1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1320 struct btrfs_extent_inline_ref *iref) 1321 { 1322 struct btrfs_key key; 1323 struct extent_buffer *leaf; 1324 struct btrfs_extent_data_ref *ref1; 1325 struct btrfs_shared_data_ref *ref2; 1326 u32 num_refs = 0; 1327 1328 leaf = path->nodes[0]; 1329 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1330 if (iref) { 1331 if (btrfs_extent_inline_ref_type(leaf, iref) == 1332 BTRFS_EXTENT_DATA_REF_KEY) { 1333 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1334 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1335 } else { 1336 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1337 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1338 } 1339 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1340 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1341 struct btrfs_extent_data_ref); 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1343 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1344 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1345 struct btrfs_shared_data_ref); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1348 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1349 struct btrfs_extent_ref_v0 *ref0; 1350 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_ref_v0); 1352 num_refs = btrfs_ref_count_v0(leaf, ref0); 1353 #endif 1354 } else { 1355 WARN_ON(1); 1356 } 1357 return num_refs; 1358 } 1359 1360 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1361 struct btrfs_root *root, 1362 struct btrfs_path *path, 1363 u64 bytenr, u64 parent, 1364 u64 root_objectid) 1365 { 1366 struct btrfs_key key; 1367 int ret; 1368 1369 key.objectid = bytenr; 1370 if (parent) { 1371 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1372 key.offset = parent; 1373 } else { 1374 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1375 key.offset = root_objectid; 1376 } 1377 1378 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1379 if (ret > 0) 1380 ret = -ENOENT; 1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1382 if (ret == -ENOENT && parent) { 1383 btrfs_release_path(path); 1384 key.type = BTRFS_EXTENT_REF_V0_KEY; 1385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1386 if (ret > 0) 1387 ret = -ENOENT; 1388 } 1389 #endif 1390 return ret; 1391 } 1392 1393 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1394 struct btrfs_root *root, 1395 struct btrfs_path *path, 1396 u64 bytenr, u64 parent, 1397 u64 root_objectid) 1398 { 1399 struct btrfs_key key; 1400 int ret; 1401 1402 key.objectid = bytenr; 1403 if (parent) { 1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1405 key.offset = parent; 1406 } else { 1407 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1408 key.offset = root_objectid; 1409 } 1410 1411 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1412 btrfs_release_path(path); 1413 return ret; 1414 } 1415 1416 static inline int extent_ref_type(u64 parent, u64 owner) 1417 { 1418 int type; 1419 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1420 if (parent > 0) 1421 type = BTRFS_SHARED_BLOCK_REF_KEY; 1422 else 1423 type = BTRFS_TREE_BLOCK_REF_KEY; 1424 } else { 1425 if (parent > 0) 1426 type = BTRFS_SHARED_DATA_REF_KEY; 1427 else 1428 type = BTRFS_EXTENT_DATA_REF_KEY; 1429 } 1430 return type; 1431 } 1432 1433 static int find_next_key(struct btrfs_path *path, int level, 1434 struct btrfs_key *key) 1435 1436 { 1437 for (; level < BTRFS_MAX_LEVEL; level++) { 1438 if (!path->nodes[level]) 1439 break; 1440 if (path->slots[level] + 1 >= 1441 btrfs_header_nritems(path->nodes[level])) 1442 continue; 1443 if (level == 0) 1444 btrfs_item_key_to_cpu(path->nodes[level], key, 1445 path->slots[level] + 1); 1446 else 1447 btrfs_node_key_to_cpu(path->nodes[level], key, 1448 path->slots[level] + 1); 1449 return 0; 1450 } 1451 return 1; 1452 } 1453 1454 /* 1455 * look for inline back ref. if back ref is found, *ref_ret is set 1456 * to the address of inline back ref, and 0 is returned. 1457 * 1458 * if back ref isn't found, *ref_ret is set to the address where it 1459 * should be inserted, and -ENOENT is returned. 1460 * 1461 * if insert is true and there are too many inline back refs, the path 1462 * points to the extent item, and -EAGAIN is returned. 1463 * 1464 * NOTE: inline back refs are ordered in the same way that back ref 1465 * items in the tree are ordered. 1466 */ 1467 static noinline_for_stack 1468 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1469 struct btrfs_root *root, 1470 struct btrfs_path *path, 1471 struct btrfs_extent_inline_ref **ref_ret, 1472 u64 bytenr, u64 num_bytes, 1473 u64 parent, u64 root_objectid, 1474 u64 owner, u64 offset, int insert) 1475 { 1476 struct btrfs_key key; 1477 struct extent_buffer *leaf; 1478 struct btrfs_extent_item *ei; 1479 struct btrfs_extent_inline_ref *iref; 1480 u64 flags; 1481 u64 item_size; 1482 unsigned long ptr; 1483 unsigned long end; 1484 int extra_size; 1485 int type; 1486 int want; 1487 int ret; 1488 int err = 0; 1489 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1490 SKINNY_METADATA); 1491 1492 key.objectid = bytenr; 1493 key.type = BTRFS_EXTENT_ITEM_KEY; 1494 key.offset = num_bytes; 1495 1496 want = extent_ref_type(parent, owner); 1497 if (insert) { 1498 extra_size = btrfs_extent_inline_ref_size(want); 1499 path->keep_locks = 1; 1500 } else 1501 extra_size = -1; 1502 1503 /* 1504 * Owner is our parent level, so we can just add one to get the level 1505 * for the block we are interested in. 1506 */ 1507 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1508 key.type = BTRFS_METADATA_ITEM_KEY; 1509 key.offset = owner; 1510 } 1511 1512 again: 1513 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1514 if (ret < 0) { 1515 err = ret; 1516 goto out; 1517 } 1518 1519 /* 1520 * We may be a newly converted file system which still has the old fat 1521 * extent entries for metadata, so try and see if we have one of those. 1522 */ 1523 if (ret > 0 && skinny_metadata) { 1524 skinny_metadata = false; 1525 if (path->slots[0]) { 1526 path->slots[0]--; 1527 btrfs_item_key_to_cpu(path->nodes[0], &key, 1528 path->slots[0]); 1529 if (key.objectid == bytenr && 1530 key.type == BTRFS_EXTENT_ITEM_KEY && 1531 key.offset == num_bytes) 1532 ret = 0; 1533 } 1534 if (ret) { 1535 key.objectid = bytenr; 1536 key.type = BTRFS_EXTENT_ITEM_KEY; 1537 key.offset = num_bytes; 1538 btrfs_release_path(path); 1539 goto again; 1540 } 1541 } 1542 1543 if (ret && !insert) { 1544 err = -ENOENT; 1545 goto out; 1546 } else if (WARN_ON(ret)) { 1547 err = -EIO; 1548 goto out; 1549 } 1550 1551 leaf = path->nodes[0]; 1552 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1553 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1554 if (item_size < sizeof(*ei)) { 1555 if (!insert) { 1556 err = -ENOENT; 1557 goto out; 1558 } 1559 ret = convert_extent_item_v0(trans, root, path, owner, 1560 extra_size); 1561 if (ret < 0) { 1562 err = ret; 1563 goto out; 1564 } 1565 leaf = path->nodes[0]; 1566 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1567 } 1568 #endif 1569 BUG_ON(item_size < sizeof(*ei)); 1570 1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1572 flags = btrfs_extent_flags(leaf, ei); 1573 1574 ptr = (unsigned long)(ei + 1); 1575 end = (unsigned long)ei + item_size; 1576 1577 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1578 ptr += sizeof(struct btrfs_tree_block_info); 1579 BUG_ON(ptr > end); 1580 } 1581 1582 err = -ENOENT; 1583 while (1) { 1584 if (ptr >= end) { 1585 WARN_ON(ptr > end); 1586 break; 1587 } 1588 iref = (struct btrfs_extent_inline_ref *)ptr; 1589 type = btrfs_extent_inline_ref_type(leaf, iref); 1590 if (want < type) 1591 break; 1592 if (want > type) { 1593 ptr += btrfs_extent_inline_ref_size(type); 1594 continue; 1595 } 1596 1597 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1598 struct btrfs_extent_data_ref *dref; 1599 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1600 if (match_extent_data_ref(leaf, dref, root_objectid, 1601 owner, offset)) { 1602 err = 0; 1603 break; 1604 } 1605 if (hash_extent_data_ref_item(leaf, dref) < 1606 hash_extent_data_ref(root_objectid, owner, offset)) 1607 break; 1608 } else { 1609 u64 ref_offset; 1610 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1611 if (parent > 0) { 1612 if (parent == ref_offset) { 1613 err = 0; 1614 break; 1615 } 1616 if (ref_offset < parent) 1617 break; 1618 } else { 1619 if (root_objectid == ref_offset) { 1620 err = 0; 1621 break; 1622 } 1623 if (ref_offset < root_objectid) 1624 break; 1625 } 1626 } 1627 ptr += btrfs_extent_inline_ref_size(type); 1628 } 1629 if (err == -ENOENT && insert) { 1630 if (item_size + extra_size >= 1631 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1632 err = -EAGAIN; 1633 goto out; 1634 } 1635 /* 1636 * To add new inline back ref, we have to make sure 1637 * there is no corresponding back ref item. 1638 * For simplicity, we just do not add new inline back 1639 * ref if there is any kind of item for this block 1640 */ 1641 if (find_next_key(path, 0, &key) == 0 && 1642 key.objectid == bytenr && 1643 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1644 err = -EAGAIN; 1645 goto out; 1646 } 1647 } 1648 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1649 out: 1650 if (insert) { 1651 path->keep_locks = 0; 1652 btrfs_unlock_up_safe(path, 1); 1653 } 1654 return err; 1655 } 1656 1657 /* 1658 * helper to add new inline back ref 1659 */ 1660 static noinline_for_stack 1661 void setup_inline_extent_backref(struct btrfs_root *root, 1662 struct btrfs_path *path, 1663 struct btrfs_extent_inline_ref *iref, 1664 u64 parent, u64 root_objectid, 1665 u64 owner, u64 offset, int refs_to_add, 1666 struct btrfs_delayed_extent_op *extent_op) 1667 { 1668 struct extent_buffer *leaf; 1669 struct btrfs_extent_item *ei; 1670 unsigned long ptr; 1671 unsigned long end; 1672 unsigned long item_offset; 1673 u64 refs; 1674 int size; 1675 int type; 1676 1677 leaf = path->nodes[0]; 1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1679 item_offset = (unsigned long)iref - (unsigned long)ei; 1680 1681 type = extent_ref_type(parent, owner); 1682 size = btrfs_extent_inline_ref_size(type); 1683 1684 btrfs_extend_item(root, path, size); 1685 1686 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1687 refs = btrfs_extent_refs(leaf, ei); 1688 refs += refs_to_add; 1689 btrfs_set_extent_refs(leaf, ei, refs); 1690 if (extent_op) 1691 __run_delayed_extent_op(extent_op, leaf, ei); 1692 1693 ptr = (unsigned long)ei + item_offset; 1694 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1695 if (ptr < end - size) 1696 memmove_extent_buffer(leaf, ptr + size, ptr, 1697 end - size - ptr); 1698 1699 iref = (struct btrfs_extent_inline_ref *)ptr; 1700 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1701 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1702 struct btrfs_extent_data_ref *dref; 1703 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1704 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1705 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1706 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1707 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1708 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1709 struct btrfs_shared_data_ref *sref; 1710 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1711 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1712 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1713 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1717 } 1718 btrfs_mark_buffer_dirty(leaf); 1719 } 1720 1721 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1722 struct btrfs_root *root, 1723 struct btrfs_path *path, 1724 struct btrfs_extent_inline_ref **ref_ret, 1725 u64 bytenr, u64 num_bytes, u64 parent, 1726 u64 root_objectid, u64 owner, u64 offset) 1727 { 1728 int ret; 1729 1730 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1731 bytenr, num_bytes, parent, 1732 root_objectid, owner, offset, 0); 1733 if (ret != -ENOENT) 1734 return ret; 1735 1736 btrfs_release_path(path); 1737 *ref_ret = NULL; 1738 1739 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1740 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1741 root_objectid); 1742 } else { 1743 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1744 root_objectid, owner, offset); 1745 } 1746 return ret; 1747 } 1748 1749 /* 1750 * helper to update/remove inline back ref 1751 */ 1752 static noinline_for_stack 1753 void update_inline_extent_backref(struct btrfs_root *root, 1754 struct btrfs_path *path, 1755 struct btrfs_extent_inline_ref *iref, 1756 int refs_to_mod, 1757 struct btrfs_delayed_extent_op *extent_op, 1758 int *last_ref) 1759 { 1760 struct extent_buffer *leaf; 1761 struct btrfs_extent_item *ei; 1762 struct btrfs_extent_data_ref *dref = NULL; 1763 struct btrfs_shared_data_ref *sref = NULL; 1764 unsigned long ptr; 1765 unsigned long end; 1766 u32 item_size; 1767 int size; 1768 int type; 1769 u64 refs; 1770 1771 leaf = path->nodes[0]; 1772 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1773 refs = btrfs_extent_refs(leaf, ei); 1774 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1775 refs += refs_to_mod; 1776 btrfs_set_extent_refs(leaf, ei, refs); 1777 if (extent_op) 1778 __run_delayed_extent_op(extent_op, leaf, ei); 1779 1780 type = btrfs_extent_inline_ref_type(leaf, iref); 1781 1782 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1783 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1784 refs = btrfs_extent_data_ref_count(leaf, dref); 1785 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1786 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1787 refs = btrfs_shared_data_ref_count(leaf, sref); 1788 } else { 1789 refs = 1; 1790 BUG_ON(refs_to_mod != -1); 1791 } 1792 1793 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1794 refs += refs_to_mod; 1795 1796 if (refs > 0) { 1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1798 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1799 else 1800 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1801 } else { 1802 *last_ref = 1; 1803 size = btrfs_extent_inline_ref_size(type); 1804 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1805 ptr = (unsigned long)iref; 1806 end = (unsigned long)ei + item_size; 1807 if (ptr + size < end) 1808 memmove_extent_buffer(leaf, ptr, ptr + size, 1809 end - ptr - size); 1810 item_size -= size; 1811 btrfs_truncate_item(root, path, item_size, 1); 1812 } 1813 btrfs_mark_buffer_dirty(leaf); 1814 } 1815 1816 static noinline_for_stack 1817 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1818 struct btrfs_root *root, 1819 struct btrfs_path *path, 1820 u64 bytenr, u64 num_bytes, u64 parent, 1821 u64 root_objectid, u64 owner, 1822 u64 offset, int refs_to_add, 1823 struct btrfs_delayed_extent_op *extent_op) 1824 { 1825 struct btrfs_extent_inline_ref *iref; 1826 int ret; 1827 1828 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1829 bytenr, num_bytes, parent, 1830 root_objectid, owner, offset, 1); 1831 if (ret == 0) { 1832 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1833 update_inline_extent_backref(root, path, iref, 1834 refs_to_add, extent_op, NULL); 1835 } else if (ret == -ENOENT) { 1836 setup_inline_extent_backref(root, path, iref, parent, 1837 root_objectid, owner, offset, 1838 refs_to_add, extent_op); 1839 ret = 0; 1840 } 1841 return ret; 1842 } 1843 1844 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1845 struct btrfs_root *root, 1846 struct btrfs_path *path, 1847 u64 bytenr, u64 parent, u64 root_objectid, 1848 u64 owner, u64 offset, int refs_to_add) 1849 { 1850 int ret; 1851 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1852 BUG_ON(refs_to_add != 1); 1853 ret = insert_tree_block_ref(trans, root, path, bytenr, 1854 parent, root_objectid); 1855 } else { 1856 ret = insert_extent_data_ref(trans, root, path, bytenr, 1857 parent, root_objectid, 1858 owner, offset, refs_to_add); 1859 } 1860 return ret; 1861 } 1862 1863 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1864 struct btrfs_root *root, 1865 struct btrfs_path *path, 1866 struct btrfs_extent_inline_ref *iref, 1867 int refs_to_drop, int is_data, int *last_ref) 1868 { 1869 int ret = 0; 1870 1871 BUG_ON(!is_data && refs_to_drop != 1); 1872 if (iref) { 1873 update_inline_extent_backref(root, path, iref, 1874 -refs_to_drop, NULL, last_ref); 1875 } else if (is_data) { 1876 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1877 last_ref); 1878 } else { 1879 *last_ref = 1; 1880 ret = btrfs_del_item(trans, root, path); 1881 } 1882 return ret; 1883 } 1884 1885 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1886 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1887 u64 *discarded_bytes) 1888 { 1889 int j, ret = 0; 1890 u64 bytes_left, end; 1891 u64 aligned_start = ALIGN(start, 1 << 9); 1892 1893 if (WARN_ON(start != aligned_start)) { 1894 len -= aligned_start - start; 1895 len = round_down(len, 1 << 9); 1896 start = aligned_start; 1897 } 1898 1899 *discarded_bytes = 0; 1900 1901 if (!len) 1902 return 0; 1903 1904 end = start + len; 1905 bytes_left = len; 1906 1907 /* Skip any superblocks on this device. */ 1908 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1909 u64 sb_start = btrfs_sb_offset(j); 1910 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1911 u64 size = sb_start - start; 1912 1913 if (!in_range(sb_start, start, bytes_left) && 1914 !in_range(sb_end, start, bytes_left) && 1915 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1916 continue; 1917 1918 /* 1919 * Superblock spans beginning of range. Adjust start and 1920 * try again. 1921 */ 1922 if (sb_start <= start) { 1923 start += sb_end - start; 1924 if (start > end) { 1925 bytes_left = 0; 1926 break; 1927 } 1928 bytes_left = end - start; 1929 continue; 1930 } 1931 1932 if (size) { 1933 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1934 GFP_NOFS, 0); 1935 if (!ret) 1936 *discarded_bytes += size; 1937 else if (ret != -EOPNOTSUPP) 1938 return ret; 1939 } 1940 1941 start = sb_end; 1942 if (start > end) { 1943 bytes_left = 0; 1944 break; 1945 } 1946 bytes_left = end - start; 1947 } 1948 1949 if (bytes_left) { 1950 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1951 GFP_NOFS, 0); 1952 if (!ret) 1953 *discarded_bytes += bytes_left; 1954 } 1955 return ret; 1956 } 1957 1958 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1959 u64 num_bytes, u64 *actual_bytes) 1960 { 1961 int ret; 1962 u64 discarded_bytes = 0; 1963 struct btrfs_bio *bbio = NULL; 1964 1965 1966 /* Tell the block device(s) that the sectors can be discarded */ 1967 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1968 bytenr, &num_bytes, &bbio, 0); 1969 /* Error condition is -ENOMEM */ 1970 if (!ret) { 1971 struct btrfs_bio_stripe *stripe = bbio->stripes; 1972 int i; 1973 1974 1975 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1976 u64 bytes; 1977 if (!stripe->dev->can_discard) 1978 continue; 1979 1980 ret = btrfs_issue_discard(stripe->dev->bdev, 1981 stripe->physical, 1982 stripe->length, 1983 &bytes); 1984 if (!ret) 1985 discarded_bytes += bytes; 1986 else if (ret != -EOPNOTSUPP) 1987 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1988 1989 /* 1990 * Just in case we get back EOPNOTSUPP for some reason, 1991 * just ignore the return value so we don't screw up 1992 * people calling discard_extent. 1993 */ 1994 ret = 0; 1995 } 1996 btrfs_put_bbio(bbio); 1997 } 1998 1999 if (actual_bytes) 2000 *actual_bytes = discarded_bytes; 2001 2002 2003 if (ret == -EOPNOTSUPP) 2004 ret = 0; 2005 return ret; 2006 } 2007 2008 /* Can return -ENOMEM */ 2009 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 u64 bytenr, u64 num_bytes, u64 parent, 2012 u64 root_objectid, u64 owner, u64 offset, 2013 int no_quota) 2014 { 2015 int ret; 2016 struct btrfs_fs_info *fs_info = root->fs_info; 2017 2018 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2019 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2020 2021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2022 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2023 num_bytes, 2024 parent, root_objectid, (int)owner, 2025 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2026 } else { 2027 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2028 num_bytes, 2029 parent, root_objectid, owner, offset, 2030 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 2031 } 2032 return ret; 2033 } 2034 2035 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2036 struct btrfs_root *root, 2037 struct btrfs_delayed_ref_node *node, 2038 u64 parent, u64 root_objectid, 2039 u64 owner, u64 offset, int refs_to_add, 2040 struct btrfs_delayed_extent_op *extent_op) 2041 { 2042 struct btrfs_fs_info *fs_info = root->fs_info; 2043 struct btrfs_path *path; 2044 struct extent_buffer *leaf; 2045 struct btrfs_extent_item *item; 2046 struct btrfs_key key; 2047 u64 bytenr = node->bytenr; 2048 u64 num_bytes = node->num_bytes; 2049 u64 refs; 2050 int ret; 2051 int no_quota = node->no_quota; 2052 2053 path = btrfs_alloc_path(); 2054 if (!path) 2055 return -ENOMEM; 2056 2057 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 2058 no_quota = 1; 2059 2060 path->reada = 1; 2061 path->leave_spinning = 1; 2062 /* this will setup the path even if it fails to insert the back ref */ 2063 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2064 bytenr, num_bytes, parent, 2065 root_objectid, owner, offset, 2066 refs_to_add, extent_op); 2067 if ((ret < 0 && ret != -EAGAIN) || !ret) 2068 goto out; 2069 2070 /* 2071 * Ok we had -EAGAIN which means we didn't have space to insert and 2072 * inline extent ref, so just update the reference count and add a 2073 * normal backref. 2074 */ 2075 leaf = path->nodes[0]; 2076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2077 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 refs = btrfs_extent_refs(leaf, item); 2079 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2080 if (extent_op) 2081 __run_delayed_extent_op(extent_op, leaf, item); 2082 2083 btrfs_mark_buffer_dirty(leaf); 2084 btrfs_release_path(path); 2085 2086 path->reada = 1; 2087 path->leave_spinning = 1; 2088 /* now insert the actual backref */ 2089 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2090 path, bytenr, parent, root_objectid, 2091 owner, offset, refs_to_add); 2092 if (ret) 2093 btrfs_abort_transaction(trans, root, ret); 2094 out: 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_delayed_ref_node *node, 2102 struct btrfs_delayed_extent_op *extent_op, 2103 int insert_reserved) 2104 { 2105 int ret = 0; 2106 struct btrfs_delayed_data_ref *ref; 2107 struct btrfs_key ins; 2108 u64 parent = 0; 2109 u64 ref_root = 0; 2110 u64 flags = 0; 2111 2112 ins.objectid = node->bytenr; 2113 ins.offset = node->num_bytes; 2114 ins.type = BTRFS_EXTENT_ITEM_KEY; 2115 2116 ref = btrfs_delayed_node_to_data_ref(node); 2117 trace_run_delayed_data_ref(node, ref, node->action); 2118 2119 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2120 parent = ref->parent; 2121 ref_root = ref->root; 2122 2123 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2124 if (extent_op) 2125 flags |= extent_op->flags_to_set; 2126 ret = alloc_reserved_file_extent(trans, root, 2127 parent, ref_root, flags, 2128 ref->objectid, ref->offset, 2129 &ins, node->ref_mod); 2130 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2131 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2132 ref_root, ref->objectid, 2133 ref->offset, node->ref_mod, 2134 extent_op); 2135 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2136 ret = __btrfs_free_extent(trans, root, node, parent, 2137 ref_root, ref->objectid, 2138 ref->offset, node->ref_mod, 2139 extent_op); 2140 } else { 2141 BUG(); 2142 } 2143 return ret; 2144 } 2145 2146 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2147 struct extent_buffer *leaf, 2148 struct btrfs_extent_item *ei) 2149 { 2150 u64 flags = btrfs_extent_flags(leaf, ei); 2151 if (extent_op->update_flags) { 2152 flags |= extent_op->flags_to_set; 2153 btrfs_set_extent_flags(leaf, ei, flags); 2154 } 2155 2156 if (extent_op->update_key) { 2157 struct btrfs_tree_block_info *bi; 2158 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2159 bi = (struct btrfs_tree_block_info *)(ei + 1); 2160 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2161 } 2162 } 2163 2164 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2165 struct btrfs_root *root, 2166 struct btrfs_delayed_ref_node *node, 2167 struct btrfs_delayed_extent_op *extent_op) 2168 { 2169 struct btrfs_key key; 2170 struct btrfs_path *path; 2171 struct btrfs_extent_item *ei; 2172 struct extent_buffer *leaf; 2173 u32 item_size; 2174 int ret; 2175 int err = 0; 2176 int metadata = !extent_op->is_data; 2177 2178 if (trans->aborted) 2179 return 0; 2180 2181 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2182 metadata = 0; 2183 2184 path = btrfs_alloc_path(); 2185 if (!path) 2186 return -ENOMEM; 2187 2188 key.objectid = node->bytenr; 2189 2190 if (metadata) { 2191 key.type = BTRFS_METADATA_ITEM_KEY; 2192 key.offset = extent_op->level; 2193 } else { 2194 key.type = BTRFS_EXTENT_ITEM_KEY; 2195 key.offset = node->num_bytes; 2196 } 2197 2198 again: 2199 path->reada = 1; 2200 path->leave_spinning = 1; 2201 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2202 path, 0, 1); 2203 if (ret < 0) { 2204 err = ret; 2205 goto out; 2206 } 2207 if (ret > 0) { 2208 if (metadata) { 2209 if (path->slots[0] > 0) { 2210 path->slots[0]--; 2211 btrfs_item_key_to_cpu(path->nodes[0], &key, 2212 path->slots[0]); 2213 if (key.objectid == node->bytenr && 2214 key.type == BTRFS_EXTENT_ITEM_KEY && 2215 key.offset == node->num_bytes) 2216 ret = 0; 2217 } 2218 if (ret > 0) { 2219 btrfs_release_path(path); 2220 metadata = 0; 2221 2222 key.objectid = node->bytenr; 2223 key.offset = node->num_bytes; 2224 key.type = BTRFS_EXTENT_ITEM_KEY; 2225 goto again; 2226 } 2227 } else { 2228 err = -EIO; 2229 goto out; 2230 } 2231 } 2232 2233 leaf = path->nodes[0]; 2234 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2235 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2236 if (item_size < sizeof(*ei)) { 2237 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2238 path, (u64)-1, 0); 2239 if (ret < 0) { 2240 err = ret; 2241 goto out; 2242 } 2243 leaf = path->nodes[0]; 2244 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2245 } 2246 #endif 2247 BUG_ON(item_size < sizeof(*ei)); 2248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2249 __run_delayed_extent_op(extent_op, leaf, ei); 2250 2251 btrfs_mark_buffer_dirty(leaf); 2252 out: 2253 btrfs_free_path(path); 2254 return err; 2255 } 2256 2257 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2258 struct btrfs_root *root, 2259 struct btrfs_delayed_ref_node *node, 2260 struct btrfs_delayed_extent_op *extent_op, 2261 int insert_reserved) 2262 { 2263 int ret = 0; 2264 struct btrfs_delayed_tree_ref *ref; 2265 struct btrfs_key ins; 2266 u64 parent = 0; 2267 u64 ref_root = 0; 2268 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2269 SKINNY_METADATA); 2270 2271 ref = btrfs_delayed_node_to_tree_ref(node); 2272 trace_run_delayed_tree_ref(node, ref, node->action); 2273 2274 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2275 parent = ref->parent; 2276 ref_root = ref->root; 2277 2278 ins.objectid = node->bytenr; 2279 if (skinny_metadata) { 2280 ins.offset = ref->level; 2281 ins.type = BTRFS_METADATA_ITEM_KEY; 2282 } else { 2283 ins.offset = node->num_bytes; 2284 ins.type = BTRFS_EXTENT_ITEM_KEY; 2285 } 2286 2287 BUG_ON(node->ref_mod != 1); 2288 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2289 BUG_ON(!extent_op || !extent_op->update_flags); 2290 ret = alloc_reserved_tree_block(trans, root, 2291 parent, ref_root, 2292 extent_op->flags_to_set, 2293 &extent_op->key, 2294 ref->level, &ins, 2295 node->no_quota); 2296 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2297 ret = __btrfs_inc_extent_ref(trans, root, node, 2298 parent, ref_root, 2299 ref->level, 0, 1, 2300 extent_op); 2301 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2302 ret = __btrfs_free_extent(trans, root, node, 2303 parent, ref_root, 2304 ref->level, 0, 1, extent_op); 2305 } else { 2306 BUG(); 2307 } 2308 return ret; 2309 } 2310 2311 /* helper function to actually process a single delayed ref entry */ 2312 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct btrfs_delayed_ref_node *node, 2315 struct btrfs_delayed_extent_op *extent_op, 2316 int insert_reserved) 2317 { 2318 int ret = 0; 2319 2320 if (trans->aborted) { 2321 if (insert_reserved) 2322 btrfs_pin_extent(root, node->bytenr, 2323 node->num_bytes, 1); 2324 return 0; 2325 } 2326 2327 if (btrfs_delayed_ref_is_head(node)) { 2328 struct btrfs_delayed_ref_head *head; 2329 /* 2330 * we've hit the end of the chain and we were supposed 2331 * to insert this extent into the tree. But, it got 2332 * deleted before we ever needed to insert it, so all 2333 * we have to do is clean up the accounting 2334 */ 2335 BUG_ON(extent_op); 2336 head = btrfs_delayed_node_to_head(node); 2337 trace_run_delayed_ref_head(node, head, node->action); 2338 2339 if (insert_reserved) { 2340 btrfs_pin_extent(root, node->bytenr, 2341 node->num_bytes, 1); 2342 if (head->is_data) { 2343 ret = btrfs_del_csums(trans, root, 2344 node->bytenr, 2345 node->num_bytes); 2346 } 2347 } 2348 return ret; 2349 } 2350 2351 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2352 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2353 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2354 insert_reserved); 2355 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2356 node->type == BTRFS_SHARED_DATA_REF_KEY) 2357 ret = run_delayed_data_ref(trans, root, node, extent_op, 2358 insert_reserved); 2359 else 2360 BUG(); 2361 return ret; 2362 } 2363 2364 static inline struct btrfs_delayed_ref_node * 2365 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2366 { 2367 struct btrfs_delayed_ref_node *ref; 2368 2369 if (list_empty(&head->ref_list)) 2370 return NULL; 2371 2372 /* 2373 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2374 * This is to prevent a ref count from going down to zero, which deletes 2375 * the extent item from the extent tree, when there still are references 2376 * to add, which would fail because they would not find the extent item. 2377 */ 2378 list_for_each_entry(ref, &head->ref_list, list) { 2379 if (ref->action == BTRFS_ADD_DELAYED_REF) 2380 return ref; 2381 } 2382 2383 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2384 list); 2385 } 2386 2387 /* 2388 * Returns 0 on success or if called with an already aborted transaction. 2389 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2390 */ 2391 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *root, 2393 unsigned long nr) 2394 { 2395 struct btrfs_delayed_ref_root *delayed_refs; 2396 struct btrfs_delayed_ref_node *ref; 2397 struct btrfs_delayed_ref_head *locked_ref = NULL; 2398 struct btrfs_delayed_extent_op *extent_op; 2399 struct btrfs_fs_info *fs_info = root->fs_info; 2400 ktime_t start = ktime_get(); 2401 int ret; 2402 unsigned long count = 0; 2403 unsigned long actual_count = 0; 2404 int must_insert_reserved = 0; 2405 2406 delayed_refs = &trans->transaction->delayed_refs; 2407 while (1) { 2408 if (!locked_ref) { 2409 if (count >= nr) 2410 break; 2411 2412 spin_lock(&delayed_refs->lock); 2413 locked_ref = btrfs_select_ref_head(trans); 2414 if (!locked_ref) { 2415 spin_unlock(&delayed_refs->lock); 2416 break; 2417 } 2418 2419 /* grab the lock that says we are going to process 2420 * all the refs for this head */ 2421 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2422 spin_unlock(&delayed_refs->lock); 2423 /* 2424 * we may have dropped the spin lock to get the head 2425 * mutex lock, and that might have given someone else 2426 * time to free the head. If that's true, it has been 2427 * removed from our list and we can move on. 2428 */ 2429 if (ret == -EAGAIN) { 2430 locked_ref = NULL; 2431 count++; 2432 continue; 2433 } 2434 } 2435 2436 spin_lock(&locked_ref->lock); 2437 2438 /* 2439 * locked_ref is the head node, so we have to go one 2440 * node back for any delayed ref updates 2441 */ 2442 ref = select_delayed_ref(locked_ref); 2443 2444 if (ref && ref->seq && 2445 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2446 spin_unlock(&locked_ref->lock); 2447 btrfs_delayed_ref_unlock(locked_ref); 2448 spin_lock(&delayed_refs->lock); 2449 locked_ref->processing = 0; 2450 delayed_refs->num_heads_ready++; 2451 spin_unlock(&delayed_refs->lock); 2452 locked_ref = NULL; 2453 cond_resched(); 2454 count++; 2455 continue; 2456 } 2457 2458 /* 2459 * record the must insert reserved flag before we 2460 * drop the spin lock. 2461 */ 2462 must_insert_reserved = locked_ref->must_insert_reserved; 2463 locked_ref->must_insert_reserved = 0; 2464 2465 extent_op = locked_ref->extent_op; 2466 locked_ref->extent_op = NULL; 2467 2468 if (!ref) { 2469 2470 2471 /* All delayed refs have been processed, Go ahead 2472 * and send the head node to run_one_delayed_ref, 2473 * so that any accounting fixes can happen 2474 */ 2475 ref = &locked_ref->node; 2476 2477 if (extent_op && must_insert_reserved) { 2478 btrfs_free_delayed_extent_op(extent_op); 2479 extent_op = NULL; 2480 } 2481 2482 if (extent_op) { 2483 spin_unlock(&locked_ref->lock); 2484 ret = run_delayed_extent_op(trans, root, 2485 ref, extent_op); 2486 btrfs_free_delayed_extent_op(extent_op); 2487 2488 if (ret) { 2489 /* 2490 * Need to reset must_insert_reserved if 2491 * there was an error so the abort stuff 2492 * can cleanup the reserved space 2493 * properly. 2494 */ 2495 if (must_insert_reserved) 2496 locked_ref->must_insert_reserved = 1; 2497 locked_ref->processing = 0; 2498 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2499 btrfs_delayed_ref_unlock(locked_ref); 2500 return ret; 2501 } 2502 continue; 2503 } 2504 2505 /* 2506 * Need to drop our head ref lock and re-aqcuire the 2507 * delayed ref lock and then re-check to make sure 2508 * nobody got added. 