1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_path *path, 597 int refs_to_drop, int *last_ref) 598 { 599 struct btrfs_key key; 600 struct btrfs_extent_data_ref *ref1 = NULL; 601 struct btrfs_shared_data_ref *ref2 = NULL; 602 struct extent_buffer *leaf; 603 u32 num_refs = 0; 604 int ret = 0; 605 606 leaf = path->nodes[0]; 607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 608 609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 610 ref1 = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 614 ref2 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_shared_data_ref); 616 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 618 btrfs_print_v0_err(trans->fs_info); 619 btrfs_abort_transaction(trans, -EINVAL); 620 return -EINVAL; 621 } else { 622 BUG(); 623 } 624 625 BUG_ON(num_refs < refs_to_drop); 626 num_refs -= refs_to_drop; 627 628 if (num_refs == 0) { 629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 630 *last_ref = 1; 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 655 if (iref) { 656 /* 657 * If type is invalid, we should have bailed out earlier than 658 * this call. 659 */ 660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 661 ASSERT(type != BTRFS_REF_TYPE_INVALID); 662 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 664 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 665 } else { 666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 667 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 668 } 669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 670 ref1 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_extent_data_ref); 672 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 674 ref2 = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_shared_data_ref); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } else { 678 WARN_ON(1); 679 } 680 return num_refs; 681 } 682 683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 684 struct btrfs_path *path, 685 u64 bytenr, u64 parent, 686 u64 root_objectid) 687 { 688 struct btrfs_root *root = trans->fs_info->extent_root; 689 struct btrfs_key key; 690 int ret; 691 692 key.objectid = bytenr; 693 if (parent) { 694 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 695 key.offset = parent; 696 } else { 697 key.type = BTRFS_TREE_BLOCK_REF_KEY; 698 key.offset = root_objectid; 699 } 700 701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 702 if (ret > 0) 703 ret = -ENOENT; 704 return ret; 705 } 706 707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 708 struct btrfs_path *path, 709 u64 bytenr, u64 parent, 710 u64 root_objectid) 711 { 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 725 path, &key, 0); 726 btrfs_release_path(path); 727 return ret; 728 } 729 730 static inline int extent_ref_type(u64 parent, u64 owner) 731 { 732 int type; 733 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 734 if (parent > 0) 735 type = BTRFS_SHARED_BLOCK_REF_KEY; 736 else 737 type = BTRFS_TREE_BLOCK_REF_KEY; 738 } else { 739 if (parent > 0) 740 type = BTRFS_SHARED_DATA_REF_KEY; 741 else 742 type = BTRFS_EXTENT_DATA_REF_KEY; 743 } 744 return type; 745 } 746 747 static int find_next_key(struct btrfs_path *path, int level, 748 struct btrfs_key *key) 749 750 { 751 for (; level < BTRFS_MAX_LEVEL; level++) { 752 if (!path->nodes[level]) 753 break; 754 if (path->slots[level] + 1 >= 755 btrfs_header_nritems(path->nodes[level])) 756 continue; 757 if (level == 0) 758 btrfs_item_key_to_cpu(path->nodes[level], key, 759 path->slots[level] + 1); 760 else 761 btrfs_node_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 return 0; 764 } 765 return 1; 766 } 767 768 /* 769 * look for inline back ref. if back ref is found, *ref_ret is set 770 * to the address of inline back ref, and 0 is returned. 771 * 772 * if back ref isn't found, *ref_ret is set to the address where it 773 * should be inserted, and -ENOENT is returned. 774 * 775 * if insert is true and there are too many inline back refs, the path 776 * points to the extent item, and -EAGAIN is returned. 777 * 778 * NOTE: inline back refs are ordered in the same way that back ref 779 * items in the tree are ordered. 780 */ 781 static noinline_for_stack 782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 783 struct btrfs_path *path, 784 struct btrfs_extent_inline_ref **ref_ret, 785 u64 bytenr, u64 num_bytes, 786 u64 parent, u64 root_objectid, 787 u64 owner, u64 offset, int insert) 788 { 789 struct btrfs_fs_info *fs_info = trans->fs_info; 790 struct btrfs_root *root = fs_info->extent_root; 791 struct btrfs_key key; 792 struct extent_buffer *leaf; 793 struct btrfs_extent_item *ei; 794 struct btrfs_extent_inline_ref *iref; 795 u64 flags; 796 u64 item_size; 797 unsigned long ptr; 798 unsigned long end; 799 int extra_size; 800 int type; 801 int want; 802 int ret; 803 int err = 0; 804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 805 int needed; 806 807 key.objectid = bytenr; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 key.offset = num_bytes; 810 811 want = extent_ref_type(parent, owner); 812 if (insert) { 813 extra_size = btrfs_extent_inline_ref_size(want); 814 path->search_for_extension = 1; 815 path->keep_locks = 1; 816 } else 817 extra_size = -1; 818 819 /* 820 * Owner is our level, so we can just add one to get the level for the 821 * block we are interested in. 822 */ 823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 824 key.type = BTRFS_METADATA_ITEM_KEY; 825 key.offset = owner; 826 } 827 828 again: 829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 830 if (ret < 0) { 831 err = ret; 832 goto out; 833 } 834 835 /* 836 * We may be a newly converted file system which still has the old fat 837 * extent entries for metadata, so try and see if we have one of those. 838 */ 839 if (ret > 0 && skinny_metadata) { 840 skinny_metadata = false; 841 if (path->slots[0]) { 842 path->slots[0]--; 843 btrfs_item_key_to_cpu(path->nodes[0], &key, 844 path->slots[0]); 845 if (key.objectid == bytenr && 846 key.type == BTRFS_EXTENT_ITEM_KEY && 847 key.offset == num_bytes) 848 ret = 0; 849 } 850 if (ret) { 851 key.objectid = bytenr; 852 key.type = BTRFS_EXTENT_ITEM_KEY; 853 key.offset = num_bytes; 854 btrfs_release_path(path); 855 goto again; 856 } 857 } 858 859 if (ret && !insert) { 860 err = -ENOENT; 861 goto out; 862 } else if (WARN_ON(ret)) { 863 err = -EIO; 864 goto out; 865 } 866 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (unlikely(item_size < sizeof(*ei))) { 870 err = -EINVAL; 871 btrfs_print_v0_err(fs_info); 872 btrfs_abort_transaction(trans, err); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 err = -ENOENT; 893 while (1) { 894 if (ptr >= end) { 895 WARN_ON(ptr > end); 896 break; 897 } 898 iref = (struct btrfs_extent_inline_ref *)ptr; 899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 900 if (type == BTRFS_REF_TYPE_INVALID) { 901 err = -EUCLEAN; 902 goto out; 903 } 904 905 if (want < type) 906 break; 907 if (want > type) { 908 ptr += btrfs_extent_inline_ref_size(type); 909 continue; 910 } 911 912 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 913 struct btrfs_extent_data_ref *dref; 914 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 915 if (match_extent_data_ref(leaf, dref, root_objectid, 916 owner, offset)) { 917 err = 0; 918 break; 919 } 920 if (hash_extent_data_ref_item(leaf, dref) < 921 hash_extent_data_ref(root_objectid, owner, offset)) 922 break; 923 } else { 924 u64 ref_offset; 925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 926 if (parent > 0) { 927 if (parent == ref_offset) { 928 err = 0; 929 break; 930 } 931 if (ref_offset < parent) 932 break; 933 } else { 934 if (root_objectid == ref_offset) { 935 err = 0; 936 break; 937 } 938 if (ref_offset < root_objectid) 939 break; 940 } 941 } 942 ptr += btrfs_extent_inline_ref_size(type); 943 } 944 if (err == -ENOENT && insert) { 945 if (item_size + extra_size >= 946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 947 err = -EAGAIN; 948 goto out; 949 } 950 /* 951 * To add new inline back ref, we have to make sure 952 * there is no corresponding back ref item. 953 * For simplicity, we just do not add new inline back 954 * ref if there is any kind of item for this block 955 */ 956 if (find_next_key(path, 0, &key) == 0 && 957 key.objectid == bytenr && 958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 959 err = -EAGAIN; 960 goto out; 961 } 962 } 963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 964 out: 965 if (insert) { 966 path->keep_locks = 0; 967 path->search_for_extension = 0; 968 btrfs_unlock_up_safe(path, 1); 969 } 970 return err; 971 } 972 973 /* 974 * helper to add new inline back ref 975 */ 976 static noinline_for_stack 977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 978 struct btrfs_path *path, 979 struct btrfs_extent_inline_ref *iref, 980 u64 parent, u64 root_objectid, 981 u64 owner, u64 offset, int refs_to_add, 982 struct btrfs_delayed_extent_op *extent_op) 983 { 984 struct extent_buffer *leaf; 985 struct btrfs_extent_item *ei; 986 unsigned long ptr; 987 unsigned long end; 988 unsigned long item_offset; 989 u64 refs; 990 int size; 991 int type; 992 993 leaf = path->nodes[0]; 994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 995 item_offset = (unsigned long)iref - (unsigned long)ei; 996 997 type = extent_ref_type(parent, owner); 998 size = btrfs_extent_inline_ref_size(type); 999 1000 btrfs_extend_item(path, size); 1001 1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 refs = btrfs_extent_refs(leaf, ei); 1004 refs += refs_to_add; 1005 btrfs_set_extent_refs(leaf, ei, refs); 1006 if (extent_op) 1007 __run_delayed_extent_op(extent_op, leaf, ei); 1008 1009 ptr = (unsigned long)ei + item_offset; 1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1011 if (ptr < end - size) 1012 memmove_extent_buffer(leaf, ptr + size, ptr, 1013 end - size - ptr); 1014 1015 iref = (struct btrfs_extent_inline_ref *)ptr; 1016 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1018 struct btrfs_extent_data_ref *dref; 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1025 struct btrfs_shared_data_ref *sref; 1026 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1033 } 1034 btrfs_mark_buffer_dirty(leaf); 1035 } 1036 1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1038 struct btrfs_path *path, 1039 struct btrfs_extent_inline_ref **ref_ret, 1040 u64 bytenr, u64 num_bytes, u64 parent, 1041 u64 root_objectid, u64 owner, u64 offset) 1042 { 1043 int ret; 1044 1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1046 num_bytes, parent, root_objectid, 1047 owner, offset, 0); 1048 if (ret != -ENOENT) 1049 return ret; 1050 1051 btrfs_release_path(path); 1052 *ref_ret = NULL; 1053 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1056 root_objectid); 1057 } else { 1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1059 root_objectid, owner, offset); 1060 } 1061 return ret; 1062 } 1063 1064 /* 1065 * helper to update/remove inline back ref 1066 */ 1067 static noinline_for_stack 1068 void update_inline_extent_backref(struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op, 1072 int *last_ref) 1073 { 1074 struct extent_buffer *leaf = path->nodes[0]; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1088 refs += refs_to_mod; 1089 btrfs_set_extent_refs(leaf, ei, refs); 1090 if (extent_op) 1091 __run_delayed_extent_op(extent_op, leaf, ei); 1092 1093 /* 1094 * If type is invalid, we should have bailed out after 1095 * lookup_inline_extent_backref(). 1096 */ 1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1098 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1099 1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1102 refs = btrfs_extent_data_ref_count(leaf, dref); 1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1104 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1105 refs = btrfs_shared_data_ref_count(leaf, sref); 1106 } else { 1107 refs = 1; 1108 BUG_ON(refs_to_mod != -1); 1109 } 1110 1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1112 refs += refs_to_mod; 1113 1114 if (refs > 0) { 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1116 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1117 else 1118 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1119 } else { 1120 *last_ref = 1; 1121 size = btrfs_extent_inline_ref_size(type); 1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1123 ptr = (unsigned long)iref; 1124 end = (unsigned long)ei + item_size; 1125 if (ptr + size < end) 1126 memmove_extent_buffer(leaf, ptr, ptr + size, 1127 end - ptr - size); 1128 item_size -= size; 1129 btrfs_truncate_item(path, item_size, 1); 1130 } 1131 btrfs_mark_buffer_dirty(leaf); 1132 } 1133 1134 static noinline_for_stack 1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1136 struct btrfs_path *path, 1137 u64 bytenr, u64 num_bytes, u64 parent, 1138 u64 root_objectid, u64 owner, 1139 u64 offset, int refs_to_add, 1140 struct btrfs_delayed_extent_op *extent_op) 1141 { 1142 struct btrfs_extent_inline_ref *iref; 1143 int ret; 1144 1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1146 num_bytes, parent, root_objectid, 1147 owner, offset, 1); 1148 if (ret == 0) { 1149 /* 1150 * We're adding refs to a tree block we already own, this 1151 * should not happen at all. 1152 */ 1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1154 btrfs_crit(trans->fs_info, 1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1156 bytenr, num_bytes, root_objectid); 1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1158 WARN_ON(1); 1159 btrfs_crit(trans->fs_info, 1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1161 btrfs_print_leaf(path->nodes[0]); 1162 } 1163 return -EUCLEAN; 1164 } 1165 update_inline_extent_backref(path, iref, refs_to_add, 1166 extent_op, NULL); 1167 } else if (ret == -ENOENT) { 1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1169 root_objectid, owner, offset, 1170 refs_to_add, extent_op); 1171 ret = 0; 1172 } 1173 return ret; 1174 } 1175 1176 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1177 struct btrfs_path *path, 1178 struct btrfs_extent_inline_ref *iref, 1179 int refs_to_drop, int is_data, int *last_ref) 1180 { 1181 int ret = 0; 1182 1183 BUG_ON(!is_data && refs_to_drop != 1); 1184 if (iref) { 1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1186 last_ref); 1187 } else if (is_data) { 1188 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1189 last_ref); 1190 } else { 1191 *last_ref = 1; 1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1193 } 1194 return ret; 1195 } 1196 1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1198 u64 *discarded_bytes) 1199 { 1200 int j, ret = 0; 1201 u64 bytes_left, end; 1202 u64 aligned_start = ALIGN(start, 1 << 9); 1203 1204 if (WARN_ON(start != aligned_start)) { 1205 len -= aligned_start - start; 1206 len = round_down(len, 1 << 9); 1207 start = aligned_start; 1208 } 1209 1210 *discarded_bytes = 0; 1211 1212 if (!len) 1213 return 0; 1214 1215 end = start + len; 1216 bytes_left = len; 1217 1218 /* Skip any superblocks on this device. */ 1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1220 u64 sb_start = btrfs_sb_offset(j); 1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1222 u64 size = sb_start - start; 1223 1224 if (!in_range(sb_start, start, bytes_left) && 1225 !in_range(sb_end, start, bytes_left) && 1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1227 continue; 1228 1229 /* 1230 * Superblock spans beginning of range. Adjust start and 1231 * try again. 1232 */ 1233 if (sb_start <= start) { 1234 start += sb_end - start; 1235 if (start > end) { 1236 bytes_left = 0; 1237 break; 1238 } 1239 bytes_left = end - start; 1240 continue; 1241 } 1242 1243 if (size) { 1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1245 GFP_NOFS, 0); 1246 if (!ret) 1247 *discarded_bytes += size; 1248 else if (ret != -EOPNOTSUPP) 1249 return ret; 1250 } 1251 1252 start = sb_end; 1253 if (start > end) { 1254 bytes_left = 0; 1255 break; 1256 } 1257 bytes_left = end - start; 1258 } 1259 1260 if (bytes_left) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += bytes_left; 1265 } 1266 return ret; 1267 } 1268 1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes) 1270 { 1271 struct btrfs_device *dev = stripe->dev; 1272 struct btrfs_fs_info *fs_info = dev->fs_info; 1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1274 u64 phys = stripe->physical; 1275 u64 len = stripe->length; 1276 u64 discarded = 0; 1277 int ret = 0; 1278 1279 /* Zone reset on a zoned filesystem */ 1280 if (btrfs_can_zone_reset(dev, phys, len)) { 1281 u64 src_disc; 1282 1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1284 if (ret) 1285 goto out; 1286 1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1288 dev != dev_replace->srcdev) 1289 goto out; 1290 1291 src_disc = discarded; 1292 1293 /* Send to replace target as well */ 1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1295 &discarded); 1296 discarded += src_disc; 1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1299 } else { 1300 ret = 0; 1301 *bytes = 0; 1302 } 1303 1304 out: 1305 *bytes = discarded; 1306 return ret; 1307 } 1308 1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1310 u64 num_bytes, u64 *actual_bytes) 1311 { 1312 int ret = 0; 1313 u64 discarded_bytes = 0; 1314 u64 end = bytenr + num_bytes; 1315 u64 cur = bytenr; 1316 struct btrfs_bio *bbio = NULL; 1317 1318 1319 /* 1320 * Avoid races with device replace and make sure our bbio has devices 1321 * associated to its stripes that don't go away while we are discarding. 1322 */ 1323 btrfs_bio_counter_inc_blocked(fs_info); 1324 while (cur < end) { 1325 struct btrfs_bio_stripe *stripe; 1326 int i; 1327 1328 num_bytes = end - cur; 1329 /* Tell the block device(s) that the sectors can be discarded */ 1330 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1331 &num_bytes, &bbio, 0); 1332 /* 1333 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1334 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1335 * thus we can't continue anyway. 1336 */ 1337 if (ret < 0) 1338 goto out; 1339 1340 stripe = bbio->stripes; 1341 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1342 u64 bytes; 1343 1344 if (!stripe->dev->bdev) { 1345 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1346 continue; 1347 } 1348 1349 ret = do_discard_extent(stripe, &bytes); 1350 if (!ret) { 1351 discarded_bytes += bytes; 1352 } else if (ret != -EOPNOTSUPP) { 1353 /* 1354 * Logic errors or -ENOMEM, or -EIO, but 1355 * unlikely to happen. 1356 * 1357 * And since there are two loops, explicitly 1358 * go to out to avoid confusion. 1359 */ 1360 btrfs_put_bbio(bbio); 1361 goto out; 1362 } 1363 1364 /* 1365 * Just in case we get back EOPNOTSUPP for some reason, 1366 * just ignore the return value so we don't screw up 1367 * people calling discard_extent. 1368 */ 1369 ret = 0; 1370 } 1371 btrfs_put_bbio(bbio); 1372 cur += num_bytes; 1373 } 1374 out: 1375 btrfs_bio_counter_dec(fs_info); 1376 1377 if (actual_bytes) 1378 *actual_bytes = discarded_bytes; 1379 1380 1381 if (ret == -EOPNOTSUPP) 1382 ret = 0; 1383 return ret; 1384 } 1385 1386 /* Can return -ENOMEM */ 1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1388 struct btrfs_ref *generic_ref) 1389 { 1390 struct btrfs_fs_info *fs_info = trans->fs_info; 1391 int ret; 1392 1393 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1394 generic_ref->action); 1395 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1396 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1397 1398 if (generic_ref->type == BTRFS_REF_METADATA) 1399 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1400 else 1401 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1402 1403 btrfs_ref_tree_mod(fs_info, generic_ref); 1404 1405 return ret; 1406 } 1407 1408 /* 1409 * __btrfs_inc_extent_ref - insert backreference for a given extent 1410 * 1411 * The counterpart is in __btrfs_free_extent(), with examples and more details 1412 * how it works. 