9655 return ret; 9656 } 9657 9658 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9659 { 9660 struct btrfs_block_group_cache *block_group; 9661 u64 last = 0; 9662 9663 while (1) { 9664 struct inode *inode; 9665 9666 block_group = btrfs_lookup_first_block_group(info, last); 9667 while (block_group) { 9668 wait_block_group_cache_done(block_group); 9669 spin_lock(&block_group->lock); 9670 if (block_group->iref) 9671 break; 9672 spin_unlock(&block_group->lock); 9673 block_group = next_block_group(info, block_group); 9674 } 9675 if (!block_group) { 9676 if (last == 0) 9677 break; 9678 last = 0; 9679 continue; 9680 } 9681 9682 inode = block_group->inode; 9683 block_group->iref = 0; 9684 block_group->inode = NULL; 9685 spin_unlock(&block_group->lock); 9686 ASSERT(block_group->io_ctl.inode == NULL); 9687 iput(inode); 9688 last = block_group->key.objectid + block_group->key.offset; 9689 btrfs_put_block_group(block_group); 9690 } 9691 } 9692 9693 /* 9694 * Must be called only after stopping all workers, since we could have block 9695 * group caching kthreads running, and therefore they could race with us if we 9696 * freed the block groups before stopping them. 9697 */ 9698 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9699 { 9700 struct btrfs_block_group_cache *block_group; 9701 struct btrfs_space_info *space_info; 9702 struct btrfs_caching_control *caching_ctl; 9703 struct rb_node *n; 9704 9705 down_write(&info->commit_root_sem); 9706 while (!list_empty(&info->caching_block_groups)) { 9707 caching_ctl = list_entry(info->caching_block_groups.next, 9708 struct btrfs_caching_control, list); 9709 list_del(&caching_ctl->list); 9710 put_caching_control(caching_ctl); 9711 } 9712 up_write(&info->commit_root_sem); 9713 9714 spin_lock(&info->unused_bgs_lock); 9715 while (!list_empty(&info->unused_bgs)) { 9716 block_group = list_first_entry(&info->unused_bgs, 9717 struct btrfs_block_group_cache, 9718 bg_list); 9719 list_del_init(&block_group->bg_list); 9720 btrfs_put_block_group(block_group); 9721 } 9722 spin_unlock(&info->unused_bgs_lock); 9723 9724 spin_lock(&info->block_group_cache_lock); 9725 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9726 block_group = rb_entry(n, struct btrfs_block_group_cache, 9727 cache_node); 9728 rb_erase(&block_group->cache_node, 9729 &info->block_group_cache_tree); 9730 RB_CLEAR_NODE(&block_group->cache_node); 9731 spin_unlock(&info->block_group_cache_lock); 9732 9733 down_write(&block_group->space_info->groups_sem); 9734 list_del(&block_group->list); 9735 up_write(&block_group->space_info->groups_sem); 9736 9737 /* 9738 * We haven't cached this block group, which means we could 9739 * possibly have excluded extents on this block group. 9740 */ 9741 if (block_group->cached == BTRFS_CACHE_NO || 9742 block_group->cached == BTRFS_CACHE_ERROR) 9743 free_excluded_extents(block_group); 9744 9745 btrfs_remove_free_space_cache(block_group); 9746 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9747 ASSERT(list_empty(&block_group->dirty_list)); 9748 ASSERT(list_empty(&block_group->io_list)); 9749 ASSERT(list_empty(&block_group->bg_list)); 9750 ASSERT(atomic_read(&block_group->count) == 1); 9751 btrfs_put_block_group(block_group); 9752 9753 spin_lock(&info->block_group_cache_lock); 9754 } 9755 spin_unlock(&info->block_group_cache_lock); 9756 9757 /* now that all the block groups are freed, go through and 9758 * free all the space_info structs. This is only called during 9759 * the final stages of unmount, and so we know nobody is 9760 * using them. We call synchronize_rcu() once before we start, 9761 * just to be on the safe side. 9762 */ 9763 synchronize_rcu(); 9764 9765 release_global_block_rsv(info); 9766 9767 while (!list_empty(&info->space_info)) { 9768 int i; 9769 9770 space_info = list_entry(info->space_info.next, 9771 struct btrfs_space_info, 9772 list); 9773 9774 /* 9775 * Do not hide this behind enospc_debug, this is actually 9776 * important and indicates a real bug if this happens. 9777 */ 9778 if (WARN_ON(space_info->bytes_pinned > 0 || 9779 space_info->bytes_reserved > 0 || 9780 space_info->bytes_may_use > 0)) 9781 dump_space_info(info, space_info, 0, 0); 9782 list_del(&space_info->list); 9783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9784 struct kobject *kobj; 9785 kobj = space_info->block_group_kobjs[i]; 9786 space_info->block_group_kobjs[i] = NULL; 9787 if (kobj) { 9788 kobject_del(kobj); 9789 kobject_put(kobj); 9790 } 9791 } 9792 kobject_del(&space_info->kobj); 9793 kobject_put(&space_info->kobj); 9794 } 9795 return 0; 9796 } 9797 9798 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9799 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9800 { 9801 struct btrfs_space_info *space_info; 9802 struct raid_kobject *rkobj; 9803 LIST_HEAD(list); 9804 int index; 9805 int ret = 0; 9806 9807 spin_lock(&fs_info->pending_raid_kobjs_lock); 9808 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9809 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9810 9811 list_for_each_entry(rkobj, &list, list) { 9812 space_info = __find_space_info(fs_info, rkobj->flags); 9813 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9814 9815 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9816 "%s", get_raid_name(index)); 9817 if (ret) { 9818 kobject_put(&rkobj->kobj); 9819 break; 9820 } 9821 } 9822 if (ret) 9823 btrfs_warn(fs_info, 9824 "failed to add kobject for block cache, ignoring"); 9825 } 9826 9827 static void link_block_group(struct btrfs_block_group_cache *cache) 9828 { 9829 struct btrfs_space_info *space_info = cache->space_info; 9830 struct btrfs_fs_info *fs_info = cache->fs_info; 9831 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9832 