2509 */ 2510 spin_unlock(&locked_ref->lock); 2511 spin_lock(&delayed_refs->lock); 2512 spin_lock(&locked_ref->lock); 2513 if (!list_empty(&locked_ref->ref_list) || 2514 locked_ref->extent_op) { 2515 spin_unlock(&locked_ref->lock); 2516 spin_unlock(&delayed_refs->lock); 2517 continue; 2518 } 2519 ref->in_tree = 0; 2520 delayed_refs->num_heads--; 2521 rb_erase(&locked_ref->href_node, 2522 &delayed_refs->href_root); 2523 spin_unlock(&delayed_refs->lock); 2524 } else { 2525 actual_count++; 2526 ref->in_tree = 0; 2527 list_del(&ref->list); 2528 } 2529 atomic_dec(&delayed_refs->num_entries); 2530 2531 if (!btrfs_delayed_ref_is_head(ref)) { 2532 /* 2533 * when we play the delayed ref, also correct the 2534 * ref_mod on head 2535 */ 2536 switch (ref->action) { 2537 case BTRFS_ADD_DELAYED_REF: 2538 case BTRFS_ADD_DELAYED_EXTENT: 2539 locked_ref->node.ref_mod -= ref->ref_mod; 2540 break; 2541 case BTRFS_DROP_DELAYED_REF: 2542 locked_ref->node.ref_mod += ref->ref_mod; 2543 break; 2544 default: 2545 WARN_ON(1); 2546 } 2547 } 2548 spin_unlock(&locked_ref->lock); 2549 2550 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2551 must_insert_reserved); 2552 2553 btrfs_free_delayed_extent_op(extent_op); 2554 if (ret) { 2555 locked_ref->processing = 0; 2556 btrfs_delayed_ref_unlock(locked_ref); 2557 btrfs_put_delayed_ref(ref); 2558 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2559 return ret; 2560 } 2561 2562 /* 2563 * If this node is a head, that means all the refs in this head 2564 * have been dealt with, and we will pick the next head to deal 2565 * with, so we must unlock the head and drop it from the cluster 2566 * list before we release it. 2567 */ 2568 if (btrfs_delayed_ref_is_head(ref)) { 2569 if (locked_ref->is_data && 2570 locked_ref->total_ref_mod < 0) { 2571 spin_lock(&delayed_refs->lock); 2572 delayed_refs->pending_csums -= ref->num_bytes; 2573 spin_unlock(&delayed_refs->lock); 2574 } 2575 btrfs_delayed_ref_unlock(locked_ref); 2576 locked_ref = NULL; 2577 } 2578 btrfs_put_delayed_ref(ref); 2579 count++; 2580 cond_resched(); 2581 } 2582 2583 /* 2584 * We don't want to include ref heads since we can have empty ref heads 2585 * and those will drastically skew our runtime down since we just do 2586 * accounting, no actual extent tree updates. 2587 */ 2588 if (actual_count > 0) { 2589 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2590 u64 avg; 2591 2592 /* 2593 * We weigh the current average higher than our current runtime 2594 * to avoid large swings in the average. 2595 */ 2596 spin_lock(&delayed_refs->lock); 2597 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2598 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2599 spin_unlock(&delayed_refs->lock); 2600 } 2601 return 0; 2602 } 2603 2604 #ifdef SCRAMBLE_DELAYED_REFS 2605 /* 2606 * Normally delayed refs get processed in ascending bytenr order. This 2607 * correlates in most cases to the order added. To expose dependencies on this 2608 * order, we start to process the tree in the middle instead of the beginning 2609 */ 2610 static u64 find_middle(struct rb_root *root) 2611 { 2612 struct rb_node *n = root->rb_node; 2613 struct btrfs_delayed_ref_node *entry; 2614 int alt = 1; 2615 u64 middle; 2616 u64 first = 0, last = 0; 2617 2618 n = rb_first(root); 2619 if (n) { 2620 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2621 first = entry->bytenr; 2622 } 2623 n = rb_last(root); 2624 if (n) { 2625 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2626 last = entry->bytenr; 2627 } 2628 n = root->rb_node; 2629 2630 while (n) { 2631 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2632 WARN_ON(!entry->in_tree); 2633 2634 middle = entry->bytenr; 2635 2636 if (alt) 2637 n = n->rb_left; 2638 else 2639 n = n->rb_right; 2640 2641 alt = 1 - alt; 2642 } 2643 return middle; 2644 } 2645 #endif 2646 2647 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2648 { 2649 u64 num_bytes; 2650 2651 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2652 sizeof(struct btrfs_extent_inline_ref)); 2653 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2654 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2655 2656 /* 2657 * We don't ever fill up leaves all the way so multiply by 2 just to be 2658 * closer to what we're really going to want to ouse. 2659 */ 2660 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2661 } 2662 2663 /* 2664 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2665 * would require to store the csums for that many bytes. 2666 */ 2667 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2668 { 2669 u64 csum_size; 2670 u64 num_csums_per_leaf; 2671 u64 num_csums; 2672 2673 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2674 num_csums_per_leaf = div64_u64(csum_size, 2675 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2676 num_csums = div64_u64(csum_bytes, root->sectorsize); 2677 num_csums += num_csums_per_leaf - 1; 2678 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2679 return num_csums; 2680 } 2681 2682 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root) 2684 { 2685 struct btrfs_block_rsv *global_rsv; 2686 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2687 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2688 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2689 u64 num_bytes, num_dirty_bgs_bytes; 2690 int ret = 0; 2691 2692 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2693 num_heads = heads_to_leaves(root, num_heads); 2694 if (num_heads > 1) 2695 num_bytes += (num_heads - 1) * root->nodesize; 2696 num_bytes <<= 1; 2697 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2698 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2699 num_dirty_bgs); 2700 global_rsv = &root->fs_info->global_block_rsv; 2701 2702 /* 2703 * If we can't allocate any more chunks lets make sure we have _lots_ of 2704 * wiggle room since running delayed refs can create more delayed refs. 2705 */ 2706 if (global_rsv->space_info->full) { 2707 num_dirty_bgs_bytes <<= 1; 2708 num_bytes <<= 1; 2709 } 2710 2711 spin_lock(&global_rsv->lock); 2712 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2713 ret = 1; 2714 spin_unlock(&global_rsv->lock); 2715 return ret; 2716 } 2717 2718 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2719 struct btrfs_root *root) 2720 { 2721 struct btrfs_fs_info *fs_info = root->fs_info; 2722 u64 num_entries = 2723 atomic_read(&trans->transaction->delayed_refs.num_entries); 2724 u64 avg_runtime; 2725 u64 val; 2726 2727 smp_mb(); 2728 avg_runtime = fs_info->avg_delayed_ref_runtime; 2729 val = num_entries * avg_runtime; 2730 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2731 return 1; 2732 if (val >= NSEC_PER_SEC / 2) 2733 return 2; 2734 2735 return btrfs_check_space_for_delayed_refs(trans, root); 2736 } 2737 2738 struct async_delayed_refs { 2739 struct btrfs_root *root; 2740 int count; 2741 int error; 2742 int sync; 2743 struct completion wait; 2744 struct btrfs_work work; 2745 }; 2746 2747 static void delayed_ref_async_start(struct btrfs_work *work) 2748 { 2749 struct async_delayed_refs *async; 2750 struct btrfs_trans_handle *trans; 2751 int ret; 2752 2753 async = container_of(work, struct async_delayed_refs, work); 2754 2755 trans = btrfs_join_transaction(async->root); 2756 if (IS_ERR(trans)) { 2757 async->error = PTR_ERR(trans); 2758 goto done; 2759 } 2760 2761 /* 2762 * trans->sync means that when we call end_transaciton, we won't 2763 * wait on delayed refs 2764 */ 2765 trans->sync = true; 2766 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2767 if (ret) 2768 async->error = ret; 2769 2770 ret = btrfs_end_transaction(trans, async->root); 2771 if (ret && !async->error) 2772 async->error = ret; 2773 done: 2774 if (async->sync) 2775 complete(&async->wait); 2776 else 2777 kfree(async); 2778 } 2779 2780 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2781 unsigned long count, int wait) 2782 { 2783 struct async_delayed_refs *async; 2784 int ret; 2785 2786 async = kmalloc(sizeof(*async), GFP_NOFS); 2787 if (!async) 2788 return -ENOMEM; 2789 2790 async->root = root->fs_info->tree_root; 2791 async->count = count; 2792 async->error = 0; 2793 if (wait) 2794 async->sync = 1; 2795 else 2796 async->sync = 0; 2797 init_completion(&async->wait); 2798 2799 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2800 delayed_ref_async_start, NULL, NULL); 2801 2802 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2803 2804 if (wait) { 2805 wait_for_completion(&async->wait); 2806 ret = async->error; 2807 kfree(async); 2808 return ret; 2809 } 2810 return 0; 2811 } 2812 2813 /* 2814 * this starts processing the delayed reference count updates and 2815 * extent insertions we have queued up so far. count can be 2816 * 0, which means to process everything in the tree at the start 2817 * of the run (but not newly added entries), or it can be some target 2818 * number you'd like to process. 2819 * 2820 * Returns 0 on success or if called with an aborted transaction 2821 * Returns <0 on error and aborts the transaction 2822 */ 2823 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2824 struct btrfs_root *root, unsigned long count) 2825 { 2826 struct rb_node *node; 2827 struct btrfs_delayed_ref_root *delayed_refs; 2828 struct btrfs_delayed_ref_head *head; 2829 int ret; 2830 int run_all = count == (unsigned long)-1; 2831 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2832 2833 /* We'll clean this up in btrfs_cleanup_transaction */ 2834 if (trans->aborted) 2835 return 0; 2836 2837 if (root == root->fs_info->extent_root) 2838 root = root->fs_info->tree_root; 2839 2840 delayed_refs = &trans->transaction->delayed_refs; 2841 if (count == 0) 2842 count = atomic_read(&delayed_refs->num_entries) * 2; 2843 2844 again: 2845 #ifdef SCRAMBLE_DELAYED_REFS 2846 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2847 #endif 2848 trans->can_flush_pending_bgs = false; 2849 ret = __btrfs_run_delayed_refs(trans, root, count); 2850 if (ret < 0) { 2851 btrfs_abort_transaction(trans, root, ret); 2852 return ret; 2853 } 2854 2855 if (run_all) { 2856 if (!list_empty(&trans->new_bgs)) 2857 btrfs_create_pending_block_groups(trans, root); 2858 2859 spin_lock(&delayed_refs->lock); 2860 node = rb_first(&delayed_refs->href_root); 2861 if (!node) { 2862 spin_unlock(&delayed_refs->lock); 2863 goto out; 2864 } 2865 count = (unsigned long)-1; 2866 2867 while (node) { 2868 head = rb_entry(node, struct btrfs_delayed_ref_head, 2869 href_node); 2870 if (btrfs_delayed_ref_is_head(&head->node)) { 2871 struct btrfs_delayed_ref_node *ref; 2872 2873 ref = &head->node; 2874 atomic_inc(&ref->refs); 2875 2876 spin_unlock(&delayed_refs->lock); 2877 /* 2878 * Mutex was contended, block until it's 2879 * released and try again 2880 */ 2881 mutex_lock(&head->mutex); 2882 mutex_unlock(&head->mutex); 2883 2884 btrfs_put_delayed_ref(ref); 2885 cond_resched(); 2886 goto again; 2887 } else { 2888 WARN_ON(1); 2889 } 2890 node = rb_next(node); 2891 } 2892 spin_unlock(&delayed_refs->lock); 2893 cond_resched(); 2894 goto again; 2895 } 2896 out: 2897 assert_qgroups_uptodate(trans); 2898 trans->can_flush_pending_bgs = can_flush_pending_bgs; 2899 return 0; 2900 } 2901 2902 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2903 struct btrfs_root *root, 2904 u64 bytenr, u64 num_bytes, u64 flags, 2905 int level, int is_data) 2906 { 2907 struct btrfs_delayed_extent_op *extent_op; 2908 int ret; 2909 2910 extent_op = btrfs_alloc_delayed_extent_op(); 2911 if (!extent_op) 2912 return -ENOMEM; 2913 2914 extent_op->flags_to_set = flags; 2915 extent_op->update_flags = 1; 2916 extent_op->update_key = 0; 2917 extent_op->is_data = is_data ? 1 : 0; 2918 extent_op->level = level; 2919 2920 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2921 num_bytes, extent_op); 2922 if (ret) 2923 btrfs_free_delayed_extent_op(extent_op); 2924 return ret; 2925 } 2926 2927 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2928 struct btrfs_root *root, 2929 struct btrfs_path *path, 2930 u64 objectid, u64 offset, u64 bytenr) 2931 { 2932 struct btrfs_delayed_ref_head *head; 2933 struct btrfs_delayed_ref_node *ref; 2934 struct btrfs_delayed_data_ref *data_ref; 2935 struct btrfs_delayed_ref_root *delayed_refs; 2936 int ret = 0; 2937 2938 delayed_refs = &trans->transaction->delayed_refs; 2939 spin_lock(&delayed_refs->lock); 2940 head = btrfs_find_delayed_ref_head(trans, bytenr); 2941 if (!head) { 2942 spin_unlock(&delayed_refs->lock); 2943 return 0; 2944 } 2945 2946 if (!mutex_trylock(&head->mutex)) { 2947 atomic_inc(&head->node.refs); 2948 spin_unlock(&delayed_refs->lock); 2949 2950 btrfs_release_path(path); 2951 2952 /* 2953 * Mutex was contended, block until it's released and let 2954 * caller try again 2955 */ 2956 mutex_lock(&head->mutex); 2957 mutex_unlock(&head->mutex); 2958 btrfs_put_delayed_ref(&head->node); 2959 return -EAGAIN; 2960 } 2961 spin_unlock(&delayed_refs->lock); 2962 2963 spin_lock(&head->lock); 2964 list_for_each_entry(ref, &head->ref_list, list) { 2965 /* If it's a shared ref we know a cross reference exists */ 2966 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2967 ret = 1; 2968 break; 2969 } 2970 2971 data_ref = btrfs_delayed_node_to_data_ref(ref); 2972 2973 /* 2974 * If our ref doesn't match the one we're currently looking at 2975 * then we have a cross reference. 2976 */ 2977 if (data_ref->root != root->root_key.objectid || 2978 data_ref->objectid != objectid || 2979 data_ref->offset != offset) { 2980 ret = 1; 2981 break; 2982 } 2983 } 2984 spin_unlock(&head->lock); 2985 mutex_unlock(&head->mutex); 2986 return ret; 2987 } 2988 2989 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2990 struct btrfs_root *root, 2991 struct btrfs_path *path, 2992 u64 objectid, u64 offset, u64 bytenr) 2993 { 2994 struct btrfs_root *extent_root = root->fs_info->extent_root; 2995 struct extent_buffer *leaf; 2996 struct btrfs_extent_data_ref *ref; 2997 struct btrfs_extent_inline_ref *iref; 2998 struct btrfs_extent_item *ei; 2999 struct btrfs_key key; 3000 u32 item_size; 3001 int ret; 3002 3003 key.objectid = bytenr; 3004 key.offset = (u64)-1; 3005 key.type = BTRFS_EXTENT_ITEM_KEY; 3006 3007 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3008 if (ret < 0) 3009 goto out; 3010 BUG_ON(ret == 0); /* Corruption */ 3011 3012 ret = -ENOENT; 3013 if (path->slots[0] == 0) 3014 goto out; 3015 3016 path->slots[0]--; 3017 leaf = path->nodes[0]; 3018 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3019 3020 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3021 goto out; 3022 3023 ret = 1; 3024 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3025 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3026 if (item_size < sizeof(*ei)) { 3027 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3028 goto out; 3029 } 3030 #endif 3031 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3032 3033 if (item_size != sizeof(*ei) + 3034 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3035 goto out; 3036 3037 if (btrfs_extent_generation(leaf, ei) <= 3038 btrfs_root_last_snapshot(&root->root_item)) 3039 goto out; 3040 3041 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3042 if (btrfs_extent_inline_ref_type(leaf, iref) != 3043 BTRFS_EXTENT_DATA_REF_KEY) 3044 goto out; 3045 3046 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3047 if (btrfs_extent_refs(leaf, ei) != 3048 btrfs_extent_data_ref_count(leaf, ref) || 3049 btrfs_extent_data_ref_root(leaf, ref) != 3050 root->root_key.objectid || 3051 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3052 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3053 goto out; 3054 3055 ret = 0; 3056 out: 3057 return ret; 3058 } 3059 3060 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root, 3062 u64 objectid, u64 offset, u64 bytenr) 3063 { 3064 struct btrfs_path *path; 3065 int ret; 3066 int ret2; 3067 3068 path = btrfs_alloc_path(); 3069 if (!path) 3070 return -ENOENT; 3071 3072 do { 3073 ret = check_committed_ref(trans, root, path, objectid, 3074 offset, bytenr); 3075 if (ret && ret != -ENOENT) 3076 goto out; 3077 3078 ret2 = check_delayed_ref(trans, root, path, objectid, 3079 offset, bytenr); 3080 } while (ret2 == -EAGAIN); 3081 3082 if (ret2 && ret2 != -ENOENT) { 3083 ret = ret2; 3084 goto out; 3085 } 3086 3087 if (ret != -ENOENT || ret2 != -ENOENT) 3088 ret = 0; 3089 out: 3090 btrfs_free_path(path); 3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3092 WARN_ON(ret > 0); 3093 return ret; 3094 } 3095 3096 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3097 struct btrfs_root *root, 3098 struct extent_buffer *buf, 3099 int full_backref, int inc) 3100 { 3101 u64 bytenr; 3102 u64 num_bytes; 3103 u64 parent; 3104 u64 ref_root; 3105 u32 nritems; 3106 struct btrfs_key key; 3107 struct btrfs_file_extent_item *fi; 3108 int i; 3109 int level; 3110 int ret = 0; 3111 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3112 u64, u64, u64, u64, u64, u64, int); 3113 3114 3115 if (btrfs_test_is_dummy_root(root)) 3116 return 0; 3117 3118 ref_root = btrfs_header_owner(buf); 3119 nritems = btrfs_header_nritems(buf); 3120 level = btrfs_header_level(buf); 3121 3122 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3123 return 0; 3124 3125 if (inc) 3126 process_func = btrfs_inc_extent_ref; 3127 else 3128 process_func = btrfs_free_extent; 3129 3130 if (full_backref) 3131 parent = buf->start; 3132 else 3133 parent = 0; 3134 3135 for (i = 0; i < nritems; i++) { 3136 if (level == 0) { 3137 btrfs_item_key_to_cpu(buf, &key, i); 3138 if (key.type != BTRFS_EXTENT_DATA_KEY) 3139 continue; 3140 fi = btrfs_item_ptr(buf, i, 3141 struct btrfs_file_extent_item); 3142 if (btrfs_file_extent_type(buf, fi) == 3143 BTRFS_FILE_EXTENT_INLINE) 3144 continue; 3145 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3146 if (bytenr == 0) 3147 continue; 3148 3149 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3150 key.offset -= btrfs_file_extent_offset(buf, fi); 3151 ret = process_func(trans, root, bytenr, num_bytes, 3152 parent, ref_root, key.objectid, 3153 key.offset, 1); 3154 if (ret) 3155 goto fail; 3156 } else { 3157 bytenr = btrfs_node_blockptr(buf, i); 3158 num_bytes = root->nodesize; 3159 ret = process_func(trans, root, bytenr, num_bytes, 3160 parent, ref_root, level - 1, 0, 3161 1); 3162 if (ret) 3163 goto fail; 3164 } 3165 } 3166 return 0; 3167 fail: 3168 return ret; 3169 } 3170 3171 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3172 struct extent_buffer *buf, int full_backref) 3173 { 3174 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3175 } 3176 3177 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3178 struct extent_buffer *buf, int full_backref) 3179 { 3180 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3181 } 3182 3183 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3184 struct btrfs_root *root, 3185 struct btrfs_path *path, 3186 struct btrfs_block_group_cache *cache) 3187 { 3188 int ret; 3189 struct btrfs_root *extent_root = root->fs_info->extent_root; 3190 unsigned long bi; 3191 struct extent_buffer *leaf; 3192 3193 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3194 if (ret) { 3195 if (ret > 0) 3196 ret = -ENOENT; 3197 goto fail; 3198 } 3199 3200 leaf = path->nodes[0]; 3201 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3202 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3203 btrfs_mark_buffer_dirty(leaf); 3204 fail: 3205 btrfs_release_path(path); 3206 return ret; 3207 3208 } 3209 3210 static struct btrfs_block_group_cache * 3211 next_block_group(struct btrfs_root *root, 3212 struct btrfs_block_group_cache *cache) 3213 { 3214 struct rb_node *node; 3215 3216 spin_lock(&root->fs_info->block_group_cache_lock); 3217 3218 /* If our block group was removed, we need a full search. */ 3219 if (RB_EMPTY_NODE(&cache->cache_node)) { 3220 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3221 3222 spin_unlock(&root->fs_info->block_group_cache_lock); 3223 btrfs_put_block_group(cache); 3224 cache = btrfs_lookup_first_block_group(root->fs_info, 3225 next_bytenr); 3226 return cache; 3227 } 3228 node = rb_next(&cache->cache_node); 3229 btrfs_put_block_group(cache); 3230 if (node) { 3231 cache = rb_entry(node, struct btrfs_block_group_cache, 3232 cache_node); 3233 btrfs_get_block_group(cache); 3234 } else 3235 cache = NULL; 3236 spin_unlock(&root->fs_info->block_group_cache_lock); 3237 return cache; 3238 } 3239 3240 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3241 struct btrfs_trans_handle *trans, 3242 struct btrfs_path *path) 3243 { 3244 struct btrfs_root *root = block_group->fs_info->tree_root; 3245 struct inode *inode = NULL; 3246 u64 alloc_hint = 0; 3247 int dcs = BTRFS_DC_ERROR; 3248 u64 num_pages = 0; 3249 int retries = 0; 3250 int ret = 0; 3251 3252 /* 3253 * If this block group is smaller than 100 megs don't bother caching the 3254 * block group. 3255 */ 3256 if (block_group->key.offset < (100 * 1024 * 1024)) { 3257 spin_lock(&block_group->lock); 3258 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3259 spin_unlock(&block_group->lock); 3260 return 0; 3261 } 3262 3263 if (trans->aborted) 3264 return 0; 3265 again: 3266 inode = lookup_free_space_inode(root, block_group, path); 3267 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3268 ret = PTR_ERR(inode); 3269 btrfs_release_path(path); 3270 goto out; 3271 } 3272 3273 if (IS_ERR(inode)) { 3274 BUG_ON(retries); 3275 retries++; 3276 3277 if (block_group->ro) 3278 goto out_free; 3279 3280 ret = create_free_space_inode(root, trans, block_group, path); 3281 if (ret) 3282 goto out_free; 3283 goto again; 3284 } 3285 3286 /* We've already setup this transaction, go ahead and exit */ 3287 if (block_group->cache_generation == trans->transid && 3288 i_size_read(inode)) { 3289 dcs = BTRFS_DC_SETUP; 3290 goto out_put; 3291 } 3292 3293 /* 3294 * We want to set the generation to 0, that way if anything goes wrong 3295 * from here on out we know not to trust this cache when we load up next 3296 * time. 3297 */ 3298 BTRFS_I(inode)->generation = 0; 3299 ret = btrfs_update_inode(trans, root, inode); 3300 if (ret) { 3301 /* 3302 * So theoretically we could recover from this, simply set the 3303 * super cache generation to 0 so we know to invalidate the 3304 * cache, but then we'd have to keep track of the block groups 3305 * that fail this way so we know we _have_ to reset this cache 3306 * before the next commit or risk reading stale cache. So to 3307 * limit our exposure to horrible edge cases lets just abort the 3308 * transaction, this only happens in really bad situations 3309 * anyway. 3310 */ 3311 btrfs_abort_transaction(trans, root, ret); 3312 goto out_put; 3313 } 3314 WARN_ON(ret); 3315 3316 if (i_size_read(inode) > 0) { 3317 ret = btrfs_check_trunc_cache_free_space(root, 3318 &root->fs_info->global_block_rsv); 3319 if (ret) 3320 goto out_put; 3321 3322 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3323 if (ret) 3324 goto out_put; 3325 } 3326 3327 spin_lock(&block_group->lock); 3328 if (block_group->cached != BTRFS_CACHE_FINISHED || 3329 !btrfs_test_opt(root, SPACE_CACHE)) { 3330 /* 3331 * don't bother trying to write stuff out _if_ 3332 * a) we're not cached, 3333 * b) we're with nospace_cache mount option. 3334 */ 3335 dcs = BTRFS_DC_WRITTEN; 3336 spin_unlock(&block_group->lock); 3337 goto out_put; 3338 } 3339 spin_unlock(&block_group->lock); 3340 3341 /* 3342 * Try to preallocate enough space based on how big the block group is. 3343 * Keep in mind this has to include any pinned space which could end up 3344 * taking up quite a bit since it's not folded into the other space 3345 * cache. 3346 */ 3347 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3348 if (!num_pages) 3349 num_pages = 1; 3350 3351 num_pages *= 16; 3352 num_pages *= PAGE_CACHE_SIZE; 3353 3354 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3355 if (ret) 3356 goto out_put; 3357 3358 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3359 num_pages, num_pages, 3360 &alloc_hint); 3361 if (!ret) 3362 dcs = BTRFS_DC_SETUP; 3363 btrfs_free_reserved_data_space(inode, num_pages); 3364 3365 out_put: 3366 iput(inode); 3367 out_free: 3368 btrfs_release_path(path); 3369 out: 3370 spin_lock(&block_group->lock); 3371 if (!ret && dcs == BTRFS_DC_SETUP) 3372 block_group->cache_generation = trans->transid; 3373 block_group->disk_cache_state = dcs; 3374 spin_unlock(&block_group->lock); 3375 3376 return ret; 3377 } 3378 3379 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3380 struct btrfs_root *root) 3381 { 3382 struct btrfs_block_group_cache *cache, *tmp; 3383 struct btrfs_transaction *cur_trans = trans->transaction; 3384 struct btrfs_path *path; 3385 3386 if (list_empty(&cur_trans->dirty_bgs) || 3387 !btrfs_test_opt(root, SPACE_CACHE)) 3388 return 0; 3389 3390 path = btrfs_alloc_path(); 3391 if (!path) 3392 return -ENOMEM; 3393 3394 /* Could add new block groups, use _safe just in case */ 3395 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3396 dirty_list) { 3397 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3398 cache_save_setup(cache, trans, path); 3399 } 3400 3401 btrfs_free_path(path); 3402 return 0; 3403 } 3404 3405 /* 3406 * transaction commit does final block group cache writeback during a 3407 * critical section where nothing is allowed to change the FS. This is 3408 * required in order for the cache to actually match the block group, 3409 * but can introduce a lot of latency into the commit. 3410 * 3411 * So, btrfs_start_dirty_block_groups is here to kick off block group 3412 * cache IO. There's a chance we'll have to redo some of it if the 3413 * block group changes again during the commit, but it greatly reduces 3414 * the commit latency by getting rid of the easy block groups while 3415 * we're still allowing others to join the commit. 3416 */ 3417 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3418 struct btrfs_root *root) 3419 { 3420 struct btrfs_block_group_cache *cache; 3421 struct btrfs_transaction *cur_trans = trans->transaction; 3422 int ret = 0; 3423 int should_put; 3424 struct btrfs_path *path = NULL; 3425 LIST_HEAD(dirty); 3426 struct list_head *io = &cur_trans->io_bgs; 3427 int num_started = 0; 3428 int loops = 0; 3429 3430 spin_lock(&cur_trans->dirty_bgs_lock); 3431 if (list_empty(&cur_trans->dirty_bgs)) { 3432 spin_unlock(&cur_trans->dirty_bgs_lock); 3433 return 0; 3434 } 3435 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3436 spin_unlock(&cur_trans->dirty_bgs_lock); 3437 3438 again: 3439 /* 3440 * make sure all the block groups on our dirty list actually 3441 * exist 3442 */ 3443 btrfs_create_pending_block_groups(trans, root); 3444 3445 if (!path) { 3446 path = btrfs_alloc_path(); 3447 if (!path) 3448 return -ENOMEM; 3449 } 3450 3451 /* 3452 * cache_write_mutex is here only to save us from balance or automatic 3453 * removal of empty block groups deleting this block group while we are 3454 * writing out the cache 3455 */ 3456 mutex_lock(&trans->transaction->cache_write_mutex); 3457 while (!list_empty(&dirty)) { 3458 cache = list_first_entry(&dirty, 3459 struct btrfs_block_group_cache, 3460 dirty_list); 3461 /* 3462 * this can happen if something re-dirties a block 3463 * group that is already under IO. Just wait for it to 3464 * finish and then do it all again 3465 */ 3466 if (!list_empty(&cache->io_list)) { 3467 list_del_init(&cache->io_list); 3468 btrfs_wait_cache_io(root, trans, cache, 3469 &cache->io_ctl, path, 3470 cache->key.objectid); 3471 btrfs_put_block_group(cache); 3472 } 3473 3474 3475 /* 3476 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3477 * if it should update the cache_state. Don't delete 3478 * until after we wait. 3479 * 3480 * Since we're not running in the commit critical section 3481 * we need the dirty_bgs_lock to protect from update_block_group 3482 */ 3483 spin_lock(&cur_trans->dirty_bgs_lock); 3484 list_del_init(&cache->dirty_list); 3485 spin_unlock(&cur_trans->dirty_bgs_lock); 3486 3487 should_put = 1; 3488 3489 cache_save_setup(cache, trans, path); 3490 3491 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3492 cache->io_ctl.inode = NULL; 3493 ret = btrfs_write_out_cache(root, trans, cache, path); 3494 if (ret == 0 && cache->io_ctl.inode) { 3495 num_started++; 3496 should_put = 0; 3497 3498 /* 3499 * the cache_write_mutex is protecting 3500 * the io_list 3501 */ 3502 list_add_tail(&cache->io_list, io); 3503 } else { 3504 /* 3505 * if we failed to write the cache, the 3506 * generation will be bad and life goes on 3507 */ 3508 ret = 0; 3509 } 3510 } 3511 if (!ret) { 3512 ret = write_one_cache_group(trans, root, path, cache); 3513 /* 3514 * Our block group might still be attached to the list 3515 * of new block groups in the transaction handle of some 3516 * other task (struct btrfs_trans_handle->new_bgs). This 3517 * means its block group item isn't yet in the extent 3518 * tree. If this happens ignore the error, as we will 3519 * try again later in the critical section of the 3520 * transaction commit. 3521 */ 3522 if (ret == -ENOENT) { 3523 ret = 0; 3524 spin_lock(&cur_trans->dirty_bgs_lock); 3525 if (list_empty(&cache->dirty_list)) { 3526 list_add_tail(&cache->dirty_list, 3527 &cur_trans->dirty_bgs); 3528 btrfs_get_block_group(cache); 3529 } 3530 spin_unlock(&cur_trans->dirty_bgs_lock); 3531 } else if (ret) { 3532 btrfs_abort_transaction(trans, root, ret); 3533 } 3534 } 3535 3536 /* if its not on the io list, we need to put the block group */ 3537 if (should_put) 3538 btrfs_put_block_group(cache); 3539 3540 if (ret) 3541 break; 3542 3543 /* 3544 * Avoid blocking other tasks for too long. It might even save 3545 * us from writing caches for block groups that are going to be 3546 * removed. 3547 */ 3548 mutex_unlock(&trans->transaction->cache_write_mutex); 3549 mutex_lock(&trans->transaction->cache_write_mutex); 3550 } 3551 mutex_unlock(&trans->transaction->cache_write_mutex); 3552 3553 /* 3554 * go through delayed refs for all the stuff we've just kicked off 3555 * and then loop back (just once) 3556 */ 3557 ret = btrfs_run_delayed_refs(trans, root, 0); 3558 if (!ret && loops == 0) { 3559 loops++; 3560 spin_lock(&cur_trans->dirty_bgs_lock); 3561 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3562 /* 3563 * dirty_bgs_lock protects us from concurrent block group 3564 * deletes too (not just cache_write_mutex). 