1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 struct btrfs_delayed_ref_node *node, 50 struct btrfs_delayed_extent_op *extra_op); 51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 52 struct extent_buffer *leaf, 53 struct btrfs_extent_item *ei); 54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 55 u64 parent, u64 root_objectid, 56 u64 flags, u64 owner, u64 offset, 57 struct btrfs_key *ins, int ref_mod, u64 oref_root); 58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 59 struct btrfs_delayed_ref_node *node, 60 struct btrfs_delayed_extent_op *extent_op); 61 static int find_next_key(struct btrfs_path *path, int level, 62 struct btrfs_key *key); 63 64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 65 { 66 return (cache->flags & bits) == bits; 67 } 68 69 /* simple helper to search for an existing data extent at a given offset */ 70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 71 { 72 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 73 int ret; 74 struct btrfs_key key; 75 struct btrfs_path *path; 76 77 path = btrfs_alloc_path(); 78 if (!path) 79 return -ENOMEM; 80 81 key.objectid = start; 82 key.offset = len; 83 key.type = BTRFS_EXTENT_ITEM_KEY; 84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 85 btrfs_free_path(path); 86 return ret; 87 } 88 89 /* 90 * helper function to lookup reference count and flags of a tree block. 91 * 92 * the head node for delayed ref is used to store the sum of all the 93 * reference count modifications queued up in the rbtree. the head 94 * node may also store the extent flags to set. This way you can check 95 * to see what the reference count and extent flags would be if all of 96 * the delayed refs are not processed. 97 */ 98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 99 struct btrfs_fs_info *fs_info, u64 bytenr, 100 u64 offset, int metadata, u64 *refs, u64 *flags, 101 u64 *owning_root) 102 { 103 struct btrfs_root *extent_root; 104 struct btrfs_delayed_ref_head *head; 105 struct btrfs_delayed_ref_root *delayed_refs; 106 struct btrfs_path *path; 107 struct btrfs_key key; 108 u64 num_refs; 109 u64 extent_flags; 110 u64 owner = 0; 111 int ret; 112 113 /* 114 * If we don't have skinny metadata, don't bother doing anything 115 * different 116 */ 117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 118 offset = fs_info->nodesize; 119 metadata = 0; 120 } 121 122 path = btrfs_alloc_path(); 123 if (!path) 124 return -ENOMEM; 125 126 search_again: 127 key.objectid = bytenr; 128 key.offset = offset; 129 if (metadata) 130 key.type = BTRFS_METADATA_ITEM_KEY; 131 else 132 key.type = BTRFS_EXTENT_ITEM_KEY; 133 134 extent_root = btrfs_extent_root(fs_info, bytenr); 135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 136 if (ret < 0) 137 goto out_free; 138 139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 140 if (path->slots[0]) { 141 path->slots[0]--; 142 btrfs_item_key_to_cpu(path->nodes[0], &key, 143 path->slots[0]); 144 if (key.objectid == bytenr && 145 key.type == BTRFS_EXTENT_ITEM_KEY && 146 key.offset == fs_info->nodesize) 147 ret = 0; 148 } 149 } 150 151 if (ret == 0) { 152 struct extent_buffer *leaf = path->nodes[0]; 153 struct btrfs_extent_item *ei; 154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 155 156 if (unlikely(item_size < sizeof(*ei))) { 157 ret = -EUCLEAN; 158 btrfs_err(fs_info, 159 "unexpected extent item size, has %u expect >= %zu", 160 item_size, sizeof(*ei)); 161 btrfs_abort_transaction(trans, ret); 162 goto out_free; 163 } 164 165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 if (unlikely(num_refs == 0)) { 168 ret = -EUCLEAN; 169 btrfs_err(fs_info, 170 "unexpected zero reference count for extent item (%llu %u %llu)", 171 key.objectid, key.type, key.offset); 172 btrfs_abort_transaction(trans, ret); 173 goto out_free; 174 } 175 extent_flags = btrfs_extent_flags(leaf, ei); 176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 177 } else { 178 num_refs = 0; 179 extent_flags = 0; 180 ret = 0; 181 } 182 183 delayed_refs = &trans->transaction->delayed_refs; 184 spin_lock(&delayed_refs->lock); 185 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 186 if (head) { 187 if (!mutex_trylock(&head->mutex)) { 188 refcount_inc(&head->refs); 189 spin_unlock(&delayed_refs->lock); 190 191 btrfs_release_path(path); 192 193 /* 194 * Mutex was contended, block until it's released and try 195 * again 196 */ 197 mutex_lock(&head->mutex); 198 mutex_unlock(&head->mutex); 199 btrfs_put_delayed_ref_head(head); 200 goto search_again; 201 } 202 spin_lock(&head->lock); 203 if (head->extent_op && head->extent_op->update_flags) 204 extent_flags |= head->extent_op->flags_to_set; 205 206 num_refs += head->ref_mod; 207 spin_unlock(&head->lock); 208 mutex_unlock(&head->mutex); 209 } 210 spin_unlock(&delayed_refs->lock); 211 212 WARN_ON(num_refs == 0); 213 if (refs) 214 *refs = num_refs; 215 if (flags) 216 *flags = extent_flags; 217 if (owning_root) 218 *owning_root = owner; 219 out_free: 220 btrfs_free_path(path); 221 return ret; 222 } 223 224 /* 225 * Back reference rules. Back refs have three main goals: 226 * 227 * 1) differentiate between all holders of references to an extent so that 228 * when a reference is dropped we can make sure it was a valid reference 229 * before freeing the extent. 230 * 231 * 2) Provide enough information to quickly find the holders of an extent 232 * if we notice a given block is corrupted or bad. 233 * 234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 235 * maintenance. This is actually the same as #2, but with a slightly 236 * different use case. 237 * 238 * There are two kinds of back refs. The implicit back refs is optimized 239 * for pointers in non-shared tree blocks. For a given pointer in a block, 240 * back refs of this kind provide information about the block's owner tree 241 * and the pointer's key. These information allow us to find the block by 242 * b-tree searching. The full back refs is for pointers in tree blocks not 243 * referenced by their owner trees. The location of tree block is recorded 244 * in the back refs. Actually the full back refs is generic, and can be 245 * used in all cases the implicit back refs is used. The major shortcoming 246 * of the full back refs is its overhead. Every time a tree block gets 247 * COWed, we have to update back refs entry for all pointers in it. 248 * 249 * For a newly allocated tree block, we use implicit back refs for 250 * pointers in it. This means most tree related operations only involve 251 * implicit back refs. For a tree block created in old transaction, the 252 * only way to drop a reference to it is COW it. So we can detect the 253 * event that tree block loses its owner tree's reference and do the 254 * back refs conversion. 255 * 256 * When a tree block is COWed through a tree, there are four cases: 257 * 258 * The reference count of the block is one and the tree is the block's 259 * owner tree. Nothing to do in this case. 260 * 261 * The reference count of the block is one and the tree is not the 262 * block's owner tree. In this case, full back refs is used for pointers 263 * in the block. Remove these full back refs, add implicit back refs for 264 * every pointers in the new block. 265 * 266 * The reference count of the block is greater than one and the tree is 267 * the block's owner tree. In this case, implicit back refs is used for 268 * pointers in the block. Add full back refs for every pointers in the 269 * block, increase lower level extents' reference counts. The original 270 * implicit back refs are entailed to the new block. 271 * 272 * The reference count of the block is greater than one and the tree is 273 * not the block's owner tree. Add implicit back refs for every pointer in 274 * the new block, increase lower level extents' reference count. 275 * 276 * Back Reference Key composing: 277 * 278 * The key objectid corresponds to the first byte in the extent, 279 * The key type is used to differentiate between types of back refs. 280 * There are different meanings of the key offset for different types 281 * of back refs. 282 * 283 * File extents can be referenced by: 284 * 285 * - multiple snapshots, subvolumes, or different generations in one subvol 286 * - different files inside a single subvolume 287 * - different offsets inside a file (bookend extents in file.c) 288 * 289 * The extent ref structure for the implicit back refs has fields for: 290 * 291 * - Objectid of the subvolume root 292 * - objectid of the file holding the reference 293 * - original offset in the file 294 * - how many bookend extents 295 * 296 * The key offset for the implicit back refs is hash of the first 297 * three fields. 298 * 299 * The extent ref structure for the full back refs has field for: 300 * 301 * - number of pointers in the tree leaf 302 * 303 * The key offset for the implicit back refs is the first byte of 304 * the tree leaf 305 * 306 * When a file extent is allocated, The implicit back refs is used. 307 * the fields are filled in: 308 * 309 * (root_key.objectid, inode objectid, offset in file, 1) 310 * 311 * When a file extent is removed file truncation, we find the 312 * corresponding implicit back refs and check the following fields: 313 * 314 * (btrfs_header_owner(leaf), inode objectid, offset in file) 315 * 316 * Btree extents can be referenced by: 317 * 318 * - Different subvolumes 319 * 320 * Both the implicit back refs and the full back refs for tree blocks 321 * only consist of key. The key offset for the implicit back refs is 322 * objectid of block's owner tree. The key offset for the full back refs 323 * is the first byte of parent block. 324 * 325 * When implicit back refs is used, information about the lowest key and 326 * level of the tree block are required. These information are stored in 327 * tree block info structure. 328 */ 329 330 /* 331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 334 */ 335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 336 struct btrfs_extent_inline_ref *iref, 337 enum btrfs_inline_ref_type is_data) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 int type = btrfs_extent_inline_ref_type(eb, iref); 341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 342 343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 345 return type; 346 } 347 348 if (type == BTRFS_TREE_BLOCK_REF_KEY || 349 type == BTRFS_SHARED_BLOCK_REF_KEY || 350 type == BTRFS_SHARED_DATA_REF_KEY || 351 type == BTRFS_EXTENT_DATA_REF_KEY) { 352 if (is_data == BTRFS_REF_TYPE_BLOCK) { 353 if (type == BTRFS_TREE_BLOCK_REF_KEY) 354 return type; 355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 356 ASSERT(fs_info); 357 /* 358 * Every shared one has parent tree block, 359 * which must be aligned to sector size. 360 */ 361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 362 return type; 363 } 364 } else if (is_data == BTRFS_REF_TYPE_DATA) { 365 if (type == BTRFS_EXTENT_DATA_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_DATA_REF_KEY) { 368 ASSERT(fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, fs_info->sectorsize)) 375 return type; 376 } 377 } else { 378 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 379 return type; 380 } 381 } 382 383 WARN_ON(1); 384 btrfs_print_leaf(eb); 385 btrfs_err(fs_info, 386 "eb %llu iref 0x%lx invalid extent inline ref type %d", 387 eb->start, (unsigned long)iref, type); 388 389 return BTRFS_REF_TYPE_INVALID; 390 } 391 392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 393 { 394 u32 high_crc = ~(u32)0; 395 u32 low_crc = ~(u32)0; 396 __le64 lenum; 397 398 lenum = cpu_to_le64(root_objectid); 399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 400 lenum = cpu_to_le64(owner); 401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 402 lenum = cpu_to_le64(offset); 403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 404 405 return ((u64)high_crc << 31) ^ (u64)low_crc; 406 } 407 408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 409 struct btrfs_extent_data_ref *ref) 410 { 411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 412 btrfs_extent_data_ref_objectid(leaf, ref), 413 btrfs_extent_data_ref_offset(leaf, ref)); 414 } 415 416 static int match_extent_data_ref(struct extent_buffer *leaf, 417 struct btrfs_extent_data_ref *ref, 418 u64 root_objectid, u64 owner, u64 offset) 419 { 420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 421 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 422 btrfs_extent_data_ref_offset(leaf, ref) != offset) 423 return 0; 424 return 1; 425 } 426 427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 428 struct btrfs_path *path, 429 u64 bytenr, u64 parent, 430 u64 root_objectid, 431 u64 owner, u64 offset) 432 { 433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 434 struct btrfs_key key; 435 struct btrfs_extent_data_ref *ref; 436 struct extent_buffer *leaf; 437 u32 nritems; 438 int recow; 439 int ret; 440 441 key.objectid = bytenr; 442 if (parent) { 443 key.type = BTRFS_SHARED_DATA_REF_KEY; 444 key.offset = parent; 445 } else { 446 key.type = BTRFS_EXTENT_DATA_REF_KEY; 447 key.offset = hash_extent_data_ref(root_objectid, 448 owner, offset); 449 } 450 again: 451 recow = 0; 452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 453 if (ret < 0) 454 return ret; 455 456 if (parent) { 457 if (ret) 458 return -ENOENT; 459 return 0; 460 } 461 462 ret = -ENOENT; 463 leaf = path->nodes[0]; 464 nritems = btrfs_header_nritems(leaf); 465 while (1) { 466 if (path->slots[0] >= nritems) { 467 ret = btrfs_next_leaf(root, path); 468 if (ret) { 469 if (ret > 0) 470 return -ENOENT; 471 return ret; 472 } 473 474 leaf = path->nodes[0]; 475 nritems = btrfs_header_nritems(leaf); 476 recow = 1; 477 } 478 479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 480 if (key.objectid != bytenr || 481 key.type != BTRFS_EXTENT_DATA_REF_KEY) 482 goto fail; 483 484 ref = btrfs_item_ptr(leaf, path->slots[0], 485 struct btrfs_extent_data_ref); 486 487 if (match_extent_data_ref(leaf, ref, root_objectid, 488 owner, offset)) { 489 if (recow) { 490 btrfs_release_path(path); 491 goto again; 492 } 493 ret = 0; 494 break; 495 } 496 path->slots[0]++; 497 } 498 fail: 499 return ret; 500 } 501 502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_delayed_ref_node *node, 505 u64 bytenr) 506 { 507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 508 struct btrfs_key key; 509 struct extent_buffer *leaf; 510 u64 owner = btrfs_delayed_ref_owner(node); 511 u64 offset = btrfs_delayed_ref_offset(node); 512 u32 size; 513 u32 num_refs; 514 int ret; 515 516 key.objectid = bytenr; 517 if (node->parent) { 518 key.type = BTRFS_SHARED_DATA_REF_KEY; 519 key.offset = node->parent; 520 size = sizeof(struct btrfs_shared_data_ref); 521 } else { 522 key.type = BTRFS_EXTENT_DATA_REF_KEY; 523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 524 size = sizeof(struct btrfs_extent_data_ref); 525 } 526 527 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 528 if (ret && ret != -EEXIST) 529 goto fail; 530 531 leaf = path->nodes[0]; 532 if (node->parent) { 533 struct btrfs_shared_data_ref *ref; 534 ref = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_shared_data_ref); 536 if (ret == 0) { 537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 538 } else { 539 num_refs = btrfs_shared_data_ref_count(leaf, ref); 540 num_refs += node->ref_mod; 541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 542 } 543 } else { 544 struct btrfs_extent_data_ref *ref; 545 while (ret == -EEXIST) { 546 ref = btrfs_item_ptr(leaf, path->slots[0], 547 struct btrfs_extent_data_ref); 548 if (match_extent_data_ref(leaf, ref, node->ref_root, 549 owner, offset)) 550 break; 551 btrfs_release_path(path); 552 key.offset++; 553 ret = btrfs_insert_empty_item(trans, root, path, &key, 554 size); 555 if (ret && ret != -EEXIST) 556 goto fail; 557 558 leaf = path->nodes[0]; 559 } 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (ret == 0) { 563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 565 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 567 } else { 568 num_refs = btrfs_extent_data_ref_count(leaf, ref); 569 num_refs += node->ref_mod; 570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 571 } 572 } 573 btrfs_mark_buffer_dirty(trans, leaf); 574 ret = 0; 575 fail: 576 btrfs_release_path(path); 577 return ret; 578 } 579 580 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 int refs_to_drop) 584 { 585 struct btrfs_key key; 586 struct btrfs_extent_data_ref *ref1 = NULL; 587 struct btrfs_shared_data_ref *ref2 = NULL; 588 struct extent_buffer *leaf; 589 u32 num_refs = 0; 590 int ret = 0; 591 592 leaf = path->nodes[0]; 593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 594 595 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 596 ref1 = btrfs_item_ptr(leaf, path->slots[0], 597 struct btrfs_extent_data_ref); 598 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 599 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 600 ref2 = btrfs_item_ptr(leaf, path->slots[0], 601 struct btrfs_shared_data_ref); 602 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 603 } else { 604 btrfs_err(trans->fs_info, 605 "unrecognized backref key (%llu %u %llu)", 606 key.objectid, key.type, key.offset); 607 btrfs_abort_transaction(trans, -EUCLEAN); 608 return -EUCLEAN; 609 } 610 611 BUG_ON(num_refs < refs_to_drop); 612 num_refs -= refs_to_drop; 613 614 if (num_refs == 0) { 615 ret = btrfs_del_item(trans, root, path); 616 } else { 617 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 618 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 619 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 620 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 621 btrfs_mark_buffer_dirty(trans, leaf); 622 } 623 return ret; 624 } 625 626 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 627 struct btrfs_extent_inline_ref *iref) 628 { 629 struct btrfs_key key; 630 struct extent_buffer *leaf; 631 struct btrfs_extent_data_ref *ref1; 632 struct btrfs_shared_data_ref *ref2; 633 u32 num_refs = 0; 634 int type; 635 636 leaf = path->nodes[0]; 637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 638 639 if (iref) { 640 /* 641 * If type is invalid, we should have bailed out earlier than 642 * this call. 643 */ 644 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 645 ASSERT(type != BTRFS_REF_TYPE_INVALID); 646 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 647 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 648 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 649 } else { 650 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 651 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 652 } 653 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 654 ref1 = btrfs_item_ptr(leaf, path->slots[0], 655 struct btrfs_extent_data_ref); 656 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 657 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 658 ref2 = btrfs_item_ptr(leaf, path->slots[0], 659 struct btrfs_shared_data_ref); 660 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 661 } else { 662 WARN_ON(1); 663 } 664 return num_refs; 665 } 666 667 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 668 struct btrfs_path *path, 669 u64 bytenr, u64 parent, 670 u64 root_objectid) 671 { 672 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 673 struct btrfs_key key; 674 int ret; 675 676 key.objectid = bytenr; 677 if (parent) { 678 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 679 key.offset = parent; 680 } else { 681 key.type = BTRFS_TREE_BLOCK_REF_KEY; 682 key.offset = root_objectid; 683 } 684 685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 686 if (ret > 0) 687 ret = -ENOENT; 688 return ret; 689 } 690 691 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 692 struct btrfs_path *path, 693 struct btrfs_delayed_ref_node *node, 694 u64 bytenr) 695 { 696 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 697 struct btrfs_key key; 698 int ret; 699 700 key.objectid = bytenr; 701 if (node->parent) { 702 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 703 key.offset = node->parent; 704 } else { 705 key.type = BTRFS_TREE_BLOCK_REF_KEY; 706 key.offset = node->ref_root; 707 } 708 709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 710 btrfs_release_path(path); 711 return ret; 712 } 713 714 static inline int extent_ref_type(u64 parent, u64 owner) 715 { 716 int type; 717 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 718 if (parent > 0) 719 type = BTRFS_SHARED_BLOCK_REF_KEY; 720 else 721 type = BTRFS_TREE_BLOCK_REF_KEY; 722 } else { 723 if (parent > 0) 724 type = BTRFS_SHARED_DATA_REF_KEY; 725 else 726 type = BTRFS_EXTENT_DATA_REF_KEY; 727 } 728 return type; 729 } 730 731 static int find_next_key(struct btrfs_path *path, int level, 732 struct btrfs_key *key) 733 734 { 735 for (; level < BTRFS_MAX_LEVEL; level++) { 736 if (!path->nodes[level]) 737 break; 738 if (path->slots[level] + 1 >= 739 btrfs_header_nritems(path->nodes[level])) 740 continue; 741 if (level == 0) 742 btrfs_item_key_to_cpu(path->nodes[level], key, 743 path->slots[level] + 1); 744 else 745 btrfs_node_key_to_cpu(path->nodes[level], key, 746 path->slots[level] + 1); 747 return 0; 748 } 749 return 1; 750 } 751 752 /* 753 * look for inline back ref. if back ref is found, *ref_ret is set 754 * to the address of inline back ref, and 0 is returned. 755 * 756 * if back ref isn't found, *ref_ret is set to the address where it 757 * should be inserted, and -ENOENT is returned. 758 * 759 * if insert is true and there are too many inline back refs, the path 760 * points to the extent item, and -EAGAIN is returned. 761 * 762 * NOTE: inline back refs are ordered in the same way that back ref 763 * items in the tree are ordered. 764 */ 765 static noinline_for_stack 766 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 767 struct btrfs_path *path, 768 struct btrfs_extent_inline_ref **ref_ret, 769 u64 bytenr, u64 num_bytes, 770 u64 parent, u64 root_objectid, 771 u64 owner, u64 offset, int insert) 772 { 773 struct btrfs_fs_info *fs_info = trans->fs_info; 774 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 775 struct btrfs_key key; 776 struct extent_buffer *leaf; 777 struct btrfs_extent_item *ei; 778 struct btrfs_extent_inline_ref *iref; 779 u64 flags; 780 u64 item_size; 781 unsigned long ptr; 782 unsigned long end; 783 int extra_size; 784 int type; 785 int want; 786 int ret; 787 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 788 int needed; 789 790 key.objectid = bytenr; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 key.offset = num_bytes; 793 794 want = extent_ref_type(parent, owner); 795 if (insert) { 796 extra_size = btrfs_extent_inline_ref_size(want); 797 path->search_for_extension = 1; 798 path->keep_locks = 1; 799 } else 800 extra_size = -1; 801 802 /* 803 * Owner is our level, so we can just add one to get the level for the 804 * block we are interested in. 805 */ 806 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 807 key.type = BTRFS_METADATA_ITEM_KEY; 808 key.offset = owner; 809 } 810 811 again: 812 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 813 if (ret < 0) 814 goto out; 815 816 /* 817 * We may be a newly converted file system which still has the old fat 818 * extent entries for metadata, so try and see if we have one of those. 