xref: /linux/fs/btrfs/extent-tree.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 /*
55  * Declare a helper function to detect underflow of various space info members
56  */
57 #define DECLARE_SPACE_INFO_UPDATE(name)					\
58 static inline void update_##name(struct btrfs_space_info *sinfo,	\
59 				 s64 bytes)				\
60 {									\
61 	if (bytes < 0 && sinfo->name < -bytes) {			\
62 		WARN_ON(1);						\
63 		sinfo->name = 0;					\
64 		return;							\
65 	}								\
66 	sinfo->name += bytes;						\
67 }
68 
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
71 
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73 			       struct btrfs_delayed_ref_node *node, u64 parent,
74 			       u64 root_objectid, u64 owner_objectid,
75 			       u64 owner_offset, int refs_to_drop,
76 			       struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 				    struct extent_buffer *leaf,
79 				    struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81 				      u64 parent, u64 root_objectid,
82 				      u64 flags, u64 owner, u64 offset,
83 				      struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85 				     struct btrfs_delayed_ref_node *node,
86 				     struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 			       u64 num_bytes);
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 				     struct btrfs_space_info *space_info,
98 				     u64 num_bytes);
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 				     struct btrfs_space_info *space_info,
101 				     u64 num_bytes);
102 
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 	smp_mb();
107 	return cache->cached == BTRFS_CACHE_FINISHED ||
108 		cache->cached == BTRFS_CACHE_ERROR;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * If not empty, someone is still holding mutex of
129 		 * full_stripe_lock, which can only be released by caller.
130 		 * And it will definitely cause use-after-free when caller
131 		 * tries to release full stripe lock.
132 		 *
133 		 * No better way to resolve, but only to warn.
134 		 */
135 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136 		kfree(cache->free_space_ctl);
137 		kfree(cache);
138 	}
139 }
140 
141 /*
142  * this adds the block group to the fs_info rb tree for the block group
143  * cache
144  */
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146 				struct btrfs_block_group_cache *block_group)
147 {
148 	struct rb_node **p;
149 	struct rb_node *parent = NULL;
150 	struct btrfs_block_group_cache *cache;
151 
152 	spin_lock(&info->block_group_cache_lock);
153 	p = &info->block_group_cache_tree.rb_node;
154 
155 	while (*p) {
156 		parent = *p;
157 		cache = rb_entry(parent, struct btrfs_block_group_cache,
158 				 cache_node);
159 		if (block_group->key.objectid < cache->key.objectid) {
160 			p = &(*p)->rb_left;
161 		} else if (block_group->key.objectid > cache->key.objectid) {
162 			p = &(*p)->rb_right;
163 		} else {
164 			spin_unlock(&info->block_group_cache_lock);
165 			return -EEXIST;
166 		}
167 	}
168 
169 	rb_link_node(&block_group->cache_node, parent, p);
170 	rb_insert_color(&block_group->cache_node,
171 			&info->block_group_cache_tree);
172 
173 	if (info->first_logical_byte > block_group->key.objectid)
174 		info->first_logical_byte = block_group->key.objectid;
175 
176 	spin_unlock(&info->block_group_cache_lock);
177 
178 	return 0;
179 }
180 
181 /*
182  * This will return the block group at or after bytenr if contains is 0, else
183  * it will return the block group that contains the bytenr
184  */
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 			      int contains)
188 {
189 	struct btrfs_block_group_cache *cache, *ret = NULL;
190 	struct rb_node *n;
191 	u64 end, start;
192 
193 	spin_lock(&info->block_group_cache_lock);
194 	n = info->block_group_cache_tree.rb_node;
195 
196 	while (n) {
197 		cache = rb_entry(n, struct btrfs_block_group_cache,
198 				 cache_node);
199 		end = cache->key.objectid + cache->key.offset - 1;
200 		start = cache->key.objectid;
201 
202 		if (bytenr < start) {
203 			if (!contains && (!ret || start < ret->key.objectid))
204 				ret = cache;
205 			n = n->rb_left;
206 		} else if (bytenr > start) {
207 			if (contains && bytenr <= end) {
208 				ret = cache;
209 				break;
210 			}
211 			n = n->rb_right;
212 		} else {
213 			ret = cache;
214 			break;
215 		}
216 	}
217 	if (ret) {
218 		btrfs_get_block_group(ret);
219 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 			info->first_logical_byte = ret->key.objectid;
221 	}
222 	spin_unlock(&info->block_group_cache_lock);
223 
224 	return ret;
225 }
226 
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228 			       u64 start, u64 num_bytes)
229 {
230 	u64 end = start + num_bytes - 1;
231 	set_extent_bits(&fs_info->freed_extents[0],
232 			start, end, EXTENT_UPTODATE);
233 	set_extent_bits(&fs_info->freed_extents[1],
234 			start, end, EXTENT_UPTODATE);
235 	return 0;
236 }
237 
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
239 {
240 	struct btrfs_fs_info *fs_info = cache->fs_info;
241 	u64 start, end;
242 
243 	start = cache->key.objectid;
244 	end = start + cache->key.offset - 1;
245 
246 	clear_extent_bits(&fs_info->freed_extents[0],
247 			  start, end, EXTENT_UPTODATE);
248 	clear_extent_bits(&fs_info->freed_extents[1],
249 			  start, end, EXTENT_UPTODATE);
250 }
251 
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
253 {
254 	struct btrfs_fs_info *fs_info = cache->fs_info;
255 	u64 bytenr;
256 	u64 *logical;
257 	int stripe_len;
258 	int i, nr, ret;
259 
260 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 		cache->bytes_super += stripe_len;
263 		ret = add_excluded_extent(fs_info, cache->key.objectid,
264 					  stripe_len);
265 		if (ret)
266 			return ret;
267 	}
268 
269 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 		bytenr = btrfs_sb_offset(i);
271 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272 				       bytenr, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(fs_info, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (!cache->caching_ctl) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	ctl = cache->caching_ctl;
321 	refcount_inc(&ctl->count);
322 	spin_unlock(&cache->lock);
323 	return ctl;
324 }
325 
326 static void put_caching_control(struct btrfs_caching_control *ctl)
327 {
328 	if (refcount_dec_and_test(&ctl->count))
329 		kfree(ctl);
330 }
331 
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 {
335 	struct btrfs_fs_info *fs_info = block_group->fs_info;
336 	u64 start = block_group->key.objectid;
337 	u64 len = block_group->key.offset;
338 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339 		fs_info->nodesize : fs_info->sectorsize;
340 	u64 step = chunk << 1;
341 
342 	while (len > chunk) {
343 		btrfs_remove_free_space(block_group, start, chunk);
344 		start += step;
345 		if (len < step)
346 			len = 0;
347 		else
348 			len -= step;
349 	}
350 }
351 #endif
352 
353 /*
354  * this is only called by cache_block_group, since we could have freed extents
355  * we need to check the pinned_extents for any extents that can't be used yet
356  * since their free space will be released as soon as the transaction commits.
357  */
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
359 		       u64 start, u64 end)
360 {
361 	struct btrfs_fs_info *info = block_group->fs_info;
362 	u64 extent_start, extent_end, size, total_added = 0;
363 	int ret;
364 
365 	while (start < end) {
366 		ret = find_first_extent_bit(info->pinned_extents, start,
367 					    &extent_start, &extent_end,
368 					    EXTENT_DIRTY | EXTENT_UPTODATE,
369 					    NULL);
370 		if (ret)
371 			break;
372 
373 		if (extent_start <= start) {
374 			start = extent_end + 1;
375 		} else if (extent_start > start && extent_start < end) {
376 			size = extent_start - start;
377 			total_added += size;
378 			ret = btrfs_add_free_space(block_group, start,
379 						   size);
380 			BUG_ON(ret); /* -ENOMEM or logic error */
381 			start = extent_end + 1;
382 		} else {
383 			break;
384 		}
385 	}
386 
387 	if (start < end) {
388 		size = end - start;
389 		total_added += size;
390 		ret = btrfs_add_free_space(block_group, start, size);
391 		BUG_ON(ret); /* -ENOMEM or logic error */
392 	}
393 
394 	return total_added;
395 }
396 
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
398 {
399 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 	struct btrfs_fs_info *fs_info = block_group->fs_info;
401 	struct btrfs_root *extent_root = fs_info->extent_root;
402 	struct btrfs_path *path;
403 	struct extent_buffer *leaf;
404 	struct btrfs_key key;
405 	u64 total_found = 0;
406 	u64 last = 0;
407 	u32 nritems;
408 	int ret;
409 	bool wakeup = true;
410 
411 	path = btrfs_alloc_path();
412 	if (!path)
413 		return -ENOMEM;
414 
415 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
416 
417 #ifdef CONFIG_BTRFS_DEBUG
418 	/*
419 	 * If we're fragmenting we don't want to make anybody think we can
420 	 * allocate from this block group until we've had a chance to fragment
421 	 * the free space.
422 	 */
423 	if (btrfs_should_fragment_free_space(block_group))
424 		wakeup = false;
425 #endif
426 	/*
427 	 * We don't want to deadlock with somebody trying to allocate a new
428 	 * extent for the extent root while also trying to search the extent
429 	 * root to add free space.  So we skip locking and search the commit
430 	 * root, since its read-only
431 	 */
432 	path->skip_locking = 1;
433 	path->search_commit_root = 1;
434 	path->reada = READA_FORWARD;
435 
436 	key.objectid = last;
437 	key.offset = 0;
438 	key.type = BTRFS_EXTENT_ITEM_KEY;
439 
440 next:
441 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
442 	if (ret < 0)
443 		goto out;
444 
445 	leaf = path->nodes[0];
446 	nritems = btrfs_header_nritems(leaf);
447 
448 	while (1) {
449 		if (btrfs_fs_closing(fs_info) > 1) {
450 			last = (u64)-1;
451 			break;
452 		}
453 
454 		if (path->slots[0] < nritems) {
455 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 		} else {
457 			ret = find_next_key(path, 0, &key);
458 			if (ret)
459 				break;
460 
461 			if (need_resched() ||
462 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
463 				if (wakeup)
464 					caching_ctl->progress = last;
465 				btrfs_release_path(path);
466 				up_read(&fs_info->commit_root_sem);
467 				mutex_unlock(&caching_ctl->mutex);
468 				cond_resched();
469 				mutex_lock(&caching_ctl->mutex);
470 				down_read(&fs_info->commit_root_sem);
471 				goto next;
472 			}
473 
474 			ret = btrfs_next_leaf(extent_root, path);
475 			if (ret < 0)
476 				goto out;
477 			if (ret)
478 				break;
479 			leaf = path->nodes[0];
480 			nritems = btrfs_header_nritems(leaf);
481 			continue;
482 		}
483 
484 		if (key.objectid < last) {
485 			key.objectid = last;
486 			key.offset = 0;
487 			key.type = BTRFS_EXTENT_ITEM_KEY;
488 
489 			if (wakeup)
490 				caching_ctl->progress = last;
491 			btrfs_release_path(path);
492 			goto next;
493 		}
494 
495 		if (key.objectid < block_group->key.objectid) {
496 			path->slots[0]++;
497 			continue;
498 		}
499 
500 		if (key.objectid >= block_group->key.objectid +
501 		    block_group->key.offset)
502 			break;
503 
504 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 		    key.type == BTRFS_METADATA_ITEM_KEY) {
506 			total_found += add_new_free_space(block_group, last,
507 							  key.objectid);
508 			if (key.type == BTRFS_METADATA_ITEM_KEY)
509 				last = key.objectid +
510 					fs_info->nodesize;
511 			else
512 				last = key.objectid + key.offset;
513 
514 			if (total_found > CACHING_CTL_WAKE_UP) {
515 				total_found = 0;
516 				if (wakeup)
517 					wake_up(&caching_ctl->wait);
518 			}
519 		}
520 		path->slots[0]++;
521 	}
522 	ret = 0;
523 
524 	total_found += add_new_free_space(block_group, last,
525 					  block_group->key.objectid +
526 					  block_group->key.offset);
527 	caching_ctl->progress = (u64)-1;
528 
529 out:
530 	btrfs_free_path(path);
531 	return ret;
532 }
533 
534 static noinline void caching_thread(struct btrfs_work *work)
535 {
536 	struct btrfs_block_group_cache *block_group;
537 	struct btrfs_fs_info *fs_info;
538 	struct btrfs_caching_control *caching_ctl;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 
545 	mutex_lock(&caching_ctl->mutex);
546 	down_read(&fs_info->commit_root_sem);
547 
548 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 		ret = load_free_space_tree(caching_ctl);
550 	else
551 		ret = load_extent_tree_free(caching_ctl);
552 
553 	spin_lock(&block_group->lock);
554 	block_group->caching_ctl = NULL;
555 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 	spin_unlock(&block_group->lock);
557 
558 #ifdef CONFIG_BTRFS_DEBUG
559 	if (btrfs_should_fragment_free_space(block_group)) {
560 		u64 bytes_used;
561 
562 		spin_lock(&block_group->space_info->lock);
563 		spin_lock(&block_group->lock);
564 		bytes_used = block_group->key.offset -
565 			btrfs_block_group_used(&block_group->item);
566 		block_group->space_info->bytes_used += bytes_used >> 1;
567 		spin_unlock(&block_group->lock);
568 		spin_unlock(&block_group->space_info->lock);
569 		fragment_free_space(block_group);
570 	}
571 #endif
572 
573 	caching_ctl->progress = (u64)-1;
574 
575 	up_read(&fs_info->commit_root_sem);
576 	free_excluded_extents(block_group);
577 	mutex_unlock(&caching_ctl->mutex);
578 
579 	wake_up(&caching_ctl->wait);
580 
581 	put_caching_control(caching_ctl);
582 	btrfs_put_block_group(block_group);
583 }
584 
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586 			     int load_cache_only)
587 {
588 	DEFINE_WAIT(wait);
589 	struct btrfs_fs_info *fs_info = cache->fs_info;
590 	struct btrfs_caching_control *caching_ctl;
591 	int ret = 0;
592 
593 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594 	if (!caching_ctl)
595 		return -ENOMEM;
596 
597 	INIT_LIST_HEAD(&caching_ctl->list);
598 	mutex_init(&caching_ctl->mutex);
599 	init_waitqueue_head(&caching_ctl->wait);
600 	caching_ctl->block_group = cache;
601 	caching_ctl->progress = cache->key.objectid;
602 	refcount_set(&caching_ctl->count, 1);
603 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 			caching_thread, NULL, NULL);
605 
606 	spin_lock(&cache->lock);
607 	/*
608 	 * This should be a rare occasion, but this could happen I think in the
609 	 * case where one thread starts to load the space cache info, and then
610 	 * some other thread starts a transaction commit which tries to do an
611 	 * allocation while the other thread is still loading the space cache
612 	 * info.  The previous loop should have kept us from choosing this block
613 	 * group, but if we've moved to the state where we will wait on caching
614 	 * block groups we need to first check if we're doing a fast load here,
615 	 * so we can wait for it to finish, otherwise we could end up allocating
616 	 * from a block group who's cache gets evicted for one reason or
617 	 * another.
618 	 */
619 	while (cache->cached == BTRFS_CACHE_FAST) {
620 		struct btrfs_caching_control *ctl;
621 
622 		ctl = cache->caching_ctl;
623 		refcount_inc(&ctl->count);
624 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 		spin_unlock(&cache->lock);
626 
627 		schedule();
628 
629 		finish_wait(&ctl->wait, &wait);
630 		put_caching_control(ctl);
631 		spin_lock(&cache->lock);
632 	}
633 
634 	if (cache->cached != BTRFS_CACHE_NO) {
635 		spin_unlock(&cache->lock);
636 		kfree(caching_ctl);
637 		return 0;
638 	}
639 	WARN_ON(cache->caching_ctl);
640 	cache->caching_ctl = caching_ctl;
641 	cache->cached = BTRFS_CACHE_FAST;
642 	spin_unlock(&cache->lock);
643 
644 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645 		mutex_lock(&caching_ctl->mutex);
646 		ret = load_free_space_cache(fs_info, cache);
647 
648 		spin_lock(&cache->lock);
649 		if (ret == 1) {
650 			cache->caching_ctl = NULL;
651 			cache->cached = BTRFS_CACHE_FINISHED;
652 			cache->last_byte_to_unpin = (u64)-1;
653 			caching_ctl->progress = (u64)-1;
654 		} else {
655 			if (load_cache_only) {
656 				cache->caching_ctl = NULL;
657 				cache->cached = BTRFS_CACHE_NO;
658 			} else {
659 				cache->cached = BTRFS_CACHE_STARTED;
660 				cache->has_caching_ctl = 1;
661 			}
662 		}
663 		spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665 		if (ret == 1 &&
666 		    btrfs_should_fragment_free_space(cache)) {
667 			u64 bytes_used;
668 
669 			spin_lock(&cache->space_info->lock);
670 			spin_lock(&cache->lock);
671 			bytes_used = cache->key.offset -
672 				btrfs_block_group_used(&cache->item);
673 			cache->space_info->bytes_used += bytes_used >> 1;
674 			spin_unlock(&cache->lock);
675 			spin_unlock(&cache->space_info->lock);
676 			fragment_free_space(cache);
677 		}
678 #endif
679 		mutex_unlock(&caching_ctl->mutex);
680 
681 		wake_up(&caching_ctl->wait);
682 		if (ret == 1) {
683 			put_caching_control(caching_ctl);
684 			free_excluded_extents(cache);
685 			return 0;
686 		}
687 	} else {
688 		/*
689 		 * We're either using the free space tree or no caching at all.
690 		 * Set cached to the appropriate value and wakeup any waiters.
691 		 */
692 		spin_lock(&cache->lock);
693 		if (load_cache_only) {
694 			cache->caching_ctl = NULL;
695 			cache->cached = BTRFS_CACHE_NO;
696 		} else {
697 			cache->cached = BTRFS_CACHE_STARTED;
698 			cache->has_caching_ctl = 1;
699 		}
700 		spin_unlock(&cache->lock);
701 		wake_up(&caching_ctl->wait);
702 	}
703 
704 	if (load_cache_only) {
705 		put_caching_control(caching_ctl);
706 		return 0;
707 	}
708 
709 	down_write(&fs_info->commit_root_sem);
710 	refcount_inc(&caching_ctl->count);
711 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 	up_write(&fs_info->commit_root_sem);
713 
714 	btrfs_get_block_group(cache);
715 
716 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717 
718 	return ret;
719 }
720 
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727 	return block_group_cache_tree_search(info, bytenr, 0);
728 }
729 
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 						 struct btrfs_fs_info *info,
735 						 u64 bytenr)
736 {
737 	return block_group_cache_tree_search(info, bytenr, 1);
738 }
739 
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 						  u64 flags)
742 {
743 	struct list_head *head = &info->space_info;
744 	struct btrfs_space_info *found;
745 
746 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(found, head, list) {
750 		if (found->flags & flags) {
751 			rcu_read_unlock();
752 			return found;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return NULL;
757 }
758 
759 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
760 			     bool metadata, u64 root_objectid)
761 {
762 	struct btrfs_space_info *space_info;
763 	u64 flags;
764 
765 	if (metadata) {
766 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 		else
769 			flags = BTRFS_BLOCK_GROUP_METADATA;
770 	} else {
771 		flags = BTRFS_BLOCK_GROUP_DATA;
772 	}
773 
774 	space_info = __find_space_info(fs_info, flags);
775 	ASSERT(space_info);
776 	percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
778 }
779 
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 	struct list_head *head = &info->space_info;
787 	struct btrfs_space_info *found;
788 
789 	rcu_read_lock();
790 	list_for_each_entry_rcu(found, head, list)
791 		found->full = 0;
792 	rcu_read_unlock();
793 }
794 
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 	int ret;
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	key.objectid = start;
807 	key.offset = len;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 	btrfs_free_path(path);
811 	return ret;
812 }
813 
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 			     struct btrfs_fs_info *fs_info, u64 bytenr,
825 			     u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 	struct btrfs_delayed_ref_head *head;
828 	struct btrfs_delayed_ref_root *delayed_refs;
829 	struct btrfs_path *path;
830 	struct btrfs_extent_item *ei;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key key;
833 	u32 item_size;
834 	u64 num_refs;
835 	u64 extent_flags;
836 	int ret;
837 
838 	/*
839 	 * If we don't have skinny metadata, don't bother doing anything
840 	 * different
841 	 */
842 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 		offset = fs_info->nodesize;
844 		metadata = 0;
845 	}
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return -ENOMEM;
850 
851 	if (!trans) {
852 		path->skip_locking = 1;
853 		path->search_commit_root = 1;
854 	}
855 
856 search_again:
857 	key.objectid = bytenr;
858 	key.offset = offset;
859 	if (metadata)
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 	else
862 		key.type = BTRFS_EXTENT_ITEM_KEY;
863 
864 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 	if (ret < 0)
866 		goto out_free;
867 
868 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 		if (path->slots[0]) {
870 			path->slots[0]--;
871 			btrfs_item_key_to_cpu(path->nodes[0], &key,
872 					      path->slots[0]);
873 			if (key.objectid == bytenr &&
874 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
875 			    key.offset == fs_info->nodesize)
876 				ret = 0;
877 		}
878 	}
879 
880 	if (ret == 0) {
881 		leaf = path->nodes[0];
882 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 		if (item_size >= sizeof(*ei)) {
884 			ei = btrfs_item_ptr(leaf, path->slots[0],
885 					    struct btrfs_extent_item);
886 			num_refs = btrfs_extent_refs(leaf, ei);
887 			extent_flags = btrfs_extent_flags(leaf, ei);
888 		} else {
889 			ret = -EINVAL;
890 			btrfs_print_v0_err(fs_info);
891 			if (trans)
892 				btrfs_abort_transaction(trans, ret);
893 			else
894 				btrfs_handle_fs_error(fs_info, ret, NULL);
895 
896 			goto out_free;
897 		}
898 
899 		BUG_ON(num_refs == 0);
900 	} else {
901 		num_refs = 0;
902 		extent_flags = 0;
903 		ret = 0;
904 	}
905 
906 	if (!trans)
907 		goto out;
908 
909 	delayed_refs = &trans->transaction->delayed_refs;
910 	spin_lock(&delayed_refs->lock);
911 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
912 	if (head) {
913 		if (!mutex_trylock(&head->mutex)) {
914 			refcount_inc(&head->refs);
915 			spin_unlock(&delayed_refs->lock);
916 
917 			btrfs_release_path(path);
918 
919 			/*
920 			 * Mutex was contended, block until it's released and try
921 			 * again
922 			 */
923 			mutex_lock(&head->mutex);
924 			mutex_unlock(&head->mutex);
925 			btrfs_put_delayed_ref_head(head);
926 			goto search_again;
927 		}
928 		spin_lock(&head->lock);
929 		if (head->extent_op && head->extent_op->update_flags)
930 			extent_flags |= head->extent_op->flags_to_set;
931 		else
932 			BUG_ON(num_refs == 0);
933 
934 		num_refs += head->ref_mod;
935 		spin_unlock(&head->lock);
936 		mutex_unlock(&head->mutex);
937 	}
938 	spin_unlock(&delayed_refs->lock);
939 out:
940 	WARN_ON(num_refs == 0);
941 	if (refs)
942 		*refs = num_refs;
943 	if (flags)
944 		*flags = extent_flags;
945 out_free:
946 	btrfs_free_path(path);
947 	return ret;
948 }
949 
950 /*
951  * Back reference rules.  Back refs have three main goals:
952  *
953  * 1) differentiate between all holders of references to an extent so that
954  *    when a reference is dropped we can make sure it was a valid reference
955  *    before freeing the extent.
956  *
957  * 2) Provide enough information to quickly find the holders of an extent
958  *    if we notice a given block is corrupted or bad.
959  *
960  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961  *    maintenance.  This is actually the same as #2, but with a slightly
962  *    different use case.
963  *
964  * There are two kinds of back refs. The implicit back refs is optimized
965  * for pointers in non-shared tree blocks. For a given pointer in a block,
966  * back refs of this kind provide information about the block's owner tree
967  * and the pointer's key. These information allow us to find the block by
968  * b-tree searching. The full back refs is for pointers in tree blocks not
969  * referenced by their owner trees. The location of tree block is recorded
970  * in the back refs. Actually the full back refs is generic, and can be
971  * used in all cases the implicit back refs is used. The major shortcoming
972  * of the full back refs is its overhead. Every time a tree block gets
973  * COWed, we have to update back refs entry for all pointers in it.
974  *
975  * For a newly allocated tree block, we use implicit back refs for
976  * pointers in it. This means most tree related operations only involve
977  * implicit back refs. For a tree block created in old transaction, the
978  * only way to drop a reference to it is COW it. So we can detect the
979  * event that tree block loses its owner tree's reference and do the
980  * back refs conversion.
981  *
982  * When a tree block is COWed through a tree, there are four cases:
983  *
984  * The reference count of the block is one and the tree is the block's
985  * owner tree. Nothing to do in this case.
986  *
987  * The reference count of the block is one and the tree is not the
988  * block's owner tree. In this case, full back refs is used for pointers
989  * in the block. Remove these full back refs, add implicit back refs for
990  * every pointers in the new block.
991  *
992  * The reference count of the block is greater than one and the tree is
993  * the block's owner tree. In this case, implicit back refs is used for
994  * pointers in the block. Add full back refs for every pointers in the
995  * block, increase lower level extents' reference counts. The original
996  * implicit back refs are entailed to the new block.
997  *
998  * The reference count of the block is greater than one and the tree is
999  * not the block's owner tree. Add implicit back refs for every pointer in
1000  * the new block, increase lower level extents' reference count.
1001  *
1002  * Back Reference Key composing:
1003  *
1004  * The key objectid corresponds to the first byte in the extent,
1005  * The key type is used to differentiate between types of back refs.
1006  * There are different meanings of the key offset for different types
1007  * of back refs.
1008  *
1009  * File extents can be referenced by:
1010  *
1011  * - multiple snapshots, subvolumes, or different generations in one subvol
1012  * - different files inside a single subvolume
1013  * - different offsets inside a file (bookend extents in file.c)
1014  *
1015  * The extent ref structure for the implicit back refs has fields for:
1016  *
1017  * - Objectid of the subvolume root
1018  * - objectid of the file holding the reference
1019  * - original offset in the file
1020  * - how many bookend extents
1021  *
1022  * The key offset for the implicit back refs is hash of the first
1023  * three fields.
1024  *
1025  * The extent ref structure for the full back refs has field for:
1026  *
1027  * - number of pointers in the tree leaf
1028  *
1029  * The key offset for the implicit back refs is the first byte of
1030  * the tree leaf
1031  *
1032  * When a file extent is allocated, The implicit back refs is used.
1033  * the fields are filled in:
1034  *
1035  *     (root_key.objectid, inode objectid, offset in file, 1)
1036  *
1037  * When a file extent is removed file truncation, we find the
1038  * corresponding implicit back refs and check the following fields:
1039  *
1040  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1041  *
1042  * Btree extents can be referenced by:
1043  *
1044  * - Different subvolumes
1045  *
1046  * Both the implicit back refs and the full back refs for tree blocks
1047  * only consist of key. The key offset for the implicit back refs is
1048  * objectid of block's owner tree. The key offset for the full back refs
1049  * is the first byte of parent block.
1050  *
1051  * When implicit back refs is used, information about the lowest key and
1052  * level of the tree block are required. These information are stored in
1053  * tree block info structure.
1054  */
1055 
1056 /*
1057  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1059  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060  */
1061 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 				     struct btrfs_extent_inline_ref *iref,
1063 				     enum btrfs_inline_ref_type is_data)
1064 {
1065 	int type = btrfs_extent_inline_ref_type(eb, iref);
1066 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1067 
1068 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1071 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1073 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1074 				return type;
1075 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 				ASSERT(eb->fs_info);
1077 				/*
1078 				 * Every shared one has parent tree
1079 				 * block, which must be aligned to
1080 				 * nodesize.
1081 				 */
1082 				if (offset &&
1083 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 					return type;
1085 			}
1086 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1087 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1088 				return type;
1089 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 				ASSERT(eb->fs_info);
1091 				/*
1092 				 * Every shared one has parent tree
1093 				 * block, which must be aligned to
1094 				 * nodesize.
1095 				 */
1096 				if (offset &&
1097 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 					return type;
1099 			}
1100 		} else {
1101 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 			return type;
1103 		}
1104 	}
1105 
1106 	btrfs_print_leaf((struct extent_buffer *)eb);
1107 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 		  eb->start, type);
1109 	WARN_ON(1);
1110 
1111 	return BTRFS_REF_TYPE_INVALID;
1112 }
1113 
1114 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115 {
1116 	u32 high_crc = ~(u32)0;
1117 	u32 low_crc = ~(u32)0;
1118 	__le64 lenum;
1119 
1120 	lenum = cpu_to_le64(root_objectid);
1121 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1122 	lenum = cpu_to_le64(owner);
1123 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1124 	lenum = cpu_to_le64(offset);
1125 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1126 
1127 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1128 }
1129 
1130 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 				     struct btrfs_extent_data_ref *ref)
1132 {
1133 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 				    btrfs_extent_data_ref_objectid(leaf, ref),
1135 				    btrfs_extent_data_ref_offset(leaf, ref));
1136 }
1137 
1138 static int match_extent_data_ref(struct extent_buffer *leaf,
1139 				 struct btrfs_extent_data_ref *ref,
1140 				 u64 root_objectid, u64 owner, u64 offset)
1141 {
1142 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 		return 0;
1146 	return 1;
1147 }
1148 
1149 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1150 					   struct btrfs_path *path,
1151 					   u64 bytenr, u64 parent,
1152 					   u64 root_objectid,
1153 					   u64 owner, u64 offset)
1154 {
1155 	struct btrfs_root *root = trans->fs_info->extent_root;
1156 	struct btrfs_key key;
1157 	struct btrfs_extent_data_ref *ref;
1158 	struct extent_buffer *leaf;
1159 	u32 nritems;
1160 	int ret;
1161 	int recow;
1162 	int err = -ENOENT;
1163 
1164 	key.objectid = bytenr;
1165 	if (parent) {
1166 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 		key.offset = parent;
1168 	} else {
1169 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 		key.offset = hash_extent_data_ref(root_objectid,
1171 						  owner, offset);
1172 	}
1173 again:
1174 	recow = 0;
1175 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 	if (ret < 0) {
1177 		err = ret;
1178 		goto fail;
1179 	}
1180 
1181 	if (parent) {
1182 		if (!ret)
1183 			return 0;
1184 		goto fail;
1185 	}
1186 
1187 	leaf = path->nodes[0];
1188 	nritems = btrfs_header_nritems(leaf);
1189 	while (1) {
1190 		if (path->slots[0] >= nritems) {
1191 			ret = btrfs_next_leaf(root, path);
1192 			if (ret < 0)
1193 				err = ret;
1194 			if (ret)
1195 				goto fail;
1196 
1197 			leaf = path->nodes[0];
1198 			nritems = btrfs_header_nritems(leaf);
1199 			recow = 1;
1200 		}
1201 
1202 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 		if (key.objectid != bytenr ||
1204 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 			goto fail;
1206 
1207 		ref = btrfs_item_ptr(leaf, path->slots[0],
1208 				     struct btrfs_extent_data_ref);
1209 
1210 		if (match_extent_data_ref(leaf, ref, root_objectid,
1211 					  owner, offset)) {
1212 			if (recow) {
1213 				btrfs_release_path(path);
1214 				goto again;
1215 			}
1216 			err = 0;
1217 			break;
1218 		}
1219 		path->slots[0]++;
1220 	}
1221 fail:
1222 	return err;
1223 }
1224 
1225 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1226 					   struct btrfs_path *path,
1227 					   u64 bytenr, u64 parent,
1228 					   u64 root_objectid, u64 owner,
1229 					   u64 offset, int refs_to_add)
1230 {
1231 	struct btrfs_root *root = trans->fs_info->extent_root;
1232 	struct btrfs_key key;
1233 	struct extent_buffer *leaf;
1234 	u32 size;
1235 	u32 num_refs;
1236 	int ret;
1237 
1238 	key.objectid = bytenr;
1239 	if (parent) {
1240 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 		key.offset = parent;
1242 		size = sizeof(struct btrfs_shared_data_ref);
1243 	} else {
1244 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 		key.offset = hash_extent_data_ref(root_objectid,
1246 						  owner, offset);
1247 		size = sizeof(struct btrfs_extent_data_ref);
1248 	}
1249 
1250 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 	if (ret && ret != -EEXIST)
1252 		goto fail;
1253 
1254 	leaf = path->nodes[0];
1255 	if (parent) {
1256 		struct btrfs_shared_data_ref *ref;
1257 		ref = btrfs_item_ptr(leaf, path->slots[0],
1258 				     struct btrfs_shared_data_ref);
1259 		if (ret == 0) {
1260 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 		} else {
1262 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 			num_refs += refs_to_add;
1264 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1265 		}
1266 	} else {
1267 		struct btrfs_extent_data_ref *ref;
1268 		while (ret == -EEXIST) {
1269 			ref = btrfs_item_ptr(leaf, path->slots[0],
1270 					     struct btrfs_extent_data_ref);
1271 			if (match_extent_data_ref(leaf, ref, root_objectid,
1272 						  owner, offset))
1273 				break;
1274 			btrfs_release_path(path);
1275 			key.offset++;
1276 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 						      size);
1278 			if (ret && ret != -EEXIST)
1279 				goto fail;
1280 
1281 			leaf = path->nodes[0];
1282 		}
1283 		ref = btrfs_item_ptr(leaf, path->slots[0],
1284 				     struct btrfs_extent_data_ref);
1285 		if (ret == 0) {
1286 			btrfs_set_extent_data_ref_root(leaf, ref,
1287 						       root_objectid);
1288 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 		} else {
1292 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 			num_refs += refs_to_add;
1294 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1295 		}
1296 	}
1297 	btrfs_mark_buffer_dirty(leaf);
1298 	ret = 0;
1299 fail:
1300 	btrfs_release_path(path);
1301 	return ret;
1302 }
1303 
1304 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1305 					   struct btrfs_path *path,
1306 					   int refs_to_drop, int *last_ref)
1307 {
1308 	struct btrfs_key key;
1309 	struct btrfs_extent_data_ref *ref1 = NULL;
1310 	struct btrfs_shared_data_ref *ref2 = NULL;
1311 	struct extent_buffer *leaf;
1312 	u32 num_refs = 0;
1313 	int ret = 0;
1314 
1315 	leaf = path->nodes[0];
1316 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317 
1318 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 				      struct btrfs_extent_data_ref);
1321 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 				      struct btrfs_shared_data_ref);
1325 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1326 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1327 		btrfs_print_v0_err(trans->fs_info);
1328 		btrfs_abort_transaction(trans, -EINVAL);
1329 		return -EINVAL;
1330 	} else {
1331 		BUG();
1332 	}
1333 
1334 	BUG_ON(num_refs < refs_to_drop);
1335 	num_refs -= refs_to_drop;
1336 
1337 	if (num_refs == 0) {
1338 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1339 		*last_ref = 1;
1340 	} else {
1341 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1345 		btrfs_mark_buffer_dirty(leaf);
1346 	}
1347 	return ret;
1348 }
1349 
1350 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1351 					  struct btrfs_extent_inline_ref *iref)
1352 {
1353 	struct btrfs_key key;
1354 	struct extent_buffer *leaf;
1355 	struct btrfs_extent_data_ref *ref1;
1356 	struct btrfs_shared_data_ref *ref2;
1357 	u32 num_refs = 0;
1358 	int type;
1359 
1360 	leaf = path->nodes[0];
1361 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1362 
1363 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1364 	if (iref) {
1365 		/*
1366 		 * If type is invalid, we should have bailed out earlier than
1367 		 * this call.
1368 		 */
1369 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1372 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 		} else {
1375 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 		}
1378 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 				      struct btrfs_extent_data_ref);
1381 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 				      struct btrfs_shared_data_ref);
1385 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1386 	} else {
1387 		WARN_ON(1);
1388 	}
1389 	return num_refs;
1390 }
1391 
1392 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1393 					  struct btrfs_path *path,
1394 					  u64 bytenr, u64 parent,
1395 					  u64 root_objectid)
1396 {
1397 	struct btrfs_root *root = trans->fs_info->extent_root;
1398 	struct btrfs_key key;
1399 	int ret;
1400 
1401 	key.objectid = bytenr;
1402 	if (parent) {
1403 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 		key.offset = parent;
1405 	} else {
1406 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 		key.offset = root_objectid;
1408 	}
1409 
1410 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 	if (ret > 0)
1412 		ret = -ENOENT;
1413 	return ret;
1414 }
1415 
1416 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1417 					  struct btrfs_path *path,
1418 					  u64 bytenr, u64 parent,
1419 					  u64 root_objectid)
1420 {
1421 	struct btrfs_key key;
1422 	int ret;
1423 
1424 	key.objectid = bytenr;
1425 	if (parent) {
1426 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 		key.offset = parent;
1428 	} else {
1429 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 		key.offset = root_objectid;
1431 	}
1432 
1433 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1434 				      path, &key, 0);
1435 	btrfs_release_path(path);
1436 	return ret;
1437 }
1438 
1439 static inline int extent_ref_type(u64 parent, u64 owner)
1440 {
1441 	int type;
1442 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 		if (parent > 0)
1444 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 		else
1446 			type = BTRFS_TREE_BLOCK_REF_KEY;
1447 	} else {
1448 		if (parent > 0)
1449 			type = BTRFS_SHARED_DATA_REF_KEY;
1450 		else
1451 			type = BTRFS_EXTENT_DATA_REF_KEY;
1452 	}
1453 	return type;
1454 }
1455 
1456 static int find_next_key(struct btrfs_path *path, int level,
1457 			 struct btrfs_key *key)
1458 
1459 {
1460 	for (; level < BTRFS_MAX_LEVEL; level++) {
1461 		if (!path->nodes[level])
1462 			break;
1463 		if (path->slots[level] + 1 >=
1464 		    btrfs_header_nritems(path->nodes[level]))
1465 			continue;
1466 		if (level == 0)
1467 			btrfs_item_key_to_cpu(path->nodes[level], key,
1468 					      path->slots[level] + 1);
1469 		else
1470 			btrfs_node_key_to_cpu(path->nodes[level], key,
1471 					      path->slots[level] + 1);
1472 		return 0;
1473 	}
1474 	return 1;
1475 }
1476 
1477 /*
1478  * look for inline back ref. if back ref is found, *ref_ret is set
1479  * to the address of inline back ref, and 0 is returned.
1480  *
1481  * if back ref isn't found, *ref_ret is set to the address where it
1482  * should be inserted, and -ENOENT is returned.
1483  *
1484  * if insert is true and there are too many inline back refs, the path
1485  * points to the extent item, and -EAGAIN is returned.
1486  *
1487  * NOTE: inline back refs are ordered in the same way that back ref
1488  *	 items in the tree are ordered.
1489  */
1490 static noinline_for_stack
1491 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1492 				 struct btrfs_path *path,
1493 				 struct btrfs_extent_inline_ref **ref_ret,
1494 				 u64 bytenr, u64 num_bytes,
1495 				 u64 parent, u64 root_objectid,
1496 				 u64 owner, u64 offset, int insert)
1497 {
1498 	struct btrfs_fs_info *fs_info = trans->fs_info;
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	struct extent_buffer *leaf;
1502 	struct btrfs_extent_item *ei;
1503 	struct btrfs_extent_inline_ref *iref;
1504 	u64 flags;
1505 	u64 item_size;
1506 	unsigned long ptr;
1507 	unsigned long end;
1508 	int extra_size;
1509 	int type;
1510 	int want;
1511 	int ret;
1512 	int err = 0;
1513 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1514 	int needed;
1515 
1516 	key.objectid = bytenr;
1517 	key.type = BTRFS_EXTENT_ITEM_KEY;
1518 	key.offset = num_bytes;
1519 
1520 	want = extent_ref_type(parent, owner);
1521 	if (insert) {
1522 		extra_size = btrfs_extent_inline_ref_size(want);
1523 		path->keep_locks = 1;
1524 	} else
1525 		extra_size = -1;
1526 
1527 	/*
1528 	 * Owner is our level, so we can just add one to get the level for the
1529 	 * block we are interested in.
1530 	 */
1531 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 		key.type = BTRFS_METADATA_ITEM_KEY;
1533 		key.offset = owner;
1534 	}
1535 
1536 again:
1537 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1538 	if (ret < 0) {
1539 		err = ret;
1540 		goto out;
1541 	}
1542 
1543 	/*
1544 	 * We may be a newly converted file system which still has the old fat
1545 	 * extent entries for metadata, so try and see if we have one of those.
1546 	 */
1547 	if (ret > 0 && skinny_metadata) {
1548 		skinny_metadata = false;
1549 		if (path->slots[0]) {
1550 			path->slots[0]--;
1551 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 					      path->slots[0]);
1553 			if (key.objectid == bytenr &&
1554 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 			    key.offset == num_bytes)
1556 				ret = 0;
1557 		}
1558 		if (ret) {
1559 			key.objectid = bytenr;
1560 			key.type = BTRFS_EXTENT_ITEM_KEY;
1561 			key.offset = num_bytes;
1562 			btrfs_release_path(path);
1563 			goto again;
1564 		}
1565 	}
1566 
1567 	if (ret && !insert) {
1568 		err = -ENOENT;
1569 		goto out;
1570 	} else if (WARN_ON(ret)) {
1571 		err = -EIO;
1572 		goto out;
1573 	}
1574 
1575 	leaf = path->nodes[0];
1576 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 	if (unlikely(item_size < sizeof(*ei))) {
1578 		err = -EINVAL;
1579 		btrfs_print_v0_err(fs_info);
1580 		btrfs_abort_transaction(trans, err);
1581 		goto out;
1582 	}
1583 
1584 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 	flags = btrfs_extent_flags(leaf, ei);
1586 
1587 	ptr = (unsigned long)(ei + 1);
1588 	end = (unsigned long)ei + item_size;
1589 
1590 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1591 		ptr += sizeof(struct btrfs_tree_block_info);
1592 		BUG_ON(ptr > end);
1593 	}
1594 
1595 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 		needed = BTRFS_REF_TYPE_DATA;
1597 	else
1598 		needed = BTRFS_REF_TYPE_BLOCK;
1599 
1600 	err = -ENOENT;
1601 	while (1) {
1602 		if (ptr >= end) {
1603 			WARN_ON(ptr > end);
1604 			break;
1605 		}
1606 		iref = (struct btrfs_extent_inline_ref *)ptr;
1607 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 		if (type == BTRFS_REF_TYPE_INVALID) {
1609 			err = -EUCLEAN;
1610 			goto out;
1611 		}
1612 
1613 		if (want < type)
1614 			break;
1615 		if (want > type) {
1616 			ptr += btrfs_extent_inline_ref_size(type);
1617 			continue;
1618 		}
1619 
1620 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 			struct btrfs_extent_data_ref *dref;
1622 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 			if (match_extent_data_ref(leaf, dref, root_objectid,
1624 						  owner, offset)) {
1625 				err = 0;
1626 				break;
1627 			}
1628 			if (hash_extent_data_ref_item(leaf, dref) <
1629 			    hash_extent_data_ref(root_objectid, owner, offset))
1630 				break;
1631 		} else {
1632 			u64 ref_offset;
1633 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 			if (parent > 0) {
1635 				if (parent == ref_offset) {
1636 					err = 0;
1637 					break;
1638 				}
1639 				if (ref_offset < parent)
1640 					break;
1641 			} else {
1642 				if (root_objectid == ref_offset) {
1643 					err = 0;
1644 					break;
1645 				}
1646 				if (ref_offset < root_objectid)
1647 					break;
1648 			}
1649 		}
1650 		ptr += btrfs_extent_inline_ref_size(type);
1651 	}
1652 	if (err == -ENOENT && insert) {
1653 		if (item_size + extra_size >=
1654 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 			err = -EAGAIN;
1656 			goto out;
1657 		}
1658 		/*
1659 		 * To add new inline back ref, we have to make sure
1660 		 * there is no corresponding back ref item.