1413 * 1414 * @trans: Handle of transaction 1415 * 1416 * @node: The delayed ref node used to get the bytenr/length for 1417 * extent whose references are incremented. 1418 * 1419 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1420 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1421 * bytenr of the parent block. Since new extents are always 1422 * created with indirect references, this will only be the case 1423 * when relocating a shared extent. In that case, root_objectid 1424 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1425 * be 0 1426 * 1427 * @root_objectid: The id of the root where this modification has originated, 1428 * this can be either one of the well-known metadata trees or 1429 * the subvolume id which references this extent. 1430 * 1431 * @owner: For data extents it is the inode number of the owning file. 1432 * For metadata extents this parameter holds the level in the 1433 * tree of the extent. 1434 * 1435 * @offset: For metadata extents the offset is ignored and is currently 1436 * always passed as 0. For data extents it is the fileoffset 1437 * this extent belongs to. 1438 * 1439 * @refs_to_add Number of references to add 1440 * 1441 * @extent_op Pointer to a structure, holding information necessary when 1442 * updating a tree block's flags 1443 * 1444 */ 1445 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1446 struct btrfs_delayed_ref_node *node, 1447 u64 parent, u64 root_objectid, 1448 u64 owner, u64 offset, int refs_to_add, 1449 struct btrfs_delayed_extent_op *extent_op) 1450 { 1451 struct btrfs_path *path; 1452 struct extent_buffer *leaf; 1453 struct btrfs_extent_item *item; 1454 struct btrfs_key key; 1455 u64 bytenr = node->bytenr; 1456 u64 num_bytes = node->num_bytes; 1457 u64 refs; 1458 int ret; 1459 1460 path = btrfs_alloc_path(); 1461 if (!path) 1462 return -ENOMEM; 1463 1464 /* this will setup the path even if it fails to insert the back ref */ 1465 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1466 parent, root_objectid, owner, 1467 offset, refs_to_add, extent_op); 1468 if ((ret < 0 && ret != -EAGAIN) || !ret) 1469 goto out; 1470 1471 /* 1472 * Ok we had -EAGAIN which means we didn't have space to insert and 1473 * inline extent ref, so just update the reference count and add a 1474 * normal backref. 1475 */ 1476 leaf = path->nodes[0]; 1477 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1478 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1479 refs = btrfs_extent_refs(leaf, item); 1480 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1481 if (extent_op) 1482 __run_delayed_extent_op(extent_op, leaf, item); 1483 1484 btrfs_mark_buffer_dirty(leaf); 1485 btrfs_release_path(path); 1486 1487 /* now insert the actual backref */ 1488 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1489 BUG_ON(refs_to_add != 1); 1490 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1491 root_objectid); 1492 } else { 1493 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1494 root_objectid, owner, offset, 1495 refs_to_add); 1496 } 1497 if (ret) 1498 btrfs_abort_transaction(trans, ret); 1499 out: 1500 btrfs_free_path(path); 1501 return ret; 1502 } 1503 1504 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1505 struct btrfs_delayed_ref_node *node, 1506 struct btrfs_delayed_extent_op *extent_op, 1507 int insert_reserved) 1508 { 1509 int ret = 0; 1510 struct btrfs_delayed_data_ref *ref; 1511 struct btrfs_key ins; 1512 u64 parent = 0; 1513 u64 ref_root = 0; 1514 u64 flags = 0; 1515 1516 ins.objectid = node->bytenr; 1517 ins.offset = node->num_bytes; 1518 ins.type = BTRFS_EXTENT_ITEM_KEY; 1519 1520 ref = btrfs_delayed_node_to_data_ref(node); 1521 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1522 1523 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1524 parent = ref->parent; 1525 ref_root = ref->root; 1526 1527 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1528 if (extent_op) 1529 flags |= extent_op->flags_to_set; 1530 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1531 flags, ref->objectid, 1532 ref->offset, &ins, 1533 node->ref_mod); 1534 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1535 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1536 ref->objectid, ref->offset, 1537 node->ref_mod, extent_op); 1538 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1539 ret = __btrfs_free_extent(trans, node, parent, 1540 ref_root, ref->objectid, 1541 ref->offset, node->ref_mod, 1542 extent_op); 1543 } else { 1544 BUG(); 1545 } 1546 return ret; 1547 } 1548 1549 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1550 struct extent_buffer *leaf, 1551 struct btrfs_extent_item *ei) 1552 { 1553 u64 flags = btrfs_extent_flags(leaf, ei); 1554 if (extent_op->update_flags) { 1555 flags |= extent_op->flags_to_set; 1556 btrfs_set_extent_flags(leaf, ei, flags); 1557 } 1558 1559 if (extent_op->update_key) { 1560 struct btrfs_tree_block_info *bi; 1561 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1562 bi = (struct btrfs_tree_block_info *)(ei + 1); 1563 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1564 } 1565 } 1566 1567 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1568 struct btrfs_delayed_ref_head *head, 1569 struct btrfs_delayed_extent_op *extent_op) 1570 { 1571 struct btrfs_fs_info *fs_info = trans->fs_info; 1572 struct btrfs_key key; 1573 struct btrfs_path *path; 1574 struct btrfs_extent_item *ei; 1575 struct extent_buffer *leaf; 1576 u32 item_size; 1577 int ret; 1578 int err = 0; 1579 int metadata = !extent_op->is_data; 1580 1581 if (TRANS_ABORTED(trans)) 1582 return 0; 1583 1584 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1585 metadata = 0; 1586 1587 path = btrfs_alloc_path(); 1588 if (!path) 1589 return -ENOMEM; 1590 1591 key.objectid = head->bytenr; 1592 1593 if (metadata) { 1594 key.type = BTRFS_METADATA_ITEM_KEY; 1595 key.offset = extent_op->level; 1596 } else { 1597 key.type = BTRFS_EXTENT_ITEM_KEY; 1598 key.offset = head->num_bytes; 1599 } 1600 1601 again: 1602 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1603 if (ret < 0) { 1604 err = ret; 1605 goto out; 1606 } 1607 if (ret > 0) { 1608 if (metadata) { 1609 if (path->slots[0] > 0) { 1610 path->slots[0]--; 1611 btrfs_item_key_to_cpu(path->nodes[0], &key, 1612 path->slots[0]); 1613 if (key.objectid == head->bytenr && 1614 key.type == BTRFS_EXTENT_ITEM_KEY && 1615 key.offset == head->num_bytes) 1616 ret = 0; 1617 } 1618 if (ret > 0) { 1619 btrfs_release_path(path); 1620 metadata = 0; 1621 1622 key.objectid = head->bytenr; 1623 key.offset = head->num_bytes; 1624 key.type = BTRFS_EXTENT_ITEM_KEY; 1625 goto again; 1626 } 1627 } else { 1628 err = -EIO; 1629 goto out; 1630 } 1631 } 1632 1633 leaf = path->nodes[0]; 1634 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1635 1636 if (unlikely(item_size < sizeof(*ei))) { 1637 err = -EINVAL; 1638 btrfs_print_v0_err(fs_info); 1639 btrfs_abort_transaction(trans, err); 1640 goto out; 1641 } 1642 1643 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1644 __run_delayed_extent_op(extent_op, leaf, ei); 1645 1646 btrfs_mark_buffer_dirty(leaf); 1647 out: 1648 btrfs_free_path(path); 1649 return err; 1650 } 1651 1652 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1653 struct btrfs_delayed_ref_node *node, 1654 struct btrfs_delayed_extent_op *extent_op, 1655 int insert_reserved) 1656 { 1657 int ret = 0; 1658 struct btrfs_delayed_tree_ref *ref; 1659 u64 parent = 0; 1660 u64 ref_root = 0; 1661 1662 ref = btrfs_delayed_node_to_tree_ref(node); 1663 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1664 1665 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1666 parent = ref->parent; 1667 ref_root = ref->root; 1668 1669 if (node->ref_mod != 1) { 1670 btrfs_err(trans->fs_info, 1671 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1672 node->bytenr, node->ref_mod, node->action, ref_root, 1673 parent); 1674 return -EIO; 1675 } 1676 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1677 BUG_ON(!extent_op || !extent_op->update_flags); 1678 ret = alloc_reserved_tree_block(trans, node, extent_op); 1679 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1680 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1681 ref->level, 0, 1, extent_op); 1682 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1683 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1684 ref->level, 0, 1, extent_op); 1685 } else { 1686 BUG(); 1687 } 1688 return ret; 1689 } 1690 1691 /* helper function to actually process a single delayed ref entry */ 1692 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1693 struct btrfs_delayed_ref_node *node, 1694 struct btrfs_delayed_extent_op *extent_op, 1695 int insert_reserved) 1696 { 1697 int ret = 0; 1698 1699 if (TRANS_ABORTED(trans)) { 1700 if (insert_reserved) 1701 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1702 return 0; 1703 } 1704 1705 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1706 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1707 ret = run_delayed_tree_ref(trans, node, extent_op, 1708 insert_reserved); 1709 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1710 node->type == BTRFS_SHARED_DATA_REF_KEY) 1711 ret = run_delayed_data_ref(trans, node, extent_op, 1712 insert_reserved); 1713 else 1714 BUG(); 1715 if (ret && insert_reserved) 1716 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1717 return ret; 1718 } 1719 1720 static inline struct btrfs_delayed_ref_node * 1721 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1722 { 1723 struct btrfs_delayed_ref_node *ref; 1724 1725 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1726 return NULL; 1727 1728 /* 1729 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1730 * This is to prevent a ref count from going down to zero, which deletes 1731 * the extent item from the extent tree, when there still are references 1732 * to add, which would fail because they would not find the extent item. 1733 */ 1734 if (!list_empty(&head->ref_add_list)) 1735 return list_first_entry(&head->ref_add_list, 1736 struct btrfs_delayed_ref_node, add_list); 1737 1738 ref = rb_entry(rb_first_cached(&head->ref_tree), 1739 struct btrfs_delayed_ref_node, ref_node); 1740 ASSERT(list_empty(&ref->add_list)); 1741 return ref; 1742 } 1743 1744 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1745 struct btrfs_delayed_ref_head *head) 1746 { 1747 spin_lock(&delayed_refs->lock); 1748 head->processing = 0; 1749 delayed_refs->num_heads_ready++; 1750 spin_unlock(&delayed_refs->lock); 1751 btrfs_delayed_ref_unlock(head); 1752 } 1753 1754 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1755 struct btrfs_delayed_ref_head *head) 1756 { 1757 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1758 1759 if (!extent_op) 1760 return NULL; 1761 1762 if (head->must_insert_reserved) { 1763 head->extent_op = NULL; 1764 btrfs_free_delayed_extent_op(extent_op); 1765 return NULL; 1766 } 1767 return extent_op; 1768 } 1769 1770 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1771 struct btrfs_delayed_ref_head *head) 1772 { 1773 struct btrfs_delayed_extent_op *extent_op; 1774 int ret; 1775 1776 extent_op = cleanup_extent_op(head); 1777 if (!extent_op) 1778 return 0; 1779 head->extent_op = NULL; 1780 spin_unlock(&head->lock); 1781 ret = run_delayed_extent_op(trans, head, extent_op); 1782 btrfs_free_delayed_extent_op(extent_op); 1783 return ret ? ret : 1; 1784 } 1785 1786 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1787 struct btrfs_delayed_ref_root *delayed_refs, 1788 struct btrfs_delayed_ref_head *head) 1789 { 1790 int nr_items = 1; /* Dropping this ref head update. */ 1791 1792 /* 1793 * We had csum deletions accounted for in our delayed refs rsv, we need 1794 * to drop the csum leaves for this update from our delayed_refs_rsv. 1795 */ 1796 if (head->total_ref_mod < 0 && head->is_data) { 1797 spin_lock(&delayed_refs->lock); 1798 delayed_refs->pending_csums -= head->num_bytes; 1799 spin_unlock(&delayed_refs->lock); 1800 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1801 } 1802 1803 /* 1804 * We were dropping refs, or had a new ref and dropped it, and thus must 1805 * adjust down our total_bytes_pinned, the space may or may not have 1806 * been pinned and so is accounted for properly in the pinned space by 1807 * now. 1808 */ 1809 if (head->total_ref_mod < 0 || 1810 (head->total_ref_mod == 0 && head->must_insert_reserved)) { 1811 u64 flags = btrfs_ref_head_to_space_flags(head); 1812 1813 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes); 1814 } 1815 1816 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1817 } 1818 1819 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1820 struct btrfs_delayed_ref_head *head) 1821 { 1822 1823 struct btrfs_fs_info *fs_info = trans->fs_info; 1824 struct btrfs_delayed_ref_root *delayed_refs; 1825 int ret; 1826 1827 delayed_refs = &trans->transaction->delayed_refs; 1828 1829 ret = run_and_cleanup_extent_op(trans, head); 1830 if (ret < 0) { 1831 unselect_delayed_ref_head(delayed_refs, head); 1832 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1833 return ret; 1834 } else if (ret) { 1835 return ret; 1836 } 1837 1838 /* 1839 * Need to drop our head ref lock and re-acquire the delayed ref lock 1840 * and then re-check to make sure nobody got added. 1841 */ 1842 spin_unlock(&head->lock); 1843 spin_lock(&delayed_refs->lock); 1844 spin_lock(&head->lock); 1845 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 return 1; 1849 } 1850 btrfs_delete_ref_head(delayed_refs, head); 1851 spin_unlock(&head->lock); 1852 spin_unlock(&delayed_refs->lock); 1853 1854 if (head->must_insert_reserved) { 1855 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1856 if (head->is_data) { 1857 ret = btrfs_del_csums(trans, fs_info->csum_root, 1858 head->bytenr, head->num_bytes); 1859 } 1860 } 1861 1862 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1863 1864 trace_run_delayed_ref_head(fs_info, head, 0); 1865 btrfs_delayed_ref_unlock(head); 1866 btrfs_put_delayed_ref_head(head); 1867 return 0; 1868 } 1869 1870 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1871 struct btrfs_trans_handle *trans) 1872 { 1873 struct btrfs_delayed_ref_root *delayed_refs = 1874 &trans->transaction->delayed_refs; 1875 struct btrfs_delayed_ref_head *head = NULL; 1876 int ret; 1877 1878 spin_lock(&delayed_refs->lock); 1879 head = btrfs_select_ref_head(delayed_refs); 1880 if (!head) { 1881 spin_unlock(&delayed_refs->lock); 1882 return head; 1883 } 1884 1885 /* 1886 * Grab the lock that says we are going to process all the refs for 1887 * this head 1888 */ 1889 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1890 spin_unlock(&delayed_refs->lock); 1891 1892 /* 1893 * We may have dropped the spin lock to get the head mutex lock, and 1894 * that might have given someone else time to free the head. If that's 1895 * true, it has been removed from our list and we can move on. 1896 */ 1897 if (ret == -EAGAIN) 1898 head = ERR_PTR(-EAGAIN); 1899 1900 return head; 1901 } 1902 1903 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1904 struct btrfs_delayed_ref_head *locked_ref, 1905 unsigned long *run_refs) 1906 { 1907 struct btrfs_fs_info *fs_info = trans->fs_info; 1908 struct btrfs_delayed_ref_root *delayed_refs; 1909 struct btrfs_delayed_extent_op *extent_op; 1910 struct btrfs_delayed_ref_node *ref; 1911 int must_insert_reserved = 0; 1912 int ret; 1913 1914 delayed_refs = &trans->transaction->delayed_refs; 1915 1916 lockdep_assert_held(&locked_ref->mutex); 1917 lockdep_assert_held(&locked_ref->lock); 1918 1919 while ((ref = select_delayed_ref(locked_ref))) { 1920 if (ref->seq && 1921 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1922 spin_unlock(&locked_ref->lock); 1923 unselect_delayed_ref_head(delayed_refs, locked_ref); 1924 return -EAGAIN; 1925 } 1926 1927 (*run_refs)++; 1928 ref->in_tree = 0; 1929 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1930 RB_CLEAR_NODE(&ref->ref_node); 1931 if (!list_empty(&ref->add_list)) 1932 list_del(&ref->add_list); 1933 /* 1934 * When we play the delayed ref, also correct the ref_mod on 1935 * head 1936 */ 1937 switch (ref->action) { 1938 case BTRFS_ADD_DELAYED_REF: 1939 case BTRFS_ADD_DELAYED_EXTENT: 1940 locked_ref->ref_mod -= ref->ref_mod; 1941 break; 1942 case BTRFS_DROP_DELAYED_REF: 1943 locked_ref->ref_mod += ref->ref_mod; 1944 break; 1945 default: 1946 WARN_ON(1); 1947 } 1948 atomic_dec(&delayed_refs->num_entries); 1949 1950 /* 1951 * Record the must_insert_reserved flag before we drop the 1952 * spin lock. 1953 */ 1954 must_insert_reserved = locked_ref->must_insert_reserved; 1955 locked_ref->must_insert_reserved = 0; 1956 1957 extent_op = locked_ref->extent_op; 1958 locked_ref->extent_op = NULL; 1959 spin_unlock(&locked_ref->lock); 1960 1961 ret = run_one_delayed_ref(trans, ref, extent_op, 1962 must_insert_reserved); 1963 1964 btrfs_free_delayed_extent_op(extent_op); 1965 if (ret) { 1966 unselect_delayed_ref_head(delayed_refs, locked_ref); 1967 btrfs_put_delayed_ref(ref); 1968 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1969 ret); 1970 return ret; 1971 } 1972 1973 btrfs_put_delayed_ref(ref); 1974 cond_resched(); 1975 1976 spin_lock(&locked_ref->lock); 1977 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1978 } 1979 1980 return 0; 1981 } 1982 1983 /* 1984 * Returns 0 on success or if called with an already aborted transaction. 1985 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1986 */ 1987 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1988 unsigned long nr) 1989 { 1990 struct btrfs_fs_info *fs_info = trans->fs_info; 1991 struct btrfs_delayed_ref_root *delayed_refs; 1992 struct btrfs_delayed_ref_head *locked_ref = NULL; 1993 ktime_t start = ktime_get(); 1994 int ret; 1995 unsigned long count = 0; 1996 unsigned long actual_count = 0; 1997 1998 delayed_refs = &trans->transaction->delayed_refs; 1999 do { 2000 if (!locked_ref) { 2001 locked_ref = btrfs_obtain_ref_head(trans); 2002 if (IS_ERR_OR_NULL(locked_ref)) { 2003 if (PTR_ERR(locked_ref) == -EAGAIN) { 2004 continue; 2005 } else { 2006 break; 2007 } 2008 } 2009 count++; 2010 } 2011 /* 2012 * We need to try and merge add/drops of the same ref since we 2013 * can run into issues with relocate dropping the implicit ref 2014 * and then it being added back again before the drop can 2015 * finish. If we merged anything we need to re-loop so we can 2016 * get a good ref. 2017 * Or we can get node references of the same type that weren't 2018 * merged when created due to bumps in the tree mod seq, and 2019 * we need to merge them to prevent adding an inline extent 2020 * backref before dropping it (triggering a BUG_ON at 2021 * insert_inline_extent_backref()). 2022 */ 2023 spin_lock(&locked_ref->lock); 2024 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2025 2026 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2027 &actual_count); 2028 if (ret < 0 && ret != -EAGAIN) { 2029 /* 2030 * Error, btrfs_run_delayed_refs_for_head already 2031 * unlocked everything so just bail out 2032 */ 2033 return ret; 2034 } else if (!ret) { 2035 /* 2036 * Success, perform the usual cleanup of a processed 2037 * head 2038 */ 2039 ret = cleanup_ref_head(trans, locked_ref); 2040 if (ret > 0 ) { 2041 /* We dropped our lock, we need to loop. */ 2042 ret = 0; 2043 continue; 2044 } else if (ret) { 2045 return ret; 2046 } 2047 } 2048 2049 /* 2050 * Either success case or btrfs_run_delayed_refs_for_head 2051 * returned -EAGAIN, meaning we need to select another head 2052 */ 2053 2054 locked_ref = NULL; 2055 cond_resched(); 2056 } while ((nr != -1 && count < nr) || locked_ref); 2057 2058 /* 2059 * We don't want to include ref heads since we can have empty ref heads 2060 * and those will drastically skew our runtime down since we just do 2061 * accounting, no actual extent tree updates. 