1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 static int update_block_group(struct btrfs_trans_handle *trans, 64 struct btrfs_root *root, u64 bytenr, 65 u64 num_bytes, int alloc); 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_root *root, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_root *extent_root, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 91 int dump_block_groups); 92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 93 u64 ram_bytes, u64 num_bytes, int delalloc); 94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 95 u64 num_bytes, int delalloc); 96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 97 u64 num_bytes); 98 int btrfs_pin_extent(struct btrfs_root *root, 99 u64 bytenr, u64 num_bytes, int reserved); 100 static int __reserve_metadata_bytes(struct btrfs_root *root, 101 struct btrfs_space_info *space_info, 102 u64 orig_bytes, 103 enum btrfs_reserve_flush_enum flush); 104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 105 struct btrfs_space_info *space_info, 106 u64 num_bytes); 107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 108 struct btrfs_space_info *space_info, 109 u64 num_bytes); 110 111 static noinline int 112 block_group_cache_done(struct btrfs_block_group_cache *cache) 113 { 114 smp_mb(); 115 return cache->cached == BTRFS_CACHE_FINISHED || 116 cache->cached == BTRFS_CACHE_ERROR; 117 } 118 119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 120 { 121 return (cache->flags & bits) == bits; 122 } 123 124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 125 { 126 atomic_inc(&cache->count); 127 } 128 129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 130 { 131 if (atomic_dec_and_test(&cache->count)) { 132 WARN_ON(cache->pinned > 0); 133 WARN_ON(cache->reserved > 0); 134 kfree(cache->free_space_ctl); 135 kfree(cache); 136 } 137 } 138 139 /* 140 * this adds the block group to the fs_info rb tree for the block group 141 * cache 142 */ 143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 144 struct btrfs_block_group_cache *block_group) 145 { 146 struct rb_node **p; 147 struct rb_node *parent = NULL; 148 struct btrfs_block_group_cache *cache; 149 150 spin_lock(&info->block_group_cache_lock); 151 p = &info->block_group_cache_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 cache = rb_entry(parent, struct btrfs_block_group_cache, 156 cache_node); 157 if (block_group->key.objectid < cache->key.objectid) { 158 p = &(*p)->rb_left; 159 } else if (block_group->key.objectid > cache->key.objectid) { 160 p = &(*p)->rb_right; 161 } else { 162 spin_unlock(&info->block_group_cache_lock); 163 return -EEXIST; 164 } 165 } 166 167 rb_link_node(&block_group->cache_node, parent, p); 168 rb_insert_color(&block_group->cache_node, 169 &info->block_group_cache_tree); 170 171 if (info->first_logical_byte > block_group->key.objectid) 172 info->first_logical_byte = block_group->key.objectid; 173 174 spin_unlock(&info->block_group_cache_lock); 175 176 return 0; 177 } 178 179 /* 180 * This will return the block group at or after bytenr if contains is 0, else 181 * it will return the block group that contains the bytenr 182 */ 183 static struct btrfs_block_group_cache * 184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 185 int contains) 186 { 187 struct btrfs_block_group_cache *cache, *ret = NULL; 188 struct rb_node *n; 189 u64 end, start; 190 191 spin_lock(&info->block_group_cache_lock); 192 n = info->block_group_cache_tree.rb_node; 193 194 while (n) { 195 cache = rb_entry(n, struct btrfs_block_group_cache, 196 cache_node); 197 end = cache->key.objectid + cache->key.offset - 1; 198 start = cache->key.objectid; 199 200 if (bytenr < start) { 201 if (!contains && (!ret || start < ret->key.objectid)) 202 ret = cache; 203 n = n->rb_left; 204 } else if (bytenr > start) { 205 if (contains && bytenr <= end) { 206 ret = cache; 207 break; 208 } 209 n = n->rb_right; 210 } else { 211 ret = cache; 212 break; 213 } 214 } 215 if (ret) { 216 btrfs_get_block_group(ret); 217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 218 info->first_logical_byte = ret->key.objectid; 219 } 220 spin_unlock(&info->block_group_cache_lock); 221 222 return ret; 223 } 224 225 static int add_excluded_extent(struct btrfs_root *root, 226 u64 start, u64 num_bytes) 227 { 228 u64 end = start + num_bytes - 1; 229 set_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE); 231 set_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE); 233 return 0; 234 } 235 236 static void free_excluded_extents(struct btrfs_root *root, 237 struct btrfs_block_group_cache *cache) 238 { 239 u64 start, end; 240 241 start = cache->key.objectid; 242 end = start + cache->key.offset - 1; 243 244 clear_extent_bits(&root->fs_info->freed_extents[0], 245 start, end, EXTENT_UPTODATE); 246 clear_extent_bits(&root->fs_info->freed_extents[1], 247 start, end, EXTENT_UPTODATE); 248 } 249 250 static int exclude_super_stripes(struct btrfs_root *root, 251 struct btrfs_block_group_cache *cache) 252 { 253 u64 bytenr; 254 u64 *logical; 255 int stripe_len; 256 int i, nr, ret; 257 258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 260 cache->bytes_super += stripe_len; 261 ret = add_excluded_extent(root, cache->key.objectid, 262 stripe_len); 263 if (ret) 264 return ret; 265 } 266 267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 268 bytenr = btrfs_sb_offset(i); 269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 270 cache->key.objectid, bytenr, 271 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 atomic_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (atomic_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_root *root, 333 struct btrfs_block_group_cache *block_group) 334 { 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 root->nodesize : root->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group; 398 struct btrfs_fs_info *fs_info; 399 struct btrfs_root *extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 block_group = caching_ctl->block_group; 410 fs_info = block_group->fs_info; 411 extent_root = fs_info->extent_root; 412 413 path = btrfs_alloc_path(); 414 if (!path) 415 return -ENOMEM; 416 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 418 419 #ifdef CONFIG_BTRFS_DEBUG 420 /* 421 * If we're fragmenting we don't want to make anybody think we can 422 * allocate from this block group until we've had a chance to fragment 423 * the free space. 424 */ 425 if (btrfs_should_fragment_free_space(extent_root, block_group)) 426 wakeup = false; 427 #endif 428 /* 429 * We don't want to deadlock with somebody trying to allocate a new 430 * extent for the extent root while also trying to search the extent 431 * root to add free space. So we skip locking and search the commit 432 * root, since its read-only 433 */ 434 path->skip_locking = 1; 435 path->search_commit_root = 1; 436 path->reada = READA_FORWARD; 437 438 key.objectid = last; 439 key.offset = 0; 440 key.type = BTRFS_EXTENT_ITEM_KEY; 441 442 next: 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 444 if (ret < 0) 445 goto out; 446 447 leaf = path->nodes[0]; 448 nritems = btrfs_header_nritems(leaf); 449 450 while (1) { 451 if (btrfs_fs_closing(fs_info) > 1) { 452 last = (u64)-1; 453 break; 454 } 455 456 if (path->slots[0] < nritems) { 457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 458 } else { 459 ret = find_next_key(path, 0, &key); 460 if (ret) 461 break; 462 463 if (need_resched() || 464 rwsem_is_contended(&fs_info->commit_root_sem)) { 465 if (wakeup) 466 caching_ctl->progress = last; 467 btrfs_release_path(path); 468 up_read(&fs_info->commit_root_sem); 469 mutex_unlock(&caching_ctl->mutex); 470 cond_resched(); 471 mutex_lock(&caching_ctl->mutex); 472 down_read(&fs_info->commit_root_sem); 473 goto next; 474 } 475 476 ret = btrfs_next_leaf(extent_root, path); 477 if (ret < 0) 478 goto out; 479 if (ret) 480 break; 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 continue; 484 } 485 486 if (key.objectid < last) { 487 key.objectid = last; 488 key.offset = 0; 489 key.type = BTRFS_EXTENT_ITEM_KEY; 490 491 if (wakeup) 492 caching_ctl->progress = last; 493 btrfs_release_path(path); 494 goto next; 495 } 496 497 if (key.objectid < block_group->key.objectid) { 498 path->slots[0]++; 499 continue; 500 } 501 502 if (key.objectid >= block_group->key.objectid + 503 block_group->key.offset) 504 break; 505 506 if (key.type == BTRFS_EXTENT_ITEM_KEY || 507 key.type == BTRFS_METADATA_ITEM_KEY) { 508 total_found += add_new_free_space(block_group, 509 fs_info, last, 510 key.objectid); 511 if (key.type == BTRFS_METADATA_ITEM_KEY) 512 last = key.objectid + 513 fs_info->tree_root->nodesize; 514 else 515 last = key.objectid + key.offset; 516 517 if (total_found > CACHING_CTL_WAKE_UP) { 518 total_found = 0; 519 if (wakeup) 520 wake_up(&caching_ctl->wait); 521 } 522 } 523 path->slots[0]++; 524 } 525 ret = 0; 526 527 total_found += add_new_free_space(block_group, fs_info, last, 528 block_group->key.objectid + 529 block_group->key.offset); 530 caching_ctl->progress = (u64)-1; 531 532 out: 533 btrfs_free_path(path); 534 return ret; 535 } 536 537 static noinline void caching_thread(struct btrfs_work *work) 538 { 539 struct btrfs_block_group_cache *block_group; 540 struct btrfs_fs_info *fs_info; 541 struct btrfs_caching_control *caching_ctl; 542 struct btrfs_root *extent_root; 543 int ret; 544 545 caching_ctl = container_of(work, struct btrfs_caching_control, work); 546 block_group = caching_ctl->block_group; 547 fs_info = block_group->fs_info; 548 extent_root = fs_info->extent_root; 549 550 mutex_lock(&caching_ctl->mutex); 551 down_read(&fs_info->commit_root_sem); 552 553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 554 ret = load_free_space_tree(caching_ctl); 555 else 556 ret = load_extent_tree_free(caching_ctl); 557 558 spin_lock(&block_group->lock); 559 block_group->caching_ctl = NULL; 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 561 spin_unlock(&block_group->lock); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 565 u64 bytes_used; 566 567 spin_lock(&block_group->space_info->lock); 568 spin_lock(&block_group->lock); 569 bytes_used = block_group->key.offset - 570 btrfs_block_group_used(&block_group->item); 571 block_group->space_info->bytes_used += bytes_used >> 1; 572 spin_unlock(&block_group->lock); 573 spin_unlock(&block_group->space_info->lock); 574 fragment_free_space(extent_root, block_group); 575 } 576 #endif 577 578 caching_ctl->progress = (u64)-1; 579 580 up_read(&fs_info->commit_root_sem); 581 free_excluded_extents(fs_info->extent_root, block_group); 582 mutex_unlock(&caching_ctl->mutex); 583 584 wake_up(&caching_ctl->wait); 585 586 put_caching_control(caching_ctl); 587 btrfs_put_block_group(block_group); 588 } 589 590 static int cache_block_group(struct btrfs_block_group_cache *cache, 591 int load_cache_only) 592 { 593 DEFINE_WAIT(wait); 594 struct btrfs_fs_info *fs_info = cache->fs_info; 595 struct btrfs_caching_control *caching_ctl; 596 int ret = 0; 597 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 599 if (!caching_ctl) 600 return -ENOMEM; 601 602 INIT_LIST_HEAD(&caching_ctl->list); 603 mutex_init(&caching_ctl->mutex); 604 init_waitqueue_head(&caching_ctl->wait); 605 caching_ctl->block_group = cache; 606 caching_ctl->progress = cache->key.objectid; 607 atomic_set(&caching_ctl->count, 1); 608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 609 caching_thread, NULL, NULL); 610 611 spin_lock(&cache->lock); 612 /* 613 * This should be a rare occasion, but this could happen I think in the 614 * case where one thread starts to load the space cache info, and then 615 * some other thread starts a transaction commit which tries to do an 616 * allocation while the other thread is still loading the space cache 617 * info. The previous loop should have kept us from choosing this block 618 * group, but if we've moved to the state where we will wait on caching 619 * block groups we need to first check if we're doing a fast load here, 620 * so we can wait for it to finish, otherwise we could end up allocating 621 * from a block group who's cache gets evicted for one reason or 622 * another. 623 */ 624 while (cache->cached == BTRFS_CACHE_FAST) { 625 struct btrfs_caching_control *ctl; 626 627 ctl = cache->caching_ctl; 628 atomic_inc(&ctl->count); 629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 630 spin_unlock(&cache->lock); 631 632 schedule(); 633 634 finish_wait(&ctl->wait, &wait); 635 put_caching_control(ctl); 636 spin_lock(&cache->lock); 637 } 638 639 if (cache->cached != BTRFS_CACHE_NO) { 640 spin_unlock(&cache->lock); 641 kfree(caching_ctl); 642 return 0; 643 } 644 WARN_ON(cache->caching_ctl); 645 cache->caching_ctl = caching_ctl; 646 cache->cached = BTRFS_CACHE_FAST; 647 spin_unlock(&cache->lock); 648 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 650 mutex_lock(&caching_ctl->mutex); 651 ret = load_free_space_cache(fs_info, cache); 652 653 spin_lock(&cache->lock); 654 if (ret == 1) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_FINISHED; 657 cache->last_byte_to_unpin = (u64)-1; 658 caching_ctl->progress = (u64)-1; 659 } else { 660 if (load_cache_only) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_NO; 663 } else { 664 cache->cached = BTRFS_CACHE_STARTED; 665 cache->has_caching_ctl = 1; 666 } 667 } 668 spin_unlock(&cache->lock); 669 #ifdef CONFIG_BTRFS_DEBUG 670 if (ret == 1 && 671 btrfs_should_fragment_free_space(fs_info->extent_root, 672 cache)) { 673 u64 bytes_used; 674 675 spin_lock(&cache->space_info->lock); 676 spin_lock(&cache->lock); 677 bytes_used = cache->key.offset - 678 btrfs_block_group_used(&cache->item); 679 cache->space_info->bytes_used += bytes_used >> 1; 680 spin_unlock(&cache->lock); 681 spin_unlock(&cache->space_info->lock); 682 fragment_free_space(fs_info->extent_root, cache); 683 } 684 #endif 685 mutex_unlock(&caching_ctl->mutex); 686 687 wake_up(&caching_ctl->wait); 688 if (ret == 1) { 689 put_caching_control(caching_ctl); 690 free_excluded_extents(fs_info->extent_root, cache); 691 return 0; 692 } 693 } else { 694 /* 695 * We're either using the free space tree or no caching at all. 696 * Set cached to the appropriate value and wakeup any waiters. 697 */ 698 spin_lock(&cache->lock); 699 if (load_cache_only) { 700 cache->caching_ctl = NULL; 701 cache->cached = BTRFS_CACHE_NO; 702 } else { 703 cache->cached = BTRFS_CACHE_STARTED; 704 cache->has_caching_ctl = 1; 705 } 706 spin_unlock(&cache->lock); 707 wake_up(&caching_ctl->wait); 708 } 709 710 if (load_cache_only) { 711 put_caching_control(caching_ctl); 712 return 0; 713 } 714 715 down_write(&fs_info->commit_root_sem); 716 atomic_inc(&caching_ctl->count); 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 718 up_write(&fs_info->commit_root_sem); 719 720 btrfs_get_block_group(cache); 721 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 723 724 return ret; 725 } 726 727 /* 728 * return the block group that starts at or after bytenr 729 */ 730 static struct btrfs_block_group_cache * 731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 732 { 733 struct btrfs_block_group_cache *cache; 734 735 cache = block_group_cache_tree_search(info, bytenr, 0); 736 737 return cache; 738 } 739 740 /* 741 * return the block group that contains the given bytenr 742 */ 743 struct btrfs_block_group_cache *btrfs_lookup_block_group( 744 struct btrfs_fs_info *info, 745 u64 bytenr) 746 { 747 struct btrfs_block_group_cache *cache; 748 749 cache = block_group_cache_tree_search(info, bytenr, 1); 750 751 return cache; 752 } 753 754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 755 u64 flags) 756 { 757 struct list_head *head = &info->space_info; 758 struct btrfs_space_info *found; 759 760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 761 762 rcu_read_lock(); 763 list_for_each_entry_rcu(found, head, list) { 764 if (found->flags & flags) { 765 rcu_read_unlock(); 766 return found; 767 } 768 } 769 rcu_read_unlock(); 770 return NULL; 771 } 772 773 /* 774 * after adding space to the filesystem, we need to clear the full flags 775 * on all the space infos. 776 */ 777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 778 { 779 struct list_head *head = &info->space_info; 780 struct btrfs_space_info *found; 781 782 rcu_read_lock(); 783 list_for_each_entry_rcu(found, head, list) 784 found->full = 0; 785 rcu_read_unlock(); 786 } 787 788 /* simple helper to search for an existing data extent at a given offset */ 789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 790 { 791 int ret; 792 struct btrfs_key key; 793 struct btrfs_path *path; 794 795 path = btrfs_alloc_path(); 796 if (!path) 797 return -ENOMEM; 798 799 key.objectid = start; 800 key.offset = len; 801 key.type = BTRFS_EXTENT_ITEM_KEY; 802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 803 0, 0); 804 btrfs_free_path(path); 805 return ret; 806 } 807 808 /* 809 * helper function to lookup reference count and flags of a tree block. 810 * 811 * the head node for delayed ref is used to store the sum of all the 812 * reference count modifications queued up in the rbtree. the head 813 * node may also store the extent flags to set. This way you can check 814 * to see what the reference count and extent flags would be if all of 815 * the delayed refs are not processed. 816 */ 817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 818 struct btrfs_root *root, u64 bytenr, 819 u64 offset, int metadata, u64 *refs, u64 *flags) 820 { 821 struct btrfs_delayed_ref_head *head; 822 struct btrfs_delayed_ref_root *delayed_refs; 823 struct btrfs_path *path; 824 struct btrfs_extent_item *ei; 825 struct extent_buffer *leaf; 826 struct btrfs_key key; 827 u32 item_size; 828 u64 num_refs; 829 u64 extent_flags; 830 int ret; 831 832 /* 833 * If we don't have skinny metadata, don't bother doing anything 834 * different 835 */ 836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 837 offset = root->nodesize; 838 metadata = 0; 839 } 840 841 path = btrfs_alloc_path(); 842 if (!path) 843 return -ENOMEM; 844 845 if (!trans) { 846 path->skip_locking = 1; 847 path->search_commit_root = 1; 848 } 849 850 search_again: 851 key.objectid = bytenr; 852 key.offset = offset; 853 if (metadata) 854 key.type = BTRFS_METADATA_ITEM_KEY; 855 else 856 key.type = BTRFS_EXTENT_ITEM_KEY; 857 858 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 859 &key, path, 0, 0); 860 if (ret < 0) 861 goto out_free; 862 863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 864 if (path->slots[0]) { 865 path->slots[0]--; 866 btrfs_item_key_to_cpu(path->nodes[0], &key, 867 path->slots[0]); 868 if (key.objectid == bytenr && 869 key.type == BTRFS_EXTENT_ITEM_KEY && 870 key.offset == root->nodesize) 871 ret = 0; 872 } 873 } 874 875 if (ret == 0) { 876 leaf = path->nodes[0]; 877 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 878 if (item_size >= sizeof(*ei)) { 879 ei = btrfs_item_ptr(leaf, path->slots[0], 880 struct btrfs_extent_item); 881 num_refs = btrfs_extent_refs(leaf, ei); 882 extent_flags = btrfs_extent_flags(leaf, ei); 883 } else { 884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 885 struct btrfs_extent_item_v0 *ei0; 886 BUG_ON(item_size != sizeof(*ei0)); 887 ei0 = btrfs_item_ptr(leaf, path->slots[0], 888 struct btrfs_extent_item_v0); 889 num_refs = btrfs_extent_refs_v0(leaf, ei0); 890 /* FIXME: this isn't correct for data */ 891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 892 #else 893 BUG(); 894 #endif 895 } 896 BUG_ON(num_refs == 0); 897 } else { 898 num_refs = 0; 899 extent_flags = 0; 900 ret = 0; 901 } 902 903 if (!trans) 904 goto out; 905 906 delayed_refs = &trans->transaction->delayed_refs; 907 spin_lock(&delayed_refs->lock); 908 head = btrfs_find_delayed_ref_head(trans, bytenr); 909 if (head) { 910 if (!mutex_trylock(&head->mutex)) { 911 atomic_inc(&head->node.refs); 912 spin_unlock(&delayed_refs->lock); 913 914 btrfs_release_path(path); 915 916 /* 917 * Mutex was contended, block until it's released and try 918 * again 919 */ 920 mutex_lock(&head->mutex); 921 mutex_unlock(&head->mutex); 922 btrfs_put_delayed_ref(&head->node); 923 goto search_again; 924 } 925 spin_lock(&head->lock); 926 if (head->extent_op && head->extent_op->update_flags) 927 extent_flags |= head->extent_op->flags_to_set; 928 else 929 BUG_ON(num_refs == 0); 930 931 num_refs += head->node.ref_mod; 932 spin_unlock(&head->lock); 933 mutex_unlock(&head->mutex); 934 } 935 spin_unlock(&delayed_refs->lock); 936 out: 937 WARN_ON(num_refs == 0); 938 if (refs) 939 *refs = num_refs; 940 if (flags) 941 *flags = extent_flags; 942 out_free: 943 btrfs_free_path(path); 944 return ret; 945 } 946 947 /* 948 * Back reference rules. Back refs have three main goals: 949 * 950 * 1) differentiate between all holders of references to an extent so that 951 * when a reference is dropped we can make sure it was a valid reference 952 * before freeing the extent. 953 * 954 * 2) Provide enough information to quickly find the holders of an extent 955 * if we notice a given block is corrupted or bad. 956 * 957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 958 * maintenance. This is actually the same as #2, but with a slightly 959 * different use case. 960 * 961 * There are two kinds of back refs. The implicit back refs is optimized 962 * for pointers in non-shared tree blocks. For a given pointer in a block, 963 * back refs of this kind provide information about the block's owner tree 964 * and the pointer's key. These information allow us to find the block by 965 * b-tree searching. The full back refs is for pointers in tree blocks not 966 * referenced by their owner trees. The location of tree block is recorded 967 * in the back refs. Actually the full back refs is generic, and can be 968 * used in all cases the implicit back refs is used. The major shortcoming 969 * of the full back refs is its overhead. Every time a tree block gets 970 * COWed, we have to update back refs entry for all pointers in it. 971 * 972 * For a newly allocated tree block, we use implicit back refs for 973 * pointers in it. This means most tree related operations only involve 974 * implicit back refs. For a tree block created in old transaction, the 975 * only way to drop a reference to it is COW it. So we can detect the 976 * event that tree block loses its owner tree's reference and do the 977 * back refs conversion. 978 * 979 * When a tree block is COWed through a tree, there are four cases: 980 * 981 * The reference count of the block is one and the tree is the block's 982 * owner tree. Nothing to do in this case. 983 * 984 * The reference count of the block is one and the tree is not the 985 * block's owner tree. In this case, full back refs is used for pointers 986 * in the block. Remove these full back refs, add implicit back refs for 987 * every pointers in the new block. 988 * 989 * The reference count of the block is greater than one and the tree is 990 * the block's owner tree. In this case, implicit back refs is used for 991 * pointers in the block. Add full back refs for every pointers in the 992 * block, increase lower level extents' reference counts. The original 993 * implicit back refs are entailed to the new block. 994 * 995 * The reference count of the block is greater than one and the tree is 996 * not the block's owner tree. Add implicit back refs for every pointer in 997 * the new block, increase lower level extents' reference count. 998 * 999 * Back Reference Key composing: 1000 * 1001 * The key objectid corresponds to the first byte in the extent, 1002 * The key type is used to differentiate between types of back refs. 1003 * There are different meanings of the key offset for different types 1004 * of back refs. 1005 * 1006 * File extents can be referenced by: 1007 * 1008 * - multiple snapshots, subvolumes, or different generations in one subvol 1009 * - different files inside a single subvolume 1010 * - different offsets inside a file (bookend extents in file.c) 1011 * 1012 * The extent ref structure for the implicit back refs has fields for: 1013 * 1014 * - Objectid of the subvolume root 1015 * - objectid of the file holding the reference 1016 * - original offset in the file 1017 * - how many bookend extents 1018 * 1019 * The key offset for the implicit back refs is hash of the first 1020 * three fields. 1021 * 1022 * The extent ref structure for the full back refs has field for: 1023 * 1024 * - number of pointers in the tree leaf 1025 * 1026 * The key offset for the implicit back refs is the first byte of 1027 * the tree leaf 1028 * 1029 * When a file extent is allocated, The implicit back refs is used. 1030 * the fields are filled in: 1031 * 1032 * (root_key.objectid, inode objectid, offset in file, 1) 1033 * 1034 * When a file extent is removed file truncation, we find the 1035 * corresponding implicit back refs and check the following fields: 1036 * 1037 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1038 * 1039 * Btree extents can be referenced by: 1040 * 1041 * - Different subvolumes 1042 * 1043 * Both the implicit back refs and the full back refs for tree blocks 1044 * only consist of key. The key offset for the implicit back refs is 1045 * objectid of block's owner tree. The key offset for the full back refs 1046 * is the first byte of parent block. 1047 * 1048 * When implicit back refs is used, information about the lowest key and 1049 * level of the tree block are required. These information are stored in 1050 * tree block info structure. 1051 */ 1052 1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1055 struct btrfs_root *root, 1056 struct btrfs_path *path, 1057 u64 owner, u32 extra_size) 1058 { 1059 struct btrfs_extent_item *item; 1060 struct btrfs_extent_item_v0 *ei0; 1061 struct btrfs_extent_ref_v0 *ref0; 1062 struct btrfs_tree_block_info *bi; 1063 struct extent_buffer *leaf; 1064 struct btrfs_key key; 1065 struct btrfs_key found_key; 1066 u32 new_size = sizeof(*item); 1067 u64 refs; 1068 int ret; 1069 1070 leaf = path->nodes[0]; 1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1072 1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1074 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1075 struct btrfs_extent_item_v0); 1076 refs = btrfs_extent_refs_v0(leaf, ei0); 1077 1078 if (owner == (u64)-1) { 1079 while (1) { 1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1081 ret = btrfs_next_leaf(root, path); 1082 if (ret < 0) 1083 return ret; 1084 BUG_ON(ret > 0); /* Corruption */ 1085 leaf = path->nodes[0]; 1086 } 1087 btrfs_item_key_to_cpu(leaf, &found_key, 1088 path->slots[0]); 1089 BUG_ON(key.objectid != found_key.objectid); 1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1091 path->slots[0]++; 1092 continue; 1093 } 1094 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1095 struct btrfs_extent_ref_v0); 1096 owner = btrfs_ref_objectid_v0(leaf, ref0); 1097 break; 1098 } 1099 } 1100 btrfs_release_path(path); 1101 1102 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1103 new_size += sizeof(*bi); 1104 1105 new_size -= sizeof(*ei0); 1106 ret = btrfs_search_slot(trans, root, &key, path, 1107 new_size + extra_size, 1); 1108 if (ret < 0) 1109 return ret; 1110 BUG_ON(ret); /* Corruption */ 1111 1112 btrfs_extend_item(root, path, new_size); 1113 1114 leaf = path->nodes[0]; 1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1116 btrfs_set_extent_refs(leaf, item, refs); 1117 /* FIXME: get real generation */ 1118 btrfs_set_extent_generation(leaf, item, 0); 1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1120 btrfs_set_extent_flags(leaf, item, 1121 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1122 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1123 bi = (struct btrfs_tree_block_info *)(item + 1); 1124 /* FIXME: get first key of the block */ 1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1126 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1127 } else { 1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1129 } 1130 btrfs_mark_buffer_dirty(leaf); 1131 return 0; 1132 } 1133 #endif 1134 1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1136 { 1137 u32 high_crc = ~(u32)0; 1138 u32 low_crc = ~(u32)0; 1139 __le64 lenum; 1140 1141 lenum = cpu_to_le64(root_objectid); 1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1143 lenum = cpu_to_le64(owner); 1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1145 lenum = cpu_to_le64(offset); 1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1147 1148 return ((u64)high_crc << 31) ^ (u64)low_crc; 1149 } 1150 1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1152 struct btrfs_extent_data_ref *ref) 1153 { 1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1155 btrfs_extent_data_ref_objectid(leaf, ref), 1156 btrfs_extent_data_ref_offset(leaf, ref)); 1157 } 1158 1159 static int match_extent_data_ref(struct extent_buffer *leaf, 1160 struct btrfs_extent_data_ref *ref, 1161 u64 root_objectid, u64 owner, u64 offset) 1162 { 1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1165 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1166 return 0; 1167 return 1; 1168 } 1169 1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1171 struct btrfs_root *root, 1172 struct btrfs_path *path, 1173 u64 bytenr, u64 parent, 1174 u64 root_objectid, 1175 u64 owner, u64 offset) 1176 { 1177 struct btrfs_key key; 1178 struct btrfs_extent_data_ref *ref; 1179 struct extent_buffer *leaf; 1180 u32 nritems; 1181 int ret; 1182 int recow; 1183 int err = -ENOENT; 1184 1185 key.objectid = bytenr; 1186 if (parent) { 1187 key.type = BTRFS_SHARED_DATA_REF_KEY; 1188 key.offset = parent; 1189 } else { 1190 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1191 key.offset = hash_extent_data_ref(root_objectid, 1192 owner, offset); 1193 } 1194 again: 1195 recow = 0; 1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1197 if (ret < 0) { 1198 err = ret; 1199 goto fail; 1200 } 1201 1202 if (parent) { 1203 if (!ret) 1204 return 0; 1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1206 key.type = BTRFS_EXTENT_REF_V0_KEY; 1207 btrfs_release_path(path); 1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1209 if (ret < 0) { 1210 err = ret; 1211 goto fail; 1212 } 1213 if (!ret) 1214 return 0; 1215 #endif 1216 goto fail; 1217 } 1218 1219 leaf = path->nodes[0]; 1220 nritems = btrfs_header_nritems(leaf); 1221 while (1) { 1222 if (path->slots[0] >= nritems) { 1223 ret = btrfs_next_leaf(root, path); 1224 if (ret < 0) 1225 err = ret; 1226 if (ret) 1227 goto fail; 1228 1229 leaf = path->nodes[0]; 1230 nritems = btrfs_header_nritems(leaf); 1231 recow = 1; 1232 } 1233 1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1235 if (key.objectid != bytenr || 1236 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1237 goto fail; 1238 1239 ref = btrfs_item_ptr(leaf, path->slots[0], 1240 struct btrfs_extent_data_ref); 1241 1242 if (match_extent_data_ref(leaf, ref, root_objectid, 1243 owner, offset)) { 1244 if (recow) { 1245 btrfs_release_path(path); 1246 goto again; 1247 } 1248 err = 0; 1249 break; 1250 } 1251 path->slots[0]++; 1252 } 1253 fail: 1254 return err; 1255 } 1256 1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1258 struct btrfs_root *root, 1259 struct btrfs_path *path, 1260 u64 bytenr, u64 parent, 1261 u64 root_objectid, u64 owner, 1262 u64 offset, int refs_to_add) 1263 { 1264 struct btrfs_key key; 1265 struct extent_buffer *leaf; 1266 u32 size; 1267 u32 num_refs; 1268 int ret; 1269 1270 key.objectid = bytenr; 1271 if (parent) { 1272 key.type = BTRFS_SHARED_DATA_REF_KEY; 1273 key.offset = parent; 1274 size = sizeof(struct btrfs_shared_data_ref); 1275 } else { 1276 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1277 key.offset = hash_extent_data_ref(root_objectid, 1278 owner, offset); 1279 size = sizeof(struct btrfs_extent_data_ref); 1280 } 1281 1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1283 