3565 */ 3566 if (!list_empty(&dirty)) { 3567 spin_unlock(&cur_trans->dirty_bgs_lock); 3568 goto again; 3569 } 3570 spin_unlock(&cur_trans->dirty_bgs_lock); 3571 } 3572 3573 btrfs_free_path(path); 3574 return ret; 3575 } 3576 3577 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3578 struct btrfs_root *root) 3579 { 3580 struct btrfs_block_group_cache *cache; 3581 struct btrfs_transaction *cur_trans = trans->transaction; 3582 int ret = 0; 3583 int should_put; 3584 struct btrfs_path *path; 3585 struct list_head *io = &cur_trans->io_bgs; 3586 int num_started = 0; 3587 3588 path = btrfs_alloc_path(); 3589 if (!path) 3590 return -ENOMEM; 3591 3592 /* 3593 * We don't need the lock here since we are protected by the transaction 3594 * commit. We want to do the cache_save_setup first and then run the 3595 * delayed refs to make sure we have the best chance at doing this all 3596 * in one shot. 3597 */ 3598 while (!list_empty(&cur_trans->dirty_bgs)) { 3599 cache = list_first_entry(&cur_trans->dirty_bgs, 3600 struct btrfs_block_group_cache, 3601 dirty_list); 3602 3603 /* 3604 * this can happen if cache_save_setup re-dirties a block 3605 * group that is already under IO. Just wait for it to 3606 * finish and then do it all again 3607 */ 3608 if (!list_empty(&cache->io_list)) { 3609 list_del_init(&cache->io_list); 3610 btrfs_wait_cache_io(root, trans, cache, 3611 &cache->io_ctl, path, 3612 cache->key.objectid); 3613 btrfs_put_block_group(cache); 3614 } 3615 3616 /* 3617 * don't remove from the dirty list until after we've waited 3618 * on any pending IO 3619 */ 3620 list_del_init(&cache->dirty_list); 3621 should_put = 1; 3622 3623 cache_save_setup(cache, trans, path); 3624 3625 if (!ret) 3626 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3627 3628 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3629 cache->io_ctl.inode = NULL; 3630 ret = btrfs_write_out_cache(root, trans, cache, path); 3631 if (ret == 0 && cache->io_ctl.inode) { 3632 num_started++; 3633 should_put = 0; 3634 list_add_tail(&cache->io_list, io); 3635 } else { 3636 /* 3637 * if we failed to write the cache, the 3638 * generation will be bad and life goes on 3639 */ 3640 ret = 0; 3641 } 3642 } 3643 if (!ret) { 3644 ret = write_one_cache_group(trans, root, path, cache); 3645 if (ret) 3646 btrfs_abort_transaction(trans, root, ret); 3647 } 3648 3649 /* if its not on the io list, we need to put the block group */ 3650 if (should_put) 3651 btrfs_put_block_group(cache); 3652 } 3653 3654 while (!list_empty(io)) { 3655 cache = list_first_entry(io, struct btrfs_block_group_cache, 3656 io_list); 3657 list_del_init(&cache->io_list); 3658 btrfs_wait_cache_io(root, trans, cache, 3659 &cache->io_ctl, path, cache->key.objectid); 3660 btrfs_put_block_group(cache); 3661 } 3662 3663 btrfs_free_path(path); 3664 return ret; 3665 } 3666 3667 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3668 { 3669 struct btrfs_block_group_cache *block_group; 3670 int readonly = 0; 3671 3672 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3673 if (!block_group || block_group->ro) 3674 readonly = 1; 3675 if (block_group) 3676 btrfs_put_block_group(block_group); 3677 return readonly; 3678 } 3679 3680 static const char *alloc_name(u64 flags) 3681 { 3682 switch (flags) { 3683 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3684 return "mixed"; 3685 case BTRFS_BLOCK_GROUP_METADATA: 3686 return "metadata"; 3687 case BTRFS_BLOCK_GROUP_DATA: 3688 return "data"; 3689 case BTRFS_BLOCK_GROUP_SYSTEM: 3690 return "system"; 3691 default: 3692 WARN_ON(1); 3693 return "invalid-combination"; 3694 }; 3695 } 3696 3697 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3698 u64 total_bytes, u64 bytes_used, 3699 struct btrfs_space_info **space_info) 3700 { 3701 struct btrfs_space_info *found; 3702 int i; 3703 int factor; 3704 int ret; 3705 3706 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3707 BTRFS_BLOCK_GROUP_RAID10)) 3708 factor = 2; 3709 else 3710 factor = 1; 3711 3712 found = __find_space_info(info, flags); 3713 if (found) { 3714 spin_lock(&found->lock); 3715 found->total_bytes += total_bytes; 3716 found->disk_total += total_bytes * factor; 3717 found->bytes_used += bytes_used; 3718 found->disk_used += bytes_used * factor; 3719 if (total_bytes > 0) 3720 found->full = 0; 3721 spin_unlock(&found->lock); 3722 *space_info = found; 3723 return 0; 3724 } 3725 found = kzalloc(sizeof(*found), GFP_NOFS); 3726 if (!found) 3727 return -ENOMEM; 3728 3729 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3730 if (ret) { 3731 kfree(found); 3732 return ret; 3733 } 3734 3735 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3736 INIT_LIST_HEAD(&found->block_groups[i]); 3737 init_rwsem(&found->groups_sem); 3738 spin_lock_init(&found->lock); 3739 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3740 found->total_bytes = total_bytes; 3741 found->disk_total = total_bytes * factor; 3742 found->bytes_used = bytes_used; 3743 found->disk_used = bytes_used * factor; 3744 found->bytes_pinned = 0; 3745 found->bytes_reserved = 0; 3746 found->bytes_readonly = 0; 3747 found->bytes_may_use = 0; 3748 found->full = 0; 3749 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3750 found->chunk_alloc = 0; 3751 found->flush = 0; 3752 init_waitqueue_head(&found->wait); 3753 INIT_LIST_HEAD(&found->ro_bgs); 3754 3755 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3756 info->space_info_kobj, "%s", 3757 alloc_name(found->flags)); 3758 if (ret) { 3759 kfree(found); 3760 return ret; 3761 } 3762 3763 *space_info = found; 3764 list_add_rcu(&found->list, &info->space_info); 3765 if (flags & BTRFS_BLOCK_GROUP_DATA) 3766 info->data_sinfo = found; 3767 3768 return ret; 3769 } 3770 3771 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3772 { 3773 u64 extra_flags = chunk_to_extended(flags) & 3774 BTRFS_EXTENDED_PROFILE_MASK; 3775 3776 write_seqlock(&fs_info->profiles_lock); 3777 if (flags & BTRFS_BLOCK_GROUP_DATA) 3778 fs_info->avail_data_alloc_bits |= extra_flags; 3779 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3780 fs_info->avail_metadata_alloc_bits |= extra_flags; 3781 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3782 fs_info->avail_system_alloc_bits |= extra_flags; 3783 write_sequnlock(&fs_info->profiles_lock); 3784 } 3785 3786 /* 3787 * returns target flags in extended format or 0 if restripe for this 3788 * chunk_type is not in progress 3789 * 3790 * should be called with either volume_mutex or balance_lock held 3791 */ 3792 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3793 { 3794 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3795 u64 target = 0; 3796 3797 if (!bctl) 3798 return 0; 3799 3800 if (flags & BTRFS_BLOCK_GROUP_DATA && 3801 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3802 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3803 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3804 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3805 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3806 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3807 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3808 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3809 } 3810 3811 return target; 3812 } 3813 3814 /* 3815 * @flags: available profiles in extended format (see ctree.h) 3816 * 3817 * Returns reduced profile in chunk format. If profile changing is in 3818 * progress (either running or paused) picks the target profile (if it's 3819 * already available), otherwise falls back to plain reducing. 3820 */ 3821 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3822 { 3823 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3824 u64 target; 3825 u64 tmp; 3826 3827 /* 3828 * see if restripe for this chunk_type is in progress, if so 3829 * try to reduce to the target profile 3830 */ 3831 spin_lock(&root->fs_info->balance_lock); 3832 target = get_restripe_target(root->fs_info, flags); 3833 if (target) { 3834 /* pick target profile only if it's already available */ 3835 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3836 spin_unlock(&root->fs_info->balance_lock); 3837 return extended_to_chunk(target); 3838 } 3839 } 3840 spin_unlock(&root->fs_info->balance_lock); 3841 3842 /* First, mask out the RAID levels which aren't possible */ 3843 if (num_devices == 1) 3844 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3845 BTRFS_BLOCK_GROUP_RAID5); 3846 if (num_devices < 3) 3847 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3848 if (num_devices < 4) 3849 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3850 3851 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3852 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3853 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3854 flags &= ~tmp; 3855 3856 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3857 tmp = BTRFS_BLOCK_GROUP_RAID6; 3858 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3859 tmp = BTRFS_BLOCK_GROUP_RAID5; 3860 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3861 tmp = BTRFS_BLOCK_GROUP_RAID10; 3862 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3863 tmp = BTRFS_BLOCK_GROUP_RAID1; 3864 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3865 tmp = BTRFS_BLOCK_GROUP_RAID0; 3866 3867 return extended_to_chunk(flags | tmp); 3868 } 3869 3870 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3871 { 3872 unsigned seq; 3873 u64 flags; 3874 3875 do { 3876 flags = orig_flags; 3877 seq = read_seqbegin(&root->fs_info->profiles_lock); 3878 3879 if (flags & BTRFS_BLOCK_GROUP_DATA) 3880 flags |= root->fs_info->avail_data_alloc_bits; 3881 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3882 flags |= root->fs_info->avail_system_alloc_bits; 3883 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3884 flags |= root->fs_info->avail_metadata_alloc_bits; 3885 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3886 3887 return btrfs_reduce_alloc_profile(root, flags); 3888 } 3889 3890 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3891 { 3892 u64 flags; 3893 u64 ret; 3894 3895 if (data) 3896 flags = BTRFS_BLOCK_GROUP_DATA; 3897 else if (root == root->fs_info->chunk_root) 3898 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3899 else 3900 flags = BTRFS_BLOCK_GROUP_METADATA; 3901 3902 ret = get_alloc_profile(root, flags); 3903 return ret; 3904 } 3905 3906 /* 3907 * This will check the space that the inode allocates from to make sure we have 3908 * enough space for bytes. 3909 */ 3910 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3911 { 3912 struct btrfs_space_info *data_sinfo; 3913 struct btrfs_root *root = BTRFS_I(inode)->root; 3914 struct btrfs_fs_info *fs_info = root->fs_info; 3915 u64 used; 3916 int ret = 0; 3917 int need_commit = 2; 3918 int have_pinned_space; 3919 3920 /* make sure bytes are sectorsize aligned */ 3921 bytes = ALIGN(bytes, root->sectorsize); 3922 3923 if (btrfs_is_free_space_inode(inode)) { 3924 need_commit = 0; 3925 ASSERT(current->journal_info); 3926 } 3927 3928 data_sinfo = fs_info->data_sinfo; 3929 if (!data_sinfo) 3930 goto alloc; 3931 3932 again: 3933 /* make sure we have enough space to handle the data first */ 3934 spin_lock(&data_sinfo->lock); 3935 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3936 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3937 data_sinfo->bytes_may_use; 3938 3939 if (used + bytes > data_sinfo->total_bytes) { 3940 struct btrfs_trans_handle *trans; 3941 3942 /* 3943 * if we don't have enough free bytes in this space then we need 3944 * to alloc a new chunk. 3945 */ 3946 if (!data_sinfo->full) { 3947 u64 alloc_target; 3948 3949 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3950 spin_unlock(&data_sinfo->lock); 3951 alloc: 3952 alloc_target = btrfs_get_alloc_profile(root, 1); 3953 /* 3954 * It is ugly that we don't call nolock join 3955 * transaction for the free space inode case here. 3956 * But it is safe because we only do the data space 3957 * reservation for the free space cache in the 3958 * transaction context, the common join transaction 3959 * just increase the counter of the current transaction 3960 * handler, doesn't try to acquire the trans_lock of 3961 * the fs. 3962 */ 3963 trans = btrfs_join_transaction(root); 3964 if (IS_ERR(trans)) 3965 return PTR_ERR(trans); 3966 3967 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3968 alloc_target, 3969 CHUNK_ALLOC_NO_FORCE); 3970 btrfs_end_transaction(trans, root); 3971 if (ret < 0) { 3972 if (ret != -ENOSPC) 3973 return ret; 3974 else { 3975 have_pinned_space = 1; 3976 goto commit_trans; 3977 } 3978 } 3979 3980 if (!data_sinfo) 3981 data_sinfo = fs_info->data_sinfo; 3982 3983 goto again; 3984 } 3985 3986 /* 3987 * If we don't have enough pinned space to deal with this 3988 * allocation, and no removed chunk in current transaction, 3989 * don't bother committing the transaction. 3990 */ 3991 have_pinned_space = percpu_counter_compare( 3992 &data_sinfo->total_bytes_pinned, 3993 used + bytes - data_sinfo->total_bytes); 3994 spin_unlock(&data_sinfo->lock); 3995 3996 /* commit the current transaction and try again */ 3997 commit_trans: 3998 if (need_commit && 3999 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4000 need_commit--; 4001 4002 if (need_commit > 0) 4003 btrfs_wait_ordered_roots(fs_info, -1); 4004 4005 trans = btrfs_join_transaction(root); 4006 if (IS_ERR(trans)) 4007 return PTR_ERR(trans); 4008 if (have_pinned_space >= 0 || 4009 trans->transaction->have_free_bgs || 4010 need_commit > 0) { 4011 ret = btrfs_commit_transaction(trans, root); 4012 if (ret) 4013 return ret; 4014 /* 4015 * make sure that all running delayed iput are 4016 * done 4017 */ 4018 down_write(&root->fs_info->delayed_iput_sem); 4019 up_write(&root->fs_info->delayed_iput_sem); 4020 goto again; 4021 } else { 4022 btrfs_end_transaction(trans, root); 4023 } 4024 } 4025 4026 trace_btrfs_space_reservation(root->fs_info, 4027 "space_info:enospc", 4028 data_sinfo->flags, bytes, 1); 4029 return -ENOSPC; 4030 } 4031 ret = btrfs_qgroup_reserve(root, write_bytes); 4032 if (ret) 4033 goto out; 4034 data_sinfo->bytes_may_use += bytes; 4035 trace_btrfs_space_reservation(root->fs_info, "space_info", 4036 data_sinfo->flags, bytes, 1); 4037 out: 4038 spin_unlock(&data_sinfo->lock); 4039 4040 return ret; 4041 } 4042 4043 /* 4044 * Called if we need to clear a data reservation for this inode. 4045 */ 4046 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 4047 { 4048 struct btrfs_root *root = BTRFS_I(inode)->root; 4049 struct btrfs_space_info *data_sinfo; 4050 4051 /* make sure bytes are sectorsize aligned */ 4052 bytes = ALIGN(bytes, root->sectorsize); 4053 4054 data_sinfo = root->fs_info->data_sinfo; 4055 spin_lock(&data_sinfo->lock); 4056 WARN_ON(data_sinfo->bytes_may_use < bytes); 4057 data_sinfo->bytes_may_use -= bytes; 4058 trace_btrfs_space_reservation(root->fs_info, "space_info", 4059 data_sinfo->flags, bytes, 0); 4060 spin_unlock(&data_sinfo->lock); 4061 } 4062 4063 static void force_metadata_allocation(struct btrfs_fs_info *info) 4064 { 4065 struct list_head *head = &info->space_info; 4066 struct btrfs_space_info *found; 4067 4068 rcu_read_lock(); 4069 list_for_each_entry_rcu(found, head, list) { 4070 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4071 found->force_alloc = CHUNK_ALLOC_FORCE; 4072 } 4073 rcu_read_unlock(); 4074 } 4075 4076 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4077 { 4078 return (global->size << 1); 4079 } 4080 4081 static int should_alloc_chunk(struct btrfs_root *root, 4082 struct btrfs_space_info *sinfo, int force) 4083 { 4084 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4085 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4086 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4087 u64 thresh; 4088 4089 if (force == CHUNK_ALLOC_FORCE) 4090 return 1; 4091 4092 /* 4093 * We need to take into account the global rsv because for all intents 4094 * and purposes it's used space. Don't worry about locking the 4095 * global_rsv, it doesn't change except when the transaction commits. 4096 */ 4097 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4098 num_allocated += calc_global_rsv_need_space(global_rsv); 4099 4100 /* 4101 * in limited mode, we want to have some free space up to 4102 * about 1% of the FS size. 4103 */ 4104 if (force == CHUNK_ALLOC_LIMITED) { 4105 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4106 thresh = max_t(u64, 64 * 1024 * 1024, 4107 div_factor_fine(thresh, 1)); 4108 4109 if (num_bytes - num_allocated < thresh) 4110 return 1; 4111 } 4112 4113 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4114 return 0; 4115 return 1; 4116 } 4117 4118 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4119 { 4120 u64 num_dev; 4121 4122 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4123 BTRFS_BLOCK_GROUP_RAID0 | 4124 BTRFS_BLOCK_GROUP_RAID5 | 4125 BTRFS_BLOCK_GROUP_RAID6)) 4126 num_dev = root->fs_info->fs_devices->rw_devices; 4127 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4128 num_dev = 2; 4129 else 4130 num_dev = 1; /* DUP or single */ 4131 4132 return num_dev; 4133 } 4134 4135 /* 4136 * If @is_allocation is true, reserve space in the system space info necessary 4137 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4138 * removing a chunk. 4139 */ 4140 void check_system_chunk(struct btrfs_trans_handle *trans, 4141 struct btrfs_root *root, 4142 u64 type) 4143 { 4144 struct btrfs_space_info *info; 4145 u64 left; 4146 u64 thresh; 4147 int ret = 0; 4148 u64 num_devs; 4149 4150 /* 4151 * Needed because we can end up allocating a system chunk and for an 4152 * atomic and race free space reservation in the chunk block reserve. 4153 */ 4154 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4155 4156 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4157 spin_lock(&info->lock); 4158 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4159 info->bytes_reserved - info->bytes_readonly - 4160 info->bytes_may_use; 4161 spin_unlock(&info->lock); 4162 4163 num_devs = get_profile_num_devs(root, type); 4164 4165 /* num_devs device items to update and 1 chunk item to add or remove */ 4166 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4167 btrfs_calc_trans_metadata_size(root, 1); 4168 4169 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4170 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4171 left, thresh, type); 4172 dump_space_info(info, 0, 0); 4173 } 4174 4175 if (left < thresh) { 4176 u64 flags; 4177 4178 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4179 /* 4180 * Ignore failure to create system chunk. We might end up not 4181 * needing it, as we might not need to COW all nodes/leafs from 4182 * the paths we visit in the chunk tree (they were already COWed 4183 * or created in the current transaction for example). 4184 */ 4185 ret = btrfs_alloc_chunk(trans, root, flags); 4186 } 4187 4188 if (!ret) { 4189 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4190 &root->fs_info->chunk_block_rsv, 4191 thresh, BTRFS_RESERVE_NO_FLUSH); 4192 if (!ret) 4193 trans->chunk_bytes_reserved += thresh; 4194 } 4195 } 4196 4197 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4198 struct btrfs_root *extent_root, u64 flags, int force) 4199 { 4200 struct btrfs_space_info *space_info; 4201 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4202 int wait_for_alloc = 0; 4203 int ret = 0; 4204 4205 /* Don't re-enter if we're already allocating a chunk */ 4206 if (trans->allocating_chunk) 4207 return -ENOSPC; 4208 4209 space_info = __find_space_info(extent_root->fs_info, flags); 4210 if (!space_info) { 4211 ret = update_space_info(extent_root->fs_info, flags, 4212 0, 0, &space_info); 4213 BUG_ON(ret); /* -ENOMEM */ 4214 } 4215 BUG_ON(!space_info); /* Logic error */ 4216 4217 again: 4218 spin_lock(&space_info->lock); 4219 if (force < space_info->force_alloc) 4220 force = space_info->force_alloc; 4221 if (space_info->full) { 4222 if (should_alloc_chunk(extent_root, space_info, force)) 4223 ret = -ENOSPC; 4224 else 4225 ret = 0; 4226 spin_unlock(&space_info->lock); 4227 return ret; 4228 } 4229 4230 if (!should_alloc_chunk(extent_root, space_info, force)) { 4231 spin_unlock(&space_info->lock); 4232 return 0; 4233 } else if (space_info->chunk_alloc) { 4234 wait_for_alloc = 1; 4235 } else { 4236 space_info->chunk_alloc = 1; 4237 } 4238 4239 spin_unlock(&space_info->lock); 4240 4241 mutex_lock(&fs_info->chunk_mutex); 4242 4243 /* 4244 * The chunk_mutex is held throughout the entirety of a chunk 4245 * allocation, so once we've acquired the chunk_mutex we know that the 4246 * other guy is done and we need to recheck and see if we should 4247 * allocate. 4248 */ 4249 if (wait_for_alloc) { 4250 mutex_unlock(&fs_info->chunk_mutex); 4251 wait_for_alloc = 0; 4252 goto again; 4253 } 4254 4255 trans->allocating_chunk = true; 4256 4257 /* 4258 * If we have mixed data/metadata chunks we want to make sure we keep 4259 * allocating mixed chunks instead of individual chunks. 4260 */ 4261 if (btrfs_mixed_space_info(space_info)) 4262 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4263 4264 /* 4265 * if we're doing a data chunk, go ahead and make sure that 4266 * we keep a reasonable number of metadata chunks allocated in the 4267 * FS as well. 4268 */ 4269 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4270 fs_info->data_chunk_allocations++; 4271 if (!(fs_info->data_chunk_allocations % 4272 fs_info->metadata_ratio)) 4273 force_metadata_allocation(fs_info); 4274 } 4275 4276 /* 4277 * Check if we have enough space in SYSTEM chunk because we may need 4278 * to update devices. 4279 */ 4280 check_system_chunk(trans, extent_root, flags); 4281 4282 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4283 trans->allocating_chunk = false; 4284 4285 spin_lock(&space_info->lock); 4286 if (ret < 0 && ret != -ENOSPC) 4287 goto out; 4288 if (ret) 4289 space_info->full = 1; 4290 else 4291 ret = 1; 4292 4293 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4294 out: 4295 space_info->chunk_alloc = 0; 4296 spin_unlock(&space_info->lock); 4297 mutex_unlock(&fs_info->chunk_mutex); 4298 /* 4299 * When we allocate a new chunk we reserve space in the chunk block 4300 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4301 * add new nodes/leafs to it if we end up needing to do it when 4302 * inserting the chunk item and updating device items as part of the 4303 * second phase of chunk allocation, performed by 4304 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4305 * large number of new block groups to create in our transaction 4306 * handle's new_bgs list to avoid exhausting the chunk block reserve 4307 * in extreme cases - like having a single transaction create many new 4308 * block groups when starting to write out the free space caches of all 4309 * the block groups that were made dirty during the lifetime of the 4310 * transaction. 4311 */ 4312 if (trans->can_flush_pending_bgs && 4313 trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) { 4314 btrfs_create_pending_block_groups(trans, trans->root); 4315 btrfs_trans_release_chunk_metadata(trans); 4316 } 4317 return ret; 4318 } 4319 4320 static int can_overcommit(struct btrfs_root *root, 4321 struct btrfs_space_info *space_info, u64 bytes, 4322 enum btrfs_reserve_flush_enum flush) 4323 { 4324 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4325 u64 profile = btrfs_get_alloc_profile(root, 0); 4326 u64 space_size; 4327 u64 avail; 4328 u64 used; 4329 4330 used = space_info->bytes_used + space_info->bytes_reserved + 4331 space_info->bytes_pinned + space_info->bytes_readonly; 4332 4333 /* 4334 * We only want to allow over committing if we have lots of actual space 4335 * free, but if we don't have enough space to handle the global reserve 4336 * space then we could end up having a real enospc problem when trying 4337 * to allocate a chunk or some other such important allocation. 4338 */ 4339 spin_lock(&global_rsv->lock); 4340 space_size = calc_global_rsv_need_space(global_rsv); 4341 spin_unlock(&global_rsv->lock); 4342 if (used + space_size >= space_info->total_bytes) 4343 return 0; 4344 4345 used += space_info->bytes_may_use; 4346 4347 spin_lock(&root->fs_info->free_chunk_lock); 4348 avail = root->fs_info->free_chunk_space; 4349 spin_unlock(&root->fs_info->free_chunk_lock); 4350 4351 /* 4352 * If we have dup, raid1 or raid10 then only half of the free 4353 * space is actually useable. For raid56, the space info used 4354 * doesn't include the parity drive, so we don't have to 4355 * change the math 4356 */ 4357 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4358 BTRFS_BLOCK_GROUP_RAID1 | 4359 BTRFS_BLOCK_GROUP_RAID10)) 4360 avail >>= 1; 4361 4362 /* 4363 * If we aren't flushing all things, let us overcommit up to 4364 * 1/2th of the space. If we can flush, don't let us overcommit 4365 * too much, let it overcommit up to 1/8 of the space. 4366 */ 4367 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4368 avail >>= 3; 4369 else 4370 avail >>= 1; 4371 4372 if (used + bytes < space_info->total_bytes + avail) 4373 return 1; 4374 return 0; 4375 } 4376 4377 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4378 unsigned long nr_pages, int nr_items) 4379 { 4380 struct super_block *sb = root->fs_info->sb; 4381 4382 if (down_read_trylock(&sb->s_umount)) { 4383 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4384 up_read(&sb->s_umount); 4385 } else { 4386 /* 4387 * We needn't worry the filesystem going from r/w to r/o though 4388 * we don't acquire ->s_umount mutex, because the filesystem 4389 * should guarantee the delalloc inodes list be empty after 4390 * the filesystem is readonly(all dirty pages are written to 4391 * the disk). 4392 */ 4393 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4394 if (!current->journal_info) 4395 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4396 } 4397 } 4398 4399 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4400 { 4401 u64 bytes; 4402 int nr; 4403 4404 bytes = btrfs_calc_trans_metadata_size(root, 1); 4405 nr = (int)div64_u64(to_reclaim, bytes); 4406 if (!nr) 4407 nr = 1; 4408 return nr; 4409 } 4410 4411 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4412 4413 /* 4414 * shrink metadata reservation for delalloc 4415 */ 4416 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4417 bool wait_ordered) 4418 { 4419 struct btrfs_block_rsv *block_rsv; 4420 struct btrfs_space_info *space_info; 4421 struct btrfs_trans_handle *trans; 4422 u64 delalloc_bytes; 4423 u64 max_reclaim; 4424 long time_left; 4425 unsigned long nr_pages; 4426 int loops; 4427 int items; 4428 enum btrfs_reserve_flush_enum flush; 4429 4430 /* Calc the number of the pages we need flush for space reservation */ 4431 items = calc_reclaim_items_nr(root, to_reclaim); 4432 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4433 4434 trans = (struct btrfs_trans_handle *)current->journal_info; 4435 block_rsv = &root->fs_info->delalloc_block_rsv; 4436 space_info = block_rsv->space_info; 4437 4438 delalloc_bytes = percpu_counter_sum_positive( 4439 &root->fs_info->delalloc_bytes); 4440 if (delalloc_bytes == 0) { 4441 if (trans) 4442 return; 4443 if (wait_ordered) 4444 btrfs_wait_ordered_roots(root->fs_info, items); 4445 return; 4446 } 4447 4448 loops = 0; 4449 while (delalloc_bytes && loops < 3) { 4450 max_reclaim = min(delalloc_bytes, to_reclaim); 4451 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4452 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4453 /* 4454 * We need to wait for the async pages to actually start before 4455 * we do anything. 4456 */ 4457 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4458 if (!max_reclaim) 4459 goto skip_async; 4460 4461 if (max_reclaim <= nr_pages) 4462 max_reclaim = 0; 4463 else 4464 max_reclaim -= nr_pages; 4465 4466 wait_event(root->fs_info->async_submit_wait, 4467 atomic_read(&root->fs_info->async_delalloc_pages) <= 4468 (int)max_reclaim); 4469 skip_async: 4470 if (!trans) 4471 flush = BTRFS_RESERVE_FLUSH_ALL; 4472 else 4473 flush = BTRFS_RESERVE_NO_FLUSH; 4474 spin_lock(&space_info->lock); 4475 if (can_overcommit(root, space_info, orig, flush)) { 4476 spin_unlock(&space_info->lock); 4477 break; 4478 } 4479 spin_unlock(&space_info->lock); 4480 4481 loops++; 4482 if (wait_ordered && !trans) { 4483 btrfs_wait_ordered_roots(root->fs_info, items); 4484 } else { 4485 time_left = schedule_timeout_killable(1); 4486 if (time_left) 4487 break; 4488 } 4489 delalloc_bytes = percpu_counter_sum_positive( 4490 &root->fs_info->delalloc_bytes); 4491 } 4492 } 4493 4494 /** 4495 * maybe_commit_transaction - possibly commit the transaction if its ok to 4496 * @root - the root we're allocating for 4497 * @bytes - the number of bytes we want to reserve 4498 * @force - force the commit 4499 * 4500 * This will check to make sure that committing the transaction will actually 4501 * get us somewhere and then commit the transaction if it does. Otherwise it 4502 * will return -ENOSPC. 4503 */ 4504 static int may_commit_transaction(struct btrfs_root *root, 4505 struct btrfs_space_info *space_info, 4506 u64 bytes, int force) 4507 { 4508 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4509 struct btrfs_trans_handle *trans; 4510 4511 trans = (struct btrfs_trans_handle *)current->journal_info; 4512 if (trans) 4513 return -EAGAIN; 4514 4515 if (force) 4516 goto commit; 4517 4518 /* See if there is enough pinned space to make this reservation */ 4519 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4520 bytes) >= 0) 4521 goto commit; 4522 4523 /* 4524 * See if there is some space in the delayed insertion reservation for 4525 * this reservation. 4526 */ 4527 if (space_info != delayed_rsv->space_info) 4528 return -ENOSPC; 4529 4530 spin_lock(&delayed_rsv->lock); 4531 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4532 bytes - delayed_rsv->size) >= 0) { 4533 spin_unlock(&delayed_rsv->lock); 4534 return -ENOSPC; 4535 } 4536 spin_unlock(&delayed_rsv->lock); 4537 4538 commit: 4539 trans = btrfs_join_transaction(root); 4540 if (IS_ERR(trans)) 4541 return -ENOSPC; 4542 4543 return btrfs_commit_transaction(trans, root); 4544 } 4545 4546 enum flush_state { 4547 FLUSH_DELAYED_ITEMS_NR = 1, 4548 FLUSH_DELAYED_ITEMS = 2, 4549 FLUSH_DELALLOC = 3, 4550 FLUSH_DELALLOC_WAIT = 4, 4551 ALLOC_CHUNK = 5, 4552 COMMIT_TRANS = 6, 4553 }; 4554 4555 static int flush_space(struct btrfs_root *root, 4556 struct btrfs_space_info *space_info, u64 num_bytes, 4557 u64 orig_bytes, int state) 4558 { 4559 struct btrfs_trans_handle *trans; 4560 int nr; 4561 int ret = 0; 4562 4563 switch (state) { 4564 case FLUSH_DELAYED_ITEMS_NR: 4565 case FLUSH_DELAYED_ITEMS: 4566 if (state == FLUSH_DELAYED_ITEMS_NR) 4567 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4568 else 4569 nr = -1; 4570 4571 trans = btrfs_join_transaction(root); 4572 if (IS_ERR(trans)) { 4573 ret = PTR_ERR(trans); 4574 break; 4575 } 4576 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4577 btrfs_end_transaction(trans, root); 4578 break; 4579 case FLUSH_DELALLOC: 4580 case FLUSH_DELALLOC_WAIT: 4581 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4582 state == FLUSH_DELALLOC_WAIT); 4583 break; 4584 case ALLOC_CHUNK: 4585 trans = btrfs_join_transaction(root); 4586 if (IS_ERR(trans)) { 4587 ret = PTR_ERR(trans); 4588 break; 4589 } 4590 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4591 btrfs_get_alloc_profile(root, 0), 4592 CHUNK_ALLOC_NO_FORCE); 4593 btrfs_end_transaction(trans, root); 4594 if (ret == -ENOSPC) 4595 ret = 0; 4596 break; 4597 case COMMIT_TRANS: 4598 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4599 break; 4600 default: 4601 ret = -ENOSPC; 4602 break; 4603 } 4604 4605 return ret; 4606 } 4607 4608 static inline u64 4609 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4610 struct btrfs_space_info *space_info) 4611 { 4612 u64 used; 4613 u64 expected; 4614 u64 to_reclaim; 4615 4616 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4617 16 * 1024 * 1024); 4618 spin_lock(&space_info->lock); 4619 if (can_overcommit(root, space_info, to_reclaim, 4620 BTRFS_RESERVE_FLUSH_ALL)) { 4621 to_reclaim = 0; 4622 goto out; 4623 } 4624 4625 used = space_info->bytes_used + space_info->bytes_reserved + 4626 space_info->bytes_pinned + space_info->bytes_readonly + 4627 space_info->bytes_may_use; 4628 if (can_overcommit(root, space_info, 1024 * 1024, 4629 BTRFS_RESERVE_FLUSH_ALL)) 4630 expected = div_factor_fine(space_info->total_bytes, 95); 4631 else 4632 expected = div_factor_fine(space_info->total_bytes, 90); 4633 4634 if (used > expected) 4635 to_reclaim = used - expected; 4636 else 4637 to_reclaim = 0; 4638 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4639 space_info->bytes_reserved); 4640 out: 4641 spin_unlock(&space_info->lock); 4642 4643 return to_reclaim; 4644 } 4645 4646 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4647 struct btrfs_fs_info *fs_info, u64 used) 4648 { 4649 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4650 4651 /* If we're just plain full then async reclaim just slows us down. */ 4652 if (space_info->bytes_used >= thresh) 4653 return 0; 4654 4655 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4656 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4657 } 4658 4659 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4660 struct btrfs_fs_info *fs_info, 4661 int flush_state) 4662 { 4663 u64 used; 4664 4665 spin_lock(&space_info->lock); 4666 /* 4667 * We run out of space and have not got any free space via flush_space, 4668 * so don't bother doing async reclaim. 4669 */ 4670 if (flush_state > COMMIT_TRANS && space_info->full) { 4671 spin_unlock(&space_info->lock); 4672 return 0; 4673 } 4674 4675 used = space_info->bytes_used + space_info->bytes_reserved + 4676 space_info->bytes_pinned + space_info->bytes_readonly + 4677 space_info->bytes_may_use; 4678 if (need_do_async_reclaim(space_info, fs_info, used)) { 4679 spin_unlock(&space_info->lock); 4680 return 1; 4681 } 4682 spin_unlock(&space_info->lock); 4683 4684 return 0; 4685 } 4686 4687 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4688 { 4689 struct btrfs_fs_info *fs_info; 4690 struct btrfs_space_info *space_info; 4691 u64 to_reclaim; 4692 int flush_state; 4693 4694 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4695 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4696 4697 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4698 space_info); 4699 if (!to_reclaim) 4700 return; 4701 4702 flush_state = FLUSH_DELAYED_ITEMS_NR; 4703 do { 4704 flush_space(fs_info->fs_root, space_info, to_reclaim, 4705 to_reclaim, flush_state); 4706 flush_state++; 4707 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4708 flush_state)) 4709 return; 4710 } while (flush_state < COMMIT_TRANS); 4711 } 4712 4713 void btrfs_init_async_reclaim_work(struct work_struct *work) 4714 { 4715 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4716 } 4717 4718 /** 4719 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4720 * @root - the root we're allocating for 4721 * @block_rsv - the block_rsv we're allocating for 4722 * @orig_bytes - the number of bytes we want 4723 * @flush - whether or not we can flush to make our reservation 4724 * 4725 * This will reserve orgi_bytes number of bytes from the space info associated 4726 * with the block_rsv. If there is not enough space it will make an attempt to 4727 * flush out space to make room. It will do this by flushing delalloc if 4728 * possible or committing the transaction. If flush is 0 then no attempts to 4729 * regain reservations will be made and this will fail if there is not enough 4730 * space already. 4731 */ 4732 static int reserve_metadata_bytes(struct btrfs_root *root, 4733 struct btrfs_block_rsv *block_rsv, 4734 u64 orig_bytes, 4735 enum btrfs_reserve_flush_enum flush) 4736 { 4737 struct btrfs_space_info *space_info = block_rsv->space_info; 4738 u64 used; 4739 u64 num_bytes = orig_bytes; 4740 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4741 int ret = 0; 4742 bool flushing = false; 4743 4744 again: 4745 ret = 0; 4746 spin_lock(&space_info->lock); 4747 /* 4748 * We only want to wait if somebody other than us is flushing and we 4749 * are actually allowed to flush all things. 4750 */ 4751 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4752 space_info->flush) { 4753 spin_unlock(&space_info->lock); 4754 /* 4755 * If we have a trans handle we can't wait because the flusher 4756 * may have to commit the transaction, which would mean we would 4757 * deadlock since we are waiting for the flusher to finish, but 4758 * hold the current transaction open. 4759 */ 4760 if (current->journal_info) 4761 return -EAGAIN; 4762 ret = wait_event_killable(space_info->wait, !space_info->flush); 4763 /* Must have been killed, return */ 4764 if (ret) 4765 return -EINTR; 4766 4767 spin_lock(&space_info->lock); 4768 } 4769 4770 ret = -ENOSPC; 4771 used = space_info->bytes_used + space_info->bytes_reserved + 4772 space_info->bytes_pinned + space_info->bytes_readonly + 4773 space_info->bytes_may_use; 4774 4775 /* 4776 * The idea here is that we've not already over-reserved the block group 4777 * then we can go ahead and save our reservation first and then start 4778 * flushing if we need to. Otherwise if we've already overcommitted 4779 * lets start flushing stuff first and then come back and try to make 4780 * our reservation. 