bool first = false; 9833 9834 down_write(&space_info->groups_sem); 9835 if (list_empty(&space_info->block_groups[index])) 9836 first = true; 9837 list_add_tail(&cache->list, &space_info->block_groups[index]); 9838 up_write(&space_info->groups_sem); 9839 9840 if (first) { 9841 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9842 if (!rkobj) { 9843 btrfs_warn(cache->fs_info, 9844 "couldn't alloc memory for raid level kobject"); 9845 return; 9846 } 9847 rkobj->flags = cache->flags; 9848 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9849 9850 spin_lock(&fs_info->pending_raid_kobjs_lock); 9851 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 9852 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9853 space_info->block_group_kobjs[index] = &rkobj->kobj; 9854 } 9855 } 9856 9857 static struct btrfs_block_group_cache * 9858 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9859 u64 start, u64 size) 9860 { 9861 struct btrfs_block_group_cache *cache; 9862 9863 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9864 if (!cache) 9865 return NULL; 9866 9867 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9868 GFP_NOFS); 9869 if (!cache->free_space_ctl) { 9870 kfree(cache); 9871 return NULL; 9872 } 9873 9874 cache->key.objectid = start; 9875 cache->key.offset = size; 9876 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9877 9878 cache->fs_info = fs_info; 9879 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9880 set_free_space_tree_thresholds(cache); 9881 9882 atomic_set(&cache->count, 1); 9883 spin_lock_init(&cache->lock); 9884 init_rwsem(&cache->data_rwsem); 9885 INIT_LIST_HEAD(&cache->list); 9886 INIT_LIST_HEAD(&cache->cluster_list); 9887 INIT_LIST_HEAD(&cache->bg_list); 9888 INIT_LIST_HEAD(&cache->ro_list); 9889 INIT_LIST_HEAD(&cache->dirty_list); 9890 INIT_LIST_HEAD(&cache->io_list); 9891 btrfs_init_free_space_ctl(cache); 9892 atomic_set(&cache->trimming, 0); 9893 mutex_init(&cache->free_space_lock); 9894 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9895 9896 return cache; 9897 } 9898 9899 9900 /* 9901 * Iterate all chunks and verify that each of them has the corresponding block 9902 * group 9903 */ 9904 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) 9905 { 9906 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 9907 struct extent_map *em; 9908 struct btrfs_block_group_cache *bg; 9909 u64 start = 0; 9910 int ret = 0; 9911 9912 while (1) { 9913 read_lock(&map_tree->map_tree.lock); 9914 /* 9915 * lookup_extent_mapping will return the first extent map 9916 * intersecting the range, so setting @len to 1 is enough to 9917 * get the first chunk. 9918 */ 9919 em = lookup_extent_mapping(&map_tree->map_tree, start, 1); 9920 read_unlock(&map_tree->map_tree.lock); 9921 if (!em) 9922 break; 9923 9924 bg = btrfs_lookup_block_group(fs_info, em->start); 9925 if (!bg) { 9926 btrfs_err(fs_info, 9927 "chunk start=%llu len=%llu doesn't have corresponding block group", 9928 em->start, em->len); 9929 ret = -EUCLEAN; 9930 free_extent_map(em); 9931 break; 9932 } 9933 if (bg->key.objectid != em->start || 9934 bg->key.offset != em->len || 9935 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != 9936 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 9937 btrfs_err(fs_info, 9938 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", 9939 em->start, em->len, 9940 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, 9941 bg->key.objectid, bg->key.offset, 9942 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 9943 ret = -EUCLEAN; 9944 free_extent_map(em); 9945 btrfs_put_block_group(bg); 9946 break; 9947 } 9948 start = em->start + em->len; 9949 free_extent_map(em); 9950 btrfs_put_block_group(bg); 9951 } 9952 return ret; 9953 } 9954 9955 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9956 { 9957 struct btrfs_path *path; 9958 int ret; 9959 struct btrfs_block_group_cache *cache; 9960 struct btrfs_space_info *space_info; 9961 struct btrfs_key key; 9962 struct btrfs_key found_key; 9963 struct extent_buffer *leaf; 9964 int need_clear = 0; 9965 u64 cache_gen; 9966 u64 feature; 9967 int mixed; 9968 9969 feature = btrfs_super_incompat_flags(info->super_copy); 9970 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 9971 9972 key.objectid = 0; 9973 key.offset = 0; 9974 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9975 path = btrfs_alloc_path(); 9976 if (!path) 9977 return -ENOMEM; 9978 path->reada = READA_FORWARD; 9979 9980 cache_gen = btrfs_super_cache_generation(info->super_copy); 9981 if (btrfs_test_opt(info, SPACE_CACHE) && 9982 btrfs_super_generation(info->super_copy) != cache_gen) 9983 need_clear = 1; 9984 if (btrfs_test_opt(info, CLEAR_CACHE)) 9985 need_clear = 1; 9986 9987 while (1) { 9988 ret = find_first_block_group(info, path, &key); 9989 if (ret > 0) 9990 break; 9991 if (ret != 0) 9992 goto error; 9993 9994 leaf = path->nodes[0]; 9995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9996 9997 cache = btrfs_create_block_group_cache(info, found_key.objectid, 9998 found_key.offset); 9999 if (!cache) { 10000 ret = -ENOMEM; 10001 goto error; 10002 } 10003 10004 if (need_clear) { 10005 /* 10006 * When we mount with old space cache, we need to 10007 * set BTRFS_DC_CLEAR and set dirty flag. 10008 * 10009 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10010 * truncate the old free space cache inode and 10011 * setup a new one. 10012 * b) Setting 'dirty flag' makes sure that we flush 10013 * the new space cache info onto disk. 10014 */ 10015 if (btrfs_test_opt(info, SPACE_CACHE)) 10016 cache->disk_cache_state = BTRFS_DC_CLEAR; 10017 } 10018 10019 read_extent_buffer(leaf, &cache->item, 10020 