xref: /linux/fs/btrfs/extent-tree.c (revision bbcd53c960713507ae764bf81970651b5577b95a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	int ret;
91 	struct btrfs_key key;
92 	struct btrfs_path *path;
93 
94 	path = btrfs_alloc_path();
95 	if (!path)
96 		return -ENOMEM;
97 
98 	key.objectid = start;
99 	key.offset = len;
100 	key.type = BTRFS_EXTENT_ITEM_KEY;
101 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
102 	btrfs_free_path(path);
103 	return ret;
104 }
105 
106 /*
107  * helper function to lookup reference count and flags of a tree block.
108  *
109  * the head node for delayed ref is used to store the sum of all the
110  * reference count modifications queued up in the rbtree. the head
111  * node may also store the extent flags to set. This way you can check
112  * to see what the reference count and extent flags would be if all of
113  * the delayed refs are not processed.
114  */
115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
116 			     struct btrfs_fs_info *fs_info, u64 bytenr,
117 			     u64 offset, int metadata, u64 *refs, u64 *flags)
118 {
119 	struct btrfs_delayed_ref_head *head;
120 	struct btrfs_delayed_ref_root *delayed_refs;
121 	struct btrfs_path *path;
122 	struct btrfs_extent_item *ei;
123 	struct extent_buffer *leaf;
124 	struct btrfs_key key;
125 	u32 item_size;
126 	u64 num_refs;
127 	u64 extent_flags;
128 	int ret;
129 
130 	/*
131 	 * If we don't have skinny metadata, don't bother doing anything
132 	 * different
133 	 */
134 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
135 		offset = fs_info->nodesize;
136 		metadata = 0;
137 	}
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	if (!trans) {
144 		path->skip_locking = 1;
145 		path->search_commit_root = 1;
146 	}
147 
148 search_again:
149 	key.objectid = bytenr;
150 	key.offset = offset;
151 	if (metadata)
152 		key.type = BTRFS_METADATA_ITEM_KEY;
153 	else
154 		key.type = BTRFS_EXTENT_ITEM_KEY;
155 
156 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
157 	if (ret < 0)
158 		goto out_free;
159 
160 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
161 		if (path->slots[0]) {
162 			path->slots[0]--;
163 			btrfs_item_key_to_cpu(path->nodes[0], &key,
164 					      path->slots[0]);
165 			if (key.objectid == bytenr &&
166 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
167 			    key.offset == fs_info->nodesize)
168 				ret = 0;
169 		}
170 	}
171 
172 	if (ret == 0) {
173 		leaf = path->nodes[0];
174 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
175 		if (item_size >= sizeof(*ei)) {
176 			ei = btrfs_item_ptr(leaf, path->slots[0],
177 					    struct btrfs_extent_item);
178 			num_refs = btrfs_extent_refs(leaf, ei);
179 			extent_flags = btrfs_extent_flags(leaf, ei);
180 		} else {
181 			ret = -EINVAL;
182 			btrfs_print_v0_err(fs_info);
183 			if (trans)
184 				btrfs_abort_transaction(trans, ret);
185 			else
186 				btrfs_handle_fs_error(fs_info, ret, NULL);
187 
188 			goto out_free;
189 		}
190 
191 		BUG_ON(num_refs == 0);
192 	} else {
193 		num_refs = 0;
194 		extent_flags = 0;
195 		ret = 0;
196 	}
197 
198 	if (!trans)
199 		goto out;
200 
201 	delayed_refs = &trans->transaction->delayed_refs;
202 	spin_lock(&delayed_refs->lock);
203 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
204 	if (head) {
205 		if (!mutex_trylock(&head->mutex)) {
206 			refcount_inc(&head->refs);
207 			spin_unlock(&delayed_refs->lock);
208 
209 			btrfs_release_path(path);
210 
211 			/*
212 			 * Mutex was contended, block until it's released and try
213 			 * again
214 			 */
215 			mutex_lock(&head->mutex);
216 			mutex_unlock(&head->mutex);
217 			btrfs_put_delayed_ref_head(head);
218 			goto search_again;
219 		}
220 		spin_lock(&head->lock);
221 		if (head->extent_op && head->extent_op->update_flags)
222 			extent_flags |= head->extent_op->flags_to_set;
223 		else
224 			BUG_ON(num_refs == 0);
225 
226 		num_refs += head->ref_mod;
227 		spin_unlock(&head->lock);
228 		mutex_unlock(&head->mutex);
229 	}
230 	spin_unlock(&delayed_refs->lock);
231 out:
232 	WARN_ON(num_refs == 0);
233 	if (refs)
234 		*refs = num_refs;
235 	if (flags)
236 		*flags = extent_flags;
237 out_free:
238 	btrfs_free_path(path);
239 	return ret;
240 }
241 
242 /*
243  * Back reference rules.  Back refs have three main goals:
244  *
245  * 1) differentiate between all holders of references to an extent so that
246  *    when a reference is dropped we can make sure it was a valid reference
247  *    before freeing the extent.
248  *
249  * 2) Provide enough information to quickly find the holders of an extent
250  *    if we notice a given block is corrupted or bad.
251  *
252  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
253  *    maintenance.  This is actually the same as #2, but with a slightly
254  *    different use case.
255  *
256  * There are two kinds of back refs. The implicit back refs is optimized
257  * for pointers in non-shared tree blocks. For a given pointer in a block,
258  * back refs of this kind provide information about the block's owner tree
259  * and the pointer's key. These information allow us to find the block by
260  * b-tree searching. The full back refs is for pointers in tree blocks not
261  * referenced by their owner trees. The location of tree block is recorded
262  * in the back refs. Actually the full back refs is generic, and can be
263  * used in all cases the implicit back refs is used. The major shortcoming
264  * of the full back refs is its overhead. Every time a tree block gets
265  * COWed, we have to update back refs entry for all pointers in it.
266  *
267  * For a newly allocated tree block, we use implicit back refs for
268  * pointers in it. This means most tree related operations only involve
269  * implicit back refs. For a tree block created in old transaction, the
270  * only way to drop a reference to it is COW it. So we can detect the
271  * event that tree block loses its owner tree's reference and do the
272  * back refs conversion.
273  *
274  * When a tree block is COWed through a tree, there are four cases:
275  *
276  * The reference count of the block is one and the tree is the block's
277  * owner tree. Nothing to do in this case.
278  *
279  * The reference count of the block is one and the tree is not the
280  * block's owner tree. In this case, full back refs is used for pointers
281  * in the block. Remove these full back refs, add implicit back refs for
282  * every pointers in the new block.
283  *
284  * The reference count of the block is greater than one and the tree is
285  * the block's owner tree. In this case, implicit back refs is used for
286  * pointers in the block. Add full back refs for every pointers in the
287  * block, increase lower level extents' reference counts. The original
288  * implicit back refs are entailed to the new block.
289  *
290  * The reference count of the block is greater than one and the tree is
291  * not the block's owner tree. Add implicit back refs for every pointer in
292  * the new block, increase lower level extents' reference count.
293  *
294  * Back Reference Key composing:
295  *
296  * The key objectid corresponds to the first byte in the extent,
297  * The key type is used to differentiate between types of back refs.
298  * There are different meanings of the key offset for different types
299  * of back refs.
300  *
301  * File extents can be referenced by:
302  *
303  * - multiple snapshots, subvolumes, or different generations in one subvol
304  * - different files inside a single subvolume
305  * - different offsets inside a file (bookend extents in file.c)
306  *
307  * The extent ref structure for the implicit back refs has fields for:
308  *
309  * - Objectid of the subvolume root
310  * - objectid of the file holding the reference
311  * - original offset in the file
312  * - how many bookend extents
313  *
314  * The key offset for the implicit back refs is hash of the first
315  * three fields.
316  *
317  * The extent ref structure for the full back refs has field for:
318  *
319  * - number of pointers in the tree leaf
320  *
321  * The key offset for the implicit back refs is the first byte of
322  * the tree leaf
323  *
324  * When a file extent is allocated, The implicit back refs is used.
325  * the fields are filled in:
326  *
327  *     (root_key.objectid, inode objectid, offset in file, 1)
328  *
329  * When a file extent is removed file truncation, we find the
330  * corresponding implicit back refs and check the following fields:
331  *
332  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
333  *
334  * Btree extents can be referenced by:
335  *
336  * - Different subvolumes
337  *
338  * Both the implicit back refs and the full back refs for tree blocks
339  * only consist of key. The key offset for the implicit back refs is
340  * objectid of block's owner tree. The key offset for the full back refs
341  * is the first byte of parent block.
342  *
343  * When implicit back refs is used, information about the lowest key and
344  * level of the tree block are required. These information are stored in
345  * tree block info structure.
346  */
347 
348 /*
349  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
350  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
351  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
352  */
353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
354 				     struct btrfs_extent_inline_ref *iref,
355 				     enum btrfs_inline_ref_type is_data)
356 {
357 	int type = btrfs_extent_inline_ref_type(eb, iref);
358 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
359 
360 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
361 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
362 	    type == BTRFS_SHARED_DATA_REF_KEY ||
363 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
364 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
365 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
366 				return type;
367 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
368 				ASSERT(eb->fs_info);
369 				/*
370 				 * Every shared one has parent tree block,
371 				 * which must be aligned to sector size.
372 				 */
373 				if (offset &&
374 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
375 					return type;
376 			}
377 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
378 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
379 				return type;
380 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
381 				ASSERT(eb->fs_info);
382 				/*
383 				 * Every shared one has parent tree block,
384 				 * which must be aligned to sector size.
385 				 */
386 				if (offset &&
387 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
388 					return type;
389 			}
390 		} else {
391 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
392 			return type;
393 		}
394 	}
395 
396 	btrfs_print_leaf((struct extent_buffer *)eb);
397 	btrfs_err(eb->fs_info,
398 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
399 		  eb->start, (unsigned long)iref, type);
400 	WARN_ON(1);
401 
402 	return BTRFS_REF_TYPE_INVALID;
403 }
404 
405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
406 {
407 	u32 high_crc = ~(u32)0;
408 	u32 low_crc = ~(u32)0;
409 	__le64 lenum;
410 
411 	lenum = cpu_to_le64(root_objectid);
412 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
413 	lenum = cpu_to_le64(owner);
414 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 	lenum = cpu_to_le64(offset);
416 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
417 
418 	return ((u64)high_crc << 31) ^ (u64)low_crc;
419 }
420 
421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 				     struct btrfs_extent_data_ref *ref)
423 {
424 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 				    btrfs_extent_data_ref_objectid(leaf, ref),
426 				    btrfs_extent_data_ref_offset(leaf, ref));
427 }
428 
429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 				 struct btrfs_extent_data_ref *ref,
431 				 u64 root_objectid, u64 owner, u64 offset)
432 {
433 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
436 		return 0;
437 	return 1;
438 }
439 
440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 					   struct btrfs_path *path,
442 					   u64 bytenr, u64 parent,
443 					   u64 root_objectid,
444 					   u64 owner, u64 offset)
445 {
446 	struct btrfs_root *root = trans->fs_info->extent_root;
447 	struct btrfs_key key;
448 	struct btrfs_extent_data_ref *ref;
449 	struct extent_buffer *leaf;
450 	u32 nritems;
451 	int ret;
452 	int recow;
453 	int err = -ENOENT;
454 
455 	key.objectid = bytenr;
456 	if (parent) {
457 		key.type = BTRFS_SHARED_DATA_REF_KEY;
458 		key.offset = parent;
459 	} else {
460 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 		key.offset = hash_extent_data_ref(root_objectid,
462 						  owner, offset);
463 	}
464 again:
465 	recow = 0;
466 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
467 	if (ret < 0) {
468 		err = ret;
469 		goto fail;
470 	}
471 
472 	if (parent) {
473 		if (!ret)
474 			return 0;
475 		goto fail;
476 	}
477 
478 	leaf = path->nodes[0];
479 	nritems = btrfs_header_nritems(leaf);
480 	while (1) {
481 		if (path->slots[0] >= nritems) {
482 			ret = btrfs_next_leaf(root, path);
483 			if (ret < 0)
484 				err = ret;
485 			if (ret)
486 				goto fail;
487 
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			recow = 1;
491 		}
492 
493 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 		if (key.objectid != bytenr ||
495 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
496 			goto fail;
497 
498 		ref = btrfs_item_ptr(leaf, path->slots[0],
499 				     struct btrfs_extent_data_ref);
500 
501 		if (match_extent_data_ref(leaf, ref, root_objectid,
502 					  owner, offset)) {
503 			if (recow) {
504 				btrfs_release_path(path);
505 				goto again;
506 			}
507 			err = 0;
508 			break;
509 		}
510 		path->slots[0]++;
511 	}
512 fail:
513 	return err;
514 }
515 
516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 					   struct btrfs_path *path,
518 					   u64 bytenr, u64 parent,
519 					   u64 root_objectid, u64 owner,
520 					   u64 offset, int refs_to_add)
521 {
522 	struct btrfs_root *root = trans->fs_info->extent_root;
523 	struct btrfs_key key;
524 	struct extent_buffer *leaf;
525 	u32 size;
526 	u32 num_refs;
527 	int ret;
528 
529 	key.objectid = bytenr;
530 	if (parent) {
531 		key.type = BTRFS_SHARED_DATA_REF_KEY;
532 		key.offset = parent;
533 		size = sizeof(struct btrfs_shared_data_ref);
534 	} else {
535 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 		key.offset = hash_extent_data_ref(root_objectid,
537 						  owner, offset);
538 		size = sizeof(struct btrfs_extent_data_ref);
539 	}
540 
541 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 	if (ret && ret != -EEXIST)
543 		goto fail;
544 
545 	leaf = path->nodes[0];
546 	if (parent) {
547 		struct btrfs_shared_data_ref *ref;
548 		ref = btrfs_item_ptr(leaf, path->slots[0],
549 				     struct btrfs_shared_data_ref);
550 		if (ret == 0) {
551 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
552 		} else {
553 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 			num_refs += refs_to_add;
555 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
556 		}
557 	} else {
558 		struct btrfs_extent_data_ref *ref;
559 		while (ret == -EEXIST) {
560 			ref = btrfs_item_ptr(leaf, path->slots[0],
561 					     struct btrfs_extent_data_ref);
562 			if (match_extent_data_ref(leaf, ref, root_objectid,
563 						  owner, offset))
564 				break;
565 			btrfs_release_path(path);
566 			key.offset++;
567 			ret = btrfs_insert_empty_item(trans, root, path, &key,
568 						      size);
569 			if (ret && ret != -EEXIST)
570 				goto fail;
571 
572 			leaf = path->nodes[0];
573 		}
574 		ref = btrfs_item_ptr(leaf, path->slots[0],
575 				     struct btrfs_extent_data_ref);
576 		if (ret == 0) {
577 			btrfs_set_extent_data_ref_root(leaf, ref,
578 						       root_objectid);
579 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
582 		} else {
583 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 			num_refs += refs_to_add;
585 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
586 		}
587 	}
588 	btrfs_mark_buffer_dirty(leaf);
589 	ret = 0;
590 fail:
591 	btrfs_release_path(path);
592 	return ret;
593 }
594 
595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 					   struct btrfs_path *path,
597 					   int refs_to_drop, int *last_ref)
598 {
599 	struct btrfs_key key;
600 	struct btrfs_extent_data_ref *ref1 = NULL;
601 	struct btrfs_shared_data_ref *ref2 = NULL;
602 	struct extent_buffer *leaf;
603 	u32 num_refs = 0;
604 	int ret = 0;
605 
606 	leaf = path->nodes[0];
607 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608 
609 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
610 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
611 				      struct btrfs_extent_data_ref);
612 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
613 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
614 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_shared_data_ref);
616 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
617 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
618 		btrfs_print_v0_err(trans->fs_info);
619 		btrfs_abort_transaction(trans, -EINVAL);
620 		return -EINVAL;
621 	} else {
622 		BUG();
623 	}
624 
625 	BUG_ON(num_refs < refs_to_drop);
626 	num_refs -= refs_to_drop;
627 
628 	if (num_refs == 0) {
629 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
630 		*last_ref = 1;
631 	} else {
632 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 		btrfs_mark_buffer_dirty(leaf);
637 	}
638 	return ret;
639 }
640 
641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 					  struct btrfs_extent_inline_ref *iref)
643 {
644 	struct btrfs_key key;
645 	struct extent_buffer *leaf;
646 	struct btrfs_extent_data_ref *ref1;
647 	struct btrfs_shared_data_ref *ref2;
648 	u32 num_refs = 0;
649 	int type;
650 
651 	leaf = path->nodes[0];
652 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
653 
654 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
655 	if (iref) {
656 		/*
657 		 * If type is invalid, we should have bailed out earlier than
658 		 * this call.
659 		 */
660 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
661 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
662 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
663 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
664 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
665 		} else {
666 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
667 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
668 		}
669 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
670 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
671 				      struct btrfs_extent_data_ref);
672 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
673 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
674 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
675 				      struct btrfs_shared_data_ref);
676 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 	} else {
678 		WARN_ON(1);
679 	}
680 	return num_refs;
681 }
682 
683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
684 					  struct btrfs_path *path,
685 					  u64 bytenr, u64 parent,
686 					  u64 root_objectid)
687 {
688 	struct btrfs_root *root = trans->fs_info->extent_root;
689 	struct btrfs_key key;
690 	int ret;
691 
692 	key.objectid = bytenr;
693 	if (parent) {
694 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
695 		key.offset = parent;
696 	} else {
697 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
698 		key.offset = root_objectid;
699 	}
700 
701 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
702 	if (ret > 0)
703 		ret = -ENOENT;
704 	return ret;
705 }
706 
707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
708 					  struct btrfs_path *path,
709 					  u64 bytenr, u64 parent,
710 					  u64 root_objectid)
711 {
712 	struct btrfs_key key;
713 	int ret;
714 
715 	key.objectid = bytenr;
716 	if (parent) {
717 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
718 		key.offset = parent;
719 	} else {
720 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 		key.offset = root_objectid;
722 	}
723 
724 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
725 				      path, &key, 0);
726 	btrfs_release_path(path);
727 	return ret;
728 }
729 
730 static inline int extent_ref_type(u64 parent, u64 owner)
731 {
732 	int type;
733 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
734 		if (parent > 0)
735 			type = BTRFS_SHARED_BLOCK_REF_KEY;
736 		else
737 			type = BTRFS_TREE_BLOCK_REF_KEY;
738 	} else {
739 		if (parent > 0)
740 			type = BTRFS_SHARED_DATA_REF_KEY;
741 		else
742 			type = BTRFS_EXTENT_DATA_REF_KEY;
743 	}
744 	return type;
745 }
746 
747 static int find_next_key(struct btrfs_path *path, int level,
748 			 struct btrfs_key *key)
749 
750 {
751 	for (; level < BTRFS_MAX_LEVEL; level++) {
752 		if (!path->nodes[level])
753 			break;
754 		if (path->slots[level] + 1 >=
755 		    btrfs_header_nritems(path->nodes[level]))
756 			continue;
757 		if (level == 0)
758 			btrfs_item_key_to_cpu(path->nodes[level], key,
759 					      path->slots[level] + 1);
760 		else
761 			btrfs_node_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		return 0;
764 	}
765 	return 1;
766 }
767 
768 /*
769  * look for inline back ref. if back ref is found, *ref_ret is set
770  * to the address of inline back ref, and 0 is returned.
771  *
772  * if back ref isn't found, *ref_ret is set to the address where it
773  * should be inserted, and -ENOENT is returned.
774  *
775  * if insert is true and there are too many inline back refs, the path
776  * points to the extent item, and -EAGAIN is returned.
777  *
778  * NOTE: inline back refs are ordered in the same way that back ref
779  *	 items in the tree are ordered.
780  */
781 static noinline_for_stack
782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
783 				 struct btrfs_path *path,
784 				 struct btrfs_extent_inline_ref **ref_ret,
785 				 u64 bytenr, u64 num_bytes,
786 				 u64 parent, u64 root_objectid,
787 				 u64 owner, u64 offset, int insert)
788 {
789 	struct btrfs_fs_info *fs_info = trans->fs_info;
790 	struct btrfs_root *root = fs_info->extent_root;
791 	struct btrfs_key key;
792 	struct extent_buffer *leaf;
793 	struct btrfs_extent_item *ei;
794 	struct btrfs_extent_inline_ref *iref;
795 	u64 flags;
796 	u64 item_size;
797 	unsigned long ptr;
798 	unsigned long end;
799 	int extra_size;
800 	int type;
801 	int want;
802 	int ret;
803 	int err = 0;
804 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
805 	int needed;
806 
807 	key.objectid = bytenr;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	key.offset = num_bytes;
810 
811 	want = extent_ref_type(parent, owner);
812 	if (insert) {
813 		extra_size = btrfs_extent_inline_ref_size(want);
814 		path->search_for_extension = 1;
815 		path->keep_locks = 1;
816 	} else
817 		extra_size = -1;
818 
819 	/*
820 	 * Owner is our level, so we can just add one to get the level for the
821 	 * block we are interested in.
822 	 */
823 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
824 		key.type = BTRFS_METADATA_ITEM_KEY;
825 		key.offset = owner;
826 	}
827 
828 again:
829 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
830 	if (ret < 0) {
831 		err = ret;
832 		goto out;
833 	}
834 
835 	/*
836 	 * We may be a newly converted file system which still has the old fat
837 	 * extent entries for metadata, so try and see if we have one of those.