if (ret && ret != -EEXIST) 1284 goto fail; 1285 1286 leaf = path->nodes[0]; 1287 if (parent) { 1288 struct btrfs_shared_data_ref *ref; 1289 ref = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_shared_data_ref); 1291 if (ret == 0) { 1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1293 } else { 1294 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1295 num_refs += refs_to_add; 1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1297 } 1298 } else { 1299 struct btrfs_extent_data_ref *ref; 1300 while (ret == -EEXIST) { 1301 ref = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_data_ref); 1303 if (match_extent_data_ref(leaf, ref, root_objectid, 1304 owner, offset)) 1305 break; 1306 btrfs_release_path(path); 1307 key.offset++; 1308 ret = btrfs_insert_empty_item(trans, root, path, &key, 1309 size); 1310 if (ret && ret != -EEXIST) 1311 goto fail; 1312 1313 leaf = path->nodes[0]; 1314 } 1315 ref = btrfs_item_ptr(leaf, path->slots[0], 1316 struct btrfs_extent_data_ref); 1317 if (ret == 0) { 1318 btrfs_set_extent_data_ref_root(leaf, ref, 1319 root_objectid); 1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1323 } else { 1324 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1325 num_refs += refs_to_add; 1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1327 } 1328 } 1329 btrfs_mark_buffer_dirty(leaf); 1330 ret = 0; 1331 fail: 1332 btrfs_release_path(path); 1333 return ret; 1334 } 1335 1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1337 struct btrfs_root *root, 1338 struct btrfs_path *path, 1339 int refs_to_drop, int *last_ref) 1340 { 1341 struct btrfs_key key; 1342 struct btrfs_extent_data_ref *ref1 = NULL; 1343 struct btrfs_shared_data_ref *ref2 = NULL; 1344 struct extent_buffer *leaf; 1345 u32 num_refs = 0; 1346 int ret = 0; 1347 1348 leaf = path->nodes[0]; 1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1350 1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1352 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_data_ref); 1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1356 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_shared_data_ref); 1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1361 struct btrfs_extent_ref_v0 *ref0; 1362 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_extent_ref_v0); 1364 num_refs = btrfs_ref_count_v0(leaf, ref0); 1365 #endif 1366 } else { 1367 BUG(); 1368 } 1369 1370 BUG_ON(num_refs < refs_to_drop); 1371 num_refs -= refs_to_drop; 1372 1373 if (num_refs == 0) { 1374 ret = btrfs_del_item(trans, root, path); 1375 *last_ref = 1; 1376 } else { 1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1382 else { 1383 struct btrfs_extent_ref_v0 *ref0; 1384 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1385 struct btrfs_extent_ref_v0); 1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1387 } 1388 #endif 1389 btrfs_mark_buffer_dirty(leaf); 1390 } 1391 return ret; 1392 } 1393 1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1395 struct btrfs_extent_inline_ref *iref) 1396 { 1397 struct btrfs_key key; 1398 struct extent_buffer *leaf; 1399 struct btrfs_extent_data_ref *ref1; 1400 struct btrfs_shared_data_ref *ref2; 1401 u32 num_refs = 0; 1402 1403 leaf = path->nodes[0]; 1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1405 if (iref) { 1406 if (btrfs_extent_inline_ref_type(leaf, iref) == 1407 BTRFS_EXTENT_DATA_REF_KEY) { 1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1410 } else { 1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1413 } 1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1415 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1416 struct btrfs_extent_data_ref); 1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1419 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1420 struct btrfs_shared_data_ref); 1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1424 struct btrfs_extent_ref_v0 *ref0; 1425 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1426 struct btrfs_extent_ref_v0); 1427 num_refs = btrfs_ref_count_v0(leaf, ref0); 1428 #endif 1429 } else { 1430 WARN_ON(1); 1431 } 1432 return num_refs; 1433 } 1434 1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_root *root, 1437 struct btrfs_path *path, 1438 u64 bytenr, u64 parent, 1439 u64 root_objectid) 1440 { 1441 struct btrfs_key key; 1442 int ret; 1443 1444 key.objectid = bytenr; 1445 if (parent) { 1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1447 key.offset = parent; 1448 } else { 1449 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1450 key.offset = root_objectid; 1451 } 1452 1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1454 if (ret > 0) 1455 ret = -ENOENT; 1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1457 if (ret == -ENOENT && parent) { 1458 btrfs_release_path(path); 1459 key.type = BTRFS_EXTENT_REF_V0_KEY; 1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1461 if (ret > 0) 1462 ret = -ENOENT; 1463 } 1464 #endif 1465 return ret; 1466 } 1467 1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1469 struct btrfs_root *root, 1470 struct btrfs_path *path, 1471 u64 bytenr, u64 parent, 1472 u64 root_objectid) 1473 { 1474 struct btrfs_key key; 1475 int ret; 1476 1477 key.objectid = bytenr; 1478 if (parent) { 1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1480 key.offset = parent; 1481 } else { 1482 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1483 key.offset = root_objectid; 1484 } 1485 1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1487 btrfs_release_path(path); 1488 return ret; 1489 } 1490 1491 static inline int extent_ref_type(u64 parent, u64 owner) 1492 { 1493 int type; 1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1495 if (parent > 0) 1496 type = BTRFS_SHARED_BLOCK_REF_KEY; 1497 else 1498 type = BTRFS_TREE_BLOCK_REF_KEY; 1499 } else { 1500 if (parent > 0) 1501 type = BTRFS_SHARED_DATA_REF_KEY; 1502 else 1503 type = BTRFS_EXTENT_DATA_REF_KEY; 1504 } 1505 return type; 1506 } 1507 1508 static int find_next_key(struct btrfs_path *path, int level, 1509 struct btrfs_key *key) 1510 1511 { 1512 for (; level < BTRFS_MAX_LEVEL; level++) { 1513 if (!path->nodes[level]) 1514 break; 1515 if (path->slots[level] + 1 >= 1516 btrfs_header_nritems(path->nodes[level])) 1517 continue; 1518 if (level == 0) 1519 btrfs_item_key_to_cpu(path->nodes[level], key, 1520 path->slots[level] + 1); 1521 else 1522 btrfs_node_key_to_cpu(path->nodes[level], key, 1523 path->slots[level] + 1); 1524 return 0; 1525 } 1526 return 1; 1527 } 1528 1529 /* 1530 * look for inline back ref. if back ref is found, *ref_ret is set 1531 * to the address of inline back ref, and 0 is returned. 1532 * 1533 * if back ref isn't found, *ref_ret is set to the address where it 1534 * should be inserted, and -ENOENT is returned. 1535 * 1536 * if insert is true and there are too many inline back refs, the path 1537 * points to the extent item, and -EAGAIN is returned. 1538 * 1539 * NOTE: inline back refs are ordered in the same way that back ref 1540 * items in the tree are ordered. 1541 */ 1542 static noinline_for_stack 1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1544 struct btrfs_root *root, 1545 struct btrfs_path *path, 1546 struct btrfs_extent_inline_ref **ref_ret, 1547 u64 bytenr, u64 num_bytes, 1548 u64 parent, u64 root_objectid, 1549 u64 owner, u64 offset, int insert) 1550 { 1551 struct btrfs_key key; 1552 struct extent_buffer *leaf; 1553 struct btrfs_extent_item *ei; 1554 struct btrfs_extent_inline_ref *iref; 1555 u64 flags; 1556 u64 item_size; 1557 unsigned long ptr; 1558 unsigned long end; 1559 int extra_size; 1560 int type; 1561 int want; 1562 int ret; 1563 int err = 0; 1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1565 SKINNY_METADATA); 1566 1567 key.objectid = bytenr; 1568 key.type = BTRFS_EXTENT_ITEM_KEY; 1569 key.offset = num_bytes; 1570 1571 want = extent_ref_type(parent, owner); 1572 if (insert) { 1573 extra_size = btrfs_extent_inline_ref_size(want); 1574 path->keep_locks = 1; 1575 } else 1576 extra_size = -1; 1577 1578 /* 1579 * Owner is our parent level, so we can just add one to get the level 1580 * for the block we are interested in. 1581 */ 1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1583 key.type = BTRFS_METADATA_ITEM_KEY; 1584 key.offset = owner; 1585 } 1586 1587 again: 1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1589 if (ret < 0) { 1590 err = ret; 1591 goto out; 1592 } 1593 1594 /* 1595 * We may be a newly converted file system which still has the old fat 1596 * extent entries for metadata, so try and see if we have one of those. 1597 */ 1598 if (ret > 0 && skinny_metadata) { 1599 skinny_metadata = false; 1600 if (path->slots[0]) { 1601 path->slots[0]--; 1602 btrfs_item_key_to_cpu(path->nodes[0], &key, 1603 path->slots[0]); 1604 if (key.objectid == bytenr && 1605 key.type == BTRFS_EXTENT_ITEM_KEY && 1606 key.offset == num_bytes) 1607 ret = 0; 1608 } 1609 if (ret) { 1610 key.objectid = bytenr; 1611 key.type = BTRFS_EXTENT_ITEM_KEY; 1612 key.offset = num_bytes; 1613 btrfs_release_path(path); 1614 goto again; 1615 } 1616 } 1617 1618 if (ret && !insert) { 1619 err = -ENOENT; 1620 goto out; 1621 } else if (WARN_ON(ret)) { 1622 err = -EIO; 1623 goto out; 1624 } 1625 1626 leaf = path->nodes[0]; 1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1629 if (item_size < sizeof(*ei)) { 1630 if (!insert) { 1631 err = -ENOENT; 1632 goto out; 1633 } 1634 ret = convert_extent_item_v0(trans, root, path, owner, 1635 extra_size); 1636 if (ret < 0) { 1637 err = ret; 1638 goto out; 1639 } 1640 leaf = path->nodes[0]; 1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1642 } 1643 #endif 1644 BUG_ON(item_size < sizeof(*ei)); 1645 1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1647 flags = btrfs_extent_flags(leaf, ei); 1648 1649 ptr = (unsigned long)(ei + 1); 1650 end = (unsigned long)ei + item_size; 1651 1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1653 ptr += sizeof(struct btrfs_tree_block_info); 1654 BUG_ON(ptr > end); 1655 } 1656 1657 err = -ENOENT; 1658 while (1) { 1659 if (ptr >= end) { 1660 WARN_ON(ptr > end); 1661 break; 1662 } 1663 iref = (struct btrfs_extent_inline_ref *)ptr; 1664 type = btrfs_extent_inline_ref_type(leaf, iref); 1665 if (want < type) 1666 break; 1667 if (want > type) { 1668 ptr += btrfs_extent_inline_ref_size(type); 1669 continue; 1670 } 1671 1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1673 struct btrfs_extent_data_ref *dref; 1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1675 if (match_extent_data_ref(leaf, dref, root_objectid, 1676 owner, offset)) { 1677 err = 0; 1678 break; 1679 } 1680 if (hash_extent_data_ref_item(leaf, dref) < 1681 hash_extent_data_ref(root_objectid, owner, offset)) 1682 break; 1683 } else { 1684 u64 ref_offset; 1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1686 if (parent > 0) { 1687 if (parent == ref_offset) { 1688 err = 0; 1689 break; 1690 } 1691 if (ref_offset < parent) 1692 break; 1693 } else { 1694 if (root_objectid == ref_offset) { 1695 err = 0; 1696 break; 1697 } 1698 if (ref_offset < root_objectid) 1699 break; 1700 } 1701 } 1702 ptr += btrfs_extent_inline_ref_size(type); 1703 } 1704 if (err == -ENOENT && insert) { 1705 if (item_size + extra_size >= 1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1707 err = -EAGAIN; 1708 goto out; 1709 } 1710 /* 1711 * To add new inline back ref, we have to make sure 1712 * there is no corresponding back ref item. 1713 * For simplicity, we just do not add new inline back 1714 * ref if there is any kind of item for this block 1715 */ 1716 if (find_next_key(path, 0, &key) == 0 && 1717 key.objectid == bytenr && 1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1719 err = -EAGAIN; 1720 goto out; 1721 } 1722 } 1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1724 out: 1725 if (insert) { 1726 path->keep_locks = 0; 1727 btrfs_unlock_up_safe(path, 1); 1728 } 1729 return err; 1730 } 1731 1732 /* 1733 * helper to add new inline back ref 1734 */ 1735 static noinline_for_stack 1736 void setup_inline_extent_backref(struct btrfs_root *root, 1737 struct btrfs_path *path, 1738 struct btrfs_extent_inline_ref *iref, 1739 u64 parent, u64 root_objectid, 1740 u64 owner, u64 offset, int refs_to_add, 1741 struct btrfs_delayed_extent_op *extent_op) 1742 { 1743 struct extent_buffer *leaf; 1744 struct btrfs_extent_item *ei; 1745 unsigned long ptr; 1746 unsigned long end; 1747 unsigned long item_offset; 1748 u64 refs; 1749 int size; 1750 int type; 1751 1752 leaf = path->nodes[0]; 1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1754 item_offset = (unsigned long)iref - (unsigned long)ei; 1755 1756 type = extent_ref_type(parent, owner); 1757 size = btrfs_extent_inline_ref_size(type); 1758 1759 btrfs_extend_item(root, path, size); 1760 1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1762 refs = btrfs_extent_refs(leaf, ei); 1763 refs += refs_to_add; 1764 btrfs_set_extent_refs(leaf, ei, refs); 1765 if (extent_op) 1766 __run_delayed_extent_op(extent_op, leaf, ei); 1767 1768 ptr = (unsigned long)ei + item_offset; 1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1770 if (ptr < end - size) 1771 memmove_extent_buffer(leaf, ptr + size, ptr, 1772 end - size - ptr); 1773 1774 iref = (struct btrfs_extent_inline_ref *)ptr; 1775 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1777 struct btrfs_extent_data_ref *dref; 1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1784 struct btrfs_shared_data_ref *sref; 1785 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1790 } else { 1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1792 } 1793 btrfs_mark_buffer_dirty(leaf); 1794 } 1795 1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1797 struct btrfs_root *root, 1798 struct btrfs_path *path, 1799 struct btrfs_extent_inline_ref **ref_ret, 1800 u64 bytenr, u64 num_bytes, u64 parent, 1801 u64 root_objectid, u64 owner, u64 offset) 1802 { 1803 int ret; 1804 1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1806 bytenr, num_bytes, parent, 1807 root_objectid, owner, offset, 0); 1808 if (ret != -ENOENT) 1809 return ret; 1810 1811 btrfs_release_path(path); 1812 *ref_ret = NULL; 1813 1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1816 root_objectid); 1817 } else { 1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1819 root_objectid, owner, offset); 1820 } 1821 return ret; 1822 } 1823 1824 /* 1825 * helper to update/remove inline back ref 1826 */ 1827 static noinline_for_stack 1828 void update_inline_extent_backref(struct btrfs_root *root, 1829 struct btrfs_path *path, 1830 struct btrfs_extent_inline_ref *iref, 1831 int refs_to_mod, 1832 struct btrfs_delayed_extent_op *extent_op, 1833 int *last_ref) 1834 { 1835 struct extent_buffer *leaf; 1836 struct btrfs_extent_item *ei; 1837 struct btrfs_extent_data_ref *dref = NULL; 1838 struct btrfs_shared_data_ref *sref = NULL; 1839 unsigned long ptr; 1840 unsigned long end; 1841 u32 item_size; 1842 int size; 1843 int type; 1844 u64 refs; 1845 1846 leaf = path->nodes[0]; 1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1848 refs = btrfs_extent_refs(leaf, ei); 1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1850 refs += refs_to_mod; 1851 btrfs_set_extent_refs(leaf, ei, refs); 1852 if (extent_op) 1853 __run_delayed_extent_op(extent_op, leaf, ei); 1854 1855 type = btrfs_extent_inline_ref_type(leaf, iref); 1856 1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1859 refs = btrfs_extent_data_ref_count(leaf, dref); 1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1861 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1862 refs = btrfs_shared_data_ref_count(leaf, sref); 1863 } else { 1864 refs = 1; 1865 BUG_ON(refs_to_mod != -1); 1866 } 1867 1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1869 refs += refs_to_mod; 1870 1871 if (refs > 0) { 1872 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1873 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1874 else 1875 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1876 } else { 1877 *last_ref = 1; 1878 size = btrfs_extent_inline_ref_size(type); 1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1880 ptr = (unsigned long)iref; 1881 end = (unsigned long)ei + item_size; 1882 if (ptr + size < end) 1883 memmove_extent_buffer(leaf, ptr, ptr + size, 1884 end - ptr - size); 1885 item_size -= size; 1886 btrfs_truncate_item(root, path, item_size, 1); 1887 } 1888 btrfs_mark_buffer_dirty(leaf); 1889 } 1890 1891 static noinline_for_stack 1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1893 struct btrfs_root *root, 1894 struct btrfs_path *path, 1895 u64 bytenr, u64 num_bytes, u64 parent, 1896 u64 root_objectid, u64 owner, 1897 u64 offset, int refs_to_add, 1898 struct btrfs_delayed_extent_op *extent_op) 1899 { 1900 struct btrfs_extent_inline_ref *iref; 1901 int ret; 1902 1903 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1904 bytenr, num_bytes, parent, 1905 root_objectid, owner, offset, 1); 1906 if (ret == 0) { 1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1908 update_inline_extent_backref(root, path, iref, 1909 refs_to_add, extent_op, NULL); 1910 } else if (ret == -ENOENT) { 1911 setup_inline_extent_backref(root, path, iref, parent, 1912 root_objectid, owner, offset, 1913 refs_to_add, extent_op); 1914 ret = 0; 1915 } 1916 return ret; 1917 } 1918 1919 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1920 struct btrfs_root *root, 1921 struct btrfs_path *path, 1922 u64 bytenr, u64 parent, u64 root_objectid, 1923 u64 owner, u64 offset, int refs_to_add) 1924 { 1925 int ret; 1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1927 BUG_ON(refs_to_add != 1); 1928 ret = insert_tree_block_ref(trans, root, path, bytenr, 1929 parent, root_objectid); 1930 } else { 1931 ret = insert_extent_data_ref(trans, root, path, bytenr, 1932 parent, root_objectid, 1933 owner, offset, refs_to_add); 1934 } 1935 return ret; 1936 } 1937 1938 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1939 struct btrfs_root *root, 1940 struct btrfs_path *path, 1941 struct btrfs_extent_inline_ref *iref, 1942 int refs_to_drop, int is_data, int *last_ref) 1943 { 1944 int ret = 0; 1945 1946 BUG_ON(!is_data && refs_to_drop != 1); 1947 if (iref) { 1948 update_inline_extent_backref(root, path, iref, 1949 -refs_to_drop, NULL, last_ref); 1950 } else if (is_data) { 1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1952 last_ref); 1953 } else { 1954 *last_ref = 1; 1955 ret = btrfs_del_item(trans, root, path); 1956 } 1957 return ret; 1958 } 1959 1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1962 u64 *discarded_bytes) 1963 { 1964 int j, ret = 0; 1965 u64 bytes_left, end; 1966 u64 aligned_start = ALIGN(start, 1 << 9); 1967 1968 if (WARN_ON(start != aligned_start)) { 1969 len -= aligned_start - start; 1970 len = round_down(len, 1 << 9); 1971 start = aligned_start; 1972 } 1973 1974 *discarded_bytes = 0; 1975 1976 if (!len) 1977 return 0; 1978 1979 end = start + len; 1980 bytes_left = len; 1981 1982 /* Skip any superblocks on this device. */ 1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1984 u64 sb_start = btrfs_sb_offset(j); 1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1986 u64 size = sb_start - start; 1987 1988 if (!in_range(sb_start, start, bytes_left) && 1989 !in_range(sb_end, start, bytes_left) && 1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1991 continue; 1992 1993 /* 1994 * Superblock spans beginning of range. Adjust start and 1995 * try again. 1996 */ 1997 if (sb_start <= start) { 1998 start += sb_end - start; 1999 if (start > end) { 2000 bytes_left = 0; 2001 break; 2002 } 2003 bytes_left = end - start; 2004 continue; 2005 } 2006 2007 if (size) { 2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2009 GFP_NOFS, 0); 2010 if (!ret) 2011 *discarded_bytes += size; 2012 else if (ret != -EOPNOTSUPP) 2013 return ret; 2014 } 2015 2016 start = sb_end; 2017 if (start > end) { 2018 bytes_left = 0; 2019 break; 2020 } 2021 bytes_left = end - start; 2022 } 2023 2024 if (bytes_left) { 2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2026 GFP_NOFS, 0); 2027 if (!ret) 2028 *discarded_bytes += bytes_left; 2029 } 2030 return ret; 2031 } 2032 2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2034 u64 num_bytes, u64 *actual_bytes) 2035 { 2036 int ret; 2037 u64 discarded_bytes = 0; 2038 struct btrfs_bio *bbio = NULL; 2039 2040 2041 /* 2042 * Avoid races with device replace and make sure our bbio has devices 2043 * associated to its stripes that don't go away while we are discarding. 2044 */ 2045 btrfs_bio_counter_inc_blocked(root->fs_info); 2046 /* Tell the block device(s) that the sectors can be discarded */ 2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD, 2048 bytenr, &num_bytes, &bbio, 0); 2049 /* Error condition is -ENOMEM */ 2050 if (!ret) { 2051 struct btrfs_bio_stripe *stripe = bbio->stripes; 2052 int i; 2053 2054 2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2056 u64 bytes; 2057 if (!stripe->dev->can_discard) 2058 continue; 2059 2060 ret = btrfs_issue_discard(stripe->dev->bdev, 2061 stripe->physical, 2062 stripe->length, 2063 &bytes); 2064 if (!ret) 2065 discarded_bytes += bytes; 2066 else if (ret != -EOPNOTSUPP) 2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2068 2069 /* 2070 * Just in case we get back EOPNOTSUPP for some reason, 2071 * just ignore the return value so we don't screw up 2072 * people calling discard_extent. 2073 */ 2074 ret = 0; 2075 } 2076 btrfs_put_bbio(bbio); 2077 } 2078 btrfs_bio_counter_dec(root->fs_info); 2079 2080 if (actual_bytes) 2081 *actual_bytes = discarded_bytes; 2082 2083 2084 if (ret == -EOPNOTSUPP) 2085 ret = 0; 2086 return ret; 2087 } 2088 2089 /* Can return -ENOMEM */ 2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2091 struct btrfs_root *root, 2092 u64 bytenr, u64 num_bytes, u64 parent, 2093 u64 root_objectid, u64 owner, u64 offset) 2094 { 2095 int ret; 2096 struct btrfs_fs_info *fs_info = root->fs_info; 2097 2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2099 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2100 2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2103 num_bytes, 2104 parent, root_objectid, (int)owner, 2105 BTRFS_ADD_DELAYED_REF, NULL); 2106 } else { 2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2108 num_bytes, parent, root_objectid, 2109 owner, offset, 0, 2110 BTRFS_ADD_DELAYED_REF, NULL); 2111 } 2112 return ret; 2113 } 2114 2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2116 struct btrfs_root *root, 2117 struct btrfs_delayed_ref_node *node, 2118 u64 parent, u64 root_objectid, 2119 u64 owner, u64 offset, int refs_to_add, 2120 struct btrfs_delayed_extent_op *extent_op) 2121 { 2122 struct btrfs_fs_info *fs_info = root->fs_info; 2123 struct btrfs_path *path; 2124 struct extent_buffer *leaf; 2125 struct btrfs_extent_item *item; 2126 struct btrfs_key key; 2127 u64 bytenr = node->bytenr; 2128 u64 num_bytes = node->num_bytes; 2129 u64 refs; 2130 int ret; 2131 2132 path = btrfs_alloc_path(); 2133 if (!path) 2134 return -ENOMEM; 2135 2136 path->reada = READA_FORWARD; 2137 path->leave_spinning = 1; 2138 /* this will setup the path even if it fails to insert the back ref */ 2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2140 bytenr, num_bytes, parent, 2141 root_objectid, owner, offset, 2142 refs_to_add, extent_op); 2143 if ((ret < 0 && ret != -EAGAIN) || !ret) 2144 goto out; 2145 2146 /* 2147 * Ok we had -EAGAIN which means we didn't have space to insert and 2148 * inline extent ref, so just update the reference count and add a 2149 * normal backref. 2150 */ 2151 leaf = path->nodes[0]; 2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2154 refs = btrfs_extent_refs(leaf, item); 2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2156 if (extent_op) 2157 __run_delayed_extent_op(extent_op, leaf, item); 2158 2159 btrfs_mark_buffer_dirty(leaf); 2160 btrfs_release_path(path); 2161 2162 path->reada = READA_FORWARD; 2163 path->leave_spinning = 1; 2164 /* now insert the actual backref */ 2165 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2166 path, bytenr, parent, root_objectid, 2167 owner, offset, refs_to_add); 2168 if (ret) 2169 btrfs_abort_transaction(trans, ret); 2170 out: 2171 btrfs_free_path(path); 2172 return ret; 2173 } 2174 2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, 2177 struct btrfs_delayed_ref_node *node, 2178 struct btrfs_delayed_extent_op *extent_op, 2179 int insert_reserved) 2180 { 2181 int ret = 0; 2182 struct btrfs_delayed_data_ref *ref; 2183 struct btrfs_key ins; 2184 u64 parent = 0; 2185 u64 ref_root = 0; 2186 u64 flags = 0; 2187 2188 ins.objectid = node->bytenr; 2189 ins.offset = node->num_bytes; 2190 ins.type = BTRFS_EXTENT_ITEM_KEY; 2191 2192 ref = btrfs_delayed_node_to_data_ref(node); 2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action); 2194 2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2196 parent = ref->parent; 2197 ref_root = ref->root; 2198 2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2200 if (extent_op) 2201 flags |= extent_op->flags_to_set; 2202 ret = alloc_reserved_file_extent(trans, root, 2203 parent, ref_root, flags, 2204 ref->objectid, ref->offset, 2205 &ins, node->ref_mod); 2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2208 ref_root, ref->objectid, 2209 ref->offset, node->ref_mod, 2210 extent_op); 2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2212 ret = __btrfs_free_extent(trans, root, node, parent, 2213 ref_root, ref->objectid, 2214 ref->offset, node->ref_mod, 2215 extent_op); 2216 } else { 2217 BUG(); 2218 } 2219 return ret; 2220 } 2221 2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2223 struct extent_buffer *leaf, 2224 struct btrfs_extent_item *ei) 2225 { 2226 u64 flags = btrfs_extent_flags(leaf, ei); 2227 if (extent_op->update_flags) { 2228 flags |= extent_op->flags_to_set; 2229 btrfs_set_extent_flags(leaf, ei, flags); 2230 } 2231 2232 if (extent_op->update_key) { 2233 struct btrfs_tree_block_info *bi; 2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2235 bi = (struct btrfs_tree_block_info *)(ei + 1); 2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2237 } 2238 } 2239 2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2241 struct btrfs_root *root, 2242 struct btrfs_delayed_ref_node *node, 2243 struct btrfs_delayed_extent_op *extent_op) 2244 { 2245 struct btrfs_key key; 2246 struct btrfs_path *path; 2247 struct btrfs_extent_item *ei; 2248 struct extent_buffer *leaf; 2249 u32 item_size; 2250 int ret; 2251 int err = 0; 2252 int metadata = !extent_op->is_data; 2253 2254 if (trans->aborted) 2255 return 0; 2256 2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2258 metadata = 0; 2259 2260 path = btrfs_alloc_path(); 2261 if (!path) 2262 return -ENOMEM; 2263 2264 key.objectid = node->bytenr; 2265 2266 if (metadata) { 2267 key.type = BTRFS_METADATA_ITEM_KEY; 2268 key.offset = extent_op->level; 2269 } else { 2270 key.type = BTRFS_EXTENT_ITEM_KEY; 2271 key.offset = node->num_bytes; 2272 } 2273 2274 again: 2275 path->reada = READA_FORWARD; 2276 path->leave_spinning = 1; 2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2278 path, 0, 1); 2279 if (ret < 0) { 2280 err = ret; 2281 goto out; 2282 } 2283 if (ret > 0) { 2284 if (metadata) { 2285 if (path->slots[0] > 0) { 2286 path->slots[0]--; 2287 btrfs_item_key_to_cpu(path->nodes[0], &key, 2288 path->slots[0]); 2289 if (key.objectid == node->bytenr && 2290 key.type == BTRFS_EXTENT_ITEM_KEY && 2291 key.offset == node->num_bytes) 2292 ret = 0; 2293 } 2294 if (ret > 0) { 2295 btrfs_release_path(path); 2296 metadata = 0; 2297 2298 key.objectid = node->bytenr; 2299 key.offset = node->num_bytes; 2300 key.type = BTRFS_EXTENT_ITEM_KEY; 2301 goto again; 2302 } 2303 } else { 2304 err = -EIO; 2305 goto out; 2306 } 2307 } 2308 2309 leaf = path->nodes[0]; 2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2312 if (item_size < sizeof(*ei)) { 2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2314 path, (u64)-1, 0); 2315 if (ret < 0) { 2316 err = ret; 2317 goto out; 2318 } 2319 leaf = path->nodes[0]; 2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2321 } 2322 #endif 2323 BUG_ON(item_size < sizeof(*ei)); 2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2325 __run_delayed_extent_op(extent_op, leaf, ei); 2326 2327 btrfs_mark_buffer_dirty(leaf); 2328 out: 2329 btrfs_free_path(path); 2330 return err; 2331 } 2332 2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2334 struct btrfs_root *root, 2335 struct btrfs_delayed_ref_node *node, 2336 struct btrfs_delayed_extent_op *extent_op, 2337 int insert_reserved) 2338 { 2339 int ret = 0; 2340 struct btrfs_delayed_tree_ref *ref; 2341 struct btrfs_key ins; 2342 u64 parent = 0; 2343 u64 ref_root = 0; 2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2345 SKINNY_METADATA); 2346 2347 ref = btrfs_delayed_node_to_tree_ref(node); 2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action); 2349 2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2351 parent = ref->parent; 2352 ref_root = ref->root; 2353 2354 ins.objectid = node->bytenr; 2355 if (skinny_metadata) { 2356 ins.offset = ref->level; 2357 ins.type = BTRFS_METADATA_ITEM_KEY; 2358 } else { 2359 ins.offset = node->num_bytes; 2360 ins.type = BTRFS_EXTENT_ITEM_KEY; 2361 } 2362 2363 BUG_ON(node->ref_mod != 1); 2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2365 BUG_ON(!extent_op || !extent_op->update_flags); 2366 ret = alloc_reserved_tree_block(trans, root, 2367 parent, ref_root, 2368 extent_op->flags_to_set, 2369 &extent_op->key, 2370 ref->level, &ins); 2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2372 ret = __btrfs_inc_extent_ref(trans, root, node, 2373 parent, ref_root, 2374 ref->level, 0, 1, 2375 extent_op); 2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2377 ret = __btrfs_free_extent(trans, root, node, 2378 parent, ref_root, 2379 ref->level, 0, 1, extent_op); 2380 } else { 2381 BUG(); 2382 } 2383 return ret; 2384 } 2385 2386 /* helper function to actually process a single delayed ref entry */ 2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2388 struct btrfs_root *root, 2389 struct btrfs_delayed_ref_node *node, 2390 struct btrfs_delayed_extent_op *extent_op, 2391 int insert_reserved) 2392 { 2393 int ret = 0; 2394 2395 if (trans->aborted) { 2396 if (insert_reserved) 2397 btrfs_pin_extent(root, node->bytenr, 2398 node->num_bytes, 1); 2399 return 0; 2400 } 2401 2402 if (btrfs_delayed_ref_is_head(node)) { 2403 struct btrfs_delayed_ref_head *head; 2404 /* 2405 * we've hit the end of the chain and we were supposed 2406 * to insert this extent into the tree. But, it got 2407 * deleted before we ever needed to insert it, so all 2408 * we have to do is clean up the accounting 2409 */ 2410 BUG_ON(extent_op); 2411 head = btrfs_delayed_node_to_head(node); 2412 trace_run_delayed_ref_head(root->fs_info, node, head, 2413 node->action); 2414 2415 if (insert_reserved) { 2416 btrfs_pin_extent(root, node->bytenr, 2417 node->num_bytes, 1); 2418 if (head->is_data) { 2419 ret = btrfs_del_csums(trans, root, 2420 node->bytenr, 2421 node->num_bytes); 2422 } 2423 } 2424 2425 /* Also free its reserved qgroup space */ 2426 btrfs_qgroup_free_delayed_ref(root->fs_info, 2427 head->qgroup_ref_root, 2428 head->qgroup_reserved); 2429 return ret; 2430 } 2431 2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2434 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2435 insert_reserved); 2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2437 node->type == BTRFS_SHARED_DATA_REF_KEY) 2438 ret = run_delayed_data_ref(trans, root, node, extent_op, 2439 insert_reserved); 2440 else 2441 BUG(); 2442 return ret; 2443 } 2444 2445 static inline struct btrfs_delayed_ref_node * 2446 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2447 { 2448 struct btrfs_delayed_ref_node *ref; 2449 2450 if (list_empty(&head->ref_list)) 2451 return NULL; 2452 2453 /* 2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2455 * This is to prevent a ref count from going down to zero, which deletes 2456 * the extent item from the extent tree, when there still are references 2457 * to add, which would fail because they would not find the extent item. 2458 */ 2459 list_for_each_entry(ref, &head->ref_list, list) { 2460 if (ref->action == BTRFS_ADD_DELAYED_REF) 2461 return ref; 2462 } 2463 2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2465 list); 2466 } 2467 2468 /* 2469 * Returns 0 on success or if called with an already aborted transaction. 