1661 		 * For simplicity, we just do not add new inline back
1662 		 * ref if there is any kind of item for this block
1663 		 */
1664 		if (find_next_key(path, 0, &key) == 0 &&
1665 		    key.objectid == bytenr &&
1666 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1667 			err = -EAGAIN;
1668 			goto out;
1669 		}
1670 	}
1671 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672 out:
1673 	if (insert) {
1674 		path->keep_locks = 0;
1675 		btrfs_unlock_up_safe(path, 1);
1676 	}
1677 	return err;
1678 }
1679 
1680 /*
1681  * helper to add new inline back ref
1682  */
1683 static noinline_for_stack
1684 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1685 				 struct btrfs_path *path,
1686 				 struct btrfs_extent_inline_ref *iref,
1687 				 u64 parent, u64 root_objectid,
1688 				 u64 owner, u64 offset, int refs_to_add,
1689 				 struct btrfs_delayed_extent_op *extent_op)
1690 {
1691 	struct extent_buffer *leaf;
1692 	struct btrfs_extent_item *ei;
1693 	unsigned long ptr;
1694 	unsigned long end;
1695 	unsigned long item_offset;
1696 	u64 refs;
1697 	int size;
1698 	int type;
1699 
1700 	leaf = path->nodes[0];
1701 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 	item_offset = (unsigned long)iref - (unsigned long)ei;
1703 
1704 	type = extent_ref_type(parent, owner);
1705 	size = btrfs_extent_inline_ref_size(type);
1706 
1707 	btrfs_extend_item(fs_info, path, size);
1708 
1709 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 	refs = btrfs_extent_refs(leaf, ei);
1711 	refs += refs_to_add;
1712 	btrfs_set_extent_refs(leaf, ei, refs);
1713 	if (extent_op)
1714 		__run_delayed_extent_op(extent_op, leaf, ei);
1715 
1716 	ptr = (unsigned long)ei + item_offset;
1717 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 	if (ptr < end - size)
1719 		memmove_extent_buffer(leaf, ptr + size, ptr,
1720 				      end - size - ptr);
1721 
1722 	iref = (struct btrfs_extent_inline_ref *)ptr;
1723 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 		struct btrfs_extent_data_ref *dref;
1726 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 		struct btrfs_shared_data_ref *sref;
1733 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 	} else {
1739 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 	}
1741 	btrfs_mark_buffer_dirty(leaf);
1742 }
1743 
1744 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1745 				 struct btrfs_path *path,
1746 				 struct btrfs_extent_inline_ref **ref_ret,
1747 				 u64 bytenr, u64 num_bytes, u64 parent,
1748 				 u64 root_objectid, u64 owner, u64 offset)
1749 {
1750 	int ret;
1751 
1752 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 					   num_bytes, parent, root_objectid,
1754 					   owner, offset, 0);
1755 	if (ret != -ENOENT)
1756 		return ret;
1757 
1758 	btrfs_release_path(path);
1759 	*ref_ret = NULL;
1760 
1761 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1762 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 					    root_objectid);
1764 	} else {
1765 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 					     root_objectid, owner, offset);
1767 	}
1768 	return ret;
1769 }
1770 
1771 /*
1772  * helper to update/remove inline back ref
1773  */
1774 static noinline_for_stack
1775 void update_inline_extent_backref(struct btrfs_path *path,
1776 				  struct btrfs_extent_inline_ref *iref,
1777 				  int refs_to_mod,
1778 				  struct btrfs_delayed_extent_op *extent_op,
1779 				  int *last_ref)
1780 {
1781 	struct extent_buffer *leaf = path->nodes[0];
1782 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1783 	struct btrfs_extent_item *ei;
1784 	struct btrfs_extent_data_ref *dref = NULL;
1785 	struct btrfs_shared_data_ref *sref = NULL;
1786 	unsigned long ptr;
1787 	unsigned long end;
1788 	u32 item_size;
1789 	int size;
1790 	int type;
1791 	u64 refs;
1792 
1793 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 	refs = btrfs_extent_refs(leaf, ei);
1795 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 	refs += refs_to_mod;
1797 	btrfs_set_extent_refs(leaf, ei, refs);
1798 	if (extent_op)
1799 		__run_delayed_extent_op(extent_op, leaf, ei);
1800 
1801 	/*
1802 	 * If type is invalid, we should have bailed out after
1803 	 * lookup_inline_extent_backref().
1804 	 */
1805 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1807 
1808 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 		refs = btrfs_extent_data_ref_count(leaf, dref);
1811 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 		refs = btrfs_shared_data_ref_count(leaf, sref);
1814 	} else {
1815 		refs = 1;
1816 		BUG_ON(refs_to_mod != -1);
1817 	}
1818 
1819 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 	refs += refs_to_mod;
1821 
1822 	if (refs > 0) {
1823 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 		else
1826 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 	} else {
1828 		*last_ref = 1;
1829 		size =  btrfs_extent_inline_ref_size(type);
1830 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 		ptr = (unsigned long)iref;
1832 		end = (unsigned long)ei + item_size;
1833 		if (ptr + size < end)
1834 			memmove_extent_buffer(leaf, ptr, ptr + size,
1835 					      end - ptr - size);
1836 		item_size -= size;
1837 		btrfs_truncate_item(fs_info, path, item_size, 1);
1838 	}
1839 	btrfs_mark_buffer_dirty(leaf);
1840 }
1841 
1842 static noinline_for_stack
1843 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1844 				 struct btrfs_path *path,
1845 				 u64 bytenr, u64 num_bytes, u64 parent,
1846 				 u64 root_objectid, u64 owner,
1847 				 u64 offset, int refs_to_add,
1848 				 struct btrfs_delayed_extent_op *extent_op)
1849 {
1850 	struct btrfs_extent_inline_ref *iref;
1851 	int ret;
1852 
1853 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 					   num_bytes, parent, root_objectid,
1855 					   owner, offset, 1);
1856 	if (ret == 0) {
1857 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1858 		update_inline_extent_backref(path, iref, refs_to_add,
1859 					     extent_op, NULL);
1860 	} else if (ret == -ENOENT) {
1861 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1862 					    root_objectid, owner, offset,
1863 					    refs_to_add, extent_op);
1864 		ret = 0;
1865 	}
1866 	return ret;
1867 }
1868 
1869 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1870 				 struct btrfs_path *path,
1871 				 u64 bytenr, u64 parent, u64 root_objectid,
1872 				 u64 owner, u64 offset, int refs_to_add)
1873 {
1874 	int ret;
1875 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 		BUG_ON(refs_to_add != 1);
1877 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 					    root_objectid);
1879 	} else {
1880 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 					     root_objectid, owner, offset,
1882 					     refs_to_add);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1888 				 struct btrfs_path *path,
1889 				 struct btrfs_extent_inline_ref *iref,
1890 				 int refs_to_drop, int is_data, int *last_ref)
1891 {
1892 	int ret = 0;
1893 
1894 	BUG_ON(!is_data && refs_to_drop != 1);
1895 	if (iref) {
1896 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 					     last_ref);
1898 	} else if (is_data) {
1899 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1900 					     last_ref);
1901 	} else {
1902 		*last_ref = 1;
1903 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1904 	}
1905 	return ret;
1906 }
1907 
1908 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1909 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 			       u64 *discarded_bytes)
1911 {
1912 	int j, ret = 0;
1913 	u64 bytes_left, end;
1914 	u64 aligned_start = ALIGN(start, 1 << 9);
1915 
1916 	if (WARN_ON(start != aligned_start)) {
1917 		len -= aligned_start - start;
1918 		len = round_down(len, 1 << 9);
1919 		start = aligned_start;
1920 	}
1921 
1922 	*discarded_bytes = 0;
1923 
1924 	if (!len)
1925 		return 0;
1926 
1927 	end = start + len;
1928 	bytes_left = len;
1929 
1930 	/* Skip any superblocks on this device. */
1931 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 		u64 sb_start = btrfs_sb_offset(j);
1933 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 		u64 size = sb_start - start;
1935 
1936 		if (!in_range(sb_start, start, bytes_left) &&
1937 		    !in_range(sb_end, start, bytes_left) &&
1938 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 			continue;
1940 
1941 		/*
1942 		 * Superblock spans beginning of range.  Adjust start and
1943 		 * try again.
1944 		 */
1945 		if (sb_start <= start) {
1946 			start += sb_end - start;
1947 			if (start > end) {
1948 				bytes_left = 0;
1949 				break;
1950 			}
1951 			bytes_left = end - start;
1952 			continue;
1953 		}
1954 
1955 		if (size) {
1956 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 						   GFP_NOFS, 0);
1958 			if (!ret)
1959 				*discarded_bytes += size;
1960 			else if (ret != -EOPNOTSUPP)
1961 				return ret;
1962 		}
1963 
1964 		start = sb_end;
1965 		if (start > end) {
1966 			bytes_left = 0;
1967 			break;
1968 		}
1969 		bytes_left = end - start;
1970 	}
1971 
1972 	if (bytes_left) {
1973 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1974 					   GFP_NOFS, 0);
1975 		if (!ret)
1976 			*discarded_bytes += bytes_left;
1977 	}
1978 	return ret;
1979 }
1980 
1981 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1982 			 u64 num_bytes, u64 *actual_bytes)
1983 {
1984 	int ret;
1985 	u64 discarded_bytes = 0;
1986 	struct btrfs_bio *bbio = NULL;
1987 
1988 
1989 	/*
1990 	 * Avoid races with device replace and make sure our bbio has devices
1991 	 * associated to its stripes that don't go away while we are discarding.
1992 	 */
1993 	btrfs_bio_counter_inc_blocked(fs_info);
1994 	/* Tell the block device(s) that the sectors can be discarded */
1995 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 			      &bbio, 0);
1997 	/* Error condition is -ENOMEM */
1998 	if (!ret) {
1999 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2000 		int i;
2001 
2002 
2003 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2004 			u64 bytes;
2005 			struct request_queue *req_q;
2006 
2007 			if (!stripe->dev->bdev) {
2008 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 				continue;
2010 			}
2011 			req_q = bdev_get_queue(stripe->dev->bdev);
2012 			if (!blk_queue_discard(req_q))
2013 				continue;
2014 
2015 			ret = btrfs_issue_discard(stripe->dev->bdev,
2016 						  stripe->physical,
2017 						  stripe->length,
2018 						  &bytes);
2019 			if (!ret)
2020 				discarded_bytes += bytes;
2021 			else if (ret != -EOPNOTSUPP)
2022 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2023 
2024 			/*
2025 			 * Just in case we get back EOPNOTSUPP for some reason,
2026 			 * just ignore the return value so we don't screw up
2027 			 * people calling discard_extent.
2028 			 */
2029 			ret = 0;
2030 		}
2031 		btrfs_put_bbio(bbio);
2032 	}
2033 	btrfs_bio_counter_dec(fs_info);
2034 
2035 	if (actual_bytes)
2036 		*actual_bytes = discarded_bytes;
2037 
2038 
2039 	if (ret == -EOPNOTSUPP)
2040 		ret = 0;
2041 	return ret;
2042 }
2043 
2044 /* Can return -ENOMEM */
2045 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2046 			 struct btrfs_root *root,
2047 			 u64 bytenr, u64 num_bytes, u64 parent,
2048 			 u64 root_objectid, u64 owner, u64 offset)
2049 {
2050 	struct btrfs_fs_info *fs_info = root->fs_info;
2051 	int old_ref_mod, new_ref_mod;
2052 	int ret;
2053 
2054 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056 
2057 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2059 
2060 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2061 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2062 						 num_bytes, parent,
2063 						 root_objectid, (int)owner,
2064 						 BTRFS_ADD_DELAYED_REF, NULL,
2065 						 &old_ref_mod, &new_ref_mod);
2066 	} else {
2067 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
2068 						 num_bytes, parent,
2069 						 root_objectid, owner, offset,
2070 						 0, BTRFS_ADD_DELAYED_REF,
2071 						 &old_ref_mod, &new_ref_mod);
2072 	}
2073 
2074 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076 
2077 		add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 	}
2079 
2080 	return ret;
2081 }
2082 
2083 /*
2084  * __btrfs_inc_extent_ref - insert backreference for a given extent
2085  *
2086  * @trans:	    Handle of transaction
2087  *
2088  * @node:	    The delayed ref node used to get the bytenr/length for
2089  *		    extent whose references are incremented.
2090  *
2091  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093  *		    bytenr of the parent block. Since new extents are always
2094  *		    created with indirect references, this will only be the case
2095  *		    when relocating a shared extent. In that case, root_objectid
2096  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097  *		    be 0
2098  *
2099  * @root_objectid:  The id of the root where this modification has originated,
2100  *		    this can be either one of the well-known metadata trees or
2101  *		    the subvolume id which references this extent.
2102  *
2103  * @owner:	    For data extents it is the inode number of the owning file.
2104  *		    For metadata extents this parameter holds the level in the
2105  *		    tree of the extent.
2106  *
2107  * @offset:	    For metadata extents the offset is ignored and is currently
2108  *		    always passed as 0. For data extents it is the fileoffset
2109  *		    this extent belongs to.
2110  *
2111  * @refs_to_add     Number of references to add
2112  *
2113  * @extent_op       Pointer to a structure, holding information necessary when
2114  *                  updating a tree block's flags
2115  *
2116  */
2117 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2118 				  struct btrfs_delayed_ref_node *node,
2119 				  u64 parent, u64 root_objectid,
2120 				  u64 owner, u64 offset, int refs_to_add,
2121 				  struct btrfs_delayed_extent_op *extent_op)
2122 {
2123 	struct btrfs_path *path;
2124 	struct extent_buffer *leaf;
2125 	struct btrfs_extent_item *item;
2126 	struct btrfs_key key;
2127 	u64 bytenr = node->bytenr;
2128 	u64 num_bytes = node->num_bytes;
2129 	u64 refs;
2130 	int ret;
2131 
2132 	path = btrfs_alloc_path();
2133 	if (!path)
2134 		return -ENOMEM;
2135 
2136 	path->reada = READA_FORWARD;
2137 	path->leave_spinning = 1;
2138 	/* this will setup the path even if it fails to insert the back ref */
2139 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 					   parent, root_objectid, owner,
2141 					   offset, refs_to_add, extent_op);
2142 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2143 		goto out;
2144 
2145 	/*
2146 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 	 * inline extent ref, so just update the reference count and add a
2148 	 * normal backref.
2149 	 */
2150 	leaf = path->nodes[0];
2151 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2152 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 	refs = btrfs_extent_refs(leaf, item);
2154 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 	if (extent_op)
2156 		__run_delayed_extent_op(extent_op, leaf, item);
2157 
2158 	btrfs_mark_buffer_dirty(leaf);
2159 	btrfs_release_path(path);
2160 
2161 	path->reada = READA_FORWARD;
2162 	path->leave_spinning = 1;
2163 	/* now insert the actual backref */
2164 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 				    owner, offset, refs_to_add);
2166 	if (ret)
2167 		btrfs_abort_transaction(trans, ret);
2168 out:
2169 	btrfs_free_path(path);
2170 	return ret;
2171 }
2172 
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 				struct btrfs_delayed_ref_node *node,
2175 				struct btrfs_delayed_extent_op *extent_op,
2176 				int insert_reserved)
2177 {
2178 	int ret = 0;
2179 	struct btrfs_delayed_data_ref *ref;
2180 	struct btrfs_key ins;
2181 	u64 parent = 0;
2182 	u64 ref_root = 0;
2183 	u64 flags = 0;
2184 
2185 	ins.objectid = node->bytenr;
2186 	ins.offset = node->num_bytes;
2187 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2188 
2189 	ref = btrfs_delayed_node_to_data_ref(node);
2190 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2191 
2192 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 		parent = ref->parent;
2194 	ref_root = ref->root;
2195 
2196 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 		if (extent_op)
2198 			flags |= extent_op->flags_to_set;
2199 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 						 flags, ref->objectid,
2201 						 ref->offset, &ins,
2202 						 node->ref_mod);
2203 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 					     ref->objectid, ref->offset,
2206 					     node->ref_mod, extent_op);
2207 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2208 		ret = __btrfs_free_extent(trans, node, parent,
2209 					  ref_root, ref->objectid,
2210 					  ref->offset, node->ref_mod,
2211 					  extent_op);
2212 	} else {
2213 		BUG();
2214 	}
2215 	return ret;
2216 }
2217 
2218 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 				    struct extent_buffer *leaf,
2220 				    struct btrfs_extent_item *ei)
2221 {
2222 	u64 flags = btrfs_extent_flags(leaf, ei);
2223 	if (extent_op->update_flags) {
2224 		flags |= extent_op->flags_to_set;
2225 		btrfs_set_extent_flags(leaf, ei, flags);
2226 	}
2227 
2228 	if (extent_op->update_key) {
2229 		struct btrfs_tree_block_info *bi;
2230 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 	}
2234 }
2235 
2236 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2237 				 struct btrfs_delayed_ref_head *head,
2238 				 struct btrfs_delayed_extent_op *extent_op)
2239 {
2240 	struct btrfs_fs_info *fs_info = trans->fs_info;
2241 	struct btrfs_key key;
2242 	struct btrfs_path *path;
2243 	struct btrfs_extent_item *ei;
2244 	struct extent_buffer *leaf;
2245 	u32 item_size;
2246 	int ret;
2247 	int err = 0;
2248 	int metadata = !extent_op->is_data;
2249 
2250 	if (trans->aborted)
2251 		return 0;
2252 
2253 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2254 		metadata = 0;
2255 
2256 	path = btrfs_alloc_path();
2257 	if (!path)
2258 		return -ENOMEM;
2259 
2260 	key.objectid = head->bytenr;
2261 
2262 	if (metadata) {
2263 		key.type = BTRFS_METADATA_ITEM_KEY;
2264 		key.offset = extent_op->level;
2265 	} else {
2266 		key.type = BTRFS_EXTENT_ITEM_KEY;
2267 		key.offset = head->num_bytes;
2268 	}
2269 
2270 again:
2271 	path->reada = READA_FORWARD;
2272 	path->leave_spinning = 1;
2273 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2274 	if (ret < 0) {
2275 		err = ret;
2276 		goto out;
2277 	}
2278 	if (ret > 0) {
2279 		if (metadata) {
2280 			if (path->slots[0] > 0) {
2281 				path->slots[0]--;
2282 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 						      path->slots[0]);
2284 				if (key.objectid == head->bytenr &&
2285 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2286 				    key.offset == head->num_bytes)
2287 					ret = 0;
2288 			}
2289 			if (ret > 0) {
2290 				btrfs_release_path(path);
2291 				metadata = 0;
2292 
2293 				key.objectid = head->bytenr;
2294 				key.offset = head->num_bytes;
2295 				key.type = BTRFS_EXTENT_ITEM_KEY;
2296 				goto again;
2297 			}
2298 		} else {
2299 			err = -EIO;
2300 			goto out;
2301 		}
2302 	}
2303 
2304 	leaf = path->nodes[0];
2305 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 
2307 	if (unlikely(item_size < sizeof(*ei))) {
2308 		err = -EINVAL;
2309 		btrfs_print_v0_err(fs_info);
2310 		btrfs_abort_transaction(trans, err);
2311 		goto out;
2312 	}
2313 
2314 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 	__run_delayed_extent_op(extent_op, leaf, ei);
2316 
2317 	btrfs_mark_buffer_dirty(leaf);
2318 out:
2319 	btrfs_free_path(path);
2320 	return err;
2321 }
2322 
2323 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2324 				struct btrfs_delayed_ref_node *node,
2325 				struct btrfs_delayed_extent_op *extent_op,
2326 				int insert_reserved)
2327 {
2328 	int ret = 0;
2329 	struct btrfs_delayed_tree_ref *ref;
2330 	u64 parent = 0;
2331 	u64 ref_root = 0;
2332 
2333 	ref = btrfs_delayed_node_to_tree_ref(node);
2334 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2335 
2336 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 		parent = ref->parent;
2338 	ref_root = ref->root;
2339 
2340 	if (node->ref_mod != 1) {
2341 		btrfs_err(trans->fs_info,
2342 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 			  node->bytenr, node->ref_mod, node->action, ref_root,
2344 			  parent);
2345 		return -EIO;
2346 	}
2347 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2348 		BUG_ON(!extent_op || !extent_op->update_flags);
2349 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2350 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2351 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 					     ref->level, 0, 1, extent_op);
2353 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2354 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2355 					  ref->level, 0, 1, extent_op);
2356 	} else {
2357 		BUG();
2358 	}
2359 	return ret;
2360 }
2361 
2362 /* helper function to actually process a single delayed ref entry */
2363 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2364 			       struct btrfs_delayed_ref_node *node,
2365 			       struct btrfs_delayed_extent_op *extent_op,
2366 			       int insert_reserved)
2367 {
2368 	int ret = 0;
2369 
2370 	if (trans->aborted) {
2371 		if (insert_reserved)
2372 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2373 					 node->num_bytes, 1);
2374 		return 0;
2375 	}
2376 
2377 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2379 		ret = run_delayed_tree_ref(trans, node, extent_op,
2380 					   insert_reserved);
2381 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2383 		ret = run_delayed_data_ref(trans, node, extent_op,
2384 					   insert_reserved);
2385 	else
2386 		BUG();
2387 	if (ret && insert_reserved)
2388 		btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 				 node->num_bytes, 1);
2390 	return ret;
2391 }
2392 
2393 static inline struct btrfs_delayed_ref_node *
2394 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395 {
2396 	struct btrfs_delayed_ref_node *ref;
2397 
2398 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2399 		return NULL;
2400 
2401 	/*
2402 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 	 * This is to prevent a ref count from going down to zero, which deletes
2404 	 * the extent item from the extent tree, when there still are references
2405 	 * to add, which would fail because they would not find the extent item.
2406 	 */
2407 	if (!list_empty(&head->ref_add_list))
2408 		return list_first_entry(&head->ref_add_list,
2409 				struct btrfs_delayed_ref_node, add_list);
2410 
2411 	ref = rb_entry(rb_first_cached(&head->ref_tree),
2412 		       struct btrfs_delayed_ref_node, ref_node);
2413 	ASSERT(list_empty(&ref->add_list));
2414 	return ref;
2415 }
2416 
2417 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 				      struct btrfs_delayed_ref_head *head)
2419 {
2420 	spin_lock(&delayed_refs->lock);
2421 	head->processing = 0;
2422 	delayed_refs->num_heads_ready++;
2423 	spin_unlock(&delayed_refs->lock);
2424 	btrfs_delayed_ref_unlock(head);
2425 }
2426 
2427 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 				struct btrfs_delayed_ref_head *head)
2429 {
2430 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2431 
2432 	if (!extent_op)
2433 		return NULL;
2434 
2435 	if (head->must_insert_reserved) {
2436 		head->extent_op = NULL;
2437 		btrfs_free_delayed_extent_op(extent_op);
2438 		return NULL;
2439 	}
2440 	return extent_op;
2441 }
2442 
2443 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 				     struct btrfs_delayed_ref_head *head)
2445 {
2446 	struct btrfs_delayed_extent_op *extent_op;
2447 	int ret;
2448 
2449 	extent_op = cleanup_extent_op(head);
2450 	if (!extent_op)
2451 		return 0;
2452 	head->extent_op = NULL;
2453 	spin_unlock(&head->lock);
2454 	ret = run_delayed_extent_op(trans, head, extent_op);
2455 	btrfs_free_delayed_extent_op(extent_op);
2456 	return ret ? ret : 1;
2457 }
2458 
2459 static void cleanup_ref_head_accounting(struct btrfs_trans_handle *trans,
2460 					struct btrfs_delayed_ref_head *head)
2461 {
2462 	struct btrfs_fs_info *fs_info = trans->fs_info;
2463 	struct btrfs_delayed_ref_root *delayed_refs =
2464 		&trans->transaction->delayed_refs;
2465 	int nr_items = 1;	/* Dropping this ref head update. */
2466 
2467 	if (head->total_ref_mod < 0) {
2468 		struct btrfs_space_info *space_info;
2469 		u64 flags;
2470 
2471 		if (head->is_data)
2472 			flags = BTRFS_BLOCK_GROUP_DATA;
2473 		else if (head->is_system)
2474 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2475 		else
2476 			flags = BTRFS_BLOCK_GROUP_METADATA;
2477 		space_info = __find_space_info(fs_info, flags);
2478 		ASSERT(space_info);
2479 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2480 				   -head->num_bytes,
2481 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2482 
2483 		/*
2484 		 * We had csum deletions accounted for in our delayed refs rsv,
2485 		 * we need to drop the csum leaves for this update from our
2486 		 * delayed_refs_rsv.
2487 		 */
2488 		if (head->is_data) {
2489 			spin_lock(&delayed_refs->lock);
2490 			delayed_refs->pending_csums -= head->num_bytes;
2491 			spin_unlock(&delayed_refs->lock);
2492 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2493 				head->num_bytes);
2494 		}
2495 	}
2496 
2497 	/* Also free its reserved qgroup space */
2498 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 				      head->qgroup_reserved);
2500 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2501 }
2502 
2503 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2504 			    struct btrfs_delayed_ref_head *head)
2505 {
2506 
2507 	struct btrfs_fs_info *fs_info = trans->fs_info;
2508 	struct btrfs_delayed_ref_root *delayed_refs;
2509 	int ret;
2510 
2511 	delayed_refs = &trans->transaction->delayed_refs;
2512 
2513 	ret = run_and_cleanup_extent_op(trans, head);
2514 	if (ret < 0) {
2515 		unselect_delayed_ref_head(delayed_refs, head);
2516 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2517 		return ret;
2518 	} else if (ret) {
2519 		return ret;
2520 	}
2521 
2522 	/*
2523 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2524 	 * and then re-check to make sure nobody got added.
2525 	 */
2526 	spin_unlock(&head->lock);
2527 	spin_lock(&delayed_refs->lock);
2528 	spin_lock(&head->lock);
2529 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2530 		spin_unlock(&head->lock);
2531 		spin_unlock(&delayed_refs->lock);
2532 		return 1;
2533 	}
2534 	btrfs_delete_ref_head(delayed_refs, head);
2535 	spin_unlock(&head->lock);
2536 	spin_unlock(&delayed_refs->lock);
2537 
2538 	if (head->must_insert_reserved) {
2539 		btrfs_pin_extent(fs_info, head->bytenr,
2540 				 head->num_bytes, 1);
2541 		if (head->is_data) {
2542 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2543 					      head->num_bytes);
2544 		}
2545 	}
2546 
2547 	cleanup_ref_head_accounting(trans, head);
2548 
2549 	trace_run_delayed_ref_head(fs_info, head, 0);
2550 	btrfs_delayed_ref_unlock(head);
2551 	btrfs_put_delayed_ref_head(head);
2552 	return 0;
2553 }
2554 
2555 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2556 					struct btrfs_trans_handle *trans)
2557 {
2558 	struct btrfs_delayed_ref_root *delayed_refs =
2559 		&trans->transaction->delayed_refs;
2560 	struct btrfs_delayed_ref_head *head = NULL;
2561 	int ret;
2562 
2563 	spin_lock(&delayed_refs->lock);
2564 	head = btrfs_select_ref_head(delayed_refs);
2565 	if (!head) {
2566 		spin_unlock(&delayed_refs->lock);
2567 		return head;
2568 	}
2569 
2570 	/*
2571 	 * Grab the lock that says we are going to process all the refs for
2572 	 * this head
2573 	 */
2574 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
2575 	spin_unlock(&delayed_refs->lock);
2576 
2577 	/*
2578 	 * We may have dropped the spin lock to get the head mutex lock, and
2579 	 * that might have given someone else time to free the head.  If that's
2580 	 * true, it has been removed from our list and we can move on.
2581 	 */
2582 	if (ret == -EAGAIN)
2583 		head = ERR_PTR(-EAGAIN);
2584 
2585 	return head;
2586 }
2587 
2588 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2589 				    struct btrfs_delayed_ref_head *locked_ref,
2590 				    unsigned long *run_refs)
2591 {
2592 	struct btrfs_fs_info *fs_info = trans->fs_info;
2593 	struct btrfs_delayed_ref_root *delayed_refs;
2594 	struct btrfs_delayed_extent_op *extent_op;
2595 	struct btrfs_delayed_ref_node *ref;
2596 	int must_insert_reserved = 0;
2597 	int ret;
2598 
2599 	delayed_refs = &trans->transaction->delayed_refs;
2600 
2601 	lockdep_assert_held(&locked_ref->mutex);
2602 	lockdep_assert_held(&locked_ref->lock);
2603 
2604 	while ((ref = select_delayed_ref(locked_ref))) {
2605 		if (ref->seq &&
2606 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2607 			spin_unlock(&locked_ref->lock);
2608 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2609 			return -EAGAIN;
2610 		}
2611 
2612 		(*run_refs)++;
2613 		ref->in_tree = 0;
2614 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2615 		RB_CLEAR_NODE(&ref->ref_node);
2616 		if (!list_empty(&ref->add_list))
2617 			list_del(&ref->add_list);
2618 		/*
2619 		 * When we play the delayed ref, also correct the ref_mod on
2620 		 * head
2621 		 */
2622 		switch (ref->action) {
2623 		case BTRFS_ADD_DELAYED_REF:
2624 		case BTRFS_ADD_DELAYED_EXTENT:
2625 			locked_ref->ref_mod -= ref->ref_mod;
2626 			break;
2627 		case BTRFS_DROP_DELAYED_REF:
2628 			locked_ref->ref_mod += ref->ref_mod;
2629 			break;
2630 		default:
2631 			WARN_ON(1);
2632 		}
2633 		atomic_dec(&delayed_refs->num_entries);
2634 
2635 		/*
2636 		 * Record the must_insert_reserved flag before we drop the
2637 		 * spin lock.
2638 		 */
2639 		must_insert_reserved = locked_ref->must_insert_reserved;
2640 		locked_ref->must_insert_reserved = 0;
2641 
2642 		extent_op = locked_ref->extent_op;
2643 		locked_ref->extent_op = NULL;
2644 		spin_unlock(&locked_ref->lock);
2645 
2646 		ret = run_one_delayed_ref(trans, ref, extent_op,
2647 					  must_insert_reserved);
2648 
2649 		btrfs_free_delayed_extent_op(extent_op);
2650 		if (ret) {
2651 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2652 			btrfs_put_delayed_ref(ref);
2653 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2654 				    ret);
2655 			return ret;
2656 		}
2657 
2658 		btrfs_put_delayed_ref(ref);
2659 		cond_resched();
2660 
2661 		spin_lock(&locked_ref->lock);
2662 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 /*
2669  * Returns 0 on success or if called with an already aborted transaction.
2670  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2671  */
2672 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2673 					     unsigned long nr)
2674 {
2675 	struct btrfs_fs_info *fs_info = trans->fs_info;
2676 	struct btrfs_delayed_ref_root *delayed_refs;
2677 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2678 	ktime_t start = ktime_get();
2679 	int ret;
2680 	unsigned long count = 0;
2681 	unsigned long actual_count = 0;
2682 
2683 	delayed_refs = &trans->transaction->delayed_refs;
2684 	do {
2685 		if (!locked_ref) {
2686 			locked_ref = btrfs_obtain_ref_head(trans);
2687 			if (IS_ERR_OR_NULL(locked_ref)) {
2688 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2689 					continue;
2690 				} else {
2691 					break;
2692 				}
2693 			}
2694 			count++;
2695 		}
2696 		/*
2697 		 * We need to try and merge add/drops of the same ref since we
2698 		 * can run into issues with relocate dropping the implicit ref
2699 		 * and then it being added back again before the drop can
2700 		 * finish.  If we merged anything we need to re-loop so we can
2701 		 * get a good ref.
2702 		 * Or we can get node references of the same type that weren't
2703 		 * merged when created due to bumps in the tree mod seq, and
2704 		 * we need to merge them to prevent adding an inline extent
2705 		 * backref before dropping it (triggering a BUG_ON at
2706 		 * insert_inline_extent_backref()).
2707 		 */
2708 		spin_lock(&locked_ref->lock);
2709 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2710 
2711 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2712 						      &actual_count);
2713 		if (ret < 0 && ret != -EAGAIN) {
2714 			/*
2715 			 * Error, btrfs_run_delayed_refs_for_head already
2716 			 * unlocked everything so just bail out
2717 			 */
2718 			return ret;
2719 		} else if (!ret) {
2720 			/*
2721 			 * Success, perform the usual cleanup of a processed
2722 			 * head
2723 			 */
2724 			ret = cleanup_ref_head(trans, locked_ref);
2725 			if (ret > 0 ) {
2726 				/* We dropped our lock, we need to loop. */
2727 				ret = 0;
2728 				continue;
2729 			} else if (ret) {
2730 				return ret;
2731 			}
2732 		}
2733 
2734 		/*
2735 		 * Either success case or btrfs_run_delayed_refs_for_head
2736 		 * returned -EAGAIN, meaning we need to select another head
2737 		 */
2738 
2739 		locked_ref = NULL;
2740 		cond_resched();
2741 	} while ((nr != -1 && count < nr) || locked_ref);
2742 
2743 	/*
2744 	 * We don't want to include ref heads since we can have empty ref heads
2745 	 * and those will drastically skew our runtime down since we just do
2746 	 * accounting, no actual extent tree updates.
2747 	 */
2748 	if (actual_count > 0) {
2749 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2750 		u64 avg;
2751 
2752 		/*
2753 		 * We weigh the current average higher than our current runtime
2754 		 * to avoid large swings in the average.
2755 		 */
2756 		spin_lock(&delayed_refs->lock);
2757 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2758 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2759 		spin_unlock(&delayed_refs->lock);
2760 	}
2761 	return 0;
2762 }
2763 
2764 #ifdef SCRAMBLE_DELAYED_REFS
2765 /*
2766  * Normally delayed refs get processed in ascending bytenr order. This
2767  * correlates in most cases to the order added. To expose dependencies on this
2768  * order, we start to process the tree in the middle instead of the beginning
2769  */
2770 static u64 find_middle(struct rb_root *root)
2771 {
2772 	struct rb_node *n = root->rb_node;
2773 	struct btrfs_delayed_ref_node *entry;
2774 	int alt = 1;
2775 	u64 middle;
2776 	u64 first = 0, last = 0;
2777 
2778 	n = rb_first(root);
2779 	if (n) {
2780 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2781 		first = entry->bytenr;
2782 	}
2783 	n = rb_last(root);
2784 	if (n) {
2785 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2786 		last = entry->bytenr;
2787 	}
2788 	n = root->rb_node;
2789 
2790 	while (n) {
2791 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2792 		WARN_ON(!entry->in_tree);
2793 
2794 		middle = entry->bytenr;
2795 
2796 		if (alt)
2797 			n = n->rb_left;
2798 		else
2799 			n = n->rb_right;
2800 
2801 		alt = 1 - alt;
2802 	}
2803 	return middle;
2804 }
2805 #endif
2806 
2807 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2808 {
2809 	u64 num_bytes;
2810 
2811 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2812 			     sizeof(struct btrfs_extent_inline_ref));
2813 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2814 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2815 
2816 	/*
2817 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2818 	 * closer to what we're really going to want to use.
2819 	 */
2820 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2821 }
2822 
2823 /*
2824  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2825  * would require to store the csums for that many bytes.
2826  */
2827 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2828 {
2829 	u64 csum_size;
2830 	u64 num_csums_per_leaf;
2831 	u64 num_csums;
2832 
2833 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2834 	num_csums_per_leaf = div64_u64(csum_size,
2835 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2836 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2837 	num_csums += num_csums_per_leaf - 1;
2838 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2839 	return num_csums;
2840 }
2841 
2842 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2843 {
2844 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2845 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2846 	bool ret = false;
2847 	u64 reserved;
2848 
2849 	spin_lock(&global_rsv->lock);
2850 	reserved = global_rsv->reserved;
2851 	spin_unlock(&global_rsv->lock);
2852 
2853 	/*
2854 	 * Since the global reserve is just kind of magic we don't really want
2855 	 * to rely on it to save our bacon, so if our size is more than the
2856 	 * delayed_refs_rsv and the global rsv then it's time to think about
2857 	 * bailing.
2858 	 */
2859 	spin_lock(&delayed_refs_rsv->lock);
2860 	reserved += delayed_refs_rsv->reserved;
2861 	if (delayed_refs_rsv->size >= reserved)
2862 		ret = true;
2863 	spin_unlock(&delayed_refs_rsv->lock);
2864 	return ret;
2865 }
2866 
2867 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2868 {
2869 	u64 num_entries =
2870 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2871 	u64 avg_runtime;
2872 	u64 val;
2873 
2874 	smp_mb();
2875 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2876 	val = num_entries * avg_runtime;
2877 	if (val >= NSEC_PER_SEC)
2878 		return 1;
2879 	if (val >= NSEC_PER_SEC / 2)
2880 		return 2;
2881 
2882 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
2883 }
2884 
2885 struct async_delayed_refs {
2886 	struct btrfs_root *root;
2887 	u64 transid;
2888 	int count;
2889 	int error;
2890 	int sync;
2891 	struct completion wait;
2892 	struct btrfs_work work;
2893 };
2894 
2895 static inline struct async_delayed_refs *
2896 to_async_delayed_refs(struct btrfs_work *work)
2897 {
2898 	return container_of(work, struct async_delayed_refs, work);
2899 }
2900 
2901 static void delayed_ref_async_start(struct btrfs_work *work)
2902 {
2903 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2904 	struct btrfs_trans_handle *trans;
2905 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2906 	int ret;
2907 
2908 	/* if the commit is already started, we don't need to wait here */
2909 	if (btrfs_transaction_blocked(fs_info))
2910 		goto done;
2911 
2912 	trans = btrfs_join_transaction(async->root);
2913 	if (IS_ERR(trans)) {
2914 		async->error = PTR_ERR(trans);
2915 		goto done;
2916 	}
2917 
2918 	/*
2919 	 * trans->sync means that when we call end_transaction, we won't
2920 	 * wait on delayed refs
2921 	 */
2922 	trans->sync = true;
2923 
2924 	/* Don't bother flushing if we got into a different transaction */
2925 	if (trans->transid > async->transid)
2926 		goto end;
2927 
2928 	ret = btrfs_run_delayed_refs(trans, async->count);
2929 	if (ret)
2930 		async->error = ret;
2931 end:
2932 	ret = btrfs_end_transaction(trans);
2933 	if (ret && !async->error)
2934 		async->error = ret;
2935 done:
2936 	if (async->sync)
2937 		complete(&async->wait);
2938 	else
2939 		kfree(async);
2940 }
2941 
2942 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2943 				 unsigned long count, u64 transid, int wait)
2944 {
2945 	struct async_delayed_refs *async;
2946 	int ret;
2947 
2948 	async = kmalloc(sizeof(*async), GFP_NOFS);
2949 	if (!async)
2950 		return -ENOMEM;
2951 
2952 	async->root = fs_info->tree_root;
2953 	async->count = count;
2954 	async->error = 0;
2955 	async->transid = transid;
2956 	if (wait)
2957 		async->sync = 1;
2958 	else
2959 		async->sync = 0;
2960 	init_completion(&async->wait);
2961 
2962 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2963 			delayed_ref_async_start, NULL, NULL);
2964 
2965 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2966 
2967 	if (wait) {
2968 		wait_for_completion(&async->wait);
2969 		ret = async->error;
2970 		kfree(async);
2971 		return ret;
2972 	}
2973 	return 0;
2974 }
2975 
2976 /*
2977  * this starts processing the delayed reference count updates and
2978  * extent insertions we have queued up so far.  count can be
2979  * 0, which means to process everything in the tree at the start
2980  * of the run (but not newly added entries), or it can be some target
2981  * number you'd like to process.
2982  *
2983  * Returns 0 on success or if called with an aborted transaction
2984  * Returns <0 on error and aborts the transaction
2985  */
2986 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2987 			   unsigned long count)
2988 {
2989 	struct btrfs_fs_info *fs_info = trans->fs_info;
2990 	struct rb_node *node;
2991 	struct btrfs_delayed_ref_root *delayed_refs;
2992 	struct btrfs_delayed_ref_head *head;
2993 	int ret;
2994 	int run_all = count == (unsigned long)-1;
2995 
2996 	/* We'll clean this up in btrfs_cleanup_transaction */
2997 	if (trans->aborted)
2998 		return 0;
2999 
3000 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3001 		return 0;
3002 
3003 	delayed_refs = &trans->transaction->delayed_refs;
3004 	if (count == 0)
3005 		count = atomic_read(&delayed_refs->num_entries) * 2;
3006 
3007 again:
3008 #ifdef SCRAMBLE_DELAYED_REFS
3009 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3010 #endif
3011 	ret = __btrfs_run_delayed_refs(trans, count);
3012 	if (ret < 0) {
3013 		btrfs_abort_transaction(trans, ret);
3014 		return ret;
3015 	}
3016 
3017 	if (run_all) {
3018 		if (!list_empty(&trans->new_bgs))
3019 			btrfs_create_pending_block_groups(trans);
3020 
3021 		spin_lock(&delayed_refs->lock);
3022 		node = rb_first_cached(&delayed_refs->href_root);
3023 		if (!node) {
3024 			spin_unlock(&delayed_refs->lock);
3025 			goto out;
3026 		}
3027 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3028 				href_node);
3029 		refcount_inc(&head->refs);
3030 		spin_unlock(&delayed_refs->lock);
3031 
3032 		/* Mutex was contended, block until it's released and retry. */
3033 		mutex_lock(&head->mutex);
3034 		mutex_unlock(&head->mutex);
3035 
3036 		btrfs_put_delayed_ref_head(head);
3037 		cond_resched();
3038 		goto again;
3039 	}
3040 out:
3041 	return 0;
3042 }
3043 
3044 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3045 				struct btrfs_fs_info *fs_info,
3046 				u64 bytenr, u64 num_bytes, u64 flags,
3047 				int level, int is_data)
3048 {
3049 	struct btrfs_delayed_extent_op *extent_op;
3050 	int ret;
3051 
3052 	extent_op = btrfs_alloc_delayed_extent_op();
3053 	if (!extent_op)
3054 		return -ENOMEM;
3055 
3056 	extent_op->flags_to_set = flags;
3057 	extent_op->update_flags = true;
3058 	extent_op->update_key = false;
3059 	extent_op->is_data = is_data ? true : false;
3060 	extent_op->level = level;
3061 
3062 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3063 					  num_bytes, extent_op);
3064 	if (ret)
3065 		btrfs_free_delayed_extent_op(extent_op);
3066 	return ret;
3067 }
3068 
3069 static noinline int check_delayed_ref(struct btrfs_root *root,
3070 				      struct btrfs_path *path,
3071 				      u64 objectid, u64 offset, u64 bytenr)
3072 {
3073 	struct btrfs_delayed_ref_head *head;
3074 	struct btrfs_delayed_ref_node *ref;
3075 	struct btrfs_delayed_data_ref *data_ref;
3076 	struct btrfs_delayed_ref_root *delayed_refs;
3077 	struct btrfs_transaction *cur_trans;
3078 	struct rb_node *node;
3079 	int ret = 0;
3080 
3081 	spin_lock(&root->fs_info->trans_lock);
3082 	cur_trans = root->fs_info->running_transaction;
3083 	if (cur_trans)
3084 		refcount_inc(&cur_trans->use_count);
3085 	spin_unlock(&root->fs_info->trans_lock);
3086 	if (!cur_trans)
3087 		return 0;
3088 
3089 	delayed_refs = &cur_trans->delayed_refs;
3090 	spin_lock(&delayed_refs->lock);
3091 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3092 	if (!head) {
3093 		spin_unlock(&delayed_refs->lock);
3094 		btrfs_put_transaction(cur_trans);
3095 		return 0;
3096 	}
3097 
3098 	if (!mutex_trylock(&head->mutex)) {
3099 		refcount_inc(&head->refs);
3100 		spin_unlock(&delayed_refs->lock);
3101 
3102 		btrfs_release_path(path);
3103 
3104 		/*
3105 		 * Mutex was contended, block until it's released and let
3106 		 * caller try again
3107 		 */
3108 		mutex_lock(&head->mutex);
3109 		mutex_unlock(&head->mutex);
3110 		btrfs_put_delayed_ref_head(head);
3111 		btrfs_put_transaction(cur_trans);
3112 		return -EAGAIN;
3113 	}
3114 	spin_unlock(&delayed_refs->lock);
3115 
3116 	spin_lock(&head->lock);
3117 	/*
3118 	 * XXX: We should replace this with a proper search function in the
3119 	 * future.
3120 	 */
3121 	for (node = rb_first_cached(&head->ref_tree); node;
3122 	     node = rb_next(node)) {
3123 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3124 		/* If it's a shared ref we know a cross reference exists */
3125 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3126 			ret = 1;
3127 			break;
3128 		}
3129 
3130 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3131 
3132 		/*
3133 		 * If our ref doesn't match the one we're currently looking at
3134 		 * then we have a cross reference.