838 	 */
839 	if (ret > 0 && skinny_metadata) {
840 		skinny_metadata = false;
841 		if (path->slots[0]) {
842 			path->slots[0]--;
843 			btrfs_item_key_to_cpu(path->nodes[0], &key,
844 					      path->slots[0]);
845 			if (key.objectid == bytenr &&
846 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
847 			    key.offset == num_bytes)
848 				ret = 0;
849 		}
850 		if (ret) {
851 			key.objectid = bytenr;
852 			key.type = BTRFS_EXTENT_ITEM_KEY;
853 			key.offset = num_bytes;
854 			btrfs_release_path(path);
855 			goto again;
856 		}
857 	}
858 
859 	if (ret && !insert) {
860 		err = -ENOENT;
861 		goto out;
862 	} else if (WARN_ON(ret)) {
863 		err = -EIO;
864 		goto out;
865 	}
866 
867 	leaf = path->nodes[0];
868 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 	if (unlikely(item_size < sizeof(*ei))) {
870 		err = -EINVAL;
871 		btrfs_print_v0_err(fs_info);
872 		btrfs_abort_transaction(trans, err);
873 		goto out;
874 	}
875 
876 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
877 	flags = btrfs_extent_flags(leaf, ei);
878 
879 	ptr = (unsigned long)(ei + 1);
880 	end = (unsigned long)ei + item_size;
881 
882 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
883 		ptr += sizeof(struct btrfs_tree_block_info);
884 		BUG_ON(ptr > end);
885 	}
886 
887 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
888 		needed = BTRFS_REF_TYPE_DATA;
889 	else
890 		needed = BTRFS_REF_TYPE_BLOCK;
891 
892 	err = -ENOENT;
893 	while (1) {
894 		if (ptr >= end) {
895 			WARN_ON(ptr > end);
896 			break;
897 		}
898 		iref = (struct btrfs_extent_inline_ref *)ptr;
899 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
900 		if (type == BTRFS_REF_TYPE_INVALID) {
901 			err = -EUCLEAN;
902 			goto out;
903 		}
904 
905 		if (want < type)
906 			break;
907 		if (want > type) {
908 			ptr += btrfs_extent_inline_ref_size(type);
909 			continue;
910 		}
911 
912 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
913 			struct btrfs_extent_data_ref *dref;
914 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
915 			if (match_extent_data_ref(leaf, dref, root_objectid,
916 						  owner, offset)) {
917 				err = 0;
918 				break;
919 			}
920 			if (hash_extent_data_ref_item(leaf, dref) <
921 			    hash_extent_data_ref(root_objectid, owner, offset))
922 				break;
923 		} else {
924 			u64 ref_offset;
925 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
926 			if (parent > 0) {
927 				if (parent == ref_offset) {
928 					err = 0;
929 					break;
930 				}
931 				if (ref_offset < parent)
932 					break;
933 			} else {
934 				if (root_objectid == ref_offset) {
935 					err = 0;
936 					break;
937 				}
938 				if (ref_offset < root_objectid)
939 					break;
940 			}
941 		}
942 		ptr += btrfs_extent_inline_ref_size(type);
943 	}
944 	if (err == -ENOENT && insert) {
945 		if (item_size + extra_size >=
946 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
947 			err = -EAGAIN;
948 			goto out;
949 		}
950 		/*
951 		 * To add new inline back ref, we have to make sure
952 		 * there is no corresponding back ref item.
953 		 * For simplicity, we just do not add new inline back
954 		 * ref if there is any kind of item for this block
955 		 */
956 		if (find_next_key(path, 0, &key) == 0 &&
957 		    key.objectid == bytenr &&
958 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
959 			err = -EAGAIN;
960 			goto out;
961 		}
962 	}
963 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
964 out:
965 	if (insert) {
966 		path->keep_locks = 0;
967 		path->search_for_extension = 0;
968 		btrfs_unlock_up_safe(path, 1);
969 	}
970 	return err;
971 }
972 
973 /*
974  * helper to add new inline back ref
975  */
976 static noinline_for_stack
977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
978 				 struct btrfs_path *path,
979 				 struct btrfs_extent_inline_ref *iref,
980 				 u64 parent, u64 root_objectid,
981 				 u64 owner, u64 offset, int refs_to_add,
982 				 struct btrfs_delayed_extent_op *extent_op)
983 {
984 	struct extent_buffer *leaf;
985 	struct btrfs_extent_item *ei;
986 	unsigned long ptr;
987 	unsigned long end;
988 	unsigned long item_offset;
989 	u64 refs;
990 	int size;
991 	int type;
992 
993 	leaf = path->nodes[0];
994 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
995 	item_offset = (unsigned long)iref - (unsigned long)ei;
996 
997 	type = extent_ref_type(parent, owner);
998 	size = btrfs_extent_inline_ref_size(type);
999 
1000 	btrfs_extend_item(path, size);
1001 
1002 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 	refs = btrfs_extent_refs(leaf, ei);
1004 	refs += refs_to_add;
1005 	btrfs_set_extent_refs(leaf, ei, refs);
1006 	if (extent_op)
1007 		__run_delayed_extent_op(extent_op, leaf, ei);
1008 
1009 	ptr = (unsigned long)ei + item_offset;
1010 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1011 	if (ptr < end - size)
1012 		memmove_extent_buffer(leaf, ptr + size, ptr,
1013 				      end - size - ptr);
1014 
1015 	iref = (struct btrfs_extent_inline_ref *)ptr;
1016 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1017 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1018 		struct btrfs_extent_data_ref *dref;
1019 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1021 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1022 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1023 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1024 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1025 		struct btrfs_shared_data_ref *sref;
1026 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1028 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1029 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1033 	}
1034 	btrfs_mark_buffer_dirty(leaf);
1035 }
1036 
1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1038 				 struct btrfs_path *path,
1039 				 struct btrfs_extent_inline_ref **ref_ret,
1040 				 u64 bytenr, u64 num_bytes, u64 parent,
1041 				 u64 root_objectid, u64 owner, u64 offset)
1042 {
1043 	int ret;
1044 
1045 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1046 					   num_bytes, parent, root_objectid,
1047 					   owner, offset, 0);
1048 	if (ret != -ENOENT)
1049 		return ret;
1050 
1051 	btrfs_release_path(path);
1052 	*ref_ret = NULL;
1053 
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1056 					    root_objectid);
1057 	} else {
1058 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1059 					     root_objectid, owner, offset);
1060 	}
1061 	return ret;
1062 }
1063 
1064 /*
1065  * helper to update/remove inline back ref
1066  */
1067 static noinline_for_stack
1068 void update_inline_extent_backref(struct btrfs_path *path,
1069 				  struct btrfs_extent_inline_ref *iref,
1070 				  int refs_to_mod,
1071 				  struct btrfs_delayed_extent_op *extent_op,
1072 				  int *last_ref)
1073 {
1074 	struct extent_buffer *leaf = path->nodes[0];
1075 	struct btrfs_extent_item *ei;
1076 	struct btrfs_extent_data_ref *dref = NULL;
1077 	struct btrfs_shared_data_ref *sref = NULL;
1078 	unsigned long ptr;
1079 	unsigned long end;
1080 	u32 item_size;
1081 	int size;
1082 	int type;
1083 	u64 refs;
1084 
1085 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1086 	refs = btrfs_extent_refs(leaf, ei);
1087 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1088 	refs += refs_to_mod;
1089 	btrfs_set_extent_refs(leaf, ei, refs);
1090 	if (extent_op)
1091 		__run_delayed_extent_op(extent_op, leaf, ei);
1092 
1093 	/*
1094 	 * If type is invalid, we should have bailed out after
1095 	 * lookup_inline_extent_backref().
1096 	 */
1097 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1098 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1099 
1100 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1101 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1102 		refs = btrfs_extent_data_ref_count(leaf, dref);
1103 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1104 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1105 		refs = btrfs_shared_data_ref_count(leaf, sref);
1106 	} else {
1107 		refs = 1;
1108 		BUG_ON(refs_to_mod != -1);
1109 	}
1110 
1111 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1112 	refs += refs_to_mod;
1113 
1114 	if (refs > 0) {
1115 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1116 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1117 		else
1118 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1119 	} else {
1120 		*last_ref = 1;
1121 		size =  btrfs_extent_inline_ref_size(type);
1122 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1123 		ptr = (unsigned long)iref;
1124 		end = (unsigned long)ei + item_size;
1125 		if (ptr + size < end)
1126 			memmove_extent_buffer(leaf, ptr, ptr + size,
1127 					      end - ptr - size);
1128 		item_size -= size;
1129 		btrfs_truncate_item(path, item_size, 1);
1130 	}
1131 	btrfs_mark_buffer_dirty(leaf);
1132 }
1133 
1134 static noinline_for_stack
1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1136 				 struct btrfs_path *path,
1137 				 u64 bytenr, u64 num_bytes, u64 parent,
1138 				 u64 root_objectid, u64 owner,
1139 				 u64 offset, int refs_to_add,
1140 				 struct btrfs_delayed_extent_op *extent_op)
1141 {
1142 	struct btrfs_extent_inline_ref *iref;
1143 	int ret;
1144 
1145 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1146 					   num_bytes, parent, root_objectid,
1147 					   owner, offset, 1);
1148 	if (ret == 0) {
1149 		/*
1150 		 * We're adding refs to a tree block we already own, this
1151 		 * should not happen at all.
1152 		 */
1153 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1154 			btrfs_crit(trans->fs_info,
1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1156 				   bytenr, num_bytes, root_objectid);
1157 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1158 				WARN_ON(1);
1159 				btrfs_crit(trans->fs_info,
1160 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1161 				btrfs_print_leaf(path->nodes[0]);
1162 			}
1163 			return -EUCLEAN;
1164 		}
1165 		update_inline_extent_backref(path, iref, refs_to_add,
1166 					     extent_op, NULL);
1167 	} else if (ret == -ENOENT) {
1168 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1169 					    root_objectid, owner, offset,
1170 					    refs_to_add, extent_op);
1171 		ret = 0;
1172 	}
1173 	return ret;
1174 }
1175 
1176 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1177 				 struct btrfs_path *path,
1178 				 struct btrfs_extent_inline_ref *iref,
1179 				 int refs_to_drop, int is_data, int *last_ref)
1180 {
1181 	int ret = 0;
1182 
1183 	BUG_ON(!is_data && refs_to_drop != 1);
1184 	if (iref) {
1185 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1186 					     last_ref);
1187 	} else if (is_data) {
1188 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1189 					     last_ref);
1190 	} else {
1191 		*last_ref = 1;
1192 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1193 	}
1194 	return ret;
1195 }
1196 
1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1198 			       u64 *discarded_bytes)
1199 {
1200 	int j, ret = 0;
1201 	u64 bytes_left, end;
1202 	u64 aligned_start = ALIGN(start, 1 << 9);
1203 
1204 	if (WARN_ON(start != aligned_start)) {
1205 		len -= aligned_start - start;
1206 		len = round_down(len, 1 << 9);
1207 		start = aligned_start;
1208 	}
1209 
1210 	*discarded_bytes = 0;
1211 
1212 	if (!len)
1213 		return 0;
1214 
1215 	end = start + len;
1216 	bytes_left = len;
1217 
1218 	/* Skip any superblocks on this device. */
1219 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1220 		u64 sb_start = btrfs_sb_offset(j);
1221 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1222 		u64 size = sb_start - start;
1223 
1224 		if (!in_range(sb_start, start, bytes_left) &&
1225 		    !in_range(sb_end, start, bytes_left) &&
1226 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1227 			continue;
1228 
1229 		/*
1230 		 * Superblock spans beginning of range.  Adjust start and
1231 		 * try again.
1232 		 */
1233 		if (sb_start <= start) {
1234 			start += sb_end - start;
1235 			if (start > end) {
1236 				bytes_left = 0;
1237 				break;
1238 			}
1239 			bytes_left = end - start;
1240 			continue;
1241 		}
1242 
1243 		if (size) {
1244 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1245 						   GFP_NOFS, 0);
1246 			if (!ret)
1247 				*discarded_bytes += size;
1248 			else if (ret != -EOPNOTSUPP)
1249 				return ret;
1250 		}
1251 
1252 		start = sb_end;
1253 		if (start > end) {
1254 			bytes_left = 0;
1255 			break;
1256 		}
1257 		bytes_left = end - start;
1258 	}
1259 
1260 	if (bytes_left) {
1261 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1262 					   GFP_NOFS, 0);
1263 		if (!ret)
1264 			*discarded_bytes += bytes_left;
1265 	}
1266 	return ret;
1267 }
1268 
1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes)
1270 {
1271 	struct btrfs_device *dev = stripe->dev;
1272 	struct btrfs_fs_info *fs_info = dev->fs_info;
1273 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1274 	u64 phys = stripe->physical;
1275 	u64 len = stripe->length;
1276 	u64 discarded = 0;
1277 	int ret = 0;
1278 
1279 	/* Zone reset on a zoned filesystem */
1280 	if (btrfs_can_zone_reset(dev, phys, len)) {
1281 		u64 src_disc;
1282 
1283 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1284 		if (ret)
1285 			goto out;
1286 
1287 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1288 		    dev != dev_replace->srcdev)
1289 			goto out;
1290 
1291 		src_disc = discarded;
1292 
1293 		/* Send to replace target as well */
1294 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1295 					      &discarded);
1296 		discarded += src_disc;
1297 	} else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1298 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1299 	} else {
1300 		ret = 0;
1301 		*bytes = 0;
1302 	}
1303 
1304 out:
1305 	*bytes = discarded;
1306 	return ret;
1307 }
1308 
1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1310 			 u64 num_bytes, u64 *actual_bytes)
1311 {
1312 	int ret = 0;
1313 	u64 discarded_bytes = 0;
1314 	u64 end = bytenr + num_bytes;
1315 	u64 cur = bytenr;
1316 	struct btrfs_bio *bbio = NULL;
1317 
1318 
1319 	/*
1320 	 * Avoid races with device replace and make sure our bbio has devices
1321 	 * associated to its stripes that don't go away while we are discarding.
1322 	 */
1323 	btrfs_bio_counter_inc_blocked(fs_info);
1324 	while (cur < end) {
1325 		struct btrfs_bio_stripe *stripe;
1326 		int i;
1327 
1328 		num_bytes = end - cur;
1329 		/* Tell the block device(s) that the sectors can be discarded */
1330 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1331 				      &num_bytes, &bbio, 0);
1332 		/*
1333 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1334 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1335 		 * thus we can't continue anyway.
1336 		 */
1337 		if (ret < 0)
1338 			goto out;
1339 
1340 		stripe = bbio->stripes;
1341 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1342 			u64 bytes;
1343 
1344 			if (!stripe->dev->bdev) {
1345 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1346 				continue;
1347 			}
1348 
1349 			ret = do_discard_extent(stripe, &bytes);
1350 			if (!ret) {
1351 				discarded_bytes += bytes;
1352 			} else if (ret != -EOPNOTSUPP) {
1353 				/*
1354 				 * Logic errors or -ENOMEM, or -EIO, but
1355 				 * unlikely to happen.
1356 				 *
1357 				 * And since there are two loops, explicitly
1358 				 * go to out to avoid confusion.
1359 				 */
1360 				btrfs_put_bbio(bbio);
1361 				goto out;
1362 			}
1363 
1364 			/*
1365 			 * Just in case we get back EOPNOTSUPP for some reason,
1366 			 * just ignore the return value so we don't screw up
1367 			 * people calling discard_extent.
1368 			 */
1369 			ret = 0;
1370 		}
1371 		btrfs_put_bbio(bbio);
1372 		cur += num_bytes;
1373 	}
1374 out:
1375 	btrfs_bio_counter_dec(fs_info);
1376 
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 
1380 
1381 	if (ret == -EOPNOTSUPP)
1382 		ret = 0;
1383 	return ret;
1384 }
1385 
1386 /* Can return -ENOMEM */
1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1388 			 struct btrfs_ref *generic_ref)
1389 {
1390 	struct btrfs_fs_info *fs_info = trans->fs_info;
1391 	int ret;
1392 
1393 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1394 	       generic_ref->action);
1395 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1396 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1397 
1398 	if (generic_ref->type == BTRFS_REF_METADATA)
1399 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1400 	else
1401 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1402 
1403 	btrfs_ref_tree_mod(fs_info, generic_ref);
1404 
1405 	return ret;
1406 }
1407 
1408 /*
1409  * __btrfs_inc_extent_ref - insert backreference for a given extent
1410  *
1411  * The counterpart is in __btrfs_free_extent(), with examples and more details
1412  * how it works.
1413  *
1414  * @trans:	    Handle of transaction
1415  *
1416  * @node:	    The delayed ref node used to get the bytenr/length for
1417  *		    extent whose references are incremented.
1418  *
1419  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1420  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1421  *		    bytenr of the parent block. Since new extents are always
1422  *		    created with indirect references, this will only be the case
1423  *		    when relocating a shared extent. In that case, root_objectid
1424  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1425  *		    be 0
1426  *
1427  * @root_objectid:  The id of the root where this modification has originated,
1428  *		    this can be either one of the well-known metadata trees or
1429  *		    the subvolume id which references this extent.
1430  *
1431  * @owner:	    For data extents it is the inode number of the owning file.
1432  *		    For metadata extents this parameter holds the level in the
1433  *		    tree of the extent.
1434  *
1435  * @offset:	    For metadata extents the offset is ignored and is currently
1436  *		    always passed as 0. For data extents it is the fileoffset
1437  *		    this extent belongs to.
1438  *
1439  * @refs_to_add     Number of references to add
1440  *
1441  * @extent_op       Pointer to a structure, holding information necessary when
1442  *                  updating a tree block's flags
1443  *
1444  */
1445 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1446 				  struct btrfs_delayed_ref_node *node,
1447 				  u64 parent, u64 root_objectid,
1448 				  u64 owner, u64 offset, int refs_to_add,
1449 				  struct btrfs_delayed_extent_op *extent_op)
1450 {
1451 	struct btrfs_path *path;
1452 	struct extent_buffer *leaf;
1453 	struct btrfs_extent_item *item;
1454 	struct btrfs_key key;
1455 	u64 bytenr = node->bytenr;
1456 	u64 num_bytes = node->num_bytes;
1457 	u64 refs;
1458 	int ret;
1459 
1460 	path = btrfs_alloc_path();
1461 	if (!path)
1462 		return -ENOMEM;
1463 
1464 	/* this will setup the path even if it fails to insert the back ref */
1465 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1466 					   parent, root_objectid, owner,
1467 					   offset, refs_to_add, extent_op);
1468 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1469 		goto out;
1470 
1471 	/*
1472 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1473 	 * inline extent ref, so just update the reference count and add a
1474 	 * normal backref.
1475 	 */
1476 	leaf = path->nodes[0];
1477 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1478 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1479 	refs = btrfs_extent_refs(leaf, item);
1480 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1481 	if (extent_op)
1482 		__run_delayed_extent_op(extent_op, leaf, item);
1483 
1484 	btrfs_mark_buffer_dirty(leaf);
1485 	btrfs_release_path(path);
1486 
1487 	/* now insert the actual backref */
1488 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1489 		BUG_ON(refs_to_add != 1);
1490 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1491 					    root_objectid);
1492 	} else {
1493 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1494 					     root_objectid, owner, offset,
1495 					     refs_to_add);
1496 	}
1497 	if (ret)
1498 		btrfs_abort_transaction(trans, ret);
1499 out:
1500 	btrfs_free_path(path);
1501 	return ret;
1502 }
1503 
1504 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1505 				struct btrfs_delayed_ref_node *node,
1506 				struct btrfs_delayed_extent_op *extent_op,
1507 				int insert_reserved)
1508 {
1509 	int ret = 0;
1510 	struct btrfs_delayed_data_ref *ref;
1511 	struct btrfs_key ins;
1512 	u64 parent = 0;
1513 	u64 ref_root = 0;
1514 	u64 flags = 0;
1515 
1516 	ins.objectid = node->bytenr;
1517 	ins.offset = node->num_bytes;
1518 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1519 
1520 	ref = btrfs_delayed_node_to_data_ref(node);
1521 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1522 
1523 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1524 		parent = ref->parent;
1525 	ref_root = ref->root;
1526 
1527 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1528 		if (extent_op)
1529 			flags |= extent_op->flags_to_set;
1530 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1531 						 flags, ref->objectid,
1532 						 ref->offset, &ins,
1533 						 node->ref_mod);
1534 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1535 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1536 					     ref->objectid, ref->offset,
1537 					     node->ref_mod, extent_op);
1538 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1539 		ret = __btrfs_free_extent(trans, node, parent,
1540 					  ref_root, ref->objectid,
1541 					  ref->offset, node->ref_mod,
1542 					  extent_op);
1543 	} else {
1544 		BUG();
1545 	}
1546 	return ret;
1547 }
1548 
1549 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1550 				    struct extent_buffer *leaf,
1551 				    struct btrfs_extent_item *ei)
1552 {
1553 	u64 flags = btrfs_extent_flags(leaf, ei);
1554 	if (extent_op->update_flags) {
1555 		flags |= extent_op->flags_to_set;
1556 		btrfs_set_extent_flags(leaf, ei, flags);
1557 	}
1558 
1559 	if (extent_op->update_key) {
1560 		struct btrfs_tree_block_info *bi;
1561 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1562 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1563 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1564 	}
1565 }
1566 
1567 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1568 				 struct btrfs_delayed_ref_head *head,
1569 				 struct btrfs_delayed_extent_op *extent_op)
1570 {
1571 	struct btrfs_fs_info *fs_info = trans->fs_info;
1572 	struct btrfs_key key;
1573 	struct btrfs_path *path;
1574 	struct btrfs_extent_item *ei;
1575 	struct extent_buffer *leaf;
1576 	u32 item_size;
1577 	int ret;
1578 	int err = 0;
1579 	int metadata = !extent_op->is_data;
1580 
1581 	if (TRANS_ABORTED(trans))
1582 		return 0;
1583 
1584 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1585 		metadata = 0;
1586 
1587 	path = btrfs_alloc_path();
1588 	if (!path)
1589 		return -ENOMEM;
1590 
1591 	key.objectid = head->bytenr;
1592 
1593 	if (metadata) {
1594 		key.type = BTRFS_METADATA_ITEM_KEY;
1595 		key.offset = extent_op->level;
1596 	} else {
1597 		key.type = BTRFS_EXTENT_ITEM_KEY;
1598 		key.offset = head->num_bytes;
1599 	}
1600 
1601 again:
1602 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1603 	if (ret < 0) {
1604 		err = ret;
1605 		goto out;
1606 	}
1607 	if (ret > 0) {
1608 		if (metadata) {
1609 			if (path->slots[0] > 0) {
1610 				path->slots[0]--;
1611 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1612 						      path->slots[0]);
1613 				if (key.objectid == head->bytenr &&
1614 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1615 				    key.offset == head->num_bytes)
1616 					ret = 0;
1617 			}
1618 			if (ret > 0) {
1619 				btrfs_release_path(path);
1620 				metadata = 0;
1621 
1622 				key.objectid = head->bytenr;
1623 				key.offset = head->num_bytes;
1624 				key.type = BTRFS_EXTENT_ITEM_KEY;
1625 				goto again;
1626 			}
1627 		} else {
1628 			err = -EIO;
1629 			goto out;
1630 		}
1631 	}
1632 
1633 	leaf = path->nodes[0];
1634 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1635 
1636 	if (unlikely(item_size < sizeof(*ei))) {
1637 		err = -EINVAL;
1638 		btrfs_print_v0_err(fs_info);
1639 		btrfs_abort_transaction(trans, err);
1640 		goto out;
1641 	}
1642 
1643 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1644 	__run_delayed_extent_op(extent_op, leaf, ei);
1645 
1646 	btrfs_mark_buffer_dirty(leaf);
1647 out:
1648 	btrfs_free_path(path);
1649 	return err;
1650 }
1651 
1652 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1653 				struct btrfs_delayed_ref_node *node,
1654 				struct btrfs_delayed_extent_op *extent_op,
1655 				int insert_reserved)
1656 {
1657 	int ret = 0;
1658 	struct btrfs_delayed_tree_ref *ref;
1659 	u64 parent = 0;
1660 	u64 ref_root = 0;
1661 
1662 	ref = btrfs_delayed_node_to_tree_ref(node);
1663 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1664 
1665 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1666 		parent = ref->parent;
1667 	ref_root = ref->root;
1668 
1669 	if (node->ref_mod != 1) {
1670 		btrfs_err(trans->fs_info,
1671 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1672 			  node->bytenr, node->ref_mod, node->action, ref_root,
1673 			  parent);
1674 		return -EIO;
1675 	}
1676 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1677 		BUG_ON(!extent_op || !extent_op->update_flags);
1678 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1679 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1680 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1681 					     ref->level, 0, 1, extent_op);
1682 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1683 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1684 					  ref->level, 0, 1, extent_op);
1685 	} else {
1686 		BUG();
1687 	}
1688 	return ret;
1689 }
1690 
1691 /* helper function to actually process a single delayed ref entry */
1692 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1693 			       struct btrfs_delayed_ref_node *node,
1694 			       struct btrfs_delayed_extent_op *extent_op,
1695 			       int insert_reserved)
1696 {
1697 	int ret = 0;
1698 
1699 	if (TRANS_ABORTED(trans)) {
1700 		if (insert_reserved)
1701 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1702 		return 0;
1703 	}
1704 
1705 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1706 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1707 		ret = run_delayed_tree_ref(trans, node, extent_op,
1708 					   insert_reserved);
1709 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1710 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1711 		ret = run_delayed_data_ref(trans, node, extent_op,
1712 					   insert_reserved);
1713 	else
1714 		BUG();
1715 	if (ret && insert_reserved)
1716 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1717 	return ret;
1718 }
1719 
1720 static inline struct btrfs_delayed_ref_node *
1721 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1722 {
1723 	struct btrfs_delayed_ref_node *ref;
1724 
1725 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1726 		return NULL;
1727 
1728 	/*
1729 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1730 	 * This is to prevent a ref count from going down to zero, which deletes
1731 	 * the extent item from the extent tree, when there still are references
1732 	 * to add, which would fail because they would not find the extent item.