819 */ 820 if (ret > 0 && skinny_metadata) { 821 skinny_metadata = false; 822 if (path->slots[0]) { 823 path->slots[0]--; 824 btrfs_item_key_to_cpu(path->nodes[0], &key, 825 path->slots[0]); 826 if (key.objectid == bytenr && 827 key.type == BTRFS_EXTENT_ITEM_KEY && 828 key.offset == num_bytes) 829 ret = 0; 830 } 831 if (ret) { 832 key.objectid = bytenr; 833 key.type = BTRFS_EXTENT_ITEM_KEY; 834 key.offset = num_bytes; 835 btrfs_release_path(path); 836 goto again; 837 } 838 } 839 840 if (ret && !insert) { 841 ret = -ENOENT; 842 goto out; 843 } else if (WARN_ON(ret)) { 844 btrfs_print_leaf(path->nodes[0]); 845 btrfs_err(fs_info, 846 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 847 bytenr, num_bytes, parent, root_objectid, owner, 848 offset); 849 ret = -EUCLEAN; 850 goto out; 851 } 852 853 leaf = path->nodes[0]; 854 item_size = btrfs_item_size(leaf, path->slots[0]); 855 if (unlikely(item_size < sizeof(*ei))) { 856 ret = -EUCLEAN; 857 btrfs_err(fs_info, 858 "unexpected extent item size, has %llu expect >= %zu", 859 item_size, sizeof(*ei)); 860 btrfs_abort_transaction(trans, ret); 861 goto out; 862 } 863 864 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 865 flags = btrfs_extent_flags(leaf, ei); 866 867 ptr = (unsigned long)(ei + 1); 868 end = (unsigned long)ei + item_size; 869 870 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 871 ptr += sizeof(struct btrfs_tree_block_info); 872 BUG_ON(ptr > end); 873 } 874 875 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 876 needed = BTRFS_REF_TYPE_DATA; 877 else 878 needed = BTRFS_REF_TYPE_BLOCK; 879 880 ret = -ENOENT; 881 while (ptr < end) { 882 iref = (struct btrfs_extent_inline_ref *)ptr; 883 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 884 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 885 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 886 ptr += btrfs_extent_inline_ref_size(type); 887 continue; 888 } 889 if (type == BTRFS_REF_TYPE_INVALID) { 890 ret = -EUCLEAN; 891 goto out; 892 } 893 894 if (want < type) 895 break; 896 if (want > type) { 897 ptr += btrfs_extent_inline_ref_size(type); 898 continue; 899 } 900 901 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 902 struct btrfs_extent_data_ref *dref; 903 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 904 if (match_extent_data_ref(leaf, dref, root_objectid, 905 owner, offset)) { 906 ret = 0; 907 break; 908 } 909 if (hash_extent_data_ref_item(leaf, dref) < 910 hash_extent_data_ref(root_objectid, owner, offset)) 911 break; 912 } else { 913 u64 ref_offset; 914 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 915 if (parent > 0) { 916 if (parent == ref_offset) { 917 ret = 0; 918 break; 919 } 920 if (ref_offset < parent) 921 break; 922 } else { 923 if (root_objectid == ref_offset) { 924 ret = 0; 925 break; 926 } 927 if (ref_offset < root_objectid) 928 break; 929 } 930 } 931 ptr += btrfs_extent_inline_ref_size(type); 932 } 933 934 if (unlikely(ptr > end)) { 935 ret = -EUCLEAN; 936 btrfs_print_leaf(path->nodes[0]); 937 btrfs_crit(fs_info, 938 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 939 path->slots[0], root_objectid, owner, offset, parent); 940 goto out; 941 } 942 943 if (ret == -ENOENT && insert) { 944 if (item_size + extra_size >= 945 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 946 ret = -EAGAIN; 947 goto out; 948 } 949 /* 950 * To add new inline back ref, we have to make sure 951 * there is no corresponding back ref item. 952 * For simplicity, we just do not add new inline back 953 * ref if there is any kind of item for this block 954 */ 955 if (find_next_key(path, 0, &key) == 0 && 956 key.objectid == bytenr && 957 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 958 ret = -EAGAIN; 959 goto out; 960 } 961 } 962 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 963 out: 964 if (insert) { 965 path->keep_locks = 0; 966 path->search_for_extension = 0; 967 btrfs_unlock_up_safe(path, 1); 968 } 969 return ret; 970 } 971 972 /* 973 * helper to add new inline back ref 974 */ 975 static noinline_for_stack 976 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 977 struct btrfs_path *path, 978 struct btrfs_extent_inline_ref *iref, 979 u64 parent, u64 root_objectid, 980 u64 owner, u64 offset, int refs_to_add, 981 struct btrfs_delayed_extent_op *extent_op) 982 { 983 struct extent_buffer *leaf; 984 struct btrfs_extent_item *ei; 985 unsigned long ptr; 986 unsigned long end; 987 unsigned long item_offset; 988 u64 refs; 989 int size; 990 int type; 991 992 leaf = path->nodes[0]; 993 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 994 item_offset = (unsigned long)iref - (unsigned long)ei; 995 996 type = extent_ref_type(parent, owner); 997 size = btrfs_extent_inline_ref_size(type); 998 999 btrfs_extend_item(trans, path, size); 1000 1001 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1002 refs = btrfs_extent_refs(leaf, ei); 1003 refs += refs_to_add; 1004 btrfs_set_extent_refs(leaf, ei, refs); 1005 if (extent_op) 1006 __run_delayed_extent_op(extent_op, leaf, ei); 1007 1008 ptr = (unsigned long)ei + item_offset; 1009 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1010 if (ptr < end - size) 1011 memmove_extent_buffer(leaf, ptr + size, ptr, 1012 end - size - ptr); 1013 1014 iref = (struct btrfs_extent_inline_ref *)ptr; 1015 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1016 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1017 struct btrfs_extent_data_ref *dref; 1018 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1019 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1020 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1021 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1022 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1023 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1024 struct btrfs_shared_data_ref *sref; 1025 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1026 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1027 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1028 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1029 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1030 } else { 1031 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1032 } 1033 btrfs_mark_buffer_dirty(trans, leaf); 1034 } 1035 1036 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1037 struct btrfs_path *path, 1038 struct btrfs_extent_inline_ref **ref_ret, 1039 u64 bytenr, u64 num_bytes, u64 parent, 1040 u64 root_objectid, u64 owner, u64 offset) 1041 { 1042 int ret; 1043 1044 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1045 num_bytes, parent, root_objectid, 1046 owner, offset, 0); 1047 if (ret != -ENOENT) 1048 return ret; 1049 1050 btrfs_release_path(path); 1051 *ref_ret = NULL; 1052 1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1054 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1055 root_objectid); 1056 } else { 1057 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1058 root_objectid, owner, offset); 1059 } 1060 return ret; 1061 } 1062 1063 /* 1064 * helper to update/remove inline back ref 1065 */ 1066 static noinline_for_stack int update_inline_extent_backref( 1067 struct btrfs_trans_handle *trans, 1068 struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op) 1072 { 1073 struct extent_buffer *leaf = path->nodes[0]; 1074 struct btrfs_fs_info *fs_info = leaf->fs_info; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1088 struct btrfs_key key; 1089 u32 extent_size; 1090 1091 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1092 if (key.type == BTRFS_METADATA_ITEM_KEY) 1093 extent_size = fs_info->nodesize; 1094 else 1095 extent_size = key.offset; 1096 btrfs_print_leaf(leaf); 1097 btrfs_err(fs_info, 1098 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1099 key.objectid, extent_size, refs_to_mod, refs); 1100 return -EUCLEAN; 1101 } 1102 refs += refs_to_mod; 1103 btrfs_set_extent_refs(leaf, ei, refs); 1104 if (extent_op) 1105 __run_delayed_extent_op(extent_op, leaf, ei); 1106 1107 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1108 /* 1109 * Function btrfs_get_extent_inline_ref_type() has already printed 1110 * error messages. 1111 */ 1112 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1113 return -EUCLEAN; 1114 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1116 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1117 refs = btrfs_extent_data_ref_count(leaf, dref); 1118 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1119 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1120 refs = btrfs_shared_data_ref_count(leaf, sref); 1121 } else { 1122 refs = 1; 1123 /* 1124 * For tree blocks we can only drop one ref for it, and tree 1125 * blocks should not have refs > 1. 1126 * 1127 * Furthermore if we're inserting a new inline backref, we 1128 * won't reach this path either. That would be 1129 * setup_inline_extent_backref(). 1130 */ 1131 if (unlikely(refs_to_mod != -1)) { 1132 struct btrfs_key key; 1133 1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1135 1136 btrfs_print_leaf(leaf); 1137 btrfs_err(fs_info, 1138 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1139 key.objectid, refs_to_mod); 1140 return -EUCLEAN; 1141 } 1142 } 1143 1144 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1145 struct btrfs_key key; 1146 u32 extent_size; 1147 1148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1149 if (key.type == BTRFS_METADATA_ITEM_KEY) 1150 extent_size = fs_info->nodesize; 1151 else 1152 extent_size = key.offset; 1153 btrfs_print_leaf(leaf); 1154 btrfs_err(fs_info, 1155 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1156 (unsigned long)iref, key.objectid, extent_size, 1157 refs_to_mod, refs); 1158 return -EUCLEAN; 1159 } 1160 refs += refs_to_mod; 1161 1162 if (refs > 0) { 1163 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1164 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1165 else 1166 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1167 } else { 1168 size = btrfs_extent_inline_ref_size(type); 1169 item_size = btrfs_item_size(leaf, path->slots[0]); 1170 ptr = (unsigned long)iref; 1171 end = (unsigned long)ei + item_size; 1172 if (ptr + size < end) 1173 memmove_extent_buffer(leaf, ptr, ptr + size, 1174 end - ptr - size); 1175 item_size -= size; 1176 btrfs_truncate_item(trans, path, item_size, 1); 1177 } 1178 btrfs_mark_buffer_dirty(trans, leaf); 1179 return 0; 1180 } 1181 1182 static noinline_for_stack 1183 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 num_bytes, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add, 1188 struct btrfs_delayed_extent_op *extent_op) 1189 { 1190 struct btrfs_extent_inline_ref *iref; 1191 int ret; 1192 1193 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1194 num_bytes, parent, root_objectid, 1195 owner, offset, 1); 1196 if (ret == 0) { 1197 /* 1198 * We're adding refs to a tree block we already own, this 1199 * should not happen at all. 1200 */ 1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1202 btrfs_print_leaf(path->nodes[0]); 1203 btrfs_crit(trans->fs_info, 1204 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1205 bytenr, num_bytes, root_objectid, path->slots[0]); 1206 return -EUCLEAN; 1207 } 1208 ret = update_inline_extent_backref(trans, path, iref, 1209 refs_to_add, extent_op); 1210 } else if (ret == -ENOENT) { 1211 setup_inline_extent_backref(trans, path, iref, parent, 1212 root_objectid, owner, offset, 1213 refs_to_add, extent_op); 1214 ret = 0; 1215 } 1216 return ret; 1217 } 1218 1219 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root, 1221 struct btrfs_path *path, 1222 struct btrfs_extent_inline_ref *iref, 1223 int refs_to_drop, int is_data) 1224 { 1225 int ret = 0; 1226 1227 BUG_ON(!is_data && refs_to_drop != 1); 1228 if (iref) 1229 ret = update_inline_extent_backref(trans, path, iref, 1230 -refs_to_drop, NULL); 1231 else if (is_data) 1232 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1233 else 1234 ret = btrfs_del_item(trans, root, path); 1235 return ret; 1236 } 1237 1238 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1239 u64 *discarded_bytes) 1240 { 1241 int j, ret = 0; 1242 u64 bytes_left, end; 1243 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1244 1245 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1246 if (start != aligned_start) { 1247 len -= aligned_start - start; 1248 len = round_down(len, 1 << SECTOR_SHIFT); 1249 start = aligned_start; 1250 } 1251 1252 *discarded_bytes = 0; 1253 1254 if (!len) 1255 return 0; 1256 1257 end = start + len; 1258 bytes_left = len; 1259 1260 /* Skip any superblocks on this device. */ 1261 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1262 u64 sb_start = btrfs_sb_offset(j); 1263 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1264 u64 size = sb_start - start; 1265 1266 if (!in_range(sb_start, start, bytes_left) && 1267 !in_range(sb_end, start, bytes_left) && 1268 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1269 continue; 1270 1271 /* 1272 * Superblock spans beginning of range. Adjust start and 1273 * try again. 1274 */ 1275 if (sb_start <= start) { 1276 start += sb_end - start; 1277 if (start > end) { 1278 bytes_left = 0; 1279 break; 1280 } 1281 bytes_left = end - start; 1282 continue; 1283 } 1284 1285 if (size) { 1286 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1287 size >> SECTOR_SHIFT, 1288 GFP_NOFS); 1289 if (!ret) 1290 *discarded_bytes += size; 1291 else if (ret != -EOPNOTSUPP) 1292 return ret; 1293 } 1294 1295 start = sb_end; 1296 if (start > end) { 1297 bytes_left = 0; 1298 break; 1299 } 1300 bytes_left = end - start; 1301 } 1302 1303 if (bytes_left) { 1304 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1305 bytes_left >> SECTOR_SHIFT, 1306 GFP_NOFS); 1307 if (!ret) 1308 *discarded_bytes += bytes_left; 1309 } 1310 return ret; 1311 } 1312 1313 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1314 { 1315 struct btrfs_device *dev = stripe->dev; 1316 struct btrfs_fs_info *fs_info = dev->fs_info; 1317 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1318 u64 phys = stripe->physical; 1319 u64 len = stripe->length; 1320 u64 discarded = 0; 1321 int ret = 0; 1322 1323 /* Zone reset on a zoned filesystem */ 1324 if (btrfs_can_zone_reset(dev, phys, len)) { 1325 u64 src_disc; 1326 1327 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1328 if (ret) 1329 goto out; 1330 1331 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1332 dev != dev_replace->srcdev) 1333 goto out; 1334 1335 src_disc = discarded; 1336 1337 /* Send to replace target as well */ 1338 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1339 &discarded); 1340 discarded += src_disc; 1341 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1342 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1343 } else { 1344 ret = 0; 1345 *bytes = 0; 1346 } 1347 1348 out: 1349 *bytes = discarded; 1350 return ret; 1351 } 1352 1353 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1354 u64 num_bytes, u64 *actual_bytes) 1355 { 1356 int ret = 0; 1357 u64 discarded_bytes = 0; 1358 u64 end = bytenr + num_bytes; 1359 u64 cur = bytenr; 1360 1361 /* 1362 * Avoid races with device replace and make sure the devices in the 1363 * stripes don't go away while we are discarding. 1364 */ 1365 btrfs_bio_counter_inc_blocked(fs_info); 1366 while (cur < end) { 1367 struct btrfs_discard_stripe *stripes; 1368 unsigned int num_stripes; 1369 int i; 1370 1371 num_bytes = end - cur; 1372 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1373 if (IS_ERR(stripes)) { 1374 ret = PTR_ERR(stripes); 1375 if (ret == -EOPNOTSUPP) 1376 ret = 0; 1377 break; 1378 } 1379 1380 for (i = 0; i < num_stripes; i++) { 1381 struct btrfs_discard_stripe *stripe = stripes + i; 1382 u64 bytes; 1383 1384 if (!stripe->dev->bdev) { 1385 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1386 continue; 1387 } 1388 1389 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1390 &stripe->dev->dev_state)) 1391 continue; 1392 1393 ret = do_discard_extent(stripe, &bytes); 1394 if (ret) { 1395 /* 1396 * Keep going if discard is not supported by the 1397 * device. 1398 */ 1399 if (ret != -EOPNOTSUPP) 1400 break; 1401 ret = 0; 1402 } else { 1403 discarded_bytes += bytes; 1404 } 1405 } 1406 kfree(stripes); 1407 if (ret) 1408 break; 1409 cur += num_bytes; 1410 } 1411 btrfs_bio_counter_dec(fs_info); 1412 if (actual_bytes) 1413 *actual_bytes = discarded_bytes; 1414 return ret; 1415 } 1416 1417 /* Can return -ENOMEM */ 1418 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1419 struct btrfs_ref *generic_ref) 1420 { 1421 struct btrfs_fs_info *fs_info = trans->fs_info; 1422 int ret; 1423 1424 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1425 generic_ref->action); 1426 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1427 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1428 1429 if (generic_ref->type == BTRFS_REF_METADATA) 1430 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1431 else 1432 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1433 1434 btrfs_ref_tree_mod(fs_info, generic_ref); 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * Insert backreference for a given extent. 1441 * 1442 * The counterpart is in __btrfs_free_extent(), with examples and more details 1443 * how it works. 1444 * 1445 * @trans: Handle of transaction 1446 * 1447 * @node: The delayed ref node used to get the bytenr/length for 1448 * extent whose references are incremented. 1449 * 1450 * @extent_op Pointer to a structure, holding information necessary when 1451 * updating a tree block's flags 1452 * 1453 */ 1454 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1455 struct btrfs_delayed_ref_node *node, 1456 struct btrfs_delayed_extent_op *extent_op) 1457 { 1458 struct btrfs_path *path; 1459 struct extent_buffer *leaf; 1460 struct btrfs_extent_item *item; 1461 struct btrfs_key key; 1462 u64 bytenr = node->bytenr; 1463 u64 num_bytes = node->num_bytes; 1464 u64 owner = btrfs_delayed_ref_owner(node); 1465 u64 offset = btrfs_delayed_ref_offset(node); 1466 u64 refs; 1467 int refs_to_add = node->ref_mod; 1468 int ret; 1469 1470 path = btrfs_alloc_path(); 1471 if (!path) 1472 return -ENOMEM; 1473 1474 /* this will setup the path even if it fails to insert the back ref */ 1475 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1476 node->parent, node->ref_root, owner, 1477 offset, refs_to_add, extent_op); 1478 if ((ret < 0 && ret != -EAGAIN) || !ret) 1479 goto out; 1480 1481 /* 1482 * Ok we had -EAGAIN which means we didn't have space to insert and 1483 * inline extent ref, so just update the reference count and add a 1484 * normal backref. 1485 */ 1486 leaf = path->nodes[0]; 1487 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1488 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1489 refs = btrfs_extent_refs(leaf, item); 1490 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1491 if (extent_op) 1492 __run_delayed_extent_op(extent_op, leaf, item); 1493 1494 btrfs_mark_buffer_dirty(trans, leaf); 1495 btrfs_release_path(path); 1496 1497 /* now insert the actual backref */ 1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1499 ret = insert_tree_block_ref(trans, path, node, bytenr); 1500 else 1501 ret = insert_extent_data_ref(trans, path, node, bytenr); 1502 1503 if (ret) 1504 btrfs_abort_transaction(trans, ret); 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1511 struct btrfs_delayed_ref_head *href) 1512 { 1513 u64 root = href->owning_root; 1514 1515 /* 1516 * Don't check must_insert_reserved, as this is called from contexts 1517 * where it has already been unset. 1518 */ 1519 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1520 !href->is_data || !is_fstree(root)) 1521 return; 1522 1523 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1524 BTRFS_QGROUP_RSV_DATA); 1525 } 1526 1527 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_delayed_ref_head *href, 1529 struct btrfs_delayed_ref_node *node, 1530 struct btrfs_delayed_extent_op *extent_op, 1531 bool insert_reserved) 1532 { 1533 int ret = 0; 1534 u64 parent = 0; 1535 u64 flags = 0; 1536 1537 trace_run_delayed_data_ref(trans->fs_info, node); 1538 1539 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1540 parent = node->parent; 1541 1542 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1543 struct btrfs_key key; 1544 struct btrfs_squota_delta delta = { 1545 .root = href->owning_root, 1546 .num_bytes = node->num_bytes, 1547 .is_data = true, 1548 .is_inc = true, 1549 .generation = trans->transid, 1550 }; 1551 u64 owner = btrfs_delayed_ref_owner(node); 1552 u64 offset = btrfs_delayed_ref_offset(node); 1553 1554 if (extent_op) 1555 flags |= extent_op->flags_to_set; 1556 1557 key.objectid = node->bytenr; 1558 key.type = BTRFS_EXTENT_ITEM_KEY; 1559 key.offset = node->num_bytes; 1560 1561 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1562 flags, owner, offset, &key, 1563 node->ref_mod, 1564 href->owning_root); 1565 free_head_ref_squota_rsv(trans->fs_info, href); 1566 if (!ret) 1567 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1568 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1569 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1570 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1571 ret = __btrfs_free_extent(trans, href, node, extent_op); 1572 } else { 1573 BUG(); 1574 } 1575 return ret; 1576 } 1577 1578 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1579 struct extent_buffer *leaf, 1580 struct btrfs_extent_item *ei) 1581 { 1582 u64 flags = btrfs_extent_flags(leaf, ei); 1583 if (extent_op->update_flags) { 1584 flags |= extent_op->flags_to_set; 1585 btrfs_set_extent_flags(leaf, ei, flags); 1586 } 1587 1588 if (extent_op->update_key) { 1589 struct btrfs_tree_block_info *bi; 1590 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1591 bi = (struct btrfs_tree_block_info *)(ei + 1); 1592 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1593 } 1594 } 1595 1596 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1597 struct btrfs_delayed_ref_head *head, 1598 struct btrfs_delayed_extent_op *extent_op) 1599 { 1600 struct btrfs_fs_info *fs_info = trans->fs_info; 1601 struct btrfs_root *root; 1602 struct btrfs_key key; 1603 struct btrfs_path *path; 1604 struct btrfs_extent_item *ei; 1605 struct extent_buffer *leaf; 1606 u32 item_size; 1607 int ret; 1608 int metadata = 1; 1609 1610 if (TRANS_ABORTED(trans)) 1611 return 0; 1612 1613 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1614 metadata = 0; 1615 1616 path = btrfs_alloc_path(); 1617 if (!path) 1618 return -ENOMEM; 1619 1620 key.objectid = head->bytenr; 1621 1622 if (metadata) { 1623 key.type = BTRFS_METADATA_ITEM_KEY; 1624 key.offset = head->level; 1625 } else { 1626 key.type = BTRFS_EXTENT_ITEM_KEY; 1627 key.offset = head->num_bytes; 1628 } 1629 1630 root = btrfs_extent_root(fs_info, key.objectid); 1631 again: 1632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1633 if (ret < 0) { 1634 goto out; 1635 } else if (ret > 0) { 1636 if (metadata) { 1637 if (path->slots[0] > 0) { 1638 path->slots[0]--; 1639 btrfs_item_key_to_cpu(path->nodes[0], &key, 1640 path->slots[0]); 1641 if (key.objectid == head->bytenr && 1642 key.type == BTRFS_EXTENT_ITEM_KEY && 1643 key.offset == head->num_bytes) 1644 ret = 0; 1645 } 1646 if (ret > 0) { 1647 btrfs_release_path(path); 1648 metadata = 0; 1649 1650 key.objectid = head->bytenr; 1651 key.offset = head->num_bytes; 1652 key.type = BTRFS_EXTENT_ITEM_KEY; 1653 goto again; 1654 } 1655 } else { 1656 ret = -EUCLEAN; 1657 btrfs_err(fs_info, 1658 "missing extent item for extent %llu num_bytes %llu level %d", 1659 head->bytenr, head->num_bytes, head->level); 1660 goto out; 1661 } 1662 } 1663 1664 leaf = path->nodes[0]; 1665 item_size = btrfs_item_size(leaf, path->slots[0]); 1666 1667 if (unlikely(item_size < sizeof(*ei))) { 1668 ret = -EUCLEAN; 1669 btrfs_err(fs_info, 1670 "unexpected extent item size, has %u expect >= %zu", 1671 item_size, sizeof(*ei)); 1672 btrfs_abort_transaction(trans, ret); 1673 goto out; 1674 } 1675 1676 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1677 __run_delayed_extent_op(extent_op, leaf, ei); 1678 1679 btrfs_mark_buffer_dirty(trans, leaf); 1680 out: 1681 btrfs_free_path(path); 1682 return ret; 1683 } 1684 1685 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1686 struct btrfs_delayed_ref_head *href, 1687 struct btrfs_delayed_ref_node *node, 1688 struct btrfs_delayed_extent_op *extent_op, 1689 bool insert_reserved) 1690 { 1691 int ret = 0; 1692 struct btrfs_fs_info *fs_info = trans->fs_info; 1693 u64 parent = 0; 1694 u64 ref_root = 0; 1695 1696 trace_run_delayed_tree_ref(trans->fs_info, node); 1697 1698 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1699 parent = node->parent; 1700 ref_root = node->ref_root; 1701 1702 if (unlikely(node->ref_mod != 1)) { 1703 btrfs_err(trans->fs_info, 1704 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1705 node->bytenr, node->ref_mod, node->action, ref_root, 1706 parent); 1707 return -EUCLEAN; 1708 } 1709 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1710 struct btrfs_squota_delta delta = { 1711 .root = href->owning_root, 1712 .num_bytes = fs_info->nodesize, 1713 .is_data = false, 1714 .is_inc = true, 1715 .generation = trans->transid, 1716 }; 1717 1718 ret = alloc_reserved_tree_block(trans, node, extent_op); 1719 if (!ret) 1720 btrfs_record_squota_delta(fs_info, &delta); 1721 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1722 