3135 		 */
3136 		if (data_ref->root != root->root_key.objectid ||
3137 		    data_ref->objectid != objectid ||
3138 		    data_ref->offset != offset) {
3139 			ret = 1;
3140 			break;
3141 		}
3142 	}
3143 	spin_unlock(&head->lock);
3144 	mutex_unlock(&head->mutex);
3145 	btrfs_put_transaction(cur_trans);
3146 	return ret;
3147 }
3148 
3149 static noinline int check_committed_ref(struct btrfs_root *root,
3150 					struct btrfs_path *path,
3151 					u64 objectid, u64 offset, u64 bytenr)
3152 {
3153 	struct btrfs_fs_info *fs_info = root->fs_info;
3154 	struct btrfs_root *extent_root = fs_info->extent_root;
3155 	struct extent_buffer *leaf;
3156 	struct btrfs_extent_data_ref *ref;
3157 	struct btrfs_extent_inline_ref *iref;
3158 	struct btrfs_extent_item *ei;
3159 	struct btrfs_key key;
3160 	u32 item_size;
3161 	int type;
3162 	int ret;
3163 
3164 	key.objectid = bytenr;
3165 	key.offset = (u64)-1;
3166 	key.type = BTRFS_EXTENT_ITEM_KEY;
3167 
3168 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3169 	if (ret < 0)
3170 		goto out;
3171 	BUG_ON(ret == 0); /* Corruption */
3172 
3173 	ret = -ENOENT;
3174 	if (path->slots[0] == 0)
3175 		goto out;
3176 
3177 	path->slots[0]--;
3178 	leaf = path->nodes[0];
3179 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3180 
3181 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3182 		goto out;
3183 
3184 	ret = 1;
3185 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3186 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3187 
3188 	if (item_size != sizeof(*ei) +
3189 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3190 		goto out;
3191 
3192 	if (btrfs_extent_generation(leaf, ei) <=
3193 	    btrfs_root_last_snapshot(&root->root_item))
3194 		goto out;
3195 
3196 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3197 
3198 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3199 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3200 		goto out;
3201 
3202 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3203 	if (btrfs_extent_refs(leaf, ei) !=
3204 	    btrfs_extent_data_ref_count(leaf, ref) ||
3205 	    btrfs_extent_data_ref_root(leaf, ref) !=
3206 	    root->root_key.objectid ||
3207 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3208 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3209 		goto out;
3210 
3211 	ret = 0;
3212 out:
3213 	return ret;
3214 }
3215 
3216 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3217 			  u64 bytenr)
3218 {
3219 	struct btrfs_path *path;
3220 	int ret;
3221 
3222 	path = btrfs_alloc_path();
3223 	if (!path)
3224 		return -ENOMEM;
3225 
3226 	do {
3227 		ret = check_committed_ref(root, path, objectid,
3228 					  offset, bytenr);
3229 		if (ret && ret != -ENOENT)
3230 			goto out;
3231 
3232 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3233 	} while (ret == -EAGAIN);
3234 
3235 out:
3236 	btrfs_free_path(path);
3237 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3238 		WARN_ON(ret > 0);
3239 	return ret;
3240 }
3241 
3242 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3243 			   struct btrfs_root *root,
3244 			   struct extent_buffer *buf,
3245 			   int full_backref, int inc)
3246 {
3247 	struct btrfs_fs_info *fs_info = root->fs_info;
3248 	u64 bytenr;
3249 	u64 num_bytes;
3250 	u64 parent;
3251 	u64 ref_root;
3252 	u32 nritems;
3253 	struct btrfs_key key;
3254 	struct btrfs_file_extent_item *fi;
3255 	int i;
3256 	int level;
3257 	int ret = 0;
3258 	int (*process_func)(struct btrfs_trans_handle *,
3259 			    struct btrfs_root *,
3260 			    u64, u64, u64, u64, u64, u64);
3261 
3262 
3263 	if (btrfs_is_testing(fs_info))
3264 		return 0;
3265 
3266 	ref_root = btrfs_header_owner(buf);
3267 	nritems = btrfs_header_nritems(buf);
3268 	level = btrfs_header_level(buf);
3269 
3270 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3271 		return 0;
3272 
3273 	if (inc)
3274 		process_func = btrfs_inc_extent_ref;
3275 	else
3276 		process_func = btrfs_free_extent;
3277 
3278 	if (full_backref)
3279 		parent = buf->start;
3280 	else
3281 		parent = 0;
3282 
3283 	for (i = 0; i < nritems; i++) {
3284 		if (level == 0) {
3285 			btrfs_item_key_to_cpu(buf, &key, i);
3286 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3287 				continue;
3288 			fi = btrfs_item_ptr(buf, i,
3289 					    struct btrfs_file_extent_item);
3290 			if (btrfs_file_extent_type(buf, fi) ==
3291 			    BTRFS_FILE_EXTENT_INLINE)
3292 				continue;
3293 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3294 			if (bytenr == 0)
3295 				continue;
3296 
3297 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3298 			key.offset -= btrfs_file_extent_offset(buf, fi);
3299 			ret = process_func(trans, root, bytenr, num_bytes,
3300 					   parent, ref_root, key.objectid,
3301 					   key.offset);
3302 			if (ret)
3303 				goto fail;
3304 		} else {
3305 			bytenr = btrfs_node_blockptr(buf, i);
3306 			num_bytes = fs_info->nodesize;
3307 			ret = process_func(trans, root, bytenr, num_bytes,
3308 					   parent, ref_root, level - 1, 0);
3309 			if (ret)
3310 				goto fail;
3311 		}
3312 	}
3313 	return 0;
3314 fail:
3315 	return ret;
3316 }
3317 
3318 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3319 		  struct extent_buffer *buf, int full_backref)
3320 {
3321 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3322 }
3323 
3324 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3325 		  struct extent_buffer *buf, int full_backref)
3326 {
3327 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3328 }
3329 
3330 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3331 				 struct btrfs_fs_info *fs_info,
3332 				 struct btrfs_path *path,
3333 				 struct btrfs_block_group_cache *cache)
3334 {
3335 	int ret;
3336 	struct btrfs_root *extent_root = fs_info->extent_root;
3337 	unsigned long bi;
3338 	struct extent_buffer *leaf;
3339 
3340 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3341 	if (ret) {
3342 		if (ret > 0)
3343 			ret = -ENOENT;
3344 		goto fail;
3345 	}
3346 
3347 	leaf = path->nodes[0];
3348 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3349 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3350 	btrfs_mark_buffer_dirty(leaf);
3351 fail:
3352 	btrfs_release_path(path);
3353 	return ret;
3354 
3355 }
3356 
3357 static struct btrfs_block_group_cache *
3358 next_block_group(struct btrfs_fs_info *fs_info,
3359 		 struct btrfs_block_group_cache *cache)
3360 {
3361 	struct rb_node *node;
3362 
3363 	spin_lock(&fs_info->block_group_cache_lock);
3364 
3365 	/* If our block group was removed, we need a full search. */
3366 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3367 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3368 
3369 		spin_unlock(&fs_info->block_group_cache_lock);
3370 		btrfs_put_block_group(cache);
3371 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3372 	}
3373 	node = rb_next(&cache->cache_node);
3374 	btrfs_put_block_group(cache);
3375 	if (node) {
3376 		cache = rb_entry(node, struct btrfs_block_group_cache,
3377 				 cache_node);
3378 		btrfs_get_block_group(cache);
3379 	} else
3380 		cache = NULL;
3381 	spin_unlock(&fs_info->block_group_cache_lock);
3382 	return cache;
3383 }
3384 
3385 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3386 			    struct btrfs_trans_handle *trans,
3387 			    struct btrfs_path *path)
3388 {
3389 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3390 	struct btrfs_root *root = fs_info->tree_root;
3391 	struct inode *inode = NULL;
3392 	struct extent_changeset *data_reserved = NULL;
3393 	u64 alloc_hint = 0;
3394 	int dcs = BTRFS_DC_ERROR;
3395 	u64 num_pages = 0;
3396 	int retries = 0;
3397 	int ret = 0;
3398 
3399 	/*
3400 	 * If this block group is smaller than 100 megs don't bother caching the
3401 	 * block group.
3402 	 */
3403 	if (block_group->key.offset < (100 * SZ_1M)) {
3404 		spin_lock(&block_group->lock);
3405 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3406 		spin_unlock(&block_group->lock);
3407 		return 0;
3408 	}
3409 
3410 	if (trans->aborted)
3411 		return 0;
3412 again:
3413 	inode = lookup_free_space_inode(fs_info, block_group, path);
3414 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3415 		ret = PTR_ERR(inode);
3416 		btrfs_release_path(path);
3417 		goto out;
3418 	}
3419 
3420 	if (IS_ERR(inode)) {
3421 		BUG_ON(retries);
3422 		retries++;
3423 
3424 		if (block_group->ro)
3425 			goto out_free;
3426 
3427 		ret = create_free_space_inode(fs_info, trans, block_group,
3428 					      path);
3429 		if (ret)
3430 			goto out_free;
3431 		goto again;
3432 	}
3433 
3434 	/*
3435 	 * We want to set the generation to 0, that way if anything goes wrong
3436 	 * from here on out we know not to trust this cache when we load up next
3437 	 * time.
3438 	 */
3439 	BTRFS_I(inode)->generation = 0;
3440 	ret = btrfs_update_inode(trans, root, inode);
3441 	if (ret) {
3442 		/*
3443 		 * So theoretically we could recover from this, simply set the
3444 		 * super cache generation to 0 so we know to invalidate the
3445 		 * cache, but then we'd have to keep track of the block groups
3446 		 * that fail this way so we know we _have_ to reset this cache
3447 		 * before the next commit or risk reading stale cache.  So to
3448 		 * limit our exposure to horrible edge cases lets just abort the
3449 		 * transaction, this only happens in really bad situations
3450 		 * anyway.
3451 		 */
3452 		btrfs_abort_transaction(trans, ret);
3453 		goto out_put;
3454 	}
3455 	WARN_ON(ret);
3456 
3457 	/* We've already setup this transaction, go ahead and exit */
3458 	if (block_group->cache_generation == trans->transid &&
3459 	    i_size_read(inode)) {
3460 		dcs = BTRFS_DC_SETUP;
3461 		goto out_put;
3462 	}
3463 
3464 	if (i_size_read(inode) > 0) {
3465 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3466 					&fs_info->global_block_rsv);
3467 		if (ret)
3468 			goto out_put;
3469 
3470 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3471 		if (ret)
3472 			goto out_put;
3473 	}
3474 
3475 	spin_lock(&block_group->lock);
3476 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3477 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3478 		/*
3479 		 * don't bother trying to write stuff out _if_
3480 		 * a) we're not cached,
3481 		 * b) we're with nospace_cache mount option,
3482 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3483 		 */
3484 		dcs = BTRFS_DC_WRITTEN;
3485 		spin_unlock(&block_group->lock);
3486 		goto out_put;
3487 	}
3488 	spin_unlock(&block_group->lock);
3489 
3490 	/*
3491 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3492 	 * skip doing the setup, we've already cleared the cache so we're safe.
3493 	 */
3494 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3495 		ret = -ENOSPC;
3496 		goto out_put;
3497 	}
3498 
3499 	/*
3500 	 * Try to preallocate enough space based on how big the block group is.
3501 	 * Keep in mind this has to include any pinned space which could end up
3502 	 * taking up quite a bit since it's not folded into the other space
3503 	 * cache.
3504 	 */
3505 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3506 	if (!num_pages)
3507 		num_pages = 1;
3508 
3509 	num_pages *= 16;
3510 	num_pages *= PAGE_SIZE;
3511 
3512 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3513 	if (ret)
3514 		goto out_put;
3515 
3516 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3517 					      num_pages, num_pages,
3518 					      &alloc_hint);
3519 	/*
3520 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3521 	 * of metadata or split extents when writing the cache out, which means
3522 	 * we can enospc if we are heavily fragmented in addition to just normal
3523 	 * out of space conditions.  So if we hit this just skip setting up any
3524 	 * other block groups for this transaction, maybe we'll unpin enough
3525 	 * space the next time around.
3526 	 */
3527 	if (!ret)
3528 		dcs = BTRFS_DC_SETUP;
3529 	else if (ret == -ENOSPC)
3530 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3531 
3532 out_put:
3533 	iput(inode);
3534 out_free:
3535 	btrfs_release_path(path);
3536 out:
3537 	spin_lock(&block_group->lock);
3538 	if (!ret && dcs == BTRFS_DC_SETUP)
3539 		block_group->cache_generation = trans->transid;
3540 	block_group->disk_cache_state = dcs;
3541 	spin_unlock(&block_group->lock);
3542 
3543 	extent_changeset_free(data_reserved);
3544 	return ret;
3545 }
3546 
3547 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3548 			    struct btrfs_fs_info *fs_info)
3549 {
3550 	struct btrfs_block_group_cache *cache, *tmp;
3551 	struct btrfs_transaction *cur_trans = trans->transaction;
3552 	struct btrfs_path *path;
3553 
3554 	if (list_empty(&cur_trans->dirty_bgs) ||
3555 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3556 		return 0;
3557 
3558 	path = btrfs_alloc_path();
3559 	if (!path)
3560 		return -ENOMEM;
3561 
3562 	/* Could add new block groups, use _safe just in case */
3563 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3564 				 dirty_list) {
3565 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3566 			cache_save_setup(cache, trans, path);
3567 	}
3568 
3569 	btrfs_free_path(path);
3570 	return 0;
3571 }
3572 
3573 /*
3574  * transaction commit does final block group cache writeback during a
3575  * critical section where nothing is allowed to change the FS.  This is
3576  * required in order for the cache to actually match the block group,
3577  * but can introduce a lot of latency into the commit.
3578  *
3579  * So, btrfs_start_dirty_block_groups is here to kick off block group
3580  * cache IO.  There's a chance we'll have to redo some of it if the
3581  * block group changes again during the commit, but it greatly reduces
3582  * the commit latency by getting rid of the easy block groups while
3583  * we're still allowing others to join the commit.
3584  */
3585 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3586 {
3587 	struct btrfs_fs_info *fs_info = trans->fs_info;
3588 	struct btrfs_block_group_cache *cache;
3589 	struct btrfs_transaction *cur_trans = trans->transaction;
3590 	int ret = 0;
3591 	int should_put;
3592 	struct btrfs_path *path = NULL;
3593 	LIST_HEAD(dirty);
3594 	struct list_head *io = &cur_trans->io_bgs;
3595 	int num_started = 0;
3596 	int loops = 0;
3597 
3598 	spin_lock(&cur_trans->dirty_bgs_lock);
3599 	if (list_empty(&cur_trans->dirty_bgs)) {
3600 		spin_unlock(&cur_trans->dirty_bgs_lock);
3601 		return 0;
3602 	}
3603 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3604 	spin_unlock(&cur_trans->dirty_bgs_lock);
3605 
3606 again:
3607 	/*
3608 	 * make sure all the block groups on our dirty list actually
3609 	 * exist
3610 	 */
3611 	btrfs_create_pending_block_groups(trans);
3612 
3613 	if (!path) {
3614 		path = btrfs_alloc_path();
3615 		if (!path)
3616 			return -ENOMEM;
3617 	}
3618 
3619 	/*
3620 	 * cache_write_mutex is here only to save us from balance or automatic
3621 	 * removal of empty block groups deleting this block group while we are
3622 	 * writing out the cache
3623 	 */
3624 	mutex_lock(&trans->transaction->cache_write_mutex);
3625 	while (!list_empty(&dirty)) {
3626 		bool drop_reserve = true;
3627 
3628 		cache = list_first_entry(&dirty,
3629 					 struct btrfs_block_group_cache,
3630 					 dirty_list);
3631 		/*
3632 		 * this can happen if something re-dirties a block
3633 		 * group that is already under IO.  Just wait for it to
3634 		 * finish and then do it all again
3635 		 */
3636 		if (!list_empty(&cache->io_list)) {
3637 			list_del_init(&cache->io_list);
3638 			btrfs_wait_cache_io(trans, cache, path);
3639 			btrfs_put_block_group(cache);
3640 		}
3641 
3642 
3643 		/*
3644 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3645 		 * if it should update the cache_state.  Don't delete
3646 		 * until after we wait.
3647 		 *
3648 		 * Since we're not running in the commit critical section
3649 		 * we need the dirty_bgs_lock to protect from update_block_group
3650 		 */
3651 		spin_lock(&cur_trans->dirty_bgs_lock);
3652 		list_del_init(&cache->dirty_list);
3653 		spin_unlock(&cur_trans->dirty_bgs_lock);
3654 
3655 		should_put = 1;
3656 
3657 		cache_save_setup(cache, trans, path);
3658 
3659 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3660 			cache->io_ctl.inode = NULL;
3661 			ret = btrfs_write_out_cache(fs_info, trans,
3662 						    cache, path);
3663 			if (ret == 0 && cache->io_ctl.inode) {
3664 				num_started++;
3665 				should_put = 0;
3666 
3667 				/*
3668 				 * The cache_write_mutex is protecting the
3669 				 * io_list, also refer to the definition of
3670 				 * btrfs_transaction::io_bgs for more details
3671 				 */
3672 				list_add_tail(&cache->io_list, io);
3673 			} else {
3674 				/*
3675 				 * if we failed to write the cache, the
3676 				 * generation will be bad and life goes on
3677 				 */
3678 				ret = 0;
3679 			}
3680 		}
3681 		if (!ret) {
3682 			ret = write_one_cache_group(trans, fs_info,
3683 						    path, cache);
3684 			/*
3685 			 * Our block group might still be attached to the list
3686 			 * of new block groups in the transaction handle of some
3687 			 * other task (struct btrfs_trans_handle->new_bgs). This
3688 			 * means its block group item isn't yet in the extent
3689 			 * tree. If this happens ignore the error, as we will
3690 			 * try again later in the critical section of the
3691 			 * transaction commit.
3692 			 */
3693 			if (ret == -ENOENT) {
3694 				ret = 0;
3695 				spin_lock(&cur_trans->dirty_bgs_lock);
3696 				if (list_empty(&cache->dirty_list)) {
3697 					list_add_tail(&cache->dirty_list,
3698 						      &cur_trans->dirty_bgs);
3699 					btrfs_get_block_group(cache);
3700 					drop_reserve = false;
3701 				}
3702 				spin_unlock(&cur_trans->dirty_bgs_lock);
3703 			} else if (ret) {
3704 				btrfs_abort_transaction(trans, ret);
3705 			}
3706 		}
3707 
3708 		/* if it's not on the io list, we need to put the block group */
3709 		if (should_put)
3710 			btrfs_put_block_group(cache);
3711 		if (drop_reserve)
3712 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3713 
3714 		if (ret)
3715 			break;
3716 
3717 		/*
3718 		 * Avoid blocking other tasks for too long. It might even save
3719 		 * us from writing caches for block groups that are going to be
3720 		 * removed.
3721 		 */
3722 		mutex_unlock(&trans->transaction->cache_write_mutex);
3723 		mutex_lock(&trans->transaction->cache_write_mutex);
3724 	}
3725 	mutex_unlock(&trans->transaction->cache_write_mutex);
3726 
3727 	/*
3728 	 * go through delayed refs for all the stuff we've just kicked off
3729 	 * and then loop back (just once)
3730 	 */
3731 	ret = btrfs_run_delayed_refs(trans, 0);
3732 	if (!ret && loops == 0) {
3733 		loops++;
3734 		spin_lock(&cur_trans->dirty_bgs_lock);
3735 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3736 		/*
3737 		 * dirty_bgs_lock protects us from concurrent block group
3738 		 * deletes too (not just cache_write_mutex).
3739 		 */
3740 		if (!list_empty(&dirty)) {
3741 			spin_unlock(&cur_trans->dirty_bgs_lock);
3742 			goto again;
3743 		}
3744 		spin_unlock(&cur_trans->dirty_bgs_lock);
3745 	} else if (ret < 0) {
3746 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3747 	}
3748 
3749 	btrfs_free_path(path);
3750 	return ret;
3751 }
3752 
3753 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3754 				   struct btrfs_fs_info *fs_info)
3755 {
3756 	struct btrfs_block_group_cache *cache;
3757 	struct btrfs_transaction *cur_trans = trans->transaction;
3758 	int ret = 0;
3759 	int should_put;
3760 	struct btrfs_path *path;
3761 	struct list_head *io = &cur_trans->io_bgs;
3762 	int num_started = 0;
3763 
3764 	path = btrfs_alloc_path();
3765 	if (!path)
3766 		return -ENOMEM;
3767 
3768 	/*
3769 	 * Even though we are in the critical section of the transaction commit,
3770 	 * we can still have concurrent tasks adding elements to this
3771 	 * transaction's list of dirty block groups. These tasks correspond to
3772 	 * endio free space workers started when writeback finishes for a
3773 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3774 	 * allocate new block groups as a result of COWing nodes of the root
3775 	 * tree when updating the free space inode. The writeback for the space
3776 	 * caches is triggered by an earlier call to
3777 	 * btrfs_start_dirty_block_groups() and iterations of the following
3778 	 * loop.
3779 	 * Also we want to do the cache_save_setup first and then run the
3780 	 * delayed refs to make sure we have the best chance at doing this all
3781 	 * in one shot.
3782 	 */
3783 	spin_lock(&cur_trans->dirty_bgs_lock);
3784 	while (!list_empty(&cur_trans->dirty_bgs)) {
3785 		cache = list_first_entry(&cur_trans->dirty_bgs,
3786 					 struct btrfs_block_group_cache,
3787 					 dirty_list);
3788 
3789 		/*
3790 		 * this can happen if cache_save_setup re-dirties a block
3791 		 * group that is already under IO.  Just wait for it to
3792 		 * finish and then do it all again
3793 		 */
3794 		if (!list_empty(&cache->io_list)) {
3795 			spin_unlock(&cur_trans->dirty_bgs_lock);
3796 			list_del_init(&cache->io_list);
3797 			btrfs_wait_cache_io(trans, cache, path);
3798 			btrfs_put_block_group(cache);
3799 			spin_lock(&cur_trans->dirty_bgs_lock);
3800 		}
3801 
3802 		/*
3803 		 * don't remove from the dirty list until after we've waited
3804 		 * on any pending IO
3805 		 */
3806 		list_del_init(&cache->dirty_list);
3807 		spin_unlock(&cur_trans->dirty_bgs_lock);
3808 		should_put = 1;
3809 
3810 		cache_save_setup(cache, trans, path);
3811 
3812 		if (!ret)
3813 			ret = btrfs_run_delayed_refs(trans,
3814 						     (unsigned long) -1);
3815 
3816 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3817 			cache->io_ctl.inode = NULL;
3818 			ret = btrfs_write_out_cache(fs_info, trans,
3819 						    cache, path);
3820 			if (ret == 0 && cache->io_ctl.inode) {
3821 				num_started++;
3822 				should_put = 0;
3823 				list_add_tail(&cache->io_list, io);
3824 			} else {
3825 				/*
3826 				 * if we failed to write the cache, the
3827 				 * generation will be bad and life goes on
3828 				 */
3829 				ret = 0;
3830 			}
3831 		}
3832 		if (!ret) {
3833 			ret = write_one_cache_group(trans, fs_info,
3834 						    path, cache);
3835 			/*
3836 			 * One of the free space endio workers might have
3837 			 * created a new block group while updating a free space
3838 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3839 			 * and hasn't released its transaction handle yet, in
3840 			 * which case the new block group is still attached to
3841 			 * its transaction handle and its creation has not
3842 			 * finished yet (no block group item in the extent tree
3843 			 * yet, etc). If this is the case, wait for all free
3844 			 * space endio workers to finish and retry. This is a
3845 			 * a very rare case so no need for a more efficient and
3846 			 * complex approach.
3847 			 */
3848 			if (ret == -ENOENT) {
3849 				wait_event(cur_trans->writer_wait,
3850 				   atomic_read(&cur_trans->num_writers) == 1);
3851 				ret = write_one_cache_group(trans, fs_info,
3852 							    path, cache);
3853 			}
3854 			if (ret)
3855 				btrfs_abort_transaction(trans, ret);
3856 		}
3857 
3858 		/* if its not on the io list, we need to put the block group */
3859 		if (should_put)
3860 			btrfs_put_block_group(cache);
3861 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3862 		spin_lock(&cur_trans->dirty_bgs_lock);
3863 	}
3864 	spin_unlock(&cur_trans->dirty_bgs_lock);
3865 
3866 	/*
3867 	 * Refer to the definition of io_bgs member for details why it's safe
3868 	 * to use it without any locking
3869 	 */
3870 	while (!list_empty(io)) {
3871 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3872 					 io_list);
3873 		list_del_init(&cache->io_list);
3874 		btrfs_wait_cache_io(trans, cache, path);
3875 		btrfs_put_block_group(cache);
3876 	}
3877 
3878 	btrfs_free_path(path);
3879 	return ret;
3880 }
3881 
3882 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3883 {
3884 	struct btrfs_block_group_cache *block_group;
3885 	int readonly = 0;
3886 
3887 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3888 	if (!block_group || block_group->ro)
3889 		readonly = 1;
3890 	if (block_group)
3891 		btrfs_put_block_group(block_group);
3892 	return readonly;
3893 }
3894 
3895 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3896 {
3897 	struct btrfs_block_group_cache *bg;
3898 	bool ret = true;
3899 
3900 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3901 	if (!bg)
3902 		return false;
3903 
3904 	spin_lock(&bg->lock);
3905 	if (bg->ro)
3906 		ret = false;
3907 	else
3908 		atomic_inc(&bg->nocow_writers);
3909 	spin_unlock(&bg->lock);
3910 
3911 	/* no put on block group, done by btrfs_dec_nocow_writers */
3912 	if (!ret)
3913 		btrfs_put_block_group(bg);
3914 
3915 	return ret;
3916 
3917 }
3918 
3919 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3920 {
3921 	struct btrfs_block_group_cache *bg;
3922 
3923 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3924 	ASSERT(bg);
3925 	if (atomic_dec_and_test(&bg->nocow_writers))
3926 		wake_up_var(&bg->nocow_writers);
3927 	/*
3928 	 * Once for our lookup and once for the lookup done by a previous call
3929 	 * to btrfs_inc_nocow_writers()
3930 	 */
3931 	btrfs_put_block_group(bg);
3932 	btrfs_put_block_group(bg);
3933 }
3934 
3935 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3936 {
3937 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3938 }
3939 
3940 static const char *alloc_name(u64 flags)
3941 {
3942 	switch (flags) {
3943 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3944 		return "mixed";
3945 	case BTRFS_BLOCK_GROUP_METADATA:
3946 		return "metadata";
3947 	case BTRFS_BLOCK_GROUP_DATA:
3948 		return "data";
3949 	case BTRFS_BLOCK_GROUP_SYSTEM:
3950 		return "system";
3951 	default:
3952 		WARN_ON(1);
3953 		return "invalid-combination";
3954 	};
3955 }
3956 
3957 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3958 {
3959 
3960 	struct btrfs_space_info *space_info;
3961 	int i;
3962 	int ret;
3963 
3964 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3965 	if (!space_info)
3966 		return -ENOMEM;
3967 
3968 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3969 				 GFP_KERNEL);
3970 	if (ret) {
3971 		kfree(space_info);
3972 		return ret;
3973 	}
3974 
3975 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3976 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3977 	init_rwsem(&space_info->groups_sem);
3978 	spin_lock_init(&space_info->lock);
3979 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3980 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3981 	init_waitqueue_head(&space_info->wait);
3982 	INIT_LIST_HEAD(&space_info->ro_bgs);
3983 	INIT_LIST_HEAD(&space_info->tickets);
3984 	INIT_LIST_HEAD(&space_info->priority_tickets);
3985 
3986 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3987 				    info->space_info_kobj, "%s",
3988 				    alloc_name(space_info->flags));
3989 	if (ret) {
3990 		percpu_counter_destroy(&space_info->total_bytes_pinned);
3991 		kfree(space_info);
3992 		return ret;
3993 	}
3994 
3995 	list_add_rcu(&space_info->list, &info->space_info);
3996 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3997 		info->data_sinfo = space_info;
3998 
3999 	return ret;
4000 }
4001 
4002 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4003 			     u64 total_bytes, u64 bytes_used,
4004 			     u64 bytes_readonly,
4005 			     struct btrfs_space_info **space_info)
4006 {
4007 	struct btrfs_space_info *found;
4008 	int factor;
4009 
4010 	factor = btrfs_bg_type_to_factor(flags);
4011 
4012 	found = __find_space_info(info, flags);
4013 	ASSERT(found);
4014 	spin_lock(&found->lock);
4015 	found->total_bytes += total_bytes;
4016 	found->disk_total += total_bytes * factor;
4017 	found->bytes_used += bytes_used;
4018 	found->disk_used += bytes_used * factor;
4019 	found->bytes_readonly += bytes_readonly;
4020 	if (total_bytes > 0)
4021 		found->full = 0;
4022 	space_info_add_new_bytes(info, found, total_bytes -
4023 				 bytes_used - bytes_readonly);
4024 	spin_unlock(&found->lock);
4025 	*space_info = found;
4026 }
4027 
4028 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4029 {
4030 	u64 extra_flags = chunk_to_extended(flags) &
4031 				BTRFS_EXTENDED_PROFILE_MASK;
4032 
4033 	write_seqlock(&fs_info->profiles_lock);
4034 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4035 		fs_info->avail_data_alloc_bits |= extra_flags;
4036 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4037 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4038 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4039 		fs_info->avail_system_alloc_bits |= extra_flags;
4040 	write_sequnlock(&fs_info->profiles_lock);
4041 }
4042 
4043 /*
4044  * returns target flags in extended format or 0 if restripe for this
4045  * chunk_type is not in progress
4046  *
4047  * should be called with balance_lock held
4048  */
4049 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4050 {
4051 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4052 	u64 target = 0;
4053 
4054 	if (!bctl)
4055 		return 0;
4056 
4057 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4058 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4059 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4060 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4061 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4062 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4063 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4064 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4065 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4066 	}
4067 
4068 	return target;
4069 }
4070 
4071 /*
4072  * @flags: available profiles in extended format (see ctree.h)
4073  *
4074  * Returns reduced profile in chunk format.  If profile changing is in
4075  * progress (either running or paused) picks the target profile (if it's
4076  * already available), otherwise falls back to plain reducing.
4077  */
4078 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4079 {
4080 	u64 num_devices = fs_info->fs_devices->rw_devices;
4081 	u64 target;
4082 	u64 raid_type;
4083 	u64 allowed = 0;
4084 
4085 	/*
4086 	 * see if restripe for this chunk_type is in progress, if so
4087 	 * try to reduce to the target profile
4088 	 */
4089 	spin_lock(&fs_info->balance_lock);
4090 	target = get_restripe_target(fs_info, flags);
4091 	if (target) {
4092 		/* pick target profile only if it's already available */
4093 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4094 			spin_unlock(&fs_info->balance_lock);
4095 			return extended_to_chunk(target);
4096 		}
4097 	}
4098 	spin_unlock(&fs_info->balance_lock);
4099 
4100 	/* First, mask out the RAID levels which aren't possible */
4101 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4102 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4103 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4104 	}
4105 	allowed &= flags;
4106 
4107 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4108 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4110 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4111 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4112 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4114 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4115 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4116 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4117 
4118 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4119 
4120 	return extended_to_chunk(flags | allowed);
4121 }
4122 
4123 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4124 {
4125 	unsigned seq;
4126 	u64 flags;
4127 
4128 	do {
4129 		flags = orig_flags;
4130 		seq = read_seqbegin(&fs_info->profiles_lock);
4131 
4132 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4133 			flags |= fs_info->avail_data_alloc_bits;
4134 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4135 			flags |= fs_info->avail_system_alloc_bits;
4136 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4137 			flags |= fs_info->avail_metadata_alloc_bits;
4138 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4139 
4140 	return btrfs_reduce_alloc_profile(fs_info, flags);
4141 }
4142 
4143 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4144 {
4145 	struct btrfs_fs_info *fs_info = root->fs_info;
4146 	u64 flags;
4147 	u64 ret;
4148 
4149 	if (data)
4150 		flags = BTRFS_BLOCK_GROUP_DATA;
4151 	else if (root == fs_info->chunk_root)
4152 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4153 	else
4154 		flags = BTRFS_BLOCK_GROUP_METADATA;
4155 
4156 	ret = get_alloc_profile(fs_info, flags);
4157 	return ret;
4158 }
4159 
4160 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4161 {
4162 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4163 }
4164 
4165 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4166 {
4167 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4168 }
4169 
4170 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4171 {
4172 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4173 }
4174 
4175 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4176 				 bool may_use_included)
4177 {
4178 	ASSERT(s_info);
4179 	return s_info->bytes_used + s_info->bytes_reserved +
4180 		s_info->bytes_pinned + s_info->bytes_readonly +
4181 		(may_use_included ? s_info->bytes_may_use : 0);
4182 }
4183 
4184 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4185 {
4186 	struct btrfs_root *root = inode->root;
4187 	struct btrfs_fs_info *fs_info = root->fs_info;
4188 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4189 	u64 used;
4190 	int ret = 0;
4191 	int need_commit = 2;
4192 	int have_pinned_space;
4193 
4194 	/* make sure bytes are sectorsize aligned */
4195 	bytes = ALIGN(bytes, fs_info->sectorsize);
4196 
4197 	if (btrfs_is_free_space_inode(inode)) {
4198 		need_commit = 0;
4199 		ASSERT(current->journal_info);
4200 	}
4201 
4202 again:
4203 	/* make sure we have enough space to handle the data first */
4204 	spin_lock(&data_sinfo->lock);
4205 	used = btrfs_space_info_used(data_sinfo, true);
4206 
4207 	if (used + bytes > data_sinfo->total_bytes) {
4208 		struct btrfs_trans_handle *trans;
4209 
4210 		/*
4211 		 * if we don't have enough free bytes in this space then we need
4212 		 * to alloc a new chunk.
4213 		 */
4214 		if (!data_sinfo->full) {
4215 			u64 alloc_target;
4216 
4217 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4218 			spin_unlock(&data_sinfo->lock);
4219 
4220 			alloc_target = btrfs_data_alloc_profile(fs_info);
4221 			/*
4222 			 * It is ugly that we don't call nolock join
4223 			 * transaction for the free space inode case here.
4224 			 * But it is safe because we only do the data space
4225 			 * reservation for the free space cache in the
4226 			 * transaction context, the common join transaction
4227 			 * just increase the counter of the current transaction
4228 			 * handler, doesn't try to acquire the trans_lock of
4229 			 * the fs.
4230 			 */
4231 			trans = btrfs_join_transaction(root);
4232 			if (IS_ERR(trans))
4233 				return PTR_ERR(trans);
4234 
4235 			ret = do_chunk_alloc(trans, alloc_target,
4236 					     CHUNK_ALLOC_NO_FORCE);
4237 			btrfs_end_transaction(trans);
4238 			if (ret < 0) {
4239 				if (ret != -ENOSPC)
4240 					return ret;
4241 				else {
4242 					have_pinned_space = 1;
4243 					goto commit_trans;
4244 				}
4245 			}
4246 
4247 			goto again;
4248 		}
4249 
4250 		/*
4251 		 * If we don't have enough pinned space to deal with this
4252 		 * allocation, and no removed chunk in current transaction,
4253 		 * don't bother committing the transaction.
4254 		 */
4255 		have_pinned_space = __percpu_counter_compare(
4256 			&data_sinfo->total_bytes_pinned,
4257 			used + bytes - data_sinfo->total_bytes,
4258 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
4259 		spin_unlock(&data_sinfo->lock);
4260 
4261 		/* commit the current transaction and try again */
4262 commit_trans:
4263 		if (need_commit) {
4264 			need_commit--;
4265 
4266 			if (need_commit > 0) {
4267 				btrfs_start_delalloc_roots(fs_info, -1);
4268 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4269 							 (u64)-1);
4270 			}
4271 
4272 			trans = btrfs_join_transaction(root);
4273 			if (IS_ERR(trans))
4274 				return PTR_ERR(trans);
4275 			if (have_pinned_space >= 0 ||
4276 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4277 				     &trans->transaction->flags) ||
4278 			    need_commit > 0) {
4279 				ret = btrfs_commit_transaction(trans);
4280 				if (ret)
4281 					return ret;
4282 				/*
4283 				 * The cleaner kthread might still be doing iput
4284 				 * operations. Wait for it to finish so that
4285 				 * more space is released.
4286 				 */
4287 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4288 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4289 				goto again;
4290 			} else {
4291 				btrfs_end_transaction(trans);
4292 			}
4293 		}
4294 
4295 		trace_btrfs_space_reservation(fs_info,
4296 					      "space_info:enospc",
4297 					      data_sinfo->flags, bytes, 1);
4298 		return -ENOSPC;
4299 	}
4300 	update_bytes_may_use(data_sinfo, bytes);
4301 	trace_btrfs_space_reservation(fs_info, "space_info",
4302 				      data_sinfo->flags, bytes, 1);
4303 	spin_unlock(&data_sinfo->lock);
4304 
4305 	return 0;
4306 }
4307 
4308 int btrfs_check_data_free_space(struct inode *inode,
4309 			struct extent_changeset **reserved, u64 start, u64 len)
4310 {
4311 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4312 	int ret;
4313 
4314 	/* align the range */
4315 	len = round_up(start + len, fs_info->sectorsize) -
4316 	      round_down(start, fs_info->sectorsize);
4317 	start = round_down(start, fs_info->sectorsize);
4318 
4319 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4320 	if (ret < 0)
4321 		return ret;
4322 
4323 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4324 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4325 	if (ret < 0)
4326 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4327 	else
4328 		ret = 0;
4329 	return ret;
4330 }
4331 
4332 /*
4333  * Called if we need to clear a data reservation for this inode
4334  * Normally in a error case.
4335  *
4336  * This one will *NOT* use accurate qgroup reserved space API, just for case
4337  * which we can't sleep and is sure it won't affect qgroup reserved space.
4338  * Like clear_bit_hook().
4339  */
4340 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4341 					    u64 len)
4342 {
4343 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4344 	struct btrfs_space_info *data_sinfo;
4345 
4346 	/* Make sure the range is aligned to sectorsize */
4347 	len = round_up(start + len, fs_info->sectorsize) -
4348 	      round_down(start, fs_info->sectorsize);
4349 	start = round_down(start, fs_info->sectorsize);
4350 
4351 	data_sinfo = fs_info->data_sinfo;
4352 	spin_lock(&data_sinfo->lock);
4353 	update_bytes_may_use(data_sinfo, -len);
4354 	trace_btrfs_space_reservation(fs_info, "space_info",
4355 				      data_sinfo->flags, len, 0);
4356 	spin_unlock(&data_sinfo->lock);
4357 }
4358 
4359 /*
4360  * Called if we need to clear a data reservation for this inode
4361  * Normally in a error case.
4362  *
4363  * This one will handle the per-inode data rsv map for accurate reserved
4364  * space framework.
4365  */
4366 void btrfs_free_reserved_data_space(struct inode *inode,
4367 			struct extent_changeset *reserved, u64 start, u64 len)
4368 {
4369 	struct btrfs_root *root = BTRFS_I(inode)->root;
4370 
4371 	/* Make sure the range is aligned to sectorsize */
4372 	len = round_up(start + len, root->fs_info->sectorsize) -
4373 	      round_down(start, root->fs_info->sectorsize);
4374 	start = round_down(start, root->fs_info->sectorsize);
4375 
4376 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4377 	btrfs_qgroup_free_data(inode, reserved, start, len);
4378 }
4379 
4380 static void force_metadata_allocation(struct btrfs_fs_info *info)
4381 {
4382 	struct list_head *head = &info->space_info;
4383 	struct btrfs_space_info *found;
4384 
4385 	rcu_read_lock();
4386 	list_for_each_entry_rcu(found, head, list) {
4387 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4388 			found->force_alloc = CHUNK_ALLOC_FORCE;
4389 	}
4390 	rcu_read_unlock();
4391 }
4392 
4393 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4394 {
4395 	return (global->size << 1);
4396 }
4397 
4398 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4399 			      struct btrfs_space_info *sinfo, int force)
4400 {
4401 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4402 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4403 	u64 thresh;
4404 
4405 	if (force == CHUNK_ALLOC_FORCE)
4406 		return 1;
4407 
4408 	/*
4409 	 * We need to take into account the global rsv because for all intents
4410 	 * and purposes it's used space.  Don't worry about locking the
4411 	 * global_rsv, it doesn't change except when the transaction commits.
4412 	 */
4413 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4414 		bytes_used += calc_global_rsv_need_space(global_rsv);
4415 
4416 	/*
4417 	 * in limited mode, we want to have some free space up to
4418 	 * about 1% of the FS size.
4419 	 */
4420 	if (force == CHUNK_ALLOC_LIMITED) {
4421 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4422 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4423 
4424 		if (sinfo->total_bytes - bytes_used < thresh)
4425 			return 1;
4426 	}
4427 
4428 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4429 		return 0;
4430 	return 1;
4431 }
4432 
4433 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4434 {
4435 	u64 num_dev;
4436 
4437 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4438 		    BTRFS_BLOCK_GROUP_RAID0 |
4439 		    BTRFS_BLOCK_GROUP_RAID5 |
4440 		    BTRFS_BLOCK_GROUP_RAID6))
4441 		num_dev = fs_info->fs_devices->rw_devices;
4442 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4443 		num_dev = 2;
4444 	else
4445 		num_dev = 1;	/* DUP or single */
4446 
4447 	return num_dev;
4448 }
4449 
4450 /*
4451  * If @is_allocation is true, reserve space in the system space info necessary
4452  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4453  * removing a chunk.
4454  */
4455 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4456 {
4457 	struct btrfs_fs_info *fs_info = trans->fs_info;
4458 	struct btrfs_space_info *info;
4459 	u64 left;
4460 	u64 thresh;
4461 	int ret = 0;
4462 	u64 num_devs;
4463 
4464 	/*
4465 	 * Needed because we can end up allocating a system chunk and for an
4466 	 * atomic and race free space reservation in the chunk block reserve.
4467 	 */
4468 	lockdep_assert_held(&fs_info->chunk_mutex);
4469 
4470 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4471 	spin_lock(&info->lock);
4472 	left = info->total_bytes - btrfs_space_info_used(info, true);
4473 	spin_unlock(&info->lock);
4474 
4475 	num_devs = get_profile_num_devs(fs_info, type);
4476 
4477 	/* num_devs device items to update and 1 chunk item to add or remove */
4478 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4479 		btrfs_calc_trans_metadata_size(fs_info, 1);
4480 
4481 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4482 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4483 			   left, thresh, type);
4484 		dump_space_info(fs_info, info, 0, 0);
4485 	}
4486 
4487 	if (left < thresh) {
4488 		u64 flags = btrfs_system_alloc_profile(fs_info);
4489 
4490 		/*
4491 		 * Ignore failure to create system chunk. We might end up not
4492 		 * needing it, as we might not need to COW all nodes/leafs from
4493 		 * the paths we visit in the chunk tree (they were already COWed
4494 		 * or created in the current transaction for example).
4495 		 */
4496 		ret = btrfs_alloc_chunk(trans, flags);
4497 	}
4498 
4499 	if (!ret) {
4500 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4501 					  &fs_info->chunk_block_rsv,
4502 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4503 		if (!ret)
4504 			trans->chunk_bytes_reserved += thresh;
4505 	}
4506 }
4507 
4508 /*
4509  * If force is CHUNK_ALLOC_FORCE:
4510  *    - return 1 if it successfully allocates a chunk,
4511  *    - return errors including -ENOSPC otherwise.
4512  * If force is NOT CHUNK_ALLOC_FORCE:
4513  *    - return 0 if it doesn't need to allocate a new chunk,
4514  *    - return 1 if it successfully allocates a chunk,
4515  *    - return errors including -ENOSPC otherwise.
4516  */
4517 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4518 			  int force)
4519 {
4520 	struct btrfs_fs_info *fs_info = trans->fs_info;
4521 	struct btrfs_space_info *space_info;
4522 	bool wait_for_alloc = false;
4523 	bool should_alloc = false;
4524 	int ret = 0;
4525 
4526 	/* Don't re-enter if we're already allocating a chunk */
4527 	if (trans->allocating_chunk)
4528 		return -ENOSPC;
4529 
4530 	space_info = __find_space_info(fs_info, flags);
4531 	ASSERT(space_info);
4532 
4533 	do {
4534 		spin_lock(&space_info->lock);
4535 		if (force < space_info->force_alloc)
4536 			force = space_info->force_alloc;
4537 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4538 		if (space_info->full) {
4539 			/* No more free physical space */
4540 			if (should_alloc)
4541 				ret = -ENOSPC;
4542 			else
4543 				ret = 0;
4544 			spin_unlock(&space_info->lock);
4545 			return ret;
4546 		} else if (!should_alloc) {
4547 			spin_unlock(&space_info->lock);
4548 			return 0;
4549 		} else if (space_info->chunk_alloc) {
4550 			/*
4551 			 * Someone is already allocating, so we need to block
4552 			 * until this someone is finished and then loop to
4553 			 * recheck if we should continue with our allocation
4554 			 * attempt.