1733 	 */
1734 	if (!list_empty(&head->ref_add_list))
1735 		return list_first_entry(&head->ref_add_list,
1736 				struct btrfs_delayed_ref_node, add_list);
1737 
1738 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1739 		       struct btrfs_delayed_ref_node, ref_node);
1740 	ASSERT(list_empty(&ref->add_list));
1741 	return ref;
1742 }
1743 
1744 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1745 				      struct btrfs_delayed_ref_head *head)
1746 {
1747 	spin_lock(&delayed_refs->lock);
1748 	head->processing = 0;
1749 	delayed_refs->num_heads_ready++;
1750 	spin_unlock(&delayed_refs->lock);
1751 	btrfs_delayed_ref_unlock(head);
1752 }
1753 
1754 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1755 				struct btrfs_delayed_ref_head *head)
1756 {
1757 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1758 
1759 	if (!extent_op)
1760 		return NULL;
1761 
1762 	if (head->must_insert_reserved) {
1763 		head->extent_op = NULL;
1764 		btrfs_free_delayed_extent_op(extent_op);
1765 		return NULL;
1766 	}
1767 	return extent_op;
1768 }
1769 
1770 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1771 				     struct btrfs_delayed_ref_head *head)
1772 {
1773 	struct btrfs_delayed_extent_op *extent_op;
1774 	int ret;
1775 
1776 	extent_op = cleanup_extent_op(head);
1777 	if (!extent_op)
1778 		return 0;
1779 	head->extent_op = NULL;
1780 	spin_unlock(&head->lock);
1781 	ret = run_delayed_extent_op(trans, head, extent_op);
1782 	btrfs_free_delayed_extent_op(extent_op);
1783 	return ret ? ret : 1;
1784 }
1785 
1786 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1787 				  struct btrfs_delayed_ref_root *delayed_refs,
1788 				  struct btrfs_delayed_ref_head *head)
1789 {
1790 	int nr_items = 1;	/* Dropping this ref head update. */
1791 
1792 	/*
1793 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1794 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1795 	 */
1796 	if (head->total_ref_mod < 0 && head->is_data) {
1797 		spin_lock(&delayed_refs->lock);
1798 		delayed_refs->pending_csums -= head->num_bytes;
1799 		spin_unlock(&delayed_refs->lock);
1800 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1801 	}
1802 
1803 	/*
1804 	 * We were dropping refs, or had a new ref and dropped it, and thus must
1805 	 * adjust down our total_bytes_pinned, the space may or may not have
1806 	 * been pinned and so is accounted for properly in the pinned space by
1807 	 * now.
1808 	 */
1809 	if (head->total_ref_mod < 0 ||
1810 	    (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1811 		u64 flags = btrfs_ref_head_to_space_flags(head);
1812 
1813 		btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1814 	}
1815 
1816 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1817 }
1818 
1819 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1820 			    struct btrfs_delayed_ref_head *head)
1821 {
1822 
1823 	struct btrfs_fs_info *fs_info = trans->fs_info;
1824 	struct btrfs_delayed_ref_root *delayed_refs;
1825 	int ret;
1826 
1827 	delayed_refs = &trans->transaction->delayed_refs;
1828 
1829 	ret = run_and_cleanup_extent_op(trans, head);
1830 	if (ret < 0) {
1831 		unselect_delayed_ref_head(delayed_refs, head);
1832 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1833 		return ret;
1834 	} else if (ret) {
1835 		return ret;
1836 	}
1837 
1838 	/*
1839 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1840 	 * and then re-check to make sure nobody got added.
1841 	 */
1842 	spin_unlock(&head->lock);
1843 	spin_lock(&delayed_refs->lock);
1844 	spin_lock(&head->lock);
1845 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1846 		spin_unlock(&head->lock);
1847 		spin_unlock(&delayed_refs->lock);
1848 		return 1;
1849 	}
1850 	btrfs_delete_ref_head(delayed_refs, head);
1851 	spin_unlock(&head->lock);
1852 	spin_unlock(&delayed_refs->lock);
1853 
1854 	if (head->must_insert_reserved) {
1855 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1856 		if (head->is_data) {
1857 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1858 					      head->bytenr, head->num_bytes);
1859 		}
1860 	}
1861 
1862 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1863 
1864 	trace_run_delayed_ref_head(fs_info, head, 0);
1865 	btrfs_delayed_ref_unlock(head);
1866 	btrfs_put_delayed_ref_head(head);
1867 	return 0;
1868 }
1869 
1870 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1871 					struct btrfs_trans_handle *trans)
1872 {
1873 	struct btrfs_delayed_ref_root *delayed_refs =
1874 		&trans->transaction->delayed_refs;
1875 	struct btrfs_delayed_ref_head *head = NULL;
1876 	int ret;
1877 
1878 	spin_lock(&delayed_refs->lock);
1879 	head = btrfs_select_ref_head(delayed_refs);
1880 	if (!head) {
1881 		spin_unlock(&delayed_refs->lock);
1882 		return head;
1883 	}
1884 
1885 	/*
1886 	 * Grab the lock that says we are going to process all the refs for
1887 	 * this head
1888 	 */
1889 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1890 	spin_unlock(&delayed_refs->lock);
1891 
1892 	/*
1893 	 * We may have dropped the spin lock to get the head mutex lock, and
1894 	 * that might have given someone else time to free the head.  If that's
1895 	 * true, it has been removed from our list and we can move on.
1896 	 */
1897 	if (ret == -EAGAIN)
1898 		head = ERR_PTR(-EAGAIN);
1899 
1900 	return head;
1901 }
1902 
1903 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1904 				    struct btrfs_delayed_ref_head *locked_ref,
1905 				    unsigned long *run_refs)
1906 {
1907 	struct btrfs_fs_info *fs_info = trans->fs_info;
1908 	struct btrfs_delayed_ref_root *delayed_refs;
1909 	struct btrfs_delayed_extent_op *extent_op;
1910 	struct btrfs_delayed_ref_node *ref;
1911 	int must_insert_reserved = 0;
1912 	int ret;
1913 
1914 	delayed_refs = &trans->transaction->delayed_refs;
1915 
1916 	lockdep_assert_held(&locked_ref->mutex);
1917 	lockdep_assert_held(&locked_ref->lock);
1918 
1919 	while ((ref = select_delayed_ref(locked_ref))) {
1920 		if (ref->seq &&
1921 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1922 			spin_unlock(&locked_ref->lock);
1923 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1924 			return -EAGAIN;
1925 		}
1926 
1927 		(*run_refs)++;
1928 		ref->in_tree = 0;
1929 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1930 		RB_CLEAR_NODE(&ref->ref_node);
1931 		if (!list_empty(&ref->add_list))
1932 			list_del(&ref->add_list);
1933 		/*
1934 		 * When we play the delayed ref, also correct the ref_mod on
1935 		 * head
1936 		 */
1937 		switch (ref->action) {
1938 		case BTRFS_ADD_DELAYED_REF:
1939 		case BTRFS_ADD_DELAYED_EXTENT:
1940 			locked_ref->ref_mod -= ref->ref_mod;
1941 			break;
1942 		case BTRFS_DROP_DELAYED_REF:
1943 			locked_ref->ref_mod += ref->ref_mod;
1944 			break;
1945 		default:
1946 			WARN_ON(1);
1947 		}
1948 		atomic_dec(&delayed_refs->num_entries);
1949 
1950 		/*
1951 		 * Record the must_insert_reserved flag before we drop the
1952 		 * spin lock.
1953 		 */
1954 		must_insert_reserved = locked_ref->must_insert_reserved;
1955 		locked_ref->must_insert_reserved = 0;
1956 
1957 		extent_op = locked_ref->extent_op;
1958 		locked_ref->extent_op = NULL;
1959 		spin_unlock(&locked_ref->lock);
1960 
1961 		ret = run_one_delayed_ref(trans, ref, extent_op,
1962 					  must_insert_reserved);
1963 
1964 		btrfs_free_delayed_extent_op(extent_op);
1965 		if (ret) {
1966 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1967 			btrfs_put_delayed_ref(ref);
1968 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1969 				    ret);
1970 			return ret;
1971 		}
1972 
1973 		btrfs_put_delayed_ref(ref);
1974 		cond_resched();
1975 
1976 		spin_lock(&locked_ref->lock);
1977 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /*
1984  * Returns 0 on success or if called with an already aborted transaction.
1985  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1986  */
1987 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1988 					     unsigned long nr)
1989 {
1990 	struct btrfs_fs_info *fs_info = trans->fs_info;
1991 	struct btrfs_delayed_ref_root *delayed_refs;
1992 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1993 	ktime_t start = ktime_get();
1994 	int ret;
1995 	unsigned long count = 0;
1996 	unsigned long actual_count = 0;
1997 
1998 	delayed_refs = &trans->transaction->delayed_refs;
1999 	do {
2000 		if (!locked_ref) {
2001 			locked_ref = btrfs_obtain_ref_head(trans);
2002 			if (IS_ERR_OR_NULL(locked_ref)) {
2003 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2004 					continue;
2005 				} else {
2006 					break;
2007 				}
2008 			}
2009 			count++;
2010 		}
2011 		/*
2012 		 * We need to try and merge add/drops of the same ref since we
2013 		 * can run into issues with relocate dropping the implicit ref
2014 		 * and then it being added back again before the drop can
2015 		 * finish.  If we merged anything we need to re-loop so we can
2016 		 * get a good ref.
2017 		 * Or we can get node references of the same type that weren't
2018 		 * merged when created due to bumps in the tree mod seq, and
2019 		 * we need to merge them to prevent adding an inline extent
2020 		 * backref before dropping it (triggering a BUG_ON at
2021 		 * insert_inline_extent_backref()).
2022 		 */
2023 		spin_lock(&locked_ref->lock);
2024 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2025 
2026 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2027 						      &actual_count);
2028 		if (ret < 0 && ret != -EAGAIN) {
2029 			/*
2030 			 * Error, btrfs_run_delayed_refs_for_head already
2031 			 * unlocked everything so just bail out
2032 			 */
2033 			return ret;
2034 		} else if (!ret) {
2035 			/*
2036 			 * Success, perform the usual cleanup of a processed
2037 			 * head
2038 			 */
2039 			ret = cleanup_ref_head(trans, locked_ref);
2040 			if (ret > 0 ) {
2041 				/* We dropped our lock, we need to loop. */
2042 				ret = 0;
2043 				continue;
2044 			} else if (ret) {
2045 				return ret;
2046 			}
2047 		}
2048 
2049 		/*
2050 		 * Either success case or btrfs_run_delayed_refs_for_head
2051 		 * returned -EAGAIN, meaning we need to select another head
2052 		 */
2053 
2054 		locked_ref = NULL;
2055 		cond_resched();
2056 	} while ((nr != -1 && count < nr) || locked_ref);
2057 
2058 	/*
2059 	 * We don't want to include ref heads since we can have empty ref heads
2060 	 * and those will drastically skew our runtime down since we just do
2061 	 * accounting, no actual extent tree updates.
2062 	 */
2063 	if (actual_count > 0) {
2064 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2065 		u64 avg;
2066 
2067 		/*
2068 		 * We weigh the current average higher than our current runtime
2069 		 * to avoid large swings in the average.
2070 		 */
2071 		spin_lock(&delayed_refs->lock);
2072 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2073 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2074 		spin_unlock(&delayed_refs->lock);
2075 	}
2076 	return 0;
2077 }
2078 
2079 #ifdef SCRAMBLE_DELAYED_REFS
2080 /*
2081  * Normally delayed refs get processed in ascending bytenr order. This
2082  * correlates in most cases to the order added. To expose dependencies on this
2083  * order, we start to process the tree in the middle instead of the beginning
2084  */
2085 static u64 find_middle(struct rb_root *root)
2086 {
2087 	struct rb_node *n = root->rb_node;
2088 	struct btrfs_delayed_ref_node *entry;
2089 	int alt = 1;
2090 	u64 middle;
2091 	u64 first = 0, last = 0;
2092 
2093 	n = rb_first(root);
2094 	if (n) {
2095 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 		first = entry->bytenr;
2097 	}
2098 	n = rb_last(root);
2099 	if (n) {
2100 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101 		last = entry->bytenr;
2102 	}
2103 	n = root->rb_node;
2104 
2105 	while (n) {
2106 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2107 		WARN_ON(!entry->in_tree);
2108 
2109 		middle = entry->bytenr;
2110 
2111 		if (alt)
2112 			n = n->rb_left;
2113 		else
2114 			n = n->rb_right;
2115 
2116 		alt = 1 - alt;
2117 	}
2118 	return middle;
2119 }
2120 #endif
2121 
2122 /*
2123  * this starts processing the delayed reference count updates and
2124  * extent insertions we have queued up so far.  count can be
2125  * 0, which means to process everything in the tree at the start
2126  * of the run (but not newly added entries), or it can be some target
2127  * number you'd like to process.
2128  *
2129  * Returns 0 on success or if called with an aborted transaction
2130  * Returns <0 on error and aborts the transaction
2131  */
2132 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2133 			   unsigned long count)
2134 {
2135 	struct btrfs_fs_info *fs_info = trans->fs_info;
2136 	struct rb_node *node;
2137 	struct btrfs_delayed_ref_root *delayed_refs;
2138 	struct btrfs_delayed_ref_head *head;
2139 	int ret;
2140 	int run_all = count == (unsigned long)-1;
2141 
2142 	/* We'll clean this up in btrfs_cleanup_transaction */
2143 	if (TRANS_ABORTED(trans))
2144 		return 0;
2145 
2146 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2147 		return 0;
2148 
2149 	delayed_refs = &trans->transaction->delayed_refs;
2150 	if (count == 0)
2151 		count = delayed_refs->num_heads_ready;
2152 
2153 again:
2154 #ifdef SCRAMBLE_DELAYED_REFS
2155 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2156 #endif
2157 	ret = __btrfs_run_delayed_refs(trans, count);
2158 	if (ret < 0) {
2159 		btrfs_abort_transaction(trans, ret);
2160 		return ret;
2161 	}
2162 
2163 	if (run_all) {
2164 		btrfs_create_pending_block_groups(trans);
2165 
2166 		spin_lock(&delayed_refs->lock);
2167 		node = rb_first_cached(&delayed_refs->href_root);
2168 		if (!node) {
2169 			spin_unlock(&delayed_refs->lock);
2170 			goto out;
2171 		}
2172 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2173 				href_node);
2174 		refcount_inc(&head->refs);
2175 		spin_unlock(&delayed_refs->lock);
2176 
2177 		/* Mutex was contended, block until it's released and retry. */
2178 		mutex_lock(&head->mutex);
2179 		mutex_unlock(&head->mutex);
2180 
2181 		btrfs_put_delayed_ref_head(head);
2182 		cond_resched();
2183 		goto again;
2184 	}
2185 out:
2186 	return 0;
2187 }
2188 
2189 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2190 				struct extent_buffer *eb, u64 flags,
2191 				int level, int is_data)
2192 {
2193 	struct btrfs_delayed_extent_op *extent_op;
2194 	int ret;
2195 
2196 	extent_op = btrfs_alloc_delayed_extent_op();
2197 	if (!extent_op)
2198 		return -ENOMEM;
2199 
2200 	extent_op->flags_to_set = flags;
2201 	extent_op->update_flags = true;
2202 	extent_op->update_key = false;
2203 	extent_op->is_data = is_data ? true : false;
2204 	extent_op->level = level;
2205 
2206 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2207 	if (ret)
2208 		btrfs_free_delayed_extent_op(extent_op);
2209 	return ret;
2210 }
2211 
2212 static noinline int check_delayed_ref(struct btrfs_root *root,
2213 				      struct btrfs_path *path,
2214 				      u64 objectid, u64 offset, u64 bytenr)
2215 {
2216 	struct btrfs_delayed_ref_head *head;
2217 	struct btrfs_delayed_ref_node *ref;
2218 	struct btrfs_delayed_data_ref *data_ref;
2219 	struct btrfs_delayed_ref_root *delayed_refs;
2220 	struct btrfs_transaction *cur_trans;
2221 	struct rb_node *node;
2222 	int ret = 0;
2223 
2224 	spin_lock(&root->fs_info->trans_lock);
2225 	cur_trans = root->fs_info->running_transaction;
2226 	if (cur_trans)
2227 		refcount_inc(&cur_trans->use_count);
2228 	spin_unlock(&root->fs_info->trans_lock);
2229 	if (!cur_trans)
2230 		return 0;
2231 
2232 	delayed_refs = &cur_trans->delayed_refs;
2233 	spin_lock(&delayed_refs->lock);
2234 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2235 	if (!head) {
2236 		spin_unlock(&delayed_refs->lock);
2237 		btrfs_put_transaction(cur_trans);
2238 		return 0;
2239 	}
2240 
2241 	if (!mutex_trylock(&head->mutex)) {
2242 		refcount_inc(&head->refs);
2243 		spin_unlock(&delayed_refs->lock);
2244 
2245 		btrfs_release_path(path);
2246 
2247 		/*
2248 		 * Mutex was contended, block until it's released and let
2249 		 * caller try again
2250 		 */
2251 		mutex_lock(&head->mutex);
2252 		mutex_unlock(&head->mutex);
2253 		btrfs_put_delayed_ref_head(head);
2254 		btrfs_put_transaction(cur_trans);
2255 		return -EAGAIN;
2256 	}
2257 	spin_unlock(&delayed_refs->lock);
2258 
2259 	spin_lock(&head->lock);
2260 	/*
2261 	 * XXX: We should replace this with a proper search function in the
2262 	 * future.
2263 	 */
2264 	for (node = rb_first_cached(&head->ref_tree); node;
2265 	     node = rb_next(node)) {
2266 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2267 		/* If it's a shared ref we know a cross reference exists */
2268 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2269 			ret = 1;
2270 			break;
2271 		}
2272 
2273 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2274 
2275 		/*
2276 		 * If our ref doesn't match the one we're currently looking at
2277 		 * then we have a cross reference.
2278 		 */
2279 		if (data_ref->root != root->root_key.objectid ||
2280 		    data_ref->objectid != objectid ||
2281 		    data_ref->offset != offset) {
2282 			ret = 1;
2283 			break;
2284 		}
2285 	}
2286 	spin_unlock(&head->lock);
2287 	mutex_unlock(&head->mutex);
2288 	btrfs_put_transaction(cur_trans);
2289 	return ret;
2290 }
2291 
2292 static noinline int check_committed_ref(struct btrfs_root *root,
2293 					struct btrfs_path *path,
2294 					u64 objectid, u64 offset, u64 bytenr,
2295 					bool strict)
2296 {
2297 	struct btrfs_fs_info *fs_info = root->fs_info;
2298 	struct btrfs_root *extent_root = fs_info->extent_root;
2299 	struct extent_buffer *leaf;
2300 	struct btrfs_extent_data_ref *ref;
2301 	struct btrfs_extent_inline_ref *iref;
2302 	struct btrfs_extent_item *ei;
2303 	struct btrfs_key key;
2304 	u32 item_size;
2305 	int type;
2306 	int ret;
2307 
2308 	key.objectid = bytenr;
2309 	key.offset = (u64)-1;
2310 	key.type = BTRFS_EXTENT_ITEM_KEY;
2311 
2312 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2313 	if (ret < 0)
2314 		goto out;
2315 	BUG_ON(ret == 0); /* Corruption */
2316 
2317 	ret = -ENOENT;
2318 	if (path->slots[0] == 0)
2319 		goto out;
2320 
2321 	path->slots[0]--;
2322 	leaf = path->nodes[0];
2323 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2324 
2325 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2326 		goto out;
2327 
2328 	ret = 1;
2329 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2330 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2331 
2332 	/* If extent item has more than 1 inline ref then it's shared */
2333 	if (item_size != sizeof(*ei) +
2334 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2335 		goto out;
2336 
2337 	/*
2338 	 * If extent created before last snapshot => it's shared unless the
2339 	 * snapshot has been deleted. Use the heuristic if strict is false.