4781 */ 4782 if (used <= space_info->total_bytes) { 4783 if (used + orig_bytes <= space_info->total_bytes) { 4784 space_info->bytes_may_use += orig_bytes; 4785 trace_btrfs_space_reservation(root->fs_info, 4786 "space_info", space_info->flags, orig_bytes, 1); 4787 ret = 0; 4788 } else { 4789 /* 4790 * Ok set num_bytes to orig_bytes since we aren't 4791 * overocmmitted, this way we only try and reclaim what 4792 * we need. 4793 */ 4794 num_bytes = orig_bytes; 4795 } 4796 } else { 4797 /* 4798 * Ok we're over committed, set num_bytes to the overcommitted 4799 * amount plus the amount of bytes that we need for this 4800 * reservation. 4801 */ 4802 num_bytes = used - space_info->total_bytes + 4803 (orig_bytes * 2); 4804 } 4805 4806 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4807 space_info->bytes_may_use += orig_bytes; 4808 trace_btrfs_space_reservation(root->fs_info, "space_info", 4809 space_info->flags, orig_bytes, 4810 1); 4811 ret = 0; 4812 } 4813 4814 /* 4815 * Couldn't make our reservation, save our place so while we're trying 4816 * to reclaim space we can actually use it instead of somebody else 4817 * stealing it from us. 4818 * 4819 * We make the other tasks wait for the flush only when we can flush 4820 * all things. 4821 */ 4822 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4823 flushing = true; 4824 space_info->flush = 1; 4825 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4826 used += orig_bytes; 4827 /* 4828 * We will do the space reservation dance during log replay, 4829 * which means we won't have fs_info->fs_root set, so don't do 4830 * the async reclaim as we will panic. 4831 */ 4832 if (!root->fs_info->log_root_recovering && 4833 need_do_async_reclaim(space_info, root->fs_info, used) && 4834 !work_busy(&root->fs_info->async_reclaim_work)) 4835 queue_work(system_unbound_wq, 4836 &root->fs_info->async_reclaim_work); 4837 } 4838 spin_unlock(&space_info->lock); 4839 4840 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4841 goto out; 4842 4843 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4844 flush_state); 4845 flush_state++; 4846 4847 /* 4848 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4849 * would happen. So skip delalloc flush. 4850 */ 4851 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4852 (flush_state == FLUSH_DELALLOC || 4853 flush_state == FLUSH_DELALLOC_WAIT)) 4854 flush_state = ALLOC_CHUNK; 4855 4856 if (!ret) 4857 goto again; 4858 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4859 flush_state < COMMIT_TRANS) 4860 goto again; 4861 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4862 flush_state <= COMMIT_TRANS) 4863 goto again; 4864 4865 out: 4866 if (ret == -ENOSPC && 4867 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4868 struct btrfs_block_rsv *global_rsv = 4869 &root->fs_info->global_block_rsv; 4870 4871 if (block_rsv != global_rsv && 4872 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4873 ret = 0; 4874 } 4875 if (ret == -ENOSPC) 4876 trace_btrfs_space_reservation(root->fs_info, 4877 "space_info:enospc", 4878 space_info->flags, orig_bytes, 1); 4879 if (flushing) { 4880 spin_lock(&space_info->lock); 4881 space_info->flush = 0; 4882 wake_up_all(&space_info->wait); 4883 spin_unlock(&space_info->lock); 4884 } 4885 return ret; 4886 } 4887 4888 static struct btrfs_block_rsv *get_block_rsv( 4889 const struct btrfs_trans_handle *trans, 4890 const struct btrfs_root *root) 4891 { 4892 struct btrfs_block_rsv *block_rsv = NULL; 4893 4894 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4895 block_rsv = trans->block_rsv; 4896 4897 if (root == root->fs_info->csum_root && trans->adding_csums) 4898 block_rsv = trans->block_rsv; 4899 4900 if (root == root->fs_info->uuid_root) 4901 block_rsv = trans->block_rsv; 4902 4903 if (!block_rsv) 4904 block_rsv = root->block_rsv; 4905 4906 if (!block_rsv) 4907 block_rsv = &root->fs_info->empty_block_rsv; 4908 4909 return block_rsv; 4910 } 4911 4912 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4913 u64 num_bytes) 4914 { 4915 int ret = -ENOSPC; 4916 spin_lock(&block_rsv->lock); 4917 if (block_rsv->reserved >= num_bytes) { 4918 block_rsv->reserved -= num_bytes; 4919 if (block_rsv->reserved < block_rsv->size) 4920 block_rsv->full = 0; 4921 ret = 0; 4922 } 4923 spin_unlock(&block_rsv->lock); 4924 return ret; 4925 } 4926 4927 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4928 u64 num_bytes, int update_size) 4929 { 4930 spin_lock(&block_rsv->lock); 4931 block_rsv->reserved += num_bytes; 4932 if (update_size) 4933 block_rsv->size += num_bytes; 4934 else if (block_rsv->reserved >= block_rsv->size) 4935 block_rsv->full = 1; 4936 spin_unlock(&block_rsv->lock); 4937 } 4938 4939 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4940 struct btrfs_block_rsv *dest, u64 num_bytes, 4941 int min_factor) 4942 { 4943 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4944 u64 min_bytes; 4945 4946 if (global_rsv->space_info != dest->space_info) 4947 return -ENOSPC; 4948 4949 spin_lock(&global_rsv->lock); 4950 min_bytes = div_factor(global_rsv->size, min_factor); 4951 if (global_rsv->reserved < min_bytes + num_bytes) { 4952 spin_unlock(&global_rsv->lock); 4953 return -ENOSPC; 4954 } 4955 global_rsv->reserved -= num_bytes; 4956 if (global_rsv->reserved < global_rsv->size) 4957 global_rsv->full = 0; 4958 spin_unlock(&global_rsv->lock); 4959 4960 block_rsv_add_bytes(dest, num_bytes, 1); 4961 return 0; 4962 } 4963 4964 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4965 struct btrfs_block_rsv *block_rsv, 4966 struct btrfs_block_rsv *dest, u64 num_bytes) 4967 { 4968 struct btrfs_space_info *space_info = block_rsv->space_info; 4969 4970 spin_lock(&block_rsv->lock); 4971 if (num_bytes == (u64)-1) 4972 num_bytes = block_rsv->size; 4973 block_rsv->size -= num_bytes; 4974 if (block_rsv->reserved >= block_rsv->size) { 4975 num_bytes = block_rsv->reserved - block_rsv->size; 4976 block_rsv->reserved = block_rsv->size; 4977 block_rsv->full = 1; 4978 } else { 4979 num_bytes = 0; 4980 } 4981 spin_unlock(&block_rsv->lock); 4982 4983 if (num_bytes > 0) { 4984 if (dest) { 4985 spin_lock(&dest->lock); 4986 if (!dest->full) { 4987 u64 bytes_to_add; 4988 4989 bytes_to_add = dest->size - dest->reserved; 4990 bytes_to_add = min(num_bytes, bytes_to_add); 4991 dest->reserved += bytes_to_add; 4992 if (dest->reserved >= dest->size) 4993 dest->full = 1; 4994 num_bytes -= bytes_to_add; 4995 } 4996 spin_unlock(&dest->lock); 4997 } 4998 if (num_bytes) { 4999 spin_lock(&space_info->lock); 5000 space_info->bytes_may_use -= num_bytes; 5001 trace_btrfs_space_reservation(fs_info, "space_info", 5002 space_info->flags, num_bytes, 0); 5003 spin_unlock(&space_info->lock); 5004 } 5005 } 5006 } 5007 5008 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5009 struct btrfs_block_rsv *dst, u64 num_bytes) 5010 { 5011 int ret; 5012 5013 ret = block_rsv_use_bytes(src, num_bytes); 5014 if (ret) 5015 return ret; 5016 5017 block_rsv_add_bytes(dst, num_bytes, 1); 5018 return 0; 5019 } 5020 5021 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5022 { 5023 memset(rsv, 0, sizeof(*rsv)); 5024 spin_lock_init(&rsv->lock); 5025 rsv->type = type; 5026 } 5027 5028 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5029 unsigned short type) 5030 { 5031 struct btrfs_block_rsv *block_rsv; 5032 struct btrfs_fs_info *fs_info = root->fs_info; 5033 5034 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5035 if (!block_rsv) 5036 return NULL; 5037 5038 btrfs_init_block_rsv(block_rsv, type); 5039 block_rsv->space_info = __find_space_info(fs_info, 5040 BTRFS_BLOCK_GROUP_METADATA); 5041 return block_rsv; 5042 } 5043 5044 void btrfs_free_block_rsv(struct btrfs_root *root, 5045 struct btrfs_block_rsv *rsv) 5046 { 5047 if (!rsv) 5048 return; 5049 btrfs_block_rsv_release(root, rsv, (u64)-1); 5050 kfree(rsv); 5051 } 5052 5053 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5054 { 5055 kfree(rsv); 5056 } 5057 5058 int btrfs_block_rsv_add(struct btrfs_root *root, 5059 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5060 enum btrfs_reserve_flush_enum flush) 5061 { 5062 int ret; 5063 5064 if (num_bytes == 0) 5065 return 0; 5066 5067 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5068 if (!ret) { 5069 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5070 return 0; 5071 } 5072 5073 return ret; 5074 } 5075 5076 int btrfs_block_rsv_check(struct btrfs_root *root, 5077 struct btrfs_block_rsv *block_rsv, int min_factor) 5078 { 5079 u64 num_bytes = 0; 5080 int ret = -ENOSPC; 5081 5082 if (!block_rsv) 5083 return 0; 5084 5085 spin_lock(&block_rsv->lock); 5086 num_bytes = div_factor(block_rsv->size, min_factor); 5087 if (block_rsv->reserved >= num_bytes) 5088 ret = 0; 5089 spin_unlock(&block_rsv->lock); 5090 5091 return ret; 5092 } 5093 5094 int btrfs_block_rsv_refill(struct btrfs_root *root, 5095 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5096 enum btrfs_reserve_flush_enum flush) 5097 { 5098 u64 num_bytes = 0; 5099 int ret = -ENOSPC; 5100 5101 if (!block_rsv) 5102 return 0; 5103 5104 spin_lock(&block_rsv->lock); 5105 num_bytes = min_reserved; 5106 if (block_rsv->reserved >= num_bytes) 5107 ret = 0; 5108 else 5109 num_bytes -= block_rsv->reserved; 5110 spin_unlock(&block_rsv->lock); 5111 5112 if (!ret) 5113 return 0; 5114 5115 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5116 if (!ret) { 5117 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5118 return 0; 5119 } 5120 5121 return ret; 5122 } 5123 5124 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5125 struct btrfs_block_rsv *dst_rsv, 5126 u64 num_bytes) 5127 { 5128 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5129 } 5130 5131 void btrfs_block_rsv_release(struct btrfs_root *root, 5132 struct btrfs_block_rsv *block_rsv, 5133 u64 num_bytes) 5134 { 5135 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5136 if (global_rsv == block_rsv || 5137 block_rsv->space_info != global_rsv->space_info) 5138 global_rsv = NULL; 5139 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5140 num_bytes); 5141 } 5142 5143 /* 5144 * helper to calculate size of global block reservation. 5145 * the desired value is sum of space used by extent tree, 5146 * checksum tree and root tree 5147 */ 5148 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5149 { 5150 struct btrfs_space_info *sinfo; 5151 u64 num_bytes; 5152 u64 meta_used; 5153 u64 data_used; 5154 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5155 5156 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5157 spin_lock(&sinfo->lock); 5158 data_used = sinfo->bytes_used; 5159 spin_unlock(&sinfo->lock); 5160 5161 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5162 spin_lock(&sinfo->lock); 5163 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5164 data_used = 0; 5165 meta_used = sinfo->bytes_used; 5166 spin_unlock(&sinfo->lock); 5167 5168 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5169 csum_size * 2; 5170 num_bytes += div_u64(data_used + meta_used, 50); 5171 5172 if (num_bytes * 3 > meta_used) 5173 num_bytes = div_u64(meta_used, 3); 5174 5175 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5176 } 5177 5178 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5179 { 5180 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5181 struct btrfs_space_info *sinfo = block_rsv->space_info; 5182 u64 num_bytes; 5183 5184 num_bytes = calc_global_metadata_size(fs_info); 5185 5186 spin_lock(&sinfo->lock); 5187 spin_lock(&block_rsv->lock); 5188 5189 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5190 5191 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5192 sinfo->bytes_reserved + sinfo->bytes_readonly + 5193 sinfo->bytes_may_use; 5194 5195 if (sinfo->total_bytes > num_bytes) { 5196 num_bytes = sinfo->total_bytes - num_bytes; 5197 block_rsv->reserved += num_bytes; 5198 sinfo->bytes_may_use += num_bytes; 5199 trace_btrfs_space_reservation(fs_info, "space_info", 5200 sinfo->flags, num_bytes, 1); 5201 } 5202 5203 if (block_rsv->reserved >= block_rsv->size) { 5204 num_bytes = block_rsv->reserved - block_rsv->size; 5205 sinfo->bytes_may_use -= num_bytes; 5206 trace_btrfs_space_reservation(fs_info, "space_info", 5207 sinfo->flags, num_bytes, 0); 5208 block_rsv->reserved = block_rsv->size; 5209 block_rsv->full = 1; 5210 } 5211 5212 spin_unlock(&block_rsv->lock); 5213 spin_unlock(&sinfo->lock); 5214 } 5215 5216 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5217 { 5218 struct btrfs_space_info *space_info; 5219 5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5221 fs_info->chunk_block_rsv.space_info = space_info; 5222 5223 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5224 fs_info->global_block_rsv.space_info = space_info; 5225 fs_info->delalloc_block_rsv.space_info = space_info; 5226 fs_info->trans_block_rsv.space_info = space_info; 5227 fs_info->empty_block_rsv.space_info = space_info; 5228 fs_info->delayed_block_rsv.space_info = space_info; 5229 5230 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5231 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5232 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5233 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5234 if (fs_info->quota_root) 5235 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5236 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5237 5238 update_global_block_rsv(fs_info); 5239 } 5240 5241 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5242 { 5243 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5244 (u64)-1); 5245 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5246 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5247 WARN_ON(fs_info->trans_block_rsv.size > 0); 5248 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5249 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5250 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5251 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5252 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5253 } 5254 5255 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5256 struct btrfs_root *root) 5257 { 5258 if (!trans->block_rsv) 5259 return; 5260 5261 if (!trans->bytes_reserved) 5262 return; 5263 5264 trace_btrfs_space_reservation(root->fs_info, "transaction", 5265 trans->transid, trans->bytes_reserved, 0); 5266 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5267 trans->bytes_reserved = 0; 5268 } 5269 5270 /* 5271 * To be called after all the new block groups attached to the transaction 5272 * handle have been created (btrfs_create_pending_block_groups()). 5273 */ 5274 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5275 { 5276 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5277 5278 if (!trans->chunk_bytes_reserved) 5279 return; 5280 5281 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5282 5283 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5284 trans->chunk_bytes_reserved); 5285 trans->chunk_bytes_reserved = 0; 5286 } 5287 5288 /* Can only return 0 or -ENOSPC */ 5289 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5290 struct inode *inode) 5291 { 5292 struct btrfs_root *root = BTRFS_I(inode)->root; 5293 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5294 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5295 5296 /* 5297 * We need to hold space in order to delete our orphan item once we've 5298 * added it, so this takes the reservation so we can release it later 5299 * when we are truly done with the orphan item. 5300 */ 5301 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5302 trace_btrfs_space_reservation(root->fs_info, "orphan", 5303 btrfs_ino(inode), num_bytes, 1); 5304 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5305 } 5306 5307 void btrfs_orphan_release_metadata(struct inode *inode) 5308 { 5309 struct btrfs_root *root = BTRFS_I(inode)->root; 5310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5311 trace_btrfs_space_reservation(root->fs_info, "orphan", 5312 btrfs_ino(inode), num_bytes, 0); 5313 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5314 } 5315 5316 /* 5317 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5318 * root: the root of the parent directory 5319 * rsv: block reservation 5320 * items: the number of items that we need do reservation 5321 * qgroup_reserved: used to return the reserved size in qgroup 5322 * 5323 * This function is used to reserve the space for snapshot/subvolume 5324 * creation and deletion. Those operations are different with the 5325 * common file/directory operations, they change two fs/file trees 5326 * and root tree, the number of items that the qgroup reserves is 5327 * different with the free space reservation. So we can not use 5328 * the space reseravtion mechanism in start_transaction(). 5329 */ 5330 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5331 struct btrfs_block_rsv *rsv, 5332 int items, 5333 u64 *qgroup_reserved, 5334 bool use_global_rsv) 5335 { 5336 u64 num_bytes; 5337 int ret; 5338 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5339 5340 if (root->fs_info->quota_enabled) { 5341 /* One for parent inode, two for dir entries */ 5342 num_bytes = 3 * root->nodesize; 5343 ret = btrfs_qgroup_reserve(root, num_bytes); 5344 if (ret) 5345 return ret; 5346 } else { 5347 num_bytes = 0; 5348 } 5349 5350 *qgroup_reserved = num_bytes; 5351 5352 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5353 rsv->space_info = __find_space_info(root->fs_info, 5354 BTRFS_BLOCK_GROUP_METADATA); 5355 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5356 BTRFS_RESERVE_FLUSH_ALL); 5357 5358 if (ret == -ENOSPC && use_global_rsv) 5359 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5360 5361 if (ret) { 5362 if (*qgroup_reserved) 5363 btrfs_qgroup_free(root, *qgroup_reserved); 5364 } 5365 5366 return ret; 5367 } 5368 5369 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5370 struct btrfs_block_rsv *rsv, 5371 u64 qgroup_reserved) 5372 { 5373 btrfs_block_rsv_release(root, rsv, (u64)-1); 5374 } 5375 5376 /** 5377 * drop_outstanding_extent - drop an outstanding extent 5378 * @inode: the inode we're dropping the extent for 5379 * @num_bytes: the number of bytes we're relaseing. 5380 * 5381 * This is called when we are freeing up an outstanding extent, either called 5382 * after an error or after an extent is written. This will return the number of 5383 * reserved extents that need to be freed. This must be called with 5384 * BTRFS_I(inode)->lock held. 5385 */ 5386 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5387 { 5388 unsigned drop_inode_space = 0; 5389 unsigned dropped_extents = 0; 5390 unsigned num_extents = 0; 5391 5392 num_extents = (unsigned)div64_u64(num_bytes + 5393 BTRFS_MAX_EXTENT_SIZE - 1, 5394 BTRFS_MAX_EXTENT_SIZE); 5395 ASSERT(num_extents); 5396 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5397 BTRFS_I(inode)->outstanding_extents -= num_extents; 5398 5399 if (BTRFS_I(inode)->outstanding_extents == 0 && 5400 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5401 &BTRFS_I(inode)->runtime_flags)) 5402 drop_inode_space = 1; 5403 5404 /* 5405 * If we have more or the same amount of outsanding extents than we have 5406 * reserved then we need to leave the reserved extents count alone. 5407 */ 5408 if (BTRFS_I(inode)->outstanding_extents >= 5409 BTRFS_I(inode)->reserved_extents) 5410 return drop_inode_space; 5411 5412 dropped_extents = BTRFS_I(inode)->reserved_extents - 5413 BTRFS_I(inode)->outstanding_extents; 5414 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5415 return dropped_extents + drop_inode_space; 5416 } 5417 5418 /** 5419 * calc_csum_metadata_size - return the amount of metada space that must be 5420 * reserved/free'd for the given bytes. 5421 * @inode: the inode we're manipulating 5422 * @num_bytes: the number of bytes in question 5423 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5424 * 5425 * This adjusts the number of csum_bytes in the inode and then returns the 5426 * correct amount of metadata that must either be reserved or freed. We 5427 * calculate how many checksums we can fit into one leaf and then divide the 5428 * number of bytes that will need to be checksumed by this value to figure out 5429 * how many checksums will be required. If we are adding bytes then the number 5430 * may go up and we will return the number of additional bytes that must be 5431 * reserved. If it is going down we will return the number of bytes that must 5432 * be freed. 5433 * 5434 * This must be called with BTRFS_I(inode)->lock held. 5435 */ 5436 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5437 int reserve) 5438 { 5439 struct btrfs_root *root = BTRFS_I(inode)->root; 5440 u64 old_csums, num_csums; 5441 5442 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5443 BTRFS_I(inode)->csum_bytes == 0) 5444 return 0; 5445 5446 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5447 if (reserve) 5448 BTRFS_I(inode)->csum_bytes += num_bytes; 5449 else 5450 BTRFS_I(inode)->csum_bytes -= num_bytes; 5451 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5452 5453 /* No change, no need to reserve more */ 5454 if (old_csums == num_csums) 5455 return 0; 5456 5457 if (reserve) 5458 return btrfs_calc_trans_metadata_size(root, 5459 num_csums - old_csums); 5460 5461 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5462 } 5463 5464 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5465 { 5466 struct btrfs_root *root = BTRFS_I(inode)->root; 5467 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5468 u64 to_reserve = 0; 5469 u64 csum_bytes; 5470 unsigned nr_extents = 0; 5471 int extra_reserve = 0; 5472 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5473 int ret = 0; 5474 bool delalloc_lock = true; 5475 u64 to_free = 0; 5476 unsigned dropped; 5477 5478 /* If we are a free space inode we need to not flush since we will be in 5479 * the middle of a transaction commit. We also don't need the delalloc 5480 * mutex since we won't race with anybody. We need this mostly to make 5481 * lockdep shut its filthy mouth. 5482 */ 5483 if (btrfs_is_free_space_inode(inode)) { 5484 flush = BTRFS_RESERVE_NO_FLUSH; 5485 delalloc_lock = false; 5486 } 5487 5488 if (flush != BTRFS_RESERVE_NO_FLUSH && 5489 btrfs_transaction_in_commit(root->fs_info)) 5490 schedule_timeout(1); 5491 5492 if (delalloc_lock) 5493 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5494 5495 num_bytes = ALIGN(num_bytes, root->sectorsize); 5496 5497 spin_lock(&BTRFS_I(inode)->lock); 5498 nr_extents = (unsigned)div64_u64(num_bytes + 5499 BTRFS_MAX_EXTENT_SIZE - 1, 5500 BTRFS_MAX_EXTENT_SIZE); 5501 BTRFS_I(inode)->outstanding_extents += nr_extents; 5502 nr_extents = 0; 5503 5504 if (BTRFS_I(inode)->outstanding_extents > 5505 BTRFS_I(inode)->reserved_extents) 5506 nr_extents = BTRFS_I(inode)->outstanding_extents - 5507 BTRFS_I(inode)->reserved_extents; 5508 5509 /* 5510 * Add an item to reserve for updating the inode when we complete the 5511 * delalloc io. 5512 */ 5513 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5514 &BTRFS_I(inode)->runtime_flags)) { 5515 nr_extents++; 5516 extra_reserve = 1; 5517 } 5518 5519 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5520 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5521 csum_bytes = BTRFS_I(inode)->csum_bytes; 5522 spin_unlock(&BTRFS_I(inode)->lock); 5523 5524 if (root->fs_info->quota_enabled) { 5525 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5526 if (ret) 5527 goto out_fail; 5528 } 5529 5530 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5531 if (unlikely(ret)) { 5532 if (root->fs_info->quota_enabled) 5533 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5534 goto out_fail; 5535 } 5536 5537 spin_lock(&BTRFS_I(inode)->lock); 5538 if (extra_reserve) { 5539 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5540 &BTRFS_I(inode)->runtime_flags); 5541 nr_extents--; 5542 } 5543 BTRFS_I(inode)->reserved_extents += nr_extents; 5544 spin_unlock(&BTRFS_I(inode)->lock); 5545 5546 if (delalloc_lock) 5547 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5548 5549 if (to_reserve) 5550 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5551 btrfs_ino(inode), to_reserve, 1); 5552 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5553 5554 return 0; 5555 5556 out_fail: 5557 spin_lock(&BTRFS_I(inode)->lock); 5558 dropped = drop_outstanding_extent(inode, num_bytes); 5559 /* 5560 * If the inodes csum_bytes is the same as the original 5561 * csum_bytes then we know we haven't raced with any free()ers 5562 * so we can just reduce our inodes csum bytes and carry on. 5563 */ 5564 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5565 calc_csum_metadata_size(inode, num_bytes, 0); 5566 } else { 5567 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5568 u64 bytes; 5569 5570 /* 5571 * This is tricky, but first we need to figure out how much we 5572 * free'd from any free-ers that occured during this 5573 * reservation, so we reset ->csum_bytes to the csum_bytes 5574 * before we dropped our lock, and then call the free for the 5575 * number of bytes that were freed while we were trying our 5576 * reservation. 5577 */ 5578 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5579 BTRFS_I(inode)->csum_bytes = csum_bytes; 5580 to_free = calc_csum_metadata_size(inode, bytes, 0); 5581 5582 5583 /* 5584 * Now we need to see how much we would have freed had we not 5585 * been making this reservation and our ->csum_bytes were not 5586 * artificially inflated. 5587 */ 5588 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5589 bytes = csum_bytes - orig_csum_bytes; 5590 bytes = calc_csum_metadata_size(inode, bytes, 0); 5591 5592 /* 5593 * Now reset ->csum_bytes to what it should be. If bytes is 5594 * more than to_free then we would have free'd more space had we 5595 * not had an artificially high ->csum_bytes, so we need to free 5596 * the remainder. If bytes is the same or less then we don't 5597 * need to do anything, the other free-ers did the correct 5598 * thing. 5599 */ 5600 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5601 if (bytes > to_free) 5602 to_free = bytes - to_free; 5603 else 5604 to_free = 0; 5605 } 5606 spin_unlock(&BTRFS_I(inode)->lock); 5607 if (dropped) 5608 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5609 5610 if (to_free) { 5611 btrfs_block_rsv_release(root, block_rsv, to_free); 5612 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5613 btrfs_ino(inode), to_free, 0); 5614 } 5615 if (delalloc_lock) 5616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5617 return ret; 5618 } 5619 5620 /** 5621 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5622 * @inode: the inode to release the reservation for 5623 * @num_bytes: the number of bytes we're releasing 5624 * 5625 * This will release the metadata reservation for an inode. This can be called 5626 * once we complete IO for a given set of bytes to release their metadata 5627 * reservations. 5628 */ 5629 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5630 { 5631 struct btrfs_root *root = BTRFS_I(inode)->root; 5632 u64 to_free = 0; 5633 unsigned dropped; 5634 5635 num_bytes = ALIGN(num_bytes, root->sectorsize); 5636 spin_lock(&BTRFS_I(inode)->lock); 5637 dropped = drop_outstanding_extent(inode, num_bytes); 5638 5639 if (num_bytes) 5640 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5641 spin_unlock(&BTRFS_I(inode)->lock); 5642 if (dropped > 0) 5643 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5644 5645 if (btrfs_test_is_dummy_root(root)) 5646 return; 5647 5648 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5649 btrfs_ino(inode), to_free, 0); 5650 5651 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5652 to_free); 5653 } 5654 5655 /** 5656 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5657 * @inode: inode we're writing to 5658 * @num_bytes: the number of bytes we want to allocate 5659 * 5660 * This will do the following things 5661 * 5662 * o reserve space in the data space info for num_bytes 5663 * o reserve space in the metadata space info based on number of outstanding 5664 * extents and how much csums will be needed 5665 * o add to the inodes ->delalloc_bytes 5666 * o add it to the fs_info's delalloc inodes list. 5667 * 5668 * This will return 0 for success and -ENOSPC if there is no space left. 5669 */ 5670 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5671 { 5672 int ret; 5673 5674 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5675 if (ret) 5676 return ret; 5677 5678 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5679 if (ret) { 5680 btrfs_free_reserved_data_space(inode, num_bytes); 5681 return ret; 5682 } 5683 5684 return 0; 5685 } 5686 5687 /** 5688 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5689 * @inode: inode we're releasing space for 5690 * @num_bytes: the number of bytes we want to free up 5691 * 5692 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5693 * called in the case that we don't need the metadata AND data reservations 5694 * anymore. So if there is an error or we insert an inline extent. 5695 * 5696 * This function will release the metadata space that was not used and will 5697 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5698 * list if there are no delalloc bytes left. 5699 */ 5700 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5701 { 5702 btrfs_delalloc_release_metadata(inode, num_bytes); 5703 btrfs_free_reserved_data_space(inode, num_bytes); 5704 } 5705 5706 static int update_block_group(struct btrfs_trans_handle *trans, 5707 struct btrfs_root *root, u64 bytenr, 5708 u64 num_bytes, int alloc) 5709 { 5710 struct btrfs_block_group_cache *cache = NULL; 5711 struct btrfs_fs_info *info = root->fs_info; 5712 u64 total = num_bytes; 5713 u64 old_val; 5714 u64 byte_in_group; 5715 int factor; 5716 5717 /* block accounting for super block */ 5718 spin_lock(&info->delalloc_root_lock); 5719 old_val = btrfs_super_bytes_used(info->super_copy); 5720 if (alloc) 5721 old_val += num_bytes; 5722 else 5723 old_val -= num_bytes; 5724 btrfs_set_super_bytes_used(info->super_copy, old_val); 5725 spin_unlock(&info->delalloc_root_lock); 5726 5727 while (total) { 5728 cache = btrfs_lookup_block_group(info, bytenr); 5729 if (!cache) 5730 return -ENOENT; 5731 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5732 BTRFS_BLOCK_GROUP_RAID1 | 5733 BTRFS_BLOCK_GROUP_RAID10)) 5734 factor = 2; 5735 else 5736 factor = 1; 5737 /* 5738 * If this block group has free space cache written out, we 5739 * need to make sure to load it if we are removing space. This 5740 * is because we need the unpinning stage to actually add the 5741 * space back to the block group, otherwise we will leak space. 5742 */ 5743 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5744 cache_block_group(cache, 1); 5745 5746 byte_in_group = bytenr - cache->key.objectid; 5747 WARN_ON(byte_in_group > cache->key.offset); 5748 5749 spin_lock(&cache->space_info->lock); 5750 spin_lock(&cache->lock); 5751 5752 if (btrfs_test_opt(root, SPACE_CACHE) && 5753 cache->disk_cache_state < BTRFS_DC_CLEAR) 5754 cache->disk_cache_state = BTRFS_DC_CLEAR; 5755 5756 old_val = btrfs_block_group_used(&cache->item); 5757 num_bytes = min(total, cache->key.offset - byte_in_group); 5758 if (alloc) { 5759 old_val += num_bytes; 5760 btrfs_set_block_group_used(&cache->item, old_val); 5761 cache->reserved -= num_bytes; 5762 cache->space_info->bytes_reserved -= num_bytes; 5763 cache->space_info->bytes_used += num_bytes; 5764 cache->space_info->disk_used += num_bytes * factor; 5765 spin_unlock(&cache->lock); 5766 spin_unlock(&cache->space_info->lock); 5767 } else { 5768 old_val -= num_bytes; 5769 btrfs_set_block_group_used(&cache->item, old_val); 5770 cache->pinned += num_bytes; 5771 cache->space_info->bytes_pinned += num_bytes; 5772 cache->space_info->bytes_used -= num_bytes; 5773 cache->space_info->disk_used -= num_bytes * factor; 5774 spin_unlock(&cache->lock); 5775 spin_unlock(&cache->space_info->lock); 5776 5777 set_extent_dirty(info->pinned_extents, 5778 bytenr, bytenr + num_bytes - 1, 5779 GFP_NOFS | __GFP_NOFAIL); 5780 /* 5781 * No longer have used bytes in this block group, queue 5782 * it for deletion. 5783 */ 5784 if (old_val == 0) { 5785 spin_lock(&info->unused_bgs_lock); 5786 if (list_empty(&cache->bg_list)) { 5787 btrfs_get_block_group(cache); 5788 list_add_tail(&cache->bg_list, 5789 &info->unused_bgs); 5790 } 5791 spin_unlock(&info->unused_bgs_lock); 5792 } 5793 } 5794 5795 spin_lock(&trans->transaction->dirty_bgs_lock); 5796 if (list_empty(&cache->dirty_list)) { 5797 list_add_tail(&cache->dirty_list, 5798 &trans->transaction->dirty_bgs); 5799 trans->transaction->num_dirty_bgs++; 5800 btrfs_get_block_group(cache); 5801 } 5802 spin_unlock(&trans->transaction->dirty_bgs_lock); 5803 5804 btrfs_put_block_group(cache); 5805 total -= num_bytes; 5806 bytenr += num_bytes; 5807 } 5808 return 0; 5809 } 5810 5811 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5812 { 5813 struct btrfs_block_group_cache *cache; 5814 u64 bytenr; 5815 5816 spin_lock(&root->fs_info->block_group_cache_lock); 5817 bytenr = root->fs_info->first_logical_byte; 5818 spin_unlock(&root->fs_info->block_group_cache_lock); 5819 5820 if (bytenr < (u64)-1) 5821 return bytenr; 5822 5823 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5824 if (!cache) 5825 return 0; 5826 5827 bytenr = cache->key.objectid; 5828 btrfs_put_block_group(cache); 5829 5830 return bytenr; 5831 } 5832 5833 static int pin_down_extent(struct btrfs_root *root, 5834 struct btrfs_block_group_cache *cache, 5835 u64 bytenr, u64 num_bytes, int reserved) 5836 { 5837 spin_lock(&cache->space_info->lock); 5838 spin_lock(&cache->lock); 5839 cache->pinned += num_bytes; 5840 cache->space_info->bytes_pinned += num_bytes; 5841 if (reserved) { 5842 cache->reserved -= num_bytes; 5843 cache->space_info->bytes_reserved -= num_bytes; 5844 } 5845 spin_unlock(&cache->lock); 5846 spin_unlock(&cache->space_info->lock); 5847 5848 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5849 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5850 if (reserved) 5851 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5852 return 0; 5853 } 5854 5855 /* 5856 * this function must be called within transaction 5857 */ 5858 int btrfs_pin_extent(struct btrfs_root *root, 5859 u64 bytenr, u64 num_bytes, int reserved) 5860 { 5861 struct btrfs_block_group_cache *cache; 5862 5863 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5864 BUG_ON(!cache); /* Logic error */ 5865 5866 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5867 5868 btrfs_put_block_group(cache); 5869 return 0; 5870 } 5871 5872 /* 5873 * this function must be called within transaction 5874 */ 5875 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5876 u64 bytenr, u64 num_bytes) 5877 { 5878 struct btrfs_block_group_cache *cache; 5879 int ret; 5880 5881 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5882 if (!cache) 5883 return -EINVAL; 5884 5885 /* 5886 * pull in the free space cache (if any) so that our pin 5887 * removes the free space from the cache. We have load_only set 5888 * to one because the slow code to read in the free extents does check 5889 * the pinned extents. 