2062 */ 2063 if (actual_count > 0) { 2064 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2065 u64 avg; 2066 2067 /* 2068 * We weigh the current average higher than our current runtime 2069 * to avoid large swings in the average. 2070 */ 2071 spin_lock(&delayed_refs->lock); 2072 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2073 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2074 spin_unlock(&delayed_refs->lock); 2075 } 2076 return 0; 2077 } 2078 2079 #ifdef SCRAMBLE_DELAYED_REFS 2080 /* 2081 * Normally delayed refs get processed in ascending bytenr order. This 2082 * correlates in most cases to the order added. To expose dependencies on this 2083 * order, we start to process the tree in the middle instead of the beginning 2084 */ 2085 static u64 find_middle(struct rb_root *root) 2086 { 2087 struct rb_node *n = root->rb_node; 2088 struct btrfs_delayed_ref_node *entry; 2089 int alt = 1; 2090 u64 middle; 2091 u64 first = 0, last = 0; 2092 2093 n = rb_first(root); 2094 if (n) { 2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2096 first = entry->bytenr; 2097 } 2098 n = rb_last(root); 2099 if (n) { 2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2101 last = entry->bytenr; 2102 } 2103 n = root->rb_node; 2104 2105 while (n) { 2106 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2107 WARN_ON(!entry->in_tree); 2108 2109 middle = entry->bytenr; 2110 2111 if (alt) 2112 n = n->rb_left; 2113 else 2114 n = n->rb_right; 2115 2116 alt = 1 - alt; 2117 } 2118 return middle; 2119 } 2120 #endif 2121 2122 /* 2123 * this starts processing the delayed reference count updates and 2124 * extent insertions we have queued up so far. count can be 2125 * 0, which means to process everything in the tree at the start 2126 * of the run (but not newly added entries), or it can be some target 2127 * number you'd like to process. 2128 * 2129 * Returns 0 on success or if called with an aborted transaction 2130 * Returns <0 on error and aborts the transaction 2131 */ 2132 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2133 unsigned long count) 2134 { 2135 struct btrfs_fs_info *fs_info = trans->fs_info; 2136 struct rb_node *node; 2137 struct btrfs_delayed_ref_root *delayed_refs; 2138 struct btrfs_delayed_ref_head *head; 2139 int ret; 2140 int run_all = count == (unsigned long)-1; 2141 2142 /* We'll clean this up in btrfs_cleanup_transaction */ 2143 if (TRANS_ABORTED(trans)) 2144 return 0; 2145 2146 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2147 return 0; 2148 2149 delayed_refs = &trans->transaction->delayed_refs; 2150 if (count == 0) 2151 count = delayed_refs->num_heads_ready; 2152 2153 again: 2154 #ifdef SCRAMBLE_DELAYED_REFS 2155 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2156 #endif 2157 ret = __btrfs_run_delayed_refs(trans, count); 2158 if (ret < 0) { 2159 btrfs_abort_transaction(trans, ret); 2160 return ret; 2161 } 2162 2163 if (run_all) { 2164 btrfs_create_pending_block_groups(trans); 2165 2166 spin_lock(&delayed_refs->lock); 2167 node = rb_first_cached(&delayed_refs->href_root); 2168 if (!node) { 2169 spin_unlock(&delayed_refs->lock); 2170 goto out; 2171 } 2172 head = rb_entry(node, struct btrfs_delayed_ref_head, 2173 href_node); 2174 refcount_inc(&head->refs); 2175 spin_unlock(&delayed_refs->lock); 2176 2177 /* Mutex was contended, block until it's released and retry. */ 2178 mutex_lock(&head->mutex); 2179 mutex_unlock(&head->mutex); 2180 2181 btrfs_put_delayed_ref_head(head); 2182 cond_resched(); 2183 goto again; 2184 } 2185 out: 2186 return 0; 2187 } 2188 2189 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2190 struct extent_buffer *eb, u64 flags, 2191 int level, int is_data) 2192 { 2193 struct btrfs_delayed_extent_op *extent_op; 2194 int ret; 2195 2196 extent_op = btrfs_alloc_delayed_extent_op(); 2197 if (!extent_op) 2198 return -ENOMEM; 2199 2200 extent_op->flags_to_set = flags; 2201 extent_op->update_flags = true; 2202 extent_op->update_key = false; 2203 extent_op->is_data = is_data ? true : false; 2204 extent_op->level = level; 2205 2206 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2207 if (ret) 2208 btrfs_free_delayed_extent_op(extent_op); 2209 return ret; 2210 } 2211 2212 static noinline int check_delayed_ref(struct btrfs_root *root, 2213 struct btrfs_path *path, 2214 u64 objectid, u64 offset, u64 bytenr) 2215 { 2216 struct btrfs_delayed_ref_head *head; 2217 struct btrfs_delayed_ref_node *ref; 2218 struct btrfs_delayed_data_ref *data_ref; 2219 struct btrfs_delayed_ref_root *delayed_refs; 2220 struct btrfs_transaction *cur_trans; 2221 struct rb_node *node; 2222 int ret = 0; 2223 2224 spin_lock(&root->fs_info->trans_lock); 2225 cur_trans = root->fs_info->running_transaction; 2226 if (cur_trans) 2227 refcount_inc(&cur_trans->use_count); 2228 spin_unlock(&root->fs_info->trans_lock); 2229 if (!cur_trans) 2230 return 0; 2231 2232 delayed_refs = &cur_trans->delayed_refs; 2233 spin_lock(&delayed_refs->lock); 2234 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2235 if (!head) { 2236 spin_unlock(&delayed_refs->lock); 2237 btrfs_put_transaction(cur_trans); 2238 return 0; 2239 } 2240 2241 if (!mutex_trylock(&head->mutex)) { 2242 refcount_inc(&head->refs); 2243 spin_unlock(&delayed_refs->lock); 2244 2245 btrfs_release_path(path); 2246 2247 /* 2248 * Mutex was contended, block until it's released and let 2249 * caller try again 2250 */ 2251 mutex_lock(&head->mutex); 2252 mutex_unlock(&head->mutex); 2253 btrfs_put_delayed_ref_head(head); 2254 btrfs_put_transaction(cur_trans); 2255 return -EAGAIN; 2256 } 2257 spin_unlock(&delayed_refs->lock); 2258 2259 spin_lock(&head->lock); 2260 /* 2261 * XXX: We should replace this with a proper search function in the 2262 * future. 2263 */ 2264 for (node = rb_first_cached(&head->ref_tree); node; 2265 node = rb_next(node)) { 2266 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2267 /* If it's a shared ref we know a cross reference exists */ 2268 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2269 ret = 1; 2270 break; 2271 } 2272 2273 data_ref = btrfs_delayed_node_to_data_ref(ref); 2274 2275 /* 2276 * If our ref doesn't match the one we're currently looking at 2277 * then we have a cross reference. 2278 */ 2279 if (data_ref->root != root->root_key.objectid || 2280 data_ref->objectid != objectid || 2281 data_ref->offset != offset) { 2282 ret = 1; 2283 break; 2284 } 2285 } 2286 spin_unlock(&head->lock); 2287 mutex_unlock(&head->mutex); 2288 btrfs_put_transaction(cur_trans); 2289 return ret; 2290 } 2291 2292 static noinline int check_committed_ref(struct btrfs_root *root, 2293 struct btrfs_path *path, 2294 u64 objectid, u64 offset, u64 bytenr, 2295 bool strict) 2296 { 2297 struct btrfs_fs_info *fs_info = root->fs_info; 2298 struct btrfs_root *extent_root = fs_info->extent_root; 2299 struct extent_buffer *leaf; 2300 struct btrfs_extent_data_ref *ref; 2301 struct btrfs_extent_inline_ref *iref; 2302 struct btrfs_extent_item *ei; 2303 struct btrfs_key key; 2304 u32 item_size; 2305 int type; 2306 int ret; 2307 2308 key.objectid = bytenr; 2309 key.offset = (u64)-1; 2310 key.type = BTRFS_EXTENT_ITEM_KEY; 2311 2312 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2313 if (ret < 0) 2314 goto out; 2315 BUG_ON(ret == 0); /* Corruption */ 2316 2317 ret = -ENOENT; 2318 if (path->slots[0] == 0) 2319 goto out; 2320 2321 path->slots[0]--; 2322 leaf = path->nodes[0]; 2323 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2324 2325 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2326 goto out; 2327 2328 ret = 1; 2329 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2330 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2331 2332 /* If extent item has more than 1 inline ref then it's shared */ 2333 if (item_size != sizeof(*ei) + 2334 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2335 goto out; 2336 2337 /* 2338 * If extent created before last snapshot => it's shared unless the 2339 * snapshot has been deleted. Use the heuristic if strict is false. 2340 */ 2341 if (!strict && 2342 (btrfs_extent_generation(leaf, ei) <= 2343 btrfs_root_last_snapshot(&root->root_item))) 2344 goto out; 2345 2346 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2347 2348 /* If this extent has SHARED_DATA_REF then it's shared */ 2349 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2350 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2351 goto out; 2352 2353 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2354 if (btrfs_extent_refs(leaf, ei) != 2355 btrfs_extent_data_ref_count(leaf, ref) || 2356 btrfs_extent_data_ref_root(leaf, ref) != 2357 root->root_key.objectid || 2358 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2359 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2360 goto out; 2361 2362 ret = 0; 2363 out: 2364 return ret; 2365 } 2366 2367 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2368 u64 bytenr, bool strict) 2369 { 2370 struct btrfs_path *path; 2371 int ret; 2372 2373 path = btrfs_alloc_path(); 2374 if (!path) 2375 return -ENOMEM; 2376 2377 do { 2378 ret = check_committed_ref(root, path, objectid, 2379 offset, bytenr, strict); 2380 if (ret && ret != -ENOENT) 2381 goto out; 2382 2383 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2384 } while (ret == -EAGAIN); 2385 2386 out: 2387 btrfs_free_path(path); 2388 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2389 WARN_ON(ret > 0); 2390 return ret; 2391 } 2392 2393 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2394 struct btrfs_root *root, 2395 struct extent_buffer *buf, 2396 int full_backref, int inc) 2397 { 2398 struct btrfs_fs_info *fs_info = root->fs_info; 2399 u64 bytenr; 2400 u64 num_bytes; 2401 u64 parent; 2402 u64 ref_root; 2403 u32 nritems; 2404 struct btrfs_key key; 2405 struct btrfs_file_extent_item *fi; 2406 struct btrfs_ref generic_ref = { 0 }; 2407 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2408 int i; 2409 int action; 2410 int level; 2411 int ret = 0; 2412 2413 if (btrfs_is_testing(fs_info)) 2414 return 0; 2415 2416 ref_root = btrfs_header_owner(buf); 2417 nritems = btrfs_header_nritems(buf); 2418 level = btrfs_header_level(buf); 2419 2420 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2421 return 0; 2422 2423 if (full_backref) 2424 parent = buf->start; 2425 else 2426 parent = 0; 2427 if (inc) 2428 action = BTRFS_ADD_DELAYED_REF; 2429 else 2430 action = BTRFS_DROP_DELAYED_REF; 2431 2432 for (i = 0; i < nritems; i++) { 2433 if (level == 0) { 2434 btrfs_item_key_to_cpu(buf, &key, i); 2435 if (key.type != BTRFS_EXTENT_DATA_KEY) 2436 continue; 2437 fi = btrfs_item_ptr(buf, i, 2438 struct btrfs_file_extent_item); 2439 if (btrfs_file_extent_type(buf, fi) == 2440 BTRFS_FILE_EXTENT_INLINE) 2441 continue; 2442 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2443 if (bytenr == 0) 2444 continue; 2445 2446 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2447 key.offset -= btrfs_file_extent_offset(buf, fi); 2448 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2449 num_bytes, parent); 2450 generic_ref.real_root = root->root_key.objectid; 2451 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2452 key.offset); 2453 generic_ref.skip_qgroup = for_reloc; 2454 if (inc) 2455 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2456 else 2457 ret = btrfs_free_extent(trans, &generic_ref); 2458 if (ret) 2459 goto fail; 2460 } else { 2461 bytenr = btrfs_node_blockptr(buf, i); 2462 num_bytes = fs_info->nodesize; 2463 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2464 num_bytes, parent); 2465 generic_ref.real_root = root->root_key.objectid; 2466 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2467 generic_ref.skip_qgroup = for_reloc; 2468 if (inc) 2469 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2470 else 2471 ret = btrfs_free_extent(trans, &generic_ref); 2472 if (ret) 2473 goto fail; 2474 } 2475 } 2476 return 0; 2477 fail: 2478 return ret; 2479 } 2480 2481 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2482 struct extent_buffer *buf, int full_backref) 2483 { 2484 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2485 } 2486 2487 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2488 struct extent_buffer *buf, int full_backref) 2489 { 2490 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2491 } 2492 2493 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2494 { 2495 struct btrfs_fs_info *fs_info = root->fs_info; 2496 u64 flags; 2497 u64 ret; 2498 2499 if (data) 2500 flags = BTRFS_BLOCK_GROUP_DATA; 2501 else if (root == fs_info->chunk_root) 2502 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2503 else 2504 flags = BTRFS_BLOCK_GROUP_METADATA; 2505 2506 ret = btrfs_get_alloc_profile(fs_info, flags); 2507 return ret; 2508 } 2509 2510 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2511 { 2512 struct btrfs_block_group *cache; 2513 u64 bytenr; 2514 2515 spin_lock(&fs_info->block_group_cache_lock); 2516 bytenr = fs_info->first_logical_byte; 2517 spin_unlock(&fs_info->block_group_cache_lock); 2518 2519 if (bytenr < (u64)-1) 2520 return bytenr; 2521 2522 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2523 if (!cache) 2524 return 0; 2525 2526 bytenr = cache->start; 2527 btrfs_put_block_group(cache); 2528 2529 return bytenr; 2530 } 2531 2532 static int pin_down_extent(struct btrfs_trans_handle *trans, 2533 struct btrfs_block_group *cache, 2534 u64 bytenr, u64 num_bytes, int reserved) 2535 { 2536 struct btrfs_fs_info *fs_info = cache->fs_info; 2537 2538 spin_lock(&cache->space_info->lock); 2539 spin_lock(&cache->lock); 2540 cache->pinned += num_bytes; 2541 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2542 num_bytes); 2543 if (reserved) { 2544 cache->reserved -= num_bytes; 2545 cache->space_info->bytes_reserved -= num_bytes; 2546 } 2547 spin_unlock(&cache->lock); 2548 spin_unlock(&cache->space_info->lock); 2549 2550 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes); 2551 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2552 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2553 return 0; 2554 } 2555 2556 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2557 u64 bytenr, u64 num_bytes, int reserved) 2558 { 2559 struct btrfs_block_group *cache; 2560 2561 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2562 BUG_ON(!cache); /* Logic error */ 2563 2564 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2565 2566 btrfs_put_block_group(cache); 2567 return 0; 2568 } 2569 2570 /* 2571 * this function must be called within transaction 2572 */ 2573 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2574 u64 bytenr, u64 num_bytes) 2575 { 2576 struct btrfs_block_group *cache; 2577 int ret; 2578 2579 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2580 if (!cache) 2581 return -EINVAL; 2582 2583 /* 2584 * pull in the free space cache (if any) so that our pin 2585 * removes the free space from the cache. We have load_only set 2586 * to one because the slow code to read in the free extents does check 2587 * the pinned extents. 2588 */ 2589 btrfs_cache_block_group(cache, 1); 2590 /* 2591 * Make sure we wait until the cache is completely built in case it is 2592 * missing or is invalid and therefore needs to be rebuilt. 2593 */ 2594 ret = btrfs_wait_block_group_cache_done(cache); 2595 if (ret) 2596 goto out; 2597 2598 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2599 2600 /* remove us from the free space cache (if we're there at all) */ 2601 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2602 out: 2603 btrfs_put_block_group(cache); 2604 return ret; 2605 } 2606 2607 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2608 u64 start, u64 num_bytes) 2609 { 2610 int ret; 2611 struct btrfs_block_group *block_group; 2612 2613 block_group = btrfs_lookup_block_group(fs_info, start); 2614 if (!block_group) 2615 return -EINVAL; 2616 2617 btrfs_cache_block_group(block_group, 1); 2618 /* 2619 * Make sure we wait until the cache is completely built in case it is 2620 * missing or is invalid and therefore needs to be rebuilt. 2621 */ 2622 ret = btrfs_wait_block_group_cache_done(block_group); 2623 if (ret) 2624 goto out; 2625 2626 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2627 out: 2628 btrfs_put_block_group(block_group); 2629 return ret; 2630 } 2631 2632 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2633 { 2634 struct btrfs_fs_info *fs_info = eb->fs_info; 2635 struct btrfs_file_extent_item *item; 2636 struct btrfs_key key; 2637 int found_type; 2638 int i; 2639 int ret = 0; 2640 2641 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2642 return 0; 2643 2644 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2645 btrfs_item_key_to_cpu(eb, &key, i); 2646 if (key.type != BTRFS_EXTENT_DATA_KEY) 2647 continue; 2648 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2649 found_type = btrfs_file_extent_type(eb, item); 2650 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2651 continue; 2652 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2653 continue; 2654 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2655 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2656 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2657 if (ret) 2658 break; 2659 } 2660 2661 return ret; 2662 } 2663 2664 static void 2665 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2666 { 2667 atomic_inc(&bg->reservations); 2668 } 2669 2670 /* 2671 * Returns the free cluster for the given space info and sets empty_cluster to 2672 * what it should be based on the mount options. 2673 */ 2674 static struct btrfs_free_cluster * 2675 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2676 struct btrfs_space_info *space_info, u64 *empty_cluster) 2677 { 2678 struct btrfs_free_cluster *ret = NULL; 2679 2680 *empty_cluster = 0; 2681 if (btrfs_mixed_space_info(space_info)) 2682 return ret; 2683 2684 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2685 ret = &fs_info->meta_alloc_cluster; 2686 if (btrfs_test_opt(fs_info, SSD)) 2687 *empty_cluster = SZ_2M; 2688 else 2689 *empty_cluster = SZ_64K; 2690 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2691 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2692 *empty_cluster = SZ_2M; 2693 ret = &fs_info->data_alloc_cluster; 2694 } 2695 2696 return ret; 2697 } 2698 2699 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2700 u64 start, u64 end, 2701 const bool return_free_space) 2702 { 2703 struct btrfs_block_group *cache = NULL; 2704 struct btrfs_space_info *space_info; 2705 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2706 struct btrfs_free_cluster *cluster = NULL; 2707 u64 len; 2708 u64 total_unpinned = 0; 2709 u64 empty_cluster = 0; 2710 bool readonly; 2711 2712 while (start <= end) { 2713 readonly = false; 2714 if (!cache || 2715 start >= cache->start + cache->length) { 2716 if (cache) 2717 btrfs_put_block_group(cache); 2718 total_unpinned = 0; 2719 cache = btrfs_lookup_block_group(fs_info, start); 2720 BUG_ON(!cache); /* Logic error */ 2721 2722 cluster = fetch_cluster_info(fs_info, 2723 cache->space_info, 2724 &empty_cluster); 2725 empty_cluster <<= 1; 2726 } 2727 2728 len = cache->start + cache->length - start; 2729 len = min(len, end + 1 - start); 2730 2731 down_read(&fs_info->commit_root_sem); 2732 if (start < cache->last_byte_to_unpin && return_free_space) { 2733 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2734 2735 btrfs_add_free_space(cache, start, add_len); 2736 } 2737 up_read(&fs_info->commit_root_sem); 2738 2739 start += len; 2740 total_unpinned += len; 2741 space_info = cache->space_info; 2742 2743 /* 2744 * If this space cluster has been marked as fragmented and we've 2745 * unpinned enough in this block group to potentially allow a 2746 * cluster to be created inside of it go ahead and clear the 2747 * fragmented check. 