2340 	 */
2341 	if (!strict &&
2342 	    (btrfs_extent_generation(leaf, ei) <=
2343 	     btrfs_root_last_snapshot(&root->root_item)))
2344 		goto out;
2345 
2346 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2347 
2348 	/* If this extent has SHARED_DATA_REF then it's shared */
2349 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2350 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2351 		goto out;
2352 
2353 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2354 	if (btrfs_extent_refs(leaf, ei) !=
2355 	    btrfs_extent_data_ref_count(leaf, ref) ||
2356 	    btrfs_extent_data_ref_root(leaf, ref) !=
2357 	    root->root_key.objectid ||
2358 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2359 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2360 		goto out;
2361 
2362 	ret = 0;
2363 out:
2364 	return ret;
2365 }
2366 
2367 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2368 			  u64 bytenr, bool strict)
2369 {
2370 	struct btrfs_path *path;
2371 	int ret;
2372 
2373 	path = btrfs_alloc_path();
2374 	if (!path)
2375 		return -ENOMEM;
2376 
2377 	do {
2378 		ret = check_committed_ref(root, path, objectid,
2379 					  offset, bytenr, strict);
2380 		if (ret && ret != -ENOENT)
2381 			goto out;
2382 
2383 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2384 	} while (ret == -EAGAIN);
2385 
2386 out:
2387 	btrfs_free_path(path);
2388 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2389 		WARN_ON(ret > 0);
2390 	return ret;
2391 }
2392 
2393 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2394 			   struct btrfs_root *root,
2395 			   struct extent_buffer *buf,
2396 			   int full_backref, int inc)
2397 {
2398 	struct btrfs_fs_info *fs_info = root->fs_info;
2399 	u64 bytenr;
2400 	u64 num_bytes;
2401 	u64 parent;
2402 	u64 ref_root;
2403 	u32 nritems;
2404 	struct btrfs_key key;
2405 	struct btrfs_file_extent_item *fi;
2406 	struct btrfs_ref generic_ref = { 0 };
2407 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2408 	int i;
2409 	int action;
2410 	int level;
2411 	int ret = 0;
2412 
2413 	if (btrfs_is_testing(fs_info))
2414 		return 0;
2415 
2416 	ref_root = btrfs_header_owner(buf);
2417 	nritems = btrfs_header_nritems(buf);
2418 	level = btrfs_header_level(buf);
2419 
2420 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2421 		return 0;
2422 
2423 	if (full_backref)
2424 		parent = buf->start;
2425 	else
2426 		parent = 0;
2427 	if (inc)
2428 		action = BTRFS_ADD_DELAYED_REF;
2429 	else
2430 		action = BTRFS_DROP_DELAYED_REF;
2431 
2432 	for (i = 0; i < nritems; i++) {
2433 		if (level == 0) {
2434 			btrfs_item_key_to_cpu(buf, &key, i);
2435 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2436 				continue;
2437 			fi = btrfs_item_ptr(buf, i,
2438 					    struct btrfs_file_extent_item);
2439 			if (btrfs_file_extent_type(buf, fi) ==
2440 			    BTRFS_FILE_EXTENT_INLINE)
2441 				continue;
2442 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2443 			if (bytenr == 0)
2444 				continue;
2445 
2446 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2447 			key.offset -= btrfs_file_extent_offset(buf, fi);
2448 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2449 					       num_bytes, parent);
2450 			generic_ref.real_root = root->root_key.objectid;
2451 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2452 					    key.offset);
2453 			generic_ref.skip_qgroup = for_reloc;
2454 			if (inc)
2455 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2456 			else
2457 				ret = btrfs_free_extent(trans, &generic_ref);
2458 			if (ret)
2459 				goto fail;
2460 		} else {
2461 			bytenr = btrfs_node_blockptr(buf, i);
2462 			num_bytes = fs_info->nodesize;
2463 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2464 					       num_bytes, parent);
2465 			generic_ref.real_root = root->root_key.objectid;
2466 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2467 			generic_ref.skip_qgroup = for_reloc;
2468 			if (inc)
2469 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2470 			else
2471 				ret = btrfs_free_extent(trans, &generic_ref);
2472 			if (ret)
2473 				goto fail;
2474 		}
2475 	}
2476 	return 0;
2477 fail:
2478 	return ret;
2479 }
2480 
2481 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2482 		  struct extent_buffer *buf, int full_backref)
2483 {
2484 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2485 }
2486 
2487 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2488 		  struct extent_buffer *buf, int full_backref)
2489 {
2490 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2491 }
2492 
2493 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2494 {
2495 	struct btrfs_fs_info *fs_info = root->fs_info;
2496 	u64 flags;
2497 	u64 ret;
2498 
2499 	if (data)
2500 		flags = BTRFS_BLOCK_GROUP_DATA;
2501 	else if (root == fs_info->chunk_root)
2502 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2503 	else
2504 		flags = BTRFS_BLOCK_GROUP_METADATA;
2505 
2506 	ret = btrfs_get_alloc_profile(fs_info, flags);
2507 	return ret;
2508 }
2509 
2510 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2511 {
2512 	struct btrfs_block_group *cache;
2513 	u64 bytenr;
2514 
2515 	spin_lock(&fs_info->block_group_cache_lock);
2516 	bytenr = fs_info->first_logical_byte;
2517 	spin_unlock(&fs_info->block_group_cache_lock);
2518 
2519 	if (bytenr < (u64)-1)
2520 		return bytenr;
2521 
2522 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2523 	if (!cache)
2524 		return 0;
2525 
2526 	bytenr = cache->start;
2527 	btrfs_put_block_group(cache);
2528 
2529 	return bytenr;
2530 }
2531 
2532 static int pin_down_extent(struct btrfs_trans_handle *trans,
2533 			   struct btrfs_block_group *cache,
2534 			   u64 bytenr, u64 num_bytes, int reserved)
2535 {
2536 	struct btrfs_fs_info *fs_info = cache->fs_info;
2537 
2538 	spin_lock(&cache->space_info->lock);
2539 	spin_lock(&cache->lock);
2540 	cache->pinned += num_bytes;
2541 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2542 					     num_bytes);
2543 	if (reserved) {
2544 		cache->reserved -= num_bytes;
2545 		cache->space_info->bytes_reserved -= num_bytes;
2546 	}
2547 	spin_unlock(&cache->lock);
2548 	spin_unlock(&cache->space_info->lock);
2549 
2550 	__btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2551 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2552 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2553 	return 0;
2554 }
2555 
2556 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2557 		     u64 bytenr, u64 num_bytes, int reserved)
2558 {
2559 	struct btrfs_block_group *cache;
2560 
2561 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2562 	BUG_ON(!cache); /* Logic error */
2563 
2564 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2565 
2566 	btrfs_put_block_group(cache);
2567 	return 0;
2568 }
2569 
2570 /*
2571  * this function must be called within transaction
2572  */
2573 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2574 				    u64 bytenr, u64 num_bytes)
2575 {
2576 	struct btrfs_block_group *cache;
2577 	int ret;
2578 
2579 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2580 	if (!cache)
2581 		return -EINVAL;
2582 
2583 	/*
2584 	 * pull in the free space cache (if any) so that our pin
2585 	 * removes the free space from the cache.  We have load_only set
2586 	 * to one because the slow code to read in the free extents does check
2587 	 * the pinned extents.
2588 	 */
2589 	btrfs_cache_block_group(cache, 1);
2590 	/*
2591 	 * Make sure we wait until the cache is completely built in case it is
2592 	 * missing or is invalid and therefore needs to be rebuilt.
2593 	 */
2594 	ret = btrfs_wait_block_group_cache_done(cache);
2595 	if (ret)
2596 		goto out;
2597 
2598 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2599 
2600 	/* remove us from the free space cache (if we're there at all) */
2601 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2602 out:
2603 	btrfs_put_block_group(cache);
2604 	return ret;
2605 }
2606 
2607 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2608 				   u64 start, u64 num_bytes)
2609 {
2610 	int ret;
2611 	struct btrfs_block_group *block_group;
2612 
2613 	block_group = btrfs_lookup_block_group(fs_info, start);
2614 	if (!block_group)
2615 		return -EINVAL;
2616 
2617 	btrfs_cache_block_group(block_group, 1);
2618 	/*
2619 	 * Make sure we wait until the cache is completely built in case it is
2620 	 * missing or is invalid and therefore needs to be rebuilt.
2621 	 */
2622 	ret = btrfs_wait_block_group_cache_done(block_group);
2623 	if (ret)
2624 		goto out;
2625 
2626 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2627 out:
2628 	btrfs_put_block_group(block_group);
2629 	return ret;
2630 }
2631 
2632 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2633 {
2634 	struct btrfs_fs_info *fs_info = eb->fs_info;
2635 	struct btrfs_file_extent_item *item;
2636 	struct btrfs_key key;
2637 	int found_type;
2638 	int i;
2639 	int ret = 0;
2640 
2641 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2642 		return 0;
2643 
2644 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2645 		btrfs_item_key_to_cpu(eb, &key, i);
2646 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2647 			continue;
2648 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2649 		found_type = btrfs_file_extent_type(eb, item);
2650 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2651 			continue;
2652 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2653 			continue;
2654 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2655 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2656 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2657 		if (ret)
2658 			break;
2659 	}
2660 
2661 	return ret;
2662 }
2663 
2664 static void
2665 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2666 {
2667 	atomic_inc(&bg->reservations);
2668 }
2669 
2670 /*
2671  * Returns the free cluster for the given space info and sets empty_cluster to
2672  * what it should be based on the mount options.
2673  */
2674 static struct btrfs_free_cluster *
2675 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2676 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2677 {
2678 	struct btrfs_free_cluster *ret = NULL;
2679 
2680 	*empty_cluster = 0;
2681 	if (btrfs_mixed_space_info(space_info))
2682 		return ret;
2683 
2684 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2685 		ret = &fs_info->meta_alloc_cluster;
2686 		if (btrfs_test_opt(fs_info, SSD))
2687 			*empty_cluster = SZ_2M;
2688 		else
2689 			*empty_cluster = SZ_64K;
2690 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2691 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2692 		*empty_cluster = SZ_2M;
2693 		ret = &fs_info->data_alloc_cluster;
2694 	}
2695 
2696 	return ret;
2697 }
2698 
2699 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2700 			      u64 start, u64 end,
2701 			      const bool return_free_space)
2702 {
2703 	struct btrfs_block_group *cache = NULL;
2704 	struct btrfs_space_info *space_info;
2705 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2706 	struct btrfs_free_cluster *cluster = NULL;
2707 	u64 len;
2708 	u64 total_unpinned = 0;
2709 	u64 empty_cluster = 0;
2710 	bool readonly;
2711 
2712 	while (start <= end) {
2713 		readonly = false;
2714 		if (!cache ||
2715 		    start >= cache->start + cache->length) {
2716 			if (cache)
2717 				btrfs_put_block_group(cache);
2718 			total_unpinned = 0;
2719 			cache = btrfs_lookup_block_group(fs_info, start);
2720 			BUG_ON(!cache); /* Logic error */
2721 
2722 			cluster = fetch_cluster_info(fs_info,
2723 						     cache->space_info,
2724 						     &empty_cluster);
2725 			empty_cluster <<= 1;
2726 		}
2727 
2728 		len = cache->start + cache->length - start;
2729 		len = min(len, end + 1 - start);
2730 
2731 		down_read(&fs_info->commit_root_sem);
2732 		if (start < cache->last_byte_to_unpin && return_free_space) {
2733 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2734 
2735 			btrfs_add_free_space(cache, start, add_len);
2736 		}
2737 		up_read(&fs_info->commit_root_sem);
2738 
2739 		start += len;
2740 		total_unpinned += len;
2741 		space_info = cache->space_info;
2742 
2743 		/*
2744 		 * If this space cluster has been marked as fragmented and we've
2745 		 * unpinned enough in this block group to potentially allow a
2746 		 * cluster to be created inside of it go ahead and clear the
2747 		 * fragmented check.
2748 		 */
2749 		if (cluster && cluster->fragmented &&
2750 		    total_unpinned > empty_cluster) {
2751 			spin_lock(&cluster->lock);
2752 			cluster->fragmented = 0;
2753 			spin_unlock(&cluster->lock);
2754 		}
2755 
2756 		spin_lock(&space_info->lock);
2757 		spin_lock(&cache->lock);
2758 		cache->pinned -= len;
2759 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2760 		space_info->max_extent_size = 0;
2761 		__btrfs_mod_total_bytes_pinned(space_info, -len);
2762 		if (cache->ro) {
2763 			space_info->bytes_readonly += len;
2764 			readonly = true;
2765 		} else if (btrfs_is_zoned(fs_info)) {
2766 			/* Need reset before reusing in a zoned block group */
2767 			space_info->bytes_zone_unusable += len;
2768 			readonly = true;
2769 		}
2770 		spin_unlock(&cache->lock);
2771 		if (!readonly && return_free_space &&
2772 		    global_rsv->space_info == space_info) {
2773 			u64 to_add = len;
2774 
2775 			spin_lock(&global_rsv->lock);
2776 			if (!global_rsv->full) {
2777 				to_add = min(len, global_rsv->size -
2778 					     global_rsv->reserved);
2779 				global_rsv->reserved += to_add;
2780 				btrfs_space_info_update_bytes_may_use(fs_info,
2781 						space_info, to_add);
2782 				if (global_rsv->reserved >= global_rsv->size)
2783 					global_rsv->full = 1;
2784 				len -= to_add;
2785 			}
2786 			spin_unlock(&global_rsv->lock);
2787 		}
2788 		/* Add to any tickets we may have */
2789 		if (!readonly && return_free_space && len)
2790 			btrfs_try_granting_tickets(fs_info, space_info);
2791 		spin_unlock(&space_info->lock);
2792 	}
2793 
2794 	if (cache)
2795 		btrfs_put_block_group(cache);
2796 	return 0;
2797 }
2798 
2799 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2800 {
2801 	struct btrfs_fs_info *fs_info = trans->fs_info;
2802 	struct btrfs_block_group *block_group, *tmp;
2803 	struct list_head *deleted_bgs;
2804 	struct extent_io_tree *unpin;
2805 	u64 start;
2806 	u64 end;
2807 	int ret;
2808 
2809 	unpin = &trans->transaction->pinned_extents;
2810 
2811 	while (!TRANS_ABORTED(trans)) {
2812 		struct extent_state *cached_state = NULL;
2813 
2814 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2815 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2816 					    EXTENT_DIRTY, &cached_state);
2817 		if (ret) {
2818 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2819 			break;
2820 		}
2821 
2822 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2823 			ret = btrfs_discard_extent(fs_info, start,
2824 						   end + 1 - start, NULL);
2825 
2826 		clear_extent_dirty(unpin, start, end, &cached_state);
2827 		unpin_extent_range(fs_info, start, end, true);
2828 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2829 		free_extent_state(cached_state);
2830 		cond_resched();
2831 	}
2832 
2833 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2834 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2835 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2836 	}
2837 
2838 	/*
2839 	 * Transaction is finished.  We don't need the lock anymore.  We
2840 	 * do need to clean up the block groups in case of a transaction
2841 	 * abort.
2842 	 */
2843 	deleted_bgs = &trans->transaction->deleted_bgs;
2844 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2845 		u64 trimmed = 0;
2846 
2847 		ret = -EROFS;
2848 		if (!TRANS_ABORTED(trans))
2849 			ret = btrfs_discard_extent(fs_info,
2850 						   block_group->start,
2851 						   block_group->length,
2852 						   &trimmed);
2853 
2854 		list_del_init(&block_group->bg_list);
2855 		btrfs_unfreeze_block_group(block_group);
2856 		btrfs_put_block_group(block_group);
2857 
2858 		if (ret) {
2859 			const char *errstr = btrfs_decode_error(ret);
2860 			btrfs_warn(fs_info,
2861 			   "discard failed while removing blockgroup: errno=%d %s",
2862 				   ret, errstr);
2863 		}
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 /*
2870  * Drop one or more refs of @node.
2871  *
2872  * 1. Locate the extent refs.
2873  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2874  *    Locate it, then reduce the refs number or remove the ref line completely.
2875  *
2876  * 2. Update the refs count in EXTENT/METADATA_ITEM
2877  *
2878  * Inline backref case:
2879  *
2880  * in extent tree we have:
2881  *
2882  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2883  *		refs 2 gen 6 flags DATA
2884  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2885  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2886  *
2887  * This function gets called with:
2888  *
2889  *    node->bytenr = 13631488
2890  *    node->num_bytes = 1048576
2891  *    root_objectid = FS_TREE
2892  *    owner_objectid = 257
2893  *    owner_offset = 0
2894  *    refs_to_drop = 1
2895  *
2896  * Then we should get some like:
2897  *
2898  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2899  *		refs 1 gen 6 flags DATA
2900  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2901  *
2902  * Keyed backref case:
2903  *
2904  * in extent tree we have:
2905  *
2906  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2907  *		refs 754 gen 6 flags DATA
2908  *	[...]
2909  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2910  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2911  *
2912  * This function get called with:
2913  *
2914  *    node->bytenr = 13631488
2915  *    node->num_bytes = 1048576
2916  *    root_objectid = FS_TREE
2917  *    owner_objectid = 866
2918  *    owner_offset = 0
2919  *    refs_to_drop = 1
2920  *
2921  * Then we should get some like:
2922  *
2923  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2924  *		refs 753 gen 6 flags DATA
2925  *
2926  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2927  */
2928 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2929 			       struct btrfs_delayed_ref_node *node, u64 parent,
2930 			       u64 root_objectid, u64 owner_objectid,
2931 			       u64 owner_offset, int refs_to_drop,
2932 			       struct btrfs_delayed_extent_op *extent_op)
2933 {
2934 	struct btrfs_fs_info *info = trans->fs_info;
2935 	struct btrfs_key key;
2936 	struct btrfs_path *path;
2937 	struct btrfs_root *extent_root = info->extent_root;
2938 	struct extent_buffer *leaf;
2939 	struct btrfs_extent_item *ei;
2940 	struct btrfs_extent_inline_ref *iref;
2941 	int ret;
2942 	int is_data;
2943 	int extent_slot = 0;
2944 	int found_extent = 0;
2945 	int num_to_del = 1;
2946 	u32 item_size;
2947 	u64 refs;
2948 	u64 bytenr = node->bytenr;
2949 	u64 num_bytes = node->num_bytes;
2950 	int last_ref = 0;
2951 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2952 
2953 	path = btrfs_alloc_path();
2954 	if (!path)
2955 		return -ENOMEM;
2956 
2957 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2958 
2959 	if (!is_data && refs_to_drop != 1) {
2960 		btrfs_crit(info,
2961 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2962 			   node->bytenr, refs_to_drop);
2963 		ret = -EINVAL;
2964 		btrfs_abort_transaction(trans, ret);
2965 		goto out;
2966 	}
2967 
2968 	if (is_data)
2969 		skinny_metadata = false;
2970 
2971 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2972 				    parent, root_objectid, owner_objectid,
2973 				    owner_offset);
2974 	if (ret == 0) {
2975 		/*
2976 		 * Either the inline backref or the SHARED_DATA_REF/
2977 		 * SHARED_BLOCK_REF is found
2978 		 *
2979 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2980 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2981 		 */
2982 		extent_slot = path->slots[0];
2983 		while (extent_slot >= 0) {
2984 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2985 					      extent_slot);
2986 			if (key.objectid != bytenr)
2987 				break;
2988 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2989 			    key.offset == num_bytes) {
2990 				found_extent = 1;
2991 				break;
2992 			}
2993 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2994 			    key.offset == owner_objectid) {
2995 				found_extent = 1;
2996 				break;
2997 			}
2998 
2999 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3000 			if (path->slots[0] - extent_slot > 5)
3001 				break;
3002 			extent_slot--;
3003 		}
3004 
3005 		if (!found_extent) {
3006 			if (iref) {
3007 				btrfs_crit(info,
3008 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3009 				btrfs_abort_transaction(trans, -EUCLEAN);
3010 				goto err_dump;
3011 			}
3012 			/* Must be SHARED_* item, remove the backref first */
3013 			ret = remove_extent_backref(trans, path, NULL,
3014 						    refs_to_drop,
3015 						    is_data, &last_ref);
3016 			if (ret) {
3017 				btrfs_abort_transaction(trans, ret);
3018 				goto out;
3019 			}
3020 			btrfs_release_path(path);
3021 
3022 			/* Slow path to locate EXTENT/METADATA_ITEM */
3023 			key.objectid = bytenr;
3024 			key.type = BTRFS_EXTENT_ITEM_KEY;
3025 			key.offset = num_bytes;
3026 
3027 			if (!is_data && skinny_metadata) {
3028 				key.type = BTRFS_METADATA_ITEM_KEY;
3029 				key.offset = owner_objectid;
3030 			}
3031 
3032 			ret = btrfs_search_slot(trans, extent_root,
3033 						&key, path, -1, 1);
3034 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 				/*
3036 				 * Couldn't find our skinny metadata item,
3037 				 * see if we have ye olde extent item.
3038 				 */
3039 				path->slots[0]--;
3040 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 						      path->slots[0]);
3042 				if (key.objectid == bytenr &&
3043 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 				    key.offset == num_bytes)
3045 					ret = 0;
3046 			}
3047 
3048 			if (ret > 0 && skinny_metadata) {
3049 				skinny_metadata = false;
3050 				key.objectid = bytenr;
3051 				key.type = BTRFS_EXTENT_ITEM_KEY;
3052 				key.offset = num_bytes;
3053 				btrfs_release_path(path);
3054 				ret = btrfs_search_slot(trans, extent_root,
3055 							&key, path, -1, 1);
3056 			}
3057 
3058 			if (ret) {
3059 				btrfs_err(info,
3060 					  "umm, got %d back from search, was looking for %llu",
3061 					  ret, bytenr);
3062 				if (ret > 0)
3063 					btrfs_print_leaf(path->nodes[0]);
3064 			}
3065 			if (ret < 0) {
3066 				btrfs_abort_transaction(trans, ret);
3067 				goto out;
3068 			}
3069 			extent_slot = path->slots[0];
3070 		}
3071 	} else if (WARN_ON(ret == -ENOENT)) {
3072 		btrfs_print_leaf(path->nodes[0]);
3073 		btrfs_err(info,
3074 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3075 			bytenr, parent, root_objectid, owner_objectid,
3076 			owner_offset);
3077 		btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	} else {
3080 		btrfs_abort_transaction(trans, ret);
3081 		goto out;
3082 	}
3083 
3084 	leaf = path->nodes[0];
3085 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 	if (unlikely(item_size < sizeof(*ei))) {
3087 		ret = -EINVAL;
3088 		btrfs_print_v0_err(info);
3089 		btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 	ei = btrfs_item_ptr(leaf, extent_slot,
3093 			    struct btrfs_extent_item);
3094 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 		struct btrfs_tree_block_info *bi;
3097 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3098 			btrfs_crit(info,
3099 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3100 				   key.objectid, key.type, key.offset,
3101 				   owner_objectid, item_size,
3102 				   sizeof(*ei) + sizeof(*bi));
3103 			btrfs_abort_transaction(trans, -EUCLEAN);
3104 			goto err_dump;
3105 		}
3106 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3107 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3108 	}
3109 
3110 	refs = btrfs_extent_refs(leaf, ei);
3111 	if (refs < refs_to_drop) {
3112 		btrfs_crit(info,
3113 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3114 			  refs_to_drop, refs, bytenr);
3115 		btrfs_abort_transaction(trans, -EUCLEAN);
3116 		goto err_dump;
3117 	}
3118 	refs -= refs_to_drop;
3119 
3120 	if (refs > 0) {
3121 		if (extent_op)
3122 			__run_delayed_extent_op(extent_op, leaf, ei);
3123 		/*
3124 		 * In the case of inline back ref, reference count will
3125 		 * be updated by remove_extent_backref
3126 		 */
3127 		if (iref) {
3128 			if (!found_extent) {
3129 				btrfs_crit(info,
3130 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3131 				btrfs_abort_transaction(trans, -EUCLEAN);
3132 				goto err_dump;
3133 			}
3134 		} else {
3135 			btrfs_set_extent_refs(leaf, ei, refs);
3136 			btrfs_mark_buffer_dirty(leaf);
3137 		}
3138 		if (found_extent) {
3139 			ret = remove_extent_backref(trans, path, iref,
3140 						    refs_to_drop, is_data,
3141 						    &last_ref);
3142 			if (ret) {
3143 				btrfs_abort_transaction(trans, ret);
3144 				goto out;
3145 			}
3146 		}
3147 	} else {
3148 		/* In this branch refs == 1 */
3149 		if (found_extent) {
3150 			if (is_data && refs_to_drop !=
3151 			    extent_data_ref_count(path, iref)) {
3152 				btrfs_crit(info,
3153 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3154 					   extent_data_ref_count(path, iref),
3155 					   refs_to_drop);
3156 				btrfs_abort_transaction(trans, -EUCLEAN);
3157 				goto err_dump;
3158 			}
3159 			if (iref) {
3160 				if (path->slots[0] != extent_slot) {
3161 					btrfs_crit(info,
3162 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3163 						   key.objectid, key.type,
3164 						   key.offset);
3165 					btrfs_abort_transaction(trans, -EUCLEAN);
3166 					goto err_dump;
3167 				}
3168 			} else {
3169 				/*
3170 				 * No inline ref, we must be at SHARED_* item,
3171 				 * And it's single ref, it must be:
3172 				 * |	extent_slot	  ||extent_slot + 1|
3173 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3174 				 */
3175 				if (path->slots[0] != extent_slot + 1) {
3176 					btrfs_crit(info,
3177 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3178 					btrfs_abort_transaction(trans, -EUCLEAN);
3179 					goto err_dump;
3180 				}
3181 				path->slots[0] = extent_slot;
3182 				num_to_del = 2;
3183 			}
3184 		}
3185 
3186 		last_ref = 1;
3187 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3188 				      num_to_del);
3189 		if (ret) {
3190 			btrfs_abort_transaction(trans, ret);
3191 			goto out;
3192 		}
3193 		btrfs_release_path(path);
3194 
3195 		if (is_data) {
3196 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3197 					      num_bytes);
3198 			if (ret) {
3199 				btrfs_abort_transaction(trans, ret);
3200 				goto out;
3201 			}
3202 		}
3203 
3204 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3205 		if (ret) {
3206 			btrfs_abort_transaction(trans, ret);
3207 			goto out;
3208 		}
3209 
3210 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3211 		if (ret) {
3212 			btrfs_abort_transaction(trans, ret);
3213 			goto out;
3214 		}
3215 	}
3216 	btrfs_release_path(path);
3217 
3218 out:
3219 	btrfs_free_path(path);
3220 	return ret;
3221 err_dump:
3222 	/*
3223 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3224 	 * dump for debug build.