4555 			 */
4556 			wait_for_alloc = true;
4557 			spin_unlock(&space_info->lock);
4558 			mutex_lock(&fs_info->chunk_mutex);
4559 			mutex_unlock(&fs_info->chunk_mutex);
4560 		} else {
4561 			/* Proceed with allocation */
4562 			space_info->chunk_alloc = 1;
4563 			wait_for_alloc = false;
4564 			spin_unlock(&space_info->lock);
4565 		}
4566 
4567 		cond_resched();
4568 	} while (wait_for_alloc);
4569 
4570 	mutex_lock(&fs_info->chunk_mutex);
4571 	trans->allocating_chunk = true;
4572 
4573 	/*
4574 	 * If we have mixed data/metadata chunks we want to make sure we keep
4575 	 * allocating mixed chunks instead of individual chunks.
4576 	 */
4577 	if (btrfs_mixed_space_info(space_info))
4578 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4579 
4580 	/*
4581 	 * if we're doing a data chunk, go ahead and make sure that
4582 	 * we keep a reasonable number of metadata chunks allocated in the
4583 	 * FS as well.
4584 	 */
4585 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4586 		fs_info->data_chunk_allocations++;
4587 		if (!(fs_info->data_chunk_allocations %
4588 		      fs_info->metadata_ratio))
4589 			force_metadata_allocation(fs_info);
4590 	}
4591 
4592 	/*
4593 	 * Check if we have enough space in SYSTEM chunk because we may need
4594 	 * to update devices.
4595 	 */
4596 	check_system_chunk(trans, flags);
4597 
4598 	ret = btrfs_alloc_chunk(trans, flags);
4599 	trans->allocating_chunk = false;
4600 
4601 	spin_lock(&space_info->lock);
4602 	if (ret < 0) {
4603 		if (ret == -ENOSPC)
4604 			space_info->full = 1;
4605 		else
4606 			goto out;
4607 	} else {
4608 		ret = 1;
4609 		space_info->max_extent_size = 0;
4610 	}
4611 
4612 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4613 out:
4614 	space_info->chunk_alloc = 0;
4615 	spin_unlock(&space_info->lock);
4616 	mutex_unlock(&fs_info->chunk_mutex);
4617 	/*
4618 	 * When we allocate a new chunk we reserve space in the chunk block
4619 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4620 	 * add new nodes/leafs to it if we end up needing to do it when
4621 	 * inserting the chunk item and updating device items as part of the
4622 	 * second phase of chunk allocation, performed by
4623 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4624 	 * large number of new block groups to create in our transaction
4625 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4626 	 * in extreme cases - like having a single transaction create many new
4627 	 * block groups when starting to write out the free space caches of all
4628 	 * the block groups that were made dirty during the lifetime of the
4629 	 * transaction.
4630 	 */
4631 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4632 		btrfs_create_pending_block_groups(trans);
4633 
4634 	return ret;
4635 }
4636 
4637 static int can_overcommit(struct btrfs_fs_info *fs_info,
4638 			  struct btrfs_space_info *space_info, u64 bytes,
4639 			  enum btrfs_reserve_flush_enum flush,
4640 			  bool system_chunk)
4641 {
4642 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4643 	u64 profile;
4644 	u64 space_size;
4645 	u64 avail;
4646 	u64 used;
4647 	int factor;
4648 
4649 	/* Don't overcommit when in mixed mode. */
4650 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4651 		return 0;
4652 
4653 	if (system_chunk)
4654 		profile = btrfs_system_alloc_profile(fs_info);
4655 	else
4656 		profile = btrfs_metadata_alloc_profile(fs_info);
4657 
4658 	used = btrfs_space_info_used(space_info, false);
4659 
4660 	/*
4661 	 * We only want to allow over committing if we have lots of actual space
4662 	 * free, but if we don't have enough space to handle the global reserve
4663 	 * space then we could end up having a real enospc problem when trying
4664 	 * to allocate a chunk or some other such important allocation.
4665 	 */
4666 	spin_lock(&global_rsv->lock);
4667 	space_size = calc_global_rsv_need_space(global_rsv);
4668 	spin_unlock(&global_rsv->lock);
4669 	if (used + space_size >= space_info->total_bytes)
4670 		return 0;
4671 
4672 	used += space_info->bytes_may_use;
4673 
4674 	avail = atomic64_read(&fs_info->free_chunk_space);
4675 
4676 	/*
4677 	 * If we have dup, raid1 or raid10 then only half of the free
4678 	 * space is actually usable.  For raid56, the space info used
4679 	 * doesn't include the parity drive, so we don't have to
4680 	 * change the math
4681 	 */
4682 	factor = btrfs_bg_type_to_factor(profile);
4683 	avail = div_u64(avail, factor);
4684 
4685 	/*
4686 	 * If we aren't flushing all things, let us overcommit up to
4687 	 * 1/2th of the space. If we can flush, don't let us overcommit
4688 	 * too much, let it overcommit up to 1/8 of the space.
4689 	 */
4690 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4691 		avail >>= 3;
4692 	else
4693 		avail >>= 1;
4694 
4695 	if (used + bytes < space_info->total_bytes + avail)
4696 		return 1;
4697 	return 0;
4698 }
4699 
4700 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4701 					 unsigned long nr_pages, int nr_items)
4702 {
4703 	struct super_block *sb = fs_info->sb;
4704 
4705 	if (down_read_trylock(&sb->s_umount)) {
4706 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4707 		up_read(&sb->s_umount);
4708 	} else {
4709 		/*
4710 		 * We needn't worry the filesystem going from r/w to r/o though
4711 		 * we don't acquire ->s_umount mutex, because the filesystem
4712 		 * should guarantee the delalloc inodes list be empty after
4713 		 * the filesystem is readonly(all dirty pages are written to
4714 		 * the disk).
4715 		 */
4716 		btrfs_start_delalloc_roots(fs_info, nr_items);
4717 		if (!current->journal_info)
4718 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4719 	}
4720 }
4721 
4722 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4723 					u64 to_reclaim)
4724 {
4725 	u64 bytes;
4726 	u64 nr;
4727 
4728 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4729 	nr = div64_u64(to_reclaim, bytes);
4730 	if (!nr)
4731 		nr = 1;
4732 	return nr;
4733 }
4734 
4735 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4736 
4737 /*
4738  * shrink metadata reservation for delalloc
4739  */
4740 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4741 			    u64 orig, bool wait_ordered)
4742 {
4743 	struct btrfs_space_info *space_info;
4744 	struct btrfs_trans_handle *trans;
4745 	u64 delalloc_bytes;
4746 	u64 max_reclaim;
4747 	u64 items;
4748 	long time_left;
4749 	unsigned long nr_pages;
4750 	int loops;
4751 
4752 	/* Calc the number of the pages we need flush for space reservation */
4753 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4754 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4755 
4756 	trans = (struct btrfs_trans_handle *)current->journal_info;
4757 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4758 
4759 	delalloc_bytes = percpu_counter_sum_positive(
4760 						&fs_info->delalloc_bytes);
4761 	if (delalloc_bytes == 0) {
4762 		if (trans)
4763 			return;
4764 		if (wait_ordered)
4765 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4766 		return;
4767 	}
4768 
4769 	loops = 0;
4770 	while (delalloc_bytes && loops < 3) {
4771 		max_reclaim = min(delalloc_bytes, to_reclaim);
4772 		nr_pages = max_reclaim >> PAGE_SHIFT;
4773 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4774 		/*
4775 		 * We need to wait for the async pages to actually start before
4776 		 * we do anything.
4777 		 */
4778 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4779 		if (!max_reclaim)
4780 			goto skip_async;
4781 
4782 		if (max_reclaim <= nr_pages)
4783 			max_reclaim = 0;
4784 		else
4785 			max_reclaim -= nr_pages;
4786 
4787 		wait_event(fs_info->async_submit_wait,
4788 			   atomic_read(&fs_info->async_delalloc_pages) <=
4789 			   (int)max_reclaim);
4790 skip_async:
4791 		spin_lock(&space_info->lock);
4792 		if (list_empty(&space_info->tickets) &&
4793 		    list_empty(&space_info->priority_tickets)) {
4794 			spin_unlock(&space_info->lock);
4795 			break;
4796 		}
4797 		spin_unlock(&space_info->lock);
4798 
4799 		loops++;
4800 		if (wait_ordered && !trans) {
4801 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4802 		} else {
4803 			time_left = schedule_timeout_killable(1);
4804 			if (time_left)
4805 				break;
4806 		}
4807 		delalloc_bytes = percpu_counter_sum_positive(
4808 						&fs_info->delalloc_bytes);
4809 	}
4810 }
4811 
4812 struct reserve_ticket {
4813 	u64 bytes;
4814 	int error;
4815 	struct list_head list;
4816 	wait_queue_head_t wait;
4817 };
4818 
4819 /**
4820  * maybe_commit_transaction - possibly commit the transaction if its ok to
4821  * @root - the root we're allocating for
4822  * @bytes - the number of bytes we want to reserve
4823  * @force - force the commit
4824  *
4825  * This will check to make sure that committing the transaction will actually
4826  * get us somewhere and then commit the transaction if it does.  Otherwise it
4827  * will return -ENOSPC.
4828  */
4829 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4830 				  struct btrfs_space_info *space_info)
4831 {
4832 	struct reserve_ticket *ticket = NULL;
4833 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4834 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4835 	struct btrfs_trans_handle *trans;
4836 	u64 bytes_needed;
4837 	u64 reclaim_bytes = 0;
4838 
4839 	trans = (struct btrfs_trans_handle *)current->journal_info;
4840 	if (trans)
4841 		return -EAGAIN;
4842 
4843 	spin_lock(&space_info->lock);
4844 	if (!list_empty(&space_info->priority_tickets))
4845 		ticket = list_first_entry(&space_info->priority_tickets,
4846 					  struct reserve_ticket, list);
4847 	else if (!list_empty(&space_info->tickets))
4848 		ticket = list_first_entry(&space_info->tickets,
4849 					  struct reserve_ticket, list);
4850 	bytes_needed = (ticket) ? ticket->bytes : 0;
4851 	spin_unlock(&space_info->lock);
4852 
4853 	if (!bytes_needed)
4854 		return 0;
4855 
4856 	/* See if there is enough pinned space to make this reservation */
4857 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4858 				   bytes_needed,
4859 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4860 		goto commit;
4861 
4862 	/*
4863 	 * See if there is some space in the delayed insertion reservation for
4864 	 * this reservation.
4865 	 */
4866 	if (space_info != delayed_rsv->space_info)
4867 		return -ENOSPC;
4868 
4869 	spin_lock(&delayed_rsv->lock);
4870 	reclaim_bytes += delayed_rsv->reserved;
4871 	spin_unlock(&delayed_rsv->lock);
4872 
4873 	spin_lock(&delayed_refs_rsv->lock);
4874 	reclaim_bytes += delayed_refs_rsv->reserved;
4875 	spin_unlock(&delayed_refs_rsv->lock);
4876 	if (reclaim_bytes >= bytes_needed)
4877 		goto commit;
4878 	bytes_needed -= reclaim_bytes;
4879 
4880 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4881 				   bytes_needed,
4882 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4883 		return -ENOSPC;
4884 	}
4885 
4886 commit:
4887 	trans = btrfs_join_transaction(fs_info->extent_root);
4888 	if (IS_ERR(trans))
4889 		return -ENOSPC;
4890 
4891 	return btrfs_commit_transaction(trans);
4892 }
4893 
4894 /*
4895  * Try to flush some data based on policy set by @state. This is only advisory
4896  * and may fail for various reasons. The caller is supposed to examine the
4897  * state of @space_info to detect the outcome.
4898  */
4899 static void flush_space(struct btrfs_fs_info *fs_info,
4900 		       struct btrfs_space_info *space_info, u64 num_bytes,
4901 		       int state)
4902 {
4903 	struct btrfs_root *root = fs_info->extent_root;
4904 	struct btrfs_trans_handle *trans;
4905 	int nr;
4906 	int ret = 0;
4907 
4908 	switch (state) {
4909 	case FLUSH_DELAYED_ITEMS_NR:
4910 	case FLUSH_DELAYED_ITEMS:
4911 		if (state == FLUSH_DELAYED_ITEMS_NR)
4912 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4913 		else
4914 			nr = -1;
4915 
4916 		trans = btrfs_join_transaction(root);
4917 		if (IS_ERR(trans)) {
4918 			ret = PTR_ERR(trans);
4919 			break;
4920 		}
4921 		ret = btrfs_run_delayed_items_nr(trans, nr);
4922 		btrfs_end_transaction(trans);
4923 		break;
4924 	case FLUSH_DELALLOC:
4925 	case FLUSH_DELALLOC_WAIT:
4926 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4927 				state == FLUSH_DELALLOC_WAIT);
4928 		break;
4929 	case FLUSH_DELAYED_REFS_NR:
4930 	case FLUSH_DELAYED_REFS:
4931 		trans = btrfs_join_transaction(root);
4932 		if (IS_ERR(trans)) {
4933 			ret = PTR_ERR(trans);
4934 			break;
4935 		}
4936 		if (state == FLUSH_DELAYED_REFS_NR)
4937 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
4938 		else
4939 			nr = 0;
4940 		btrfs_run_delayed_refs(trans, nr);
4941 		btrfs_end_transaction(trans);
4942 		break;
4943 	case ALLOC_CHUNK:
4944 		trans = btrfs_join_transaction(root);
4945 		if (IS_ERR(trans)) {
4946 			ret = PTR_ERR(trans);
4947 			break;
4948 		}
4949 		ret = do_chunk_alloc(trans,
4950 				     btrfs_metadata_alloc_profile(fs_info),
4951 				     CHUNK_ALLOC_NO_FORCE);
4952 		btrfs_end_transaction(trans);
4953 		if (ret > 0 || ret == -ENOSPC)
4954 			ret = 0;
4955 		break;
4956 	case COMMIT_TRANS:
4957 		ret = may_commit_transaction(fs_info, space_info);
4958 		break;
4959 	default:
4960 		ret = -ENOSPC;
4961 		break;
4962 	}
4963 
4964 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4965 				ret);
4966 	return;
4967 }
4968 
4969 static inline u64
4970 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4971 				 struct btrfs_space_info *space_info,
4972 				 bool system_chunk)
4973 {
4974 	struct reserve_ticket *ticket;
4975 	u64 used;
4976 	u64 expected;
4977 	u64 to_reclaim = 0;
4978 
4979 	list_for_each_entry(ticket, &space_info->tickets, list)
4980 		to_reclaim += ticket->bytes;
4981 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4982 		to_reclaim += ticket->bytes;
4983 	if (to_reclaim)
4984 		return to_reclaim;
4985 
4986 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4987 	if (can_overcommit(fs_info, space_info, to_reclaim,
4988 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4989 		return 0;
4990 
4991 	used = btrfs_space_info_used(space_info, true);
4992 
4993 	if (can_overcommit(fs_info, space_info, SZ_1M,
4994 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4995 		expected = div_factor_fine(space_info->total_bytes, 95);
4996 	else
4997 		expected = div_factor_fine(space_info->total_bytes, 90);
4998 
4999 	if (used > expected)
5000 		to_reclaim = used - expected;
5001 	else
5002 		to_reclaim = 0;
5003 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5004 				     space_info->bytes_reserved);
5005 	return to_reclaim;
5006 }
5007 
5008 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5009 					struct btrfs_space_info *space_info,
5010 					u64 used, bool system_chunk)
5011 {
5012 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5013 
5014 	/* If we're just plain full then async reclaim just slows us down. */
5015 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5016 		return 0;
5017 
5018 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5019 					      system_chunk))
5020 		return 0;
5021 
5022 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5023 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5024 }
5025 
5026 static void wake_all_tickets(struct list_head *head)
5027 {
5028 	struct reserve_ticket *ticket;
5029 
5030 	while (!list_empty(head)) {
5031 		ticket = list_first_entry(head, struct reserve_ticket, list);
5032 		list_del_init(&ticket->list);
5033 		ticket->error = -ENOSPC;
5034 		wake_up(&ticket->wait);
5035 	}
5036 }
5037 
5038 /*
5039  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5040  * will loop and continuously try to flush as long as we are making progress.
5041  * We count progress as clearing off tickets each time we have to loop.
5042  */
5043 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5044 {
5045 	struct btrfs_fs_info *fs_info;
5046 	struct btrfs_space_info *space_info;
5047 	u64 to_reclaim;
5048 	int flush_state;
5049 	int commit_cycles = 0;
5050 	u64 last_tickets_id;
5051 
5052 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5053 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5054 
5055 	spin_lock(&space_info->lock);
5056 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5057 						      false);
5058 	if (!to_reclaim) {
5059 		space_info->flush = 0;
5060 		spin_unlock(&space_info->lock);
5061 		return;
5062 	}
5063 	last_tickets_id = space_info->tickets_id;
5064 	spin_unlock(&space_info->lock);
5065 
5066 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5067 	do {
5068 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5069 		spin_lock(&space_info->lock);
5070 		if (list_empty(&space_info->tickets)) {
5071 			space_info->flush = 0;
5072 			spin_unlock(&space_info->lock);
5073 			return;
5074 		}
5075 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5076 							      space_info,
5077 							      false);
5078 		if (last_tickets_id == space_info->tickets_id) {
5079 			flush_state++;
5080 		} else {
5081 			last_tickets_id = space_info->tickets_id;
5082 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5083 			if (commit_cycles)
5084 				commit_cycles--;
5085 		}
5086 
5087 		if (flush_state > COMMIT_TRANS) {
5088 			commit_cycles++;
5089 			if (commit_cycles > 2) {
5090 				wake_all_tickets(&space_info->tickets);
5091 				space_info->flush = 0;
5092 			} else {
5093 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5094 			}
5095 		}
5096 		spin_unlock(&space_info->lock);
5097 	} while (flush_state <= COMMIT_TRANS);
5098 }
5099 
5100 void btrfs_init_async_reclaim_work(struct work_struct *work)
5101 {
5102 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5103 }
5104 
5105 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5106 					    struct btrfs_space_info *space_info,
5107 					    struct reserve_ticket *ticket)
5108 {
5109 	u64 to_reclaim;
5110 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5111 
5112 	spin_lock(&space_info->lock);
5113 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 						      false);
5115 	if (!to_reclaim) {
5116 		spin_unlock(&space_info->lock);
5117 		return;
5118 	}
5119 	spin_unlock(&space_info->lock);
5120 
5121 	do {
5122 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5123 		flush_state++;
5124 		spin_lock(&space_info->lock);
5125 		if (ticket->bytes == 0) {
5126 			spin_unlock(&space_info->lock);
5127 			return;
5128 		}
5129 		spin_unlock(&space_info->lock);
5130 
5131 		/*
5132 		 * Priority flushers can't wait on delalloc without
5133 		 * deadlocking.
5134 		 */
5135 		if (flush_state == FLUSH_DELALLOC ||
5136 		    flush_state == FLUSH_DELALLOC_WAIT)
5137 			flush_state = ALLOC_CHUNK;
5138 	} while (flush_state < COMMIT_TRANS);
5139 }
5140 
5141 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5142 			       struct btrfs_space_info *space_info,
5143 			       struct reserve_ticket *ticket, u64 orig_bytes)
5144 
5145 {
5146 	DEFINE_WAIT(wait);
5147 	int ret = 0;
5148 
5149 	spin_lock(&space_info->lock);
5150 	while (ticket->bytes > 0 && ticket->error == 0) {
5151 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5152 		if (ret) {
5153 			ret = -EINTR;
5154 			break;
5155 		}
5156 		spin_unlock(&space_info->lock);
5157 
5158 		schedule();
5159 
5160 		finish_wait(&ticket->wait, &wait);
5161 		spin_lock(&space_info->lock);
5162 	}
5163 	if (!ret)
5164 		ret = ticket->error;
5165 	if (!list_empty(&ticket->list))
5166 		list_del_init(&ticket->list);
5167 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5168 		u64 num_bytes = orig_bytes - ticket->bytes;
5169 		update_bytes_may_use(space_info, -num_bytes);
5170 		trace_btrfs_space_reservation(fs_info, "space_info",
5171 					      space_info->flags, num_bytes, 0);
5172 	}
5173 	spin_unlock(&space_info->lock);
5174 
5175 	return ret;
5176 }
5177 
5178 /**
5179  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5180  * @root - the root we're allocating for
5181  * @space_info - the space info we want to allocate from
5182  * @orig_bytes - the number of bytes we want
5183  * @flush - whether or not we can flush to make our reservation
5184  *
5185  * This will reserve orig_bytes number of bytes from the space info associated
5186  * with the block_rsv.  If there is not enough space it will make an attempt to
5187  * flush out space to make room.  It will do this by flushing delalloc if
5188  * possible or committing the transaction.  If flush is 0 then no attempts to
5189  * regain reservations will be made and this will fail if there is not enough
5190  * space already.
5191  */
5192 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5193 				    struct btrfs_space_info *space_info,
5194 				    u64 orig_bytes,
5195 				    enum btrfs_reserve_flush_enum flush,
5196 				    bool system_chunk)
5197 {
5198 	struct reserve_ticket ticket;
5199 	u64 used;
5200 	int ret = 0;
5201 
5202 	ASSERT(orig_bytes);
5203 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5204 
5205 	spin_lock(&space_info->lock);
5206 	ret = -ENOSPC;
5207 	used = btrfs_space_info_used(space_info, true);
5208 
5209 	/*
5210 	 * If we have enough space then hooray, make our reservation and carry
5211 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5212 	 * If not things get more complicated.
5213 	 */
5214 	if (used + orig_bytes <= space_info->total_bytes) {
5215 		update_bytes_may_use(space_info, orig_bytes);
5216 		trace_btrfs_space_reservation(fs_info, "space_info",
5217 					      space_info->flags, orig_bytes, 1);
5218 		ret = 0;
5219 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5220 				  system_chunk)) {
5221 		update_bytes_may_use(space_info, orig_bytes);
5222 		trace_btrfs_space_reservation(fs_info, "space_info",
5223 					      space_info->flags, orig_bytes, 1);
5224 		ret = 0;
5225 	}
5226 
5227 	/*
5228 	 * If we couldn't make a reservation then setup our reservation ticket
5229 	 * and kick the async worker if it's not already running.
5230 	 *
5231 	 * If we are a priority flusher then we just need to add our ticket to
5232 	 * the list and we will do our own flushing further down.
5233 	 */
5234 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5235 		ticket.bytes = orig_bytes;
5236 		ticket.error = 0;
5237 		init_waitqueue_head(&ticket.wait);
5238 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5239 			list_add_tail(&ticket.list, &space_info->tickets);
5240 			if (!space_info->flush) {
5241 				space_info->flush = 1;
5242 				trace_btrfs_trigger_flush(fs_info,
5243 							  space_info->flags,
5244 							  orig_bytes, flush,
5245 							  "enospc");
5246 				queue_work(system_unbound_wq,
5247 					   &fs_info->async_reclaim_work);
5248 			}
5249 		} else {
5250 			list_add_tail(&ticket.list,
5251 				      &space_info->priority_tickets);
5252 		}
5253 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5254 		used += orig_bytes;
5255 		/*
5256 		 * We will do the space reservation dance during log replay,
5257 		 * which means we won't have fs_info->fs_root set, so don't do
5258 		 * the async reclaim as we will panic.
5259 		 */
5260 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5261 		    need_do_async_reclaim(fs_info, space_info,
5262 					  used, system_chunk) &&
5263 		    !work_busy(&fs_info->async_reclaim_work)) {
5264 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5265 						  orig_bytes, flush, "preempt");
5266 			queue_work(system_unbound_wq,
5267 				   &fs_info->async_reclaim_work);
5268 		}
5269 	}
5270 	spin_unlock(&space_info->lock);
5271 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5272 		return ret;
5273 
5274 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5275 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5276 					   orig_bytes);
5277 
5278 	ret = 0;
5279 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5280 	spin_lock(&space_info->lock);
5281 	if (ticket.bytes) {
5282 		if (ticket.bytes < orig_bytes) {
5283 			u64 num_bytes = orig_bytes - ticket.bytes;
5284 			update_bytes_may_use(space_info, -num_bytes);
5285 			trace_btrfs_space_reservation(fs_info, "space_info",
5286 						      space_info->flags,
5287 						      num_bytes, 0);
5288 
5289 		}
5290 		list_del_init(&ticket.list);
5291 		ret = -ENOSPC;
5292 	}
5293 	spin_unlock(&space_info->lock);
5294 	ASSERT(list_empty(&ticket.list));
5295 	return ret;
5296 }
5297 
5298 /**
5299  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5300  * @root - the root we're allocating for
5301  * @block_rsv - the block_rsv we're allocating for
5302  * @orig_bytes - the number of bytes we want
5303  * @flush - whether or not we can flush to make our reservation
5304  *
5305  * This will reserve orig_bytes number of bytes from the space info associated
5306  * with the block_rsv.  If there is not enough space it will make an attempt to
5307  * flush out space to make room.  It will do this by flushing delalloc if
5308  * possible or committing the transaction.  If flush is 0 then no attempts to
5309  * regain reservations will be made and this will fail if there is not enough
5310  * space already.
5311  */
5312 static int reserve_metadata_bytes(struct btrfs_root *root,
5313 				  struct btrfs_block_rsv *block_rsv,
5314 				  u64 orig_bytes,
5315 				  enum btrfs_reserve_flush_enum flush)
5316 {
5317 	struct btrfs_fs_info *fs_info = root->fs_info;
5318 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5319 	int ret;
5320 	bool system_chunk = (root == fs_info->chunk_root);
5321 
5322 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5323 				       orig_bytes, flush, system_chunk);
5324 	if (ret == -ENOSPC &&
5325 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5326 		if (block_rsv != global_rsv &&
5327 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5328 			ret = 0;
5329 	}
5330 	if (ret == -ENOSPC) {
5331 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5332 					      block_rsv->space_info->flags,
5333 					      orig_bytes, 1);
5334 
5335 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5336 			dump_space_info(fs_info, block_rsv->space_info,
5337 					orig_bytes, 0);
5338 	}
5339 	return ret;
5340 }
5341 
5342 static struct btrfs_block_rsv *get_block_rsv(
5343 					const struct btrfs_trans_handle *trans,
5344 					const struct btrfs_root *root)
5345 {
5346 	struct btrfs_fs_info *fs_info = root->fs_info;
5347 	struct btrfs_block_rsv *block_rsv = NULL;
5348 
5349 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5350 	    (root == fs_info->csum_root && trans->adding_csums) ||
5351 	    (root == fs_info->uuid_root))
5352 		block_rsv = trans->block_rsv;
5353 
5354 	if (!block_rsv)
5355 		block_rsv = root->block_rsv;
5356 
5357 	if (!block_rsv)
5358 		block_rsv = &fs_info->empty_block_rsv;
5359 
5360 	return block_rsv;
5361 }
5362 
5363 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5364 			       u64 num_bytes)
5365 {
5366 	int ret = -ENOSPC;
5367 	spin_lock(&block_rsv->lock);
5368 	if (block_rsv->reserved >= num_bytes) {
5369 		block_rsv->reserved -= num_bytes;
5370 		if (block_rsv->reserved < block_rsv->size)
5371 			block_rsv->full = 0;
5372 		ret = 0;
5373 	}
5374 	spin_unlock(&block_rsv->lock);
5375 	return ret;
5376 }
5377 
5378 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5379 				u64 num_bytes, bool update_size)
5380 {
5381 	spin_lock(&block_rsv->lock);
5382 	block_rsv->reserved += num_bytes;
5383 	if (update_size)
5384 		block_rsv->size += num_bytes;
5385 	else if (block_rsv->reserved >= block_rsv->size)
5386 		block_rsv->full = 1;
5387 	spin_unlock(&block_rsv->lock);
5388 }
5389 
5390 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5391 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5392 			     int min_factor)
5393 {
5394 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5395 	u64 min_bytes;
5396 
5397 	if (global_rsv->space_info != dest->space_info)
5398 		return -ENOSPC;
5399 
5400 	spin_lock(&global_rsv->lock);
5401 	min_bytes = div_factor(global_rsv->size, min_factor);
5402 	if (global_rsv->reserved < min_bytes + num_bytes) {
5403 		spin_unlock(&global_rsv->lock);
5404 		return -ENOSPC;
5405 	}
5406 	global_rsv->reserved -= num_bytes;
5407 	if (global_rsv->reserved < global_rsv->size)
5408 		global_rsv->full = 0;
5409 	spin_unlock(&global_rsv->lock);
5410 
5411 	block_rsv_add_bytes(dest, num_bytes, true);
5412 	return 0;
5413 }
5414 
5415 /**
5416  * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5417  * @fs_info - the fs info for our fs.
5418  * @src - the source block rsv to transfer from.
5419  * @num_bytes - the number of bytes to transfer.
5420  *
5421  * This transfers up to the num_bytes amount from the src rsv to the
5422  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
5423  */
5424 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5425 				       struct btrfs_block_rsv *src,
5426 				       u64 num_bytes)
5427 {
5428 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5429 	u64 to_free = 0;
5430 
5431 	spin_lock(&src->lock);
5432 	src->reserved -= num_bytes;
5433 	src->size -= num_bytes;
5434 	spin_unlock(&src->lock);
5435 
5436 	spin_lock(&delayed_refs_rsv->lock);
5437 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5438 		u64 delta = delayed_refs_rsv->size -
5439 			delayed_refs_rsv->reserved;
5440 		if (num_bytes > delta) {
5441 			to_free = num_bytes - delta;
5442 			num_bytes = delta;
5443 		}
5444 	} else {
5445 		to_free = num_bytes;
5446 		num_bytes = 0;
5447 	}
5448 
5449 	if (num_bytes)
5450 		delayed_refs_rsv->reserved += num_bytes;
5451 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5452 		delayed_refs_rsv->full = 1;
5453 	spin_unlock(&delayed_refs_rsv->lock);
5454 
5455 	if (num_bytes)
5456 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5457 					      0, num_bytes, 1);
5458 	if (to_free)
5459 		space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5460 					 to_free);
5461 }
5462 
5463 /**
5464  * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5465  * @fs_info - the fs_info for our fs.
5466  * @flush - control how we can flush for this reservation.
5467  *
5468  * This will refill the delayed block_rsv up to 1 items size worth of space and
5469  * will return -ENOSPC if we can't make the reservation.
5470  */
5471 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5472 				  enum btrfs_reserve_flush_enum flush)
5473 {
5474 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5475 	u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5476 	u64 num_bytes = 0;
5477 	int ret = -ENOSPC;
5478 
5479 	spin_lock(&block_rsv->lock);
5480 	if (block_rsv->reserved < block_rsv->size) {
5481 		num_bytes = block_rsv->size - block_rsv->reserved;
5482 		num_bytes = min(num_bytes, limit);
5483 	}
5484 	spin_unlock(&block_rsv->lock);
5485 
5486 	if (!num_bytes)
5487 		return 0;
5488 
5489 	ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5490 				     num_bytes, flush);
5491 	if (ret)
5492 		return ret;
5493 	block_rsv_add_bytes(block_rsv, num_bytes, 0);
5494 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5495 				      0, num_bytes, 1);
5496 	return 0;
5497 }
5498 
5499 /*
5500  * This is for space we already have accounted in space_info->bytes_may_use, so
5501  * basically when we're returning space from block_rsv's.
5502  */
5503 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5504 				     struct btrfs_space_info *space_info,
5505 				     u64 num_bytes)
5506 {
5507 	struct reserve_ticket *ticket;
5508 	struct list_head *head;
5509 	u64 used;
5510 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5511 	bool check_overcommit = false;
5512 
5513 	spin_lock(&space_info->lock);
5514 	head = &space_info->priority_tickets;
5515 
5516 	/*
5517 	 * If we are over our limit then we need to check and see if we can
5518 	 * overcommit, and if we can't then we just need to free up our space
5519 	 * and not satisfy any requests.
5520 	 */
5521 	used = btrfs_space_info_used(space_info, true);
5522 	if (used - num_bytes >= space_info->total_bytes)
5523 		check_overcommit = true;
5524 again:
5525 	while (!list_empty(head) && num_bytes) {
5526 		ticket = list_first_entry(head, struct reserve_ticket,
5527 					  list);
5528 		/*
5529 		 * We use 0 bytes because this space is already reserved, so
5530 		 * adding the ticket space would be a double count.
5531 		 */
5532 		if (check_overcommit &&
5533 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5534 			break;
5535 		if (num_bytes >= ticket->bytes) {
5536 			list_del_init(&ticket->list);
5537 			num_bytes -= ticket->bytes;
5538 			ticket->bytes = 0;
5539 			space_info->tickets_id++;
5540 			wake_up(&ticket->wait);
5541 		} else {
5542 			ticket->bytes -= num_bytes;
5543 			num_bytes = 0;
5544 		}
5545 	}
5546 
5547 	if (num_bytes && head == &space_info->priority_tickets) {
5548 		head = &space_info->tickets;
5549 		flush = BTRFS_RESERVE_FLUSH_ALL;
5550 		goto again;
5551 	}
5552 	update_bytes_may_use(space_info, -num_bytes);
5553 	trace_btrfs_space_reservation(fs_info, "space_info",
5554 				      space_info->flags, num_bytes, 0);
5555 	spin_unlock(&space_info->lock);
5556 }
5557 
5558 /*
5559  * This is for newly allocated space that isn't accounted in
5560  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5561  * we use this helper.
5562  */
5563 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5564 				     struct btrfs_space_info *space_info,
5565 				     u64 num_bytes)
5566 {
5567 	struct reserve_ticket *ticket;
5568 	struct list_head *head = &space_info->priority_tickets;
5569 
5570 again:
5571 	while (!list_empty(head) && num_bytes) {
5572 		ticket = list_first_entry(head, struct reserve_ticket,
5573 					  list);
5574 		if (num_bytes >= ticket->bytes) {
5575 			trace_btrfs_space_reservation(fs_info, "space_info",
5576 						      space_info->flags,
5577 						      ticket->bytes, 1);
5578 			list_del_init(&ticket->list);
5579 			num_bytes -= ticket->bytes;
5580 			update_bytes_may_use(space_info, ticket->bytes);
5581 			ticket->bytes = 0;
5582 			space_info->tickets_id++;
5583 			wake_up(&ticket->wait);
5584 		} else {
5585 			trace_btrfs_space_reservation(fs_info, "space_info",
5586 						      space_info->flags,
5587 						      num_bytes, 1);
5588 			update_bytes_may_use(space_info, num_bytes);
5589 			ticket->bytes -= num_bytes;
5590 			num_bytes = 0;
5591 		}
5592 	}
5593 
5594 	if (num_bytes && head == &space_info->priority_tickets) {
5595 		head = &space_info->tickets;
5596 		goto again;
5597 	}
5598 }
5599 
5600 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5601 				    struct btrfs_block_rsv *block_rsv,
5602 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5603 				    u64 *qgroup_to_release_ret)
5604 {
5605 	struct btrfs_space_info *space_info = block_rsv->space_info;
5606 	u64 qgroup_to_release = 0;
5607 	u64 ret;
5608 
5609 	spin_lock(&block_rsv->lock);
5610 	if (num_bytes == (u64)-1) {
5611 		num_bytes = block_rsv->size;
5612 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5613 	}
5614 	block_rsv->size -= num_bytes;
5615 	if (block_rsv->reserved >= block_rsv->size) {
5616 		num_bytes = block_rsv->reserved - block_rsv->size;
5617 		block_rsv->reserved = block_rsv->size;
5618 		block_rsv->full = 1;
5619 	} else {
5620 		num_bytes = 0;
5621 	}
5622 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5623 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5624 				    block_rsv->qgroup_rsv_size;
5625 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5626 	} else {
5627 		qgroup_to_release = 0;
5628 	}
5629 	spin_unlock(&block_rsv->lock);
5630 
5631 	ret = num_bytes;
5632 	if (num_bytes > 0) {
5633 		if (dest) {
5634 			spin_lock(&dest->lock);
5635 			if (!dest->full) {
5636 				u64 bytes_to_add;
5637 
5638 				bytes_to_add = dest->size - dest->reserved;
5639 				bytes_to_add = min(num_bytes, bytes_to_add);
5640 				dest->reserved += bytes_to_add;
5641 				if (dest->reserved >= dest->size)
5642 					dest->full = 1;
5643 				num_bytes -= bytes_to_add;
5644 			}
5645 			spin_unlock(&dest->lock);
5646 		}
5647 		if (num_bytes)
5648 			space_info_add_old_bytes(fs_info, space_info,
5649 						 num_bytes);
5650 	}
5651 	if (qgroup_to_release_ret)
5652 		*qgroup_to_release_ret = qgroup_to_release;
5653 	return ret;
5654 }
5655 
5656 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5657 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5658 			    bool update_size)
5659 {
5660 	int ret;
5661 
5662 	ret = block_rsv_use_bytes(src, num_bytes);
5663 	if (ret)
5664 		return ret;
5665 
5666 	block_rsv_add_bytes(dst, num_bytes, update_size);
5667 	return 0;
5668 }
5669 
5670 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5671 {
5672 	memset(rsv, 0, sizeof(*rsv));
5673 	spin_lock_init(&rsv->lock);
5674 	rsv->type = type;
5675 }
5676 
5677 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5678 				   struct btrfs_block_rsv *rsv,
5679 				   unsigned short type)
5680 {
5681 	btrfs_init_block_rsv(rsv, type);
5682 	rsv->space_info = __find_space_info(fs_info,
5683 					    BTRFS_BLOCK_GROUP_METADATA);
5684 }
5685 
5686 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5687 					      unsigned short type)
5688 {
5689 	struct btrfs_block_rsv *block_rsv;
5690 
5691 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5692 	if (!block_rsv)
5693 		return NULL;
5694 
5695 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5696 	return block_rsv;
5697 }
5698 
5699 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5700 			  struct btrfs_block_rsv *rsv)
5701 {
5702 	if (!rsv)
5703 		return;
5704 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5705 	kfree(rsv);
5706 }
5707 
5708 int btrfs_block_rsv_add(struct btrfs_root *root,
5709 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5710 			enum btrfs_reserve_flush_enum flush)
5711 {
5712 	int ret;
5713 
5714 	if (num_bytes == 0)
5715 		return 0;
5716 
5717 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5718 	if (!ret)
5719 		block_rsv_add_bytes(block_rsv, num_bytes, true);
5720 
5721 	return ret;
5722 }
5723 
5724 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5725 {
5726 	u64 num_bytes = 0;
5727 	int ret = -ENOSPC;
5728 
5729 	if (!block_rsv)
5730 		return 0;
5731 
5732 	spin_lock(&block_rsv->lock);
5733 	num_bytes = div_factor(block_rsv->size, min_factor);
5734 	if (block_rsv->reserved >= num_bytes)
5735 		ret = 0;
5736 	spin_unlock(&block_rsv->lock);
5737 
5738 	return ret;
5739 }
5740 
5741 int btrfs_block_rsv_refill(struct btrfs_root *root,
5742 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5743 			   enum btrfs_reserve_flush_enum flush)
5744 {
5745 	u64 num_bytes = 0;
5746 	int ret = -ENOSPC;
5747 
5748 	if (!block_rsv)
5749 		return 0;
5750 
5751 	spin_lock(&block_rsv->lock);
5752 	num_bytes = min_reserved;
5753 	if (block_rsv->reserved >= num_bytes)
5754 		ret = 0;
5755 	else
5756 		num_bytes -= block_rsv->reserved;
5757 	spin_unlock(&block_rsv->lock);
5758 
5759 	if (!ret)
5760 		return 0;
5761 
5762 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5763 	if (!ret) {
5764 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5765 		return 0;
5766 	}
5767 
5768 	return ret;
5769 }
5770 
5771 /**
5772  * btrfs_inode_rsv_refill - refill the inode block rsv.
5773  * @inode - the inode we are refilling.
5774  * @flush - the flushing restriction.
5775  *
5776  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5777  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5778  * or return if we already have enough space.  This will also handle the reserve
5779  * tracepoint for the reserved amount.
5780  */
5781 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5782 				  enum btrfs_reserve_flush_enum flush)
5783 {
5784 	struct btrfs_root *root = inode->root;
5785 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5786 	u64 num_bytes = 0;
5787 	u64 qgroup_num_bytes = 0;
5788 	int ret = -ENOSPC;
5789 
5790 	spin_lock(&block_rsv->lock);
5791 	if (block_rsv->reserved < block_rsv->size)
5792 		num_bytes = block_rsv->size - block_rsv->reserved;
5793 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5794 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5795 				   block_rsv->qgroup_rsv_reserved;
5796 	spin_unlock(&block_rsv->lock);
5797 
5798 	if (num_bytes == 0)
5799 		return 0;
5800 
5801 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5802 	if (ret)
5803 		return ret;
5804 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5805 	if (!ret) {
5806 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5807 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5808 					      btrfs_ino(inode), num_bytes, 1);
5809 
5810 		/* Don't forget to increase qgroup_rsv_reserved */
5811 		spin_lock(&block_rsv->lock);
5812 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5813 		spin_unlock(&block_rsv->lock);
5814 	} else
5815 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5816 	return ret;
5817 }
5818 
5819 static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5820 				     struct btrfs_block_rsv *block_rsv,
5821 				     u64 num_bytes, u64 *qgroup_to_release)
5822 {
5823 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5824 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5825 	struct btrfs_block_rsv *target = delayed_rsv;
5826 
5827 	if (target->full || target == block_rsv)
5828 		target = global_rsv;
5829 
5830 	if (block_rsv->space_info != target->space_info)
5831 		target = NULL;
5832 
5833 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5834 				       qgroup_to_release);
5835 }
5836 
5837 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5838 			     struct btrfs_block_rsv *block_rsv,
5839 			     u64 num_bytes)
5840 {
5841 	__btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5842 }
5843 
5844 /**
5845  * btrfs_inode_rsv_release - release any excessive reservation.
5846  * @inode - the inode we need to release from.
5847  * @qgroup_free - free or convert qgroup meta.
5848  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5849  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5850  *   @qgroup_free is true for error handling, and false for normal release.
5851  *
5852  * This is the same as btrfs_block_rsv_release, except that it handles the
5853  * tracepoint for the reservation.
5854  */
5855 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5856 {
5857 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5858 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5859 	u64 released = 0;
5860 	u64 qgroup_to_release = 0;
5861 
5862 	/*
5863 	 * Since we statically set the block_rsv->size we just want to say we
5864 	 * are releasing 0 bytes, and then we'll just get the reservation over
5865 	 * the size free'd.
5866 	 */
5867 	released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5868 					     &qgroup_to_release);
5869 	if (released > 0)
5870 		trace_btrfs_space_reservation(fs_info, "delalloc",
5871 					      btrfs_ino(inode), released, 0);
5872 	if (qgroup_free)
5873 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5874 	else
5875 		btrfs_qgroup_convert_reserved_meta(inode->root,
5876 						   qgroup_to_release);
5877 }
5878 
5879 /**
5880  * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5881  * @fs_info - the fs_info for our fs.
5882  * @nr - the number of items to drop.
5883  *
5884  * This drops the delayed ref head's count from the delayed refs rsv and frees
5885  * any excess reservation we had.
5886  */
5887 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5888 {
5889 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5890 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5891 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5892 	u64 released = 0;
5893 
5894 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5895 					   num_bytes, NULL);
5896 	if (released)
5897 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5898 					      0, released, 0);
5899 }
5900 
5901 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5902 {
5903 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5904 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5905 	u64 num_bytes;
5906 
5907 	/*
5908 	 * The global block rsv is based on the size of the extent tree, the
5909 	 * checksum tree and the root tree.  If the fs is empty we want to set
5910 	 * it to a minimal amount for safety.