2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2471 */ 2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2473 struct btrfs_root *root, 2474 unsigned long nr) 2475 { 2476 struct btrfs_delayed_ref_root *delayed_refs; 2477 struct btrfs_delayed_ref_node *ref; 2478 struct btrfs_delayed_ref_head *locked_ref = NULL; 2479 struct btrfs_delayed_extent_op *extent_op; 2480 struct btrfs_fs_info *fs_info = root->fs_info; 2481 ktime_t start = ktime_get(); 2482 int ret; 2483 unsigned long count = 0; 2484 unsigned long actual_count = 0; 2485 int must_insert_reserved = 0; 2486 2487 delayed_refs = &trans->transaction->delayed_refs; 2488 while (1) { 2489 if (!locked_ref) { 2490 if (count >= nr) 2491 break; 2492 2493 spin_lock(&delayed_refs->lock); 2494 locked_ref = btrfs_select_ref_head(trans); 2495 if (!locked_ref) { 2496 spin_unlock(&delayed_refs->lock); 2497 break; 2498 } 2499 2500 /* grab the lock that says we are going to process 2501 * all the refs for this head */ 2502 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2503 spin_unlock(&delayed_refs->lock); 2504 /* 2505 * we may have dropped the spin lock to get the head 2506 * mutex lock, and that might have given someone else 2507 * time to free the head. If that's true, it has been 2508 * removed from our list and we can move on. 2509 */ 2510 if (ret == -EAGAIN) { 2511 locked_ref = NULL; 2512 count++; 2513 continue; 2514 } 2515 } 2516 2517 /* 2518 * We need to try and merge add/drops of the same ref since we 2519 * can run into issues with relocate dropping the implicit ref 2520 * and then it being added back again before the drop can 2521 * finish. If we merged anything we need to re-loop so we can 2522 * get a good ref. 2523 * Or we can get node references of the same type that weren't 2524 * merged when created due to bumps in the tree mod seq, and 2525 * we need to merge them to prevent adding an inline extent 2526 * backref before dropping it (triggering a BUG_ON at 2527 * insert_inline_extent_backref()). 2528 */ 2529 spin_lock(&locked_ref->lock); 2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2531 locked_ref); 2532 2533 /* 2534 * locked_ref is the head node, so we have to go one 2535 * node back for any delayed ref updates 2536 */ 2537 ref = select_delayed_ref(locked_ref); 2538 2539 if (ref && ref->seq && 2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2541 spin_unlock(&locked_ref->lock); 2542 btrfs_delayed_ref_unlock(locked_ref); 2543 spin_lock(&delayed_refs->lock); 2544 locked_ref->processing = 0; 2545 delayed_refs->num_heads_ready++; 2546 spin_unlock(&delayed_refs->lock); 2547 locked_ref = NULL; 2548 cond_resched(); 2549 count++; 2550 continue; 2551 } 2552 2553 /* 2554 * record the must insert reserved flag before we 2555 * drop the spin lock. 2556 */ 2557 must_insert_reserved = locked_ref->must_insert_reserved; 2558 locked_ref->must_insert_reserved = 0; 2559 2560 extent_op = locked_ref->extent_op; 2561 locked_ref->extent_op = NULL; 2562 2563 if (!ref) { 2564 2565 2566 /* All delayed refs have been processed, Go ahead 2567 * and send the head node to run_one_delayed_ref, 2568 * so that any accounting fixes can happen 2569 */ 2570 ref = &locked_ref->node; 2571 2572 if (extent_op && must_insert_reserved) { 2573 btrfs_free_delayed_extent_op(extent_op); 2574 extent_op = NULL; 2575 } 2576 2577 if (extent_op) { 2578 spin_unlock(&locked_ref->lock); 2579 ret = run_delayed_extent_op(trans, root, 2580 ref, extent_op); 2581 btrfs_free_delayed_extent_op(extent_op); 2582 2583 if (ret) { 2584 /* 2585 * Need to reset must_insert_reserved if 2586 * there was an error so the abort stuff 2587 * can cleanup the reserved space 2588 * properly. 2589 */ 2590 if (must_insert_reserved) 2591 locked_ref->must_insert_reserved = 1; 2592 locked_ref->processing = 0; 2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2594 btrfs_delayed_ref_unlock(locked_ref); 2595 return ret; 2596 } 2597 continue; 2598 } 2599 2600 /* 2601 * Need to drop our head ref lock and re-acquire the 2602 * delayed ref lock and then re-check to make sure 2603 * nobody got added. 2604 */ 2605 spin_unlock(&locked_ref->lock); 2606 spin_lock(&delayed_refs->lock); 2607 spin_lock(&locked_ref->lock); 2608 if (!list_empty(&locked_ref->ref_list) || 2609 locked_ref->extent_op) { 2610 spin_unlock(&locked_ref->lock); 2611 spin_unlock(&delayed_refs->lock); 2612 continue; 2613 } 2614 ref->in_tree = 0; 2615 delayed_refs->num_heads--; 2616 rb_erase(&locked_ref->href_node, 2617 &delayed_refs->href_root); 2618 spin_unlock(&delayed_refs->lock); 2619 } else { 2620 actual_count++; 2621 ref->in_tree = 0; 2622 list_del(&ref->list); 2623 } 2624 atomic_dec(&delayed_refs->num_entries); 2625 2626 if (!btrfs_delayed_ref_is_head(ref)) { 2627 /* 2628 * when we play the delayed ref, also correct the 2629 * ref_mod on head 2630 */ 2631 switch (ref->action) { 2632 case BTRFS_ADD_DELAYED_REF: 2633 case BTRFS_ADD_DELAYED_EXTENT: 2634 locked_ref->node.ref_mod -= ref->ref_mod; 2635 break; 2636 case BTRFS_DROP_DELAYED_REF: 2637 locked_ref->node.ref_mod += ref->ref_mod; 2638 break; 2639 default: 2640 WARN_ON(1); 2641 } 2642 } 2643 spin_unlock(&locked_ref->lock); 2644 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2646 must_insert_reserved); 2647 2648 btrfs_free_delayed_extent_op(extent_op); 2649 if (ret) { 2650 locked_ref->processing = 0; 2651 btrfs_delayed_ref_unlock(locked_ref); 2652 btrfs_put_delayed_ref(ref); 2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2654 return ret; 2655 } 2656 2657 /* 2658 * If this node is a head, that means all the refs in this head 2659 * have been dealt with, and we will pick the next head to deal 2660 * with, so we must unlock the head and drop it from the cluster 2661 * list before we release it. 2662 */ 2663 if (btrfs_delayed_ref_is_head(ref)) { 2664 if (locked_ref->is_data && 2665 locked_ref->total_ref_mod < 0) { 2666 spin_lock(&delayed_refs->lock); 2667 delayed_refs->pending_csums -= ref->num_bytes; 2668 spin_unlock(&delayed_refs->lock); 2669 } 2670 btrfs_delayed_ref_unlock(locked_ref); 2671 locked_ref = NULL; 2672 } 2673 btrfs_put_delayed_ref(ref); 2674 count++; 2675 cond_resched(); 2676 } 2677 2678 /* 2679 * We don't want to include ref heads since we can have empty ref heads 2680 * and those will drastically skew our runtime down since we just do 2681 * accounting, no actual extent tree updates. 2682 */ 2683 if (actual_count > 0) { 2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2685 u64 avg; 2686 2687 /* 2688 * We weigh the current average higher than our current runtime 2689 * to avoid large swings in the average. 2690 */ 2691 spin_lock(&delayed_refs->lock); 2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2694 spin_unlock(&delayed_refs->lock); 2695 } 2696 return 0; 2697 } 2698 2699 #ifdef SCRAMBLE_DELAYED_REFS 2700 /* 2701 * Normally delayed refs get processed in ascending bytenr order. This 2702 * correlates in most cases to the order added. To expose dependencies on this 2703 * order, we start to process the tree in the middle instead of the beginning 2704 */ 2705 static u64 find_middle(struct rb_root *root) 2706 { 2707 struct rb_node *n = root->rb_node; 2708 struct btrfs_delayed_ref_node *entry; 2709 int alt = 1; 2710 u64 middle; 2711 u64 first = 0, last = 0; 2712 2713 n = rb_first(root); 2714 if (n) { 2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2716 first = entry->bytenr; 2717 } 2718 n = rb_last(root); 2719 if (n) { 2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2721 last = entry->bytenr; 2722 } 2723 n = root->rb_node; 2724 2725 while (n) { 2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2727 WARN_ON(!entry->in_tree); 2728 2729 middle = entry->bytenr; 2730 2731 if (alt) 2732 n = n->rb_left; 2733 else 2734 n = n->rb_right; 2735 2736 alt = 1 - alt; 2737 } 2738 return middle; 2739 } 2740 #endif 2741 2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2743 { 2744 u64 num_bytes; 2745 2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2747 sizeof(struct btrfs_extent_inline_ref)); 2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2750 2751 /* 2752 * We don't ever fill up leaves all the way so multiply by 2 just to be 2753 * closer to what we're really going to want to use. 2754 */ 2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2756 } 2757 2758 /* 2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2760 * would require to store the csums for that many bytes. 2761 */ 2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2763 { 2764 u64 csum_size; 2765 u64 num_csums_per_leaf; 2766 u64 num_csums; 2767 2768 csum_size = BTRFS_MAX_ITEM_SIZE(root); 2769 num_csums_per_leaf = div64_u64(csum_size, 2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2771 num_csums = div64_u64(csum_bytes, root->sectorsize); 2772 num_csums += num_csums_per_leaf - 1; 2773 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2774 return num_csums; 2775 } 2776 2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root) 2779 { 2780 struct btrfs_block_rsv *global_rsv; 2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2784 u64 num_bytes, num_dirty_bgs_bytes; 2785 int ret = 0; 2786 2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2788 num_heads = heads_to_leaves(root, num_heads); 2789 if (num_heads > 1) 2790 num_bytes += (num_heads - 1) * root->nodesize; 2791 num_bytes <<= 1; 2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2794 num_dirty_bgs); 2795 global_rsv = &root->fs_info->global_block_rsv; 2796 2797 /* 2798 * If we can't allocate any more chunks lets make sure we have _lots_ of 2799 * wiggle room since running delayed refs can create more delayed refs. 2800 */ 2801 if (global_rsv->space_info->full) { 2802 num_dirty_bgs_bytes <<= 1; 2803 num_bytes <<= 1; 2804 } 2805 2806 spin_lock(&global_rsv->lock); 2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2808 ret = 1; 2809 spin_unlock(&global_rsv->lock); 2810 return ret; 2811 } 2812 2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2814 struct btrfs_root *root) 2815 { 2816 struct btrfs_fs_info *fs_info = root->fs_info; 2817 u64 num_entries = 2818 atomic_read(&trans->transaction->delayed_refs.num_entries); 2819 u64 avg_runtime; 2820 u64 val; 2821 2822 smp_mb(); 2823 avg_runtime = fs_info->avg_delayed_ref_runtime; 2824 val = num_entries * avg_runtime; 2825 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2826 return 1; 2827 if (val >= NSEC_PER_SEC / 2) 2828 return 2; 2829 2830 return btrfs_check_space_for_delayed_refs(trans, root); 2831 } 2832 2833 struct async_delayed_refs { 2834 struct btrfs_root *root; 2835 u64 transid; 2836 int count; 2837 int error; 2838 int sync; 2839 struct completion wait; 2840 struct btrfs_work work; 2841 }; 2842 2843 static void delayed_ref_async_start(struct btrfs_work *work) 2844 { 2845 struct async_delayed_refs *async; 2846 struct btrfs_trans_handle *trans; 2847 int ret; 2848 2849 async = container_of(work, struct async_delayed_refs, work); 2850 2851 /* if the commit is already started, we don't need to wait here */ 2852 if (btrfs_transaction_blocked(async->root->fs_info)) 2853 goto done; 2854 2855 trans = btrfs_join_transaction(async->root); 2856 if (IS_ERR(trans)) { 2857 async->error = PTR_ERR(trans); 2858 goto done; 2859 } 2860 2861 /* 2862 * trans->sync means that when we call end_transaction, we won't 2863 * wait on delayed refs 2864 */ 2865 trans->sync = true; 2866 2867 /* Don't bother flushing if we got into a different transaction */ 2868 if (trans->transid > async->transid) 2869 goto end; 2870 2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2872 if (ret) 2873 async->error = ret; 2874 end: 2875 ret = btrfs_end_transaction(trans, async->root); 2876 if (ret && !async->error) 2877 async->error = ret; 2878 done: 2879 if (async->sync) 2880 complete(&async->wait); 2881 else 2882 kfree(async); 2883 } 2884 2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2886 unsigned long count, u64 transid, int wait) 2887 { 2888 struct async_delayed_refs *async; 2889 int ret; 2890 2891 async = kmalloc(sizeof(*async), GFP_NOFS); 2892 if (!async) 2893 return -ENOMEM; 2894 2895 async->root = root->fs_info->tree_root; 2896 async->count = count; 2897 async->error = 0; 2898 async->transid = transid; 2899 if (wait) 2900 async->sync = 1; 2901 else 2902 async->sync = 0; 2903 init_completion(&async->wait); 2904 2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2906 delayed_ref_async_start, NULL, NULL); 2907 2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2909 2910 if (wait) { 2911 wait_for_completion(&async->wait); 2912 ret = async->error; 2913 kfree(async); 2914 return ret; 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * this starts processing the delayed reference count updates and 2921 * extent insertions we have queued up so far. count can be 2922 * 0, which means to process everything in the tree at the start 2923 * of the run (but not newly added entries), or it can be some target 2924 * number you'd like to process. 2925 * 2926 * Returns 0 on success or if called with an aborted transaction 2927 * Returns <0 on error and aborts the transaction 2928 */ 2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2930 struct btrfs_root *root, unsigned long count) 2931 { 2932 struct rb_node *node; 2933 struct btrfs_delayed_ref_root *delayed_refs; 2934 struct btrfs_delayed_ref_head *head; 2935 int ret; 2936 int run_all = count == (unsigned long)-1; 2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2938 2939 /* We'll clean this up in btrfs_cleanup_transaction */ 2940 if (trans->aborted) 2941 return 0; 2942 2943 if (root->fs_info->creating_free_space_tree) 2944 return 0; 2945 2946 if (root == root->fs_info->extent_root) 2947 root = root->fs_info->tree_root; 2948 2949 delayed_refs = &trans->transaction->delayed_refs; 2950 if (count == 0) 2951 count = atomic_read(&delayed_refs->num_entries) * 2; 2952 2953 again: 2954 #ifdef SCRAMBLE_DELAYED_REFS 2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2956 #endif 2957 trans->can_flush_pending_bgs = false; 2958 ret = __btrfs_run_delayed_refs(trans, root, count); 2959 if (ret < 0) { 2960 btrfs_abort_transaction(trans, ret); 2961 return ret; 2962 } 2963 2964 if (run_all) { 2965 if (!list_empty(&trans->new_bgs)) 2966 btrfs_create_pending_block_groups(trans, root); 2967 2968 spin_lock(&delayed_refs->lock); 2969 node = rb_first(&delayed_refs->href_root); 2970 if (!node) { 2971 spin_unlock(&delayed_refs->lock); 2972 goto out; 2973 } 2974 count = (unsigned long)-1; 2975 2976 while (node) { 2977 head = rb_entry(node, struct btrfs_delayed_ref_head, 2978 href_node); 2979 if (btrfs_delayed_ref_is_head(&head->node)) { 2980 struct btrfs_delayed_ref_node *ref; 2981 2982 ref = &head->node; 2983 atomic_inc(&ref->refs); 2984 2985 spin_unlock(&delayed_refs->lock); 2986 /* 2987 * Mutex was contended, block until it's 2988 * released and try again 2989 */ 2990 mutex_lock(&head->mutex); 2991 mutex_unlock(&head->mutex); 2992 2993 btrfs_put_delayed_ref(ref); 2994 cond_resched(); 2995 goto again; 2996 } else { 2997 WARN_ON(1); 2998 } 2999 node = rb_next(node); 3000 } 3001 spin_unlock(&delayed_refs->lock); 3002 cond_resched(); 3003 goto again; 3004 } 3005 out: 3006 assert_qgroups_uptodate(trans); 3007 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3008 return 0; 3009 } 3010 3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 u64 bytenr, u64 num_bytes, u64 flags, 3014 int level, int is_data) 3015 { 3016 struct btrfs_delayed_extent_op *extent_op; 3017 int ret; 3018 3019 extent_op = btrfs_alloc_delayed_extent_op(); 3020 if (!extent_op) 3021 return -ENOMEM; 3022 3023 extent_op->flags_to_set = flags; 3024 extent_op->update_flags = true; 3025 extent_op->update_key = false; 3026 extent_op->is_data = is_data ? true : false; 3027 extent_op->level = level; 3028 3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3030 num_bytes, extent_op); 3031 if (ret) 3032 btrfs_free_delayed_extent_op(extent_op); 3033 return ret; 3034 } 3035 3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, 3038 struct btrfs_path *path, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_delayed_ref_head *head; 3042 struct btrfs_delayed_ref_node *ref; 3043 struct btrfs_delayed_data_ref *data_ref; 3044 struct btrfs_delayed_ref_root *delayed_refs; 3045 int ret = 0; 3046 3047 delayed_refs = &trans->transaction->delayed_refs; 3048 spin_lock(&delayed_refs->lock); 3049 head = btrfs_find_delayed_ref_head(trans, bytenr); 3050 if (!head) { 3051 spin_unlock(&delayed_refs->lock); 3052 return 0; 3053 } 3054 3055 if (!mutex_trylock(&head->mutex)) { 3056 atomic_inc(&head->node.refs); 3057 spin_unlock(&delayed_refs->lock); 3058 3059 btrfs_release_path(path); 3060 3061 /* 3062 * Mutex was contended, block until it's released and let 3063 * caller try again 3064 */ 3065 mutex_lock(&head->mutex); 3066 mutex_unlock(&head->mutex); 3067 btrfs_put_delayed_ref(&head->node); 3068 return -EAGAIN; 3069 } 3070 spin_unlock(&delayed_refs->lock); 3071 3072 spin_lock(&head->lock); 3073 list_for_each_entry(ref, &head->ref_list, list) { 3074 /* If it's a shared ref we know a cross reference exists */ 3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3076 ret = 1; 3077 break; 3078 } 3079 3080 data_ref = btrfs_delayed_node_to_data_ref(ref); 3081 3082 /* 3083 * If our ref doesn't match the one we're currently looking at 3084 * then we have a cross reference. 3085 */ 3086 if (data_ref->root != root->root_key.objectid || 3087 data_ref->objectid != objectid || 3088 data_ref->offset != offset) { 3089 ret = 1; 3090 break; 3091 } 3092 } 3093 spin_unlock(&head->lock); 3094 mutex_unlock(&head->mutex); 3095 return ret; 3096 } 3097 3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3099 struct btrfs_root *root, 3100 struct btrfs_path *path, 3101 u64 objectid, u64 offset, u64 bytenr) 3102 { 3103 struct btrfs_root *extent_root = root->fs_info->extent_root; 3104 struct extent_buffer *leaf; 3105 struct btrfs_extent_data_ref *ref; 3106 struct btrfs_extent_inline_ref *iref; 3107 struct btrfs_extent_item *ei; 3108 struct btrfs_key key; 3109 u32 item_size; 3110 int ret; 3111 3112 key.objectid = bytenr; 3113 key.offset = (u64)-1; 3114 key.type = BTRFS_EXTENT_ITEM_KEY; 3115 3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3117 if (ret < 0) 3118 goto out; 3119 BUG_ON(ret == 0); /* Corruption */ 3120 3121 ret = -ENOENT; 3122 if (path->slots[0] == 0) 3123 goto out; 3124 3125 path->slots[0]--; 3126 leaf = path->nodes[0]; 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3128 3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3130 goto out; 3131 3132 ret = 1; 3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3135 if (item_size < sizeof(*ei)) { 3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3137 goto out; 3138 } 3139 #endif 3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3141 3142 if (item_size != sizeof(*ei) + 3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3144 goto out; 3145 3146 if (btrfs_extent_generation(leaf, ei) <= 3147 btrfs_root_last_snapshot(&root->root_item)) 3148 goto out; 3149 3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3151 if (btrfs_extent_inline_ref_type(leaf, iref) != 3152 BTRFS_EXTENT_DATA_REF_KEY) 3153 goto out; 3154 3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3156 if (btrfs_extent_refs(leaf, ei) != 3157 btrfs_extent_data_ref_count(leaf, ref) || 3158 btrfs_extent_data_ref_root(leaf, ref) != 3159 root->root_key.objectid || 3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3161 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3162 goto out; 3163 3164 ret = 0; 3165 out: 3166 return ret; 3167 } 3168 3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3170 struct btrfs_root *root, 3171 u64 objectid, u64 offset, u64 bytenr) 3172 { 3173 struct btrfs_path *path; 3174 int ret; 3175 int ret2; 3176 3177 path = btrfs_alloc_path(); 3178 if (!path) 3179 return -ENOENT; 3180 3181 do { 3182 ret = check_committed_ref(trans, root, path, objectid, 3183 offset, bytenr); 3184 if (ret && ret != -ENOENT) 3185 goto out; 3186 3187 ret2 = check_delayed_ref(trans, root, path, objectid, 3188 offset, bytenr); 3189 } while (ret2 == -EAGAIN); 3190 3191 if (ret2 && ret2 != -ENOENT) { 3192 ret = ret2; 3193 goto out; 3194 } 3195 3196 if (ret != -ENOENT || ret2 != -ENOENT) 3197 ret = 0; 3198 out: 3199 btrfs_free_path(path); 3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3201 WARN_ON(ret > 0); 3202 return ret; 3203 } 3204 3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3206 struct btrfs_root *root, 3207 struct extent_buffer *buf, 3208 int full_backref, int inc) 3209 { 3210 u64 bytenr; 3211 u64 num_bytes; 3212 u64 parent; 3213 u64 ref_root; 3214 u32 nritems; 3215 struct btrfs_key key; 3216 struct btrfs_file_extent_item *fi; 3217 int i; 3218 int level; 3219 int ret = 0; 3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3221 u64, u64, u64, u64, u64, u64); 3222 3223 3224 if (btrfs_is_testing(root->fs_info)) 3225 return 0; 3226 3227 ref_root = btrfs_header_owner(buf); 3228 nritems = btrfs_header_nritems(buf); 3229 level = btrfs_header_level(buf); 3230 3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3232 return 0; 3233 3234 if (inc) 3235 process_func = btrfs_inc_extent_ref; 3236 else 3237 process_func = btrfs_free_extent; 3238 3239 if (full_backref) 3240 parent = buf->start; 3241 else 3242 parent = 0; 3243 3244 for (i = 0; i < nritems; i++) { 3245 if (level == 0) { 3246 btrfs_item_key_to_cpu(buf, &key, i); 3247 if (key.type != BTRFS_EXTENT_DATA_KEY) 3248 continue; 3249 fi = btrfs_item_ptr(buf, i, 3250 struct btrfs_file_extent_item); 3251 if (btrfs_file_extent_type(buf, fi) == 3252 BTRFS_FILE_EXTENT_INLINE) 3253 continue; 3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3255 if (bytenr == 0) 3256 continue; 3257 3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3259 key.offset -= btrfs_file_extent_offset(buf, fi); 3260 ret = process_func(trans, root, bytenr, num_bytes, 3261 parent, ref_root, key.objectid, 3262 key.offset); 3263 if (ret) 3264 goto fail; 3265 } else { 3266 bytenr = btrfs_node_blockptr(buf, i); 3267 num_bytes = root->nodesize; 3268 ret = process_func(trans, root, bytenr, num_bytes, 3269 parent, ref_root, level - 1, 0); 3270 if (ret) 3271 goto fail; 3272 } 3273 } 3274 return 0; 3275 fail: 3276 return ret; 3277 } 3278 3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3280 struct extent_buffer *buf, int full_backref) 3281 { 3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3283 } 3284 3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3286 struct extent_buffer *buf, int full_backref) 3287 { 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3289 } 3290 3291 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3292 struct btrfs_root *root, 3293 struct btrfs_path *path, 3294 struct btrfs_block_group_cache *cache) 3295 { 3296 int ret; 3297 struct btrfs_root *extent_root = root->fs_info->extent_root; 3298 unsigned long bi; 3299 struct extent_buffer *leaf; 3300 3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3302 if (ret) { 3303 if (ret > 0) 3304 ret = -ENOENT; 3305 goto fail; 3306 } 3307 3308 leaf = path->nodes[0]; 3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3311 btrfs_mark_buffer_dirty(leaf); 3312 fail: 3313 btrfs_release_path(path); 3314 return ret; 3315 3316 } 3317 3318 static struct btrfs_block_group_cache * 3319 next_block_group(struct btrfs_root *root, 3320 struct btrfs_block_group_cache *cache) 3321 { 3322 struct rb_node *node; 3323 3324 spin_lock(&root->fs_info->block_group_cache_lock); 3325 3326 /* If our block group was removed, we need a full search. */ 3327 if (RB_EMPTY_NODE(&cache->cache_node)) { 3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3329 3330 spin_unlock(&root->fs_info->block_group_cache_lock); 3331 btrfs_put_block_group(cache); 3332 cache = btrfs_lookup_first_block_group(root->fs_info, 3333 next_bytenr); 3334 return cache; 3335 } 3336 node = rb_next(&cache->cache_node); 3337 btrfs_put_block_group(cache); 3338 if (node) { 3339 cache = rb_entry(node, struct btrfs_block_group_cache, 3340 cache_node); 3341 btrfs_get_block_group(cache); 3342 } else 3343 cache = NULL; 3344 spin_unlock(&root->fs_info->block_group_cache_lock); 3345 return cache; 3346 } 3347 3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3349 struct btrfs_trans_handle *trans, 3350 struct btrfs_path *path) 3351 { 3352 struct btrfs_root *root = block_group->fs_info->tree_root; 3353 struct inode *inode = NULL; 3354 u64 alloc_hint = 0; 3355 int dcs = BTRFS_DC_ERROR; 3356 u64 num_pages = 0; 3357 int retries = 0; 3358 int ret = 0; 3359 3360 /* 3361 * If this block group is smaller than 100 megs don't bother caching the 3362 * block group. 3363 */ 3364 if (block_group->key.offset < (100 * SZ_1M)) { 3365 spin_lock(&block_group->lock); 3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3367 spin_unlock(&block_group->lock); 3368 return 0; 3369 } 3370 3371 if (trans->aborted) 3372 return 0; 3373 again: 3374 inode = lookup_free_space_inode(root, block_group, path); 3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3376 ret = PTR_ERR(inode); 3377 btrfs_release_path(path); 3378 goto out; 3379 } 3380 3381 if (IS_ERR(inode)) { 3382 BUG_ON(retries); 3383 retries++; 3384 3385 if (block_group->ro) 3386 goto out_free; 3387 3388 ret = create_free_space_inode(root, trans, block_group, path); 3389 if (ret) 3390 goto out_free; 3391 goto again; 3392 } 3393 3394 /* We've already setup this transaction, go ahead and exit */ 3395 if (block_group->cache_generation == trans->transid && 3396 i_size_read(inode)) { 3397 dcs = BTRFS_DC_SETUP; 3398 goto out_put; 3399 } 3400 3401 /* 3402 * We want to set the generation to 0, that way if anything goes wrong 3403 * from here on out we know not to trust this cache when we load up next 3404 * time. 3405 */ 3406 BTRFS_I(inode)->generation = 0; 3407 ret = btrfs_update_inode(trans, root, inode); 3408 if (ret) { 3409 /* 3410 * So theoretically we could recover from this, simply set the 3411 * super cache generation to 0 so we know to invalidate the 3412 * cache, but then we'd have to keep track of the block groups 3413 * that fail this way so we know we _have_ to reset this cache 3414 * before the next commit or risk reading stale cache. So to 3415 * limit our exposure to horrible edge cases lets just abort the 3416 * transaction, this only happens in really bad situations 3417 * anyway. 3418 */ 3419 btrfs_abort_transaction(trans, ret); 3420 goto out_put; 3421 } 3422 WARN_ON(ret); 3423 3424 if (i_size_read(inode) > 0) { 3425 ret = btrfs_check_trunc_cache_free_space(root, 3426 &root->fs_info->global_block_rsv); 3427 if (ret) 3428 goto out_put; 3429 3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3431 if (ret) 3432 goto out_put; 3433 } 3434 3435 spin_lock(&block_group->lock); 3436 if (block_group->cached != BTRFS_CACHE_FINISHED || 3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) { 3438 /* 3439 * don't bother trying to write stuff out _if_ 3440 * a) we're not cached, 3441 * b) we're with nospace_cache mount option. 3442 */ 3443 dcs = BTRFS_DC_WRITTEN; 3444 spin_unlock(&block_group->lock); 3445 goto out_put; 3446 } 3447 spin_unlock(&block_group->lock); 3448 3449 /* 3450 * We hit an ENOSPC when setting up the cache in this transaction, just 3451 * skip doing the setup, we've already cleared the cache so we're safe. 3452 */ 3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3454 ret = -ENOSPC; 3455 goto out_put; 3456 } 3457 3458 /* 3459 * Try to preallocate enough space based on how big the block group is. 3460 * Keep in mind this has to include any pinned space which could end up 3461 * taking up quite a bit since it's not folded into the other space 3462 * cache. 3463 */ 3464 num_pages = div_u64(block_group->key.offset, SZ_256M); 3465 if (!num_pages) 3466 num_pages = 1; 3467 3468 num_pages *= 16; 3469 num_pages *= PAGE_SIZE; 3470 3471 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3472 if (ret) 3473 goto out_put; 3474 3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3476 num_pages, num_pages, 3477 &alloc_hint); 3478 /* 3479 * Our cache requires contiguous chunks so that we don't modify a bunch 3480 * of metadata or split extents when writing the cache out, which means 3481 * we can enospc if we are heavily fragmented in addition to just normal 3482 * out of space conditions. So if we hit this just skip setting up any 3483 * other block groups for this transaction, maybe we'll unpin enough 3484 * space the next time around. 3485 */ 3486 if (!ret) 3487 dcs = BTRFS_DC_SETUP; 3488 else if (ret == -ENOSPC) 3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3490 3491 out_put: 3492 iput(inode); 3493 out_free: 3494 btrfs_release_path(path); 3495 out: 3496 spin_lock(&block_group->lock); 3497 if (!ret && dcs == BTRFS_DC_SETUP) 3498 block_group->cache_generation = trans->transid; 3499 block_group->disk_cache_state = dcs; 3500 spin_unlock(&block_group->lock); 3501 3502 return ret; 3503 } 3504 3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3506 struct btrfs_root *root) 3507 { 3508 struct btrfs_block_group_cache *cache, *tmp; 3509 struct btrfs_transaction *cur_trans = trans->transaction; 3510 struct btrfs_path *path; 3511 3512 if (list_empty(&cur_trans->dirty_bgs) || 3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) 3514 return 0; 3515 3516 path = btrfs_alloc_path(); 3517 if (!path) 3518 return -ENOMEM; 3519 3520 /* Could add new block groups, use _safe just in case */ 3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3522 dirty_list) { 3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3524 cache_save_setup(cache, trans, path); 3525 } 3526 3527 btrfs_free_path(path); 3528 return 0; 3529 } 3530 3531 /* 3532 * transaction commit does final block group cache writeback during a 3533 * critical section where nothing is allowed to change the FS. This is 3534 * required in order for the cache to actually match the block group, 3535 * but can introduce a lot of latency into the commit. 3536 * 3537 * So, btrfs_start_dirty_block_groups is here to kick off block group 3538 * cache IO. There's a chance we'll have to redo some of it if the 3539 * block group changes again during the commit, but it greatly reduces 3540 * the commit latency by getting rid of the easy block groups while 3541 * we're still allowing others to join the commit. 