3225 	 */
3226 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3227 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3228 			   path->slots[0], extent_slot);
3229 		btrfs_print_leaf(path->nodes[0]);
3230 	}
3231 
3232 	btrfs_free_path(path);
3233 	return -EUCLEAN;
3234 }
3235 
3236 /*
3237  * when we free an block, it is possible (and likely) that we free the last
3238  * delayed ref for that extent as well.  This searches the delayed ref tree for
3239  * a given extent, and if there are no other delayed refs to be processed, it
3240  * removes it from the tree.
3241  */
3242 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3243 				      u64 bytenr)
3244 {
3245 	struct btrfs_delayed_ref_head *head;
3246 	struct btrfs_delayed_ref_root *delayed_refs;
3247 	int ret = 0;
3248 
3249 	delayed_refs = &trans->transaction->delayed_refs;
3250 	spin_lock(&delayed_refs->lock);
3251 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3252 	if (!head)
3253 		goto out_delayed_unlock;
3254 
3255 	spin_lock(&head->lock);
3256 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3257 		goto out;
3258 
3259 	if (cleanup_extent_op(head) != NULL)
3260 		goto out;
3261 
3262 	/*
3263 	 * waiting for the lock here would deadlock.  If someone else has it
3264 	 * locked they are already in the process of dropping it anyway
3265 	 */
3266 	if (!mutex_trylock(&head->mutex))
3267 		goto out;
3268 
3269 	btrfs_delete_ref_head(delayed_refs, head);
3270 	head->processing = 0;
3271 
3272 	spin_unlock(&head->lock);
3273 	spin_unlock(&delayed_refs->lock);
3274 
3275 	BUG_ON(head->extent_op);
3276 	if (head->must_insert_reserved)
3277 		ret = 1;
3278 
3279 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3280 	mutex_unlock(&head->mutex);
3281 	btrfs_put_delayed_ref_head(head);
3282 	return ret;
3283 out:
3284 	spin_unlock(&head->lock);
3285 
3286 out_delayed_unlock:
3287 	spin_unlock(&delayed_refs->lock);
3288 	return 0;
3289 }
3290 
3291 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3292 			   struct btrfs_root *root,
3293 			   struct extent_buffer *buf,
3294 			   u64 parent, int last_ref)
3295 {
3296 	struct btrfs_fs_info *fs_info = root->fs_info;
3297 	struct btrfs_ref generic_ref = { 0 };
3298 	int ret;
3299 
3300 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3301 			       buf->start, buf->len, parent);
3302 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3303 			    root->root_key.objectid);
3304 
3305 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3306 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3307 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3308 		BUG_ON(ret); /* -ENOMEM */
3309 	}
3310 
3311 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3312 		struct btrfs_block_group *cache;
3313 		bool must_pin = false;
3314 
3315 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3316 			ret = check_ref_cleanup(trans, buf->start);
3317 			if (!ret) {
3318 				btrfs_redirty_list_add(trans->transaction, buf);
3319 				goto out;
3320 			}
3321 		}
3322 
3323 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3324 
3325 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3326 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3327 			btrfs_put_block_group(cache);
3328 			goto out;
3329 		}
3330 
3331 		/*
3332 		 * If this is a leaf and there are tree mod log users, we may
3333 		 * have recorded mod log operations that point to this leaf.
3334 		 * So we must make sure no one reuses this leaf's extent before
3335 		 * mod log operations are applied to a node, otherwise after
3336 		 * rewinding a node using the mod log operations we get an
3337 		 * inconsistent btree, as the leaf's extent may now be used as
3338 		 * a node or leaf for another different btree.
3339 		 * We are safe from races here because at this point no other
3340 		 * node or root points to this extent buffer, so if after this
3341 		 * check a new tree mod log user joins, it will not be able to
3342 		 * find a node pointing to this leaf and record operations that
3343 		 * point to this leaf.
3344 		 */
3345 		if (btrfs_header_level(buf) == 0 &&
3346 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3347 			must_pin = true;
3348 
3349 		if (must_pin || btrfs_is_zoned(fs_info)) {
3350 			btrfs_redirty_list_add(trans->transaction, buf);
3351 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3352 			btrfs_put_block_group(cache);
3353 			goto out;
3354 		}
3355 
3356 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3357 
3358 		btrfs_add_free_space(cache, buf->start, buf->len);
3359 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3360 		btrfs_put_block_group(cache);
3361 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3362 	}
3363 out:
3364 	if (last_ref) {
3365 		/*
3366 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3367 		 * matter anymore.
3368 		 */
3369 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3370 	}
3371 }
3372 
3373 /* Can return -ENOMEM */
3374 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3375 {
3376 	struct btrfs_fs_info *fs_info = trans->fs_info;
3377 	int ret;
3378 
3379 	if (btrfs_is_testing(fs_info))
3380 		return 0;
3381 
3382 	/*
3383 	 * tree log blocks never actually go into the extent allocation
3384 	 * tree, just update pinning info and exit early.
3385 	 */
3386 	if ((ref->type == BTRFS_REF_METADATA &&
3387 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3388 	    (ref->type == BTRFS_REF_DATA &&
3389 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3390 		/* unlocks the pinned mutex */
3391 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3392 		ret = 0;
3393 	} else if (ref->type == BTRFS_REF_METADATA) {
3394 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3395 	} else {
3396 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3397 	}
3398 
3399 	if (!((ref->type == BTRFS_REF_METADATA &&
3400 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3401 	      (ref->type == BTRFS_REF_DATA &&
3402 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3403 		btrfs_ref_tree_mod(fs_info, ref);
3404 
3405 	return ret;
3406 }
3407 
3408 enum btrfs_loop_type {
3409 	LOOP_CACHING_NOWAIT,
3410 	LOOP_CACHING_WAIT,
3411 	LOOP_ALLOC_CHUNK,
3412 	LOOP_NO_EMPTY_SIZE,
3413 };
3414 
3415 static inline void
3416 btrfs_lock_block_group(struct btrfs_block_group *cache,
3417 		       int delalloc)
3418 {
3419 	if (delalloc)
3420 		down_read(&cache->data_rwsem);
3421 }
3422 
3423 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3424 		       int delalloc)
3425 {
3426 	btrfs_get_block_group(cache);
3427 	if (delalloc)
3428 		down_read(&cache->data_rwsem);
3429 }
3430 
3431 static struct btrfs_block_group *btrfs_lock_cluster(
3432 		   struct btrfs_block_group *block_group,
3433 		   struct btrfs_free_cluster *cluster,
3434 		   int delalloc)
3435 	__acquires(&cluster->refill_lock)
3436 {
3437 	struct btrfs_block_group *used_bg = NULL;
3438 
3439 	spin_lock(&cluster->refill_lock);
3440 	while (1) {
3441 		used_bg = cluster->block_group;
3442 		if (!used_bg)
3443 			return NULL;
3444 
3445 		if (used_bg == block_group)
3446 			return used_bg;
3447 
3448 		btrfs_get_block_group(used_bg);
3449 
3450 		if (!delalloc)
3451 			return used_bg;
3452 
3453 		if (down_read_trylock(&used_bg->data_rwsem))
3454 			return used_bg;
3455 
3456 		spin_unlock(&cluster->refill_lock);
3457 
3458 		/* We should only have one-level nested. */
3459 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3460 
3461 		spin_lock(&cluster->refill_lock);
3462 		if (used_bg == cluster->block_group)
3463 			return used_bg;
3464 
3465 		up_read(&used_bg->data_rwsem);
3466 		btrfs_put_block_group(used_bg);
3467 	}
3468 }
3469 
3470 static inline void
3471 btrfs_release_block_group(struct btrfs_block_group *cache,
3472 			 int delalloc)
3473 {
3474 	if (delalloc)
3475 		up_read(&cache->data_rwsem);
3476 	btrfs_put_block_group(cache);
3477 }
3478 
3479 enum btrfs_extent_allocation_policy {
3480 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3481 	BTRFS_EXTENT_ALLOC_ZONED,
3482 };
3483 
3484 /*
3485  * Structure used internally for find_free_extent() function.  Wraps needed
3486  * parameters.
3487  */
3488 struct find_free_extent_ctl {
3489 	/* Basic allocation info */
3490 	u64 num_bytes;
3491 	u64 empty_size;
3492 	u64 flags;
3493 	int delalloc;
3494 
3495 	/* Where to start the search inside the bg */
3496 	u64 search_start;
3497 
3498 	/* For clustered allocation */
3499 	u64 empty_cluster;
3500 	struct btrfs_free_cluster *last_ptr;
3501 	bool use_cluster;
3502 
3503 	bool have_caching_bg;
3504 	bool orig_have_caching_bg;
3505 
3506 	/* Allocation is called for tree-log */
3507 	bool for_treelog;
3508 
3509 	/* RAID index, converted from flags */
3510 	int index;
3511 
3512 	/*
3513 	 * Current loop number, check find_free_extent_update_loop() for details
3514 	 */
3515 	int loop;
3516 
3517 	/*
3518 	 * Whether we're refilling a cluster, if true we need to re-search
3519 	 * current block group but don't try to refill the cluster again.
3520 	 */
3521 	bool retry_clustered;
3522 
3523 	/*
3524 	 * Whether we're updating free space cache, if true we need to re-search
3525 	 * current block group but don't try updating free space cache again.
3526 	 */
3527 	bool retry_unclustered;
3528 
3529 	/* If current block group is cached */
3530 	int cached;
3531 
3532 	/* Max contiguous hole found */
3533 	u64 max_extent_size;
3534 
3535 	/* Total free space from free space cache, not always contiguous */
3536 	u64 total_free_space;
3537 
3538 	/* Found result */
3539 	u64 found_offset;
3540 
3541 	/* Hint where to start looking for an empty space */
3542 	u64 hint_byte;
3543 
3544 	/* Allocation policy */
3545 	enum btrfs_extent_allocation_policy policy;
3546 };
3547 
3548 
3549 /*
3550  * Helper function for find_free_extent().
3551  *
3552  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3553  * Return -EAGAIN to inform caller that we need to re-search this block group
3554  * Return >0 to inform caller that we find nothing
3555  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3556  */
3557 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3558 				      struct find_free_extent_ctl *ffe_ctl,
3559 				      struct btrfs_block_group **cluster_bg_ret)
3560 {
3561 	struct btrfs_block_group *cluster_bg;
3562 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3563 	u64 aligned_cluster;
3564 	u64 offset;
3565 	int ret;
3566 
3567 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3568 	if (!cluster_bg)
3569 		goto refill_cluster;
3570 	if (cluster_bg != bg && (cluster_bg->ro ||
3571 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3572 		goto release_cluster;
3573 
3574 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3575 			ffe_ctl->num_bytes, cluster_bg->start,
3576 			&ffe_ctl->max_extent_size);
3577 	if (offset) {
3578 		/* We have a block, we're done */
3579 		spin_unlock(&last_ptr->refill_lock);
3580 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3581 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3582 		*cluster_bg_ret = cluster_bg;
3583 		ffe_ctl->found_offset = offset;
3584 		return 0;
3585 	}
3586 	WARN_ON(last_ptr->block_group != cluster_bg);
3587 
3588 release_cluster:
3589 	/*
3590 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3591 	 * lets just skip it and let the allocator find whatever block it can
3592 	 * find. If we reach this point, we will have tried the cluster
3593 	 * allocator plenty of times and not have found anything, so we are
3594 	 * likely way too fragmented for the clustering stuff to find anything.
3595 	 *
3596 	 * However, if the cluster is taken from the current block group,
3597 	 * release the cluster first, so that we stand a better chance of
3598 	 * succeeding in the unclustered allocation.
3599 	 */
3600 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3601 		spin_unlock(&last_ptr->refill_lock);
3602 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3603 		return -ENOENT;
3604 	}
3605 
3606 	/* This cluster didn't work out, free it and start over */
3607 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3608 
3609 	if (cluster_bg != bg)
3610 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3611 
3612 refill_cluster:
3613 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3614 		spin_unlock(&last_ptr->refill_lock);
3615 		return -ENOENT;
3616 	}
3617 
3618 	aligned_cluster = max_t(u64,
3619 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3620 			bg->full_stripe_len);
3621 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3622 			ffe_ctl->num_bytes, aligned_cluster);
3623 	if (ret == 0) {
3624 		/* Now pull our allocation out of this cluster */
3625 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3626 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3627 				&ffe_ctl->max_extent_size);
3628 		if (offset) {
3629 			/* We found one, proceed */
3630 			spin_unlock(&last_ptr->refill_lock);
3631 			trace_btrfs_reserve_extent_cluster(bg,
3632 					ffe_ctl->search_start,
3633 					ffe_ctl->num_bytes);
3634 			ffe_ctl->found_offset = offset;
3635 			return 0;
3636 		}
3637 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3638 		   !ffe_ctl->retry_clustered) {
3639 		spin_unlock(&last_ptr->refill_lock);
3640 
3641 		ffe_ctl->retry_clustered = true;
3642 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3643 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3644 		return -EAGAIN;
3645 	}
3646 	/*
3647 	 * At this point we either didn't find a cluster or we weren't able to
3648 	 * allocate a block from our cluster.  Free the cluster we've been
3649 	 * trying to use, and go to the next block group.
3650 	 */
3651 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3652 	spin_unlock(&last_ptr->refill_lock);
3653 	return 1;
3654 }
3655 
3656 /*
3657  * Return >0 to inform caller that we find nothing
3658  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3659  * Return -EAGAIN to inform caller that we need to re-search this block group
3660  */
3661 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3662 					struct find_free_extent_ctl *ffe_ctl)
3663 {
3664 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3665 	u64 offset;
3666 
3667 	/*
3668 	 * We are doing an unclustered allocation, set the fragmented flag so
3669 	 * we don't bother trying to setup a cluster again until we get more
3670 	 * space.
3671 	 */
3672 	if (unlikely(last_ptr)) {
3673 		spin_lock(&last_ptr->lock);
3674 		last_ptr->fragmented = 1;
3675 		spin_unlock(&last_ptr->lock);
3676 	}
3677 	if (ffe_ctl->cached) {
3678 		struct btrfs_free_space_ctl *free_space_ctl;
3679 
3680 		free_space_ctl = bg->free_space_ctl;
3681 		spin_lock(&free_space_ctl->tree_lock);
3682 		if (free_space_ctl->free_space <
3683 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3684 		    ffe_ctl->empty_size) {
3685 			ffe_ctl->total_free_space = max_t(u64,
3686 					ffe_ctl->total_free_space,
3687 					free_space_ctl->free_space);
3688 			spin_unlock(&free_space_ctl->tree_lock);
3689 			return 1;
3690 		}
3691 		spin_unlock(&free_space_ctl->tree_lock);
3692 	}
3693 
3694 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3695 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3696 			&ffe_ctl->max_extent_size);
3697 
3698 	/*
3699 	 * If we didn't find a chunk, and we haven't failed on this block group
3700 	 * before, and this block group is in the middle of caching and we are
3701 	 * ok with waiting, then go ahead and wait for progress to be made, and
3702 	 * set @retry_unclustered to true.
3703 	 *
3704 	 * If @retry_unclustered is true then we've already waited on this
3705 	 * block group once and should move on to the next block group.
3706 	 */
3707 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3708 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3709 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3710 						      ffe_ctl->empty_size);
3711 		ffe_ctl->retry_unclustered = true;
3712 		return -EAGAIN;
3713 	} else if (!offset) {
3714 		return 1;
3715 	}
3716 	ffe_ctl->found_offset = offset;
3717 	return 0;
3718 }
3719 
3720 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3721 				   struct find_free_extent_ctl *ffe_ctl,
3722 				   struct btrfs_block_group **bg_ret)
3723 {
3724 	int ret;
3725 
3726 	/* We want to try and use the cluster allocator, so lets look there */
3727 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3728 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3729 		if (ret >= 0 || ret == -EAGAIN)
3730 			return ret;
3731 		/* ret == -ENOENT case falls through */
3732 	}
3733 
3734 	return find_free_extent_unclustered(block_group, ffe_ctl);
3735 }
3736 
3737 /*
3738  * Tree-log block group locking
3739  * ============================
3740  *
3741  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3742  * indicates the starting address of a block group, which is reserved only
3743  * for tree-log metadata.
3744  *
3745  * Lock nesting
3746  * ============
3747  *
3748  * space_info::lock
3749  *   block_group::lock
3750  *     fs_info::treelog_bg_lock
3751  */
3752 
3753 /*
3754  * Simple allocator for sequential-only block group. It only allows sequential
3755  * allocation. No need to play with trees. This function also reserves the
3756  * bytes as in btrfs_add_reserved_bytes.
3757  */
3758 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3759 			       struct find_free_extent_ctl *ffe_ctl,
3760 			       struct btrfs_block_group **bg_ret)
3761 {
3762 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3763 	struct btrfs_space_info *space_info = block_group->space_info;
3764 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3765 	u64 start = block_group->start;
3766 	u64 num_bytes = ffe_ctl->num_bytes;
3767 	u64 avail;
3768 	u64 bytenr = block_group->start;
3769 	u64 log_bytenr;
3770 	int ret = 0;
3771 	bool skip;
3772 
3773 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3774 
3775 	/*
3776 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3777 	 * group, and vice versa.
3778 	 */
3779 	spin_lock(&fs_info->treelog_bg_lock);
3780 	log_bytenr = fs_info->treelog_bg;
3781 	skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3782 			      (!ffe_ctl->for_treelog && bytenr == log_bytenr));
3783 	spin_unlock(&fs_info->treelog_bg_lock);
3784 	if (skip)
3785 		return 1;
3786 
3787 	spin_lock(&space_info->lock);
3788 	spin_lock(&block_group->lock);
3789 	spin_lock(&fs_info->treelog_bg_lock);
3790 
3791 	ASSERT(!ffe_ctl->for_treelog ||
3792 	       block_group->start == fs_info->treelog_bg ||
3793 	       fs_info->treelog_bg == 0);
3794 
3795 	if (block_group->ro) {
3796 		ret = 1;
3797 		goto out;
3798 	}
3799 
3800 	/*
3801 	 * Do not allow currently using block group to be tree-log dedicated
3802 	 * block group.
3803 	 */
3804 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3805 	    (block_group->used || block_group->reserved)) {
3806 		ret = 1;
3807 		goto out;
3808 	}
3809 
3810 	avail = block_group->length - block_group->alloc_offset;
3811 	if (avail < num_bytes) {
3812 		if (ffe_ctl->max_extent_size < avail) {
3813 			/*
3814 			 * With sequential allocator, free space is always
3815 			 * contiguous
3816 			 */
3817 			ffe_ctl->max_extent_size = avail;
3818 			ffe_ctl->total_free_space = avail;
3819 		}
3820 		ret = 1;
3821 		goto out;
3822 	}
3823 
3824 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3825 		fs_info->treelog_bg = block_group->start;
3826 
3827 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3828 	block_group->alloc_offset += num_bytes;
3829 	spin_lock(&ctl->tree_lock);
3830 	ctl->free_space -= num_bytes;
3831 	spin_unlock(&ctl->tree_lock);
3832 
3833 	/*
3834 	 * We do not check if found_offset is aligned to stripesize. The
3835 	 * address is anyway rewritten when using zone append writing.
3836 	 */
3837 
3838 	ffe_ctl->search_start = ffe_ctl->found_offset;
3839 
3840 out:
3841 	if (ret && ffe_ctl->for_treelog)
3842 		fs_info->treelog_bg = 0;
3843 	spin_unlock(&fs_info->treelog_bg_lock);
3844 	spin_unlock(&block_group->lock);
3845 	spin_unlock(&space_info->lock);
3846 	return ret;
3847 }
3848 
3849 static int do_allocation(struct btrfs_block_group *block_group,
3850 			 struct find_free_extent_ctl *ffe_ctl,
3851 			 struct btrfs_block_group **bg_ret)
3852 {
3853 	switch (ffe_ctl->policy) {
3854 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3855 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3856 	case BTRFS_EXTENT_ALLOC_ZONED:
3857 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3858 	default:
3859 		BUG();
3860 	}
3861 }
3862 
3863 static void release_block_group(struct btrfs_block_group *block_group,
3864 				struct find_free_extent_ctl *ffe_ctl,
3865 				int delalloc)
3866 {
3867 	switch (ffe_ctl->policy) {
3868 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3869 		ffe_ctl->retry_clustered = false;
3870 		ffe_ctl->retry_unclustered = false;
3871 		break;
3872 	case BTRFS_EXTENT_ALLOC_ZONED:
3873 		/* Nothing to do */
3874 		break;
3875 	default:
3876 		BUG();
3877 	}
3878 
3879 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3880 	       ffe_ctl->index);
3881 	btrfs_release_block_group(block_group, delalloc);
3882 }
3883 
3884 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3885 				   struct btrfs_key *ins)
3886 {
3887 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3888 
3889 	if (!ffe_ctl->use_cluster && last_ptr) {
3890 		spin_lock(&last_ptr->lock);
3891 		last_ptr->window_start = ins->objectid;
3892 		spin_unlock(&last_ptr->lock);
3893 	}
3894 }
3895 
3896 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3897 			 struct btrfs_key *ins)
3898 {
3899 	switch (ffe_ctl->policy) {
3900 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3901 		found_extent_clustered(ffe_ctl, ins);
3902 		break;
3903 	case BTRFS_EXTENT_ALLOC_ZONED:
3904 		/* Nothing to do */
3905 		break;
3906 	default:
3907 		BUG();
3908 	}
3909 }
3910 
3911 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3912 {
3913 	switch (ffe_ctl->policy) {
3914 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3915 		/*
3916 		 * If we can't allocate a new chunk we've already looped through
3917 		 * at least once, move on to the NO_EMPTY_SIZE case.
