xref: /linux/fs/btrfs/extent-tree.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include "compat.h"
24 #include "hash.h"
25 #include "crc32c.h"
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "print-tree.h"
29 #include "transaction.h"
30 #include "volumes.h"
31 #include "locking.h"
32 #include "ref-cache.h"
33 
34 #define PENDING_EXTENT_INSERT 0
35 #define PENDING_EXTENT_DELETE 1
36 #define PENDING_BACKREF_UPDATE 2
37 
38 struct pending_extent_op {
39 	int type;
40 	u64 bytenr;
41 	u64 num_bytes;
42 	u64 parent;
43 	u64 orig_parent;
44 	u64 generation;
45 	u64 orig_generation;
46 	int level;
47 	struct list_head list;
48 	int del;
49 };
50 
51 static int finish_current_insert(struct btrfs_trans_handle *trans,
52 				 struct btrfs_root *extent_root, int all);
53 static int del_pending_extents(struct btrfs_trans_handle *trans,
54 			       struct btrfs_root *extent_root, int all);
55 static int pin_down_bytes(struct btrfs_trans_handle *trans,
56 			  struct btrfs_root *root,
57 			  u64 bytenr, u64 num_bytes, int is_data);
58 static int update_block_group(struct btrfs_trans_handle *trans,
59 			      struct btrfs_root *root,
60 			      u64 bytenr, u64 num_bytes, int alloc,
61 			      int mark_free);
62 
63 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
64 {
65 	return (cache->flags & bits) == bits;
66 }
67 
68 /*
69  * this adds the block group to the fs_info rb tree for the block group
70  * cache
71  */
72 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
73 				struct btrfs_block_group_cache *block_group)
74 {
75 	struct rb_node **p;
76 	struct rb_node *parent = NULL;
77 	struct btrfs_block_group_cache *cache;
78 
79 	spin_lock(&info->block_group_cache_lock);
80 	p = &info->block_group_cache_tree.rb_node;
81 
82 	while (*p) {
83 		parent = *p;
84 		cache = rb_entry(parent, struct btrfs_block_group_cache,
85 				 cache_node);
86 		if (block_group->key.objectid < cache->key.objectid) {
87 			p = &(*p)->rb_left;
88 		} else if (block_group->key.objectid > cache->key.objectid) {
89 			p = &(*p)->rb_right;
90 		} else {
91 			spin_unlock(&info->block_group_cache_lock);
92 			return -EEXIST;
93 		}
94 	}
95 
96 	rb_link_node(&block_group->cache_node, parent, p);
97 	rb_insert_color(&block_group->cache_node,
98 			&info->block_group_cache_tree);
99 	spin_unlock(&info->block_group_cache_lock);
100 
101 	return 0;
102 }
103 
104 /*
105  * This will return the block group at or after bytenr if contains is 0, else
106  * it will return the block group that contains the bytenr
107  */
108 static struct btrfs_block_group_cache *
109 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
110 			      int contains)
111 {
112 	struct btrfs_block_group_cache *cache, *ret = NULL;
113 	struct rb_node *n;
114 	u64 end, start;
115 
116 	spin_lock(&info->block_group_cache_lock);
117 	n = info->block_group_cache_tree.rb_node;
118 
119 	while (n) {
120 		cache = rb_entry(n, struct btrfs_block_group_cache,
121 				 cache_node);
122 		end = cache->key.objectid + cache->key.offset - 1;
123 		start = cache->key.objectid;
124 
125 		if (bytenr < start) {
126 			if (!contains && (!ret || start < ret->key.objectid))
127 				ret = cache;
128 			n = n->rb_left;
129 		} else if (bytenr > start) {
130 			if (contains && bytenr <= end) {
131 				ret = cache;
132 				break;
133 			}
134 			n = n->rb_right;
135 		} else {
136 			ret = cache;
137 			break;
138 		}
139 	}
140 	if (ret)
141 		atomic_inc(&ret->count);
142 	spin_unlock(&info->block_group_cache_lock);
143 
144 	return ret;
145 }
146 
147 /*
148  * this is only called by cache_block_group, since we could have freed extents
149  * we need to check the pinned_extents for any extents that can't be used yet
150  * since their free space will be released as soon as the transaction commits.
151  */
152 static int add_new_free_space(struct btrfs_block_group_cache *block_group,
153 			      struct btrfs_fs_info *info, u64 start, u64 end)
154 {
155 	u64 extent_start, extent_end, size;
156 	int ret;
157 
158 	mutex_lock(&info->pinned_mutex);
159 	while (start < end) {
160 		ret = find_first_extent_bit(&info->pinned_extents, start,
161 					    &extent_start, &extent_end,
162 					    EXTENT_DIRTY);
163 		if (ret)
164 			break;
165 
166 		if (extent_start == start) {
167 			start = extent_end + 1;
168 		} else if (extent_start > start && extent_start < end) {
169 			size = extent_start - start;
170 			ret = btrfs_add_free_space(block_group, start,
171 						   size);
172 			BUG_ON(ret);
173 			start = extent_end + 1;
174 		} else {
175 			break;
176 		}
177 	}
178 
179 	if (start < end) {
180 		size = end - start;
181 		ret = btrfs_add_free_space(block_group, start, size);
182 		BUG_ON(ret);
183 	}
184 	mutex_unlock(&info->pinned_mutex);
185 
186 	return 0;
187 }
188 
189 static int remove_sb_from_cache(struct btrfs_root *root,
190 				struct btrfs_block_group_cache *cache)
191 {
192 	u64 bytenr;
193 	u64 *logical;
194 	int stripe_len;
195 	int i, nr, ret;
196 
197 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
198 		bytenr = btrfs_sb_offset(i);
199 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
200 				       cache->key.objectid, bytenr, 0,
201 				       &logical, &nr, &stripe_len);
202 		BUG_ON(ret);
203 		while (nr--) {
204 			btrfs_remove_free_space(cache, logical[nr],
205 						stripe_len);
206 		}
207 		kfree(logical);
208 	}
209 	return 0;
210 }
211 
212 static int cache_block_group(struct btrfs_root *root,
213 			     struct btrfs_block_group_cache *block_group)
214 {
215 	struct btrfs_path *path;
216 	int ret = 0;
217 	struct btrfs_key key;
218 	struct extent_buffer *leaf;
219 	int slot;
220 	u64 last;
221 
222 	if (!block_group)
223 		return 0;
224 
225 	root = root->fs_info->extent_root;
226 
227 	if (block_group->cached)
228 		return 0;
229 
230 	path = btrfs_alloc_path();
231 	if (!path)
232 		return -ENOMEM;
233 
234 	path->reada = 2;
235 	/*
236 	 * we get into deadlocks with paths held by callers of this function.
237 	 * since the alloc_mutex is protecting things right now, just
238 	 * skip the locking here
239 	 */
240 	path->skip_locking = 1;
241 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
242 	key.objectid = last;
243 	key.offset = 0;
244 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
245 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
246 	if (ret < 0)
247 		goto err;
248 
249 	while (1) {
250 		leaf = path->nodes[0];
251 		slot = path->slots[0];
252 		if (slot >= btrfs_header_nritems(leaf)) {
253 			ret = btrfs_next_leaf(root, path);
254 			if (ret < 0)
255 				goto err;
256 			if (ret == 0)
257 				continue;
258 			else
259 				break;
260 		}
261 		btrfs_item_key_to_cpu(leaf, &key, slot);
262 		if (key.objectid < block_group->key.objectid)
263 			goto next;
264 
265 		if (key.objectid >= block_group->key.objectid +
266 		    block_group->key.offset)
267 			break;
268 
269 		if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
270 			add_new_free_space(block_group, root->fs_info, last,
271 					   key.objectid);
272 
273 			last = key.objectid + key.offset;
274 		}
275 next:
276 		path->slots[0]++;
277 	}
278 
279 	add_new_free_space(block_group, root->fs_info, last,
280 			   block_group->key.objectid +
281 			   block_group->key.offset);
282 
283 	remove_sb_from_cache(root, block_group);
284 	block_group->cached = 1;
285 	ret = 0;
286 err:
287 	btrfs_free_path(path);
288 	return ret;
289 }
290 
291 /*
292  * return the block group that starts at or after bytenr
293  */
294 static struct btrfs_block_group_cache *
295 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
296 {
297 	struct btrfs_block_group_cache *cache;
298 
299 	cache = block_group_cache_tree_search(info, bytenr, 0);
300 
301 	return cache;
302 }
303 
304 /*
305  * return the block group that contains teh given bytenr
306  */
307 struct btrfs_block_group_cache *btrfs_lookup_block_group(
308 						 struct btrfs_fs_info *info,
309 						 u64 bytenr)
310 {
311 	struct btrfs_block_group_cache *cache;
312 
313 	cache = block_group_cache_tree_search(info, bytenr, 1);
314 
315 	return cache;
316 }
317 
318 static inline void put_block_group(struct btrfs_block_group_cache *cache)
319 {
320 	if (atomic_dec_and_test(&cache->count))
321 		kfree(cache);
322 }
323 
324 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
325 						  u64 flags)
326 {
327 	struct list_head *head = &info->space_info;
328 	struct btrfs_space_info *found;
329 	list_for_each_entry(found, head, list) {
330 		if (found->flags == flags)
331 			return found;
332 	}
333 	return NULL;
334 }
335 
336 static u64 div_factor(u64 num, int factor)
337 {
338 	if (factor == 10)
339 		return num;
340 	num *= factor;
341 	do_div(num, 10);
342 	return num;
343 }
344 
345 u64 btrfs_find_block_group(struct btrfs_root *root,
346 			   u64 search_start, u64 search_hint, int owner)
347 {
348 	struct btrfs_block_group_cache *cache;
349 	u64 used;
350 	u64 last = max(search_hint, search_start);
351 	u64 group_start = 0;
352 	int full_search = 0;
353 	int factor = 9;
354 	int wrapped = 0;
355 again:
356 	while (1) {
357 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
358 		if (!cache)
359 			break;
360 
361 		spin_lock(&cache->lock);
362 		last = cache->key.objectid + cache->key.offset;
363 		used = btrfs_block_group_used(&cache->item);
364 
365 		if ((full_search || !cache->ro) &&
366 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
367 			if (used + cache->pinned + cache->reserved <
368 			    div_factor(cache->key.offset, factor)) {
369 				group_start = cache->key.objectid;
370 				spin_unlock(&cache->lock);
371 				put_block_group(cache);
372 				goto found;
373 			}
374 		}
375 		spin_unlock(&cache->lock);
376 		put_block_group(cache);
377 		cond_resched();
378 	}
379 	if (!wrapped) {
380 		last = search_start;
381 		wrapped = 1;
382 		goto again;
383 	}
384 	if (!full_search && factor < 10) {
385 		last = search_start;
386 		full_search = 1;
387 		factor = 10;
388 		goto again;
389 	}
390 found:
391 	return group_start;
392 }
393 
394 /* simple helper to search for an existing extent at a given offset */
395 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
396 {
397 	int ret;
398 	struct btrfs_key key;
399 	struct btrfs_path *path;
400 
401 	path = btrfs_alloc_path();
402 	BUG_ON(!path);
403 	key.objectid = start;
404 	key.offset = len;
405 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
406 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
407 				0, 0);
408 	btrfs_free_path(path);
409 	return ret;
410 }
411 
412 /*
413  * Back reference rules.  Back refs have three main goals:
414  *
415  * 1) differentiate between all holders of references to an extent so that
416  *    when a reference is dropped we can make sure it was a valid reference
417  *    before freeing the extent.
418  *
419  * 2) Provide enough information to quickly find the holders of an extent
420  *    if we notice a given block is corrupted or bad.
421  *
422  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
423  *    maintenance.  This is actually the same as #2, but with a slightly
424  *    different use case.
425  *
426  * File extents can be referenced by:
427  *
428  * - multiple snapshots, subvolumes, or different generations in one subvol
429  * - different files inside a single subvolume
430  * - different offsets inside a file (bookend extents in file.c)
431  *
432  * The extent ref structure has fields for:
433  *
434  * - Objectid of the subvolume root
435  * - Generation number of the tree holding the reference
436  * - objectid of the file holding the reference
437  * - number of references holding by parent node (alway 1 for tree blocks)
438  *
439  * Btree leaf may hold multiple references to a file extent. In most cases,
440  * these references are from same file and the corresponding offsets inside
441  * the file are close together.
442  *
443  * When a file extent is allocated the fields are filled in:
444  *     (root_key.objectid, trans->transid, inode objectid, 1)
445  *
446  * When a leaf is cow'd new references are added for every file extent found
447  * in the leaf.  It looks similar to the create case, but trans->transid will
448  * be different when the block is cow'd.
449  *
450  *     (root_key.objectid, trans->transid, inode objectid,
451  *      number of references in the leaf)
452  *
453  * When a file extent is removed either during snapshot deletion or
454  * file truncation, we find the corresponding back reference and check
455  * the following fields:
456  *
457  *     (btrfs_header_owner(leaf), btrfs_header_generation(leaf),
458  *      inode objectid)
459  *
460  * Btree extents can be referenced by:
461  *
462  * - Different subvolumes
463  * - Different generations of the same subvolume
464  *
465  * When a tree block is created, back references are inserted:
466  *
467  * (root->root_key.objectid, trans->transid, level, 1)
468  *
469  * When a tree block is cow'd, new back references are added for all the
470  * blocks it points to. If the tree block isn't in reference counted root,
471  * the old back references are removed. These new back references are of
472  * the form (trans->transid will have increased since creation):
473  *
474  * (root->root_key.objectid, trans->transid, level, 1)
475  *
476  * When a backref is in deleting, the following fields are checked:
477  *
478  * if backref was for a tree root:
479  *     (btrfs_header_owner(itself), btrfs_header_generation(itself), level)
480  * else
481  *     (btrfs_header_owner(parent), btrfs_header_generation(parent), level)
482  *
483  * Back Reference Key composing:
484  *
485  * The key objectid corresponds to the first byte in the extent, the key
486  * type is set to BTRFS_EXTENT_REF_KEY, and the key offset is the first
487  * byte of parent extent. If a extent is tree root, the key offset is set
488  * to the key objectid.
489  */
490 
491 static noinline int lookup_extent_backref(struct btrfs_trans_handle *trans,
492 					  struct btrfs_root *root,
493 					  struct btrfs_path *path,
494 					  u64 bytenr, u64 parent,
495 					  u64 ref_root, u64 ref_generation,
496 					  u64 owner_objectid, int del)
497 {
498 	struct btrfs_key key;
499 	struct btrfs_extent_ref *ref;
500 	struct extent_buffer *leaf;
501 	u64 ref_objectid;
502 	int ret;
503 
504 	key.objectid = bytenr;
505 	key.type = BTRFS_EXTENT_REF_KEY;
506 	key.offset = parent;
507 
508 	ret = btrfs_search_slot(trans, root, &key, path, del ? -1 : 0, 1);
509 	if (ret < 0)
510 		goto out;
511 	if (ret > 0) {
512 		ret = -ENOENT;
513 		goto out;
514 	}
515 
516 	leaf = path->nodes[0];
517 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
518 	ref_objectid = btrfs_ref_objectid(leaf, ref);
519 	if (btrfs_ref_root(leaf, ref) != ref_root ||
520 	    btrfs_ref_generation(leaf, ref) != ref_generation ||
521 	    (ref_objectid != owner_objectid &&
522 	     ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
523 		ret = -EIO;
524 		WARN_ON(1);
525 		goto out;
526 	}
527 	ret = 0;
528 out:
529 	return ret;
530 }
531 
532 /*
533  * updates all the backrefs that are pending on update_list for the
534  * extent_root
535  */
536 static noinline int update_backrefs(struct btrfs_trans_handle *trans,
537 				    struct btrfs_root *extent_root,
538 				    struct btrfs_path *path,
539 				    struct list_head *update_list)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_extent_ref *ref;
543 	struct btrfs_fs_info *info = extent_root->fs_info;
544 	struct pending_extent_op *op;
545 	struct extent_buffer *leaf;
546 	int ret = 0;
547 	struct list_head *cur = update_list->next;
548 	u64 ref_objectid;
549 	u64 ref_root = extent_root->root_key.objectid;
550 
551 	op = list_entry(cur, struct pending_extent_op, list);
552 
553 search:
554 	key.objectid = op->bytenr;
555 	key.type = BTRFS_EXTENT_REF_KEY;
556 	key.offset = op->orig_parent;
557 
558 	ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
559 	BUG_ON(ret);
560 
561 	leaf = path->nodes[0];
562 
563 loop:
564 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
565 
566 	ref_objectid = btrfs_ref_objectid(leaf, ref);
567 
568 	if (btrfs_ref_root(leaf, ref) != ref_root ||
569 	    btrfs_ref_generation(leaf, ref) != op->orig_generation ||
570 	    (ref_objectid != op->level &&
571 	     ref_objectid != BTRFS_MULTIPLE_OBJECTIDS)) {
572 		printk(KERN_ERR "btrfs couldn't find %llu, parent %llu, "
573 		       "root %llu, owner %u\n",
574 		       (unsigned long long)op->bytenr,
575 		       (unsigned long long)op->orig_parent,
576 		       (unsigned long long)ref_root, op->level);
577 		btrfs_print_leaf(extent_root, leaf);
578 		BUG();
579 	}
580 
581 	key.objectid = op->bytenr;
582 	key.offset = op->parent;
583 	key.type = BTRFS_EXTENT_REF_KEY;
584 	ret = btrfs_set_item_key_safe(trans, extent_root, path, &key);
585 	BUG_ON(ret);
586 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
587 	btrfs_set_ref_generation(leaf, ref, op->generation);
588 
589 	cur = cur->next;
590 
591 	list_del_init(&op->list);
592 	unlock_extent(&info->extent_ins, op->bytenr,
593 		      op->bytenr + op->num_bytes - 1, GFP_NOFS);
594 	kfree(op);
595 
596 	if (cur == update_list) {
597 		btrfs_mark_buffer_dirty(path->nodes[0]);
598 		btrfs_release_path(extent_root, path);
599 		goto out;
600 	}
601 
602 	op = list_entry(cur, struct pending_extent_op, list);
603 
604 	path->slots[0]++;
605 	while (path->slots[0] < btrfs_header_nritems(leaf)) {
606 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
607 		if (key.objectid == op->bytenr &&
608 		    key.type == BTRFS_EXTENT_REF_KEY)
609 			goto loop;
610 		path->slots[0]++;
611 	}
612 
613 	btrfs_mark_buffer_dirty(path->nodes[0]);
614 	btrfs_release_path(extent_root, path);
615 	goto search;
616 
617 out:
618 	return 0;
619 }
620 
621 static noinline int insert_extents(struct btrfs_trans_handle *trans,
622 				   struct btrfs_root *extent_root,
623 				   struct btrfs_path *path,
624 				   struct list_head *insert_list, int nr)
625 {
626 	struct btrfs_key *keys;
627 	u32 *data_size;
628 	struct pending_extent_op *op;
629 	struct extent_buffer *leaf;
630 	struct list_head *cur = insert_list->next;
631 	struct btrfs_fs_info *info = extent_root->fs_info;
632 	u64 ref_root = extent_root->root_key.objectid;
633 	int i = 0, last = 0, ret;
634 	int total = nr * 2;
635 
636 	if (!nr)
637 		return 0;
638 
639 	keys = kzalloc(total * sizeof(struct btrfs_key), GFP_NOFS);
640 	if (!keys)
641 		return -ENOMEM;
642 
643 	data_size = kzalloc(total * sizeof(u32), GFP_NOFS);
644 	if (!data_size) {
645 		kfree(keys);
646 		return -ENOMEM;
647 	}
648 
649 	list_for_each_entry(op, insert_list, list) {
650 		keys[i].objectid = op->bytenr;
651 		keys[i].offset = op->num_bytes;
652 		keys[i].type = BTRFS_EXTENT_ITEM_KEY;
653 		data_size[i] = sizeof(struct btrfs_extent_item);
654 		i++;
655 
656 		keys[i].objectid = op->bytenr;
657 		keys[i].offset = op->parent;
658 		keys[i].type = BTRFS_EXTENT_REF_KEY;
659 		data_size[i] = sizeof(struct btrfs_extent_ref);
660 		i++;
661 	}
662 
663 	op = list_entry(cur, struct pending_extent_op, list);
664 	i = 0;
665 	while (i < total) {
666 		int c;
667 		ret = btrfs_insert_some_items(trans, extent_root, path,
668 					      keys+i, data_size+i, total-i);
669 		BUG_ON(ret < 0);
670 
671 		if (last && ret > 1)
672 			BUG();
673 
674 		leaf = path->nodes[0];
675 		for (c = 0; c < ret; c++) {
676 			int ref_first = keys[i].type == BTRFS_EXTENT_REF_KEY;
677 
678 			/*
679 			 * if the first item we inserted was a backref, then
680 			 * the EXTENT_ITEM will be the odd c's, else it will
681 			 * be the even c's
682 			 */
683 			if ((ref_first && (c % 2)) ||
684 			    (!ref_first && !(c % 2))) {
685 				struct btrfs_extent_item *itm;
686 
687 				itm = btrfs_item_ptr(leaf, path->slots[0] + c,
688 						     struct btrfs_extent_item);
689 				btrfs_set_extent_refs(path->nodes[0], itm, 1);
690 				op->del++;
691 			} else {
692 				struct btrfs_extent_ref *ref;
693 
694 				ref = btrfs_item_ptr(leaf, path->slots[0] + c,
695 						     struct btrfs_extent_ref);
696 				btrfs_set_ref_root(leaf, ref, ref_root);
697 				btrfs_set_ref_generation(leaf, ref,
698 							 op->generation);
699 				btrfs_set_ref_objectid(leaf, ref, op->level);
700 				btrfs_set_ref_num_refs(leaf, ref, 1);
701 				op->del++;
702 			}
703 
704 			/*
705 			 * using del to see when its ok to free up the
706 			 * pending_extent_op.  In the case where we insert the
707 			 * last item on the list in order to help do batching
708 			 * we need to not free the extent op until we actually
709 			 * insert the extent_item
710 			 */
711 			if (op->del == 2) {
712 				unlock_extent(&info->extent_ins, op->bytenr,
713 					      op->bytenr + op->num_bytes - 1,
714 					      GFP_NOFS);
715 				cur = cur->next;
716 				list_del_init(&op->list);
717 				kfree(op);
718 				if (cur != insert_list)
719 					op = list_entry(cur,
720 						struct pending_extent_op,
721 						list);
722 			}
723 		}
724 		btrfs_mark_buffer_dirty(leaf);
725 		btrfs_release_path(extent_root, path);
726 
727 		/*
728 		 * Ok backref's and items usually go right next to eachother,
729 		 * but if we could only insert 1 item that means that we
730 		 * inserted on the end of a leaf, and we have no idea what may
731 		 * be on the next leaf so we just play it safe.  In order to
732 		 * try and help this case we insert the last thing on our
733 		 * insert list so hopefully it will end up being the last
734 		 * thing on the leaf and everything else will be before it,
735 		 * which will let us insert a whole bunch of items at the same
736 		 * time.