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1723 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1724 ret = __btrfs_free_extent(trans, href, node, extent_op); 1725 } else { 1726 BUG(); 1727 } 1728 return ret; 1729 } 1730 1731 /* helper function to actually process a single delayed ref entry */ 1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1733 struct btrfs_delayed_ref_head *href, 1734 struct btrfs_delayed_ref_node *node, 1735 struct btrfs_delayed_extent_op *extent_op, 1736 bool insert_reserved) 1737 { 1738 int ret = 0; 1739 1740 if (TRANS_ABORTED(trans)) { 1741 if (insert_reserved) { 1742 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1743 free_head_ref_squota_rsv(trans->fs_info, href); 1744 } 1745 return 0; 1746 } 1747 1748 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1749 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1750 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1751 insert_reserved); 1752 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1753 node->type == BTRFS_SHARED_DATA_REF_KEY) 1754 ret = run_delayed_data_ref(trans, href, node, extent_op, 1755 insert_reserved); 1756 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1757 ret = 0; 1758 else 1759 BUG(); 1760 if (ret && insert_reserved) 1761 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1762 if (ret < 0) 1763 btrfs_err(trans->fs_info, 1764 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1765 node->bytenr, node->num_bytes, node->type, 1766 node->action, node->ref_mod, ret); 1767 return ret; 1768 } 1769 1770 static inline struct btrfs_delayed_ref_node * 1771 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1772 { 1773 struct btrfs_delayed_ref_node *ref; 1774 1775 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1776 return NULL; 1777 1778 /* 1779 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1780 * This is to prevent a ref count from going down to zero, which deletes 1781 * the extent item from the extent tree, when there still are references 1782 * to add, which would fail because they would not find the extent item. 1783 */ 1784 if (!list_empty(&head->ref_add_list)) 1785 return list_first_entry(&head->ref_add_list, 1786 struct btrfs_delayed_ref_node, add_list); 1787 1788 ref = rb_entry(rb_first_cached(&head->ref_tree), 1789 struct btrfs_delayed_ref_node, ref_node); 1790 ASSERT(list_empty(&ref->add_list)); 1791 return ref; 1792 } 1793 1794 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1795 struct btrfs_delayed_ref_head *head) 1796 { 1797 spin_lock(&delayed_refs->lock); 1798 head->processing = false; 1799 delayed_refs->num_heads_ready++; 1800 spin_unlock(&delayed_refs->lock); 1801 btrfs_delayed_ref_unlock(head); 1802 } 1803 1804 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1805 struct btrfs_delayed_ref_head *head) 1806 { 1807 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1808 1809 if (!extent_op) 1810 return NULL; 1811 1812 if (head->must_insert_reserved) { 1813 head->extent_op = NULL; 1814 btrfs_free_delayed_extent_op(extent_op); 1815 return NULL; 1816 } 1817 return extent_op; 1818 } 1819 1820 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1821 struct btrfs_delayed_ref_head *head) 1822 { 1823 struct btrfs_delayed_extent_op *extent_op; 1824 int ret; 1825 1826 extent_op = cleanup_extent_op(head); 1827 if (!extent_op) 1828 return 0; 1829 head->extent_op = NULL; 1830 spin_unlock(&head->lock); 1831 ret = run_delayed_extent_op(trans, head, extent_op); 1832 btrfs_free_delayed_extent_op(extent_op); 1833 return ret ? ret : 1; 1834 } 1835 1836 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1837 struct btrfs_delayed_ref_root *delayed_refs, 1838 struct btrfs_delayed_ref_head *head) 1839 { 1840 u64 ret = 0; 1841 1842 /* 1843 * We had csum deletions accounted for in our delayed refs rsv, we need 1844 * to drop the csum leaves for this update from our delayed_refs_rsv. 1845 */ 1846 if (head->total_ref_mod < 0 && head->is_data) { 1847 int nr_csums; 1848 1849 spin_lock(&delayed_refs->lock); 1850 delayed_refs->pending_csums -= head->num_bytes; 1851 spin_unlock(&delayed_refs->lock); 1852 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1853 1854 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1855 1856 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1857 } 1858 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1859 if (head->must_insert_reserved) 1860 free_head_ref_squota_rsv(fs_info, head); 1861 1862 return ret; 1863 } 1864 1865 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1866 struct btrfs_delayed_ref_head *head, 1867 u64 *bytes_released) 1868 { 1869 1870 struct btrfs_fs_info *fs_info = trans->fs_info; 1871 struct btrfs_delayed_ref_root *delayed_refs; 1872 int ret; 1873 1874 delayed_refs = &trans->transaction->delayed_refs; 1875 1876 ret = run_and_cleanup_extent_op(trans, head); 1877 if (ret < 0) { 1878 unselect_delayed_ref_head(delayed_refs, head); 1879 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1880 return ret; 1881 } else if (ret) { 1882 return ret; 1883 } 1884 1885 /* 1886 * Need to drop our head ref lock and re-acquire the delayed ref lock 1887 * and then re-check to make sure nobody got added. 1888 */ 1889 spin_unlock(&head->lock); 1890 spin_lock(&delayed_refs->lock); 1891 spin_lock(&head->lock); 1892 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1893 spin_unlock(&head->lock); 1894 spin_unlock(&delayed_refs->lock); 1895 return 1; 1896 } 1897 btrfs_delete_ref_head(delayed_refs, head); 1898 spin_unlock(&head->lock); 1899 spin_unlock(&delayed_refs->lock); 1900 1901 if (head->must_insert_reserved) { 1902 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1903 if (head->is_data) { 1904 struct btrfs_root *csum_root; 1905 1906 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1907 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1908 head->num_bytes); 1909 } 1910 } 1911 1912 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1913 1914 trace_run_delayed_ref_head(fs_info, head, 0); 1915 btrfs_delayed_ref_unlock(head); 1916 btrfs_put_delayed_ref_head(head); 1917 return ret; 1918 } 1919 1920 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1921 struct btrfs_trans_handle *trans) 1922 { 1923 struct btrfs_delayed_ref_root *delayed_refs = 1924 &trans->transaction->delayed_refs; 1925 struct btrfs_delayed_ref_head *head = NULL; 1926 int ret; 1927 1928 spin_lock(&delayed_refs->lock); 1929 head = btrfs_select_ref_head(delayed_refs); 1930 if (!head) { 1931 spin_unlock(&delayed_refs->lock); 1932 return head; 1933 } 1934 1935 /* 1936 * Grab the lock that says we are going to process all the refs for 1937 * this head 1938 */ 1939 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1940 spin_unlock(&delayed_refs->lock); 1941 1942 /* 1943 * We may have dropped the spin lock to get the head mutex lock, and 1944 * that might have given someone else time to free the head. If that's 1945 * true, it has been removed from our list and we can move on. 1946 */ 1947 if (ret == -EAGAIN) 1948 head = ERR_PTR(-EAGAIN); 1949 1950 return head; 1951 } 1952 1953 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1954 struct btrfs_delayed_ref_head *locked_ref, 1955 u64 *bytes_released) 1956 { 1957 struct btrfs_fs_info *fs_info = trans->fs_info; 1958 struct btrfs_delayed_ref_root *delayed_refs; 1959 struct btrfs_delayed_extent_op *extent_op; 1960 struct btrfs_delayed_ref_node *ref; 1961 bool must_insert_reserved; 1962 int ret; 1963 1964 delayed_refs = &trans->transaction->delayed_refs; 1965 1966 lockdep_assert_held(&locked_ref->mutex); 1967 lockdep_assert_held(&locked_ref->lock); 1968 1969 while ((ref = select_delayed_ref(locked_ref))) { 1970 if (ref->seq && 1971 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1972 spin_unlock(&locked_ref->lock); 1973 unselect_delayed_ref_head(delayed_refs, locked_ref); 1974 return -EAGAIN; 1975 } 1976 1977 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1978 RB_CLEAR_NODE(&ref->ref_node); 1979 if (!list_empty(&ref->add_list)) 1980 list_del(&ref->add_list); 1981 /* 1982 * When we play the delayed ref, also correct the ref_mod on 1983 * head 1984 */ 1985 switch (ref->action) { 1986 case BTRFS_ADD_DELAYED_REF: 1987 case BTRFS_ADD_DELAYED_EXTENT: 1988 locked_ref->ref_mod -= ref->ref_mod; 1989 break; 1990 case BTRFS_DROP_DELAYED_REF: 1991 locked_ref->ref_mod += ref->ref_mod; 1992 break; 1993 default: 1994 WARN_ON(1); 1995 } 1996 atomic_dec(&delayed_refs->num_entries); 1997 1998 /* 1999 * Record the must_insert_reserved flag before we drop the 2000 * spin lock. 2001 */ 2002 must_insert_reserved = locked_ref->must_insert_reserved; 2003 /* 2004 * Unsetting this on the head ref relinquishes ownership of 2005 * the rsv_bytes, so it is critical that every possible code 2006 * path from here forward frees all reserves including qgroup 2007 * reserve. 2008 */ 2009 locked_ref->must_insert_reserved = false; 2010 2011 extent_op = locked_ref->extent_op; 2012 locked_ref->extent_op = NULL; 2013 spin_unlock(&locked_ref->lock); 2014 2015 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2016 must_insert_reserved); 2017 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2018 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2019 2020 btrfs_free_delayed_extent_op(extent_op); 2021 if (ret) { 2022 unselect_delayed_ref_head(delayed_refs, locked_ref); 2023 btrfs_put_delayed_ref(ref); 2024 return ret; 2025 } 2026 2027 btrfs_put_delayed_ref(ref); 2028 cond_resched(); 2029 2030 spin_lock(&locked_ref->lock); 2031 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2032 } 2033 2034 return 0; 2035 } 2036 2037 /* 2038 * Returns 0 on success or if called with an already aborted transaction. 2039 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2040 */ 2041 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2042 u64 min_bytes) 2043 { 2044 struct btrfs_fs_info *fs_info = trans->fs_info; 2045 struct btrfs_delayed_ref_root *delayed_refs; 2046 struct btrfs_delayed_ref_head *locked_ref = NULL; 2047 int ret; 2048 unsigned long count = 0; 2049 unsigned long max_count = 0; 2050 u64 bytes_processed = 0; 2051 2052 delayed_refs = &trans->transaction->delayed_refs; 2053 if (min_bytes == 0) { 2054 max_count = delayed_refs->num_heads_ready; 2055 min_bytes = U64_MAX; 2056 } 2057 2058 do { 2059 if (!locked_ref) { 2060 locked_ref = btrfs_obtain_ref_head(trans); 2061 if (IS_ERR_OR_NULL(locked_ref)) { 2062 if (PTR_ERR(locked_ref) == -EAGAIN) { 2063 continue; 2064 } else { 2065 break; 2066 } 2067 } 2068 count++; 2069 } 2070 /* 2071 * We need to try and merge add/drops of the same ref since we 2072 * can run into issues with relocate dropping the implicit ref 2073 * and then it being added back again before the drop can 2074 * finish. If we merged anything we need to re-loop so we can 2075 * get a good ref. 2076 * Or we can get node references of the same type that weren't 2077 * merged when created due to bumps in the tree mod seq, and 2078 * we need to merge them to prevent adding an inline extent 2079 * backref before dropping it (triggering a BUG_ON at 2080 * insert_inline_extent_backref()). 2081 */ 2082 spin_lock(&locked_ref->lock); 2083 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2084 2085 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2086 if (ret < 0 && ret != -EAGAIN) { 2087 /* 2088 * Error, btrfs_run_delayed_refs_for_head already 2089 * unlocked everything so just bail out 2090 */ 2091 return ret; 2092 } else if (!ret) { 2093 /* 2094 * Success, perform the usual cleanup of a processed 2095 * head 2096 */ 2097 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2098 if (ret > 0 ) { 2099 /* We dropped our lock, we need to loop. */ 2100 ret = 0; 2101 continue; 2102 } else if (ret) { 2103 return ret; 2104 } 2105 } 2106 2107 /* 2108 * Either success case or btrfs_run_delayed_refs_for_head 2109 * returned -EAGAIN, meaning we need to select another head 2110 */ 2111 2112 locked_ref = NULL; 2113 cond_resched(); 2114 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2115 (max_count > 0 && count < max_count) || 2116 locked_ref); 2117 2118 return 0; 2119 } 2120 2121 #ifdef SCRAMBLE_DELAYED_REFS 2122 /* 2123 * Normally delayed refs get processed in ascending bytenr order. This 2124 * correlates in most cases to the order added. To expose dependencies on this 2125 * order, we start to process the tree in the middle instead of the beginning 2126 */ 2127 static u64 find_middle(struct rb_root *root) 2128 { 2129 struct rb_node *n = root->rb_node; 2130 struct btrfs_delayed_ref_node *entry; 2131 int alt = 1; 2132 u64 middle; 2133 u64 first = 0, last = 0; 2134 2135 n = rb_first(root); 2136 if (n) { 2137 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2138 first = entry->bytenr; 2139 } 2140 n = rb_last(root); 2141 if (n) { 2142 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2143 last = entry->bytenr; 2144 } 2145 n = root->rb_node; 2146 2147 while (n) { 2148 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2149 WARN_ON(!entry->in_tree); 2150 2151 middle = entry->bytenr; 2152 2153 if (alt) 2154 n = n->rb_left; 2155 else 2156 n = n->rb_right; 2157 2158 alt = 1 - alt; 2159 } 2160 return middle; 2161 } 2162 #endif 2163 2164 /* 2165 * Start processing the delayed reference count updates and extent insertions 2166 * we have queued up so far. 2167 * 2168 * @trans: Transaction handle. 2169 * @min_bytes: How many bytes of delayed references to process. After this 2170 * many bytes we stop processing delayed references if there are 2171 * any more. If 0 it means to run all existing delayed references, 2172 * but not new ones added after running all existing ones. 2173 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2174 * plus any new ones that are added. 2175 * 2176 * Returns 0 on success or if called with an aborted transaction 2177 * Returns <0 on error and aborts the transaction 2178 */ 2179 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2180 { 2181 struct btrfs_fs_info *fs_info = trans->fs_info; 2182 struct btrfs_delayed_ref_root *delayed_refs; 2183 int ret; 2184 2185 /* We'll clean this up in btrfs_cleanup_transaction */ 2186 if (TRANS_ABORTED(trans)) 2187 return 0; 2188 2189 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2190 return 0; 2191 2192 delayed_refs = &trans->transaction->delayed_refs; 2193 again: 2194 #ifdef SCRAMBLE_DELAYED_REFS 2195 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2196 #endif 2197 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2198 if (ret < 0) { 2199 btrfs_abort_transaction(trans, ret); 2200 return ret; 2201 } 2202 2203 if (min_bytes == U64_MAX) { 2204 btrfs_create_pending_block_groups(trans); 2205 2206 spin_lock(&delayed_refs->lock); 2207 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2208 spin_unlock(&delayed_refs->lock); 2209 return 0; 2210 } 2211 spin_unlock(&delayed_refs->lock); 2212 2213 cond_resched(); 2214 goto again; 2215 } 2216 2217 return 0; 2218 } 2219 2220 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2221 struct extent_buffer *eb, u64 flags) 2222 { 2223 struct btrfs_delayed_extent_op *extent_op; 2224 int ret; 2225 2226 extent_op = btrfs_alloc_delayed_extent_op(); 2227 if (!extent_op) 2228 return -ENOMEM; 2229 2230 extent_op->flags_to_set = flags; 2231 extent_op->update_flags = true; 2232 extent_op->update_key = false; 2233 2234 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2235 btrfs_header_level(eb), extent_op); 2236 if (ret) 2237 btrfs_free_delayed_extent_op(extent_op); 2238 return ret; 2239 } 2240 2241 static noinline int check_delayed_ref(struct btrfs_root *root, 2242 struct btrfs_path *path, 2243 u64 objectid, u64 offset, u64 bytenr) 2244 { 2245 struct btrfs_delayed_ref_head *head; 2246 struct btrfs_delayed_ref_node *ref; 2247 struct btrfs_delayed_ref_root *delayed_refs; 2248 struct btrfs_transaction *cur_trans; 2249 struct rb_node *node; 2250 int ret = 0; 2251 2252 spin_lock(&root->fs_info->trans_lock); 2253 cur_trans = root->fs_info->running_transaction; 2254 if (cur_trans) 2255 refcount_inc(&cur_trans->use_count); 2256 spin_unlock(&root->fs_info->trans_lock); 2257 if (!cur_trans) 2258 return 0; 2259 2260 delayed_refs = &cur_trans->delayed_refs; 2261 spin_lock(&delayed_refs->lock); 2262 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2263 if (!head) { 2264 spin_unlock(&delayed_refs->lock); 2265 btrfs_put_transaction(cur_trans); 2266 return 0; 2267 } 2268 2269 if (!mutex_trylock(&head->mutex)) { 2270 if (path->nowait) { 2271 spin_unlock(&delayed_refs->lock); 2272 btrfs_put_transaction(cur_trans); 2273 return -EAGAIN; 2274 } 2275 2276 refcount_inc(&head->refs); 2277 spin_unlock(&delayed_refs->lock); 2278 2279 btrfs_release_path(path); 2280 2281 /* 2282 * Mutex was contended, block until it's released and let 2283 * caller try again 2284 */ 2285 mutex_lock(&head->mutex); 2286 mutex_unlock(&head->mutex); 2287 btrfs_put_delayed_ref_head(head); 2288 btrfs_put_transaction(cur_trans); 2289 return -EAGAIN; 2290 } 2291 spin_unlock(&delayed_refs->lock); 2292 2293 spin_lock(&head->lock); 2294 /* 2295 * XXX: We should replace this with a proper search function in the 2296 * future. 2297 */ 2298 for (node = rb_first_cached(&head->ref_tree); node; 2299 node = rb_next(node)) { 2300 u64 ref_owner; 2301 u64 ref_offset; 2302 2303 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2304 /* If it's a shared ref we know a cross reference exists */ 2305 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2306 ret = 1; 2307 break; 2308 } 2309 2310 ref_owner = btrfs_delayed_ref_owner(ref); 2311 ref_offset = btrfs_delayed_ref_offset(ref); 2312 2313 /* 2314 * If our ref doesn't match the one we're currently looking at 2315 * then we have a cross reference. 2316 */ 2317 if (ref->ref_root != btrfs_root_id(root) || 2318 ref_owner != objectid || ref_offset != offset) { 2319 ret = 1; 2320 break; 2321 } 2322 } 2323 spin_unlock(&head->lock); 2324 mutex_unlock(&head->mutex); 2325 btrfs_put_transaction(cur_trans); 2326 return ret; 2327 } 2328 2329 static noinline int check_committed_ref(struct btrfs_root *root, 2330 struct btrfs_path *path, 2331 u64 objectid, u64 offset, u64 bytenr, 2332 bool strict) 2333 { 2334 struct btrfs_fs_info *fs_info = root->fs_info; 2335 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2336 struct extent_buffer *leaf; 2337 struct btrfs_extent_data_ref *ref; 2338 struct btrfs_extent_inline_ref *iref; 2339 struct btrfs_extent_item *ei; 2340 struct btrfs_key key; 2341 u32 item_size; 2342 u32 expected_size; 2343 int type; 2344 int ret; 2345 2346 key.objectid = bytenr; 2347 key.offset = (u64)-1; 2348 key.type = BTRFS_EXTENT_ITEM_KEY; 2349 2350 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2351 if (ret < 0) 2352 goto out; 2353 if (ret == 0) { 2354 /* 2355 * Key with offset -1 found, there would have to exist an extent 2356 * item with such offset, but this is out of the valid range. 2357 */ 2358 ret = -EUCLEAN; 2359 goto out; 2360 } 2361 2362 ret = -ENOENT; 2363 if (path->slots[0] == 0) 2364 goto out; 2365 2366 path->slots[0]--; 2367 leaf = path->nodes[0]; 2368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2369 2370 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2371 goto out; 2372 2373 ret = 1; 2374 item_size = btrfs_item_size(leaf, path->slots[0]); 2375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2376 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2377 2378 /* No inline refs; we need to bail before checking for owner ref. */ 2379 if (item_size == sizeof(*ei)) 2380 goto out; 2381 2382 /* Check for an owner ref; skip over it to the real inline refs. */ 2383 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2384 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2385 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2386 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2387 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2388 } 2389 2390 /* If extent item has more than 1 inline ref then it's shared */ 2391 if (item_size != expected_size) 2392 goto out; 2393 2394 /* 2395 * If extent created before last snapshot => it's shared unless the 2396 * snapshot has been deleted. Use the heuristic if strict is false. 2397 */ 2398 if (!strict && 2399 (btrfs_extent_generation(leaf, ei) <= 2400 btrfs_root_last_snapshot(&root->root_item))) 2401 goto out; 2402 2403 /* If this extent has SHARED_DATA_REF then it's shared */ 2404 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2405 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2406 goto out; 2407 2408 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2409 if (btrfs_extent_refs(leaf, ei) != 2410 btrfs_extent_data_ref_count(leaf, ref) || 2411 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2412 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2413 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2414 goto out; 2415 2416 ret = 0; 2417 out: 2418 return ret; 2419 } 2420 2421 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2422 u64 bytenr, bool strict, struct btrfs_path *path) 2423 { 2424 int ret; 2425 2426 do { 2427 ret = check_committed_ref(root, path, objectid, 2428 offset, bytenr, strict); 2429 if (ret && ret != -ENOENT) 2430 goto out; 2431 2432 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2433 } while (ret == -EAGAIN); 2434 2435 out: 2436 btrfs_release_path(path); 2437 if (btrfs_is_data_reloc_root(root)) 2438 WARN_ON(ret > 0); 2439 return ret; 2440 } 2441 2442 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2443 struct btrfs_root *root, 2444 struct extent_buffer *buf, 2445 int full_backref, int inc) 2446 { 2447 struct btrfs_fs_info *fs_info = root->fs_info; 2448 u64 parent; 2449 u64 ref_root; 2450 u32 nritems; 2451 struct btrfs_key key; 2452 struct btrfs_file_extent_item *fi; 2453 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2454 int i; 2455 int action; 2456 int level; 2457 int ret = 0; 2458 2459 if (btrfs_is_testing(fs_info)) 2460 return 0; 2461 2462 ref_root = btrfs_header_owner(buf); 2463 nritems = btrfs_header_nritems(buf); 2464 level = btrfs_header_level(buf); 2465 2466 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2467 return 0; 2468 2469 if (full_backref) 2470 parent = buf->start; 2471 else 2472 parent = 0; 2473 if (inc) 2474 action = BTRFS_ADD_DELAYED_REF; 2475 else 2476 action = BTRFS_DROP_DELAYED_REF; 2477 2478 for (i = 0; i < nritems; i++) { 2479 struct btrfs_ref ref = { 2480 .action = action, 2481 .parent = parent, 2482 .ref_root = ref_root, 2483 }; 2484 2485 if (level == 0) { 2486 btrfs_item_key_to_cpu(buf, &key, i); 2487 if (key.type != BTRFS_EXTENT_DATA_KEY) 2488 continue; 2489 fi = btrfs_item_ptr(buf, i, 2490 struct btrfs_file_extent_item); 2491 if (btrfs_file_extent_type(buf, fi) == 2492 BTRFS_FILE_EXTENT_INLINE) 2493 continue; 2494 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2495 if (ref.bytenr == 0) 2496 continue; 2497 2498 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2499 ref.owning_root = ref_root; 2500 2501 key.offset -= btrfs_file_extent_offset(buf, fi); 2502 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2503 btrfs_root_id(root), for_reloc); 2504 if (inc) 2505 ret = btrfs_inc_extent_ref(trans, &ref); 2506 else 2507 ret = btrfs_free_extent(trans, &ref); 2508 if (ret) 2509 goto fail; 2510 } else { 2511 /* We don't know the owning_root, leave as 0. */ 2512 ref.bytenr = btrfs_node_blockptr(buf, i); 2513 ref.num_bytes = fs_info->nodesize; 2514 2515 btrfs_init_tree_ref(&ref, level - 1, 2516 btrfs_root_id(root), for_reloc); 2517 if (inc) 2518 ret = btrfs_inc_extent_ref(trans, &ref); 2519 else 2520 ret = btrfs_free_extent(trans, &ref); 2521 if (ret) 2522 goto fail; 2523 } 2524 } 2525 return 0; 2526 fail: 2527 return ret; 2528 } 2529 2530 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2531 struct extent_buffer *buf, int full_backref) 2532 { 2533 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2534 } 2535 2536 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2537 struct extent_buffer *buf, int full_backref) 2538 { 2539 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2540 } 2541 2542 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2543 { 2544 struct btrfs_fs_info *fs_info = root->fs_info; 2545 u64 flags; 2546 u64 ret; 2547 2548 if (data) 2549 flags = BTRFS_BLOCK_GROUP_DATA; 2550 else if (root == fs_info->chunk_root) 2551 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2552 else 2553 flags = BTRFS_BLOCK_GROUP_METADATA; 2554 2555 ret = btrfs_get_alloc_profile(fs_info, flags); 2556 return ret; 2557 } 2558 2559 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2560 { 2561 struct rb_node *leftmost; 2562 u64 bytenr = 0; 2563 2564 read_lock(&fs_info->block_group_cache_lock); 2565 /* Get the block group with the lowest logical start address. */ 2566 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2567 if (leftmost) { 2568 struct btrfs_block_group *bg; 2569 2570 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2571 bytenr = bg->start; 2572 } 2573 read_unlock(&fs_info->block_group_cache_lock); 2574 2575 return bytenr; 2576 } 2577 2578 static int pin_down_extent(struct btrfs_trans_handle *trans, 2579 struct btrfs_block_group *cache, 2580 u64 bytenr, u64 num_bytes, int reserved) 2581 { 2582 struct btrfs_fs_info *fs_info = cache->fs_info; 2583 2584 spin_lock(&cache->space_info->lock); 2585 spin_lock(&cache->lock); 2586 cache->pinned += num_bytes; 2587 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2588 num_bytes); 2589 if (reserved) { 2590 cache->reserved -= num_bytes; 2591 cache->space_info->bytes_reserved -= num_bytes; 2592 } 2593 spin_unlock(&cache->lock); 2594 spin_unlock(&cache->space_info->lock); 2595 2596 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2597 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2598 return 0; 2599 } 2600 2601 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2602 u64 bytenr, u64 num_bytes, int reserved) 2603 { 2604 struct btrfs_block_group *cache; 2605 2606 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2607 BUG_ON(!cache); /* Logic error */ 2608 2609 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2610 2611 btrfs_put_block_group(cache); 2612 return 0; 2613 } 2614 2615 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2616 const struct extent_buffer *eb) 2617 { 2618 struct btrfs_block_group *cache; 2619 int ret; 2620 2621 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2622 if (!cache) 2623 return -EINVAL; 2624 2625 /* 2626 * Fully cache the free space first so that our pin removes the free space 2627 * from the cache. 