5911 	 */
5912 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5913 		btrfs_root_used(&fs_info->csum_root->root_item) +
5914 		btrfs_root_used(&fs_info->tree_root->root_item);
5915 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5916 
5917 	spin_lock(&sinfo->lock);
5918 	spin_lock(&block_rsv->lock);
5919 
5920 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5921 
5922 	if (block_rsv->reserved < block_rsv->size) {
5923 		num_bytes = btrfs_space_info_used(sinfo, true);
5924 		if (sinfo->total_bytes > num_bytes) {
5925 			num_bytes = sinfo->total_bytes - num_bytes;
5926 			num_bytes = min(num_bytes,
5927 					block_rsv->size - block_rsv->reserved);
5928 			block_rsv->reserved += num_bytes;
5929 			update_bytes_may_use(sinfo, num_bytes);
5930 			trace_btrfs_space_reservation(fs_info, "space_info",
5931 						      sinfo->flags, num_bytes,
5932 						      1);
5933 		}
5934 	} else if (block_rsv->reserved > block_rsv->size) {
5935 		num_bytes = block_rsv->reserved - block_rsv->size;
5936 		update_bytes_may_use(sinfo, -num_bytes);
5937 		trace_btrfs_space_reservation(fs_info, "space_info",
5938 				      sinfo->flags, num_bytes, 0);
5939 		block_rsv->reserved = block_rsv->size;
5940 	}
5941 
5942 	if (block_rsv->reserved == block_rsv->size)
5943 		block_rsv->full = 1;
5944 	else
5945 		block_rsv->full = 0;
5946 
5947 	spin_unlock(&block_rsv->lock);
5948 	spin_unlock(&sinfo->lock);
5949 }
5950 
5951 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5952 {
5953 	struct btrfs_space_info *space_info;
5954 
5955 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5956 	fs_info->chunk_block_rsv.space_info = space_info;
5957 
5958 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5959 	fs_info->global_block_rsv.space_info = space_info;
5960 	fs_info->trans_block_rsv.space_info = space_info;
5961 	fs_info->empty_block_rsv.space_info = space_info;
5962 	fs_info->delayed_block_rsv.space_info = space_info;
5963 	fs_info->delayed_refs_rsv.space_info = space_info;
5964 
5965 	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5966 	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
5967 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5968 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5969 	if (fs_info->quota_root)
5970 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5971 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5972 
5973 	update_global_block_rsv(fs_info);
5974 }
5975 
5976 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5977 {
5978 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5979 				(u64)-1, NULL);
5980 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5981 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5982 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5983 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5984 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5985 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5986 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5987 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
5988 }
5989 
5990 /*
5991  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5992  * @trans - the trans that may have generated delayed refs
5993  *
5994  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5995  * it'll calculate the additional size and add it to the delayed_refs_rsv.
5996  */
5997 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5998 {
5999 	struct btrfs_fs_info *fs_info = trans->fs_info;
6000 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6001 	u64 num_bytes;
6002 
6003 	if (!trans->delayed_ref_updates)
6004 		return;
6005 
6006 	num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6007 						   trans->delayed_ref_updates);
6008 	spin_lock(&delayed_rsv->lock);
6009 	delayed_rsv->size += num_bytes;
6010 	delayed_rsv->full = 0;
6011 	spin_unlock(&delayed_rsv->lock);
6012 	trans->delayed_ref_updates = 0;
6013 }
6014 
6015 /*
6016  * To be called after all the new block groups attached to the transaction
6017  * handle have been created (btrfs_create_pending_block_groups()).
6018  */
6019 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6020 {
6021 	struct btrfs_fs_info *fs_info = trans->fs_info;
6022 
6023 	if (!trans->chunk_bytes_reserved)
6024 		return;
6025 
6026 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6027 
6028 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
6029 				trans->chunk_bytes_reserved, NULL);
6030 	trans->chunk_bytes_reserved = 0;
6031 }
6032 
6033 /*
6034  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6035  * root: the root of the parent directory
6036  * rsv: block reservation
6037  * items: the number of items that we need do reservation
6038  * use_global_rsv: allow fallback to the global block reservation
6039  *
6040  * This function is used to reserve the space for snapshot/subvolume
6041  * creation and deletion. Those operations are different with the
6042  * common file/directory operations, they change two fs/file trees
6043  * and root tree, the number of items that the qgroup reserves is
6044  * different with the free space reservation. So we can not use
6045  * the space reservation mechanism in start_transaction().
6046  */
6047 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6048 				     struct btrfs_block_rsv *rsv, int items,
6049 				     bool use_global_rsv)
6050 {
6051 	u64 qgroup_num_bytes = 0;
6052 	u64 num_bytes;
6053 	int ret;
6054 	struct btrfs_fs_info *fs_info = root->fs_info;
6055 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6056 
6057 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6058 		/* One for parent inode, two for dir entries */
6059 		qgroup_num_bytes = 3 * fs_info->nodesize;
6060 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
6061 				qgroup_num_bytes, true);
6062 		if (ret)
6063 			return ret;
6064 	}
6065 
6066 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6067 	rsv->space_info = __find_space_info(fs_info,
6068 					    BTRFS_BLOCK_GROUP_METADATA);
6069 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6070 				  BTRFS_RESERVE_FLUSH_ALL);
6071 
6072 	if (ret == -ENOSPC && use_global_rsv)
6073 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
6074 
6075 	if (ret && qgroup_num_bytes)
6076 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
6077 
6078 	return ret;
6079 }
6080 
6081 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6082 				      struct btrfs_block_rsv *rsv)
6083 {
6084 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6085 }
6086 
6087 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6088 						 struct btrfs_inode *inode)
6089 {
6090 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6091 	u64 reserve_size = 0;
6092 	u64 qgroup_rsv_size = 0;
6093 	u64 csum_leaves;
6094 	unsigned outstanding_extents;
6095 
6096 	lockdep_assert_held(&inode->lock);
6097 	outstanding_extents = inode->outstanding_extents;
6098 	if (outstanding_extents)
6099 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6100 						outstanding_extents + 1);
6101 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6102 						 inode->csum_bytes);
6103 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6104 						       csum_leaves);
6105 	/*
6106 	 * For qgroup rsv, the calculation is very simple:
6107 	 * account one nodesize for each outstanding extent
6108 	 *
6109 	 * This is overestimating in most cases.
6110 	 */
6111 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6112 
6113 	spin_lock(&block_rsv->lock);
6114 	block_rsv->size = reserve_size;
6115 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6116 	spin_unlock(&block_rsv->lock);
6117 }
6118 
6119 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6120 {
6121 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6122 	unsigned nr_extents;
6123 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6124 	int ret = 0;
6125 	bool delalloc_lock = true;
6126 
6127 	/* If we are a free space inode we need to not flush since we will be in
6128 	 * the middle of a transaction commit.  We also don't need the delalloc
6129 	 * mutex since we won't race with anybody.  We need this mostly to make
6130 	 * lockdep shut its filthy mouth.
6131 	 *
6132 	 * If we have a transaction open (can happen if we call truncate_block
6133 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6134 	 */
6135 	if (btrfs_is_free_space_inode(inode)) {
6136 		flush = BTRFS_RESERVE_NO_FLUSH;
6137 		delalloc_lock = false;
6138 	} else {
6139 		if (current->journal_info)
6140 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6141 
6142 		if (btrfs_transaction_in_commit(fs_info))
6143 			schedule_timeout(1);
6144 	}
6145 
6146 	if (delalloc_lock)
6147 		mutex_lock(&inode->delalloc_mutex);
6148 
6149 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6150 
6151 	/* Add our new extents and calculate the new rsv size. */
6152 	spin_lock(&inode->lock);
6153 	nr_extents = count_max_extents(num_bytes);
6154 	btrfs_mod_outstanding_extents(inode, nr_extents);
6155 	inode->csum_bytes += num_bytes;
6156 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6157 	spin_unlock(&inode->lock);
6158 
6159 	ret = btrfs_inode_rsv_refill(inode, flush);
6160 	if (unlikely(ret))
6161 		goto out_fail;
6162 
6163 	if (delalloc_lock)
6164 		mutex_unlock(&inode->delalloc_mutex);
6165 	return 0;
6166 
6167 out_fail:
6168 	spin_lock(&inode->lock);
6169 	nr_extents = count_max_extents(num_bytes);
6170 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6171 	inode->csum_bytes -= num_bytes;
6172 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6173 	spin_unlock(&inode->lock);
6174 
6175 	btrfs_inode_rsv_release(inode, true);
6176 	if (delalloc_lock)
6177 		mutex_unlock(&inode->delalloc_mutex);
6178 	return ret;
6179 }
6180 
6181 /**
6182  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6183  * @inode: the inode to release the reservation for.
6184  * @num_bytes: the number of bytes we are releasing.
6185  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6186  *
6187  * This will release the metadata reservation for an inode.  This can be called
6188  * once we complete IO for a given set of bytes to release their metadata
6189  * reservations, or on error for the same reason.
6190  */
6191 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6192 				     bool qgroup_free)
6193 {
6194 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6195 
6196 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6197 	spin_lock(&inode->lock);
6198 	inode->csum_bytes -= num_bytes;
6199 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6200 	spin_unlock(&inode->lock);
6201 
6202 	if (btrfs_is_testing(fs_info))
6203 		return;
6204 
6205 	btrfs_inode_rsv_release(inode, qgroup_free);
6206 }
6207 
6208 /**
6209  * btrfs_delalloc_release_extents - release our outstanding_extents
6210  * @inode: the inode to balance the reservation for.
6211  * @num_bytes: the number of bytes we originally reserved with
6212  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6213  *
6214  * When we reserve space we increase outstanding_extents for the extents we may
6215  * add.  Once we've set the range as delalloc or created our ordered extents we
6216  * have outstanding_extents to track the real usage, so we use this to free our
6217  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6218  * with btrfs_delalloc_reserve_metadata.
6219  */
6220 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6221 				    bool qgroup_free)
6222 {
6223 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6224 	unsigned num_extents;
6225 
6226 	spin_lock(&inode->lock);
6227 	num_extents = count_max_extents(num_bytes);
6228 	btrfs_mod_outstanding_extents(inode, -num_extents);
6229 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6230 	spin_unlock(&inode->lock);
6231 
6232 	if (btrfs_is_testing(fs_info))
6233 		return;
6234 
6235 	btrfs_inode_rsv_release(inode, qgroup_free);
6236 }
6237 
6238 /**
6239  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6240  * delalloc
6241  * @inode: inode we're writing to
6242  * @start: start range we are writing to
6243  * @len: how long the range we are writing to
6244  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6245  * 	      current reservation.
6246  *
6247  * This will do the following things
6248  *
6249  * o reserve space in data space info for num bytes
6250  *   and reserve precious corresponding qgroup space
6251  *   (Done in check_data_free_space)
6252  *
6253  * o reserve space for metadata space, based on the number of outstanding
6254  *   extents and how much csums will be needed
6255  *   also reserve metadata space in a per root over-reserve method.
6256  * o add to the inodes->delalloc_bytes
6257  * o add it to the fs_info's delalloc inodes list.
6258  *   (Above 3 all done in delalloc_reserve_metadata)
6259  *
6260  * Return 0 for success
6261  * Return <0 for error(-ENOSPC or -EQUOT)
6262  */
6263 int btrfs_delalloc_reserve_space(struct inode *inode,
6264 			struct extent_changeset **reserved, u64 start, u64 len)
6265 {
6266 	int ret;
6267 
6268 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6269 	if (ret < 0)
6270 		return ret;
6271 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6272 	if (ret < 0)
6273 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6274 	return ret;
6275 }
6276 
6277 /**
6278  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6279  * @inode: inode we're releasing space for
6280  * @start: start position of the space already reserved
6281  * @len: the len of the space already reserved
6282  * @release_bytes: the len of the space we consumed or didn't use
6283  *
6284  * This function will release the metadata space that was not used and will
6285  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6286  * list if there are no delalloc bytes left.
6287  * Also it will handle the qgroup reserved space.
6288  */
6289 void btrfs_delalloc_release_space(struct inode *inode,
6290 				  struct extent_changeset *reserved,
6291 				  u64 start, u64 len, bool qgroup_free)
6292 {
6293 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6294 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6295 }
6296 
6297 static int update_block_group(struct btrfs_trans_handle *trans,
6298 			      struct btrfs_fs_info *info, u64 bytenr,
6299 			      u64 num_bytes, int alloc)
6300 {
6301 	struct btrfs_block_group_cache *cache = NULL;
6302 	u64 total = num_bytes;
6303 	u64 old_val;
6304 	u64 byte_in_group;
6305 	int factor;
6306 	int ret = 0;
6307 
6308 	/* block accounting for super block */
6309 	spin_lock(&info->delalloc_root_lock);
6310 	old_val = btrfs_super_bytes_used(info->super_copy);
6311 	if (alloc)
6312 		old_val += num_bytes;
6313 	else
6314 		old_val -= num_bytes;
6315 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6316 	spin_unlock(&info->delalloc_root_lock);
6317 
6318 	while (total) {
6319 		cache = btrfs_lookup_block_group(info, bytenr);
6320 		if (!cache) {
6321 			ret = -ENOENT;
6322 			break;
6323 		}
6324 		factor = btrfs_bg_type_to_factor(cache->flags);
6325 
6326 		/*
6327 		 * If this block group has free space cache written out, we
6328 		 * need to make sure to load it if we are removing space.  This
6329 		 * is because we need the unpinning stage to actually add the
6330 		 * space back to the block group, otherwise we will leak space.
6331 		 */
6332 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6333 			cache_block_group(cache, 1);
6334 
6335 		byte_in_group = bytenr - cache->key.objectid;
6336 		WARN_ON(byte_in_group > cache->key.offset);
6337 
6338 		spin_lock(&cache->space_info->lock);
6339 		spin_lock(&cache->lock);
6340 
6341 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6342 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6343 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6344 
6345 		old_val = btrfs_block_group_used(&cache->item);
6346 		num_bytes = min(total, cache->key.offset - byte_in_group);
6347 		if (alloc) {
6348 			old_val += num_bytes;
6349 			btrfs_set_block_group_used(&cache->item, old_val);
6350 			cache->reserved -= num_bytes;
6351 			cache->space_info->bytes_reserved -= num_bytes;
6352 			cache->space_info->bytes_used += num_bytes;
6353 			cache->space_info->disk_used += num_bytes * factor;
6354 			spin_unlock(&cache->lock);
6355 			spin_unlock(&cache->space_info->lock);
6356 		} else {
6357 			old_val -= num_bytes;
6358 			btrfs_set_block_group_used(&cache->item, old_val);
6359 			cache->pinned += num_bytes;
6360 			update_bytes_pinned(cache->space_info, num_bytes);
6361 			cache->space_info->bytes_used -= num_bytes;
6362 			cache->space_info->disk_used -= num_bytes * factor;
6363 			spin_unlock(&cache->lock);
6364 			spin_unlock(&cache->space_info->lock);
6365 
6366 			trace_btrfs_space_reservation(info, "pinned",
6367 						      cache->space_info->flags,
6368 						      num_bytes, 1);
6369 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6370 					   num_bytes,
6371 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
6372 			set_extent_dirty(info->pinned_extents,
6373 					 bytenr, bytenr + num_bytes - 1,
6374 					 GFP_NOFS | __GFP_NOFAIL);
6375 		}
6376 
6377 		spin_lock(&trans->transaction->dirty_bgs_lock);
6378 		if (list_empty(&cache->dirty_list)) {
6379 			list_add_tail(&cache->dirty_list,
6380 				      &trans->transaction->dirty_bgs);
6381 			trans->transaction->num_dirty_bgs++;
6382 			trans->delayed_ref_updates++;
6383 			btrfs_get_block_group(cache);
6384 		}
6385 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6386 
6387 		/*
6388 		 * No longer have used bytes in this block group, queue it for
6389 		 * deletion. We do this after adding the block group to the
6390 		 * dirty list to avoid races between cleaner kthread and space
6391 		 * cache writeout.
6392 		 */
6393 		if (!alloc && old_val == 0)
6394 			btrfs_mark_bg_unused(cache);
6395 
6396 		btrfs_put_block_group(cache);
6397 		total -= num_bytes;
6398 		bytenr += num_bytes;
6399 	}
6400 
6401 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
6402 	btrfs_update_delayed_refs_rsv(trans);
6403 	return ret;
6404 }
6405 
6406 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6407 {
6408 	struct btrfs_block_group_cache *cache;
6409 	u64 bytenr;
6410 
6411 	spin_lock(&fs_info->block_group_cache_lock);
6412 	bytenr = fs_info->first_logical_byte;
6413 	spin_unlock(&fs_info->block_group_cache_lock);
6414 
6415 	if (bytenr < (u64)-1)
6416 		return bytenr;
6417 
6418 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6419 	if (!cache)
6420 		return 0;
6421 
6422 	bytenr = cache->key.objectid;
6423 	btrfs_put_block_group(cache);
6424 
6425 	return bytenr;
6426 }
6427 
6428 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6429 			   struct btrfs_block_group_cache *cache,
6430 			   u64 bytenr, u64 num_bytes, int reserved)
6431 {
6432 	spin_lock(&cache->space_info->lock);
6433 	spin_lock(&cache->lock);
6434 	cache->pinned += num_bytes;
6435 	update_bytes_pinned(cache->space_info, num_bytes);
6436 	if (reserved) {
6437 		cache->reserved -= num_bytes;
6438 		cache->space_info->bytes_reserved -= num_bytes;
6439 	}
6440 	spin_unlock(&cache->lock);
6441 	spin_unlock(&cache->space_info->lock);
6442 
6443 	trace_btrfs_space_reservation(fs_info, "pinned",
6444 				      cache->space_info->flags, num_bytes, 1);
6445 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6446 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6447 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6448 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6449 	return 0;
6450 }
6451 
6452 /*
6453  * this function must be called within transaction
6454  */
6455 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6456 		     u64 bytenr, u64 num_bytes, int reserved)
6457 {
6458 	struct btrfs_block_group_cache *cache;
6459 
6460 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6461 	BUG_ON(!cache); /* Logic error */
6462 
6463 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6464 
6465 	btrfs_put_block_group(cache);
6466 	return 0;
6467 }
6468 
6469 /*
6470  * this function must be called within transaction
6471  */
6472 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6473 				    u64 bytenr, u64 num_bytes)
6474 {
6475 	struct btrfs_block_group_cache *cache;
6476 	int ret;
6477 
6478 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6479 	if (!cache)
6480 		return -EINVAL;
6481 
6482 	/*
6483 	 * pull in the free space cache (if any) so that our pin
6484 	 * removes the free space from the cache.  We have load_only set
6485 	 * to one because the slow code to read in the free extents does check
6486 	 * the pinned extents.
6487 	 */
6488 	cache_block_group(cache, 1);
6489 
6490 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6491 
6492 	/* remove us from the free space cache (if we're there at all) */
6493 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6494 	btrfs_put_block_group(cache);
6495 	return ret;
6496 }
6497 
6498 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6499 				   u64 start, u64 num_bytes)
6500 {
6501 	int ret;
6502 	struct btrfs_block_group_cache *block_group;
6503 	struct btrfs_caching_control *caching_ctl;
6504 
6505 	block_group = btrfs_lookup_block_group(fs_info, start);
6506 	if (!block_group)
6507 		return -EINVAL;
6508 
6509 	cache_block_group(block_group, 0);
6510 	caching_ctl = get_caching_control(block_group);
6511 
6512 	if (!caching_ctl) {
6513 		/* Logic error */
6514 		BUG_ON(!block_group_cache_done(block_group));
6515 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6516 	} else {
6517 		mutex_lock(&caching_ctl->mutex);
6518 
6519 		if (start >= caching_ctl->progress) {
6520 			ret = add_excluded_extent(fs_info, start, num_bytes);
6521 		} else if (start + num_bytes <= caching_ctl->progress) {
6522 			ret = btrfs_remove_free_space(block_group,
6523 						      start, num_bytes);
6524 		} else {
6525 			num_bytes = caching_ctl->progress - start;
6526 			ret = btrfs_remove_free_space(block_group,
6527 						      start, num_bytes);
6528 			if (ret)
6529 				goto out_lock;
6530 
6531 			num_bytes = (start + num_bytes) -
6532 				caching_ctl->progress;
6533 			start = caching_ctl->progress;
6534 			ret = add_excluded_extent(fs_info, start, num_bytes);
6535 		}
6536 out_lock:
6537 		mutex_unlock(&caching_ctl->mutex);
6538 		put_caching_control(caching_ctl);
6539 	}
6540 	btrfs_put_block_group(block_group);
6541 	return ret;
6542 }
6543 
6544 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6545 				 struct extent_buffer *eb)
6546 {
6547 	struct btrfs_file_extent_item *item;
6548 	struct btrfs_key key;
6549 	int found_type;
6550 	int i;
6551 	int ret = 0;
6552 
6553 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6554 		return 0;
6555 
6556 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6557 		btrfs_item_key_to_cpu(eb, &key, i);
6558 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6559 			continue;
6560 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6561 		found_type = btrfs_file_extent_type(eb, item);
6562 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6563 			continue;
6564 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6565 			continue;
6566 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6567 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6568 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6569 		if (ret)
6570 			break;
6571 	}
6572 
6573 	return ret;
6574 }
6575 
6576 static void
6577 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6578 {
6579 	atomic_inc(&bg->reservations);
6580 }
6581 
6582 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6583 					const u64 start)
6584 {
6585 	struct btrfs_block_group_cache *bg;
6586 
6587 	bg = btrfs_lookup_block_group(fs_info, start);
6588 	ASSERT(bg);
6589 	if (atomic_dec_and_test(&bg->reservations))
6590 		wake_up_var(&bg->reservations);
6591 	btrfs_put_block_group(bg);
6592 }
6593 
6594 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6595 {
6596 	struct btrfs_space_info *space_info = bg->space_info;
6597 
6598 	ASSERT(bg->ro);
6599 
6600 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6601 		return;
6602 
6603 	/*
6604 	 * Our block group is read only but before we set it to read only,
6605 	 * some task might have had allocated an extent from it already, but it
6606 	 * has not yet created a respective ordered extent (and added it to a
6607 	 * root's list of ordered extents).
6608 	 * Therefore wait for any task currently allocating extents, since the
6609 	 * block group's reservations counter is incremented while a read lock
6610 	 * on the groups' semaphore is held and decremented after releasing
6611 	 * the read access on that semaphore and creating the ordered extent.
6612 	 */
6613 	down_write(&space_info->groups_sem);
6614 	up_write(&space_info->groups_sem);
6615 
6616 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6617 }
6618 
6619 /**
6620  * btrfs_add_reserved_bytes - update the block_group and space info counters
6621  * @cache:	The cache we are manipulating
6622  * @ram_bytes:  The number of bytes of file content, and will be same to
6623  *              @num_bytes except for the compress path.
6624  * @num_bytes:	The number of bytes in question
6625  * @delalloc:   The blocks are allocated for the delalloc write
6626  *
6627  * This is called by the allocator when it reserves space. If this is a
6628  * reservation and the block group has become read only we cannot make the
6629  * reservation and return -EAGAIN, otherwise this function always succeeds.
6630  */
6631 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6632 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6633 {
6634 	struct btrfs_space_info *space_info = cache->space_info;
6635 	int ret = 0;
6636 
6637 	spin_lock(&space_info->lock);
6638 	spin_lock(&cache->lock);
6639 	if (cache->ro) {
6640 		ret = -EAGAIN;
6641 	} else {
6642 		cache->reserved += num_bytes;
6643 		space_info->bytes_reserved += num_bytes;
6644 		update_bytes_may_use(space_info, -ram_bytes);
6645 		if (delalloc)
6646 			cache->delalloc_bytes += num_bytes;
6647 	}
6648 	spin_unlock(&cache->lock);
6649 	spin_unlock(&space_info->lock);
6650 	return ret;
6651 }
6652 
6653 /**
6654  * btrfs_free_reserved_bytes - update the block_group and space info counters
6655  * @cache:      The cache we are manipulating
6656  * @num_bytes:  The number of bytes in question
6657  * @delalloc:   The blocks are allocated for the delalloc write
6658  *
6659  * This is called by somebody who is freeing space that was never actually used
6660  * on disk.  For example if you reserve some space for a new leaf in transaction
6661  * A and before transaction A commits you free that leaf, you call this with
6662  * reserve set to 0 in order to clear the reservation.
6663  */
6664 
6665 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6666 				      u64 num_bytes, int delalloc)
6667 {
6668 	struct btrfs_space_info *space_info = cache->space_info;
6669 
6670 	spin_lock(&space_info->lock);
6671 	spin_lock(&cache->lock);
6672 	if (cache->ro)
6673 		space_info->bytes_readonly += num_bytes;
6674 	cache->reserved -= num_bytes;
6675 	space_info->bytes_reserved -= num_bytes;
6676 	space_info->max_extent_size = 0;
6677 
6678 	if (delalloc)
6679 		cache->delalloc_bytes -= num_bytes;
6680 	spin_unlock(&cache->lock);
6681 	spin_unlock(&space_info->lock);
6682 }
6683 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6684 {
6685 	struct btrfs_caching_control *next;
6686 	struct btrfs_caching_control *caching_ctl;
6687 	struct btrfs_block_group_cache *cache;
6688 
6689 	down_write(&fs_info->commit_root_sem);
6690 
6691 	list_for_each_entry_safe(caching_ctl, next,
6692 				 &fs_info->caching_block_groups, list) {
6693 		cache = caching_ctl->block_group;
6694 		if (block_group_cache_done(cache)) {
6695 			cache->last_byte_to_unpin = (u64)-1;
6696 			list_del_init(&caching_ctl->list);
6697 			put_caching_control(caching_ctl);
6698 		} else {
6699 			cache->last_byte_to_unpin = caching_ctl->progress;
6700 		}
6701 	}
6702 
6703 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6704 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6705 	else
6706 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6707 
6708 	up_write(&fs_info->commit_root_sem);
6709 
6710 	update_global_block_rsv(fs_info);
6711 }
6712 
6713 /*
6714  * Returns the free cluster for the given space info and sets empty_cluster to
6715  * what it should be based on the mount options.
6716  */
6717 static struct btrfs_free_cluster *
6718 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6719 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6720 {
6721 	struct btrfs_free_cluster *ret = NULL;
6722 
6723 	*empty_cluster = 0;
6724 	if (btrfs_mixed_space_info(space_info))
6725 		return ret;
6726 
6727 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6728 		ret = &fs_info->meta_alloc_cluster;
6729 		if (btrfs_test_opt(fs_info, SSD))
6730 			*empty_cluster = SZ_2M;
6731 		else
6732 			*empty_cluster = SZ_64K;
6733 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6734 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6735 		*empty_cluster = SZ_2M;
6736 		ret = &fs_info->data_alloc_cluster;
6737 	}
6738 
6739 	return ret;
6740 }
6741 
6742 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6743 			      u64 start, u64 end,
6744 			      const bool return_free_space)
6745 {
6746 	struct btrfs_block_group_cache *cache = NULL;
6747 	struct btrfs_space_info *space_info;
6748 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6749 	struct btrfs_free_cluster *cluster = NULL;
6750 	u64 len;
6751 	u64 total_unpinned = 0;
6752 	u64 empty_cluster = 0;
6753 	bool readonly;
6754 
6755 	while (start <= end) {
6756 		readonly = false;
6757 		if (!cache ||
6758 		    start >= cache->key.objectid + cache->key.offset) {
6759 			if (cache)
6760 				btrfs_put_block_group(cache);
6761 			total_unpinned = 0;
6762 			cache = btrfs_lookup_block_group(fs_info, start);
6763 			BUG_ON(!cache); /* Logic error */
6764 
6765 			cluster = fetch_cluster_info(fs_info,
6766 						     cache->space_info,
6767 						     &empty_cluster);
6768 			empty_cluster <<= 1;
6769 		}
6770 
6771 		len = cache->key.objectid + cache->key.offset - start;
6772 		len = min(len, end + 1 - start);
6773 
6774 		if (start < cache->last_byte_to_unpin) {
6775 			len = min(len, cache->last_byte_to_unpin - start);
6776 			if (return_free_space)
6777 				btrfs_add_free_space(cache, start, len);
6778 		}
6779 
6780 		start += len;
6781 		total_unpinned += len;
6782 		space_info = cache->space_info;
6783 
6784 		/*
6785 		 * If this space cluster has been marked as fragmented and we've
6786 		 * unpinned enough in this block group to potentially allow a
6787 		 * cluster to be created inside of it go ahead and clear the
6788 		 * fragmented check.
6789 		 */
6790 		if (cluster && cluster->fragmented &&
6791 		    total_unpinned > empty_cluster) {
6792 			spin_lock(&cluster->lock);
6793 			cluster->fragmented = 0;
6794 			spin_unlock(&cluster->lock);
6795 		}
6796 
6797 		spin_lock(&space_info->lock);
6798 		spin_lock(&cache->lock);
6799 		cache->pinned -= len;
6800 		update_bytes_pinned(space_info, -len);
6801 
6802 		trace_btrfs_space_reservation(fs_info, "pinned",
6803 					      space_info->flags, len, 0);
6804 		space_info->max_extent_size = 0;
6805 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
6806 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6807 		if (cache->ro) {
6808 			space_info->bytes_readonly += len;
6809 			readonly = true;
6810 		}
6811 		spin_unlock(&cache->lock);
6812 		if (!readonly && return_free_space &&
6813 		    global_rsv->space_info == space_info) {
6814 			u64 to_add = len;
6815 
6816 			spin_lock(&global_rsv->lock);
6817 			if (!global_rsv->full) {
6818 				to_add = min(len, global_rsv->size -
6819 					     global_rsv->reserved);
6820 				global_rsv->reserved += to_add;
6821 				update_bytes_may_use(space_info, to_add);
6822 				if (global_rsv->reserved >= global_rsv->size)
6823 					global_rsv->full = 1;
6824 				trace_btrfs_space_reservation(fs_info,
6825 							      "space_info",
6826 							      space_info->flags,
6827 							      to_add, 1);
6828 				len -= to_add;
6829 			}
6830 			spin_unlock(&global_rsv->lock);
6831 			/* Add to any tickets we may have */
6832 			if (len)
6833 				space_info_add_new_bytes(fs_info, space_info,
6834 							 len);
6835 		}
6836 		spin_unlock(&space_info->lock);
6837 	}
6838 
6839 	if (cache)
6840 		btrfs_put_block_group(cache);
6841 	return 0;
6842 }
6843 
6844 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6845 {
6846 	struct btrfs_fs_info *fs_info = trans->fs_info;
6847 	struct btrfs_block_group_cache *block_group, *tmp;
6848 	struct list_head *deleted_bgs;
6849 	struct extent_io_tree *unpin;
6850 	u64 start;
6851 	u64 end;
6852 	int ret;
6853 
6854 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6855 		unpin = &fs_info->freed_extents[1];
6856 	else
6857 		unpin = &fs_info->freed_extents[0];
6858 
6859 	while (!trans->aborted) {
6860 		struct extent_state *cached_state = NULL;
6861 
6862 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6863 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6864 					    EXTENT_DIRTY, &cached_state);
6865 		if (ret) {
6866 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6867 			break;
6868 		}
6869 
6870 		if (btrfs_test_opt(fs_info, DISCARD))
6871 			ret = btrfs_discard_extent(fs_info, start,
6872 						   end + 1 - start, NULL);
6873 
6874 		clear_extent_dirty(unpin, start, end, &cached_state);
6875 		unpin_extent_range(fs_info, start, end, true);
6876 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6877 		free_extent_state(cached_state);
6878 		cond_resched();
6879 	}
6880 
6881 	/*
6882 	 * Transaction is finished.  We don't need the lock anymore.  We
6883 	 * do need to clean up the block groups in case of a transaction
6884 	 * abort.
6885 	 */
6886 	deleted_bgs = &trans->transaction->deleted_bgs;
6887 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6888 		u64 trimmed = 0;
6889 
6890 		ret = -EROFS;
6891 		if (!trans->aborted)
6892 			ret = btrfs_discard_extent(fs_info,
6893 						   block_group->key.objectid,
6894 						   block_group->key.offset,
6895 						   &trimmed);
6896 
6897 		list_del_init(&block_group->bg_list);
6898 		btrfs_put_block_group_trimming(block_group);
6899 		btrfs_put_block_group(block_group);
6900 
6901 		if (ret) {
6902 			const char *errstr = btrfs_decode_error(ret);
6903 			btrfs_warn(fs_info,
6904 			   "discard failed while removing blockgroup: errno=%d %s",
6905 				   ret, errstr);
6906 		}
6907 	}
6908 
6909 	return 0;
6910 }
6911 
6912 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6913 			       struct btrfs_delayed_ref_node *node, u64 parent,
6914 			       u64 root_objectid, u64 owner_objectid,
6915 			       u64 owner_offset, int refs_to_drop,
6916 			       struct btrfs_delayed_extent_op *extent_op)
6917 {
6918 	struct btrfs_fs_info *info = trans->fs_info;
6919 	struct btrfs_key key;
6920 	struct btrfs_path *path;
6921 	struct btrfs_root *extent_root = info->extent_root;
6922 	struct extent_buffer *leaf;
6923 	struct btrfs_extent_item *ei;
6924 	struct btrfs_extent_inline_ref *iref;
6925 	int ret;
6926 	int is_data;
6927 	int extent_slot = 0;
6928 	int found_extent = 0;
6929 	int num_to_del = 1;
6930 	u32 item_size;
6931 	u64 refs;
6932 	u64 bytenr = node->bytenr;
6933 	u64 num_bytes = node->num_bytes;
6934 	int last_ref = 0;
6935 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6936 
6937 	path = btrfs_alloc_path();
6938 	if (!path)
6939 		return -ENOMEM;
6940 
6941 	path->reada = READA_FORWARD;
6942 	path->leave_spinning = 1;
6943 
6944 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6945 	BUG_ON(!is_data && refs_to_drop != 1);
6946 
6947 	if (is_data)
6948 		skinny_metadata = false;
6949 
6950 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6951 				    parent, root_objectid, owner_objectid,
6952 				    owner_offset);
6953 	if (ret == 0) {
6954 		extent_slot = path->slots[0];
6955 		while (extent_slot >= 0) {
6956 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6957 					      extent_slot);
6958 			if (key.objectid != bytenr)
6959 				break;
6960 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6961 			    key.offset == num_bytes) {
6962 				found_extent = 1;
6963 				break;
6964 			}
6965 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6966 			    key.offset == owner_objectid) {
6967 				found_extent = 1;
6968 				break;
6969 			}
6970 			if (path->slots[0] - extent_slot > 5)
6971 				break;
6972 			extent_slot--;
6973 		}
6974 
6975 		if (!found_extent) {
6976 			BUG_ON(iref);
6977 			ret = remove_extent_backref(trans, path, NULL,
6978 						    refs_to_drop,
6979 						    is_data, &last_ref);
6980 			if (ret) {
6981 				btrfs_abort_transaction(trans, ret);
6982 				goto out;
6983 			}
6984 			btrfs_release_path(path);
6985 			path->leave_spinning = 1;
6986 
6987 			key.objectid = bytenr;
6988 			key.type = BTRFS_EXTENT_ITEM_KEY;
6989 			key.offset = num_bytes;
6990 
6991 			if (!is_data && skinny_metadata) {
6992 				key.type = BTRFS_METADATA_ITEM_KEY;
6993 				key.offset = owner_objectid;
6994 			}
6995 
6996 			ret = btrfs_search_slot(trans, extent_root,
6997 						&key, path, -1, 1);
6998 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6999 				/*
7000 				 * Couldn't find our skinny metadata item,
7001 				 * see if we have ye olde extent item.
7002 				 */
7003 				path->slots[0]--;
7004 				btrfs_item_key_to_cpu(path->nodes[0], &key,
7005 						      path->slots[0]);
7006 				if (key.objectid == bytenr &&
7007 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
7008 				    key.offset == num_bytes)
7009 					ret = 0;
7010 			}
7011 
7012 			if (ret > 0 && skinny_metadata) {
7013 				skinny_metadata = false;
7014 				key.objectid = bytenr;
7015 				key.type = BTRFS_EXTENT_ITEM_KEY;
7016 				key.offset = num_bytes;
7017 				btrfs_release_path(path);
7018 				ret = btrfs_search_slot(trans, extent_root,
7019 							&key, path, -1, 1);
7020 			}
7021 
7022 			if (ret) {
7023 				btrfs_err(info,
7024 					  "umm, got %d back from search, was looking for %llu",
7025 					  ret, bytenr);
7026 				if (ret > 0)
7027 					btrfs_print_leaf(path->nodes[0]);
7028 			}
7029 			if (ret < 0) {
7030 				btrfs_abort_transaction(trans, ret);
7031 				goto out;
7032 			}
7033 			extent_slot = path->slots[0];
7034 		}
7035 	} else if (WARN_ON(ret == -ENOENT)) {
7036 		btrfs_print_leaf(path->nodes[0]);
7037 		btrfs_err(info,
7038 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7039 			bytenr, parent, root_objectid, owner_objectid,
7040 			owner_offset);
7041 		btrfs_abort_transaction(trans, ret);
7042 		goto out;
7043 	} else {
7044 		btrfs_abort_transaction(trans, ret);
7045 		goto out;
7046 	}
7047 
7048 	leaf = path->nodes[0];
7049 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7050 	if (unlikely(item_size < sizeof(*ei))) {
7051 		ret = -EINVAL;
7052 		btrfs_print_v0_err(info);
7053 		btrfs_abort_transaction(trans, ret);
7054 		goto out;
7055 	}
7056 	ei = btrfs_item_ptr(leaf, extent_slot,
7057 			    struct btrfs_extent_item);
7058 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7059 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7060 		struct btrfs_tree_block_info *bi;
7061 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7062 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7063 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7064 	}
7065 
7066 	refs = btrfs_extent_refs(leaf, ei);
7067 	if (refs < refs_to_drop) {
7068 		btrfs_err(info,
7069 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7070 			  refs_to_drop, refs, bytenr);
7071 		ret = -EINVAL;
7072 		btrfs_abort_transaction(trans, ret);
7073 		goto out;
7074 	}
7075 	refs -= refs_to_drop;
7076 
7077 	if (refs > 0) {
7078 		if (extent_op)
7079 			__run_delayed_extent_op(extent_op, leaf, ei);
7080 		/*
7081 		 * In the case of inline back ref, reference count will
7082 		 * be updated by remove_extent_backref
7083 		 */
7084 		if (iref) {
7085 			BUG_ON(!found_extent);
7086 		} else {
7087 			btrfs_set_extent_refs(leaf, ei, refs);
7088 			btrfs_mark_buffer_dirty(leaf);
7089 		}
7090 		if (found_extent) {
7091 			ret = remove_extent_backref(trans, path, iref,
7092 						    refs_to_drop, is_data,
7093 						    &last_ref);
7094 			if (ret) {
7095 				btrfs_abort_transaction(trans, ret);
7096 				goto out;
7097 			}
7098 		}
7099 	} else {
7100 		if (found_extent) {
7101 			BUG_ON(is_data && refs_to_drop !=
7102 			       extent_data_ref_count(path, iref));
7103 			if (iref) {
7104 				BUG_ON(path->slots[0] != extent_slot);
7105 			} else {
7106 				BUG_ON(path->slots[0] != extent_slot + 1);
7107 				path->slots[0] = extent_slot;
7108 				num_to_del = 2;
7109 			}
7110 		}
7111 
7112 		last_ref = 1;
7113 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7114 				      num_to_del);
7115 		if (ret) {
7116 			btrfs_abort_transaction(trans, ret);
7117 			goto out;
7118 		}
7119 		btrfs_release_path(path);
7120 
7121 		if (is_data) {
7122 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7123 			if (ret) {
7124 				btrfs_abort_transaction(trans, ret);
7125 				goto out;
7126 			}
7127 		}
7128 
7129 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7130 		if (ret) {
7131 			btrfs_abort_transaction(trans, ret);
7132 			goto out;
7133 		}
7134 
7135 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7136 		if (ret) {
7137 			btrfs_abort_transaction(trans, ret);
7138 			goto out;
7139 		}
7140 	}
7141 	btrfs_release_path(path);
7142 
7143 out:
7144 	btrfs_free_path(path);
7145 	return ret;
7146 }
7147 
7148 /*
7149  * when we free an block, it is possible (and likely) that we free the last
7150  * delayed ref for that extent as well.  This searches the delayed ref tree for
7151  * a given extent, and if there are no other delayed refs to be processed, it
7152  * removes it from the tree.
7153  */
7154 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7155 				      u64 bytenr)
7156 {
7157 	struct btrfs_delayed_ref_head *head;
7158 	struct btrfs_delayed_ref_root *delayed_refs;
7159 	int ret = 0;
7160 
7161 	delayed_refs = &trans->transaction->delayed_refs;
7162 	spin_lock(&delayed_refs->lock);
7163 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7164 	if (!head)
7165 		goto out_delayed_unlock;
7166 
7167 	spin_lock(&head->lock);
7168 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7169 		goto out;
7170 
7171 	if (cleanup_extent_op(head) != NULL)
7172 		goto out;
7173 
7174 	/*
7175 	 * waiting for the lock here would deadlock.  If someone else has it
7176 	 * locked they are already in the process of dropping it anyway
7177 	 */
7178 	if (!mutex_trylock(&head->mutex))
7179 		goto out;
7180 
7181 	btrfs_delete_ref_head(delayed_refs, head);
7182 	head->processing = 0;
7183 
7184 	spin_unlock(&head->lock);
7185 	spin_unlock(&delayed_refs->lock);
7186 
7187 	BUG_ON(head->extent_op);
7188 	if (head->must_insert_reserved)
7189 		ret = 1;
7190 
7191 	cleanup_ref_head_accounting(trans, head);
7192 	mutex_unlock(&head->mutex);
7193 	btrfs_put_delayed_ref_head(head);
7194 	return ret;
7195 out:
7196 	spin_unlock(&head->lock);
7197 
7198 out_delayed_unlock:
7199 	spin_unlock(&delayed_refs->lock);
7200 	return 0;
7201 }
7202 
7203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7204 			   struct btrfs_root *root,
7205 			   struct extent_buffer *buf,
7206 			   u64 parent, int last_ref)
7207 {
7208 	struct btrfs_fs_info *fs_info = root->fs_info;
7209 	int pin = 1;
7210 	int ret;
7211 
7212 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7213 		int old_ref_mod, new_ref_mod;
7214 
7215 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7216 				   root->root_key.objectid,
7217 				   btrfs_header_level(buf), 0,
7218 				   BTRFS_DROP_DELAYED_REF);
7219 		ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7220 						 buf->len, parent,
7221 						 root->root_key.objectid,
7222 						 btrfs_header_level(buf),
7223 						 BTRFS_DROP_DELAYED_REF, NULL,
7224 						 &old_ref_mod, &new_ref_mod);
7225 		BUG_ON(ret); /* -ENOMEM */
7226 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7227 	}
7228 
7229 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7230 		struct btrfs_block_group_cache *cache;
7231 
7232 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7233 			ret = check_ref_cleanup(trans, buf->start);
7234 			if (!ret)
7235 				goto out;
7236 		}
7237 
7238 		pin = 0;
7239 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7240 
7241 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7242 			pin_down_extent(fs_info, cache, buf->start,
7243 					buf->len, 1);
7244 			btrfs_put_block_group(cache);
7245 			goto out;
7246 		}
7247 
7248 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7249 
7250 		btrfs_add_free_space(cache, buf->start, buf->len);
7251 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7252 		btrfs_put_block_group(cache);
7253 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7254 	}
7255 out:
7256 	if (pin)
7257 		add_pinned_bytes(fs_info, buf->len, true,
7258 				 root->root_key.objectid);
7259 
7260 	if (last_ref) {
7261 		/*
7262 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7263 		 * matter anymore.
7264 		 */
7265 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7266 	}
7267 }
7268 
7269 /* Can return -ENOMEM */
7270 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7271 		      struct btrfs_root *root,
7272 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7273 		      u64 owner, u64 offset)
7274 {
7275 	struct btrfs_fs_info *fs_info = root->fs_info;
7276 	int old_ref_mod, new_ref_mod;
7277 	int ret;
7278 
7279 	if (btrfs_is_testing(fs_info))
7280 		return 0;
7281 
7282 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7283 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7284 				   root_objectid, owner, offset,
7285 				   BTRFS_DROP_DELAYED_REF);
7286 
7287 	/*
7288 	 * tree log blocks never actually go into the extent allocation
7289 	 * tree, just update pinning info and exit early.
7290 	 */
7291 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7292 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7293 		/* unlocks the pinned mutex */
7294 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7295 		old_ref_mod = new_ref_mod = 0;
7296 		ret = 0;
7297 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7298 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7299 						 num_bytes, parent,
7300 						 root_objectid, (int)owner,
7301 						 BTRFS_DROP_DELAYED_REF, NULL,
7302 						 &old_ref_mod, &new_ref_mod);
7303 	} else {
7304 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
7305 						 num_bytes, parent,
7306 						 root_objectid, owner, offset,
7307 						 0, BTRFS_DROP_DELAYED_REF,
7308 						 &old_ref_mod, &new_ref_mod);
7309 	}
7310 
7311 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7312 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7313 
7314 		add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7315 	}
7316 
7317 	return ret;
7318 }
7319 
7320 /*
7321  * when we wait for progress in the block group caching, its because
7322  * our allocation attempt failed at least once.  So, we must sleep
7323  * and let some progress happen before we try again.