737 		 */
738 		if (ret == 1 && !last && (i + ret < total)) {
739 			/*
740 			 * last: where we will pick up the next time around
741 			 * i: our current key to insert, will be total - 1
742 			 * cur: the current op we are screwing with
743 			 * op: duh
744 			 */
745 			last = i + ret;
746 			i = total - 1;
747 			cur = insert_list->prev;
748 			op = list_entry(cur, struct pending_extent_op, list);
749 		} else if (last) {
750 			/*
751 			 * ok we successfully inserted the last item on the
752 			 * list, lets reset everything
753 			 *
754 			 * i: our current key to insert, so where we left off
755 			 *    last time
756 			 * last: done with this
757 			 * cur: the op we are messing with
758 			 * op: duh
759 			 * total: since we inserted the last key, we need to
760 			 *        decrement total so we dont overflow
761 			 */
762 			i = last;
763 			last = 0;
764 			total--;
765 			if (i < total) {
766 				cur = insert_list->next;
767 				op = list_entry(cur, struct pending_extent_op,
768 						list);
769 			}
770 		} else {
771 			i += ret;
772 		}
773 
774 		cond_resched();
775 	}
776 	ret = 0;
777 	kfree(keys);
778 	kfree(data_size);
779 	return ret;
780 }
781 
782 static noinline int insert_extent_backref(struct btrfs_trans_handle *trans,
783 					  struct btrfs_root *root,
784 					  struct btrfs_path *path,
785 					  u64 bytenr, u64 parent,
786 					  u64 ref_root, u64 ref_generation,
787 					  u64 owner_objectid)
788 {
789 	struct btrfs_key key;
790 	struct extent_buffer *leaf;
791 	struct btrfs_extent_ref *ref;
792 	u32 num_refs;
793 	int ret;
794 
795 	key.objectid = bytenr;
796 	key.type = BTRFS_EXTENT_REF_KEY;
797 	key.offset = parent;
798 
799 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*ref));
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		ref = btrfs_item_ptr(leaf, path->slots[0],
803 				     struct btrfs_extent_ref);
804 		btrfs_set_ref_root(leaf, ref, ref_root);
805 		btrfs_set_ref_generation(leaf, ref, ref_generation);
806 		btrfs_set_ref_objectid(leaf, ref, owner_objectid);
807 		btrfs_set_ref_num_refs(leaf, ref, 1);
808 	} else if (ret == -EEXIST) {
809 		u64 existing_owner;
810 		BUG_ON(owner_objectid < BTRFS_FIRST_FREE_OBJECTID);
811 		leaf = path->nodes[0];
812 		ref = btrfs_item_ptr(leaf, path->slots[0],
813 				     struct btrfs_extent_ref);
814 		if (btrfs_ref_root(leaf, ref) != ref_root ||
815 		    btrfs_ref_generation(leaf, ref) != ref_generation) {
816 			ret = -EIO;
817 			WARN_ON(1);
818 			goto out;
819 		}
820 
821 		num_refs = btrfs_ref_num_refs(leaf, ref);
822 		BUG_ON(num_refs == 0);
823 		btrfs_set_ref_num_refs(leaf, ref, num_refs + 1);
824 
825 		existing_owner = btrfs_ref_objectid(leaf, ref);
826 		if (existing_owner != owner_objectid &&
827 		    existing_owner != BTRFS_MULTIPLE_OBJECTIDS) {
828 			btrfs_set_ref_objectid(leaf, ref,
829 					BTRFS_MULTIPLE_OBJECTIDS);
830 		}
831 		ret = 0;
832 	} else {
833 		goto out;
834 	}
835 	btrfs_mark_buffer_dirty(path->nodes[0]);
836 out:
837 	btrfs_release_path(root, path);
838 	return ret;
839 }
840 
841 static noinline int remove_extent_backref(struct btrfs_trans_handle *trans,
842 					  struct btrfs_root *root,
843 					  struct btrfs_path *path)
844 {
845 	struct extent_buffer *leaf;
846 	struct btrfs_extent_ref *ref;
847 	u32 num_refs;
848 	int ret = 0;
849 
850 	leaf = path->nodes[0];
851 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_ref);
852 	num_refs = btrfs_ref_num_refs(leaf, ref);
853 	BUG_ON(num_refs == 0);
854 	num_refs -= 1;
855 	if (num_refs == 0) {
856 		ret = btrfs_del_item(trans, root, path);
857 	} else {
858 		btrfs_set_ref_num_refs(leaf, ref, num_refs);
859 		btrfs_mark_buffer_dirty(leaf);
860 	}
861 	btrfs_release_path(root, path);
862 	return ret;
863 }
864 
865 #ifdef BIO_RW_DISCARD
866 static void btrfs_issue_discard(struct block_device *bdev,
867 				u64 start, u64 len)
868 {
869 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
870 }
871 #endif
872 
873 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
874 				u64 num_bytes)
875 {
876 #ifdef BIO_RW_DISCARD
877 	int ret;
878 	u64 map_length = num_bytes;
879 	struct btrfs_multi_bio *multi = NULL;
880 
881 	/* Tell the block device(s) that the sectors can be discarded */
882 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
883 			      bytenr, &map_length, &multi, 0);
884 	if (!ret) {
885 		struct btrfs_bio_stripe *stripe = multi->stripes;
886 		int i;
887 
888 		if (map_length > num_bytes)
889 			map_length = num_bytes;
890 
891 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
892 			btrfs_issue_discard(stripe->dev->bdev,
893 					    stripe->physical,
894 					    map_length);
895 		}
896 		kfree(multi);
897 	}
898 
899 	return ret;
900 #else
901 	return 0;
902 #endif
903 }
904 
905 static noinline int free_extents(struct btrfs_trans_handle *trans,
906 				 struct btrfs_root *extent_root,
907 				 struct list_head *del_list)
908 {
909 	struct btrfs_fs_info *info = extent_root->fs_info;
910 	struct btrfs_path *path;
911 	struct btrfs_key key, found_key;
912 	struct extent_buffer *leaf;
913 	struct list_head *cur;
914 	struct pending_extent_op *op;
915 	struct btrfs_extent_item *ei;
916 	int ret, num_to_del, extent_slot = 0, found_extent = 0;
917 	u32 refs;
918 	u64 bytes_freed = 0;
919 
920 	path = btrfs_alloc_path();
921 	if (!path)
922 		return -ENOMEM;
923 	path->reada = 1;
924 
925 search:
926 	/* search for the backref for the current ref we want to delete */
927 	cur = del_list->next;
928 	op = list_entry(cur, struct pending_extent_op, list);
929 	ret = lookup_extent_backref(trans, extent_root, path, op->bytenr,
930 				    op->orig_parent,
931 				    extent_root->root_key.objectid,
932 				    op->orig_generation, op->level, 1);
933 	if (ret) {
934 		printk(KERN_ERR "btrfs unable to find backref byte nr %llu "
935 		       "root %llu gen %llu owner %u\n",
936 		       (unsigned long long)op->bytenr,
937 		       (unsigned long long)extent_root->root_key.objectid,
938 		       (unsigned long long)op->orig_generation, op->level);
939 		btrfs_print_leaf(extent_root, path->nodes[0]);
940 		WARN_ON(1);
941 		goto out;
942 	}
943 
944 	extent_slot = path->slots[0];
945 	num_to_del = 1;
946 	found_extent = 0;
947 
948 	/*
949 	 * if we aren't the first item on the leaf we can move back one and see
950 	 * if our ref is right next to our extent item
951 	 */
952 	if (likely(extent_slot)) {
953 		extent_slot--;
954 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
955 				      extent_slot);
956 		if (found_key.objectid == op->bytenr &&
957 		    found_key.type == BTRFS_EXTENT_ITEM_KEY &&
958 		    found_key.offset == op->num_bytes) {
959 			num_to_del++;
960 			found_extent = 1;
961 		}
962 	}
963 
964 	/*
965 	 * if we didn't find the extent we need to delete the backref and then
966 	 * search for the extent item key so we can update its ref count
967 	 */
968 	if (!found_extent) {
969 		key.objectid = op->bytenr;
970 		key.type = BTRFS_EXTENT_ITEM_KEY;
971 		key.offset = op->num_bytes;
972 
973 		ret = remove_extent_backref(trans, extent_root, path);
974 		BUG_ON(ret);
975 		btrfs_release_path(extent_root, path);
976 		ret = btrfs_search_slot(trans, extent_root, &key, path, -1, 1);
977 		BUG_ON(ret);
978 		extent_slot = path->slots[0];
979 	}
980 
981 	/* this is where we update the ref count for the extent */
982 	leaf = path->nodes[0];
983 	ei = btrfs_item_ptr(leaf, extent_slot, struct btrfs_extent_item);
984 	refs = btrfs_extent_refs(leaf, ei);
985 	BUG_ON(refs == 0);
986 	refs--;
987 	btrfs_set_extent_refs(leaf, ei, refs);
988 
989 	btrfs_mark_buffer_dirty(leaf);
990 
991 	/*
992 	 * This extent needs deleting.  The reason cur_slot is extent_slot +
993 	 * num_to_del is because extent_slot points to the slot where the extent
994 	 * is, and if the backref was not right next to the extent we will be
995 	 * deleting at least 1 item, and will want to start searching at the
996 	 * slot directly next to extent_slot.  However if we did find the
997 	 * backref next to the extent item them we will be deleting at least 2
998 	 * items and will want to start searching directly after the ref slot
999 	 */
1000 	if (!refs) {
1001 		struct list_head *pos, *n, *end;
1002 		int cur_slot = extent_slot+num_to_del;
1003 		u64 super_used;
1004 		u64 root_used;
1005 
1006 		path->slots[0] = extent_slot;
1007 		bytes_freed = op->num_bytes;
1008 
1009 		mutex_lock(&info->pinned_mutex);
1010 		ret = pin_down_bytes(trans, extent_root, op->bytenr,
1011 				     op->num_bytes, op->level >=
1012 				     BTRFS_FIRST_FREE_OBJECTID);
1013 		mutex_unlock(&info->pinned_mutex);
1014 		BUG_ON(ret < 0);
1015 		op->del = ret;
1016 
1017 		/*
1018 		 * we need to see if we can delete multiple things at once, so
1019 		 * start looping through the list of extents we are wanting to
1020 		 * delete and see if their extent/backref's are right next to
1021 		 * eachother and the extents only have 1 ref
1022 		 */
1023 		for (pos = cur->next; pos != del_list; pos = pos->next) {
1024 			struct pending_extent_op *tmp;
1025 
1026 			tmp = list_entry(pos, struct pending_extent_op, list);
1027 
1028 			/* we only want to delete extent+ref at this stage */
1029 			if (cur_slot >= btrfs_header_nritems(leaf) - 1)
1030 				break;
1031 
1032 			btrfs_item_key_to_cpu(leaf, &found_key, cur_slot);
1033 			if (found_key.objectid != tmp->bytenr ||
1034 			    found_key.type != BTRFS_EXTENT_ITEM_KEY ||
1035 			    found_key.offset != tmp->num_bytes)
1036 				break;
1037 
1038 			/* check to make sure this extent only has one ref */
1039 			ei = btrfs_item_ptr(leaf, cur_slot,
1040 					    struct btrfs_extent_item);
1041 			if (btrfs_extent_refs(leaf, ei) != 1)
1042 				break;
1043 
1044 			btrfs_item_key_to_cpu(leaf, &found_key, cur_slot+1);
1045 			if (found_key.objectid != tmp->bytenr ||
1046 			    found_key.type != BTRFS_EXTENT_REF_KEY ||
1047 			    found_key.offset != tmp->orig_parent)
1048 				break;
1049 
1050 			/*
1051 			 * the ref is right next to the extent, we can set the
1052 			 * ref count to 0 since we will delete them both now
1053 			 */
1054 			btrfs_set_extent_refs(leaf, ei, 0);
1055 
1056 			/* pin down the bytes for this extent */
1057 			mutex_lock(&info->pinned_mutex);
1058 			ret = pin_down_bytes(trans, extent_root, tmp->bytenr,
1059 					     tmp->num_bytes, tmp->level >=
1060 					     BTRFS_FIRST_FREE_OBJECTID);
1061 			mutex_unlock(&info->pinned_mutex);
1062 			BUG_ON(ret < 0);
1063 
1064 			/*
1065 			 * use the del field to tell if we need to go ahead and
1066 			 * free up the extent when we delete the item or not.
1067 			 */
1068 			tmp->del = ret;
1069 			bytes_freed += tmp->num_bytes;
1070 
1071 			num_to_del += 2;
1072 			cur_slot += 2;
1073 		}
1074 		end = pos;
1075 
1076 		/* update the free space counters */
1077 		spin_lock(&info->delalloc_lock);
1078 		super_used = btrfs_super_bytes_used(&info->super_copy);
1079 		btrfs_set_super_bytes_used(&info->super_copy,
1080 					   super_used - bytes_freed);
1081 
1082 		root_used = btrfs_root_used(&extent_root->root_item);
1083 		btrfs_set_root_used(&extent_root->root_item,
1084 				    root_used - bytes_freed);
1085 		spin_unlock(&info->delalloc_lock);
1086 
1087 		/* delete the items */
1088 		ret = btrfs_del_items(trans, extent_root, path,
1089 				      path->slots[0], num_to_del);
1090 		BUG_ON(ret);
1091 
1092 		/*
1093 		 * loop through the extents we deleted and do the cleanup work
1094 		 * on them
1095 		 */
1096 		for (pos = cur, n = pos->next; pos != end;
1097 		     pos = n, n = pos->next) {
1098 			struct pending_extent_op *tmp;
1099 			tmp = list_entry(pos, struct pending_extent_op, list);
1100 
1101 			/*
1102 			 * remember tmp->del tells us wether or not we pinned
1103 			 * down the extent
1104 			 */
1105 			ret = update_block_group(trans, extent_root,
1106 						 tmp->bytenr, tmp->num_bytes, 0,
1107 						 tmp->del);
1108 			BUG_ON(ret);
1109 
1110 			list_del_init(&tmp->list);
1111 			unlock_extent(&info->extent_ins, tmp->bytenr,
1112 				      tmp->bytenr + tmp->num_bytes - 1,
1113 				      GFP_NOFS);
1114 			kfree(tmp);
1115 		}
1116 	} else if (refs && found_extent) {
1117 		/*
1118 		 * the ref and extent were right next to eachother, but the
1119 		 * extent still has a ref, so just free the backref and keep
1120 		 * going
1121 		 */
1122 		ret = remove_extent_backref(trans, extent_root, path);
1123 		BUG_ON(ret);
1124 
1125 		list_del_init(&op->list);
1126 		unlock_extent(&info->extent_ins, op->bytenr,
1127 			      op->bytenr + op->num_bytes - 1, GFP_NOFS);
1128 		kfree(op);
1129 	} else {
1130 		/*
1131 		 * the extent has multiple refs and the backref we were looking
1132 		 * for was not right next to it, so just unlock and go next,
1133 		 * we're good to go
1134 		 */
1135 		list_del_init(&op->list);
1136 		unlock_extent(&info->extent_ins, op->bytenr,
1137 			      op->bytenr + op->num_bytes - 1, GFP_NOFS);
1138 		kfree(op);
1139 	}
1140 
1141 	btrfs_release_path(extent_root, path);
1142 	if (!list_empty(del_list))
1143 		goto search;
1144 
1145 out:
1146 	btrfs_free_path(path);
1147 	return ret;
1148 }
1149 
1150 static int __btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
1151 				     struct btrfs_root *root, u64 bytenr,
1152 				     u64 orig_parent, u64 parent,
1153 				     u64 orig_root, u64 ref_root,
1154 				     u64 orig_generation, u64 ref_generation,
1155 				     u64 owner_objectid)
1156 {
1157 	int ret;
1158 	struct btrfs_root *extent_root = root->fs_info->extent_root;
1159 	struct btrfs_path *path;
1160 
1161 	if (root == root->fs_info->extent_root) {
1162 		struct pending_extent_op *extent_op;
1163 		u64 num_bytes;
1164 
1165 		BUG_ON(owner_objectid >= BTRFS_MAX_LEVEL);
1166 		num_bytes = btrfs_level_size(root, (int)owner_objectid);
1167 		mutex_lock(&root->fs_info->extent_ins_mutex);
1168 		if (test_range_bit(&root->fs_info->extent_ins, bytenr,
1169 				bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
1170 			u64 priv;
1171 			ret = get_state_private(&root->fs_info->extent_ins,
1172 						bytenr, &priv);
1173 			BUG_ON(ret);
1174 			extent_op = (struct pending_extent_op *)
1175 							(unsigned long)priv;
1176 			BUG_ON(extent_op->parent != orig_parent);
1177 			BUG_ON(extent_op->generation != orig_generation);
1178 
1179 			extent_op->parent = parent;
1180 			extent_op->generation = ref_generation;
1181 		} else {
1182 			extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
1183 			BUG_ON(!extent_op);
1184 
1185 			extent_op->type = PENDING_BACKREF_UPDATE;
1186 			extent_op->bytenr = bytenr;
1187 			extent_op->num_bytes = num_bytes;
1188 			extent_op->parent = parent;
1189 			extent_op->orig_parent = orig_parent;
1190 			extent_op->generation = ref_generation;
1191 			extent_op->orig_generation = orig_generation;
1192 			extent_op->level = (int)owner_objectid;
1193 			INIT_LIST_HEAD(&extent_op->list);
1194 			extent_op->del = 0;
1195 
1196 			set_extent_bits(&root->fs_info->extent_ins,
1197 					bytenr, bytenr + num_bytes - 1,
1198 					EXTENT_WRITEBACK, GFP_NOFS);
1199 			set_state_private(&root->fs_info->extent_ins,
1200 					  bytenr, (unsigned long)extent_op);
1201 		}
1202 		mutex_unlock(&root->fs_info->extent_ins_mutex);
1203 		return 0;
1204 	}
1205 
1206 	path = btrfs_alloc_path();
1207 	if (!path)
1208 		return -ENOMEM;
1209 	ret = lookup_extent_backref(trans, extent_root, path,
1210 				    bytenr, orig_parent, orig_root,
1211 				    orig_generation, owner_objectid, 1);
1212 	if (ret)
1213 		goto out;
1214 	ret = remove_extent_backref(trans, extent_root, path);
1215 	if (ret)
1216 		goto out;
1217 	ret = insert_extent_backref(trans, extent_root, path, bytenr,
1218 				    parent, ref_root, ref_generation,
1219 				    owner_objectid);
1220 	BUG_ON(ret);
1221 	finish_current_insert(trans, extent_root, 0);
1222 	del_pending_extents(trans, extent_root, 0);
1223 out:
1224 	btrfs_free_path(path);
1225 	return ret;
1226 }
1227 
1228 int btrfs_update_extent_ref(struct btrfs_trans_handle *trans,
1229 			    struct btrfs_root *root, u64 bytenr,
1230 			    u64 orig_parent, u64 parent,
1231 			    u64 ref_root, u64 ref_generation,
1232 			    u64 owner_objectid)
1233 {
1234 	int ret;
1235 	if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
1236 	    owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
1237 		return 0;
1238 	ret = __btrfs_update_extent_ref(trans, root, bytenr, orig_parent,
1239 					parent, ref_root, ref_root,
1240 					ref_generation, ref_generation,
1241 					owner_objectid);
1242 	return ret;
1243 }
1244 
1245 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1246 				  struct btrfs_root *root, u64 bytenr,
1247 				  u64 orig_parent, u64 parent,
1248 				  u64 orig_root, u64 ref_root,
1249 				  u64 orig_generation, u64 ref_generation,
1250 				  u64 owner_objectid)
1251 {
1252 	struct btrfs_path *path;
1253 	int ret;
1254 	struct btrfs_key key;
1255 	struct extent_buffer *l;
1256 	struct btrfs_extent_item *item;
1257 	u32 refs;
1258 
1259 	path = btrfs_alloc_path();
1260 	if (!path)
1261 		return -ENOMEM;
1262 
1263 	path->reada = 1;
1264 	key.objectid = bytenr;
1265 	key.type = BTRFS_EXTENT_ITEM_KEY;
1266 	key.offset = (u64)-1;
1267 
1268 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
1269 				0, 1);
1270 	if (ret < 0)
1271 		return ret;
1272 	BUG_ON(ret == 0 || path->slots[0] == 0);
1273 
1274 	path->slots[0]--;
1275 	l = path->nodes[0];
1276 
1277 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1278 	if (key.objectid != bytenr) {
1279 		btrfs_print_leaf(root->fs_info->extent_root, path->nodes[0]);
1280 		printk(KERN_ERR "btrfs wanted %llu found %llu\n",
1281 		       (unsigned long long)bytenr,
1282 		       (unsigned long long)key.objectid);
1283 		BUG();
1284 	}
1285 	BUG_ON(key.type != BTRFS_EXTENT_ITEM_KEY);
1286 
1287 	item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
1288 	refs = btrfs_extent_refs(l, item);
1289 	btrfs_set_extent_refs(l, item, refs + 1);
1290 	btrfs_mark_buffer_dirty(path->nodes[0]);
1291 
1292 	btrfs_release_path(root->fs_info->extent_root, path);
1293 
1294 	path->reada = 1;
1295 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1296 				    path, bytenr, parent,
1297 				    ref_root, ref_generation,
1298 				    owner_objectid);
1299 	BUG_ON(ret);
1300 	finish_current_insert(trans, root->fs_info->extent_root, 0);
1301 	del_pending_extents(trans, root->fs_info->extent_root, 0);
1302 
1303 	btrfs_free_path(path);
1304 	return 0;
1305 }
1306 
1307 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1308 			 struct btrfs_root *root,
1309 			 u64 bytenr, u64 num_bytes, u64 parent,
1310 			 u64 ref_root, u64 ref_generation,
1311 			 u64 owner_objectid)
1312 {
1313 	int ret;
1314 	if (ref_root == BTRFS_TREE_LOG_OBJECTID &&
1315 	    owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
1316 		return 0;
1317 	ret = __btrfs_inc_extent_ref(trans, root, bytenr, 0, parent,
1318 				     0, ref_root, 0, ref_generation,
1319 				     owner_objectid);
1320 	return ret;
1321 }
1322 
1323 int btrfs_extent_post_op(struct btrfs_trans_handle *trans,
1324 			 struct btrfs_root *root)
1325 {
1326 	finish_current_insert(trans, root->fs_info->extent_root, 1);
1327 	del_pending_extents(trans, root->fs_info->extent_root, 1);
1328 	return 0;
1329 }
1330 
1331 int btrfs_lookup_extent_ref(struct btrfs_trans_handle *trans,
1332 			    struct btrfs_root *root, u64 bytenr,
1333 			    u64 num_bytes, u32 *refs)
1334 {
1335 	struct btrfs_path *path;
1336 	int ret;
1337 	struct btrfs_key key;
1338 	struct extent_buffer *l;
1339 	struct btrfs_extent_item *item;
1340 
1341 	WARN_ON(num_bytes < root->sectorsize);
1342 	path = btrfs_alloc_path();
1343 	path->reada = 1;
1344 	key.objectid = bytenr;
1345 	key.offset = num_bytes;
1346 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
1347 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, path,
1348 				0, 0);
1349 	if (ret < 0)
1350 		goto out;
1351 	if (ret != 0) {
1352 		btrfs_print_leaf(root, path->nodes[0]);
1353 		printk(KERN_INFO "btrfs failed to find block number %llu\n",
1354 		       (unsigned long long)bytenr);
1355 		BUG();
1356 	}
1357 	l = path->nodes[0];
1358 	item = btrfs_item_ptr(l, path->slots[0], struct btrfs_extent_item);
1359 	*refs = btrfs_extent_refs(l, item);
1360 out:
1361 	btrfs_free_path(path);
1362 	return 0;
1363 }
1364 
1365 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
1366 			  struct btrfs_root *root, u64 objectid, u64 bytenr)
1367 {
1368 	struct btrfs_root *extent_root = root->fs_info->extent_root;
1369 	struct btrfs_path *path;
1370 	struct extent_buffer *leaf;
1371 	struct btrfs_extent_ref *ref_item;
1372 	struct btrfs_key key;
1373 	struct btrfs_key found_key;
1374 	u64 ref_root;
1375 	u64 last_snapshot;
1376 	u32 nritems;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	key.offset = (u64)-1;
1381 	key.type = BTRFS_EXTENT_ITEM_KEY;
1382 
1383 	path = btrfs_alloc_path();
1384 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1385 	if (ret < 0)
1386 		goto out;
1387 	BUG_ON(ret == 0);
1388 
1389 	ret = -ENOENT;
1390 	if (path->slots[0] == 0)
1391 		goto out;
1392 
1393 	path->slots[0]--;
1394 	leaf = path->nodes[0];
1395 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1396 
1397 	if (found_key.objectid != bytenr ||
1398 	    found_key.type != BTRFS_EXTENT_ITEM_KEY)
1399 		goto out;
1400 
1401 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1402 	while (1) {
1403 		leaf = path->nodes[0];
1404 		nritems = btrfs_header_nritems(leaf);
1405 		if (path->slots[0] >= nritems) {
1406 			ret = btrfs_next_leaf(extent_root, path);
1407 			if (ret < 0)
1408 				goto out;
1409 			if (ret == 0)
1410 				continue;
1411 			break;
1412 		}
1413 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1414 		if (found_key.objectid != bytenr)
1415 			break;
1416 
1417 		if (found_key.type != BTRFS_EXTENT_REF_KEY) {
1418 			path->slots[0]++;
1419 			continue;
1420 		}
1421 
1422 		ref_item = btrfs_item_ptr(leaf, path->slots[0],
1423 					  struct btrfs_extent_ref);
1424 		ref_root = btrfs_ref_root(leaf, ref_item);
1425 		if ((ref_root != root->root_key.objectid &&
1426 		     ref_root != BTRFS_TREE_LOG_OBJECTID) ||
1427 		     objectid != btrfs_ref_objectid(leaf, ref_item)) {
1428 			ret = 1;
1429 			goto out;
1430 		}
1431 		if (btrfs_ref_generation(leaf, ref_item) <= last_snapshot) {
1432 			ret = 1;
1433 			goto out;
1434 		}
1435 
1436 		path->slots[0]++;
1437 	}
1438 	ret = 0;
1439 out:
1440 	btrfs_free_path(path);
1441 	return ret;
1442 }
1443 
1444 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1445 		    struct extent_buffer *buf, u32 nr_extents)
1446 {
1447 	struct btrfs_key key;
1448 	struct btrfs_file_extent_item *fi;
1449 	u64 root_gen;
1450 	u32 nritems;
1451 	int i;
1452 	int level;
1453 	int ret = 0;
1454 	int shared = 0;
1455 
1456 	if (!root->ref_cows)
1457 		return 0;
1458 
1459 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1460 		shared = 0;
1461 		root_gen = root->root_key.offset;
1462 	} else {
1463 		shared = 1;
1464 		root_gen = trans->transid - 1;
1465 	}
1466 
1467 	level = btrfs_header_level(buf);
1468 	nritems = btrfs_header_nritems(buf);
1469 
1470 	if (level == 0) {
1471 		struct btrfs_leaf_ref *ref;
1472 		struct btrfs_extent_info *info;
1473 
1474 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
1475 		if (!ref) {
1476 			ret = -ENOMEM;
1477 			goto out;
1478 		}
1479 
1480 		ref->root_gen = root_gen;
1481 		ref->bytenr = buf->start;
1482 		ref->owner = btrfs_header_owner(buf);
1483 		ref->generation = btrfs_header_generation(buf);
1484 		ref->nritems = nr_extents;
1485 		info = ref->extents;
1486 
1487 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
1488 			u64 disk_bytenr;
1489 			btrfs_item_key_to_cpu(buf, &key, i);
1490 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1491 				continue;
1492 			fi = btrfs_item_ptr(buf, i,
1493 					    struct btrfs_file_extent_item);
1494 			if (btrfs_file_extent_type(buf, fi) ==
1495 			    BTRFS_FILE_EXTENT_INLINE)
1496 				continue;
1497 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1498 			if (disk_bytenr == 0)
1499 				continue;
1500 
1501 			info->bytenr = disk_bytenr;
1502 			info->num_bytes =
1503 				btrfs_file_extent_disk_num_bytes(buf, fi);
1504 			info->objectid = key.objectid;
1505 			info->offset = key.offset;
1506 			info++;
1507 		}
1508 
1509 		ret = btrfs_add_leaf_ref(root, ref, shared);
1510 		if (ret == -EEXIST && shared) {
1511 			struct btrfs_leaf_ref *old;
1512 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
1513 			BUG_ON(!old);
1514 			btrfs_remove_leaf_ref(root, old);
1515 			btrfs_free_leaf_ref(root, old);
1516 			ret = btrfs_add_leaf_ref(root, ref, shared);
1517 		}
1518 		WARN_ON(ret);
1519 		btrfs_free_leaf_ref(root, ref);
1520 	}
1521 out:
1522 	return ret;
1523 }
1524 
1525 /* when a block goes through cow, we update the reference counts of
1526  * everything that block points to.  The internal pointers of the block
1527  * can be in just about any order, and it is likely to have clusters of
1528  * things that are close together and clusters of things that are not.
1529  *
1530  * To help reduce the seeks that come with updating all of these reference
1531  * counts, sort them by byte number before actual updates are done.
1532  *
1533  * struct refsort is used to match byte number to slot in the btree block.
1534  * we sort based on the byte number and then use the slot to actually
1535  * find the item.
1536  *
1537  * struct refsort is smaller than strcut btrfs_item and smaller than
1538  * struct btrfs_key_ptr.  Since we're currently limited to the page size
1539  * for a btree block, there's no way for a kmalloc of refsorts for a
1540  * single node to be bigger than a page.