2628 */ 2629 ret = btrfs_cache_block_group(cache, true); 2630 if (ret) 2631 goto out; 2632 2633 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2634 2635 /* remove us from the free space cache (if we're there at all) */ 2636 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2637 out: 2638 btrfs_put_block_group(cache); 2639 return ret; 2640 } 2641 2642 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2643 u64 start, u64 num_bytes) 2644 { 2645 int ret; 2646 struct btrfs_block_group *block_group; 2647 2648 block_group = btrfs_lookup_block_group(fs_info, start); 2649 if (!block_group) 2650 return -EINVAL; 2651 2652 ret = btrfs_cache_block_group(block_group, true); 2653 if (ret) 2654 goto out; 2655 2656 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2657 out: 2658 btrfs_put_block_group(block_group); 2659 return ret; 2660 } 2661 2662 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2663 { 2664 struct btrfs_fs_info *fs_info = eb->fs_info; 2665 struct btrfs_file_extent_item *item; 2666 struct btrfs_key key; 2667 int found_type; 2668 int i; 2669 int ret = 0; 2670 2671 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2672 return 0; 2673 2674 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2675 btrfs_item_key_to_cpu(eb, &key, i); 2676 if (key.type != BTRFS_EXTENT_DATA_KEY) 2677 continue; 2678 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2679 found_type = btrfs_file_extent_type(eb, item); 2680 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2681 continue; 2682 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2683 continue; 2684 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2685 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2686 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2687 if (ret) 2688 break; 2689 } 2690 2691 return ret; 2692 } 2693 2694 static void 2695 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2696 { 2697 atomic_inc(&bg->reservations); 2698 } 2699 2700 /* 2701 * Returns the free cluster for the given space info and sets empty_cluster to 2702 * what it should be based on the mount options. 2703 */ 2704 static struct btrfs_free_cluster * 2705 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2706 struct btrfs_space_info *space_info, u64 *empty_cluster) 2707 { 2708 struct btrfs_free_cluster *ret = NULL; 2709 2710 *empty_cluster = 0; 2711 if (btrfs_mixed_space_info(space_info)) 2712 return ret; 2713 2714 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2715 ret = &fs_info->meta_alloc_cluster; 2716 if (btrfs_test_opt(fs_info, SSD)) 2717 *empty_cluster = SZ_2M; 2718 else 2719 *empty_cluster = SZ_64K; 2720 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2721 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2722 *empty_cluster = SZ_2M; 2723 ret = &fs_info->data_alloc_cluster; 2724 } 2725 2726 return ret; 2727 } 2728 2729 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2730 u64 start, u64 end, 2731 const bool return_free_space) 2732 { 2733 struct btrfs_block_group *cache = NULL; 2734 struct btrfs_space_info *space_info; 2735 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2736 struct btrfs_free_cluster *cluster = NULL; 2737 u64 len; 2738 u64 total_unpinned = 0; 2739 u64 empty_cluster = 0; 2740 bool readonly; 2741 int ret = 0; 2742 2743 while (start <= end) { 2744 readonly = false; 2745 if (!cache || 2746 start >= cache->start + cache->length) { 2747 if (cache) 2748 btrfs_put_block_group(cache); 2749 total_unpinned = 0; 2750 cache = btrfs_lookup_block_group(fs_info, start); 2751 if (cache == NULL) { 2752 /* Logic error, something removed the block group. */ 2753 ret = -EUCLEAN; 2754 goto out; 2755 } 2756 2757 cluster = fetch_cluster_info(fs_info, 2758 cache->space_info, 2759 &empty_cluster); 2760 empty_cluster <<= 1; 2761 } 2762 2763 len = cache->start + cache->length - start; 2764 len = min(len, end + 1 - start); 2765 2766 if (return_free_space) 2767 btrfs_add_free_space(cache, start, len); 2768 2769 start += len; 2770 total_unpinned += len; 2771 space_info = cache->space_info; 2772 2773 /* 2774 * If this space cluster has been marked as fragmented and we've 2775 * unpinned enough in this block group to potentially allow a 2776 * cluster to be created inside of it go ahead and clear the 2777 * fragmented check. 2778 */ 2779 if (cluster && cluster->fragmented && 2780 total_unpinned > empty_cluster) { 2781 spin_lock(&cluster->lock); 2782 cluster->fragmented = 0; 2783 spin_unlock(&cluster->lock); 2784 } 2785 2786 spin_lock(&space_info->lock); 2787 spin_lock(&cache->lock); 2788 cache->pinned -= len; 2789 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2790 space_info->max_extent_size = 0; 2791 if (cache->ro) { 2792 space_info->bytes_readonly += len; 2793 readonly = true; 2794 } else if (btrfs_is_zoned(fs_info)) { 2795 /* Need reset before reusing in a zoned block group */ 2796 space_info->bytes_zone_unusable += len; 2797 readonly = true; 2798 } 2799 spin_unlock(&cache->lock); 2800 if (!readonly && return_free_space && 2801 global_rsv->space_info == space_info) { 2802 spin_lock(&global_rsv->lock); 2803 if (!global_rsv->full) { 2804 u64 to_add = min(len, global_rsv->size - 2805 global_rsv->reserved); 2806 2807 global_rsv->reserved += to_add; 2808 btrfs_space_info_update_bytes_may_use(fs_info, 2809 space_info, to_add); 2810 if (global_rsv->reserved >= global_rsv->size) 2811 global_rsv->full = 1; 2812 len -= to_add; 2813 } 2814 spin_unlock(&global_rsv->lock); 2815 } 2816 /* Add to any tickets we may have */ 2817 if (!readonly && return_free_space && len) 2818 btrfs_try_granting_tickets(fs_info, space_info); 2819 spin_unlock(&space_info->lock); 2820 } 2821 2822 if (cache) 2823 btrfs_put_block_group(cache); 2824 out: 2825 return ret; 2826 } 2827 2828 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2829 { 2830 struct btrfs_fs_info *fs_info = trans->fs_info; 2831 struct btrfs_block_group *block_group, *tmp; 2832 struct list_head *deleted_bgs; 2833 struct extent_io_tree *unpin; 2834 u64 start; 2835 u64 end; 2836 int ret; 2837 2838 unpin = &trans->transaction->pinned_extents; 2839 2840 while (!TRANS_ABORTED(trans)) { 2841 struct extent_state *cached_state = NULL; 2842 2843 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2844 if (!find_first_extent_bit(unpin, 0, &start, &end, 2845 EXTENT_DIRTY, &cached_state)) { 2846 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2847 break; 2848 } 2849 2850 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2851 ret = btrfs_discard_extent(fs_info, start, 2852 end + 1 - start, NULL); 2853 2854 clear_extent_dirty(unpin, start, end, &cached_state); 2855 ret = unpin_extent_range(fs_info, start, end, true); 2856 BUG_ON(ret); 2857 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2858 free_extent_state(cached_state); 2859 cond_resched(); 2860 } 2861 2862 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2863 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2864 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2865 } 2866 2867 /* 2868 * Transaction is finished. We don't need the lock anymore. We 2869 * do need to clean up the block groups in case of a transaction 2870 * abort. 2871 */ 2872 deleted_bgs = &trans->transaction->deleted_bgs; 2873 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2874 u64 trimmed = 0; 2875 2876 ret = -EROFS; 2877 if (!TRANS_ABORTED(trans)) 2878 ret = btrfs_discard_extent(fs_info, 2879 block_group->start, 2880 block_group->length, 2881 &trimmed); 2882 2883 list_del_init(&block_group->bg_list); 2884 btrfs_unfreeze_block_group(block_group); 2885 btrfs_put_block_group(block_group); 2886 2887 if (ret) { 2888 const char *errstr = btrfs_decode_error(ret); 2889 btrfs_warn(fs_info, 2890 "discard failed while removing blockgroup: errno=%d %s", 2891 ret, errstr); 2892 } 2893 } 2894 2895 return 0; 2896 } 2897 2898 /* 2899 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2900 * 2901 * @fs_info: the btrfs_fs_info for this mount 2902 * @leaf: a leaf in the extent tree containing the extent item 2903 * @slot: the slot in the leaf where the extent item is found 2904 * 2905 * Returns the objectid of the root that originally allocated the extent item 2906 * if the inline owner ref is expected and present, otherwise 0. 2907 * 2908 * If an extent item has an owner ref item, it will be the first inline ref 2909 * item. Therefore the logic is to check whether there are any inline ref 2910 * items, then check the type of the first one. 2911 */ 2912 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2913 struct extent_buffer *leaf, int slot) 2914 { 2915 struct btrfs_extent_item *ei; 2916 struct btrfs_extent_inline_ref *iref; 2917 struct btrfs_extent_owner_ref *oref; 2918 unsigned long ptr; 2919 unsigned long end; 2920 int type; 2921 2922 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2923 return 0; 2924 2925 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2926 ptr = (unsigned long)(ei + 1); 2927 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2928 2929 /* No inline ref items of any kind, can't check type. */ 2930 if (ptr == end) 2931 return 0; 2932 2933 iref = (struct btrfs_extent_inline_ref *)ptr; 2934 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2935 2936 /* We found an owner ref, get the root out of it. */ 2937 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2938 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2939 return btrfs_extent_owner_ref_root_id(leaf, oref); 2940 } 2941 2942 /* We have inline refs, but not an owner ref. */ 2943 return 0; 2944 } 2945 2946 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2947 u64 bytenr, struct btrfs_squota_delta *delta) 2948 { 2949 int ret; 2950 u64 num_bytes = delta->num_bytes; 2951 2952 if (delta->is_data) { 2953 struct btrfs_root *csum_root; 2954 2955 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2956 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2957 if (ret) { 2958 btrfs_abort_transaction(trans, ret); 2959 return ret; 2960 } 2961 2962 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2963 if (ret) { 2964 btrfs_abort_transaction(trans, ret); 2965 return ret; 2966 } 2967 } 2968 2969 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2970 if (ret) { 2971 btrfs_abort_transaction(trans, ret); 2972 return ret; 2973 } 2974 2975 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2976 if (ret) { 2977 btrfs_abort_transaction(trans, ret); 2978 return ret; 2979 } 2980 2981 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2982 if (ret) 2983 btrfs_abort_transaction(trans, ret); 2984 2985 return ret; 2986 } 2987 2988 #define abort_and_dump(trans, path, fmt, args...) \ 2989 ({ \ 2990 btrfs_abort_transaction(trans, -EUCLEAN); \ 2991 btrfs_print_leaf(path->nodes[0]); \ 2992 btrfs_crit(trans->fs_info, fmt, ##args); \ 2993 }) 2994 2995 /* 2996 * Drop one or more refs of @node. 2997 * 2998 * 1. Locate the extent refs. 2999 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3000 * Locate it, then reduce the refs number or remove the ref line completely. 3001 * 3002 * 2. Update the refs count in EXTENT/METADATA_ITEM 3003 * 3004 * Inline backref case: 3005 * 3006 * in extent tree we have: 3007 * 3008 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3009 * refs 2 gen 6 flags DATA 3010 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3011 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3012 * 3013 * This function gets called with: 3014 * 3015 * node->bytenr = 13631488 3016 * node->num_bytes = 1048576 3017 * root_objectid = FS_TREE 3018 * owner_objectid = 257 3019 * owner_offset = 0 3020 * refs_to_drop = 1 3021 * 3022 * Then we should get some like: 3023 * 3024 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3025 * refs 1 gen 6 flags DATA 3026 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3027 * 3028 * Keyed backref case: 3029 * 3030 * in extent tree we have: 3031 * 3032 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3033 * refs 754 gen 6 flags DATA 3034 * [...] 3035 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3036 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3037 * 3038 * This function get called with: 3039 * 3040 * node->bytenr = 13631488 3041 * node->num_bytes = 1048576 3042 * root_objectid = FS_TREE 3043 * owner_objectid = 866 3044 * owner_offset = 0 3045 * refs_to_drop = 1 3046 * 3047 * Then we should get some like: 3048 * 3049 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3050 * refs 753 gen 6 flags DATA 3051 * 3052 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3053 */ 3054 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3055 struct btrfs_delayed_ref_head *href, 3056 struct btrfs_delayed_ref_node *node, 3057 struct btrfs_delayed_extent_op *extent_op) 3058 { 3059 struct btrfs_fs_info *info = trans->fs_info; 3060 struct btrfs_key key; 3061 struct btrfs_path *path; 3062 struct btrfs_root *extent_root; 3063 struct extent_buffer *leaf; 3064 struct btrfs_extent_item *ei; 3065 struct btrfs_extent_inline_ref *iref; 3066 int ret; 3067 int is_data; 3068 int extent_slot = 0; 3069 int found_extent = 0; 3070 int num_to_del = 1; 3071 int refs_to_drop = node->ref_mod; 3072 u32 item_size; 3073 u64 refs; 3074 u64 bytenr = node->bytenr; 3075 u64 num_bytes = node->num_bytes; 3076 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3077 u64 owner_offset = btrfs_delayed_ref_offset(node); 3078 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3079 u64 delayed_ref_root = href->owning_root; 3080 3081 extent_root = btrfs_extent_root(info, bytenr); 3082 ASSERT(extent_root); 3083 3084 path = btrfs_alloc_path(); 3085 if (!path) 3086 return -ENOMEM; 3087 3088 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3089 3090 if (!is_data && refs_to_drop != 1) { 3091 btrfs_crit(info, 3092 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3093 node->bytenr, refs_to_drop); 3094 ret = -EINVAL; 3095 btrfs_abort_transaction(trans, ret); 3096 goto out; 3097 } 3098 3099 if (is_data) 3100 skinny_metadata = false; 3101 3102 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3103 node->parent, node->ref_root, owner_objectid, 3104 owner_offset); 3105 if (ret == 0) { 3106 /* 3107 * Either the inline backref or the SHARED_DATA_REF/ 3108 * SHARED_BLOCK_REF is found 3109 * 3110 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3111 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3112 */ 3113 extent_slot = path->slots[0]; 3114 while (extent_slot >= 0) { 3115 btrfs_item_key_to_cpu(path->nodes[0], &key, 3116 extent_slot); 3117 if (key.objectid != bytenr) 3118 break; 3119 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3120 key.offset == num_bytes) { 3121 found_extent = 1; 3122 break; 3123 } 3124 if (key.type == BTRFS_METADATA_ITEM_KEY && 3125 key.offset == owner_objectid) { 3126 found_extent = 1; 3127 break; 3128 } 3129 3130 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3131 if (path->slots[0] - extent_slot > 5) 3132 break; 3133 extent_slot--; 3134 } 3135 3136 if (!found_extent) { 3137 if (iref) { 3138 abort_and_dump(trans, path, 3139 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3140 path->slots[0]); 3141 ret = -EUCLEAN; 3142 goto out; 3143 } 3144 /* Must be SHARED_* item, remove the backref first */ 3145 ret = remove_extent_backref(trans, extent_root, path, 3146 NULL, refs_to_drop, is_data); 3147 if (ret) { 3148 btrfs_abort_transaction(trans, ret); 3149 goto out; 3150 } 3151 btrfs_release_path(path); 3152 3153 /* Slow path to locate EXTENT/METADATA_ITEM */ 3154 key.objectid = bytenr; 3155 key.type = BTRFS_EXTENT_ITEM_KEY; 3156 key.offset = num_bytes; 3157 3158 if (!is_data && skinny_metadata) { 3159 key.type = BTRFS_METADATA_ITEM_KEY; 3160 key.offset = owner_objectid; 3161 } 3162 3163 ret = btrfs_search_slot(trans, extent_root, 3164 &key, path, -1, 1); 3165 if (ret > 0 && skinny_metadata && path->slots[0]) { 3166 /* 3167 * Couldn't find our skinny metadata item, 3168 * see if we have ye olde extent item. 3169 */ 3170 path->slots[0]--; 3171 btrfs_item_key_to_cpu(path->nodes[0], &key, 3172 path->slots[0]); 3173 if (key.objectid == bytenr && 3174 key.type == BTRFS_EXTENT_ITEM_KEY && 3175 key.offset == num_bytes) 3176 ret = 0; 3177 } 3178 3179 if (ret > 0 && skinny_metadata) { 3180 skinny_metadata = false; 3181 key.objectid = bytenr; 3182 key.type = BTRFS_EXTENT_ITEM_KEY; 3183 key.offset = num_bytes; 3184 btrfs_release_path(path); 3185 ret = btrfs_search_slot(trans, extent_root, 3186 &key, path, -1, 1); 3187 } 3188 3189 if (ret) { 3190 if (ret > 0) 3191 btrfs_print_leaf(path->nodes[0]); 3192 btrfs_err(info, 3193 "umm, got %d back from search, was looking for %llu, slot %d", 3194 ret, bytenr, path->slots[0]); 3195 } 3196 if (ret < 0) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 extent_slot = path->slots[0]; 3201 } 3202 } else if (WARN_ON(ret == -ENOENT)) { 3203 abort_and_dump(trans, path, 3204 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3205 bytenr, node->parent, node->ref_root, owner_objectid, 3206 owner_offset, path->slots[0]); 3207 goto out; 3208 } else { 3209 btrfs_abort_transaction(trans, ret); 3210 goto out; 3211 } 3212 3213 leaf = path->nodes[0]; 3214 item_size = btrfs_item_size(leaf, extent_slot); 3215 if (unlikely(item_size < sizeof(*ei))) { 3216 ret = -EUCLEAN; 3217 btrfs_err(trans->fs_info, 3218 "unexpected extent item size, has %u expect >= %zu", 3219 item_size, sizeof(*ei)); 3220 btrfs_abort_transaction(trans, ret); 3221 goto out; 3222 } 3223 ei = btrfs_item_ptr(leaf, extent_slot, 3224 struct btrfs_extent_item); 3225 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3226 key.type == BTRFS_EXTENT_ITEM_KEY) { 3227 struct btrfs_tree_block_info *bi; 3228 3229 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3230 abort_and_dump(trans, path, 3231 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3232 key.objectid, key.type, key.offset, 3233 path->slots[0], owner_objectid, item_size, 3234 sizeof(*ei) + sizeof(*bi)); 3235 ret = -EUCLEAN; 3236 goto out; 3237 } 3238 bi = (struct btrfs_tree_block_info *)(ei + 1); 3239 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3240 } 3241 3242 refs = btrfs_extent_refs(leaf, ei); 3243 if (refs < refs_to_drop) { 3244 abort_and_dump(trans, path, 3245 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3246 refs_to_drop, refs, bytenr, path->slots[0]); 3247 ret = -EUCLEAN; 3248 goto out; 3249 } 3250 refs -= refs_to_drop; 3251 3252 if (refs > 0) { 3253 if (extent_op) 3254 __run_delayed_extent_op(extent_op, leaf, ei); 3255 /* 3256 * In the case of inline back ref, reference count will 3257 * be updated by remove_extent_backref 3258 */ 3259 if (iref) { 3260 if (!found_extent) { 3261 abort_and_dump(trans, path, 3262 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3263 path->slots[0]); 3264 ret = -EUCLEAN; 3265 goto out; 3266 } 3267 } else { 3268 btrfs_set_extent_refs(leaf, ei, refs); 3269 btrfs_mark_buffer_dirty(trans, leaf); 3270 } 3271 if (found_extent) { 3272 ret = remove_extent_backref(trans, extent_root, path, 3273 iref, refs_to_drop, is_data); 3274 if (ret) { 3275 btrfs_abort_transaction(trans, ret); 3276 goto out; 3277 } 3278 } 3279 } else { 3280 struct btrfs_squota_delta delta = { 3281 .root = delayed_ref_root, 3282 .num_bytes = num_bytes, 3283 .is_data = is_data, 3284 .is_inc = false, 3285 .generation = btrfs_extent_generation(leaf, ei), 3286 }; 3287 3288 /* In this branch refs == 1 */ 3289 if (found_extent) { 3290 if (is_data && refs_to_drop != 3291 extent_data_ref_count(path, iref)) { 3292 abort_and_dump(trans, path, 3293 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3294 extent_data_ref_count(path, iref), 3295 refs_to_drop, path->slots[0]); 3296 ret = -EUCLEAN; 3297 goto out; 3298 } 3299 if (iref) { 3300 if (path->slots[0] != extent_slot) { 3301 abort_and_dump(trans, path, 3302 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3303 key.objectid, key.type, 3304 key.offset, path->slots[0]); 3305 ret = -EUCLEAN; 3306 goto out; 3307 } 3308 } else { 3309 /* 3310 * No inline ref, we must be at SHARED_* item, 3311 * And it's single ref, it must be: 3312 * | extent_slot ||extent_slot + 1| 3313 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3314 */ 3315 if (path->slots[0] != extent_slot + 1) { 3316 abort_and_dump(trans, path, 3317 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3318 path->slots[0]); 3319 ret = -EUCLEAN; 3320 goto out; 3321 } 3322 path->slots[0] = extent_slot; 3323 num_to_del = 2; 3324 } 3325 } 3326 /* 3327 * We can't infer the data owner from the delayed ref, so we need 3328 * to try to get it from the owning ref item. 3329 * 3330 * If it is not present, then that extent was not written under 3331 * simple quotas mode, so we don't need to account for its deletion. 3332 */ 3333 if (is_data) 3334 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3335 leaf, extent_slot); 3336 3337 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3338 num_to_del); 3339 if (ret) { 3340 btrfs_abort_transaction(trans, ret); 3341 goto out; 3342 } 3343 btrfs_release_path(path); 3344 3345 ret = do_free_extent_accounting(trans, bytenr, &delta); 3346 } 3347 btrfs_release_path(path); 3348 3349 out: 3350 btrfs_free_path(path); 3351 return ret; 3352 } 3353 3354 /* 3355 * when we free an block, it is possible (and likely) that we free the last 3356 * delayed ref for that extent as well. This searches the delayed ref tree for 3357 * a given extent, and if there are no other delayed refs to be processed, it 3358 * removes it from the tree. 3359 */ 3360 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3361 u64 bytenr) 3362 { 3363 struct btrfs_delayed_ref_head *head; 3364 struct btrfs_delayed_ref_root *delayed_refs; 3365 int ret = 0; 3366 3367 delayed_refs = &trans->transaction->delayed_refs; 3368 spin_lock(&delayed_refs->lock); 3369 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3370 if (!head) 3371 goto out_delayed_unlock; 3372 3373 spin_lock(&head->lock); 3374 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3375 goto out; 3376 3377 if (cleanup_extent_op(head) != NULL) 3378 goto out; 3379 3380 /* 3381 * waiting for the lock here would deadlock. If someone else has it 3382 * locked they are already in the process of dropping it anyway 3383 */ 3384 if (!mutex_trylock(&head->mutex)) 3385 goto out; 3386 3387 btrfs_delete_ref_head(delayed_refs, head); 3388 head->processing = false; 3389 3390 spin_unlock(&head->lock); 3391 spin_unlock(&delayed_refs->lock); 3392 3393 BUG_ON(head->extent_op); 3394 if (head->must_insert_reserved) 3395 ret = 1; 3396 3397 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3398 mutex_unlock(&head->mutex); 3399 btrfs_put_delayed_ref_head(head); 3400 return ret; 3401 out: 3402 spin_unlock(&head->lock); 3403 3404 out_delayed_unlock: 3405 spin_unlock(&delayed_refs->lock); 3406 return 0; 3407 } 3408 3409 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3410 u64 root_id, 3411 struct extent_buffer *buf, 3412 u64 parent, int last_ref) 3413 { 3414 struct btrfs_fs_info *fs_info = trans->fs_info; 3415 struct btrfs_block_group *bg; 3416 int ret; 3417 3418 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3419 struct btrfs_ref generic_ref = { 3420 .action = BTRFS_DROP_DELAYED_REF, 3421 .bytenr = buf->start, 3422 .num_bytes = buf->len, 3423 .parent = parent, 3424 .owning_root = btrfs_header_owner(buf), 3425 .ref_root = root_id, 3426 }; 3427 3428 /* 3429 * Assert that the extent buffer is not cleared due to 3430 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3431 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3432 * detail. 