7324  *
7325  * This function will sleep at least once waiting for new free space to
7326  * show up, and then it will check the block group free space numbers
7327  * for our min num_bytes.  Another option is to have it go ahead
7328  * and look in the rbtree for a free extent of a given size, but this
7329  * is a good start.
7330  *
7331  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7332  * any of the information in this block group.
7333  */
7334 static noinline void
7335 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7336 				u64 num_bytes)
7337 {
7338 	struct btrfs_caching_control *caching_ctl;
7339 
7340 	caching_ctl = get_caching_control(cache);
7341 	if (!caching_ctl)
7342 		return;
7343 
7344 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7345 		   (cache->free_space_ctl->free_space >= num_bytes));
7346 
7347 	put_caching_control(caching_ctl);
7348 }
7349 
7350 static noinline int
7351 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7352 {
7353 	struct btrfs_caching_control *caching_ctl;
7354 	int ret = 0;
7355 
7356 	caching_ctl = get_caching_control(cache);
7357 	if (!caching_ctl)
7358 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7359 
7360 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7361 	if (cache->cached == BTRFS_CACHE_ERROR)
7362 		ret = -EIO;
7363 	put_caching_control(caching_ctl);
7364 	return ret;
7365 }
7366 
7367 enum btrfs_loop_type {
7368 	LOOP_CACHING_NOWAIT = 0,
7369 	LOOP_CACHING_WAIT = 1,
7370 	LOOP_ALLOC_CHUNK = 2,
7371 	LOOP_NO_EMPTY_SIZE = 3,
7372 };
7373 
7374 static inline void
7375 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7376 		       int delalloc)
7377 {
7378 	if (delalloc)
7379 		down_read(&cache->data_rwsem);
7380 }
7381 
7382 static inline void
7383 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7384 		       int delalloc)
7385 {
7386 	btrfs_get_block_group(cache);
7387 	if (delalloc)
7388 		down_read(&cache->data_rwsem);
7389 }
7390 
7391 static struct btrfs_block_group_cache *
7392 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7393 		   struct btrfs_free_cluster *cluster,
7394 		   int delalloc)
7395 {
7396 	struct btrfs_block_group_cache *used_bg = NULL;
7397 
7398 	spin_lock(&cluster->refill_lock);
7399 	while (1) {
7400 		used_bg = cluster->block_group;
7401 		if (!used_bg)
7402 			return NULL;
7403 
7404 		if (used_bg == block_group)
7405 			return used_bg;
7406 
7407 		btrfs_get_block_group(used_bg);
7408 
7409 		if (!delalloc)
7410 			return used_bg;
7411 
7412 		if (down_read_trylock(&used_bg->data_rwsem))
7413 			return used_bg;
7414 
7415 		spin_unlock(&cluster->refill_lock);
7416 
7417 		/* We should only have one-level nested. */
7418 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7419 
7420 		spin_lock(&cluster->refill_lock);
7421 		if (used_bg == cluster->block_group)
7422 			return used_bg;
7423 
7424 		up_read(&used_bg->data_rwsem);
7425 		btrfs_put_block_group(used_bg);
7426 	}
7427 }
7428 
7429 static inline void
7430 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7431 			 int delalloc)
7432 {
7433 	if (delalloc)
7434 		up_read(&cache->data_rwsem);
7435 	btrfs_put_block_group(cache);
7436 }
7437 
7438 /*
7439  * Structure used internally for find_free_extent() function.  Wraps needed
7440  * parameters.
7441  */
7442 struct find_free_extent_ctl {
7443 	/* Basic allocation info */
7444 	u64 ram_bytes;
7445 	u64 num_bytes;
7446 	u64 empty_size;
7447 	u64 flags;
7448 	int delalloc;
7449 
7450 	/* Where to start the search inside the bg */
7451 	u64 search_start;
7452 
7453 	/* For clustered allocation */
7454 	u64 empty_cluster;
7455 
7456 	bool have_caching_bg;
7457 	bool orig_have_caching_bg;
7458 
7459 	/* RAID index, converted from flags */
7460 	int index;
7461 
7462 	/*
7463 	 * Current loop number, check find_free_extent_update_loop() for details
7464 	 */
7465 	int loop;
7466 
7467 	/*
7468 	 * Whether we're refilling a cluster, if true we need to re-search
7469 	 * current block group but don't try to refill the cluster again.
7470 	 */
7471 	bool retry_clustered;
7472 
7473 	/*
7474 	 * Whether we're updating free space cache, if true we need to re-search
7475 	 * current block group but don't try updating free space cache again.
7476 	 */
7477 	bool retry_unclustered;
7478 
7479 	/* If current block group is cached */
7480 	int cached;
7481 
7482 	/* Max contiguous hole found */
7483 	u64 max_extent_size;
7484 
7485 	/* Total free space from free space cache, not always contiguous */
7486 	u64 total_free_space;
7487 
7488 	/* Found result */
7489 	u64 found_offset;
7490 };
7491 
7492 
7493 /*
7494  * Helper function for find_free_extent().
7495  *
7496  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7497  * Return -EAGAIN to inform caller that we need to re-search this block group
7498  * Return >0 to inform caller that we find nothing
7499  * Return 0 means we have found a location and set ffe_ctl->found_offset.
7500  */
7501 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7502 		struct btrfs_free_cluster *last_ptr,
7503 		struct find_free_extent_ctl *ffe_ctl,
7504 		struct btrfs_block_group_cache **cluster_bg_ret)
7505 {
7506 	struct btrfs_fs_info *fs_info = bg->fs_info;
7507 	struct btrfs_block_group_cache *cluster_bg;
7508 	u64 aligned_cluster;
7509 	u64 offset;
7510 	int ret;
7511 
7512 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7513 	if (!cluster_bg)
7514 		goto refill_cluster;
7515 	if (cluster_bg != bg && (cluster_bg->ro ||
7516 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
7517 		goto release_cluster;
7518 
7519 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7520 			ffe_ctl->num_bytes, cluster_bg->key.objectid,
7521 			&ffe_ctl->max_extent_size);
7522 	if (offset) {
7523 		/* We have a block, we're done */
7524 		spin_unlock(&last_ptr->refill_lock);
7525 		trace_btrfs_reserve_extent_cluster(cluster_bg,
7526 				ffe_ctl->search_start, ffe_ctl->num_bytes);
7527 		*cluster_bg_ret = cluster_bg;
7528 		ffe_ctl->found_offset = offset;
7529 		return 0;
7530 	}
7531 	WARN_ON(last_ptr->block_group != cluster_bg);
7532 
7533 release_cluster:
7534 	/*
7535 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7536 	 * lets just skip it and let the allocator find whatever block it can
7537 	 * find. If we reach this point, we will have tried the cluster
7538 	 * allocator plenty of times and not have found anything, so we are
7539 	 * likely way too fragmented for the clustering stuff to find anything.
7540 	 *
7541 	 * However, if the cluster is taken from the current block group,
7542 	 * release the cluster first, so that we stand a better chance of
7543 	 * succeeding in the unclustered allocation.
7544 	 */
7545 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7546 		spin_unlock(&last_ptr->refill_lock);
7547 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7548 		return -ENOENT;
7549 	}
7550 
7551 	/* This cluster didn't work out, free it and start over */
7552 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7553 
7554 	if (cluster_bg != bg)
7555 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7556 
7557 refill_cluster:
7558 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7559 		spin_unlock(&last_ptr->refill_lock);
7560 		return -ENOENT;
7561 	}
7562 
7563 	aligned_cluster = max_t(u64,
7564 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7565 			bg->full_stripe_len);
7566 	ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7567 			ffe_ctl->search_start, ffe_ctl->num_bytes,
7568 			aligned_cluster);
7569 	if (ret == 0) {
7570 		/* Now pull our allocation out of this cluster */
7571 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
7572 				ffe_ctl->num_bytes, ffe_ctl->search_start,
7573 				&ffe_ctl->max_extent_size);
7574 		if (offset) {
7575 			/* We found one, proceed */
7576 			spin_unlock(&last_ptr->refill_lock);
7577 			trace_btrfs_reserve_extent_cluster(bg,
7578 					ffe_ctl->search_start,
7579 					ffe_ctl->num_bytes);
7580 			ffe_ctl->found_offset = offset;
7581 			return 0;
7582 		}
7583 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7584 		   !ffe_ctl->retry_clustered) {
7585 		spin_unlock(&last_ptr->refill_lock);
7586 
7587 		ffe_ctl->retry_clustered = true;
7588 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7589 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7590 		return -EAGAIN;
7591 	}
7592 	/*
7593 	 * At this point we either didn't find a cluster or we weren't able to
7594 	 * allocate a block from our cluster.  Free the cluster we've been
7595 	 * trying to use, and go to the next block group.
7596 	 */
7597 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7598 	spin_unlock(&last_ptr->refill_lock);
7599 	return 1;
7600 }
7601 
7602 /*
7603  * Return >0 to inform caller that we find nothing
7604  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7605  * Return -EAGAIN to inform caller that we need to re-search this block group
7606  */
7607 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7608 		struct btrfs_free_cluster *last_ptr,
7609 		struct find_free_extent_ctl *ffe_ctl)
7610 {
7611 	u64 offset;
7612 
7613 	/*
7614 	 * We are doing an unclustered allocation, set the fragmented flag so
7615 	 * we don't bother trying to setup a cluster again until we get more
7616 	 * space.
7617 	 */
7618 	if (unlikely(last_ptr)) {
7619 		spin_lock(&last_ptr->lock);
7620 		last_ptr->fragmented = 1;
7621 		spin_unlock(&last_ptr->lock);
7622 	}
7623 	if (ffe_ctl->cached) {
7624 		struct btrfs_free_space_ctl *free_space_ctl;
7625 
7626 		free_space_ctl = bg->free_space_ctl;
7627 		spin_lock(&free_space_ctl->tree_lock);
7628 		if (free_space_ctl->free_space <
7629 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7630 		    ffe_ctl->empty_size) {
7631 			ffe_ctl->total_free_space = max_t(u64,
7632 					ffe_ctl->total_free_space,
7633 					free_space_ctl->free_space);
7634 			spin_unlock(&free_space_ctl->tree_lock);
7635 			return 1;
7636 		}
7637 		spin_unlock(&free_space_ctl->tree_lock);
7638 	}
7639 
7640 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7641 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
7642 			&ffe_ctl->max_extent_size);
7643 
7644 	/*
7645 	 * If we didn't find a chunk, and we haven't failed on this block group
7646 	 * before, and this block group is in the middle of caching and we are
7647 	 * ok with waiting, then go ahead and wait for progress to be made, and
7648 	 * set @retry_unclustered to true.
7649 	 *
7650 	 * If @retry_unclustered is true then we've already waited on this
7651 	 * block group once and should move on to the next block group.
7652 	 */
7653 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7654 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7655 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7656 						ffe_ctl->empty_size);
7657 		ffe_ctl->retry_unclustered = true;
7658 		return -EAGAIN;
7659 	} else if (!offset) {
7660 		return 1;
7661 	}
7662 	ffe_ctl->found_offset = offset;
7663 	return 0;
7664 }
7665 
7666 /*
7667  * Return >0 means caller needs to re-search for free extent
7668  * Return 0 means we have the needed free extent.
7669  * Return <0 means we failed to locate any free extent.
7670  */
7671 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7672 					struct btrfs_free_cluster *last_ptr,
7673 					struct btrfs_key *ins,
7674 					struct find_free_extent_ctl *ffe_ctl,
7675 					int full_search, bool use_cluster)
7676 {
7677 	struct btrfs_root *root = fs_info->extent_root;
7678 	int ret;
7679 
7680 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7681 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7682 		ffe_ctl->orig_have_caching_bg = true;
7683 
7684 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7685 	    ffe_ctl->have_caching_bg)
7686 		return 1;
7687 
7688 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7689 		return 1;
7690 
7691 	if (ins->objectid) {
7692 		if (!use_cluster && last_ptr) {
7693 			spin_lock(&last_ptr->lock);
7694 			last_ptr->window_start = ins->objectid;
7695 			spin_unlock(&last_ptr->lock);
7696 		}
7697 		return 0;
7698 	}
7699 
7700 	/*
7701 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7702 	 *			caching kthreads as we move along
7703 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7704 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7705 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7706 	 *		       again
7707 	 */
7708 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7709 		ffe_ctl->index = 0;
7710 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7711 			/*
7712 			 * We want to skip the LOOP_CACHING_WAIT step if we
7713 			 * don't have any uncached bgs and we've already done a
7714 			 * full search through.
7715 			 */
7716 			if (ffe_ctl->orig_have_caching_bg || !full_search)
7717 				ffe_ctl->loop = LOOP_CACHING_WAIT;
7718 			else
7719 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7720 		} else {
7721 			ffe_ctl->loop++;
7722 		}
7723 
7724 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7725 			struct btrfs_trans_handle *trans;
7726 			int exist = 0;
7727 
7728 			trans = current->journal_info;
7729 			if (trans)
7730 				exist = 1;
7731 			else
7732 				trans = btrfs_join_transaction(root);
7733 
7734 			if (IS_ERR(trans)) {
7735 				ret = PTR_ERR(trans);
7736 				return ret;
7737 			}
7738 
7739 			ret = do_chunk_alloc(trans, ffe_ctl->flags,
7740 					     CHUNK_ALLOC_FORCE);
7741 
7742 			/*
7743 			 * If we can't allocate a new chunk we've already looped
7744 			 * through at least once, move on to the NO_EMPTY_SIZE
7745 			 * case.
7746 			 */
7747 			if (ret == -ENOSPC)
7748 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7749 
7750 			/* Do not bail out on ENOSPC since we can do more. */
7751 			if (ret < 0 && ret != -ENOSPC)
7752 				btrfs_abort_transaction(trans, ret);
7753 			else
7754 				ret = 0;
7755 			if (!exist)
7756 				btrfs_end_transaction(trans);
7757 			if (ret)
7758 				return ret;
7759 		}
7760 
7761 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7762 			/*
7763 			 * Don't loop again if we already have no empty_size and
7764 			 * no empty_cluster.
7765 			 */
7766 			if (ffe_ctl->empty_size == 0 &&
7767 			    ffe_ctl->empty_cluster == 0)
7768 				return -ENOSPC;
7769 			ffe_ctl->empty_size = 0;
7770 			ffe_ctl->empty_cluster = 0;
7771 		}
7772 		return 1;
7773 	}
7774 	return -ENOSPC;
7775 }
7776 
7777 /*
7778  * walks the btree of allocated extents and find a hole of a given size.
7779  * The key ins is changed to record the hole:
7780  * ins->objectid == start position
7781  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7782  * ins->offset == the size of the hole.
7783  * Any available blocks before search_start are skipped.
7784  *
7785  * If there is no suitable free space, we will record the max size of
7786  * the free space extent currently.
7787  *
7788  * The overall logic and call chain:
7789  *
7790  * find_free_extent()
7791  * |- Iterate through all block groups
7792  * |  |- Get a valid block group
7793  * |  |- Try to do clustered allocation in that block group
7794  * |  |- Try to do unclustered allocation in that block group
7795  * |  |- Check if the result is valid
7796  * |  |  |- If valid, then exit
7797  * |  |- Jump to next block group
7798  * |
7799  * |- Push harder to find free extents
7800  *    |- If not found, re-iterate all block groups
7801  */
7802 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7803 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7804 				u64 hint_byte, struct btrfs_key *ins,
7805 				u64 flags, int delalloc)
7806 {
7807 	int ret = 0;
7808 	struct btrfs_free_cluster *last_ptr = NULL;
7809 	struct btrfs_block_group_cache *block_group = NULL;
7810 	struct find_free_extent_ctl ffe_ctl = {0};
7811 	struct btrfs_space_info *space_info;
7812 	bool use_cluster = true;
7813 	bool full_search = false;
7814 
7815 	WARN_ON(num_bytes < fs_info->sectorsize);
7816 
7817 	ffe_ctl.ram_bytes = ram_bytes;
7818 	ffe_ctl.num_bytes = num_bytes;
7819 	ffe_ctl.empty_size = empty_size;
7820 	ffe_ctl.flags = flags;
7821 	ffe_ctl.search_start = 0;
7822 	ffe_ctl.retry_clustered = false;
7823 	ffe_ctl.retry_unclustered = false;
7824 	ffe_ctl.delalloc = delalloc;
7825 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7826 	ffe_ctl.have_caching_bg = false;
7827 	ffe_ctl.orig_have_caching_bg = false;
7828 	ffe_ctl.found_offset = 0;
7829 
7830 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7831 	ins->objectid = 0;
7832 	ins->offset = 0;
7833 
7834 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7835 
7836 	space_info = __find_space_info(fs_info, flags);
7837 	if (!space_info) {
7838 		btrfs_err(fs_info, "No space info for %llu", flags);
7839 		return -ENOSPC;
7840 	}
7841 
7842 	/*
7843 	 * If our free space is heavily fragmented we may not be able to make
7844 	 * big contiguous allocations, so instead of doing the expensive search
7845 	 * for free space, simply return ENOSPC with our max_extent_size so we
7846 	 * can go ahead and search for a more manageable chunk.
7847 	 *
7848 	 * If our max_extent_size is large enough for our allocation simply
7849 	 * disable clustering since we will likely not be able to find enough
7850 	 * space to create a cluster and induce latency trying.
7851 	 */
7852 	if (unlikely(space_info->max_extent_size)) {
7853 		spin_lock(&space_info->lock);
7854 		if (space_info->max_extent_size &&
7855 		    num_bytes > space_info->max_extent_size) {
7856 			ins->offset = space_info->max_extent_size;
7857 			spin_unlock(&space_info->lock);
7858 			return -ENOSPC;
7859 		} else if (space_info->max_extent_size) {
7860 			use_cluster = false;
7861 		}
7862 		spin_unlock(&space_info->lock);
7863 	}
7864 
7865 	last_ptr = fetch_cluster_info(fs_info, space_info,
7866 				      &ffe_ctl.empty_cluster);
7867 	if (last_ptr) {
7868 		spin_lock(&last_ptr->lock);
7869 		if (last_ptr->block_group)
7870 			hint_byte = last_ptr->window_start;
7871 		if (last_ptr->fragmented) {
7872 			/*
7873 			 * We still set window_start so we can keep track of the
7874 			 * last place we found an allocation to try and save
7875 			 * some time.
7876 			 */
7877 			hint_byte = last_ptr->window_start;
7878 			use_cluster = false;
7879 		}
7880 		spin_unlock(&last_ptr->lock);
7881 	}
7882 
7883 	ffe_ctl.search_start = max(ffe_ctl.search_start,
7884 				   first_logical_byte(fs_info, 0));
7885 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7886 	if (ffe_ctl.search_start == hint_byte) {
7887 		block_group = btrfs_lookup_block_group(fs_info,
7888 						       ffe_ctl.search_start);
7889 		/*
7890 		 * we don't want to use the block group if it doesn't match our
7891 		 * allocation bits, or if its not cached.
7892 		 *
7893 		 * However if we are re-searching with an ideal block group
7894 		 * picked out then we don't care that the block group is cached.
7895 		 */
7896 		if (block_group && block_group_bits(block_group, flags) &&
7897 		    block_group->cached != BTRFS_CACHE_NO) {
7898 			down_read(&space_info->groups_sem);
7899 			if (list_empty(&block_group->list) ||
7900 			    block_group->ro) {
7901 				/*
7902 				 * someone is removing this block group,
7903 				 * we can't jump into the have_block_group
7904 				 * target because our list pointers are not
7905 				 * valid
7906 				 */
7907 				btrfs_put_block_group(block_group);
7908 				up_read(&space_info->groups_sem);
7909 			} else {
7910 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7911 						block_group->flags);
7912 				btrfs_lock_block_group(block_group, delalloc);
7913 				goto have_block_group;
7914 			}
7915 		} else if (block_group) {
7916 			btrfs_put_block_group(block_group);
7917 		}
7918 	}
7919 search:
7920 	ffe_ctl.have_caching_bg = false;
7921 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7922 	    ffe_ctl.index == 0)
7923 		full_search = true;
7924 	down_read(&space_info->groups_sem);
7925 	list_for_each_entry(block_group,
7926 			    &space_info->block_groups[ffe_ctl.index], list) {
7927 		/* If the block group is read-only, we can skip it entirely. */
7928 		if (unlikely(block_group->ro))
7929 			continue;
7930 
7931 		btrfs_grab_block_group(block_group, delalloc);
7932 		ffe_ctl.search_start = block_group->key.objectid;
7933 
7934 		/*
7935 		 * this can happen if we end up cycling through all the
7936 		 * raid types, but we want to make sure we only allocate
7937 		 * for the proper type.
7938 		 */
7939 		if (!block_group_bits(block_group, flags)) {
7940 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
7941 				BTRFS_BLOCK_GROUP_RAID1 |
7942 				BTRFS_BLOCK_GROUP_RAID5 |
7943 				BTRFS_BLOCK_GROUP_RAID6 |
7944 				BTRFS_BLOCK_GROUP_RAID10;
7945 
7946 			/*
7947 			 * if they asked for extra copies and this block group
7948 			 * doesn't provide them, bail.  This does allow us to
7949 			 * fill raid0 from raid1.
7950 			 */
7951 			if ((flags & extra) && !(block_group->flags & extra))
7952 				goto loop;
7953 		}
7954 
7955 have_block_group:
7956 		ffe_ctl.cached = block_group_cache_done(block_group);
7957 		if (unlikely(!ffe_ctl.cached)) {
7958 			ffe_ctl.have_caching_bg = true;
7959 			ret = cache_block_group(block_group, 0);
7960 			BUG_ON(ret < 0);
7961 			ret = 0;
7962 		}
7963 
7964 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7965 			goto loop;
7966 
7967 		/*
7968 		 * Ok we want to try and use the cluster allocator, so
7969 		 * lets look there
7970 		 */
7971 		if (last_ptr && use_cluster) {
7972 			struct btrfs_block_group_cache *cluster_bg = NULL;
7973 
7974 			ret = find_free_extent_clustered(block_group, last_ptr,
7975 							 &ffe_ctl, &cluster_bg);
7976 
7977 			if (ret == 0) {
7978 				if (cluster_bg && cluster_bg != block_group) {
7979 					btrfs_release_block_group(block_group,
7980 								  delalloc);
7981 					block_group = cluster_bg;
7982 				}
7983 				goto checks;
7984 			} else if (ret == -EAGAIN) {
7985 				goto have_block_group;
7986 			} else if (ret > 0) {
7987 				goto loop;
7988 			}
7989 			/* ret == -ENOENT case falls through */
7990 		}
7991 
7992 		ret = find_free_extent_unclustered(block_group, last_ptr,
7993 						   &ffe_ctl);
7994 		if (ret == -EAGAIN)
7995 			goto have_block_group;
7996 		else if (ret > 0)
7997 			goto loop;
7998 		/* ret == 0 case falls through */
7999 checks:
8000 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8001 					     fs_info->stripesize);
8002 
8003 		/* move on to the next group */
8004 		if (ffe_ctl.search_start + num_bytes >
8005 		    block_group->key.objectid + block_group->key.offset) {
8006 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8007 					     num_bytes);
8008 			goto loop;
8009 		}
8010 
8011 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
8012 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8013 				ffe_ctl.search_start - ffe_ctl.found_offset);
8014 
8015 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8016 				num_bytes, delalloc);
8017 		if (ret == -EAGAIN) {
8018 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8019 					     num_bytes);
8020 			goto loop;
8021 		}
8022 		btrfs_inc_block_group_reservations(block_group);
8023 
8024 		/* we are all good, lets return */
8025 		ins->objectid = ffe_ctl.search_start;
8026 		ins->offset = num_bytes;
8027 
8028 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8029 					   num_bytes);
8030 		btrfs_release_block_group(block_group, delalloc);
8031 		break;
8032 loop:
8033 		ffe_ctl.retry_clustered = false;
8034 		ffe_ctl.retry_unclustered = false;
8035 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
8036 		       ffe_ctl.index);
8037 		btrfs_release_block_group(block_group, delalloc);
8038 		cond_resched();
8039 	}
8040 	up_read(&space_info->groups_sem);
8041 
8042 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8043 					   full_search, use_cluster);
8044 	if (ret > 0)
8045 		goto search;
8046 
8047 	if (ret == -ENOSPC) {
8048 		/*
8049 		 * Use ffe_ctl->total_free_space as fallback if we can't find
8050 		 * any contiguous hole.
8051 		 */
8052 		if (!ffe_ctl.max_extent_size)
8053 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
8054 		spin_lock(&space_info->lock);
8055 		space_info->max_extent_size = ffe_ctl.max_extent_size;
8056 		spin_unlock(&space_info->lock);
8057 		ins->offset = ffe_ctl.max_extent_size;
8058 	}
8059 	return ret;
8060 }
8061 
8062 static void dump_space_info(struct btrfs_fs_info *fs_info,
8063 			    struct btrfs_space_info *info, u64 bytes,
8064 			    int dump_block_groups)
8065 {
8066 	struct btrfs_block_group_cache *cache;
8067 	int index = 0;
8068 
8069 	spin_lock(&info->lock);
8070 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8071 		   info->flags,
8072 		   info->total_bytes - btrfs_space_info_used(info, true),
8073 		   info->full ? "" : "not ");
8074 	btrfs_info(fs_info,
8075 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8076 		info->total_bytes, info->bytes_used, info->bytes_pinned,
8077 		info->bytes_reserved, info->bytes_may_use,
8078 		info->bytes_readonly);
8079 	spin_unlock(&info->lock);
8080 
8081 	if (!dump_block_groups)
8082 		return;
8083 
8084 	down_read(&info->groups_sem);
8085 again:
8086 	list_for_each_entry(cache, &info->block_groups[index], list) {
8087 		spin_lock(&cache->lock);
8088 		btrfs_info(fs_info,
8089 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8090 			cache->key.objectid, cache->key.offset,
8091 			btrfs_block_group_used(&cache->item), cache->pinned,
8092 			cache->reserved, cache->ro ? "[readonly]" : "");
8093 		btrfs_dump_free_space(cache, bytes);
8094 		spin_unlock(&cache->lock);
8095 	}
8096 	if (++index < BTRFS_NR_RAID_TYPES)
8097 		goto again;
8098 	up_read(&info->groups_sem);
8099 }
8100 
8101 /*
8102  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8103  *			  hole that is at least as big as @num_bytes.
8104  *
8105  * @root           -	The root that will contain this extent
8106  *
8107  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
8108  *			is used for accounting purposes. This value differs
8109  *			from @num_bytes only in the case of compressed extents.
8110  *
8111  * @num_bytes      -	Number of bytes to allocate on-disk.
8112  *
8113  * @min_alloc_size -	Indicates the minimum amount of space that the
8114  *			allocator should try to satisfy. In some cases
8115  *			@num_bytes may be larger than what is required and if
8116  *			the filesystem is fragmented then allocation fails.
8117  *			However, the presence of @min_alloc_size gives a
8118  *			chance to try and satisfy the smaller allocation.
8119  *
8120  * @empty_size     -	A hint that you plan on doing more COW. This is the
8121  *			size in bytes the allocator should try to find free
8122  *			next to the block it returns.  This is just a hint and
8123  *			may be ignored by the allocator.
8124  *
8125  * @hint_byte      -	Hint to the allocator to start searching above the byte
8126  *			address passed. It might be ignored.
8127  *
8128  * @ins            -	This key is modified to record the found hole. It will
8129  *			have the following values:
8130  *			ins->objectid == start position
8131  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8132  *			ins->offset == the size of the hole.
8133  *
8134  * @is_data        -	Boolean flag indicating whether an extent is
8135  *			allocated for data (true) or metadata (false)
8136  *
8137  * @delalloc       -	Boolean flag indicating whether this allocation is for
8138  *			delalloc or not. If 'true' data_rwsem of block groups
8139  *			is going to be acquired.
8140  *
8141  *
8142  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8143  * case -ENOSPC is returned then @ins->offset will contain the size of the
8144  * largest available hole the allocator managed to find.
8145  */
8146 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8147 			 u64 num_bytes, u64 min_alloc_size,
8148 			 u64 empty_size, u64 hint_byte,
8149 			 struct btrfs_key *ins, int is_data, int delalloc)
8150 {
8151 	struct btrfs_fs_info *fs_info = root->fs_info;
8152 	bool final_tried = num_bytes == min_alloc_size;
8153 	u64 flags;
8154 	int ret;
8155 
8156 	flags = get_alloc_profile_by_root(root, is_data);
8157 again:
8158 	WARN_ON(num_bytes < fs_info->sectorsize);
8159 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8160 			       hint_byte, ins, flags, delalloc);
8161 	if (!ret && !is_data) {
8162 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8163 	} else if (ret == -ENOSPC) {
8164 		if (!final_tried && ins->offset) {
8165 			num_bytes = min(num_bytes >> 1, ins->offset);
8166 			num_bytes = round_down(num_bytes,
8167 					       fs_info->sectorsize);
8168 			num_bytes = max(num_bytes, min_alloc_size);
8169 			ram_bytes = num_bytes;
8170 			if (num_bytes == min_alloc_size)
8171 				final_tried = true;
8172 			goto again;
8173 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8174 			struct btrfs_space_info *sinfo;
8175 
8176 			sinfo = __find_space_info(fs_info, flags);
8177 			btrfs_err(fs_info,
8178 				  "allocation failed flags %llu, wanted %llu",
8179 				  flags, num_bytes);
8180 			if (sinfo)
8181 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8182 		}
8183 	}
8184 
8185 	return ret;
8186 }
8187 
8188 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8189 					u64 start, u64 len,
8190 					int pin, int delalloc)
8191 {
8192 	struct btrfs_block_group_cache *cache;
8193 	int ret = 0;
8194 
8195 	cache = btrfs_lookup_block_group(fs_info, start);
8196 	if (!cache) {
8197 		btrfs_err(fs_info, "Unable to find block group for %llu",
8198 			  start);
8199 		return -ENOSPC;
8200 	}
8201 
8202 	if (pin)
8203 		pin_down_extent(fs_info, cache, start, len, 1);
8204 	else {
8205 		if (btrfs_test_opt(fs_info, DISCARD))
8206 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8207 		btrfs_add_free_space(cache, start, len);
8208 		btrfs_free_reserved_bytes(cache, len, delalloc);
8209 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8210 	}
8211 
8212 	btrfs_put_block_group(cache);
8213 	return ret;
8214 }
8215 
8216 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8217 			       u64 start, u64 len, int delalloc)
8218 {
8219 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8220 }
8221 
8222 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8223 				       u64 start, u64 len)
8224 {
8225 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8226 }
8227 
8228 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8229 				      u64 parent, u64 root_objectid,
8230 				      u64 flags, u64 owner, u64 offset,
8231 				      struct btrfs_key *ins, int ref_mod)
8232 {
8233 	struct btrfs_fs_info *fs_info = trans->fs_info;
8234 	int ret;
8235 	struct btrfs_extent_item *extent_item;
8236 	struct btrfs_extent_inline_ref *iref;
8237 	struct btrfs_path *path;
8238 	struct extent_buffer *leaf;
8239 	int type;
8240 	u32 size;
8241 
8242 	if (parent > 0)
8243 		type = BTRFS_SHARED_DATA_REF_KEY;
8244 	else
8245 		type = BTRFS_EXTENT_DATA_REF_KEY;
8246 
8247 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8248 
8249 	path = btrfs_alloc_path();
8250 	if (!path)
8251 		return -ENOMEM;
8252 
8253 	path->leave_spinning = 1;
8254 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8255 				      ins, size);
8256 	if (ret) {
8257 		btrfs_free_path(path);
8258 		return ret;
8259 	}
8260 
8261 	leaf = path->nodes[0];
8262 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8263 				     struct btrfs_extent_item);
8264 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8265 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8266 	btrfs_set_extent_flags(leaf, extent_item,
8267 			       flags | BTRFS_EXTENT_FLAG_DATA);
8268 
8269 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8270 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8271 	if (parent > 0) {
8272 		struct btrfs_shared_data_ref *ref;
8273 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8274 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8275 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8276 	} else {
8277 		struct btrfs_extent_data_ref *ref;
8278 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8279 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8280 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8281 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8282 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8283 	}
8284 
8285 	btrfs_mark_buffer_dirty(path->nodes[0]);
8286 	btrfs_free_path(path);
8287 
8288 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8289 	if (ret)
8290 		return ret;
8291 
8292 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8293 	if (ret) { /* -ENOENT, logic error */
8294 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8295 			ins->objectid, ins->offset);
8296 		BUG();
8297 	}
8298 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8299 	return ret;
8300 }
8301 
8302 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8303 				     struct btrfs_delayed_ref_node *node,
8304 				     struct btrfs_delayed_extent_op *extent_op)
8305 {
8306 	struct btrfs_fs_info *fs_info = trans->fs_info;
8307 	int ret;
8308 	struct btrfs_extent_item *extent_item;
8309 	struct btrfs_key extent_key;
8310 	struct btrfs_tree_block_info *block_info;
8311 	struct btrfs_extent_inline_ref *iref;
8312 	struct btrfs_path *path;
8313 	struct extent_buffer *leaf;
8314 	struct btrfs_delayed_tree_ref *ref;
8315 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8316 	u64 num_bytes;
8317 	u64 flags = extent_op->flags_to_set;
8318 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8319 
8320 	ref = btrfs_delayed_node_to_tree_ref(node);
8321 
8322 	extent_key.objectid = node->bytenr;
8323 	if (skinny_metadata) {
8324 		extent_key.offset = ref->level;
8325 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
8326 		num_bytes = fs_info->nodesize;
8327 	} else {
8328 		extent_key.offset = node->num_bytes;
8329 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8330 		size += sizeof(*block_info);
8331 		num_bytes = node->num_bytes;
8332 	}
8333 
8334 	path = btrfs_alloc_path();
8335 	if (!path)
8336 		return -ENOMEM;
8337 
8338 	path->leave_spinning = 1;
8339 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8340 				      &extent_key, size);
8341 	if (ret) {
8342 		btrfs_free_path(path);
8343 		return ret;
8344 	}
8345 
8346 	leaf = path->nodes[0];
8347 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8348 				     struct btrfs_extent_item);
8349 	btrfs_set_extent_refs(leaf, extent_item, 1);
8350 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8351 	btrfs_set_extent_flags(leaf, extent_item,
8352 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8353 
8354 	if (skinny_metadata) {
8355 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8356 	} else {
8357 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8358 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8359 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
8360 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8361 	}
8362 
8363 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8364 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8365 		btrfs_set_extent_inline_ref_type(leaf, iref,
8366 						 BTRFS_SHARED_BLOCK_REF_KEY);
8367 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8368 	} else {
8369 		btrfs_set_extent_inline_ref_type(leaf, iref,
8370 						 BTRFS_TREE_BLOCK_REF_KEY);
8371 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8372 	}
8373 
8374 	btrfs_mark_buffer_dirty(leaf);
8375 	btrfs_free_path(path);
8376 
8377 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
8378 					  num_bytes);
8379 	if (ret)
8380 		return ret;
8381 
8382 	ret = update_block_group(trans, fs_info, extent_key.objectid,
8383 				 fs_info->nodesize, 1);
8384 	if (ret) { /* -ENOENT, logic error */
8385 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8386 			extent_key.objectid, extent_key.offset);
8387 		BUG();
8388 	}
8389 
8390 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8391 					  fs_info->nodesize);
8392 	return ret;
8393 }
8394 
8395 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8396 				     struct btrfs_root *root, u64 owner,
8397 				     u64 offset, u64 ram_bytes,
8398 				     struct btrfs_key *ins)
8399 {
8400 	int ret;
8401 
8402 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8403 
8404 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8405 			   root->root_key.objectid, owner, offset,
8406 			   BTRFS_ADD_DELAYED_EXTENT);
8407 
8408 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8409 					 ins->offset, 0,
8410 					 root->root_key.objectid, owner,
8411 					 offset, ram_bytes,
8412 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8413 	return ret;
8414 }
8415 
8416 /*
8417  * this is used by the tree logging recovery code.  It records that
8418  * an extent has been allocated and makes sure to clear the free
8419  * space cache bits as well
8420  */
8421 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8422 				   u64 root_objectid, u64 owner, u64 offset,
8423 				   struct btrfs_key *ins)
8424 {
8425 	struct btrfs_fs_info *fs_info = trans->fs_info;
8426 	int ret;
8427 	struct btrfs_block_group_cache *block_group;
8428 	struct btrfs_space_info *space_info;
8429 
8430 	/*
8431 	 * Mixed block groups will exclude before processing the log so we only
8432 	 * need to do the exclude dance if this fs isn't mixed.
8433 	 */
8434 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8435 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8436 					      ins->offset);
8437 		if (ret)
8438 			return ret;
8439 	}
8440 
8441 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8442 	if (!block_group)
8443 		return -EINVAL;
8444 
8445 	space_info = block_group->space_info;
8446 	spin_lock(&space_info->lock);
8447 	spin_lock(&block_group->lock);
8448 	space_info->bytes_reserved += ins->offset;
8449 	block_group->reserved += ins->offset;
8450 	spin_unlock(&block_group->lock);
8451 	spin_unlock(&space_info->lock);
8452 
8453 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8454 					 offset, ins, 1);
8455 	btrfs_put_block_group(block_group);
8456 	return ret;
8457 }
8458 
8459 static struct extent_buffer *
8460 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8461 		      u64 bytenr, int level, u64 owner)
8462 {
8463 	struct btrfs_fs_info *fs_info = root->fs_info;
8464 	struct extent_buffer *buf;
8465 
8466 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8467 	if (IS_ERR(buf))
8468 		return buf;
8469 
8470 	/*
8471 	 * Extra safety check in case the extent tree is corrupted and extent
8472 	 * allocator chooses to use a tree block which is already used and
8473 	 * locked.
8474 	 */
8475 	if (buf->lock_owner == current->pid) {
8476 		btrfs_err_rl(fs_info,
8477 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8478 			buf->start, btrfs_header_owner(buf), current->pid);
8479 		free_extent_buffer(buf);
8480 		return ERR_PTR(-EUCLEAN);
8481 	}
8482 
8483 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8484 	btrfs_tree_lock(buf);
8485 	clean_tree_block(fs_info, buf);
8486 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8487 
8488 	btrfs_set_lock_blocking(buf);
8489 	set_extent_buffer_uptodate(buf);
8490 
8491 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8492 	btrfs_set_header_level(buf, level);
8493 	btrfs_set_header_bytenr(buf, buf->start);
8494 	btrfs_set_header_generation(buf, trans->transid);
8495 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8496 	btrfs_set_header_owner(buf, owner);
8497 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8498 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8499 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8500 		buf->log_index = root->log_transid % 2;
8501 		/*
8502 		 * we allow two log transactions at a time, use different
8503 		 * EXTENT bit to differentiate dirty pages.
8504 		 */
8505 		if (buf->log_index == 0)
8506 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8507 					buf->start + buf->len - 1, GFP_NOFS);
8508 		else
8509 			set_extent_new(&root->dirty_log_pages, buf->start,
8510 					buf->start + buf->len - 1);
8511 	} else {
8512 		buf->log_index = -1;
8513 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8514 			 buf->start + buf->len - 1, GFP_NOFS);
8515 	}
8516 	trans->dirty = true;
8517 	/* this returns a buffer locked for blocking */
8518 	return buf;
8519 }
8520 
8521 static struct btrfs_block_rsv *
8522 use_block_rsv(struct btrfs_trans_handle *trans,
8523 	      struct btrfs_root *root, u32 blocksize)
8524 {
8525 	struct btrfs_fs_info *fs_info = root->fs_info;
8526 	struct btrfs_block_rsv *block_rsv;
8527 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8528 	int ret;
8529 	bool global_updated = false;
8530 
8531 	block_rsv = get_block_rsv(trans, root);
8532 
8533 	if (unlikely(block_rsv->size == 0))
8534 		goto try_reserve;
8535 again:
8536 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8537 	if (!ret)
8538 		return block_rsv;
8539 
8540 	if (block_rsv->failfast)
8541 		return ERR_PTR(ret);
8542 
8543 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8544 		global_updated = true;
8545 		update_global_block_rsv(fs_info);
8546 		goto again;
8547 	}
8548 
8549 	/*
8550 	 * The global reserve still exists to save us from ourselves, so don't
8551 	 * warn_on if we are short on our delayed refs reserve.
8552 	 */
8553 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8554 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8555 		static DEFINE_RATELIMIT_STATE(_rs,
8556 				DEFAULT_RATELIMIT_INTERVAL * 10,
8557 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8558 		if (__ratelimit(&_rs))
8559 			WARN(1, KERN_DEBUG
8560 				"BTRFS: block rsv returned %d\n", ret);
8561 	}
8562 try_reserve:
8563 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8564 				     BTRFS_RESERVE_NO_FLUSH);
8565 	if (!ret)
8566 		return block_rsv;
8567 	/*
8568 	 * If we couldn't reserve metadata bytes try and use some from
8569 	 * the global reserve if its space type is the same as the global
8570 	 * reservation.
8571 	 */
8572 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8573 	    block_rsv->space_info == global_rsv->space_info) {
8574 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8575 		if (!ret)
8576 			return global_rsv;
8577 	}
8578 	return ERR_PTR(ret);
8579 }
8580 
8581 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8582 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8583 {
8584 	block_rsv_add_bytes(block_rsv, blocksize, false);
8585 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8586 }
8587 
8588 /*
8589  * finds a free extent and does all the dirty work required for allocation
8590  * returns the tree buffer or an ERR_PTR on error.