1541  */
1542 struct refsort {
1543 	u64 bytenr;
1544 	u32 slot;
1545 };
1546 
1547 /*
1548  * for passing into sort()
1549  */
1550 static int refsort_cmp(const void *a_void, const void *b_void)
1551 {
1552 	const struct refsort *a = a_void;
1553 	const struct refsort *b = b_void;
1554 
1555 	if (a->bytenr < b->bytenr)
1556 		return -1;
1557 	if (a->bytenr > b->bytenr)
1558 		return 1;
1559 	return 0;
1560 }
1561 
1562 
1563 noinline int btrfs_inc_ref(struct btrfs_trans_handle *trans,
1564 			   struct btrfs_root *root,
1565 			   struct extent_buffer *orig_buf,
1566 			   struct extent_buffer *buf, u32 *nr_extents)
1567 {
1568 	u64 bytenr;
1569 	u64 ref_root;
1570 	u64 orig_root;
1571 	u64 ref_generation;
1572 	u64 orig_generation;
1573 	struct refsort *sorted;
1574 	u32 nritems;
1575 	u32 nr_file_extents = 0;
1576 	struct btrfs_key key;
1577 	struct btrfs_file_extent_item *fi;
1578 	int i;
1579 	int level;
1580 	int ret = 0;
1581 	int faili = 0;
1582 	int refi = 0;
1583 	int slot;
1584 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
1585 			    u64, u64, u64, u64, u64, u64, u64, u64);
1586 
1587 	ref_root = btrfs_header_owner(buf);
1588 	ref_generation = btrfs_header_generation(buf);
1589 	orig_root = btrfs_header_owner(orig_buf);
1590 	orig_generation = btrfs_header_generation(orig_buf);
1591 
1592 	nritems = btrfs_header_nritems(buf);
1593 	level = btrfs_header_level(buf);
1594 
1595 	sorted = kmalloc(sizeof(struct refsort) * nritems, GFP_NOFS);
1596 	BUG_ON(!sorted);
1597 
1598 	if (root->ref_cows) {
1599 		process_func = __btrfs_inc_extent_ref;
1600 	} else {
1601 		if (level == 0 &&
1602 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1603 			goto out;
1604 		if (level != 0 &&
1605 		    root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1606 			goto out;
1607 		process_func = __btrfs_update_extent_ref;
1608 	}
1609 
1610 	/*
1611 	 * we make two passes through the items.  In the first pass we
1612 	 * only record the byte number and slot.  Then we sort based on
1613 	 * byte number and do the actual work based on the sorted results
1614 	 */
1615 	for (i = 0; i < nritems; i++) {
1616 		cond_resched();
1617 		if (level == 0) {
1618 			btrfs_item_key_to_cpu(buf, &key, i);
1619 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1620 				continue;
1621 			fi = btrfs_item_ptr(buf, i,
1622 					    struct btrfs_file_extent_item);
1623 			if (btrfs_file_extent_type(buf, fi) ==
1624 			    BTRFS_FILE_EXTENT_INLINE)
1625 				continue;
1626 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1627 			if (bytenr == 0)
1628 				continue;
1629 
1630 			nr_file_extents++;
1631 			sorted[refi].bytenr = bytenr;
1632 			sorted[refi].slot = i;
1633 			refi++;
1634 		} else {
1635 			bytenr = btrfs_node_blockptr(buf, i);
1636 			sorted[refi].bytenr = bytenr;
1637 			sorted[refi].slot = i;
1638 			refi++;
1639 		}
1640 	}
1641 	/*
1642 	 * if refi == 0, we didn't actually put anything into the sorted
1643 	 * array and we're done
1644 	 */
1645 	if (refi == 0)
1646 		goto out;
1647 
1648 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
1649 
1650 	for (i = 0; i < refi; i++) {
1651 		cond_resched();
1652 		slot = sorted[i].slot;
1653 		bytenr = sorted[i].bytenr;
1654 
1655 		if (level == 0) {
1656 			btrfs_item_key_to_cpu(buf, &key, slot);
1657 
1658 			ret = process_func(trans, root, bytenr,
1659 					   orig_buf->start, buf->start,
1660 					   orig_root, ref_root,
1661 					   orig_generation, ref_generation,
1662 					   key.objectid);
1663 
1664 			if (ret) {
1665 				faili = slot;
1666 				WARN_ON(1);
1667 				goto fail;
1668 			}
1669 		} else {
1670 			ret = process_func(trans, root, bytenr,
1671 					   orig_buf->start, buf->start,
1672 					   orig_root, ref_root,
1673 					   orig_generation, ref_generation,
1674 					   level - 1);
1675 			if (ret) {
1676 				faili = slot;
1677 				WARN_ON(1);
1678 				goto fail;
1679 			}
1680 		}
1681 	}
1682 out:
1683 	kfree(sorted);
1684 	if (nr_extents) {
1685 		if (level == 0)
1686 			*nr_extents = nr_file_extents;
1687 		else
1688 			*nr_extents = nritems;
1689 	}
1690 	return 0;
1691 fail:
1692 	kfree(sorted);
1693 	WARN_ON(1);
1694 	return ret;
1695 }
1696 
1697 int btrfs_update_ref(struct btrfs_trans_handle *trans,
1698 		     struct btrfs_root *root, struct extent_buffer *orig_buf,
1699 		     struct extent_buffer *buf, int start_slot, int nr)
1700 
1701 {
1702 	u64 bytenr;
1703 	u64 ref_root;
1704 	u64 orig_root;
1705 	u64 ref_generation;
1706 	u64 orig_generation;
1707 	struct btrfs_key key;
1708 	struct btrfs_file_extent_item *fi;
1709 	int i;
1710 	int ret;
1711 	int slot;
1712 	int level;
1713 
1714 	BUG_ON(start_slot < 0);
1715 	BUG_ON(start_slot + nr > btrfs_header_nritems(buf));
1716 
1717 	ref_root = btrfs_header_owner(buf);
1718 	ref_generation = btrfs_header_generation(buf);
1719 	orig_root = btrfs_header_owner(orig_buf);
1720 	orig_generation = btrfs_header_generation(orig_buf);
1721 	level = btrfs_header_level(buf);
1722 
1723 	if (!root->ref_cows) {
1724 		if (level == 0 &&
1725 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
1726 			return 0;
1727 		if (level != 0 &&
1728 		    root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID)
1729 			return 0;
1730 	}
1731 
1732 	for (i = 0, slot = start_slot; i < nr; i++, slot++) {
1733 		cond_resched();
1734 		if (level == 0) {
1735 			btrfs_item_key_to_cpu(buf, &key, slot);
1736 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
1737 				continue;
1738 			fi = btrfs_item_ptr(buf, slot,
1739 					    struct btrfs_file_extent_item);
1740 			if (btrfs_file_extent_type(buf, fi) ==
1741 			    BTRFS_FILE_EXTENT_INLINE)
1742 				continue;
1743 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
1744 			if (bytenr == 0)
1745 				continue;
1746 			ret = __btrfs_update_extent_ref(trans, root, bytenr,
1747 					    orig_buf->start, buf->start,
1748 					    orig_root, ref_root,
1749 					    orig_generation, ref_generation,
1750 					    key.objectid);
1751 			if (ret)
1752 				goto fail;
1753 		} else {
1754 			bytenr = btrfs_node_blockptr(buf, slot);
1755 			ret = __btrfs_update_extent_ref(trans, root, bytenr,
1756 					    orig_buf->start, buf->start,
1757 					    orig_root, ref_root,
1758 					    orig_generation, ref_generation,
1759 					    level - 1);
1760 			if (ret)
1761 				goto fail;
1762 		}
1763 	}
1764 	return 0;
1765 fail:
1766 	WARN_ON(1);
1767 	return -1;
1768 }
1769 
1770 static int write_one_cache_group(struct btrfs_trans_handle *trans,
1771 				 struct btrfs_root *root,
1772 				 struct btrfs_path *path,
1773 				 struct btrfs_block_group_cache *cache)
1774 {
1775 	int ret;
1776 	int pending_ret;
1777 	struct btrfs_root *extent_root = root->fs_info->extent_root;
1778 	unsigned long bi;
1779 	struct extent_buffer *leaf;
1780 
1781 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
1782 	if (ret < 0)
1783 		goto fail;
1784 	BUG_ON(ret);
1785 
1786 	leaf = path->nodes[0];
1787 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
1788 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
1789 	btrfs_mark_buffer_dirty(leaf);
1790 	btrfs_release_path(extent_root, path);
1791 fail:
1792 	finish_current_insert(trans, extent_root, 0);
1793 	pending_ret = del_pending_extents(trans, extent_root, 0);
1794 	if (ret)
1795 		return ret;
1796 	if (pending_ret)
1797 		return pending_ret;
1798 	return 0;
1799 
1800 }
1801 
1802 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1803 				   struct btrfs_root *root)
1804 {
1805 	struct btrfs_block_group_cache *cache, *entry;
1806 	struct rb_node *n;
1807 	int err = 0;
1808 	int werr = 0;
1809 	struct btrfs_path *path;
1810 	u64 last = 0;
1811 
1812 	path = btrfs_alloc_path();
1813 	if (!path)
1814 		return -ENOMEM;
1815 
1816 	while (1) {
1817 		cache = NULL;
1818 		spin_lock(&root->fs_info->block_group_cache_lock);
1819 		for (n = rb_first(&root->fs_info->block_group_cache_tree);
1820 		     n; n = rb_next(n)) {
1821 			entry = rb_entry(n, struct btrfs_block_group_cache,
1822 					 cache_node);
1823 			if (entry->dirty) {
1824 				cache = entry;
1825 				break;
1826 			}
1827 		}
1828 		spin_unlock(&root->fs_info->block_group_cache_lock);
1829 
1830 		if (!cache)
1831 			break;
1832 
1833 		cache->dirty = 0;
1834 		last += cache->key.offset;
1835 
1836 		err = write_one_cache_group(trans, root,
1837 					    path, cache);
1838 		/*
1839 		 * if we fail to write the cache group, we want
1840 		 * to keep it marked dirty in hopes that a later
1841 		 * write will work
1842 		 */
1843 		if (err) {
1844 			werr = err;
1845 			continue;
1846 		}
1847 	}
1848 	btrfs_free_path(path);
1849 	return werr;
1850 }
1851 
1852 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
1853 {
1854 	struct btrfs_block_group_cache *block_group;
1855 	int readonly = 0;
1856 
1857 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1858 	if (!block_group || block_group->ro)
1859 		readonly = 1;
1860 	if (block_group)
1861 		put_block_group(block_group);
1862 	return readonly;
1863 }
1864 
1865 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
1866 			     u64 total_bytes, u64 bytes_used,
1867 			     struct btrfs_space_info **space_info)
1868 {
1869 	struct btrfs_space_info *found;
1870 
1871 	found = __find_space_info(info, flags);
1872 	if (found) {
1873 		spin_lock(&found->lock);
1874 		found->total_bytes += total_bytes;
1875 		found->bytes_used += bytes_used;
1876 		found->full = 0;
1877 		spin_unlock(&found->lock);
1878 		*space_info = found;
1879 		return 0;
1880 	}
1881 	found = kzalloc(sizeof(*found), GFP_NOFS);
1882 	if (!found)
1883 		return -ENOMEM;
1884 
1885 	list_add(&found->list, &info->space_info);
1886 	INIT_LIST_HEAD(&found->block_groups);
1887 	init_rwsem(&found->groups_sem);
1888 	spin_lock_init(&found->lock);
1889 	found->flags = flags;
1890 	found->total_bytes = total_bytes;
1891 	found->bytes_used = bytes_used;
1892 	found->bytes_pinned = 0;
1893 	found->bytes_reserved = 0;
1894 	found->bytes_readonly = 0;
1895 	found->full = 0;
1896 	found->force_alloc = 0;
1897 	*space_info = found;
1898 	return 0;
1899 }
1900 
1901 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1902 {
1903 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
1904 				   BTRFS_BLOCK_GROUP_RAID1 |
1905 				   BTRFS_BLOCK_GROUP_RAID10 |
1906 				   BTRFS_BLOCK_GROUP_DUP);
1907 	if (extra_flags) {
1908 		if (flags & BTRFS_BLOCK_GROUP_DATA)
1909 			fs_info->avail_data_alloc_bits |= extra_flags;
1910 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
1911 			fs_info->avail_metadata_alloc_bits |= extra_flags;
1912 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1913 			fs_info->avail_system_alloc_bits |= extra_flags;
1914 	}
1915 }
1916 
1917 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
1918 {
1919 	spin_lock(&cache->space_info->lock);
1920 	spin_lock(&cache->lock);
1921 	if (!cache->ro) {
1922 		cache->space_info->bytes_readonly += cache->key.offset -
1923 					btrfs_block_group_used(&cache->item);
1924 		cache->ro = 1;
1925 	}
1926 	spin_unlock(&cache->lock);
1927 	spin_unlock(&cache->space_info->lock);
1928 }
1929 
1930 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
1931 {
1932 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
1933 
1934 	if (num_devices == 1)
1935 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
1936 	if (num_devices < 4)
1937 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
1938 
1939 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
1940 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
1941 		      BTRFS_BLOCK_GROUP_RAID10))) {
1942 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
1943 	}
1944 
1945 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
1946 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
1947 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
1948 	}
1949 
1950 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
1951 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
1952 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
1953 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
1954 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
1955 	return flags;
1956 }
1957 
1958 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
1959 			  struct btrfs_root *extent_root, u64 alloc_bytes,
1960 			  u64 flags, int force)
1961 {
1962 	struct btrfs_space_info *space_info;
1963 	u64 thresh;
1964 	int ret = 0;
1965 
1966 	mutex_lock(&extent_root->fs_info->chunk_mutex);
1967 
1968 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
1969 
1970 	space_info = __find_space_info(extent_root->fs_info, flags);
1971 	if (!space_info) {
1972 		ret = update_space_info(extent_root->fs_info, flags,
1973 					0, 0, &space_info);
1974 		BUG_ON(ret);
1975 	}
1976 	BUG_ON(!space_info);
1977 
1978 	spin_lock(&space_info->lock);
1979 	if (space_info->force_alloc) {
1980 		force = 1;
1981 		space_info->force_alloc = 0;
1982 	}
1983 	if (space_info->full) {
1984 		spin_unlock(&space_info->lock);
1985 		goto out;
1986 	}
1987 
1988 	thresh = space_info->total_bytes - space_info->bytes_readonly;
1989 	thresh = div_factor(thresh, 6);
1990 	if (!force &&
1991 	   (space_info->bytes_used + space_info->bytes_pinned +
1992 	    space_info->bytes_reserved + alloc_bytes) < thresh) {
1993 		spin_unlock(&space_info->lock);
1994 		goto out;
1995 	}
1996 	spin_unlock(&space_info->lock);
1997 
1998 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
1999 	if (ret)
2000 		space_info->full = 1;
2001 out:
2002 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
2003 	return ret;
2004 }
2005 
2006 static int update_block_group(struct btrfs_trans_handle *trans,
2007 			      struct btrfs_root *root,
2008 			      u64 bytenr, u64 num_bytes, int alloc,
2009 			      int mark_free)
2010 {
2011 	struct btrfs_block_group_cache *cache;
2012 	struct btrfs_fs_info *info = root->fs_info;
2013 	u64 total = num_bytes;
2014 	u64 old_val;
2015 	u64 byte_in_group;
2016 
2017 	while (total) {
2018 		cache = btrfs_lookup_block_group(info, bytenr);
2019 		if (!cache)
2020 			return -1;
2021 		byte_in_group = bytenr - cache->key.objectid;
2022 		WARN_ON(byte_in_group > cache->key.offset);
2023 
2024 		spin_lock(&cache->space_info->lock);
2025 		spin_lock(&cache->lock);
2026 		cache->dirty = 1;
2027 		old_val = btrfs_block_group_used(&cache->item);
2028 		num_bytes = min(total, cache->key.offset - byte_in_group);
2029 		if (alloc) {
2030 			old_val += num_bytes;
2031 			cache->space_info->bytes_used += num_bytes;
2032 			if (cache->ro)
2033 				cache->space_info->bytes_readonly -= num_bytes;
2034 			btrfs_set_block_group_used(&cache->item, old_val);
2035 			spin_unlock(&cache->lock);
2036 			spin_unlock(&cache->space_info->lock);
2037 		} else {
2038 			old_val -= num_bytes;
2039 			cache->space_info->bytes_used -= num_bytes;
2040 			if (cache->ro)
2041 				cache->space_info->bytes_readonly += num_bytes;
2042 			btrfs_set_block_group_used(&cache->item, old_val);
2043 			spin_unlock(&cache->lock);
2044 			spin_unlock(&cache->space_info->lock);
2045 			if (mark_free) {
2046 				int ret;
2047 
2048 				ret = btrfs_discard_extent(root, bytenr,
2049 							   num_bytes);
2050 				WARN_ON(ret);
2051 
2052 				ret = btrfs_add_free_space(cache, bytenr,
2053 							   num_bytes);
2054 				WARN_ON(ret);
2055 			}
2056 		}
2057 		put_block_group(cache);
2058 		total -= num_bytes;
2059 		bytenr += num_bytes;
2060 	}
2061 	return 0;
2062 }
2063 
2064 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
2065 {
2066 	struct btrfs_block_group_cache *cache;
2067 	u64 bytenr;
2068 
2069 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
2070 	if (!cache)
2071 		return 0;
2072 
2073 	bytenr = cache->key.objectid;
2074 	put_block_group(cache);
2075 
2076 	return bytenr;
2077 }
2078 
2079 int btrfs_update_pinned_extents(struct btrfs_root *root,
2080 				u64 bytenr, u64 num, int pin)
2081 {
2082 	u64 len;
2083 	struct btrfs_block_group_cache *cache;
2084 	struct btrfs_fs_info *fs_info = root->fs_info;
2085 
2086 	WARN_ON(!mutex_is_locked(&root->fs_info->pinned_mutex));
2087 	if (pin) {
2088 		set_extent_dirty(&fs_info->pinned_extents,
2089 				bytenr, bytenr + num - 1, GFP_NOFS);
2090 	} else {
2091 		clear_extent_dirty(&fs_info->pinned_extents,
2092 				bytenr, bytenr + num - 1, GFP_NOFS);
2093 	}
2094 	while (num > 0) {
2095 		cache = btrfs_lookup_block_group(fs_info, bytenr);
2096 		BUG_ON(!cache);
2097 		len = min(num, cache->key.offset -
2098 			  (bytenr - cache->key.objectid));
2099 		if (pin) {
2100 			spin_lock(&cache->space_info->lock);
2101 			spin_lock(&cache->lock);
2102 			cache->pinned += len;
2103 			cache->space_info->bytes_pinned += len;
2104 			spin_unlock(&cache->lock);
2105 			spin_unlock(&cache->space_info->lock);
2106 			fs_info->total_pinned += len;
2107 		} else {
2108 			spin_lock(&cache->space_info->lock);
2109 			spin_lock(&cache->lock);
2110 			cache->pinned -= len;
2111 			cache->space_info->bytes_pinned -= len;
2112 			spin_unlock(&cache->lock);
2113 			spin_unlock(&cache->space_info->lock);
2114 			fs_info->total_pinned -= len;
2115 			if (cache->cached)
2116 				btrfs_add_free_space(cache, bytenr, len);
2117 		}
2118 		put_block_group(cache);
2119 		bytenr += len;
2120 		num -= len;
2121 	}
2122 	return 0;
2123 }
2124 
2125 static int update_reserved_extents(struct btrfs_root *root,
2126 				   u64 bytenr, u64 num, int reserve)
2127 {
2128 	u64 len;
2129 	struct btrfs_block_group_cache *cache;
2130 	struct btrfs_fs_info *fs_info = root->fs_info;
2131 
2132 	while (num > 0) {
2133 		cache = btrfs_lookup_block_group(fs_info, bytenr);
2134 		BUG_ON(!cache);
2135 		len = min(num, cache->key.offset -
2136 			  (bytenr - cache->key.objectid));
2137 
2138 		spin_lock(&cache->space_info->lock);
2139 		spin_lock(&cache->lock);
2140 		if (reserve) {
2141 			cache->reserved += len;
2142 			cache->space_info->bytes_reserved += len;
2143 		} else {
2144 			cache->reserved -= len;
2145 			cache->space_info->bytes_reserved -= len;
2146 		}
2147 		spin_unlock(&cache->lock);
2148 		spin_unlock(&cache->space_info->lock);
2149 		put_block_group(cache);
2150 		bytenr += len;
2151 		num -= len;
2152 	}
2153 	return 0;
2154 }
2155 
2156 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
2157 {
2158 	u64 last = 0;
2159 	u64 start;
2160 	u64 end;
2161 	struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
2162 	int ret;
2163 
2164 	mutex_lock(&root->fs_info->pinned_mutex);
2165 	while (1) {
2166 		ret = find_first_extent_bit(pinned_extents, last,
2167 					    &start, &end, EXTENT_DIRTY);
2168 		if (ret)
2169 			break;
2170 		set_extent_dirty(copy, start, end, GFP_NOFS);
2171 		last = end + 1;
2172 	}
2173 	mutex_unlock(&root->fs_info->pinned_mutex);
2174 	return 0;
2175 }
2176 
2177 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2178 			       struct btrfs_root *root,
2179 			       struct extent_io_tree *unpin)
2180 {
2181 	u64 start;
2182 	u64 end;
2183 	int ret;
2184 
2185 	mutex_lock(&root->fs_info->pinned_mutex);
2186 	while (1) {
2187 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2188 					    EXTENT_DIRTY);
2189 		if (ret)
2190 			break;
2191 
2192 		ret = btrfs_discard_extent(root, start, end + 1 - start);
2193 
2194 		btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
2195 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
2196 
2197 		if (need_resched()) {
2198 			mutex_unlock(&root->fs_info->pinned_mutex);
2199 			cond_resched();
2200 			mutex_lock(&root->fs_info->pinned_mutex);
2201 		}
2202 	}
2203 	mutex_unlock(&root->fs_info->pinned_mutex);
2204 	return ret;
2205 }
2206 
2207 static int finish_current_insert(struct btrfs_trans_handle *trans,
2208 				 struct btrfs_root *extent_root, int all)
2209 {
2210 	u64 start;
2211 	u64 end;
2212 	u64 priv;
2213 	u64 search = 0;
2214 	u64 skipped = 0;
2215 	struct btrfs_fs_info *info = extent_root->fs_info;
2216 	struct btrfs_path *path;
2217 	struct pending_extent_op *extent_op, *tmp;
2218 	struct list_head insert_list, update_list;
2219 	int ret;
2220 	int num_inserts = 0, max_inserts;
2221 
2222 	path = btrfs_alloc_path();
2223 	INIT_LIST_HEAD(&insert_list);
2224 	INIT_LIST_HEAD(&update_list);
2225 
2226 	max_inserts = extent_root->leafsize /
2227 		(2 * sizeof(struct btrfs_key) + 2 * sizeof(struct btrfs_item) +
2228 		 sizeof(struct btrfs_extent_ref) +
2229 		 sizeof(struct btrfs_extent_item));
2230 again:
2231 	mutex_lock(&info->extent_ins_mutex);
2232 	while (1) {
2233 		ret = find_first_extent_bit(&info->extent_ins, search, &start,
2234 					    &end, EXTENT_WRITEBACK);
2235 		if (ret) {
2236 			if (skipped && all && !num_inserts &&
2237 			    list_empty(&update_list)) {
2238 				skipped = 0;
2239 				search = 0;
2240 				continue;
2241 			}
2242 			mutex_unlock(&info->extent_ins_mutex);
2243 			break;
2244 		}
2245 
2246 		ret = try_lock_extent(&info->extent_ins, start, end, GFP_NOFS);
2247 		if (!ret) {
2248 			skipped = 1;
2249 			search = end + 1;
2250 			if (need_resched()) {
2251 				mutex_unlock(&info->extent_ins_mutex);
2252 				cond_resched();
2253 				mutex_lock(&info->extent_ins_mutex);
2254 			}
2255 			continue;
2256 		}
2257 
2258 		ret = get_state_private(&info->extent_ins, start, &priv);
2259 		BUG_ON(ret);
2260 		extent_op = (struct pending_extent_op *)(unsigned long) priv;
2261 
2262 		if (extent_op->type == PENDING_EXTENT_INSERT) {
2263 			num_inserts++;
2264 			list_add_tail(&extent_op->list, &insert_list);
2265 			search = end + 1;
2266 			if (num_inserts == max_inserts) {
2267 				mutex_unlock(&info->extent_ins_mutex);
2268 				break;
2269 			}
2270 		} else if (extent_op->type == PENDING_BACKREF_UPDATE) {
2271 			list_add_tail(&extent_op->list, &update_list);
2272 			search = end + 1;
2273 		} else {
2274 			BUG();
2275 		}
2276 	}
2277 
2278 	/*
2279 	 * process the update list, clear the writeback bit for it, and if
2280 	 * somebody marked this thing for deletion then just unlock it and be
2281 	 * done, the free_extents will handle it
2282 	 */
2283 	mutex_lock(&info->extent_ins_mutex);
2284 	list_for_each_entry_safe(extent_op, tmp, &update_list, list) {
2285 		clear_extent_bits(&info->extent_ins, extent_op->bytenr,
2286 				  extent_op->bytenr + extent_op->num_bytes - 1,
2287 				  EXTENT_WRITEBACK, GFP_NOFS);
2288 		if (extent_op->del) {
2289 			list_del_init(&extent_op->list);
2290 			unlock_extent(&info->extent_ins, extent_op->bytenr,
2291 				      extent_op->bytenr + extent_op->num_bytes
2292 				      - 1, GFP_NOFS);
2293 			kfree(extent_op);
2294 		}
2295 	}
2296 	mutex_unlock(&info->extent_ins_mutex);
2297 
2298 	/*
2299 	 * still have things left on the update list, go ahead an update
2300 	 * everything
2301 	 */
2302 	if (!list_empty(&update_list)) {
2303 		ret = update_backrefs(trans, extent_root, path, &update_list);
2304 		BUG_ON(ret);
2305 	}
2306 
2307 	/*
2308 	 * if no inserts need to be done, but we skipped some extents and we
2309 	 * need to make sure everything is cleaned then reset everything and
2310 	 * go back to the beginning
2311 	 */
2312 	if (!num_inserts && all && skipped) {
2313 		search = 0;
2314 		skipped = 0;
2315 		INIT_LIST_HEAD(&update_list);
2316 		INIT_LIST_HEAD(&insert_list);
2317 		goto again;
2318 	} else if (!num_inserts) {
2319 		goto out;
2320 	}
2321 
2322 	/*
2323 	 * process the insert extents list.  Again if we are deleting this
2324 	 * extent, then just unlock it, pin down the bytes if need be, and be
2325 	 * done with it.  Saves us from having to actually insert the extent
2326 	 * into the tree and then subsequently come along and delete it
2327 	 */
2328 	mutex_lock(&info->extent_ins_mutex);
2329 	list_for_each_entry_safe(extent_op, tmp, &insert_list, list) {
2330 		clear_extent_bits(&info->extent_ins, extent_op->bytenr,
2331 				  extent_op->bytenr + extent_op->num_bytes - 1,
2332 				  EXTENT_WRITEBACK, GFP_NOFS);
2333 		if (extent_op->del) {
2334 			u64 used;
2335 			list_del_init(&extent_op->list);
2336 			unlock_extent(&info->extent_ins, extent_op->bytenr,
2337 				      extent_op->bytenr + extent_op->num_bytes
2338 				      - 1, GFP_NOFS);
2339 
2340 			mutex_lock(&extent_root->fs_info->pinned_mutex);
2341 			ret = pin_down_bytes(trans, extent_root,
2342 					     extent_op->bytenr,
2343 					     extent_op->num_bytes, 0);
2344 			mutex_unlock(&extent_root->fs_info->pinned_mutex);
2345 
2346 			spin_lock(&info->delalloc_lock);
2347 			used = btrfs_super_bytes_used(&info->super_copy);
2348 			btrfs_set_super_bytes_used(&info->super_copy,
2349 					used - extent_op->num_bytes);
2350 			used = btrfs_root_used(&extent_root->root_item);
2351 			btrfs_set_root_used(&extent_root->root_item,
2352 					used - extent_op->num_bytes);
2353 			spin_unlock(&info->delalloc_lock);
2354 
2355 			ret = update_block_group(trans, extent_root,
2356 						 extent_op->bytenr,
2357 						 extent_op->num_bytes,
2358 						 0, ret > 0);
2359 			BUG_ON(ret);
2360 			kfree(extent_op);
2361 			num_inserts--;
2362 		}
2363 	}
2364 	mutex_unlock(&info->extent_ins_mutex);
2365 
2366 	ret = insert_extents(trans, extent_root, path, &insert_list,
2367 			     num_inserts);
2368 	BUG_ON(ret);
2369 
2370 	/*
2371 	 * if we broke out of the loop in order to insert stuff because we hit
2372 	 * the maximum number of inserts at a time we can handle, then loop
2373 	 * back and pick up where we left off
2374 	 */
2375 	if (num_inserts == max_inserts) {
2376 		INIT_LIST_HEAD(&insert_list);
2377 		INIT_LIST_HEAD(&update_list);
2378 		num_inserts = 0;
2379 		goto again;
2380 	}
2381 
2382 	/*
2383 	 * again, if we need to make absolutely sure there are no more pending
2384 	 * extent operations left and we know that we skipped some, go back to
2385 	 * the beginning and do it all again
2386 	 */
2387 	if (all && skipped) {
2388 		INIT_LIST_HEAD(&insert_list);
2389 		INIT_LIST_HEAD(&update_list);
2390 		search = 0;
2391 		skipped = 0;
2392 		num_inserts = 0;
2393 		goto again;
2394 	}
2395 out:
2396 	btrfs_free_path(path);
2397 	return 0;
2398 }
2399 
2400 static int pin_down_bytes(struct btrfs_trans_handle *trans,
2401 			  struct btrfs_root *root,
2402 			  u64 bytenr, u64 num_bytes, int is_data)
2403 {
2404 	int err = 0;
2405 	struct extent_buffer *buf;
2406 
2407 	if (is_data)
2408 		goto pinit;
2409 
2410 	buf = btrfs_find_tree_block(root, bytenr, num_bytes);
2411 	if (!buf)
2412 		goto pinit;
2413 
2414 	/* we can reuse a block if it hasn't been written
2415 	 * and it is from this transaction.  We can't
2416 	 * reuse anything from the tree log root because
2417 	 * it has tiny sub-transactions.