5890 */ 5891 cache_block_group(cache, 1); 5892 5893 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5894 5895 /* remove us from the free space cache (if we're there at all) */ 5896 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5897 btrfs_put_block_group(cache); 5898 return ret; 5899 } 5900 5901 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5902 { 5903 int ret; 5904 struct btrfs_block_group_cache *block_group; 5905 struct btrfs_caching_control *caching_ctl; 5906 5907 block_group = btrfs_lookup_block_group(root->fs_info, start); 5908 if (!block_group) 5909 return -EINVAL; 5910 5911 cache_block_group(block_group, 0); 5912 caching_ctl = get_caching_control(block_group); 5913 5914 if (!caching_ctl) { 5915 /* Logic error */ 5916 BUG_ON(!block_group_cache_done(block_group)); 5917 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5918 } else { 5919 mutex_lock(&caching_ctl->mutex); 5920 5921 if (start >= caching_ctl->progress) { 5922 ret = add_excluded_extent(root, start, num_bytes); 5923 } else if (start + num_bytes <= caching_ctl->progress) { 5924 ret = btrfs_remove_free_space(block_group, 5925 start, num_bytes); 5926 } else { 5927 num_bytes = caching_ctl->progress - start; 5928 ret = btrfs_remove_free_space(block_group, 5929 start, num_bytes); 5930 if (ret) 5931 goto out_lock; 5932 5933 num_bytes = (start + num_bytes) - 5934 caching_ctl->progress; 5935 start = caching_ctl->progress; 5936 ret = add_excluded_extent(root, start, num_bytes); 5937 } 5938 out_lock: 5939 mutex_unlock(&caching_ctl->mutex); 5940 put_caching_control(caching_ctl); 5941 } 5942 btrfs_put_block_group(block_group); 5943 return ret; 5944 } 5945 5946 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5947 struct extent_buffer *eb) 5948 { 5949 struct btrfs_file_extent_item *item; 5950 struct btrfs_key key; 5951 int found_type; 5952 int i; 5953 5954 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5955 return 0; 5956 5957 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5958 btrfs_item_key_to_cpu(eb, &key, i); 5959 if (key.type != BTRFS_EXTENT_DATA_KEY) 5960 continue; 5961 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5962 found_type = btrfs_file_extent_type(eb, item); 5963 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5964 continue; 5965 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5966 continue; 5967 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5968 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5969 __exclude_logged_extent(log, key.objectid, key.offset); 5970 } 5971 5972 return 0; 5973 } 5974 5975 /** 5976 * btrfs_update_reserved_bytes - update the block_group and space info counters 5977 * @cache: The cache we are manipulating 5978 * @num_bytes: The number of bytes in question 5979 * @reserve: One of the reservation enums 5980 * @delalloc: The blocks are allocated for the delalloc write 5981 * 5982 * This is called by the allocator when it reserves space, or by somebody who is 5983 * freeing space that was never actually used on disk. For example if you 5984 * reserve some space for a new leaf in transaction A and before transaction A 5985 * commits you free that leaf, you call this with reserve set to 0 in order to 5986 * clear the reservation. 5987 * 5988 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5989 * ENOSPC accounting. For data we handle the reservation through clearing the 5990 * delalloc bits in the io_tree. We have to do this since we could end up 5991 * allocating less disk space for the amount of data we have reserved in the 5992 * case of compression. 5993 * 5994 * If this is a reservation and the block group has become read only we cannot 5995 * make the reservation and return -EAGAIN, otherwise this function always 5996 * succeeds. 5997 */ 5998 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5999 u64 num_bytes, int reserve, int delalloc) 6000 { 6001 struct btrfs_space_info *space_info = cache->space_info; 6002 int ret = 0; 6003 6004 spin_lock(&space_info->lock); 6005 spin_lock(&cache->lock); 6006 if (reserve != RESERVE_FREE) { 6007 if (cache->ro) { 6008 ret = -EAGAIN; 6009 } else { 6010 cache->reserved += num_bytes; 6011 space_info->bytes_reserved += num_bytes; 6012 if (reserve == RESERVE_ALLOC) { 6013 trace_btrfs_space_reservation(cache->fs_info, 6014 "space_info", space_info->flags, 6015 num_bytes, 0); 6016 space_info->bytes_may_use -= num_bytes; 6017 } 6018 6019 if (delalloc) 6020 cache->delalloc_bytes += num_bytes; 6021 } 6022 } else { 6023 if (cache->ro) 6024 space_info->bytes_readonly += num_bytes; 6025 cache->reserved -= num_bytes; 6026 space_info->bytes_reserved -= num_bytes; 6027 6028 if (delalloc) 6029 cache->delalloc_bytes -= num_bytes; 6030 } 6031 spin_unlock(&cache->lock); 6032 spin_unlock(&space_info->lock); 6033 return ret; 6034 } 6035 6036 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6037 struct btrfs_root *root) 6038 { 6039 struct btrfs_fs_info *fs_info = root->fs_info; 6040 struct btrfs_caching_control *next; 6041 struct btrfs_caching_control *caching_ctl; 6042 struct btrfs_block_group_cache *cache; 6043 6044 down_write(&fs_info->commit_root_sem); 6045 6046 list_for_each_entry_safe(caching_ctl, next, 6047 &fs_info->caching_block_groups, list) { 6048 cache = caching_ctl->block_group; 6049 if (block_group_cache_done(cache)) { 6050 cache->last_byte_to_unpin = (u64)-1; 6051 list_del_init(&caching_ctl->list); 6052 put_caching_control(caching_ctl); 6053 } else { 6054 cache->last_byte_to_unpin = caching_ctl->progress; 6055 } 6056 } 6057 6058 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6059 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6060 else 6061 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6062 6063 up_write(&fs_info->commit_root_sem); 6064 6065 update_global_block_rsv(fs_info); 6066 } 6067 6068 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6069 const bool return_free_space) 6070 { 6071 struct btrfs_fs_info *fs_info = root->fs_info; 6072 struct btrfs_block_group_cache *cache = NULL; 6073 struct btrfs_space_info *space_info; 6074 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6075 u64 len; 6076 bool readonly; 6077 6078 while (start <= end) { 6079 readonly = false; 6080 if (!cache || 6081 start >= cache->key.objectid + cache->key.offset) { 6082 if (cache) 6083 btrfs_put_block_group(cache); 6084 cache = btrfs_lookup_block_group(fs_info, start); 6085 BUG_ON(!cache); /* Logic error */ 6086 } 6087 6088 len = cache->key.objectid + cache->key.offset - start; 6089 len = min(len, end + 1 - start); 6090 6091 if (start < cache->last_byte_to_unpin) { 6092 len = min(len, cache->last_byte_to_unpin - start); 6093 if (return_free_space) 6094 btrfs_add_free_space(cache, start, len); 6095 } 6096 6097 start += len; 6098 space_info = cache->space_info; 6099 6100 spin_lock(&space_info->lock); 6101 spin_lock(&cache->lock); 6102 cache->pinned -= len; 6103 space_info->bytes_pinned -= len; 6104 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6105 if (cache->ro) { 6106 space_info->bytes_readonly += len; 6107 readonly = true; 6108 } 6109 spin_unlock(&cache->lock); 6110 if (!readonly && global_rsv->space_info == space_info) { 6111 spin_lock(&global_rsv->lock); 6112 if (!global_rsv->full) { 6113 len = min(len, global_rsv->size - 6114 global_rsv->reserved); 6115 global_rsv->reserved += len; 6116 space_info->bytes_may_use += len; 6117 if (global_rsv->reserved >= global_rsv->size) 6118 global_rsv->full = 1; 6119 } 6120 spin_unlock(&global_rsv->lock); 6121 } 6122 spin_unlock(&space_info->lock); 6123 } 6124 6125 if (cache) 6126 btrfs_put_block_group(cache); 6127 return 0; 6128 } 6129 6130 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6131 struct btrfs_root *root) 6132 { 6133 struct btrfs_fs_info *fs_info = root->fs_info; 6134 struct btrfs_block_group_cache *block_group, *tmp; 6135 struct list_head *deleted_bgs; 6136 struct extent_io_tree *unpin; 6137 u64 start; 6138 u64 end; 6139 int ret; 6140 6141 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6142 unpin = &fs_info->freed_extents[1]; 6143 else 6144 unpin = &fs_info->freed_extents[0]; 6145 6146 while (!trans->aborted) { 6147 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6148 ret = find_first_extent_bit(unpin, 0, &start, &end, 6149 EXTENT_DIRTY, NULL); 6150 if (ret) { 6151 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6152 break; 6153 } 6154 6155 if (btrfs_test_opt(root, DISCARD)) 6156 ret = btrfs_discard_extent(root, start, 6157 end + 1 - start, NULL); 6158 6159 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6160 unpin_extent_range(root, start, end, true); 6161 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6162 cond_resched(); 6163 } 6164 6165 /* 6166 * Transaction is finished. We don't need the lock anymore. We 6167 * do need to clean up the block groups in case of a transaction 6168 * abort. 6169 */ 6170 deleted_bgs = &trans->transaction->deleted_bgs; 6171 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6172 u64 trimmed = 0; 6173 6174 ret = -EROFS; 6175 if (!trans->aborted) 6176 ret = btrfs_discard_extent(root, 6177 block_group->key.objectid, 6178 block_group->key.offset, 6179 &trimmed); 6180 6181 list_del_init(&block_group->bg_list); 6182 btrfs_put_block_group_trimming(block_group); 6183 btrfs_put_block_group(block_group); 6184 6185 if (ret) { 6186 const char *errstr = btrfs_decode_error(ret); 6187 btrfs_warn(fs_info, 6188 "Discard failed while removing blockgroup: errno=%d %s\n", 6189 ret, errstr); 6190 } 6191 } 6192 6193 return 0; 6194 } 6195 6196 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6197 u64 owner, u64 root_objectid) 6198 { 6199 struct btrfs_space_info *space_info; 6200 u64 flags; 6201 6202 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6203 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6204 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6205 else 6206 flags = BTRFS_BLOCK_GROUP_METADATA; 6207 } else { 6208 flags = BTRFS_BLOCK_GROUP_DATA; 6209 } 6210 6211 space_info = __find_space_info(fs_info, flags); 6212 BUG_ON(!space_info); /* Logic bug */ 6213 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6214 } 6215 6216 6217 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6218 struct btrfs_root *root, 6219 struct btrfs_delayed_ref_node *node, u64 parent, 6220 u64 root_objectid, u64 owner_objectid, 6221 u64 owner_offset, int refs_to_drop, 6222 struct btrfs_delayed_extent_op *extent_op) 6223 { 6224 struct btrfs_key key; 6225 struct btrfs_path *path; 6226 struct btrfs_fs_info *info = root->fs_info; 6227 struct btrfs_root *extent_root = info->extent_root; 6228 struct extent_buffer *leaf; 6229 struct btrfs_extent_item *ei; 6230 struct btrfs_extent_inline_ref *iref; 6231 int ret; 6232 int is_data; 6233 int extent_slot = 0; 6234 int found_extent = 0; 6235 int num_to_del = 1; 6236 int no_quota = node->no_quota; 6237 u32 item_size; 6238 u64 refs; 6239 u64 bytenr = node->bytenr; 6240 u64 num_bytes = node->num_bytes; 6241 int last_ref = 0; 6242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6243 SKINNY_METADATA); 6244 6245 if (!info->quota_enabled || !is_fstree(root_objectid)) 6246 no_quota = 1; 6247 6248 path = btrfs_alloc_path(); 6249 if (!path) 6250 return -ENOMEM; 6251 6252 path->reada = 1; 6253 path->leave_spinning = 1; 6254 6255 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6256 BUG_ON(!is_data && refs_to_drop != 1); 6257 6258 if (is_data) 6259 skinny_metadata = 0; 6260 6261 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6262 bytenr, num_bytes, parent, 6263 root_objectid, owner_objectid, 6264 owner_offset); 6265 if (ret == 0) { 6266 extent_slot = path->slots[0]; 6267 while (extent_slot >= 0) { 6268 btrfs_item_key_to_cpu(path->nodes[0], &key, 6269 extent_slot); 6270 if (key.objectid != bytenr) 6271 break; 6272 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6273 key.offset == num_bytes) { 6274 found_extent = 1; 6275 break; 6276 } 6277 if (key.type == BTRFS_METADATA_ITEM_KEY && 6278 key.offset == owner_objectid) { 6279 found_extent = 1; 6280 break; 6281 } 6282 if (path->slots[0] - extent_slot > 5) 6283 break; 6284 extent_slot--; 6285 } 6286 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6287 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6288 if (found_extent && item_size < sizeof(*ei)) 6289 found_extent = 0; 6290 #endif 6291 if (!found_extent) { 6292 BUG_ON(iref); 6293 ret = remove_extent_backref(trans, extent_root, path, 6294 NULL, refs_to_drop, 6295 is_data, &last_ref); 6296 if (ret) { 6297 btrfs_abort_transaction(trans, extent_root, ret); 6298 goto out; 6299 } 6300 btrfs_release_path(path); 6301 path->leave_spinning = 1; 6302 6303 key.objectid = bytenr; 6304 key.type = BTRFS_EXTENT_ITEM_KEY; 6305 key.offset = num_bytes; 6306 6307 if (!is_data && skinny_metadata) { 6308 key.type = BTRFS_METADATA_ITEM_KEY; 6309 key.offset = owner_objectid; 6310 } 6311 6312 ret = btrfs_search_slot(trans, extent_root, 6313 &key, path, -1, 1); 6314 if (ret > 0 && skinny_metadata && path->slots[0]) { 6315 /* 6316 * Couldn't find our skinny metadata item, 6317 * see if we have ye olde extent item. 6318 */ 6319 path->slots[0]--; 6320 btrfs_item_key_to_cpu(path->nodes[0], &key, 6321 path->slots[0]); 6322 if (key.objectid == bytenr && 6323 key.type == BTRFS_EXTENT_ITEM_KEY && 6324 key.offset == num_bytes) 6325 ret = 0; 6326 } 6327 6328 if (ret > 0 && skinny_metadata) { 6329 skinny_metadata = false; 6330 key.objectid = bytenr; 6331 key.type = BTRFS_EXTENT_ITEM_KEY; 6332 key.offset = num_bytes; 6333 btrfs_release_path(path); 6334 ret = btrfs_search_slot(trans, extent_root, 6335 &key, path, -1, 1); 6336 } 6337 6338 if (ret) { 6339 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6340 ret, bytenr); 6341 if (ret > 0) 6342 btrfs_print_leaf(extent_root, 6343 path->nodes[0]); 6344 } 6345 if (ret < 0) { 6346 btrfs_abort_transaction(trans, extent_root, ret); 6347 goto out; 6348 } 6349 extent_slot = path->slots[0]; 6350 } 6351 } else if (WARN_ON(ret == -ENOENT)) { 6352 btrfs_print_leaf(extent_root, path->nodes[0]); 6353 btrfs_err(info, 6354 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6355 bytenr, parent, root_objectid, owner_objectid, 6356 owner_offset); 6357 btrfs_abort_transaction(trans, extent_root, ret); 6358 goto out; 6359 } else { 6360 btrfs_abort_transaction(trans, extent_root, ret); 6361 goto out; 6362 } 6363 6364 leaf = path->nodes[0]; 6365 item_size = btrfs_item_size_nr(leaf, extent_slot); 6366 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6367 if (item_size < sizeof(*ei)) { 6368 BUG_ON(found_extent || extent_slot != path->slots[0]); 6369 ret = convert_extent_item_v0(trans, extent_root, path, 6370 owner_objectid, 0); 6371 if (ret < 0) { 6372 btrfs_abort_transaction(trans, extent_root, ret); 6373 goto out; 6374 } 6375 6376 btrfs_release_path(path); 6377 path->leave_spinning = 1; 6378 6379 key.objectid = bytenr; 6380 key.type = BTRFS_EXTENT_ITEM_KEY; 6381 key.offset = num_bytes; 6382 6383 ret = btrfs_search_slot(trans, extent_root, &key, path, 6384 -1, 1); 6385 if (ret) { 6386 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6387 ret, bytenr); 6388 btrfs_print_leaf(extent_root, path->nodes[0]); 6389 } 6390 if (ret < 0) { 6391 btrfs_abort_transaction(trans, extent_root, ret); 6392 goto out; 6393 } 6394 6395 extent_slot = path->slots[0]; 6396 leaf = path->nodes[0]; 6397 item_size = btrfs_item_size_nr(leaf, extent_slot); 6398 } 6399 #endif 6400 BUG_ON(item_size < sizeof(*ei)); 6401 ei = btrfs_item_ptr(leaf, extent_slot, 6402 struct btrfs_extent_item); 6403 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6404 key.type == BTRFS_EXTENT_ITEM_KEY) { 6405 struct btrfs_tree_block_info *bi; 6406 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6407 bi = (struct btrfs_tree_block_info *)(ei + 1); 6408 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6409 } 6410 6411 refs = btrfs_extent_refs(leaf, ei); 6412 if (refs < refs_to_drop) { 6413 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6414 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6415 ret = -EINVAL; 6416 btrfs_abort_transaction(trans, extent_root, ret); 6417 goto out; 6418 } 6419 refs -= refs_to_drop; 6420 6421 if (refs > 0) { 6422 if (extent_op) 6423 __run_delayed_extent_op(extent_op, leaf, ei); 6424 /* 6425 * In the case of inline back ref, reference count will 6426 * be updated by remove_extent_backref 6427 */ 6428 if (iref) { 6429 BUG_ON(!found_extent); 6430 } else { 6431 btrfs_set_extent_refs(leaf, ei, refs); 6432 btrfs_mark_buffer_dirty(leaf); 6433 } 6434 if (found_extent) { 6435 ret = remove_extent_backref(trans, extent_root, path, 6436 iref, refs_to_drop, 6437 is_data, &last_ref); 6438 if (ret) { 6439 btrfs_abort_transaction(trans, extent_root, ret); 6440 goto out; 6441 } 6442 } 6443 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6444 root_objectid); 6445 } else { 6446 if (found_extent) { 6447 BUG_ON(is_data && refs_to_drop != 6448 extent_data_ref_count(path, iref)); 6449 if (iref) { 6450 BUG_ON(path->slots[0] != extent_slot); 6451 } else { 6452 BUG_ON(path->slots[0] != extent_slot + 1); 6453 path->slots[0] = extent_slot; 6454 num_to_del = 2; 6455 } 6456 } 6457 6458 last_ref = 1; 6459 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6460 num_to_del); 6461 if (ret) { 6462 btrfs_abort_transaction(trans, extent_root, ret); 6463 goto out; 6464 } 6465 btrfs_release_path(path); 6466 6467 if (is_data) { 6468 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6469 if (ret) { 6470 btrfs_abort_transaction(trans, extent_root, ret); 6471 goto out; 6472 } 6473 } 6474 6475 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6476 if (ret) { 6477 btrfs_abort_transaction(trans, extent_root, ret); 6478 goto out; 6479 } 6480 } 6481 btrfs_release_path(path); 6482 6483 out: 6484 btrfs_free_path(path); 6485 return ret; 6486 } 6487 6488 /* 6489 * when we free an block, it is possible (and likely) that we free the last 6490 * delayed ref for that extent as well. This searches the delayed ref tree for 6491 * a given extent, and if there are no other delayed refs to be processed, it 6492 * removes it from the tree. 6493 */ 6494 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6495 struct btrfs_root *root, u64 bytenr) 6496 { 6497 struct btrfs_delayed_ref_head *head; 6498 struct btrfs_delayed_ref_root *delayed_refs; 6499 int ret = 0; 6500 6501 delayed_refs = &trans->transaction->delayed_refs; 6502 spin_lock(&delayed_refs->lock); 6503 head = btrfs_find_delayed_ref_head(trans, bytenr); 6504 if (!head) 6505 goto out_delayed_unlock; 6506 6507 spin_lock(&head->lock); 6508 if (!list_empty(&head->ref_list)) 6509 goto out; 6510 6511 if (head->extent_op) { 6512 if (!head->must_insert_reserved) 6513 goto out; 6514 btrfs_free_delayed_extent_op(head->extent_op); 6515 head->extent_op = NULL; 6516 } 6517 6518 /* 6519 * waiting for the lock here would deadlock. If someone else has it 6520 * locked they are already in the process of dropping it anyway 6521 */ 6522 if (!mutex_trylock(&head->mutex)) 6523 goto out; 6524 6525 /* 6526 * at this point we have a head with no other entries. Go 6527 * ahead and process it. 6528 */ 6529 head->node.in_tree = 0; 6530 rb_erase(&head->href_node, &delayed_refs->href_root); 6531 6532 atomic_dec(&delayed_refs->num_entries); 6533 6534 /* 6535 * we don't take a ref on the node because we're removing it from the 6536 * tree, so we just steal the ref the tree was holding. 6537 */ 6538 delayed_refs->num_heads--; 6539 if (head->processing == 0) 6540 delayed_refs->num_heads_ready--; 6541 head->processing = 0; 6542 spin_unlock(&head->lock); 6543 spin_unlock(&delayed_refs->lock); 6544 6545 BUG_ON(head->extent_op); 6546 if (head->must_insert_reserved) 6547 ret = 1; 6548 6549 mutex_unlock(&head->mutex); 6550 btrfs_put_delayed_ref(&head->node); 6551 return ret; 6552 out: 6553 spin_unlock(&head->lock); 6554 6555 out_delayed_unlock: 6556 spin_unlock(&delayed_refs->lock); 6557 return 0; 6558 } 6559 6560 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6561 struct btrfs_root *root, 6562 struct extent_buffer *buf, 6563 u64 parent, int last_ref) 6564 { 6565 int pin = 1; 6566 int ret; 6567 6568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6569 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6570 buf->start, buf->len, 6571 parent, root->root_key.objectid, 6572 btrfs_header_level(buf), 6573 BTRFS_DROP_DELAYED_REF, NULL, 0); 6574 BUG_ON(ret); /* -ENOMEM */ 6575 } 6576 6577 if (!last_ref) 6578 return; 6579 6580 if (btrfs_header_generation(buf) == trans->transid) { 6581 struct btrfs_block_group_cache *cache; 6582 6583 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6584 ret = check_ref_cleanup(trans, root, buf->start); 6585 if (!ret) 6586 goto out; 6587 } 6588 6589 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6590 6591 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6592 pin_down_extent(root, cache, buf->start, buf->len, 1); 6593 btrfs_put_block_group(cache); 6594 goto out; 6595 } 6596 6597 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6598 6599 btrfs_add_free_space(cache, buf->start, buf->len); 6600 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6601 btrfs_put_block_group(cache); 6602 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6603 pin = 0; 6604 } 6605 out: 6606 if (pin) 6607 add_pinned_bytes(root->fs_info, buf->len, 6608 btrfs_header_level(buf), 6609 root->root_key.objectid); 6610 6611 /* 6612 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6613 * anymore. 6614 */ 6615 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6616 } 6617 6618 /* Can return -ENOMEM */ 6619 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6620 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6621 u64 owner, u64 offset, int no_quota) 6622 { 6623 int ret; 6624 struct btrfs_fs_info *fs_info = root->fs_info; 6625 6626 if (btrfs_test_is_dummy_root(root)) 6627 return 0; 6628 6629 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6630 6631 /* 6632 * tree log blocks never actually go into the extent allocation 6633 * tree, just update pinning info and exit early. 6634 */ 6635 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6636 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6637 /* unlocks the pinned mutex */ 6638 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6639 ret = 0; 6640 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6641 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6642 num_bytes, 6643 parent, root_objectid, (int)owner, 6644 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6645 } else { 6646 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6647 num_bytes, 6648 parent, root_objectid, owner, 6649 offset, BTRFS_DROP_DELAYED_REF, 6650 NULL, no_quota); 6651 } 6652 return ret; 6653 } 6654 6655 /* 6656 * when we wait for progress in the block group caching, its because 6657 * our allocation attempt failed at least once. So, we must sleep 6658 * and let some progress happen before we try again. 6659 * 6660 * This function will sleep at least once waiting for new free space to 6661 * show up, and then it will check the block group free space numbers 6662 * for our min num_bytes. Another option is to have it go ahead 6663 * and look in the rbtree for a free extent of a given size, but this 6664 * is a good start. 6665 * 6666 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6667 * any of the information in this block group. 6668 */ 6669 static noinline void 6670 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6671 u64 num_bytes) 6672 { 6673 struct btrfs_caching_control *caching_ctl; 6674 6675 caching_ctl = get_caching_control(cache); 6676 if (!caching_ctl) 6677 return; 6678 6679 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6680 (cache->free_space_ctl->free_space >= num_bytes)); 6681 6682 put_caching_control(caching_ctl); 6683 } 6684 6685 static noinline int 6686 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6687 { 6688 struct btrfs_caching_control *caching_ctl; 6689 int ret = 0; 6690 6691 caching_ctl = get_caching_control(cache); 6692 if (!caching_ctl) 6693 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6694 6695 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6696 if (cache->cached == BTRFS_CACHE_ERROR) 6697 ret = -EIO; 6698 put_caching_control(caching_ctl); 6699 return ret; 6700 } 6701 6702 int __get_raid_index(u64 flags) 6703 { 6704 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6705 return BTRFS_RAID_RAID10; 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6707 return BTRFS_RAID_RAID1; 6708 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6709 return BTRFS_RAID_DUP; 6710 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6711 return BTRFS_RAID_RAID0; 6712 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6713 return BTRFS_RAID_RAID5; 6714 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6715 return BTRFS_RAID_RAID6; 6716 6717 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6718 } 6719 6720 int get_block_group_index(struct btrfs_block_group_cache *cache) 6721 { 6722 return __get_raid_index(cache->flags); 6723 } 6724 6725 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6726 [BTRFS_RAID_RAID10] = "raid10", 6727 [BTRFS_RAID_RAID1] = "raid1", 6728 [BTRFS_RAID_DUP] = "dup", 6729 [BTRFS_RAID_RAID0] = "raid0", 6730 [BTRFS_RAID_SINGLE] = "single", 6731 [BTRFS_RAID_RAID5] = "raid5", 6732 [BTRFS_RAID_RAID6] = "raid6", 6733 }; 6734 6735 static const char *get_raid_name(enum btrfs_raid_types type) 6736 { 6737 if (type >= BTRFS_NR_RAID_TYPES) 6738 return NULL; 6739 6740 return btrfs_raid_type_names[type]; 6741 } 6742 6743 enum btrfs_loop_type { 6744 LOOP_CACHING_NOWAIT = 0, 6745 LOOP_CACHING_WAIT = 1, 6746 LOOP_ALLOC_CHUNK = 2, 6747 LOOP_NO_EMPTY_SIZE = 3, 6748 }; 6749 6750 static inline void 6751 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6752 int delalloc) 6753 { 6754 if (delalloc) 6755 down_read(&cache->data_rwsem); 6756 } 6757 6758 static inline void 6759 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6760 int delalloc) 6761 { 6762 btrfs_get_block_group(cache); 6763 if (delalloc) 6764 down_read(&cache->data_rwsem); 6765 } 6766 6767 static struct btrfs_block_group_cache * 6768 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6769 struct btrfs_free_cluster *cluster, 6770 int delalloc) 6771 { 6772 struct btrfs_block_group_cache *used_bg; 6773 bool locked = false; 6774 again: 6775 spin_lock(&cluster->refill_lock); 6776 if (locked) { 6777 if (used_bg == cluster->block_group) 6778 return used_bg; 6779 6780 up_read(&used_bg->data_rwsem); 6781 btrfs_put_block_group(used_bg); 6782 } 6783 6784 used_bg = cluster->block_group; 6785 if (!used_bg) 6786 return NULL; 6787 6788 if (used_bg == block_group) 6789 return used_bg; 6790 6791 btrfs_get_block_group(used_bg); 6792 6793 if (!delalloc) 6794 return used_bg; 6795 6796 if (down_read_trylock(&used_bg->data_rwsem)) 6797 return used_bg; 6798 6799 spin_unlock(&cluster->refill_lock); 6800 down_read(&used_bg->data_rwsem); 6801 locked = true; 6802 goto again; 6803 } 6804 6805 static inline void 6806 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6807 int delalloc) 6808 { 6809 if (delalloc) 6810 up_read(&cache->data_rwsem); 6811 btrfs_put_block_group(cache); 6812 } 6813 6814 /* 6815 * walks the btree of allocated extents and find a hole of a given size. 6816 * The key ins is changed to record the hole: 6817 * ins->objectid == start position 6818 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6819 * ins->offset == the size of the hole. 6820 * Any available blocks before search_start are skipped. 6821 * 6822 * If there is no suitable free space, we will record the max size of 6823 * the free space extent currently. 6824 */ 6825 static noinline int find_free_extent(struct btrfs_root *orig_root, 6826 u64 num_bytes, u64 empty_size, 6827 u64 hint_byte, struct btrfs_key *ins, 6828 u64 flags, int delalloc) 6829 { 6830 int ret = 0; 6831 struct btrfs_root *root = orig_root->fs_info->extent_root; 6832 struct btrfs_free_cluster *last_ptr = NULL; 6833 struct btrfs_block_group_cache *block_group = NULL; 6834 u64 search_start = 0; 6835 u64 max_extent_size = 0; 6836 int empty_cluster = 2 * 1024 * 1024; 6837 struct btrfs_space_info *space_info; 6838 int loop = 0; 6839 int index = __get_raid_index(flags); 6840 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6841 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6842 bool failed_cluster_refill = false; 6843 bool failed_alloc = false; 6844 bool use_cluster = true; 6845 bool have_caching_bg = false; 6846 6847 WARN_ON(num_bytes < root->sectorsize); 6848 ins->type = BTRFS_EXTENT_ITEM_KEY; 6849 ins->objectid = 0; 6850 ins->offset = 0; 6851 6852 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6853 6854 space_info = __find_space_info(root->fs_info, flags); 6855 if (!space_info) { 6856 btrfs_err(root->fs_info, "No space info for %llu", flags); 6857 return -ENOSPC; 6858 } 6859 6860 /* 6861 * If the space info is for both data and metadata it means we have a 6862 * small filesystem and we can't use the clustering stuff. 6863 */ 6864 if (btrfs_mixed_space_info(space_info)) 6865 use_cluster = false; 6866 6867 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6868 last_ptr = &root->fs_info->meta_alloc_cluster; 6869 if (!btrfs_test_opt(root, SSD)) 6870 empty_cluster = 64 * 1024; 6871 } 6872 6873 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6874 btrfs_test_opt(root, SSD)) { 6875 last_ptr = &root->fs_info->data_alloc_cluster; 6876 } 6877 6878 if (last_ptr) { 6879 spin_lock(&last_ptr->lock); 6880 if (last_ptr->block_group) 6881 hint_byte = last_ptr->window_start; 6882 spin_unlock(&last_ptr->lock); 6883 } 6884 6885 search_start = max(search_start, first_logical_byte(root, 0)); 6886 search_start = max(search_start, hint_byte); 6887 6888 if (!last_ptr) 6889 empty_cluster = 0; 6890 6891 if (search_start == hint_byte) { 6892 block_group = btrfs_lookup_block_group(root->fs_info, 6893 search_start); 6894 /* 6895 * we don't want to use the block group if it doesn't match our 6896 * allocation bits, or if its not cached. 6897 * 6898 * However if we are re-searching with an ideal block group 6899 * picked out then we don't care that the block group is cached. 6900 */ 6901 if (block_group && block_group_bits(block_group, flags) && 6902 block_group->cached != BTRFS_CACHE_NO) { 6903 down_read(&space_info->groups_sem); 6904 if (list_empty(&block_group->list) || 6905 block_group->ro) { 6906 /* 6907 * someone is removing this block group, 6908 * we can't jump into the have_block_group 6909 * target because our list pointers are not 6910 * valid 6911 */ 6912 btrfs_put_block_group(block_group); 6913 up_read(&space_info->groups_sem); 6914 } else { 6915 index = get_block_group_index(block_group); 6916 btrfs_lock_block_group(block_group, delalloc); 6917 goto have_block_group; 6918 } 6919 } else if (block_group) { 6920 btrfs_put_block_group(block_group); 6921 } 6922 } 6923 search: 6924 have_caching_bg = false; 6925 down_read(&space_info->groups_sem); 6926 list_for_each_entry(block_group, &space_info->block_groups[index], 6927 list) { 6928 u64 offset; 6929 int cached; 6930 6931 btrfs_grab_block_group(block_group, delalloc); 6932 search_start = block_group->key.objectid; 6933 6934 /* 6935 * this can happen if we end up cycling through all the 6936 * raid types, but we want to make sure we only allocate 6937 * for the proper type. 6938 */ 6939 if (!block_group_bits(block_group, flags)) { 6940 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6941 BTRFS_BLOCK_GROUP_RAID1 | 6942 BTRFS_BLOCK_GROUP_RAID5 | 6943 BTRFS_BLOCK_GROUP_RAID6 | 6944 BTRFS_BLOCK_GROUP_RAID10; 6945 6946 /* 6947 * if they asked for extra copies and this block group 6948 * doesn't provide them, bail. This does allow us to 6949 * fill raid0 from raid1. 6950 */ 6951 if ((flags & extra) && !