2748 */ 2749 if (cluster && cluster->fragmented && 2750 total_unpinned > empty_cluster) { 2751 spin_lock(&cluster->lock); 2752 cluster->fragmented = 0; 2753 spin_unlock(&cluster->lock); 2754 } 2755 2756 spin_lock(&space_info->lock); 2757 spin_lock(&cache->lock); 2758 cache->pinned -= len; 2759 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2760 space_info->max_extent_size = 0; 2761 __btrfs_mod_total_bytes_pinned(space_info, -len); 2762 if (cache->ro) { 2763 space_info->bytes_readonly += len; 2764 readonly = true; 2765 } else if (btrfs_is_zoned(fs_info)) { 2766 /* Need reset before reusing in a zoned block group */ 2767 space_info->bytes_zone_unusable += len; 2768 readonly = true; 2769 } 2770 spin_unlock(&cache->lock); 2771 if (!readonly && return_free_space && 2772 global_rsv->space_info == space_info) { 2773 u64 to_add = len; 2774 2775 spin_lock(&global_rsv->lock); 2776 if (!global_rsv->full) { 2777 to_add = min(len, global_rsv->size - 2778 global_rsv->reserved); 2779 global_rsv->reserved += to_add; 2780 btrfs_space_info_update_bytes_may_use(fs_info, 2781 space_info, to_add); 2782 if (global_rsv->reserved >= global_rsv->size) 2783 global_rsv->full = 1; 2784 len -= to_add; 2785 } 2786 spin_unlock(&global_rsv->lock); 2787 } 2788 /* Add to any tickets we may have */ 2789 if (!readonly && return_free_space && len) 2790 btrfs_try_granting_tickets(fs_info, space_info); 2791 spin_unlock(&space_info->lock); 2792 } 2793 2794 if (cache) 2795 btrfs_put_block_group(cache); 2796 return 0; 2797 } 2798 2799 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2800 { 2801 struct btrfs_fs_info *fs_info = trans->fs_info; 2802 struct btrfs_block_group *block_group, *tmp; 2803 struct list_head *deleted_bgs; 2804 struct extent_io_tree *unpin; 2805 u64 start; 2806 u64 end; 2807 int ret; 2808 2809 unpin = &trans->transaction->pinned_extents; 2810 2811 while (!TRANS_ABORTED(trans)) { 2812 struct extent_state *cached_state = NULL; 2813 2814 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2815 ret = find_first_extent_bit(unpin, 0, &start, &end, 2816 EXTENT_DIRTY, &cached_state); 2817 if (ret) { 2818 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2819 break; 2820 } 2821 2822 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2823 ret = btrfs_discard_extent(fs_info, start, 2824 end + 1 - start, NULL); 2825 2826 clear_extent_dirty(unpin, start, end, &cached_state); 2827 unpin_extent_range(fs_info, start, end, true); 2828 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2829 free_extent_state(cached_state); 2830 cond_resched(); 2831 } 2832 2833 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2834 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2835 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2836 } 2837 2838 /* 2839 * Transaction is finished. We don't need the lock anymore. We 2840 * do need to clean up the block groups in case of a transaction 2841 * abort. 2842 */ 2843 deleted_bgs = &trans->transaction->deleted_bgs; 2844 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2845 u64 trimmed = 0; 2846 2847 ret = -EROFS; 2848 if (!TRANS_ABORTED(trans)) 2849 ret = btrfs_discard_extent(fs_info, 2850 block_group->start, 2851 block_group->length, 2852 &trimmed); 2853 2854 list_del_init(&block_group->bg_list); 2855 btrfs_unfreeze_block_group(block_group); 2856 btrfs_put_block_group(block_group); 2857 2858 if (ret) { 2859 const char *errstr = btrfs_decode_error(ret); 2860 btrfs_warn(fs_info, 2861 "discard failed while removing blockgroup: errno=%d %s", 2862 ret, errstr); 2863 } 2864 } 2865 2866 return 0; 2867 } 2868 2869 /* 2870 * Drop one or more refs of @node. 2871 * 2872 * 1. Locate the extent refs. 2873 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2874 * Locate it, then reduce the refs number or remove the ref line completely. 2875 * 2876 * 2. Update the refs count in EXTENT/METADATA_ITEM 2877 * 2878 * Inline backref case: 2879 * 2880 * in extent tree we have: 2881 * 2882 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2883 * refs 2 gen 6 flags DATA 2884 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2885 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2886 * 2887 * This function gets called with: 2888 * 2889 * node->bytenr = 13631488 2890 * node->num_bytes = 1048576 2891 * root_objectid = FS_TREE 2892 * owner_objectid = 257 2893 * owner_offset = 0 2894 * refs_to_drop = 1 2895 * 2896 * Then we should get some like: 2897 * 2898 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2899 * refs 1 gen 6 flags DATA 2900 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2901 * 2902 * Keyed backref case: 2903 * 2904 * in extent tree we have: 2905 * 2906 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2907 * refs 754 gen 6 flags DATA 2908 * [...] 2909 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2910 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2911 * 2912 * This function get called with: 2913 * 2914 * node->bytenr = 13631488 2915 * node->num_bytes = 1048576 2916 * root_objectid = FS_TREE 2917 * owner_objectid = 866 2918 * owner_offset = 0 2919 * refs_to_drop = 1 2920 * 2921 * Then we should get some like: 2922 * 2923 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2924 * refs 753 gen 6 flags DATA 2925 * 2926 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2927 */ 2928 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2929 struct btrfs_delayed_ref_node *node, u64 parent, 2930 u64 root_objectid, u64 owner_objectid, 2931 u64 owner_offset, int refs_to_drop, 2932 struct btrfs_delayed_extent_op *extent_op) 2933 { 2934 struct btrfs_fs_info *info = trans->fs_info; 2935 struct btrfs_key key; 2936 struct btrfs_path *path; 2937 struct btrfs_root *extent_root = info->extent_root; 2938 struct extent_buffer *leaf; 2939 struct btrfs_extent_item *ei; 2940 struct btrfs_extent_inline_ref *iref; 2941 int ret; 2942 int is_data; 2943 int extent_slot = 0; 2944 int found_extent = 0; 2945 int num_to_del = 1; 2946 u32 item_size; 2947 u64 refs; 2948 u64 bytenr = node->bytenr; 2949 u64 num_bytes = node->num_bytes; 2950 int last_ref = 0; 2951 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2952 2953 path = btrfs_alloc_path(); 2954 if (!path) 2955 return -ENOMEM; 2956 2957 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2958 2959 if (!is_data && refs_to_drop != 1) { 2960 btrfs_crit(info, 2961 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2962 node->bytenr, refs_to_drop); 2963 ret = -EINVAL; 2964 btrfs_abort_transaction(trans, ret); 2965 goto out; 2966 } 2967 2968 if (is_data) 2969 skinny_metadata = false; 2970 2971 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2972 parent, root_objectid, owner_objectid, 2973 owner_offset); 2974 if (ret == 0) { 2975 /* 2976 * Either the inline backref or the SHARED_DATA_REF/ 2977 * SHARED_BLOCK_REF is found 2978 * 2979 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2980 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2981 */ 2982 extent_slot = path->slots[0]; 2983 while (extent_slot >= 0) { 2984 btrfs_item_key_to_cpu(path->nodes[0], &key, 2985 extent_slot); 2986 if (key.objectid != bytenr) 2987 break; 2988 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2989 key.offset == num_bytes) { 2990 found_extent = 1; 2991 break; 2992 } 2993 if (key.type == BTRFS_METADATA_ITEM_KEY && 2994 key.offset == owner_objectid) { 2995 found_extent = 1; 2996 break; 2997 } 2998 2999 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3000 if (path->slots[0] - extent_slot > 5) 3001 break; 3002 extent_slot--; 3003 } 3004 3005 if (!found_extent) { 3006 if (iref) { 3007 btrfs_crit(info, 3008 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3009 btrfs_abort_transaction(trans, -EUCLEAN); 3010 goto err_dump; 3011 } 3012 /* Must be SHARED_* item, remove the backref first */ 3013 ret = remove_extent_backref(trans, path, NULL, 3014 refs_to_drop, 3015 is_data, &last_ref); 3016 if (ret) { 3017 btrfs_abort_transaction(trans, ret); 3018 goto out; 3019 } 3020 btrfs_release_path(path); 3021 3022 /* Slow path to locate EXTENT/METADATA_ITEM */ 3023 key.objectid = bytenr; 3024 key.type = BTRFS_EXTENT_ITEM_KEY; 3025 key.offset = num_bytes; 3026 3027 if (!is_data && skinny_metadata) { 3028 key.type = BTRFS_METADATA_ITEM_KEY; 3029 key.offset = owner_objectid; 3030 } 3031 3032 ret = btrfs_search_slot(trans, extent_root, 3033 &key, path, -1, 1); 3034 if (ret > 0 && skinny_metadata && path->slots[0]) { 3035 /* 3036 * Couldn't find our skinny metadata item, 3037 * see if we have ye olde extent item. 3038 */ 3039 path->slots[0]--; 3040 btrfs_item_key_to_cpu(path->nodes[0], &key, 3041 path->slots[0]); 3042 if (key.objectid == bytenr && 3043 key.type == BTRFS_EXTENT_ITEM_KEY && 3044 key.offset == num_bytes) 3045 ret = 0; 3046 } 3047 3048 if (ret > 0 && skinny_metadata) { 3049 skinny_metadata = false; 3050 key.objectid = bytenr; 3051 key.type = BTRFS_EXTENT_ITEM_KEY; 3052 key.offset = num_bytes; 3053 btrfs_release_path(path); 3054 ret = btrfs_search_slot(trans, extent_root, 3055 &key, path, -1, 1); 3056 } 3057 3058 if (ret) { 3059 btrfs_err(info, 3060 "umm, got %d back from search, was looking for %llu", 3061 ret, bytenr); 3062 if (ret > 0) 3063 btrfs_print_leaf(path->nodes[0]); 3064 } 3065 if (ret < 0) { 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } 3069 extent_slot = path->slots[0]; 3070 } 3071 } else if (WARN_ON(ret == -ENOENT)) { 3072 btrfs_print_leaf(path->nodes[0]); 3073 btrfs_err(info, 3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3075 bytenr, parent, root_objectid, owner_objectid, 3076 owner_offset); 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } else { 3080 btrfs_abort_transaction(trans, ret); 3081 goto out; 3082 } 3083 3084 leaf = path->nodes[0]; 3085 item_size = btrfs_item_size_nr(leaf, extent_slot); 3086 if (unlikely(item_size < sizeof(*ei))) { 3087 ret = -EINVAL; 3088 btrfs_print_v0_err(info); 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 ei = btrfs_item_ptr(leaf, extent_slot, 3093 struct btrfs_extent_item); 3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3095 key.type == BTRFS_EXTENT_ITEM_KEY) { 3096 struct btrfs_tree_block_info *bi; 3097 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3098 btrfs_crit(info, 3099 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3100 key.objectid, key.type, key.offset, 3101 owner_objectid, item_size, 3102 sizeof(*ei) + sizeof(*bi)); 3103 btrfs_abort_transaction(trans, -EUCLEAN); 3104 goto err_dump; 3105 } 3106 bi = (struct btrfs_tree_block_info *)(ei + 1); 3107 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3108 } 3109 3110 refs = btrfs_extent_refs(leaf, ei); 3111 if (refs < refs_to_drop) { 3112 btrfs_crit(info, 3113 "trying to drop %d refs but we only have %llu for bytenr %llu", 3114 refs_to_drop, refs, bytenr); 3115 btrfs_abort_transaction(trans, -EUCLEAN); 3116 goto err_dump; 3117 } 3118 refs -= refs_to_drop; 3119 3120 if (refs > 0) { 3121 if (extent_op) 3122 __run_delayed_extent_op(extent_op, leaf, ei); 3123 /* 3124 * In the case of inline back ref, reference count will 3125 * be updated by remove_extent_backref 3126 */ 3127 if (iref) { 3128 if (!found_extent) { 3129 btrfs_crit(info, 3130 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3131 btrfs_abort_transaction(trans, -EUCLEAN); 3132 goto err_dump; 3133 } 3134 } else { 3135 btrfs_set_extent_refs(leaf, ei, refs); 3136 btrfs_mark_buffer_dirty(leaf); 3137 } 3138 if (found_extent) { 3139 ret = remove_extent_backref(trans, path, iref, 3140 refs_to_drop, is_data, 3141 &last_ref); 3142 if (ret) { 3143 btrfs_abort_transaction(trans, ret); 3144 goto out; 3145 } 3146 } 3147 } else { 3148 /* In this branch refs == 1 */ 3149 if (found_extent) { 3150 if (is_data && refs_to_drop != 3151 extent_data_ref_count(path, iref)) { 3152 btrfs_crit(info, 3153 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3154 extent_data_ref_count(path, iref), 3155 refs_to_drop); 3156 btrfs_abort_transaction(trans, -EUCLEAN); 3157 goto err_dump; 3158 } 3159 if (iref) { 3160 if (path->slots[0] != extent_slot) { 3161 btrfs_crit(info, 3162 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3163 key.objectid, key.type, 3164 key.offset); 3165 btrfs_abort_transaction(trans, -EUCLEAN); 3166 goto err_dump; 3167 } 3168 } else { 3169 /* 3170 * No inline ref, we must be at SHARED_* item, 3171 * And it's single ref, it must be: 3172 * | extent_slot ||extent_slot + 1| 3173 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3174 */ 3175 if (path->slots[0] != extent_slot + 1) { 3176 btrfs_crit(info, 3177 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3178 btrfs_abort_transaction(trans, -EUCLEAN); 3179 goto err_dump; 3180 } 3181 path->slots[0] = extent_slot; 3182 num_to_del = 2; 3183 } 3184 } 3185 3186 last_ref = 1; 3187 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3188 num_to_del); 3189 if (ret) { 3190 btrfs_abort_transaction(trans, ret); 3191 goto out; 3192 } 3193 btrfs_release_path(path); 3194 3195 if (is_data) { 3196 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3197 num_bytes); 3198 if (ret) { 3199 btrfs_abort_transaction(trans, ret); 3200 goto out; 3201 } 3202 } 3203 3204 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3205 if (ret) { 3206 btrfs_abort_transaction(trans, ret); 3207 goto out; 3208 } 3209 3210 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3211 if (ret) { 3212 btrfs_abort_transaction(trans, ret); 3213 goto out; 3214 } 3215 } 3216 btrfs_release_path(path); 3217 3218 out: 3219 btrfs_free_path(path); 3220 return ret; 3221 err_dump: 3222 /* 3223 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3224 * dump for debug build. 3225 */ 3226 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3227 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3228 path->slots[0], extent_slot); 3229 btrfs_print_leaf(path->nodes[0]); 3230 } 3231 3232 btrfs_free_path(path); 3233 return -EUCLEAN; 3234 } 3235 3236 /* 3237 * when we free an block, it is possible (and likely) that we free the last 3238 * delayed ref for that extent as well. This searches the delayed ref tree for 3239 * a given extent, and if there are no other delayed refs to be processed, it 3240 * removes it from the tree. 3241 */ 3242 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3243 u64 bytenr) 3244 { 3245 struct btrfs_delayed_ref_head *head; 3246 struct btrfs_delayed_ref_root *delayed_refs; 3247 int ret = 0; 3248 3249 delayed_refs = &trans->transaction->delayed_refs; 3250 spin_lock(&delayed_refs->lock); 3251 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3252 if (!head) 3253 goto out_delayed_unlock; 3254 3255 spin_lock(&head->lock); 3256 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3257 goto out; 3258 3259 if (cleanup_extent_op(head) != NULL) 3260 goto out; 3261 3262 /* 3263 * waiting for the lock here would deadlock. If someone else has it 3264 * locked they are already in the process of dropping it anyway 3265 */ 3266 if (!mutex_trylock(&head->mutex)) 3267 goto out; 3268 3269 btrfs_delete_ref_head(delayed_refs, head); 3270 head->processing = 0; 3271 3272 spin_unlock(&head->lock); 3273 spin_unlock(&delayed_refs->lock); 3274 3275 BUG_ON(head->extent_op); 3276 if (head->must_insert_reserved) 3277 ret = 1; 3278 3279 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3280 mutex_unlock(&head->mutex); 3281 btrfs_put_delayed_ref_head(head); 3282 return ret; 3283 out: 3284 spin_unlock(&head->lock); 3285 3286 out_delayed_unlock: 3287 spin_unlock(&delayed_refs->lock); 3288 return 0; 3289 } 3290 3291 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3292 struct btrfs_root *root, 3293 struct extent_buffer *buf, 3294 u64 parent, int last_ref) 3295 { 3296 struct btrfs_fs_info *fs_info = root->fs_info; 3297 struct btrfs_ref generic_ref = { 0 }; 3298 int ret; 3299 3300 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3301 buf->start, buf->len, parent); 3302 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3303 root->root_key.objectid); 3304 3305 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3306 btrfs_ref_tree_mod(fs_info, &generic_ref); 3307 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3308 BUG_ON(ret); /* -ENOMEM */ 3309 } 3310 3311 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3312 struct btrfs_block_group *cache; 3313 bool must_pin = false; 3314 3315 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3316 ret = check_ref_cleanup(trans, buf->start); 3317 if (!ret) { 3318 btrfs_redirty_list_add(trans->transaction, buf); 3319 goto out; 3320 } 3321 } 3322 3323 cache = btrfs_lookup_block_group(fs_info, buf->start); 3324 3325 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3326 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3327 btrfs_put_block_group(cache); 3328 goto out; 3329 } 3330 3331 /* 3332 * If this is a leaf and there are tree mod log users, we may 3333 * have recorded mod log operations that point to this leaf. 3334 * So we must make sure no one reuses this leaf's extent before 3335 * mod log operations are applied to a node, otherwise after 3336 * rewinding a node using the mod log operations we get an 3337 * inconsistent btree, as the leaf's extent may now be used as 3338 * a node or leaf for another different btree. 3339 * We are safe from races here because at this point no other 3340 * node or root points to this extent buffer, so if after this 3341 * check a new tree mod log user joins, it will not be able to 3342 * find a node pointing to this leaf and record operations that 3343 * point to this leaf. 3344 */ 3345 if (btrfs_header_level(buf) == 0 && 3346 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3347 must_pin = true; 3348 3349 if (must_pin || btrfs_is_zoned(fs_info)) { 3350 btrfs_redirty_list_add(trans->transaction, buf); 3351 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3352 btrfs_put_block_group(cache); 3353 goto out; 3354 } 3355 3356 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3357 3358 btrfs_add_free_space(cache, buf->start, buf->len); 3359 btrfs_free_reserved_bytes(cache, buf->len, 0); 3360 btrfs_put_block_group(cache); 3361 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3362 } 3363 out: 3364 if (last_ref) { 3365 /* 3366 * Deleting the buffer, clear the corrupt flag since it doesn't 3367 * matter anymore. 3368 */ 3369 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3370 } 3371 } 3372 3373 /* Can return -ENOMEM */ 3374 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3375 { 3376 struct btrfs_fs_info *fs_info = trans->fs_info; 3377 int ret; 3378 3379 if (btrfs_is_testing(fs_info)) 3380 return 0; 3381 3382 /* 3383 * tree log blocks never actually go into the extent allocation 3384 * tree, just update pinning info and exit early. 3385 */ 3386 if ((ref->type == BTRFS_REF_METADATA && 3387 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3388 (ref->type == BTRFS_REF_DATA && 3389 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3390 /* unlocks the pinned mutex */ 3391 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3392 ret = 0; 3393 } else if (ref->type == BTRFS_REF_METADATA) { 3394 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3395 } else { 3396 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3397 } 3398 3399 if (!