2418 	 */
2419 	if (btrfs_buffer_uptodate(buf, 0) &&
2420 	    btrfs_try_tree_lock(buf)) {
2421 		u64 header_owner = btrfs_header_owner(buf);
2422 		u64 header_transid = btrfs_header_generation(buf);
2423 		if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
2424 		    header_owner != BTRFS_TREE_RELOC_OBJECTID &&
2425 		    header_transid == trans->transid &&
2426 		    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2427 			clean_tree_block(NULL, root, buf);
2428 			btrfs_tree_unlock(buf);
2429 			free_extent_buffer(buf);
2430 			return 1;
2431 		}
2432 		btrfs_tree_unlock(buf);
2433 	}
2434 	free_extent_buffer(buf);
2435 pinit:
2436 	btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2437 
2438 	BUG_ON(err < 0);
2439 	return 0;
2440 }
2441 
2442 /*
2443  * remove an extent from the root, returns 0 on success
2444  */
2445 static int __free_extent(struct btrfs_trans_handle *trans,
2446 			 struct btrfs_root *root,
2447 			 u64 bytenr, u64 num_bytes, u64 parent,
2448 			 u64 root_objectid, u64 ref_generation,
2449 			 u64 owner_objectid, int pin, int mark_free)
2450 {
2451 	struct btrfs_path *path;
2452 	struct btrfs_key key;
2453 	struct btrfs_fs_info *info = root->fs_info;
2454 	struct btrfs_root *extent_root = info->extent_root;
2455 	struct extent_buffer *leaf;
2456 	int ret;
2457 	int extent_slot = 0;
2458 	int found_extent = 0;
2459 	int num_to_del = 1;
2460 	struct btrfs_extent_item *ei;
2461 	u32 refs;
2462 
2463 	key.objectid = bytenr;
2464 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
2465 	key.offset = num_bytes;
2466 	path = btrfs_alloc_path();
2467 	if (!path)
2468 		return -ENOMEM;
2469 
2470 	path->reada = 1;
2471 	ret = lookup_extent_backref(trans, extent_root, path,
2472 				    bytenr, parent, root_objectid,
2473 				    ref_generation, owner_objectid, 1);
2474 	if (ret == 0) {
2475 		struct btrfs_key found_key;
2476 		extent_slot = path->slots[0];
2477 		while (extent_slot > 0) {
2478 			extent_slot--;
2479 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2480 					      extent_slot);
2481 			if (found_key.objectid != bytenr)
2482 				break;
2483 			if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
2484 			    found_key.offset == num_bytes) {
2485 				found_extent = 1;
2486 				break;
2487 			}
2488 			if (path->slots[0] - extent_slot > 5)
2489 				break;
2490 		}
2491 		if (!found_extent) {
2492 			ret = remove_extent_backref(trans, extent_root, path);
2493 			BUG_ON(ret);
2494 			btrfs_release_path(extent_root, path);
2495 			ret = btrfs_search_slot(trans, extent_root,
2496 						&key, path, -1, 1);
2497 			if (ret) {
2498 				printk(KERN_ERR "umm, got %d back from search"
2499 				       ", was looking for %llu\n", ret,
2500 				       (unsigned long long)bytenr);
2501 				btrfs_print_leaf(extent_root, path->nodes[0]);
2502 			}
2503 			BUG_ON(ret);
2504 			extent_slot = path->slots[0];
2505 		}
2506 	} else {
2507 		btrfs_print_leaf(extent_root, path->nodes[0]);
2508 		WARN_ON(1);
2509 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
2510 		       "root %llu gen %llu owner %llu\n",
2511 		       (unsigned long long)bytenr,
2512 		       (unsigned long long)root_objectid,
2513 		       (unsigned long long)ref_generation,
2514 		       (unsigned long long)owner_objectid);
2515 	}
2516 
2517 	leaf = path->nodes[0];
2518 	ei = btrfs_item_ptr(leaf, extent_slot,
2519 			    struct btrfs_extent_item);
2520 	refs = btrfs_extent_refs(leaf, ei);
2521 	BUG_ON(refs == 0);
2522 	refs -= 1;
2523 	btrfs_set_extent_refs(leaf, ei, refs);
2524 
2525 	btrfs_mark_buffer_dirty(leaf);
2526 
2527 	if (refs == 0 && found_extent && path->slots[0] == extent_slot + 1) {
2528 		struct btrfs_extent_ref *ref;
2529 		ref = btrfs_item_ptr(leaf, path->slots[0],
2530 				     struct btrfs_extent_ref);
2531 		BUG_ON(btrfs_ref_num_refs(leaf, ref) != 1);
2532 		/* if the back ref and the extent are next to each other
2533 		 * they get deleted below in one shot
2534 		 */
2535 		path->slots[0] = extent_slot;
2536 		num_to_del = 2;
2537 	} else if (found_extent) {
2538 		/* otherwise delete the extent back ref */
2539 		ret = remove_extent_backref(trans, extent_root, path);
2540 		BUG_ON(ret);
2541 		/* if refs are 0, we need to setup the path for deletion */
2542 		if (refs == 0) {
2543 			btrfs_release_path(extent_root, path);
2544 			ret = btrfs_search_slot(trans, extent_root, &key, path,
2545 						-1, 1);
2546 			BUG_ON(ret);
2547 		}
2548 	}
2549 
2550 	if (refs == 0) {
2551 		u64 super_used;
2552 		u64 root_used;
2553 
2554 		if (pin) {
2555 			mutex_lock(&root->fs_info->pinned_mutex);
2556 			ret = pin_down_bytes(trans, root, bytenr, num_bytes,
2557 				owner_objectid >= BTRFS_FIRST_FREE_OBJECTID);
2558 			mutex_unlock(&root->fs_info->pinned_mutex);
2559 			if (ret > 0)
2560 				mark_free = 1;
2561 			BUG_ON(ret < 0);
2562 		}
2563 		/* block accounting for super block */
2564 		spin_lock(&info->delalloc_lock);
2565 		super_used = btrfs_super_bytes_used(&info->super_copy);
2566 		btrfs_set_super_bytes_used(&info->super_copy,
2567 					   super_used - num_bytes);
2568 
2569 		/* block accounting for root item */
2570 		root_used = btrfs_root_used(&root->root_item);
2571 		btrfs_set_root_used(&root->root_item,
2572 					   root_used - num_bytes);
2573 		spin_unlock(&info->delalloc_lock);
2574 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
2575 				      num_to_del);
2576 		BUG_ON(ret);
2577 		btrfs_release_path(extent_root, path);
2578 
2579 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
2580 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
2581 			BUG_ON(ret);
2582 		}
2583 
2584 		ret = update_block_group(trans, root, bytenr, num_bytes, 0,
2585 					 mark_free);
2586 		BUG_ON(ret);
2587 	}
2588 	btrfs_free_path(path);
2589 	finish_current_insert(trans, extent_root, 0);
2590 	return ret;
2591 }
2592 
2593 /*
2594  * find all the blocks marked as pending in the radix tree and remove
2595  * them from the extent map
2596  */
2597 static int del_pending_extents(struct btrfs_trans_handle *trans,
2598 			       struct btrfs_root *extent_root, int all)
2599 {
2600 	int ret;
2601 	int err = 0;
2602 	u64 start;
2603 	u64 end;
2604 	u64 priv;
2605 	u64 search = 0;
2606 	int nr = 0, skipped = 0;
2607 	struct extent_io_tree *pending_del;
2608 	struct extent_io_tree *extent_ins;
2609 	struct pending_extent_op *extent_op;
2610 	struct btrfs_fs_info *info = extent_root->fs_info;
2611 	struct list_head delete_list;
2612 
2613 	INIT_LIST_HEAD(&delete_list);
2614 	extent_ins = &extent_root->fs_info->extent_ins;
2615 	pending_del = &extent_root->fs_info->pending_del;
2616 
2617 again:
2618 	mutex_lock(&info->extent_ins_mutex);
2619 	while (1) {
2620 		ret = find_first_extent_bit(pending_del, search, &start, &end,
2621 					    EXTENT_WRITEBACK);
2622 		if (ret) {
2623 			if (all && skipped && !nr) {
2624 				search = 0;
2625 				skipped = 0;
2626 				continue;
2627 			}
2628 			mutex_unlock(&info->extent_ins_mutex);
2629 			break;
2630 		}
2631 
2632 		ret = try_lock_extent(extent_ins, start, end, GFP_NOFS);
2633 		if (!ret) {
2634 			search = end+1;
2635 			skipped = 1;
2636 
2637 			if (need_resched()) {
2638 				mutex_unlock(&info->extent_ins_mutex);
2639 				cond_resched();
2640 				mutex_lock(&info->extent_ins_mutex);
2641 			}
2642 
2643 			continue;
2644 		}
2645 		BUG_ON(ret < 0);
2646 
2647 		ret = get_state_private(pending_del, start, &priv);
2648 		BUG_ON(ret);
2649 		extent_op = (struct pending_extent_op *)(unsigned long)priv;
2650 
2651 		clear_extent_bits(pending_del, start, end, EXTENT_WRITEBACK,
2652 				  GFP_NOFS);
2653 		if (!test_range_bit(extent_ins, start, end,
2654 				    EXTENT_WRITEBACK, 0)) {
2655 			list_add_tail(&extent_op->list, &delete_list);
2656 			nr++;
2657 		} else {
2658 			kfree(extent_op);
2659 
2660 			ret = get_state_private(&info->extent_ins, start,
2661 						&priv);
2662 			BUG_ON(ret);
2663 			extent_op = (struct pending_extent_op *)
2664 						(unsigned long)priv;
2665 
2666 			clear_extent_bits(&info->extent_ins, start, end,
2667 					  EXTENT_WRITEBACK, GFP_NOFS);
2668 
2669 			if (extent_op->type == PENDING_BACKREF_UPDATE) {
2670 				list_add_tail(&extent_op->list, &delete_list);
2671 				search = end + 1;
2672 				nr++;
2673 				continue;
2674 			}
2675 
2676 			mutex_lock(&extent_root->fs_info->pinned_mutex);
2677 			ret = pin_down_bytes(trans, extent_root, start,
2678 					     end + 1 - start, 0);
2679 			mutex_unlock(&extent_root->fs_info->pinned_mutex);
2680 
2681 			ret = update_block_group(trans, extent_root, start,
2682 						end + 1 - start, 0, ret > 0);
2683 
2684 			unlock_extent(extent_ins, start, end, GFP_NOFS);
2685 			BUG_ON(ret);
2686 			kfree(extent_op);
2687 		}
2688 		if (ret)
2689 			err = ret;
2690 
2691 		search = end + 1;
2692 
2693 		if (need_resched()) {
2694 			mutex_unlock(&info->extent_ins_mutex);
2695 			cond_resched();
2696 			mutex_lock(&info->extent_ins_mutex);
2697 		}
2698 	}
2699 
2700 	if (nr) {
2701 		ret = free_extents(trans, extent_root, &delete_list);
2702 		BUG_ON(ret);
2703 	}
2704 
2705 	if (all && skipped) {
2706 		INIT_LIST_HEAD(&delete_list);
2707 		search = 0;
2708 		nr = 0;
2709 		goto again;
2710 	}
2711 
2712 	return err;
2713 }
2714 
2715 /*
2716  * remove an extent from the root, returns 0 on success
2717  */
2718 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2719 			       struct btrfs_root *root,
2720 			       u64 bytenr, u64 num_bytes, u64 parent,
2721 			       u64 root_objectid, u64 ref_generation,
2722 			       u64 owner_objectid, int pin)
2723 {
2724 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2725 	int pending_ret;
2726 	int ret;
2727 
2728 	WARN_ON(num_bytes < root->sectorsize);
2729 	if (root == extent_root) {
2730 		struct pending_extent_op *extent_op = NULL;
2731 
2732 		mutex_lock(&root->fs_info->extent_ins_mutex);
2733 		if (test_range_bit(&root->fs_info->extent_ins, bytenr,
2734 				bytenr + num_bytes - 1, EXTENT_WRITEBACK, 0)) {
2735 			u64 priv;
2736 			ret = get_state_private(&root->fs_info->extent_ins,
2737 						bytenr, &priv);
2738 			BUG_ON(ret);
2739 			extent_op = (struct pending_extent_op *)
2740 						(unsigned long)priv;
2741 
2742 			extent_op->del = 1;
2743 			if (extent_op->type == PENDING_EXTENT_INSERT) {
2744 				mutex_unlock(&root->fs_info->extent_ins_mutex);
2745 				return 0;
2746 			}
2747 		}
2748 
2749 		if (extent_op) {
2750 			ref_generation = extent_op->orig_generation;
2751 			parent = extent_op->orig_parent;
2752 		}
2753 
2754 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2755 		BUG_ON(!extent_op);
2756 
2757 		extent_op->type = PENDING_EXTENT_DELETE;
2758 		extent_op->bytenr = bytenr;
2759 		extent_op->num_bytes = num_bytes;
2760 		extent_op->parent = parent;
2761 		extent_op->orig_parent = parent;
2762 		extent_op->generation = ref_generation;
2763 		extent_op->orig_generation = ref_generation;
2764 		extent_op->level = (int)owner_objectid;
2765 		INIT_LIST_HEAD(&extent_op->list);
2766 		extent_op->del = 0;
2767 
2768 		set_extent_bits(&root->fs_info->pending_del,
2769 				bytenr, bytenr + num_bytes - 1,
2770 				EXTENT_WRITEBACK, GFP_NOFS);
2771 		set_state_private(&root->fs_info->pending_del,
2772 				  bytenr, (unsigned long)extent_op);
2773 		mutex_unlock(&root->fs_info->extent_ins_mutex);
2774 		return 0;
2775 	}
2776 	/* if metadata always pin */
2777 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
2778 		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
2779 			mutex_lock(&root->fs_info->pinned_mutex);
2780 			btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
2781 			mutex_unlock(&root->fs_info->pinned_mutex);
2782 			update_reserved_extents(root, bytenr, num_bytes, 0);
2783 			return 0;
2784 		}
2785 		pin = 1;
2786 	}
2787 
2788 	/* if data pin when any transaction has committed this */
2789 	if (ref_generation != trans->transid)
2790 		pin = 1;
2791 
2792 	ret = __free_extent(trans, root, bytenr, num_bytes, parent,
2793 			    root_objectid, ref_generation,
2794 			    owner_objectid, pin, pin == 0);
2795 
2796 	finish_current_insert(trans, root->fs_info->extent_root, 0);
2797 	pending_ret = del_pending_extents(trans, root->fs_info->extent_root, 0);
2798 	return ret ? ret : pending_ret;
2799 }
2800 
2801 int btrfs_free_extent(struct btrfs_trans_handle *trans,
2802 		      struct btrfs_root *root,
2803 		      u64 bytenr, u64 num_bytes, u64 parent,
2804 		      u64 root_objectid, u64 ref_generation,
2805 		      u64 owner_objectid, int pin)
2806 {
2807 	int ret;
2808 
2809 	ret = __btrfs_free_extent(trans, root, bytenr, num_bytes, parent,
2810 				  root_objectid, ref_generation,
2811 				  owner_objectid, pin);
2812 	return ret;
2813 }
2814 
2815 static u64 stripe_align(struct btrfs_root *root, u64 val)
2816 {
2817 	u64 mask = ((u64)root->stripesize - 1);
2818 	u64 ret = (val + mask) & ~mask;
2819 	return ret;
2820 }
2821 
2822 /*
2823  * walks the btree of allocated extents and find a hole of a given size.
2824  * The key ins is changed to record the hole:
2825  * ins->objectid == block start
2826  * ins->flags = BTRFS_EXTENT_ITEM_KEY
2827  * ins->offset == number of blocks
2828  * Any available blocks before search_start are skipped.
2829  */
2830 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
2831 				     struct btrfs_root *orig_root,
2832 				     u64 num_bytes, u64 empty_size,
2833 				     u64 search_start, u64 search_end,
2834 				     u64 hint_byte, struct btrfs_key *ins,
2835 				     u64 exclude_start, u64 exclude_nr,
2836 				     int data)
2837 {
2838 	int ret = 0;
2839 	struct btrfs_root *root = orig_root->fs_info->extent_root;
2840 	u64 total_needed = num_bytes;
2841 	u64 *last_ptr = NULL;
2842 	u64 last_wanted = 0;
2843 	struct btrfs_block_group_cache *block_group = NULL;
2844 	int chunk_alloc_done = 0;
2845 	int empty_cluster = 2 * 1024 * 1024;
2846 	int allowed_chunk_alloc = 0;
2847 	struct list_head *head = NULL, *cur = NULL;
2848 	int loop = 0;
2849 	int extra_loop = 0;
2850 	struct btrfs_space_info *space_info;
2851 
2852 	WARN_ON(num_bytes < root->sectorsize);
2853 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
2854 	ins->objectid = 0;
2855 	ins->offset = 0;
2856 
2857 	if (orig_root->ref_cows || empty_size)
2858 		allowed_chunk_alloc = 1;
2859 
2860 	if (data & BTRFS_BLOCK_GROUP_METADATA) {
2861 		last_ptr = &root->fs_info->last_alloc;
2862 		empty_cluster = 64 * 1024;
2863 	}
2864 
2865 	if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD))
2866 		last_ptr = &root->fs_info->last_data_alloc;
2867 
2868 	if (last_ptr) {
2869 		if (*last_ptr) {
2870 			hint_byte = *last_ptr;
2871 			last_wanted = *last_ptr;
2872 		} else
2873 			empty_size += empty_cluster;
2874 	} else {
2875 		empty_cluster = 0;
2876 	}
2877 	search_start = max(search_start, first_logical_byte(root, 0));
2878 	search_start = max(search_start, hint_byte);
2879 
2880 	if (last_wanted && search_start != last_wanted) {
2881 		last_wanted = 0;
2882 		empty_size += empty_cluster;
2883 	}
2884 
2885 	total_needed += empty_size;
2886 	block_group = btrfs_lookup_block_group(root->fs_info, search_start);
2887 	if (!block_group)
2888 		block_group = btrfs_lookup_first_block_group(root->fs_info,
2889 							     search_start);
2890 	space_info = __find_space_info(root->fs_info, data);
2891 
2892 	down_read(&space_info->groups_sem);
2893 	while (1) {
2894 		struct btrfs_free_space *free_space;
2895 		/*
2896 		 * the only way this happens if our hint points to a block
2897 		 * group thats not of the proper type, while looping this
2898 		 * should never happen
2899 		 */
2900 		if (empty_size)
2901 			extra_loop = 1;
2902 
2903 		if (!block_group)
2904 			goto new_group_no_lock;
2905 
2906 		if (unlikely(!block_group->cached)) {
2907 			mutex_lock(&block_group->cache_mutex);
2908 			ret = cache_block_group(root, block_group);
2909 			mutex_unlock(&block_group->cache_mutex);
2910 			if (ret)
2911 				break;
2912 		}
2913 
2914 		mutex_lock(&block_group->alloc_mutex);
2915 		if (unlikely(!block_group_bits(block_group, data)))
2916 			goto new_group;
2917 
2918 		if (unlikely(block_group->ro))
2919 			goto new_group;
2920 
2921 		free_space = btrfs_find_free_space(block_group, search_start,
2922 						   total_needed);
2923 		if (free_space) {
2924 			u64 start = block_group->key.objectid;
2925 			u64 end = block_group->key.objectid +
2926 				block_group->key.offset;
2927 
2928 			search_start = stripe_align(root, free_space->offset);
2929 
2930 			/* move on to the next group */
2931 			if (search_start + num_bytes >= search_end)
2932 				goto new_group;
2933 
2934 			/* move on to the next group */
2935 			if (search_start + num_bytes > end)
2936 				goto new_group;
2937 
2938 			if (last_wanted && search_start != last_wanted) {
2939 				total_needed += empty_cluster;
2940 				empty_size += empty_cluster;
2941 				last_wanted = 0;
2942 				/*
2943 				 * if search_start is still in this block group
2944 				 * then we just re-search this block group
2945 				 */
2946 				if (search_start >= start &&
2947 				    search_start < end) {
2948 					mutex_unlock(&block_group->alloc_mutex);
2949 					continue;
2950 				}
2951 
2952 				/* else we go to the next block group */
2953 				goto new_group;
2954 			}
2955 
2956 			if (exclude_nr > 0 &&
2957 			    (search_start + num_bytes > exclude_start &&
2958 			     search_start < exclude_start + exclude_nr)) {
2959 				search_start = exclude_start + exclude_nr;
2960 				/*
2961 				 * if search_start is still in this block group
2962 				 * then we just re-search this block group
2963 				 */
2964 				if (search_start >= start &&
2965 				    search_start < end) {
2966 					mutex_unlock(&block_group->alloc_mutex);
2967 					last_wanted = 0;
2968 					continue;
2969 				}
2970 
2971 				/* else we go to the next block group */
2972 				goto new_group;
2973 			}
2974 
2975 			ins->objectid = search_start;
2976 			ins->offset = num_bytes;
2977 
2978 			btrfs_remove_free_space_lock(block_group, search_start,
2979 						     num_bytes);
2980 			/* we are all good, lets return */
2981 			mutex_unlock(&block_group->alloc_mutex);
2982 			break;
2983 		}
2984 new_group:
2985 		mutex_unlock(&block_group->alloc_mutex);
2986 		put_block_group(block_group);
2987 		block_group = NULL;
2988 new_group_no_lock:
2989 		/* don't try to compare new allocations against the
2990 		 * last allocation any more
2991 		 */
2992 		last_wanted = 0;
2993 
2994 		/*
2995 		 * Here's how this works.
2996 		 * loop == 0: we were searching a block group via a hint
2997 		 *		and didn't find anything, so we start at
2998 		 *		the head of the block groups and keep searching
2999 		 * loop == 1: we're searching through all of the block groups
3000 		 *		if we hit the head again we have searched
3001 		 *		all of the block groups for this space and we
3002 		 *		need to try and allocate, if we cant error out.
3003 		 * loop == 2: we allocated more space and are looping through
3004 		 *		all of the block groups again.
3005 		 */
3006 		if (loop == 0) {
3007 			head = &space_info->block_groups;
3008 			cur = head->next;
3009 			loop++;
3010 		} else if (loop == 1 && cur == head) {
3011 			int keep_going;
3012 
3013 			/* at this point we give up on the empty_size
3014 			 * allocations and just try to allocate the min
3015 			 * space.
3016 			 *
3017 			 * The extra_loop field was set if an empty_size
3018 			 * allocation was attempted above, and if this
3019 			 * is try we need to try the loop again without
3020 			 * the additional empty_size.