(block_group->flags & extra)) 6952 goto loop; 6953 } 6954 6955 have_block_group: 6956 cached = block_group_cache_done(block_group); 6957 if (unlikely(!cached)) { 6958 ret = cache_block_group(block_group, 0); 6959 BUG_ON(ret < 0); 6960 ret = 0; 6961 } 6962 6963 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6964 goto loop; 6965 if (unlikely(block_group->ro)) 6966 goto loop; 6967 6968 /* 6969 * Ok we want to try and use the cluster allocator, so 6970 * lets look there 6971 */ 6972 if (last_ptr) { 6973 struct btrfs_block_group_cache *used_block_group; 6974 unsigned long aligned_cluster; 6975 /* 6976 * the refill lock keeps out other 6977 * people trying to start a new cluster 6978 */ 6979 used_block_group = btrfs_lock_cluster(block_group, 6980 last_ptr, 6981 delalloc); 6982 if (!used_block_group) 6983 goto refill_cluster; 6984 6985 if (used_block_group != block_group && 6986 (used_block_group->ro || 6987 !block_group_bits(used_block_group, flags))) 6988 goto release_cluster; 6989 6990 offset = btrfs_alloc_from_cluster(used_block_group, 6991 last_ptr, 6992 num_bytes, 6993 used_block_group->key.objectid, 6994 &max_extent_size); 6995 if (offset) { 6996 /* we have a block, we're done */ 6997 spin_unlock(&last_ptr->refill_lock); 6998 trace_btrfs_reserve_extent_cluster(root, 6999 used_block_group, 7000 search_start, num_bytes); 7001 if (used_block_group != block_group) { 7002 btrfs_release_block_group(block_group, 7003 delalloc); 7004 block_group = used_block_group; 7005 } 7006 goto checks; 7007 } 7008 7009 WARN_ON(last_ptr->block_group != used_block_group); 7010 release_cluster: 7011 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7012 * set up a new clusters, so lets just skip it 7013 * and let the allocator find whatever block 7014 * it can find. If we reach this point, we 7015 * will have tried the cluster allocator 7016 * plenty of times and not have found 7017 * anything, so we are likely way too 7018 * fragmented for the clustering stuff to find 7019 * anything. 7020 * 7021 * However, if the cluster is taken from the 7022 * current block group, release the cluster 7023 * first, so that we stand a better chance of 7024 * succeeding in the unclustered 7025 * allocation. */ 7026 if (loop >= LOOP_NO_EMPTY_SIZE && 7027 used_block_group != block_group) { 7028 spin_unlock(&last_ptr->refill_lock); 7029 btrfs_release_block_group(used_block_group, 7030 delalloc); 7031 goto unclustered_alloc; 7032 } 7033 7034 /* 7035 * this cluster didn't work out, free it and 7036 * start over 7037 */ 7038 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7039 7040 if (used_block_group != block_group) 7041 btrfs_release_block_group(used_block_group, 7042 delalloc); 7043 refill_cluster: 7044 if (loop >= LOOP_NO_EMPTY_SIZE) { 7045 spin_unlock(&last_ptr->refill_lock); 7046 goto unclustered_alloc; 7047 } 7048 7049 aligned_cluster = max_t(unsigned long, 7050 empty_cluster + empty_size, 7051 block_group->full_stripe_len); 7052 7053 /* allocate a cluster in this block group */ 7054 ret = btrfs_find_space_cluster(root, block_group, 7055 last_ptr, search_start, 7056 num_bytes, 7057 aligned_cluster); 7058 if (ret == 0) { 7059 /* 7060 * now pull our allocation out of this 7061 * cluster 7062 */ 7063 offset = btrfs_alloc_from_cluster(block_group, 7064 last_ptr, 7065 num_bytes, 7066 search_start, 7067 &max_extent_size); 7068 if (offset) { 7069 /* we found one, proceed */ 7070 spin_unlock(&last_ptr->refill_lock); 7071 trace_btrfs_reserve_extent_cluster(root, 7072 block_group, search_start, 7073 num_bytes); 7074 goto checks; 7075 } 7076 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7077 && !failed_cluster_refill) { 7078 spin_unlock(&last_ptr->refill_lock); 7079 7080 failed_cluster_refill = true; 7081 wait_block_group_cache_progress(block_group, 7082 num_bytes + empty_cluster + empty_size); 7083 goto have_block_group; 7084 } 7085 7086 /* 7087 * at this point we either didn't find a cluster 7088 * or we weren't able to allocate a block from our 7089 * cluster. Free the cluster we've been trying 7090 * to use, and go to the next block group 7091 */ 7092 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7093 spin_unlock(&last_ptr->refill_lock); 7094 goto loop; 7095 } 7096 7097 unclustered_alloc: 7098 spin_lock(&block_group->free_space_ctl->tree_lock); 7099 if (cached && 7100 block_group->free_space_ctl->free_space < 7101 num_bytes + empty_cluster + empty_size) { 7102 if (block_group->free_space_ctl->free_space > 7103 max_extent_size) 7104 max_extent_size = 7105 block_group->free_space_ctl->free_space; 7106 spin_unlock(&block_group->free_space_ctl->tree_lock); 7107 goto loop; 7108 } 7109 spin_unlock(&block_group->free_space_ctl->tree_lock); 7110 7111 offset = btrfs_find_space_for_alloc(block_group, search_start, 7112 num_bytes, empty_size, 7113 &max_extent_size); 7114 /* 7115 * If we didn't find a chunk, and we haven't failed on this 7116 * block group before, and this block group is in the middle of 7117 * caching and we are ok with waiting, then go ahead and wait 7118 * for progress to be made, and set failed_alloc to true. 7119 * 7120 * If failed_alloc is true then we've already waited on this 7121 * block group once and should move on to the next block group. 7122 */ 7123 if (!offset && !failed_alloc && !cached && 7124 loop > LOOP_CACHING_NOWAIT) { 7125 wait_block_group_cache_progress(block_group, 7126 num_bytes + empty_size); 7127 failed_alloc = true; 7128 goto have_block_group; 7129 } else if (!offset) { 7130 if (!cached) 7131 have_caching_bg = true; 7132 goto loop; 7133 } 7134 checks: 7135 search_start = ALIGN(offset, root->stripesize); 7136 7137 /* move on to the next group */ 7138 if (search_start + num_bytes > 7139 block_group->key.objectid + block_group->key.offset) { 7140 btrfs_add_free_space(block_group, offset, num_bytes); 7141 goto loop; 7142 } 7143 7144 if (offset < search_start) 7145 btrfs_add_free_space(block_group, offset, 7146 search_start - offset); 7147 BUG_ON(offset > search_start); 7148 7149 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7150 alloc_type, delalloc); 7151 if (ret == -EAGAIN) { 7152 btrfs_add_free_space(block_group, offset, num_bytes); 7153 goto loop; 7154 } 7155 7156 /* we are all good, lets return */ 7157 ins->objectid = search_start; 7158 ins->offset = num_bytes; 7159 7160 trace_btrfs_reserve_extent(orig_root, block_group, 7161 search_start, num_bytes); 7162 btrfs_release_block_group(block_group, delalloc); 7163 break; 7164 loop: 7165 failed_cluster_refill = false; 7166 failed_alloc = false; 7167 BUG_ON(index != get_block_group_index(block_group)); 7168 btrfs_release_block_group(block_group, delalloc); 7169 } 7170 up_read(&space_info->groups_sem); 7171 7172 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7173 goto search; 7174 7175 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7176 goto search; 7177 7178 /* 7179 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7180 * caching kthreads as we move along 7181 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7182 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7183 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7184 * again 7185 */ 7186 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7187 index = 0; 7188 loop++; 7189 if (loop == LOOP_ALLOC_CHUNK) { 7190 struct btrfs_trans_handle *trans; 7191 int exist = 0; 7192 7193 trans = current->journal_info; 7194 if (trans) 7195 exist = 1; 7196 else 7197 trans = btrfs_join_transaction(root); 7198 7199 if (IS_ERR(trans)) { 7200 ret = PTR_ERR(trans); 7201 goto out; 7202 } 7203 7204 ret = do_chunk_alloc(trans, root, flags, 7205 CHUNK_ALLOC_FORCE); 7206 /* 7207 * Do not bail out on ENOSPC since we 7208 * can do more things. 7209 */ 7210 if (ret < 0 && ret != -ENOSPC) 7211 btrfs_abort_transaction(trans, 7212 root, ret); 7213 else 7214 ret = 0; 7215 if (!exist) 7216 btrfs_end_transaction(trans, root); 7217 if (ret) 7218 goto out; 7219 } 7220 7221 if (loop == LOOP_NO_EMPTY_SIZE) { 7222 empty_size = 0; 7223 empty_cluster = 0; 7224 } 7225 7226 goto search; 7227 } else if (!ins->objectid) { 7228 ret = -ENOSPC; 7229 } else if (ins->objectid) { 7230 ret = 0; 7231 } 7232 out: 7233 if (ret == -ENOSPC) 7234 ins->offset = max_extent_size; 7235 return ret; 7236 } 7237 7238 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7239 int dump_block_groups) 7240 { 7241 struct btrfs_block_group_cache *cache; 7242 int index = 0; 7243 7244 spin_lock(&info->lock); 7245 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7246 info->flags, 7247 info->total_bytes - info->bytes_used - info->bytes_pinned - 7248 info->bytes_reserved - info->bytes_readonly, 7249 (info->full) ? "" : "not "); 7250 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7251 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7252 info->total_bytes, info->bytes_used, info->bytes_pinned, 7253 info->bytes_reserved, info->bytes_may_use, 7254 info->bytes_readonly); 7255 spin_unlock(&info->lock); 7256 7257 if (!dump_block_groups) 7258 return; 7259 7260 down_read(&info->groups_sem); 7261 again: 7262 list_for_each_entry(cache, &info->block_groups[index], list) { 7263 spin_lock(&cache->lock); 7264 printk(KERN_INFO "BTRFS: " 7265 "block group %llu has %llu bytes, " 7266 "%llu used %llu pinned %llu reserved %s\n", 7267 cache->key.objectid, cache->key.offset, 7268 btrfs_block_group_used(&cache->item), cache->pinned, 7269 cache->reserved, cache->ro ? "[readonly]" : ""); 7270 btrfs_dump_free_space(cache, bytes); 7271 spin_unlock(&cache->lock); 7272 } 7273 if (++index < BTRFS_NR_RAID_TYPES) 7274 goto again; 7275 up_read(&info->groups_sem); 7276 } 7277 7278 int btrfs_reserve_extent(struct btrfs_root *root, 7279 u64 num_bytes, u64 min_alloc_size, 7280 u64 empty_size, u64 hint_byte, 7281 struct btrfs_key *ins, int is_data, int delalloc) 7282 { 7283 bool final_tried = false; 7284 u64 flags; 7285 int ret; 7286 7287 flags = btrfs_get_alloc_profile(root, is_data); 7288 again: 7289 WARN_ON(num_bytes < root->sectorsize); 7290 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7291 flags, delalloc); 7292 7293 if (ret == -ENOSPC) { 7294 if (!final_tried && ins->offset) { 7295 num_bytes = min(num_bytes >> 1, ins->offset); 7296 num_bytes = round_down(num_bytes, root->sectorsize); 7297 num_bytes = max(num_bytes, min_alloc_size); 7298 if (num_bytes == min_alloc_size) 7299 final_tried = true; 7300 goto again; 7301 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7302 struct btrfs_space_info *sinfo; 7303 7304 sinfo = __find_space_info(root->fs_info, flags); 7305 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7306 flags, num_bytes); 7307 if (sinfo) 7308 dump_space_info(sinfo, num_bytes, 1); 7309 } 7310 } 7311 7312 return ret; 7313 } 7314 7315 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7316 u64 start, u64 len, 7317 int pin, int delalloc) 7318 { 7319 struct btrfs_block_group_cache *cache; 7320 int ret = 0; 7321 7322 cache = btrfs_lookup_block_group(root->fs_info, start); 7323 if (!cache) { 7324 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7325 start); 7326 return -ENOSPC; 7327 } 7328 7329 if (pin) 7330 pin_down_extent(root, cache, start, len, 1); 7331 else { 7332 if (btrfs_test_opt(root, DISCARD)) 7333 ret = btrfs_discard_extent(root, start, len, NULL); 7334 btrfs_add_free_space(cache, start, len); 7335 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7336 } 7337 7338 btrfs_put_block_group(cache); 7339 7340 trace_btrfs_reserved_extent_free(root, start, len); 7341 7342 return ret; 7343 } 7344 7345 int btrfs_free_reserved_extent(struct btrfs_root *root, 7346 u64 start, u64 len, int delalloc) 7347 { 7348 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7349 } 7350 7351 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7352 u64 start, u64 len) 7353 { 7354 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7355 } 7356 7357 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7358 struct btrfs_root *root, 7359 u64 parent, u64 root_objectid, 7360 u64 flags, u64 owner, u64 offset, 7361 struct btrfs_key *ins, int ref_mod) 7362 { 7363 int ret; 7364 struct btrfs_fs_info *fs_info = root->fs_info; 7365 struct btrfs_extent_item *extent_item; 7366 struct btrfs_extent_inline_ref *iref; 7367 struct btrfs_path *path; 7368 struct extent_buffer *leaf; 7369 int type; 7370 u32 size; 7371 7372 if (parent > 0) 7373 type = BTRFS_SHARED_DATA_REF_KEY; 7374 else 7375 type = BTRFS_EXTENT_DATA_REF_KEY; 7376 7377 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7378 7379 path = btrfs_alloc_path(); 7380 if (!path) 7381 return -ENOMEM; 7382 7383 path->leave_spinning = 1; 7384 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7385 ins, size); 7386 if (ret) { 7387 btrfs_free_path(path); 7388 return ret; 7389 } 7390 7391 leaf = path->nodes[0]; 7392 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7393 struct btrfs_extent_item); 7394 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7395 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7396 btrfs_set_extent_flags(leaf, extent_item, 7397 flags | BTRFS_EXTENT_FLAG_DATA); 7398 7399 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7400 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7401 if (parent > 0) { 7402 struct btrfs_shared_data_ref *ref; 7403 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7404 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7405 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7406 } else { 7407 struct btrfs_extent_data_ref *ref; 7408 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7409 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7410 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7411 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7412 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7413 } 7414 7415 btrfs_mark_buffer_dirty(path->nodes[0]); 7416 btrfs_free_path(path); 7417 7418 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7419 if (ret) { /* -ENOENT, logic error */ 7420 btrfs_err(fs_info, "update block group failed for %llu %llu", 7421 ins->objectid, ins->offset); 7422 BUG(); 7423 } 7424 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7425 return ret; 7426 } 7427 7428 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7429 struct btrfs_root *root, 7430 u64 parent, u64 root_objectid, 7431 u64 flags, struct btrfs_disk_key *key, 7432 int level, struct btrfs_key *ins, 7433 int no_quota) 7434 { 7435 int ret; 7436 struct btrfs_fs_info *fs_info = root->fs_info; 7437 struct btrfs_extent_item *extent_item; 7438 struct btrfs_tree_block_info *block_info; 7439 struct btrfs_extent_inline_ref *iref; 7440 struct btrfs_path *path; 7441 struct extent_buffer *leaf; 7442 u32 size = sizeof(*extent_item) + sizeof(*iref); 7443 u64 num_bytes = ins->offset; 7444 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7445 SKINNY_METADATA); 7446 7447 if (!skinny_metadata) 7448 size += sizeof(*block_info); 7449 7450 path = btrfs_alloc_path(); 7451 if (!path) { 7452 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7453 root->nodesize); 7454 return -ENOMEM; 7455 } 7456 7457 path->leave_spinning = 1; 7458 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7459 ins, size); 7460 if (ret) { 7461 btrfs_free_path(path); 7462 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7463 root->nodesize); 7464 return ret; 7465 } 7466 7467 leaf = path->nodes[0]; 7468 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7469 struct btrfs_extent_item); 7470 btrfs_set_extent_refs(leaf, extent_item, 1); 7471 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7472 btrfs_set_extent_flags(leaf, extent_item, 7473 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7474 7475 if (skinny_metadata) { 7476 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7477 num_bytes = root->nodesize; 7478 } else { 7479 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7480 btrfs_set_tree_block_key(leaf, block_info, key); 7481 btrfs_set_tree_block_level(leaf, block_info, level); 7482 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7483 } 7484 7485 if (parent > 0) { 7486 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7487 btrfs_set_extent_inline_ref_type(leaf, iref, 7488 BTRFS_SHARED_BLOCK_REF_KEY); 7489 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7490 } else { 7491 btrfs_set_extent_inline_ref_type(leaf, iref, 7492 BTRFS_TREE_BLOCK_REF_KEY); 7493 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7494 } 7495 7496 btrfs_mark_buffer_dirty(leaf); 7497 btrfs_free_path(path); 7498 7499 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7500 1); 7501 if (ret) { /* -ENOENT, logic error */ 7502 btrfs_err(fs_info, "update block group failed for %llu %llu", 7503 ins->objectid, ins->offset); 7504 BUG(); 7505 } 7506 7507 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7508 return ret; 7509 } 7510 7511 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7512 struct btrfs_root *root, 7513 u64 root_objectid, u64 owner, 7514 u64 offset, struct btrfs_key *ins) 7515 { 7516 int ret; 7517 7518 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7519 7520 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7521 ins->offset, 0, 7522 root_objectid, owner, offset, 7523 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7524 return ret; 7525 } 7526 7527 /* 7528 * this is used by the tree logging recovery code. It records that 7529 * an extent has been allocated and makes sure to clear the free 7530 * space cache bits as well 7531 */ 7532 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7533 struct btrfs_root *root, 7534 u64 root_objectid, u64 owner, u64 offset, 7535 struct btrfs_key *ins) 7536 { 7537 int ret; 7538 struct btrfs_block_group_cache *block_group; 7539 7540 /* 7541 * Mixed block groups will exclude before processing the log so we only 7542 * need to do the exlude dance if this fs isn't mixed. 7543 */ 7544 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7545 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7546 if (ret) 7547 return ret; 7548 } 7549 7550 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7551 if (!block_group) 7552 return -EINVAL; 7553 7554 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7555 RESERVE_ALLOC_NO_ACCOUNT, 0); 7556 BUG_ON(ret); /* logic error */ 7557 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7558 0, owner, offset, ins, 1); 7559 btrfs_put_block_group(block_group); 7560 return ret; 7561 } 7562 7563 static struct extent_buffer * 7564 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7565 u64 bytenr, int level) 7566 { 7567 struct extent_buffer *buf; 7568 7569 buf = btrfs_find_create_tree_block(root, bytenr); 7570 if (!buf) 7571 return ERR_PTR(-ENOMEM); 7572 btrfs_set_header_generation(buf, trans->transid); 7573 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7574 btrfs_tree_lock(buf); 7575 clean_tree_block(trans, root->fs_info, buf); 7576 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7577 7578 btrfs_set_lock_blocking(buf); 7579 btrfs_set_buffer_uptodate(buf); 7580 7581 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7582 buf->log_index = root->log_transid % 2; 7583 /* 7584 * we allow two log transactions at a time, use different 7585 * EXENT bit to differentiate dirty pages. 7586 */ 7587 if (buf->log_index == 0) 7588 set_extent_dirty(&root->dirty_log_pages, buf->start, 7589 buf->start + buf->len - 1, GFP_NOFS); 7590 else 7591 set_extent_new(&root->dirty_log_pages, buf->start, 7592 buf->start + buf->len - 1, GFP_NOFS); 7593 } else { 7594 buf->log_index = -1; 7595 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7596 buf->start + buf->len - 1, GFP_NOFS); 7597 } 7598 trans->blocks_used++; 7599 /* this returns a buffer locked for blocking */ 7600 return buf; 7601 } 7602 7603 static struct btrfs_block_rsv * 7604 use_block_rsv(struct btrfs_trans_handle *trans, 7605 struct btrfs_root *root, u32 blocksize) 7606 { 7607 struct btrfs_block_rsv *block_rsv; 7608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7609 int ret; 7610 bool global_updated = false; 7611 7612 block_rsv = get_block_rsv(trans, root); 7613 7614 if (unlikely(block_rsv->size == 0)) 7615 goto try_reserve; 7616 again: 7617 ret = block_rsv_use_bytes(block_rsv, blocksize); 7618 if (!ret) 7619 return block_rsv; 7620 7621 if (block_rsv->failfast) 7622 return ERR_PTR(ret); 7623 7624 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7625 global_updated = true; 7626 update_global_block_rsv(root->fs_info); 7627 goto again; 7628 } 7629 7630 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7631 static DEFINE_RATELIMIT_STATE(_rs, 7632 DEFAULT_RATELIMIT_INTERVAL * 10, 7633 /*DEFAULT_RATELIMIT_BURST*/ 1); 7634 if (__ratelimit(&_rs)) 7635 WARN(1, KERN_DEBUG 7636 "BTRFS: block rsv returned %d\n", ret); 7637 } 7638 try_reserve: 7639 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7640 BTRFS_RESERVE_NO_FLUSH); 7641 if (!ret) 7642 return block_rsv; 7643 /* 7644 * If we couldn't reserve metadata bytes try and use some from 7645 * the global reserve if its space type is the same as the global 7646 * reservation. 7647 */ 7648 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7649 block_rsv->space_info == global_rsv->space_info) { 7650 ret = block_rsv_use_bytes(global_rsv, blocksize); 7651 if (!ret) 7652 return global_rsv; 7653 } 7654 return ERR_PTR(ret); 7655 } 7656 7657 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7658 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7659 { 7660 block_rsv_add_bytes(block_rsv, blocksize, 0); 7661 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7662 } 7663 7664 /* 7665 * finds a free extent and does all the dirty work required for allocation 7666 * returns the tree buffer or an ERR_PTR on error. 7667 */ 7668 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7669 struct btrfs_root *root, 7670 u64 parent, u64 root_objectid, 7671 struct btrfs_disk_key *key, int level, 7672 u64 hint, u64 empty_size) 7673 { 7674 struct btrfs_key ins; 7675 struct btrfs_block_rsv *block_rsv; 7676 struct extent_buffer *buf; 7677 struct btrfs_delayed_extent_op *extent_op; 7678 u64 flags = 0; 7679 int ret; 7680 u32 blocksize = root->nodesize; 7681 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7682 SKINNY_METADATA); 7683 7684 if (btrfs_test_is_dummy_root(root)) { 7685 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7686 level); 7687 if (!IS_ERR(buf)) 7688 root->alloc_bytenr += blocksize; 7689 return buf; 7690 } 7691 7692 block_rsv = use_block_rsv(trans, root, blocksize); 7693 if (IS_ERR(block_rsv)) 7694 return ERR_CAST(block_rsv); 7695 7696 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7697 empty_size, hint, &ins, 0, 0); 7698 if (ret) 7699 goto out_unuse; 7700 7701 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7702 if (IS_ERR(buf)) { 7703 ret = PTR_ERR(buf); 7704 goto out_free_reserved; 7705 } 7706 7707 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7708 if (parent == 0) 7709 parent = ins.objectid; 7710 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7711 } else 7712 BUG_ON(parent > 0); 7713 7714 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7715 extent_op = btrfs_alloc_delayed_extent_op(); 7716 if (!extent_op) { 7717 ret = -ENOMEM; 7718 goto out_free_buf; 7719 } 7720 if (key) 7721 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7722 else 7723 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7724 extent_op->flags_to_set = flags; 7725 if (skinny_metadata) 7726 extent_op->update_key = 0; 7727 else 7728 extent_op->update_key = 1; 7729 extent_op->update_flags = 1; 7730 extent_op->is_data = 0; 7731 extent_op->level = level; 7732 7733 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7734 ins.objectid, ins.offset, 7735 parent, root_objectid, level, 7736 BTRFS_ADD_DELAYED_EXTENT, 7737 extent_op, 0); 7738 if (ret) 7739 goto out_free_delayed; 7740 } 7741 return buf; 7742 7743 out_free_delayed: 7744 btrfs_free_delayed_extent_op(extent_op); 7745 out_free_buf: 7746 free_extent_buffer(buf); 7747 out_free_reserved: 7748 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7749 out_unuse: 7750 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7751 return ERR_PTR(ret); 7752 } 7753 7754 struct walk_control { 7755 u64 refs[BTRFS_MAX_LEVEL]; 7756 u64 flags[BTRFS_MAX_LEVEL]; 7757 struct btrfs_key update_progress; 7758 int stage; 7759 int level; 7760 int shared_level; 7761 int update_ref; 7762 int keep_locks; 7763 int reada_slot; 7764 int reada_count; 7765 int for_reloc; 7766 }; 7767 7768 #define DROP_REFERENCE 1 7769 #define UPDATE_BACKREF 2 7770 7771 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7772 struct btrfs_root *root, 7773 struct walk_control *wc, 7774 struct btrfs_path *path) 7775 { 7776 u64 bytenr; 7777 u64 generation; 7778 u64 refs; 7779 u64 flags; 7780 u32 nritems; 7781 u32 blocksize; 7782 struct btrfs_key key; 7783 struct extent_buffer *eb; 7784 int ret; 7785 int slot; 7786 int nread = 0; 7787 7788 if (path->slots[wc->level] < wc->reada_slot) { 7789 wc->reada_count = wc->reada_count * 2 / 3; 7790 wc->reada_count = max(wc->reada_count, 2); 7791 } else { 7792 wc->reada_count = wc->reada_count * 3 / 2; 7793 wc->reada_count = min_t(int, wc->reada_count, 7794 BTRFS_NODEPTRS_PER_BLOCK(root)); 7795 } 7796 7797 eb = path->nodes[wc->level]; 7798 nritems = btrfs_header_nritems(eb); 7799 blocksize = root->nodesize; 7800 7801 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7802 if (nread >= wc->reada_count) 7803 break; 7804 7805 cond_resched(); 7806 bytenr = btrfs_node_blockptr(eb, slot); 7807 generation = btrfs_node_ptr_generation(eb, slot); 7808 7809 if (slot == path->slots[wc->level]) 7810 goto reada; 7811 7812 if (wc->stage == UPDATE_BACKREF && 7813 generation <= root->root_key.offset) 7814 continue; 7815 7816 /* We don't lock the tree block, it's OK to be racy here */ 7817 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7818 wc->level - 1, 1, &refs, 7819 &flags); 7820 /* We don't care about errors in readahead. */ 7821 if (ret < 0) 7822 continue; 7823 BUG_ON(refs == 0); 7824 7825 if (wc->stage == DROP_REFERENCE) { 7826 if (refs == 1) 7827 goto reada; 7828 7829 if (wc->level == 1 && 7830 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7831 continue; 7832 if (!wc->update_ref || 7833 generation <= root->root_key.offset) 7834 continue; 7835 btrfs_node_key_to_cpu(eb, &key, slot); 7836 ret = btrfs_comp_cpu_keys(&key, 7837 &wc->update_progress); 7838 if (ret < 0) 7839 continue; 7840 } else { 7841 if (wc->level == 1 && 7842 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7843 continue; 7844 } 7845 reada: 7846 readahead_tree_block(root, bytenr); 7847 nread++; 7848 } 7849 wc->reada_slot = slot; 7850 } 7851 7852 /* 7853 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7854 * for later qgroup accounting. 7855 * 7856 * Current, this function does nothing. 7857 */ 7858 static int account_leaf_items(struct btrfs_trans_handle *trans, 7859 struct btrfs_root *root, 7860 struct extent_buffer *eb) 7861 { 7862 int nr = btrfs_header_nritems(eb); 7863 int i, extent_type; 7864 struct btrfs_key key; 7865 struct btrfs_file_extent_item *fi; 7866 u64 bytenr, num_bytes; 7867 7868 for (i = 0; i < nr; i++) { 7869 btrfs_item_key_to_cpu(eb, &key, i); 7870 7871 if (key.type != BTRFS_EXTENT_DATA_KEY) 7872 continue; 7873 7874 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7875 /* filter out non qgroup-accountable extents */ 7876 extent_type = btrfs_file_extent_type(eb, fi); 7877 7878 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7879 continue; 7880 7881 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7882 if (!bytenr) 7883 continue; 7884 7885 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7886 } 7887 return 0; 7888 } 7889 7890 /* 7891 * Walk up the tree from the bottom, freeing leaves and any interior 7892 * nodes which have had all slots visited. If a node (leaf or 7893 * interior) is freed, the node above it will have it's slot 7894 * incremented. The root node will never be freed. 7895 * 7896 * At the end of this function, we should have a path which has all 7897 * slots incremented to the next position for a search. If we need to 7898 * read a new node it will be NULL and the node above it will have the 7899 * correct slot selected for a later read. 7900 * 7901 * If we increment the root nodes slot counter past the number of 7902 * elements, 1 is returned to signal completion of the search. 7903 */ 7904 static int adjust_slots_upwards(struct btrfs_root *root, 7905 struct btrfs_path *path, int root_level) 7906 { 7907 int level = 0; 7908 int nr, slot; 7909 struct extent_buffer *eb; 7910 7911 if (root_level == 0) 7912 return 1; 7913 7914 while (level <= root_level) { 7915 eb = path->nodes[level]; 7916 nr = btrfs_header_nritems(eb); 7917 path->slots[level]++; 7918 slot = path->slots[level]; 7919 if (slot >= nr || level == 0) { 7920 /* 7921 * Don't free the root - we will detect this 7922 * condition after our loop and return a 7923 * positive value for caller to stop walking the tree. 7924 */ 7925 if (level != root_level) { 7926 btrfs_tree_unlock_rw(eb, path->locks[level]); 7927 path->locks[level] = 0; 7928 7929 free_extent_buffer(eb); 7930 path->nodes[level] = NULL; 7931 path->slots[level] = 0; 7932 } 7933 } else { 7934 /* 7935 * We have a valid slot to walk back down 7936 * from. Stop here so caller can process these 7937 * new nodes. 7938 */ 7939 break; 7940 } 7941 7942 level++; 7943 } 7944 7945 eb = path->nodes[root_level]; 7946 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7947 return 1; 7948 7949 return 0; 7950 } 7951 7952 /* 7953 * root_eb is the subtree root and is locked before this function is called. 7954 * TODO: Modify this function to mark all (including complete shared node) 7955 * to dirty_extent_root to allow it get accounted in qgroup. 7956 */ 7957 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7958 struct btrfs_root *root, 7959 struct extent_buffer *root_eb, 7960 u64 root_gen, 7961 int root_level) 7962 { 7963 int ret = 0; 7964 int level; 7965 struct extent_buffer *eb = root_eb; 7966 struct btrfs_path *path = NULL; 7967 7968 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7969 BUG_ON(root_eb == NULL); 7970 7971 if (!root->fs_info->quota_enabled) 7972 return 0; 7973 7974 if (!extent_buffer_uptodate(root_eb)) { 7975 ret = btrfs_read_buffer(root_eb, root_gen); 7976 if (ret) 7977 goto out; 7978 } 7979 7980 if (root_level == 0) { 7981 ret = account_leaf_items(trans, root, root_eb); 7982 goto out; 7983 } 7984 7985 path = btrfs_alloc_path(); 7986 if (!path) 7987 return -ENOMEM; 7988 7989 /* 7990 * Walk down the tree. Missing extent blocks are filled in as 7991 * we go. Metadata is accounted every time we read a new 7992 * extent block. 7993 * 7994 * When we reach a leaf, we account for file extent items in it, 7995 * walk back up the tree (adjusting slot pointers as we go) 7996 * and restart the search process. 7997 */ 7998 extent_buffer_get(root_eb); /* For path */ 7999 path->nodes[root_level] = root_eb; 8000 path->slots[root_level] = 0; 8001 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8002 walk_down: 8003 level = root_level; 8004 while (level >= 0) { 8005 if (path->nodes[level] == NULL) { 8006 int parent_slot; 8007 u64 child_gen; 8008 u64 child_bytenr; 8009 8010 /* We need to get child blockptr/gen from 8011 * parent before we can read it. */ 8012 eb = path->nodes[level + 1]; 8013 parent_slot = path->slots[level + 1]; 8014 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8015 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8016 8017 eb = read_tree_block(root, child_bytenr, child_gen); 8018 if (IS_ERR(eb)) { 8019 ret = PTR_ERR(eb); 8020 goto out; 8021 } else if (!extent_buffer_uptodate(eb)) { 8022 free_extent_buffer(eb); 8023 ret = -EIO; 8024 goto out; 8025 } 8026 8027 path->nodes[level] = eb; 8028 path->slots[level] = 0; 8029 8030 btrfs_tree_read_lock(eb); 8031 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8032 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8033 } 8034 8035 if (level == 0) { 8036 ret = account_leaf_items(trans, root, path->nodes[level]); 8037 if (ret) 8038 goto out; 8039 8040 /* Nonzero return here means we completed our search */ 8041 ret = adjust_slots_upwards(root, path, root_level); 8042 if (ret) 8043 break; 8044 8045 /* Restart search with new slots */ 8046 goto walk_down; 8047 } 8048 8049 level--; 8050 } 8051 8052 ret = 0; 8053 out: 8054 btrfs_free_path(path); 8055 8056 return ret; 8057 } 8058 8059 /* 8060 * helper to process tree block while walking down the tree. 8061 * 8062 * when wc->stage == UPDATE_BACKREF, this function updates 8063 * back refs for pointers in the block. 8064 * 8065 * NOTE: return value 1 means we should stop walking down. 8066 */ 8067 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8068 struct btrfs_root *root, 8069 struct btrfs_path *path, 8070 struct walk_control *wc, int lookup_info) 8071 { 8072 int level = wc->level; 8073 struct extent_buffer *eb = path->nodes[level]; 8074 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8075 int ret; 8076 8077 if (wc->stage == UPDATE_BACKREF && 8078 btrfs_header_owner(eb) != root->root_key.objectid) 8079 return 1; 8080 8081 /* 8082 * when reference count of tree block is 1, it won't increase 8083 * again. once full backref flag is set, we never clear it. 8084 */ 8085 if (lookup_info && 8086 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8087 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8088 BUG_ON(!path->locks[level]); 8089 ret = btrfs_lookup_extent_info(trans, root, 8090 eb->start, level, 1, 8091 &wc->refs[level], 8092 &wc->flags[level]); 8093 BUG_ON(ret == -ENOMEM); 8094 if (ret) 8095 return ret; 8096 BUG_ON(wc->refs[level] == 0); 8097 } 8098 8099 if (wc->stage == DROP_REFERENCE) { 8100 if (wc->refs[level] > 1) 8101 return 1; 8102 8103 if (path->locks[level] && !wc->keep_locks) { 8104 btrfs_tree_unlock_rw(eb, path->locks[level]); 8105 path->locks[level] = 0; 8106 } 8107 return 0; 8108 } 8109 8110 /* wc->stage == UPDATE_BACKREF */ 8111 if (!(wc->flags[level] & flag)) { 8112 BUG_ON(!path->locks[level]); 8113 ret = btrfs_inc_ref(trans, root, eb, 1); 8114 BUG_ON(ret); /* -ENOMEM */ 8115 ret = btrfs_dec_ref(trans, root, eb, 0); 8116 BUG_ON(ret); /* -ENOMEM */ 8117 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8118 eb->len, flag, 8119 btrfs_header_level(eb), 0); 8120 BUG_ON(ret); /* -ENOMEM */ 8121 wc->flags[level] |= flag; 8122 } 8123 8124 /* 8125 * the block is shared by multiple trees, so it's not good to 8126 * keep the tree lock 8127 */ 8128 if (path->locks[level] && level > 0) { 8129 btrfs_tree_unlock_rw(eb, path->locks[level]); 8130 path->locks[level] = 0; 8131 } 8132 return 0; 8133 } 8134 8135 /* 8136 * helper to process tree block pointer. 