btrfs_item_ptr_offset(leaf, path->slots[0]), 10021 sizeof(cache->item)); 10022 cache->flags = btrfs_block_group_flags(&cache->item); 10023 if (!mixed && 10024 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10025 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10026 btrfs_err(info, 10027 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10028 cache->key.objectid); 10029 ret = -EINVAL; 10030 goto error; 10031 } 10032 10033 key.objectid = found_key.objectid + found_key.offset; 10034 btrfs_release_path(path); 10035 10036 /* 10037 * We need to exclude the super stripes now so that the space 10038 * info has super bytes accounted for, otherwise we'll think 10039 * we have more space than we actually do. 10040 */ 10041 ret = exclude_super_stripes(cache); 10042 if (ret) { 10043 /* 10044 * We may have excluded something, so call this just in 10045 * case. 10046 */ 10047 free_excluded_extents(cache); 10048 btrfs_put_block_group(cache); 10049 goto error; 10050 } 10051 10052 /* 10053 * check for two cases, either we are full, and therefore 10054 * don't need to bother with the caching work since we won't 10055 * find any space, or we are empty, and we can just add all 10056 * the space in and be done with it. This saves us _alot_ of 10057 * time, particularly in the full case. 10058 */ 10059 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10060 cache->last_byte_to_unpin = (u64)-1; 10061 cache->cached = BTRFS_CACHE_FINISHED; 10062 free_excluded_extents(cache); 10063 } else if (btrfs_block_group_used(&cache->item) == 0) { 10064 cache->last_byte_to_unpin = (u64)-1; 10065 cache->cached = BTRFS_CACHE_FINISHED; 10066 add_new_free_space(cache, found_key.objectid, 10067 found_key.objectid + 10068 found_key.offset); 10069 free_excluded_extents(cache); 10070 } 10071 10072 ret = btrfs_add_block_group_cache(info, cache); 10073 if (ret) { 10074 btrfs_remove_free_space_cache(cache); 10075 btrfs_put_block_group(cache); 10076 goto error; 10077 } 10078 10079 trace_btrfs_add_block_group(info, cache, 0); 10080 update_space_info(info, cache->flags, found_key.offset, 10081 btrfs_block_group_used(&cache->item), 10082 cache->bytes_super, &space_info); 10083 10084 cache->space_info = space_info; 10085 10086 link_block_group(cache); 10087 10088 set_avail_alloc_bits(info, cache->flags); 10089 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10090 inc_block_group_ro(cache, 1); 10091 } else if (btrfs_block_group_used(&cache->item) == 0) { 10092 ASSERT(list_empty(&cache->bg_list)); 10093 btrfs_mark_bg_unused(cache); 10094 } 10095 } 10096 10097 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10098 if (!(get_alloc_profile(info, space_info->flags) & 10099 (BTRFS_BLOCK_GROUP_RAID10 | 10100 BTRFS_BLOCK_GROUP_RAID1 | 10101 BTRFS_BLOCK_GROUP_RAID5 | 10102 BTRFS_BLOCK_GROUP_RAID6 | 10103 BTRFS_BLOCK_GROUP_DUP))) 10104 continue; 10105 /* 10106 * avoid allocating from un-mirrored block group if there are 10107 * mirrored block groups. 10108 */ 10109 list_for_each_entry(cache, 10110 &space_info->block_groups[BTRFS_RAID_RAID0], 10111 list) 10112 inc_block_group_ro(cache, 1); 10113 list_for_each_entry(cache, 10114 &space_info->block_groups[BTRFS_RAID_SINGLE], 10115 list) 10116 inc_block_group_ro(cache, 1); 10117 } 10118 10119 btrfs_add_raid_kobjects(info); 10120 init_global_block_rsv(info); 10121 ret = check_chunk_block_group_mappings(info); 10122 error: 10123 btrfs_free_path(path); 10124 return ret; 10125 } 10126 10127 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10128 { 10129 struct btrfs_fs_info *fs_info = trans->fs_info; 10130 struct btrfs_block_group_cache *block_group; 10131 struct btrfs_root *extent_root = fs_info->extent_root; 10132 struct btrfs_block_group_item item; 10133 struct btrfs_key key; 10134 int ret = 0; 10135 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10136 10137 trans->can_flush_pending_bgs = false; 10138 while (!list_empty(&trans->new_bgs)) { 10139 block_group = list_first_entry(&trans->new_bgs, 10140 struct btrfs_block_group_cache, 10141 bg_list); 10142 if (ret) 10143 goto next; 10144 10145 spin_lock(&block_group->lock); 10146 memcpy(&item, &block_group->item, sizeof(item)); 10147 memcpy(&key, &block_group->key, sizeof(key)); 10148 spin_unlock(&block_group->lock); 10149 10150 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10151 sizeof(item)); 10152 if (ret) 10153 btrfs_abort_transaction(trans, ret); 10154 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); 10155 if (ret) 10156 btrfs_abort_transaction(trans, ret); 10157 add_block_group_free_space(trans, block_group); 10158 /* already aborted the transaction if it failed. */ 10159 next: 10160 list_del_init(&block_group->bg_list); 10161 } 10162 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10163 } 10164 10165 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, 10166 u64 type, u64 chunk_offset, u64 size) 10167 { 10168 struct btrfs_fs_info *fs_info = trans->fs_info; 10169 struct btrfs_block_group_cache *cache; 10170 int ret; 10171 10172 btrfs_set_log_full_commit(fs_info, trans); 10173 10174 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10175 if (!cache) 10176 return -ENOMEM; 10177 10178 btrfs_set_block_group_used(&cache->item, bytes_used); 10179 btrfs_set_block_group_chunk_objectid(&cache->item, 10180 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10181 btrfs_set_block_group_flags(&cache->item, type); 10182 10183 cache->flags = type; 10184 cache->last_byte_to_unpin = (u64)-1; 10185 cache->cached = BTRFS_CACHE_FINISHED; 10186 cache->needs_free_space = 1; 10187 ret = exclude_super_stripes(cache); 10188 if (ret) { 10189 /* 10190 * We may have excluded something, so call this just