3542 */ 3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3544 struct btrfs_root *root) 3545 { 3546 struct btrfs_block_group_cache *cache; 3547 struct btrfs_transaction *cur_trans = trans->transaction; 3548 int ret = 0; 3549 int should_put; 3550 struct btrfs_path *path = NULL; 3551 LIST_HEAD(dirty); 3552 struct list_head *io = &cur_trans->io_bgs; 3553 int num_started = 0; 3554 int loops = 0; 3555 3556 spin_lock(&cur_trans->dirty_bgs_lock); 3557 if (list_empty(&cur_trans->dirty_bgs)) { 3558 spin_unlock(&cur_trans->dirty_bgs_lock); 3559 return 0; 3560 } 3561 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3562 spin_unlock(&cur_trans->dirty_bgs_lock); 3563 3564 again: 3565 /* 3566 * make sure all the block groups on our dirty list actually 3567 * exist 3568 */ 3569 btrfs_create_pending_block_groups(trans, root); 3570 3571 if (!path) { 3572 path = btrfs_alloc_path(); 3573 if (!path) 3574 return -ENOMEM; 3575 } 3576 3577 /* 3578 * cache_write_mutex is here only to save us from balance or automatic 3579 * removal of empty block groups deleting this block group while we are 3580 * writing out the cache 3581 */ 3582 mutex_lock(&trans->transaction->cache_write_mutex); 3583 while (!list_empty(&dirty)) { 3584 cache = list_first_entry(&dirty, 3585 struct btrfs_block_group_cache, 3586 dirty_list); 3587 /* 3588 * this can happen if something re-dirties a block 3589 * group that is already under IO. Just wait for it to 3590 * finish and then do it all again 3591 */ 3592 if (!list_empty(&cache->io_list)) { 3593 list_del_init(&cache->io_list); 3594 btrfs_wait_cache_io(root, trans, cache, 3595 &cache->io_ctl, path, 3596 cache->key.objectid); 3597 btrfs_put_block_group(cache); 3598 } 3599 3600 3601 /* 3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3603 * if it should update the cache_state. Don't delete 3604 * until after we wait. 3605 * 3606 * Since we're not running in the commit critical section 3607 * we need the dirty_bgs_lock to protect from update_block_group 3608 */ 3609 spin_lock(&cur_trans->dirty_bgs_lock); 3610 list_del_init(&cache->dirty_list); 3611 spin_unlock(&cur_trans->dirty_bgs_lock); 3612 3613 should_put = 1; 3614 3615 cache_save_setup(cache, trans, path); 3616 3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3618 cache->io_ctl.inode = NULL; 3619 ret = btrfs_write_out_cache(root, trans, cache, path); 3620 if (ret == 0 && cache->io_ctl.inode) { 3621 num_started++; 3622 should_put = 0; 3623 3624 /* 3625 * the cache_write_mutex is protecting 3626 * the io_list 3627 */ 3628 list_add_tail(&cache->io_list, io); 3629 } else { 3630 /* 3631 * if we failed to write the cache, the 3632 * generation will be bad and life goes on 3633 */ 3634 ret = 0; 3635 } 3636 } 3637 if (!ret) { 3638 ret = write_one_cache_group(trans, root, path, cache); 3639 /* 3640 * Our block group might still be attached to the list 3641 * of new block groups in the transaction handle of some 3642 * other task (struct btrfs_trans_handle->new_bgs). This 3643 * means its block group item isn't yet in the extent 3644 * tree. If this happens ignore the error, as we will 3645 * try again later in the critical section of the 3646 * transaction commit. 3647 */ 3648 if (ret == -ENOENT) { 3649 ret = 0; 3650 spin_lock(&cur_trans->dirty_bgs_lock); 3651 if (list_empty(&cache->dirty_list)) { 3652 list_add_tail(&cache->dirty_list, 3653 &cur_trans->dirty_bgs); 3654 btrfs_get_block_group(cache); 3655 } 3656 spin_unlock(&cur_trans->dirty_bgs_lock); 3657 } else if (ret) { 3658 btrfs_abort_transaction(trans, ret); 3659 } 3660 } 3661 3662 /* if its not on the io list, we need to put the block group */ 3663 if (should_put) 3664 btrfs_put_block_group(cache); 3665 3666 if (ret) 3667 break; 3668 3669 /* 3670 * Avoid blocking other tasks for too long. It might even save 3671 * us from writing caches for block groups that are going to be 3672 * removed. 3673 */ 3674 mutex_unlock(&trans->transaction->cache_write_mutex); 3675 mutex_lock(&trans->transaction->cache_write_mutex); 3676 } 3677 mutex_unlock(&trans->transaction->cache_write_mutex); 3678 3679 /* 3680 * go through delayed refs for all the stuff we've just kicked off 3681 * and then loop back (just once) 3682 */ 3683 ret = btrfs_run_delayed_refs(trans, root, 0); 3684 if (!ret && loops == 0) { 3685 loops++; 3686 spin_lock(&cur_trans->dirty_bgs_lock); 3687 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3688 /* 3689 * dirty_bgs_lock protects us from concurrent block group 3690 * deletes too (not just cache_write_mutex). 3691 */ 3692 if (!list_empty(&dirty)) { 3693 spin_unlock(&cur_trans->dirty_bgs_lock); 3694 goto again; 3695 } 3696 spin_unlock(&cur_trans->dirty_bgs_lock); 3697 } 3698 3699 btrfs_free_path(path); 3700 return ret; 3701 } 3702 3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3704 struct btrfs_root *root) 3705 { 3706 struct btrfs_block_group_cache *cache; 3707 struct btrfs_transaction *cur_trans = trans->transaction; 3708 int ret = 0; 3709 int should_put; 3710 struct btrfs_path *path; 3711 struct list_head *io = &cur_trans->io_bgs; 3712 int num_started = 0; 3713 3714 path = btrfs_alloc_path(); 3715 if (!path) 3716 return -ENOMEM; 3717 3718 /* 3719 * Even though we are in the critical section of the transaction commit, 3720 * we can still have concurrent tasks adding elements to this 3721 * transaction's list of dirty block groups. These tasks correspond to 3722 * endio free space workers started when writeback finishes for a 3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3724 * allocate new block groups as a result of COWing nodes of the root 3725 * tree when updating the free space inode. The writeback for the space 3726 * caches is triggered by an earlier call to 3727 * btrfs_start_dirty_block_groups() and iterations of the following 3728 * loop. 3729 * Also we want to do the cache_save_setup first and then run the 3730 * delayed refs to make sure we have the best chance at doing this all 3731 * in one shot. 3732 */ 3733 spin_lock(&cur_trans->dirty_bgs_lock); 3734 while (!list_empty(&cur_trans->dirty_bgs)) { 3735 cache = list_first_entry(&cur_trans->dirty_bgs, 3736 struct btrfs_block_group_cache, 3737 dirty_list); 3738 3739 /* 3740 * this can happen if cache_save_setup re-dirties a block 3741 * group that is already under IO. Just wait for it to 3742 * finish and then do it all again 3743 */ 3744 if (!list_empty(&cache->io_list)) { 3745 spin_unlock(&cur_trans->dirty_bgs_lock); 3746 list_del_init(&cache->io_list); 3747 btrfs_wait_cache_io(root, trans, cache, 3748 &cache->io_ctl, path, 3749 cache->key.objectid); 3750 btrfs_put_block_group(cache); 3751 spin_lock(&cur_trans->dirty_bgs_lock); 3752 } 3753 3754 /* 3755 * don't remove from the dirty list until after we've waited 3756 * on any pending IO 3757 */ 3758 list_del_init(&cache->dirty_list); 3759 spin_unlock(&cur_trans->dirty_bgs_lock); 3760 should_put = 1; 3761 3762 cache_save_setup(cache, trans, path); 3763 3764 if (!ret) 3765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3766 3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3768 cache->io_ctl.inode = NULL; 3769 ret = btrfs_write_out_cache(root, trans, cache, path); 3770 if (ret == 0 && cache->io_ctl.inode) { 3771 num_started++; 3772 should_put = 0; 3773 list_add_tail(&cache->io_list, io); 3774 } else { 3775 /* 3776 * if we failed to write the cache, the 3777 * generation will be bad and life goes on 3778 */ 3779 ret = 0; 3780 } 3781 } 3782 if (!ret) { 3783 ret = write_one_cache_group(trans, root, path, cache); 3784 /* 3785 * One of the free space endio workers might have 3786 * created a new block group while updating a free space 3787 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3788 * and hasn't released its transaction handle yet, in 3789 * which case the new block group is still attached to 3790 * its transaction handle and its creation has not 3791 * finished yet (no block group item in the extent tree 3792 * yet, etc). If this is the case, wait for all free 3793 * space endio workers to finish and retry. This is a 3794 * a very rare case so no need for a more efficient and 3795 * complex approach. 3796 */ 3797 if (ret == -ENOENT) { 3798 wait_event(cur_trans->writer_wait, 3799 atomic_read(&cur_trans->num_writers) == 1); 3800 ret = write_one_cache_group(trans, root, path, 3801 cache); 3802 } 3803 if (ret) 3804 btrfs_abort_transaction(trans, ret); 3805 } 3806 3807 /* if its not on the io list, we need to put the block group */ 3808 if (should_put) 3809 btrfs_put_block_group(cache); 3810 spin_lock(&cur_trans->dirty_bgs_lock); 3811 } 3812 spin_unlock(&cur_trans->dirty_bgs_lock); 3813 3814 while (!list_empty(io)) { 3815 cache = list_first_entry(io, struct btrfs_block_group_cache, 3816 io_list); 3817 list_del_init(&cache->io_list); 3818 btrfs_wait_cache_io(root, trans, cache, 3819 &cache->io_ctl, path, cache->key.objectid); 3820 btrfs_put_block_group(cache); 3821 } 3822 3823 btrfs_free_path(path); 3824 return ret; 3825 } 3826 3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3828 { 3829 struct btrfs_block_group_cache *block_group; 3830 int readonly = 0; 3831 3832 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3833 if (!block_group || block_group->ro) 3834 readonly = 1; 3835 if (block_group) 3836 btrfs_put_block_group(block_group); 3837 return readonly; 3838 } 3839 3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3841 { 3842 struct btrfs_block_group_cache *bg; 3843 bool ret = true; 3844 3845 bg = btrfs_lookup_block_group(fs_info, bytenr); 3846 if (!bg) 3847 return false; 3848 3849 spin_lock(&bg->lock); 3850 if (bg->ro) 3851 ret = false; 3852 else 3853 atomic_inc(&bg->nocow_writers); 3854 spin_unlock(&bg->lock); 3855 3856 /* no put on block group, done by btrfs_dec_nocow_writers */ 3857 if (!ret) 3858 btrfs_put_block_group(bg); 3859 3860 return ret; 3861 3862 } 3863 3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3865 { 3866 struct btrfs_block_group_cache *bg; 3867 3868 bg = btrfs_lookup_block_group(fs_info, bytenr); 3869 ASSERT(bg); 3870 if (atomic_dec_and_test(&bg->nocow_writers)) 3871 wake_up_atomic_t(&bg->nocow_writers); 3872 /* 3873 * Once for our lookup and once for the lookup done by a previous call 3874 * to btrfs_inc_nocow_writers() 3875 */ 3876 btrfs_put_block_group(bg); 3877 btrfs_put_block_group(bg); 3878 } 3879 3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3881 { 3882 schedule(); 3883 return 0; 3884 } 3885 3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3887 { 3888 wait_on_atomic_t(&bg->nocow_writers, 3889 btrfs_wait_nocow_writers_atomic_t, 3890 TASK_UNINTERRUPTIBLE); 3891 } 3892 3893 static const char *alloc_name(u64 flags) 3894 { 3895 switch (flags) { 3896 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3897 return "mixed"; 3898 case BTRFS_BLOCK_GROUP_METADATA: 3899 return "metadata"; 3900 case BTRFS_BLOCK_GROUP_DATA: 3901 return "data"; 3902 case BTRFS_BLOCK_GROUP_SYSTEM: 3903 return "system"; 3904 default: 3905 WARN_ON(1); 3906 return "invalid-combination"; 3907 }; 3908 } 3909 3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3911 u64 total_bytes, u64 bytes_used, 3912 u64 bytes_readonly, 3913 struct btrfs_space_info **space_info) 3914 { 3915 struct btrfs_space_info *found; 3916 int i; 3917 int factor; 3918 int ret; 3919 3920 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3921 BTRFS_BLOCK_GROUP_RAID10)) 3922 factor = 2; 3923 else 3924 factor = 1; 3925 3926 found = __find_space_info(info, flags); 3927 if (found) { 3928 spin_lock(&found->lock); 3929 found->total_bytes += total_bytes; 3930 found->disk_total += total_bytes * factor; 3931 found->bytes_used += bytes_used; 3932 found->disk_used += bytes_used * factor; 3933 found->bytes_readonly += bytes_readonly; 3934 if (total_bytes > 0) 3935 found->full = 0; 3936 space_info_add_new_bytes(info, found, total_bytes - 3937 bytes_used - bytes_readonly); 3938 spin_unlock(&found->lock); 3939 *space_info = found; 3940 return 0; 3941 } 3942 found = kzalloc(sizeof(*found), GFP_NOFS); 3943 if (!found) 3944 return -ENOMEM; 3945 3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3947 if (ret) { 3948 kfree(found); 3949 return ret; 3950 } 3951 3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3953 INIT_LIST_HEAD(&found->block_groups[i]); 3954 init_rwsem(&found->groups_sem); 3955 spin_lock_init(&found->lock); 3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3957 found->total_bytes = total_bytes; 3958 found->disk_total = total_bytes * factor; 3959 found->bytes_used = bytes_used; 3960 found->disk_used = bytes_used * factor; 3961 found->bytes_pinned = 0; 3962 found->bytes_reserved = 0; 3963 found->bytes_readonly = bytes_readonly; 3964 found->bytes_may_use = 0; 3965 found->full = 0; 3966 found->max_extent_size = 0; 3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3968 found->chunk_alloc = 0; 3969 found->flush = 0; 3970 init_waitqueue_head(&found->wait); 3971 INIT_LIST_HEAD(&found->ro_bgs); 3972 INIT_LIST_HEAD(&found->tickets); 3973 INIT_LIST_HEAD(&found->priority_tickets); 3974 3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3976 info->space_info_kobj, "%s", 3977 alloc_name(found->flags)); 3978 if (ret) { 3979 kfree(found); 3980 return ret; 3981 } 3982 3983 *space_info = found; 3984 list_add_rcu(&found->list, &info->space_info); 3985 if (flags & BTRFS_BLOCK_GROUP_DATA) 3986 info->data_sinfo = found; 3987 3988 return ret; 3989 } 3990 3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3992 { 3993 u64 extra_flags = chunk_to_extended(flags) & 3994 BTRFS_EXTENDED_PROFILE_MASK; 3995 3996 write_seqlock(&fs_info->profiles_lock); 3997 if (flags & BTRFS_BLOCK_GROUP_DATA) 3998 fs_info->avail_data_alloc_bits |= extra_flags; 3999 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4000 fs_info->avail_metadata_alloc_bits |= extra_flags; 4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4002 fs_info->avail_system_alloc_bits |= extra_flags; 4003 write_sequnlock(&fs_info->profiles_lock); 4004 } 4005 4006 /* 4007 * returns target flags in extended format or 0 if restripe for this 4008 * chunk_type is not in progress 4009 * 4010 * should be called with either volume_mutex or balance_lock held 4011 */ 4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4013 { 4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4015 u64 target = 0; 4016 4017 if (!bctl) 4018 return 0; 4019 4020 if (flags & BTRFS_BLOCK_GROUP_DATA && 4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4029 } 4030 4031 return target; 4032 } 4033 4034 /* 4035 * @flags: available profiles in extended format (see ctree.h) 4036 * 4037 * Returns reduced profile in chunk format. If profile changing is in 4038 * progress (either running or paused) picks the target profile (if it's 4039 * already available), otherwise falls back to plain reducing. 4040 */ 4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4042 { 4043 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4044 u64 target; 4045 u64 raid_type; 4046 u64 allowed = 0; 4047 4048 /* 4049 * see if restripe for this chunk_type is in progress, if so 4050 * try to reduce to the target profile 4051 */ 4052 spin_lock(&root->fs_info->balance_lock); 4053 target = get_restripe_target(root->fs_info, flags); 4054 if (target) { 4055 /* pick target profile only if it's already available */ 4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4057 spin_unlock(&root->fs_info->balance_lock); 4058 return extended_to_chunk(target); 4059 } 4060 } 4061 spin_unlock(&root->fs_info->balance_lock); 4062 4063 /* First, mask out the RAID levels which aren't possible */ 4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4066 allowed |= btrfs_raid_group[raid_type]; 4067 } 4068 allowed &= flags; 4069 4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4071 allowed = BTRFS_BLOCK_GROUP_RAID6; 4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4073 allowed = BTRFS_BLOCK_GROUP_RAID5; 4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4075 allowed = BTRFS_BLOCK_GROUP_RAID10; 4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4077 allowed = BTRFS_BLOCK_GROUP_RAID1; 4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4079 allowed = BTRFS_BLOCK_GROUP_RAID0; 4080 4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4082 4083 return extended_to_chunk(flags | allowed); 4084 } 4085 4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4087 { 4088 unsigned seq; 4089 u64 flags; 4090 4091 do { 4092 flags = orig_flags; 4093 seq = read_seqbegin(&root->fs_info->profiles_lock); 4094 4095 if (flags & BTRFS_BLOCK_GROUP_DATA) 4096 flags |= root->fs_info->avail_data_alloc_bits; 4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4098 flags |= root->fs_info->avail_system_alloc_bits; 4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4100 flags |= root->fs_info->avail_metadata_alloc_bits; 4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4102 4103 return btrfs_reduce_alloc_profile(root, flags); 4104 } 4105 4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4107 { 4108 u64 flags; 4109 u64 ret; 4110 4111 if (data) 4112 flags = BTRFS_BLOCK_GROUP_DATA; 4113 else if (root == root->fs_info->chunk_root) 4114 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4115 else 4116 flags = BTRFS_BLOCK_GROUP_METADATA; 4117 4118 ret = get_alloc_profile(root, flags); 4119 return ret; 4120 } 4121 4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4123 { 4124 struct btrfs_space_info *data_sinfo; 4125 struct btrfs_root *root = BTRFS_I(inode)->root; 4126 struct btrfs_fs_info *fs_info = root->fs_info; 4127 u64 used; 4128 int ret = 0; 4129 int need_commit = 2; 4130 int have_pinned_space; 4131 4132 /* make sure bytes are sectorsize aligned */ 4133 bytes = ALIGN(bytes, root->sectorsize); 4134 4135 if (btrfs_is_free_space_inode(inode)) { 4136 need_commit = 0; 4137 ASSERT(current->journal_info); 4138 } 4139 4140 data_sinfo = fs_info->data_sinfo; 4141 if (!data_sinfo) 4142 goto alloc; 4143 4144 again: 4145 /* make sure we have enough space to handle the data first */ 4146 spin_lock(&data_sinfo->lock); 4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4149 data_sinfo->bytes_may_use; 4150 4151 if (used + bytes > data_sinfo->total_bytes) { 4152 struct btrfs_trans_handle *trans; 4153 4154 /* 4155 * if we don't have enough free bytes in this space then we need 4156 * to alloc a new chunk. 4157 */ 4158 if (!data_sinfo->full) { 4159 u64 alloc_target; 4160 4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4162 spin_unlock(&data_sinfo->lock); 4163 alloc: 4164 alloc_target = btrfs_get_alloc_profile(root, 1); 4165 /* 4166 * It is ugly that we don't call nolock join 4167 * transaction for the free space inode case here. 4168 * But it is safe because we only do the data space 4169 * reservation for the free space cache in the 4170 * transaction context, the common join transaction 4171 * just increase the counter of the current transaction 4172 * handler, doesn't try to acquire the trans_lock of 4173 * the fs. 4174 */ 4175 trans = btrfs_join_transaction(root); 4176 if (IS_ERR(trans)) 4177 return PTR_ERR(trans); 4178 4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4180 alloc_target, 4181 CHUNK_ALLOC_NO_FORCE); 4182 btrfs_end_transaction(trans, root); 4183 if (ret < 0) { 4184 if (ret != -ENOSPC) 4185 return ret; 4186 else { 4187 have_pinned_space = 1; 4188 goto commit_trans; 4189 } 4190 } 4191 4192 if (!data_sinfo) 4193 data_sinfo = fs_info->data_sinfo; 4194 4195 goto again; 4196 } 4197 4198 /* 4199 * If we don't have enough pinned space to deal with this 4200 * allocation, and no removed chunk in current transaction, 4201 * don't bother committing the transaction. 4202 */ 4203 have_pinned_space = percpu_counter_compare( 4204 &data_sinfo->total_bytes_pinned, 4205 used + bytes - data_sinfo->total_bytes); 4206 spin_unlock(&data_sinfo->lock); 4207 4208 /* commit the current transaction and try again */ 4209 commit_trans: 4210 if (need_commit && 4211 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4212 need_commit--; 4213 4214 if (need_commit > 0) { 4215 btrfs_start_delalloc_roots(fs_info, 0, -1); 4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4217 } 4218 4219 trans = btrfs_join_transaction(root); 4220 if (IS_ERR(trans)) 4221 return PTR_ERR(trans); 4222 if (have_pinned_space >= 0 || 4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4224 &trans->transaction->flags) || 4225 need_commit > 0) { 4226 ret = btrfs_commit_transaction(trans, root); 4227 if (ret) 4228 return ret; 4229 /* 4230 * The cleaner kthread might still be doing iput 4231 * operations. Wait for it to finish so that 4232 * more space is released. 4233 */ 4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4236 goto again; 4237 } else { 4238 btrfs_end_transaction(trans, root); 4239 } 4240 } 4241 4242 trace_btrfs_space_reservation(root->fs_info, 4243 "space_info:enospc", 4244 data_sinfo->flags, bytes, 1); 4245 return -ENOSPC; 4246 } 4247 data_sinfo->bytes_may_use += bytes; 4248 trace_btrfs_space_reservation(root->fs_info, "space_info", 4249 data_sinfo->flags, bytes, 1); 4250 spin_unlock(&data_sinfo->lock); 4251 4252 return ret; 4253 } 4254 4255 /* 4256 * New check_data_free_space() with ability for precious data reservation 4257 * Will replace old btrfs_check_data_free_space(), but for patch split, 4258 * add a new function first and then replace it. 4259 */ 4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4261 { 4262 struct btrfs_root *root = BTRFS_I(inode)->root; 4263 int ret; 4264 4265 /* align the range */ 4266 len = round_up(start + len, root->sectorsize) - 4267 round_down(start, root->sectorsize); 4268 start = round_down(start, root->sectorsize); 4269 4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4271 if (ret < 0) 4272 return ret; 4273 4274 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4275 ret = btrfs_qgroup_reserve_data(inode, start, len); 4276 if (ret) 4277 btrfs_free_reserved_data_space_noquota(inode, start, len); 4278 return ret; 4279 } 4280 4281 /* 4282 * Called if we need to clear a data reservation for this inode 4283 * Normally in a error case. 4284 * 4285 * This one will *NOT* use accurate qgroup reserved space API, just for case 4286 * which we can't sleep and is sure it won't affect qgroup reserved space. 4287 * Like clear_bit_hook(). 4288 */ 4289 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4290 u64 len) 4291 { 4292 struct btrfs_root *root = BTRFS_I(inode)->root; 4293 struct btrfs_space_info *data_sinfo; 4294 4295 /* Make sure the range is aligned to sectorsize */ 4296 len = round_up(start + len, root->sectorsize) - 4297 round_down(start, root->sectorsize); 4298 start = round_down(start, root->sectorsize); 4299 4300 data_sinfo = root->fs_info->data_sinfo; 4301 spin_lock(&data_sinfo->lock); 4302 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4303 data_sinfo->bytes_may_use = 0; 4304 else 4305 data_sinfo->bytes_may_use -= len; 4306 trace_btrfs_space_reservation(root->fs_info, "space_info", 4307 data_sinfo->flags, len, 0); 4308 spin_unlock(&data_sinfo->lock); 4309 } 4310 4311 /* 4312 * Called if we need to clear a data reservation for this inode 4313 * Normally in a error case. 4314 * 4315 * This one will handle the per-inode data rsv map for accurate reserved 4316 * space framework. 4317 */ 4318 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4319 { 4320 btrfs_free_reserved_data_space_noquota(inode, start, len); 4321 btrfs_qgroup_free_data(inode, start, len); 4322 } 4323 4324 static void force_metadata_allocation(struct btrfs_fs_info *info) 4325 { 4326 struct list_head *head = &info->space_info; 4327 struct btrfs_space_info *found; 4328 4329 rcu_read_lock(); 4330 list_for_each_entry_rcu(found, head, list) { 4331 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4332 found->force_alloc = CHUNK_ALLOC_FORCE; 4333 } 4334 rcu_read_unlock(); 4335 } 4336 4337 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4338 { 4339 return (global->size << 1); 4340 } 4341 4342 static int should_alloc_chunk(struct btrfs_root *root, 4343 struct btrfs_space_info *sinfo, int force) 4344 { 4345 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4346 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4347 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4348 u64 thresh; 4349 4350 if (force == CHUNK_ALLOC_FORCE) 4351 return 1; 4352 4353 /* 4354 * We need to take into account the global rsv because for all intents 4355 * and purposes it's used space. Don't worry about locking the 4356 * global_rsv, it doesn't change except when the transaction commits. 4357 */ 4358 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4359 num_allocated += calc_global_rsv_need_space(global_rsv); 4360 4361 /* 4362 * in limited mode, we want to have some free space up to 4363 * about 1% of the FS size. 4364 */ 4365 if (force == CHUNK_ALLOC_LIMITED) { 4366 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4367 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4368 4369 if (num_bytes - num_allocated < thresh) 4370 return 1; 4371 } 4372 4373 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4374 return 0; 4375 return 1; 4376 } 4377 4378 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4379 { 4380 u64 num_dev; 4381 4382 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4383 BTRFS_BLOCK_GROUP_RAID0 | 4384 BTRFS_BLOCK_GROUP_RAID5 | 4385 BTRFS_BLOCK_GROUP_RAID6)) 4386 num_dev = root->fs_info->fs_devices->rw_devices; 4387 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4388 num_dev = 2; 4389 else 4390 num_dev = 1; /* DUP or single */ 4391 4392 return num_dev; 4393 } 4394 4395 /* 4396 * If @is_allocation is true, reserve space in the system space info necessary 4397 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4398 * removing a chunk. 4399 */ 4400 void check_system_chunk(struct btrfs_trans_handle *trans, 4401 struct btrfs_root *root, 4402 u64 type) 4403 { 4404 struct btrfs_space_info *info; 4405 u64 left; 4406 u64 thresh; 4407 int ret = 0; 4408 u64 num_devs; 4409 4410 /* 4411 * Needed because we can end up allocating a system chunk and for an 4412 * atomic and race free space reservation in the chunk block reserve. 4413 */ 4414 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4415 4416 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4417 spin_lock(&info->lock); 4418 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4419 info->bytes_reserved - info->bytes_readonly - 4420 info->bytes_may_use; 4421 spin_unlock(&info->lock); 4422 4423 num_devs = get_profile_num_devs(root, type); 4424 4425 /* num_devs device items to update and 1 chunk item to add or remove */ 4426 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4427 btrfs_calc_trans_metadata_size(root, 1); 4428 4429 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 4430 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4431 left, thresh, type); 4432 dump_space_info(info, 0, 0); 4433 } 4434 4435 if (left < thresh) { 4436 u64 flags; 4437 4438 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4439 /* 4440 * Ignore failure to create system chunk. We might end up not 4441 * needing it, as we might not need to COW all nodes/leafs from 4442 * the paths we visit in the chunk tree (they were already COWed 4443 * or created in the current transaction for example). 4444 */ 4445 ret = btrfs_alloc_chunk(trans, root, flags); 4446 } 4447 4448 if (!ret) { 4449 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4450 &root->fs_info->chunk_block_rsv, 4451 thresh, BTRFS_RESERVE_NO_FLUSH); 4452 if (!ret) 4453 trans->chunk_bytes_reserved += thresh; 4454 } 4455 } 4456 4457 /* 4458 * If force is CHUNK_ALLOC_FORCE: 4459 * - return 1 if it successfully allocates a chunk, 4460 * - return errors including -ENOSPC otherwise. 4461 * If force is NOT CHUNK_ALLOC_FORCE: 4462 * - return 0 if it doesn't need to allocate a new chunk, 4463 * - return 1 if it successfully allocates a chunk, 4464 * - return errors including -ENOSPC otherwise. 4465 */ 4466 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4467 struct btrfs_root *extent_root, u64 flags, int force) 4468 { 4469 struct btrfs_space_info *space_info; 4470 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4471 int wait_for_alloc = 0; 4472 int ret = 0; 4473 4474 /* Don't re-enter if we're already allocating a chunk */ 4475 if (trans->allocating_chunk) 4476 return -ENOSPC; 4477 4478 space_info = __find_space_info(extent_root->fs_info, flags); 4479 if (!space_info) { 4480 ret = update_space_info(extent_root->fs_info, flags, 4481 0, 0, 0, &space_info); 4482 BUG_ON(ret); /* -ENOMEM */ 4483 } 4484 BUG_ON(!space_info); /* Logic error */ 4485 4486 again: 4487 spin_lock(&space_info->lock); 4488 if (force < space_info->force_alloc) 4489 force = space_info->force_alloc; 4490 if (space_info->full) { 4491 if (should_alloc_chunk(extent_root, space_info, force)) 4492 ret = -ENOSPC; 4493 else 4494 ret = 0; 4495 spin_unlock(&space_info->lock); 4496 return ret; 4497 } 4498 4499 if (!should_alloc_chunk(extent_root, space_info, force)) { 4500 spin_unlock(&space_info->lock); 4501 return 0; 4502 } else if (space_info->chunk_alloc) { 4503 wait_for_alloc = 1; 4504 } else { 4505 space_info->chunk_alloc = 1; 4506 } 4507 4508 spin_unlock(&space_info->lock); 4509 4510 mutex_lock(&fs_info->chunk_mutex); 4511 4512 /* 4513 * The chunk_mutex is held throughout the entirety of a chunk 4514 * allocation, so once we've acquired the chunk_mutex we know that the 4515 * other guy is done and we need to recheck and see if we should 4516 * allocate. 4517 */ 4518 if (wait_for_alloc) { 4519 mutex_unlock(&fs_info->chunk_mutex); 4520 wait_for_alloc = 0; 4521 goto again; 4522 } 4523 4524 trans->allocating_chunk = true; 4525 4526 /* 4527 * If we have mixed data/metadata chunks we want to make sure we keep 4528 * allocating mixed chunks instead of individual chunks. 4529 */ 4530 if (btrfs_mixed_space_info(space_info)) 4531 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4532 4533 /* 4534 * if we're doing a data chunk, go ahead and make sure that 4535 * we keep a reasonable number of metadata chunks allocated in the 4536 * FS as well. 4537 */ 4538 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4539 fs_info->data_chunk_allocations++; 4540 if (!(fs_info->data_chunk_allocations % 4541 fs_info->metadata_ratio)) 4542 force_metadata_allocation(fs_info); 4543 } 4544 4545 /* 4546 * Check if we have enough space in SYSTEM chunk because we may need 4547 * to update devices. 4548 */ 4549 check_system_chunk(trans, extent_root, flags); 4550 4551 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4552 trans->allocating_chunk = false; 4553 4554 spin_lock(&space_info->lock); 4555 if (ret < 0 && ret != -ENOSPC) 4556 goto out; 4557 if (ret) 4558 space_info->full = 1; 4559 else 4560 ret = 1; 4561 4562 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4563 out: 4564 space_info->chunk_alloc = 0; 4565 spin_unlock(&space_info->lock); 4566 mutex_unlock(&fs_info->chunk_mutex); 4567 /* 4568 * When we allocate a new chunk we reserve space in the chunk block 4569 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4570 * add new nodes/leafs to it if we end up needing to do it when 4571 * inserting the chunk item and updating device items as part of the 4572 * second phase of chunk allocation, performed by 4573 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4574 * large number of new block groups to create in our transaction 4575 * handle's new_bgs list to avoid exhausting the chunk block reserve 4576 * in extreme cases - like having a single transaction create many new 4577 * block groups when starting to write out the free space caches of all 4578 * the block groups that were made dirty during the lifetime of the 4579 * transaction. 4580 */ 4581 if (trans->can_flush_pending_bgs && 4582 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4583 btrfs_create_pending_block_groups(trans, extent_root); 4584 btrfs_trans_release_chunk_metadata(trans); 4585 } 4586 return ret; 4587 } 4588 4589 static int can_overcommit(struct btrfs_root *root, 4590 struct btrfs_space_info *space_info, u64 bytes, 4591 enum btrfs_reserve_flush_enum flush) 4592 { 4593 struct btrfs_block_rsv *global_rsv; 4594 u64 profile; 4595 u64 space_size; 4596 u64 avail; 4597 u64 used; 4598 4599 /* Don't overcommit when in mixed mode. */ 4600 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4601 return 0; 4602 4603 BUG_ON(root->fs_info == NULL); 4604 global_rsv = &root->fs_info->global_block_rsv; 4605 profile = btrfs_get_alloc_profile(root, 0); 4606 used = space_info->bytes_used + space_info->bytes_reserved + 4607 space_info->bytes_pinned + space_info->bytes_readonly; 4608 4609 /* 4610 * We only want to allow over committing if we have lots of actual space 4611 * free, but if we don't have enough space to handle the global reserve 4612 * space then we could end up having a real enospc problem when trying 4613 * to allocate a chunk or some other such important allocation. 