8137 * 8138 * when wc->stage == DROP_REFERENCE, this function checks 8139 * reference count of the block pointed to. if the block 8140 * is shared and we need update back refs for the subtree 8141 * rooted at the block, this function changes wc->stage to 8142 * UPDATE_BACKREF. if the block is shared and there is no 8143 * need to update back, this function drops the reference 8144 * to the block. 8145 * 8146 * NOTE: return value 1 means we should stop walking down. 8147 */ 8148 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8149 struct btrfs_root *root, 8150 struct btrfs_path *path, 8151 struct walk_control *wc, int *lookup_info) 8152 { 8153 u64 bytenr; 8154 u64 generation; 8155 u64 parent; 8156 u32 blocksize; 8157 struct btrfs_key key; 8158 struct extent_buffer *next; 8159 int level = wc->level; 8160 int reada = 0; 8161 int ret = 0; 8162 bool need_account = false; 8163 8164 generation = btrfs_node_ptr_generation(path->nodes[level], 8165 path->slots[level]); 8166 /* 8167 * if the lower level block was created before the snapshot 8168 * was created, we know there is no need to update back refs 8169 * for the subtree 8170 */ 8171 if (wc->stage == UPDATE_BACKREF && 8172 generation <= root->root_key.offset) { 8173 *lookup_info = 1; 8174 return 1; 8175 } 8176 8177 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8178 blocksize = root->nodesize; 8179 8180 next = btrfs_find_tree_block(root->fs_info, bytenr); 8181 if (!next) { 8182 next = btrfs_find_create_tree_block(root, bytenr); 8183 if (!next) 8184 return -ENOMEM; 8185 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8186 level - 1); 8187 reada = 1; 8188 } 8189 btrfs_tree_lock(next); 8190 btrfs_set_lock_blocking(next); 8191 8192 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8193 &wc->refs[level - 1], 8194 &wc->flags[level - 1]); 8195 if (ret < 0) { 8196 btrfs_tree_unlock(next); 8197 return ret; 8198 } 8199 8200 if (unlikely(wc->refs[level - 1] == 0)) { 8201 btrfs_err(root->fs_info, "Missing references."); 8202 BUG(); 8203 } 8204 *lookup_info = 0; 8205 8206 if (wc->stage == DROP_REFERENCE) { 8207 if (wc->refs[level - 1] > 1) { 8208 need_account = true; 8209 if (level == 1 && 8210 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8211 goto skip; 8212 8213 if (!wc->update_ref || 8214 generation <= root->root_key.offset) 8215 goto skip; 8216 8217 btrfs_node_key_to_cpu(path->nodes[level], &key, 8218 path->slots[level]); 8219 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8220 if (ret < 0) 8221 goto skip; 8222 8223 wc->stage = UPDATE_BACKREF; 8224 wc->shared_level = level - 1; 8225 } 8226 } else { 8227 if (level == 1 && 8228 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8229 goto skip; 8230 } 8231 8232 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8233 btrfs_tree_unlock(next); 8234 free_extent_buffer(next); 8235 next = NULL; 8236 *lookup_info = 1; 8237 } 8238 8239 if (!next) { 8240 if (reada && level == 1) 8241 reada_walk_down(trans, root, wc, path); 8242 next = read_tree_block(root, bytenr, generation); 8243 if (IS_ERR(next)) { 8244 return PTR_ERR(next); 8245 } else if (!extent_buffer_uptodate(next)) { 8246 free_extent_buffer(next); 8247 return -EIO; 8248 } 8249 btrfs_tree_lock(next); 8250 btrfs_set_lock_blocking(next); 8251 } 8252 8253 level--; 8254 BUG_ON(level != btrfs_header_level(next)); 8255 path->nodes[level] = next; 8256 path->slots[level] = 0; 8257 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8258 wc->level = level; 8259 if (wc->level == 1) 8260 wc->reada_slot = 0; 8261 return 0; 8262 skip: 8263 wc->refs[level - 1] = 0; 8264 wc->flags[level - 1] = 0; 8265 if (wc->stage == DROP_REFERENCE) { 8266 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8267 parent = path->nodes[level]->start; 8268 } else { 8269 BUG_ON(root->root_key.objectid != 8270 btrfs_header_owner(path->nodes[level])); 8271 parent = 0; 8272 } 8273 8274 if (need_account) { 8275 ret = account_shared_subtree(trans, root, next, 8276 generation, level - 1); 8277 if (ret) { 8278 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8279 "%d accounting shared subtree. Quota " 8280 "is out of sync, rescan required.\n", 8281 root->fs_info->sb->s_id, ret); 8282 } 8283 } 8284 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8285 root->root_key.objectid, level - 1, 0, 0); 8286 BUG_ON(ret); /* -ENOMEM */ 8287 } 8288 btrfs_tree_unlock(next); 8289 free_extent_buffer(next); 8290 *lookup_info = 1; 8291 return 1; 8292 } 8293 8294 /* 8295 * helper to process tree block while walking up the tree. 8296 * 8297 * when wc->stage == DROP_REFERENCE, this function drops 8298 * reference count on the block. 8299 * 8300 * when wc->stage == UPDATE_BACKREF, this function changes 8301 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8302 * to UPDATE_BACKREF previously while processing the block. 8303 * 8304 * NOTE: return value 1 means we should stop walking up. 8305 */ 8306 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8307 struct btrfs_root *root, 8308 struct btrfs_path *path, 8309 struct walk_control *wc) 8310 { 8311 int ret; 8312 int level = wc->level; 8313 struct extent_buffer *eb = path->nodes[level]; 8314 u64 parent = 0; 8315 8316 if (wc->stage == UPDATE_BACKREF) { 8317 BUG_ON(wc->shared_level < level); 8318 if (level < wc->shared_level) 8319 goto out; 8320 8321 ret = find_next_key(path, level + 1, &wc->update_progress); 8322 if (ret > 0) 8323 wc->update_ref = 0; 8324 8325 wc->stage = DROP_REFERENCE; 8326 wc->shared_level = -1; 8327 path->slots[level] = 0; 8328 8329 /* 8330 * check reference count again if the block isn't locked. 8331 * we should start walking down the tree again if reference 8332 * count is one. 8333 */ 8334 if (!path->locks[level]) { 8335 BUG_ON(level == 0); 8336 btrfs_tree_lock(eb); 8337 btrfs_set_lock_blocking(eb); 8338 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8339 8340 ret = btrfs_lookup_extent_info(trans, root, 8341 eb->start, level, 1, 8342 &wc->refs[level], 8343 &wc->flags[level]); 8344 if (ret < 0) { 8345 btrfs_tree_unlock_rw(eb, path->locks[level]); 8346 path->locks[level] = 0; 8347 return ret; 8348 } 8349 BUG_ON(wc->refs[level] == 0); 8350 if (wc->refs[level] == 1) { 8351 btrfs_tree_unlock_rw(eb, path->locks[level]); 8352 path->locks[level] = 0; 8353 return 1; 8354 } 8355 } 8356 } 8357 8358 /* wc->stage == DROP_REFERENCE */ 8359 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8360 8361 if (wc->refs[level] == 1) { 8362 if (level == 0) { 8363 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8364 ret = btrfs_dec_ref(trans, root, eb, 1); 8365 else 8366 ret = btrfs_dec_ref(trans, root, eb, 0); 8367 BUG_ON(ret); /* -ENOMEM */ 8368 ret = account_leaf_items(trans, root, eb); 8369 if (ret) { 8370 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8371 "%d accounting leaf items. Quota " 8372 "is out of sync, rescan required.\n", 8373 root->fs_info->sb->s_id, ret); 8374 } 8375 } 8376 /* make block locked assertion in clean_tree_block happy */ 8377 if (!path->locks[level] && 8378 btrfs_header_generation(eb) == trans->transid) { 8379 btrfs_tree_lock(eb); 8380 btrfs_set_lock_blocking(eb); 8381 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8382 } 8383 clean_tree_block(trans, root->fs_info, eb); 8384 } 8385 8386 if (eb == root->node) { 8387 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8388 parent = eb->start; 8389 else 8390 BUG_ON(root->root_key.objectid != 8391 btrfs_header_owner(eb)); 8392 } else { 8393 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8394 parent = path->nodes[level + 1]->start; 8395 else 8396 BUG_ON(root->root_key.objectid != 8397 btrfs_header_owner(path->nodes[level + 1])); 8398 } 8399 8400 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8401 out: 8402 wc->refs[level] = 0; 8403 wc->flags[level] = 0; 8404 return 0; 8405 } 8406 8407 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8408 struct btrfs_root *root, 8409 struct btrfs_path *path, 8410 struct walk_control *wc) 8411 { 8412 int level = wc->level; 8413 int lookup_info = 1; 8414 int ret; 8415 8416 while (level >= 0) { 8417 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8418 if (ret > 0) 8419 break; 8420 8421 if (level == 0) 8422 break; 8423 8424 if (path->slots[level] >= 8425 btrfs_header_nritems(path->nodes[level])) 8426 break; 8427 8428 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8429 if (ret > 0) { 8430 path->slots[level]++; 8431 continue; 8432 } else if (ret < 0) 8433 return ret; 8434 level = wc->level; 8435 } 8436 return 0; 8437 } 8438 8439 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8440 struct btrfs_root *root, 8441 struct btrfs_path *path, 8442 struct walk_control *wc, int max_level) 8443 { 8444 int level = wc->level; 8445 int ret; 8446 8447 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8448 while (level < max_level && path->nodes[level]) { 8449 wc->level = level; 8450 if (path->slots[level] + 1 < 8451 btrfs_header_nritems(path->nodes[level])) { 8452 path->slots[level]++; 8453 return 0; 8454 } else { 8455 ret = walk_up_proc(trans, root, path, wc); 8456 if (ret > 0) 8457 return 0; 8458 8459 if (path->locks[level]) { 8460 btrfs_tree_unlock_rw(path->nodes[level], 8461 path->locks[level]); 8462 path->locks[level] = 0; 8463 } 8464 free_extent_buffer(path->nodes[level]); 8465 path->nodes[level] = NULL; 8466 level++; 8467 } 8468 } 8469 return 1; 8470 } 8471 8472 /* 8473 * drop a subvolume tree. 8474 * 8475 * this function traverses the tree freeing any blocks that only 8476 * referenced by the tree. 8477 * 8478 * when a shared tree block is found. this function decreases its 8479 * reference count by one. if update_ref is true, this function 8480 * also make sure backrefs for the shared block and all lower level 8481 * blocks are properly updated. 8482 * 8483 * If called with for_reloc == 0, may exit early with -EAGAIN 8484 */ 8485 int btrfs_drop_snapshot(struct btrfs_root *root, 8486 struct btrfs_block_rsv *block_rsv, int update_ref, 8487 int for_reloc) 8488 { 8489 struct btrfs_path *path; 8490 struct btrfs_trans_handle *trans; 8491 struct btrfs_root *tree_root = root->fs_info->tree_root; 8492 struct btrfs_root_item *root_item = &root->root_item; 8493 struct walk_control *wc; 8494 struct btrfs_key key; 8495 int err = 0; 8496 int ret; 8497 int level; 8498 bool root_dropped = false; 8499 8500 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8501 8502 path = btrfs_alloc_path(); 8503 if (!path) { 8504 err = -ENOMEM; 8505 goto out; 8506 } 8507 8508 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8509 if (!wc) { 8510 btrfs_free_path(path); 8511 err = -ENOMEM; 8512 goto out; 8513 } 8514 8515 trans = btrfs_start_transaction(tree_root, 0); 8516 if (IS_ERR(trans)) { 8517 err = PTR_ERR(trans); 8518 goto out_free; 8519 } 8520 8521 if (block_rsv) 8522 trans->block_rsv = block_rsv; 8523 8524 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8525 level = btrfs_header_level(root->node); 8526 path->nodes[level] = btrfs_lock_root_node(root); 8527 btrfs_set_lock_blocking(path->nodes[level]); 8528 path->slots[level] = 0; 8529 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8530 memset(&wc->update_progress, 0, 8531 sizeof(wc->update_progress)); 8532 } else { 8533 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8534 memcpy(&wc->update_progress, &key, 8535 sizeof(wc->update_progress)); 8536 8537 level = root_item->drop_level; 8538 BUG_ON(level == 0); 8539 path->lowest_level = level; 8540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8541 path->lowest_level = 0; 8542 if (ret < 0) { 8543 err = ret; 8544 goto out_end_trans; 8545 } 8546 WARN_ON(ret > 0); 8547 8548 /* 8549 * unlock our path, this is safe because only this 8550 * function is allowed to delete this snapshot 8551 */ 8552 btrfs_unlock_up_safe(path, 0); 8553 8554 level = btrfs_header_level(root->node); 8555 while (1) { 8556 btrfs_tree_lock(path->nodes[level]); 8557 btrfs_set_lock_blocking(path->nodes[level]); 8558 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8559 8560 ret = btrfs_lookup_extent_info(trans, root, 8561 path->nodes[level]->start, 8562 level, 1, &wc->refs[level], 8563 &wc->flags[level]); 8564 if (ret < 0) { 8565 err = ret; 8566 goto out_end_trans; 8567 } 8568 BUG_ON(wc->refs[level] == 0); 8569 8570 if (level == root_item->drop_level) 8571 break; 8572 8573 btrfs_tree_unlock(path->nodes[level]); 8574 path->locks[level] = 0; 8575 WARN_ON(wc->refs[level] != 1); 8576 level--; 8577 } 8578 } 8579 8580 wc->level = level; 8581 wc->shared_level = -1; 8582 wc->stage = DROP_REFERENCE; 8583 wc->update_ref = update_ref; 8584 wc->keep_locks = 0; 8585 wc->for_reloc = for_reloc; 8586 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8587 8588 while (1) { 8589 8590 ret = walk_down_tree(trans, root, path, wc); 8591 if (ret < 0) { 8592 err = ret; 8593 break; 8594 } 8595 8596 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8597 if (ret < 0) { 8598 err = ret; 8599 break; 8600 } 8601 8602 if (ret > 0) { 8603 BUG_ON(wc->stage != DROP_REFERENCE); 8604 break; 8605 } 8606 8607 if (wc->stage == DROP_REFERENCE) { 8608 level = wc->level; 8609 btrfs_node_key(path->nodes[level], 8610 &root_item->drop_progress, 8611 path->slots[level]); 8612 root_item->drop_level = level; 8613 } 8614 8615 BUG_ON(wc->level == 0); 8616 if (btrfs_should_end_transaction(trans, tree_root) || 8617 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8618 ret = btrfs_update_root(trans, tree_root, 8619 &root->root_key, 8620 root_item); 8621 if (ret) { 8622 btrfs_abort_transaction(trans, tree_root, ret); 8623 err = ret; 8624 goto out_end_trans; 8625 } 8626 8627 btrfs_end_transaction_throttle(trans, tree_root); 8628 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8629 pr_debug("BTRFS: drop snapshot early exit\n"); 8630 err = -EAGAIN; 8631 goto out_free; 8632 } 8633 8634 trans = btrfs_start_transaction(tree_root, 0); 8635 if (IS_ERR(trans)) { 8636 err = PTR_ERR(trans); 8637 goto out_free; 8638 } 8639 if (block_rsv) 8640 trans->block_rsv = block_rsv; 8641 } 8642 } 8643 btrfs_release_path(path); 8644 if (err) 8645 goto out_end_trans; 8646 8647 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8648 if (ret) { 8649 btrfs_abort_transaction(trans, tree_root, ret); 8650 goto out_end_trans; 8651 } 8652 8653 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8654 ret = btrfs_find_root(tree_root, &root->root_key, path, 8655 NULL, NULL); 8656 if (ret < 0) { 8657 btrfs_abort_transaction(trans, tree_root, ret); 8658 err = ret; 8659 goto out_end_trans; 8660 } else if (ret > 0) { 8661 /* if we fail to delete the orphan item this time 8662 * around, it'll get picked up the next time. 8663 * 8664 * The most common failure here is just -ENOENT. 8665 */ 8666 btrfs_del_orphan_item(trans, tree_root, 8667 root->root_key.objectid); 8668 } 8669 } 8670 8671 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8672 btrfs_add_dropped_root(trans, root); 8673 } else { 8674 free_extent_buffer(root->node); 8675 free_extent_buffer(root->commit_root); 8676 btrfs_put_fs_root(root); 8677 } 8678 root_dropped = true; 8679 out_end_trans: 8680 btrfs_end_transaction_throttle(trans, tree_root); 8681 out_free: 8682 kfree(wc); 8683 btrfs_free_path(path); 8684 out: 8685 /* 8686 * So if we need to stop dropping the snapshot for whatever reason we 8687 * need to make sure to add it back to the dead root list so that we 8688 * keep trying to do the work later. This also cleans up roots if we 8689 * don't have it in the radix (like when we recover after a power fail 8690 * or unmount) so we don't leak memory. 8691 */ 8692 if (!for_reloc && root_dropped == false) 8693 btrfs_add_dead_root(root); 8694 if (err && err != -EAGAIN) 8695 btrfs_std_error(root->fs_info, err); 8696 return err; 8697 } 8698 8699 /* 8700 * drop subtree rooted at tree block 'node'. 8701 * 8702 * NOTE: this function will unlock and release tree block 'node' 8703 * only used by relocation code 8704 */ 8705 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8706 struct btrfs_root *root, 8707 struct extent_buffer *node, 8708 struct extent_buffer *parent) 8709 { 8710 struct btrfs_path *path; 8711 struct walk_control *wc; 8712 int level; 8713 int parent_level; 8714 int ret = 0; 8715 int wret; 8716 8717 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8718 8719 path = btrfs_alloc_path(); 8720 if (!path) 8721 return -ENOMEM; 8722 8723 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8724 if (!wc) { 8725 btrfs_free_path(path); 8726 return -ENOMEM; 8727 } 8728 8729 btrfs_assert_tree_locked(parent); 8730 parent_level = btrfs_header_level(parent); 8731 extent_buffer_get(parent); 8732 path->nodes[parent_level] = parent; 8733 path->slots[parent_level] = btrfs_header_nritems(parent); 8734 8735 btrfs_assert_tree_locked(node); 8736 level = btrfs_header_level(node); 8737 path->nodes[level] = node; 8738 path->slots[level] = 0; 8739 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8740 8741 wc->refs[parent_level] = 1; 8742 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8743 wc->level = level; 8744 wc->shared_level = -1; 8745 wc->stage = DROP_REFERENCE; 8746 wc->update_ref = 0; 8747 wc->keep_locks = 1; 8748 wc->for_reloc = 1; 8749 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8750 8751 while (1) { 8752 wret = walk_down_tree(trans, root, path, wc); 8753 if (wret < 0) { 8754 ret = wret; 8755 break; 8756 } 8757 8758 wret = walk_up_tree(trans, root, path, wc, parent_level); 8759 if (wret < 0) 8760 ret = wret; 8761 if (wret != 0) 8762 break; 8763 } 8764 8765 kfree(wc); 8766 btrfs_free_path(path); 8767 return ret; 8768 } 8769 8770 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8771 { 8772 u64 num_devices; 8773 u64 stripped; 8774 8775 /* 8776 * if restripe for this chunk_type is on pick target profile and 8777 * return, otherwise do the usual balance 8778 */ 8779 stripped = get_restripe_target(root->fs_info, flags); 8780 if (stripped) 8781 return extended_to_chunk(stripped); 8782 8783 num_devices = root->fs_info->fs_devices->rw_devices; 8784 8785 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8786 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8787 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8788 8789 if (num_devices == 1) { 8790 stripped |= BTRFS_BLOCK_GROUP_DUP; 8791 stripped = flags & ~stripped; 8792 8793 /* turn raid0 into single device chunks */ 8794 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8795 return stripped; 8796 8797 /* turn mirroring into duplication */ 8798 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8799 BTRFS_BLOCK_GROUP_RAID10)) 8800 return stripped | BTRFS_BLOCK_GROUP_DUP; 8801 } else { 8802 /* they already had raid on here, just return */ 8803 if (flags & stripped) 8804 return flags; 8805 8806 stripped |= BTRFS_BLOCK_GROUP_DUP; 8807 stripped = flags & ~stripped; 8808 8809 /* switch duplicated blocks with raid1 */ 8810 if (flags & BTRFS_BLOCK_GROUP_DUP) 8811 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8812 8813 /* this is drive concat, leave it alone */ 8814 } 8815 8816 return flags; 8817 } 8818 8819 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8820 { 8821 struct btrfs_space_info *sinfo = cache->space_info; 8822 u64 num_bytes; 8823 u64 min_allocable_bytes; 8824 int ret = -ENOSPC; 8825 8826 /* 8827 * We need some metadata space and system metadata space for 8828 * allocating chunks in some corner cases until we force to set 8829 * it to be readonly. 8830 */ 8831 if ((sinfo->flags & 8832 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8833 !force) 8834 min_allocable_bytes = 1 * 1024 * 1024; 8835 else 8836 min_allocable_bytes = 0; 8837 8838 spin_lock(&sinfo->lock); 8839 spin_lock(&cache->lock); 8840 8841 if (cache->ro) { 8842 cache->ro++; 8843 ret = 0; 8844 goto out; 8845 } 8846 8847 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8848 cache->bytes_super - btrfs_block_group_used(&cache->item); 8849 8850 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8851 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8852 min_allocable_bytes <= sinfo->total_bytes) { 8853 sinfo->bytes_readonly += num_bytes; 8854 cache->ro++; 8855 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8856 ret = 0; 8857 } 8858 out: 8859 spin_unlock(&cache->lock); 8860 spin_unlock(&sinfo->lock); 8861 return ret; 8862 } 8863 8864 int btrfs_inc_block_group_ro(struct btrfs_root *root, 8865 struct btrfs_block_group_cache *cache) 8866 8867 { 8868 struct btrfs_trans_handle *trans; 8869 u64 alloc_flags; 8870 int ret; 8871 8872 again: 8873 trans = btrfs_join_transaction(root); 8874 if (IS_ERR(trans)) 8875 return PTR_ERR(trans); 8876 8877 /* 8878 * we're not allowed to set block groups readonly after the dirty 8879 * block groups cache has started writing. If it already started, 8880 * back off and let this transaction commit 8881 */ 8882 mutex_lock(&root->fs_info->ro_block_group_mutex); 8883 if (trans->transaction->dirty_bg_run) { 8884 u64 transid = trans->transid; 8885 8886 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8887 btrfs_end_transaction(trans, root); 8888 8889 ret = btrfs_wait_for_commit(root, transid); 8890 if (ret) 8891 return ret; 8892 goto again; 8893 } 8894 8895 /* 8896 * if we are changing raid levels, try to allocate a corresponding 8897 * block group with the new raid level. 8898 */ 8899 alloc_flags = update_block_group_flags(root, cache->flags); 8900 if (alloc_flags != cache->flags) { 8901 ret = do_chunk_alloc(trans, root, alloc_flags, 8902 CHUNK_ALLOC_FORCE); 8903 /* 8904 * ENOSPC is allowed here, we may have enough space 8905 * already allocated at the new raid level to 8906 * carry on 8907 */ 8908 if (ret == -ENOSPC) 8909 ret = 0; 8910 if (ret < 0) 8911 goto out; 8912 } 8913 8914 ret = inc_block_group_ro(cache, 0); 8915 if (!ret) 8916 goto out; 8917 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8918 ret = do_chunk_alloc(trans, root, alloc_flags, 8919 CHUNK_ALLOC_FORCE); 8920 if (ret < 0) 8921 goto out; 8922 ret = inc_block_group_ro(cache, 0); 8923 out: 8924 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8925 alloc_flags = update_block_group_flags(root, cache->flags); 8926 lock_chunks(root->fs_info->chunk_root); 8927 check_system_chunk(trans, root, alloc_flags); 8928 unlock_chunks(root->fs_info->chunk_root); 8929 } 8930 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8931 8932 btrfs_end_transaction(trans, root); 8933 return ret; 8934 } 8935 8936 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8937 struct btrfs_root *root, u64 type) 8938 { 8939 u64 alloc_flags = get_alloc_profile(root, type); 8940 return do_chunk_alloc(trans, root, alloc_flags, 8941 CHUNK_ALLOC_FORCE); 8942 } 8943 8944 /* 8945 * helper to account the unused space of all the readonly block group in the 8946 * space_info. takes mirrors into account. 8947 */ 8948 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8949 { 8950 struct btrfs_block_group_cache *block_group; 8951 u64 free_bytes = 0; 8952 int factor; 8953 8954 /* It's df, we don't care if it's racey */ 8955 if (list_empty(&sinfo->ro_bgs)) 8956 return 0; 8957 8958 spin_lock(&sinfo->lock); 8959 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8960 spin_lock(&block_group->lock); 8961 8962 if (!block_group->ro) { 8963 spin_unlock(&block_group->lock); 8964 continue; 8965 } 8966 8967 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8968 BTRFS_BLOCK_GROUP_RAID10 | 8969 BTRFS_BLOCK_GROUP_DUP)) 8970 factor = 2; 8971 else 8972 factor = 1; 8973 8974 free_bytes += (block_group->key.offset - 8975 btrfs_block_group_used(&block_group->item)) * 8976 factor; 8977 8978 spin_unlock(&block_group->lock); 8979 } 8980 spin_unlock(&sinfo->lock); 8981 8982 return free_bytes; 8983 } 8984 8985 void btrfs_dec_block_group_ro(struct btrfs_root *root, 8986 struct btrfs_block_group_cache *cache) 8987 { 8988 struct btrfs_space_info *sinfo = cache->space_info; 8989 u64 num_bytes; 8990 8991 BUG_ON(!cache->ro); 8992 8993 spin_lock(&sinfo->lock); 8994 spin_lock(&cache->lock); 8995 if (!--cache->ro) { 8996 num_bytes = cache->key.offset - cache->reserved - 8997 cache->pinned - cache->bytes_super - 8998 btrfs_block_group_used(&cache->item); 8999 sinfo->bytes_readonly -= num_bytes; 9000 list_del_init(&cache->ro_list); 9001 } 9002 spin_unlock(&cache->lock); 9003 spin_unlock(&sinfo->lock); 9004 } 9005 9006 /* 9007 * checks to see if its even possible to relocate this block group. 9008 * 9009 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9010 * ok to go ahead and try. 9011 */ 9012 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9013 { 9014 struct btrfs_block_group_cache *block_group; 9015 struct btrfs_space_info *space_info; 9016 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9017 struct btrfs_device *device; 9018 struct btrfs_trans_handle *trans; 9019 u64 min_free; 9020 u64 dev_min = 1; 9021 u64 dev_nr = 0; 9022 u64 target; 9023 int index; 9024 int full = 0; 9025 int ret = 0; 9026 9027 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9028 9029 /* odd, couldn't find the block group, leave it alone */ 9030 if (!block_group) 9031 return -1; 9032 9033 min_free = btrfs_block_group_used(&block_group->item); 9034 9035 /* no bytes used, we're good */ 9036 if (!min_free) 9037 goto out; 9038 9039 space_info = block_group->space_info; 9040 spin_lock(&space_info->lock); 9041 9042 full = space_info->full; 9043 9044 /* 9045 * if this is the last block group we have in this space, we can't 9046 * relocate it unless we're able to allocate a new chunk below. 9047 * 9048 * Otherwise, we need to make sure we have room in the space to handle 9049 * all of the extents from this block group. If we can, we're good 9050 */ 9051 if ((space_info->total_bytes != block_group->key.offset) && 9052 (space_info->bytes_used + space_info->bytes_reserved + 9053 space_info->bytes_pinned + space_info->bytes_readonly + 9054 min_free < space_info->total_bytes)) { 9055 spin_unlock(&space_info->lock); 9056 goto out; 9057 } 9058 spin_unlock(&space_info->lock); 9059 9060 /* 9061 * ok we don't have enough space, but maybe we have free space on our 9062 * devices to allocate new chunks for relocation, so loop through our 9063 * alloc devices and guess if we have enough space. if this block 9064 * group is going to be restriped, run checks against the target 9065 * profile instead of the current one. 9066 */ 9067 ret = -1; 9068 9069 /* 9070 * index: 9071 * 0: raid10 9072 * 1: raid1 9073 * 2: dup 9074 * 3: raid0 9075 * 4: single 9076 */ 9077 target = get_restripe_target(root->fs_info, block_group->flags); 9078 if (target) { 9079 index = __get_raid_index(extended_to_chunk(target)); 9080 } else { 9081 /* 9082 * this is just a balance, so if we were marked as full 9083 * we know there is no space for a new chunk 9084 */ 9085 if (full) 9086 goto out; 9087 9088 index = get_block_group_index(block_group); 9089 } 9090 9091 if (index == BTRFS_RAID_RAID10) { 9092 dev_min = 4; 9093 /* Divide by 2 */ 9094 min_free >>= 1; 9095 } else if (index == BTRFS_RAID_RAID1) { 9096 dev_min = 2; 9097 } else if (index == BTRFS_RAID_DUP) { 9098 /* Multiply by 2 */ 9099 min_free <<= 1; 9100 } else if (index == BTRFS_RAID_RAID0) { 9101 dev_min = fs_devices->rw_devices; 9102 min_free = div64_u64(min_free, dev_min); 9103 } 9104 9105 /* We need to do this so that we can look at pending chunks */ 9106 trans = btrfs_join_transaction(root); 9107 if (IS_ERR(trans)) { 9108 ret = PTR_ERR(trans); 9109 goto out; 9110 } 9111 9112 mutex_lock(&root->fs_info->chunk_mutex); 9113 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9114 u64 dev_offset; 9115 9116 /* 9117 * check to make sure we can actually find a chunk with enough 9118 * space to fit our block group in. 9119 */ 9120 if (device->total_bytes > device->bytes_used + min_free && 9121 !device->is_tgtdev_for_dev_replace) { 9122 ret = find_free_dev_extent(trans, device, min_free, 9123 &dev_offset, NULL); 9124 if (!ret) 9125 dev_nr++; 9126 9127 if (dev_nr >= dev_min) 9128 break; 9129 9130 ret = -1; 9131 } 9132 } 9133 mutex_unlock(&root->fs_info->chunk_mutex); 9134 btrfs_end_transaction(trans, root); 9135 out: 9136 btrfs_put_block_group(block_group); 9137 return ret; 9138 } 9139 9140 static int find_first_block_group(struct btrfs_root *root, 9141 struct btrfs_path *path, struct btrfs_key *key) 9142 { 9143 int ret = 0; 9144 struct btrfs_key found_key; 9145 struct extent_buffer *leaf; 9146 int slot; 9147 9148 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9149 if (ret < 0) 9150 goto out; 9151 9152 while (1) { 9153 slot = path->slots[0]; 9154 leaf = path->nodes[0]; 9155 if (slot >= btrfs_header_nritems(leaf)) { 9156 ret = btrfs_next_leaf(root, path); 9157 if (ret == 0) 9158 continue; 9159 if (ret < 0) 9160 goto out; 9161 break; 9162 } 9163 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9164 9165 if (found_key.objectid >= key->objectid && 9166 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9167 ret = 0; 9168 goto out; 9169 } 9170 path->slots[0]++; 9171 } 9172 out: 9173 return ret; 9174 } 9175 9176 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9177 { 9178 struct btrfs_block_group_cache *block_group; 9179 u64 last = 0; 9180 9181 while (1) { 9182 struct inode *inode; 9183 9184 block_group = btrfs_lookup_first_block_group(info, last); 9185 while (block_group) { 9186 spin_lock(&block_group->lock); 9187 if (block_group->iref) 9188 break; 9189 spin_unlock(&block_group->lock); 9190 block_group = next_block_group(info->tree_root, 9191 block_group); 9192 } 9193 if (!block_group) { 9194 if (last == 0) 9195 break; 9196 last = 0; 9197 continue; 9198 } 9199 9200 inode = block_group->inode; 9201 block_group->iref = 0; 9202 block_group->inode = NULL; 9203 spin_unlock(&block_group->lock); 9204 iput(inode); 9205 last = block_group->key.objectid + block_group->key.offset; 9206 btrfs_put_block_group(block_group); 9207 } 9208 } 9209 9210 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9211 { 9212 struct btrfs_block_group_cache *block_group; 9213 struct btrfs_space_info *space_info; 9214 struct btrfs_caching_control *caching_ctl; 9215 struct rb_node *n; 9216 9217 down_write(&info->commit_root_sem); 9218 while (!list_empty(&info->caching_block_groups)) { 9219 caching_ctl = list_entry(info->caching_block_groups.next, 9220 struct btrfs_caching_control, list); 9221 list_del(&caching_ctl->list); 9222 put_caching_control(caching_ctl); 9223 } 9224 up_write(&info->commit_root_sem); 9225 9226 spin_lock(&info->unused_bgs_lock); 9227 while (!list_empty(&info->unused_bgs)) { 9228 block_group = list_first_entry(&info->unused_bgs, 9229 struct btrfs_block_group_cache, 9230 bg_list); 9231 list_del_init(&block_group->bg_list); 9232 btrfs_put_block_group(block_group); 9233 } 9234 spin_unlock(&info->unused_bgs_lock); 9235 9236 spin_lock(&info->block_group_cache_lock); 9237 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9238 block_group = rb_entry(n, struct btrfs_block_group_cache, 9239 cache_node); 9240 rb_erase(&block_group->cache_node, 9241 &info->block_group_cache_tree); 9242 RB_CLEAR_NODE(&block_group->cache_node); 9243 spin_unlock(&info->block_group_cache_lock); 9244 9245 down_write(&block_group->space_info->groups_sem); 9246 list_del(&block_group->list); 9247 up_write(&block_group->space_info->groups_sem); 9248 9249 if (block_group->cached == BTRFS_CACHE_STARTED) 9250 wait_block_group_cache_done(block_group); 9251 9252 /* 9253 * We haven't cached this block group, which means we could 9254 * possibly have excluded extents on this block group. 