in 10191 * case. 10192 */ 10193 free_excluded_extents(cache); 10194 btrfs_put_block_group(cache); 10195 return ret; 10196 } 10197 10198 add_new_free_space(cache, chunk_offset, chunk_offset + size); 10199 10200 free_excluded_extents(cache); 10201 10202 #ifdef CONFIG_BTRFS_DEBUG 10203 if (btrfs_should_fragment_free_space(cache)) { 10204 u64 new_bytes_used = size - bytes_used; 10205 10206 bytes_used += new_bytes_used >> 1; 10207 fragment_free_space(cache); 10208 } 10209 #endif 10210 /* 10211 * Ensure the corresponding space_info object is created and 10212 * assigned to our block group. We want our bg to be added to the rbtree 10213 * with its ->space_info set. 10214 */ 10215 cache->space_info = __find_space_info(fs_info, cache->flags); 10216 ASSERT(cache->space_info); 10217 10218 ret = btrfs_add_block_group_cache(fs_info, cache); 10219 if (ret) { 10220 btrfs_remove_free_space_cache(cache); 10221 btrfs_put_block_group(cache); 10222 return ret; 10223 } 10224 10225 /* 10226 * Now that our block group has its ->space_info set and is inserted in 10227 * the rbtree, update the space info's counters. 10228 */ 10229 trace_btrfs_add_block_group(fs_info, cache, 1); 10230 update_space_info(fs_info, cache->flags, size, bytes_used, 10231 cache->bytes_super, &cache->space_info); 10232 update_global_block_rsv(fs_info); 10233 10234 link_block_group(cache); 10235 10236 list_add_tail(&cache->bg_list, &trans->new_bgs); 10237 10238 set_avail_alloc_bits(fs_info, type); 10239 return 0; 10240 } 10241 10242 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10243 { 10244 u64 extra_flags = chunk_to_extended(flags) & 10245 BTRFS_EXTENDED_PROFILE_MASK; 10246 10247 write_seqlock(&fs_info->profiles_lock); 10248 if (flags & BTRFS_BLOCK_GROUP_DATA) 10249 fs_info->avail_data_alloc_bits &= ~extra_flags; 10250 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10251 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10252 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10253 fs_info->avail_system_alloc_bits &= ~extra_flags; 10254 write_sequnlock(&fs_info->profiles_lock); 10255 } 10256 10257 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10258 u64 group_start, struct extent_map *em) 10259 { 10260 struct btrfs_fs_info *fs_info = trans->fs_info; 10261 struct btrfs_root *root = fs_info->extent_root; 10262 struct btrfs_path *path; 10263 struct btrfs_block_group_cache *block_group; 10264 struct btrfs_free_cluster *cluster; 10265 struct btrfs_root *tree_root = fs_info->tree_root; 10266 struct btrfs_key key; 10267 struct inode *inode; 10268 struct kobject *kobj = NULL; 10269 int ret; 10270 int index; 10271 int factor; 10272 struct btrfs_caching_control *caching_ctl = NULL; 10273 bool remove_em; 10274 10275 block_group = btrfs_lookup_block_group(fs_info, group_start); 10276 BUG_ON(!block_group); 10277 BUG_ON(!block_group->ro); 10278 10279 trace_btrfs_remove_block_group(block_group); 10280 /* 10281 * Free the reserved super bytes from this block group before 10282 * remove it. 10283 */ 10284 free_excluded_extents(block_group); 10285 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10286 block_group->key.offset); 10287 10288 memcpy(&key, &block_group->key, sizeof(key)); 10289 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10290 factor = btrfs_bg_type_to_factor(block_group->flags); 10291 10292 /* make sure this block group isn't part of an allocation cluster */ 10293 cluster = &fs_info->data_alloc_cluster; 10294 spin_lock(&cluster->refill_lock); 10295 btrfs_return_cluster_to_free_space(block_group, cluster); 10296 spin_unlock(&cluster->refill_lock); 10297 10298 /* 10299 * make sure this block group isn't part of a metadata 10300 * allocation cluster 10301 */ 10302 cluster = &fs_info->meta_alloc_cluster; 10303 spin_lock(&cluster->refill_lock); 10304 btrfs_return_cluster_to_free_space(block_group, cluster); 10305 spin_unlock(&cluster->refill_lock); 10306 10307 path = btrfs_alloc_path(); 10308 if (!path) { 10309 ret = -ENOMEM; 10310 goto out; 10311 } 10312 10313 /* 10314 * get the inode first so any iput calls done for the io_list 10315 * aren't the final iput (no unlinks allowed now) 10316 */ 10317 inode = lookup_free_space_inode(fs_info, block_group, path); 10318 10319 mutex_lock(&trans->transaction->cache_write_mutex); 10320 /* 10321 * make sure our free spache cache IO is done before remove the 10322 * free space inode 10323 */ 10324 spin_lock(&trans->transaction->dirty_bgs_lock); 10325 if (!list_empty(&block_group->io_list)) { 10326 list_del_init(&block_group->io_list); 10327 10328 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10329 10330 spin_unlock(&trans->transaction->dirty_bgs_lock); 10331 btrfs_wait_cache_io(trans, block_group, path); 10332 btrfs_put_block_group(block_group); 10333 spin_lock(&trans->transaction->dirty_bgs_lock); 10334 } 10335 10336 if (!list_empty(&block_group->dirty_list)) { 10337 list_del_init(&block_group->dirty_list); 10338 btrfs_put_block_group(block_group); 10339 } 10340 spin_unlock(&trans->transaction->dirty_bgs_lock); 10341 mutex_unlock(&trans->transaction->cache_write_mutex); 10342 10343 if (!IS_ERR(inode)) { 10344 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10345 if (ret) { 10346 btrfs_add_delayed_iput(inode); 10347 goto out; 10348 } 10349 clear_nlink(inode); 10350 /* One for the block groups ref */ 10351 spin_lock(&block_group->lock); 10352 if (block_group->iref) { 10353 block_group->iref = 0; 10354 block_group->inode = NULL; 10355 spin_unlock(&block_group->lock); 10356 iput(inode); 10357 } else { 10358 spin_unlock(&block_group->lock); 10359 } 10360 /* One for our lookup ref */ 10361 btrfs_add_delayed_iput(inode); 10362 } 10363 10364 