((ref->type == BTRFS_REF_METADATA && 3400 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3401 (ref->type == BTRFS_REF_DATA && 3402 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3403 btrfs_ref_tree_mod(fs_info, ref); 3404 3405 return ret; 3406 } 3407 3408 enum btrfs_loop_type { 3409 LOOP_CACHING_NOWAIT, 3410 LOOP_CACHING_WAIT, 3411 LOOP_ALLOC_CHUNK, 3412 LOOP_NO_EMPTY_SIZE, 3413 }; 3414 3415 static inline void 3416 btrfs_lock_block_group(struct btrfs_block_group *cache, 3417 int delalloc) 3418 { 3419 if (delalloc) 3420 down_read(&cache->data_rwsem); 3421 } 3422 3423 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3424 int delalloc) 3425 { 3426 btrfs_get_block_group(cache); 3427 if (delalloc) 3428 down_read(&cache->data_rwsem); 3429 } 3430 3431 static struct btrfs_block_group *btrfs_lock_cluster( 3432 struct btrfs_block_group *block_group, 3433 struct btrfs_free_cluster *cluster, 3434 int delalloc) 3435 __acquires(&cluster->refill_lock) 3436 { 3437 struct btrfs_block_group *used_bg = NULL; 3438 3439 spin_lock(&cluster->refill_lock); 3440 while (1) { 3441 used_bg = cluster->block_group; 3442 if (!used_bg) 3443 return NULL; 3444 3445 if (used_bg == block_group) 3446 return used_bg; 3447 3448 btrfs_get_block_group(used_bg); 3449 3450 if (!delalloc) 3451 return used_bg; 3452 3453 if (down_read_trylock(&used_bg->data_rwsem)) 3454 return used_bg; 3455 3456 spin_unlock(&cluster->refill_lock); 3457 3458 /* We should only have one-level nested. */ 3459 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3460 3461 spin_lock(&cluster->refill_lock); 3462 if (used_bg == cluster->block_group) 3463 return used_bg; 3464 3465 up_read(&used_bg->data_rwsem); 3466 btrfs_put_block_group(used_bg); 3467 } 3468 } 3469 3470 static inline void 3471 btrfs_release_block_group(struct btrfs_block_group *cache, 3472 int delalloc) 3473 { 3474 if (delalloc) 3475 up_read(&cache->data_rwsem); 3476 btrfs_put_block_group(cache); 3477 } 3478 3479 enum btrfs_extent_allocation_policy { 3480 BTRFS_EXTENT_ALLOC_CLUSTERED, 3481 BTRFS_EXTENT_ALLOC_ZONED, 3482 }; 3483 3484 /* 3485 * Structure used internally for find_free_extent() function. Wraps needed 3486 * parameters. 3487 */ 3488 struct find_free_extent_ctl { 3489 /* Basic allocation info */ 3490 u64 num_bytes; 3491 u64 empty_size; 3492 u64 flags; 3493 int delalloc; 3494 3495 /* Where to start the search inside the bg */ 3496 u64 search_start; 3497 3498 /* For clustered allocation */ 3499 u64 empty_cluster; 3500 struct btrfs_free_cluster *last_ptr; 3501 bool use_cluster; 3502 3503 bool have_caching_bg; 3504 bool orig_have_caching_bg; 3505 3506 /* Allocation is called for tree-log */ 3507 bool for_treelog; 3508 3509 /* RAID index, converted from flags */ 3510 int index; 3511 3512 /* 3513 * Current loop number, check find_free_extent_update_loop() for details 3514 */ 3515 int loop; 3516 3517 /* 3518 * Whether we're refilling a cluster, if true we need to re-search 3519 * current block group but don't try to refill the cluster again. 3520 */ 3521 bool retry_clustered; 3522 3523 /* 3524 * Whether we're updating free space cache, if true we need to re-search 3525 * current block group but don't try updating free space cache again. 3526 */ 3527 bool retry_unclustered; 3528 3529 /* If current block group is cached */ 3530 int cached; 3531 3532 /* Max contiguous hole found */ 3533 u64 max_extent_size; 3534 3535 /* Total free space from free space cache, not always contiguous */ 3536 u64 total_free_space; 3537 3538 /* Found result */ 3539 u64 found_offset; 3540 3541 /* Hint where to start looking for an empty space */ 3542 u64 hint_byte; 3543 3544 /* Allocation policy */ 3545 enum btrfs_extent_allocation_policy policy; 3546 }; 3547 3548 3549 /* 3550 * Helper function for find_free_extent(). 3551 * 3552 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3553 * Return -EAGAIN to inform caller that we need to re-search this block group 3554 * Return >0 to inform caller that we find nothing 3555 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3556 */ 3557 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3558 struct find_free_extent_ctl *ffe_ctl, 3559 struct btrfs_block_group **cluster_bg_ret) 3560 { 3561 struct btrfs_block_group *cluster_bg; 3562 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3563 u64 aligned_cluster; 3564 u64 offset; 3565 int ret; 3566 3567 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3568 if (!cluster_bg) 3569 goto refill_cluster; 3570 if (cluster_bg != bg && (cluster_bg->ro || 3571 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3572 goto release_cluster; 3573 3574 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3575 ffe_ctl->num_bytes, cluster_bg->start, 3576 &ffe_ctl->max_extent_size); 3577 if (offset) { 3578 /* We have a block, we're done */ 3579 spin_unlock(&last_ptr->refill_lock); 3580 trace_btrfs_reserve_extent_cluster(cluster_bg, 3581 ffe_ctl->search_start, ffe_ctl->num_bytes); 3582 *cluster_bg_ret = cluster_bg; 3583 ffe_ctl->found_offset = offset; 3584 return 0; 3585 } 3586 WARN_ON(last_ptr->block_group != cluster_bg); 3587 3588 release_cluster: 3589 /* 3590 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3591 * lets just skip it and let the allocator find whatever block it can 3592 * find. If we reach this point, we will have tried the cluster 3593 * allocator plenty of times and not have found anything, so we are 3594 * likely way too fragmented for the clustering stuff to find anything. 3595 * 3596 * However, if the cluster is taken from the current block group, 3597 * release the cluster first, so that we stand a better chance of 3598 * succeeding in the unclustered allocation. 3599 */ 3600 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3601 spin_unlock(&last_ptr->refill_lock); 3602 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3603 return -ENOENT; 3604 } 3605 3606 /* This cluster didn't work out, free it and start over */ 3607 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3608 3609 if (cluster_bg != bg) 3610 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3611 3612 refill_cluster: 3613 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3614 spin_unlock(&last_ptr->refill_lock); 3615 return -ENOENT; 3616 } 3617 3618 aligned_cluster = max_t(u64, 3619 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3620 bg->full_stripe_len); 3621 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3622 ffe_ctl->num_bytes, aligned_cluster); 3623 if (ret == 0) { 3624 /* Now pull our allocation out of this cluster */ 3625 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3626 ffe_ctl->num_bytes, ffe_ctl->search_start, 3627 &ffe_ctl->max_extent_size); 3628 if (offset) { 3629 /* We found one, proceed */ 3630 spin_unlock(&last_ptr->refill_lock); 3631 trace_btrfs_reserve_extent_cluster(bg, 3632 ffe_ctl->search_start, 3633 ffe_ctl->num_bytes); 3634 ffe_ctl->found_offset = offset; 3635 return 0; 3636 } 3637 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3638 !ffe_ctl->retry_clustered) { 3639 spin_unlock(&last_ptr->refill_lock); 3640 3641 ffe_ctl->retry_clustered = true; 3642 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3643 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3644 return -EAGAIN; 3645 } 3646 /* 3647 * At this point we either didn't find a cluster or we weren't able to 3648 * allocate a block from our cluster. Free the cluster we've been 3649 * trying to use, and go to the next block group. 3650 */ 3651 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3652 spin_unlock(&last_ptr->refill_lock); 3653 return 1; 3654 } 3655 3656 /* 3657 * Return >0 to inform caller that we find nothing 3658 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3659 * Return -EAGAIN to inform caller that we need to re-search this block group 3660 */ 3661 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3662 struct find_free_extent_ctl *ffe_ctl) 3663 { 3664 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3665 u64 offset; 3666 3667 /* 3668 * We are doing an unclustered allocation, set the fragmented flag so 3669 * we don't bother trying to setup a cluster again until we get more 3670 * space. 3671 */ 3672 if (unlikely(last_ptr)) { 3673 spin_lock(&last_ptr->lock); 3674 last_ptr->fragmented = 1; 3675 spin_unlock(&last_ptr->lock); 3676 } 3677 if (ffe_ctl->cached) { 3678 struct btrfs_free_space_ctl *free_space_ctl; 3679 3680 free_space_ctl = bg->free_space_ctl; 3681 spin_lock(&free_space_ctl->tree_lock); 3682 if (free_space_ctl->free_space < 3683 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3684 ffe_ctl->empty_size) { 3685 ffe_ctl->total_free_space = max_t(u64, 3686 ffe_ctl->total_free_space, 3687 free_space_ctl->free_space); 3688 spin_unlock(&free_space_ctl->tree_lock); 3689 return 1; 3690 } 3691 spin_unlock(&free_space_ctl->tree_lock); 3692 } 3693 3694 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3695 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3696 &ffe_ctl->max_extent_size); 3697 3698 /* 3699 * If we didn't find a chunk, and we haven't failed on this block group 3700 * before, and this block group is in the middle of caching and we are 3701 * ok with waiting, then go ahead and wait for progress to be made, and 3702 * set @retry_unclustered to true. 3703 * 3704 * If @retry_unclustered is true then we've already waited on this 3705 * block group once and should move on to the next block group. 3706 */ 3707 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3708 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3709 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3710 ffe_ctl->empty_size); 3711 ffe_ctl->retry_unclustered = true; 3712 return -EAGAIN; 3713 } else if (!offset) { 3714 return 1; 3715 } 3716 ffe_ctl->found_offset = offset; 3717 return 0; 3718 } 3719 3720 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3721 struct find_free_extent_ctl *ffe_ctl, 3722 struct btrfs_block_group **bg_ret) 3723 { 3724 int ret; 3725 3726 /* We want to try and use the cluster allocator, so lets look there */ 3727 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3728 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3729 if (ret >= 0 || ret == -EAGAIN) 3730 return ret; 3731 /* ret == -ENOENT case falls through */ 3732 } 3733 3734 return find_free_extent_unclustered(block_group, ffe_ctl); 3735 } 3736 3737 /* 3738 * Tree-log block group locking 3739 * ============================ 3740 * 3741 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3742 * indicates the starting address of a block group, which is reserved only 3743 * for tree-log metadata. 3744 * 3745 * Lock nesting 3746 * ============ 3747 * 3748 * space_info::lock 3749 * block_group::lock 3750 * fs_info::treelog_bg_lock 3751 */ 3752 3753 /* 3754 * Simple allocator for sequential-only block group. It only allows sequential 3755 * allocation. No need to play with trees. This function also reserves the 3756 * bytes as in btrfs_add_reserved_bytes. 3757 */ 3758 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3759 struct find_free_extent_ctl *ffe_ctl, 3760 struct btrfs_block_group **bg_ret) 3761 { 3762 struct btrfs_fs_info *fs_info = block_group->fs_info; 3763 struct btrfs_space_info *space_info = block_group->space_info; 3764 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3765 u64 start = block_group->start; 3766 u64 num_bytes = ffe_ctl->num_bytes; 3767 u64 avail; 3768 u64 bytenr = block_group->start; 3769 u64 log_bytenr; 3770 int ret = 0; 3771 bool skip; 3772 3773 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3774 3775 /* 3776 * Do not allow non-tree-log blocks in the dedicated tree-log block 3777 * group, and vice versa. 3778 */ 3779 spin_lock(&fs_info->treelog_bg_lock); 3780 log_bytenr = fs_info->treelog_bg; 3781 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3782 (!ffe_ctl->for_treelog && bytenr == log_bytenr)); 3783 spin_unlock(&fs_info->treelog_bg_lock); 3784 if (skip) 3785 return 1; 3786 3787 spin_lock(&space_info->lock); 3788 spin_lock(&block_group->lock); 3789 spin_lock(&fs_info->treelog_bg_lock); 3790 3791 ASSERT(!ffe_ctl->for_treelog || 3792 block_group->start == fs_info->treelog_bg || 3793 fs_info->treelog_bg == 0); 3794 3795 if (block_group->ro) { 3796 ret = 1; 3797 goto out; 3798 } 3799 3800 /* 3801 * Do not allow currently using block group to be tree-log dedicated 3802 * block group. 3803 */ 3804 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3805 (block_group->used || block_group->reserved)) { 3806 ret = 1; 3807 goto out; 3808 } 3809 3810 avail = block_group->length - block_group->alloc_offset; 3811 if (avail < num_bytes) { 3812 if (ffe_ctl->max_extent_size < avail) { 3813 /* 3814 * With sequential allocator, free space is always 3815 * contiguous 3816 */ 3817 ffe_ctl->max_extent_size = avail; 3818 ffe_ctl->total_free_space = avail; 3819 } 3820 ret = 1; 3821 goto out; 3822 } 3823 3824 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3825 fs_info->treelog_bg = block_group->start; 3826 3827 ffe_ctl->found_offset = start + block_group->alloc_offset; 3828 block_group->alloc_offset += num_bytes; 3829 spin_lock(&ctl->tree_lock); 3830 ctl->free_space -= num_bytes; 3831 spin_unlock(&ctl->tree_lock); 3832 3833 /* 3834 * We do not check if found_offset is aligned to stripesize. The 3835 * address is anyway rewritten when using zone append writing. 3836 */ 3837 3838 ffe_ctl->search_start = ffe_ctl->found_offset; 3839 3840 out: 3841 if (ret && ffe_ctl->for_treelog) 3842 fs_info->treelog_bg = 0; 3843 spin_unlock(&fs_info->treelog_bg_lock); 3844 spin_unlock(&block_group->lock); 3845 spin_unlock(&space_info->lock); 3846 return ret; 3847 } 3848 3849 static int do_allocation(struct btrfs_block_group *block_group, 3850 struct find_free_extent_ctl *ffe_ctl, 3851 struct btrfs_block_group **bg_ret) 3852 { 3853 switch (ffe_ctl->policy) { 3854 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3855 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3856 case BTRFS_EXTENT_ALLOC_ZONED: 3857 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3858 default: 3859 BUG(); 3860 } 3861 } 3862 3863 static void release_block_group(struct btrfs_block_group *block_group, 3864 struct find_free_extent_ctl *ffe_ctl, 3865 int delalloc) 3866 { 3867 switch (ffe_ctl->policy) { 3868 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3869 ffe_ctl->retry_clustered = false; 3870 ffe_ctl->retry_unclustered = false; 3871 break; 3872 case BTRFS_EXTENT_ALLOC_ZONED: 3873 /* Nothing to do */ 3874 break; 3875 default: 3876 BUG(); 3877 } 3878 3879 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3880 ffe_ctl->index); 3881 btrfs_release_block_group(block_group, delalloc); 3882 } 3883 3884 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3885 struct btrfs_key *ins) 3886 { 3887 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3888 3889 if (!ffe_ctl->use_cluster && last_ptr) { 3890 spin_lock(&last_ptr->lock); 3891 last_ptr->window_start = ins->objectid; 3892 spin_unlock(&last_ptr->lock); 3893 } 3894 } 3895 3896 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3897 struct btrfs_key *ins) 3898 { 3899 switch (ffe_ctl->policy) { 3900 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3901 found_extent_clustered(ffe_ctl, ins); 3902 break; 3903 case BTRFS_EXTENT_ALLOC_ZONED: 3904 /* Nothing to do */ 3905 break; 3906 default: 3907 BUG(); 3908 } 3909 } 3910 3911 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3912 { 3913 switch (ffe_ctl->policy) { 3914 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3915 /* 3916 * If we can't allocate a new chunk we've already looped through 3917 * at least once, move on to the NO_EMPTY_SIZE case. 3918 */ 3919 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3920 return 0; 3921 case BTRFS_EXTENT_ALLOC_ZONED: 3922 /* Give up here */ 3923 return -ENOSPC; 3924 default: 3925 BUG(); 3926 } 3927 } 3928 3929 /* 3930 * Return >0 means caller needs to re-search for free extent 3931 * Return 0 means we have the needed free extent. 3932 * Return <0 means we failed to locate any free extent. 3933 */ 3934 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3935 struct btrfs_key *ins, 3936 struct find_free_extent_ctl *ffe_ctl, 3937 bool full_search) 3938 { 3939 struct btrfs_root *root = fs_info->extent_root; 3940 int ret; 3941 3942 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3943 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3944 ffe_ctl->orig_have_caching_bg = true; 3945 3946 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3947 ffe_ctl->have_caching_bg) 3948 return 1; 3949 3950 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3951 return 1; 3952 3953 if (ins->objectid) { 3954 found_extent(ffe_ctl, ins); 3955 return 0; 3956 } 3957 3958 /* 3959 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3960 * caching kthreads as we move along 3961 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3962 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3963 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3964 * again 3965 */ 3966 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3967 ffe_ctl->index = 0; 3968 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3969 /* 3970 * We want to skip the LOOP_CACHING_WAIT step if we 3971 * don't have any uncached bgs and we've already done a 3972 * full search through. 3973 */ 3974 if (ffe_ctl->orig_have_caching_bg || !full_search) 3975 ffe_ctl->loop = LOOP_CACHING_WAIT; 3976 else 3977 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3978 } else { 3979 ffe_ctl->loop++; 3980 } 3981 3982 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3983 struct btrfs_trans_handle *trans; 3984 int exist = 0; 3985 3986 trans = current->journal_info; 3987 if (trans) 3988 exist = 1; 3989 else 3990 trans = btrfs_join_transaction(root); 3991 3992 if (IS_ERR(trans)) { 3993 ret = PTR_ERR(trans); 3994 return ret; 3995 } 3996 3997 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3998 CHUNK_ALLOC_FORCE); 3999 4000 /* Do not bail out on ENOSPC since we can do more. */ 4001 if (ret == -ENOSPC) 4002 ret = chunk_allocation_failed(ffe_ctl); 4003 else if (ret < 0) 4004 btrfs_abort_transaction(trans, ret); 4005 else 4006 ret = 0; 4007 if (!exist) 4008 btrfs_end_transaction(trans); 4009 if (ret) 4010 return ret; 4011 } 4012 4013 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4014 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4015 return -ENOSPC; 4016 4017 /* 4018 * Don't loop again if we already have no empty_size and 4019 * no empty_cluster. 4020 */ 4021 if (ffe_ctl->empty_size == 0 && 4022 ffe_ctl->empty_cluster == 0) 4023 return -ENOSPC; 4024 ffe_ctl->empty_size = 0; 4025 ffe_ctl->empty_cluster = 0; 4026 } 4027 return 1; 4028 } 4029 return -ENOSPC; 4030 } 4031 4032 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4033 struct find_free_extent_ctl *ffe_ctl, 4034 struct btrfs_space_info *space_info, 4035 struct btrfs_key *ins) 4036 { 4037 /* 4038 * If our free space is heavily fragmented we may not be able to make 4039 * big contiguous allocations, so instead of doing the expensive search 4040 * for free space, simply return ENOSPC with our max_extent_size so we 4041 * can go ahead and search for a more manageable chunk. 4042 * 4043 * If our max_extent_size is large enough for our allocation simply 4044 * disable clustering since we will likely not be able to find enough 4045 * space to create a cluster and induce latency trying. 