8591  */
8592 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8593 					     struct btrfs_root *root,
8594 					     u64 parent, u64 root_objectid,
8595 					     const struct btrfs_disk_key *key,
8596 					     int level, u64 hint,
8597 					     u64 empty_size)
8598 {
8599 	struct btrfs_fs_info *fs_info = root->fs_info;
8600 	struct btrfs_key ins;
8601 	struct btrfs_block_rsv *block_rsv;
8602 	struct extent_buffer *buf;
8603 	struct btrfs_delayed_extent_op *extent_op;
8604 	u64 flags = 0;
8605 	int ret;
8606 	u32 blocksize = fs_info->nodesize;
8607 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8608 
8609 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8610 	if (btrfs_is_testing(fs_info)) {
8611 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8612 					    level, root_objectid);
8613 		if (!IS_ERR(buf))
8614 			root->alloc_bytenr += blocksize;
8615 		return buf;
8616 	}
8617 #endif
8618 
8619 	block_rsv = use_block_rsv(trans, root, blocksize);
8620 	if (IS_ERR(block_rsv))
8621 		return ERR_CAST(block_rsv);
8622 
8623 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8624 				   empty_size, hint, &ins, 0, 0);
8625 	if (ret)
8626 		goto out_unuse;
8627 
8628 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8629 				    root_objectid);
8630 	if (IS_ERR(buf)) {
8631 		ret = PTR_ERR(buf);
8632 		goto out_free_reserved;
8633 	}
8634 
8635 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8636 		if (parent == 0)
8637 			parent = ins.objectid;
8638 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8639 	} else
8640 		BUG_ON(parent > 0);
8641 
8642 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8643 		extent_op = btrfs_alloc_delayed_extent_op();
8644 		if (!extent_op) {
8645 			ret = -ENOMEM;
8646 			goto out_free_buf;
8647 		}
8648 		if (key)
8649 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8650 		else
8651 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8652 		extent_op->flags_to_set = flags;
8653 		extent_op->update_key = skinny_metadata ? false : true;
8654 		extent_op->update_flags = true;
8655 		extent_op->is_data = false;
8656 		extent_op->level = level;
8657 
8658 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8659 				   root_objectid, level, 0,
8660 				   BTRFS_ADD_DELAYED_EXTENT);
8661 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8662 						 ins.offset, parent,
8663 						 root_objectid, level,
8664 						 BTRFS_ADD_DELAYED_EXTENT,
8665 						 extent_op, NULL, NULL);
8666 		if (ret)
8667 			goto out_free_delayed;
8668 	}
8669 	return buf;
8670 
8671 out_free_delayed:
8672 	btrfs_free_delayed_extent_op(extent_op);
8673 out_free_buf:
8674 	free_extent_buffer(buf);
8675 out_free_reserved:
8676 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8677 out_unuse:
8678 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8679 	return ERR_PTR(ret);
8680 }
8681 
8682 struct walk_control {
8683 	u64 refs[BTRFS_MAX_LEVEL];
8684 	u64 flags[BTRFS_MAX_LEVEL];
8685 	struct btrfs_key update_progress;
8686 	int stage;
8687 	int level;
8688 	int shared_level;
8689 	int update_ref;
8690 	int keep_locks;
8691 	int reada_slot;
8692 	int reada_count;
8693 };
8694 
8695 #define DROP_REFERENCE	1
8696 #define UPDATE_BACKREF	2
8697 
8698 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8699 				     struct btrfs_root *root,
8700 				     struct walk_control *wc,
8701 				     struct btrfs_path *path)
8702 {
8703 	struct btrfs_fs_info *fs_info = root->fs_info;
8704 	u64 bytenr;
8705 	u64 generation;
8706 	u64 refs;
8707 	u64 flags;
8708 	u32 nritems;
8709 	struct btrfs_key key;
8710 	struct extent_buffer *eb;
8711 	int ret;
8712 	int slot;
8713 	int nread = 0;
8714 
8715 	if (path->slots[wc->level] < wc->reada_slot) {
8716 		wc->reada_count = wc->reada_count * 2 / 3;
8717 		wc->reada_count = max(wc->reada_count, 2);
8718 	} else {
8719 		wc->reada_count = wc->reada_count * 3 / 2;
8720 		wc->reada_count = min_t(int, wc->reada_count,
8721 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8722 	}
8723 
8724 	eb = path->nodes[wc->level];
8725 	nritems = btrfs_header_nritems(eb);
8726 
8727 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8728 		if (nread >= wc->reada_count)
8729 			break;
8730 
8731 		cond_resched();
8732 		bytenr = btrfs_node_blockptr(eb, slot);
8733 		generation = btrfs_node_ptr_generation(eb, slot);
8734 
8735 		if (slot == path->slots[wc->level])
8736 			goto reada;
8737 
8738 		if (wc->stage == UPDATE_BACKREF &&
8739 		    generation <= root->root_key.offset)
8740 			continue;
8741 
8742 		/* We don't lock the tree block, it's OK to be racy here */
8743 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8744 					       wc->level - 1, 1, &refs,
8745 					       &flags);
8746 		/* We don't care about errors in readahead. */
8747 		if (ret < 0)
8748 			continue;
8749 		BUG_ON(refs == 0);
8750 
8751 		if (wc->stage == DROP_REFERENCE) {
8752 			if (refs == 1)
8753 				goto reada;
8754 
8755 			if (wc->level == 1 &&
8756 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8757 				continue;
8758 			if (!wc->update_ref ||
8759 			    generation <= root->root_key.offset)
8760 				continue;
8761 			btrfs_node_key_to_cpu(eb, &key, slot);
8762 			ret = btrfs_comp_cpu_keys(&key,
8763 						  &wc->update_progress);
8764 			if (ret < 0)
8765 				continue;
8766 		} else {
8767 			if (wc->level == 1 &&
8768 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8769 				continue;
8770 		}
8771 reada:
8772 		readahead_tree_block(fs_info, bytenr);
8773 		nread++;
8774 	}
8775 	wc->reada_slot = slot;
8776 }
8777 
8778 /*
8779  * helper to process tree block while walking down the tree.
8780  *
8781  * when wc->stage == UPDATE_BACKREF, this function updates
8782  * back refs for pointers in the block.
8783  *
8784  * NOTE: return value 1 means we should stop walking down.
8785  */
8786 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8787 				   struct btrfs_root *root,
8788 				   struct btrfs_path *path,
8789 				   struct walk_control *wc, int lookup_info)
8790 {
8791 	struct btrfs_fs_info *fs_info = root->fs_info;
8792 	int level = wc->level;
8793 	struct extent_buffer *eb = path->nodes[level];
8794 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8795 	int ret;
8796 
8797 	if (wc->stage == UPDATE_BACKREF &&
8798 	    btrfs_header_owner(eb) != root->root_key.objectid)
8799 		return 1;
8800 
8801 	/*
8802 	 * when reference count of tree block is 1, it won't increase
8803 	 * again. once full backref flag is set, we never clear it.
8804 	 */
8805 	if (lookup_info &&
8806 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8807 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8808 		BUG_ON(!path->locks[level]);
8809 		ret = btrfs_lookup_extent_info(trans, fs_info,
8810 					       eb->start, level, 1,
8811 					       &wc->refs[level],
8812 					       &wc->flags[level]);
8813 		BUG_ON(ret == -ENOMEM);
8814 		if (ret)
8815 			return ret;
8816 		BUG_ON(wc->refs[level] == 0);
8817 	}
8818 
8819 	if (wc->stage == DROP_REFERENCE) {
8820 		if (wc->refs[level] > 1)
8821 			return 1;
8822 
8823 		if (path->locks[level] && !wc->keep_locks) {
8824 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8825 			path->locks[level] = 0;
8826 		}
8827 		return 0;
8828 	}
8829 
8830 	/* wc->stage == UPDATE_BACKREF */
8831 	if (!(wc->flags[level] & flag)) {
8832 		BUG_ON(!path->locks[level]);
8833 		ret = btrfs_inc_ref(trans, root, eb, 1);
8834 		BUG_ON(ret); /* -ENOMEM */
8835 		ret = btrfs_dec_ref(trans, root, eb, 0);
8836 		BUG_ON(ret); /* -ENOMEM */
8837 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8838 						  eb->len, flag,
8839 						  btrfs_header_level(eb), 0);
8840 		BUG_ON(ret); /* -ENOMEM */
8841 		wc->flags[level] |= flag;
8842 	}
8843 
8844 	/*
8845 	 * the block is shared by multiple trees, so it's not good to
8846 	 * keep the tree lock
8847 	 */
8848 	if (path->locks[level] && level > 0) {
8849 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8850 		path->locks[level] = 0;
8851 	}
8852 	return 0;
8853 }
8854 
8855 /*
8856  * helper to process tree block pointer.
8857  *
8858  * when wc->stage == DROP_REFERENCE, this function checks
8859  * reference count of the block pointed to. if the block
8860  * is shared and we need update back refs for the subtree
8861  * rooted at the block, this function changes wc->stage to
8862  * UPDATE_BACKREF. if the block is shared and there is no
8863  * need to update back, this function drops the reference
8864  * to the block.
8865  *
8866  * NOTE: return value 1 means we should stop walking down.
8867  */
8868 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8869 				 struct btrfs_root *root,
8870 				 struct btrfs_path *path,
8871 				 struct walk_control *wc, int *lookup_info)
8872 {
8873 	struct btrfs_fs_info *fs_info = root->fs_info;
8874 	u64 bytenr;
8875 	u64 generation;
8876 	u64 parent;
8877 	struct btrfs_key key;
8878 	struct btrfs_key first_key;
8879 	struct extent_buffer *next;
8880 	int level = wc->level;
8881 	int reada = 0;
8882 	int ret = 0;
8883 	bool need_account = false;
8884 
8885 	generation = btrfs_node_ptr_generation(path->nodes[level],
8886 					       path->slots[level]);
8887 	/*
8888 	 * if the lower level block was created before the snapshot
8889 	 * was created, we know there is no need to update back refs
8890 	 * for the subtree
8891 	 */
8892 	if (wc->stage == UPDATE_BACKREF &&
8893 	    generation <= root->root_key.offset) {
8894 		*lookup_info = 1;
8895 		return 1;
8896 	}
8897 
8898 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8899 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8900 			      path->slots[level]);
8901 
8902 	next = find_extent_buffer(fs_info, bytenr);
8903 	if (!next) {
8904 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8905 		if (IS_ERR(next))
8906 			return PTR_ERR(next);
8907 
8908 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8909 					       level - 1);
8910 		reada = 1;
8911 	}
8912 	btrfs_tree_lock(next);
8913 	btrfs_set_lock_blocking(next);
8914 
8915 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8916 				       &wc->refs[level - 1],
8917 				       &wc->flags[level - 1]);
8918 	if (ret < 0)
8919 		goto out_unlock;
8920 
8921 	if (unlikely(wc->refs[level - 1] == 0)) {
8922 		btrfs_err(fs_info, "Missing references.");
8923 		ret = -EIO;
8924 		goto out_unlock;
8925 	}
8926 	*lookup_info = 0;
8927 
8928 	if (wc->stage == DROP_REFERENCE) {
8929 		if (wc->refs[level - 1] > 1) {
8930 			need_account = true;
8931 			if (level == 1 &&
8932 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8933 				goto skip;
8934 
8935 			if (!wc->update_ref ||
8936 			    generation <= root->root_key.offset)
8937 				goto skip;
8938 
8939 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8940 					      path->slots[level]);
8941 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8942 			if (ret < 0)
8943 				goto skip;
8944 
8945 			wc->stage = UPDATE_BACKREF;
8946 			wc->shared_level = level - 1;
8947 		}
8948 	} else {
8949 		if (level == 1 &&
8950 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8951 			goto skip;
8952 	}
8953 
8954 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8955 		btrfs_tree_unlock(next);
8956 		free_extent_buffer(next);
8957 		next = NULL;
8958 		*lookup_info = 1;
8959 	}
8960 
8961 	if (!next) {
8962 		if (reada && level == 1)
8963 			reada_walk_down(trans, root, wc, path);
8964 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8965 				       &first_key);
8966 		if (IS_ERR(next)) {
8967 			return PTR_ERR(next);
8968 		} else if (!extent_buffer_uptodate(next)) {
8969 			free_extent_buffer(next);
8970 			return -EIO;
8971 		}
8972 		btrfs_tree_lock(next);
8973 		btrfs_set_lock_blocking(next);
8974 	}
8975 
8976 	level--;
8977 	ASSERT(level == btrfs_header_level(next));
8978 	if (level != btrfs_header_level(next)) {
8979 		btrfs_err(root->fs_info, "mismatched level");
8980 		ret = -EIO;
8981 		goto out_unlock;
8982 	}
8983 	path->nodes[level] = next;
8984 	path->slots[level] = 0;
8985 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8986 	wc->level = level;
8987 	if (wc->level == 1)
8988 		wc->reada_slot = 0;
8989 	return 0;
8990 skip:
8991 	wc->refs[level - 1] = 0;
8992 	wc->flags[level - 1] = 0;
8993 	if (wc->stage == DROP_REFERENCE) {
8994 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8995 			parent = path->nodes[level]->start;
8996 		} else {
8997 			ASSERT(root->root_key.objectid ==
8998 			       btrfs_header_owner(path->nodes[level]));
8999 			if (root->root_key.objectid !=
9000 			    btrfs_header_owner(path->nodes[level])) {
9001 				btrfs_err(root->fs_info,
9002 						"mismatched block owner");
9003 				ret = -EIO;
9004 				goto out_unlock;
9005 			}
9006 			parent = 0;
9007 		}
9008 
9009 		/*
9010 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
9011 		 * already accounted them at merge time (replace_path),
9012 		 * thus we could skip expensive subtree trace here.
9013 		 */
9014 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9015 		    need_account) {
9016 			ret = btrfs_qgroup_trace_subtree(trans, next,
9017 							 generation, level - 1);
9018 			if (ret) {
9019 				btrfs_err_rl(fs_info,
9020 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9021 					     ret);
9022 			}
9023 		}
9024 		ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
9025 					parent, root->root_key.objectid,
9026 					level - 1, 0);
9027 		if (ret)
9028 			goto out_unlock;
9029 	}
9030 
9031 	*lookup_info = 1;
9032 	ret = 1;
9033 
9034 out_unlock:
9035 	btrfs_tree_unlock(next);
9036 	free_extent_buffer(next);
9037 
9038 	return ret;
9039 }
9040 
9041 /*
9042  * helper to process tree block while walking up the tree.
9043  *
9044  * when wc->stage == DROP_REFERENCE, this function drops
9045  * reference count on the block.
9046  *
9047  * when wc->stage == UPDATE_BACKREF, this function changes
9048  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9049  * to UPDATE_BACKREF previously while processing the block.
9050  *
9051  * NOTE: return value 1 means we should stop walking up.
9052  */
9053 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9054 				 struct btrfs_root *root,
9055 				 struct btrfs_path *path,
9056 				 struct walk_control *wc)
9057 {
9058 	struct btrfs_fs_info *fs_info = root->fs_info;
9059 	int ret;
9060 	int level = wc->level;
9061 	struct extent_buffer *eb = path->nodes[level];
9062 	u64 parent = 0;
9063 
9064 	if (wc->stage == UPDATE_BACKREF) {
9065 		BUG_ON(wc->shared_level < level);
9066 		if (level < wc->shared_level)
9067 			goto out;
9068 
9069 		ret = find_next_key(path, level + 1, &wc->update_progress);
9070 		if (ret > 0)
9071 			wc->update_ref = 0;
9072 
9073 		wc->stage = DROP_REFERENCE;
9074 		wc->shared_level = -1;
9075 		path->slots[level] = 0;
9076 
9077 		/*
9078 		 * check reference count again if the block isn't locked.
9079 		 * we should start walking down the tree again if reference
9080 		 * count is one.
9081 		 */
9082 		if (!path->locks[level]) {
9083 			BUG_ON(level == 0);
9084 			btrfs_tree_lock(eb);
9085 			btrfs_set_lock_blocking(eb);
9086 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9087 
9088 			ret = btrfs_lookup_extent_info(trans, fs_info,
9089 						       eb->start, level, 1,
9090 						       &wc->refs[level],
9091 						       &wc->flags[level]);
9092 			if (ret < 0) {
9093 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9094 				path->locks[level] = 0;
9095 				return ret;
9096 			}
9097 			BUG_ON(wc->refs[level] == 0);
9098 			if (wc->refs[level] == 1) {
9099 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9100 				path->locks[level] = 0;
9101 				return 1;
9102 			}
9103 		}
9104 	}
9105 
9106 	/* wc->stage == DROP_REFERENCE */
9107 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9108 
9109 	if (wc->refs[level] == 1) {
9110 		if (level == 0) {
9111 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9112 				ret = btrfs_dec_ref(trans, root, eb, 1);
9113 			else
9114 				ret = btrfs_dec_ref(trans, root, eb, 0);
9115 			BUG_ON(ret); /* -ENOMEM */
9116 			ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9117 			if (ret) {
9118 				btrfs_err_rl(fs_info,
9119 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
9120 					     ret);
9121 			}
9122 		}
9123 		/* make block locked assertion in clean_tree_block happy */
9124 		if (!path->locks[level] &&
9125 		    btrfs_header_generation(eb) == trans->transid) {
9126 			btrfs_tree_lock(eb);
9127 			btrfs_set_lock_blocking(eb);
9128 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9129 		}
9130 		clean_tree_block(fs_info, eb);
9131 	}
9132 
9133 	if (eb == root->node) {
9134 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9135 			parent = eb->start;
9136 		else if (root->root_key.objectid != btrfs_header_owner(eb))
9137 			goto owner_mismatch;
9138 	} else {
9139 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9140 			parent = path->nodes[level + 1]->start;
9141 		else if (root->root_key.objectid !=
9142 			 btrfs_header_owner(path->nodes[level + 1]))
9143 			goto owner_mismatch;
9144 	}
9145 
9146 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9147 out:
9148 	wc->refs[level] = 0;
9149 	wc->flags[level] = 0;
9150 	return 0;
9151 
9152 owner_mismatch:
9153 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9154 		     btrfs_header_owner(eb), root->root_key.objectid);
9155 	return -EUCLEAN;
9156 }
9157 
9158 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9159 				   struct btrfs_root *root,
9160 				   struct btrfs_path *path,
9161 				   struct walk_control *wc)
9162 {
9163 	int level = wc->level;
9164 	int lookup_info = 1;
9165 	int ret;
9166 
9167 	while (level >= 0) {
9168 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9169 		if (ret > 0)
9170 			break;
9171 
9172 		if (level == 0)
9173 			break;
9174 
9175 		if (path->slots[level] >=
9176 		    btrfs_header_nritems(path->nodes[level]))
9177 			break;
9178 
9179 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9180 		if (ret > 0) {
9181 			path->slots[level]++;
9182 			continue;
9183 		} else if (ret < 0)
9184 			return ret;
9185 		level = wc->level;
9186 	}
9187 	return 0;
9188 }
9189 
9190 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9191 				 struct btrfs_root *root,
9192 				 struct btrfs_path *path,
9193 				 struct walk_control *wc, int max_level)
9194 {
9195 	int level = wc->level;
9196 	int ret;
9197 
9198 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9199 	while (level < max_level && path->nodes[level]) {
9200 		wc->level = level;
9201 		if (path->slots[level] + 1 <
9202 		    btrfs_header_nritems(path->nodes[level])) {
9203 			path->slots[level]++;
9204 			return 0;
9205 		} else {
9206 			ret = walk_up_proc(trans, root, path, wc);
9207 			if (ret > 0)
9208 				return 0;
9209 			if (ret < 0)
9210 				return ret;
9211 
9212 			if (path->locks[level]) {
9213 				btrfs_tree_unlock_rw(path->nodes[level],
9214 						     path->locks[level]);
9215 				path->locks[level] = 0;
9216 			}
9217 			free_extent_buffer(path->nodes[level]);
9218 			path->nodes[level] = NULL;
9219 			level++;
9220 		}
9221 	}
9222 	return 1;
9223 }
9224 
9225 /*
9226  * drop a subvolume tree.
9227  *
9228  * this function traverses the tree freeing any blocks that only
9229  * referenced by the tree.
9230  *
9231  * when a shared tree block is found. this function decreases its
9232  * reference count by one. if update_ref is true, this function
9233  * also make sure backrefs for the shared block and all lower level
9234  * blocks are properly updated.
9235  *
9236  * If called with for_reloc == 0, may exit early with -EAGAIN
9237  */
9238 int btrfs_drop_snapshot(struct btrfs_root *root,
9239 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9240 			 int for_reloc)
9241 {
9242 	struct btrfs_fs_info *fs_info = root->fs_info;
9243 	struct btrfs_path *path;
9244 	struct btrfs_trans_handle *trans;
9245 	struct btrfs_root *tree_root = fs_info->tree_root;
9246 	struct btrfs_root_item *root_item = &root->root_item;
9247 	struct walk_control *wc;
9248 	struct btrfs_key key;
9249 	int err = 0;
9250 	int ret;
9251 	int level;
9252 	bool root_dropped = false;
9253 
9254 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9255 
9256 	path = btrfs_alloc_path();
9257 	if (!path) {
9258 		err = -ENOMEM;
9259 		goto out;
9260 	}
9261 
9262 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9263 	if (!wc) {
9264 		btrfs_free_path(path);
9265 		err = -ENOMEM;
9266 		goto out;
9267 	}
9268 
9269 	trans = btrfs_start_transaction(tree_root, 0);
9270 	if (IS_ERR(trans)) {
9271 		err = PTR_ERR(trans);
9272 		goto out_free;
9273 	}
9274 
9275 	err = btrfs_run_delayed_items(trans);
9276 	if (err)
9277 		goto out_end_trans;
9278 
9279 	if (block_rsv)
9280 		trans->block_rsv = block_rsv;
9281 
9282 	/*
9283 	 * This will help us catch people modifying the fs tree while we're
9284 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
9285 	 * dropped as we unlock the root node and parent nodes as we walk down
9286 	 * the tree, assuming nothing will change.  If something does change
9287 	 * then we'll have stale information and drop references to blocks we've
9288 	 * already dropped.
9289 	 */
9290 	set_bit(BTRFS_ROOT_DELETING, &root->state);
9291 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9292 		level = btrfs_header_level(root->node);
9293 		path->nodes[level] = btrfs_lock_root_node(root);
9294 		btrfs_set_lock_blocking(path->nodes[level]);
9295 		path->slots[level] = 0;
9296 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9297 		memset(&wc->update_progress, 0,
9298 		       sizeof(wc->update_progress));
9299 	} else {
9300 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9301 		memcpy(&wc->update_progress, &key,
9302 		       sizeof(wc->update_progress));
9303 
9304 		level = root_item->drop_level;
9305 		BUG_ON(level == 0);
9306 		path->lowest_level = level;
9307 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9308 		path->lowest_level = 0;
9309 		if (ret < 0) {
9310 			err = ret;
9311 			goto out_end_trans;
9312 		}
9313 		WARN_ON(ret > 0);
9314 
9315 		/*
9316 		 * unlock our path, this is safe because only this
9317 		 * function is allowed to delete this snapshot
9318 		 */
9319 		btrfs_unlock_up_safe(path, 0);
9320 
9321 		level = btrfs_header_level(root->node);
9322 		while (1) {
9323 			btrfs_tree_lock(path->nodes[level]);
9324 			btrfs_set_lock_blocking(path->nodes[level]);
9325 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9326 
9327 			ret = btrfs_lookup_extent_info(trans, fs_info,
9328 						path->nodes[level]->start,
9329 						level, 1, &wc->refs[level],
9330 						&wc->flags[level]);
9331 			if (ret < 0) {
9332 				err = ret;
9333 				goto out_end_trans;
9334 			}
9335 			BUG_ON(wc->refs[level] == 0);
9336 
9337 			if (level == root_item->drop_level)
9338 				break;
9339 
9340 			btrfs_tree_unlock(path->nodes[level]);
9341 			path->locks[level] = 0;
9342 			WARN_ON(wc->refs[level] != 1);
9343 			level--;
9344 		}
9345 	}
9346 
9347 	wc->level = level;
9348 	wc->shared_level = -1;
9349 	wc->stage = DROP_REFERENCE;
9350 	wc->update_ref = update_ref;
9351 	wc->keep_locks = 0;
9352 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9353 
9354 	while (1) {
9355 
9356 		ret = walk_down_tree(trans, root, path, wc);
9357 		if (ret < 0) {
9358 			err = ret;
9359 			break;
9360 		}
9361 
9362 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9363 		if (ret < 0) {
9364 			err = ret;
9365 			break;
9366 		}
9367 
9368 		if (ret > 0) {
9369 			BUG_ON(wc->stage != DROP_REFERENCE);
9370 			break;
9371 		}
9372 
9373 		if (wc->stage == DROP_REFERENCE) {
9374 			level = wc->level;
9375 			btrfs_node_key(path->nodes[level],
9376 				       &root_item->drop_progress,
9377 				       path->slots[level]);
9378 			root_item->drop_level = level;
9379 		}
9380 
9381 		BUG_ON(wc->level == 0);
9382 		if (btrfs_should_end_transaction(trans) ||
9383 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9384 			ret = btrfs_update_root(trans, tree_root,
9385 						&root->root_key,
9386 						root_item);
9387 			if (ret) {
9388 				btrfs_abort_transaction(trans, ret);
9389 				err = ret;
9390 				goto out_end_trans;
9391 			}
9392 
9393 			btrfs_end_transaction_throttle(trans);
9394 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9395 				btrfs_debug(fs_info,
9396 					    "drop snapshot early exit");
9397 				err = -EAGAIN;
9398 				goto out_free;
9399 			}
9400 
9401 			trans = btrfs_start_transaction(tree_root, 0);
9402 			if (IS_ERR(trans)) {
9403 				err = PTR_ERR(trans);
9404 				goto out_free;
9405 			}
9406 			if (block_rsv)
9407 				trans->block_rsv = block_rsv;
9408 		}
9409 	}
9410 	btrfs_release_path(path);
9411 	if (err)
9412 		goto out_end_trans;
9413 
9414 	ret = btrfs_del_root(trans, &root->root_key);
9415 	if (ret) {
9416 		btrfs_abort_transaction(trans, ret);
9417 		err = ret;
9418 		goto out_end_trans;
9419 	}
9420 
9421 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9422 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9423 				      NULL, NULL);
9424 		if (ret < 0) {
9425 			btrfs_abort_transaction(trans, ret);
9426 			err = ret;
9427 			goto out_end_trans;
9428 		} else if (ret > 0) {
9429 			/* if we fail to delete the orphan item this time
9430 			 * around, it'll get picked up the next time.
9431 			 *
9432 			 * The most common failure here is just -ENOENT.
9433 			 */
9434 			btrfs_del_orphan_item(trans, tree_root,
9435 					      root->root_key.objectid);
9436 		}
9437 	}
9438 
9439 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9440 		btrfs_add_dropped_root(trans, root);
9441 	} else {
9442 		free_extent_buffer(root->node);
9443 		free_extent_buffer(root->commit_root);
9444 		btrfs_put_fs_root(root);
9445 	}
9446 	root_dropped = true;
9447 out_end_trans:
9448 	btrfs_end_transaction_throttle(trans);
9449 out_free:
9450 	kfree(wc);
9451 	btrfs_free_path(path);
9452 out:
9453 	/*
9454 	 * So if we need to stop dropping the snapshot for whatever reason we
9455 	 * need to make sure to add it back to the dead root list so that we
9456 	 * keep trying to do the work later.  This also cleans up roots if we
9457 	 * don't have it in the radix (like when we recover after a power fail
9458 	 * or unmount) so we don't leak memory.
9459 	 */
9460 	if (!for_reloc && !root_dropped)
9461 		btrfs_add_dead_root(root);
9462 	if (err && err != -EAGAIN)
9463 		btrfs_handle_fs_error(fs_info, err, NULL);
9464 	return err;
9465 }
9466 
9467 /*
9468  * drop subtree rooted at tree block 'node'.
9469  *
9470  * NOTE: this function will unlock and release tree block 'node'
9471  * only used by relocation code
9472  */
9473 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9474 			struct btrfs_root *root,
9475 			struct extent_buffer *node,
9476 			struct extent_buffer *parent)
9477 {
9478 	struct btrfs_fs_info *fs_info = root->fs_info;
9479 	struct btrfs_path *path;
9480 	struct walk_control *wc;
9481 	int level;
9482 	int parent_level;
9483 	int ret = 0;
9484 	int wret;
9485 
9486 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9487 
9488 	path = btrfs_alloc_path();
9489 	if (!path)
9490 		return -ENOMEM;
9491 
9492 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9493 	if (!wc) {
9494 		btrfs_free_path(path);
9495 		return -ENOMEM;
9496 	}
9497 
9498 	btrfs_assert_tree_locked(parent);
9499 	parent_level = btrfs_header_level(parent);
9500 	extent_buffer_get(parent);
9501 	path->nodes[parent_level] = parent;
9502 	path->slots[parent_level] = btrfs_header_nritems(parent);
9503 
9504 	btrfs_assert_tree_locked(node);
9505 	level = btrfs_header_level(node);
9506 	path->nodes[level] = node;
9507 	path->slots[level] = 0;
9508 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9509 
9510 	wc->refs[parent_level] = 1;
9511 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9512 	wc->level = level;
9513 	wc->shared_level = -1;
9514 	wc->stage = DROP_REFERENCE;
9515 	wc->update_ref = 0;
9516 	wc->keep_locks = 1;
9517 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9518 
9519 	while (1) {
9520 		wret = walk_down_tree(trans, root, path, wc);
9521 		if (wret < 0) {
9522 			ret = wret;
9523 			break;
9524 		}
9525 
9526 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9527 		if (wret < 0)
9528 			ret = wret;
9529 		if (wret != 0)
9530 			break;
9531 	}
9532 
9533 	kfree(wc);
9534 	btrfs_free_path(path);
9535 	return ret;
9536 }
9537 
9538 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9539 {
9540 	u64 num_devices;
9541 	u64 stripped;
9542 
9543 	/*
9544 	 * if restripe for this chunk_type is on pick target profile and
9545 	 * return, otherwise do the usual balance
9546 	 */
9547 	stripped = get_restripe_target(fs_info, flags);
9548 	if (stripped)
9549 		return extended_to_chunk(stripped);
9550 
9551 	num_devices = fs_info->fs_devices->rw_devices;
9552 
9553 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9554 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9555 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9556 
9557 	if (num_devices == 1) {
9558 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9559 		stripped = flags & ~stripped;
9560 
9561 		/* turn raid0 into single device chunks */
9562 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9563 			return stripped;
9564 
9565 		/* turn mirroring into duplication */
9566 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9567 			     BTRFS_BLOCK_GROUP_RAID10))
9568 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9569 	} else {
9570 		/* they already had raid on here, just return */
9571 		if (flags & stripped)
9572 			return flags;
9573 
9574 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9575 		stripped = flags & ~stripped;
9576 
9577 		/* switch duplicated blocks with raid1 */
9578 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9579 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9580 
9581 		/* this is drive concat, leave it alone */
9582 	}
9583 
9584 	return flags;
9585 }
9586 
9587 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9588 {
9589 	struct btrfs_space_info *sinfo = cache->space_info;
9590 	u64 num_bytes;
9591 	u64 min_allocable_bytes;
9592 	int ret = -ENOSPC;
9593 
9594 	/*
9595 	 * We need some metadata space and system metadata space for
9596 	 * allocating chunks in some corner cases until we force to set
9597 	 * it to be readonly.
9598 	 */
9599 	if ((sinfo->flags &
9600 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9601 	    !force)
9602 		min_allocable_bytes = SZ_1M;
9603 	else
9604 		min_allocable_bytes = 0;
9605 
9606 	spin_lock(&sinfo->lock);
9607 	spin_lock(&cache->lock);
9608 
9609 	if (cache->ro) {
9610 		cache->ro++;
9611 		ret = 0;
9612 		goto out;
9613 	}
9614 
9615 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9616 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9617 
9618 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9619 	    min_allocable_bytes <= sinfo->total_bytes) {
9620 		sinfo->bytes_readonly += num_bytes;
9621 		cache->ro++;
9622 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9623 		ret = 0;
9624 	}
9625 out:
9626 	spin_unlock(&cache->lock);
9627 	spin_unlock(&sinfo->lock);
9628 	return ret;
9629 }
9630 
9631 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9632 
9633 {
9634 	struct btrfs_fs_info *fs_info = cache->fs_info;
9635 	struct btrfs_trans_handle *trans;
9636 	u64 alloc_flags;
9637 	int ret;
9638 
9639 again:
9640 	trans = btrfs_join_transaction(fs_info->extent_root);
9641 	if (IS_ERR(trans))
9642 		return PTR_ERR(trans);
9643 
9644 	/*
9645 	 * we're not allowed to set block groups readonly after the dirty
9646 	 * block groups cache has started writing.  If it already started,
9647 	 * back off and let this transaction commit
9648 	 */
9649 	mutex_lock(&fs_info->ro_block_group_mutex);
9650 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9651 		u64 transid = trans->transid;
9652 
9653 		mutex_unlock(&fs_info->ro_block_group_mutex);
9654 		btrfs_end_transaction(trans);
9655 
9656 		ret = btrfs_wait_for_commit(fs_info, transid);
9657 		if (ret)
9658 			return ret;
9659 		goto again;
9660 	}
9661 
9662 	/*
9663 	 * if we are changing raid levels, try to allocate a corresponding
9664 	 * block group with the new raid level.
9665 	 */
9666 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9667 	if (alloc_flags != cache->flags) {
9668 		ret = do_chunk_alloc(trans, alloc_flags,
9669 				     CHUNK_ALLOC_FORCE);
9670 		/*
9671 		 * ENOSPC is allowed here, we may have enough space
9672 		 * already allocated at the new raid level to
9673 		 * carry on
9674 		 */
9675 		if (ret == -ENOSPC)
9676 			ret = 0;
9677 		if (ret < 0)
9678 			goto out;
9679 	}
9680 
9681 	ret = inc_block_group_ro(cache, 0);
9682 	if (!ret)
9683 		goto out;
9684 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9685 	ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9686 	if (ret < 0)
9687 		goto out;
9688 	ret = inc_block_group_ro(cache, 0);
9689 out:
9690 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9691 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9692 		mutex_lock(&fs_info->chunk_mutex);
9693 		check_system_chunk(trans, alloc_flags);
9694 		mutex_unlock(&fs_info->chunk_mutex);
9695 	}
9696 	mutex_unlock(&fs_info->ro_block_group_mutex);
9697 
9698 	btrfs_end_transaction(trans);
9699 	return ret;
9700 }
9701 
9702 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9703 {
9704 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9705 
9706 	return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9707 }
9708 
9709 /*
9710  * helper to account the unused space of all the readonly block group in the
9711  * space_info. takes mirrors into account.
9712  */
9713 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9714 {
9715 	struct btrfs_block_group_cache *block_group;
9716 	u64 free_bytes = 0;
9717 	int factor;
9718 
9719 	/* It's df, we don't care if it's racy */
9720 	if (list_empty(&sinfo->ro_bgs))
9721 		return 0;
9722 
9723 	spin_lock(&sinfo->lock);
9724 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9725 		spin_lock(&block_group->lock);
9726 
9727 		if (!block_group->ro) {
9728 			spin_unlock(&block_group->lock);
9729 			continue;
9730 		}
9731 
9732 		factor = btrfs_bg_type_to_factor(block_group->flags);
9733 		free_bytes += (block_group->key.offset -
9734 			       btrfs_block_group_used(&block_group->item)) *
9735 			       factor;
9736 
9737 		spin_unlock(&block_group->lock);
9738 	}
9739 	spin_unlock(&sinfo->lock);
9740 
9741 	return free_bytes;
9742 }
9743 
9744 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9745 {
9746 	struct btrfs_space_info *sinfo = cache->space_info;
9747 	u64 num_bytes;
9748 
9749 	BUG_ON(!cache->ro);
9750 
9751 	spin_lock(&sinfo->lock);
9752 	spin_lock(&cache->lock);
9753 	if (!--cache->ro) {
9754 		num_bytes = cache->key.offset - cache->reserved -
9755 			    cache->pinned - cache->bytes_super -
9756 			    btrfs_block_group_used(&cache->item);
9757 		sinfo->bytes_readonly -= num_bytes;
9758 		list_del_init(&cache->ro_list);
9759 	}
9760 	spin_unlock(&cache->lock);
9761 	spin_unlock(&sinfo->lock);
9762 }
9763 
9764 /*
9765  * Checks to see if it's even possible to relocate this block group.
9766  *
9767  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9768  * ok to go ahead and try.
9769  */
9770 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9771 {
9772 	struct btrfs_root *root = fs_info->extent_root;
9773 	struct btrfs_block_group_cache *block_group;
9774 	struct btrfs_space_info *space_info;
9775 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9776 	struct btrfs_device *device;
9777 	struct btrfs_trans_handle *trans;
9778 	u64 min_free;
9779 	u64 dev_min = 1;
9780 	u64 dev_nr = 0;
9781 	u64 target;
9782 	int debug;
9783 	int index;
9784 	int full = 0;
9785 	int ret = 0;
9786 
9787 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9788 
9789 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9790 
9791 	/* odd, couldn't find the block group, leave it alone */
9792 	if (!block_group) {
9793 		if (debug)
9794 			btrfs_warn(fs_info,
9795 				   "can't find block group for bytenr %llu",
9796 				   bytenr);
9797 		return -1;
9798 	}
9799 
9800 	min_free = btrfs_block_group_used(&block_group->item);
9801 
9802 	/* no bytes used, we're good */
9803 	if (!min_free)
9804 		goto out;
9805 
9806 	space_info = block_group->space_info;
9807 	spin_lock(&space_info->lock);
9808 
9809 	full = space_info->full;
9810 
9811 	/*
9812 	 * if this is the last block group we have in this space, we can't
9813 	 * relocate it unless we're able to allocate a new chunk below.
9814 	 *
9815 	 * Otherwise, we need to make sure we have room in the space to handle
9816 	 * all of the extents from this block group.  If we can, we're good
9817 	 */
9818 	if ((space_info->total_bytes != block_group->key.offset) &&
9819 	    (btrfs_space_info_used(space_info, false) + min_free <
9820 	     space_info->total_bytes)) {
9821 		spin_unlock(&space_info->lock);
9822 		goto out;
9823 	}
9824 	spin_unlock(&space_info->lock);
9825 
9826 	/*
9827 	 * ok we don't have enough space, but maybe we have free space on our
9828 	 * devices to allocate new chunks for relocation, so loop through our
9829 	 * alloc devices and guess if we have enough space.  if this block
9830 	 * group is going to be restriped, run checks against the target
9831 	 * profile instead of the current one.
9832 	 */
9833 	ret = -1;
9834 
9835 	/*
9836 	 * index:
9837 	 *      0: raid10
9838 	 *      1: raid1
9839 	 *      2: dup
9840 	 *      3: raid0
9841 	 *      4: single
9842 	 */
9843 	target = get_restripe_target(fs_info, block_group->flags);
9844 	if (target) {
9845 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9846 	} else {
9847 		/*
9848 		 * this is just a balance, so if we were marked as full
9849 		 * we know there is no space for a new chunk
9850 		 */
9851 		if (full) {
9852 			if (debug)
9853 				btrfs_warn(fs_info,
9854 					   "no space to alloc new chunk for block group %llu",
9855 					   block_group->key.objectid);
9856 			goto out;
9857 		}
9858 
9859 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9860 	}
9861 
9862 	if (index == BTRFS_RAID_RAID10) {
9863 		dev_min = 4;
9864 		/* Divide by 2 */
9865 		min_free >>= 1;
9866 	} else if (index == BTRFS_RAID_RAID1) {
9867 		dev_min = 2;
9868 	} else if (index == BTRFS_RAID_DUP) {
9869 		/* Multiply by 2 */
9870 		min_free <<= 1;
9871 	} else if (index == BTRFS_RAID_RAID0) {
9872 		dev_min = fs_devices->rw_devices;
9873 		min_free = div64_u64(min_free, dev_min);
9874 	}
9875 
9876 	/* We need to do this so that we can look at pending chunks */
9877 	trans = btrfs_join_transaction(root);
9878 	if (IS_ERR(trans)) {
9879 		ret = PTR_ERR(trans);
9880 		goto out;
9881 	}
9882 
9883 	mutex_lock(&fs_info->chunk_mutex);
9884 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9885 		u64 dev_offset;
9886 
9887 		/*
9888 		 * check to make sure we can actually find a chunk with enough
9889 		 * space to fit our block group in.
9890 		 */
9891 		if (device->total_bytes > device->bytes_used + min_free &&
9892 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9893 			ret = find_free_dev_extent(trans, device, min_free,
9894 						   &dev_offset, NULL);
9895 			if (!ret)
9896 				dev_nr++;
9897 
9898 			if (dev_nr >= dev_min)
9899 				break;
9900 
9901 			ret = -1;
9902 		}
9903 	}
9904 	if (debug && ret == -1)
9905 		btrfs_warn(fs_info,
9906 			   "no space to allocate a new chunk for block group %llu",
9907 			   block_group->key.objectid);
9908 	mutex_unlock(&fs_info->chunk_mutex);
9909 	btrfs_end_transaction(trans);
9910 out:
9911 	btrfs_put_block_group(block_group);
9912 	return ret;
9913 }
9914 
9915 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9916 				  struct btrfs_path *path,
9917 				  struct btrfs_key *key)
9918 {
9919 	struct btrfs_root *root = fs_info->extent_root;
9920 	int ret = 0;
9921 	struct btrfs_key found_key;
9922 	struct extent_buffer *leaf;
9923 	struct btrfs_block_group_item bg;
9924 	u64 flags;
9925 	int slot;
9926 
9927 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9928 	if (ret < 0)
9929 		goto out;
9930 
9931 	while (1) {
9932 		slot = path->slots[0];
9933 		leaf = path->nodes[0];
9934 		if (slot >= btrfs_header_nritems(leaf)) {
9935 			ret = btrfs_next_leaf(root, path);
9936 			if (ret == 0)
9937 				continue;
9938 			if (ret < 0)
9939 				goto out;
9940 			break;
9941 		}
9942 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9943 
9944 		if (found_key.objectid >= key->objectid &&
9945 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9946 			struct extent_map_tree *em_tree;
9947 			struct extent_map *em;
9948 
9949 			em_tree = &root->fs_info->mapping_tree.map_tree;
9950 			read_lock(&em_tree->lock);
9951 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9952 						   found_key.offset);
9953 			read_unlock(&em_tree->lock);
9954 			if (!em) {
9955 				btrfs_err(fs_info,
9956 			"logical %llu len %llu found bg but no related chunk",
9957 					  found_key.objectid, found_key.offset);
9958 				ret = -ENOENT;
9959 			} else if (em->start != found_key.objectid ||
9960 				   em->len != found_key.offset) {
9961 				btrfs_err(fs_info,
9962 		"block group %llu len %llu mismatch with chunk %llu len %llu",
9963 					  found_key.objectid, found_key.offset,
9964 					  em->start, em->len);
9965 				ret = -EUCLEAN;
9966 			} else {
9967 				read_extent_buffer(leaf, &bg,
9968 					btrfs_item_ptr_offset(leaf, slot),
9969 					sizeof(bg));
9970 				flags = btrfs_block_group_flags(&bg) &
9971 					BTRFS_BLOCK_GROUP_TYPE_MASK;
9972 
9973 				if (flags != (em->map_lookup->type &
9974 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9975 					btrfs_err(fs_info,
9976 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9977 						found_key.objectid,
9978 						found_key.offset, flags,
9979 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
9980 						 em->map_lookup->type));
9981 					ret = -EUCLEAN;
9982 				} else {
9983 					ret = 0;
9984 				}
9985 			}
9986 			free_extent_map(em);
9987 			goto out;
9988 		}
9989 		path->slots[0]++;
9990 	}
9991 out:
9992 	return ret;
9993 }
9994 
9995 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9996 {
9997 	struct btrfs_block_group_cache *block_group;
9998 	u64 last = 0;
9999 
10000 	while (1) {
10001 		struct inode *inode;
10002 
10003 		block_group = btrfs_lookup_first_block_group(info, last);
10004 		while (block_group) {
10005 			wait_block_group_cache_done(block_group);
10006 			spin_lock(&block_group->lock);
10007 			if (block_group->iref)
10008 				break;
10009 			spin_unlock(&block_group->lock);
10010 			block_group = next_block_group(info, block_group);
10011 		}
10012 		if (!block_group) {
10013 			if (last == 0)
10014 				break;
10015 			last = 0;
10016 			continue;
10017 		}
10018 
10019 		inode = block_group->inode;
10020 		block_group->iref = 0;
10021 		block_group->inode = NULL;
10022 		spin_unlock(&block_group->lock);
10023 		ASSERT(block_group->io_ctl.inode == NULL);
10024 		iput(inode);
10025 		last = block_group->key.objectid + block_group->key.offset;
10026 		btrfs_put_block_group(block_group);
10027 	}
10028 }
10029 
10030 /*
10031  * Must be called only after stopping all workers, since we could have block
10032  * group caching kthreads running, and therefore they could race with us if we
10033  * freed the block groups before stopping them.
10034  */
10035 int btrfs_free_block_groups(struct btrfs_fs_info *info)
10036 {
10037 	struct btrfs_block_group_cache *block_group;
10038 	struct btrfs_space_info *space_info;
10039 	struct btrfs_caching_control *caching_ctl;
10040 	struct rb_node *n;
10041 
10042 	down_write(&info->commit_root_sem);
10043 	while (!list_empty(&info->caching_block_groups)) {
10044 		caching_ctl = list_entry(info->caching_block_groups.next,
10045 					 struct btrfs_caching_control, list);
10046 		list_del(&caching_ctl->list);
10047 		put_caching_control(caching_ctl);
10048 	}
10049 	up_write(&info->commit_root_sem);
10050 
10051 	spin_lock(&info->unused_bgs_lock);
10052 	while (!list_empty(&info->unused_bgs)) {
10053 		block_group = list_first_entry(&info->unused_bgs,
10054 					       struct btrfs_block_group_cache,
10055 					       bg_list);
10056 		list_del_init(&block_group->bg_list);
10057 		btrfs_put_block_group(block_group);
10058 	}
10059 	spin_unlock(&info->unused_bgs_lock);
10060 
10061 	spin_lock(&info->block_group_cache_lock);
10062 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10063 		block_group = rb_entry(n, struct btrfs_block_group_cache,
10064 				       cache_node);
10065 		rb_erase(&block_group->cache_node,
10066 			 &info->block_group_cache_tree);
10067 		RB_CLEAR_NODE(&block_group->cache_node);
10068 		spin_unlock(&info->block_group_cache_lock);
10069 
10070 		down_write(&block_group->space_info->groups_sem);
10071 		list_del(&block_group->list);
10072 		up_write(&block_group->space_info->groups_sem);
10073 
10074 		/*
10075 		 * We haven't cached this block group, which means we could
10076 		 * possibly have excluded extents on this block group.