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10365 key.offset = block_group->key.objectid; 10366 key.type = 0; 10367 10368 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10369 if (ret < 0) 10370 goto out; 10371 if (ret > 0) 10372 btrfs_release_path(path); 10373 if (ret == 0) { 10374 ret = btrfs_del_item(trans, tree_root, path); 10375 if (ret) 10376 goto out; 10377 btrfs_release_path(path); 10378 } 10379 10380 spin_lock(&fs_info->block_group_cache_lock); 10381 rb_erase(&block_group->cache_node, 10382 &fs_info->block_group_cache_tree); 10383 RB_CLEAR_NODE(&block_group->cache_node); 10384 10385 if (fs_info->first_logical_byte == block_group->key.objectid) 10386 fs_info->first_logical_byte = (u64)-1; 10387 spin_unlock(&fs_info->block_group_cache_lock); 10388 10389 down_write(&block_group->space_info->groups_sem); 10390 /* 10391 * we must use list_del_init so people can check to see if they 10392 * are still on the list after taking the semaphore 10393 */ 10394 list_del_init(&block_group->list); 10395 if (list_empty(&block_group->space_info->block_groups[index])) { 10396 kobj = block_group->space_info->block_group_kobjs[index]; 10397 block_group->space_info->block_group_kobjs[index] = NULL; 10398 clear_avail_alloc_bits(fs_info, block_group->flags); 10399 } 10400 up_write(&block_group->space_info->groups_sem); 10401 if (kobj) { 10402 kobject_del(kobj); 10403 kobject_put(kobj); 10404 } 10405 10406 if (block_group->has_caching_ctl) 10407 caching_ctl = get_caching_control(block_group); 10408 if (block_group->cached == BTRFS_CACHE_STARTED) 10409 wait_block_group_cache_done(block_group); 10410 if (block_group->has_caching_ctl) { 10411 down_write(&fs_info->commit_root_sem); 10412 if (!caching_ctl) { 10413 struct btrfs_caching_control *ctl; 10414 10415 list_for_each_entry(ctl, 10416 &fs_info->caching_block_groups, list) 10417 if (ctl->block_group == block_group) { 10418 caching_ctl = ctl; 10419 refcount_inc(&caching_ctl->count); 10420 break; 10421 } 10422 } 10423 if (caching_ctl) 10424 list_del_init(&caching_ctl->list); 10425 up_write(&fs_info->commit_root_sem); 10426 if (caching_ctl) { 10427 /* Once for the caching bgs list and once for us. */ 10428 put_caching_control(caching_ctl); 10429 put_caching_control(caching_ctl); 10430 } 10431 } 10432 10433 spin_lock(&trans->transaction->dirty_bgs_lock); 10434 if (!list_empty(&block_group->dirty_list)) { 10435 WARN_ON(1); 10436 } 10437 if (!list_empty(&block_group->io_list)) { 10438 WARN_ON(1); 10439 } 10440 spin_unlock(&trans->transaction->dirty_bgs_lock); 10441 btrfs_remove_free_space_cache(block_group); 10442 10443 spin_lock(&block_group->space_info->lock); 10444 list_del_init(&block_group->ro_list); 10445 10446 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10447 WARN_ON(block_group->space_info->total_bytes 10448 < block_group->key.offset); 10449 WARN_ON(block_group->space_info->bytes_readonly 10450 < block_group->key.offset); 10451 WARN_ON(block_group->space_info->disk_total 10452 < block_group->key.offset * factor); 10453 } 10454 block_group->space_info->total_bytes -= block_group->key.offset; 10455 block_group->space_info->bytes_readonly -= block_group->key.offset; 10456 block_group->space_info->disk_total -= block_group->key.offset * factor; 10457 10458 spin_unlock(&block_group->space_info->lock); 10459 10460 memcpy(&key, &block_group->key, sizeof(key)); 10461 10462 mutex_lock(&fs_info->chunk_mutex); 10463 if (!list_empty(&em->list)) { 10464 /* We're in the transaction->pending_chunks list. */ 10465 free_extent_map(em); 10466 } 10467 spin_lock(&block_group->lock); 10468 block_group->removed = 1; 10469 /* 10470 * At this point trimming can't start on this block group, because we 10471 * removed the block group from the tree fs_info->block_group_cache_tree 10472 * so no one can't find it anymore and even if someone already got this 10473 * block group before we removed it from the rbtree, they have already 10474 * incremented block_group->trimming - if they didn't, they won't find 10475 * any free space entries because we already removed them all when we 10476 * called btrfs_remove_free_space_cache(). 10477 * 10478 * And we must not remove the extent map from the fs_info->mapping_tree 10479 * to prevent the same logical address range and physical device space 10480 * ranges from being reused for a new block group. This is because our 10481 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10482 * completely transactionless, so while it is trimming a range the 10483 * currently running transaction might finish and a new one start, 10484 * allowing for new block groups to be created that can reuse the same 10485 * physical device locations unless we take this special care. 10486 * 10487 * There may also be an implicit trim operation if the file system 10488 * is mounted with -odiscard. The same protections must remain 10489 * in place until the extents have been discarded completely when 10490 * the transaction commit has completed. 10491 */ 10492 remove_em = (atomic_read(&block_group->trimming) == 0); 10493 /* 10494 * Make sure a trimmer task always sees the em in the pinned_chunks list 10495 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10496 * before checking block_group->removed). 