4614 */ 4615 spin_lock(&global_rsv->lock); 4616 space_size = calc_global_rsv_need_space(global_rsv); 4617 spin_unlock(&global_rsv->lock); 4618 if (used + space_size >= space_info->total_bytes) 4619 return 0; 4620 4621 used += space_info->bytes_may_use; 4622 4623 spin_lock(&root->fs_info->free_chunk_lock); 4624 avail = root->fs_info->free_chunk_space; 4625 spin_unlock(&root->fs_info->free_chunk_lock); 4626 4627 /* 4628 * If we have dup, raid1 or raid10 then only half of the free 4629 * space is actually useable. For raid56, the space info used 4630 * doesn't include the parity drive, so we don't have to 4631 * change the math 4632 */ 4633 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4634 BTRFS_BLOCK_GROUP_RAID1 | 4635 BTRFS_BLOCK_GROUP_RAID10)) 4636 avail >>= 1; 4637 4638 /* 4639 * If we aren't flushing all things, let us overcommit up to 4640 * 1/2th of the space. If we can flush, don't let us overcommit 4641 * too much, let it overcommit up to 1/8 of the space. 4642 */ 4643 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4644 avail >>= 3; 4645 else 4646 avail >>= 1; 4647 4648 if (used + bytes < space_info->total_bytes + avail) 4649 return 1; 4650 return 0; 4651 } 4652 4653 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4654 unsigned long nr_pages, int nr_items) 4655 { 4656 struct super_block *sb = root->fs_info->sb; 4657 4658 if (down_read_trylock(&sb->s_umount)) { 4659 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4660 up_read(&sb->s_umount); 4661 } else { 4662 /* 4663 * We needn't worry the filesystem going from r/w to r/o though 4664 * we don't acquire ->s_umount mutex, because the filesystem 4665 * should guarantee the delalloc inodes list be empty after 4666 * the filesystem is readonly(all dirty pages are written to 4667 * the disk). 4668 */ 4669 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4670 if (!current->journal_info) 4671 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4672 0, (u64)-1); 4673 } 4674 } 4675 4676 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4677 { 4678 u64 bytes; 4679 int nr; 4680 4681 bytes = btrfs_calc_trans_metadata_size(root, 1); 4682 nr = (int)div64_u64(to_reclaim, bytes); 4683 if (!nr) 4684 nr = 1; 4685 return nr; 4686 } 4687 4688 #define EXTENT_SIZE_PER_ITEM SZ_256K 4689 4690 /* 4691 * shrink metadata reservation for delalloc 4692 */ 4693 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4694 bool wait_ordered) 4695 { 4696 struct btrfs_block_rsv *block_rsv; 4697 struct btrfs_space_info *space_info; 4698 struct btrfs_trans_handle *trans; 4699 u64 delalloc_bytes; 4700 u64 max_reclaim; 4701 long time_left; 4702 unsigned long nr_pages; 4703 int loops; 4704 int items; 4705 enum btrfs_reserve_flush_enum flush; 4706 4707 /* Calc the number of the pages we need flush for space reservation */ 4708 items = calc_reclaim_items_nr(root, to_reclaim); 4709 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4710 4711 trans = (struct btrfs_trans_handle *)current->journal_info; 4712 block_rsv = &root->fs_info->delalloc_block_rsv; 4713 space_info = block_rsv->space_info; 4714 4715 delalloc_bytes = percpu_counter_sum_positive( 4716 &root->fs_info->delalloc_bytes); 4717 if (delalloc_bytes == 0) { 4718 if (trans) 4719 return; 4720 if (wait_ordered) 4721 btrfs_wait_ordered_roots(root->fs_info, items, 4722 0, (u64)-1); 4723 return; 4724 } 4725 4726 loops = 0; 4727 while (delalloc_bytes && loops < 3) { 4728 max_reclaim = min(delalloc_bytes, to_reclaim); 4729 nr_pages = max_reclaim >> PAGE_SHIFT; 4730 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4731 /* 4732 * We need to wait for the async pages to actually start before 4733 * we do anything. 4734 */ 4735 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4736 if (!max_reclaim) 4737 goto skip_async; 4738 4739 if (max_reclaim <= nr_pages) 4740 max_reclaim = 0; 4741 else 4742 max_reclaim -= nr_pages; 4743 4744 wait_event(root->fs_info->async_submit_wait, 4745 atomic_read(&root->fs_info->async_delalloc_pages) <= 4746 (int)max_reclaim); 4747 skip_async: 4748 if (!trans) 4749 flush = BTRFS_RESERVE_FLUSH_ALL; 4750 else 4751 flush = BTRFS_RESERVE_NO_FLUSH; 4752 spin_lock(&space_info->lock); 4753 if (can_overcommit(root, space_info, orig, flush)) { 4754 spin_unlock(&space_info->lock); 4755 break; 4756 } 4757 if (list_empty(&space_info->tickets) && 4758 list_empty(&space_info->priority_tickets)) { 4759 spin_unlock(&space_info->lock); 4760 break; 4761 } 4762 spin_unlock(&space_info->lock); 4763 4764 loops++; 4765 if (wait_ordered && !trans) { 4766 btrfs_wait_ordered_roots(root->fs_info, items, 4767 0, (u64)-1); 4768 } else { 4769 time_left = schedule_timeout_killable(1); 4770 if (time_left) 4771 break; 4772 } 4773 delalloc_bytes = percpu_counter_sum_positive( 4774 &root->fs_info->delalloc_bytes); 4775 } 4776 } 4777 4778 /** 4779 * maybe_commit_transaction - possibly commit the transaction if its ok to 4780 * @root - the root we're allocating for 4781 * @bytes - the number of bytes we want to reserve 4782 * @force - force the commit 4783 * 4784 * This will check to make sure that committing the transaction will actually 4785 * get us somewhere and then commit the transaction if it does. Otherwise it 4786 * will return -ENOSPC. 4787 */ 4788 static int may_commit_transaction(struct btrfs_root *root, 4789 struct btrfs_space_info *space_info, 4790 u64 bytes, int force) 4791 { 4792 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4793 struct btrfs_trans_handle *trans; 4794 4795 trans = (struct btrfs_trans_handle *)current->journal_info; 4796 if (trans) 4797 return -EAGAIN; 4798 4799 if (force) 4800 goto commit; 4801 4802 /* See if there is enough pinned space to make this reservation */ 4803 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4804 bytes) >= 0) 4805 goto commit; 4806 4807 /* 4808 * See if there is some space in the delayed insertion reservation for 4809 * this reservation. 4810 */ 4811 if (space_info != delayed_rsv->space_info) 4812 return -ENOSPC; 4813 4814 spin_lock(&delayed_rsv->lock); 4815 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4816 bytes - delayed_rsv->size) >= 0) { 4817 spin_unlock(&delayed_rsv->lock); 4818 return -ENOSPC; 4819 } 4820 spin_unlock(&delayed_rsv->lock); 4821 4822 commit: 4823 trans = btrfs_join_transaction(root); 4824 if (IS_ERR(trans)) 4825 return -ENOSPC; 4826 4827 return btrfs_commit_transaction(trans, root); 4828 } 4829 4830 struct reserve_ticket { 4831 u64 bytes; 4832 int error; 4833 struct list_head list; 4834 wait_queue_head_t wait; 4835 }; 4836 4837 static int flush_space(struct btrfs_root *root, 4838 struct btrfs_space_info *space_info, u64 num_bytes, 4839 u64 orig_bytes, int state) 4840 { 4841 struct btrfs_trans_handle *trans; 4842 int nr; 4843 int ret = 0; 4844 4845 switch (state) { 4846 case FLUSH_DELAYED_ITEMS_NR: 4847 case FLUSH_DELAYED_ITEMS: 4848 if (state == FLUSH_DELAYED_ITEMS_NR) 4849 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4850 else 4851 nr = -1; 4852 4853 trans = btrfs_join_transaction(root); 4854 if (IS_ERR(trans)) { 4855 ret = PTR_ERR(trans); 4856 break; 4857 } 4858 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4859 btrfs_end_transaction(trans, root); 4860 break; 4861 case FLUSH_DELALLOC: 4862 case FLUSH_DELALLOC_WAIT: 4863 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4864 state == FLUSH_DELALLOC_WAIT); 4865 break; 4866 case ALLOC_CHUNK: 4867 trans = btrfs_join_transaction(root); 4868 if (IS_ERR(trans)) { 4869 ret = PTR_ERR(trans); 4870 break; 4871 } 4872 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4873 btrfs_get_alloc_profile(root, 0), 4874 CHUNK_ALLOC_NO_FORCE); 4875 btrfs_end_transaction(trans, root); 4876 if (ret > 0 || ret == -ENOSPC) 4877 ret = 0; 4878 break; 4879 case COMMIT_TRANS: 4880 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4881 break; 4882 default: 4883 ret = -ENOSPC; 4884 break; 4885 } 4886 4887 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes, 4888 orig_bytes, state, ret); 4889 return ret; 4890 } 4891 4892 static inline u64 4893 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4894 struct btrfs_space_info *space_info) 4895 { 4896 struct reserve_ticket *ticket; 4897 u64 used; 4898 u64 expected; 4899 u64 to_reclaim = 0; 4900 4901 list_for_each_entry(ticket, &space_info->tickets, list) 4902 to_reclaim += ticket->bytes; 4903 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4904 to_reclaim += ticket->bytes; 4905 if (to_reclaim) 4906 return to_reclaim; 4907 4908 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4909 if (can_overcommit(root, space_info, to_reclaim, 4910 BTRFS_RESERVE_FLUSH_ALL)) 4911 return 0; 4912 4913 used = space_info->bytes_used + space_info->bytes_reserved + 4914 space_info->bytes_pinned + space_info->bytes_readonly + 4915 space_info->bytes_may_use; 4916 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4917 expected = div_factor_fine(space_info->total_bytes, 95); 4918 else 4919 expected = div_factor_fine(space_info->total_bytes, 90); 4920 4921 if (used > expected) 4922 to_reclaim = used - expected; 4923 else 4924 to_reclaim = 0; 4925 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4926 space_info->bytes_reserved); 4927 return to_reclaim; 4928 } 4929 4930 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4931 struct btrfs_root *root, u64 used) 4932 { 4933 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4934 4935 /* If we're just plain full then async reclaim just slows us down. */ 4936 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4937 return 0; 4938 4939 if (!btrfs_calc_reclaim_metadata_size(root, space_info)) 4940 return 0; 4941 4942 return (used >= thresh && !btrfs_fs_closing(root->fs_info) && 4943 !test_bit(BTRFS_FS_STATE_REMOUNTING, 4944 &root->fs_info->fs_state)); 4945 } 4946 4947 static void wake_all_tickets(struct list_head *head) 4948 { 4949 struct reserve_ticket *ticket; 4950 4951 while (!list_empty(head)) { 4952 ticket = list_first_entry(head, struct reserve_ticket, list); 4953 list_del_init(&ticket->list); 4954 ticket->error = -ENOSPC; 4955 wake_up(&ticket->wait); 4956 } 4957 } 4958 4959 /* 4960 * This is for normal flushers, we can wait all goddamned day if we want to. We 4961 * will loop and continuously try to flush as long as we are making progress. 4962 * We count progress as clearing off tickets each time we have to loop. 4963 */ 4964 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4965 { 4966 struct btrfs_fs_info *fs_info; 4967 struct btrfs_space_info *space_info; 4968 u64 to_reclaim; 4969 int flush_state; 4970 int commit_cycles = 0; 4971 u64 last_tickets_id; 4972 4973 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4974 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4975 4976 spin_lock(&space_info->lock); 4977 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4978 space_info); 4979 if (!to_reclaim) { 4980 space_info->flush = 0; 4981 spin_unlock(&space_info->lock); 4982 return; 4983 } 4984 last_tickets_id = space_info->tickets_id; 4985 spin_unlock(&space_info->lock); 4986 4987 flush_state = FLUSH_DELAYED_ITEMS_NR; 4988 do { 4989 struct reserve_ticket *ticket; 4990 int ret; 4991 4992 ret = flush_space(fs_info->fs_root, space_info, to_reclaim, 4993 to_reclaim, flush_state); 4994 spin_lock(&space_info->lock); 4995 if (list_empty(&space_info->tickets)) { 4996 space_info->flush = 0; 4997 spin_unlock(&space_info->lock); 4998 return; 4999 } 5000 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5001 space_info); 5002 ticket = list_first_entry(&space_info->tickets, 5003 struct reserve_ticket, list); 5004 if (last_tickets_id == space_info->tickets_id) { 5005 flush_state++; 5006 } else { 5007 last_tickets_id = space_info->tickets_id; 5008 flush_state = FLUSH_DELAYED_ITEMS_NR; 5009 if (commit_cycles) 5010 commit_cycles--; 5011 } 5012 5013 if (flush_state > COMMIT_TRANS) { 5014 commit_cycles++; 5015 if (commit_cycles > 2) { 5016 wake_all_tickets(&space_info->tickets); 5017 space_info->flush = 0; 5018 } else { 5019 flush_state = FLUSH_DELAYED_ITEMS_NR; 5020 } 5021 } 5022 spin_unlock(&space_info->lock); 5023 } while (flush_state <= COMMIT_TRANS); 5024 } 5025 5026 void btrfs_init_async_reclaim_work(struct work_struct *work) 5027 { 5028 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5029 } 5030 5031 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5032 struct btrfs_space_info *space_info, 5033 struct reserve_ticket *ticket) 5034 { 5035 u64 to_reclaim; 5036 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5037 5038 spin_lock(&space_info->lock); 5039 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5040 space_info); 5041 if (!to_reclaim) { 5042 spin_unlock(&space_info->lock); 5043 return; 5044 } 5045 spin_unlock(&space_info->lock); 5046 5047 do { 5048 flush_space(fs_info->fs_root, space_info, to_reclaim, 5049 to_reclaim, flush_state); 5050 flush_state++; 5051 spin_lock(&space_info->lock); 5052 if (ticket->bytes == 0) { 5053 spin_unlock(&space_info->lock); 5054 return; 5055 } 5056 spin_unlock(&space_info->lock); 5057 5058 /* 5059 * Priority flushers can't wait on delalloc without 5060 * deadlocking. 5061 */ 5062 if (flush_state == FLUSH_DELALLOC || 5063 flush_state == FLUSH_DELALLOC_WAIT) 5064 flush_state = ALLOC_CHUNK; 5065 } while (flush_state < COMMIT_TRANS); 5066 } 5067 5068 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5069 struct btrfs_space_info *space_info, 5070 struct reserve_ticket *ticket, u64 orig_bytes) 5071 5072 { 5073 DEFINE_WAIT(wait); 5074 int ret = 0; 5075 5076 spin_lock(&space_info->lock); 5077 while (ticket->bytes > 0 && ticket->error == 0) { 5078 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5079 if (ret) { 5080 ret = -EINTR; 5081 break; 5082 } 5083 spin_unlock(&space_info->lock); 5084 5085 schedule(); 5086 5087 finish_wait(&ticket->wait, &wait); 5088 spin_lock(&space_info->lock); 5089 } 5090 if (!ret) 5091 ret = ticket->error; 5092 if (!list_empty(&ticket->list)) 5093 list_del_init(&ticket->list); 5094 if (ticket->bytes && ticket->bytes < orig_bytes) { 5095 u64 num_bytes = orig_bytes - ticket->bytes; 5096 space_info->bytes_may_use -= num_bytes; 5097 trace_btrfs_space_reservation(fs_info, "space_info", 5098 space_info->flags, num_bytes, 0); 5099 } 5100 spin_unlock(&space_info->lock); 5101 5102 return ret; 5103 } 5104 5105 /** 5106 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5107 * @root - the root we're allocating for 5108 * @space_info - the space info we want to allocate from 5109 * @orig_bytes - the number of bytes we want 5110 * @flush - whether or not we can flush to make our reservation 5111 * 5112 * This will reserve orig_bytes number of bytes from the space info associated 5113 * with the block_rsv. If there is not enough space it will make an attempt to 5114 * flush out space to make room. It will do this by flushing delalloc if 5115 * possible or committing the transaction. If flush is 0 then no attempts to 5116 * regain reservations will be made and this will fail if there is not enough 5117 * space already. 5118 */ 5119 static int __reserve_metadata_bytes(struct btrfs_root *root, 5120 struct btrfs_space_info *space_info, 5121 u64 orig_bytes, 5122 enum btrfs_reserve_flush_enum flush) 5123 { 5124 struct reserve_ticket ticket; 5125 u64 used; 5126 int ret = 0; 5127 5128 ASSERT(orig_bytes); 5129 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5130 5131 spin_lock(&space_info->lock); 5132 ret = -ENOSPC; 5133 used = space_info->bytes_used + space_info->bytes_reserved + 5134 space_info->bytes_pinned + space_info->bytes_readonly + 5135 space_info->bytes_may_use; 5136 5137 /* 5138 * If we have enough space then hooray, make our reservation and carry 5139 * on. If not see if we can overcommit, and if we can, hooray carry on. 5140 * If not things get more complicated. 5141 */ 5142 if (used + orig_bytes <= space_info->total_bytes) { 5143 space_info->bytes_may_use += orig_bytes; 5144 trace_btrfs_space_reservation(root->fs_info, "space_info", 5145 space_info->flags, orig_bytes, 5146 1); 5147 ret = 0; 5148 } else if (can_overcommit(root, space_info, orig_bytes, flush)) { 5149 space_info->bytes_may_use += orig_bytes; 5150 trace_btrfs_space_reservation(root->fs_info, "space_info", 5151 space_info->flags, orig_bytes, 5152 1); 5153 ret = 0; 5154 } 5155 5156 /* 5157 * If we couldn't make a reservation then setup our reservation ticket 5158 * and kick the async worker if it's not already running. 5159 * 5160 * If we are a priority flusher then we just need to add our ticket to 5161 * the list and we will do our own flushing further down. 5162 */ 5163 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5164 ticket.bytes = orig_bytes; 5165 ticket.error = 0; 5166 init_waitqueue_head(&ticket.wait); 5167 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5168 list_add_tail(&ticket.list, &space_info->tickets); 5169 if (!space_info->flush) { 5170 space_info->flush = 1; 5171 trace_btrfs_trigger_flush(root->fs_info, 5172 space_info->flags, 5173 orig_bytes, flush, 5174 "enospc"); 5175 queue_work(system_unbound_wq, 5176 &root->fs_info->async_reclaim_work); 5177 } 5178 } else { 5179 list_add_tail(&ticket.list, 5180 &space_info->priority_tickets); 5181 } 5182 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5183 used += orig_bytes; 5184 /* 5185 * We will do the space reservation dance during log replay, 5186 * which means we won't have fs_info->fs_root set, so don't do 5187 * the async reclaim as we will panic. 5188 */ 5189 if (!root->fs_info->log_root_recovering && 5190 need_do_async_reclaim(space_info, root, used) && 5191 !work_busy(&root->fs_info->async_reclaim_work)) { 5192 trace_btrfs_trigger_flush(root->fs_info, 5193 space_info->flags, 5194 orig_bytes, flush, 5195 "preempt"); 5196 queue_work(system_unbound_wq, 5197 &root->fs_info->async_reclaim_work); 5198 } 5199 } 5200 spin_unlock(&space_info->lock); 5201 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5202 return ret; 5203 5204 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5205 return wait_reserve_ticket(root->fs_info, space_info, &ticket, 5206 orig_bytes); 5207 5208 ret = 0; 5209 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket); 5210 spin_lock(&space_info->lock); 5211 if (ticket.bytes) { 5212 if (ticket.bytes < orig_bytes) { 5213 u64 num_bytes = orig_bytes - ticket.bytes; 5214 space_info->bytes_may_use -= num_bytes; 5215 trace_btrfs_space_reservation(root->fs_info, 5216 "space_info", space_info->flags, 5217 num_bytes, 0); 5218 5219 } 5220 list_del_init(&ticket.list); 5221 ret = -ENOSPC; 5222 } 5223 spin_unlock(&space_info->lock); 5224 ASSERT(list_empty(&ticket.list)); 5225 return ret; 5226 } 5227 5228 /** 5229 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5230 * @root - the root we're allocating for 5231 * @block_rsv - the block_rsv we're allocating for 5232 * @orig_bytes - the number of bytes we want 5233 * @flush - whether or not we can flush to make our reservation 5234 * 5235 * This will reserve orgi_bytes number of bytes from the space info associated 5236 * with the block_rsv. If there is not enough space it will make an attempt to 5237 * flush out space to make room. It will do this by flushing delalloc if 5238 * possible or committing the transaction. If flush is 0 then no attempts to 5239 * regain reservations will be made and this will fail if there is not enough 5240 * space already. 5241 */ 5242 static int reserve_metadata_bytes(struct btrfs_root *root, 5243 struct btrfs_block_rsv *block_rsv, 5244 u64 orig_bytes, 5245 enum btrfs_reserve_flush_enum flush) 5246 { 5247 int ret; 5248 5249 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes, 5250 flush); 5251 if (ret == -ENOSPC && 5252 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5253 struct btrfs_block_rsv *global_rsv = 5254 &root->fs_info->global_block_rsv; 5255 5256 if (block_rsv != global_rsv && 5257 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5258 ret = 0; 5259 } 5260 if (ret == -ENOSPC) 5261 trace_btrfs_space_reservation(root->fs_info, 5262 "space_info:enospc", 5263 block_rsv->space_info->flags, 5264 orig_bytes, 1); 5265 return ret; 5266 } 5267 5268 static struct btrfs_block_rsv *get_block_rsv( 5269 const struct btrfs_trans_handle *trans, 5270 const struct btrfs_root *root) 5271 { 5272 struct btrfs_block_rsv *block_rsv = NULL; 5273 5274 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5275 (root == root->fs_info->csum_root && trans->adding_csums) || 5276 (root == root->fs_info->uuid_root)) 5277 block_rsv = trans->block_rsv; 5278 5279 if (!block_rsv) 5280 block_rsv = root->block_rsv; 5281 5282 if (!block_rsv) 5283 block_rsv = &root->fs_info->empty_block_rsv; 5284 5285 return block_rsv; 5286 } 5287 5288 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5289 u64 num_bytes) 5290 { 5291 int ret = -ENOSPC; 5292 spin_lock(&block_rsv->lock); 5293 if (block_rsv->reserved >= num_bytes) { 5294 block_rsv->reserved -= num_bytes; 5295 if (block_rsv->reserved < block_rsv->size) 5296 block_rsv->full = 0; 5297 ret = 0; 5298 } 5299 spin_unlock(&block_rsv->lock); 5300 return ret; 5301 } 5302 5303 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5304 u64 num_bytes, int update_size) 5305 { 5306 spin_lock(&block_rsv->lock); 5307 block_rsv->reserved += num_bytes; 5308 if (update_size) 5309 block_rsv->size += num_bytes; 5310 else if (block_rsv->reserved >= block_rsv->size) 5311 block_rsv->full = 1; 5312 spin_unlock(&block_rsv->lock); 5313 } 5314 5315 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5316 struct btrfs_block_rsv *dest, u64 num_bytes, 5317 int min_factor) 5318 { 5319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5320 u64 min_bytes; 5321 5322 if (global_rsv->space_info != dest->space_info) 5323 return -ENOSPC; 5324 5325 spin_lock(&global_rsv->lock); 5326 min_bytes = div_factor(global_rsv->size, min_factor); 5327 if (global_rsv->reserved < min_bytes + num_bytes) { 5328 spin_unlock(&global_rsv->lock); 5329 return -ENOSPC; 5330 } 5331 global_rsv->reserved -= num_bytes; 5332 if (global_rsv->reserved < global_rsv->size) 5333 global_rsv->full = 0; 5334 spin_unlock(&global_rsv->lock); 5335 5336 block_rsv_add_bytes(dest, num_bytes, 1); 5337 return 0; 5338 } 5339 5340 /* 5341 * This is for space we already have accounted in space_info->bytes_may_use, so 5342 * basically when we're returning space from block_rsv's. 5343 */ 5344 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5345 struct btrfs_space_info *space_info, 5346 u64 num_bytes) 5347 { 5348 struct reserve_ticket *ticket; 5349 struct list_head *head; 5350 u64 used; 5351 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5352 bool check_overcommit = false; 5353 5354 spin_lock(&space_info->lock); 5355 head = &space_info->priority_tickets; 5356 5357 /* 5358 * If we are over our limit then we need to check and see if we can 5359 * overcommit, and if we can't then we just need to free up our space 5360 * and not satisfy any requests. 5361 */ 5362 used = space_info->bytes_used + space_info->bytes_reserved + 5363 space_info->bytes_pinned + space_info->bytes_readonly + 5364 space_info->bytes_may_use; 5365 if (used - num_bytes >= space_info->total_bytes) 5366 check_overcommit = true; 5367 again: 5368 while (!list_empty(head) && num_bytes) { 5369 ticket = list_first_entry(head, struct reserve_ticket, 5370 list); 5371 /* 5372 * We use 0 bytes because this space is already reserved, so 5373 * adding the ticket space would be a double count. 5374 */ 5375 if (check_overcommit && 5376 !can_overcommit(fs_info->extent_root, space_info, 0, 5377 flush)) 5378 break; 5379 if (num_bytes >= ticket->bytes) { 5380 list_del_init(&ticket->list); 5381 num_bytes -= ticket->bytes; 5382 ticket->bytes = 0; 5383 space_info->tickets_id++; 5384 wake_up(&ticket->wait); 5385 } else { 5386 ticket->bytes -= num_bytes; 5387 num_bytes = 0; 5388 } 5389 } 5390 5391 if (num_bytes && head == &space_info->priority_tickets) { 5392 head = &space_info->tickets; 5393 flush = BTRFS_RESERVE_FLUSH_ALL; 5394 goto again; 5395 } 5396 space_info->bytes_may_use -= num_bytes; 5397 trace_btrfs_space_reservation(fs_info, "space_info", 5398 space_info->flags, num_bytes, 0); 5399 spin_unlock(&space_info->lock); 5400 } 5401 5402 /* 5403 * This is for newly allocated space that isn't accounted in 5404 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5405 * we use this helper. 5406 */ 5407 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5408 struct btrfs_space_info *space_info, 5409 u64 num_bytes) 5410 { 5411 struct reserve_ticket *ticket; 5412 struct list_head *head = &space_info->priority_tickets; 5413 5414 again: 5415 while (!list_empty(head) && num_bytes) { 5416 ticket = list_first_entry(head, struct reserve_ticket, 5417 list); 5418 if (num_bytes >= ticket->bytes) { 5419 trace_btrfs_space_reservation(fs_info, "space_info", 5420 space_info->flags, 5421 ticket->bytes, 1); 5422 list_del_init(&ticket->list); 5423 num_bytes -= ticket->bytes; 5424 space_info->bytes_may_use += ticket->bytes; 5425 ticket->bytes = 0; 5426 space_info->tickets_id++; 5427 wake_up(&ticket->wait); 5428 } else { 5429 trace_btrfs_space_reservation(fs_info, "space_info", 5430 space_info->flags, 5431 num_bytes, 1); 5432 space_info->bytes_may_use += num_bytes; 5433 ticket->bytes -= num_bytes; 5434 num_bytes = 0; 5435 } 5436 } 5437 5438 if (num_bytes && head == &space_info->priority_tickets) { 5439 head = &space_info->tickets; 5440 goto again; 5441 } 5442 } 5443 5444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5445 struct btrfs_block_rsv *block_rsv, 5446 struct btrfs_block_rsv *dest, u64 num_bytes) 5447 { 5448 struct btrfs_space_info *space_info = block_rsv->space_info; 5449 5450 spin_lock(&block_rsv->lock); 5451 if (num_bytes == (u64)-1) 5452 num_bytes = block_rsv->size; 5453 block_rsv->size -= num_bytes; 5454 if (block_rsv->reserved >= block_rsv->size) { 5455 num_bytes = block_rsv->reserved - block_rsv->size; 5456 block_rsv->reserved = block_rsv->size; 5457 block_rsv->full = 1; 5458 } else { 5459 num_bytes = 0; 5460 } 5461 spin_unlock(&block_rsv->lock); 5462 5463 if (num_bytes > 0) { 5464 if (dest) { 5465 spin_lock(&dest->lock); 5466 if (!dest->full) { 5467 u64 bytes_to_add; 5468 5469 bytes_to_add = dest->size - dest->reserved; 5470 bytes_to_add = min(num_bytes, bytes_to_add); 5471 dest->reserved += bytes_to_add; 5472 if (dest->reserved >= dest->size) 5473 dest->full = 1; 5474 num_bytes -= bytes_to_add; 5475 } 5476 spin_unlock(&dest->lock); 5477 } 5478 if (num_bytes) 5479 space_info_add_old_bytes(fs_info, space_info, 5480 num_bytes); 5481 } 5482 } 5483 5484 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5485 struct btrfs_block_rsv *dst, u64 num_bytes, 5486 int update_size) 5487 { 5488 int ret; 5489 5490 ret = block_rsv_use_bytes(src, num_bytes); 5491 if (ret) 5492 return ret; 5493 5494 block_rsv_add_bytes(dst, num_bytes, update_size); 5495 return 0; 5496 } 5497 5498 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5499 { 5500 memset(rsv, 0, sizeof(*rsv)); 5501 spin_lock_init(&rsv->lock); 5502 rsv->type = type; 5503 } 5504 5505 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5506 unsigned short type) 5507 { 5508 struct btrfs_block_rsv *block_rsv; 5509 struct btrfs_fs_info *fs_info = root->fs_info; 5510 5511 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5512 if (!block_rsv) 5513 return NULL; 5514 5515 btrfs_init_block_rsv(block_rsv, type); 5516 block_rsv->space_info = __find_space_info(fs_info, 5517 BTRFS_BLOCK_GROUP_METADATA); 5518 return block_rsv; 5519 } 5520 5521 void btrfs_free_block_rsv(struct btrfs_root *root, 5522 struct btrfs_block_rsv *rsv) 5523 { 5524 if (!rsv) 5525 return; 5526 btrfs_block_rsv_release(root, rsv, (u64)-1); 5527 kfree(rsv); 5528 } 5529 5530 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5531 { 5532 kfree(rsv); 5533 } 5534 5535 int btrfs_block_rsv_add(struct btrfs_root *root, 5536 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5537 enum btrfs_reserve_flush_enum flush) 5538 { 5539 int ret; 5540 5541 if (num_bytes == 0) 5542 return 0; 5543 5544 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5545 if (!ret) { 5546 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5547 return 0; 5548 } 5549 5550 return ret; 5551 } 5552 5553 int btrfs_block_rsv_check(struct btrfs_root *root, 5554 struct btrfs_block_rsv *block_rsv, int min_factor) 5555 { 5556 u64 num_bytes = 0; 5557 int ret = -ENOSPC; 5558 5559 if (!block_rsv) 5560 return 0; 5561 5562 spin_lock(&block_rsv->lock); 5563 num_bytes = div_factor(block_rsv->size, min_factor); 5564 if (block_rsv->reserved >= num_bytes) 5565 ret = 0; 5566 spin_unlock(&block_rsv->lock); 5567 5568 return ret; 5569 } 5570 5571 int btrfs_block_rsv_refill(struct btrfs_root *root, 5572 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5573 enum btrfs_reserve_flush_enum flush) 5574 { 5575 u64 num_bytes = 0; 5576 int ret = -ENOSPC; 5577 5578 if (!block_rsv) 5579 return 0; 5580 5581 spin_lock(&block_rsv->lock); 5582 num_bytes = min_reserved; 5583 if (block_rsv->reserved >= num_bytes) 5584 ret = 0; 5585 else 5586 num_bytes -= block_rsv->reserved; 5587 spin_unlock(&block_rsv->lock); 5588 5589 if (!ret) 5590 return 0; 5591 5592 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5593 if (!ret) { 5594 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5595 return 0; 5596 } 5597 5598 return ret; 5599 } 5600 5601 void btrfs_block_rsv_release(struct btrfs_root *root, 5602 struct btrfs_block_rsv *block_rsv, 5603 u64 num_bytes) 5604 { 5605 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5606 if (global_rsv == block_rsv || 5607 block_rsv->space_info != global_rsv->space_info) 5608 global_rsv = NULL; 5609 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5610 num_bytes); 5611 } 5612 5613 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5614 { 5615 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5616 struct btrfs_space_info *sinfo = block_rsv->space_info; 5617 u64 num_bytes; 5618 5619 /* 5620 * The global block rsv is based on the size of the extent tree, the 5621 * checksum tree and the root tree. If the fs is empty we want to set 5622 * it to a minimal amount for safety. 