3021 			 */
3022 			total_needed -= empty_size;
3023 			empty_size = 0;
3024 			keep_going = extra_loop;
3025 			loop++;
3026 
3027 			if (allowed_chunk_alloc && !chunk_alloc_done) {
3028 				up_read(&space_info->groups_sem);
3029 				ret = do_chunk_alloc(trans, root, num_bytes +
3030 						     2 * 1024 * 1024, data, 1);
3031 				down_read(&space_info->groups_sem);
3032 				if (ret < 0)
3033 					goto loop_check;
3034 				head = &space_info->block_groups;
3035 				/*
3036 				 * we've allocated a new chunk, keep
3037 				 * trying
3038 				 */
3039 				keep_going = 1;
3040 				chunk_alloc_done = 1;
3041 			} else if (!allowed_chunk_alloc) {
3042 				space_info->force_alloc = 1;
3043 			}
3044 loop_check:
3045 			if (keep_going) {
3046 				cur = head->next;
3047 				extra_loop = 0;
3048 			} else {
3049 				break;
3050 			}
3051 		} else if (cur == head) {
3052 			break;
3053 		}
3054 
3055 		block_group = list_entry(cur, struct btrfs_block_group_cache,
3056 					 list);
3057 		atomic_inc(&block_group->count);
3058 
3059 		search_start = block_group->key.objectid;
3060 		cur = cur->next;
3061 	}
3062 
3063 	/* we found what we needed */
3064 	if (ins->objectid) {
3065 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
3066 			trans->block_group = block_group->key.objectid;
3067 
3068 		if (last_ptr)
3069 			*last_ptr = ins->objectid + ins->offset;
3070 		ret = 0;
3071 	} else if (!ret) {
3072 		printk(KERN_ERR "btrfs searching for %llu bytes, "
3073 		       "num_bytes %llu, loop %d, allowed_alloc %d\n",
3074 		       (unsigned long long)total_needed,
3075 		       (unsigned long long)num_bytes,
3076 		       loop, allowed_chunk_alloc);
3077 		ret = -ENOSPC;
3078 	}
3079 	if (block_group)
3080 		put_block_group(block_group);
3081 
3082 	up_read(&space_info->groups_sem);
3083 	return ret;
3084 }
3085 
3086 static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
3087 {
3088 	struct btrfs_block_group_cache *cache;
3089 
3090 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
3091 	       (unsigned long long)(info->total_bytes - info->bytes_used -
3092 				    info->bytes_pinned - info->bytes_reserved),
3093 	       (info->full) ? "" : "not ");
3094 
3095 	down_read(&info->groups_sem);
3096 	list_for_each_entry(cache, &info->block_groups, list) {
3097 		spin_lock(&cache->lock);
3098 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
3099 		       "%llu pinned %llu reserved\n",
3100 		       (unsigned long long)cache->key.objectid,
3101 		       (unsigned long long)cache->key.offset,
3102 		       (unsigned long long)btrfs_block_group_used(&cache->item),
3103 		       (unsigned long long)cache->pinned,
3104 		       (unsigned long long)cache->reserved);
3105 		btrfs_dump_free_space(cache, bytes);
3106 		spin_unlock(&cache->lock);
3107 	}
3108 	up_read(&info->groups_sem);
3109 }
3110 
3111 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
3112 				  struct btrfs_root *root,
3113 				  u64 num_bytes, u64 min_alloc_size,
3114 				  u64 empty_size, u64 hint_byte,
3115 				  u64 search_end, struct btrfs_key *ins,
3116 				  u64 data)
3117 {
3118 	int ret;
3119 	u64 search_start = 0;
3120 	u64 alloc_profile;
3121 	struct btrfs_fs_info *info = root->fs_info;
3122 
3123 	if (data) {
3124 		alloc_profile = info->avail_data_alloc_bits &
3125 			info->data_alloc_profile;
3126 		data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
3127 	} else if (root == root->fs_info->chunk_root) {
3128 		alloc_profile = info->avail_system_alloc_bits &
3129 			info->system_alloc_profile;
3130 		data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
3131 	} else {
3132 		alloc_profile = info->avail_metadata_alloc_bits &
3133 			info->metadata_alloc_profile;
3134 		data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
3135 	}
3136 again:
3137 	data = btrfs_reduce_alloc_profile(root, data);
3138 	/*
3139 	 * the only place that sets empty_size is btrfs_realloc_node, which
3140 	 * is not called recursively on allocations
3141 	 */
3142 	if (empty_size || root->ref_cows) {
3143 		if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
3144 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3145 				     2 * 1024 * 1024,
3146 				     BTRFS_BLOCK_GROUP_METADATA |
3147 				     (info->metadata_alloc_profile &
3148 				      info->avail_metadata_alloc_bits), 0);
3149 		}
3150 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3151 				     num_bytes + 2 * 1024 * 1024, data, 0);
3152 	}
3153 
3154 	WARN_ON(num_bytes < root->sectorsize);
3155 	ret = find_free_extent(trans, root, num_bytes, empty_size,
3156 			       search_start, search_end, hint_byte, ins,
3157 			       trans->alloc_exclude_start,
3158 			       trans->alloc_exclude_nr, data);
3159 
3160 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
3161 		num_bytes = num_bytes >> 1;
3162 		num_bytes = num_bytes & ~(root->sectorsize - 1);
3163 		num_bytes = max(num_bytes, min_alloc_size);
3164 		do_chunk_alloc(trans, root->fs_info->extent_root,
3165 			       num_bytes, data, 1);
3166 		goto again;
3167 	}
3168 	if (ret) {
3169 		struct btrfs_space_info *sinfo;
3170 
3171 		sinfo = __find_space_info(root->fs_info, data);
3172 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
3173 		       "wanted %llu\n", (unsigned long long)data,
3174 		       (unsigned long long)num_bytes);
3175 		dump_space_info(sinfo, num_bytes);
3176 		BUG();
3177 	}
3178 
3179 	return ret;
3180 }
3181 
3182 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
3183 {
3184 	struct btrfs_block_group_cache *cache;
3185 	int ret = 0;
3186 
3187 	cache = btrfs_lookup_block_group(root->fs_info, start);
3188 	if (!cache) {
3189 		printk(KERN_ERR "Unable to find block group for %llu\n",
3190 		       (unsigned long long)start);
3191 		return -ENOSPC;
3192 	}
3193 
3194 	ret = btrfs_discard_extent(root, start, len);
3195 
3196 	btrfs_add_free_space(cache, start, len);
3197 	put_block_group(cache);
3198 	update_reserved_extents(root, start, len, 0);
3199 
3200 	return ret;
3201 }
3202 
3203 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
3204 				  struct btrfs_root *root,
3205 				  u64 num_bytes, u64 min_alloc_size,
3206 				  u64 empty_size, u64 hint_byte,
3207 				  u64 search_end, struct btrfs_key *ins,
3208 				  u64 data)
3209 {
3210 	int ret;
3211 	ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
3212 				     empty_size, hint_byte, search_end, ins,
3213 				     data);
3214 	update_reserved_extents(root, ins->objectid, ins->offset, 1);
3215 	return ret;
3216 }
3217 
3218 static int __btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
3219 					 struct btrfs_root *root, u64 parent,
3220 					 u64 root_objectid, u64 ref_generation,
3221 					 u64 owner, struct btrfs_key *ins)
3222 {
3223 	int ret;
3224 	int pending_ret;
3225 	u64 super_used;
3226 	u64 root_used;
3227 	u64 num_bytes = ins->offset;
3228 	u32 sizes[2];
3229 	struct btrfs_fs_info *info = root->fs_info;
3230 	struct btrfs_root *extent_root = info->extent_root;
3231 	struct btrfs_extent_item *extent_item;
3232 	struct btrfs_extent_ref *ref;
3233 	struct btrfs_path *path;
3234 	struct btrfs_key keys[2];
3235 
3236 	if (parent == 0)
3237 		parent = ins->objectid;
3238 
3239 	/* block accounting for super block */
3240 	spin_lock(&info->delalloc_lock);
3241 	super_used = btrfs_super_bytes_used(&info->super_copy);
3242 	btrfs_set_super_bytes_used(&info->super_copy, super_used + num_bytes);
3243 
3244 	/* block accounting for root item */
3245 	root_used = btrfs_root_used(&root->root_item);
3246 	btrfs_set_root_used(&root->root_item, root_used + num_bytes);
3247 	spin_unlock(&info->delalloc_lock);
3248 
3249 	if (root == extent_root) {
3250 		struct pending_extent_op *extent_op;
3251 
3252 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
3253 		BUG_ON(!extent_op);
3254 
3255 		extent_op->type = PENDING_EXTENT_INSERT;
3256 		extent_op->bytenr = ins->objectid;
3257 		extent_op->num_bytes = ins->offset;
3258 		extent_op->parent = parent;
3259 		extent_op->orig_parent = 0;
3260 		extent_op->generation = ref_generation;
3261 		extent_op->orig_generation = 0;
3262 		extent_op->level = (int)owner;
3263 		INIT_LIST_HEAD(&extent_op->list);
3264 		extent_op->del = 0;
3265 
3266 		mutex_lock(&root->fs_info->extent_ins_mutex);
3267 		set_extent_bits(&root->fs_info->extent_ins, ins->objectid,
3268 				ins->objectid + ins->offset - 1,
3269 				EXTENT_WRITEBACK, GFP_NOFS);
3270 		set_state_private(&root->fs_info->extent_ins,
3271 				  ins->objectid, (unsigned long)extent_op);
3272 		mutex_unlock(&root->fs_info->extent_ins_mutex);
3273 		goto update_block;
3274 	}
3275 
3276 	memcpy(&keys[0], ins, sizeof(*ins));
3277 	keys[1].objectid = ins->objectid;
3278 	keys[1].type = BTRFS_EXTENT_REF_KEY;
3279 	keys[1].offset = parent;
3280 	sizes[0] = sizeof(*extent_item);
3281 	sizes[1] = sizeof(*ref);
3282 
3283 	path = btrfs_alloc_path();
3284 	BUG_ON(!path);
3285 
3286 	ret = btrfs_insert_empty_items(trans, extent_root, path, keys,
3287 				       sizes, 2);
3288 	BUG_ON(ret);
3289 
3290 	extent_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3291 				     struct btrfs_extent_item);
3292 	btrfs_set_extent_refs(path->nodes[0], extent_item, 1);
3293 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3294 			     struct btrfs_extent_ref);
3295 
3296 	btrfs_set_ref_root(path->nodes[0], ref, root_objectid);
3297 	btrfs_set_ref_generation(path->nodes[0], ref, ref_generation);
3298 	btrfs_set_ref_objectid(path->nodes[0], ref, owner);
3299 	btrfs_set_ref_num_refs(path->nodes[0], ref, 1);
3300 
3301 	btrfs_mark_buffer_dirty(path->nodes[0]);
3302 
3303 	trans->alloc_exclude_start = 0;
3304 	trans->alloc_exclude_nr = 0;
3305 	btrfs_free_path(path);
3306 	finish_current_insert(trans, extent_root, 0);
3307 	pending_ret = del_pending_extents(trans, extent_root, 0);
3308 
3309 	if (ret)
3310 		goto out;
3311 	if (pending_ret) {
3312 		ret = pending_ret;
3313 		goto out;
3314 	}
3315 
3316 update_block:
3317 	ret = update_block_group(trans, root, ins->objectid,
3318 				 ins->offset, 1, 0);
3319 	if (ret) {
3320 		printk(KERN_ERR "btrfs update block group failed for %llu "
3321 		       "%llu\n", (unsigned long long)ins->objectid,
3322 		       (unsigned long long)ins->offset);
3323 		BUG();
3324 	}
3325 out:
3326 	return ret;
3327 }
3328 
3329 int btrfs_alloc_reserved_extent(struct btrfs_trans_handle *trans,
3330 				struct btrfs_root *root, u64 parent,
3331 				u64 root_objectid, u64 ref_generation,
3332 				u64 owner, struct btrfs_key *ins)
3333 {
3334 	int ret;
3335 
3336 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID)
3337 		return 0;
3338 	ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
3339 					    ref_generation, owner, ins);
3340 	update_reserved_extents(root, ins->objectid, ins->offset, 0);
3341 	return ret;
3342 }
3343 
3344 /*
3345  * this is used by the tree logging recovery code.  It records that
3346  * an extent has been allocated and makes sure to clear the free
3347  * space cache bits as well
3348  */
3349 int btrfs_alloc_logged_extent(struct btrfs_trans_handle *trans,
3350 				struct btrfs_root *root, u64 parent,
3351 				u64 root_objectid, u64 ref_generation,
3352 				u64 owner, struct btrfs_key *ins)
3353 {
3354 	int ret;
3355 	struct btrfs_block_group_cache *block_group;
3356 
3357 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
3358 	mutex_lock(&block_group->cache_mutex);
3359 	cache_block_group(root, block_group);
3360 	mutex_unlock(&block_group->cache_mutex);
3361 
3362 	ret = btrfs_remove_free_space(block_group, ins->objectid,
3363 				      ins->offset);
3364 	BUG_ON(ret);
3365 	put_block_group(block_group);
3366 	ret = __btrfs_alloc_reserved_extent(trans, root, parent, root_objectid,
3367 					    ref_generation, owner, ins);
3368 	return ret;
3369 }
3370 
3371 /*
3372  * finds a free extent and does all the dirty work required for allocation
3373  * returns the key for the extent through ins, and a tree buffer for
3374  * the first block of the extent through buf.
3375  *
3376  * returns 0 if everything worked, non-zero otherwise.
3377  */
3378 int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
3379 		       struct btrfs_root *root,
3380 		       u64 num_bytes, u64 parent, u64 min_alloc_size,
3381 		       u64 root_objectid, u64 ref_generation,
3382 		       u64 owner_objectid, u64 empty_size, u64 hint_byte,
3383 		       u64 search_end, struct btrfs_key *ins, u64 data)
3384 {
3385 	int ret;
3386 
3387 	ret = __btrfs_reserve_extent(trans, root, num_bytes,
3388 				     min_alloc_size, empty_size, hint_byte,
3389 				     search_end, ins, data);
3390 	BUG_ON(ret);
3391 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
3392 		ret = __btrfs_alloc_reserved_extent(trans, root, parent,
3393 					root_objectid, ref_generation,
3394 					owner_objectid, ins);
3395 		BUG_ON(ret);
3396 
3397 	} else {
3398 		update_reserved_extents(root, ins->objectid, ins->offset, 1);
3399 	}
3400 	return ret;
3401 }
3402 
3403 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
3404 					    struct btrfs_root *root,
3405 					    u64 bytenr, u32 blocksize)
3406 {
3407 	struct extent_buffer *buf;
3408 
3409 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
3410 	if (!buf)
3411 		return ERR_PTR(-ENOMEM);
3412 	btrfs_set_header_generation(buf, trans->transid);
3413 	btrfs_tree_lock(buf);
3414 	clean_tree_block(trans, root, buf);
3415 
3416 	btrfs_set_lock_blocking(buf);
3417 	btrfs_set_buffer_uptodate(buf);
3418 
3419 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
3420 		set_extent_dirty(&root->dirty_log_pages, buf->start,
3421 			 buf->start + buf->len - 1, GFP_NOFS);
3422 	} else {
3423 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
3424 			 buf->start + buf->len - 1, GFP_NOFS);
3425 	}
3426 	trans->blocks_used++;
3427 	/* this returns a buffer locked for blocking */
3428 	return buf;
3429 }
3430 
3431 /*
3432  * helper function to allocate a block for a given tree
3433  * returns the tree buffer or NULL.
3434  */
3435 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
3436 					     struct btrfs_root *root,
3437 					     u32 blocksize, u64 parent,
3438 					     u64 root_objectid,
3439 					     u64 ref_generation,
3440 					     int level,
3441 					     u64 hint,
3442 					     u64 empty_size)
3443 {
3444 	struct btrfs_key ins;
3445 	int ret;
3446 	struct extent_buffer *buf;
3447 
3448 	ret = btrfs_alloc_extent(trans, root, blocksize, parent, blocksize,
3449 				 root_objectid, ref_generation, level,
3450 				 empty_size, hint, (u64)-1, &ins, 0);
3451 	if (ret) {
3452 		BUG_ON(ret > 0);
3453 		return ERR_PTR(ret);
3454 	}
3455 
3456 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, blocksize);
3457 	return buf;
3458 }
3459 
3460 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
3461 			struct btrfs_root *root, struct extent_buffer *leaf)
3462 {
3463 	u64 leaf_owner;
3464 	u64 leaf_generation;
3465 	struct refsort *sorted;
3466 	struct btrfs_key key;
3467 	struct btrfs_file_extent_item *fi;
3468 	int i;
3469 	int nritems;
3470 	int ret;
3471 	int refi = 0;
3472 	int slot;
3473 
3474 	BUG_ON(!btrfs_is_leaf(leaf));
3475 	nritems = btrfs_header_nritems(leaf);
3476 	leaf_owner = btrfs_header_owner(leaf);
3477 	leaf_generation = btrfs_header_generation(leaf);
3478 
3479 	sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3480 	/* we do this loop twice.  The first time we build a list
3481 	 * of the extents we have a reference on, then we sort the list
3482 	 * by bytenr.  The second time around we actually do the
3483 	 * extent freeing.
3484 	 */
3485 	for (i = 0; i < nritems; i++) {
3486 		u64 disk_bytenr;
3487 		cond_resched();
3488 
3489 		btrfs_item_key_to_cpu(leaf, &key, i);
3490 
3491 		/* only extents have references, skip everything else */
3492 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3493 			continue;
3494 
3495 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3496 
3497 		/* inline extents live in the btree, they don't have refs */
3498 		if (btrfs_file_extent_type(leaf, fi) ==
3499 		    BTRFS_FILE_EXTENT_INLINE)
3500 			continue;
3501 
3502 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
3503 
3504 		/* holes don't have refs */
3505 		if (disk_bytenr == 0)
3506 			continue;
3507 
3508 		sorted[refi].bytenr = disk_bytenr;
3509 		sorted[refi].slot = i;
3510 		refi++;
3511 	}
3512 
3513 	if (refi == 0)
3514 		goto out;
3515 
3516 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3517 
3518 	for (i = 0; i < refi; i++) {
3519 		u64 disk_bytenr;
3520 
3521 		disk_bytenr = sorted[i].bytenr;
3522 		slot = sorted[i].slot;
3523 
3524 		cond_resched();
3525 
3526 		btrfs_item_key_to_cpu(leaf, &key, slot);
3527 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3528 			continue;
3529 
3530 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
3531 
3532 		ret = __btrfs_free_extent(trans, root, disk_bytenr,
3533 				btrfs_file_extent_disk_num_bytes(leaf, fi),
3534 				leaf->start, leaf_owner, leaf_generation,
3535 				key.objectid, 0);
3536 		BUG_ON(ret);
3537 
3538 		atomic_inc(&root->fs_info->throttle_gen);
3539 		wake_up(&root->fs_info->transaction_throttle);
3540 		cond_resched();
3541 	}
3542 out:
3543 	kfree(sorted);
3544 	return 0;
3545 }
3546 
3547 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
3548 					struct btrfs_root *root,
3549 					struct btrfs_leaf_ref *ref)
3550 {
3551 	int i;
3552 	int ret;
3553 	struct btrfs_extent_info *info;
3554 	struct refsort *sorted;
3555 
3556 	if (ref->nritems == 0)
3557 		return 0;
3558 
3559 	sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
3560 	for (i = 0; i < ref->nritems; i++) {
3561 		sorted[i].bytenr = ref->extents[i].bytenr;
3562 		sorted[i].slot = i;
3563 	}
3564 	sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
3565 
3566 	/*
3567 	 * the items in the ref were sorted when the ref was inserted
3568 	 * into the ref cache, so this is already in order
3569 	 */
3570 	for (i = 0; i < ref->nritems; i++) {
3571 		info = ref->extents + sorted[i].slot;
3572 		ret = __btrfs_free_extent(trans, root, info->bytenr,
3573 					  info->num_bytes, ref->bytenr,
3574 					  ref->owner, ref->generation,
3575 					  info->objectid, 0);
3576 
3577 		atomic_inc(&root->fs_info->throttle_gen);
3578 		wake_up(&root->fs_info->transaction_throttle);
3579 		cond_resched();
3580 
3581 		BUG_ON(ret);
3582 		info++;
3583 	}
3584 
3585 	kfree(sorted);
3586 	return 0;
3587 }
3588 
3589 static int drop_snap_lookup_refcount(struct btrfs_root *root, u64 start,
3590 				     u64 len, u32 *refs)
3591 {
3592 	int ret;
3593 
3594 	ret = btrfs_lookup_extent_ref(NULL, root, start, len, refs);
3595 	BUG_ON(ret);
3596 
3597 #if 0 /* some debugging code in case we see problems here */
3598 	/* if the refs count is one, it won't get increased again.  But
3599 	 * if the ref count is > 1, someone may be decreasing it at
3600 	 * the same time we are.
3601 	 */
3602 	if (*refs != 1) {
3603 		struct extent_buffer *eb = NULL;
3604 		eb = btrfs_find_create_tree_block(root, start, len);
3605 		if (eb)
3606 			btrfs_tree_lock(eb);
3607 
3608 		mutex_lock(&root->fs_info->alloc_mutex);
3609 		ret = lookup_extent_ref(NULL, root, start, len, refs);
3610 		BUG_ON(ret);
3611 		mutex_unlock(&root->fs_info->alloc_mutex);
3612 
3613 		if (eb) {
3614 			btrfs_tree_unlock(eb);
3615 			free_extent_buffer(eb);
3616 		}
3617 		if (*refs == 1) {
3618 			printk(KERN_ERR "btrfs block %llu went down to one "
3619 			       "during drop_snap\n", (unsigned long long)start);
3620 		}
3621 
3622 	}
3623 #endif
3624 
3625 	cond_resched();
3626 	return ret;
3627 }
3628 
3629 /*
3630  * this is used while deleting old snapshots, and it drops the refs
3631  * on a whole subtree starting from a level 1 node.
3632  *
3633  * The idea is to sort all the leaf pointers, and then drop the
3634  * ref on all the leaves in order.  Most of the time the leaves
3635  * will have ref cache entries, so no leaf IOs will be required to
3636  * find the extents they have references on.
3637  *
3638  * For each leaf, any references it has are also dropped in order
3639  *
3640  * This ends up dropping the references in something close to optimal
3641  * order for reading and modifying the extent allocation tree.
3642  */
3643 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
3644 					struct btrfs_root *root,
3645 					struct btrfs_path *path)
3646 {
3647 	u64 bytenr;
3648 	u64 root_owner;
3649 	u64 root_gen;
3650 	struct extent_buffer *eb = path->nodes[1];
3651 	struct extent_buffer *leaf;
3652 	struct btrfs_leaf_ref *ref;
3653 	struct refsort *sorted = NULL;
3654 	int nritems = btrfs_header_nritems(eb);
3655 	int ret;
3656 	int i;
3657 	int refi = 0;
3658 	int slot = path->slots[1];
3659 	u32 blocksize = btrfs_level_size(root, 0);
3660 	u32 refs;
3661 
3662 	if (nritems == 0)
3663 		goto out;
3664 
3665 	root_owner = btrfs_header_owner(eb);
3666 	root_gen = btrfs_header_generation(eb);
3667 	sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
3668 
3669 	/*
3670 	 * step one, sort all the leaf pointers so we don't scribble
3671 	 * randomly into the extent allocation tree
3672 	 */
3673 	for (i = slot; i < nritems; i++) {
3674 		sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
3675 		sorted[refi].slot = i;
3676 		refi++;
3677 	}
3678 
3679 	/*
3680 	 * nritems won't be zero, but if we're picking up drop_snapshot
3681 	 * after a crash, slot might be > 0, so double check things
3682 	 * just in case.
3683 	 */
3684 	if (refi == 0)
3685 		goto out;
3686 
3687 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
3688 
3689 	/*
3690 	 * the first loop frees everything the leaves point to
3691 	 */
3692 	for (i = 0; i < refi; i++) {
3693 		u64 ptr_gen;
3694 
3695 		bytenr = sorted[i].bytenr;
3696 
3697 		/*
3698 		 * check the reference count on this leaf.  If it is > 1
3699 		 * we just decrement it below and don't update any
3700 		 * of the refs the leaf points to.
3701 		 */
3702 		ret = drop_snap_lookup_refcount(root, bytenr, blocksize, &refs);
3703 		BUG_ON(ret);
3704 		if (refs != 1)
3705 			continue;
3706 
3707 		ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
3708 
3709 		/*
3710 		 * the leaf only had one reference, which means the
3711 		 * only thing pointing to this leaf is the snapshot
3712 		 * we're deleting.  It isn't possible for the reference
3713 		 * count to increase again later
3714 		 *
3715 		 * The reference cache is checked for the leaf,
3716 		 * and if found we'll be able to drop any refs held by
3717 		 * the leaf without needing to read it in.
3718 		 */
3719 		ref = btrfs_lookup_leaf_ref(root, bytenr);
3720 		if (ref && ref->generation != ptr_gen) {
3721 			btrfs_free_leaf_ref(root, ref);
3722 			ref = NULL;
3723 		}
3724 		if (ref) {
3725 			ret = cache_drop_leaf_ref(trans, root, ref);
3726 			BUG_ON(ret);
3727 			btrfs_remove_leaf_ref(root, ref);
3728 			btrfs_free_leaf_ref(root, ref);
3729 		} else {
3730 			/*
3731 			 * the leaf wasn't in the reference cache, so
3732 			 * we have to read it.
3733 			 */
3734 			leaf = read_tree_block(root, bytenr, blocksize,
3735 					       ptr_gen);
3736 			ret = btrfs_drop_leaf_ref(trans, root, leaf);
3737 			BUG_ON(ret);
3738 			free_extent_buffer(leaf);
3739 		}
3740 		atomic_inc(&root->fs_info->throttle_gen);
3741 		wake_up(&root->fs_info->transaction_throttle);
3742 		cond_resched();
3743 	}
3744 
3745 	/*
3746 	 * run through the loop again to free the refs on the leaves.
3747 	 * This is faster than doing it in the loop above because
3748 	 * the leaves are likely to be clustered together.  We end up
3749 	 * working in nice chunks on the extent allocation tree.
3750 	 */
3751 	for (i = 0; i < refi; i++) {
3752 		bytenr = sorted[i].bytenr;
3753 		ret = __btrfs_free_extent(trans, root, bytenr,
3754 					blocksize, eb->start,
3755 					root_owner, root_gen, 0, 1);
3756 		BUG_ON(ret);
3757 
3758 		atomic_inc(&root->fs_info->throttle_gen);
3759 		wake_up(&root->fs_info->transaction_throttle);
3760 		cond_resched();
3761 	}
3762 out:
3763 	kfree(sorted);
3764 
3765 	/*
3766 	 * update the path to show we've processed the entire level 1
3767 	 * node.  This will get saved into the root's drop_snapshot_progress
3768 	 * field so these drops are not repeated again if this transaction
3769 	 * commits.
3770 	 */
3771 	path->slots[1] = nritems;
3772 	return 0;
3773 }
3774 
3775 /*
3776  * helper function for drop_snapshot, this walks down the tree dropping ref
3777  * counts as it goes.
3778  */
3779 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
3780 				   struct btrfs_root *root,
3781 				   struct btrfs_path *path, int *level)
3782 {
3783 	u64 root_owner;
3784 	u64 root_gen;
3785 	u64 bytenr;
3786 	u64 ptr_gen;
3787 	struct extent_buffer *next;
3788 	struct extent_buffer *cur;
3789 	struct extent_buffer *parent;
3790 	u32 blocksize;
3791 	int ret;
3792 	u32 refs;
3793 
3794 	WARN_ON(*level < 0);
3795 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
3796 	ret = drop_snap_lookup_refcount(root, path->nodes[*level]->start,
3797 				path->nodes[*level]->len, &refs);
3798 	BUG_ON(ret);
3799 	if (refs > 1)
3800 		goto out;
3801 
3802 	/*
3803 	 * walk down to the last node level and free all the leaves
3804 	 */
3805 	while (*level >= 0) {
3806 		WARN_ON(*level < 0);
3807 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
3808 		cur = path->nodes[*level];
3809 
3810 		if (btrfs_header_level(cur) != *level)
3811 			WARN_ON(1);
3812 
3813 		if (path->slots[*level] >=
3814 		    btrfs_header_nritems(cur))
3815 			break;
3816 
3817 		/* the new code goes down to level 1 and does all the
3818 		 * leaves pointed to that node in bulk.  So, this check
3819 		 * for level 0 will always be false.