10497 */ 10498 if (!remove_em) { 10499 /* 10500 * Our em might be in trans->transaction->pending_chunks which 10501 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10502 * and so is the fs_info->pinned_chunks list. 10503 * 10504 * So at this point we must be holding the chunk_mutex to avoid 10505 * any races with chunk allocation (more specifically at 10506 * volumes.c:contains_pending_extent()), to ensure it always 10507 * sees the em, either in the pending_chunks list or in the 10508 * pinned_chunks list. 10509 */ 10510 list_move_tail(&em->list, &fs_info->pinned_chunks); 10511 } 10512 spin_unlock(&block_group->lock); 10513 10514 if (remove_em) { 10515 struct extent_map_tree *em_tree; 10516 10517 em_tree = &fs_info->mapping_tree.map_tree; 10518 write_lock(&em_tree->lock); 10519 /* 10520 * The em might be in the pending_chunks list, so make sure the 10521 * chunk mutex is locked, since remove_extent_mapping() will 10522 * delete us from that list. 10523 */ 10524 remove_extent_mapping(em_tree, em); 10525 write_unlock(&em_tree->lock); 10526 /* once for the tree */ 10527 free_extent_map(em); 10528 } 10529 10530 mutex_unlock(&fs_info->chunk_mutex); 10531 10532 ret = remove_block_group_free_space(trans, block_group); 10533 if (ret) 10534 goto out; 10535 10536 btrfs_put_block_group(block_group); 10537 btrfs_put_block_group(block_group); 10538 10539 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10540 if (ret > 0) 10541 ret = -EIO; 10542 if (ret < 0) 10543 goto out; 10544 10545 ret = btrfs_del_item(trans, root, path); 10546 out: 10547 btrfs_free_path(path); 10548 return ret; 10549 } 10550 10551 struct btrfs_trans_handle * 10552 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10553 const u64 chunk_offset) 10554 { 10555 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10556 struct extent_map *em; 10557 struct map_lookup *map; 10558 unsigned int num_items; 10559 10560 read_lock(&em_tree->lock); 10561 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10562 read_unlock(&em_tree->lock); 10563 ASSERT(em && em->start == chunk_offset); 10564 10565 /* 10566 * We need to reserve 3 + N units from the metadata space info in order 10567 * to remove a block group (done at btrfs_remove_chunk() and at 10568 * btrfs_remove_block_group()), which are used for: 10569 * 10570 * 1 unit for adding the free space inode's orphan (located in the tree 10571 * of tree roots). 10572 * 1 unit for deleting the block group item (located in the extent 10573 * tree). 10574 * 1 unit for deleting the free space item (located in tree of tree 10575 * roots). 10576 * N units for deleting N device extent items corresponding to each 10577 * stripe (located in the device tree). 10578 * 10579 * In order to remove a block group we also need to reserve units in the 10580 * system space info in order to update the chunk tree (update one or 10581 * more device items and remove one chunk item), but this is done at 10582 * btrfs_remove_chunk() through a call to check_system_chunk(). 10583 */ 10584 map = em->map_lookup; 10585 num_items = 3 + map->num_stripes; 10586 free_extent_map(em); 10587 10588 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10589 num_items, 1); 10590 } 10591 10592 /* 10593 * Process the unused_bgs list and remove any that don't have any allocated 10594 * space inside of them. 10595 */ 10596 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10597 { 10598 struct btrfs_block_group_cache *block_group; 10599 struct btrfs_space_info *space_info; 10600 struct btrfs_trans_handle *trans; 10601 int ret = 0; 10602 10603 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10604 return; 10605 10606 spin_lock(&fs_info->unused_bgs_lock); 10607 while (!list_empty(&fs_info->unused_bgs)) { 10608 u64 start, end; 10609 int trimming; 10610 10611 block_group = list_first_entry(&fs_info->unused_bgs, 10612 struct btrfs_block_group_cache, 10613 bg_list); 10614 list_del_init(&block_group->bg_list); 10615 10616 space_info = block_group->space_info; 10617 10618 if (ret || btrfs_mixed_space_info(space_info)) { 10619 btrfs_put_block_group(block_group); 10620 continue; 10621 } 10622 spin_unlock(&fs_info->unused_bgs_lock); 10623 10624 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10625 10626 /* Don't want to race with allocators so take the groups_sem */ 10627 down_write(&space_info->groups_sem); 10628 spin_lock(&block_group->lock); 10629 if (block_group->reserved || block_group->pinned || 10630 btrfs_block_group_used(&block_group->item) || 10631 block_group->ro || 10632 list_is_singular(&block_group->list)) { 10633 /* 10634 * We want to bail if we made new allocations or have 10635 * outstanding allocations in this block group. We do 10636 * the ro check in case balance is currently acting on 10637 * this block group. 10638 */ 10639 trace_btrfs_skip_unused_block_group(block_group); 10640 spin_unlock(&block_group->lock); 10641 up_write(&space_info->groups_sem); 10642 goto next; 10643 } 10644 spin_unlock(&block_group->lock); 10645 10646 /* We don't want to force the issue, only flip if it's ok. */ 10647 ret = inc_block_group_ro(block_group, 0); 10648 up_write(&space_info->groups_sem); 10649 if (ret < 0) { 10650 ret = 0; 10651 goto next; 10652 } 10653 10654 /* 10655 * Want to do this before we do anything else so we can recover 10656 * properly if we fail to join the transaction. 10657 */ 10658 trans = btrfs_start_trans_remove_block_group(fs_info, 10659 block_group->key.objectid); 10660 if (IS_ERR(trans)) { 10661 btrfs_dec_block_group_ro(block_group); 10662 ret = PTR_ERR(trans); 10663 goto next; 10664 } 10665 10666 /* 10667 * We could have pending pinned extents for this block group, 10668 * just delete them, we don't care about them anymore. 10669 */ 10670 start = block_group->key.objectid; 10671 end = start + block_group->key.offset - 1; 10672 /* 10673 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10674 * btrfs_finish_extent_commit(). If we are at transaction N, 10675 * another task might be running finish_extent_commit() for the 10676 * previous transaction N - 1, and have seen a range belonging 10677 * to the block group in freed_extents[] before we were able to 10678 * clear the whole block group range from freed_extents[]. This 10679 * means that task can lookup for the block group after we 10680 * unpinned it from freed_extents[] and removed it, leading to 10681 * a BUG_ON() at btrfs_unpin_extent_range(). 