5623 */ 5624 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5625 btrfs_root_used(&fs_info->csum_root->root_item) + 5626 btrfs_root_used(&fs_info->tree_root->root_item); 5627 num_bytes = max_t(u64, num_bytes, SZ_16M); 5628 5629 spin_lock(&sinfo->lock); 5630 spin_lock(&block_rsv->lock); 5631 5632 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5633 5634 if (block_rsv->reserved < block_rsv->size) { 5635 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5636 sinfo->bytes_reserved + sinfo->bytes_readonly + 5637 sinfo->bytes_may_use; 5638 if (sinfo->total_bytes > num_bytes) { 5639 num_bytes = sinfo->total_bytes - num_bytes; 5640 num_bytes = min(num_bytes, 5641 block_rsv->size - block_rsv->reserved); 5642 block_rsv->reserved += num_bytes; 5643 sinfo->bytes_may_use += num_bytes; 5644 trace_btrfs_space_reservation(fs_info, "space_info", 5645 sinfo->flags, num_bytes, 5646 1); 5647 } 5648 } else if (block_rsv->reserved > block_rsv->size) { 5649 num_bytes = block_rsv->reserved - block_rsv->size; 5650 sinfo->bytes_may_use -= num_bytes; 5651 trace_btrfs_space_reservation(fs_info, "space_info", 5652 sinfo->flags, num_bytes, 0); 5653 block_rsv->reserved = block_rsv->size; 5654 } 5655 5656 if (block_rsv->reserved == block_rsv->size) 5657 block_rsv->full = 1; 5658 else 5659 block_rsv->full = 0; 5660 5661 spin_unlock(&block_rsv->lock); 5662 spin_unlock(&sinfo->lock); 5663 } 5664 5665 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5666 { 5667 struct btrfs_space_info *space_info; 5668 5669 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5670 fs_info->chunk_block_rsv.space_info = space_info; 5671 5672 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5673 fs_info->global_block_rsv.space_info = space_info; 5674 fs_info->delalloc_block_rsv.space_info = space_info; 5675 fs_info->trans_block_rsv.space_info = space_info; 5676 fs_info->empty_block_rsv.space_info = space_info; 5677 fs_info->delayed_block_rsv.space_info = space_info; 5678 5679 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5680 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5681 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5682 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5683 if (fs_info->quota_root) 5684 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5685 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5686 5687 update_global_block_rsv(fs_info); 5688 } 5689 5690 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5691 { 5692 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5693 (u64)-1); 5694 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5695 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5696 WARN_ON(fs_info->trans_block_rsv.size > 0); 5697 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5698 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5699 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5700 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5701 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5702 } 5703 5704 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5705 struct btrfs_root *root) 5706 { 5707 if (!trans->block_rsv) 5708 return; 5709 5710 if (!trans->bytes_reserved) 5711 return; 5712 5713 trace_btrfs_space_reservation(root->fs_info, "transaction", 5714 trans->transid, trans->bytes_reserved, 0); 5715 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5716 trans->bytes_reserved = 0; 5717 } 5718 5719 /* 5720 * To be called after all the new block groups attached to the transaction 5721 * handle have been created (btrfs_create_pending_block_groups()). 5722 */ 5723 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5724 { 5725 struct btrfs_fs_info *fs_info = trans->fs_info; 5726 5727 if (!trans->chunk_bytes_reserved) 5728 return; 5729 5730 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5731 5732 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5733 trans->chunk_bytes_reserved); 5734 trans->chunk_bytes_reserved = 0; 5735 } 5736 5737 /* Can only return 0 or -ENOSPC */ 5738 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5739 struct inode *inode) 5740 { 5741 struct btrfs_root *root = BTRFS_I(inode)->root; 5742 /* 5743 * We always use trans->block_rsv here as we will have reserved space 5744 * for our orphan when starting the transaction, using get_block_rsv() 5745 * here will sometimes make us choose the wrong block rsv as we could be 5746 * doing a reloc inode for a non refcounted root. 5747 */ 5748 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5750 5751 /* 5752 * We need to hold space in order to delete our orphan item once we've 5753 * added it, so this takes the reservation so we can release it later 5754 * when we are truly done with the orphan item. 5755 */ 5756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5757 trace_btrfs_space_reservation(root->fs_info, "orphan", 5758 btrfs_ino(inode), num_bytes, 1); 5759 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5760 } 5761 5762 void btrfs_orphan_release_metadata(struct inode *inode) 5763 { 5764 struct btrfs_root *root = BTRFS_I(inode)->root; 5765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5766 trace_btrfs_space_reservation(root->fs_info, "orphan", 5767 btrfs_ino(inode), num_bytes, 0); 5768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5769 } 5770 5771 /* 5772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5773 * root: the root of the parent directory 5774 * rsv: block reservation 5775 * items: the number of items that we need do reservation 5776 * qgroup_reserved: used to return the reserved size in qgroup 5777 * 5778 * This function is used to reserve the space for snapshot/subvolume 5779 * creation and deletion. Those operations are different with the 5780 * common file/directory operations, they change two fs/file trees 5781 * and root tree, the number of items that the qgroup reserves is 5782 * different with the free space reservation. So we can not use 5783 * the space reservation mechanism in start_transaction(). 5784 */ 5785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5786 struct btrfs_block_rsv *rsv, 5787 int items, 5788 u64 *qgroup_reserved, 5789 bool use_global_rsv) 5790 { 5791 u64 num_bytes; 5792 int ret; 5793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5794 5795 if (root->fs_info->quota_enabled) { 5796 /* One for parent inode, two for dir entries */ 5797 num_bytes = 3 * root->nodesize; 5798 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5799 if (ret) 5800 return ret; 5801 } else { 5802 num_bytes = 0; 5803 } 5804 5805 *qgroup_reserved = num_bytes; 5806 5807 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5808 rsv->space_info = __find_space_info(root->fs_info, 5809 BTRFS_BLOCK_GROUP_METADATA); 5810 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5811 BTRFS_RESERVE_FLUSH_ALL); 5812 5813 if (ret == -ENOSPC && use_global_rsv) 5814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5815 5816 if (ret && *qgroup_reserved) 5817 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5818 5819 return ret; 5820 } 5821 5822 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5823 struct btrfs_block_rsv *rsv, 5824 u64 qgroup_reserved) 5825 { 5826 btrfs_block_rsv_release(root, rsv, (u64)-1); 5827 } 5828 5829 /** 5830 * drop_outstanding_extent - drop an outstanding extent 5831 * @inode: the inode we're dropping the extent for 5832 * @num_bytes: the number of bytes we're releasing. 5833 * 5834 * This is called when we are freeing up an outstanding extent, either called 5835 * after an error or after an extent is written. This will return the number of 5836 * reserved extents that need to be freed. This must be called with 5837 * BTRFS_I(inode)->lock held. 5838 */ 5839 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5840 { 5841 unsigned drop_inode_space = 0; 5842 unsigned dropped_extents = 0; 5843 unsigned num_extents = 0; 5844 5845 num_extents = (unsigned)div64_u64(num_bytes + 5846 BTRFS_MAX_EXTENT_SIZE - 1, 5847 BTRFS_MAX_EXTENT_SIZE); 5848 ASSERT(num_extents); 5849 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5850 BTRFS_I(inode)->outstanding_extents -= num_extents; 5851 5852 if (BTRFS_I(inode)->outstanding_extents == 0 && 5853 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5854 &BTRFS_I(inode)->runtime_flags)) 5855 drop_inode_space = 1; 5856 5857 /* 5858 * If we have more or the same amount of outstanding extents than we have 5859 * reserved then we need to leave the reserved extents count alone. 5860 */ 5861 if (BTRFS_I(inode)->outstanding_extents >= 5862 BTRFS_I(inode)->reserved_extents) 5863 return drop_inode_space; 5864 5865 dropped_extents = BTRFS_I(inode)->reserved_extents - 5866 BTRFS_I(inode)->outstanding_extents; 5867 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5868 return dropped_extents + drop_inode_space; 5869 } 5870 5871 /** 5872 * calc_csum_metadata_size - return the amount of metadata space that must be 5873 * reserved/freed for the given bytes. 5874 * @inode: the inode we're manipulating 5875 * @num_bytes: the number of bytes in question 5876 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5877 * 5878 * This adjusts the number of csum_bytes in the inode and then returns the 5879 * correct amount of metadata that must either be reserved or freed. We 5880 * calculate how many checksums we can fit into one leaf and then divide the 5881 * number of bytes that will need to be checksumed by this value to figure out 5882 * how many checksums will be required. If we are adding bytes then the number 5883 * may go up and we will return the number of additional bytes that must be 5884 * reserved. If it is going down we will return the number of bytes that must 5885 * be freed. 5886 * 5887 * This must be called with BTRFS_I(inode)->lock held. 5888 */ 5889 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5890 int reserve) 5891 { 5892 struct btrfs_root *root = BTRFS_I(inode)->root; 5893 u64 old_csums, num_csums; 5894 5895 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5896 BTRFS_I(inode)->csum_bytes == 0) 5897 return 0; 5898 5899 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5900 if (reserve) 5901 BTRFS_I(inode)->csum_bytes += num_bytes; 5902 else 5903 BTRFS_I(inode)->csum_bytes -= num_bytes; 5904 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5905 5906 /* No change, no need to reserve more */ 5907 if (old_csums == num_csums) 5908 return 0; 5909 5910 if (reserve) 5911 return btrfs_calc_trans_metadata_size(root, 5912 num_csums - old_csums); 5913 5914 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5915 } 5916 5917 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5918 { 5919 struct btrfs_root *root = BTRFS_I(inode)->root; 5920 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5921 u64 to_reserve = 0; 5922 u64 csum_bytes; 5923 unsigned nr_extents = 0; 5924 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5925 int ret = 0; 5926 bool delalloc_lock = true; 5927 u64 to_free = 0; 5928 unsigned dropped; 5929 bool release_extra = false; 5930 5931 /* If we are a free space inode we need to not flush since we will be in 5932 * the middle of a transaction commit. We also don't need the delalloc 5933 * mutex since we won't race with anybody. We need this mostly to make 5934 * lockdep shut its filthy mouth. 5935 * 5936 * If we have a transaction open (can happen if we call truncate_block 5937 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5938 */ 5939 if (btrfs_is_free_space_inode(inode)) { 5940 flush = BTRFS_RESERVE_NO_FLUSH; 5941 delalloc_lock = false; 5942 } else if (current->journal_info) { 5943 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5944 } 5945 5946 if (flush != BTRFS_RESERVE_NO_FLUSH && 5947 btrfs_transaction_in_commit(root->fs_info)) 5948 schedule_timeout(1); 5949 5950 if (delalloc_lock) 5951 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5952 5953 num_bytes = ALIGN(num_bytes, root->sectorsize); 5954 5955 spin_lock(&BTRFS_I(inode)->lock); 5956 nr_extents = (unsigned)div64_u64(num_bytes + 5957 BTRFS_MAX_EXTENT_SIZE - 1, 5958 BTRFS_MAX_EXTENT_SIZE); 5959 BTRFS_I(inode)->outstanding_extents += nr_extents; 5960 5961 nr_extents = 0; 5962 if (BTRFS_I(inode)->outstanding_extents > 5963 BTRFS_I(inode)->reserved_extents) 5964 nr_extents += BTRFS_I(inode)->outstanding_extents - 5965 BTRFS_I(inode)->reserved_extents; 5966 5967 /* We always want to reserve a slot for updating the inode. */ 5968 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1); 5969 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5970 csum_bytes = BTRFS_I(inode)->csum_bytes; 5971 spin_unlock(&BTRFS_I(inode)->lock); 5972 5973 if (root->fs_info->quota_enabled) { 5974 ret = btrfs_qgroup_reserve_meta(root, 5975 nr_extents * root->nodesize); 5976 if (ret) 5977 goto out_fail; 5978 } 5979 5980 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 5981 if (unlikely(ret)) { 5982 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5983 goto out_fail; 5984 } 5985 5986 spin_lock(&BTRFS_I(inode)->lock); 5987 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5988 &BTRFS_I(inode)->runtime_flags)) { 5989 to_reserve -= btrfs_calc_trans_metadata_size(root, 1); 5990 release_extra = true; 5991 } 5992 BTRFS_I(inode)->reserved_extents += nr_extents; 5993 spin_unlock(&BTRFS_I(inode)->lock); 5994 5995 if (delalloc_lock) 5996 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5997 5998 if (to_reserve) 5999 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6000 btrfs_ino(inode), to_reserve, 1); 6001 if (release_extra) 6002 btrfs_block_rsv_release(root, block_rsv, 6003 btrfs_calc_trans_metadata_size(root, 6004 1)); 6005 return 0; 6006 6007 out_fail: 6008 spin_lock(&BTRFS_I(inode)->lock); 6009 dropped = drop_outstanding_extent(inode, num_bytes); 6010 /* 6011 * If the inodes csum_bytes is the same as the original 6012 * csum_bytes then we know we haven't raced with any free()ers 6013 * so we can just reduce our inodes csum bytes and carry on. 6014 */ 6015 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 6016 calc_csum_metadata_size(inode, num_bytes, 0); 6017 } else { 6018 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 6019 u64 bytes; 6020 6021 /* 6022 * This is tricky, but first we need to figure out how much we 6023 * freed from any free-ers that occurred during this 6024 * reservation, so we reset ->csum_bytes to the csum_bytes 6025 * before we dropped our lock, and then call the free for the 6026 * number of bytes that were freed while we were trying our 6027 * reservation. 6028 */ 6029 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 6030 BTRFS_I(inode)->csum_bytes = csum_bytes; 6031 to_free = calc_csum_metadata_size(inode, bytes, 0); 6032 6033 6034 /* 6035 * Now we need to see how much we would have freed had we not 6036 * been making this reservation and our ->csum_bytes were not 6037 * artificially inflated. 6038 */ 6039 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 6040 bytes = csum_bytes - orig_csum_bytes; 6041 bytes = calc_csum_metadata_size(inode, bytes, 0); 6042 6043 /* 6044 * Now reset ->csum_bytes to what it should be. If bytes is 6045 * more than to_free then we would have freed more space had we 6046 * not had an artificially high ->csum_bytes, so we need to free 6047 * the remainder. If bytes is the same or less then we don't 6048 * need to do anything, the other free-ers did the correct 6049 * thing. 6050 */ 6051 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 6052 if (bytes > to_free) 6053 to_free = bytes - to_free; 6054 else 6055 to_free = 0; 6056 } 6057 spin_unlock(&BTRFS_I(inode)->lock); 6058 if (dropped) 6059 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6060 6061 if (to_free) { 6062 btrfs_block_rsv_release(root, block_rsv, to_free); 6063 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6064 btrfs_ino(inode), to_free, 0); 6065 } 6066 if (delalloc_lock) 6067 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6068 return ret; 6069 } 6070 6071 /** 6072 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6073 * @inode: the inode to release the reservation for 6074 * @num_bytes: the number of bytes we're releasing 6075 * 6076 * This will release the metadata reservation for an inode. This can be called 6077 * once we complete IO for a given set of bytes to release their metadata 6078 * reservations. 6079 */ 6080 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 6081 { 6082 struct btrfs_root *root = BTRFS_I(inode)->root; 6083 u64 to_free = 0; 6084 unsigned dropped; 6085 6086 num_bytes = ALIGN(num_bytes, root->sectorsize); 6087 spin_lock(&BTRFS_I(inode)->lock); 6088 dropped = drop_outstanding_extent(inode, num_bytes); 6089 6090 if (num_bytes) 6091 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6092 spin_unlock(&BTRFS_I(inode)->lock); 6093 if (dropped > 0) 6094 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6095 6096 if (btrfs_is_testing(root->fs_info)) 6097 return; 6098 6099 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6100 btrfs_ino(inode), to_free, 0); 6101 6102 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 6103 to_free); 6104 } 6105 6106 /** 6107 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6108 * delalloc 6109 * @inode: inode we're writing to 6110 * @start: start range we are writing to 6111 * @len: how long the range we are writing to 6112 * 6113 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 6114 * 6115 * This will do the following things 6116 * 6117 * o reserve space in data space info for num bytes 6118 * and reserve precious corresponding qgroup space 6119 * (Done in check_data_free_space) 6120 * 6121 * o reserve space for metadata space, based on the number of outstanding 6122 * extents and how much csums will be needed 6123 * also reserve metadata space in a per root over-reserve method. 6124 * o add to the inodes->delalloc_bytes 6125 * o add it to the fs_info's delalloc inodes list. 6126 * (Above 3 all done in delalloc_reserve_metadata) 6127 * 6128 * Return 0 for success 6129 * Return <0 for error(-ENOSPC or -EQUOT) 6130 */ 6131 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 6132 { 6133 int ret; 6134 6135 ret = btrfs_check_data_free_space(inode, start, len); 6136 if (ret < 0) 6137 return ret; 6138 ret = btrfs_delalloc_reserve_metadata(inode, len); 6139 if (ret < 0) 6140 btrfs_free_reserved_data_space(inode, start, len); 6141 return ret; 6142 } 6143 6144 /** 6145 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6146 * @inode: inode we're releasing space for 6147 * @start: start position of the space already reserved 6148 * @len: the len of the space already reserved 6149 * 6150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6151 * called in the case that we don't need the metadata AND data reservations 6152 * anymore. So if there is an error or we insert an inline extent. 6153 * 6154 * This function will release the metadata space that was not used and will 6155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6156 * list if there are no delalloc bytes left. 6157 * Also it will handle the qgroup reserved space. 6158 */ 6159 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 6160 { 6161 btrfs_delalloc_release_metadata(inode, len); 6162 btrfs_free_reserved_data_space(inode, start, len); 6163 } 6164 6165 static int update_block_group(struct btrfs_trans_handle *trans, 6166 struct btrfs_root *root, u64 bytenr, 6167 u64 num_bytes, int alloc) 6168 { 6169 struct btrfs_block_group_cache *cache = NULL; 6170 struct btrfs_fs_info *info = root->fs_info; 6171 u64 total = num_bytes; 6172 u64 old_val; 6173 u64 byte_in_group; 6174 int factor; 6175 6176 /* block accounting for super block */ 6177 spin_lock(&info->delalloc_root_lock); 6178 old_val = btrfs_super_bytes_used(info->super_copy); 6179 if (alloc) 6180 old_val += num_bytes; 6181 else 6182 old_val -= num_bytes; 6183 btrfs_set_super_bytes_used(info->super_copy, old_val); 6184 spin_unlock(&info->delalloc_root_lock); 6185 6186 while (total) { 6187 cache = btrfs_lookup_block_group(info, bytenr); 6188 if (!cache) 6189 return -ENOENT; 6190 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6191 BTRFS_BLOCK_GROUP_RAID1 | 6192 BTRFS_BLOCK_GROUP_RAID10)) 6193 factor = 2; 6194 else 6195 factor = 1; 6196 /* 6197 * If this block group has free space cache written out, we 6198 * need to make sure to load it if we are removing space. This 6199 * is because we need the unpinning stage to actually add the 6200 * space back to the block group, otherwise we will leak space. 6201 */ 6202 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6203 cache_block_group(cache, 1); 6204 6205 byte_in_group = bytenr - cache->key.objectid; 6206 WARN_ON(byte_in_group > cache->key.offset); 6207 6208 spin_lock(&cache->space_info->lock); 6209 spin_lock(&cache->lock); 6210 6211 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 6212 cache->disk_cache_state < BTRFS_DC_CLEAR) 6213 cache->disk_cache_state = BTRFS_DC_CLEAR; 6214 6215 old_val = btrfs_block_group_used(&cache->item); 6216 num_bytes = min(total, cache->key.offset - byte_in_group); 6217 if (alloc) { 6218 old_val += num_bytes; 6219 btrfs_set_block_group_used(&cache->item, old_val); 6220 cache->reserved -= num_bytes; 6221 cache->space_info->bytes_reserved -= num_bytes; 6222 cache->space_info->bytes_used += num_bytes; 6223 cache->space_info->disk_used += num_bytes * factor; 6224 spin_unlock(&cache->lock); 6225 spin_unlock(&cache->space_info->lock); 6226 } else { 6227 old_val -= num_bytes; 6228 btrfs_set_block_group_used(&cache->item, old_val); 6229 cache->pinned += num_bytes; 6230 cache->space_info->bytes_pinned += num_bytes; 6231 cache->space_info->bytes_used -= num_bytes; 6232 cache->space_info->disk_used -= num_bytes * factor; 6233 spin_unlock(&cache->lock); 6234 spin_unlock(&cache->space_info->lock); 6235 6236 trace_btrfs_space_reservation(root->fs_info, "pinned", 6237 cache->space_info->flags, 6238 num_bytes, 1); 6239 set_extent_dirty(info->pinned_extents, 6240 bytenr, bytenr + num_bytes - 1, 6241 GFP_NOFS | __GFP_NOFAIL); 6242 } 6243 6244 spin_lock(&trans->transaction->dirty_bgs_lock); 6245 if (list_empty(&cache->dirty_list)) { 6246 list_add_tail(&cache->dirty_list, 6247 &trans->transaction->dirty_bgs); 6248 trans->transaction->num_dirty_bgs++; 6249 btrfs_get_block_group(cache); 6250 } 6251 spin_unlock(&trans->transaction->dirty_bgs_lock); 6252 6253 /* 6254 * No longer have used bytes in this block group, queue it for 6255 * deletion. We do this after adding the block group to the 6256 * dirty list to avoid races between cleaner kthread and space 6257 * cache writeout. 6258 */ 6259 if (!alloc && old_val == 0) { 6260 spin_lock(&info->unused_bgs_lock); 6261 if (list_empty(&cache->bg_list)) { 6262 btrfs_get_block_group(cache); 6263 list_add_tail(&cache->bg_list, 6264 &info->unused_bgs); 6265 } 6266 spin_unlock(&info->unused_bgs_lock); 6267 } 6268 6269 btrfs_put_block_group(cache); 6270 total -= num_bytes; 6271 bytenr += num_bytes; 6272 } 6273 return 0; 6274 } 6275 6276 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6277 { 6278 struct btrfs_block_group_cache *cache; 6279 u64 bytenr; 6280 6281 spin_lock(&root->fs_info->block_group_cache_lock); 6282 bytenr = root->fs_info->first_logical_byte; 6283 spin_unlock(&root->fs_info->block_group_cache_lock); 6284 6285 if (bytenr < (u64)-1) 6286 return bytenr; 6287 6288 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6289 if (!cache) 6290 return 0; 6291 6292 bytenr = cache->key.objectid; 6293 btrfs_put_block_group(cache); 6294 6295 return bytenr; 6296 } 6297 6298 static int pin_down_extent(struct btrfs_root *root, 6299 struct btrfs_block_group_cache *cache, 6300 u64 bytenr, u64 num_bytes, int reserved) 6301 { 6302 spin_lock(&cache->space_info->lock); 6303 spin_lock(&cache->lock); 6304 cache->pinned += num_bytes; 6305 cache->space_info->bytes_pinned += num_bytes; 6306 if (reserved) { 6307 cache->reserved -= num_bytes; 6308 cache->space_info->bytes_reserved -= num_bytes; 6309 } 6310 spin_unlock(&cache->lock); 6311 spin_unlock(&cache->space_info->lock); 6312 6313 trace_btrfs_space_reservation(root->fs_info, "pinned", 6314 cache->space_info->flags, num_bytes, 1); 6315 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6316 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6317 return 0; 6318 } 6319 6320 /* 6321 * this function must be called within transaction 6322 */ 6323 int btrfs_pin_extent(struct btrfs_root *root, 6324 u64 bytenr, u64 num_bytes, int reserved) 6325 { 6326 struct btrfs_block_group_cache *cache; 6327 6328 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6329 BUG_ON(!cache); /* Logic error */ 6330 6331 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6332 6333 btrfs_put_block_group(cache); 6334 return 0; 6335 } 6336 6337 /* 6338 * this function must be called within transaction 6339 */ 6340 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6341 u64 bytenr, u64 num_bytes) 6342 { 6343 struct btrfs_block_group_cache *cache; 6344 int ret; 6345 6346 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6347 if (!cache) 6348 return -EINVAL; 6349 6350 /* 6351 * pull in the free space cache (if any) so that our pin 6352 * removes the free space from the cache. We have load_only set 6353 * to one because the slow code to read in the free extents does check 6354 * the pinned extents. 6355 */ 6356 cache_block_group(cache, 1); 6357 6358 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6359 6360 /* remove us from the free space cache (if we're there at all) */ 6361 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6362 btrfs_put_block_group(cache); 6363 return ret; 6364 } 6365 6366 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6367 { 6368 int ret; 6369 struct btrfs_block_group_cache *block_group; 6370 struct btrfs_caching_control *caching_ctl; 6371 6372 block_group = btrfs_lookup_block_group(root->fs_info, start); 6373 if (!block_group) 6374 return -EINVAL; 6375 6376 cache_block_group(block_group, 0); 6377 caching_ctl = get_caching_control(block_group); 6378 6379 if (!caching_ctl) { 6380 /* Logic error */ 6381 BUG_ON(!block_group_cache_done(block_group)); 6382 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6383 } else { 6384 mutex_lock(&caching_ctl->mutex); 6385 6386 if (start >= caching_ctl->progress) { 6387 ret = add_excluded_extent(root, start, num_bytes); 6388 } else if (start + num_bytes <= caching_ctl->progress) { 6389 ret = btrfs_remove_free_space(block_group, 6390 start, num_bytes); 6391 } else { 6392 num_bytes = caching_ctl->progress - start; 6393 ret = btrfs_remove_free_space(block_group, 6394 start, num_bytes); 6395 if (ret) 6396 goto out_lock; 6397 6398 num_bytes = (start + num_bytes) - 6399 caching_ctl->progress; 6400 start = caching_ctl->progress; 6401 ret = add_excluded_extent(root, start, num_bytes); 6402 } 6403 out_lock: 6404 mutex_unlock(&caching_ctl->mutex); 6405 put_caching_control(caching_ctl); 6406 } 6407 btrfs_put_block_group(block_group); 6408 return ret; 6409 } 6410 6411 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6412 struct extent_buffer *eb) 6413 { 6414 struct btrfs_file_extent_item *item; 6415 struct btrfs_key key; 6416 int found_type; 6417 int i; 6418 6419 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6420 return 0; 6421 6422 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6423 btrfs_item_key_to_cpu(eb, &key, i); 6424 if (key.type != BTRFS_EXTENT_DATA_KEY) 6425 continue; 6426 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6427 found_type = btrfs_file_extent_type(eb, item); 6428 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6429 continue; 6430 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6431 continue; 6432 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6433 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6434 __exclude_logged_extent(log, key.objectid, key.offset); 6435 } 6436 6437 return 0; 6438 } 6439 6440 static void 6441 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6442 { 6443 atomic_inc(&bg->reservations); 6444 } 6445 6446 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6447 const u64 start) 6448 { 6449 struct btrfs_block_group_cache *bg; 6450 6451 bg = btrfs_lookup_block_group(fs_info, start); 6452 ASSERT(bg); 6453 if (atomic_dec_and_test(&bg->reservations)) 6454 wake_up_atomic_t(&bg->reservations); 6455 btrfs_put_block_group(bg); 6456 } 6457 6458 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6459 { 6460 schedule(); 6461 return 0; 6462 } 6463 6464 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6465 { 6466 struct btrfs_space_info *space_info = bg->space_info; 6467 6468 ASSERT(bg->ro); 6469 6470 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6471 return; 6472 6473 /* 6474 * Our block group is read only but before we set it to read only, 6475 * some task might have had allocated an extent from it already, but it 6476 * has not yet created a respective ordered extent (and added it to a 6477 * root's list of ordered extents). 6478 * Therefore wait for any task currently allocating extents, since the 6479 * block group's reservations counter is incremented while a read lock 6480 * on the groups' semaphore is held and decremented after releasing 6481 * the read access on that semaphore and creating the ordered extent. 6482 */ 6483 down_write(&space_info->groups_sem); 6484 up_write(&space_info->groups_sem); 6485 6486 wait_on_atomic_t(&bg->reservations, 6487 btrfs_wait_bg_reservations_atomic_t, 6488 TASK_UNINTERRUPTIBLE); 6489 } 6490 6491 /** 6492 * btrfs_add_reserved_bytes - update the block_group and space info counters 6493 * @cache: The cache we are manipulating 6494 * @ram_bytes: The number of bytes of file content, and will be same to 6495 * @num_bytes except for the compress path. 6496 * @num_bytes: The number of bytes in question 6497 * @delalloc: The blocks are allocated for the delalloc write 6498 * 6499 * This is called by the allocator when it reserves space. Metadata 6500 * reservations should be called with RESERVE_ALLOC so we do the proper 6501 * ENOSPC accounting. For data we handle the reservation through clearing the 6502 * delalloc bits in the io_tree. We have to do this since we could end up 6503 * allocating less disk space for the amount of data we have reserved in the 6504 * case of compression. 6505 * 6506 * If this is a reservation and the block group has become read only we cannot 6507 * make the reservation and return -EAGAIN, otherwise this function always 6508 * succeeds. 6509 */ 6510 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6511 u64 ram_bytes, u64 num_bytes, int delalloc) 6512 { 6513 struct btrfs_space_info *space_info = cache->space_info; 6514 int ret = 0; 6515 6516 spin_lock(&space_info->lock); 6517 spin_lock(&cache->lock); 6518 if (cache->ro) { 6519 ret = -EAGAIN; 6520 } else { 6521 cache->reserved += num_bytes; 6522 space_info->bytes_reserved += num_bytes; 6523 6524 trace_btrfs_space_reservation(cache->fs_info, 6525 "space_info", space_info->flags, 6526 ram_bytes, 0); 6527 space_info->bytes_may_use -= ram_bytes; 6528 if (delalloc) 6529 cache->delalloc_bytes += num_bytes; 6530 } 6531 spin_unlock(&cache->lock); 6532 spin_unlock(&space_info->lock); 6533 return ret; 6534 } 6535 6536 /** 6537 * btrfs_free_reserved_bytes - update the block_group and space info counters 6538 * @cache: The cache we are manipulating 6539 * @num_bytes: The number of bytes in question 6540 * @delalloc: The blocks are allocated for the delalloc write 6541 * 6542 * This is called by somebody who is freeing space that was never actually used 6543 * on disk. For example if you reserve some space for a new leaf in transaction 6544 * A and before transaction A commits you free that leaf, you call this with 6545 * reserve set to 0 in order to clear the reservation. 6546 */ 6547 6548 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6549 u64 num_bytes, int delalloc) 6550 { 6551 struct btrfs_space_info *space_info = cache->space_info; 6552 int ret = 0; 6553 6554 spin_lock(&space_info->lock); 6555 spin_lock(&cache->lock); 6556 if (cache->ro) 6557 space_info->bytes_readonly += num_bytes; 6558 cache->reserved -= num_bytes; 6559 space_info->bytes_reserved -= num_bytes; 6560 6561 if (delalloc) 6562 cache->delalloc_bytes -= num_bytes; 6563 spin_unlock(&cache->lock); 6564 spin_unlock(&space_info->lock); 6565 return ret; 6566 } 6567 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6568 struct btrfs_root *root) 6569 { 6570 struct btrfs_fs_info *fs_info = root->fs_info; 6571 struct btrfs_caching_control *next; 6572 struct btrfs_caching_control *caching_ctl; 6573 struct btrfs_block_group_cache *cache; 6574 6575 down_write(&fs_info->commit_root_sem); 6576 6577 list_for_each_entry_safe(caching_ctl, next, 6578 &fs_info->caching_block_groups, list) { 6579 cache = caching_ctl->block_group; 6580 if (block_group_cache_done(cache)) { 6581 cache->last_byte_to_unpin = (u64)-1; 6582 list_del_init(&caching_ctl->list); 6583 put_caching_control(caching_ctl); 6584 } else { 6585 cache->last_byte_to_unpin = caching_ctl->progress; 6586 } 6587 } 6588 6589 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6590 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6591 else 6592 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6593 6594 up_write(&fs_info->commit_root_sem); 6595 6596 update_global_block_rsv(fs_info); 6597 } 6598 6599 /* 6600 * Returns the free cluster for the given space info and sets empty_cluster to 6601 * what it should be based on the mount options. 