10077 		 */
10078 		if (block_group->cached == BTRFS_CACHE_NO ||
10079 		    block_group->cached == BTRFS_CACHE_ERROR)
10080 			free_excluded_extents(block_group);
10081 
10082 		btrfs_remove_free_space_cache(block_group);
10083 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10084 		ASSERT(list_empty(&block_group->dirty_list));
10085 		ASSERT(list_empty(&block_group->io_list));
10086 		ASSERT(list_empty(&block_group->bg_list));
10087 		ASSERT(atomic_read(&block_group->count) == 1);
10088 		btrfs_put_block_group(block_group);
10089 
10090 		spin_lock(&info->block_group_cache_lock);
10091 	}
10092 	spin_unlock(&info->block_group_cache_lock);
10093 
10094 	/* now that all the block groups are freed, go through and
10095 	 * free all the space_info structs.  This is only called during
10096 	 * the final stages of unmount, and so we know nobody is
10097 	 * using them.  We call synchronize_rcu() once before we start,
10098 	 * just to be on the safe side.
10099 	 */
10100 	synchronize_rcu();
10101 
10102 	release_global_block_rsv(info);
10103 
10104 	while (!list_empty(&info->space_info)) {
10105 		int i;
10106 
10107 		space_info = list_entry(info->space_info.next,
10108 					struct btrfs_space_info,
10109 					list);
10110 
10111 		/*
10112 		 * Do not hide this behind enospc_debug, this is actually
10113 		 * important and indicates a real bug if this happens.
10114 		 */
10115 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10116 			    space_info->bytes_reserved > 0 ||
10117 			    space_info->bytes_may_use > 0))
10118 			dump_space_info(info, space_info, 0, 0);
10119 		list_del(&space_info->list);
10120 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10121 			struct kobject *kobj;
10122 			kobj = space_info->block_group_kobjs[i];
10123 			space_info->block_group_kobjs[i] = NULL;
10124 			if (kobj) {
10125 				kobject_del(kobj);
10126 				kobject_put(kobj);
10127 			}
10128 		}
10129 		kobject_del(&space_info->kobj);
10130 		kobject_put(&space_info->kobj);
10131 	}
10132 	return 0;
10133 }
10134 
10135 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
10136 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10137 {
10138 	struct btrfs_space_info *space_info;
10139 	struct raid_kobject *rkobj;
10140 	LIST_HEAD(list);
10141 	int index;
10142 	int ret = 0;
10143 
10144 	spin_lock(&fs_info->pending_raid_kobjs_lock);
10145 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
10146 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
10147 
10148 	list_for_each_entry(rkobj, &list, list) {
10149 		space_info = __find_space_info(fs_info, rkobj->flags);
10150 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10151 
10152 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10153 				  "%s", get_raid_name(index));
10154 		if (ret) {
10155 			kobject_put(&rkobj->kobj);
10156 			break;
10157 		}
10158 	}
10159 	if (ret)
10160 		btrfs_warn(fs_info,
10161 			   "failed to add kobject for block cache, ignoring");
10162 }
10163 
10164 static void link_block_group(struct btrfs_block_group_cache *cache)
10165 {
10166 	struct btrfs_space_info *space_info = cache->space_info;
10167 	struct btrfs_fs_info *fs_info = cache->fs_info;
10168 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
10169 	bool first = false;
10170 
10171 	down_write(&space_info->groups_sem);
10172 	if (list_empty(&space_info->block_groups[index]))
10173 		first = true;
10174 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10175 	up_write(&space_info->groups_sem);
10176 
10177 	if (first) {
10178 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10179 		if (!rkobj) {
10180 			btrfs_warn(cache->fs_info,
10181 				"couldn't alloc memory for raid level kobject");
10182 			return;
10183 		}
10184 		rkobj->flags = cache->flags;
10185 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10186 
10187 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10188 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10189 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10190 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10191 	}
10192 }
10193 
10194 static struct btrfs_block_group_cache *
10195 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10196 			       u64 start, u64 size)
10197 {
10198 	struct btrfs_block_group_cache *cache;
10199 
10200 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10201 	if (!cache)
10202 		return NULL;
10203 
10204 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10205 					GFP_NOFS);
10206 	if (!cache->free_space_ctl) {
10207 		kfree(cache);
10208 		return NULL;
10209 	}
10210 
10211 	cache->key.objectid = start;
10212 	cache->key.offset = size;
10213 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10214 
10215 	cache->fs_info = fs_info;
10216 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10217 	set_free_space_tree_thresholds(cache);
10218 
10219 	atomic_set(&cache->count, 1);
10220 	spin_lock_init(&cache->lock);
10221 	init_rwsem(&cache->data_rwsem);
10222 	INIT_LIST_HEAD(&cache->list);
10223 	INIT_LIST_HEAD(&cache->cluster_list);
10224 	INIT_LIST_HEAD(&cache->bg_list);
10225 	INIT_LIST_HEAD(&cache->ro_list);
10226 	INIT_LIST_HEAD(&cache->dirty_list);
10227 	INIT_LIST_HEAD(&cache->io_list);
10228 	btrfs_init_free_space_ctl(cache);
10229 	atomic_set(&cache->trimming, 0);
10230 	mutex_init(&cache->free_space_lock);
10231 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10232 
10233 	return cache;
10234 }
10235 
10236 
10237 /*
10238  * Iterate all chunks and verify that each of them has the corresponding block
10239  * group
10240  */
10241 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10242 {
10243 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10244 	struct extent_map *em;
10245 	struct btrfs_block_group_cache *bg;
10246 	u64 start = 0;
10247 	int ret = 0;
10248 
10249 	while (1) {
10250 		read_lock(&map_tree->map_tree.lock);
10251 		/*
10252 		 * lookup_extent_mapping will return the first extent map
10253 		 * intersecting the range, so setting @len to 1 is enough to
10254 		 * get the first chunk.
10255 		 */
10256 		em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10257 		read_unlock(&map_tree->map_tree.lock);
10258 		if (!em)
10259 			break;
10260 
10261 		bg = btrfs_lookup_block_group(fs_info, em->start);
10262 		if (!bg) {
10263 			btrfs_err(fs_info,
10264 	"chunk start=%llu len=%llu doesn't have corresponding block group",
10265 				     em->start, em->len);
10266 			ret = -EUCLEAN;
10267 			free_extent_map(em);
10268 			break;
10269 		}
10270 		if (bg->key.objectid != em->start ||
10271 		    bg->key.offset != em->len ||
10272 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10273 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10274 			btrfs_err(fs_info,
10275 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10276 				em->start, em->len,
10277 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10278 				bg->key.objectid, bg->key.offset,
10279 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10280 			ret = -EUCLEAN;
10281 			free_extent_map(em);
10282 			btrfs_put_block_group(bg);
10283 			break;
10284 		}
10285 		start = em->start + em->len;
10286 		free_extent_map(em);
10287 		btrfs_put_block_group(bg);
10288 	}
10289 	return ret;
10290 }
10291 
10292 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10293 {
10294 	struct btrfs_path *path;
10295 	int ret;
10296 	struct btrfs_block_group_cache *cache;
10297 	struct btrfs_space_info *space_info;
10298 	struct btrfs_key key;
10299 	struct btrfs_key found_key;
10300 	struct extent_buffer *leaf;
10301 	int need_clear = 0;
10302 	u64 cache_gen;
10303 	u64 feature;
10304 	int mixed;
10305 
10306 	feature = btrfs_super_incompat_flags(info->super_copy);
10307 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10308 
10309 	key.objectid = 0;
10310 	key.offset = 0;
10311 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10312 	path = btrfs_alloc_path();
10313 	if (!path)
10314 		return -ENOMEM;
10315 	path->reada = READA_FORWARD;
10316 
10317 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10318 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10319 	    btrfs_super_generation(info->super_copy) != cache_gen)
10320 		need_clear = 1;
10321 	if (btrfs_test_opt(info, CLEAR_CACHE))
10322 		need_clear = 1;
10323 
10324 	while (1) {
10325 		ret = find_first_block_group(info, path, &key);
10326 		if (ret > 0)
10327 			break;
10328 		if (ret != 0)
10329 			goto error;
10330 
10331 		leaf = path->nodes[0];
10332 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10333 
10334 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10335 						       found_key.offset);
10336 		if (!cache) {
10337 			ret = -ENOMEM;
10338 			goto error;
10339 		}
10340 
10341 		if (need_clear) {
10342 			/*
10343 			 * When we mount with old space cache, we need to
10344 			 * set BTRFS_DC_CLEAR and set dirty flag.
10345 			 *
10346 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10347 			 *    truncate the old free space cache inode and
10348 			 *    setup a new one.
10349 			 * b) Setting 'dirty flag' makes sure that we flush
10350 			 *    the new space cache info onto disk.
10351 			 */
10352 			if (btrfs_test_opt(info, SPACE_CACHE))
10353 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10354 		}
10355 
10356 		read_extent_buffer(leaf, &cache->item,
10357 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10358 				   sizeof(cache->item));
10359 		cache->flags = btrfs_block_group_flags(&cache->item);
10360 		if (!mixed &&
10361 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10362 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10363 			btrfs_err(info,
10364 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10365 				  cache->key.objectid);
10366 			ret = -EINVAL;
10367 			goto error;
10368 		}
10369 
10370 		key.objectid = found_key.objectid + found_key.offset;
10371 		btrfs_release_path(path);
10372 
10373 		/*
10374 		 * We need to exclude the super stripes now so that the space
10375 		 * info has super bytes accounted for, otherwise we'll think
10376 		 * we have more space than we actually do.
10377 		 */
10378 		ret = exclude_super_stripes(cache);
10379 		if (ret) {
10380 			/*
10381 			 * We may have excluded something, so call this just in
10382 			 * case.
10383 			 */
10384 			free_excluded_extents(cache);
10385 			btrfs_put_block_group(cache);
10386 			goto error;
10387 		}
10388 
10389 		/*
10390 		 * check for two cases, either we are full, and therefore
10391 		 * don't need to bother with the caching work since we won't
10392 		 * find any space, or we are empty, and we can just add all
10393 		 * the space in and be done with it.  This saves us _a_lot_ of
10394 		 * time, particularly in the full case.
10395 		 */
10396 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10397 			cache->last_byte_to_unpin = (u64)-1;
10398 			cache->cached = BTRFS_CACHE_FINISHED;
10399 			free_excluded_extents(cache);
10400 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10401 			cache->last_byte_to_unpin = (u64)-1;
10402 			cache->cached = BTRFS_CACHE_FINISHED;
10403 			add_new_free_space(cache, found_key.objectid,
10404 					   found_key.objectid +
10405 					   found_key.offset);
10406 			free_excluded_extents(cache);
10407 		}
10408 
10409 		ret = btrfs_add_block_group_cache(info, cache);
10410 		if (ret) {
10411 			btrfs_remove_free_space_cache(cache);
10412 			btrfs_put_block_group(cache);
10413 			goto error;
10414 		}
10415 
10416 		trace_btrfs_add_block_group(info, cache, 0);
10417 		update_space_info(info, cache->flags, found_key.offset,
10418 				  btrfs_block_group_used(&cache->item),
10419 				  cache->bytes_super, &space_info);
10420 
10421 		cache->space_info = space_info;
10422 
10423 		link_block_group(cache);
10424 
10425 		set_avail_alloc_bits(info, cache->flags);
10426 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10427 			inc_block_group_ro(cache, 1);
10428 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10429 			ASSERT(list_empty(&cache->bg_list));
10430 			btrfs_mark_bg_unused(cache);
10431 		}
10432 	}
10433 
10434 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10435 		if (!(get_alloc_profile(info, space_info->flags) &
10436 		      (BTRFS_BLOCK_GROUP_RAID10 |
10437 		       BTRFS_BLOCK_GROUP_RAID1 |
10438 		       BTRFS_BLOCK_GROUP_RAID5 |
10439 		       BTRFS_BLOCK_GROUP_RAID6 |
10440 		       BTRFS_BLOCK_GROUP_DUP)))
10441 			continue;
10442 		/*
10443 		 * avoid allocating from un-mirrored block group if there are
10444 		 * mirrored block groups.
10445 		 */
10446 		list_for_each_entry(cache,
10447 				&space_info->block_groups[BTRFS_RAID_RAID0],
10448 				list)
10449 			inc_block_group_ro(cache, 1);
10450 		list_for_each_entry(cache,
10451 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10452 				list)
10453 			inc_block_group_ro(cache, 1);
10454 	}
10455 
10456 	btrfs_add_raid_kobjects(info);
10457 	init_global_block_rsv(info);
10458 	ret = check_chunk_block_group_mappings(info);
10459 error:
10460 	btrfs_free_path(path);
10461 	return ret;
10462 }
10463 
10464 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10465 {
10466 	struct btrfs_fs_info *fs_info = trans->fs_info;
10467 	struct btrfs_block_group_cache *block_group;
10468 	struct btrfs_root *extent_root = fs_info->extent_root;
10469 	struct btrfs_block_group_item item;
10470 	struct btrfs_key key;
10471 	int ret = 0;
10472 
10473 	if (!trans->can_flush_pending_bgs)
10474 		return;
10475 
10476 	while (!list_empty(&trans->new_bgs)) {
10477 		block_group = list_first_entry(&trans->new_bgs,
10478 					       struct btrfs_block_group_cache,
10479 					       bg_list);
10480 		if (ret)
10481 			goto next;
10482 
10483 		spin_lock(&block_group->lock);
10484 		memcpy(&item, &block_group->item, sizeof(item));
10485 		memcpy(&key, &block_group->key, sizeof(key));
10486 		spin_unlock(&block_group->lock);
10487 
10488 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10489 					sizeof(item));
10490 		if (ret)
10491 			btrfs_abort_transaction(trans, ret);
10492 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10493 		if (ret)
10494 			btrfs_abort_transaction(trans, ret);
10495 		add_block_group_free_space(trans, block_group);
10496 		/* already aborted the transaction if it failed. */
10497 next:
10498 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10499 		list_del_init(&block_group->bg_list);
10500 	}
10501 	btrfs_trans_release_chunk_metadata(trans);
10502 }
10503 
10504 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10505 			   u64 type, u64 chunk_offset, u64 size)
10506 {
10507 	struct btrfs_fs_info *fs_info = trans->fs_info;
10508 	struct btrfs_block_group_cache *cache;
10509 	int ret;
10510 
10511 	btrfs_set_log_full_commit(fs_info, trans);
10512 
10513 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10514 	if (!cache)
10515 		return -ENOMEM;
10516 
10517 	btrfs_set_block_group_used(&cache->item, bytes_used);
10518 	btrfs_set_block_group_chunk_objectid(&cache->item,
10519 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10520 	btrfs_set_block_group_flags(&cache->item, type);
10521 
10522 	cache->flags = type;
10523 	cache->last_byte_to_unpin = (u64)-1;
10524 	cache->cached = BTRFS_CACHE_FINISHED;
10525 	cache->needs_free_space = 1;
10526 	ret = exclude_super_stripes(cache);
10527 	if (ret) {
10528 		/*
10529 		 * We may have excluded something, so call this just in
10530 		 * case.
10531 		 */
10532 		free_excluded_extents(cache);
10533 		btrfs_put_block_group(cache);
10534 		return ret;
10535 	}
10536 
10537 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10538 
10539 	free_excluded_extents(cache);
10540 
10541 #ifdef CONFIG_BTRFS_DEBUG
10542 	if (btrfs_should_fragment_free_space(cache)) {
10543 		u64 new_bytes_used = size - bytes_used;
10544 
10545 		bytes_used += new_bytes_used >> 1;
10546 		fragment_free_space(cache);
10547 	}
10548 #endif
10549 	/*
10550 	 * Ensure the corresponding space_info object is created and
10551 	 * assigned to our block group. We want our bg to be added to the rbtree
10552 	 * with its ->space_info set.
10553 	 */
10554 	cache->space_info = __find_space_info(fs_info, cache->flags);
10555 	ASSERT(cache->space_info);
10556 
10557 	ret = btrfs_add_block_group_cache(fs_info, cache);
10558 	if (ret) {
10559 		btrfs_remove_free_space_cache(cache);
10560 		btrfs_put_block_group(cache);
10561 		return ret;
10562 	}
10563 
10564 	/*
10565 	 * Now that our block group has its ->space_info set and is inserted in
10566 	 * the rbtree, update the space info's counters.
10567 	 */
10568 	trace_btrfs_add_block_group(fs_info, cache, 1);
10569 	update_space_info(fs_info, cache->flags, size, bytes_used,
10570 				cache->bytes_super, &cache->space_info);
10571 	update_global_block_rsv(fs_info);
10572 
10573 	link_block_group(cache);
10574 
10575 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10576 	trans->delayed_ref_updates++;
10577 	btrfs_update_delayed_refs_rsv(trans);
10578 
10579 	set_avail_alloc_bits(fs_info, type);
10580 	return 0;
10581 }
10582 
10583 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10584 {
10585 	u64 extra_flags = chunk_to_extended(flags) &
10586 				BTRFS_EXTENDED_PROFILE_MASK;
10587 
10588 	write_seqlock(&fs_info->profiles_lock);
10589 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10590 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10591 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10592 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10593 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10594 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10595 	write_sequnlock(&fs_info->profiles_lock);
10596 }
10597 
10598 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10599 			     u64 group_start, struct extent_map *em)
10600 {
10601 	struct btrfs_fs_info *fs_info = trans->fs_info;
10602 	struct btrfs_root *root = fs_info->extent_root;
10603 	struct btrfs_path *path;
10604 	struct btrfs_block_group_cache *block_group;
10605 	struct btrfs_free_cluster *cluster;
10606 	struct btrfs_root *tree_root = fs_info->tree_root;
10607 	struct btrfs_key key;
10608 	struct inode *inode;
10609 	struct kobject *kobj = NULL;
10610 	int ret;
10611 	int index;
10612 	int factor;
10613 	struct btrfs_caching_control *caching_ctl = NULL;
10614 	bool remove_em;
10615 	bool remove_rsv = false;
10616 
10617 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10618 	BUG_ON(!block_group);
10619 	BUG_ON(!block_group->ro);
10620 
10621 	trace_btrfs_remove_block_group(block_group);
10622 	/*
10623 	 * Free the reserved super bytes from this block group before
10624 	 * remove it.
10625 	 */
10626 	free_excluded_extents(block_group);
10627 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10628 				  block_group->key.offset);
10629 
10630 	memcpy(&key, &block_group->key, sizeof(key));
10631 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10632 	factor = btrfs_bg_type_to_factor(block_group->flags);
10633 
10634 	/* make sure this block group isn't part of an allocation cluster */
10635 	cluster = &fs_info->data_alloc_cluster;
10636 	spin_lock(&cluster->refill_lock);
10637 	btrfs_return_cluster_to_free_space(block_group, cluster);
10638 	spin_unlock(&cluster->refill_lock);
10639 
10640 	/*
10641 	 * make sure this block group isn't part of a metadata
10642 	 * allocation cluster
10643 	 */
10644 	cluster = &fs_info->meta_alloc_cluster;
10645 	spin_lock(&cluster->refill_lock);
10646 	btrfs_return_cluster_to_free_space(block_group, cluster);
10647 	spin_unlock(&cluster->refill_lock);
10648 
10649 	path = btrfs_alloc_path();
10650 	if (!path) {
10651 		ret = -ENOMEM;
10652 		goto out;
10653 	}
10654 
10655 	/*
10656 	 * get the inode first so any iput calls done for the io_list
10657 	 * aren't the final iput (no unlinks allowed now)
10658 	 */
10659 	inode = lookup_free_space_inode(fs_info, block_group, path);
10660 
10661 	mutex_lock(&trans->transaction->cache_write_mutex);
10662 	/*
10663 	 * Make sure our free space cache IO is done before removing the
10664 	 * free space inode
10665 	 */
10666 	spin_lock(&trans->transaction->dirty_bgs_lock);
10667 	if (!list_empty(&block_group->io_list)) {
10668 		list_del_init(&block_group->io_list);
10669 
10670 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10671 
10672 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10673 		btrfs_wait_cache_io(trans, block_group, path);
10674 		btrfs_put_block_group(block_group);
10675 		spin_lock(&trans->transaction->dirty_bgs_lock);
10676 	}
10677 
10678 	if (!list_empty(&block_group->dirty_list)) {
10679 		list_del_init(&block_group->dirty_list);
10680 		remove_rsv = true;
10681 		btrfs_put_block_group(block_group);
10682 	}
10683 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10684 	mutex_unlock(&trans->transaction->cache_write_mutex);
10685 
10686 	if (!IS_ERR(inode)) {
10687 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10688 		if (ret) {
10689 			btrfs_add_delayed_iput(inode);
10690 			goto out;
10691 		}
10692 		clear_nlink(inode);
10693 		/* One for the block groups ref */
10694 		spin_lock(&block_group->lock);
10695 		if (block_group->iref) {
10696 			block_group->iref = 0;
10697 			block_group->inode = NULL;
10698 			spin_unlock(&block_group->lock);
10699 			iput(inode);
10700 		} else {
10701 			spin_unlock(&block_group->lock);
10702 		}
10703 		/* One for our lookup ref */
10704 		btrfs_add_delayed_iput(inode);
10705 	}
10706 
10707 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10708 	key.offset = block_group->key.objectid;
10709 	key.type = 0;
10710 
10711 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10712 	if (ret < 0)
10713 		goto out;
10714 	if (ret > 0)
10715 		btrfs_release_path(path);
10716 	if (ret == 0) {
10717 		ret = btrfs_del_item(trans, tree_root, path);
10718 		if (ret)
10719 			goto out;
10720 		btrfs_release_path(path);
10721 	}
10722 
10723 	spin_lock(&fs_info->block_group_cache_lock);
10724 	rb_erase(&block_group->cache_node,
10725 		 &fs_info->block_group_cache_tree);
10726 	RB_CLEAR_NODE(&block_group->cache_node);
10727 
10728 	if (fs_info->first_logical_byte == block_group->key.objectid)
10729 		fs_info->first_logical_byte = (u64)-1;
10730 	spin_unlock(&fs_info->block_group_cache_lock);
10731 
10732 	down_write(&block_group->space_info->groups_sem);
10733 	/*
10734 	 * we must use list_del_init so people can check to see if they
10735 	 * are still on the list after taking the semaphore
10736 	 */
10737 	list_del_init(&block_group->list);
10738 	if (list_empty(&block_group->space_info->block_groups[index])) {
10739 		kobj = block_group->space_info->block_group_kobjs[index];
10740 		block_group->space_info->block_group_kobjs[index] = NULL;
10741 		clear_avail_alloc_bits(fs_info, block_group->flags);
10742 	}
10743 	up_write(&block_group->space_info->groups_sem);
10744 	if (kobj) {
10745 		kobject_del(kobj);
10746 		kobject_put(kobj);
10747 	}
10748 
10749 	if (block_group->has_caching_ctl)
10750 		caching_ctl = get_caching_control(block_group);
10751 	if (block_group->cached == BTRFS_CACHE_STARTED)
10752 		wait_block_group_cache_done(block_group);
10753 	if (block_group->has_caching_ctl) {
10754 		down_write(&fs_info->commit_root_sem);
10755 		if (!caching_ctl) {
10756 			struct btrfs_caching_control *ctl;
10757 
10758 			list_for_each_entry(ctl,
10759 				    &fs_info->caching_block_groups, list)
10760 				if (ctl->block_group == block_group) {
10761 					caching_ctl = ctl;
10762 					refcount_inc(&caching_ctl->count);
10763 					break;
10764 				}
10765 		}
10766 		if (caching_ctl)
10767 			list_del_init(&caching_ctl->list);
10768 		up_write(&fs_info->commit_root_sem);
10769 		if (caching_ctl) {
10770 			/* Once for the caching bgs list and once for us. */
10771 			put_caching_control(caching_ctl);
10772 			put_caching_control(caching_ctl);
10773 		}
10774 	}
10775 
10776 	spin_lock(&trans->transaction->dirty_bgs_lock);
10777 	if (!list_empty(&block_group->dirty_list)) {
10778 		WARN_ON(1);
10779 	}
10780 	if (!list_empty(&block_group->io_list)) {
10781 		WARN_ON(1);
10782 	}
10783 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10784 	btrfs_remove_free_space_cache(block_group);
10785 
10786 	spin_lock(&block_group->space_info->lock);
10787 	list_del_init(&block_group->ro_list);
10788 
10789 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10790 		WARN_ON(block_group->space_info->total_bytes
10791 			< block_group->key.offset);
10792 		WARN_ON(block_group->space_info->bytes_readonly
10793 			< block_group->key.offset);
10794 		WARN_ON(block_group->space_info->disk_total
10795 			< block_group->key.offset * factor);
10796 	}
10797 	block_group->space_info->total_bytes -= block_group->key.offset;
10798 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10799 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10800 
10801 	spin_unlock(&block_group->space_info->lock);
10802 
10803 	memcpy(&key, &block_group->key, sizeof(key));
10804 
10805 	mutex_lock(&fs_info->chunk_mutex);
10806 	if (!list_empty(&em->list)) {
10807 		/* We're in the transaction->pending_chunks list. */
10808 		free_extent_map(em);
10809 	}
10810 	spin_lock(&block_group->lock);
10811 	block_group->removed = 1;
10812 	/*
10813 	 * At this point trimming can't start on this block group, because we
10814 	 * removed the block group from the tree fs_info->block_group_cache_tree
10815 	 * so no one can't find it anymore and even if someone already got this
10816 	 * block group before we removed it from the rbtree, they have already
10817 	 * incremented block_group->trimming - if they didn't, they won't find
10818 	 * any free space entries because we already removed them all when we
10819 	 * called btrfs_remove_free_space_cache().
10820 	 *
10821 	 * And we must not remove the extent map from the fs_info->mapping_tree
10822 	 * to prevent the same logical address range and physical device space
10823 	 * ranges from being reused for a new block group. This is because our
10824 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10825 	 * completely transactionless, so while it is trimming a range the
10826 	 * currently running transaction might finish and a new one start,
10827 	 * allowing for new block groups to be created that can reuse the same
10828 	 * physical device locations unless we take this special care.
10829 	 *
10830 	 * There may also be an implicit trim operation if the file system
10831 	 * is mounted with -odiscard. The same protections must remain
10832 	 * in place until the extents have been discarded completely when
10833 	 * the transaction commit has completed.
10834 	 */
10835 	remove_em = (atomic_read(&block_group->trimming) == 0);
10836 	/*
10837 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10838 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10839 	 * before checking block_group->removed).
10840 	 */
10841 	if (!remove_em) {
10842 		/*
10843 		 * Our em might be in trans->transaction->pending_chunks which
10844 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10845 		 * and so is the fs_info->pinned_chunks list.
10846 		 *
10847 		 * So at this point we must be holding the chunk_mutex to avoid
10848 		 * any races with chunk allocation (more specifically at
10849 		 * volumes.c:contains_pending_extent()), to ensure it always
10850 		 * sees the em, either in the pending_chunks list or in the
10851 		 * pinned_chunks list.
10852 		 */
10853 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10854 	}
10855 	spin_unlock(&block_group->lock);
10856 
10857 	if (remove_em) {
10858 		struct extent_map_tree *em_tree;
10859 
10860 		em_tree = &fs_info->mapping_tree.map_tree;
10861 		write_lock(&em_tree->lock);
10862 		/*
10863 		 * The em might be in the pending_chunks list, so make sure the
10864 		 * chunk mutex is locked, since remove_extent_mapping() will
10865 		 * delete us from that list.
10866 		 */
10867 		remove_extent_mapping(em_tree, em);
10868 		write_unlock(&em_tree->lock);
10869 		/* once for the tree */
10870 		free_extent_map(em);
10871 	}
10872 
10873 	mutex_unlock(&fs_info->chunk_mutex);
10874 
10875 	ret = remove_block_group_free_space(trans, block_group);
10876 	if (ret)
10877 		goto out;
10878 
10879 	btrfs_put_block_group(block_group);
10880 	btrfs_put_block_group(block_group);
10881 
10882 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10883 	if (ret > 0)
10884 		ret = -EIO;
10885 	if (ret < 0)
10886 		goto out;
10887 
10888 	ret = btrfs_del_item(trans, root, path);
10889 out:
10890 	if (remove_rsv)
10891 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10892 	btrfs_free_path(path);
10893 	return ret;
10894 }
10895 
10896 struct btrfs_trans_handle *
10897 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10898 				     const u64 chunk_offset)
10899 {
10900 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10901 	struct extent_map *em;
10902 	struct map_lookup *map;
10903 	unsigned int num_items;
10904 
10905 	read_lock(&em_tree->lock);
10906 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10907 	read_unlock(&em_tree->lock);
10908 	ASSERT(em && em->start == chunk_offset);
10909 
10910 	/*
10911 	 * We need to reserve 3 + N units from the metadata space info in order
10912 	 * to remove a block group (done at btrfs_remove_chunk() and at
10913 	 * btrfs_remove_block_group()), which are used for:
10914 	 *
10915 	 * 1 unit for adding the free space inode's orphan (located in the tree
10916 	 * of tree roots).
10917 	 * 1 unit for deleting the block group item (located in the extent
10918 	 * tree).
10919 	 * 1 unit for deleting the free space item (located in tree of tree
10920 	 * roots).
10921 	 * N units for deleting N device extent items corresponding to each
10922 	 * stripe (located in the device tree).
10923 	 *
10924 	 * In order to remove a block group we also need to reserve units in the
10925 	 * system space info in order to update the chunk tree (update one or
10926 	 * more device items and remove one chunk item), but this is done at
10927 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10928 	 */
10929 	map = em->map_lookup;
10930 	num_items = 3 + map->num_stripes;
10931 	free_extent_map(em);
10932 
10933 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10934 							   num_items, 1);
10935 }
10936 
10937 /*
10938  * Process the unused_bgs list and remove any that don't have any allocated
10939  * space inside of them.
10940  */
10941 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10942 {
10943 	struct btrfs_block_group_cache *block_group;
10944 	struct btrfs_space_info *space_info;
10945 	struct btrfs_trans_handle *trans;
10946 	int ret = 0;
10947 
10948 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10949 		return;
10950 
10951 	spin_lock(&fs_info->unused_bgs_lock);
10952 	while (!list_empty(&fs_info->unused_bgs)) {
10953 		u64 start, end;
10954 		int trimming;
10955 
10956 		block_group = list_first_entry(&fs_info->unused_bgs,
10957 					       struct btrfs_block_group_cache,
10958 					       bg_list);
10959 		list_del_init(&block_group->bg_list);
10960 
10961 		space_info = block_group->space_info;
10962 
10963 		if (ret || btrfs_mixed_space_info(space_info)) {
10964 			btrfs_put_block_group(block_group);
10965 			continue;
10966 		}
10967 		spin_unlock(&fs_info->unused_bgs_lock);
10968 
10969 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10970 
10971 		/* Don't want to race with allocators so take the groups_sem */
10972 		down_write(&space_info->groups_sem);
10973 		spin_lock(&block_group->lock);
10974 		if (block_group->reserved || block_group->pinned ||
10975 		    btrfs_block_group_used(&block_group->item) ||
10976 		    block_group->ro ||
10977 		    list_is_singular(&block_group->list)) {
10978 			/*
10979 			 * We want to bail if we made new allocations or have
10980 			 * outstanding allocations in this block group.  We do
10981 			 * the ro check in case balance is currently acting on
10982 			 * this block group.
10983 			 */
10984 			trace_btrfs_skip_unused_block_group(block_group);
10985 			spin_unlock(&block_group->lock);
10986 			up_write(&space_info->groups_sem);
10987 			goto next;
10988 		}
10989 		spin_unlock(&block_group->lock);
10990 
10991 		/* We don't want to force the issue, only flip if it's ok. */
10992 		ret = inc_block_group_ro(block_group, 0);
10993 		up_write(&space_info->groups_sem);
10994 		if (ret < 0) {
10995 			ret = 0;
10996 			goto next;
10997 		}
10998 
10999 		/*
11000 		 * Want to do this before we do anything else so we can recover
11001 		 * properly if we fail to join the transaction.
11002 		 */
11003 		trans = btrfs_start_trans_remove_block_group(fs_info,
11004 						     block_group->key.objectid);
11005 		if (IS_ERR(trans)) {
11006 			btrfs_dec_block_group_ro(block_group);
11007 			ret = PTR_ERR(trans);
11008 			goto next;
11009 		}
11010 
11011 		/*
11012 		 * We could have pending pinned extents for this block group,
11013 		 * just delete them, we don't care about them anymore.
11014 		 */
11015 		start = block_group->key.objectid;
11016 		end = start + block_group->key.offset - 1;
11017 		/*
11018 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11019 		 * btrfs_finish_extent_commit(). If we are at transaction N,
11020 		 * another task might be running finish_extent_commit() for the
11021 		 * previous transaction N - 1, and have seen a range belonging
11022 		 * to the block group in freed_extents[] before we were able to
11023 		 * clear the whole block group range from freed_extents[]. This
11024 		 * means that task can lookup for the block group after we
11025 		 * unpinned it from freed_extents[] and removed it, leading to
11026 		 * a BUG_ON() at btrfs_unpin_extent_range().
11027 		 */
11028 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
11029 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11030 				  EXTENT_DIRTY);
11031 		if (ret) {
11032 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11033 			btrfs_dec_block_group_ro(block_group);
11034 			goto end_trans;
11035 		}
11036 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11037 				  EXTENT_DIRTY);
11038 		if (ret) {
11039 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11040 			btrfs_dec_block_group_ro(block_group);
11041 			goto end_trans;
11042 		}
11043 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11044 
11045 		/* Reset pinned so btrfs_put_block_group doesn't complain */
11046 		spin_lock(&space_info->lock);
11047 		spin_lock(&block_group->lock);
11048 
11049 		update_bytes_pinned(space_info, -block_group->pinned);
11050 		space_info->bytes_readonly += block_group->pinned;
11051 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
11052 				   -block_group->pinned,
11053 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
11054 		block_group->pinned = 0;
11055 
11056 		spin_unlock(&block_group->lock);
11057 		spin_unlock(&space_info->lock);
11058 
11059 		/* DISCARD can flip during remount */
11060 		trimming = btrfs_test_opt(fs_info, DISCARD);
11061 
11062 		/* Implicit trim during transaction commit. */
11063 		if (trimming)
11064 			btrfs_get_block_group_trimming(block_group);
11065 
11066 		/*
11067 		 * Btrfs_remove_chunk will abort the transaction if things go
11068 		 * horribly wrong.
11069 		 */
11070 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11071 
11072 		if (ret) {
11073 			if (trimming)
11074 				btrfs_put_block_group_trimming(block_group);
11075 			goto end_trans;
11076 		}
11077 
11078 		/*
11079 		 * If we're not mounted with -odiscard, we can just forget
11080 		 * about this block group. Otherwise we'll need to wait
11081 		 * until transaction commit to do the actual discard.
11082 		 */
11083 		if (trimming) {
11084 			spin_lock(&fs_info->unused_bgs_lock);
11085 			/*
11086 			 * A concurrent scrub might have added us to the list
11087 			 * fs_info->unused_bgs, so use a list_move operation
11088 			 * to add the block group to the deleted_bgs list.
11089 			 */
11090 			list_move(&block_group->bg_list,
11091 				  &trans->transaction->deleted_bgs);
11092 			spin_unlock(&fs_info->unused_bgs_lock);
11093 			btrfs_get_block_group(block_group);
11094 		}
11095 end_trans:
11096 		btrfs_end_transaction(trans);
11097 next:
11098 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11099 		btrfs_put_block_group(block_group);
11100 		spin_lock(&fs_info->unused_bgs_lock);
11101 	}
11102 	spin_unlock(&fs_info->unused_bgs_lock);
11103 }
11104 
11105 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11106 {
11107 	struct btrfs_super_block *disk_super;
11108 	u64 features;
11109 	u64 flags;
11110 	int mixed = 0;
11111 	int ret;
11112 
11113 	disk_super = fs_info->super_copy;
11114 	if (!btrfs_super_root(disk_super))
11115 		return -EINVAL;
11116 
11117 	features = btrfs_super_incompat_flags(disk_super);
11118 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11119 		mixed = 1;
11120 
11121 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
11122 	ret = create_space_info(fs_info, flags);
11123 	if (ret)
11124 		goto out;
11125 
11126 	if (mixed) {
11127 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11128 		ret = create_space_info(fs_info, flags);
11129 	} else {
11130 		flags = BTRFS_BLOCK_GROUP_METADATA;
11131 		ret = create_space_info(fs_info, flags);
11132 		if (ret)
11133 			goto out;
11134 
11135 		flags = BTRFS_BLOCK_GROUP_DATA;
11136 		ret = create_space_info(fs_info, flags);
11137 	}
11138 out:
11139 	return ret;
11140 }
11141 
11142 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11143 				   u64 start, u64 end)
11144 {
11145 	return unpin_extent_range(fs_info, start, end, false);
11146 }
11147 
11148 /*
11149  * It used to be that old block groups would be left around forever.
11150  * Iterating over them would be enough to trim unused space.  Since we
11151  * now automatically remove them, we also need to iterate over unallocated
11152  * space.
11153  *
11154  * We don't want a transaction for this since the discard may take a
11155  * substantial amount of time.  We don't require that a transaction be
11156  * running, but we do need to take a running transaction into account
11157  * to ensure that we're not discarding chunks that were released or
11158  * allocated in the current transaction.
11159  *
11160  * Holding the chunks lock will prevent other threads from allocating
11161  * or releasing chunks, but it won't prevent a running transaction
11162  * from committing and releasing the memory that the pending chunks
11163  * list head uses.  For that, we need to take a reference to the
11164  * transaction and hold the commit root sem.  We only need to hold
11165  * it while performing the free space search since we have already
11166  * held back allocations.
11167  */
11168 static int btrfs_trim_free_extents(struct btrfs_device *device,
11169 				   u64 minlen, u64 *trimmed)
11170 {
11171 	u64 start = 0, len = 0;
11172 	int ret;
11173 
11174 	*trimmed = 0;
11175 
11176 	/* Discard not supported = nothing to do. */
11177 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11178 		return 0;
11179 
11180 	/* Not writable = nothing to do. */
11181 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11182 		return 0;
11183 
11184 	/* No free space = nothing to do. */
11185 	if (device->total_bytes <= device->bytes_used)
11186 		return 0;
11187 
11188 	ret = 0;
11189 
11190 	while (1) {
11191 		struct btrfs_fs_info *fs_info = device->fs_info;
11192 		struct btrfs_transaction *trans;
11193 		u64 bytes;
11194 
11195 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11196 		if (ret)
11197 			break;
11198 
11199 		ret = down_read_killable(&fs_info->commit_root_sem);
11200 		if (ret) {
11201 			mutex_unlock(&fs_info->chunk_mutex);
11202 			break;
11203 		}
11204 
11205 		spin_lock(&fs_info->trans_lock);
11206 		trans = fs_info->running_transaction;
11207 		if (trans)
11208 			refcount_inc(&trans->use_count);
11209 		spin_unlock(&fs_info->trans_lock);
11210 
11211 		if (!trans)
11212 			up_read(&fs_info->commit_root_sem);
11213 
11214 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11215 						 &start, &len);
11216 		if (trans) {
11217 			up_read(&fs_info->commit_root_sem);
11218 			btrfs_put_transaction(trans);
11219 		}
11220 
11221 		if (ret) {
11222 			mutex_unlock(&fs_info->chunk_mutex);
11223 			if (ret == -ENOSPC)
11224 				ret = 0;
11225 			break;
11226 		}
11227 
11228 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11229 		mutex_unlock(&fs_info->chunk_mutex);
11230 
11231 		if (ret)
11232 			break;
11233 
11234 		start += len;
11235 		*trimmed += bytes;
11236 
11237 		if (fatal_signal_pending(current)) {
11238 			ret = -ERESTARTSYS;
11239 			break;
11240 		}
11241 
11242 		cond_resched();
11243 	}
11244 
11245 	return ret;
11246 }
11247 
11248 /*
11249  * Trim the whole filesystem by:
11250  * 1) trimming the free space in each block group
11251  * 2) trimming the unallocated space on each device
11252  *
11253  * This will also continue trimming even if a block group or device encounters
11254  * an error.  The return value will be the last error, or 0 if nothing bad
11255  * happens.
11256  */
11257 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11258 {
11259 	struct btrfs_block_group_cache *cache = NULL;
11260 	struct btrfs_device *device;
11261 	struct list_head *devices;
11262 	u64 group_trimmed;
11263 	u64 start;
11264 	u64 end;
11265 	u64 trimmed = 0;
11266 	u64 bg_failed = 0;
11267 	u64 dev_failed = 0;
11268 	int bg_ret = 0;
11269 	int dev_ret = 0;
11270 	int ret = 0;
11271 
11272 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
11273 	for (; cache; cache = next_block_group(fs_info, cache)) {
11274 		if (cache->key.objectid >= (range->start + range->len)) {
11275 			btrfs_put_block_group(cache);
11276 			break;
11277 		}
11278 
11279 		start = max(range->start, cache->key.objectid);
11280 		end = min(range->start + range->len,
11281 				cache->key.objectid + cache->key.offset);
11282 
11283 		if (end - start >= range->minlen) {
11284 			if (!block_group_cache_done(cache)) {
11285 				ret = cache_block_group(cache, 0);
11286 				if (ret) {
11287 					bg_failed++;
11288 					bg_ret = ret;
11289 					continue;
11290 				}
11291 				ret = wait_block_group_cache_done(cache);
11292 				if (ret) {
11293 					bg_failed++;
11294 					bg_ret = ret;
11295 					continue;
11296 				}
11297 			}
11298 			ret = btrfs_trim_block_group(cache,
11299 						     &group_trimmed,
11300 						     start,
11301 						     end,
11302 						     range->minlen);
11303 
11304 			trimmed += group_trimmed;
11305 			if (ret) {
11306 				bg_failed++;
11307 				bg_ret = ret;
11308 				continue;
11309 			}
11310 		}
11311 	}
11312 
11313 	if (bg_failed)
11314 		btrfs_warn(fs_info,
11315 			"failed to trim %llu block group(s), last error %d",
11316 			bg_failed, bg_ret);
11317 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11318 	devices = &fs_info->fs_devices->devices;
11319 	list_for_each_entry(device, devices, dev_list) {
11320 		ret = btrfs_trim_free_extents(device, range->minlen,
11321 					      &group_trimmed);
11322 		if (ret) {
11323 			dev_failed++;
11324 			dev_ret = ret;
11325 			break;
11326 		}
11327 
11328 		trimmed += group_trimmed;
11329 	}
11330 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11331 
11332 	if (dev_failed)
11333 		btrfs_warn(fs_info,
11334 			"failed to trim %llu device(s), last error %d",
11335 			dev_failed, dev_ret);
11336 	range->len = trimmed;
11337 	if (bg_ret)
11338 		return bg_ret;
11339 	return dev_ret;
11340 }
11341 
11342 /*
11343  * btrfs_{start,end}_write_no_snapshotting() are similar to
11344  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11345  * data into the page cache through nocow before the subvolume is snapshoted,
11346  * but flush the data into disk after the snapshot creation, or to prevent
11347  * operations while snapshotting is ongoing and that cause the snapshot to be
11348  * inconsistent (writes followed by expanding truncates for example).
11349  */
11350 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11351 {
11352 	percpu_counter_dec(&root->subv_writers->counter);
11353 	cond_wake_up(&root->subv_writers->wait);
11354 }
11355 
11356 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11357 {
11358 	if (atomic_read(&root->will_be_snapshotted))
11359 		return 0;
11360 
11361 	percpu_counter_inc(&root->subv_writers->counter);
11362 	/*
11363 	 * Make sure counter is updated before we check for snapshot creation.
11364 	 */
11365 	smp_mb();
11366 	if (atomic_read(&root->will_be_snapshotted)) {
11367 		btrfs_end_write_no_snapshotting(root);
11368 		return 0;
11369 	}
11370 	return 1;
11371 }
11372 
11373 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11374 {
11375 	while (true) {
11376 		int ret;
11377 
11378 		ret = btrfs_start_write_no_snapshotting(root);
11379 		if (ret)
11380 			break;
11381 		wait_var_event(&root->will_be_snapshotted,
11382 			       !atomic_read(&root->will_be_snapshotted));
11383 	}
11384 }
11385 
11386 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11387 {
11388 	struct btrfs_fs_info *fs_info = bg->fs_info;
11389 
11390 	spin_lock(&fs_info->unused_bgs_lock);
11391 	if (list_empty(&bg->bg_list)) {
11392 		btrfs_get_block_group(bg);
11393 		trace_btrfs_add_unused_block_group(bg);
11394 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11395 	}
11396 	spin_unlock(&fs_info->unused_bgs_lock);
11397 }
11398