10682 */ 10683 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10684 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10685 EXTENT_DIRTY); 10686 if (ret) { 10687 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10688 btrfs_dec_block_group_ro(block_group); 10689 goto end_trans; 10690 } 10691 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10692 EXTENT_DIRTY); 10693 if (ret) { 10694 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10695 btrfs_dec_block_group_ro(block_group); 10696 goto end_trans; 10697 } 10698 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10699 10700 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10701 spin_lock(&space_info->lock); 10702 spin_lock(&block_group->lock); 10703 10704 space_info->bytes_pinned -= block_group->pinned; 10705 space_info->bytes_readonly += block_group->pinned; 10706 percpu_counter_add_batch(&space_info->total_bytes_pinned, 10707 -block_group->pinned, 10708 BTRFS_TOTAL_BYTES_PINNED_BATCH); 10709 block_group->pinned = 0; 10710 10711 spin_unlock(&block_group->lock); 10712 spin_unlock(&space_info->lock); 10713 10714 /* DISCARD can flip during remount */ 10715 trimming = btrfs_test_opt(fs_info, DISCARD); 10716 10717 /* Implicit trim during transaction commit. */ 10718 if (trimming) 10719 btrfs_get_block_group_trimming(block_group); 10720 10721 /* 10722 * Btrfs_remove_chunk will abort the transaction if things go 10723 * horribly wrong. 10724 */ 10725 ret = btrfs_remove_chunk(trans, block_group->key.objectid); 10726 10727 if (ret) { 10728 if (trimming) 10729 btrfs_put_block_group_trimming(block_group); 10730 goto end_trans; 10731 } 10732 10733 /* 10734 * If we're not mounted with -odiscard, we can just forget 10735 * about this block group. Otherwise we'll need to wait 10736 * until transaction commit to do the actual discard. 10737 */ 10738 if (trimming) { 10739 spin_lock(&fs_info->unused_bgs_lock); 10740 /* 10741 * A concurrent scrub might have added us to the list 10742 * fs_info->unused_bgs, so use a list_move operation 10743 * to add the block group to the deleted_bgs list. 10744 */ 10745 list_move(&block_group->bg_list, 10746 &trans->transaction->deleted_bgs); 10747 spin_unlock(&fs_info->unused_bgs_lock); 10748 btrfs_get_block_group(block_group); 10749 } 10750 end_trans: 10751 btrfs_end_transaction(trans); 10752 next: 10753 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10754 btrfs_put_block_group(block_group); 10755 spin_lock(&fs_info->unused_bgs_lock); 10756 } 10757 spin_unlock(&fs_info->unused_bgs_lock); 10758 } 10759 10760 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10761 { 10762 struct btrfs_super_block *disk_super; 10763 u64 features; 10764 u64 flags; 10765 int mixed = 0; 10766 int ret; 10767 10768 disk_super = fs_info->super_copy; 10769 if (!btrfs_super_root(disk_super)) 10770 return -EINVAL; 10771 10772 features = btrfs_super_incompat_flags(disk_super); 10773 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10774 mixed = 1; 10775 10776 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10777 ret = create_space_info(fs_info, flags); 10778 if (ret) 10779 goto out; 10780 10781 if (mixed) { 10782 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10783 ret = create_space_info(fs_info, flags); 10784 } else { 10785 flags = BTRFS_BLOCK_GROUP_METADATA; 10786 ret = create_space_info(fs_info, flags); 10787 if (ret) 10788 goto out; 10789 10790 flags = BTRFS_BLOCK_GROUP_DATA; 10791 ret = create_space_info(fs_info, flags); 10792 } 10793 out: 10794 return ret; 10795 } 10796 10797 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10798 u64 start, u64 end) 10799 { 10800 return unpin_extent_range(fs_info, start, end, false); 10801 } 10802 10803 /* 10804 * It used to be that old block groups would be left around forever. 10805 * Iterating over them would be enough to trim unused space. Since we 10806 * now automatically remove them, we also need to iterate over unallocated 10807 * space. 10808 * 10809 * We don't want a transaction for this since the discard may take a 10810 * substantial amount of time. We don't require that a transaction be 10811 * running, but we do need to take a running transaction into account 10812 * to ensure that we're not discarding chunks that were released or 10813 * allocated in the current transaction. 10814 * 10815 * Holding the chunks lock will prevent other threads from allocating 10816 * or releasing chunks, but it won't prevent a running transaction 10817 * from committing and releasing the memory that the pending chunks 10818 * list head uses. For that, we need to take a reference to the 10819 * transaction and hold the commit root sem. We only need to hold 10820 * it while performing the free space search since we have already 10821 * held back allocations. 