6602 */ 6603 static struct btrfs_free_cluster * 6604 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6605 u64 *empty_cluster) 6606 { 6607 struct btrfs_free_cluster *ret = NULL; 6608 bool ssd = btrfs_test_opt(root->fs_info, SSD); 6609 6610 *empty_cluster = 0; 6611 if (btrfs_mixed_space_info(space_info)) 6612 return ret; 6613 6614 if (ssd) 6615 *empty_cluster = SZ_2M; 6616 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6617 ret = &root->fs_info->meta_alloc_cluster; 6618 if (!ssd) 6619 *empty_cluster = SZ_64K; 6620 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6621 ret = &root->fs_info->data_alloc_cluster; 6622 } 6623 6624 return ret; 6625 } 6626 6627 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6628 const bool return_free_space) 6629 { 6630 struct btrfs_fs_info *fs_info = root->fs_info; 6631 struct btrfs_block_group_cache *cache = NULL; 6632 struct btrfs_space_info *space_info; 6633 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6634 struct btrfs_free_cluster *cluster = NULL; 6635 u64 len; 6636 u64 total_unpinned = 0; 6637 u64 empty_cluster = 0; 6638 bool readonly; 6639 6640 while (start <= end) { 6641 readonly = false; 6642 if (!cache || 6643 start >= cache->key.objectid + cache->key.offset) { 6644 if (cache) 6645 btrfs_put_block_group(cache); 6646 total_unpinned = 0; 6647 cache = btrfs_lookup_block_group(fs_info, start); 6648 BUG_ON(!cache); /* Logic error */ 6649 6650 cluster = fetch_cluster_info(root, 6651 cache->space_info, 6652 &empty_cluster); 6653 empty_cluster <<= 1; 6654 } 6655 6656 len = cache->key.objectid + cache->key.offset - start; 6657 len = min(len, end + 1 - start); 6658 6659 if (start < cache->last_byte_to_unpin) { 6660 len = min(len, cache->last_byte_to_unpin - start); 6661 if (return_free_space) 6662 btrfs_add_free_space(cache, start, len); 6663 } 6664 6665 start += len; 6666 total_unpinned += len; 6667 space_info = cache->space_info; 6668 6669 /* 6670 * If this space cluster has been marked as fragmented and we've 6671 * unpinned enough in this block group to potentially allow a 6672 * cluster to be created inside of it go ahead and clear the 6673 * fragmented check. 6674 */ 6675 if (cluster && cluster->fragmented && 6676 total_unpinned > empty_cluster) { 6677 spin_lock(&cluster->lock); 6678 cluster->fragmented = 0; 6679 spin_unlock(&cluster->lock); 6680 } 6681 6682 spin_lock(&space_info->lock); 6683 spin_lock(&cache->lock); 6684 cache->pinned -= len; 6685 space_info->bytes_pinned -= len; 6686 6687 trace_btrfs_space_reservation(fs_info, "pinned", 6688 space_info->flags, len, 0); 6689 space_info->max_extent_size = 0; 6690 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6691 if (cache->ro) { 6692 space_info->bytes_readonly += len; 6693 readonly = true; 6694 } 6695 spin_unlock(&cache->lock); 6696 if (!readonly && return_free_space && 6697 global_rsv->space_info == space_info) { 6698 u64 to_add = len; 6699 WARN_ON(!return_free_space); 6700 spin_lock(&global_rsv->lock); 6701 if (!global_rsv->full) { 6702 to_add = min(len, global_rsv->size - 6703 global_rsv->reserved); 6704 global_rsv->reserved += to_add; 6705 space_info->bytes_may_use += to_add; 6706 if (global_rsv->reserved >= global_rsv->size) 6707 global_rsv->full = 1; 6708 trace_btrfs_space_reservation(fs_info, 6709 "space_info", 6710 space_info->flags, 6711 to_add, 1); 6712 len -= to_add; 6713 } 6714 spin_unlock(&global_rsv->lock); 6715 /* Add to any tickets we may have */ 6716 if (len) 6717 space_info_add_new_bytes(fs_info, space_info, 6718 len); 6719 } 6720 spin_unlock(&space_info->lock); 6721 } 6722 6723 if (cache) 6724 btrfs_put_block_group(cache); 6725 return 0; 6726 } 6727 6728 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6729 struct btrfs_root *root) 6730 { 6731 struct btrfs_fs_info *fs_info = root->fs_info; 6732 struct btrfs_block_group_cache *block_group, *tmp; 6733 struct list_head *deleted_bgs; 6734 struct extent_io_tree *unpin; 6735 u64 start; 6736 u64 end; 6737 int ret; 6738 6739 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6740 unpin = &fs_info->freed_extents[1]; 6741 else 6742 unpin = &fs_info->freed_extents[0]; 6743 6744 while (!trans->aborted) { 6745 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6746 ret = find_first_extent_bit(unpin, 0, &start, &end, 6747 EXTENT_DIRTY, NULL); 6748 if (ret) { 6749 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6750 break; 6751 } 6752 6753 if (btrfs_test_opt(root->fs_info, DISCARD)) 6754 ret = btrfs_discard_extent(root, start, 6755 end + 1 - start, NULL); 6756 6757 clear_extent_dirty(unpin, start, end); 6758 unpin_extent_range(root, start, end, true); 6759 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6760 cond_resched(); 6761 } 6762 6763 /* 6764 * Transaction is finished. We don't need the lock anymore. We 6765 * do need to clean up the block groups in case of a transaction 6766 * abort. 6767 */ 6768 deleted_bgs = &trans->transaction->deleted_bgs; 6769 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6770 u64 trimmed = 0; 6771 6772 ret = -EROFS; 6773 if (!trans->aborted) 6774 ret = btrfs_discard_extent(root, 6775 block_group->key.objectid, 6776 block_group->key.offset, 6777 &trimmed); 6778 6779 list_del_init(&block_group->bg_list); 6780 btrfs_put_block_group_trimming(block_group); 6781 btrfs_put_block_group(block_group); 6782 6783 if (ret) { 6784 const char *errstr = btrfs_decode_error(ret); 6785 btrfs_warn(fs_info, 6786 "Discard failed while removing blockgroup: errno=%d %s\n", 6787 ret, errstr); 6788 } 6789 } 6790 6791 return 0; 6792 } 6793 6794 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6795 u64 owner, u64 root_objectid) 6796 { 6797 struct btrfs_space_info *space_info; 6798 u64 flags; 6799 6800 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6801 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6802 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6803 else 6804 flags = BTRFS_BLOCK_GROUP_METADATA; 6805 } else { 6806 flags = BTRFS_BLOCK_GROUP_DATA; 6807 } 6808 6809 space_info = __find_space_info(fs_info, flags); 6810 BUG_ON(!space_info); /* Logic bug */ 6811 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6812 } 6813 6814 6815 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6816 struct btrfs_root *root, 6817 struct btrfs_delayed_ref_node *node, u64 parent, 6818 u64 root_objectid, u64 owner_objectid, 6819 u64 owner_offset, int refs_to_drop, 6820 struct btrfs_delayed_extent_op *extent_op) 6821 { 6822 struct btrfs_key key; 6823 struct btrfs_path *path; 6824 struct btrfs_fs_info *info = root->fs_info; 6825 struct btrfs_root *extent_root = info->extent_root; 6826 struct extent_buffer *leaf; 6827 struct btrfs_extent_item *ei; 6828 struct btrfs_extent_inline_ref *iref; 6829 int ret; 6830 int is_data; 6831 int extent_slot = 0; 6832 int found_extent = 0; 6833 int num_to_del = 1; 6834 u32 item_size; 6835 u64 refs; 6836 u64 bytenr = node->bytenr; 6837 u64 num_bytes = node->num_bytes; 6838 int last_ref = 0; 6839 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6840 SKINNY_METADATA); 6841 6842 path = btrfs_alloc_path(); 6843 if (!path) 6844 return -ENOMEM; 6845 6846 path->reada = READA_FORWARD; 6847 path->leave_spinning = 1; 6848 6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6850 BUG_ON(!is_data && refs_to_drop != 1); 6851 6852 if (is_data) 6853 skinny_metadata = 0; 6854 6855 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6856 bytenr, num_bytes, parent, 6857 root_objectid, owner_objectid, 6858 owner_offset); 6859 if (ret == 0) { 6860 extent_slot = path->slots[0]; 6861 while (extent_slot >= 0) { 6862 btrfs_item_key_to_cpu(path->nodes[0], &key, 6863 extent_slot); 6864 if (key.objectid != bytenr) 6865 break; 6866 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6867 key.offset == num_bytes) { 6868 found_extent = 1; 6869 break; 6870 } 6871 if (key.type == BTRFS_METADATA_ITEM_KEY && 6872 key.offset == owner_objectid) { 6873 found_extent = 1; 6874 break; 6875 } 6876 if (path->slots[0] - extent_slot > 5) 6877 break; 6878 extent_slot--; 6879 } 6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6882 if (found_extent && item_size < sizeof(*ei)) 6883 found_extent = 0; 6884 #endif 6885 if (!found_extent) { 6886 BUG_ON(iref); 6887 ret = remove_extent_backref(trans, extent_root, path, 6888 NULL, refs_to_drop, 6889 is_data, &last_ref); 6890 if (ret) { 6891 btrfs_abort_transaction(trans, ret); 6892 goto out; 6893 } 6894 btrfs_release_path(path); 6895 path->leave_spinning = 1; 6896 6897 key.objectid = bytenr; 6898 key.type = BTRFS_EXTENT_ITEM_KEY; 6899 key.offset = num_bytes; 6900 6901 if (!is_data && skinny_metadata) { 6902 key.type = BTRFS_METADATA_ITEM_KEY; 6903 key.offset = owner_objectid; 6904 } 6905 6906 ret = btrfs_search_slot(trans, extent_root, 6907 &key, path, -1, 1); 6908 if (ret > 0 && skinny_metadata && path->slots[0]) { 6909 /* 6910 * Couldn't find our skinny metadata item, 6911 * see if we have ye olde extent item. 6912 */ 6913 path->slots[0]--; 6914 btrfs_item_key_to_cpu(path->nodes[0], &key, 6915 path->slots[0]); 6916 if (key.objectid == bytenr && 6917 key.type == BTRFS_EXTENT_ITEM_KEY && 6918 key.offset == num_bytes) 6919 ret = 0; 6920 } 6921 6922 if (ret > 0 && skinny_metadata) { 6923 skinny_metadata = false; 6924 key.objectid = bytenr; 6925 key.type = BTRFS_EXTENT_ITEM_KEY; 6926 key.offset = num_bytes; 6927 btrfs_release_path(path); 6928 ret = btrfs_search_slot(trans, extent_root, 6929 &key, path, -1, 1); 6930 } 6931 6932 if (ret) { 6933 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6934 ret, bytenr); 6935 if (ret > 0) 6936 btrfs_print_leaf(extent_root, 6937 path->nodes[0]); 6938 } 6939 if (ret < 0) { 6940 btrfs_abort_transaction(trans, ret); 6941 goto out; 6942 } 6943 extent_slot = path->slots[0]; 6944 } 6945 } else if (WARN_ON(ret == -ENOENT)) { 6946 btrfs_print_leaf(extent_root, path->nodes[0]); 6947 btrfs_err(info, 6948 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6949 bytenr, parent, root_objectid, owner_objectid, 6950 owner_offset); 6951 btrfs_abort_transaction(trans, ret); 6952 goto out; 6953 } else { 6954 btrfs_abort_transaction(trans, ret); 6955 goto out; 6956 } 6957 6958 leaf = path->nodes[0]; 6959 item_size = btrfs_item_size_nr(leaf, extent_slot); 6960 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6961 if (item_size < sizeof(*ei)) { 6962 BUG_ON(found_extent || extent_slot != path->slots[0]); 6963 ret = convert_extent_item_v0(trans, extent_root, path, 6964 owner_objectid, 0); 6965 if (ret < 0) { 6966 btrfs_abort_transaction(trans, ret); 6967 goto out; 6968 } 6969 6970 btrfs_release_path(path); 6971 path->leave_spinning = 1; 6972 6973 key.objectid = bytenr; 6974 key.type = BTRFS_EXTENT_ITEM_KEY; 6975 key.offset = num_bytes; 6976 6977 ret = btrfs_search_slot(trans, extent_root, &key, path, 6978 -1, 1); 6979 if (ret) { 6980 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6981 ret, bytenr); 6982 btrfs_print_leaf(extent_root, path->nodes[0]); 6983 } 6984 if (ret < 0) { 6985 btrfs_abort_transaction(trans, ret); 6986 goto out; 6987 } 6988 6989 extent_slot = path->slots[0]; 6990 leaf = path->nodes[0]; 6991 item_size = btrfs_item_size_nr(leaf, extent_slot); 6992 } 6993 #endif 6994 BUG_ON(item_size < sizeof(*ei)); 6995 ei = btrfs_item_ptr(leaf, extent_slot, 6996 struct btrfs_extent_item); 6997 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6998 key.type == BTRFS_EXTENT_ITEM_KEY) { 6999 struct btrfs_tree_block_info *bi; 7000 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7001 bi = (struct btrfs_tree_block_info *)(ei + 1); 7002 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7003 } 7004 7005 refs = btrfs_extent_refs(leaf, ei); 7006 if (refs < refs_to_drop) { 7007 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 7008 "for bytenr %Lu", refs_to_drop, refs, bytenr); 7009 ret = -EINVAL; 7010 btrfs_abort_transaction(trans, ret); 7011 goto out; 7012 } 7013 refs -= refs_to_drop; 7014 7015 if (refs > 0) { 7016 if (extent_op) 7017 __run_delayed_extent_op(extent_op, leaf, ei); 7018 /* 7019 * In the case of inline back ref, reference count will 7020 * be updated by remove_extent_backref 7021 */ 7022 if (iref) { 7023 BUG_ON(!found_extent); 7024 } else { 7025 btrfs_set_extent_refs(leaf, ei, refs); 7026 btrfs_mark_buffer_dirty(leaf); 7027 } 7028 if (found_extent) { 7029 ret = remove_extent_backref(trans, extent_root, path, 7030 iref, refs_to_drop, 7031 is_data, &last_ref); 7032 if (ret) { 7033 btrfs_abort_transaction(trans, ret); 7034 goto out; 7035 } 7036 } 7037 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 7038 root_objectid); 7039 } else { 7040 if (found_extent) { 7041 BUG_ON(is_data && refs_to_drop != 7042 extent_data_ref_count(path, iref)); 7043 if (iref) { 7044 BUG_ON(path->slots[0] != extent_slot); 7045 } else { 7046 BUG_ON(path->slots[0] != extent_slot + 1); 7047 path->slots[0] = extent_slot; 7048 num_to_del = 2; 7049 } 7050 } 7051 7052 last_ref = 1; 7053 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7054 num_to_del); 7055 if (ret) { 7056 btrfs_abort_transaction(trans, ret); 7057 goto out; 7058 } 7059 btrfs_release_path(path); 7060 7061 if (is_data) { 7062 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 7063 if (ret) { 7064 btrfs_abort_transaction(trans, ret); 7065 goto out; 7066 } 7067 } 7068 7069 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 7070 num_bytes); 7071 if (ret) { 7072 btrfs_abort_transaction(trans, ret); 7073 goto out; 7074 } 7075 7076 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 7077 if (ret) { 7078 btrfs_abort_transaction(trans, ret); 7079 goto out; 7080 } 7081 } 7082 btrfs_release_path(path); 7083 7084 out: 7085 btrfs_free_path(path); 7086 return ret; 7087 } 7088 7089 /* 7090 * when we free an block, it is possible (and likely) that we free the last 7091 * delayed ref for that extent as well. This searches the delayed ref tree for 7092 * a given extent, and if there are no other delayed refs to be processed, it 7093 * removes it from the tree. 7094 */ 7095 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7096 struct btrfs_root *root, u64 bytenr) 7097 { 7098 struct btrfs_delayed_ref_head *head; 7099 struct btrfs_delayed_ref_root *delayed_refs; 7100 int ret = 0; 7101 7102 delayed_refs = &trans->transaction->delayed_refs; 7103 spin_lock(&delayed_refs->lock); 7104 head = btrfs_find_delayed_ref_head(trans, bytenr); 7105 if (!head) 7106 goto out_delayed_unlock; 7107 7108 spin_lock(&head->lock); 7109 if (!list_empty(&head->ref_list)) 7110 goto out; 7111 7112 if (head->extent_op) { 7113 if (!head->must_insert_reserved) 7114 goto out; 7115 btrfs_free_delayed_extent_op(head->extent_op); 7116 head->extent_op = NULL; 7117 } 7118 7119 /* 7120 * waiting for the lock here would deadlock. If someone else has it 7121 * locked they are already in the process of dropping it anyway 7122 */ 7123 if (!mutex_trylock(&head->mutex)) 7124 goto out; 7125 7126 /* 7127 * at this point we have a head with no other entries. Go 7128 * ahead and process it. 7129 */ 7130 head->node.in_tree = 0; 7131 rb_erase(&head->href_node, &delayed_refs->href_root); 7132 7133 atomic_dec(&delayed_refs->num_entries); 7134 7135 /* 7136 * we don't take a ref on the node because we're removing it from the 7137 * tree, so we just steal the ref the tree was holding. 7138 */ 7139 delayed_refs->num_heads--; 7140 if (head->processing == 0) 7141 delayed_refs->num_heads_ready--; 7142 head->processing = 0; 7143 spin_unlock(&head->lock); 7144 spin_unlock(&delayed_refs->lock); 7145 7146 BUG_ON(head->extent_op); 7147 if (head->must_insert_reserved) 7148 ret = 1; 7149 7150 mutex_unlock(&head->mutex); 7151 btrfs_put_delayed_ref(&head->node); 7152 return ret; 7153 out: 7154 spin_unlock(&head->lock); 7155 7156 out_delayed_unlock: 7157 spin_unlock(&delayed_refs->lock); 7158 return 0; 7159 } 7160 7161 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7162 struct btrfs_root *root, 7163 struct extent_buffer *buf, 7164 u64 parent, int last_ref) 7165 { 7166 int pin = 1; 7167 int ret; 7168 7169 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7170 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7171 buf->start, buf->len, 7172 parent, root->root_key.objectid, 7173 btrfs_header_level(buf), 7174 BTRFS_DROP_DELAYED_REF, NULL); 7175 BUG_ON(ret); /* -ENOMEM */ 7176 } 7177 7178 if (!last_ref) 7179 return; 7180 7181 if (btrfs_header_generation(buf) == trans->transid) { 7182 struct btrfs_block_group_cache *cache; 7183 7184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7185 ret = check_ref_cleanup(trans, root, buf->start); 7186 if (!ret) 7187 goto out; 7188 } 7189 7190 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 7191 7192 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7193 pin_down_extent(root, cache, buf->start, buf->len, 1); 7194 btrfs_put_block_group(cache); 7195 goto out; 7196 } 7197 7198 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7199 7200 btrfs_add_free_space(cache, buf->start, buf->len); 7201 btrfs_free_reserved_bytes(cache, buf->len, 0); 7202 btrfs_put_block_group(cache); 7203 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 7204 pin = 0; 7205 } 7206 out: 7207 if (pin) 7208 add_pinned_bytes(root->fs_info, buf->len, 7209 btrfs_header_level(buf), 7210 root->root_key.objectid); 7211 7212 /* 7213 * Deleting the buffer, clear the corrupt flag since it doesn't matter 7214 * anymore. 7215 */ 7216 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7217 } 7218 7219 /* Can return -ENOMEM */ 7220 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7221 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7222 u64 owner, u64 offset) 7223 { 7224 int ret; 7225 struct btrfs_fs_info *fs_info = root->fs_info; 7226 7227 if (btrfs_is_testing(fs_info)) 7228 return 0; 7229 7230 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 7231 7232 /* 7233 * tree log blocks never actually go into the extent allocation 7234 * tree, just update pinning info and exit early. 7235 */ 7236 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7237 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7238 /* unlocks the pinned mutex */ 7239 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7240 ret = 0; 7241 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7242 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7243 num_bytes, 7244 parent, root_objectid, (int)owner, 7245 BTRFS_DROP_DELAYED_REF, NULL); 7246 } else { 7247 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7248 num_bytes, 7249 parent, root_objectid, owner, 7250 offset, 0, 7251 BTRFS_DROP_DELAYED_REF, NULL); 7252 } 7253 return ret; 7254 } 7255 7256 /* 7257 * when we wait for progress in the block group caching, its because 7258 * our allocation attempt failed at least once. So, we must sleep 7259 * and let some progress happen before we try again. 7260 * 7261 * This function will sleep at least once waiting for new free space to 7262 * show up, and then it will check the block group free space numbers 7263 * for our min num_bytes. Another option is to have it go ahead 7264 * and look in the rbtree for a free extent of a given size, but this 7265 * is a good start. 7266 * 7267 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7268 * any of the information in this block group. 7269 */ 7270 static noinline void 7271 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7272 u64 num_bytes) 7273 { 7274 struct btrfs_caching_control *caching_ctl; 7275 7276 caching_ctl = get_caching_control(cache); 7277 if (!caching_ctl) 7278 return; 7279 7280 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7281 (cache->free_space_ctl->free_space >= num_bytes)); 7282 7283 put_caching_control(caching_ctl); 7284 } 7285 7286 static noinline int 7287 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7288 { 7289 struct btrfs_caching_control *caching_ctl; 7290 int ret = 0; 7291 7292 caching_ctl = get_caching_control(cache); 7293 if (!caching_ctl) 7294 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7295 7296 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7297 if (cache->cached == BTRFS_CACHE_ERROR) 7298 ret = -EIO; 7299 put_caching_control(caching_ctl); 7300 return ret; 7301 } 7302 7303 int __get_raid_index(u64 flags) 7304 { 7305 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7306 return BTRFS_RAID_RAID10; 7307 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7308 return BTRFS_RAID_RAID1; 7309 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7310 return BTRFS_RAID_DUP; 7311 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7312 return BTRFS_RAID_RAID0; 7313 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7314 return BTRFS_RAID_RAID5; 7315 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7316 return BTRFS_RAID_RAID6; 7317 7318 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7319 } 7320 7321 int get_block_group_index(struct btrfs_block_group_cache *cache) 7322 { 7323 return __get_raid_index(cache->flags); 7324 } 7325 7326 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7327 [BTRFS_RAID_RAID10] = "raid10", 7328 [BTRFS_RAID_RAID1] = "raid1", 7329 [BTRFS_RAID_DUP] = "dup", 7330 [BTRFS_RAID_RAID0] = "raid0", 7331 [BTRFS_RAID_SINGLE] = "single", 7332 [BTRFS_RAID_RAID5] = "raid5", 7333 [BTRFS_RAID_RAID6] = "raid6", 7334 }; 7335 7336 static const char *get_raid_name(enum btrfs_raid_types type) 7337 { 7338 if (type >= BTRFS_NR_RAID_TYPES) 7339 return NULL; 7340 7341 return btrfs_raid_type_names[type]; 7342 } 7343 7344 enum btrfs_loop_type { 7345 LOOP_CACHING_NOWAIT = 0, 7346 LOOP_CACHING_WAIT = 1, 7347 LOOP_ALLOC_CHUNK = 2, 7348 LOOP_NO_EMPTY_SIZE = 3, 7349 }; 7350 7351 static inline void 7352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7353 int delalloc) 7354 { 7355 if (delalloc) 7356 down_read(&cache->data_rwsem); 7357 } 7358 7359 static inline void 7360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7361 int delalloc) 7362 { 7363 btrfs_get_block_group(cache); 7364 if (delalloc) 7365 down_read(&cache->data_rwsem); 7366 } 7367 7368 static struct btrfs_block_group_cache * 7369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7370 struct btrfs_free_cluster *cluster, 7371 int delalloc) 7372 { 7373 struct btrfs_block_group_cache *used_bg = NULL; 7374 7375 spin_lock(&cluster->refill_lock); 7376 while (1) { 7377 used_bg = cluster->block_group; 7378 if (!used_bg) 7379 return NULL; 7380 7381 if (used_bg == block_group) 7382 return used_bg; 7383 7384 btrfs_get_block_group(used_bg); 7385 7386 if (!delalloc) 7387 return used_bg; 7388 7389 if (down_read_trylock(&used_bg->data_rwsem)) 7390 return used_bg; 7391 7392 spin_unlock(&cluster->refill_lock); 7393 7394 down_read(&used_bg->data_rwsem); 7395 7396 spin_lock(&cluster->refill_lock); 7397 if (used_bg == cluster->block_group) 7398 return used_bg; 7399 7400 up_read(&used_bg->data_rwsem); 7401 btrfs_put_block_group(used_bg); 7402 } 7403 } 7404 7405 static inline void 7406 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7407 int delalloc) 7408 { 7409 if (delalloc) 7410 up_read(&cache->data_rwsem); 7411 btrfs_put_block_group(cache); 7412 } 7413 7414 /* 7415 * walks the btree of allocated extents and find a hole of a given size. 7416 * The key ins is changed to record the hole: 7417 * ins->objectid == start position 7418 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7419 * ins->offset == the size of the hole. 7420 * Any available blocks before search_start are skipped. 7421 * 7422 * If there is no suitable free space, we will record the max size of 7423 * the free space extent currently. 7424 */ 7425 static noinline int find_free_extent(struct btrfs_root *orig_root, 7426 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7427 u64 hint_byte, struct btrfs_key *ins, 7428 u64 flags, int delalloc) 7429 { 7430 int ret = 0; 7431 struct btrfs_root *root = orig_root->fs_info->extent_root; 7432 struct btrfs_free_cluster *last_ptr = NULL; 7433 struct btrfs_block_group_cache *block_group = NULL; 7434 u64 search_start = 0; 7435 u64 max_extent_size = 0; 7436 u64 empty_cluster = 0; 7437 struct btrfs_space_info *space_info; 7438 int loop = 0; 7439 int index = __get_raid_index(flags); 7440 bool failed_cluster_refill = false; 7441 bool failed_alloc = false; 7442 bool use_cluster = true; 7443 bool have_caching_bg = false; 7444 bool orig_have_caching_bg = false; 7445 bool full_search = false; 7446 7447 WARN_ON(num_bytes < root->sectorsize); 7448 ins->type = BTRFS_EXTENT_ITEM_KEY; 7449 ins->objectid = 0; 7450 ins->offset = 0; 7451 7452 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7453 7454 space_info = __find_space_info(root->fs_info, flags); 7455 if (!space_info) { 7456 btrfs_err(root->fs_info, "No space info for %llu", flags); 7457 return -ENOSPC; 7458 } 7459 7460 /* 7461 * If our free space is heavily fragmented we may not be able to make 7462 * big contiguous allocations, so instead of doing the expensive search 7463 * for free space, simply return ENOSPC with our max_extent_size so we 7464 * can go ahead and search for a more manageable chunk. 7465 * 7466 * If our max_extent_size is large enough for our allocation simply 7467 * disable clustering since we will likely not be able to find enough 7468 * space to create a cluster and induce latency trying. 7469 */ 7470 if (unlikely(space_info->max_extent_size)) { 7471 spin_lock(&space_info->lock); 7472 if (space_info->max_extent_size && 7473 num_bytes > space_info->max_extent_size) { 7474 ins->offset = space_info->max_extent_size; 7475 spin_unlock(&space_info->lock); 7476 return -ENOSPC; 7477 } else if (space_info->max_extent_size) { 7478 use_cluster = false; 7479 } 7480 spin_unlock(&space_info->lock); 7481 } 7482 7483 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7484 if (last_ptr) { 7485 spin_lock(&last_ptr->lock); 7486 if (last_ptr->block_group) 7487 hint_byte = last_ptr->window_start; 7488 if (last_ptr->fragmented) { 7489 /* 7490 * We still set window_start so we can keep track of the 7491 * last place we found an allocation to try and save 7492 * some time. 7493 */ 7494 hint_byte = last_ptr->window_start; 7495 use_cluster = false; 7496 } 7497 spin_unlock(&last_ptr->lock); 7498 } 7499 7500 search_start = max(search_start, first_logical_byte(root, 0)); 7501 search_start = max(search_start, hint_byte); 7502 if (search_start == hint_byte) { 7503 block_group = btrfs_lookup_block_group(root->fs_info, 7504 search_start); 7505 /* 7506 * we don't want to use the block group if it doesn't match our 7507 * allocation bits, or if its not cached. 7508 * 7509 * However if we are re-searching with an ideal block group 7510 * picked out then we don't care that the block group is cached. 7511 */ 7512 if (block_group && block_group_bits(block_group, flags) && 7513 block_group->cached != BTRFS_CACHE_NO) { 7514 down_read(&space_info->groups_sem); 7515 if (list_empty(&block_group->list) || 7516 block_group->ro) { 7517 /* 7518 * someone is removing this block group, 7519 * we can't jump into the have_block_group 7520 * target because our list pointers are not 7521 * valid 7522 */ 7523 btrfs_put_block_group(block_group); 7524 up_read(&space_info->groups_sem); 7525 } else { 7526 index = get_block_group_index(block_group); 7527 btrfs_lock_block_group(block_group, delalloc); 7528 goto have_block_group; 7529 } 7530 } else if (block_group) { 7531 btrfs_put_block_group(block_group); 7532 } 7533 } 7534 search: 7535 have_caching_bg = false; 7536 if (index == 0 || index == __get_raid_index(flags)) 7537 full_search = true; 7538 down_read(&space_info->groups_sem); 7539 list_for_each_entry(block_group, &space_info->block_groups[index], 7540 list) { 7541 u64 offset; 7542 int cached; 7543 7544 btrfs_grab_block_group(block_group, delalloc); 7545 search_start = block_group->key.objectid; 7546 7547 /* 7548 * this can happen if we end up cycling through all the 7549 * raid types, but we want to make sure we only allocate 7550 * for the proper type. 7551 */ 7552 if (!block_group_bits(block_group, flags)) { 7553 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7554 BTRFS_BLOCK_GROUP_RAID1 | 7555 BTRFS_BLOCK_GROUP_RAID5 | 7556 BTRFS_BLOCK_GROUP_RAID6 | 7557 BTRFS_BLOCK_GROUP_RAID10; 7558 7559 /* 7560 * if they asked for extra copies and this block group 7561 * doesn't provide them, bail. This does allow us to 7562 * fill raid0 from raid1. 7563 */ 7564 if ((flags & extra) && !(block_group->flags & extra)) 7565 goto loop; 7566 } 7567 7568 have_block_group: 7569 cached = block_group_cache_done(block_group); 7570 if (unlikely(!cached)) { 7571 have_caching_bg = true; 7572 ret = cache_block_group(block_group, 0); 7573 BUG_ON(ret < 0); 7574 ret = 0; 7575 } 7576 7577 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7578 goto loop; 7579 if (unlikely(block_group->ro)) 7580 goto loop; 7581 7582 /* 7583 * Ok we want to try and use the cluster allocator, so 7584 * lets look there 7585 */ 7586 if (last_ptr && use_cluster) { 7587 struct btrfs_block_group_cache *used_block_group; 7588 unsigned long aligned_cluster; 7589 /* 7590 * the refill lock keeps out other 7591 * people trying to start a new cluster 7592 */ 7593 used_block_group = btrfs_lock_cluster(block_group, 7594 last_ptr, 7595 delalloc); 7596 if (!used_block_group) 7597 goto refill_cluster; 7598 7599 if (used_block_group != block_group && 7600 (used_block_group->ro || 7601 !block_group_bits(used_block_group, flags))) 7602 goto release_cluster; 7603 7604 offset = btrfs_alloc_from_cluster(used_block_group, 7605 last_ptr, 7606 num_bytes, 7607 used_block_group->key.objectid, 7608 &max_extent_size); 7609 if (offset) { 7610 /* we have a block, we're done */ 7611 spin_unlock(&last_ptr->refill_lock); 7612 trace_btrfs_reserve_extent_cluster(root, 7613 used_block_group, 7614 search_start, num_bytes); 7615 if (used_block_group != block_group) { 7616 btrfs_release_block_group(block_group, 7617 delalloc); 7618 block_group = used_block_group; 7619 } 7620 goto checks; 7621 } 7622 7623 WARN_ON(last_ptr->block_group != used_block_group); 7624 release_cluster: 7625 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7626 * set up a new clusters, so lets just skip it 7627 * and let the allocator find whatever block 7628 * it can find. If we reach this point, we 7629 * will have tried the cluster allocator 7630 * plenty of times and not have found 7631 * anything, so we are likely way too 7632 * fragmented for the clustering stuff to find 7633 * anything. 7634 * 7635 * However, if the cluster is taken from the 7636 * current block group, release the cluster 7637 * first, so that we stand a better chance of 7638 * succeeding in the unclustered 7639 * allocation. */ 7640 if (loop >= LOOP_NO_EMPTY_SIZE && 7641 used_block_group != block_group) { 7642 spin_unlock(&last_ptr->refill_lock); 7643 btrfs_release_block_group(used_block_group, 7644 delalloc); 7645 goto unclustered_alloc; 7646 } 7647 7648 /* 7649 * this cluster didn't work out, free it and 7650 * start over 7651 */ 7652 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7653 7654 if (used_block_group != block_group) 7655 btrfs_release_block_group(used_block_group, 7656 delalloc); 7657 refill_cluster: 7658 if (loop >= LOOP_NO_EMPTY_SIZE) { 7659 spin_unlock(&last_ptr->refill_lock); 7660 goto unclustered_alloc; 7661 } 7662 7663 aligned_cluster = max_t(unsigned long, 7664 empty_cluster + empty_size, 7665 block_group->full_stripe_len); 7666 7667 /* allocate a cluster in this block group */ 7668 ret = btrfs_find_space_cluster(root, block_group, 7669 last_ptr, search_start, 7670 num_bytes, 7671 aligned_cluster); 7672 if (ret == 0) { 7673 /* 7674 * now pull our allocation out of this 7675 * cluster 7676 */ 7677 offset = btrfs_alloc_from_cluster(block_group, 7678 last_ptr, 7679 num_bytes, 7680 search_start, 7681 &max_extent_size); 7682 if (offset) { 7683 /* we found one, proceed */ 7684 spin_unlock(&last_ptr->refill_lock); 7685 trace_btrfs_reserve_extent_cluster(root, 7686 block_group, search_start, 7687 num_bytes); 7688 goto checks; 7689 } 7690 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7691 && !failed_cluster_refill) { 7692 spin_unlock(&last_ptr->refill_lock); 7693 7694 failed_cluster_refill = true; 7695 wait_block_group_cache_progress(block_group, 7696 num_bytes + empty_cluster + empty_size); 7697 goto have_block_group; 7698 } 7699 7700 /* 7701 * at this point we either didn't find a cluster 7702 * or we weren't able to allocate a block from our 7703 * cluster. Free the cluster we've been trying 7704 * to use, and go to the next block group 7705 */ 7706 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7707 spin_unlock(&last_ptr->refill_lock); 7708 goto loop; 7709 } 7710 7711 unclustered_alloc: 7712 /* 7713 * We are doing an unclustered alloc, set the fragmented flag so 7714 * we don't bother trying to setup a cluster again until we get 7715 * more space. 