3433 */ 3434 ASSERT(btrfs_header_bytenr(buf) != 0); 3435 3436 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3437 btrfs_ref_tree_mod(fs_info, &generic_ref); 3438 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3439 if (ret < 0) 3440 return ret; 3441 } 3442 3443 if (!last_ref) 3444 return 0; 3445 3446 if (btrfs_header_generation(buf) != trans->transid) 3447 goto out; 3448 3449 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3450 ret = check_ref_cleanup(trans, buf->start); 3451 if (!ret) 3452 goto out; 3453 } 3454 3455 bg = btrfs_lookup_block_group(fs_info, buf->start); 3456 3457 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3458 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3459 btrfs_put_block_group(bg); 3460 goto out; 3461 } 3462 3463 /* 3464 * If there are tree mod log users we may have recorded mod log 3465 * operations for this node. If we re-allocate this node we 3466 * could replay operations on this node that happened when it 3467 * existed in a completely different root. For example if it 3468 * was part of root A, then was reallocated to root B, and we 3469 * are doing a btrfs_old_search_slot(root b), we could replay 3470 * operations that happened when the block was part of root A, 3471 * giving us an inconsistent view of the btree. 3472 * 3473 * We are safe from races here because at this point no other 3474 * node or root points to this extent buffer, so if after this 3475 * check a new tree mod log user joins we will not have an 3476 * existing log of operations on this node that we have to 3477 * contend with. 3478 */ 3479 3480 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3481 || btrfs_is_zoned(fs_info)) { 3482 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3483 btrfs_put_block_group(bg); 3484 goto out; 3485 } 3486 3487 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3488 3489 btrfs_add_free_space(bg, buf->start, buf->len); 3490 btrfs_free_reserved_bytes(bg, buf->len, 0); 3491 btrfs_put_block_group(bg); 3492 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3493 3494 out: 3495 3496 /* 3497 * Deleting the buffer, clear the corrupt flag since it doesn't 3498 * matter anymore. 3499 */ 3500 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3501 return 0; 3502 } 3503 3504 /* Can return -ENOMEM */ 3505 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3506 { 3507 struct btrfs_fs_info *fs_info = trans->fs_info; 3508 int ret; 3509 3510 if (btrfs_is_testing(fs_info)) 3511 return 0; 3512 3513 /* 3514 * tree log blocks never actually go into the extent allocation 3515 * tree, just update pinning info and exit early. 3516 */ 3517 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3518 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); 3519 ret = 0; 3520 } else if (ref->type == BTRFS_REF_METADATA) { 3521 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3522 } else { 3523 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3524 } 3525 3526 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3527 btrfs_ref_tree_mod(fs_info, ref); 3528 3529 return ret; 3530 } 3531 3532 enum btrfs_loop_type { 3533 /* 3534 * Start caching block groups but do not wait for progress or for them 3535 * to be done. 3536 */ 3537 LOOP_CACHING_NOWAIT, 3538 3539 /* 3540 * Wait for the block group free_space >= the space we're waiting for if 3541 * the block group isn't cached. 3542 */ 3543 LOOP_CACHING_WAIT, 3544 3545 /* 3546 * Allow allocations to happen from block groups that do not yet have a 3547 * size classification. 3548 */ 3549 LOOP_UNSET_SIZE_CLASS, 3550 3551 /* 3552 * Allocate a chunk and then retry the allocation. 3553 */ 3554 LOOP_ALLOC_CHUNK, 3555 3556 /* 3557 * Ignore the size class restrictions for this allocation. 3558 */ 3559 LOOP_WRONG_SIZE_CLASS, 3560 3561 /* 3562 * Ignore the empty size, only try to allocate the number of bytes 3563 * needed for this allocation. 3564 */ 3565 LOOP_NO_EMPTY_SIZE, 3566 }; 3567 3568 static inline void 3569 btrfs_lock_block_group(struct btrfs_block_group *cache, 3570 int delalloc) 3571 { 3572 if (delalloc) 3573 down_read(&cache->data_rwsem); 3574 } 3575 3576 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3577 int delalloc) 3578 { 3579 btrfs_get_block_group(cache); 3580 if (delalloc) 3581 down_read(&cache->data_rwsem); 3582 } 3583 3584 static struct btrfs_block_group *btrfs_lock_cluster( 3585 struct btrfs_block_group *block_group, 3586 struct btrfs_free_cluster *cluster, 3587 int delalloc) 3588 __acquires(&cluster->refill_lock) 3589 { 3590 struct btrfs_block_group *used_bg = NULL; 3591 3592 spin_lock(&cluster->refill_lock); 3593 while (1) { 3594 used_bg = cluster->block_group; 3595 if (!used_bg) 3596 return NULL; 3597 3598 if (used_bg == block_group) 3599 return used_bg; 3600 3601 btrfs_get_block_group(used_bg); 3602 3603 if (!delalloc) 3604 return used_bg; 3605 3606 if (down_read_trylock(&used_bg->data_rwsem)) 3607 return used_bg; 3608 3609 spin_unlock(&cluster->refill_lock); 3610 3611 /* We should only have one-level nested. */ 3612 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3613 3614 spin_lock(&cluster->refill_lock); 3615 if (used_bg == cluster->block_group) 3616 return used_bg; 3617 3618 up_read(&used_bg->data_rwsem); 3619 btrfs_put_block_group(used_bg); 3620 } 3621 } 3622 3623 static inline void 3624 btrfs_release_block_group(struct btrfs_block_group *cache, 3625 int delalloc) 3626 { 3627 if (delalloc) 3628 up_read(&cache->data_rwsem); 3629 btrfs_put_block_group(cache); 3630 } 3631 3632 /* 3633 * Helper function for find_free_extent(). 3634 * 3635 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3636 * Return >0 to inform caller that we find nothing 3637 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3638 */ 3639 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3640 struct find_free_extent_ctl *ffe_ctl, 3641 struct btrfs_block_group **cluster_bg_ret) 3642 { 3643 struct btrfs_block_group *cluster_bg; 3644 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3645 u64 aligned_cluster; 3646 u64 offset; 3647 int ret; 3648 3649 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3650 if (!cluster_bg) 3651 goto refill_cluster; 3652 if (cluster_bg != bg && (cluster_bg->ro || 3653 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3654 goto release_cluster; 3655 3656 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3657 ffe_ctl->num_bytes, cluster_bg->start, 3658 &ffe_ctl->max_extent_size); 3659 if (offset) { 3660 /* We have a block, we're done */ 3661 spin_unlock(&last_ptr->refill_lock); 3662 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3663 *cluster_bg_ret = cluster_bg; 3664 ffe_ctl->found_offset = offset; 3665 return 0; 3666 } 3667 WARN_ON(last_ptr->block_group != cluster_bg); 3668 3669 release_cluster: 3670 /* 3671 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3672 * lets just skip it and let the allocator find whatever block it can 3673 * find. If we reach this point, we will have tried the cluster 3674 * allocator plenty of times and not have found anything, so we are 3675 * likely way too fragmented for the clustering stuff to find anything. 3676 * 3677 * However, if the cluster is taken from the current block group, 3678 * release the cluster first, so that we stand a better chance of 3679 * succeeding in the unclustered allocation. 3680 */ 3681 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3682 spin_unlock(&last_ptr->refill_lock); 3683 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3684 return -ENOENT; 3685 } 3686 3687 /* This cluster didn't work out, free it and start over */ 3688 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3689 3690 if (cluster_bg != bg) 3691 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3692 3693 refill_cluster: 3694 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3695 spin_unlock(&last_ptr->refill_lock); 3696 return -ENOENT; 3697 } 3698 3699 aligned_cluster = max_t(u64, 3700 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3701 bg->full_stripe_len); 3702 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3703 ffe_ctl->num_bytes, aligned_cluster); 3704 if (ret == 0) { 3705 /* Now pull our allocation out of this cluster */ 3706 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3707 ffe_ctl->num_bytes, ffe_ctl->search_start, 3708 &ffe_ctl->max_extent_size); 3709 if (offset) { 3710 /* We found one, proceed */ 3711 spin_unlock(&last_ptr->refill_lock); 3712 ffe_ctl->found_offset = offset; 3713 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3714 return 0; 3715 } 3716 } 3717 /* 3718 * At this point we either didn't find a cluster or we weren't able to 3719 * allocate a block from our cluster. Free the cluster we've been 3720 * trying to use, and go to the next block group. 3721 */ 3722 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3723 spin_unlock(&last_ptr->refill_lock); 3724 return 1; 3725 } 3726 3727 /* 3728 * Return >0 to inform caller that we find nothing 3729 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3730 */ 3731 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3732 struct find_free_extent_ctl *ffe_ctl) 3733 { 3734 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3735 u64 offset; 3736 3737 /* 3738 * We are doing an unclustered allocation, set the fragmented flag so 3739 * we don't bother trying to setup a cluster again until we get more 3740 * space. 3741 */ 3742 if (unlikely(last_ptr)) { 3743 spin_lock(&last_ptr->lock); 3744 last_ptr->fragmented = 1; 3745 spin_unlock(&last_ptr->lock); 3746 } 3747 if (ffe_ctl->cached) { 3748 struct btrfs_free_space_ctl *free_space_ctl; 3749 3750 free_space_ctl = bg->free_space_ctl; 3751 spin_lock(&free_space_ctl->tree_lock); 3752 if (free_space_ctl->free_space < 3753 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3754 ffe_ctl->empty_size) { 3755 ffe_ctl->total_free_space = max_t(u64, 3756 ffe_ctl->total_free_space, 3757 free_space_ctl->free_space); 3758 spin_unlock(&free_space_ctl->tree_lock); 3759 return 1; 3760 } 3761 spin_unlock(&free_space_ctl->tree_lock); 3762 } 3763 3764 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3765 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3766 &ffe_ctl->max_extent_size); 3767 if (!offset) 3768 return 1; 3769 ffe_ctl->found_offset = offset; 3770 return 0; 3771 } 3772 3773 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3774 struct find_free_extent_ctl *ffe_ctl, 3775 struct btrfs_block_group **bg_ret) 3776 { 3777 int ret; 3778 3779 /* We want to try and use the cluster allocator, so lets look there */ 3780 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3781 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3782 if (ret >= 0) 3783 return ret; 3784 /* ret == -ENOENT case falls through */ 3785 } 3786 3787 return find_free_extent_unclustered(block_group, ffe_ctl); 3788 } 3789 3790 /* 3791 * Tree-log block group locking 3792 * ============================ 3793 * 3794 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3795 * indicates the starting address of a block group, which is reserved only 3796 * for tree-log metadata. 3797 * 3798 * Lock nesting 3799 * ============ 3800 * 3801 * space_info::lock 3802 * block_group::lock 3803 * fs_info::treelog_bg_lock 3804 */ 3805 3806 /* 3807 * Simple allocator for sequential-only block group. It only allows sequential 3808 * allocation. No need to play with trees. This function also reserves the 3809 * bytes as in btrfs_add_reserved_bytes. 3810 */ 3811 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3812 struct find_free_extent_ctl *ffe_ctl, 3813 struct btrfs_block_group **bg_ret) 3814 { 3815 struct btrfs_fs_info *fs_info = block_group->fs_info; 3816 struct btrfs_space_info *space_info = block_group->space_info; 3817 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3818 u64 start = block_group->start; 3819 u64 num_bytes = ffe_ctl->num_bytes; 3820 u64 avail; 3821 u64 bytenr = block_group->start; 3822 u64 log_bytenr; 3823 u64 data_reloc_bytenr; 3824 int ret = 0; 3825 bool skip = false; 3826 3827 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3828 3829 /* 3830 * Do not allow non-tree-log blocks in the dedicated tree-log block 3831 * group, and vice versa. 3832 */ 3833 spin_lock(&fs_info->treelog_bg_lock); 3834 log_bytenr = fs_info->treelog_bg; 3835 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3836 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3837 skip = true; 3838 spin_unlock(&fs_info->treelog_bg_lock); 3839 if (skip) 3840 return 1; 3841 3842 /* 3843 * Do not allow non-relocation blocks in the dedicated relocation block 3844 * group, and vice versa. 3845 */ 3846 spin_lock(&fs_info->relocation_bg_lock); 3847 data_reloc_bytenr = fs_info->data_reloc_bg; 3848 if (data_reloc_bytenr && 3849 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3850 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3851 skip = true; 3852 spin_unlock(&fs_info->relocation_bg_lock); 3853 if (skip) 3854 return 1; 3855 3856 /* Check RO and no space case before trying to activate it */ 3857 spin_lock(&block_group->lock); 3858 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3859 ret = 1; 3860 /* 3861 * May need to clear fs_info->{treelog,data_reloc}_bg. 3862 * Return the error after taking the locks. 3863 */ 3864 } 3865 spin_unlock(&block_group->lock); 3866 3867 /* Metadata block group is activated at write time. */ 3868 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3869 !btrfs_zone_activate(block_group)) { 3870 ret = 1; 3871 /* 3872 * May need to clear fs_info->{treelog,data_reloc}_bg. 3873 * Return the error after taking the locks. 3874 */ 3875 } 3876 3877 spin_lock(&space_info->lock); 3878 spin_lock(&block_group->lock); 3879 spin_lock(&fs_info->treelog_bg_lock); 3880 spin_lock(&fs_info->relocation_bg_lock); 3881 3882 if (ret) 3883 goto out; 3884 3885 ASSERT(!ffe_ctl->for_treelog || 3886 block_group->start == fs_info->treelog_bg || 3887 fs_info->treelog_bg == 0); 3888 ASSERT(!ffe_ctl->for_data_reloc || 3889 block_group->start == fs_info->data_reloc_bg || 3890 fs_info->data_reloc_bg == 0); 3891 3892 if (block_group->ro || 3893 (!ffe_ctl->for_data_reloc && 3894 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3895 ret = 1; 3896 goto out; 3897 } 3898 3899 /* 3900 * Do not allow currently using block group to be tree-log dedicated 3901 * block group. 3902 */ 3903 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3904 (block_group->used || block_group->reserved)) { 3905 ret = 1; 3906 goto out; 3907 } 3908 3909 /* 3910 * Do not allow currently used block group to be the data relocation 3911 * dedicated block group. 3912 */ 3913 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3914 (block_group->used || block_group->reserved)) { 3915 ret = 1; 3916 goto out; 3917 } 3918 3919 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3920 avail = block_group->zone_capacity - block_group->alloc_offset; 3921 if (avail < num_bytes) { 3922 if (ffe_ctl->max_extent_size < avail) { 3923 /* 3924 * With sequential allocator, free space is always 3925 * contiguous 3926 */ 3927 ffe_ctl->max_extent_size = avail; 3928 ffe_ctl->total_free_space = avail; 3929 } 3930 ret = 1; 3931 goto out; 3932 } 3933 3934 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3935 fs_info->treelog_bg = block_group->start; 3936 3937 if (ffe_ctl->for_data_reloc) { 3938 if (!fs_info->data_reloc_bg) 3939 fs_info->data_reloc_bg = block_group->start; 3940 /* 3941 * Do not allow allocations from this block group, unless it is 3942 * for data relocation. Compared to increasing the ->ro, setting 3943 * the ->zoned_data_reloc_ongoing flag still allows nocow 3944 * writers to come in. See btrfs_inc_nocow_writers(). 3945 * 3946 * We need to disable an allocation to avoid an allocation of 3947 * regular (non-relocation data) extent. With mix of relocation 3948 * extents and regular extents, we can dispatch WRITE commands 3949 * (for relocation extents) and ZONE APPEND commands (for 3950 * regular extents) at the same time to the same zone, which 3951 * easily break the write pointer. 3952 * 3953 * Also, this flag avoids this block group to be zone finished. 3954 */ 3955 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3956 } 3957 3958 ffe_ctl->found_offset = start + block_group->alloc_offset; 3959 block_group->alloc_offset += num_bytes; 3960 spin_lock(&ctl->tree_lock); 3961 ctl->free_space -= num_bytes; 3962 spin_unlock(&ctl->tree_lock); 3963 3964 /* 3965 * We do not check if found_offset is aligned to stripesize. The 3966 * address is anyway rewritten when using zone append writing. 3967 */ 3968 3969 ffe_ctl->search_start = ffe_ctl->found_offset; 3970 3971 out: 3972 if (ret && ffe_ctl->for_treelog) 3973 fs_info->treelog_bg = 0; 3974 if (ret && ffe_ctl->for_data_reloc) 3975 fs_info->data_reloc_bg = 0; 3976 spin_unlock(&fs_info->relocation_bg_lock); 3977 spin_unlock(&fs_info->treelog_bg_lock); 3978 spin_unlock(&block_group->lock); 3979 spin_unlock(&space_info->lock); 3980 return ret; 3981 } 3982 3983 static int do_allocation(struct btrfs_block_group *block_group, 3984 struct find_free_extent_ctl *ffe_ctl, 3985 struct btrfs_block_group **bg_ret) 3986 { 3987 switch (ffe_ctl->policy) { 3988 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3989 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3990 case BTRFS_EXTENT_ALLOC_ZONED: 3991 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3992 default: 3993 BUG(); 3994 } 3995 } 3996 3997 static void release_block_group(struct btrfs_block_group *block_group, 3998 struct find_free_extent_ctl *ffe_ctl, 3999 int delalloc) 4000 { 4001 switch (ffe_ctl->policy) { 4002 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4003 ffe_ctl->retry_uncached = false; 4004 break; 4005 case BTRFS_EXTENT_ALLOC_ZONED: 4006 /* Nothing to do */ 4007 break; 4008 default: 4009 BUG(); 4010 } 4011 4012 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4013 ffe_ctl->index); 4014 btrfs_release_block_group(block_group, delalloc); 4015 } 4016 4017 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4018 struct btrfs_key *ins) 4019 { 4020 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4021 4022 if (!ffe_ctl->use_cluster && last_ptr) { 4023 spin_lock(&last_ptr->lock); 4024 last_ptr->window_start = ins->objectid; 4025 spin_unlock(&last_ptr->lock); 4026 } 4027 } 4028 4029 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4030 struct btrfs_key *ins) 4031 { 4032 switch (ffe_ctl->policy) { 4033 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4034 found_extent_clustered(ffe_ctl, ins); 4035 break; 4036 case BTRFS_EXTENT_ALLOC_ZONED: 4037 /* Nothing to do */ 4038 break; 4039 default: 4040 BUG(); 4041 } 4042 } 4043 4044 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4045 struct find_free_extent_ctl *ffe_ctl) 4046 { 4047 /* Block group's activeness is not a requirement for METADATA block groups. */ 4048 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4049 return 0; 4050 4051 /* If we can activate new zone, just allocate a chunk and use it */ 4052 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4053 return 0; 4054 4055 /* 4056 * We already reached the max active zones. Try to finish one block 4057 * group to make a room for a new block group. This is only possible 4058 * for a data block group because btrfs_zone_finish() may need to wait 4059 * for a running transaction which can cause a deadlock for metadata 4060 * allocation. 4061 */ 4062 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4063 int ret = btrfs_zone_finish_one_bg(fs_info); 4064 4065 if (ret == 1) 4066 return 0; 4067 else if (ret < 0) 4068 return ret; 4069 } 4070 4071 /* 4072 * If we have enough free space left in an already active block group 4073 * and we can't activate any other zone now, do not allow allocating a 4074 * new chunk and let find_free_extent() retry with a smaller size. 4075 */ 4076 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4077 return -ENOSPC; 4078 4079 /* 4080 * Even min_alloc_size is not left in any block groups. Since we cannot 4081 * activate a new block group, allocating it may not help. Let's tell a 4082 * caller to try again and hope it progress something by writing some 4083 * parts of the region. That is only possible for data block groups, 4084 * where a part of the region can be written. 4085 */ 4086 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4087 return -EAGAIN; 4088 4089 /* 4090 * We cannot activate a new block group and no enough space left in any 4091 * block groups. So, allocating a new block group may not help. But, 4092 * there is nothing to do anyway, so let's go with it. 4093 */ 4094 return 0; 4095 } 4096 4097 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4098 struct find_free_extent_ctl *ffe_ctl) 4099 { 4100 switch (ffe_ctl->policy) { 4101 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4102 return 0; 4103 case BTRFS_EXTENT_ALLOC_ZONED: 4104 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4105 default: 4106 BUG(); 4107 } 4108 } 4109 4110 /* 4111 * Return >0 means caller needs to re-search for free extent 4112 * Return 0 means we have the needed free extent. 4113 * Return <0 means we failed to locate any free extent. 4114 */ 4115 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4116 struct btrfs_key *ins, 4117 struct find_free_extent_ctl *ffe_ctl, 4118 bool full_search) 4119 { 4120 struct btrfs_root *root = fs_info->chunk_root; 4121 int ret; 4122 4123 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4124 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4125 ffe_ctl->orig_have_caching_bg = true; 4126 4127 if (ins->objectid) { 4128 found_extent(ffe_ctl, ins); 4129 return 0; 4130 } 4131 4132 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4133 return 1; 4134 4135 ffe_ctl->index++; 4136 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4137 return 1; 4138 4139 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4140 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4141 ffe_ctl->index = 0; 4142 /* 4143 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4144 * any uncached bgs and we've already done a full search 4145 * through. 4146 */ 4147 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4148 (!ffe_ctl->orig_have_caching_bg && full_search)) 4149 ffe_ctl->loop++; 4150 ffe_ctl->loop++; 4151 4152 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4153 struct btrfs_trans_handle *trans; 4154 int exist = 0; 4155 4156 /* Check if allocation policy allows to create a new chunk */ 4157 ret = can_allocate_chunk(fs_info, ffe_ctl); 4158 if (ret) 4159 return ret; 4160 4161 trans = current->journal_info; 4162 if (trans) 4163 exist = 1; 4164 else 4165 trans = btrfs_join_transaction(root); 4166 4167 if (IS_ERR(trans)) { 4168 ret = PTR_ERR(trans); 4169 return ret; 4170 } 4171 4172 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4173 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4174 4175 /* Do not bail out on ENOSPC since we can do more. */ 4176 if (ret == -ENOSPC) { 4177 ret = 0; 4178 ffe_ctl->loop++; 4179 } 4180 else if (ret < 0) 4181 btrfs_abort_transaction(trans, ret); 4182 else 4183 ret = 0; 4184 if (!exist) 4185 btrfs_end_transaction(trans); 4186 if (ret) 4187 return ret; 4188 } 4189 4190 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4191 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4192 return -ENOSPC; 4193 4194 /* 4195 * Don't loop again if we already have no empty_size and 4196 * no empty_cluster. 