10822 */ 10823 static int btrfs_trim_free_extents(struct btrfs_device *device, 10824 u64 minlen, u64 *trimmed) 10825 { 10826 u64 start = 0, len = 0; 10827 int ret; 10828 10829 *trimmed = 0; 10830 10831 /* Discard not supported = nothing to do. */ 10832 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 10833 return 0; 10834 10835 /* Not writeable = nothing to do. */ 10836 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10837 return 0; 10838 10839 /* No free space = nothing to do. */ 10840 if (device->total_bytes <= device->bytes_used) 10841 return 0; 10842 10843 ret = 0; 10844 10845 while (1) { 10846 struct btrfs_fs_info *fs_info = device->fs_info; 10847 struct btrfs_transaction *trans; 10848 u64 bytes; 10849 10850 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10851 if (ret) 10852 break; 10853 10854 ret = down_read_killable(&fs_info->commit_root_sem); 10855 if (ret) { 10856 mutex_unlock(&fs_info->chunk_mutex); 10857 break; 10858 } 10859 10860 spin_lock(&fs_info->trans_lock); 10861 trans = fs_info->running_transaction; 10862 if (trans) 10863 refcount_inc(&trans->use_count); 10864 spin_unlock(&fs_info->trans_lock); 10865 10866 if (!trans) 10867 up_read(&fs_info->commit_root_sem); 10868 10869 ret = find_free_dev_extent_start(trans, device, minlen, start, 10870 &start, &len); 10871 if (trans) { 10872 up_read(&fs_info->commit_root_sem); 10873 btrfs_put_transaction(trans); 10874 } 10875 10876 if (ret) { 10877 mutex_unlock(&fs_info->chunk_mutex); 10878 if (ret == -ENOSPC) 10879 ret = 0; 10880 break; 10881 } 10882 10883 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10884 mutex_unlock(&fs_info->chunk_mutex); 10885 10886 if (ret) 10887 break; 10888 10889 start += len; 10890 *trimmed += bytes; 10891 10892 if (fatal_signal_pending(current)) { 10893 ret = -ERESTARTSYS; 10894 break; 10895 } 10896 10897 cond_resched(); 10898 } 10899 10900 return ret; 10901 } 10902 10903 /* 10904 * Trim the whole filesystem by: 10905 * 1) trimming the free space in each block group 10906 * 2) trimming the unallocated space on each device 10907 * 10908 * This will also continue trimming even if a block group or device encounters 10909 * an error. The return value will be the last error, or 0 if nothing bad 10910 * happens. 10911 */ 10912 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10913 { 10914 struct btrfs_block_group_cache *cache = NULL; 10915 struct btrfs_device *device; 10916 struct list_head *devices; 10917 u64 group_trimmed; 10918 u64 start; 10919 u64 end; 10920 u64 trimmed = 0; 10921 u64 bg_failed = 0; 10922 u64 dev_failed = 0; 10923 int bg_ret = 0; 10924 int dev_ret = 0; 10925 int ret = 0; 10926 10927 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10928 for (; cache; cache = next_block_group(fs_info, cache)) { 10929 if (cache->key.objectid >= (range->start + range->len)) { 10930 btrfs_put_block_group(cache); 10931 break; 10932 } 10933 10934 start = max(range->start, cache->key.objectid); 10935 end = min(range->start + range->len, 10936 cache->key.objectid + cache->key.offset); 10937 10938 if (end - start >= range->minlen) { 10939 if (!block_group_cache_done(cache)) { 10940 ret = cache_block_group(cache, 0); 10941 if (ret) { 10942 bg_failed++; 10943 bg_ret = ret; 10944 continue; 10945 } 10946 ret = wait_block_group_cache_done(cache); 10947 if (ret) { 10948 bg_failed++; 10949 bg_ret = ret; 10950 continue; 10951 } 10952 } 10953 ret = btrfs_trim_block_group(cache, 10954 &group_trimmed, 10955 start, 10956 end, 10957 range->minlen); 10958 10959 trimmed += group_trimmed; 10960 if (ret) { 10961 bg_failed++; 10962 bg_ret = ret; 10963 continue; 10964 } 10965 } 10966 } 10967 10968 if (bg_failed) 10969 btrfs_warn(fs_info, 10970 "failed to trim %llu block group(s), last error %d", 10971 bg_failed, bg_ret); 10972 mutex_lock(&fs_info->fs_devices->device_list_mutex); 10973 devices = &fs_info->fs_devices->devices; 10974 list_for_each_entry(device, devices, dev_list) { 10975 ret = btrfs_trim_free_extents(device, range->minlen, 10976 &group_trimmed); 10977 if (ret) { 10978 dev_failed++; 10979 dev_ret = ret; 10980 break; 10981 } 10982 10983 trimmed += group_trimmed; 10984 } 10985 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 10986 10987 if (dev_failed) 10988 btrfs_warn(fs_info, 10989 "failed to trim %llu device(s), last error %d", 10990 dev_failed, dev_ret); 10991 range->len = trimmed; 10992 if (bg_ret) 10993 return bg_ret; 10994 return dev_ret; 10995 } 10996 10997 /* 10998 * btrfs_{start,end}_write_no_snapshotting() are similar to 10999 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11000 * data into the page cache through nocow before the subvolume is snapshoted, 11001 * but flush the data into disk after the snapshot creation, or to prevent 11002 * operations while snapshotting is ongoing and that cause the snapshot to be 11003 * inconsistent (writes followed by expanding truncates for example). 11004 */ 11005 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11006 { 11007 percpu_counter_dec(&root->subv_writers->counter); 11008 cond_wake_up(&root->subv_writers->wait); 11009 } 11010 11011 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11012 { 11013 if (atomic_read(&root->will_be_snapshotted)) 11014 return 0; 11015 11016 percpu_counter_inc(&root->subv_writers->counter); 11017 /* 11018 * Make sure counter is updated before we check for snapshot creation. 11019 */ 11020 smp_mb(); 11021 if (atomic_read(&root->will_be_snapshotted)) { 11022 btrfs_end_write_no_snapshotting(root); 11023 return 0; 11024 } 11025 return 1; 11026 } 11027 11028 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11029 { 11030 while (true) { 11031 int ret; 11032 11033 ret = btrfs_start_write_no_snapshotting(root); 11034 if (ret) 11035 break; 11036 wait_var_event(&root->will_be_snapshotted, 11037 !atomic_read(&root->will_be_snapshotted)); 11038 } 11039 } 11040 11041 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg) 11042 { 11043 struct btrfs_fs_info *fs_info = bg->fs_info; 11044 11045 spin_lock(&fs_info->unused_bgs_lock); 11046 if (list_empty(&bg->bg_list)) { 11047 btrfs_get_block_group(bg); 11048 trace_btrfs_add_unused_block_group(bg); 11049 list_add_tail(&bg->bg_list, &fs_info->unused_bgs); 11050 } 11051 spin_unlock(&fs_info->unused_bgs_lock); 11052 } 11053