3918 		 */
3919 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3920 		return 0;
3921 	case BTRFS_EXTENT_ALLOC_ZONED:
3922 		/* Give up here */
3923 		return -ENOSPC;
3924 	default:
3925 		BUG();
3926 	}
3927 }
3928 
3929 /*
3930  * Return >0 means caller needs to re-search for free extent
3931  * Return 0 means we have the needed free extent.
3932  * Return <0 means we failed to locate any free extent.
3933  */
3934 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3935 					struct btrfs_key *ins,
3936 					struct find_free_extent_ctl *ffe_ctl,
3937 					bool full_search)
3938 {
3939 	struct btrfs_root *root = fs_info->extent_root;
3940 	int ret;
3941 
3942 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3943 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3944 		ffe_ctl->orig_have_caching_bg = true;
3945 
3946 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3947 	    ffe_ctl->have_caching_bg)
3948 		return 1;
3949 
3950 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3951 		return 1;
3952 
3953 	if (ins->objectid) {
3954 		found_extent(ffe_ctl, ins);
3955 		return 0;
3956 	}
3957 
3958 	/*
3959 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3960 	 *			caching kthreads as we move along
3961 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3962 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3963 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3964 	 *		       again
3965 	 */
3966 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3967 		ffe_ctl->index = 0;
3968 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3969 			/*
3970 			 * We want to skip the LOOP_CACHING_WAIT step if we
3971 			 * don't have any uncached bgs and we've already done a
3972 			 * full search through.
3973 			 */
3974 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3975 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3976 			else
3977 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3978 		} else {
3979 			ffe_ctl->loop++;
3980 		}
3981 
3982 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3983 			struct btrfs_trans_handle *trans;
3984 			int exist = 0;
3985 
3986 			trans = current->journal_info;
3987 			if (trans)
3988 				exist = 1;
3989 			else
3990 				trans = btrfs_join_transaction(root);
3991 
3992 			if (IS_ERR(trans)) {
3993 				ret = PTR_ERR(trans);
3994 				return ret;
3995 			}
3996 
3997 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3998 						CHUNK_ALLOC_FORCE);
3999 
4000 			/* Do not bail out on ENOSPC since we can do more. */
4001 			if (ret == -ENOSPC)
4002 				ret = chunk_allocation_failed(ffe_ctl);
4003 			else if (ret < 0)
4004 				btrfs_abort_transaction(trans, ret);
4005 			else
4006 				ret = 0;
4007 			if (!exist)
4008 				btrfs_end_transaction(trans);
4009 			if (ret)
4010 				return ret;
4011 		}
4012 
4013 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4014 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4015 				return -ENOSPC;
4016 
4017 			/*
4018 			 * Don't loop again if we already have no empty_size and
4019 			 * no empty_cluster.
4020 			 */
4021 			if (ffe_ctl->empty_size == 0 &&
4022 			    ffe_ctl->empty_cluster == 0)
4023 				return -ENOSPC;
4024 			ffe_ctl->empty_size = 0;
4025 			ffe_ctl->empty_cluster = 0;
4026 		}
4027 		return 1;
4028 	}
4029 	return -ENOSPC;
4030 }
4031 
4032 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4033 					struct find_free_extent_ctl *ffe_ctl,
4034 					struct btrfs_space_info *space_info,
4035 					struct btrfs_key *ins)
4036 {
4037 	/*
4038 	 * If our free space is heavily fragmented we may not be able to make
4039 	 * big contiguous allocations, so instead of doing the expensive search
4040 	 * for free space, simply return ENOSPC with our max_extent_size so we
4041 	 * can go ahead and search for a more manageable chunk.
4042 	 *
4043 	 * If our max_extent_size is large enough for our allocation simply
4044 	 * disable clustering since we will likely not be able to find enough
4045 	 * space to create a cluster and induce latency trying.
4046 	 */
4047 	if (space_info->max_extent_size) {
4048 		spin_lock(&space_info->lock);
4049 		if (space_info->max_extent_size &&
4050 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4051 			ins->offset = space_info->max_extent_size;
4052 			spin_unlock(&space_info->lock);
4053 			return -ENOSPC;
4054 		} else if (space_info->max_extent_size) {
4055 			ffe_ctl->use_cluster = false;
4056 		}
4057 		spin_unlock(&space_info->lock);
4058 	}
4059 
4060 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4061 					       &ffe_ctl->empty_cluster);
4062 	if (ffe_ctl->last_ptr) {
4063 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4064 
4065 		spin_lock(&last_ptr->lock);
4066 		if (last_ptr->block_group)
4067 			ffe_ctl->hint_byte = last_ptr->window_start;
4068 		if (last_ptr->fragmented) {
4069 			/*
4070 			 * We still set window_start so we can keep track of the
4071 			 * last place we found an allocation to try and save
4072 			 * some time.
4073 			 */
4074 			ffe_ctl->hint_byte = last_ptr->window_start;
4075 			ffe_ctl->use_cluster = false;
4076 		}
4077 		spin_unlock(&last_ptr->lock);
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4084 			      struct find_free_extent_ctl *ffe_ctl,
4085 			      struct btrfs_space_info *space_info,
4086 			      struct btrfs_key *ins)
4087 {
4088 	switch (ffe_ctl->policy) {
4089 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4090 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4091 						    space_info, ins);
4092 	case BTRFS_EXTENT_ALLOC_ZONED:
4093 		if (ffe_ctl->for_treelog) {
4094 			spin_lock(&fs_info->treelog_bg_lock);
4095 			if (fs_info->treelog_bg)
4096 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4097 			spin_unlock(&fs_info->treelog_bg_lock);
4098 		}
4099 		return 0;
4100 	default:
4101 		BUG();
4102 	}
4103 }
4104 
4105 /*
4106  * walks the btree of allocated extents and find a hole of a given size.
4107  * The key ins is changed to record the hole:
4108  * ins->objectid == start position
4109  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4110  * ins->offset == the size of the hole.
4111  * Any available blocks before search_start are skipped.
4112  *
4113  * If there is no suitable free space, we will record the max size of
4114  * the free space extent currently.
4115  *
4116  * The overall logic and call chain:
4117  *
4118  * find_free_extent()
4119  * |- Iterate through all block groups
4120  * |  |- Get a valid block group
4121  * |  |- Try to do clustered allocation in that block group
4122  * |  |- Try to do unclustered allocation in that block group
4123  * |  |- Check if the result is valid
4124  * |  |  |- If valid, then exit
4125  * |  |- Jump to next block group
4126  * |
4127  * |- Push harder to find free extents
4128  *    |- If not found, re-iterate all block groups
4129  */
4130 static noinline int find_free_extent(struct btrfs_root *root,
4131 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
4132 				u64 hint_byte_orig, struct btrfs_key *ins,
4133 				u64 flags, int delalloc)
4134 {
4135 	struct btrfs_fs_info *fs_info = root->fs_info;
4136 	int ret = 0;
4137 	int cache_block_group_error = 0;
4138 	struct btrfs_block_group *block_group = NULL;
4139 	struct find_free_extent_ctl ffe_ctl = {0};
4140 	struct btrfs_space_info *space_info;
4141 	bool full_search = false;
4142 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4143 
4144 	WARN_ON(num_bytes < fs_info->sectorsize);
4145 
4146 	ffe_ctl.num_bytes = num_bytes;
4147 	ffe_ctl.empty_size = empty_size;
4148 	ffe_ctl.flags = flags;
4149 	ffe_ctl.search_start = 0;
4150 	ffe_ctl.delalloc = delalloc;
4151 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4152 	ffe_ctl.have_caching_bg = false;
4153 	ffe_ctl.orig_have_caching_bg = false;
4154 	ffe_ctl.found_offset = 0;
4155 	ffe_ctl.hint_byte = hint_byte_orig;
4156 	ffe_ctl.for_treelog = for_treelog;
4157 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4158 
4159 	/* For clustered allocation */
4160 	ffe_ctl.retry_clustered = false;
4161 	ffe_ctl.retry_unclustered = false;
4162 	ffe_ctl.last_ptr = NULL;
4163 	ffe_ctl.use_cluster = true;
4164 
4165 	if (btrfs_is_zoned(fs_info))
4166 		ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED;
4167 
4168 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4169 	ins->objectid = 0;
4170 	ins->offset = 0;
4171 
4172 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4173 
4174 	space_info = btrfs_find_space_info(fs_info, flags);
4175 	if (!space_info) {
4176 		btrfs_err(fs_info, "No space info for %llu", flags);
4177 		return -ENOSPC;
4178 	}
4179 
4180 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4181 	if (ret < 0)
4182 		return ret;
4183 
4184 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4185 				   first_logical_byte(fs_info, 0));
4186 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4187 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4188 		block_group = btrfs_lookup_block_group(fs_info,
4189 						       ffe_ctl.search_start);
4190 		/*
4191 		 * we don't want to use the block group if it doesn't match our
4192 		 * allocation bits, or if its not cached.
4193 		 *
4194 		 * However if we are re-searching with an ideal block group
4195 		 * picked out then we don't care that the block group is cached.
4196 		 */
4197 		if (block_group && block_group_bits(block_group, flags) &&
4198 		    block_group->cached != BTRFS_CACHE_NO) {
4199 			down_read(&space_info->groups_sem);
4200 			if (list_empty(&block_group->list) ||
4201 			    block_group->ro) {
4202 				/*
4203 				 * someone is removing this block group,
4204 				 * we can't jump into the have_block_group
4205 				 * target because our list pointers are not
4206 				 * valid
4207 				 */
4208 				btrfs_put_block_group(block_group);
4209 				up_read(&space_info->groups_sem);
4210 			} else {
4211 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4212 						block_group->flags);
4213 				btrfs_lock_block_group(block_group, delalloc);
4214 				goto have_block_group;
4215 			}
4216 		} else if (block_group) {
4217 			btrfs_put_block_group(block_group);
4218 		}
4219 	}
4220 search:
4221 	ffe_ctl.have_caching_bg = false;
4222 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4223 	    ffe_ctl.index == 0)
4224 		full_search = true;
4225 	down_read(&space_info->groups_sem);
4226 	list_for_each_entry(block_group,
4227 			    &space_info->block_groups[ffe_ctl.index], list) {
4228 		struct btrfs_block_group *bg_ret;
4229 
4230 		/* If the block group is read-only, we can skip it entirely. */
4231 		if (unlikely(block_group->ro)) {
4232 			if (for_treelog)
4233 				btrfs_clear_treelog_bg(block_group);
4234 			continue;
4235 		}
4236 
4237 		btrfs_grab_block_group(block_group, delalloc);
4238 		ffe_ctl.search_start = block_group->start;
4239 
4240 		/*
4241 		 * this can happen if we end up cycling through all the
4242 		 * raid types, but we want to make sure we only allocate
4243 		 * for the proper type.
4244 		 */
4245 		if (!block_group_bits(block_group, flags)) {
4246 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4247 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4248 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4249 				BTRFS_BLOCK_GROUP_RAID10;
4250 
4251 			/*
4252 			 * if they asked for extra copies and this block group
4253 			 * doesn't provide them, bail.  This does allow us to
4254 			 * fill raid0 from raid1.
4255 			 */
4256 			if ((flags & extra) && !(block_group->flags & extra))
4257 				goto loop;
4258 
4259 			/*
4260 			 * This block group has different flags than we want.
4261 			 * It's possible that we have MIXED_GROUP flag but no
4262 			 * block group is mixed.  Just skip such block group.
4263 			 */
4264 			btrfs_release_block_group(block_group, delalloc);
4265 			continue;
4266 		}
4267 
4268 have_block_group:
4269 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4270 		if (unlikely(!ffe_ctl.cached)) {
4271 			ffe_ctl.have_caching_bg = true;
4272 			ret = btrfs_cache_block_group(block_group, 0);
4273 
4274 			/*
4275 			 * If we get ENOMEM here or something else we want to
4276 			 * try other block groups, because it may not be fatal.
4277 			 * However if we can't find anything else we need to
4278 			 * save our return here so that we return the actual
4279 			 * error that caused problems, not ENOSPC.
4280 			 */
4281 			if (ret < 0) {
4282 				if (!cache_block_group_error)
4283 					cache_block_group_error = ret;
4284 				ret = 0;
4285 				goto loop;
4286 			}
4287 			ret = 0;
4288 		}
4289 
4290 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4291 			goto loop;
4292 
4293 		bg_ret = NULL;
4294 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4295 		if (ret == 0) {
4296 			if (bg_ret && bg_ret != block_group) {
4297 				btrfs_release_block_group(block_group, delalloc);
4298 				block_group = bg_ret;
4299 			}
4300 		} else if (ret == -EAGAIN) {
4301 			goto have_block_group;
4302 		} else if (ret > 0) {
4303 			goto loop;
4304 		}
4305 
4306 		/* Checks */
4307 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4308 					     fs_info->stripesize);
4309 
4310 		/* move on to the next group */
4311 		if (ffe_ctl.search_start + num_bytes >
4312 		    block_group->start + block_group->length) {
4313 			btrfs_add_free_space_unused(block_group,
4314 					    ffe_ctl.found_offset, num_bytes);
4315 			goto loop;
4316 		}
4317 
4318 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4319 			btrfs_add_free_space_unused(block_group,
4320 					ffe_ctl.found_offset,
4321 					ffe_ctl.search_start - ffe_ctl.found_offset);
4322 
4323 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4324 				num_bytes, delalloc);
4325 		if (ret == -EAGAIN) {
4326 			btrfs_add_free_space_unused(block_group,
4327 					ffe_ctl.found_offset, num_bytes);
4328 			goto loop;
4329 		}
4330 		btrfs_inc_block_group_reservations(block_group);
4331 
4332 		/* we are all good, lets return */
4333 		ins->objectid = ffe_ctl.search_start;
4334 		ins->offset = num_bytes;
4335 
4336 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4337 					   num_bytes);
4338 		btrfs_release_block_group(block_group, delalloc);
4339 		break;
4340 loop:
4341 		release_block_group(block_group, &ffe_ctl, delalloc);
4342 		cond_resched();
4343 	}
4344 	up_read(&space_info->groups_sem);
4345 
4346 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4347 	if (ret > 0)
4348 		goto search;
4349 
4350 	if (ret == -ENOSPC && !cache_block_group_error) {
4351 		/*
4352 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4353 		 * any contiguous hole.
4354 		 */
4355 		if (!ffe_ctl.max_extent_size)
4356 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4357 		spin_lock(&space_info->lock);
4358 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4359 		spin_unlock(&space_info->lock);
4360 		ins->offset = ffe_ctl.max_extent_size;
4361 	} else if (ret == -ENOSPC) {
4362 		ret = cache_block_group_error;
4363 	}
4364 	return ret;
4365 }
4366 
4367 /*
4368  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4369  *			  hole that is at least as big as @num_bytes.
4370  *
4371  * @root           -	The root that will contain this extent
4372  *
4373  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4374  *			is used for accounting purposes. This value differs
4375  *			from @num_bytes only in the case of compressed extents.
4376  *
4377  * @num_bytes      -	Number of bytes to allocate on-disk.
4378  *
4379  * @min_alloc_size -	Indicates the minimum amount of space that the
4380  *			allocator should try to satisfy. In some cases
4381  *			@num_bytes may be larger than what is required and if
4382  *			the filesystem is fragmented then allocation fails.
4383  *			However, the presence of @min_alloc_size gives a
4384  *			chance to try and satisfy the smaller allocation.
4385  *
4386  * @empty_size     -	A hint that you plan on doing more COW. This is the
4387  *			size in bytes the allocator should try to find free
4388  *			next to the block it returns.  This is just a hint and
4389  *			may be ignored by the allocator.
4390  *
4391  * @hint_byte      -	Hint to the allocator to start searching above the byte
4392  *			address passed. It might be ignored.
4393  *
4394  * @ins            -	This key is modified to record the found hole. It will
4395  *			have the following values:
4396  *			ins->objectid == start position
4397  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4398  *			ins->offset == the size of the hole.
4399  *
4400  * @is_data        -	Boolean flag indicating whether an extent is
4401  *			allocated for data (true) or metadata (false)
4402  *
4403  * @delalloc       -	Boolean flag indicating whether this allocation is for
4404  *			delalloc or not. If 'true' data_rwsem of block groups
4405  *			is going to be acquired.
4406  *
4407  *
4408  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4409  * case -ENOSPC is returned then @ins->offset will contain the size of the
4410  * largest available hole the allocator managed to find.
4411  */
4412 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4413 			 u64 num_bytes, u64 min_alloc_size,
4414 			 u64 empty_size, u64 hint_byte,
4415 			 struct btrfs_key *ins, int is_data, int delalloc)
4416 {
4417 	struct btrfs_fs_info *fs_info = root->fs_info;
4418 	bool final_tried = num_bytes == min_alloc_size;
4419 	u64 flags;
4420 	int ret;
4421 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4422 
4423 	flags = get_alloc_profile_by_root(root, is_data);
4424 again:
4425 	WARN_ON(num_bytes < fs_info->sectorsize);
4426 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4427 			       hint_byte, ins, flags, delalloc);
4428 	if (!ret && !is_data) {
4429 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4430 	} else if (ret == -ENOSPC) {
4431 		if (!final_tried && ins->offset) {
4432 			num_bytes = min(num_bytes >> 1, ins->offset);
4433 			num_bytes = round_down(num_bytes,
4434 					       fs_info->sectorsize);
4435 			num_bytes = max(num_bytes, min_alloc_size);
4436 			ram_bytes = num_bytes;
4437 			if (num_bytes == min_alloc_size)
4438 				final_tried = true;
4439 			goto again;
4440 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4441 			struct btrfs_space_info *sinfo;
4442 
4443 			sinfo = btrfs_find_space_info(fs_info, flags);
4444 			btrfs_err(fs_info,
4445 			"allocation failed flags %llu, wanted %llu tree-log %d",
4446 				  flags, num_bytes, for_treelog);
4447 			if (sinfo)
4448 				btrfs_dump_space_info(fs_info, sinfo,
4449 						      num_bytes, 1);
4450 		}
4451 	}
4452 
4453 	return ret;
4454 }
4455 
4456 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4457 			       u64 start, u64 len, int delalloc)
4458 {
4459 	struct btrfs_block_group *cache;
4460 
4461 	cache = btrfs_lookup_block_group(fs_info, start);
4462 	if (!cache) {
4463 		btrfs_err(fs_info, "Unable to find block group for %llu",
4464 			  start);
4465 		return -ENOSPC;
4466 	}
4467 
4468 	btrfs_add_free_space(cache, start, len);
4469 	btrfs_free_reserved_bytes(cache, len, delalloc);
4470 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4471 
4472 	btrfs_put_block_group(cache);
4473 	return 0;
4474 }
4475 
4476 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4477 			      u64 len)
4478 {
4479 	struct btrfs_block_group *cache;
4480 	int ret = 0;
4481 
4482 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4483 	if (!cache) {
4484 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4485 			  start);
4486 		return -ENOSPC;
4487 	}
4488 
4489 	ret = pin_down_extent(trans, cache, start, len, 1);
4490 	btrfs_put_block_group(cache);
4491 	return ret;
4492 }
4493 
4494 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4495 				      u64 parent, u64 root_objectid,
4496 				      u64 flags, u64 owner, u64 offset,
4497 				      struct btrfs_key *ins, int ref_mod)
4498 {
4499 	struct btrfs_fs_info *fs_info = trans->fs_info;
4500 	int ret;
4501 	struct btrfs_extent_item *extent_item;
4502 	struct btrfs_extent_inline_ref *iref;
4503 	struct btrfs_path *path;
4504 	struct extent_buffer *leaf;
4505 	int type;
4506 	u32 size;
4507 
4508 	if (parent > 0)
4509 		type = BTRFS_SHARED_DATA_REF_KEY;
4510 	else
4511 		type = BTRFS_EXTENT_DATA_REF_KEY;
4512 
4513 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4514 
4515 	path = btrfs_alloc_path();
4516 	if (!path)
4517 		return -ENOMEM;
4518 
4519 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4520 				      ins, size);
4521 	if (ret) {
4522 		btrfs_free_path(path);
4523 		return ret;
4524 	}
4525 
4526 	leaf = path->nodes[0];
4527 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4528 				     struct btrfs_extent_item);
4529 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4530 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4531 	btrfs_set_extent_flags(leaf, extent_item,
4532 			       flags | BTRFS_EXTENT_FLAG_DATA);
4533 
4534 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4535 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4536 	if (parent > 0) {
4537 		struct btrfs_shared_data_ref *ref;
4538 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4539 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4540 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4541 	} else {
4542 		struct btrfs_extent_data_ref *ref;
4543 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4544 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4545 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4546 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4547 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4548 	}
4549 
4550 	btrfs_mark_buffer_dirty(path->nodes[0]);
4551 	btrfs_free_path(path);
4552 
4553 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4554 	if (ret)
4555 		return ret;
4556 
4557 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4558 	if (ret) { /* -ENOENT, logic error */
4559 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4560 			ins->objectid, ins->offset);
4561 		BUG();
4562 	}
4563 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4564 	return ret;
4565 }
4566 
4567 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4568 				     struct btrfs_delayed_ref_node *node,
4569 				     struct btrfs_delayed_extent_op *extent_op)
4570 {
4571 	struct btrfs_fs_info *fs_info = trans->fs_info;
4572 	int ret;
4573 	struct btrfs_extent_item *extent_item;
4574 	struct btrfs_key extent_key;
4575 	struct btrfs_tree_block_info *block_info;
4576 	struct btrfs_extent_inline_ref *iref;
4577 	struct btrfs_path *path;
4578 	struct extent_buffer *leaf;
4579 	struct btrfs_delayed_tree_ref *ref;
4580 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4581 	u64 num_bytes;
4582 	u64 flags = extent_op->flags_to_set;
4583 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4584 
4585 	ref = btrfs_delayed_node_to_tree_ref(node);
4586 
4587 	extent_key.objectid = node->bytenr;
4588 	if (skinny_metadata) {
4589 		extent_key.offset = ref->level;
4590 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4591 		num_bytes = fs_info->nodesize;
4592 	} else {
4593 		extent_key.offset = node->num_bytes;
4594 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4595 		size += sizeof(*block_info);
4596 		num_bytes = node->num_bytes;
4597 	}
4598 
4599 	path = btrfs_alloc_path();
4600 	if (!path)
4601 		return -ENOMEM;
4602 
4603 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4604 				      &extent_key, size);
4605 	if (ret) {
4606 		btrfs_free_path(path);
4607 		return ret;
4608 	}
4609 
4610 	leaf = path->nodes[0];
4611 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4612 				     struct btrfs_extent_item);
4613 	btrfs_set_extent_refs(leaf, extent_item, 1);
4614 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4615 	btrfs_set_extent_flags(leaf, extent_item,
4616 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4617 
4618 	if (skinny_metadata) {
4619 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4620 	} else {
4621 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4622 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4623 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4624 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4625 	}
4626 
4627 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4628 		btrfs_set_extent_inline_ref_type(leaf, iref,
4629 						 BTRFS_SHARED_BLOCK_REF_KEY);
4630 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4631 	} else {
4632 		btrfs_set_extent_inline_ref_type(leaf, iref,
4633 						 BTRFS_TREE_BLOCK_REF_KEY);
4634 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4635 	}
4636 
4637 	btrfs_mark_buffer_dirty(leaf);
4638 	btrfs_free_path(path);
4639 
4640 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4641 					  num_bytes);
4642 	if (ret)
4643 		return ret;
4644 
4645 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4646 				       fs_info->nodesize, 1);
4647 	if (ret) { /* -ENOENT, logic error */
4648 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4649 			extent_key.objectid, extent_key.offset);
4650 		BUG();
4651 	}
4652 
4653 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4654 					  fs_info->nodesize);
4655 	return ret;
4656 }
4657 
4658 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4659 				     struct btrfs_root *root, u64 owner,
4660 				     u64 offset, u64 ram_bytes,
4661 				     struct btrfs_key *ins)
4662 {
4663 	struct btrfs_ref generic_ref = { 0 };
4664 
4665 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4666 
4667 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4668 			       ins->objectid, ins->offset, 0);
4669 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4670 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4671 
4672 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4673 }
4674 
4675 /*
4676  * this is used by the tree logging recovery code.  It records that
4677  * an extent has been allocated and makes sure to clear the free
4678  * space cache bits as well
4679  */
4680 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4681 				   u64 root_objectid, u64 owner, u64 offset,
4682 				   struct btrfs_key *ins)
4683 {
4684 	struct btrfs_fs_info *fs_info = trans->fs_info;
4685 	int ret;
4686 	struct btrfs_block_group *block_group;
4687 	struct btrfs_space_info *space_info;
4688 
4689 	/*
4690 	 * Mixed block groups will exclude before processing the log so we only
4691 	 * need to do the exclude dance if this fs isn't mixed.