4197 */ 4198 if (ffe_ctl->empty_size == 0 && 4199 ffe_ctl->empty_cluster == 0) 4200 return -ENOSPC; 4201 ffe_ctl->empty_size = 0; 4202 ffe_ctl->empty_cluster = 0; 4203 } 4204 return 1; 4205 } 4206 return -ENOSPC; 4207 } 4208 4209 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4210 struct btrfs_block_group *bg) 4211 { 4212 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4213 return true; 4214 if (!btrfs_block_group_should_use_size_class(bg)) 4215 return true; 4216 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4217 return true; 4218 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4219 bg->size_class == BTRFS_BG_SZ_NONE) 4220 return true; 4221 return ffe_ctl->size_class == bg->size_class; 4222 } 4223 4224 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4225 struct find_free_extent_ctl *ffe_ctl, 4226 struct btrfs_space_info *space_info, 4227 struct btrfs_key *ins) 4228 { 4229 /* 4230 * If our free space is heavily fragmented we may not be able to make 4231 * big contiguous allocations, so instead of doing the expensive search 4232 * for free space, simply return ENOSPC with our max_extent_size so we 4233 * can go ahead and search for a more manageable chunk. 4234 * 4235 * If our max_extent_size is large enough for our allocation simply 4236 * disable clustering since we will likely not be able to find enough 4237 * space to create a cluster and induce latency trying. 4238 */ 4239 if (space_info->max_extent_size) { 4240 spin_lock(&space_info->lock); 4241 if (space_info->max_extent_size && 4242 ffe_ctl->num_bytes > space_info->max_extent_size) { 4243 ins->offset = space_info->max_extent_size; 4244 spin_unlock(&space_info->lock); 4245 return -ENOSPC; 4246 } else if (space_info->max_extent_size) { 4247 ffe_ctl->use_cluster = false; 4248 } 4249 spin_unlock(&space_info->lock); 4250 } 4251 4252 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4253 &ffe_ctl->empty_cluster); 4254 if (ffe_ctl->last_ptr) { 4255 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4256 4257 spin_lock(&last_ptr->lock); 4258 if (last_ptr->block_group) 4259 ffe_ctl->hint_byte = last_ptr->window_start; 4260 if (last_ptr->fragmented) { 4261 /* 4262 * We still set window_start so we can keep track of the 4263 * last place we found an allocation to try and save 4264 * some time. 4265 */ 4266 ffe_ctl->hint_byte = last_ptr->window_start; 4267 ffe_ctl->use_cluster = false; 4268 } 4269 spin_unlock(&last_ptr->lock); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4276 struct find_free_extent_ctl *ffe_ctl) 4277 { 4278 if (ffe_ctl->for_treelog) { 4279 spin_lock(&fs_info->treelog_bg_lock); 4280 if (fs_info->treelog_bg) 4281 ffe_ctl->hint_byte = fs_info->treelog_bg; 4282 spin_unlock(&fs_info->treelog_bg_lock); 4283 } else if (ffe_ctl->for_data_reloc) { 4284 spin_lock(&fs_info->relocation_bg_lock); 4285 if (fs_info->data_reloc_bg) 4286 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4287 spin_unlock(&fs_info->relocation_bg_lock); 4288 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4289 struct btrfs_block_group *block_group; 4290 4291 spin_lock(&fs_info->zone_active_bgs_lock); 4292 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4293 /* 4294 * No lock is OK here because avail is monotinically 4295 * decreasing, and this is just a hint. 4296 */ 4297 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4298 4299 if (block_group_bits(block_group, ffe_ctl->flags) && 4300 avail >= ffe_ctl->num_bytes) { 4301 ffe_ctl->hint_byte = block_group->start; 4302 break; 4303 } 4304 } 4305 spin_unlock(&fs_info->zone_active_bgs_lock); 4306 } 4307 4308 return 0; 4309 } 4310 4311 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4312 struct find_free_extent_ctl *ffe_ctl, 4313 struct btrfs_space_info *space_info, 4314 struct btrfs_key *ins) 4315 { 4316 switch (ffe_ctl->policy) { 4317 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4318 return prepare_allocation_clustered(fs_info, ffe_ctl, 4319 space_info, ins); 4320 case BTRFS_EXTENT_ALLOC_ZONED: 4321 return prepare_allocation_zoned(fs_info, ffe_ctl); 4322 default: 4323 BUG(); 4324 } 4325 } 4326 4327 /* 4328 * walks the btree of allocated extents and find a hole of a given size. 4329 * The key ins is changed to record the hole: 4330 * ins->objectid == start position 4331 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4332 * ins->offset == the size of the hole. 4333 * Any available blocks before search_start are skipped. 4334 * 4335 * If there is no suitable free space, we will record the max size of 4336 * the free space extent currently. 4337 * 4338 * The overall logic and call chain: 4339 * 4340 * find_free_extent() 4341 * |- Iterate through all block groups 4342 * | |- Get a valid block group 4343 * | |- Try to do clustered allocation in that block group 4344 * | |- Try to do unclustered allocation in that block group 4345 * | |- Check if the result is valid 4346 * | | |- If valid, then exit 4347 * | |- Jump to next block group 4348 * | 4349 * |- Push harder to find free extents 4350 * |- If not found, re-iterate all block groups 4351 */ 4352 static noinline int find_free_extent(struct btrfs_root *root, 4353 struct btrfs_key *ins, 4354 struct find_free_extent_ctl *ffe_ctl) 4355 { 4356 struct btrfs_fs_info *fs_info = root->fs_info; 4357 int ret = 0; 4358 int cache_block_group_error = 0; 4359 struct btrfs_block_group *block_group = NULL; 4360 struct btrfs_space_info *space_info; 4361 bool full_search = false; 4362 4363 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4364 4365 ffe_ctl->search_start = 0; 4366 /* For clustered allocation */ 4367 ffe_ctl->empty_cluster = 0; 4368 ffe_ctl->last_ptr = NULL; 4369 ffe_ctl->use_cluster = true; 4370 ffe_ctl->have_caching_bg = false; 4371 ffe_ctl->orig_have_caching_bg = false; 4372 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4373 ffe_ctl->loop = 0; 4374 ffe_ctl->retry_uncached = false; 4375 ffe_ctl->cached = 0; 4376 ffe_ctl->max_extent_size = 0; 4377 ffe_ctl->total_free_space = 0; 4378 ffe_ctl->found_offset = 0; 4379 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4380 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4381 4382 if (btrfs_is_zoned(fs_info)) 4383 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4384 4385 ins->type = BTRFS_EXTENT_ITEM_KEY; 4386 ins->objectid = 0; 4387 ins->offset = 0; 4388 4389 trace_find_free_extent(root, ffe_ctl); 4390 4391 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4392 if (!space_info) { 4393 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4394 return -ENOSPC; 4395 } 4396 4397 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4398 if (ret < 0) 4399 return ret; 4400 4401 ffe_ctl->search_start = max(ffe_ctl->search_start, 4402 first_logical_byte(fs_info)); 4403 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4404 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4405 block_group = btrfs_lookup_block_group(fs_info, 4406 ffe_ctl->search_start); 4407 /* 4408 * we don't want to use the block group if it doesn't match our 4409 * allocation bits, or if its not cached. 4410 * 4411 * However if we are re-searching with an ideal block group 4412 * picked out then we don't care that the block group is cached. 4413 */ 4414 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4415 block_group->cached != BTRFS_CACHE_NO) { 4416 down_read(&space_info->groups_sem); 4417 if (list_empty(&block_group->list) || 4418 block_group->ro) { 4419 /* 4420 * someone is removing this block group, 4421 * we can't jump into the have_block_group 4422 * target because our list pointers are not 4423 * valid 4424 */ 4425 btrfs_put_block_group(block_group); 4426 up_read(&space_info->groups_sem); 4427 } else { 4428 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4429 block_group->flags); 4430 btrfs_lock_block_group(block_group, 4431 ffe_ctl->delalloc); 4432 ffe_ctl->hinted = true; 4433 goto have_block_group; 4434 } 4435 } else if (block_group) { 4436 btrfs_put_block_group(block_group); 4437 } 4438 } 4439 search: 4440 trace_find_free_extent_search_loop(root, ffe_ctl); 4441 ffe_ctl->have_caching_bg = false; 4442 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4443 ffe_ctl->index == 0) 4444 full_search = true; 4445 down_read(&space_info->groups_sem); 4446 list_for_each_entry(block_group, 4447 &space_info->block_groups[ffe_ctl->index], list) { 4448 struct btrfs_block_group *bg_ret; 4449 4450 ffe_ctl->hinted = false; 4451 /* If the block group is read-only, we can skip it entirely. */ 4452 if (unlikely(block_group->ro)) { 4453 if (ffe_ctl->for_treelog) 4454 btrfs_clear_treelog_bg(block_group); 4455 if (ffe_ctl->for_data_reloc) 4456 btrfs_clear_data_reloc_bg(block_group); 4457 continue; 4458 } 4459 4460 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4461 ffe_ctl->search_start = block_group->start; 4462 4463 /* 4464 * this can happen if we end up cycling through all the 4465 * raid types, but we want to make sure we only allocate 4466 * for the proper type. 4467 */ 4468 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4469 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4470 BTRFS_BLOCK_GROUP_RAID1_MASK | 4471 BTRFS_BLOCK_GROUP_RAID56_MASK | 4472 BTRFS_BLOCK_GROUP_RAID10; 4473 4474 /* 4475 * if they asked for extra copies and this block group 4476 * doesn't provide them, bail. This does allow us to 4477 * fill raid0 from raid1. 4478 */ 4479 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4480 goto loop; 4481 4482 /* 4483 * This block group has different flags than we want. 4484 * It's possible that we have MIXED_GROUP flag but no 4485 * block group is mixed. Just skip such block group. 4486 */ 4487 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4488 continue; 4489 } 4490 4491 have_block_group: 4492 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4493 ffe_ctl->cached = btrfs_block_group_done(block_group); 4494 if (unlikely(!ffe_ctl->cached)) { 4495 ffe_ctl->have_caching_bg = true; 4496 ret = btrfs_cache_block_group(block_group, false); 4497 4498 /* 4499 * If we get ENOMEM here or something else we want to 4500 * try other block groups, because it may not be fatal. 4501 * However if we can't find anything else we need to 4502 * save our return here so that we return the actual 4503 * error that caused problems, not ENOSPC. 4504 */ 4505 if (ret < 0) { 4506 if (!cache_block_group_error) 4507 cache_block_group_error = ret; 4508 ret = 0; 4509 goto loop; 4510 } 4511 ret = 0; 4512 } 4513 4514 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4515 if (!cache_block_group_error) 4516 cache_block_group_error = -EIO; 4517 goto loop; 4518 } 4519 4520 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4521 goto loop; 4522 4523 bg_ret = NULL; 4524 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4525 if (ret > 0) 4526 goto loop; 4527 4528 if (bg_ret && bg_ret != block_group) { 4529 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4530 block_group = bg_ret; 4531 } 4532 4533 /* Checks */ 4534 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4535 fs_info->stripesize); 4536 4537 /* move on to the next group */ 4538 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4539 block_group->start + block_group->length) { 4540 btrfs_add_free_space_unused(block_group, 4541 ffe_ctl->found_offset, 4542 ffe_ctl->num_bytes); 4543 goto loop; 4544 } 4545 4546 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4547 btrfs_add_free_space_unused(block_group, 4548 ffe_ctl->found_offset, 4549 ffe_ctl->search_start - ffe_ctl->found_offset); 4550 4551 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4552 ffe_ctl->num_bytes, 4553 ffe_ctl->delalloc, 4554 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4555 if (ret == -EAGAIN) { 4556 btrfs_add_free_space_unused(block_group, 4557 ffe_ctl->found_offset, 4558 ffe_ctl->num_bytes); 4559 goto loop; 4560 } 4561 btrfs_inc_block_group_reservations(block_group); 4562 4563 /* we are all good, lets return */ 4564 ins->objectid = ffe_ctl->search_start; 4565 ins->offset = ffe_ctl->num_bytes; 4566 4567 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4568 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4569 break; 4570 loop: 4571 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4572 !ffe_ctl->retry_uncached) { 4573 ffe_ctl->retry_uncached = true; 4574 btrfs_wait_block_group_cache_progress(block_group, 4575 ffe_ctl->num_bytes + 4576 ffe_ctl->empty_cluster + 4577 ffe_ctl->empty_size); 4578 goto have_block_group; 4579 } 4580 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4581 cond_resched(); 4582 } 4583 up_read(&space_info->groups_sem); 4584 4585 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4586 if (ret > 0) 4587 goto search; 4588 4589 if (ret == -ENOSPC && !cache_block_group_error) { 4590 /* 4591 * Use ffe_ctl->total_free_space as fallback if we can't find 4592 * any contiguous hole. 4593 */ 4594 if (!ffe_ctl->max_extent_size) 4595 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4596 spin_lock(&space_info->lock); 4597 space_info->max_extent_size = ffe_ctl->max_extent_size; 4598 spin_unlock(&space_info->lock); 4599 ins->offset = ffe_ctl->max_extent_size; 4600 } else if (ret == -ENOSPC) { 4601 ret = cache_block_group_error; 4602 } 4603 return ret; 4604 } 4605 4606 /* 4607 * Entry point to the extent allocator. Tries to find a hole that is at least 4608 * as big as @num_bytes. 4609 * 4610 * @root - The root that will contain this extent 4611 * 4612 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4613 * is used for accounting purposes. This value differs 4614 * from @num_bytes only in the case of compressed extents. 4615 * 4616 * @num_bytes - Number of bytes to allocate on-disk. 4617 * 4618 * @min_alloc_size - Indicates the minimum amount of space that the 4619 * allocator should try to satisfy. In some cases 4620 * @num_bytes may be larger than what is required and if 4621 * the filesystem is fragmented then allocation fails. 4622 * However, the presence of @min_alloc_size gives a 4623 * chance to try and satisfy the smaller allocation. 4624 * 4625 * @empty_size - A hint that you plan on doing more COW. This is the 4626 * size in bytes the allocator should try to find free 4627 * next to the block it returns. This is just a hint and 4628 * may be ignored by the allocator. 4629 * 4630 * @hint_byte - Hint to the allocator to start searching above the byte 4631 * address passed. It might be ignored. 4632 * 4633 * @ins - This key is modified to record the found hole. It will 4634 * have the following values: 4635 * ins->objectid == start position 4636 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4637 * ins->offset == the size of the hole. 4638 * 4639 * @is_data - Boolean flag indicating whether an extent is 4640 * allocated for data (true) or metadata (false) 4641 * 4642 * @delalloc - Boolean flag indicating whether this allocation is for 4643 * delalloc or not. If 'true' data_rwsem of block groups 4644 * is going to be acquired. 4645 * 4646 * 4647 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4648 * case -ENOSPC is returned then @ins->offset will contain the size of the 4649 * largest available hole the allocator managed to find. 4650 */ 4651 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4652 u64 num_bytes, u64 min_alloc_size, 4653 u64 empty_size, u64 hint_byte, 4654 struct btrfs_key *ins, int is_data, int delalloc) 4655 { 4656 struct btrfs_fs_info *fs_info = root->fs_info; 4657 struct find_free_extent_ctl ffe_ctl = {}; 4658 bool final_tried = num_bytes == min_alloc_size; 4659 u64 flags; 4660 int ret; 4661 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4662 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4663 4664 flags = get_alloc_profile_by_root(root, is_data); 4665 again: 4666 WARN_ON(num_bytes < fs_info->sectorsize); 4667 4668 ffe_ctl.ram_bytes = ram_bytes; 4669 ffe_ctl.num_bytes = num_bytes; 4670 ffe_ctl.min_alloc_size = min_alloc_size; 4671 ffe_ctl.empty_size = empty_size; 4672 ffe_ctl.flags = flags; 4673 ffe_ctl.delalloc = delalloc; 4674 ffe_ctl.hint_byte = hint_byte; 4675 ffe_ctl.for_treelog = for_treelog; 4676 ffe_ctl.for_data_reloc = for_data_reloc; 4677 4678 ret = find_free_extent(root, ins, &ffe_ctl); 4679 if (!ret && !is_data) { 4680 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4681 } else if (ret == -ENOSPC) { 4682 if (!final_tried && ins->offset) { 4683 num_bytes = min(num_bytes >> 1, ins->offset); 4684 num_bytes = round_down(num_bytes, 4685 fs_info->sectorsize); 4686 num_bytes = max(num_bytes, min_alloc_size); 4687 ram_bytes = num_bytes; 4688 if (num_bytes == min_alloc_size) 4689 final_tried = true; 4690 goto again; 4691 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4692 struct btrfs_space_info *sinfo; 4693 4694 sinfo = btrfs_find_space_info(fs_info, flags); 4695 btrfs_err(fs_info, 4696 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4697 flags, num_bytes, for_treelog, for_data_reloc); 4698 if (sinfo) 4699 btrfs_dump_space_info(fs_info, sinfo, 4700 num_bytes, 1); 4701 } 4702 } 4703 4704 return ret; 4705 } 4706 4707 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4708 u64 start, u64 len, int delalloc) 4709 { 4710 struct btrfs_block_group *cache; 4711 4712 cache = btrfs_lookup_block_group(fs_info, start); 4713 if (!cache) { 4714 btrfs_err(fs_info, "Unable to find block group for %llu", 4715 start); 4716 return -ENOSPC; 4717 } 4718 4719 btrfs_add_free_space(cache, start, len); 4720 btrfs_free_reserved_bytes(cache, len, delalloc); 4721 trace_btrfs_reserved_extent_free(fs_info, start, len); 4722 4723 btrfs_put_block_group(cache); 4724 return 0; 4725 } 4726 4727 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4728 const struct extent_buffer *eb) 4729 { 4730 struct btrfs_block_group *cache; 4731 int ret = 0; 4732 4733 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4734 if (!cache) { 4735 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4736 eb->start); 4737 return -ENOSPC; 4738 } 4739 4740 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4741 btrfs_put_block_group(cache); 4742 return ret; 4743 } 4744 4745 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4746 u64 num_bytes) 4747 { 4748 struct btrfs_fs_info *fs_info = trans->fs_info; 4749 int ret; 4750 4751 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4752 if (ret) 4753 return ret; 4754 4755 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4756 if (ret) { 4757 ASSERT(!ret); 4758 btrfs_err(fs_info, "update block group failed for %llu %llu", 4759 bytenr, num_bytes); 4760 return ret; 4761 } 4762 4763 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4764 return 0; 4765 } 4766 4767 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4768 u64 parent, u64 root_objectid, 4769 u64 flags, u64 owner, u64 offset, 4770 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4771 { 4772 struct btrfs_fs_info *fs_info = trans->fs_info; 4773 struct btrfs_root *extent_root; 4774 int ret; 4775 struct btrfs_extent_item *extent_item; 4776 struct btrfs_extent_owner_ref *oref; 4777 struct btrfs_extent_inline_ref *iref; 4778 struct btrfs_path *path; 4779 struct extent_buffer *leaf; 4780 int type; 4781 u32 size; 4782 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4783 4784 if (parent > 0) 4785 type = BTRFS_SHARED_DATA_REF_KEY; 4786 else 4787 type = BTRFS_EXTENT_DATA_REF_KEY; 4788 4789 size = sizeof(*extent_item); 4790 if (simple_quota) 4791 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4792 size += btrfs_extent_inline_ref_size(type); 4793 4794 path = btrfs_alloc_path(); 4795 if (!path) 4796 return -ENOMEM; 4797 4798 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4799 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4800 if (ret) { 4801 btrfs_free_path(path); 4802 return ret; 4803 } 4804 4805 leaf = path->nodes[0]; 4806 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4807 struct btrfs_extent_item); 4808 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4809 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4810 btrfs_set_extent_flags(leaf, extent_item, 4811 flags | BTRFS_EXTENT_FLAG_DATA); 4812 4813 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4814 if (simple_quota) { 4815 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4816 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4817 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4818 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4819 } 4820 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4821 4822 if (parent > 0) { 4823 struct btrfs_shared_data_ref *ref; 4824 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4825 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4826 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4827 } else { 4828 struct btrfs_extent_data_ref *ref; 4829 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4830 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4831 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4832 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4833 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4834 } 4835 4836 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4837 btrfs_free_path(path); 4838 4839 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4840 } 4841 4842 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4843 struct btrfs_delayed_ref_node *node, 4844 struct btrfs_delayed_extent_op *extent_op) 4845 { 4846 struct btrfs_fs_info *fs_info = trans->fs_info; 4847 struct btrfs_root *extent_root; 4848 int ret; 4849 struct btrfs_extent_item *extent_item; 4850 struct btrfs_key extent_key; 4851 struct btrfs_tree_block_info *block_info; 4852 struct btrfs_extent_inline_ref *iref; 4853 struct btrfs_path *path; 4854 struct extent_buffer *leaf; 4855 u32 size = sizeof(*extent_item) + sizeof(*iref); 4856 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4857 /* The owner of a tree block is the level. */ 4858 int level = btrfs_delayed_ref_owner(node); 4859 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4860 4861 extent_key.objectid = node->bytenr; 4862 if (skinny_metadata) { 4863 /* The owner of a tree block is the level. */ 4864 extent_key.offset = level; 4865 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4866 } else { 4867 extent_key.offset = node->num_bytes; 4868 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4869 size += sizeof(*block_info); 4870 } 4871 4872 path = btrfs_alloc_path(); 4873 if (!path) 4874 return -ENOMEM; 4875 4876 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4877 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4878 size); 4879 if (ret) { 4880 btrfs_free_path(path); 4881 return ret; 4882 } 4883 4884 leaf = path->nodes[0]; 4885 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4886 struct btrfs_extent_item); 4887 btrfs_set_extent_refs(leaf, extent_item, 1); 4888 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4889 btrfs_set_extent_flags(leaf, extent_item, 4890 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4891 4892 if (skinny_metadata) { 4893 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4894 } else { 4895 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4896 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4897 btrfs_set_tree_block_level(leaf, block_info, level); 4898 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4899 } 4900 4901 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4902 btrfs_set_extent_inline_ref_type(leaf, iref, 4903 BTRFS_SHARED_BLOCK_REF_KEY); 4904 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4905 } else { 4906 btrfs_set_extent_inline_ref_type(leaf, iref, 4907 BTRFS_TREE_BLOCK_REF_KEY); 4908 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4909 } 4910 4911 btrfs_mark_buffer_dirty(trans, leaf); 4912 btrfs_free_path(path); 4913 4914 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4915 } 4916 4917 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4918 struct btrfs_root *root, u64 owner, 4919 u64 offset, u64 ram_bytes, 4920 struct btrfs_key *ins) 4921 { 4922 struct btrfs_ref generic_ref = { 4923 .action = BTRFS_ADD_DELAYED_EXTENT, 4924 .bytenr = ins->objectid, 4925 .num_bytes = ins->offset, 4926 .owning_root = btrfs_root_id(root), 4927 .ref_root = btrfs_root_id(root), 4928 }; 4929 4930 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4931 4932 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4933 generic_ref.owning_root = root->relocation_src_root; 4934 4935 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4936 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4937 4938 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4939 } 4940 4941 /* 4942 * this is used by the tree logging recovery code. It records that 4943 * an extent has been allocated and makes sure to clear the free 4944 * space cache bits as well 4945 */ 4946 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4947 u64 root_objectid, u64 owner, u64 offset, 4948 struct btrfs_key *ins) 4949 { 4950 struct btrfs_fs_info *fs_info = trans->fs_info; 4951 int ret; 4952 struct btrfs_block_group *block_group; 4953 struct btrfs_space_info *space_info; 4954 struct btrfs_squota_delta delta = { 4955 .root = root_objectid, 4956 .num_bytes = ins->offset, 4957 .generation = trans->transid, 4958 .is_data = true, 4959 .is_inc = true, 4960 }; 4961 4962 /* 4963 * Mixed block groups will exclude before processing the log so we only 4964 * need to do the exclude dance if this fs isn't mixed. 