4046 */ 4047 if (space_info->max_extent_size) { 4048 spin_lock(&space_info->lock); 4049 if (space_info->max_extent_size && 4050 ffe_ctl->num_bytes > space_info->max_extent_size) { 4051 ins->offset = space_info->max_extent_size; 4052 spin_unlock(&space_info->lock); 4053 return -ENOSPC; 4054 } else if (space_info->max_extent_size) { 4055 ffe_ctl->use_cluster = false; 4056 } 4057 spin_unlock(&space_info->lock); 4058 } 4059 4060 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4061 &ffe_ctl->empty_cluster); 4062 if (ffe_ctl->last_ptr) { 4063 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4064 4065 spin_lock(&last_ptr->lock); 4066 if (last_ptr->block_group) 4067 ffe_ctl->hint_byte = last_ptr->window_start; 4068 if (last_ptr->fragmented) { 4069 /* 4070 * We still set window_start so we can keep track of the 4071 * last place we found an allocation to try and save 4072 * some time. 4073 */ 4074 ffe_ctl->hint_byte = last_ptr->window_start; 4075 ffe_ctl->use_cluster = false; 4076 } 4077 spin_unlock(&last_ptr->lock); 4078 } 4079 4080 return 0; 4081 } 4082 4083 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4084 struct find_free_extent_ctl *ffe_ctl, 4085 struct btrfs_space_info *space_info, 4086 struct btrfs_key *ins) 4087 { 4088 switch (ffe_ctl->policy) { 4089 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4090 return prepare_allocation_clustered(fs_info, ffe_ctl, 4091 space_info, ins); 4092 case BTRFS_EXTENT_ALLOC_ZONED: 4093 if (ffe_ctl->for_treelog) { 4094 spin_lock(&fs_info->treelog_bg_lock); 4095 if (fs_info->treelog_bg) 4096 ffe_ctl->hint_byte = fs_info->treelog_bg; 4097 spin_unlock(&fs_info->treelog_bg_lock); 4098 } 4099 return 0; 4100 default: 4101 BUG(); 4102 } 4103 } 4104 4105 /* 4106 * walks the btree of allocated extents and find a hole of a given size. 4107 * The key ins is changed to record the hole: 4108 * ins->objectid == start position 4109 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4110 * ins->offset == the size of the hole. 4111 * Any available blocks before search_start are skipped. 4112 * 4113 * If there is no suitable free space, we will record the max size of 4114 * the free space extent currently. 4115 * 4116 * The overall logic and call chain: 4117 * 4118 * find_free_extent() 4119 * |- Iterate through all block groups 4120 * | |- Get a valid block group 4121 * | |- Try to do clustered allocation in that block group 4122 * | |- Try to do unclustered allocation in that block group 4123 * | |- Check if the result is valid 4124 * | | |- If valid, then exit 4125 * | |- Jump to next block group 4126 * | 4127 * |- Push harder to find free extents 4128 * |- If not found, re-iterate all block groups 4129 */ 4130 static noinline int find_free_extent(struct btrfs_root *root, 4131 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4132 u64 hint_byte_orig, struct btrfs_key *ins, 4133 u64 flags, int delalloc) 4134 { 4135 struct btrfs_fs_info *fs_info = root->fs_info; 4136 int ret = 0; 4137 int cache_block_group_error = 0; 4138 struct btrfs_block_group *block_group = NULL; 4139 struct find_free_extent_ctl ffe_ctl = {0}; 4140 struct btrfs_space_info *space_info; 4141 bool full_search = false; 4142 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4143 4144 WARN_ON(num_bytes < fs_info->sectorsize); 4145 4146 ffe_ctl.num_bytes = num_bytes; 4147 ffe_ctl.empty_size = empty_size; 4148 ffe_ctl.flags = flags; 4149 ffe_ctl.search_start = 0; 4150 ffe_ctl.delalloc = delalloc; 4151 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4152 ffe_ctl.have_caching_bg = false; 4153 ffe_ctl.orig_have_caching_bg = false; 4154 ffe_ctl.found_offset = 0; 4155 ffe_ctl.hint_byte = hint_byte_orig; 4156 ffe_ctl.for_treelog = for_treelog; 4157 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4158 4159 /* For clustered allocation */ 4160 ffe_ctl.retry_clustered = false; 4161 ffe_ctl.retry_unclustered = false; 4162 ffe_ctl.last_ptr = NULL; 4163 ffe_ctl.use_cluster = true; 4164 4165 if (btrfs_is_zoned(fs_info)) 4166 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED; 4167 4168 ins->type = BTRFS_EXTENT_ITEM_KEY; 4169 ins->objectid = 0; 4170 ins->offset = 0; 4171 4172 trace_find_free_extent(root, num_bytes, empty_size, flags); 4173 4174 space_info = btrfs_find_space_info(fs_info, flags); 4175 if (!space_info) { 4176 btrfs_err(fs_info, "No space info for %llu", flags); 4177 return -ENOSPC; 4178 } 4179 4180 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4181 if (ret < 0) 4182 return ret; 4183 4184 ffe_ctl.search_start = max(ffe_ctl.search_start, 4185 first_logical_byte(fs_info, 0)); 4186 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4187 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4188 block_group = btrfs_lookup_block_group(fs_info, 4189 ffe_ctl.search_start); 4190 /* 4191 * we don't want to use the block group if it doesn't match our 4192 * allocation bits, or if its not cached. 4193 * 4194 * However if we are re-searching with an ideal block group 4195 * picked out then we don't care that the block group is cached. 4196 */ 4197 if (block_group && block_group_bits(block_group, flags) && 4198 block_group->cached != BTRFS_CACHE_NO) { 4199 down_read(&space_info->groups_sem); 4200 if (list_empty(&block_group->list) || 4201 block_group->ro) { 4202 /* 4203 * someone is removing this block group, 4204 * we can't jump into the have_block_group 4205 * target because our list pointers are not 4206 * valid 4207 */ 4208 btrfs_put_block_group(block_group); 4209 up_read(&space_info->groups_sem); 4210 } else { 4211 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4212 block_group->flags); 4213 btrfs_lock_block_group(block_group, delalloc); 4214 goto have_block_group; 4215 } 4216 } else if (block_group) { 4217 btrfs_put_block_group(block_group); 4218 } 4219 } 4220 search: 4221 ffe_ctl.have_caching_bg = false; 4222 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4223 ffe_ctl.index == 0) 4224 full_search = true; 4225 down_read(&space_info->groups_sem); 4226 list_for_each_entry(block_group, 4227 &space_info->block_groups[ffe_ctl.index], list) { 4228 struct btrfs_block_group *bg_ret; 4229 4230 /* If the block group is read-only, we can skip it entirely. */ 4231 if (unlikely(block_group->ro)) { 4232 if (for_treelog) 4233 btrfs_clear_treelog_bg(block_group); 4234 continue; 4235 } 4236 4237 btrfs_grab_block_group(block_group, delalloc); 4238 ffe_ctl.search_start = block_group->start; 4239 4240 /* 4241 * this can happen if we end up cycling through all the 4242 * raid types, but we want to make sure we only allocate 4243 * for the proper type. 4244 */ 4245 if (!block_group_bits(block_group, flags)) { 4246 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4247 BTRFS_BLOCK_GROUP_RAID1_MASK | 4248 BTRFS_BLOCK_GROUP_RAID56_MASK | 4249 BTRFS_BLOCK_GROUP_RAID10; 4250 4251 /* 4252 * if they asked for extra copies and this block group 4253 * doesn't provide them, bail. This does allow us to 4254 * fill raid0 from raid1. 4255 */ 4256 if ((flags & extra) && !(block_group->flags & extra)) 4257 goto loop; 4258 4259 /* 4260 * This block group has different flags than we want. 4261 * It's possible that we have MIXED_GROUP flag but no 4262 * block group is mixed. Just skip such block group. 4263 */ 4264 btrfs_release_block_group(block_group, delalloc); 4265 continue; 4266 } 4267 4268 have_block_group: 4269 ffe_ctl.cached = btrfs_block_group_done(block_group); 4270 if (unlikely(!ffe_ctl.cached)) { 4271 ffe_ctl.have_caching_bg = true; 4272 ret = btrfs_cache_block_group(block_group, 0); 4273 4274 /* 4275 * If we get ENOMEM here or something else we want to 4276 * try other block groups, because it may not be fatal. 4277 * However if we can't find anything else we need to 4278 * save our return here so that we return the actual 4279 * error that caused problems, not ENOSPC. 4280 */ 4281 if (ret < 0) { 4282 if (!cache_block_group_error) 4283 cache_block_group_error = ret; 4284 ret = 0; 4285 goto loop; 4286 } 4287 ret = 0; 4288 } 4289 4290 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4291 goto loop; 4292 4293 bg_ret = NULL; 4294 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4295 if (ret == 0) { 4296 if (bg_ret && bg_ret != block_group) { 4297 btrfs_release_block_group(block_group, delalloc); 4298 block_group = bg_ret; 4299 } 4300 } else if (ret == -EAGAIN) { 4301 goto have_block_group; 4302 } else if (ret > 0) { 4303 goto loop; 4304 } 4305 4306 /* Checks */ 4307 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4308 fs_info->stripesize); 4309 4310 /* move on to the next group */ 4311 if (ffe_ctl.search_start + num_bytes > 4312 block_group->start + block_group->length) { 4313 btrfs_add_free_space_unused(block_group, 4314 ffe_ctl.found_offset, num_bytes); 4315 goto loop; 4316 } 4317 4318 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4319 btrfs_add_free_space_unused(block_group, 4320 ffe_ctl.found_offset, 4321 ffe_ctl.search_start - ffe_ctl.found_offset); 4322 4323 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4324 num_bytes, delalloc); 4325 if (ret == -EAGAIN) { 4326 btrfs_add_free_space_unused(block_group, 4327 ffe_ctl.found_offset, num_bytes); 4328 goto loop; 4329 } 4330 btrfs_inc_block_group_reservations(block_group); 4331 4332 /* we are all good, lets return */ 4333 ins->objectid = ffe_ctl.search_start; 4334 ins->offset = num_bytes; 4335 4336 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4337 num_bytes); 4338 btrfs_release_block_group(block_group, delalloc); 4339 break; 4340 loop: 4341 release_block_group(block_group, &ffe_ctl, delalloc); 4342 cond_resched(); 4343 } 4344 up_read(&space_info->groups_sem); 4345 4346 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4347 if (ret > 0) 4348 goto search; 4349 4350 if (ret == -ENOSPC && !cache_block_group_error) { 4351 /* 4352 * Use ffe_ctl->total_free_space as fallback if we can't find 4353 * any contiguous hole. 4354 */ 4355 if (!ffe_ctl.max_extent_size) 4356 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4357 spin_lock(&space_info->lock); 4358 space_info->max_extent_size = ffe_ctl.max_extent_size; 4359 spin_unlock(&space_info->lock); 4360 ins->offset = ffe_ctl.max_extent_size; 4361 } else if (ret == -ENOSPC) { 4362 ret = cache_block_group_error; 4363 } 4364 return ret; 4365 } 4366 4367 /* 4368 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4369 * hole that is at least as big as @num_bytes. 4370 * 4371 * @root - The root that will contain this extent 4372 * 4373 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4374 * is used for accounting purposes. This value differs 4375 * from @num_bytes only in the case of compressed extents. 4376 * 4377 * @num_bytes - Number of bytes to allocate on-disk. 4378 * 4379 * @min_alloc_size - Indicates the minimum amount of space that the 4380 * allocator should try to satisfy. In some cases 4381 * @num_bytes may be larger than what is required and if 4382 * the filesystem is fragmented then allocation fails. 4383 * However, the presence of @min_alloc_size gives a 4384 * chance to try and satisfy the smaller allocation. 4385 * 4386 * @empty_size - A hint that you plan on doing more COW. This is the 4387 * size in bytes the allocator should try to find free 4388 * next to the block it returns. This is just a hint and 4389 * may be ignored by the allocator. 4390 * 4391 * @hint_byte - Hint to the allocator to start searching above the byte 4392 * address passed. It might be ignored. 4393 * 4394 * @ins - This key is modified to record the found hole. It will 4395 * have the following values: 4396 * ins->objectid == start position 4397 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4398 * ins->offset == the size of the hole. 4399 * 4400 * @is_data - Boolean flag indicating whether an extent is 4401 * allocated for data (true) or metadata (false) 4402 * 4403 * @delalloc - Boolean flag indicating whether this allocation is for 4404 * delalloc or not. If 'true' data_rwsem of block groups 4405 * is going to be acquired. 4406 * 4407 * 4408 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4409 * case -ENOSPC is returned then @ins->offset will contain the size of the 4410 * largest available hole the allocator managed to find. 4411 */ 4412 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4413 u64 num_bytes, u64 min_alloc_size, 4414 u64 empty_size, u64 hint_byte, 4415 struct btrfs_key *ins, int is_data, int delalloc) 4416 { 4417 struct btrfs_fs_info *fs_info = root->fs_info; 4418 bool final_tried = num_bytes == min_alloc_size; 4419 u64 flags; 4420 int ret; 4421 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4422 4423 flags = get_alloc_profile_by_root(root, is_data); 4424 again: 4425 WARN_ON(num_bytes < fs_info->sectorsize); 4426 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4427 hint_byte, ins, flags, delalloc); 4428 if (!ret && !is_data) { 4429 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4430 } else if (ret == -ENOSPC) { 4431 if (!final_tried && ins->offset) { 4432 num_bytes = min(num_bytes >> 1, ins->offset); 4433 num_bytes = round_down(num_bytes, 4434 fs_info->sectorsize); 4435 num_bytes = max(num_bytes, min_alloc_size); 4436 ram_bytes = num_bytes; 4437 if (num_bytes == min_alloc_size) 4438 final_tried = true; 4439 goto again; 4440 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4441 struct btrfs_space_info *sinfo; 4442 4443 sinfo = btrfs_find_space_info(fs_info, flags); 4444 btrfs_err(fs_info, 4445 "allocation failed flags %llu, wanted %llu tree-log %d", 4446 flags, num_bytes, for_treelog); 4447 if (sinfo) 4448 btrfs_dump_space_info(fs_info, sinfo, 4449 num_bytes, 1); 4450 } 4451 } 4452 4453 return ret; 4454 } 4455 4456 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4457 u64 start, u64 len, int delalloc) 4458 { 4459 struct btrfs_block_group *cache; 4460 4461 cache = btrfs_lookup_block_group(fs_info, start); 4462 if (!cache) { 4463 btrfs_err(fs_info, "Unable to find block group for %llu", 4464 start); 4465 return -ENOSPC; 4466 } 4467 4468 btrfs_add_free_space(cache, start, len); 4469 btrfs_free_reserved_bytes(cache, len, delalloc); 4470 trace_btrfs_reserved_extent_free(fs_info, start, len); 4471 4472 btrfs_put_block_group(cache); 4473 return 0; 4474 } 4475 4476 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4477 u64 len) 4478 { 4479 struct btrfs_block_group *cache; 4480 int ret = 0; 4481 4482 cache = btrfs_lookup_block_group(trans->fs_info, start); 4483 if (!cache) { 4484 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4485 start); 4486 return -ENOSPC; 4487 } 4488 4489 ret = pin_down_extent(trans, cache, start, len, 1); 4490 btrfs_put_block_group(cache); 4491 return ret; 4492 } 4493 4494 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4495 u64 parent, u64 root_objectid, 4496 u64 flags, u64 owner, u64 offset, 4497 struct btrfs_key *ins, int ref_mod) 4498 { 4499 struct btrfs_fs_info *fs_info = trans->fs_info; 4500 int ret; 4501 struct btrfs_extent_item *extent_item; 4502 struct btrfs_extent_inline_ref *iref; 4503 struct btrfs_path *path; 4504 struct extent_buffer *leaf; 4505 int type; 4506 u32 size; 4507 4508 if (parent > 0) 4509 type = BTRFS_SHARED_DATA_REF_KEY; 4510 else 4511 type = BTRFS_EXTENT_DATA_REF_KEY; 4512 4513 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4514 4515 path = btrfs_alloc_path(); 4516 if (!path) 4517 return -ENOMEM; 4518 4519 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4520 ins, size); 4521 if (ret) { 4522 btrfs_free_path(path); 4523 return ret; 4524 } 4525 4526 leaf = path->nodes[0]; 4527 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4528 struct btrfs_extent_item); 4529 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4530 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4531 btrfs_set_extent_flags(leaf, extent_item, 4532 flags | BTRFS_EXTENT_FLAG_DATA); 4533 4534 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4535 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4536 if (parent > 0) { 4537 struct btrfs_shared_data_ref *ref; 4538 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4539 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4540 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4541 } else { 4542 struct btrfs_extent_data_ref *ref; 4543 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4544 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4545 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4546 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4547 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4548 } 4549 4550 btrfs_mark_buffer_dirty(path->nodes[0]); 4551 btrfs_free_path(path); 4552 4553 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4554 if (ret) 4555 return ret; 4556 4557 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4558 if (ret) { /* -ENOENT, logic error */ 4559 btrfs_err(fs_info, "update block group failed for %llu %llu", 4560 ins->objectid, ins->offset); 4561 BUG(); 4562 } 4563 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4564 return ret; 4565 } 4566 4567 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4568 struct btrfs_delayed_ref_node *node, 4569 struct btrfs_delayed_extent_op *extent_op) 4570 { 4571 struct btrfs_fs_info *fs_info = trans->fs_info; 4572 int ret; 4573 struct btrfs_extent_item *extent_item; 4574 struct btrfs_key extent_key; 4575 struct btrfs_tree_block_info *block_info; 4576 struct btrfs_extent_inline_ref *iref; 4577 struct btrfs_path *path; 4578 struct extent_buffer *leaf; 4579 struct btrfs_delayed_tree_ref *ref; 4580 u32 size = sizeof(*extent_item) + sizeof(*iref); 4581 u64 num_bytes; 4582 u64 flags = extent_op->flags_to_set; 4583 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4584 4585 ref = btrfs_delayed_node_to_tree_ref(node); 4586 4587 extent_key.objectid = node->bytenr; 4588 if (skinny_metadata) { 4589 extent_key.offset = ref->level; 4590 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4591 num_bytes = fs_info->nodesize; 4592 } else { 4593 extent_key.offset = node->num_bytes; 4594 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4595 size += sizeof(*block_info); 4596 num_bytes = node->num_bytes; 4597 } 4598 4599 path = btrfs_alloc_path(); 4600 if (!path) 4601 return -ENOMEM; 4602 4603 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4604 &extent_key, size); 4605 if (ret) { 4606 btrfs_free_path(path); 4607 return ret; 4608 } 4609 4610 leaf = path->nodes[0]; 4611 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4612 struct btrfs_extent_item); 4613 btrfs_set_extent_refs(leaf, extent_item, 1); 4614 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4615 btrfs_set_extent_flags(leaf, extent_item, 4616 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4617 4618 if (skinny_metadata) { 4619 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4620 } else { 4621 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4622 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4623 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4624 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4625 } 4626 4627 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4628 btrfs_set_extent_inline_ref_type(leaf, iref, 4629 BTRFS_SHARED_BLOCK_REF_KEY); 4630 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4631 } else { 4632 btrfs_set_extent_inline_ref_type(leaf, iref, 4633 BTRFS_TREE_BLOCK_REF_KEY); 4634 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4635 } 4636 4637 btrfs_mark_buffer_dirty(leaf); 4638 btrfs_free_path(path); 4639 4640 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4641 num_bytes); 4642 if (ret) 4643 return ret; 4644 4645 ret = btrfs_update_block_group(trans, extent_key.objectid, 4646 fs_info->nodesize, 1); 4647 if (ret) { /* -ENOENT, logic error */ 4648 btrfs_err(fs_info, "update block group failed for %llu %llu", 4649 extent_key.objectid, extent_key.offset); 4650 BUG(); 4651 } 4652 4653 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4654 fs_info->nodesize); 4655 return ret; 4656 } 4657 4658 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4659 struct btrfs_root *root, u64 owner, 4660 u64 offset, u64 ram_bytes, 4661 struct btrfs_key *ins) 4662 { 4663 struct btrfs_ref generic_ref = { 0 }; 4664 4665 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4666 4667 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4668 ins->objectid, ins->offset, 0); 4669 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4670 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4671 4672 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4673 } 4674 4675 /* 4676 * this is used by the tree logging recovery code. It records that 4677 * an extent has been allocated and makes sure to clear the free 4678 * space cache bits as well 4679 */ 4680 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4681 u64 root_objectid, u64 owner, u64 offset, 4682 struct btrfs_key *ins) 4683 { 4684 struct btrfs_fs_info *fs_info = trans->fs_info; 4685 int ret; 4686 struct btrfs_block_group *block_group; 4687 struct btrfs_space_info *space_info; 4688 4689 /* 4690 * Mixed block groups will exclude before processing the log so we only 4691 * need to do the exclude dance if this fs isn't mixed. 