3820 		 *
3821 		 * But, the disk format allows the drop_snapshot_progress
3822 		 * field in the root to leave things in a state where
3823 		 * a leaf will need cleaning up here.  If someone crashes
3824 		 * with the old code and then boots with the new code,
3825 		 * we might find a leaf here.
3826 		 */
3827 		if (*level == 0) {
3828 			ret = btrfs_drop_leaf_ref(trans, root, cur);
3829 			BUG_ON(ret);
3830 			break;
3831 		}
3832 
3833 		/*
3834 		 * once we get to level one, process the whole node
3835 		 * at once, including everything below it.
3836 		 */
3837 		if (*level == 1) {
3838 			ret = drop_level_one_refs(trans, root, path);
3839 			BUG_ON(ret);
3840 			break;
3841 		}
3842 
3843 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3844 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3845 		blocksize = btrfs_level_size(root, *level - 1);
3846 
3847 		ret = drop_snap_lookup_refcount(root, bytenr, blocksize, &refs);
3848 		BUG_ON(ret);
3849 
3850 		/*
3851 		 * if there is more than one reference, we don't need
3852 		 * to read that node to drop any references it has.  We
3853 		 * just drop the ref we hold on that node and move on to the
3854 		 * next slot in this level.
3855 		 */
3856 		if (refs != 1) {
3857 			parent = path->nodes[*level];
3858 			root_owner = btrfs_header_owner(parent);
3859 			root_gen = btrfs_header_generation(parent);
3860 			path->slots[*level]++;
3861 
3862 			ret = __btrfs_free_extent(trans, root, bytenr,
3863 						blocksize, parent->start,
3864 						root_owner, root_gen,
3865 						*level - 1, 1);
3866 			BUG_ON(ret);
3867 
3868 			atomic_inc(&root->fs_info->throttle_gen);
3869 			wake_up(&root->fs_info->transaction_throttle);
3870 			cond_resched();
3871 
3872 			continue;
3873 		}
3874 
3875 		/*
3876 		 * we need to keep freeing things in the next level down.
3877 		 * read the block and loop around to process it
3878 		 */
3879 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3880 		WARN_ON(*level <= 0);
3881 		if (path->nodes[*level-1])
3882 			free_extent_buffer(path->nodes[*level-1]);
3883 		path->nodes[*level-1] = next;
3884 		*level = btrfs_header_level(next);
3885 		path->slots[*level] = 0;
3886 		cond_resched();
3887 	}
3888 out:
3889 	WARN_ON(*level < 0);
3890 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
3891 
3892 	if (path->nodes[*level] == root->node) {
3893 		parent = path->nodes[*level];
3894 		bytenr = path->nodes[*level]->start;
3895 	} else {
3896 		parent = path->nodes[*level + 1];
3897 		bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
3898 	}
3899 
3900 	blocksize = btrfs_level_size(root, *level);
3901 	root_owner = btrfs_header_owner(parent);
3902 	root_gen = btrfs_header_generation(parent);
3903 
3904 	/*
3905 	 * cleanup and free the reference on the last node
3906 	 * we processed
3907 	 */
3908 	ret = __btrfs_free_extent(trans, root, bytenr, blocksize,
3909 				  parent->start, root_owner, root_gen,
3910 				  *level, 1);
3911 	free_extent_buffer(path->nodes[*level]);
3912 	path->nodes[*level] = NULL;
3913 
3914 	*level += 1;
3915 	BUG_ON(ret);
3916 
3917 	cond_resched();
3918 	return 0;
3919 }
3920 
3921 /*
3922  * helper function for drop_subtree, this function is similar to
3923  * walk_down_tree. The main difference is that it checks reference
3924  * counts while tree blocks are locked.
3925  */
3926 static noinline int walk_down_subtree(struct btrfs_trans_handle *trans,
3927 				      struct btrfs_root *root,
3928 				      struct btrfs_path *path, int *level)
3929 {
3930 	struct extent_buffer *next;
3931 	struct extent_buffer *cur;
3932 	struct extent_buffer *parent;
3933 	u64 bytenr;
3934 	u64 ptr_gen;
3935 	u32 blocksize;
3936 	u32 refs;
3937 	int ret;
3938 
3939 	cur = path->nodes[*level];
3940 	ret = btrfs_lookup_extent_ref(trans, root, cur->start, cur->len,
3941 				      &refs);
3942 	BUG_ON(ret);
3943 	if (refs > 1)
3944 		goto out;
3945 
3946 	while (*level >= 0) {
3947 		cur = path->nodes[*level];
3948 		if (*level == 0) {
3949 			ret = btrfs_drop_leaf_ref(trans, root, cur);
3950 			BUG_ON(ret);
3951 			clean_tree_block(trans, root, cur);
3952 			break;
3953 		}
3954 		if (path->slots[*level] >= btrfs_header_nritems(cur)) {
3955 			clean_tree_block(trans, root, cur);
3956 			break;
3957 		}
3958 
3959 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
3960 		blocksize = btrfs_level_size(root, *level - 1);
3961 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
3962 
3963 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
3964 		btrfs_tree_lock(next);
3965 		btrfs_set_lock_blocking(next);
3966 
3967 		ret = btrfs_lookup_extent_ref(trans, root, bytenr, blocksize,
3968 					      &refs);
3969 		BUG_ON(ret);
3970 		if (refs > 1) {
3971 			parent = path->nodes[*level];
3972 			ret = btrfs_free_extent(trans, root, bytenr,
3973 					blocksize, parent->start,
3974 					btrfs_header_owner(parent),
3975 					btrfs_header_generation(parent),
3976 					*level - 1, 1);
3977 			BUG_ON(ret);
3978 			path->slots[*level]++;
3979 			btrfs_tree_unlock(next);
3980 			free_extent_buffer(next);
3981 			continue;
3982 		}
3983 
3984 		*level = btrfs_header_level(next);
3985 		path->nodes[*level] = next;
3986 		path->slots[*level] = 0;
3987 		path->locks[*level] = 1;
3988 		cond_resched();
3989 	}
3990 out:
3991 	parent = path->nodes[*level + 1];
3992 	bytenr = path->nodes[*level]->start;
3993 	blocksize = path->nodes[*level]->len;
3994 
3995 	ret = btrfs_free_extent(trans, root, bytenr, blocksize,
3996 			parent->start, btrfs_header_owner(parent),
3997 			btrfs_header_generation(parent), *level, 1);
3998 	BUG_ON(ret);
3999 
4000 	if (path->locks[*level]) {
4001 		btrfs_tree_unlock(path->nodes[*level]);
4002 		path->locks[*level] = 0;
4003 	}
4004 	free_extent_buffer(path->nodes[*level]);
4005 	path->nodes[*level] = NULL;
4006 	*level += 1;
4007 	cond_resched();
4008 	return 0;
4009 }
4010 
4011 /*
4012  * helper for dropping snapshots.  This walks back up the tree in the path
4013  * to find the first node higher up where we haven't yet gone through
4014  * all the slots
4015  */
4016 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
4017 				 struct btrfs_root *root,
4018 				 struct btrfs_path *path,
4019 				 int *level, int max_level)
4020 {
4021 	u64 root_owner;
4022 	u64 root_gen;
4023 	struct btrfs_root_item *root_item = &root->root_item;
4024 	int i;
4025 	int slot;
4026 	int ret;
4027 
4028 	for (i = *level; i < max_level && path->nodes[i]; i++) {
4029 		slot = path->slots[i];
4030 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
4031 			struct extent_buffer *node;
4032 			struct btrfs_disk_key disk_key;
4033 
4034 			/*
4035 			 * there is more work to do in this level.
4036 			 * Update the drop_progress marker to reflect
4037 			 * the work we've done so far, and then bump
4038 			 * the slot number
4039 			 */
4040 			node = path->nodes[i];
4041 			path->slots[i]++;
4042 			*level = i;
4043 			WARN_ON(*level == 0);
4044 			btrfs_node_key(node, &disk_key, path->slots[i]);
4045 			memcpy(&root_item->drop_progress,
4046 			       &disk_key, sizeof(disk_key));
4047 			root_item->drop_level = i;
4048 			return 0;
4049 		} else {
4050 			struct extent_buffer *parent;
4051 
4052 			/*
4053 			 * this whole node is done, free our reference
4054 			 * on it and go up one level
4055 			 */
4056 			if (path->nodes[*level] == root->node)
4057 				parent = path->nodes[*level];
4058 			else
4059 				parent = path->nodes[*level + 1];
4060 
4061 			root_owner = btrfs_header_owner(parent);
4062 			root_gen = btrfs_header_generation(parent);
4063 
4064 			clean_tree_block(trans, root, path->nodes[*level]);
4065 			ret = btrfs_free_extent(trans, root,
4066 						path->nodes[*level]->start,
4067 						path->nodes[*level]->len,
4068 						parent->start, root_owner,
4069 						root_gen, *level, 1);
4070 			BUG_ON(ret);
4071 			if (path->locks[*level]) {
4072 				btrfs_tree_unlock(path->nodes[*level]);
4073 				path->locks[*level] = 0;
4074 			}
4075 			free_extent_buffer(path->nodes[*level]);
4076 			path->nodes[*level] = NULL;
4077 			*level = i + 1;
4078 		}
4079 	}
4080 	return 1;
4081 }
4082 
4083 /*
4084  * drop the reference count on the tree rooted at 'snap'.  This traverses
4085  * the tree freeing any blocks that have a ref count of zero after being
4086  * decremented.
4087  */
4088 int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
4089 			*root)
4090 {
4091 	int ret = 0;
4092 	int wret;
4093 	int level;
4094 	struct btrfs_path *path;
4095 	int i;
4096 	int orig_level;
4097 	struct btrfs_root_item *root_item = &root->root_item;
4098 
4099 	WARN_ON(!mutex_is_locked(&root->fs_info->drop_mutex));
4100 	path = btrfs_alloc_path();
4101 	BUG_ON(!path);
4102 
4103 	level = btrfs_header_level(root->node);
4104 	orig_level = level;
4105 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
4106 		path->nodes[level] = root->node;
4107 		extent_buffer_get(root->node);
4108 		path->slots[level] = 0;
4109 	} else {
4110 		struct btrfs_key key;
4111 		struct btrfs_disk_key found_key;
4112 		struct extent_buffer *node;
4113 
4114 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
4115 		level = root_item->drop_level;
4116 		path->lowest_level = level;
4117 		wret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4118 		if (wret < 0) {
4119 			ret = wret;
4120 			goto out;
4121 		}
4122 		node = path->nodes[level];
4123 		btrfs_node_key(node, &found_key, path->slots[level]);
4124 		WARN_ON(memcmp(&found_key, &root_item->drop_progress,
4125 			       sizeof(found_key)));
4126 		/*
4127 		 * unlock our path, this is safe because only this
4128 		 * function is allowed to delete this snapshot
4129 		 */
4130 		for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
4131 			if (path->nodes[i] && path->locks[i]) {
4132 				path->locks[i] = 0;
4133 				btrfs_tree_unlock(path->nodes[i]);
4134 			}
4135 		}
4136 	}
4137 	while (1) {
4138 		wret = walk_down_tree(trans, root, path, &level);
4139 		if (wret > 0)
4140 			break;
4141 		if (wret < 0)
4142 			ret = wret;
4143 
4144 		wret = walk_up_tree(trans, root, path, &level,
4145 				    BTRFS_MAX_LEVEL);
4146 		if (wret > 0)
4147 			break;
4148 		if (wret < 0)
4149 			ret = wret;
4150 		if (trans->transaction->in_commit) {
4151 			ret = -EAGAIN;
4152 			break;
4153 		}
4154 		atomic_inc(&root->fs_info->throttle_gen);
4155 		wake_up(&root->fs_info->transaction_throttle);
4156 	}
4157 	for (i = 0; i <= orig_level; i++) {
4158 		if (path->nodes[i]) {
4159 			free_extent_buffer(path->nodes[i]);
4160 			path->nodes[i] = NULL;
4161 		}
4162 	}
4163 out:
4164 	btrfs_free_path(path);
4165 	return ret;
4166 }
4167 
4168 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
4169 			struct btrfs_root *root,
4170 			struct extent_buffer *node,
4171 			struct extent_buffer *parent)
4172 {
4173 	struct btrfs_path *path;
4174 	int level;
4175 	int parent_level;
4176 	int ret = 0;
4177 	int wret;
4178 
4179 	path = btrfs_alloc_path();
4180 	BUG_ON(!path);
4181 
4182 	BUG_ON(!btrfs_tree_locked(parent));
4183 	parent_level = btrfs_header_level(parent);
4184 	extent_buffer_get(parent);
4185 	path->nodes[parent_level] = parent;
4186 	path->slots[parent_level] = btrfs_header_nritems(parent);
4187 
4188 	BUG_ON(!btrfs_tree_locked(node));
4189 	level = btrfs_header_level(node);
4190 	extent_buffer_get(node);
4191 	path->nodes[level] = node;
4192 	path->slots[level] = 0;
4193 
4194 	while (1) {
4195 		wret = walk_down_subtree(trans, root, path, &level);
4196 		if (wret < 0)
4197 			ret = wret;
4198 		if (wret != 0)
4199 			break;
4200 
4201 		wret = walk_up_tree(trans, root, path, &level, parent_level);
4202 		if (wret < 0)
4203 			ret = wret;
4204 		if (wret != 0)
4205 			break;
4206 	}
4207 
4208 	btrfs_free_path(path);
4209 	return ret;
4210 }
4211 
4212 static unsigned long calc_ra(unsigned long start, unsigned long last,
4213 			     unsigned long nr)
4214 {
4215 	return min(last, start + nr - 1);
4216 }
4217 
4218 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
4219 					 u64 len)
4220 {
4221 	u64 page_start;
4222 	u64 page_end;
4223 	unsigned long first_index;
4224 	unsigned long last_index;
4225 	unsigned long i;
4226 	struct page *page;
4227 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4228 	struct file_ra_state *ra;
4229 	struct btrfs_ordered_extent *ordered;
4230 	unsigned int total_read = 0;
4231 	unsigned int total_dirty = 0;
4232 	int ret = 0;
4233 
4234 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
4235 
4236 	mutex_lock(&inode->i_mutex);
4237 	first_index = start >> PAGE_CACHE_SHIFT;
4238 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
4239 
4240 	/* make sure the dirty trick played by the caller work */
4241 	ret = invalidate_inode_pages2_range(inode->i_mapping,
4242 					    first_index, last_index);
4243 	if (ret)
4244 		goto out_unlock;
4245 
4246 	file_ra_state_init(ra, inode->i_mapping);
4247 
4248 	for (i = first_index ; i <= last_index; i++) {
4249 		if (total_read % ra->ra_pages == 0) {
4250 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
4251 				       calc_ra(i, last_index, ra->ra_pages));
4252 		}
4253 		total_read++;
4254 again:
4255 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
4256 			BUG_ON(1);
4257 		page = grab_cache_page(inode->i_mapping, i);
4258 		if (!page) {
4259 			ret = -ENOMEM;
4260 			goto out_unlock;
4261 		}
4262 		if (!PageUptodate(page)) {
4263 			btrfs_readpage(NULL, page);
4264 			lock_page(page);
4265 			if (!PageUptodate(page)) {
4266 				unlock_page(page);
4267 				page_cache_release(page);
4268 				ret = -EIO;
4269 				goto out_unlock;
4270 			}
4271 		}
4272 		wait_on_page_writeback(page);
4273 
4274 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
4275 		page_end = page_start + PAGE_CACHE_SIZE - 1;
4276 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4277 
4278 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
4279 		if (ordered) {
4280 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4281 			unlock_page(page);
4282 			page_cache_release(page);
4283 			btrfs_start_ordered_extent(inode, ordered, 1);
4284 			btrfs_put_ordered_extent(ordered);
4285 			goto again;
4286 		}
4287 		set_page_extent_mapped(page);
4288 
4289 		if (i == first_index)
4290 			set_extent_bits(io_tree, page_start, page_end,
4291 					EXTENT_BOUNDARY, GFP_NOFS);
4292 		btrfs_set_extent_delalloc(inode, page_start, page_end);
4293 
4294 		set_page_dirty(page);
4295 		total_dirty++;
4296 
4297 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4298 		unlock_page(page);
4299 		page_cache_release(page);
4300 	}
4301 
4302 out_unlock:
4303 	kfree(ra);
4304 	mutex_unlock(&inode->i_mutex);
4305 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
4306 	return ret;
4307 }
4308 
4309 static noinline int relocate_data_extent(struct inode *reloc_inode,
4310 					 struct btrfs_key *extent_key,
4311 					 u64 offset)
4312 {
4313 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
4314 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
4315 	struct extent_map *em;
4316 	u64 start = extent_key->objectid - offset;
4317 	u64 end = start + extent_key->offset - 1;
4318 
4319 	em = alloc_extent_map(GFP_NOFS);
4320 	BUG_ON(!em || IS_ERR(em));
4321 
4322 	em->start = start;
4323 	em->len = extent_key->offset;
4324 	em->block_len = extent_key->offset;
4325 	em->block_start = extent_key->objectid;
4326 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4327 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
4328 
4329 	/* setup extent map to cheat btrfs_readpage */
4330 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4331 	while (1) {
4332 		int ret;
4333 		spin_lock(&em_tree->lock);
4334 		ret = add_extent_mapping(em_tree, em);
4335 		spin_unlock(&em_tree->lock);
4336 		if (ret != -EEXIST) {
4337 			free_extent_map(em);
4338 			break;
4339 		}
4340 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
4341 	}
4342 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
4343 
4344 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
4345 }
4346 
4347 struct btrfs_ref_path {
4348 	u64 extent_start;
4349 	u64 nodes[BTRFS_MAX_LEVEL];
4350 	u64 root_objectid;
4351 	u64 root_generation;
4352 	u64 owner_objectid;
4353 	u32 num_refs;
4354 	int lowest_level;
4355 	int current_level;
4356 	int shared_level;
4357 
4358 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
4359 	u64 new_nodes[BTRFS_MAX_LEVEL];
4360 };
4361 
4362 struct disk_extent {
4363 	u64 ram_bytes;
4364 	u64 disk_bytenr;
4365 	u64 disk_num_bytes;
4366 	u64 offset;
4367 	u64 num_bytes;
4368 	u8 compression;
4369 	u8 encryption;
4370 	u16 other_encoding;
4371 };
4372 
4373 static int is_cowonly_root(u64 root_objectid)
4374 {
4375 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
4376 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
4377 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
4378 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
4379 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
4380 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
4381 		return 1;
4382 	return 0;
4383 }
4384 
4385 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
4386 				    struct btrfs_root *extent_root,
4387 				    struct btrfs_ref_path *ref_path,
4388 				    int first_time)
4389 {
4390 	struct extent_buffer *leaf;
4391 	struct btrfs_path *path;
4392 	struct btrfs_extent_ref *ref;
4393 	struct btrfs_key key;
4394 	struct btrfs_key found_key;
4395 	u64 bytenr;
4396 	u32 nritems;
4397 	int level;
4398 	int ret = 1;
4399 
4400 	path = btrfs_alloc_path();
4401 	if (!path)
4402 		return -ENOMEM;
4403 
4404 	if (first_time) {
4405 		ref_path->lowest_level = -1;
4406 		ref_path->current_level = -1;
4407 		ref_path->shared_level = -1;
4408 		goto walk_up;
4409 	}
4410 walk_down:
4411 	level = ref_path->current_level - 1;
4412 	while (level >= -1) {
4413 		u64 parent;
4414 		if (level < ref_path->lowest_level)
4415 			break;
4416 
4417 		if (level >= 0)
4418 			bytenr = ref_path->nodes[level];
4419 		else
4420 			bytenr = ref_path->extent_start;
4421 		BUG_ON(bytenr == 0);
4422 
4423 		parent = ref_path->nodes[level + 1];
4424 		ref_path->nodes[level + 1] = 0;
4425 		ref_path->current_level = level;
4426 		BUG_ON(parent == 0);
4427 
4428 		key.objectid = bytenr;
4429 		key.offset = parent + 1;
4430 		key.type = BTRFS_EXTENT_REF_KEY;
4431 
4432 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4433 		if (ret < 0)
4434 			goto out;
4435 		BUG_ON(ret == 0);
4436 
4437 		leaf = path->nodes[0];
4438 		nritems = btrfs_header_nritems(leaf);
4439 		if (path->slots[0] >= nritems) {
4440 			ret = btrfs_next_leaf(extent_root, path);
4441 			if (ret < 0)
4442 				goto out;
4443 			if (ret > 0)
4444 				goto next;
4445 			leaf = path->nodes[0];
4446 		}
4447 
4448 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4449 		if (found_key.objectid == bytenr &&
4450 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
4451 			if (level < ref_path->shared_level)
4452 				ref_path->shared_level = level;
4453 			goto found;
4454 		}
4455 next:
4456 		level--;
4457 		btrfs_release_path(extent_root, path);
4458 		cond_resched();
4459 	}
4460 	/* reached lowest level */
4461 	ret = 1;
4462 	goto out;
4463 walk_up:
4464 	level = ref_path->current_level;
4465 	while (level < BTRFS_MAX_LEVEL - 1) {
4466 		u64 ref_objectid;
4467 
4468 		if (level >= 0)
4469 			bytenr = ref_path->nodes[level];
4470 		else
4471 			bytenr = ref_path->extent_start;
4472 
4473 		BUG_ON(bytenr == 0);
4474 
4475 		key.objectid = bytenr;
4476 		key.offset = 0;
4477 		key.type = BTRFS_EXTENT_REF_KEY;
4478 
4479 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
4480 		if (ret < 0)
4481 			goto out;
4482 
4483 		leaf = path->nodes[0];
4484 		nritems = btrfs_header_nritems(leaf);
4485 		if (path->slots[0] >= nritems) {
4486 			ret = btrfs_next_leaf(extent_root, path);
4487 			if (ret < 0)
4488 				goto out;
4489 			if (ret > 0) {
4490 				/* the extent was freed by someone */
4491 				if (ref_path->lowest_level == level)
4492 					goto out;
4493 				btrfs_release_path(extent_root, path);
4494 				goto walk_down;
4495 			}
4496 			leaf = path->nodes[0];
4497 		}
4498 
4499 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4500 		if (found_key.objectid != bytenr ||
4501 				found_key.type != BTRFS_EXTENT_REF_KEY) {
4502 			/* the extent was freed by someone */
4503 			if (ref_path->lowest_level == level) {
4504 				ret = 1;
4505 				goto out;
4506 			}
4507 			btrfs_release_path(extent_root, path);
4508 			goto walk_down;
4509 		}
4510 found:
4511 		ref = btrfs_item_ptr(leaf, path->slots[0],
4512 				struct btrfs_extent_ref);
4513 		ref_objectid = btrfs_ref_objectid(leaf, ref);
4514 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4515 			if (first_time) {
4516 				level = (int)ref_objectid;
4517 				BUG_ON(level >= BTRFS_MAX_LEVEL);
4518 				ref_path->lowest_level = level;
4519 				ref_path->current_level = level;
4520 				ref_path->nodes[level] = bytenr;
4521 			} else {
4522 				WARN_ON(ref_objectid != level);
4523 			}
4524 		} else {
4525 			WARN_ON(level != -1);
4526 		}
4527 		first_time = 0;
4528 
4529 		if (ref_path->lowest_level == level) {
4530 			ref_path->owner_objectid = ref_objectid;
4531 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
4532 		}
4533 
4534 		/*
4535 		 * the block is tree root or the block isn't in reference
4536 		 * counted tree.
4537 		 */
4538 		if (found_key.objectid == found_key.offset ||
4539 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
4540 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4541 			ref_path->root_generation =
4542 				btrfs_ref_generation(leaf, ref);
4543 			if (level < 0) {
4544 				/* special reference from the tree log */
4545 				ref_path->nodes[0] = found_key.offset;
4546 				ref_path->current_level = 0;
4547 			}
4548 			ret = 0;
4549 			goto out;
4550 		}
4551 
4552 		level++;
4553 		BUG_ON(ref_path->nodes[level] != 0);
4554 		ref_path->nodes[level] = found_key.offset;
4555 		ref_path->current_level = level;
4556 
4557 		/*
4558 		 * the reference was created in the running transaction,
4559 		 * no need to continue walking up.