4965 */ 4966 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4967 ret = __exclude_logged_extent(fs_info, ins->objectid, 4968 ins->offset); 4969 if (ret) 4970 return ret; 4971 } 4972 4973 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4974 if (!block_group) 4975 return -EINVAL; 4976 4977 space_info = block_group->space_info; 4978 spin_lock(&space_info->lock); 4979 spin_lock(&block_group->lock); 4980 space_info->bytes_reserved += ins->offset; 4981 block_group->reserved += ins->offset; 4982 spin_unlock(&block_group->lock); 4983 spin_unlock(&space_info->lock); 4984 4985 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4986 offset, ins, 1, root_objectid); 4987 if (ret) 4988 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4989 ret = btrfs_record_squota_delta(fs_info, &delta); 4990 btrfs_put_block_group(block_group); 4991 return ret; 4992 } 4993 4994 #ifdef CONFIG_BTRFS_DEBUG 4995 /* 4996 * Extra safety check in case the extent tree is corrupted and extent allocator 4997 * chooses to use a tree block which is already used and locked. 4998 */ 4999 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5000 { 5001 if (eb->lock_owner == current->pid) { 5002 btrfs_err_rl(eb->fs_info, 5003 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5004 eb->start, btrfs_header_owner(eb), current->pid); 5005 return true; 5006 } 5007 return false; 5008 } 5009 #else 5010 static bool check_eb_lock_owner(struct extent_buffer *eb) 5011 { 5012 return false; 5013 } 5014 #endif 5015 5016 static struct extent_buffer * 5017 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5018 u64 bytenr, int level, u64 owner, 5019 enum btrfs_lock_nesting nest) 5020 { 5021 struct btrfs_fs_info *fs_info = root->fs_info; 5022 struct extent_buffer *buf; 5023 u64 lockdep_owner = owner; 5024 5025 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5026 if (IS_ERR(buf)) 5027 return buf; 5028 5029 if (check_eb_lock_owner(buf)) { 5030 free_extent_buffer(buf); 5031 return ERR_PTR(-EUCLEAN); 5032 } 5033 5034 /* 5035 * The reloc trees are just snapshots, so we need them to appear to be 5036 * just like any other fs tree WRT lockdep. 5037 * 5038 * The exception however is in replace_path() in relocation, where we 5039 * hold the lock on the original fs root and then search for the reloc 5040 * root. At that point we need to make sure any reloc root buffers are 5041 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5042 * lockdep happy. 5043 */ 5044 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5045 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5046 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5047 5048 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5049 btrfs_set_header_generation(buf, trans->transid); 5050 5051 /* 5052 * This needs to stay, because we could allocate a freed block from an 5053 * old tree into a new tree, so we need to make sure this new block is 5054 * set to the appropriate level and owner. 5055 */ 5056 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5057 5058 btrfs_tree_lock_nested(buf, nest); 5059 btrfs_clear_buffer_dirty(trans, buf); 5060 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5061 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5062 5063 set_extent_buffer_uptodate(buf); 5064 5065 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5066 btrfs_set_header_level(buf, level); 5067 btrfs_set_header_bytenr(buf, buf->start); 5068 btrfs_set_header_generation(buf, trans->transid); 5069 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5070 btrfs_set_header_owner(buf, owner); 5071 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5072 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5073 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5074 buf->log_index = root->log_transid % 2; 5075 /* 5076 * we allow two log transactions at a time, use different 5077 * EXTENT bit to differentiate dirty pages. 5078 */ 5079 if (buf->log_index == 0) 5080 set_extent_bit(&root->dirty_log_pages, buf->start, 5081 buf->start + buf->len - 1, 5082 EXTENT_DIRTY, NULL); 5083 else 5084 set_extent_bit(&root->dirty_log_pages, buf->start, 5085 buf->start + buf->len - 1, 5086 EXTENT_NEW, NULL); 5087 } else { 5088 buf->log_index = -1; 5089 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5090 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5091 } 5092 /* this returns a buffer locked for blocking */ 5093 return buf; 5094 } 5095 5096 /* 5097 * finds a free extent and does all the dirty work required for allocation 5098 * returns the tree buffer or an ERR_PTR on error. 5099 */ 5100 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5101 struct btrfs_root *root, 5102 u64 parent, u64 root_objectid, 5103 const struct btrfs_disk_key *key, 5104 int level, u64 hint, 5105 u64 empty_size, 5106 u64 reloc_src_root, 5107 enum btrfs_lock_nesting nest) 5108 { 5109 struct btrfs_fs_info *fs_info = root->fs_info; 5110 struct btrfs_key ins; 5111 struct btrfs_block_rsv *block_rsv; 5112 struct extent_buffer *buf; 5113 u64 flags = 0; 5114 int ret; 5115 u32 blocksize = fs_info->nodesize; 5116 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5117 u64 owning_root; 5118 5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5120 if (btrfs_is_testing(fs_info)) { 5121 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5122 level, root_objectid, nest); 5123 if (!IS_ERR(buf)) 5124 root->alloc_bytenr += blocksize; 5125 return buf; 5126 } 5127 #endif 5128 5129 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5130 if (IS_ERR(block_rsv)) 5131 return ERR_CAST(block_rsv); 5132 5133 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5134 empty_size, hint, &ins, 0, 0); 5135 if (ret) 5136 goto out_unuse; 5137 5138 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5139 root_objectid, nest); 5140 if (IS_ERR(buf)) { 5141 ret = PTR_ERR(buf); 5142 goto out_free_reserved; 5143 } 5144 owning_root = btrfs_header_owner(buf); 5145 5146 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5147 if (parent == 0) 5148 parent = ins.objectid; 5149 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5150 owning_root = reloc_src_root; 5151 } else 5152 BUG_ON(parent > 0); 5153 5154 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5155 struct btrfs_delayed_extent_op *extent_op; 5156 struct btrfs_ref generic_ref = { 5157 .action = BTRFS_ADD_DELAYED_EXTENT, 5158 .bytenr = ins.objectid, 5159 .num_bytes = ins.offset, 5160 .parent = parent, 5161 .owning_root = owning_root, 5162 .ref_root = root_objectid, 5163 }; 5164 5165 if (!skinny_metadata || flags != 0) { 5166 extent_op = btrfs_alloc_delayed_extent_op(); 5167 if (!extent_op) { 5168 ret = -ENOMEM; 5169 goto out_free_buf; 5170 } 5171 if (key) 5172 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5173 else 5174 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5175 extent_op->flags_to_set = flags; 5176 extent_op->update_key = (skinny_metadata ? false : true); 5177 extent_op->update_flags = (flags != 0); 5178 } else { 5179 extent_op = NULL; 5180 } 5181 5182 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5183 btrfs_ref_tree_mod(fs_info, &generic_ref); 5184 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5185 if (ret) { 5186 btrfs_free_delayed_extent_op(extent_op); 5187 goto out_free_buf; 5188 } 5189 } 5190 return buf; 5191 5192 out_free_buf: 5193 btrfs_tree_unlock(buf); 5194 free_extent_buffer(buf); 5195 out_free_reserved: 5196 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5197 out_unuse: 5198 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5199 return ERR_PTR(ret); 5200 } 5201 5202 struct walk_control { 5203 u64 refs[BTRFS_MAX_LEVEL]; 5204 u64 flags[BTRFS_MAX_LEVEL]; 5205 struct btrfs_key update_progress; 5206 struct btrfs_key drop_progress; 5207 int drop_level; 5208 int stage; 5209 int level; 5210 int shared_level; 5211 int update_ref; 5212 int keep_locks; 5213 int reada_slot; 5214 int reada_count; 5215 int restarted; 5216 /* Indicate that extent info needs to be looked up when walking the tree. */ 5217 int lookup_info; 5218 }; 5219 5220 /* 5221 * This is our normal stage. We are traversing blocks the current snapshot owns 5222 * and we are dropping any of our references to any children we are able to, and 5223 * then freeing the block once we've processed all of the children. 5224 */ 5225 #define DROP_REFERENCE 1 5226 5227 /* 5228 * We enter this stage when we have to walk into a child block (meaning we can't 5229 * simply drop our reference to it from our current parent node) and there are 5230 * more than one reference on it. If we are the owner of any of the children 5231 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5232 * on them in order to drop our normal ref and add the shared ref. 5233 */ 5234 #define UPDATE_BACKREF 2 5235 5236 /* 5237 * Decide if we need to walk down into this node to adjust the references. 5238 * 5239 * @root: the root we are currently deleting 5240 * @wc: the walk control for this deletion 5241 * @eb: the parent eb that we're currently visiting 5242 * @refs: the number of refs for wc->level - 1 5243 * @flags: the flags for wc->level - 1 5244 * @slot: the slot in the eb that we're currently checking 5245 * 5246 * This is meant to be called when we're evaluating if a node we point to at 5247 * wc->level should be read and walked into, or if we can simply delete our 5248 * reference to it. We return true if we should walk into the node, false if we 5249 * can skip it. 5250 * 5251 * We have assertions in here to make sure this is called correctly. We assume 5252 * that sanity checking on the blocks read to this point has been done, so any 5253 * corrupted file systems must have been caught before calling this function. 5254 */ 5255 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5256 struct extent_buffer *eb, u64 refs, u64 flags, int slot) 5257 { 5258 struct btrfs_key key; 5259 u64 generation; 5260 int level = wc->level; 5261 5262 ASSERT(level > 0); 5263 ASSERT(wc->refs[level - 1] > 0); 5264 5265 /* 5266 * The update backref stage we only want to skip if we already have 5267 * FULL_BACKREF set, otherwise we need to read. 5268 */ 5269 if (wc->stage == UPDATE_BACKREF) { 5270 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5271 return false; 5272 return true; 5273 } 5274 5275 /* 5276 * We're the last ref on this block, we must walk into it and process 5277 * any refs it's pointing at. 5278 */ 5279 if (wc->refs[level - 1] == 1) 5280 return true; 5281 5282 /* 5283 * If we're already FULL_BACKREF then we know we can just drop our 5284 * current reference. 5285 */ 5286 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5287 return false; 5288 5289 /* 5290 * This block is older than our creation generation, we can drop our 5291 * reference to it. 5292 */ 5293 generation = btrfs_node_ptr_generation(eb, slot); 5294 if (!wc->update_ref || generation <= root->root_key.offset) 5295 return false; 5296 5297 /* 5298 * This block was processed from a previous snapshot deletion run, we 5299 * can skip it. 5300 */ 5301 btrfs_node_key_to_cpu(eb, &key, slot); 5302 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5303 return false; 5304 5305 /* All other cases we need to wander into the node. */ 5306 return true; 5307 } 5308 5309 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5310 struct btrfs_root *root, 5311 struct walk_control *wc, 5312 struct btrfs_path *path) 5313 { 5314 struct btrfs_fs_info *fs_info = root->fs_info; 5315 u64 bytenr; 5316 u64 generation; 5317 u64 refs; 5318 u64 flags; 5319 u32 nritems; 5320 struct extent_buffer *eb; 5321 int ret; 5322 int slot; 5323 int nread = 0; 5324 5325 if (path->slots[wc->level] < wc->reada_slot) { 5326 wc->reada_count = wc->reada_count * 2 / 3; 5327 wc->reada_count = max(wc->reada_count, 2); 5328 } else { 5329 wc->reada_count = wc->reada_count * 3 / 2; 5330 wc->reada_count = min_t(int, wc->reada_count, 5331 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5332 } 5333 5334 eb = path->nodes[wc->level]; 5335 nritems = btrfs_header_nritems(eb); 5336 5337 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5338 if (nread >= wc->reada_count) 5339 break; 5340 5341 cond_resched(); 5342 bytenr = btrfs_node_blockptr(eb, slot); 5343 generation = btrfs_node_ptr_generation(eb, slot); 5344 5345 if (slot == path->slots[wc->level]) 5346 goto reada; 5347 5348 if (wc->stage == UPDATE_BACKREF && 5349 generation <= root->root_key.offset) 5350 continue; 5351 5352 /* We don't lock the tree block, it's OK to be racy here */ 5353 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5354 wc->level - 1, 1, &refs, 5355 &flags, NULL); 5356 /* We don't care about errors in readahead. */ 5357 if (ret < 0) 5358 continue; 5359 5360 /* 5361 * This could be racey, it's conceivable that we raced and end 5362 * up with a bogus refs count, if that's the case just skip, if 5363 * we are actually corrupt we will notice when we look up 5364 * everything again with our locks. 5365 */ 5366 if (refs == 0) 5367 continue; 5368 5369 /* If we don't need to visit this node don't reada. */ 5370 if (!visit_node_for_delete(root, wc, eb, refs, flags, slot)) 5371 continue; 5372 reada: 5373 btrfs_readahead_node_child(eb, slot); 5374 nread++; 5375 } 5376 wc->reada_slot = slot; 5377 } 5378 5379 /* 5380 * helper to process tree block while walking down the tree. 5381 * 5382 * when wc->stage == UPDATE_BACKREF, this function updates 5383 * back refs for pointers in the block. 5384 * 5385 * NOTE: return value 1 means we should stop walking down. 5386 */ 5387 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5388 struct btrfs_root *root, 5389 struct btrfs_path *path, 5390 struct walk_control *wc) 5391 { 5392 struct btrfs_fs_info *fs_info = root->fs_info; 5393 int level = wc->level; 5394 struct extent_buffer *eb = path->nodes[level]; 5395 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5396 int ret; 5397 5398 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5399 return 1; 5400 5401 /* 5402 * when reference count of tree block is 1, it won't increase 5403 * again. once full backref flag is set, we never clear it. 5404 */ 5405 if (wc->lookup_info && 5406 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5407 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5408 ASSERT(path->locks[level]); 5409 ret = btrfs_lookup_extent_info(trans, fs_info, 5410 eb->start, level, 1, 5411 &wc->refs[level], 5412 &wc->flags[level], 5413 NULL); 5414 if (ret) 5415 return ret; 5416 if (unlikely(wc->refs[level] == 0)) { 5417 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5418 eb->start); 5419 return -EUCLEAN; 5420 } 5421 } 5422 5423 if (wc->stage == DROP_REFERENCE) { 5424 if (wc->refs[level] > 1) 5425 return 1; 5426 5427 if (path->locks[level] && !wc->keep_locks) { 5428 btrfs_tree_unlock_rw(eb, path->locks[level]); 5429 path->locks[level] = 0; 5430 } 5431 return 0; 5432 } 5433 5434 /* wc->stage == UPDATE_BACKREF */ 5435 if (!(wc->flags[level] & flag)) { 5436 ASSERT(path->locks[level]); 5437 ret = btrfs_inc_ref(trans, root, eb, 1); 5438 if (ret) { 5439 btrfs_abort_transaction(trans, ret); 5440 return ret; 5441 } 5442 ret = btrfs_dec_ref(trans, root, eb, 0); 5443 if (ret) { 5444 btrfs_abort_transaction(trans, ret); 5445 return ret; 5446 } 5447 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5448 if (ret) { 5449 btrfs_abort_transaction(trans, ret); 5450 return ret; 5451 } 5452 wc->flags[level] |= flag; 5453 } 5454 5455 /* 5456 * the block is shared by multiple trees, so it's not good to 5457 * keep the tree lock 5458 */ 5459 if (path->locks[level] && level > 0) { 5460 btrfs_tree_unlock_rw(eb, path->locks[level]); 5461 path->locks[level] = 0; 5462 } 5463 return 0; 5464 } 5465 5466 /* 5467 * This is used to verify a ref exists for this root to deal with a bug where we 5468 * would have a drop_progress key that hadn't been updated properly. 5469 */ 5470 static int check_ref_exists(struct btrfs_trans_handle *trans, 5471 struct btrfs_root *root, u64 bytenr, u64 parent, 5472 int level) 5473 { 5474 struct btrfs_path *path; 5475 struct btrfs_extent_inline_ref *iref; 5476 int ret; 5477 5478 path = btrfs_alloc_path(); 5479 if (!path) 5480 return -ENOMEM; 5481 5482 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5483 root->fs_info->nodesize, parent, 5484 btrfs_root_id(root), level, 0); 5485 btrfs_free_path(path); 5486 if (ret == -ENOENT) 5487 return 0; 5488 if (ret < 0) 5489 return ret; 5490 return 1; 5491 } 5492 5493 /* 5494 * We may not have an uptodate block, so if we are going to walk down into this 5495 * block we need to drop the lock, read it off of the disk, re-lock it and 5496 * return to continue dropping the snapshot. 5497 */ 5498 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5499 struct btrfs_root *root, 5500 struct btrfs_path *path, 5501 struct walk_control *wc, 5502 struct extent_buffer *next) 5503 { 5504 struct btrfs_tree_parent_check check = { 0 }; 5505 u64 generation; 5506 int level = wc->level; 5507 int ret; 5508 5509 btrfs_assert_tree_write_locked(next); 5510 5511 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5512 5513 if (btrfs_buffer_uptodate(next, generation, 0)) 5514 return 0; 5515 5516 check.level = level - 1; 5517 check.transid = generation; 5518 check.owner_root = btrfs_root_id(root); 5519 check.has_first_key = true; 5520 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5521 5522 btrfs_tree_unlock(next); 5523 if (level == 1) 5524 reada_walk_down(trans, root, wc, path); 5525 ret = btrfs_read_extent_buffer(next, &check); 5526 if (ret) { 5527 free_extent_buffer(next); 5528 return ret; 5529 } 5530 btrfs_tree_lock(next); 5531 wc->lookup_info = 1; 5532 return 0; 5533 } 5534 5535 /* 5536 * If we determine that we don't have to visit wc->level - 1 then we need to 5537 * determine if we can drop our reference. 5538 * 5539 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5540 * 5541 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5542 * reference, skipping it if we dropped it from a previous incompleted drop, or 5543 * dropping it if we still have a reference to it. 5544 */ 5545 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5546 struct btrfs_path *path, struct walk_control *wc, 5547 struct extent_buffer *next, u64 owner_root) 5548 { 5549 struct btrfs_ref ref = { 5550 .action = BTRFS_DROP_DELAYED_REF, 5551 .bytenr = next->start, 5552 .num_bytes = root->fs_info->nodesize, 5553 .owning_root = owner_root, 5554 .ref_root = btrfs_root_id(root), 5555 }; 5556 int level = wc->level; 5557 int ret; 5558 5559 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5560 if (wc->stage == UPDATE_BACKREF) 5561 return 0; 5562 5563 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5564 ref.parent = path->nodes[level]->start; 5565 } else { 5566 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5567 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { 5568 btrfs_err(root->fs_info, "mismatched block owner"); 5569 return -EIO; 5570 } 5571 } 5572 5573 /* 5574 * If we had a drop_progress we need to verify the refs are set as 5575 * expected. If we find our ref then we know that from here on out 5576 * everything should be correct, and we can clear the 5577 * ->restarted flag. 5578 */ 5579 if (wc->restarted) { 5580 ret = check_ref_exists(trans, root, next->start, ref.parent, 5581 level - 1); 5582 if (ret <= 0) 5583 return ret; 5584 ret = 0; 5585 wc->restarted = 0; 5586 } 5587 5588 /* 5589 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5590 * accounted them at merge time (replace_path), thus we could skip 5591 * expensive subtree trace here. 5592 */ 5593 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5594 wc->refs[level - 1] > 1) { 5595 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5596 path->slots[level]); 5597 5598 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5599 if (ret) { 5600 btrfs_err_rl(root->fs_info, 5601 "error %d accounting shared subtree, quota is out of sync, rescan required", 5602 ret); 5603 } 5604 } 5605 5606 /* 5607 * We need to update the next key in our walk control so we can update 5608 * the drop_progress key accordingly. We don't care if find_next_key 5609 * doesn't find a key because that means we're at the end and are going 5610 * to clean up now. 5611 */ 5612 wc->drop_level = level; 5613 find_next_key(path, level, &wc->drop_progress); 5614 5615 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5616 return btrfs_free_extent(trans, &ref); 5617 } 5618 5619 /* 5620 * helper to process tree block pointer. 5621 * 5622 * when wc->stage == DROP_REFERENCE, this function checks 5623 * reference count of the block pointed to. if the block 5624 * is shared and we need update back refs for the subtree 5625 * rooted at the block, this function changes wc->stage to 5626 * UPDATE_BACKREF. if the block is shared and there is no 5627 * need to update back, this function drops the reference 5628 * to the block. 5629 * 5630 * NOTE: return value 1 means we should stop walking down. 5631 */ 5632 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5633 struct btrfs_root *root, 5634 struct btrfs_path *path, 5635 struct walk_control *wc) 5636 { 5637 struct btrfs_fs_info *fs_info = root->fs_info; 5638 u64 bytenr; 5639 u64 generation; 5640 u64 owner_root = 0; 5641 struct extent_buffer *next; 5642 int level = wc->level; 5643 int ret = 0; 5644 5645 generation = btrfs_node_ptr_generation(path->nodes[level], 5646 path->slots[level]); 5647 /* 5648 * if the lower level block was created before the snapshot 5649 * was created, we know there is no need to update back refs 5650 * for the subtree 5651 */ 5652 if (wc->stage == UPDATE_BACKREF && 5653 generation <= root->root_key.offset) { 5654 wc->lookup_info = 1; 5655 return 1; 5656 } 5657 5658 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5659 5660 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5661 level - 1); 5662 if (IS_ERR(next)) 5663 return PTR_ERR(next); 5664 5665 btrfs_tree_lock(next); 5666 5667 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5668 &wc->refs[level - 1], 5669 &wc->flags[level - 1], 5670 &owner_root); 5671 if (ret < 0) 5672 goto out_unlock; 5673 5674 if (unlikely(wc->refs[level - 1] == 0)) { 5675 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5676 bytenr); 5677 ret = -EUCLEAN; 5678 goto out_unlock; 5679 } 5680 wc->lookup_info = 0; 5681 5682 /* If we don't have to walk into this node skip it. */ 5683 if (!visit_node_for_delete(root, wc, path->nodes[level], 5684 wc->refs[level - 1], wc->flags[level - 1], 5685 path->slots[level])) 5686 goto skip; 5687 5688 /* 5689 * We have to walk down into this node, and if we're currently at the 5690 * DROP_REFERNCE stage and this block is shared then we need to switch 5691 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5692 */ 5693 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5694 wc->stage = UPDATE_BACKREF; 5695 wc->shared_level = level - 1; 5696 } 5697 5698 ret = check_next_block_uptodate(trans, root, path, wc, next); 5699 if (ret) 5700 return ret; 5701 5702 level--; 5703 ASSERT(level == btrfs_header_level(next)); 5704 if (level != btrfs_header_level(next)) { 5705 btrfs_err(root->fs_info, "mismatched level"); 5706 ret = -EIO; 5707 goto out_unlock; 5708 } 5709 path->nodes[level] = next; 5710 path->slots[level] = 0; 5711 path->locks[level] = BTRFS_WRITE_LOCK; 5712 wc->level = level; 5713 if (wc->level == 1) 5714 wc->reada_slot = 0; 5715 return 0; 5716 skip: 5717 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5718 if (ret) 5719 goto out_unlock; 5720 wc->refs[level - 1] = 0; 5721 wc->flags[level - 1] = 0; 5722 wc->lookup_info = 1; 5723 ret = 1; 5724 5725 out_unlock: 5726 btrfs_tree_unlock(next); 5727 free_extent_buffer(next); 5728 5729 return ret; 5730 } 5731 5732 /* 5733 * helper to process tree block while walking up the tree. 5734 * 5735 * when wc->stage == DROP_REFERENCE, this function drops 5736 * reference count on the block. 