4692 */ 4693 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4694 ret = __exclude_logged_extent(fs_info, ins->objectid, 4695 ins->offset); 4696 if (ret) 4697 return ret; 4698 } 4699 4700 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4701 if (!block_group) 4702 return -EINVAL; 4703 4704 space_info = block_group->space_info; 4705 spin_lock(&space_info->lock); 4706 spin_lock(&block_group->lock); 4707 space_info->bytes_reserved += ins->offset; 4708 block_group->reserved += ins->offset; 4709 spin_unlock(&block_group->lock); 4710 spin_unlock(&space_info->lock); 4711 4712 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4713 offset, ins, 1); 4714 if (ret) 4715 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4716 btrfs_put_block_group(block_group); 4717 return ret; 4718 } 4719 4720 static struct extent_buffer * 4721 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4722 u64 bytenr, int level, u64 owner, 4723 enum btrfs_lock_nesting nest) 4724 { 4725 struct btrfs_fs_info *fs_info = root->fs_info; 4726 struct extent_buffer *buf; 4727 4728 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4729 if (IS_ERR(buf)) 4730 return buf; 4731 4732 /* 4733 * Extra safety check in case the extent tree is corrupted and extent 4734 * allocator chooses to use a tree block which is already used and 4735 * locked. 4736 */ 4737 if (buf->lock_owner == current->pid) { 4738 btrfs_err_rl(fs_info, 4739 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4740 buf->start, btrfs_header_owner(buf), current->pid); 4741 free_extent_buffer(buf); 4742 return ERR_PTR(-EUCLEAN); 4743 } 4744 4745 /* 4746 * This needs to stay, because we could allocate a freed block from an 4747 * old tree into a new tree, so we need to make sure this new block is 4748 * set to the appropriate level and owner. 4749 */ 4750 btrfs_set_buffer_lockdep_class(owner, buf, level); 4751 __btrfs_tree_lock(buf, nest); 4752 btrfs_clean_tree_block(buf); 4753 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4754 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4755 4756 set_extent_buffer_uptodate(buf); 4757 4758 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4759 btrfs_set_header_level(buf, level); 4760 btrfs_set_header_bytenr(buf, buf->start); 4761 btrfs_set_header_generation(buf, trans->transid); 4762 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4763 btrfs_set_header_owner(buf, owner); 4764 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4765 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4766 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4767 buf->log_index = root->log_transid % 2; 4768 /* 4769 * we allow two log transactions at a time, use different 4770 * EXTENT bit to differentiate dirty pages. 4771 */ 4772 if (buf->log_index == 0) 4773 set_extent_dirty(&root->dirty_log_pages, buf->start, 4774 buf->start + buf->len - 1, GFP_NOFS); 4775 else 4776 set_extent_new(&root->dirty_log_pages, buf->start, 4777 buf->start + buf->len - 1); 4778 } else { 4779 buf->log_index = -1; 4780 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4781 buf->start + buf->len - 1, GFP_NOFS); 4782 } 4783 trans->dirty = true; 4784 /* this returns a buffer locked for blocking */ 4785 return buf; 4786 } 4787 4788 /* 4789 * finds a free extent and does all the dirty work required for allocation 4790 * returns the tree buffer or an ERR_PTR on error. 4791 */ 4792 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4793 struct btrfs_root *root, 4794 u64 parent, u64 root_objectid, 4795 const struct btrfs_disk_key *key, 4796 int level, u64 hint, 4797 u64 empty_size, 4798 enum btrfs_lock_nesting nest) 4799 { 4800 struct btrfs_fs_info *fs_info = root->fs_info; 4801 struct btrfs_key ins; 4802 struct btrfs_block_rsv *block_rsv; 4803 struct extent_buffer *buf; 4804 struct btrfs_delayed_extent_op *extent_op; 4805 struct btrfs_ref generic_ref = { 0 }; 4806 u64 flags = 0; 4807 int ret; 4808 u32 blocksize = fs_info->nodesize; 4809 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4810 4811 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4812 if (btrfs_is_testing(fs_info)) { 4813 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4814 level, root_objectid, nest); 4815 if (!IS_ERR(buf)) 4816 root->alloc_bytenr += blocksize; 4817 return buf; 4818 } 4819 #endif 4820 4821 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4822 if (IS_ERR(block_rsv)) 4823 return ERR_CAST(block_rsv); 4824 4825 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4826 empty_size, hint, &ins, 0, 0); 4827 if (ret) 4828 goto out_unuse; 4829 4830 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4831 root_objectid, nest); 4832 if (IS_ERR(buf)) { 4833 ret = PTR_ERR(buf); 4834 goto out_free_reserved; 4835 } 4836 4837 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4838 if (parent == 0) 4839 parent = ins.objectid; 4840 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4841 } else 4842 BUG_ON(parent > 0); 4843 4844 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4845 extent_op = btrfs_alloc_delayed_extent_op(); 4846 if (!extent_op) { 4847 ret = -ENOMEM; 4848 goto out_free_buf; 4849 } 4850 if (key) 4851 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4852 else 4853 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4854 extent_op->flags_to_set = flags; 4855 extent_op->update_key = skinny_metadata ? false : true; 4856 extent_op->update_flags = true; 4857 extent_op->is_data = false; 4858 extent_op->level = level; 4859 4860 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4861 ins.objectid, ins.offset, parent); 4862 generic_ref.real_root = root->root_key.objectid; 4863 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4864 btrfs_ref_tree_mod(fs_info, &generic_ref); 4865 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4866 if (ret) 4867 goto out_free_delayed; 4868 } 4869 return buf; 4870 4871 out_free_delayed: 4872 btrfs_free_delayed_extent_op(extent_op); 4873 out_free_buf: 4874 free_extent_buffer(buf); 4875 out_free_reserved: 4876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4877 out_unuse: 4878 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4879 return ERR_PTR(ret); 4880 } 4881 4882 struct walk_control { 4883 u64 refs[BTRFS_MAX_LEVEL]; 4884 u64 flags[BTRFS_MAX_LEVEL]; 4885 struct btrfs_key update_progress; 4886 struct btrfs_key drop_progress; 4887 int drop_level; 4888 int stage; 4889 int level; 4890 int shared_level; 4891 int update_ref; 4892 int keep_locks; 4893 int reada_slot; 4894 int reada_count; 4895 int restarted; 4896 }; 4897 4898 #define DROP_REFERENCE 1 4899 #define UPDATE_BACKREF 2 4900 4901 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4902 struct btrfs_root *root, 4903 struct walk_control *wc, 4904 struct btrfs_path *path) 4905 { 4906 struct btrfs_fs_info *fs_info = root->fs_info; 4907 u64 bytenr; 4908 u64 generation; 4909 u64 refs; 4910 u64 flags; 4911 u32 nritems; 4912 struct btrfs_key key; 4913 struct extent_buffer *eb; 4914 int ret; 4915 int slot; 4916 int nread = 0; 4917 4918 if (path->slots[wc->level] < wc->reada_slot) { 4919 wc->reada_count = wc->reada_count * 2 / 3; 4920 wc->reada_count = max(wc->reada_count, 2); 4921 } else { 4922 wc->reada_count = wc->reada_count * 3 / 2; 4923 wc->reada_count = min_t(int, wc->reada_count, 4924 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4925 } 4926 4927 eb = path->nodes[wc->level]; 4928 nritems = btrfs_header_nritems(eb); 4929 4930 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4931 if (nread >= wc->reada_count) 4932 break; 4933 4934 cond_resched(); 4935 bytenr = btrfs_node_blockptr(eb, slot); 4936 generation = btrfs_node_ptr_generation(eb, slot); 4937 4938 if (slot == path->slots[wc->level]) 4939 goto reada; 4940 4941 if (wc->stage == UPDATE_BACKREF && 4942 generation <= root->root_key.offset) 4943 continue; 4944 4945 /* We don't lock the tree block, it's OK to be racy here */ 4946 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4947 wc->level - 1, 1, &refs, 4948 &flags); 4949 /* We don't care about errors in readahead. */ 4950 if (ret < 0) 4951 continue; 4952 BUG_ON(refs == 0); 4953 4954 if (wc->stage == DROP_REFERENCE) { 4955 if (refs == 1) 4956 goto reada; 4957 4958 if (wc->level == 1 && 4959 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4960 continue; 4961 if (!wc->update_ref || 4962 generation <= root->root_key.offset) 4963 continue; 4964 btrfs_node_key_to_cpu(eb, &key, slot); 4965 ret = btrfs_comp_cpu_keys(&key, 4966 &wc->update_progress); 4967 if (ret < 0) 4968 continue; 4969 } else { 4970 if (wc->level == 1 && 4971 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4972 continue; 4973 } 4974 reada: 4975 btrfs_readahead_node_child(eb, slot); 4976 nread++; 4977 } 4978 wc->reada_slot = slot; 4979 } 4980 4981 /* 4982 * helper to process tree block while walking down the tree. 4983 * 4984 * when wc->stage == UPDATE_BACKREF, this function updates 4985 * back refs for pointers in the block. 4986 * 4987 * NOTE: return value 1 means we should stop walking down. 4988 */ 4989 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4990 struct btrfs_root *root, 4991 struct btrfs_path *path, 4992 struct walk_control *wc, int lookup_info) 4993 { 4994 struct btrfs_fs_info *fs_info = root->fs_info; 4995 int level = wc->level; 4996 struct extent_buffer *eb = path->nodes[level]; 4997 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4998 int ret; 4999 5000 if (wc->stage == UPDATE_BACKREF && 5001 btrfs_header_owner(eb) != root->root_key.objectid) 5002 return 1; 5003 5004 /* 5005 * when reference count of tree block is 1, it won't increase 5006 * again. once full backref flag is set, we never clear it. 5007 */ 5008 if (lookup_info && 5009 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5010 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5011 BUG_ON(!path->locks[level]); 5012 ret = btrfs_lookup_extent_info(trans, fs_info, 5013 eb->start, level, 1, 5014 &wc->refs[level], 5015 &wc->flags[level]); 5016 BUG_ON(ret == -ENOMEM); 5017 if (ret) 5018 return ret; 5019 BUG_ON(wc->refs[level] == 0); 5020 } 5021 5022 if (wc->stage == DROP_REFERENCE) { 5023 if (wc->refs[level] > 1) 5024 return 1; 5025 5026 if (path->locks[level] && !wc->keep_locks) { 5027 btrfs_tree_unlock_rw(eb, path->locks[level]); 5028 path->locks[level] = 0; 5029 } 5030 return 0; 5031 } 5032 5033 /* wc->stage == UPDATE_BACKREF */ 5034 if (!(wc->flags[level] & flag)) { 5035 BUG_ON(!path->locks[level]); 5036 ret = btrfs_inc_ref(trans, root, eb, 1); 5037 BUG_ON(ret); /* -ENOMEM */ 5038 ret = btrfs_dec_ref(trans, root, eb, 0); 5039 BUG_ON(ret); /* -ENOMEM */ 5040 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5041 btrfs_header_level(eb), 0); 5042 BUG_ON(ret); /* -ENOMEM */ 5043 wc->flags[level] |= flag; 5044 } 5045 5046 /* 5047 * the block is shared by multiple trees, so it's not good to 5048 * keep the tree lock 5049 */ 5050 if (path->locks[level] && level > 0) { 5051 btrfs_tree_unlock_rw(eb, path->locks[level]); 5052 path->locks[level] = 0; 5053 } 5054 return 0; 5055 } 5056 5057 /* 5058 * This is used to verify a ref exists for this root to deal with a bug where we 5059 * would have a drop_progress key that hadn't been updated properly. 5060 */ 5061 static int check_ref_exists(struct btrfs_trans_handle *trans, 5062 struct btrfs_root *root, u64 bytenr, u64 parent, 5063 int level) 5064 { 5065 struct btrfs_path *path; 5066 struct btrfs_extent_inline_ref *iref; 5067 int ret; 5068 5069 path = btrfs_alloc_path(); 5070 if (!path) 5071 return -ENOMEM; 5072 5073 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5074 root->fs_info->nodesize, parent, 5075 root->root_key.objectid, level, 0); 5076 btrfs_free_path(path); 5077 if (ret == -ENOENT) 5078 return 0; 5079 if (ret < 0) 5080 return ret; 5081 return 1; 5082 } 5083 5084 /* 5085 * helper to process tree block pointer. 5086 * 5087 * when wc->stage == DROP_REFERENCE, this function checks 5088 * reference count of the block pointed to. if the block 5089 * is shared and we need update back refs for the subtree 5090 * rooted at the block, this function changes wc->stage to 5091 * UPDATE_BACKREF. if the block is shared and there is no 5092 * need to update back, this function drops the reference 5093 * to the block. 5094 * 5095 * NOTE: return value 1 means we should stop walking down. 5096 */ 5097 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5098 struct btrfs_root *root, 5099 struct btrfs_path *path, 5100 struct walk_control *wc, int *lookup_info) 5101 { 5102 struct btrfs_fs_info *fs_info = root->fs_info; 5103 u64 bytenr; 5104 u64 generation; 5105 u64 parent; 5106 struct btrfs_key key; 5107 struct btrfs_key first_key; 5108 struct btrfs_ref ref = { 0 }; 5109 struct extent_buffer *next; 5110 int level = wc->level; 5111 int reada = 0; 5112 int ret = 0; 5113 bool need_account = false; 5114 5115 generation = btrfs_node_ptr_generation(path->nodes[level], 5116 path->slots[level]); 5117 /* 5118 * if the lower level block was created before the snapshot 5119 * was created, we know there is no need to update back refs 5120 * for the subtree 5121 */ 5122 if (wc->stage == UPDATE_BACKREF && 5123 generation <= root->root_key.offset) { 5124 *lookup_info = 1; 5125 return 1; 5126 } 5127 5128 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5129 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5130 path->slots[level]); 5131 5132 next = find_extent_buffer(fs_info, bytenr); 5133 if (!next) { 5134 next = btrfs_find_create_tree_block(fs_info, bytenr, 5135 root->root_key.objectid, level - 1); 5136 if (IS_ERR(next)) 5137 return PTR_ERR(next); 5138 reada = 1; 5139 } 5140 btrfs_tree_lock(next); 5141 5142 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5143 &wc->refs[level - 1], 5144 &wc->flags[level - 1]); 5145 if (ret < 0) 5146 goto out_unlock; 5147 5148 if (unlikely(wc->refs[level - 1] == 0)) { 5149 btrfs_err(fs_info, "Missing references."); 5150 ret = -EIO; 5151 goto out_unlock; 5152 } 5153 *lookup_info = 0; 5154 5155 if (wc->stage == DROP_REFERENCE) { 5156 if (wc->refs[level - 1] > 1) { 5157 need_account = true; 5158 if (level == 1 && 5159 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5160 goto skip; 5161 5162 if (!wc->update_ref || 5163 generation <= root->root_key.offset) 5164 goto skip; 5165 5166 btrfs_node_key_to_cpu(path->nodes[level], &key, 5167 path->slots[level]); 5168 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5169 if (ret < 0) 5170 goto skip; 5171 5172 wc->stage = UPDATE_BACKREF; 5173 wc->shared_level = level - 1; 5174 } 5175 } else { 5176 if (level == 1 && 5177 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5178 goto skip; 5179 } 5180 5181 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5182 btrfs_tree_unlock(next); 5183 free_extent_buffer(next); 5184 next = NULL; 5185 *lookup_info = 1; 5186 } 5187 5188 if (!next) { 5189 if (reada && level == 1) 5190 reada_walk_down(trans, root, wc, path); 5191 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5192 generation, level - 1, &first_key); 5193 if (IS_ERR(next)) { 5194 return PTR_ERR(next); 5195 } else if (!extent_buffer_uptodate(next)) { 5196 free_extent_buffer(next); 5197 return -EIO; 5198 } 5199 btrfs_tree_lock(next); 5200 } 5201 5202 level--; 5203 ASSERT(level == btrfs_header_level(next)); 5204 if (level != btrfs_header_level(next)) { 5205 btrfs_err(root->fs_info, "mismatched level"); 5206 ret = -EIO; 5207 goto out_unlock; 5208 } 5209 path->nodes[level] = next; 5210 path->slots[level] = 0; 5211 path->locks[level] = BTRFS_WRITE_LOCK; 5212 wc->level = level; 5213 if (wc->level == 1) 5214 wc->reada_slot = 0; 5215 return 0; 5216 skip: 5217 wc->refs[level - 1] = 0; 5218 wc->flags[level - 1] = 0; 5219 if (wc->stage == DROP_REFERENCE) { 5220 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5221 parent = path->nodes[level]->start; 5222 } else { 5223 ASSERT(root->root_key.objectid == 5224 btrfs_header_owner(path->nodes[level])); 5225 if (root->root_key.objectid != 5226 btrfs_header_owner(path->nodes[level])) { 5227 btrfs_err(root->fs_info, 5228 "mismatched block owner"); 5229 ret = -EIO; 5230 goto out_unlock; 5231 } 5232 parent = 0; 5233 } 5234 5235 /* 5236 * If we had a drop_progress we need to verify the refs are set 5237 * as expected. If we find our ref then we know that from here 5238 * on out everything should be correct, and we can clear the 5239 * ->restarted flag. 5240 */ 5241 if (wc->restarted) { 5242 ret = check_ref_exists(trans, root, bytenr, parent, 5243 level - 1); 5244 if (ret < 0) 5245 goto out_unlock; 5246 if (ret == 0) 5247 goto no_delete; 5248 ret = 0; 5249 wc->restarted = 0; 5250 } 5251 5252 /* 5253 * Reloc tree doesn't contribute to qgroup numbers, and we have 5254 * already accounted them at merge time (replace_path), 5255 * thus we could skip expensive subtree trace here. 5256 */ 5257 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5258 need_account) { 5259 ret = btrfs_qgroup_trace_subtree(trans, next, 5260 generation, level - 1); 5261 if (ret) { 5262 btrfs_err_rl(fs_info, 5263 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5264 ret); 5265 } 5266 } 5267 5268 /* 5269 * We need to update the next key in our walk control so we can 5270 * update the drop_progress key accordingly. We don't care if 5271 * find_next_key doesn't find a key because that means we're at 5272 * the end and are going to clean up now. 5273 */ 5274 wc->drop_level = level; 5275 find_next_key(path, level, &wc->drop_progress); 5276 5277 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5278 fs_info->nodesize, parent); 5279 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5280 ret = btrfs_free_extent(trans, &ref); 5281 if (ret) 5282 goto out_unlock; 5283 } 5284 no_delete: 5285 *lookup_info = 1; 5286 ret = 1; 5287 5288 out_unlock: 5289 btrfs_tree_unlock(next); 5290 free_extent_buffer(next); 5291 5292 return ret; 5293 } 5294 5295 /* 5296 * helper to process tree block while walking up the tree. 5297 * 5298 * when wc->stage == DROP_REFERENCE, this function drops 5299 * reference count on the block. 5300 * 5301 * when wc->stage == UPDATE_BACKREF, this function changes 5302 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5303 * to UPDATE_BACKREF previously while processing the block. 5304 * 5305 * NOTE: return value 1 means we should stop walking up. 5306 */ 5307 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5308 struct btrfs_root *root, 5309 struct btrfs_path *path, 5310 struct walk_control *wc) 5311 { 5312 struct btrfs_fs_info *fs_info = root->fs_info; 5313 int ret; 5314 int level = wc->level; 5315 struct extent_buffer *eb = path->nodes[level]; 5316 u64 parent = 0; 5317 5318 if (wc->stage == UPDATE_BACKREF) { 5319 BUG_ON(wc->shared_level < level); 5320 if (level < wc->shared_level) 5321 goto out; 5322 5323 ret = find_next_key(path, level + 1, &wc->update_progress); 5324 if (ret > 0) 5325 wc->update_ref = 0; 5326 5327 wc->stage = DROP_REFERENCE; 5328 wc->shared_level = -1; 5329 path->slots[level] = 0; 5330 5331 /* 5332 * check reference count again if the block isn't locked. 