4692 	 */
4693 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4694 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4695 					      ins->offset);
4696 		if (ret)
4697 			return ret;
4698 	}
4699 
4700 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4701 	if (!block_group)
4702 		return -EINVAL;
4703 
4704 	space_info = block_group->space_info;
4705 	spin_lock(&space_info->lock);
4706 	spin_lock(&block_group->lock);
4707 	space_info->bytes_reserved += ins->offset;
4708 	block_group->reserved += ins->offset;
4709 	spin_unlock(&block_group->lock);
4710 	spin_unlock(&space_info->lock);
4711 
4712 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4713 					 offset, ins, 1);
4714 	if (ret)
4715 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4716 	btrfs_put_block_group(block_group);
4717 	return ret;
4718 }
4719 
4720 static struct extent_buffer *
4721 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4722 		      u64 bytenr, int level, u64 owner,
4723 		      enum btrfs_lock_nesting nest)
4724 {
4725 	struct btrfs_fs_info *fs_info = root->fs_info;
4726 	struct extent_buffer *buf;
4727 
4728 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4729 	if (IS_ERR(buf))
4730 		return buf;
4731 
4732 	/*
4733 	 * Extra safety check in case the extent tree is corrupted and extent
4734 	 * allocator chooses to use a tree block which is already used and
4735 	 * locked.
4736 	 */
4737 	if (buf->lock_owner == current->pid) {
4738 		btrfs_err_rl(fs_info,
4739 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4740 			buf->start, btrfs_header_owner(buf), current->pid);
4741 		free_extent_buffer(buf);
4742 		return ERR_PTR(-EUCLEAN);
4743 	}
4744 
4745 	/*
4746 	 * This needs to stay, because we could allocate a freed block from an
4747 	 * old tree into a new tree, so we need to make sure this new block is
4748 	 * set to the appropriate level and owner.
4749 	 */
4750 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4751 	__btrfs_tree_lock(buf, nest);
4752 	btrfs_clean_tree_block(buf);
4753 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4754 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4755 
4756 	set_extent_buffer_uptodate(buf);
4757 
4758 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4759 	btrfs_set_header_level(buf, level);
4760 	btrfs_set_header_bytenr(buf, buf->start);
4761 	btrfs_set_header_generation(buf, trans->transid);
4762 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4763 	btrfs_set_header_owner(buf, owner);
4764 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4765 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4766 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4767 		buf->log_index = root->log_transid % 2;
4768 		/*
4769 		 * we allow two log transactions at a time, use different
4770 		 * EXTENT bit to differentiate dirty pages.
4771 		 */
4772 		if (buf->log_index == 0)
4773 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4774 					buf->start + buf->len - 1, GFP_NOFS);
4775 		else
4776 			set_extent_new(&root->dirty_log_pages, buf->start,
4777 					buf->start + buf->len - 1);
4778 	} else {
4779 		buf->log_index = -1;
4780 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4781 			 buf->start + buf->len - 1, GFP_NOFS);
4782 	}
4783 	trans->dirty = true;
4784 	/* this returns a buffer locked for blocking */
4785 	return buf;
4786 }
4787 
4788 /*
4789  * finds a free extent and does all the dirty work required for allocation
4790  * returns the tree buffer or an ERR_PTR on error.
4791  */
4792 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4793 					     struct btrfs_root *root,
4794 					     u64 parent, u64 root_objectid,
4795 					     const struct btrfs_disk_key *key,
4796 					     int level, u64 hint,
4797 					     u64 empty_size,
4798 					     enum btrfs_lock_nesting nest)
4799 {
4800 	struct btrfs_fs_info *fs_info = root->fs_info;
4801 	struct btrfs_key ins;
4802 	struct btrfs_block_rsv *block_rsv;
4803 	struct extent_buffer *buf;
4804 	struct btrfs_delayed_extent_op *extent_op;
4805 	struct btrfs_ref generic_ref = { 0 };
4806 	u64 flags = 0;
4807 	int ret;
4808 	u32 blocksize = fs_info->nodesize;
4809 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4810 
4811 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4812 	if (btrfs_is_testing(fs_info)) {
4813 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4814 					    level, root_objectid, nest);
4815 		if (!IS_ERR(buf))
4816 			root->alloc_bytenr += blocksize;
4817 		return buf;
4818 	}
4819 #endif
4820 
4821 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4822 	if (IS_ERR(block_rsv))
4823 		return ERR_CAST(block_rsv);
4824 
4825 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4826 				   empty_size, hint, &ins, 0, 0);
4827 	if (ret)
4828 		goto out_unuse;
4829 
4830 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4831 				    root_objectid, nest);
4832 	if (IS_ERR(buf)) {
4833 		ret = PTR_ERR(buf);
4834 		goto out_free_reserved;
4835 	}
4836 
4837 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4838 		if (parent == 0)
4839 			parent = ins.objectid;
4840 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4841 	} else
4842 		BUG_ON(parent > 0);
4843 
4844 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4845 		extent_op = btrfs_alloc_delayed_extent_op();
4846 		if (!extent_op) {
4847 			ret = -ENOMEM;
4848 			goto out_free_buf;
4849 		}
4850 		if (key)
4851 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4852 		else
4853 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4854 		extent_op->flags_to_set = flags;
4855 		extent_op->update_key = skinny_metadata ? false : true;
4856 		extent_op->update_flags = true;
4857 		extent_op->is_data = false;
4858 		extent_op->level = level;
4859 
4860 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4861 				       ins.objectid, ins.offset, parent);
4862 		generic_ref.real_root = root->root_key.objectid;
4863 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4864 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4865 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4866 		if (ret)
4867 			goto out_free_delayed;
4868 	}
4869 	return buf;
4870 
4871 out_free_delayed:
4872 	btrfs_free_delayed_extent_op(extent_op);
4873 out_free_buf:
4874 	free_extent_buffer(buf);
4875 out_free_reserved:
4876 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4877 out_unuse:
4878 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4879 	return ERR_PTR(ret);
4880 }
4881 
4882 struct walk_control {
4883 	u64 refs[BTRFS_MAX_LEVEL];
4884 	u64 flags[BTRFS_MAX_LEVEL];
4885 	struct btrfs_key update_progress;
4886 	struct btrfs_key drop_progress;
4887 	int drop_level;
4888 	int stage;
4889 	int level;
4890 	int shared_level;
4891 	int update_ref;
4892 	int keep_locks;
4893 	int reada_slot;
4894 	int reada_count;
4895 	int restarted;
4896 };
4897 
4898 #define DROP_REFERENCE	1
4899 #define UPDATE_BACKREF	2
4900 
4901 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4902 				     struct btrfs_root *root,
4903 				     struct walk_control *wc,
4904 				     struct btrfs_path *path)
4905 {
4906 	struct btrfs_fs_info *fs_info = root->fs_info;
4907 	u64 bytenr;
4908 	u64 generation;
4909 	u64 refs;
4910 	u64 flags;
4911 	u32 nritems;
4912 	struct btrfs_key key;
4913 	struct extent_buffer *eb;
4914 	int ret;
4915 	int slot;
4916 	int nread = 0;
4917 
4918 	if (path->slots[wc->level] < wc->reada_slot) {
4919 		wc->reada_count = wc->reada_count * 2 / 3;
4920 		wc->reada_count = max(wc->reada_count, 2);
4921 	} else {
4922 		wc->reada_count = wc->reada_count * 3 / 2;
4923 		wc->reada_count = min_t(int, wc->reada_count,
4924 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4925 	}
4926 
4927 	eb = path->nodes[wc->level];
4928 	nritems = btrfs_header_nritems(eb);
4929 
4930 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4931 		if (nread >= wc->reada_count)
4932 			break;
4933 
4934 		cond_resched();
4935 		bytenr = btrfs_node_blockptr(eb, slot);
4936 		generation = btrfs_node_ptr_generation(eb, slot);
4937 
4938 		if (slot == path->slots[wc->level])
4939 			goto reada;
4940 
4941 		if (wc->stage == UPDATE_BACKREF &&
4942 		    generation <= root->root_key.offset)
4943 			continue;
4944 
4945 		/* We don't lock the tree block, it's OK to be racy here */
4946 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4947 					       wc->level - 1, 1, &refs,
4948 					       &flags);
4949 		/* We don't care about errors in readahead. */
4950 		if (ret < 0)
4951 			continue;
4952 		BUG_ON(refs == 0);
4953 
4954 		if (wc->stage == DROP_REFERENCE) {
4955 			if (refs == 1)
4956 				goto reada;
4957 
4958 			if (wc->level == 1 &&
4959 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4960 				continue;
4961 			if (!wc->update_ref ||
4962 			    generation <= root->root_key.offset)
4963 				continue;
4964 			btrfs_node_key_to_cpu(eb, &key, slot);
4965 			ret = btrfs_comp_cpu_keys(&key,
4966 						  &wc->update_progress);
4967 			if (ret < 0)
4968 				continue;
4969 		} else {
4970 			if (wc->level == 1 &&
4971 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4972 				continue;
4973 		}
4974 reada:
4975 		btrfs_readahead_node_child(eb, slot);
4976 		nread++;
4977 	}
4978 	wc->reada_slot = slot;
4979 }
4980 
4981 /*
4982  * helper to process tree block while walking down the tree.
4983  *
4984  * when wc->stage == UPDATE_BACKREF, this function updates
4985  * back refs for pointers in the block.
4986  *
4987  * NOTE: return value 1 means we should stop walking down.
4988  */
4989 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4990 				   struct btrfs_root *root,
4991 				   struct btrfs_path *path,
4992 				   struct walk_control *wc, int lookup_info)
4993 {
4994 	struct btrfs_fs_info *fs_info = root->fs_info;
4995 	int level = wc->level;
4996 	struct extent_buffer *eb = path->nodes[level];
4997 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4998 	int ret;
4999 
5000 	if (wc->stage == UPDATE_BACKREF &&
5001 	    btrfs_header_owner(eb) != root->root_key.objectid)
5002 		return 1;
5003 
5004 	/*
5005 	 * when reference count of tree block is 1, it won't increase
5006 	 * again. once full backref flag is set, we never clear it.
5007 	 */
5008 	if (lookup_info &&
5009 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5010 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5011 		BUG_ON(!path->locks[level]);
5012 		ret = btrfs_lookup_extent_info(trans, fs_info,
5013 					       eb->start, level, 1,
5014 					       &wc->refs[level],
5015 					       &wc->flags[level]);
5016 		BUG_ON(ret == -ENOMEM);
5017 		if (ret)
5018 			return ret;
5019 		BUG_ON(wc->refs[level] == 0);
5020 	}
5021 
5022 	if (wc->stage == DROP_REFERENCE) {
5023 		if (wc->refs[level] > 1)
5024 			return 1;
5025 
5026 		if (path->locks[level] && !wc->keep_locks) {
5027 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5028 			path->locks[level] = 0;
5029 		}
5030 		return 0;
5031 	}
5032 
5033 	/* wc->stage == UPDATE_BACKREF */
5034 	if (!(wc->flags[level] & flag)) {
5035 		BUG_ON(!path->locks[level]);
5036 		ret = btrfs_inc_ref(trans, root, eb, 1);
5037 		BUG_ON(ret); /* -ENOMEM */
5038 		ret = btrfs_dec_ref(trans, root, eb, 0);
5039 		BUG_ON(ret); /* -ENOMEM */
5040 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5041 						  btrfs_header_level(eb), 0);
5042 		BUG_ON(ret); /* -ENOMEM */
5043 		wc->flags[level] |= flag;
5044 	}
5045 
5046 	/*
5047 	 * the block is shared by multiple trees, so it's not good to
5048 	 * keep the tree lock
5049 	 */
5050 	if (path->locks[level] && level > 0) {
5051 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5052 		path->locks[level] = 0;
5053 	}
5054 	return 0;
5055 }
5056 
5057 /*
5058  * This is used to verify a ref exists for this root to deal with a bug where we
5059  * would have a drop_progress key that hadn't been updated properly.
5060  */
5061 static int check_ref_exists(struct btrfs_trans_handle *trans,
5062 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5063 			    int level)
5064 {
5065 	struct btrfs_path *path;
5066 	struct btrfs_extent_inline_ref *iref;
5067 	int ret;
5068 
5069 	path = btrfs_alloc_path();
5070 	if (!path)
5071 		return -ENOMEM;
5072 
5073 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5074 				    root->fs_info->nodesize, parent,
5075 				    root->root_key.objectid, level, 0);
5076 	btrfs_free_path(path);
5077 	if (ret == -ENOENT)
5078 		return 0;
5079 	if (ret < 0)
5080 		return ret;
5081 	return 1;
5082 }
5083 
5084 /*
5085  * helper to process tree block pointer.
5086  *
5087  * when wc->stage == DROP_REFERENCE, this function checks
5088  * reference count of the block pointed to. if the block
5089  * is shared and we need update back refs for the subtree
5090  * rooted at the block, this function changes wc->stage to
5091  * UPDATE_BACKREF. if the block is shared and there is no
5092  * need to update back, this function drops the reference
5093  * to the block.
5094  *
5095  * NOTE: return value 1 means we should stop walking down.
5096  */
5097 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5098 				 struct btrfs_root *root,
5099 				 struct btrfs_path *path,
5100 				 struct walk_control *wc, int *lookup_info)
5101 {
5102 	struct btrfs_fs_info *fs_info = root->fs_info;
5103 	u64 bytenr;
5104 	u64 generation;
5105 	u64 parent;
5106 	struct btrfs_key key;
5107 	struct btrfs_key first_key;
5108 	struct btrfs_ref ref = { 0 };
5109 	struct extent_buffer *next;
5110 	int level = wc->level;
5111 	int reada = 0;
5112 	int ret = 0;
5113 	bool need_account = false;
5114 
5115 	generation = btrfs_node_ptr_generation(path->nodes[level],
5116 					       path->slots[level]);
5117 	/*
5118 	 * if the lower level block was created before the snapshot
5119 	 * was created, we know there is no need to update back refs
5120 	 * for the subtree
5121 	 */
5122 	if (wc->stage == UPDATE_BACKREF &&
5123 	    generation <= root->root_key.offset) {
5124 		*lookup_info = 1;
5125 		return 1;
5126 	}
5127 
5128 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5129 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5130 			      path->slots[level]);
5131 
5132 	next = find_extent_buffer(fs_info, bytenr);
5133 	if (!next) {
5134 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5135 				root->root_key.objectid, level - 1);
5136 		if (IS_ERR(next))
5137 			return PTR_ERR(next);
5138 		reada = 1;
5139 	}
5140 	btrfs_tree_lock(next);
5141 
5142 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5143 				       &wc->refs[level - 1],
5144 				       &wc->flags[level - 1]);
5145 	if (ret < 0)
5146 		goto out_unlock;
5147 
5148 	if (unlikely(wc->refs[level - 1] == 0)) {
5149 		btrfs_err(fs_info, "Missing references.");
5150 		ret = -EIO;
5151 		goto out_unlock;
5152 	}
5153 	*lookup_info = 0;
5154 
5155 	if (wc->stage == DROP_REFERENCE) {
5156 		if (wc->refs[level - 1] > 1) {
5157 			need_account = true;
5158 			if (level == 1 &&
5159 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5160 				goto skip;
5161 
5162 			if (!wc->update_ref ||
5163 			    generation <= root->root_key.offset)
5164 				goto skip;
5165 
5166 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5167 					      path->slots[level]);
5168 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5169 			if (ret < 0)
5170 				goto skip;
5171 
5172 			wc->stage = UPDATE_BACKREF;
5173 			wc->shared_level = level - 1;
5174 		}
5175 	} else {
5176 		if (level == 1 &&
5177 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5178 			goto skip;
5179 	}
5180 
5181 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5182 		btrfs_tree_unlock(next);
5183 		free_extent_buffer(next);
5184 		next = NULL;
5185 		*lookup_info = 1;
5186 	}
5187 
5188 	if (!next) {
5189 		if (reada && level == 1)
5190 			reada_walk_down(trans, root, wc, path);
5191 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5192 				       generation, level - 1, &first_key);
5193 		if (IS_ERR(next)) {
5194 			return PTR_ERR(next);
5195 		} else if (!extent_buffer_uptodate(next)) {
5196 			free_extent_buffer(next);
5197 			return -EIO;
5198 		}
5199 		btrfs_tree_lock(next);
5200 	}
5201 
5202 	level--;
5203 	ASSERT(level == btrfs_header_level(next));
5204 	if (level != btrfs_header_level(next)) {
5205 		btrfs_err(root->fs_info, "mismatched level");
5206 		ret = -EIO;
5207 		goto out_unlock;
5208 	}
5209 	path->nodes[level] = next;
5210 	path->slots[level] = 0;
5211 	path->locks[level] = BTRFS_WRITE_LOCK;
5212 	wc->level = level;
5213 	if (wc->level == 1)
5214 		wc->reada_slot = 0;
5215 	return 0;
5216 skip:
5217 	wc->refs[level - 1] = 0;
5218 	wc->flags[level - 1] = 0;
5219 	if (wc->stage == DROP_REFERENCE) {
5220 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5221 			parent = path->nodes[level]->start;
5222 		} else {
5223 			ASSERT(root->root_key.objectid ==
5224 			       btrfs_header_owner(path->nodes[level]));
5225 			if (root->root_key.objectid !=
5226 			    btrfs_header_owner(path->nodes[level])) {
5227 				btrfs_err(root->fs_info,
5228 						"mismatched block owner");
5229 				ret = -EIO;
5230 				goto out_unlock;
5231 			}
5232 			parent = 0;
5233 		}
5234 
5235 		/*
5236 		 * If we had a drop_progress we need to verify the refs are set
5237 		 * as expected.  If we find our ref then we know that from here
5238 		 * on out everything should be correct, and we can clear the
5239 		 * ->restarted flag.
5240 		 */
5241 		if (wc->restarted) {
5242 			ret = check_ref_exists(trans, root, bytenr, parent,
5243 					       level - 1);
5244 			if (ret < 0)
5245 				goto out_unlock;
5246 			if (ret == 0)
5247 				goto no_delete;
5248 			ret = 0;
5249 			wc->restarted = 0;
5250 		}
5251 
5252 		/*
5253 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5254 		 * already accounted them at merge time (replace_path),
5255 		 * thus we could skip expensive subtree trace here.
5256 		 */
5257 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5258 		    need_account) {
5259 			ret = btrfs_qgroup_trace_subtree(trans, next,
5260 							 generation, level - 1);
5261 			if (ret) {
5262 				btrfs_err_rl(fs_info,
5263 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5264 					     ret);
5265 			}
5266 		}
5267 
5268 		/*
5269 		 * We need to update the next key in our walk control so we can
5270 		 * update the drop_progress key accordingly.  We don't care if
5271 		 * find_next_key doesn't find a key because that means we're at
5272 		 * the end and are going to clean up now.
5273 		 */
5274 		wc->drop_level = level;
5275 		find_next_key(path, level, &wc->drop_progress);
5276 
5277 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5278 				       fs_info->nodesize, parent);
5279 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5280 		ret = btrfs_free_extent(trans, &ref);
5281 		if (ret)
5282 			goto out_unlock;
5283 	}
5284 no_delete:
5285 	*lookup_info = 1;
5286 	ret = 1;
5287 
5288 out_unlock:
5289 	btrfs_tree_unlock(next);
5290 	free_extent_buffer(next);
5291 
5292 	return ret;
5293 }
5294 
5295 /*
5296  * helper to process tree block while walking up the tree.
5297  *
5298  * when wc->stage == DROP_REFERENCE, this function drops
5299  * reference count on the block.
5300  *
5301  * when wc->stage == UPDATE_BACKREF, this function changes
5302  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5303  * to UPDATE_BACKREF previously while processing the block.
5304  *
5305  * NOTE: return value 1 means we should stop walking up.