5737 * 5738 * when wc->stage == UPDATE_BACKREF, this function changes 5739 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5740 * to UPDATE_BACKREF previously while processing the block. 5741 * 5742 * NOTE: return value 1 means we should stop walking up. 5743 */ 5744 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5745 struct btrfs_root *root, 5746 struct btrfs_path *path, 5747 struct walk_control *wc) 5748 { 5749 struct btrfs_fs_info *fs_info = root->fs_info; 5750 int ret = 0; 5751 int level = wc->level; 5752 struct extent_buffer *eb = path->nodes[level]; 5753 u64 parent = 0; 5754 5755 if (wc->stage == UPDATE_BACKREF) { 5756 ASSERT(wc->shared_level >= level); 5757 if (level < wc->shared_level) 5758 goto out; 5759 5760 ret = find_next_key(path, level + 1, &wc->update_progress); 5761 if (ret > 0) 5762 wc->update_ref = 0; 5763 5764 wc->stage = DROP_REFERENCE; 5765 wc->shared_level = -1; 5766 path->slots[level] = 0; 5767 5768 /* 5769 * check reference count again if the block isn't locked. 5770 * we should start walking down the tree again if reference 5771 * count is one. 5772 */ 5773 if (!path->locks[level]) { 5774 ASSERT(level > 0); 5775 btrfs_tree_lock(eb); 5776 path->locks[level] = BTRFS_WRITE_LOCK; 5777 5778 ret = btrfs_lookup_extent_info(trans, fs_info, 5779 eb->start, level, 1, 5780 &wc->refs[level], 5781 &wc->flags[level], 5782 NULL); 5783 if (ret < 0) { 5784 btrfs_tree_unlock_rw(eb, path->locks[level]); 5785 path->locks[level] = 0; 5786 return ret; 5787 } 5788 if (unlikely(wc->refs[level] == 0)) { 5789 btrfs_tree_unlock_rw(eb, path->locks[level]); 5790 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5791 eb->start); 5792 return -EUCLEAN; 5793 } 5794 if (wc->refs[level] == 1) { 5795 btrfs_tree_unlock_rw(eb, path->locks[level]); 5796 path->locks[level] = 0; 5797 return 1; 5798 } 5799 } 5800 } 5801 5802 /* wc->stage == DROP_REFERENCE */ 5803 ASSERT(path->locks[level] || wc->refs[level] == 1); 5804 5805 if (wc->refs[level] == 1) { 5806 if (level == 0) { 5807 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5808 ret = btrfs_dec_ref(trans, root, eb, 1); 5809 else 5810 ret = btrfs_dec_ref(trans, root, eb, 0); 5811 if (ret) { 5812 btrfs_abort_transaction(trans, ret); 5813 return ret; 5814 } 5815 if (is_fstree(btrfs_root_id(root))) { 5816 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5817 if (ret) { 5818 btrfs_err_rl(fs_info, 5819 "error %d accounting leaf items, quota is out of sync, rescan required", 5820 ret); 5821 } 5822 } 5823 } 5824 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5825 if (!path->locks[level]) { 5826 btrfs_tree_lock(eb); 5827 path->locks[level] = BTRFS_WRITE_LOCK; 5828 } 5829 btrfs_clear_buffer_dirty(trans, eb); 5830 } 5831 5832 if (eb == root->node) { 5833 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5834 parent = eb->start; 5835 else if (btrfs_root_id(root) != btrfs_header_owner(eb)) 5836 goto owner_mismatch; 5837 } else { 5838 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5839 parent = path->nodes[level + 1]->start; 5840 else if (btrfs_root_id(root) != 5841 btrfs_header_owner(path->nodes[level + 1])) 5842 goto owner_mismatch; 5843 } 5844 5845 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5846 wc->refs[level] == 1); 5847 if (ret < 0) 5848 btrfs_abort_transaction(trans, ret); 5849 out: 5850 wc->refs[level] = 0; 5851 wc->flags[level] = 0; 5852 return ret; 5853 5854 owner_mismatch: 5855 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5856 btrfs_header_owner(eb), btrfs_root_id(root)); 5857 return -EUCLEAN; 5858 } 5859 5860 /* 5861 * walk_down_tree consists of two steps. 5862 * 5863 * walk_down_proc(). Look up the reference count and reference of our current 5864 * wc->level. At this point path->nodes[wc->level] should be populated and 5865 * uptodate, and in most cases should already be locked. If we are in 5866 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5867 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5868 * FULL_BACKREF on this node if it's not already set, and then do the 5869 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5870 * the shared reference to all of this nodes children. 5871 * 5872 * do_walk_down(). This is where we actually start iterating on the children of 5873 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5874 * our reference to the children that return false from visit_node_for_delete(), 5875 * which has various conditions where we know we can just drop our reference 5876 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5877 * visit_node_for_delete() returns false for, only walking down when necessary. 5878 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5879 * snapshot deletion. 5880 */ 5881 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5882 struct btrfs_root *root, 5883 struct btrfs_path *path, 5884 struct walk_control *wc) 5885 { 5886 int level = wc->level; 5887 int ret = 0; 5888 5889 wc->lookup_info = 1; 5890 while (level >= 0) { 5891 ret = walk_down_proc(trans, root, path, wc); 5892 if (ret) 5893 break; 5894 5895 if (level == 0) 5896 break; 5897 5898 if (path->slots[level] >= 5899 btrfs_header_nritems(path->nodes[level])) 5900 break; 5901 5902 ret = do_walk_down(trans, root, path, wc); 5903 if (ret > 0) { 5904 path->slots[level]++; 5905 continue; 5906 } else if (ret < 0) 5907 break; 5908 level = wc->level; 5909 } 5910 return (ret == 1) ? 0 : ret; 5911 } 5912 5913 /* 5914 * walk_up_tree() is responsible for making sure we visit every slot on our 5915 * current node, and if we're at the end of that node then we call 5916 * walk_up_proc() on our current node which will do one of a few things based on 5917 * our stage. 5918 * 5919 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5920 * then we need to walk back up the tree, and then going back down into the 5921 * other slots via walk_down_tree to update any other children from our original 5922 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5923 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 5924 * 5925 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 5926 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 5927 * in our current leaf. After that we call btrfs_free_tree_block() on the 5928 * current node and walk up to the next node to walk down the next slot. 5929 */ 5930 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5931 struct btrfs_root *root, 5932 struct btrfs_path *path, 5933 struct walk_control *wc, int max_level) 5934 { 5935 int level = wc->level; 5936 int ret; 5937 5938 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5939 while (level < max_level && path->nodes[level]) { 5940 wc->level = level; 5941 if (path->slots[level] + 1 < 5942 btrfs_header_nritems(path->nodes[level])) { 5943 path->slots[level]++; 5944 return 0; 5945 } else { 5946 ret = walk_up_proc(trans, root, path, wc); 5947 if (ret > 0) 5948 return 0; 5949 if (ret < 0) 5950 return ret; 5951 5952 if (path->locks[level]) { 5953 btrfs_tree_unlock_rw(path->nodes[level], 5954 path->locks[level]); 5955 path->locks[level] = 0; 5956 } 5957 free_extent_buffer(path->nodes[level]); 5958 path->nodes[level] = NULL; 5959 level++; 5960 } 5961 } 5962 return 1; 5963 } 5964 5965 /* 5966 * drop a subvolume tree. 5967 * 5968 * this function traverses the tree freeing any blocks that only 5969 * referenced by the tree. 5970 * 5971 * when a shared tree block is found. this function decreases its 5972 * reference count by one. if update_ref is true, this function 5973 * also make sure backrefs for the shared block and all lower level 5974 * blocks are properly updated. 5975 * 5976 * If called with for_reloc == 0, may exit early with -EAGAIN 5977 */ 5978 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5979 { 5980 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 5981 struct btrfs_fs_info *fs_info = root->fs_info; 5982 struct btrfs_path *path; 5983 struct btrfs_trans_handle *trans; 5984 struct btrfs_root *tree_root = fs_info->tree_root; 5985 struct btrfs_root_item *root_item = &root->root_item; 5986 struct walk_control *wc; 5987 struct btrfs_key key; 5988 const u64 rootid = btrfs_root_id(root); 5989 int ret = 0; 5990 int level; 5991 bool root_dropped = false; 5992 bool unfinished_drop = false; 5993 5994 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 5995 5996 path = btrfs_alloc_path(); 5997 if (!path) { 5998 ret = -ENOMEM; 5999 goto out; 6000 } 6001 6002 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6003 if (!wc) { 6004 btrfs_free_path(path); 6005 ret = -ENOMEM; 6006 goto out; 6007 } 6008 6009 /* 6010 * Use join to avoid potential EINTR from transaction start. See 6011 * wait_reserve_ticket and the whole reservation callchain. 6012 */ 6013 if (for_reloc) 6014 trans = btrfs_join_transaction(tree_root); 6015 else 6016 trans = btrfs_start_transaction(tree_root, 0); 6017 if (IS_ERR(trans)) { 6018 ret = PTR_ERR(trans); 6019 goto out_free; 6020 } 6021 6022 ret = btrfs_run_delayed_items(trans); 6023 if (ret) 6024 goto out_end_trans; 6025 6026 /* 6027 * This will help us catch people modifying the fs tree while we're 6028 * dropping it. It is unsafe to mess with the fs tree while it's being 6029 * dropped as we unlock the root node and parent nodes as we walk down 6030 * the tree, assuming nothing will change. If something does change 6031 * then we'll have stale information and drop references to blocks we've 6032 * already dropped. 6033 */ 6034 set_bit(BTRFS_ROOT_DELETING, &root->state); 6035 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6036 6037 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6038 level = btrfs_header_level(root->node); 6039 path->nodes[level] = btrfs_lock_root_node(root); 6040 path->slots[level] = 0; 6041 path->locks[level] = BTRFS_WRITE_LOCK; 6042 memset(&wc->update_progress, 0, 6043 sizeof(wc->update_progress)); 6044 } else { 6045 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6046 memcpy(&wc->update_progress, &key, 6047 sizeof(wc->update_progress)); 6048 6049 level = btrfs_root_drop_level(root_item); 6050 BUG_ON(level == 0); 6051 path->lowest_level = level; 6052 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6053 path->lowest_level = 0; 6054 if (ret < 0) 6055 goto out_end_trans; 6056 6057 WARN_ON(ret > 0); 6058 ret = 0; 6059 6060 /* 6061 * unlock our path, this is safe because only this 6062 * function is allowed to delete this snapshot 6063 */ 6064 btrfs_unlock_up_safe(path, 0); 6065 6066 level = btrfs_header_level(root->node); 6067 while (1) { 6068 btrfs_tree_lock(path->nodes[level]); 6069 path->locks[level] = BTRFS_WRITE_LOCK; 6070 6071 /* 6072 * btrfs_lookup_extent_info() returns 0 for success, 6073 * or < 0 for error. 6074 */ 6075 ret = btrfs_lookup_extent_info(trans, fs_info, 6076 path->nodes[level]->start, 6077 level, 1, &wc->refs[level], 6078 &wc->flags[level], NULL); 6079 if (ret < 0) 6080 goto out_end_trans; 6081 6082 BUG_ON(wc->refs[level] == 0); 6083 6084 if (level == btrfs_root_drop_level(root_item)) 6085 break; 6086 6087 btrfs_tree_unlock(path->nodes[level]); 6088 path->locks[level] = 0; 6089 WARN_ON(wc->refs[level] != 1); 6090 level--; 6091 } 6092 } 6093 6094 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6095 wc->level = level; 6096 wc->shared_level = -1; 6097 wc->stage = DROP_REFERENCE; 6098 wc->update_ref = update_ref; 6099 wc->keep_locks = 0; 6100 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6101 6102 while (1) { 6103 6104 ret = walk_down_tree(trans, root, path, wc); 6105 if (ret < 0) { 6106 btrfs_abort_transaction(trans, ret); 6107 break; 6108 } 6109 6110 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6111 if (ret < 0) { 6112 btrfs_abort_transaction(trans, ret); 6113 break; 6114 } 6115 6116 if (ret > 0) { 6117 BUG_ON(wc->stage != DROP_REFERENCE); 6118 ret = 0; 6119 break; 6120 } 6121 6122 if (wc->stage == DROP_REFERENCE) { 6123 wc->drop_level = wc->level; 6124 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6125 &wc->drop_progress, 6126 path->slots[wc->drop_level]); 6127 } 6128 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6129 &wc->drop_progress); 6130 btrfs_set_root_drop_level(root_item, wc->drop_level); 6131 6132 BUG_ON(wc->level == 0); 6133 if (btrfs_should_end_transaction(trans) || 6134 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6135 ret = btrfs_update_root(trans, tree_root, 6136 &root->root_key, 6137 root_item); 6138 if (ret) { 6139 btrfs_abort_transaction(trans, ret); 6140 goto out_end_trans; 6141 } 6142 6143 if (!is_reloc_root) 6144 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6145 6146 btrfs_end_transaction_throttle(trans); 6147 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6148 btrfs_debug(fs_info, 6149 "drop snapshot early exit"); 6150 ret = -EAGAIN; 6151 goto out_free; 6152 } 6153 6154 /* 6155 * Use join to avoid potential EINTR from transaction 6156 * start. See wait_reserve_ticket and the whole 6157 * reservation callchain. 6158 */ 6159 if (for_reloc) 6160 trans = btrfs_join_transaction(tree_root); 6161 else 6162 trans = btrfs_start_transaction(tree_root, 0); 6163 if (IS_ERR(trans)) { 6164 ret = PTR_ERR(trans); 6165 goto out_free; 6166 } 6167 } 6168 } 6169 btrfs_release_path(path); 6170 if (ret) 6171 goto out_end_trans; 6172 6173 ret = btrfs_del_root(trans, &root->root_key); 6174 if (ret) { 6175 btrfs_abort_transaction(trans, ret); 6176 goto out_end_trans; 6177 } 6178 6179 if (!is_reloc_root) { 6180 ret = btrfs_find_root(tree_root, &root->root_key, path, 6181 NULL, NULL); 6182 if (ret < 0) { 6183 btrfs_abort_transaction(trans, ret); 6184 goto out_end_trans; 6185 } else if (ret > 0) { 6186 ret = 0; 6187 /* 6188 * If we fail to delete the orphan item this time 6189 * around, it'll get picked up the next time. 6190 * 6191 * The most common failure here is just -ENOENT. 6192 */ 6193 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6194 } 6195 } 6196 6197 /* 6198 * This subvolume is going to be completely dropped, and won't be 6199 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6200 * commit transaction time. So free it here manually. 6201 */ 6202 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6203 btrfs_qgroup_free_meta_all_pertrans(root); 6204 6205 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6206 btrfs_add_dropped_root(trans, root); 6207 else 6208 btrfs_put_root(root); 6209 root_dropped = true; 6210 out_end_trans: 6211 if (!is_reloc_root) 6212 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6213 6214 btrfs_end_transaction_throttle(trans); 6215 out_free: 6216 kfree(wc); 6217 btrfs_free_path(path); 6218 out: 6219 if (!ret && root_dropped) { 6220 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6221 if (ret < 0) 6222 btrfs_warn_rl(fs_info, 6223 "failed to cleanup qgroup 0/%llu: %d", 6224 rootid, ret); 6225 ret = 0; 6226 } 6227 /* 6228 * We were an unfinished drop root, check to see if there are any 6229 * pending, and if not clear and wake up any waiters. 6230 */ 6231 if (!ret && unfinished_drop) 6232 btrfs_maybe_wake_unfinished_drop(fs_info); 6233 6234 /* 6235 * So if we need to stop dropping the snapshot for whatever reason we 6236 * need to make sure to add it back to the dead root list so that we 6237 * keep trying to do the work later. This also cleans up roots if we 6238 * don't have it in the radix (like when we recover after a power fail 6239 * or unmount) so we don't leak memory. 6240 */ 6241 if (!for_reloc && !root_dropped) 6242 btrfs_add_dead_root(root); 6243 return ret; 6244 } 6245 6246 /* 6247 * drop subtree rooted at tree block 'node'. 6248 * 6249 * NOTE: this function will unlock and release tree block 'node' 6250 * only used by relocation code 6251 */ 6252 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6253 struct btrfs_root *root, 6254 struct extent_buffer *node, 6255 struct extent_buffer *parent) 6256 { 6257 struct btrfs_fs_info *fs_info = root->fs_info; 6258 struct btrfs_path *path; 6259 struct walk_control *wc; 6260 int level; 6261 int parent_level; 6262 int ret = 0; 6263 6264 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6265 6266 path = btrfs_alloc_path(); 6267 if (!path) 6268 return -ENOMEM; 6269 6270 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6271 if (!wc) { 6272 btrfs_free_path(path); 6273 return -ENOMEM; 6274 } 6275 6276 btrfs_assert_tree_write_locked(parent); 6277 parent_level = btrfs_header_level(parent); 6278 atomic_inc(&parent->refs); 6279 path->nodes[parent_level] = parent; 6280 path->slots[parent_level] = btrfs_header_nritems(parent); 6281 6282 btrfs_assert_tree_write_locked(node); 6283 level = btrfs_header_level(node); 6284 path->nodes[level] = node; 6285 path->slots[level] = 0; 6286 path->locks[level] = BTRFS_WRITE_LOCK; 6287 6288 wc->refs[parent_level] = 1; 6289 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6290 wc->level = level; 6291 wc->shared_level = -1; 6292 wc->stage = DROP_REFERENCE; 6293 wc->update_ref = 0; 6294 wc->keep_locks = 1; 6295 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6296 6297 while (1) { 6298 ret = walk_down_tree(trans, root, path, wc); 6299 if (ret < 0) 6300 break; 6301 6302 ret = walk_up_tree(trans, root, path, wc, parent_level); 6303 if (ret) { 6304 if (ret > 0) 6305 ret = 0; 6306 break; 6307 } 6308 } 6309 6310 kfree(wc); 6311 btrfs_free_path(path); 6312 return ret; 6313 } 6314 6315 /* 6316 * Unpin the extent range in an error context and don't add the space back. 6317 * Errors are not propagated further. 6318 */ 6319 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6320 { 6321 unpin_extent_range(fs_info, start, end, false); 6322 } 6323 6324 /* 6325 * It used to be that old block groups would be left around forever. 6326 * Iterating over them would be enough to trim unused space. Since we 6327 * now automatically remove them, we also need to iterate over unallocated 6328 * space. 6329 * 6330 * We don't want a transaction for this since the discard may take a 6331 * substantial amount of time. We don't require that a transaction be 6332 * running, but we do need to take a running transaction into account 6333 * to ensure that we're not discarding chunks that were released or 6334 * allocated in the current transaction. 6335 * 6336 * Holding the chunks lock will prevent other threads from allocating 6337 * or releasing chunks, but it won't prevent a running transaction 6338 * from committing and releasing the memory that the pending chunks 6339 * list head uses. For that, we need to take a reference to the 6340 * transaction and hold the commit root sem. We only need to hold 6341 * it while performing the free space search since we have already 6342 * held back allocations. 6343 */ 6344 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6345 { 6346 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6347 int ret; 6348 6349 *trimmed = 0; 6350 6351 /* Discard not supported = nothing to do. */ 6352 if (!bdev_max_discard_sectors(device->bdev)) 6353 return 0; 6354 6355 /* Not writable = nothing to do. */ 6356 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6357 return 0; 6358 6359 /* No free space = nothing to do. */ 6360 if (device->total_bytes <= device->bytes_used) 6361 return 0; 6362 6363 ret = 0; 6364 6365 while (1) { 6366 struct btrfs_fs_info *fs_info = device->fs_info; 6367 u64 bytes; 6368 6369 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6370 if (ret) 6371 break; 6372 6373 find_first_clear_extent_bit(&device->alloc_state, start, 6374 &start, &end, 6375 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6376 6377 /* Check if there are any CHUNK_* bits left */ 6378 if (start > device->total_bytes) { 6379 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6380 btrfs_warn_in_rcu(fs_info, 6381 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6382 start, end - start + 1, 6383 btrfs_dev_name(device), 6384 device->total_bytes); 6385 mutex_unlock(&fs_info->chunk_mutex); 6386 ret = 0; 6387 break; 6388 } 6389 6390 /* Ensure we skip the reserved space on each device. */ 6391 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6392 6393 /* 6394 * If find_first_clear_extent_bit find a range that spans the 6395 * end of the device it will set end to -1, in this case it's up 6396 * to the caller to trim the value to the size of the device. 6397 */ 6398 end = min(end, device->total_bytes - 1); 6399 6400 len = end - start + 1; 6401 6402 /* We didn't find any extents */ 6403 if (!len) { 6404 mutex_unlock(&fs_info->chunk_mutex); 6405 ret = 0; 6406 break; 6407 } 6408 6409 ret = btrfs_issue_discard(device->bdev, start, len, 6410 &bytes); 6411 if (!ret) 6412 set_extent_bit(&device->alloc_state, start, 6413 start + bytes - 1, CHUNK_TRIMMED, NULL); 6414 mutex_unlock(&fs_info->chunk_mutex); 6415 6416 if (ret) 6417 break; 6418 6419 start += len; 6420 *trimmed += bytes; 6421 6422 if (fatal_signal_pending(current)) { 6423 ret = -ERESTARTSYS; 6424 break; 6425 } 6426 6427 cond_resched(); 6428 } 6429 6430 return ret; 6431 } 6432 6433 /* 6434 * Trim the whole filesystem by: 6435 * 1) trimming the free space in each block group 6436 * 2) trimming the unallocated space on each device 6437 * 6438 * This will also continue trimming even if a block group or device encounters 6439 * an error. The return value will be the last error, or 0 if nothing bad 6440 * happens. 6441 */ 6442 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6443 { 6444 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6445 struct btrfs_block_group *cache = NULL; 6446 struct btrfs_device *device; 6447 u64 group_trimmed; 6448 u64 range_end = U64_MAX; 6449 u64 start; 6450 u64 end; 6451 u64 trimmed = 0; 6452 u64 bg_failed = 0; 6453 u64 dev_failed = 0; 6454 int bg_ret = 0; 6455 int dev_ret = 0; 6456 int ret = 0; 6457 6458 if (range->start == U64_MAX) 6459 return -EINVAL; 6460 6461 /* 6462 * Check range overflow if range->len is set. 6463 * The default range->len is U64_MAX. 6464 */ 6465 if (range->len != U64_MAX && 6466 check_add_overflow(range->start, range->len, &range_end)) 6467 return -EINVAL; 6468 6469 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6470 for (; cache; cache = btrfs_next_block_group(cache)) { 6471 if (cache->start >= range_end) { 6472 btrfs_put_block_group(cache); 6473 break; 6474 } 6475 6476 start = max(range->start, cache->start); 6477 end = min(range_end, cache->start + cache->length); 6478 6479 if (end - start >= range->minlen) { 6480 if (!btrfs_block_group_done(cache)) { 6481 ret = btrfs_cache_block_group(cache, true); 6482 if (ret) { 6483 bg_failed++; 6484 bg_ret = ret; 6485 continue; 6486 } 6487 } 6488 ret = btrfs_trim_block_group(cache, 6489 &group_trimmed, 6490 start, 6491 end, 6492 range->minlen); 6493 6494 trimmed += group_trimmed; 6495 if (ret) { 6496 bg_failed++; 6497 bg_ret = ret; 6498 continue; 6499 } 6500 } 6501 } 6502 6503 if (bg_failed) 6504 btrfs_warn(fs_info, 6505 "failed to trim %llu block group(s), last error %d", 6506 bg_failed, bg_ret); 6507 6508 mutex_lock(&fs_devices->device_list_mutex); 6509 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6510 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6511 continue; 6512 6513 ret = btrfs_trim_free_extents(device, &group_trimmed); 6514 if (ret) { 6515 dev_failed++; 6516 dev_ret = ret; 6517 break; 6518 } 6519 6520 trimmed += group_trimmed; 6521 } 6522 mutex_unlock(&fs_devices->device_list_mutex); 6523 6524 if (dev_failed) 6525 btrfs_warn(fs_info, 6526 "failed to trim %llu device(s), last error %d", 6527 dev_failed, dev_ret); 6528 range->len = trimmed; 6529 if (bg_ret) 6530 return bg_ret; 6531 return dev_ret; 6532 } 6533