4560 		 */
4561 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
4562 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
4563 			ref_path->root_generation =
4564 				btrfs_ref_generation(leaf, ref);
4565 			ret = 0;
4566 			goto out;
4567 		}
4568 
4569 		btrfs_release_path(extent_root, path);
4570 		cond_resched();
4571 	}
4572 	/* reached max tree level, but no tree root found. */
4573 	BUG();
4574 out:
4575 	btrfs_free_path(path);
4576 	return ret;
4577 }
4578 
4579 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
4580 				struct btrfs_root *extent_root,
4581 				struct btrfs_ref_path *ref_path,
4582 				u64 extent_start)
4583 {
4584 	memset(ref_path, 0, sizeof(*ref_path));
4585 	ref_path->extent_start = extent_start;
4586 
4587 	return __next_ref_path(trans, extent_root, ref_path, 1);
4588 }
4589 
4590 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
4591 			       struct btrfs_root *extent_root,
4592 			       struct btrfs_ref_path *ref_path)
4593 {
4594 	return __next_ref_path(trans, extent_root, ref_path, 0);
4595 }
4596 
4597 static noinline int get_new_locations(struct inode *reloc_inode,
4598 				      struct btrfs_key *extent_key,
4599 				      u64 offset, int no_fragment,
4600 				      struct disk_extent **extents,
4601 				      int *nr_extents)
4602 {
4603 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
4604 	struct btrfs_path *path;
4605 	struct btrfs_file_extent_item *fi;
4606 	struct extent_buffer *leaf;
4607 	struct disk_extent *exts = *extents;
4608 	struct btrfs_key found_key;
4609 	u64 cur_pos;
4610 	u64 last_byte;
4611 	u32 nritems;
4612 	int nr = 0;
4613 	int max = *nr_extents;
4614 	int ret;
4615 
4616 	WARN_ON(!no_fragment && *extents);
4617 	if (!exts) {
4618 		max = 1;
4619 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
4620 		if (!exts)
4621 			return -ENOMEM;
4622 	}
4623 
4624 	path = btrfs_alloc_path();
4625 	BUG_ON(!path);
4626 
4627 	cur_pos = extent_key->objectid - offset;
4628 	last_byte = extent_key->objectid + extent_key->offset;
4629 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
4630 				       cur_pos, 0);
4631 	if (ret < 0)
4632 		goto out;
4633 	if (ret > 0) {
4634 		ret = -ENOENT;
4635 		goto out;
4636 	}
4637 
4638 	while (1) {
4639 		leaf = path->nodes[0];
4640 		nritems = btrfs_header_nritems(leaf);
4641 		if (path->slots[0] >= nritems) {
4642 			ret = btrfs_next_leaf(root, path);
4643 			if (ret < 0)
4644 				goto out;
4645 			if (ret > 0)
4646 				break;
4647 			leaf = path->nodes[0];
4648 		}
4649 
4650 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4651 		if (found_key.offset != cur_pos ||
4652 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
4653 		    found_key.objectid != reloc_inode->i_ino)
4654 			break;
4655 
4656 		fi = btrfs_item_ptr(leaf, path->slots[0],
4657 				    struct btrfs_file_extent_item);
4658 		if (btrfs_file_extent_type(leaf, fi) !=
4659 		    BTRFS_FILE_EXTENT_REG ||
4660 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
4661 			break;
4662 
4663 		if (nr == max) {
4664 			struct disk_extent *old = exts;
4665 			max *= 2;
4666 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
4667 			memcpy(exts, old, sizeof(*exts) * nr);
4668 			if (old != *extents)
4669 				kfree(old);
4670 		}
4671 
4672 		exts[nr].disk_bytenr =
4673 			btrfs_file_extent_disk_bytenr(leaf, fi);
4674 		exts[nr].disk_num_bytes =
4675 			btrfs_file_extent_disk_num_bytes(leaf, fi);
4676 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
4677 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4678 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
4679 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
4680 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
4681 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
4682 									   fi);
4683 		BUG_ON(exts[nr].offset > 0);
4684 		BUG_ON(exts[nr].compression || exts[nr].encryption);
4685 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
4686 
4687 		cur_pos += exts[nr].num_bytes;
4688 		nr++;
4689 
4690 		if (cur_pos + offset >= last_byte)
4691 			break;
4692 
4693 		if (no_fragment) {
4694 			ret = 1;
4695 			goto out;
4696 		}
4697 		path->slots[0]++;
4698 	}
4699 
4700 	BUG_ON(cur_pos + offset > last_byte);
4701 	if (cur_pos + offset < last_byte) {
4702 		ret = -ENOENT;
4703 		goto out;
4704 	}
4705 	ret = 0;
4706 out:
4707 	btrfs_free_path(path);
4708 	if (ret) {
4709 		if (exts != *extents)
4710 			kfree(exts);
4711 	} else {
4712 		*extents = exts;
4713 		*nr_extents = nr;
4714 	}
4715 	return ret;
4716 }
4717 
4718 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
4719 					struct btrfs_root *root,
4720 					struct btrfs_path *path,
4721 					struct btrfs_key *extent_key,
4722 					struct btrfs_key *leaf_key,
4723 					struct btrfs_ref_path *ref_path,
4724 					struct disk_extent *new_extents,
4725 					int nr_extents)
4726 {
4727 	struct extent_buffer *leaf;
4728 	struct btrfs_file_extent_item *fi;
4729 	struct inode *inode = NULL;
4730 	struct btrfs_key key;
4731 	u64 lock_start = 0;
4732 	u64 lock_end = 0;
4733 	u64 num_bytes;
4734 	u64 ext_offset;
4735 	u64 search_end = (u64)-1;
4736 	u32 nritems;
4737 	int nr_scaned = 0;
4738 	int extent_locked = 0;
4739 	int extent_type;
4740 	int ret;
4741 
4742 	memcpy(&key, leaf_key, sizeof(key));
4743 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4744 		if (key.objectid < ref_path->owner_objectid ||
4745 		    (key.objectid == ref_path->owner_objectid &&
4746 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
4747 			key.objectid = ref_path->owner_objectid;
4748 			key.type = BTRFS_EXTENT_DATA_KEY;
4749 			key.offset = 0;
4750 		}
4751 	}
4752 
4753 	while (1) {
4754 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4755 		if (ret < 0)
4756 			goto out;
4757 
4758 		leaf = path->nodes[0];
4759 		nritems = btrfs_header_nritems(leaf);
4760 next:
4761 		if (extent_locked && ret > 0) {
4762 			/*
4763 			 * the file extent item was modified by someone
4764 			 * before the extent got locked.
4765 			 */
4766 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4767 				      lock_end, GFP_NOFS);
4768 			extent_locked = 0;
4769 		}
4770 
4771 		if (path->slots[0] >= nritems) {
4772 			if (++nr_scaned > 2)
4773 				break;
4774 
4775 			BUG_ON(extent_locked);
4776 			ret = btrfs_next_leaf(root, path);
4777 			if (ret < 0)
4778 				goto out;
4779 			if (ret > 0)
4780 				break;
4781 			leaf = path->nodes[0];
4782 			nritems = btrfs_header_nritems(leaf);
4783 		}
4784 
4785 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4786 
4787 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
4788 			if ((key.objectid > ref_path->owner_objectid) ||
4789 			    (key.objectid == ref_path->owner_objectid &&
4790 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
4791 			    key.offset >= search_end)
4792 				break;
4793 		}
4794 
4795 		if (inode && key.objectid != inode->i_ino) {
4796 			BUG_ON(extent_locked);
4797 			btrfs_release_path(root, path);
4798 			mutex_unlock(&inode->i_mutex);
4799 			iput(inode);
4800 			inode = NULL;
4801 			continue;
4802 		}
4803 
4804 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
4805 			path->slots[0]++;
4806 			ret = 1;
4807 			goto next;
4808 		}
4809 		fi = btrfs_item_ptr(leaf, path->slots[0],
4810 				    struct btrfs_file_extent_item);
4811 		extent_type = btrfs_file_extent_type(leaf, fi);
4812 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
4813 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
4814 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
4815 		     extent_key->objectid)) {
4816 			path->slots[0]++;
4817 			ret = 1;
4818 			goto next;
4819 		}
4820 
4821 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
4822 		ext_offset = btrfs_file_extent_offset(leaf, fi);
4823 
4824 		if (search_end == (u64)-1) {
4825 			search_end = key.offset - ext_offset +
4826 				btrfs_file_extent_ram_bytes(leaf, fi);
4827 		}
4828 
4829 		if (!extent_locked) {
4830 			lock_start = key.offset;
4831 			lock_end = lock_start + num_bytes - 1;
4832 		} else {
4833 			if (lock_start > key.offset ||
4834 			    lock_end + 1 < key.offset + num_bytes) {
4835 				unlock_extent(&BTRFS_I(inode)->io_tree,
4836 					      lock_start, lock_end, GFP_NOFS);
4837 				extent_locked = 0;
4838 			}
4839 		}
4840 
4841 		if (!inode) {
4842 			btrfs_release_path(root, path);
4843 
4844 			inode = btrfs_iget_locked(root->fs_info->sb,
4845 						  key.objectid, root);
4846 			if (inode->i_state & I_NEW) {
4847 				BTRFS_I(inode)->root = root;
4848 				BTRFS_I(inode)->location.objectid =
4849 					key.objectid;
4850 				BTRFS_I(inode)->location.type =
4851 					BTRFS_INODE_ITEM_KEY;
4852 				BTRFS_I(inode)->location.offset = 0;
4853 				btrfs_read_locked_inode(inode);
4854 				unlock_new_inode(inode);
4855 			}
4856 			/*
4857 			 * some code call btrfs_commit_transaction while
4858 			 * holding the i_mutex, so we can't use mutex_lock
4859 			 * here.
4860 			 */
4861 			if (is_bad_inode(inode) ||
4862 			    !mutex_trylock(&inode->i_mutex)) {
4863 				iput(inode);
4864 				inode = NULL;
4865 				key.offset = (u64)-1;
4866 				goto skip;
4867 			}
4868 		}
4869 
4870 		if (!extent_locked) {
4871 			struct btrfs_ordered_extent *ordered;
4872 
4873 			btrfs_release_path(root, path);
4874 
4875 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
4876 				    lock_end, GFP_NOFS);
4877 			ordered = btrfs_lookup_first_ordered_extent(inode,
4878 								    lock_end);
4879 			if (ordered &&
4880 			    ordered->file_offset <= lock_end &&
4881 			    ordered->file_offset + ordered->len > lock_start) {
4882 				unlock_extent(&BTRFS_I(inode)->io_tree,
4883 					      lock_start, lock_end, GFP_NOFS);
4884 				btrfs_start_ordered_extent(inode, ordered, 1);
4885 				btrfs_put_ordered_extent(ordered);
4886 				key.offset += num_bytes;
4887 				goto skip;
4888 			}
4889 			if (ordered)
4890 				btrfs_put_ordered_extent(ordered);
4891 
4892 			extent_locked = 1;
4893 			continue;
4894 		}
4895 
4896 		if (nr_extents == 1) {
4897 			/* update extent pointer in place */
4898 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
4899 						new_extents[0].disk_bytenr);
4900 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4901 						new_extents[0].disk_num_bytes);
4902 			btrfs_mark_buffer_dirty(leaf);
4903 
4904 			btrfs_drop_extent_cache(inode, key.offset,
4905 						key.offset + num_bytes - 1, 0);
4906 
4907 			ret = btrfs_inc_extent_ref(trans, root,
4908 						new_extents[0].disk_bytenr,
4909 						new_extents[0].disk_num_bytes,
4910 						leaf->start,
4911 						root->root_key.objectid,
4912 						trans->transid,
4913 						key.objectid);
4914 			BUG_ON(ret);
4915 
4916 			ret = btrfs_free_extent(trans, root,
4917 						extent_key->objectid,
4918 						extent_key->offset,
4919 						leaf->start,
4920 						btrfs_header_owner(leaf),
4921 						btrfs_header_generation(leaf),
4922 						key.objectid, 0);
4923 			BUG_ON(ret);
4924 
4925 			btrfs_release_path(root, path);
4926 			key.offset += num_bytes;
4927 		} else {
4928 			BUG_ON(1);
4929 #if 0
4930 			u64 alloc_hint;
4931 			u64 extent_len;
4932 			int i;
4933 			/*
4934 			 * drop old extent pointer at first, then insert the
4935 			 * new pointers one bye one
4936 			 */
4937 			btrfs_release_path(root, path);
4938 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
4939 						 key.offset + num_bytes,
4940 						 key.offset, &alloc_hint);
4941 			BUG_ON(ret);
4942 
4943 			for (i = 0; i < nr_extents; i++) {
4944 				if (ext_offset >= new_extents[i].num_bytes) {
4945 					ext_offset -= new_extents[i].num_bytes;
4946 					continue;
4947 				}
4948 				extent_len = min(new_extents[i].num_bytes -
4949 						 ext_offset, num_bytes);
4950 
4951 				ret = btrfs_insert_empty_item(trans, root,
4952 							      path, &key,
4953 							      sizeof(*fi));
4954 				BUG_ON(ret);
4955 
4956 				leaf = path->nodes[0];
4957 				fi = btrfs_item_ptr(leaf, path->slots[0],
4958 						struct btrfs_file_extent_item);
4959 				btrfs_set_file_extent_generation(leaf, fi,
4960 							trans->transid);
4961 				btrfs_set_file_extent_type(leaf, fi,
4962 							BTRFS_FILE_EXTENT_REG);
4963 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
4964 						new_extents[i].disk_bytenr);
4965 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
4966 						new_extents[i].disk_num_bytes);
4967 				btrfs_set_file_extent_ram_bytes(leaf, fi,
4968 						new_extents[i].ram_bytes);
4969 
4970 				btrfs_set_file_extent_compression(leaf, fi,
4971 						new_extents[i].compression);
4972 				btrfs_set_file_extent_encryption(leaf, fi,
4973 						new_extents[i].encryption);
4974 				btrfs_set_file_extent_other_encoding(leaf, fi,
4975 						new_extents[i].other_encoding);
4976 
4977 				btrfs_set_file_extent_num_bytes(leaf, fi,
4978 							extent_len);
4979 				ext_offset += new_extents[i].offset;
4980 				btrfs_set_file_extent_offset(leaf, fi,
4981 							ext_offset);
4982 				btrfs_mark_buffer_dirty(leaf);
4983 
4984 				btrfs_drop_extent_cache(inode, key.offset,
4985 						key.offset + extent_len - 1, 0);
4986 
4987 				ret = btrfs_inc_extent_ref(trans, root,
4988 						new_extents[i].disk_bytenr,
4989 						new_extents[i].disk_num_bytes,
4990 						leaf->start,
4991 						root->root_key.objectid,
4992 						trans->transid, key.objectid);
4993 				BUG_ON(ret);
4994 				btrfs_release_path(root, path);
4995 
4996 				inode_add_bytes(inode, extent_len);
4997 
4998 				ext_offset = 0;
4999 				num_bytes -= extent_len;
5000 				key.offset += extent_len;
5001 
5002 				if (num_bytes == 0)
5003 					break;
5004 			}
5005 			BUG_ON(i >= nr_extents);
5006 #endif
5007 		}
5008 
5009 		if (extent_locked) {
5010 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5011 				      lock_end, GFP_NOFS);
5012 			extent_locked = 0;
5013 		}
5014 skip:
5015 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
5016 		    key.offset >= search_end)
5017 			break;
5018 
5019 		cond_resched();
5020 	}
5021 	ret = 0;
5022 out:
5023 	btrfs_release_path(root, path);
5024 	if (inode) {
5025 		mutex_unlock(&inode->i_mutex);
5026 		if (extent_locked) {
5027 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5028 				      lock_end, GFP_NOFS);
5029 		}
5030 		iput(inode);
5031 	}
5032 	return ret;
5033 }
5034 
5035 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
5036 			       struct btrfs_root *root,
5037 			       struct extent_buffer *buf, u64 orig_start)
5038 {
5039 	int level;
5040 	int ret;
5041 
5042 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
5043 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5044 
5045 	level = btrfs_header_level(buf);
5046 	if (level == 0) {
5047 		struct btrfs_leaf_ref *ref;
5048 		struct btrfs_leaf_ref *orig_ref;
5049 
5050 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
5051 		if (!orig_ref)
5052 			return -ENOENT;
5053 
5054 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
5055 		if (!ref) {
5056 			btrfs_free_leaf_ref(root, orig_ref);
5057 			return -ENOMEM;
5058 		}
5059 
5060 		ref->nritems = orig_ref->nritems;
5061 		memcpy(ref->extents, orig_ref->extents,
5062 			sizeof(ref->extents[0]) * ref->nritems);
5063 
5064 		btrfs_free_leaf_ref(root, orig_ref);
5065 
5066 		ref->root_gen = trans->transid;
5067 		ref->bytenr = buf->start;
5068 		ref->owner = btrfs_header_owner(buf);
5069 		ref->generation = btrfs_header_generation(buf);
5070 
5071 		ret = btrfs_add_leaf_ref(root, ref, 0);
5072 		WARN_ON(ret);
5073 		btrfs_free_leaf_ref(root, ref);
5074 	}
5075 	return 0;
5076 }
5077 
5078 static noinline int invalidate_extent_cache(struct btrfs_root *root,
5079 					struct extent_buffer *leaf,
5080 					struct btrfs_block_group_cache *group,
5081 					struct btrfs_root *target_root)
5082 {
5083 	struct btrfs_key key;
5084 	struct inode *inode = NULL;
5085 	struct btrfs_file_extent_item *fi;
5086 	u64 num_bytes;
5087 	u64 skip_objectid = 0;
5088 	u32 nritems;
5089 	u32 i;
5090 
5091 	nritems = btrfs_header_nritems(leaf);
5092 	for (i = 0; i < nritems; i++) {
5093 		btrfs_item_key_to_cpu(leaf, &key, i);
5094 		if (key.objectid == skip_objectid ||
5095 		    key.type != BTRFS_EXTENT_DATA_KEY)
5096 			continue;
5097 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
5098 		if (btrfs_file_extent_type(leaf, fi) ==
5099 		    BTRFS_FILE_EXTENT_INLINE)
5100 			continue;
5101 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
5102 			continue;
5103 		if (!inode || inode->i_ino != key.objectid) {
5104 			iput(inode);
5105 			inode = btrfs_ilookup(target_root->fs_info->sb,
5106 					      key.objectid, target_root, 1);
5107 		}
5108 		if (!inode) {
5109 			skip_objectid = key.objectid;
5110 			continue;
5111 		}
5112 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
5113 
5114 		lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
5115 			    key.offset + num_bytes - 1, GFP_NOFS);
5116 		btrfs_drop_extent_cache(inode, key.offset,
5117 					key.offset + num_bytes - 1, 1);
5118 		unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
5119 			      key.offset + num_bytes - 1, GFP_NOFS);
5120 		cond_resched();
5121 	}
5122 	iput(inode);
5123 	return 0;
5124 }
5125 
5126 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
5127 					struct btrfs_root *root,
5128 					struct extent_buffer *leaf,
5129 					struct btrfs_block_group_cache *group,
5130 					struct inode *reloc_inode)
5131 {
5132 	struct btrfs_key key;
5133 	struct btrfs_key extent_key;
5134 	struct btrfs_file_extent_item *fi;
5135 	struct btrfs_leaf_ref *ref;
5136 	struct disk_extent *new_extent;
5137 	u64 bytenr;
5138 	u64 num_bytes;
5139 	u32 nritems;
5140 	u32 i;
5141 	int ext_index;
5142 	int nr_extent;
5143 	int ret;
5144 
5145 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
5146 	BUG_ON(!new_extent);
5147 
5148 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
5149 	BUG_ON(!ref);
5150 
5151 	ext_index = -1;
5152 	nritems = btrfs_header_nritems(leaf);
5153 	for (i = 0; i < nritems; i++) {
5154 		btrfs_item_key_to_cpu(leaf, &key, i);
5155 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
5156 			continue;
5157 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
5158 		if (btrfs_file_extent_type(leaf, fi) ==
5159 		    BTRFS_FILE_EXTENT_INLINE)
5160 			continue;
5161 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5162 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5163 		if (bytenr == 0)
5164 			continue;
5165 
5166 		ext_index++;
5167 		if (bytenr >= group->key.objectid + group->key.offset ||
5168 		    bytenr + num_bytes <= group->key.objectid)
5169 			continue;
5170 
5171 		extent_key.objectid = bytenr;
5172 		extent_key.offset = num_bytes;
5173 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
5174 		nr_extent = 1;
5175 		ret = get_new_locations(reloc_inode, &extent_key,
5176 					group->key.objectid, 1,
5177 					&new_extent, &nr_extent);
5178 		if (ret > 0)
5179 			continue;
5180 		BUG_ON(ret < 0);
5181 
5182 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
5183 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
5184 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
5185 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
5186 
5187 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
5188 						new_extent->disk_bytenr);
5189 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
5190 						new_extent->disk_num_bytes);
5191 		btrfs_mark_buffer_dirty(leaf);
5192 
5193 		ret = btrfs_inc_extent_ref(trans, root,
5194 					new_extent->disk_bytenr,
5195 					new_extent->disk_num_bytes,
5196 					leaf->start,
5197 					root->root_key.objectid,
5198 					trans->transid, key.objectid);
5199 		BUG_ON(ret);
5200 		ret = btrfs_free_extent(trans, root,
5201 					bytenr, num_bytes, leaf->start,
5202 					btrfs_header_owner(leaf),
5203 					btrfs_header_generation(leaf),
5204 					key.objectid, 0);
5205 		BUG_ON(ret);
5206 		cond_resched();
5207 	}
5208 	kfree(new_extent);
5209 	BUG_ON(ext_index + 1 != ref->nritems);
5210 	btrfs_free_leaf_ref(root, ref);
5211 	return 0;
5212 }
5213 
5214 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
5215 			  struct btrfs_root *root)
5216 {
5217 	struct btrfs_root *reloc_root;
5218 	int ret;
5219 
5220 	if (root->reloc_root) {
5221 		reloc_root = root->reloc_root;
5222 		root->reloc_root = NULL;
5223 		list_add(&reloc_root->dead_list,
5224 			 &root->fs_info->dead_reloc_roots);
5225 
5226 		btrfs_set_root_bytenr(&reloc_root->root_item,
5227 				      reloc_root->node->start);
5228 		btrfs_set_root_level(&root->root_item,
5229 				     btrfs_header_level(reloc_root->node));
5230 		memset(&reloc_root->root_item.drop_progress, 0,
5231 			sizeof(struct btrfs_disk_key));
5232 		reloc_root->root_item.drop_level = 0;
5233 
5234 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
5235 					&reloc_root->root_key,
5236 					&reloc_root->root_item);
5237 		BUG_ON(ret);
5238 	}
5239 	return 0;
5240 }
5241 
5242 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
5243 {
5244 	struct btrfs_trans_handle *trans;
5245 	struct btrfs_root *reloc_root;
5246 	struct btrfs_root *prev_root = NULL;
5247 	struct list_head dead_roots;
5248 	int ret;
5249 	unsigned long nr;
5250 
5251 	INIT_LIST_HEAD(&dead_roots);
5252 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
5253 
5254 	while (!list_empty(&dead_roots)) {
5255 		reloc_root = list_entry(dead_roots.prev,
5256 					struct btrfs_root, dead_list);
5257 		list_del_init(&reloc_root->dead_list);
5258 
5259 		BUG_ON(reloc_root->commit_root != NULL);
5260 		while (1) {
5261 			trans = btrfs_join_transaction(root, 1);
5262 			BUG_ON(!trans);
5263 
5264 			mutex_lock(&root->fs_info->drop_mutex);
5265 			ret = btrfs_drop_snapshot(trans, reloc_root);
5266 			if (ret != -EAGAIN)
5267 				break;
5268 			mutex_unlock(&root->fs_info->drop_mutex);
5269 
5270 			nr = trans->blocks_used;
5271 			ret = btrfs_end_transaction(trans, root);
5272 			BUG_ON(ret);
5273 			btrfs_btree_balance_dirty(root, nr);
5274 		}
5275 
5276 		free_extent_buffer(reloc_root->node);
5277 
5278 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
5279 				     &reloc_root->root_key);
5280 		BUG_ON(ret);
5281 		mutex_unlock(&root->fs_info->drop_mutex);
5282 
5283 		nr = trans->blocks_used;
5284 		ret = btrfs_end_transaction(trans, root);
5285 		BUG_ON(ret);
5286 		btrfs_btree_balance_dirty(root, nr);
5287 
5288 		kfree(prev_root);
5289 		prev_root = reloc_root;
5290 	}
5291 	if (prev_root) {
5292 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
5293 		kfree(prev_root);
5294 	}
5295 	return 0;
5296 }
5297 
5298 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
5299 {
5300 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
5301 	return 0;
5302 }
5303 
5304 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
5305 {
5306 	struct btrfs_root *reloc_root;
5307 	struct btrfs_trans_handle *trans;
5308 	struct btrfs_key location;
5309 	int found;
5310 	int ret;
5311 
5312 	mutex_lock(&root->fs_info->tree_reloc_mutex);
5313 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
5314 	BUG_ON(ret);
5315 	found = !list_empty(&root->fs_info->dead_reloc_roots);
5316 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
5317 
5318 	if (found) {
5319 		trans = btrfs_start_transaction(root, 1);
5320 		BUG_ON(!trans);
5321 		ret = btrfs_commit_transaction(trans, root);
5322 		BUG_ON(ret);
5323 	}
5324 
5325 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5326 	location.offset = (u64)-1;
5327 	location.type = BTRFS_ROOT_ITEM_KEY;
5328 
5329 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
5330 	BUG_ON(!reloc_root);
5331 	btrfs_orphan_cleanup(reloc_root);
5332 	return 0;
5333 }
5334 
5335 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
5336 				    struct btrfs_root *root)
5337 {
5338 	struct btrfs_root *reloc_root;
5339 	struct extent_buffer *eb;
5340 	struct btrfs_root_item *root_item;
5341 	struct btrfs_key root_key;
5342 	int ret;
5343 
5344 	BUG_ON(!root->ref_cows);
5345 	if (root->reloc_root)
5346 		return 0;
5347 
5348 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
5349 	BUG_ON(!root_item);
5350 
5351 	ret = btrfs_copy_root(trans, root, root->commit_root,
5352 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
5353 	BUG_ON(ret);
5354 
5355 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
5356 	root_key.offset = root->root_key.objectid;
5357 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5358 
5359 	memcpy(root_item, &root->root_item, sizeof(root_item));
5360 	btrfs_set_root_refs(root_item, 0);
5361 	btrfs_set_root_bytenr(root_item, eb->start);
5362 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
5363 	btrfs_set_root_generation(root_item, trans->transid);
5364 
5365 	btrfs_tree_unlock(eb);
5366 	free_extent_buffer(eb);
5367 
5368 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
5369 				&root_key, root_item);
5370 	BUG_ON(ret);
5371 	kfree(root_item);
5372 
5373 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
5374 						 &root_key);
5375 	BUG_ON(!reloc_root);
5376 	reloc_root->last_trans = trans->transid;
5377 	reloc_root->commit_root = NULL;
5378 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
5379 
5380 	root->reloc_root = reloc_root;
5381 	return 0;
5382 }
5383 
5384 /*
5385  * Core function of space balance.
5386  *
5387  * The idea is using reloc trees to relocate tree blocks in reference
5388  * counted roots. There is one reloc tree for each subvol, and all
5389  * reloc trees share same root key objectid. Reloc trees are snapshots
5390  * of the latest committed roots of subvols (root->commit_root).
5391  *
5392  * To relocate a tree block referenced by a subvol, there are two steps.
5393  * COW the block through subvol's reloc tree, then update block pointer
5394  * in the subvol to point to the new block. Since all reloc trees share
5395  * same root key objectid, doing special handing for tree blocks owned
5396  * by them is easy. Once a tree block has been COWed in one reloc tree,
5397  * we can use the resulting new block directly when the same block is
5398  * required to COW again through other reloc trees. By this way, relocated
5399  * tree blocks are shared between reloc trees, so they are also shared
5400  * between subvols.