5306  */
5307 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5308 				 struct btrfs_root *root,
5309 				 struct btrfs_path *path,
5310 				 struct walk_control *wc)
5311 {
5312 	struct btrfs_fs_info *fs_info = root->fs_info;
5313 	int ret;
5314 	int level = wc->level;
5315 	struct extent_buffer *eb = path->nodes[level];
5316 	u64 parent = 0;
5317 
5318 	if (wc->stage == UPDATE_BACKREF) {
5319 		BUG_ON(wc->shared_level < level);
5320 		if (level < wc->shared_level)
5321 			goto out;
5322 
5323 		ret = find_next_key(path, level + 1, &wc->update_progress);
5324 		if (ret > 0)
5325 			wc->update_ref = 0;
5326 
5327 		wc->stage = DROP_REFERENCE;
5328 		wc->shared_level = -1;
5329 		path->slots[level] = 0;
5330 
5331 		/*
5332 		 * check reference count again if the block isn't locked.
5333 		 * we should start walking down the tree again if reference
5334 		 * count is one.
5335 		 */
5336 		if (!path->locks[level]) {
5337 			BUG_ON(level == 0);
5338 			btrfs_tree_lock(eb);
5339 			path->locks[level] = BTRFS_WRITE_LOCK;
5340 
5341 			ret = btrfs_lookup_extent_info(trans, fs_info,
5342 						       eb->start, level, 1,
5343 						       &wc->refs[level],
5344 						       &wc->flags[level]);
5345 			if (ret < 0) {
5346 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5347 				path->locks[level] = 0;
5348 				return ret;
5349 			}
5350 			BUG_ON(wc->refs[level] == 0);
5351 			if (wc->refs[level] == 1) {
5352 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5353 				path->locks[level] = 0;
5354 				return 1;
5355 			}
5356 		}
5357 	}
5358 
5359 	/* wc->stage == DROP_REFERENCE */
5360 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5361 
5362 	if (wc->refs[level] == 1) {
5363 		if (level == 0) {
5364 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5365 				ret = btrfs_dec_ref(trans, root, eb, 1);
5366 			else
5367 				ret = btrfs_dec_ref(trans, root, eb, 0);
5368 			BUG_ON(ret); /* -ENOMEM */
5369 			if (is_fstree(root->root_key.objectid)) {
5370 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5371 				if (ret) {
5372 					btrfs_err_rl(fs_info,
5373 	"error %d accounting leaf items, quota is out of sync, rescan required",
5374 					     ret);
5375 				}
5376 			}
5377 		}
5378 		/* make block locked assertion in btrfs_clean_tree_block happy */
5379 		if (!path->locks[level] &&
5380 		    btrfs_header_generation(eb) == trans->transid) {
5381 			btrfs_tree_lock(eb);
5382 			path->locks[level] = BTRFS_WRITE_LOCK;
5383 		}
5384 		btrfs_clean_tree_block(eb);
5385 	}
5386 
5387 	if (eb == root->node) {
5388 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5389 			parent = eb->start;
5390 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5391 			goto owner_mismatch;
5392 	} else {
5393 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5394 			parent = path->nodes[level + 1]->start;
5395 		else if (root->root_key.objectid !=
5396 			 btrfs_header_owner(path->nodes[level + 1]))
5397 			goto owner_mismatch;
5398 	}
5399 
5400 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5401 out:
5402 	wc->refs[level] = 0;
5403 	wc->flags[level] = 0;
5404 	return 0;
5405 
5406 owner_mismatch:
5407 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5408 		     btrfs_header_owner(eb), root->root_key.objectid);
5409 	return -EUCLEAN;
5410 }
5411 
5412 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5413 				   struct btrfs_root *root,
5414 				   struct btrfs_path *path,
5415 				   struct walk_control *wc)
5416 {
5417 	int level = wc->level;
5418 	int lookup_info = 1;
5419 	int ret;
5420 
5421 	while (level >= 0) {
5422 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5423 		if (ret > 0)
5424 			break;
5425 
5426 		if (level == 0)
5427 			break;
5428 
5429 		if (path->slots[level] >=
5430 		    btrfs_header_nritems(path->nodes[level]))
5431 			break;
5432 
5433 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5434 		if (ret > 0) {
5435 			path->slots[level]++;
5436 			continue;
5437 		} else if (ret < 0)
5438 			return ret;
5439 		level = wc->level;
5440 	}
5441 	return 0;
5442 }
5443 
5444 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5445 				 struct btrfs_root *root,
5446 				 struct btrfs_path *path,
5447 				 struct walk_control *wc, int max_level)
5448 {
5449 	int level = wc->level;
5450 	int ret;
5451 
5452 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5453 	while (level < max_level && path->nodes[level]) {
5454 		wc->level = level;
5455 		if (path->slots[level] + 1 <
5456 		    btrfs_header_nritems(path->nodes[level])) {
5457 			path->slots[level]++;
5458 			return 0;
5459 		} else {
5460 			ret = walk_up_proc(trans, root, path, wc);
5461 			if (ret > 0)
5462 				return 0;
5463 			if (ret < 0)
5464 				return ret;
5465 
5466 			if (path->locks[level]) {
5467 				btrfs_tree_unlock_rw(path->nodes[level],
5468 						     path->locks[level]);
5469 				path->locks[level] = 0;
5470 			}
5471 			free_extent_buffer(path->nodes[level]);
5472 			path->nodes[level] = NULL;
5473 			level++;
5474 		}
5475 	}
5476 	return 1;
5477 }
5478 
5479 /*
5480  * drop a subvolume tree.
5481  *
5482  * this function traverses the tree freeing any blocks that only
5483  * referenced by the tree.
5484  *
5485  * when a shared tree block is found. this function decreases its
5486  * reference count by one. if update_ref is true, this function
5487  * also make sure backrefs for the shared block and all lower level
5488  * blocks are properly updated.
5489  *
5490  * If called with for_reloc == 0, may exit early with -EAGAIN
5491  */
5492 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5493 {
5494 	struct btrfs_fs_info *fs_info = root->fs_info;
5495 	struct btrfs_path *path;
5496 	struct btrfs_trans_handle *trans;
5497 	struct btrfs_root *tree_root = fs_info->tree_root;
5498 	struct btrfs_root_item *root_item = &root->root_item;
5499 	struct walk_control *wc;
5500 	struct btrfs_key key;
5501 	int err = 0;
5502 	int ret;
5503 	int level;
5504 	bool root_dropped = false;
5505 
5506 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5507 
5508 	path = btrfs_alloc_path();
5509 	if (!path) {
5510 		err = -ENOMEM;
5511 		goto out;
5512 	}
5513 
5514 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5515 	if (!wc) {
5516 		btrfs_free_path(path);
5517 		err = -ENOMEM;
5518 		goto out;
5519 	}
5520 
5521 	/*
5522 	 * Use join to avoid potential EINTR from transaction start. See
5523 	 * wait_reserve_ticket and the whole reservation callchain.
5524 	 */
5525 	if (for_reloc)
5526 		trans = btrfs_join_transaction(tree_root);
5527 	else
5528 		trans = btrfs_start_transaction(tree_root, 0);
5529 	if (IS_ERR(trans)) {
5530 		err = PTR_ERR(trans);
5531 		goto out_free;
5532 	}
5533 
5534 	err = btrfs_run_delayed_items(trans);
5535 	if (err)
5536 		goto out_end_trans;
5537 
5538 	/*
5539 	 * This will help us catch people modifying the fs tree while we're
5540 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5541 	 * dropped as we unlock the root node and parent nodes as we walk down
5542 	 * the tree, assuming nothing will change.  If something does change
5543 	 * then we'll have stale information and drop references to blocks we've
5544 	 * already dropped.
5545 	 */
5546 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5547 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5548 		level = btrfs_header_level(root->node);
5549 		path->nodes[level] = btrfs_lock_root_node(root);
5550 		path->slots[level] = 0;
5551 		path->locks[level] = BTRFS_WRITE_LOCK;
5552 		memset(&wc->update_progress, 0,
5553 		       sizeof(wc->update_progress));
5554 	} else {
5555 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5556 		memcpy(&wc->update_progress, &key,
5557 		       sizeof(wc->update_progress));
5558 
5559 		level = btrfs_root_drop_level(root_item);
5560 		BUG_ON(level == 0);
5561 		path->lowest_level = level;
5562 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5563 		path->lowest_level = 0;
5564 		if (ret < 0) {
5565 			err = ret;
5566 			goto out_end_trans;
5567 		}
5568 		WARN_ON(ret > 0);
5569 
5570 		/*
5571 		 * unlock our path, this is safe because only this
5572 		 * function is allowed to delete this snapshot
5573 		 */
5574 		btrfs_unlock_up_safe(path, 0);
5575 
5576 		level = btrfs_header_level(root->node);
5577 		while (1) {
5578 			btrfs_tree_lock(path->nodes[level]);
5579 			path->locks[level] = BTRFS_WRITE_LOCK;
5580 
5581 			ret = btrfs_lookup_extent_info(trans, fs_info,
5582 						path->nodes[level]->start,
5583 						level, 1, &wc->refs[level],
5584 						&wc->flags[level]);
5585 			if (ret < 0) {
5586 				err = ret;
5587 				goto out_end_trans;
5588 			}
5589 			BUG_ON(wc->refs[level] == 0);
5590 
5591 			if (level == btrfs_root_drop_level(root_item))
5592 				break;
5593 
5594 			btrfs_tree_unlock(path->nodes[level]);
5595 			path->locks[level] = 0;
5596 			WARN_ON(wc->refs[level] != 1);
5597 			level--;
5598 		}
5599 	}
5600 
5601 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5602 	wc->level = level;
5603 	wc->shared_level = -1;
5604 	wc->stage = DROP_REFERENCE;
5605 	wc->update_ref = update_ref;
5606 	wc->keep_locks = 0;
5607 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5608 
5609 	while (1) {
5610 
5611 		ret = walk_down_tree(trans, root, path, wc);
5612 		if (ret < 0) {
5613 			err = ret;
5614 			break;
5615 		}
5616 
5617 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5618 		if (ret < 0) {
5619 			err = ret;
5620 			break;
5621 		}
5622 
5623 		if (ret > 0) {
5624 			BUG_ON(wc->stage != DROP_REFERENCE);
5625 			break;
5626 		}
5627 
5628 		if (wc->stage == DROP_REFERENCE) {
5629 			wc->drop_level = wc->level;
5630 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5631 					      &wc->drop_progress,
5632 					      path->slots[wc->drop_level]);
5633 		}
5634 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5635 				      &wc->drop_progress);
5636 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5637 
5638 		BUG_ON(wc->level == 0);
5639 		if (btrfs_should_end_transaction(trans) ||
5640 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5641 			ret = btrfs_update_root(trans, tree_root,
5642 						&root->root_key,
5643 						root_item);
5644 			if (ret) {
5645 				btrfs_abort_transaction(trans, ret);
5646 				err = ret;
5647 				goto out_end_trans;
5648 			}
5649 
5650 			btrfs_end_transaction_throttle(trans);
5651 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5652 				btrfs_debug(fs_info,
5653 					    "drop snapshot early exit");
5654 				err = -EAGAIN;
5655 				goto out_free;
5656 			}
5657 
5658 		       /*
5659 			* Use join to avoid potential EINTR from transaction
5660 			* start. See wait_reserve_ticket and the whole
5661 			* reservation callchain.
5662 			*/
5663 			if (for_reloc)
5664 				trans = btrfs_join_transaction(tree_root);
5665 			else
5666 				trans = btrfs_start_transaction(tree_root, 0);
5667 			if (IS_ERR(trans)) {
5668 				err = PTR_ERR(trans);
5669 				goto out_free;
5670 			}
5671 		}
5672 	}
5673 	btrfs_release_path(path);
5674 	if (err)
5675 		goto out_end_trans;
5676 
5677 	ret = btrfs_del_root(trans, &root->root_key);
5678 	if (ret) {
5679 		btrfs_abort_transaction(trans, ret);
5680 		err = ret;
5681 		goto out_end_trans;
5682 	}
5683 
5684 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5685 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5686 				      NULL, NULL);
5687 		if (ret < 0) {
5688 			btrfs_abort_transaction(trans, ret);
5689 			err = ret;
5690 			goto out_end_trans;
5691 		} else if (ret > 0) {
5692 			/* if we fail to delete the orphan item this time
5693 			 * around, it'll get picked up the next time.
5694 			 *
5695 			 * The most common failure here is just -ENOENT.
5696 			 */
5697 			btrfs_del_orphan_item(trans, tree_root,
5698 					      root->root_key.objectid);
5699 		}
5700 	}
5701 
5702 	/*
5703 	 * This subvolume is going to be completely dropped, and won't be
5704 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5705 	 * commit transaction time.  So free it here manually.
5706 	 */
5707 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5708 	btrfs_qgroup_free_meta_all_pertrans(root);
5709 
5710 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5711 		btrfs_add_dropped_root(trans, root);
5712 	else
5713 		btrfs_put_root(root);
5714 	root_dropped = true;
5715 out_end_trans:
5716 	btrfs_end_transaction_throttle(trans);
5717 out_free:
5718 	kfree(wc);
5719 	btrfs_free_path(path);
5720 out:
5721 	/*
5722 	 * So if we need to stop dropping the snapshot for whatever reason we
5723 	 * need to make sure to add it back to the dead root list so that we
5724 	 * keep trying to do the work later.  This also cleans up roots if we
5725 	 * don't have it in the radix (like when we recover after a power fail
5726 	 * or unmount) so we don't leak memory.
5727 	 */
5728 	if (!for_reloc && !root_dropped)
5729 		btrfs_add_dead_root(root);
5730 	return err;
5731 }
5732 
5733 /*
5734  * drop subtree rooted at tree block 'node'.
5735  *
5736  * NOTE: this function will unlock and release tree block 'node'
5737  * only used by relocation code
5738  */
5739 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5740 			struct btrfs_root *root,
5741 			struct extent_buffer *node,
5742 			struct extent_buffer *parent)
5743 {
5744 	struct btrfs_fs_info *fs_info = root->fs_info;
5745 	struct btrfs_path *path;
5746 	struct walk_control *wc;
5747 	int level;
5748 	int parent_level;
5749 	int ret = 0;
5750 	int wret;
5751 
5752 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5753 
5754 	path = btrfs_alloc_path();
5755 	if (!path)
5756 		return -ENOMEM;
5757 
5758 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5759 	if (!wc) {
5760 		btrfs_free_path(path);
5761 		return -ENOMEM;
5762 	}
5763 
5764 	btrfs_assert_tree_locked(parent);
5765 	parent_level = btrfs_header_level(parent);
5766 	atomic_inc(&parent->refs);
5767 	path->nodes[parent_level] = parent;
5768 	path->slots[parent_level] = btrfs_header_nritems(parent);
5769 
5770 	btrfs_assert_tree_locked(node);
5771 	level = btrfs_header_level(node);
5772 	path->nodes[level] = node;
5773 	path->slots[level] = 0;
5774 	path->locks[level] = BTRFS_WRITE_LOCK;
5775 
5776 	wc->refs[parent_level] = 1;
5777 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5778 	wc->level = level;
5779 	wc->shared_level = -1;
5780 	wc->stage = DROP_REFERENCE;
5781 	wc->update_ref = 0;
5782 	wc->keep_locks = 1;
5783 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5784 
5785 	while (1) {
5786 		wret = walk_down_tree(trans, root, path, wc);
5787 		if (wret < 0) {
5788 			ret = wret;
5789 			break;
5790 		}
5791 
5792 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5793 		if (wret < 0)
5794 			ret = wret;
5795 		if (wret != 0)
5796 			break;
5797 	}
5798 
5799 	kfree(wc);
5800 	btrfs_free_path(path);
5801 	return ret;
5802 }
5803 
5804 /*
5805  * helper to account the unused space of all the readonly block group in the
5806  * space_info. takes mirrors into account.
5807  */
5808 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5809 {
5810 	struct btrfs_block_group *block_group;
5811 	u64 free_bytes = 0;
5812 	int factor;
5813 
5814 	/* It's df, we don't care if it's racy */
5815 	if (list_empty(&sinfo->ro_bgs))
5816 		return 0;
5817 
5818 	spin_lock(&sinfo->lock);
5819 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5820 		spin_lock(&block_group->lock);
5821 
5822 		if (!block_group->ro) {
5823 			spin_unlock(&block_group->lock);
5824 			continue;
5825 		}
5826 
5827 		factor = btrfs_bg_type_to_factor(block_group->flags);
5828 		free_bytes += (block_group->length -
5829 			       block_group->used) * factor;
5830 
5831 		spin_unlock(&block_group->lock);
5832 	}
5833 	spin_unlock(&sinfo->lock);
5834 
5835 	return free_bytes;
5836 }
5837 
5838 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5839 				   u64 start, u64 end)
5840 {
5841 	return unpin_extent_range(fs_info, start, end, false);
5842 }
5843 
5844 /*
5845  * It used to be that old block groups would be left around forever.
5846  * Iterating over them would be enough to trim unused space.  Since we
5847  * now automatically remove them, we also need to iterate over unallocated
5848  * space.
5849  *
5850  * We don't want a transaction for this since the discard may take a
5851  * substantial amount of time.  We don't require that a transaction be
5852  * running, but we do need to take a running transaction into account
5853  * to ensure that we're not discarding chunks that were released or
5854  * allocated in the current transaction.
5855  *
5856  * Holding the chunks lock will prevent other threads from allocating
5857  * or releasing chunks, but it won't prevent a running transaction
5858  * from committing and releasing the memory that the pending chunks
5859  * list head uses.  For that, we need to take a reference to the
5860  * transaction and hold the commit root sem.  We only need to hold
5861  * it while performing the free space search since we have already
5862  * held back allocations.
5863  */
5864 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5865 {
5866 	u64 start = SZ_1M, len = 0, end = 0;
5867 	int ret;
5868 
5869 	*trimmed = 0;
5870 
5871 	/* Discard not supported = nothing to do. */
5872 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5873 		return 0;
5874 
5875 	/* Not writable = nothing to do. */
5876 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5877 		return 0;
5878 
5879 	/* No free space = nothing to do. */
5880 	if (device->total_bytes <= device->bytes_used)
5881 		return 0;
5882 
5883 	ret = 0;
5884 
5885 	while (1) {
5886 		struct btrfs_fs_info *fs_info = device->fs_info;
5887 		u64 bytes;
5888 
5889 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5890 		if (ret)
5891 			break;
5892 
5893 		find_first_clear_extent_bit(&device->alloc_state, start,
5894 					    &start, &end,
5895 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5896 
5897 		/* Check if there are any CHUNK_* bits left */
5898 		if (start > device->total_bytes) {
5899 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5900 			btrfs_warn_in_rcu(fs_info,
5901 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5902 					  start, end - start + 1,
5903 					  rcu_str_deref(device->name),
5904 					  device->total_bytes);
5905 			mutex_unlock(&fs_info->chunk_mutex);
5906 			ret = 0;
5907 			break;
5908 		}
5909 
5910 		/* Ensure we skip the reserved area in the first 1M */
5911 		start = max_t(u64, start, SZ_1M);
5912 
5913 		/*
5914 		 * If find_first_clear_extent_bit find a range that spans the
5915 		 * end of the device it will set end to -1, in this case it's up
5916 		 * to the caller to trim the value to the size of the device.
5917 		 */
5918 		end = min(end, device->total_bytes - 1);
5919 
5920 		len = end - start + 1;
5921 
5922 		/* We didn't find any extents */
5923 		if (!len) {
5924 			mutex_unlock(&fs_info->chunk_mutex);
5925 			ret = 0;
5926 			break;
5927 		}
5928 
5929 		ret = btrfs_issue_discard(device->bdev, start, len,
5930 					  &bytes);
5931 		if (!ret)
5932 			set_extent_bits(&device->alloc_state, start,
5933 					start + bytes - 1,
5934 					CHUNK_TRIMMED);
5935 		mutex_unlock(&fs_info->chunk_mutex);
5936 
5937 		if (ret)
5938 			break;
5939 
5940 		start += len;
5941 		*trimmed += bytes;
5942 
5943 		if (fatal_signal_pending(current)) {
5944 			ret = -ERESTARTSYS;
5945 			break;
5946 		}
5947 
5948 		cond_resched();
5949 	}
5950 
5951 	return ret;
5952 }
5953 
5954 /*
5955  * Trim the whole filesystem by:
5956  * 1) trimming the free space in each block group
5957  * 2) trimming the unallocated space on each device
5958  *
5959  * This will also continue trimming even if a block group or device encounters
5960  * an error.  The return value will be the last error, or 0 if nothing bad
5961  * happens.
5962  */
5963 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5964 {
5965 	struct btrfs_block_group *cache = NULL;
5966 	struct btrfs_device *device;
5967 	struct list_head *devices;
5968 	u64 group_trimmed;
5969 	u64 range_end = U64_MAX;
5970 	u64 start;
5971 	u64 end;
5972 	u64 trimmed = 0;
5973 	u64 bg_failed = 0;
5974 	u64 dev_failed = 0;
5975 	int bg_ret = 0;
5976 	int dev_ret = 0;
5977 	int ret = 0;
5978 
5979 	/*
5980 	 * Check range overflow if range->len is set.
5981 	 * The default range->len is U64_MAX.
5982 	 */
5983 	if (range->len != U64_MAX &&
5984 	    check_add_overflow(range->start, range->len, &range_end))
5985 		return -EINVAL;
5986 
5987 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5988 	for (; cache; cache = btrfs_next_block_group(cache)) {
5989 		if (cache->start >= range_end) {
5990 			btrfs_put_block_group(cache);
5991 			break;
5992 		}
5993 
5994 		start = max(range->start, cache->start);
5995 		end = min(range_end, cache->start + cache->length);
5996 
5997 		if (end - start >= range->minlen) {
5998 			if (!btrfs_block_group_done(cache)) {
5999 				ret = btrfs_cache_block_group(cache, 0);
6000 				if (ret) {
6001 					bg_failed++;
6002 					bg_ret = ret;
6003 					continue;
6004 				}
6005 				ret = btrfs_wait_block_group_cache_done(cache);
6006 				if (ret) {
6007 					bg_failed++;
6008 					bg_ret = ret;
6009 					continue;
6010 				}
6011 			}
6012 			ret = btrfs_trim_block_group(cache,
6013 						     &group_trimmed,
6014 						     start,
6015 						     end,
6016 						     range->minlen);
6017 
6018 			trimmed += group_trimmed;
6019 			if (ret) {
6020 				bg_failed++;
6021 				bg_ret = ret;
6022 				continue;
6023 			}
6024 		}
6025 	}
6026 
6027 	if (bg_failed)
6028 		btrfs_warn(fs_info,
6029 			"failed to trim %llu block group(s), last error %d",
6030 			bg_failed, bg_ret);
6031 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
6032 	devices = &fs_info->fs_devices->devices;
6033 	list_for_each_entry(device, devices, dev_list) {
6034 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6035 		if (ret) {
6036 			dev_failed++;
6037 			dev_ret = ret;
6038 			break;
6039 		}
6040 
6041 		trimmed += group_trimmed;
6042 	}
6043 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
6044 
6045 	if (dev_failed)
6046 		btrfs_warn(fs_info,
6047 			"failed to trim %llu device(s), last error %d",
6048 			dev_failed, dev_ret);
6049 	range->len = trimmed;
6050 	if (bg_ret)
6051 		return bg_ret;
6052 	return dev_ret;
6053 }
6054