5333 * we should start walking down the tree again if reference 5334 * count is one. 5335 */ 5336 if (!path->locks[level]) { 5337 BUG_ON(level == 0); 5338 btrfs_tree_lock(eb); 5339 path->locks[level] = BTRFS_WRITE_LOCK; 5340 5341 ret = btrfs_lookup_extent_info(trans, fs_info, 5342 eb->start, level, 1, 5343 &wc->refs[level], 5344 &wc->flags[level]); 5345 if (ret < 0) { 5346 btrfs_tree_unlock_rw(eb, path->locks[level]); 5347 path->locks[level] = 0; 5348 return ret; 5349 } 5350 BUG_ON(wc->refs[level] == 0); 5351 if (wc->refs[level] == 1) { 5352 btrfs_tree_unlock_rw(eb, path->locks[level]); 5353 path->locks[level] = 0; 5354 return 1; 5355 } 5356 } 5357 } 5358 5359 /* wc->stage == DROP_REFERENCE */ 5360 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5361 5362 if (wc->refs[level] == 1) { 5363 if (level == 0) { 5364 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5365 ret = btrfs_dec_ref(trans, root, eb, 1); 5366 else 5367 ret = btrfs_dec_ref(trans, root, eb, 0); 5368 BUG_ON(ret); /* -ENOMEM */ 5369 if (is_fstree(root->root_key.objectid)) { 5370 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5371 if (ret) { 5372 btrfs_err_rl(fs_info, 5373 "error %d accounting leaf items, quota is out of sync, rescan required", 5374 ret); 5375 } 5376 } 5377 } 5378 /* make block locked assertion in btrfs_clean_tree_block happy */ 5379 if (!path->locks[level] && 5380 btrfs_header_generation(eb) == trans->transid) { 5381 btrfs_tree_lock(eb); 5382 path->locks[level] = BTRFS_WRITE_LOCK; 5383 } 5384 btrfs_clean_tree_block(eb); 5385 } 5386 5387 if (eb == root->node) { 5388 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5389 parent = eb->start; 5390 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5391 goto owner_mismatch; 5392 } else { 5393 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5394 parent = path->nodes[level + 1]->start; 5395 else if (root->root_key.objectid != 5396 btrfs_header_owner(path->nodes[level + 1])) 5397 goto owner_mismatch; 5398 } 5399 5400 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5401 out: 5402 wc->refs[level] = 0; 5403 wc->flags[level] = 0; 5404 return 0; 5405 5406 owner_mismatch: 5407 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5408 btrfs_header_owner(eb), root->root_key.objectid); 5409 return -EUCLEAN; 5410 } 5411 5412 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5413 struct btrfs_root *root, 5414 struct btrfs_path *path, 5415 struct walk_control *wc) 5416 { 5417 int level = wc->level; 5418 int lookup_info = 1; 5419 int ret; 5420 5421 while (level >= 0) { 5422 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5423 if (ret > 0) 5424 break; 5425 5426 if (level == 0) 5427 break; 5428 5429 if (path->slots[level] >= 5430 btrfs_header_nritems(path->nodes[level])) 5431 break; 5432 5433 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5434 if (ret > 0) { 5435 path->slots[level]++; 5436 continue; 5437 } else if (ret < 0) 5438 return ret; 5439 level = wc->level; 5440 } 5441 return 0; 5442 } 5443 5444 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5445 struct btrfs_root *root, 5446 struct btrfs_path *path, 5447 struct walk_control *wc, int max_level) 5448 { 5449 int level = wc->level; 5450 int ret; 5451 5452 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5453 while (level < max_level && path->nodes[level]) { 5454 wc->level = level; 5455 if (path->slots[level] + 1 < 5456 btrfs_header_nritems(path->nodes[level])) { 5457 path->slots[level]++; 5458 return 0; 5459 } else { 5460 ret = walk_up_proc(trans, root, path, wc); 5461 if (ret > 0) 5462 return 0; 5463 if (ret < 0) 5464 return ret; 5465 5466 if (path->locks[level]) { 5467 btrfs_tree_unlock_rw(path->nodes[level], 5468 path->locks[level]); 5469 path->locks[level] = 0; 5470 } 5471 free_extent_buffer(path->nodes[level]); 5472 path->nodes[level] = NULL; 5473 level++; 5474 } 5475 } 5476 return 1; 5477 } 5478 5479 /* 5480 * drop a subvolume tree. 5481 * 5482 * this function traverses the tree freeing any blocks that only 5483 * referenced by the tree. 5484 * 5485 * when a shared tree block is found. this function decreases its 5486 * reference count by one. if update_ref is true, this function 5487 * also make sure backrefs for the shared block and all lower level 5488 * blocks are properly updated. 5489 * 5490 * If called with for_reloc == 0, may exit early with -EAGAIN 5491 */ 5492 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5493 { 5494 struct btrfs_fs_info *fs_info = root->fs_info; 5495 struct btrfs_path *path; 5496 struct btrfs_trans_handle *trans; 5497 struct btrfs_root *tree_root = fs_info->tree_root; 5498 struct btrfs_root_item *root_item = &root->root_item; 5499 struct walk_control *wc; 5500 struct btrfs_key key; 5501 int err = 0; 5502 int ret; 5503 int level; 5504 bool root_dropped = false; 5505 5506 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5507 5508 path = btrfs_alloc_path(); 5509 if (!path) { 5510 err = -ENOMEM; 5511 goto out; 5512 } 5513 5514 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5515 if (!wc) { 5516 btrfs_free_path(path); 5517 err = -ENOMEM; 5518 goto out; 5519 } 5520 5521 /* 5522 * Use join to avoid potential EINTR from transaction start. See 5523 * wait_reserve_ticket and the whole reservation callchain. 5524 */ 5525 if (for_reloc) 5526 trans = btrfs_join_transaction(tree_root); 5527 else 5528 trans = btrfs_start_transaction(tree_root, 0); 5529 if (IS_ERR(trans)) { 5530 err = PTR_ERR(trans); 5531 goto out_free; 5532 } 5533 5534 err = btrfs_run_delayed_items(trans); 5535 if (err) 5536 goto out_end_trans; 5537 5538 /* 5539 * This will help us catch people modifying the fs tree while we're 5540 * dropping it. It is unsafe to mess with the fs tree while it's being 5541 * dropped as we unlock the root node and parent nodes as we walk down 5542 * the tree, assuming nothing will change. If something does change 5543 * then we'll have stale information and drop references to blocks we've 5544 * already dropped. 5545 */ 5546 set_bit(BTRFS_ROOT_DELETING, &root->state); 5547 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5548 level = btrfs_header_level(root->node); 5549 path->nodes[level] = btrfs_lock_root_node(root); 5550 path->slots[level] = 0; 5551 path->locks[level] = BTRFS_WRITE_LOCK; 5552 memset(&wc->update_progress, 0, 5553 sizeof(wc->update_progress)); 5554 } else { 5555 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5556 memcpy(&wc->update_progress, &key, 5557 sizeof(wc->update_progress)); 5558 5559 level = btrfs_root_drop_level(root_item); 5560 BUG_ON(level == 0); 5561 path->lowest_level = level; 5562 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5563 path->lowest_level = 0; 5564 if (ret < 0) { 5565 err = ret; 5566 goto out_end_trans; 5567 } 5568 WARN_ON(ret > 0); 5569 5570 /* 5571 * unlock our path, this is safe because only this 5572 * function is allowed to delete this snapshot 5573 */ 5574 btrfs_unlock_up_safe(path, 0); 5575 5576 level = btrfs_header_level(root->node); 5577 while (1) { 5578 btrfs_tree_lock(path->nodes[level]); 5579 path->locks[level] = BTRFS_WRITE_LOCK; 5580 5581 ret = btrfs_lookup_extent_info(trans, fs_info, 5582 path->nodes[level]->start, 5583 level, 1, &wc->refs[level], 5584 &wc->flags[level]); 5585 if (ret < 0) { 5586 err = ret; 5587 goto out_end_trans; 5588 } 5589 BUG_ON(wc->refs[level] == 0); 5590 5591 if (level == btrfs_root_drop_level(root_item)) 5592 break; 5593 5594 btrfs_tree_unlock(path->nodes[level]); 5595 path->locks[level] = 0; 5596 WARN_ON(wc->refs[level] != 1); 5597 level--; 5598 } 5599 } 5600 5601 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5602 wc->level = level; 5603 wc->shared_level = -1; 5604 wc->stage = DROP_REFERENCE; 5605 wc->update_ref = update_ref; 5606 wc->keep_locks = 0; 5607 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5608 5609 while (1) { 5610 5611 ret = walk_down_tree(trans, root, path, wc); 5612 if (ret < 0) { 5613 err = ret; 5614 break; 5615 } 5616 5617 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5618 if (ret < 0) { 5619 err = ret; 5620 break; 5621 } 5622 5623 if (ret > 0) { 5624 BUG_ON(wc->stage != DROP_REFERENCE); 5625 break; 5626 } 5627 5628 if (wc->stage == DROP_REFERENCE) { 5629 wc->drop_level = wc->level; 5630 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5631 &wc->drop_progress, 5632 path->slots[wc->drop_level]); 5633 } 5634 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5635 &wc->drop_progress); 5636 btrfs_set_root_drop_level(root_item, wc->drop_level); 5637 5638 BUG_ON(wc->level == 0); 5639 if (btrfs_should_end_transaction(trans) || 5640 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5641 ret = btrfs_update_root(trans, tree_root, 5642 &root->root_key, 5643 root_item); 5644 if (ret) { 5645 btrfs_abort_transaction(trans, ret); 5646 err = ret; 5647 goto out_end_trans; 5648 } 5649 5650 btrfs_end_transaction_throttle(trans); 5651 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5652 btrfs_debug(fs_info, 5653 "drop snapshot early exit"); 5654 err = -EAGAIN; 5655 goto out_free; 5656 } 5657 5658 /* 5659 * Use join to avoid potential EINTR from transaction 5660 * start. See wait_reserve_ticket and the whole 5661 * reservation callchain. 5662 */ 5663 if (for_reloc) 5664 trans = btrfs_join_transaction(tree_root); 5665 else 5666 trans = btrfs_start_transaction(tree_root, 0); 5667 if (IS_ERR(trans)) { 5668 err = PTR_ERR(trans); 5669 goto out_free; 5670 } 5671 } 5672 } 5673 btrfs_release_path(path); 5674 if (err) 5675 goto out_end_trans; 5676 5677 ret = btrfs_del_root(trans, &root->root_key); 5678 if (ret) { 5679 btrfs_abort_transaction(trans, ret); 5680 err = ret; 5681 goto out_end_trans; 5682 } 5683 5684 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5685 ret = btrfs_find_root(tree_root, &root->root_key, path, 5686 NULL, NULL); 5687 if (ret < 0) { 5688 btrfs_abort_transaction(trans, ret); 5689 err = ret; 5690 goto out_end_trans; 5691 } else if (ret > 0) { 5692 /* if we fail to delete the orphan item this time 5693 * around, it'll get picked up the next time. 5694 * 5695 * The most common failure here is just -ENOENT. 5696 */ 5697 btrfs_del_orphan_item(trans, tree_root, 5698 root->root_key.objectid); 5699 } 5700 } 5701 5702 /* 5703 * This subvolume is going to be completely dropped, and won't be 5704 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5705 * commit transaction time. So free it here manually. 5706 */ 5707 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5708 btrfs_qgroup_free_meta_all_pertrans(root); 5709 5710 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5711 btrfs_add_dropped_root(trans, root); 5712 else 5713 btrfs_put_root(root); 5714 root_dropped = true; 5715 out_end_trans: 5716 btrfs_end_transaction_throttle(trans); 5717 out_free: 5718 kfree(wc); 5719 btrfs_free_path(path); 5720 out: 5721 /* 5722 * So if we need to stop dropping the snapshot for whatever reason we 5723 * need to make sure to add it back to the dead root list so that we 5724 * keep trying to do the work later. This also cleans up roots if we 5725 * don't have it in the radix (like when we recover after a power fail 5726 * or unmount) so we don't leak memory. 5727 */ 5728 if (!for_reloc && !root_dropped) 5729 btrfs_add_dead_root(root); 5730 return err; 5731 } 5732 5733 /* 5734 * drop subtree rooted at tree block 'node'. 5735 * 5736 * NOTE: this function will unlock and release tree block 'node' 5737 * only used by relocation code 5738 */ 5739 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5740 struct btrfs_root *root, 5741 struct extent_buffer *node, 5742 struct extent_buffer *parent) 5743 { 5744 struct btrfs_fs_info *fs_info = root->fs_info; 5745 struct btrfs_path *path; 5746 struct walk_control *wc; 5747 int level; 5748 int parent_level; 5749 int ret = 0; 5750 int wret; 5751 5752 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5753 5754 path = btrfs_alloc_path(); 5755 if (!path) 5756 return -ENOMEM; 5757 5758 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5759 if (!wc) { 5760 btrfs_free_path(path); 5761 return -ENOMEM; 5762 } 5763 5764 btrfs_assert_tree_locked(parent); 5765 parent_level = btrfs_header_level(parent); 5766 atomic_inc(&parent->refs); 5767 path->nodes[parent_level] = parent; 5768 path->slots[parent_level] = btrfs_header_nritems(parent); 5769 5770 btrfs_assert_tree_locked(node); 5771 level = btrfs_header_level(node); 5772 path->nodes[level] = node; 5773 path->slots[level] = 0; 5774 path->locks[level] = BTRFS_WRITE_LOCK; 5775 5776 wc->refs[parent_level] = 1; 5777 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5778 wc->level = level; 5779 wc->shared_level = -1; 5780 wc->stage = DROP_REFERENCE; 5781 wc->update_ref = 0; 5782 wc->keep_locks = 1; 5783 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5784 5785 while (1) { 5786 wret = walk_down_tree(trans, root, path, wc); 5787 if (wret < 0) { 5788 ret = wret; 5789 break; 5790 } 5791 5792 wret = walk_up_tree(trans, root, path, wc, parent_level); 5793 if (wret < 0) 5794 ret = wret; 5795 if (wret != 0) 5796 break; 5797 } 5798 5799 kfree(wc); 5800 btrfs_free_path(path); 5801 return ret; 5802 } 5803 5804 /* 5805 * helper to account the unused space of all the readonly block group in the 5806 * space_info. takes mirrors into account. 5807 */ 5808 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5809 { 5810 struct btrfs_block_group *block_group; 5811 u64 free_bytes = 0; 5812 int factor; 5813 5814 /* It's df, we don't care if it's racy */ 5815 if (list_empty(&sinfo->ro_bgs)) 5816 return 0; 5817 5818 spin_lock(&sinfo->lock); 5819 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5820 spin_lock(&block_group->lock); 5821 5822 if (!block_group->ro) { 5823 spin_unlock(&block_group->lock); 5824 continue; 5825 } 5826 5827 factor = btrfs_bg_type_to_factor(block_group->flags); 5828 free_bytes += (block_group->length - 5829 block_group->used) * factor; 5830 5831 spin_unlock(&block_group->lock); 5832 } 5833 spin_unlock(&sinfo->lock); 5834 5835 return free_bytes; 5836 } 5837 5838 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5839 u64 start, u64 end) 5840 { 5841 return unpin_extent_range(fs_info, start, end, false); 5842 } 5843 5844 /* 5845 * It used to be that old block groups would be left around forever. 5846 * Iterating over them would be enough to trim unused space. Since we 5847 * now automatically remove them, we also need to iterate over unallocated 5848 * space. 5849 * 5850 * We don't want a transaction for this since the discard may take a 5851 * substantial amount of time. We don't require that a transaction be 5852 * running, but we do need to take a running transaction into account 5853 * to ensure that we're not discarding chunks that were released or 5854 * allocated in the current transaction. 5855 * 5856 * Holding the chunks lock will prevent other threads from allocating 5857 * or releasing chunks, but it won't prevent a running transaction 5858 * from committing and releasing the memory that the pending chunks 5859 * list head uses. For that, we need to take a reference to the 5860 * transaction and hold the commit root sem. We only need to hold 5861 * it while performing the free space search since we have already 5862 * held back allocations. 5863 */ 5864 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5865 { 5866 u64 start = SZ_1M, len = 0, end = 0; 5867 int ret; 5868 5869 *trimmed = 0; 5870 5871 /* Discard not supported = nothing to do. */ 5872 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5873 return 0; 5874 5875 /* Not writable = nothing to do. */ 5876 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5877 return 0; 5878 5879 /* No free space = nothing to do. */ 5880 if (device->total_bytes <= device->bytes_used) 5881 return 0; 5882 5883 ret = 0; 5884 5885 while (1) { 5886 struct btrfs_fs_info *fs_info = device->fs_info; 5887 u64 bytes; 5888 5889 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5890 if (ret) 5891 break; 5892 5893 find_first_clear_extent_bit(&device->alloc_state, start, 5894 &start, &end, 5895 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5896 5897 /* Check if there are any CHUNK_* bits left */ 5898 if (start > device->total_bytes) { 5899 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5900 btrfs_warn_in_rcu(fs_info, 5901 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5902 start, end - start + 1, 5903 rcu_str_deref(device->name), 5904 device->total_bytes); 5905 mutex_unlock(&fs_info->chunk_mutex); 5906 ret = 0; 5907 break; 5908 } 5909 5910 /* Ensure we skip the reserved area in the first 1M */ 5911 start = max_t(u64, start, SZ_1M); 5912 5913 /* 5914 * If find_first_clear_extent_bit find a range that spans the 5915 * end of the device it will set end to -1, in this case it's up 5916 * to the caller to trim the value to the size of the device. 5917 */ 5918 end = min(end, device->total_bytes - 1); 5919 5920 len = end - start + 1; 5921 5922 /* We didn't find any extents */ 5923 if (!len) { 5924 mutex_unlock(&fs_info->chunk_mutex); 5925 ret = 0; 5926 break; 5927 } 5928 5929 ret = btrfs_issue_discard(device->bdev, start, len, 5930 &bytes); 5931 if (!ret) 5932 set_extent_bits(&device->alloc_state, start, 5933 start + bytes - 1, 5934 CHUNK_TRIMMED); 5935 mutex_unlock(&fs_info->chunk_mutex); 5936 5937 if (ret) 5938 break; 5939 5940 start += len; 5941 *trimmed += bytes; 5942 5943 if (fatal_signal_pending(current)) { 5944 ret = -ERESTARTSYS; 5945 break; 5946 } 5947 5948 cond_resched(); 5949 } 5950 5951 return ret; 5952 } 5953 5954 /* 5955 * Trim the whole filesystem by: 5956 * 1) trimming the free space in each block group 5957 * 2) trimming the unallocated space on each device 5958 * 5959 * This will also continue trimming even if a block group or device encounters 5960 * an error. The return value will be the last error, or 0 if nothing bad 5961 * happens. 5962 */ 5963 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5964 { 5965 struct btrfs_block_group *cache = NULL; 5966 struct btrfs_device *device; 5967 struct list_head *devices; 5968 u64 group_trimmed; 5969 u64 range_end = U64_MAX; 5970 u64 start; 5971 u64 end; 5972 u64 trimmed = 0; 5973 u64 bg_failed = 0; 5974 u64 dev_failed = 0; 5975 int bg_ret = 0; 5976 int dev_ret = 0; 5977 int ret = 0; 5978 5979 /* 5980 * Check range overflow if range->len is set. 5981 * The default range->len is U64_MAX. 5982 */ 5983 if (range->len != U64_MAX && 5984 check_add_overflow(range->start, range->len, &range_end)) 5985 return -EINVAL; 5986 5987 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5988 for (; cache; cache = btrfs_next_block_group(cache)) { 5989 if (cache->start >= range_end) { 5990 btrfs_put_block_group(cache); 5991 break; 5992 } 5993 5994 start = max(range->start, cache->start); 5995 end = min(range_end, cache->start + cache->length); 5996 5997 if (end - start >= range->minlen) { 5998 if (!btrfs_block_group_done(cache)) { 5999 ret = btrfs_cache_block_group(cache, 0); 6000 if (ret) { 6001 bg_failed++; 6002 bg_ret = ret; 6003 continue; 6004 } 6005 ret = btrfs_wait_block_group_cache_done(cache); 6006 if (ret) { 6007 bg_failed++; 6008 bg_ret = ret; 6009 continue; 6010 } 6011 } 6012 ret = btrfs_trim_block_group(cache, 6013 &group_trimmed, 6014 start, 6015 end, 6016 range->minlen); 6017 6018 trimmed += group_trimmed; 6019 if (ret) { 6020 bg_failed++; 6021 bg_ret = ret; 6022 continue; 6023 } 6024 } 6025 } 6026 6027 if (bg_failed) 6028 btrfs_warn(fs_info, 6029 "failed to trim %llu block group(s), last error %d", 6030 bg_failed, bg_ret); 6031 mutex_lock(&fs_info->fs_devices->device_list_mutex); 6032 devices = &fs_info->fs_devices->devices; 6033 list_for_each_entry(device, devices, dev_list) { 6034 ret = btrfs_trim_free_extents(device, &group_trimmed); 6035 if (ret) { 6036 dev_failed++; 6037 dev_ret = ret; 6038 break; 6039 } 6040 6041 trimmed += group_trimmed; 6042 } 6043 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 6044 6045 if (dev_failed) 6046 btrfs_warn(fs_info, 6047 "failed to trim %llu device(s), last error %d", 6048 dev_failed, dev_ret); 6049 range->len = trimmed; 6050 if (bg_ret) 6051 return bg_ret; 6052 return dev_ret; 6053 } 6054