5401  */
5402 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
5403 				      struct btrfs_root *root,
5404 				      struct btrfs_path *path,
5405 				      struct btrfs_key *first_key,
5406 				      struct btrfs_ref_path *ref_path,
5407 				      struct btrfs_block_group_cache *group,
5408 				      struct inode *reloc_inode)
5409 {
5410 	struct btrfs_root *reloc_root;
5411 	struct extent_buffer *eb = NULL;
5412 	struct btrfs_key *keys;
5413 	u64 *nodes;
5414 	int level;
5415 	int shared_level;
5416 	int lowest_level = 0;
5417 	int ret;
5418 
5419 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
5420 		lowest_level = ref_path->owner_objectid;
5421 
5422 	if (!root->ref_cows) {
5423 		path->lowest_level = lowest_level;
5424 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
5425 		BUG_ON(ret < 0);
5426 		path->lowest_level = 0;
5427 		btrfs_release_path(root, path);
5428 		return 0;
5429 	}
5430 
5431 	mutex_lock(&root->fs_info->tree_reloc_mutex);
5432 	ret = init_reloc_tree(trans, root);
5433 	BUG_ON(ret);
5434 	reloc_root = root->reloc_root;
5435 
5436 	shared_level = ref_path->shared_level;
5437 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
5438 
5439 	keys = ref_path->node_keys;
5440 	nodes = ref_path->new_nodes;
5441 	memset(&keys[shared_level + 1], 0,
5442 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
5443 	memset(&nodes[shared_level + 1], 0,
5444 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
5445 
5446 	if (nodes[lowest_level] == 0) {
5447 		path->lowest_level = lowest_level;
5448 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5449 					0, 1);
5450 		BUG_ON(ret);
5451 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
5452 			eb = path->nodes[level];
5453 			if (!eb || eb == reloc_root->node)
5454 				break;
5455 			nodes[level] = eb->start;
5456 			if (level == 0)
5457 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
5458 			else
5459 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
5460 		}
5461 		if (nodes[0] &&
5462 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5463 			eb = path->nodes[0];
5464 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
5465 						      group, reloc_inode);
5466 			BUG_ON(ret);
5467 		}
5468 		btrfs_release_path(reloc_root, path);
5469 	} else {
5470 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
5471 				       lowest_level);
5472 		BUG_ON(ret);
5473 	}
5474 
5475 	/*
5476 	 * replace tree blocks in the fs tree with tree blocks in
5477 	 * the reloc tree.
5478 	 */
5479 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
5480 	BUG_ON(ret < 0);
5481 
5482 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5483 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
5484 					0, 0);
5485 		BUG_ON(ret);
5486 		extent_buffer_get(path->nodes[0]);
5487 		eb = path->nodes[0];
5488 		btrfs_release_path(reloc_root, path);
5489 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
5490 		BUG_ON(ret);
5491 		free_extent_buffer(eb);
5492 	}
5493 
5494 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
5495 	path->lowest_level = 0;
5496 	return 0;
5497 }
5498 
5499 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
5500 					struct btrfs_root *root,
5501 					struct btrfs_path *path,
5502 					struct btrfs_key *first_key,
5503 					struct btrfs_ref_path *ref_path)
5504 {
5505 	int ret;
5506 
5507 	ret = relocate_one_path(trans, root, path, first_key,
5508 				ref_path, NULL, NULL);
5509 	BUG_ON(ret);
5510 
5511 	if (root == root->fs_info->extent_root)
5512 		btrfs_extent_post_op(trans, root);
5513 
5514 	return 0;
5515 }
5516 
5517 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
5518 				    struct btrfs_root *extent_root,
5519 				    struct btrfs_path *path,
5520 				    struct btrfs_key *extent_key)
5521 {
5522 	int ret;
5523 
5524 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
5525 	if (ret)
5526 		goto out;
5527 	ret = btrfs_del_item(trans, extent_root, path);
5528 out:
5529 	btrfs_release_path(extent_root, path);
5530 	return ret;
5531 }
5532 
5533 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
5534 						struct btrfs_ref_path *ref_path)
5535 {
5536 	struct btrfs_key root_key;
5537 
5538 	root_key.objectid = ref_path->root_objectid;
5539 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5540 	if (is_cowonly_root(ref_path->root_objectid))
5541 		root_key.offset = 0;
5542 	else
5543 		root_key.offset = (u64)-1;
5544 
5545 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
5546 }
5547 
5548 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
5549 					struct btrfs_path *path,
5550 					struct btrfs_key *extent_key,
5551 					struct btrfs_block_group_cache *group,
5552 					struct inode *reloc_inode, int pass)
5553 {
5554 	struct btrfs_trans_handle *trans;
5555 	struct btrfs_root *found_root;
5556 	struct btrfs_ref_path *ref_path = NULL;
5557 	struct disk_extent *new_extents = NULL;
5558 	int nr_extents = 0;
5559 	int loops;
5560 	int ret;
5561 	int level;
5562 	struct btrfs_key first_key;
5563 	u64 prev_block = 0;
5564 
5565 
5566 	trans = btrfs_start_transaction(extent_root, 1);
5567 	BUG_ON(!trans);
5568 
5569 	if (extent_key->objectid == 0) {
5570 		ret = del_extent_zero(trans, extent_root, path, extent_key);
5571 		goto out;
5572 	}
5573 
5574 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
5575 	if (!ref_path) {
5576 		ret = -ENOMEM;
5577 		goto out;
5578 	}
5579 
5580 	for (loops = 0; ; loops++) {
5581 		if (loops == 0) {
5582 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
5583 						   extent_key->objectid);
5584 		} else {
5585 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
5586 		}
5587 		if (ret < 0)
5588 			goto out;
5589 		if (ret > 0)
5590 			break;
5591 
5592 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5593 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
5594 			continue;
5595 
5596 		found_root = read_ref_root(extent_root->fs_info, ref_path);
5597 		BUG_ON(!found_root);
5598 		/*
5599 		 * for reference counted tree, only process reference paths
5600 		 * rooted at the latest committed root.
5601 		 */
5602 		if (found_root->ref_cows &&
5603 		    ref_path->root_generation != found_root->root_key.offset)
5604 			continue;
5605 
5606 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5607 			if (pass == 0) {
5608 				/*
5609 				 * copy data extents to new locations
5610 				 */
5611 				u64 group_start = group->key.objectid;
5612 				ret = relocate_data_extent(reloc_inode,
5613 							   extent_key,
5614 							   group_start);
5615 				if (ret < 0)
5616 					goto out;
5617 				break;
5618 			}
5619 			level = 0;
5620 		} else {
5621 			level = ref_path->owner_objectid;
5622 		}
5623 
5624 		if (prev_block != ref_path->nodes[level]) {
5625 			struct extent_buffer *eb;
5626 			u64 block_start = ref_path->nodes[level];
5627 			u64 block_size = btrfs_level_size(found_root, level);
5628 
5629 			eb = read_tree_block(found_root, block_start,
5630 					     block_size, 0);
5631 			btrfs_tree_lock(eb);
5632 			BUG_ON(level != btrfs_header_level(eb));
5633 
5634 			if (level == 0)
5635 				btrfs_item_key_to_cpu(eb, &first_key, 0);
5636 			else
5637 				btrfs_node_key_to_cpu(eb, &first_key, 0);
5638 
5639 			btrfs_tree_unlock(eb);
5640 			free_extent_buffer(eb);
5641 			prev_block = block_start;
5642 		}
5643 
5644 		btrfs_record_root_in_trans(found_root);
5645 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
5646 			/*
5647 			 * try to update data extent references while
5648 			 * keeping metadata shared between snapshots.
5649 			 */
5650 			if (pass == 1) {
5651 				ret = relocate_one_path(trans, found_root,
5652 						path, &first_key, ref_path,
5653 						group, reloc_inode);
5654 				if (ret < 0)
5655 					goto out;
5656 				continue;
5657 			}
5658 			/*
5659 			 * use fallback method to process the remaining
5660 			 * references.
5661 			 */
5662 			if (!new_extents) {
5663 				u64 group_start = group->key.objectid;
5664 				new_extents = kmalloc(sizeof(*new_extents),
5665 						      GFP_NOFS);
5666 				nr_extents = 1;
5667 				ret = get_new_locations(reloc_inode,
5668 							extent_key,
5669 							group_start, 1,
5670 							&new_extents,
5671 							&nr_extents);
5672 				if (ret)
5673 					goto out;
5674 			}
5675 			ret = replace_one_extent(trans, found_root,
5676 						path, extent_key,
5677 						&first_key, ref_path,
5678 						new_extents, nr_extents);
5679 		} else {
5680 			ret = relocate_tree_block(trans, found_root, path,
5681 						  &first_key, ref_path);
5682 		}
5683 		if (ret < 0)
5684 			goto out;
5685 	}
5686 	ret = 0;
5687 out:
5688 	btrfs_end_transaction(trans, extent_root);
5689 	kfree(new_extents);
5690 	kfree(ref_path);
5691 	return ret;
5692 }
5693 
5694 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
5695 {
5696 	u64 num_devices;
5697 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
5698 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
5699 
5700 	num_devices = root->fs_info->fs_devices->rw_devices;
5701 	if (num_devices == 1) {
5702 		stripped |= BTRFS_BLOCK_GROUP_DUP;
5703 		stripped = flags & ~stripped;
5704 
5705 		/* turn raid0 into single device chunks */
5706 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
5707 			return stripped;
5708 
5709 		/* turn mirroring into duplication */
5710 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
5711 			     BTRFS_BLOCK_GROUP_RAID10))
5712 			return stripped | BTRFS_BLOCK_GROUP_DUP;
5713 		return flags;
5714 	} else {
5715 		/* they already had raid on here, just return */
5716 		if (flags & stripped)
5717 			return flags;
5718 
5719 		stripped |= BTRFS_BLOCK_GROUP_DUP;
5720 		stripped = flags & ~stripped;
5721 
5722 		/* switch duplicated blocks with raid1 */
5723 		if (flags & BTRFS_BLOCK_GROUP_DUP)
5724 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
5725 
5726 		/* turn single device chunks into raid0 */
5727 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
5728 	}
5729 	return flags;
5730 }
5731 
5732 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
5733 		     struct btrfs_block_group_cache *shrink_block_group,
5734 		     int force)
5735 {
5736 	struct btrfs_trans_handle *trans;
5737 	u64 new_alloc_flags;
5738 	u64 calc;
5739 
5740 	spin_lock(&shrink_block_group->lock);
5741 	if (btrfs_block_group_used(&shrink_block_group->item) > 0) {
5742 		spin_unlock(&shrink_block_group->lock);
5743 
5744 		trans = btrfs_start_transaction(root, 1);
5745 		spin_lock(&shrink_block_group->lock);
5746 
5747 		new_alloc_flags = update_block_group_flags(root,
5748 						   shrink_block_group->flags);
5749 		if (new_alloc_flags != shrink_block_group->flags) {
5750 			calc =
5751 			     btrfs_block_group_used(&shrink_block_group->item);
5752 		} else {
5753 			calc = shrink_block_group->key.offset;
5754 		}
5755 		spin_unlock(&shrink_block_group->lock);
5756 
5757 		do_chunk_alloc(trans, root->fs_info->extent_root,
5758 			       calc + 2 * 1024 * 1024, new_alloc_flags, force);
5759 
5760 		btrfs_end_transaction(trans, root);
5761 	} else
5762 		spin_unlock(&shrink_block_group->lock);
5763 	return 0;
5764 }
5765 
5766 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
5767 				 struct btrfs_root *root,
5768 				 u64 objectid, u64 size)
5769 {
5770 	struct btrfs_path *path;
5771 	struct btrfs_inode_item *item;
5772 	struct extent_buffer *leaf;
5773 	int ret;
5774 
5775 	path = btrfs_alloc_path();
5776 	if (!path)
5777 		return -ENOMEM;
5778 
5779 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
5780 	if (ret)
5781 		goto out;
5782 
5783 	leaf = path->nodes[0];
5784 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
5785 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
5786 	btrfs_set_inode_generation(leaf, item, 1);
5787 	btrfs_set_inode_size(leaf, item, size);
5788 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
5789 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
5790 	btrfs_mark_buffer_dirty(leaf);
5791 	btrfs_release_path(root, path);
5792 out:
5793 	btrfs_free_path(path);
5794 	return ret;
5795 }
5796 
5797 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
5798 					struct btrfs_block_group_cache *group)
5799 {
5800 	struct inode *inode = NULL;
5801 	struct btrfs_trans_handle *trans;
5802 	struct btrfs_root *root;
5803 	struct btrfs_key root_key;
5804 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
5805 	int err = 0;
5806 
5807 	root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
5808 	root_key.type = BTRFS_ROOT_ITEM_KEY;
5809 	root_key.offset = (u64)-1;
5810 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
5811 	if (IS_ERR(root))
5812 		return ERR_CAST(root);
5813 
5814 	trans = btrfs_start_transaction(root, 1);
5815 	BUG_ON(!trans);
5816 
5817 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
5818 	if (err)
5819 		goto out;
5820 
5821 	err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
5822 	BUG_ON(err);
5823 
5824 	err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
5825 				       group->key.offset, 0, group->key.offset,
5826 				       0, 0, 0);
5827 	BUG_ON(err);
5828 
5829 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
5830 	if (inode->i_state & I_NEW) {
5831 		BTRFS_I(inode)->root = root;
5832 		BTRFS_I(inode)->location.objectid = objectid;
5833 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5834 		BTRFS_I(inode)->location.offset = 0;
5835 		btrfs_read_locked_inode(inode);
5836 		unlock_new_inode(inode);
5837 		BUG_ON(is_bad_inode(inode));
5838 	} else {
5839 		BUG_ON(1);
5840 	}
5841 	BTRFS_I(inode)->index_cnt = group->key.objectid;
5842 
5843 	err = btrfs_orphan_add(trans, inode);
5844 out:
5845 	btrfs_end_transaction(trans, root);
5846 	if (err) {
5847 		if (inode)
5848 			iput(inode);
5849 		inode = ERR_PTR(err);
5850 	}
5851 	return inode;
5852 }
5853 
5854 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
5855 {
5856 
5857 	struct btrfs_ordered_sum *sums;
5858 	struct btrfs_sector_sum *sector_sum;
5859 	struct btrfs_ordered_extent *ordered;
5860 	struct btrfs_root *root = BTRFS_I(inode)->root;
5861 	struct list_head list;
5862 	size_t offset;
5863 	int ret;
5864 	u64 disk_bytenr;
5865 
5866 	INIT_LIST_HEAD(&list);
5867 
5868 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
5869 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
5870 
5871 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
5872 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
5873 				       disk_bytenr + len - 1, &list);
5874 
5875 	while (!list_empty(&list)) {
5876 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
5877 		list_del_init(&sums->list);
5878 
5879 		sector_sum = sums->sums;
5880 		sums->bytenr = ordered->start;
5881 
5882 		offset = 0;
5883 		while (offset < sums->len) {
5884 			sector_sum->bytenr += ordered->start - disk_bytenr;
5885 			sector_sum++;
5886 			offset += root->sectorsize;
5887 		}
5888 
5889 		btrfs_add_ordered_sum(inode, ordered, sums);
5890 	}
5891 	btrfs_put_ordered_extent(ordered);
5892 	return 0;
5893 }
5894 
5895 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
5896 {
5897 	struct btrfs_trans_handle *trans;
5898 	struct btrfs_path *path;
5899 	struct btrfs_fs_info *info = root->fs_info;
5900 	struct extent_buffer *leaf;
5901 	struct inode *reloc_inode;
5902 	struct btrfs_block_group_cache *block_group;
5903 	struct btrfs_key key;
5904 	u64 skipped;
5905 	u64 cur_byte;
5906 	u64 total_found;
5907 	u32 nritems;
5908 	int ret;
5909 	int progress;
5910 	int pass = 0;
5911 
5912 	root = root->fs_info->extent_root;
5913 
5914 	block_group = btrfs_lookup_block_group(info, group_start);
5915 	BUG_ON(!block_group);
5916 
5917 	printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
5918 	       (unsigned long long)block_group->key.objectid,
5919 	       (unsigned long long)block_group->flags);
5920 
5921 	path = btrfs_alloc_path();
5922 	BUG_ON(!path);
5923 
5924 	reloc_inode = create_reloc_inode(info, block_group);
5925 	BUG_ON(IS_ERR(reloc_inode));
5926 
5927 	__alloc_chunk_for_shrink(root, block_group, 1);
5928 	set_block_group_readonly(block_group);
5929 
5930 	btrfs_start_delalloc_inodes(info->tree_root);
5931 	btrfs_wait_ordered_extents(info->tree_root, 0);
5932 again:
5933 	skipped = 0;
5934 	total_found = 0;
5935 	progress = 0;
5936 	key.objectid = block_group->key.objectid;
5937 	key.offset = 0;
5938 	key.type = 0;
5939 	cur_byte = key.objectid;
5940 
5941 	trans = btrfs_start_transaction(info->tree_root, 1);
5942 	btrfs_commit_transaction(trans, info->tree_root);
5943 
5944 	mutex_lock(&root->fs_info->cleaner_mutex);
5945 	btrfs_clean_old_snapshots(info->tree_root);
5946 	btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
5947 	mutex_unlock(&root->fs_info->cleaner_mutex);
5948 
5949 	while (1) {
5950 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5951 		if (ret < 0)
5952 			goto out;
5953 next:
5954 		leaf = path->nodes[0];
5955 		nritems = btrfs_header_nritems(leaf);
5956 		if (path->slots[0] >= nritems) {
5957 			ret = btrfs_next_leaf(root, path);
5958 			if (ret < 0)
5959 				goto out;
5960 			if (ret == 1) {
5961 				ret = 0;
5962 				break;
5963 			}
5964 			leaf = path->nodes[0];
5965 			nritems = btrfs_header_nritems(leaf);
5966 		}
5967 
5968 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5969 
5970 		if (key.objectid >= block_group->key.objectid +
5971 		    block_group->key.offset)
5972 			break;
5973 
5974 		if (progress && need_resched()) {
5975 			btrfs_release_path(root, path);
5976 			cond_resched();
5977 			progress = 0;
5978 			continue;
5979 		}
5980 		progress = 1;
5981 
5982 		if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
5983 		    key.objectid + key.offset <= cur_byte) {
5984 			path->slots[0]++;
5985 			goto next;
5986 		}
5987 
5988 		total_found++;
5989 		cur_byte = key.objectid + key.offset;
5990 		btrfs_release_path(root, path);
5991 
5992 		__alloc_chunk_for_shrink(root, block_group, 0);
5993 		ret = relocate_one_extent(root, path, &key, block_group,
5994 					  reloc_inode, pass);
5995 		BUG_ON(ret < 0);
5996 		if (ret > 0)
5997 			skipped++;
5998 
5999 		key.objectid = cur_byte;
6000 		key.type = 0;
6001 		key.offset = 0;
6002 	}
6003 
6004 	btrfs_release_path(root, path);
6005 
6006 	if (pass == 0) {
6007 		btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
6008 		invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
6009 	}
6010 
6011 	if (total_found > 0) {
6012 		printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
6013 		       (unsigned long long)total_found, pass);
6014 		pass++;
6015 		if (total_found == skipped && pass > 2) {
6016 			iput(reloc_inode);
6017 			reloc_inode = create_reloc_inode(info, block_group);
6018 			pass = 0;
6019 		}
6020 		goto again;
6021 	}
6022 
6023 	/* delete reloc_inode */
6024 	iput(reloc_inode);
6025 
6026 	/* unpin extents in this range */
6027 	trans = btrfs_start_transaction(info->tree_root, 1);
6028 	btrfs_commit_transaction(trans, info->tree_root);
6029 
6030 	spin_lock(&block_group->lock);
6031 	WARN_ON(block_group->pinned > 0);
6032 	WARN_ON(block_group->reserved > 0);
6033 	WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
6034 	spin_unlock(&block_group->lock);
6035 	put_block_group(block_group);
6036 	ret = 0;
6037 out:
6038 	btrfs_free_path(path);
6039 	return ret;
6040 }
6041 
6042 static int find_first_block_group(struct btrfs_root *root,
6043 		struct btrfs_path *path, struct btrfs_key *key)
6044 {
6045 	int ret = 0;
6046 	struct btrfs_key found_key;
6047 	struct extent_buffer *leaf;
6048 	int slot;
6049 
6050 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6051 	if (ret < 0)
6052 		goto out;
6053 
6054 	while (1) {
6055 		slot = path->slots[0];
6056 		leaf = path->nodes[0];
6057 		if (slot >= btrfs_header_nritems(leaf)) {
6058 			ret = btrfs_next_leaf(root, path);
6059 			if (ret == 0)
6060 				continue;
6061 			if (ret < 0)
6062 				goto out;
6063 			break;
6064 		}
6065 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6066 
6067 		if (found_key.objectid >= key->objectid &&
6068 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6069 			ret = 0;
6070 			goto out;
6071 		}
6072 		path->slots[0]++;
6073 	}
6074 	ret = -ENOENT;
6075 out:
6076 	return ret;
6077 }
6078 
6079 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6080 {
6081 	struct btrfs_block_group_cache *block_group;
6082 	struct rb_node *n;
6083 
6084 	spin_lock(&info->block_group_cache_lock);
6085 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6086 		block_group = rb_entry(n, struct btrfs_block_group_cache,
6087 				       cache_node);
6088 		rb_erase(&block_group->cache_node,
6089 			 &info->block_group_cache_tree);
6090 		spin_unlock(&info->block_group_cache_lock);
6091 
6092 		btrfs_remove_free_space_cache(block_group);
6093 		down_write(&block_group->space_info->groups_sem);
6094 		list_del(&block_group->list);
6095 		up_write(&block_group->space_info->groups_sem);
6096 
6097 		WARN_ON(atomic_read(&block_group->count) != 1);
6098 		kfree(block_group);
6099 
6100 		spin_lock(&info->block_group_cache_lock);
6101 	}
6102 	spin_unlock(&info->block_group_cache_lock);
6103 	return 0;
6104 }
6105 
6106 int btrfs_read_block_groups(struct btrfs_root *root)
6107 {
6108 	struct btrfs_path *path;
6109 	int ret;
6110 	struct btrfs_block_group_cache *cache;
6111 	struct btrfs_fs_info *info = root->fs_info;
6112 	struct btrfs_space_info *space_info;
6113 	struct btrfs_key key;
6114 	struct btrfs_key found_key;
6115 	struct extent_buffer *leaf;
6116 
6117 	root = info->extent_root;
6118 	key.objectid = 0;
6119 	key.offset = 0;
6120 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6121 	path = btrfs_alloc_path();
6122 	if (!path)
6123 		return -ENOMEM;
6124 
6125 	while (1) {
6126 		ret = find_first_block_group(root, path, &key);
6127 		if (ret > 0) {
6128 			ret = 0;
6129 			goto error;
6130 		}
6131 		if (ret != 0)
6132 			goto error;
6133 
6134 		leaf = path->nodes[0];
6135 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6136 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
6137 		if (!cache) {
6138 			ret = -ENOMEM;
6139 			break;
6140 		}
6141 
6142 		atomic_set(&cache->count, 1);
6143 		spin_lock_init(&cache->lock);
6144 		mutex_init(&cache->alloc_mutex);
6145 		mutex_init(&cache->cache_mutex);
6146 		INIT_LIST_HEAD(&cache->list);
6147 		read_extent_buffer(leaf, &cache->item,
6148 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
6149 				   sizeof(cache->item));
6150 		memcpy(&cache->key, &found_key, sizeof(found_key));
6151 
6152 		key.objectid = found_key.objectid + found_key.offset;
6153 		btrfs_release_path(root, path);
6154 		cache->flags = btrfs_block_group_flags(&cache->item);
6155 
6156 		ret = update_space_info(info, cache->flags, found_key.offset,
6157 					btrfs_block_group_used(&cache->item),
6158 					&space_info);
6159 		BUG_ON(ret);
6160 		cache->space_info = space_info;
6161 		down_write(&space_info->groups_sem);
6162 		list_add_tail(&cache->list, &space_info->block_groups);
6163 		up_write(&space_info->groups_sem);
6164 
6165 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
6166 		BUG_ON(ret);
6167 
6168 		set_avail_alloc_bits(root->fs_info, cache->flags);
6169 		if (btrfs_chunk_readonly(root, cache->key.objectid))
6170 			set_block_group_readonly(cache);
6171 	}
6172 	ret = 0;
6173 error:
6174 	btrfs_free_path(path);
6175 	return ret;
6176 }
6177 
6178 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
6179 			   struct btrfs_root *root, u64 bytes_used,
6180 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
6181 			   u64 size)
6182 {
6183 	int ret;
6184 	struct btrfs_root *extent_root;
6185 	struct btrfs_block_group_cache *cache;
6186 
6187 	extent_root = root->fs_info->extent_root;
6188 
6189 	root->fs_info->last_trans_new_blockgroup = trans->transid;
6190 
6191 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
6192 	if (!cache)
6193 		return -ENOMEM;
6194 
6195 	cache->key.objectid = chunk_offset;
6196 	cache->key.offset = size;
6197 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
6198 	atomic_set(&cache->count, 1);
6199 	spin_lock_init(&cache->lock);
6200 	mutex_init(&cache->alloc_mutex);
6201 	mutex_init(&cache->cache_mutex);
6202 	INIT_LIST_HEAD(&cache->list);
6203 
6204 	btrfs_set_block_group_used(&cache->item, bytes_used);
6205 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6206 	cache->flags = type;
6207 	btrfs_set_block_group_flags(&cache->item, type);
6208 
6209 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
6210 				&cache->space_info);
6211 	BUG_ON(ret);
6212 	down_write(&cache->space_info->groups_sem);
6213 	list_add_tail(&cache->list, &cache->space_info->block_groups);
6214 	up_write(&cache->space_info->groups_sem);
6215 
6216 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
6217 	BUG_ON(ret);
6218 
6219 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
6220 				sizeof(cache->item));
6221 	BUG_ON(ret);
6222 
6223 	finish_current_insert(trans, extent_root, 0);
6224 	ret = del_pending_extents(trans, extent_root, 0);
6225 	BUG_ON(ret);
6226 	set_avail_alloc_bits(extent_root->fs_info, type);
6227 
6228 	return 0;
6229 }
6230 
6231 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6232 			     struct btrfs_root *root, u64 group_start)
6233 {
6234 	struct btrfs_path *path;
6235 	struct btrfs_block_group_cache *block_group;
6236 	struct btrfs_key key;
6237 	int ret;
6238 
6239 	root = root->fs_info->extent_root;
6240 
6241 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
6242 	BUG_ON(!block_group);
6243 	BUG_ON(!block_group->ro);
6244 
6245 	memcpy(&key, &block_group->key, sizeof(key));
6246 
6247 	path = btrfs_alloc_path();
6248 	BUG_ON(!path);
6249 
6250 	spin_lock(&root->fs_info->block_group_cache_lock);
6251 	rb_erase(&block_group->cache_node,
6252 		 &root->fs_info->block_group_cache_tree);
6253 	spin_unlock(&root->fs_info->block_group_cache_lock);
6254 	btrfs_remove_free_space_cache(block_group);
6255 	down_write(&block_group->space_info->groups_sem);
6256 	list_del(&block_group->list);
6257 	up_write(&block_group->space_info->groups_sem);
6258 
6259 	spin_lock(&block_group->space_info->lock);
6260 	block_group->space_info->total_bytes -= block_group->key.offset;
6261 	block_group->space_info->bytes_readonly -= block_group->key.offset;
6262 	spin_unlock(&block_group->space_info->lock);
6263 	block_group->space_info->full = 0;
6264 
6265 	put_block_group(block_group);
6266 	put_block_group(block_group);
6267 
6268 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
6269 	if (ret > 0)
6270 		ret = -EIO;
6271 	if (ret < 0)
6272 		goto out;
6273 
6274 	ret = btrfs_del_item(trans, root, path);
6275 out:
6276 	btrfs_free_path(path);
6277 	return ret;
6278 }
6279