9255 */ 9256 if (block_group->cached == BTRFS_CACHE_NO || 9257 block_group->cached == BTRFS_CACHE_ERROR) 9258 free_excluded_extents(info->extent_root, block_group); 9259 9260 btrfs_remove_free_space_cache(block_group); 9261 btrfs_put_block_group(block_group); 9262 9263 spin_lock(&info->block_group_cache_lock); 9264 } 9265 spin_unlock(&info->block_group_cache_lock); 9266 9267 /* now that all the block groups are freed, go through and 9268 * free all the space_info structs. This is only called during 9269 * the final stages of unmount, and so we know nobody is 9270 * using them. We call synchronize_rcu() once before we start, 9271 * just to be on the safe side. 9272 */ 9273 synchronize_rcu(); 9274 9275 release_global_block_rsv(info); 9276 9277 while (!list_empty(&info->space_info)) { 9278 int i; 9279 9280 space_info = list_entry(info->space_info.next, 9281 struct btrfs_space_info, 9282 list); 9283 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9284 if (WARN_ON(space_info->bytes_pinned > 0 || 9285 space_info->bytes_reserved > 0 || 9286 space_info->bytes_may_use > 0)) { 9287 dump_space_info(space_info, 0, 0); 9288 } 9289 } 9290 list_del(&space_info->list); 9291 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9292 struct kobject *kobj; 9293 kobj = space_info->block_group_kobjs[i]; 9294 space_info->block_group_kobjs[i] = NULL; 9295 if (kobj) { 9296 kobject_del(kobj); 9297 kobject_put(kobj); 9298 } 9299 } 9300 kobject_del(&space_info->kobj); 9301 kobject_put(&space_info->kobj); 9302 } 9303 return 0; 9304 } 9305 9306 static void __link_block_group(struct btrfs_space_info *space_info, 9307 struct btrfs_block_group_cache *cache) 9308 { 9309 int index = get_block_group_index(cache); 9310 bool first = false; 9311 9312 down_write(&space_info->groups_sem); 9313 if (list_empty(&space_info->block_groups[index])) 9314 first = true; 9315 list_add_tail(&cache->list, &space_info->block_groups[index]); 9316 up_write(&space_info->groups_sem); 9317 9318 if (first) { 9319 struct raid_kobject *rkobj; 9320 int ret; 9321 9322 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9323 if (!rkobj) 9324 goto out_err; 9325 rkobj->raid_type = index; 9326 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9327 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9328 "%s", get_raid_name(index)); 9329 if (ret) { 9330 kobject_put(&rkobj->kobj); 9331 goto out_err; 9332 } 9333 space_info->block_group_kobjs[index] = &rkobj->kobj; 9334 } 9335 9336 return; 9337 out_err: 9338 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9339 } 9340 9341 static struct btrfs_block_group_cache * 9342 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9343 { 9344 struct btrfs_block_group_cache *cache; 9345 9346 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9347 if (!cache) 9348 return NULL; 9349 9350 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9351 GFP_NOFS); 9352 if (!cache->free_space_ctl) { 9353 kfree(cache); 9354 return NULL; 9355 } 9356 9357 cache->key.objectid = start; 9358 cache->key.offset = size; 9359 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9360 9361 cache->sectorsize = root->sectorsize; 9362 cache->fs_info = root->fs_info; 9363 cache->full_stripe_len = btrfs_full_stripe_len(root, 9364 &root->fs_info->mapping_tree, 9365 start); 9366 atomic_set(&cache->count, 1); 9367 spin_lock_init(&cache->lock); 9368 init_rwsem(&cache->data_rwsem); 9369 INIT_LIST_HEAD(&cache->list); 9370 INIT_LIST_HEAD(&cache->cluster_list); 9371 INIT_LIST_HEAD(&cache->bg_list); 9372 INIT_LIST_HEAD(&cache->ro_list); 9373 INIT_LIST_HEAD(&cache->dirty_list); 9374 INIT_LIST_HEAD(&cache->io_list); 9375 btrfs_init_free_space_ctl(cache); 9376 atomic_set(&cache->trimming, 0); 9377 9378 return cache; 9379 } 9380 9381 int btrfs_read_block_groups(struct btrfs_root *root) 9382 { 9383 struct btrfs_path *path; 9384 int ret; 9385 struct btrfs_block_group_cache *cache; 9386 struct btrfs_fs_info *info = root->fs_info; 9387 struct btrfs_space_info *space_info; 9388 struct btrfs_key key; 9389 struct btrfs_key found_key; 9390 struct extent_buffer *leaf; 9391 int need_clear = 0; 9392 u64 cache_gen; 9393 9394 root = info->extent_root; 9395 key.objectid = 0; 9396 key.offset = 0; 9397 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9398 path = btrfs_alloc_path(); 9399 if (!path) 9400 return -ENOMEM; 9401 path->reada = 1; 9402 9403 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9404 if (btrfs_test_opt(root, SPACE_CACHE) && 9405 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9406 need_clear = 1; 9407 if (btrfs_test_opt(root, CLEAR_CACHE)) 9408 need_clear = 1; 9409 9410 while (1) { 9411 ret = find_first_block_group(root, path, &key); 9412 if (ret > 0) 9413 break; 9414 if (ret != 0) 9415 goto error; 9416 9417 leaf = path->nodes[0]; 9418 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9419 9420 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9421 found_key.offset); 9422 if (!cache) { 9423 ret = -ENOMEM; 9424 goto error; 9425 } 9426 9427 if (need_clear) { 9428 /* 9429 * When we mount with old space cache, we need to 9430 * set BTRFS_DC_CLEAR and set dirty flag. 9431 * 9432 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9433 * truncate the old free space cache inode and 9434 * setup a new one. 9435 * b) Setting 'dirty flag' makes sure that we flush 9436 * the new space cache info onto disk. 9437 */ 9438 if (btrfs_test_opt(root, SPACE_CACHE)) 9439 cache->disk_cache_state = BTRFS_DC_CLEAR; 9440 } 9441 9442 read_extent_buffer(leaf, &cache->item, 9443 btrfs_item_ptr_offset(leaf, path->slots[0]), 9444 sizeof(cache->item)); 9445 cache->flags = btrfs_block_group_flags(&cache->item); 9446 9447 key.objectid = found_key.objectid + found_key.offset; 9448 btrfs_release_path(path); 9449 9450 /* 9451 * We need to exclude the super stripes now so that the space 9452 * info has super bytes accounted for, otherwise we'll think 9453 * we have more space than we actually do. 9454 */ 9455 ret = exclude_super_stripes(root, cache); 9456 if (ret) { 9457 /* 9458 * We may have excluded something, so call this just in 9459 * case. 9460 */ 9461 free_excluded_extents(root, cache); 9462 btrfs_put_block_group(cache); 9463 goto error; 9464 } 9465 9466 /* 9467 * check for two cases, either we are full, and therefore 9468 * don't need to bother with the caching work since we won't 9469 * find any space, or we are empty, and we can just add all 9470 * the space in and be done with it. This saves us _alot_ of 9471 * time, particularly in the full case. 9472 */ 9473 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9474 cache->last_byte_to_unpin = (u64)-1; 9475 cache->cached = BTRFS_CACHE_FINISHED; 9476 free_excluded_extents(root, cache); 9477 } else if (btrfs_block_group_used(&cache->item) == 0) { 9478 cache->last_byte_to_unpin = (u64)-1; 9479 cache->cached = BTRFS_CACHE_FINISHED; 9480 add_new_free_space(cache, root->fs_info, 9481 found_key.objectid, 9482 found_key.objectid + 9483 found_key.offset); 9484 free_excluded_extents(root, cache); 9485 } 9486 9487 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9488 if (ret) { 9489 btrfs_remove_free_space_cache(cache); 9490 btrfs_put_block_group(cache); 9491 goto error; 9492 } 9493 9494 ret = update_space_info(info, cache->flags, found_key.offset, 9495 btrfs_block_group_used(&cache->item), 9496 &space_info); 9497 if (ret) { 9498 btrfs_remove_free_space_cache(cache); 9499 spin_lock(&info->block_group_cache_lock); 9500 rb_erase(&cache->cache_node, 9501 &info->block_group_cache_tree); 9502 RB_CLEAR_NODE(&cache->cache_node); 9503 spin_unlock(&info->block_group_cache_lock); 9504 btrfs_put_block_group(cache); 9505 goto error; 9506 } 9507 9508 cache->space_info = space_info; 9509 spin_lock(&cache->space_info->lock); 9510 cache->space_info->bytes_readonly += cache->bytes_super; 9511 spin_unlock(&cache->space_info->lock); 9512 9513 __link_block_group(space_info, cache); 9514 9515 set_avail_alloc_bits(root->fs_info, cache->flags); 9516 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9517 inc_block_group_ro(cache, 1); 9518 } else if (btrfs_block_group_used(&cache->item) == 0) { 9519 spin_lock(&info->unused_bgs_lock); 9520 /* Should always be true but just in case. */ 9521 if (list_empty(&cache->bg_list)) { 9522 btrfs_get_block_group(cache); 9523 list_add_tail(&cache->bg_list, 9524 &info->unused_bgs); 9525 } 9526 spin_unlock(&info->unused_bgs_lock); 9527 } 9528 } 9529 9530 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9531 if (!(get_alloc_profile(root, space_info->flags) & 9532 (BTRFS_BLOCK_GROUP_RAID10 | 9533 BTRFS_BLOCK_GROUP_RAID1 | 9534 BTRFS_BLOCK_GROUP_RAID5 | 9535 BTRFS_BLOCK_GROUP_RAID6 | 9536 BTRFS_BLOCK_GROUP_DUP))) 9537 continue; 9538 /* 9539 * avoid allocating from un-mirrored block group if there are 9540 * mirrored block groups. 9541 */ 9542 list_for_each_entry(cache, 9543 &space_info->block_groups[BTRFS_RAID_RAID0], 9544 list) 9545 inc_block_group_ro(cache, 1); 9546 list_for_each_entry(cache, 9547 &space_info->block_groups[BTRFS_RAID_SINGLE], 9548 list) 9549 inc_block_group_ro(cache, 1); 9550 } 9551 9552 init_global_block_rsv(info); 9553 ret = 0; 9554 error: 9555 btrfs_free_path(path); 9556 return ret; 9557 } 9558 9559 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9560 struct btrfs_root *root) 9561 { 9562 struct btrfs_block_group_cache *block_group, *tmp; 9563 struct btrfs_root *extent_root = root->fs_info->extent_root; 9564 struct btrfs_block_group_item item; 9565 struct btrfs_key key; 9566 int ret = 0; 9567 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 9568 9569 trans->can_flush_pending_bgs = false; 9570 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9571 if (ret) 9572 goto next; 9573 9574 spin_lock(&block_group->lock); 9575 memcpy(&item, &block_group->item, sizeof(item)); 9576 memcpy(&key, &block_group->key, sizeof(key)); 9577 spin_unlock(&block_group->lock); 9578 9579 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9580 sizeof(item)); 9581 if (ret) 9582 btrfs_abort_transaction(trans, extent_root, ret); 9583 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9584 key.objectid, key.offset); 9585 if (ret) 9586 btrfs_abort_transaction(trans, extent_root, ret); 9587 next: 9588 list_del_init(&block_group->bg_list); 9589 } 9590 trans->can_flush_pending_bgs = can_flush_pending_bgs; 9591 } 9592 9593 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9594 struct btrfs_root *root, u64 bytes_used, 9595 u64 type, u64 chunk_objectid, u64 chunk_offset, 9596 u64 size) 9597 { 9598 int ret; 9599 struct btrfs_root *extent_root; 9600 struct btrfs_block_group_cache *cache; 9601 9602 extent_root = root->fs_info->extent_root; 9603 9604 btrfs_set_log_full_commit(root->fs_info, trans); 9605 9606 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9607 if (!cache) 9608 return -ENOMEM; 9609 9610 btrfs_set_block_group_used(&cache->item, bytes_used); 9611 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9612 btrfs_set_block_group_flags(&cache->item, type); 9613 9614 cache->flags = type; 9615 cache->last_byte_to_unpin = (u64)-1; 9616 cache->cached = BTRFS_CACHE_FINISHED; 9617 ret = exclude_super_stripes(root, cache); 9618 if (ret) { 9619 /* 9620 * We may have excluded something, so call this just in 9621 * case. 9622 */ 9623 free_excluded_extents(root, cache); 9624 btrfs_put_block_group(cache); 9625 return ret; 9626 } 9627 9628 add_new_free_space(cache, root->fs_info, chunk_offset, 9629 chunk_offset + size); 9630 9631 free_excluded_extents(root, cache); 9632 9633 /* 9634 * Call to ensure the corresponding space_info object is created and 9635 * assigned to our block group, but don't update its counters just yet. 9636 * We want our bg to be added to the rbtree with its ->space_info set. 9637 */ 9638 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9639 &cache->space_info); 9640 if (ret) { 9641 btrfs_remove_free_space_cache(cache); 9642 btrfs_put_block_group(cache); 9643 return ret; 9644 } 9645 9646 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9647 if (ret) { 9648 btrfs_remove_free_space_cache(cache); 9649 btrfs_put_block_group(cache); 9650 return ret; 9651 } 9652 9653 /* 9654 * Now that our block group has its ->space_info set and is inserted in 9655 * the rbtree, update the space info's counters. 9656 */ 9657 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9658 &cache->space_info); 9659 if (ret) { 9660 btrfs_remove_free_space_cache(cache); 9661 spin_lock(&root->fs_info->block_group_cache_lock); 9662 rb_erase(&cache->cache_node, 9663 &root->fs_info->block_group_cache_tree); 9664 RB_CLEAR_NODE(&cache->cache_node); 9665 spin_unlock(&root->fs_info->block_group_cache_lock); 9666 btrfs_put_block_group(cache); 9667 return ret; 9668 } 9669 update_global_block_rsv(root->fs_info); 9670 9671 spin_lock(&cache->space_info->lock); 9672 cache->space_info->bytes_readonly += cache->bytes_super; 9673 spin_unlock(&cache->space_info->lock); 9674 9675 __link_block_group(cache->space_info, cache); 9676 9677 list_add_tail(&cache->bg_list, &trans->new_bgs); 9678 9679 set_avail_alloc_bits(extent_root->fs_info, type); 9680 9681 return 0; 9682 } 9683 9684 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9685 { 9686 u64 extra_flags = chunk_to_extended(flags) & 9687 BTRFS_EXTENDED_PROFILE_MASK; 9688 9689 write_seqlock(&fs_info->profiles_lock); 9690 if (flags & BTRFS_BLOCK_GROUP_DATA) 9691 fs_info->avail_data_alloc_bits &= ~extra_flags; 9692 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9693 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9695 fs_info->avail_system_alloc_bits &= ~extra_flags; 9696 write_sequnlock(&fs_info->profiles_lock); 9697 } 9698 9699 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9700 struct btrfs_root *root, u64 group_start, 9701 struct extent_map *em) 9702 { 9703 struct btrfs_path *path; 9704 struct btrfs_block_group_cache *block_group; 9705 struct btrfs_free_cluster *cluster; 9706 struct btrfs_root *tree_root = root->fs_info->tree_root; 9707 struct btrfs_key key; 9708 struct inode *inode; 9709 struct kobject *kobj = NULL; 9710 int ret; 9711 int index; 9712 int factor; 9713 struct btrfs_caching_control *caching_ctl = NULL; 9714 bool remove_em; 9715 9716 root = root->fs_info->extent_root; 9717 9718 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9719 BUG_ON(!block_group); 9720 BUG_ON(!block_group->ro); 9721 9722 /* 9723 * Free the reserved super bytes from this block group before 9724 * remove it. 9725 */ 9726 free_excluded_extents(root, block_group); 9727 9728 memcpy(&key, &block_group->key, sizeof(key)); 9729 index = get_block_group_index(block_group); 9730 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9731 BTRFS_BLOCK_GROUP_RAID1 | 9732 BTRFS_BLOCK_GROUP_RAID10)) 9733 factor = 2; 9734 else 9735 factor = 1; 9736 9737 /* make sure this block group isn't part of an allocation cluster */ 9738 cluster = &root->fs_info->data_alloc_cluster; 9739 spin_lock(&cluster->refill_lock); 9740 btrfs_return_cluster_to_free_space(block_group, cluster); 9741 spin_unlock(&cluster->refill_lock); 9742 9743 /* 9744 * make sure this block group isn't part of a metadata 9745 * allocation cluster 9746 */ 9747 cluster = &root->fs_info->meta_alloc_cluster; 9748 spin_lock(&cluster->refill_lock); 9749 btrfs_return_cluster_to_free_space(block_group, cluster); 9750 spin_unlock(&cluster->refill_lock); 9751 9752 path = btrfs_alloc_path(); 9753 if (!path) { 9754 ret = -ENOMEM; 9755 goto out; 9756 } 9757 9758 /* 9759 * get the inode first so any iput calls done for the io_list 9760 * aren't the final iput (no unlinks allowed now) 9761 */ 9762 inode = lookup_free_space_inode(tree_root, block_group, path); 9763 9764 mutex_lock(&trans->transaction->cache_write_mutex); 9765 /* 9766 * make sure our free spache cache IO is done before remove the 9767 * free space inode 9768 */ 9769 spin_lock(&trans->transaction->dirty_bgs_lock); 9770 if (!list_empty(&block_group->io_list)) { 9771 list_del_init(&block_group->io_list); 9772 9773 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9774 9775 spin_unlock(&trans->transaction->dirty_bgs_lock); 9776 btrfs_wait_cache_io(root, trans, block_group, 9777 &block_group->io_ctl, path, 9778 block_group->key.objectid); 9779 btrfs_put_block_group(block_group); 9780 spin_lock(&trans->transaction->dirty_bgs_lock); 9781 } 9782 9783 if (!list_empty(&block_group->dirty_list)) { 9784 list_del_init(&block_group->dirty_list); 9785 btrfs_put_block_group(block_group); 9786 } 9787 spin_unlock(&trans->transaction->dirty_bgs_lock); 9788 mutex_unlock(&trans->transaction->cache_write_mutex); 9789 9790 if (!IS_ERR(inode)) { 9791 ret = btrfs_orphan_add(trans, inode); 9792 if (ret) { 9793 btrfs_add_delayed_iput(inode); 9794 goto out; 9795 } 9796 clear_nlink(inode); 9797 /* One for the block groups ref */ 9798 spin_lock(&block_group->lock); 9799 if (block_group->iref) { 9800 block_group->iref = 0; 9801 block_group->inode = NULL; 9802 spin_unlock(&block_group->lock); 9803 iput(inode); 9804 } else { 9805 spin_unlock(&block_group->lock); 9806 } 9807 /* One for our lookup ref */ 9808 btrfs_add_delayed_iput(inode); 9809 } 9810 9811 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9812 key.offset = block_group->key.objectid; 9813 key.type = 0; 9814 9815 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9816 if (ret < 0) 9817 goto out; 9818 if (ret > 0) 9819 btrfs_release_path(path); 9820 if (ret == 0) { 9821 ret = btrfs_del_item(trans, tree_root, path); 9822 if (ret) 9823 goto out; 9824 btrfs_release_path(path); 9825 } 9826 9827 spin_lock(&root->fs_info->block_group_cache_lock); 9828 rb_erase(&block_group->cache_node, 9829 &root->fs_info->block_group_cache_tree); 9830 RB_CLEAR_NODE(&block_group->cache_node); 9831 9832 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9833 root->fs_info->first_logical_byte = (u64)-1; 9834 spin_unlock(&root->fs_info->block_group_cache_lock); 9835 9836 down_write(&block_group->space_info->groups_sem); 9837 /* 9838 * we must use list_del_init so people can check to see if they 9839 * are still on the list after taking the semaphore 9840 */ 9841 list_del_init(&block_group->list); 9842 if (list_empty(&block_group->space_info->block_groups[index])) { 9843 kobj = block_group->space_info->block_group_kobjs[index]; 9844 block_group->space_info->block_group_kobjs[index] = NULL; 9845 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9846 } 9847 up_write(&block_group->space_info->groups_sem); 9848 if (kobj) { 9849 kobject_del(kobj); 9850 kobject_put(kobj); 9851 } 9852 9853 if (block_group->has_caching_ctl) 9854 caching_ctl = get_caching_control(block_group); 9855 if (block_group->cached == BTRFS_CACHE_STARTED) 9856 wait_block_group_cache_done(block_group); 9857 if (block_group->has_caching_ctl) { 9858 down_write(&root->fs_info->commit_root_sem); 9859 if (!caching_ctl) { 9860 struct btrfs_caching_control *ctl; 9861 9862 list_for_each_entry(ctl, 9863 &root->fs_info->caching_block_groups, list) 9864 if (ctl->block_group == block_group) { 9865 caching_ctl = ctl; 9866 atomic_inc(&caching_ctl->count); 9867 break; 9868 } 9869 } 9870 if (caching_ctl) 9871 list_del_init(&caching_ctl->list); 9872 up_write(&root->fs_info->commit_root_sem); 9873 if (caching_ctl) { 9874 /* Once for the caching bgs list and once for us. */ 9875 put_caching_control(caching_ctl); 9876 put_caching_control(caching_ctl); 9877 } 9878 } 9879 9880 spin_lock(&trans->transaction->dirty_bgs_lock); 9881 if (!list_empty(&block_group->dirty_list)) { 9882 WARN_ON(1); 9883 } 9884 if (!list_empty(&block_group->io_list)) { 9885 WARN_ON(1); 9886 } 9887 spin_unlock(&trans->transaction->dirty_bgs_lock); 9888 btrfs_remove_free_space_cache(block_group); 9889 9890 spin_lock(&block_group->space_info->lock); 9891 list_del_init(&block_group->ro_list); 9892 9893 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9894 WARN_ON(block_group->space_info->total_bytes 9895 < block_group->key.offset); 9896 WARN_ON(block_group->space_info->bytes_readonly 9897 < block_group->key.offset); 9898 WARN_ON(block_group->space_info->disk_total 9899 < block_group->key.offset * factor); 9900 } 9901 block_group->space_info->total_bytes -= block_group->key.offset; 9902 block_group->space_info->bytes_readonly -= block_group->key.offset; 9903 block_group->space_info->disk_total -= block_group->key.offset * factor; 9904 9905 spin_unlock(&block_group->space_info->lock); 9906 9907 memcpy(&key, &block_group->key, sizeof(key)); 9908 9909 lock_chunks(root); 9910 if (!list_empty(&em->list)) { 9911 /* We're in the transaction->pending_chunks list. */ 9912 free_extent_map(em); 9913 } 9914 spin_lock(&block_group->lock); 9915 block_group->removed = 1; 9916 /* 9917 * At this point trimming can't start on this block group, because we 9918 * removed the block group from the tree fs_info->block_group_cache_tree 9919 * so no one can't find it anymore and even if someone already got this 9920 * block group before we removed it from the rbtree, they have already 9921 * incremented block_group->trimming - if they didn't, they won't find 9922 * any free space entries because we already removed them all when we 9923 * called btrfs_remove_free_space_cache(). 9924 * 9925 * And we must not remove the extent map from the fs_info->mapping_tree 9926 * to prevent the same logical address range and physical device space 9927 * ranges from being reused for a new block group. This is because our 9928 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9929 * completely transactionless, so while it is trimming a range the 9930 * currently running transaction might finish and a new one start, 9931 * allowing for new block groups to be created that can reuse the same 9932 * physical device locations unless we take this special care. 9933 * 9934 * There may also be an implicit trim operation if the file system 9935 * is mounted with -odiscard. The same protections must remain 9936 * in place until the extents have been discarded completely when 9937 * the transaction commit has completed. 9938 */ 9939 remove_em = (atomic_read(&block_group->trimming) == 0); 9940 /* 9941 * Make sure a trimmer task always sees the em in the pinned_chunks list 9942 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9943 * before checking block_group->removed). 9944 */ 9945 if (!remove_em) { 9946 /* 9947 * Our em might be in trans->transaction->pending_chunks which 9948 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9949 * and so is the fs_info->pinned_chunks list. 9950 * 9951 * So at this point we must be holding the chunk_mutex to avoid 9952 * any races with chunk allocation (more specifically at 9953 * volumes.c:contains_pending_extent()), to ensure it always 9954 * sees the em, either in the pending_chunks list or in the 9955 * pinned_chunks list. 9956 */ 9957 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9958 } 9959 spin_unlock(&block_group->lock); 9960 9961 if (remove_em) { 9962 struct extent_map_tree *em_tree; 9963 9964 em_tree = &root->fs_info->mapping_tree.map_tree; 9965 write_lock(&em_tree->lock); 9966 /* 9967 * The em might be in the pending_chunks list, so make sure the 9968 * chunk mutex is locked, since remove_extent_mapping() will 9969 * delete us from that list. 9970 */ 9971 remove_extent_mapping(em_tree, em); 9972 write_unlock(&em_tree->lock); 9973 /* once for the tree */ 9974 free_extent_map(em); 9975 } 9976 9977 unlock_chunks(root); 9978 9979 btrfs_put_block_group(block_group); 9980 btrfs_put_block_group(block_group); 9981 9982 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9983 if (ret > 0) 9984 ret = -EIO; 9985 if (ret < 0) 9986 goto out; 9987 9988 ret = btrfs_del_item(trans, root, path); 9989 out: 9990 btrfs_free_path(path); 9991 return ret; 9992 } 9993 9994 /* 9995 * Process the unused_bgs list and remove any that don't have any allocated 9996 * space inside of them. 9997 */ 9998 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9999 { 10000 struct btrfs_block_group_cache *block_group; 10001 struct btrfs_space_info *space_info; 10002 struct btrfs_root *root = fs_info->extent_root; 10003 struct btrfs_trans_handle *trans; 10004 int ret = 0; 10005 10006 if (!fs_info->open) 10007 return; 10008 10009 spin_lock(&fs_info->unused_bgs_lock); 10010 while (!list_empty(&fs_info->unused_bgs)) { 10011 u64 start, end; 10012 int trimming; 10013 10014 block_group = list_first_entry(&fs_info->unused_bgs, 10015 struct btrfs_block_group_cache, 10016 bg_list); 10017 space_info = block_group->space_info; 10018 list_del_init(&block_group->bg_list); 10019 if (ret || btrfs_mixed_space_info(space_info)) { 10020 btrfs_put_block_group(block_group); 10021 continue; 10022 } 10023 spin_unlock(&fs_info->unused_bgs_lock); 10024 10025 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 10026 10027 /* Don't want to race with allocators so take the groups_sem */ 10028 down_write(&space_info->groups_sem); 10029 spin_lock(&block_group->lock); 10030 if (block_group->reserved || 10031 btrfs_block_group_used(&block_group->item) || 10032 block_group->ro) { 10033 /* 10034 * We want to bail if we made new allocations or have 10035 * outstanding allocations in this block group. We do 10036 * the ro check in case balance is currently acting on 10037 * this block group. 10038 */ 10039 spin_unlock(&block_group->lock); 10040 up_write(&space_info->groups_sem); 10041 goto next; 10042 } 10043 spin_unlock(&block_group->lock); 10044 10045 /* We don't want to force the issue, only flip if it's ok. */ 10046 ret = inc_block_group_ro(block_group, 0); 10047 up_write(&space_info->groups_sem); 10048 if (ret < 0) { 10049 ret = 0; 10050 goto next; 10051 } 10052 10053 /* 10054 * Want to do this before we do anything else so we can recover 10055 * properly if we fail to join the transaction. 10056 */ 10057 /* 1 for btrfs_orphan_reserve_metadata() */ 10058 trans = btrfs_start_transaction(root, 1); 10059 if (IS_ERR(trans)) { 10060 btrfs_dec_block_group_ro(root, block_group); 10061 ret = PTR_ERR(trans); 10062 goto next; 10063 } 10064 10065 /* 10066 * We could have pending pinned extents for this block group, 10067 * just delete them, we don't care about them anymore. 10068 */ 10069 start = block_group->key.objectid; 10070 end = start + block_group->key.offset - 1; 10071 /* 10072 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10073 * btrfs_finish_extent_commit(). If we are at transaction N, 10074 * another task might be running finish_extent_commit() for the 10075 * previous transaction N - 1, and have seen a range belonging 10076 * to the block group in freed_extents[] before we were able to 10077 * clear the whole block group range from freed_extents[]. This 10078 * means that task can lookup for the block group after we 10079 * unpinned it from freed_extents[] and removed it, leading to 10080 * a BUG_ON() at btrfs_unpin_extent_range(). 10081 */ 10082 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10083 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10084 EXTENT_DIRTY, GFP_NOFS); 10085 if (ret) { 10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10087 btrfs_dec_block_group_ro(root, block_group); 10088 goto end_trans; 10089 } 10090 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10091 EXTENT_DIRTY, GFP_NOFS); 10092 if (ret) { 10093 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10094 btrfs_dec_block_group_ro(root, block_group); 10095 goto end_trans; 10096 } 10097 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10098 10099 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10100 spin_lock(&space_info->lock); 10101 spin_lock(&block_group->lock); 10102 10103 space_info->bytes_pinned -= block_group->pinned; 10104 space_info->bytes_readonly += block_group->pinned; 10105 percpu_counter_add(&space_info->total_bytes_pinned, 10106 -block_group->pinned); 10107 block_group->pinned = 0; 10108 10109 spin_unlock(&block_group->lock); 10110 spin_unlock(&space_info->lock); 10111 10112 /* DISCARD can flip during remount */ 10113 trimming = btrfs_test_opt(root, DISCARD); 10114 10115 /* Implicit trim during transaction commit. */ 10116 if (trimming) 10117 btrfs_get_block_group_trimming(block_group); 10118 10119 /* 10120 * Btrfs_remove_chunk will abort the transaction if things go 10121 * horribly wrong. 10122 */ 10123 ret = btrfs_remove_chunk(trans, root, 10124 block_group->key.objectid); 10125 10126 if (ret) { 10127 if (trimming) 10128 btrfs_put_block_group_trimming(block_group); 10129 goto end_trans; 10130 } 10131 10132 /* 10133 * If we're not mounted with -odiscard, we can just forget 10134 * about this block group. Otherwise we'll need to wait 10135 * until transaction commit to do the actual discard. 10136 */ 10137 if (trimming) { 10138 WARN_ON(!list_empty(&block_group->bg_list)); 10139 spin_lock(&trans->transaction->deleted_bgs_lock); 10140 list_move(&block_group->bg_list, 10141 &trans->transaction->deleted_bgs); 10142 spin_unlock(&trans->transaction->deleted_bgs_lock); 10143 btrfs_get_block_group(block_group); 10144 } 10145 end_trans: 10146 btrfs_end_transaction(trans, root); 10147 next: 10148 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 10149 btrfs_put_block_group(block_group); 10150 spin_lock(&fs_info->unused_bgs_lock); 10151 } 10152 spin_unlock(&fs_info->unused_bgs_lock); 10153 } 10154 10155 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10156 { 10157 struct btrfs_space_info *space_info; 10158 struct btrfs_super_block *disk_super; 10159 u64 features; 10160 u64 flags; 10161 int mixed = 0; 10162 int ret; 10163 10164 disk_super = fs_info->super_copy; 10165 if (!btrfs_super_root(disk_super)) 10166 return 1; 10167 10168 features = btrfs_super_incompat_flags(disk_super); 10169 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10170 mixed = 1; 10171 10172 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10173 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10174 if (ret) 10175 goto out; 10176 10177 if (mixed) { 10178 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10180 } else { 10181 flags = BTRFS_BLOCK_GROUP_METADATA; 10182 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10183 if (ret) 10184 goto out; 10185 10186 flags = BTRFS_BLOCK_GROUP_DATA; 10187 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10188 } 10189 out: 10190 return ret; 10191 } 10192 10193 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10194 { 10195 return unpin_extent_range(root, start, end, false); 10196 } 10197 10198 /* 10199 * It used to be that old block groups would be left around forever. 10200 * Iterating over them would be enough to trim unused space. Since we 10201 * now automatically remove them, we also need to iterate over unallocated 10202 * space. 10203 * 10204 * We don't want a transaction for this since the discard may take a 10205 * substantial amount of time. We don't require that a transaction be 10206 * running, but we do need to take a running transaction into account 10207 * to ensure that we're not discarding chunks that were released in 10208 * the current transaction. 10209 * 10210 * Holding the chunks lock will prevent other threads from allocating 10211 * or releasing chunks, but it won't prevent a running transaction 10212 * from committing and releasing the memory that the pending chunks 10213 * list head uses. For that, we need to take a reference to the 10214 * transaction. 10215 */ 10216 static int btrfs_trim_free_extents(struct btrfs_device *device, 10217 u64 minlen, u64 *trimmed) 10218 { 10219 u64 start = 0, len = 0; 10220 int ret; 10221 10222 *trimmed = 0; 10223 10224 /* Not writeable = nothing to do. */ 10225 if (!device->writeable) 10226 return 0; 10227 10228 /* No free space = nothing to do. */ 10229 if (device->total_bytes <= device->bytes_used) 10230 return 0; 10231 10232 ret = 0; 10233 10234 while (1) { 10235 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10236 struct btrfs_transaction *trans; 10237 u64 bytes; 10238 10239 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10240 if (ret) 10241 return ret; 10242 10243 down_read(&fs_info->commit_root_sem); 10244 10245 spin_lock(&fs_info->trans_lock); 10246 trans = fs_info->running_transaction; 10247 if (trans) 10248 atomic_inc(&trans->use_count); 10249 spin_unlock(&fs_info->trans_lock); 10250 10251 ret = find_free_dev_extent_start(trans, device, minlen, start, 10252 &start, &len); 10253 if (trans) 10254 btrfs_put_transaction(trans); 10255 10256 if (ret) { 10257 up_read(&fs_info->commit_root_sem); 10258 mutex_unlock(&fs_info->chunk_mutex); 10259 if (ret == -ENOSPC) 10260 ret = 0; 10261 break; 10262 } 10263 10264 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10265 up_read(&fs_info->commit_root_sem); 10266 mutex_unlock(&fs_info->chunk_mutex); 10267 10268 if (ret) 10269 break; 10270 10271 start += len; 10272 *trimmed += bytes; 10273 10274 if (fatal_signal_pending(current)) { 10275 ret = -ERESTARTSYS; 10276 break; 10277 } 10278 10279 cond_resched(); 10280 } 10281 10282 return ret; 10283 } 10284 10285 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10286 { 10287 struct btrfs_fs_info *fs_info = root->fs_info; 10288 struct btrfs_block_group_cache *cache = NULL; 10289 struct btrfs_device *device; 10290 struct list_head *devices; 10291 u64 group_trimmed; 10292 u64 start; 10293 u64 end; 10294 u64 trimmed = 0; 10295 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10296 int ret = 0; 10297 10298 /* 10299 * try to trim all FS space, our block group may start from non-zero. 10300 */ 10301 if (range->len == total_bytes) 10302 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10303 else 10304 cache = btrfs_lookup_block_group(fs_info, range->start); 10305 10306 while (cache) { 10307 if (cache->key.objectid >= (range->start + range->len)) { 10308 btrfs_put_block_group(cache); 10309 break; 10310 } 10311 10312 start = max(range->start, cache->key.objectid); 10313 end = min(range->start + range->len, 10314 cache->key.objectid + cache->key.offset); 10315 10316 if (end - start >= range->minlen) { 10317 if (!block_group_cache_done(cache)) { 10318 ret = cache_block_group(cache, 0); 10319 if (ret) { 10320 btrfs_put_block_group(cache); 10321 break; 10322 } 10323 ret = wait_block_group_cache_done(cache); 10324 if (ret) { 10325 btrfs_put_block_group(cache); 10326 break; 10327 } 10328 } 10329 ret = btrfs_trim_block_group(cache, 10330 &group_trimmed, 10331 start, 10332 end, 10333 range->minlen); 10334 10335 trimmed += group_trimmed; 10336 if (ret) { 10337 btrfs_put_block_group(cache); 10338 break; 10339 } 10340 } 10341 10342 cache = next_block_group(fs_info->tree_root, cache); 10343 } 10344 10345 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10346 devices = &root->fs_info->fs_devices->alloc_list; 10347 list_for_each_entry(device, devices, dev_alloc_list) { 10348 ret = btrfs_trim_free_extents(device, range->minlen, 10349 &group_trimmed); 10350 if (ret) 10351 break; 10352 10353 trimmed += group_trimmed; 10354 } 10355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10356 10357 range->len = trimmed; 10358 return ret; 10359 } 10360 10361 /* 10362 * btrfs_{start,end}_write_no_snapshoting() are similar to 10363 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10364 * data into the page cache through nocow before the subvolume is snapshoted, 10365 * but flush the data into disk after the snapshot creation, or to prevent 10366 * operations while snapshoting is ongoing and that cause the snapshot to be 10367 * inconsistent (writes followed by expanding truncates for example). 10368 */ 10369 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10370 { 10371 percpu_counter_dec(&root->subv_writers->counter); 10372 /* 10373 * Make sure counter is updated before we wake up 10374 * waiters. 10375 */ 10376 smp_mb(); 10377 if (waitqueue_active(&root->subv_writers->wait)) 10378 wake_up(&root->subv_writers->wait); 10379 } 10380 10381 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10382 { 10383 if (atomic_read(&root->will_be_snapshoted)) 10384 return 0; 10385 10386 percpu_counter_inc(&root->subv_writers->counter); 10387 /* 10388 * Make sure counter is updated before we check for snapshot creation. 10389 */ 10390 smp_mb(); 10391 if (atomic_read(&root->will_be_snapshoted)) { 10392 btrfs_end_write_no_snapshoting(root); 10393 return 0; 10394 } 10395 return 1; 10396 } 10397