7716 */ 7717 if (unlikely(last_ptr)) { 7718 spin_lock(&last_ptr->lock); 7719 last_ptr->fragmented = 1; 7720 spin_unlock(&last_ptr->lock); 7721 } 7722 spin_lock(&block_group->free_space_ctl->tree_lock); 7723 if (cached && 7724 block_group->free_space_ctl->free_space < 7725 num_bytes + empty_cluster + empty_size) { 7726 if (block_group->free_space_ctl->free_space > 7727 max_extent_size) 7728 max_extent_size = 7729 block_group->free_space_ctl->free_space; 7730 spin_unlock(&block_group->free_space_ctl->tree_lock); 7731 goto loop; 7732 } 7733 spin_unlock(&block_group->free_space_ctl->tree_lock); 7734 7735 offset = btrfs_find_space_for_alloc(block_group, search_start, 7736 num_bytes, empty_size, 7737 &max_extent_size); 7738 /* 7739 * If we didn't find a chunk, and we haven't failed on this 7740 * block group before, and this block group is in the middle of 7741 * caching and we are ok with waiting, then go ahead and wait 7742 * for progress to be made, and set failed_alloc to true. 7743 * 7744 * If failed_alloc is true then we've already waited on this 7745 * block group once and should move on to the next block group. 7746 */ 7747 if (!offset && !failed_alloc && !cached && 7748 loop > LOOP_CACHING_NOWAIT) { 7749 wait_block_group_cache_progress(block_group, 7750 num_bytes + empty_size); 7751 failed_alloc = true; 7752 goto have_block_group; 7753 } else if (!offset) { 7754 goto loop; 7755 } 7756 checks: 7757 search_start = ALIGN(offset, root->stripesize); 7758 7759 /* move on to the next group */ 7760 if (search_start + num_bytes > 7761 block_group->key.objectid + block_group->key.offset) { 7762 btrfs_add_free_space(block_group, offset, num_bytes); 7763 goto loop; 7764 } 7765 7766 if (offset < search_start) 7767 btrfs_add_free_space(block_group, offset, 7768 search_start - offset); 7769 BUG_ON(offset > search_start); 7770 7771 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7772 num_bytes, delalloc); 7773 if (ret == -EAGAIN) { 7774 btrfs_add_free_space(block_group, offset, num_bytes); 7775 goto loop; 7776 } 7777 btrfs_inc_block_group_reservations(block_group); 7778 7779 /* we are all good, lets return */ 7780 ins->objectid = search_start; 7781 ins->offset = num_bytes; 7782 7783 trace_btrfs_reserve_extent(orig_root, block_group, 7784 search_start, num_bytes); 7785 btrfs_release_block_group(block_group, delalloc); 7786 break; 7787 loop: 7788 failed_cluster_refill = false; 7789 failed_alloc = false; 7790 BUG_ON(index != get_block_group_index(block_group)); 7791 btrfs_release_block_group(block_group, delalloc); 7792 } 7793 up_read(&space_info->groups_sem); 7794 7795 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7796 && !orig_have_caching_bg) 7797 orig_have_caching_bg = true; 7798 7799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7800 goto search; 7801 7802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7803 goto search; 7804 7805 /* 7806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7807 * caching kthreads as we move along 7808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7811 * again 7812 */ 7813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7814 index = 0; 7815 if (loop == LOOP_CACHING_NOWAIT) { 7816 /* 7817 * We want to skip the LOOP_CACHING_WAIT step if we 7818 * don't have any uncached bgs and we've already done a 7819 * full search through. 7820 */ 7821 if (orig_have_caching_bg || !full_search) 7822 loop = LOOP_CACHING_WAIT; 7823 else 7824 loop = LOOP_ALLOC_CHUNK; 7825 } else { 7826 loop++; 7827 } 7828 7829 if (loop == LOOP_ALLOC_CHUNK) { 7830 struct btrfs_trans_handle *trans; 7831 int exist = 0; 7832 7833 trans = current->journal_info; 7834 if (trans) 7835 exist = 1; 7836 else 7837 trans = btrfs_join_transaction(root); 7838 7839 if (IS_ERR(trans)) { 7840 ret = PTR_ERR(trans); 7841 goto out; 7842 } 7843 7844 ret = do_chunk_alloc(trans, root, flags, 7845 CHUNK_ALLOC_FORCE); 7846 7847 /* 7848 * If we can't allocate a new chunk we've already looped 7849 * through at least once, move on to the NO_EMPTY_SIZE 7850 * case. 7851 */ 7852 if (ret == -ENOSPC) 7853 loop = LOOP_NO_EMPTY_SIZE; 7854 7855 /* 7856 * Do not bail out on ENOSPC since we 7857 * can do more things. 7858 */ 7859 if (ret < 0 && ret != -ENOSPC) 7860 btrfs_abort_transaction(trans, ret); 7861 else 7862 ret = 0; 7863 if (!exist) 7864 btrfs_end_transaction(trans, root); 7865 if (ret) 7866 goto out; 7867 } 7868 7869 if (loop == LOOP_NO_EMPTY_SIZE) { 7870 /* 7871 * Don't loop again if we already have no empty_size and 7872 * no empty_cluster. 7873 */ 7874 if (empty_size == 0 && 7875 empty_cluster == 0) { 7876 ret = -ENOSPC; 7877 goto out; 7878 } 7879 empty_size = 0; 7880 empty_cluster = 0; 7881 } 7882 7883 goto search; 7884 } else if (!ins->objectid) { 7885 ret = -ENOSPC; 7886 } else if (ins->objectid) { 7887 if (!use_cluster && last_ptr) { 7888 spin_lock(&last_ptr->lock); 7889 last_ptr->window_start = ins->objectid; 7890 spin_unlock(&last_ptr->lock); 7891 } 7892 ret = 0; 7893 } 7894 out: 7895 if (ret == -ENOSPC) { 7896 spin_lock(&space_info->lock); 7897 space_info->max_extent_size = max_extent_size; 7898 spin_unlock(&space_info->lock); 7899 ins->offset = max_extent_size; 7900 } 7901 return ret; 7902 } 7903 7904 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7905 int dump_block_groups) 7906 { 7907 struct btrfs_block_group_cache *cache; 7908 int index = 0; 7909 7910 spin_lock(&info->lock); 7911 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7912 info->flags, 7913 info->total_bytes - info->bytes_used - info->bytes_pinned - 7914 info->bytes_reserved - info->bytes_readonly - 7915 info->bytes_may_use, (info->full) ? "" : "not "); 7916 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7917 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7918 info->total_bytes, info->bytes_used, info->bytes_pinned, 7919 info->bytes_reserved, info->bytes_may_use, 7920 info->bytes_readonly); 7921 spin_unlock(&info->lock); 7922 7923 if (!dump_block_groups) 7924 return; 7925 7926 down_read(&info->groups_sem); 7927 again: 7928 list_for_each_entry(cache, &info->block_groups[index], list) { 7929 spin_lock(&cache->lock); 7930 printk(KERN_INFO "BTRFS: " 7931 "block group %llu has %llu bytes, " 7932 "%llu used %llu pinned %llu reserved %s\n", 7933 cache->key.objectid, cache->key.offset, 7934 btrfs_block_group_used(&cache->item), cache->pinned, 7935 cache->reserved, cache->ro ? "[readonly]" : ""); 7936 btrfs_dump_free_space(cache, bytes); 7937 spin_unlock(&cache->lock); 7938 } 7939 if (++index < BTRFS_NR_RAID_TYPES) 7940 goto again; 7941 up_read(&info->groups_sem); 7942 } 7943 7944 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7945 u64 num_bytes, u64 min_alloc_size, 7946 u64 empty_size, u64 hint_byte, 7947 struct btrfs_key *ins, int is_data, int delalloc) 7948 { 7949 bool final_tried = num_bytes == min_alloc_size; 7950 u64 flags; 7951 int ret; 7952 7953 flags = btrfs_get_alloc_profile(root, is_data); 7954 again: 7955 WARN_ON(num_bytes < root->sectorsize); 7956 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 7957 hint_byte, ins, flags, delalloc); 7958 if (!ret && !is_data) { 7959 btrfs_dec_block_group_reservations(root->fs_info, 7960 ins->objectid); 7961 } else if (ret == -ENOSPC) { 7962 if (!final_tried && ins->offset) { 7963 num_bytes = min(num_bytes >> 1, ins->offset); 7964 num_bytes = round_down(num_bytes, root->sectorsize); 7965 num_bytes = max(num_bytes, min_alloc_size); 7966 ram_bytes = num_bytes; 7967 if (num_bytes == min_alloc_size) 7968 final_tried = true; 7969 goto again; 7970 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 7971 struct btrfs_space_info *sinfo; 7972 7973 sinfo = __find_space_info(root->fs_info, flags); 7974 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7975 flags, num_bytes); 7976 if (sinfo) 7977 dump_space_info(sinfo, num_bytes, 1); 7978 } 7979 } 7980 7981 return ret; 7982 } 7983 7984 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7985 u64 start, u64 len, 7986 int pin, int delalloc) 7987 { 7988 struct btrfs_block_group_cache *cache; 7989 int ret = 0; 7990 7991 cache = btrfs_lookup_block_group(root->fs_info, start); 7992 if (!cache) { 7993 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7994 start); 7995 return -ENOSPC; 7996 } 7997 7998 if (pin) 7999 pin_down_extent(root, cache, start, len, 1); 8000 else { 8001 if (btrfs_test_opt(root->fs_info, DISCARD)) 8002 ret = btrfs_discard_extent(root, start, len, NULL); 8003 btrfs_add_free_space(cache, start, len); 8004 btrfs_free_reserved_bytes(cache, len, delalloc); 8005 trace_btrfs_reserved_extent_free(root, start, len); 8006 } 8007 8008 btrfs_put_block_group(cache); 8009 return ret; 8010 } 8011 8012 int btrfs_free_reserved_extent(struct btrfs_root *root, 8013 u64 start, u64 len, int delalloc) 8014 { 8015 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 8016 } 8017 8018 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 8019 u64 start, u64 len) 8020 { 8021 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 8022 } 8023 8024 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8025 struct btrfs_root *root, 8026 u64 parent, u64 root_objectid, 8027 u64 flags, u64 owner, u64 offset, 8028 struct btrfs_key *ins, int ref_mod) 8029 { 8030 int ret; 8031 struct btrfs_fs_info *fs_info = root->fs_info; 8032 struct btrfs_extent_item *extent_item; 8033 struct btrfs_extent_inline_ref *iref; 8034 struct btrfs_path *path; 8035 struct extent_buffer *leaf; 8036 int type; 8037 u32 size; 8038 8039 if (parent > 0) 8040 type = BTRFS_SHARED_DATA_REF_KEY; 8041 else 8042 type = BTRFS_EXTENT_DATA_REF_KEY; 8043 8044 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8045 8046 path = btrfs_alloc_path(); 8047 if (!path) 8048 return -ENOMEM; 8049 8050 path->leave_spinning = 1; 8051 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8052 ins, size); 8053 if (ret) { 8054 btrfs_free_path(path); 8055 return ret; 8056 } 8057 8058 leaf = path->nodes[0]; 8059 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8060 struct btrfs_extent_item); 8061 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8062 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8063 btrfs_set_extent_flags(leaf, extent_item, 8064 flags | BTRFS_EXTENT_FLAG_DATA); 8065 8066 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8067 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8068 if (parent > 0) { 8069 struct btrfs_shared_data_ref *ref; 8070 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8071 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8072 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8073 } else { 8074 struct btrfs_extent_data_ref *ref; 8075 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8076 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8077 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8078 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8079 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8080 } 8081 8082 btrfs_mark_buffer_dirty(path->nodes[0]); 8083 btrfs_free_path(path); 8084 8085 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8086 ins->offset); 8087 if (ret) 8088 return ret; 8089 8090 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 8091 if (ret) { /* -ENOENT, logic error */ 8092 btrfs_err(fs_info, "update block group failed for %llu %llu", 8093 ins->objectid, ins->offset); 8094 BUG(); 8095 } 8096 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 8097 return ret; 8098 } 8099 8100 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8101 struct btrfs_root *root, 8102 u64 parent, u64 root_objectid, 8103 u64 flags, struct btrfs_disk_key *key, 8104 int level, struct btrfs_key *ins) 8105 { 8106 int ret; 8107 struct btrfs_fs_info *fs_info = root->fs_info; 8108 struct btrfs_extent_item *extent_item; 8109 struct btrfs_tree_block_info *block_info; 8110 struct btrfs_extent_inline_ref *iref; 8111 struct btrfs_path *path; 8112 struct extent_buffer *leaf; 8113 u32 size = sizeof(*extent_item) + sizeof(*iref); 8114 u64 num_bytes = ins->offset; 8115 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8116 SKINNY_METADATA); 8117 8118 if (!skinny_metadata) 8119 size += sizeof(*block_info); 8120 8121 path = btrfs_alloc_path(); 8122 if (!path) { 8123 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8124 root->nodesize); 8125 return -ENOMEM; 8126 } 8127 8128 path->leave_spinning = 1; 8129 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8130 ins, size); 8131 if (ret) { 8132 btrfs_free_path(path); 8133 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8134 root->nodesize); 8135 return ret; 8136 } 8137 8138 leaf = path->nodes[0]; 8139 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8140 struct btrfs_extent_item); 8141 btrfs_set_extent_refs(leaf, extent_item, 1); 8142 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8143 btrfs_set_extent_flags(leaf, extent_item, 8144 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8145 8146 if (skinny_metadata) { 8147 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8148 num_bytes = root->nodesize; 8149 } else { 8150 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8151 btrfs_set_tree_block_key(leaf, block_info, key); 8152 btrfs_set_tree_block_level(leaf, block_info, level); 8153 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8154 } 8155 8156 if (parent > 0) { 8157 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8158 btrfs_set_extent_inline_ref_type(leaf, iref, 8159 BTRFS_SHARED_BLOCK_REF_KEY); 8160 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8161 } else { 8162 btrfs_set_extent_inline_ref_type(leaf, iref, 8163 BTRFS_TREE_BLOCK_REF_KEY); 8164 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8165 } 8166 8167 btrfs_mark_buffer_dirty(leaf); 8168 btrfs_free_path(path); 8169 8170 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8171 num_bytes); 8172 if (ret) 8173 return ret; 8174 8175 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 8176 1); 8177 if (ret) { /* -ENOENT, logic error */ 8178 btrfs_err(fs_info, "update block group failed for %llu %llu", 8179 ins->objectid, ins->offset); 8180 BUG(); 8181 } 8182 8183 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 8184 return ret; 8185 } 8186 8187 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8188 struct btrfs_root *root, 8189 u64 root_objectid, u64 owner, 8190 u64 offset, u64 ram_bytes, 8191 struct btrfs_key *ins) 8192 { 8193 int ret; 8194 8195 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8196 8197 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 8198 ins->offset, 0, 8199 root_objectid, owner, offset, 8200 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 8201 NULL); 8202 return ret; 8203 } 8204 8205 /* 8206 * this is used by the tree logging recovery code. It records that 8207 * an extent has been allocated and makes sure to clear the free 8208 * space cache bits as well 8209 */ 8210 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8211 struct btrfs_root *root, 8212 u64 root_objectid, u64 owner, u64 offset, 8213 struct btrfs_key *ins) 8214 { 8215 int ret; 8216 struct btrfs_block_group_cache *block_group; 8217 struct btrfs_space_info *space_info; 8218 8219 /* 8220 * Mixed block groups will exclude before processing the log so we only 8221 * need to do the exclude dance if this fs isn't mixed. 8222 */ 8223 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 8224 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 8225 if (ret) 8226 return ret; 8227 } 8228 8229 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 8230 if (!block_group) 8231 return -EINVAL; 8232 8233 space_info = block_group->space_info; 8234 spin_lock(&space_info->lock); 8235 spin_lock(&block_group->lock); 8236 space_info->bytes_reserved += ins->offset; 8237 block_group->reserved += ins->offset; 8238 spin_unlock(&block_group->lock); 8239 spin_unlock(&space_info->lock); 8240 8241 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8242 0, owner, offset, ins, 1); 8243 btrfs_put_block_group(block_group); 8244 return ret; 8245 } 8246 8247 static struct extent_buffer * 8248 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8249 u64 bytenr, int level) 8250 { 8251 struct extent_buffer *buf; 8252 8253 buf = btrfs_find_create_tree_block(root, bytenr); 8254 if (IS_ERR(buf)) 8255 return buf; 8256 8257 btrfs_set_header_generation(buf, trans->transid); 8258 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8259 btrfs_tree_lock(buf); 8260 clean_tree_block(trans, root->fs_info, buf); 8261 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8262 8263 btrfs_set_lock_blocking(buf); 8264 set_extent_buffer_uptodate(buf); 8265 8266 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8267 buf->log_index = root->log_transid % 2; 8268 /* 8269 * we allow two log transactions at a time, use different 8270 * EXENT bit to differentiate dirty pages. 8271 */ 8272 if (buf->log_index == 0) 8273 set_extent_dirty(&root->dirty_log_pages, buf->start, 8274 buf->start + buf->len - 1, GFP_NOFS); 8275 else 8276 set_extent_new(&root->dirty_log_pages, buf->start, 8277 buf->start + buf->len - 1); 8278 } else { 8279 buf->log_index = -1; 8280 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8281 buf->start + buf->len - 1, GFP_NOFS); 8282 } 8283 trans->dirty = true; 8284 /* this returns a buffer locked for blocking */ 8285 return buf; 8286 } 8287 8288 static struct btrfs_block_rsv * 8289 use_block_rsv(struct btrfs_trans_handle *trans, 8290 struct btrfs_root *root, u32 blocksize) 8291 { 8292 struct btrfs_block_rsv *block_rsv; 8293 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8294 int ret; 8295 bool global_updated = false; 8296 8297 block_rsv = get_block_rsv(trans, root); 8298 8299 if (unlikely(block_rsv->size == 0)) 8300 goto try_reserve; 8301 again: 8302 ret = block_rsv_use_bytes(block_rsv, blocksize); 8303 if (!ret) 8304 return block_rsv; 8305 8306 if (block_rsv->failfast) 8307 return ERR_PTR(ret); 8308 8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8310 global_updated = true; 8311 update_global_block_rsv(root->fs_info); 8312 goto again; 8313 } 8314 8315 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 8316 static DEFINE_RATELIMIT_STATE(_rs, 8317 DEFAULT_RATELIMIT_INTERVAL * 10, 8318 /*DEFAULT_RATELIMIT_BURST*/ 1); 8319 if (__ratelimit(&_rs)) 8320 WARN(1, KERN_DEBUG 8321 "BTRFS: block rsv returned %d\n", ret); 8322 } 8323 try_reserve: 8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8325 BTRFS_RESERVE_NO_FLUSH); 8326 if (!ret) 8327 return block_rsv; 8328 /* 8329 * If we couldn't reserve metadata bytes try and use some from 8330 * the global reserve if its space type is the same as the global 8331 * reservation. 8332 */ 8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8334 block_rsv->space_info == global_rsv->space_info) { 8335 ret = block_rsv_use_bytes(global_rsv, blocksize); 8336 if (!ret) 8337 return global_rsv; 8338 } 8339 return ERR_PTR(ret); 8340 } 8341 8342 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8343 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8344 { 8345 block_rsv_add_bytes(block_rsv, blocksize, 0); 8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8347 } 8348 8349 /* 8350 * finds a free extent and does all the dirty work required for allocation 8351 * returns the tree buffer or an ERR_PTR on error. 8352 */ 8353 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8354 struct btrfs_root *root, 8355 u64 parent, u64 root_objectid, 8356 struct btrfs_disk_key *key, int level, 8357 u64 hint, u64 empty_size) 8358 { 8359 struct btrfs_key ins; 8360 struct btrfs_block_rsv *block_rsv; 8361 struct extent_buffer *buf; 8362 struct btrfs_delayed_extent_op *extent_op; 8363 u64 flags = 0; 8364 int ret; 8365 u32 blocksize = root->nodesize; 8366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8367 SKINNY_METADATA); 8368 8369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8370 if (btrfs_is_testing(root->fs_info)) { 8371 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8372 level); 8373 if (!IS_ERR(buf)) 8374 root->alloc_bytenr += blocksize; 8375 return buf; 8376 } 8377 #endif 8378 8379 block_rsv = use_block_rsv(trans, root, blocksize); 8380 if (IS_ERR(block_rsv)) 8381 return ERR_CAST(block_rsv); 8382 8383 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8384 empty_size, hint, &ins, 0, 0); 8385 if (ret) 8386 goto out_unuse; 8387 8388 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8389 if (IS_ERR(buf)) { 8390 ret = PTR_ERR(buf); 8391 goto out_free_reserved; 8392 } 8393 8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8395 if (parent == 0) 8396 parent = ins.objectid; 8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8398 } else 8399 BUG_ON(parent > 0); 8400 8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8402 extent_op = btrfs_alloc_delayed_extent_op(); 8403 if (!extent_op) { 8404 ret = -ENOMEM; 8405 goto out_free_buf; 8406 } 8407 if (key) 8408 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8409 else 8410 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8411 extent_op->flags_to_set = flags; 8412 extent_op->update_key = skinny_metadata ? false : true; 8413 extent_op->update_flags = true; 8414 extent_op->is_data = false; 8415 extent_op->level = level; 8416 8417 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8418 ins.objectid, ins.offset, 8419 parent, root_objectid, level, 8420 BTRFS_ADD_DELAYED_EXTENT, 8421 extent_op); 8422 if (ret) 8423 goto out_free_delayed; 8424 } 8425 return buf; 8426 8427 out_free_delayed: 8428 btrfs_free_delayed_extent_op(extent_op); 8429 out_free_buf: 8430 free_extent_buffer(buf); 8431 out_free_reserved: 8432 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8433 out_unuse: 8434 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8435 return ERR_PTR(ret); 8436 } 8437 8438 struct walk_control { 8439 u64 refs[BTRFS_MAX_LEVEL]; 8440 u64 flags[BTRFS_MAX_LEVEL]; 8441 struct btrfs_key update_progress; 8442 int stage; 8443 int level; 8444 int shared_level; 8445 int update_ref; 8446 int keep_locks; 8447 int reada_slot; 8448 int reada_count; 8449 int for_reloc; 8450 }; 8451 8452 #define DROP_REFERENCE 1 8453 #define UPDATE_BACKREF 2 8454 8455 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8456 struct btrfs_root *root, 8457 struct walk_control *wc, 8458 struct btrfs_path *path) 8459 { 8460 u64 bytenr; 8461 u64 generation; 8462 u64 refs; 8463 u64 flags; 8464 u32 nritems; 8465 u32 blocksize; 8466 struct btrfs_key key; 8467 struct extent_buffer *eb; 8468 int ret; 8469 int slot; 8470 int nread = 0; 8471 8472 if (path->slots[wc->level] < wc->reada_slot) { 8473 wc->reada_count = wc->reada_count * 2 / 3; 8474 wc->reada_count = max(wc->reada_count, 2); 8475 } else { 8476 wc->reada_count = wc->reada_count * 3 / 2; 8477 wc->reada_count = min_t(int, wc->reada_count, 8478 BTRFS_NODEPTRS_PER_BLOCK(root)); 8479 } 8480 8481 eb = path->nodes[wc->level]; 8482 nritems = btrfs_header_nritems(eb); 8483 blocksize = root->nodesize; 8484 8485 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8486 if (nread >= wc->reada_count) 8487 break; 8488 8489 cond_resched(); 8490 bytenr = btrfs_node_blockptr(eb, slot); 8491 generation = btrfs_node_ptr_generation(eb, slot); 8492 8493 if (slot == path->slots[wc->level]) 8494 goto reada; 8495 8496 if (wc->stage == UPDATE_BACKREF && 8497 generation <= root->root_key.offset) 8498 continue; 8499 8500 /* We don't lock the tree block, it's OK to be racy here */ 8501 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8502 wc->level - 1, 1, &refs, 8503 &flags); 8504 /* We don't care about errors in readahead. */ 8505 if (ret < 0) 8506 continue; 8507 BUG_ON(refs == 0); 8508 8509 if (wc->stage == DROP_REFERENCE) { 8510 if (refs == 1) 8511 goto reada; 8512 8513 if (wc->level == 1 && 8514 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8515 continue; 8516 if (!wc->update_ref || 8517 generation <= root->root_key.offset) 8518 continue; 8519 btrfs_node_key_to_cpu(eb, &key, slot); 8520 ret = btrfs_comp_cpu_keys(&key, 8521 &wc->update_progress); 8522 if (ret < 0) 8523 continue; 8524 } else { 8525 if (wc->level == 1 && 8526 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8527 continue; 8528 } 8529 reada: 8530 readahead_tree_block(root, bytenr); 8531 nread++; 8532 } 8533 wc->reada_slot = slot; 8534 } 8535 8536 static int account_leaf_items(struct btrfs_trans_handle *trans, 8537 struct btrfs_root *root, 8538 struct extent_buffer *eb) 8539 { 8540 int nr = btrfs_header_nritems(eb); 8541 int i, extent_type, ret; 8542 struct btrfs_key key; 8543 struct btrfs_file_extent_item *fi; 8544 u64 bytenr, num_bytes; 8545 8546 /* We can be called directly from walk_up_proc() */ 8547 if (!root->fs_info->quota_enabled) 8548 return 0; 8549 8550 for (i = 0; i < nr; i++) { 8551 btrfs_item_key_to_cpu(eb, &key, i); 8552 8553 if (key.type != BTRFS_EXTENT_DATA_KEY) 8554 continue; 8555 8556 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8557 /* filter out non qgroup-accountable extents */ 8558 extent_type = btrfs_file_extent_type(eb, fi); 8559 8560 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8561 continue; 8562 8563 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8564 if (!bytenr) 8565 continue; 8566 8567 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8568 8569 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info, 8570 bytenr, num_bytes, GFP_NOFS); 8571 if (ret) 8572 return ret; 8573 } 8574 return 0; 8575 } 8576 8577 /* 8578 * Walk up the tree from the bottom, freeing leaves and any interior 8579 * nodes which have had all slots visited. If a node (leaf or 8580 * interior) is freed, the node above it will have it's slot 8581 * incremented. The root node will never be freed. 8582 * 8583 * At the end of this function, we should have a path which has all 8584 * slots incremented to the next position for a search. If we need to 8585 * read a new node it will be NULL and the node above it will have the 8586 * correct slot selected for a later read. 8587 * 8588 * If we increment the root nodes slot counter past the number of 8589 * elements, 1 is returned to signal completion of the search. 8590 */ 8591 static int adjust_slots_upwards(struct btrfs_root *root, 8592 struct btrfs_path *path, int root_level) 8593 { 8594 int level = 0; 8595 int nr, slot; 8596 struct extent_buffer *eb; 8597 8598 if (root_level == 0) 8599 return 1; 8600 8601 while (level <= root_level) { 8602 eb = path->nodes[level]; 8603 nr = btrfs_header_nritems(eb); 8604 path->slots[level]++; 8605 slot = path->slots[level]; 8606 if (slot >= nr || level == 0) { 8607 /* 8608 * Don't free the root - we will detect this 8609 * condition after our loop and return a 8610 * positive value for caller to stop walking the tree. 8611 */ 8612 if (level != root_level) { 8613 btrfs_tree_unlock_rw(eb, path->locks[level]); 8614 path->locks[level] = 0; 8615 8616 free_extent_buffer(eb); 8617 path->nodes[level] = NULL; 8618 path->slots[level] = 0; 8619 } 8620 } else { 8621 /* 8622 * We have a valid slot to walk back down 8623 * from. Stop here so caller can process these 8624 * new nodes. 8625 */ 8626 break; 8627 } 8628 8629 level++; 8630 } 8631 8632 eb = path->nodes[root_level]; 8633 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8634 return 1; 8635 8636 return 0; 8637 } 8638 8639 /* 8640 * root_eb is the subtree root and is locked before this function is called. 8641 */ 8642 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8643 struct btrfs_root *root, 8644 struct extent_buffer *root_eb, 8645 u64 root_gen, 8646 int root_level) 8647 { 8648 int ret = 0; 8649 int level; 8650 struct extent_buffer *eb = root_eb; 8651 struct btrfs_path *path = NULL; 8652 8653 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8654 BUG_ON(root_eb == NULL); 8655 8656 if (!root->fs_info->quota_enabled) 8657 return 0; 8658 8659 if (!extent_buffer_uptodate(root_eb)) { 8660 ret = btrfs_read_buffer(root_eb, root_gen); 8661 if (ret) 8662 goto out; 8663 } 8664 8665 if (root_level == 0) { 8666 ret = account_leaf_items(trans, root, root_eb); 8667 goto out; 8668 } 8669 8670 path = btrfs_alloc_path(); 8671 if (!path) 8672 return -ENOMEM; 8673 8674 /* 8675 * Walk down the tree. Missing extent blocks are filled in as 8676 * we go. Metadata is accounted every time we read a new 8677 * extent block. 8678 * 8679 * When we reach a leaf, we account for file extent items in it, 8680 * walk back up the tree (adjusting slot pointers as we go) 8681 * and restart the search process. 8682 */ 8683 extent_buffer_get(root_eb); /* For path */ 8684 path->nodes[root_level] = root_eb; 8685 path->slots[root_level] = 0; 8686 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8687 walk_down: 8688 level = root_level; 8689 while (level >= 0) { 8690 if (path->nodes[level] == NULL) { 8691 int parent_slot; 8692 u64 child_gen; 8693 u64 child_bytenr; 8694 8695 /* We need to get child blockptr/gen from 8696 * parent before we can read it. */ 8697 eb = path->nodes[level + 1]; 8698 parent_slot = path->slots[level + 1]; 8699 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8700 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8701 8702 eb = read_tree_block(root, child_bytenr, child_gen); 8703 if (IS_ERR(eb)) { 8704 ret = PTR_ERR(eb); 8705 goto out; 8706 } else if (!extent_buffer_uptodate(eb)) { 8707 free_extent_buffer(eb); 8708 ret = -EIO; 8709 goto out; 8710 } 8711 8712 path->nodes[level] = eb; 8713 path->slots[level] = 0; 8714 8715 btrfs_tree_read_lock(eb); 8716 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8717 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8718 8719 ret = btrfs_qgroup_insert_dirty_extent(trans, 8720 root->fs_info, child_bytenr, 8721 root->nodesize, GFP_NOFS); 8722 if (ret) 8723 goto out; 8724 } 8725 8726 if (level == 0) { 8727 ret = account_leaf_items(trans, root, path->nodes[level]); 8728 if (ret) 8729 goto out; 8730 8731 /* Nonzero return here means we completed our search */ 8732 ret = adjust_slots_upwards(root, path, root_level); 8733 if (ret) 8734 break; 8735 8736 /* Restart search with new slots */ 8737 goto walk_down; 8738 } 8739 8740 level--; 8741 } 8742 8743 ret = 0; 8744 out: 8745 btrfs_free_path(path); 8746 8747 return ret; 8748 } 8749 8750 /* 8751 * helper to process tree block while walking down the tree. 8752 * 8753 * when wc->stage == UPDATE_BACKREF, this function updates 8754 * back refs for pointers in the block. 8755 * 8756 * NOTE: return value 1 means we should stop walking down. 8757 */ 8758 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8759 struct btrfs_root *root, 8760 struct btrfs_path *path, 8761 struct walk_control *wc, int lookup_info) 8762 { 8763 int level = wc->level; 8764 struct extent_buffer *eb = path->nodes[level]; 8765 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8766 int ret; 8767 8768 if (wc->stage == UPDATE_BACKREF && 8769 btrfs_header_owner(eb) != root->root_key.objectid) 8770 return 1; 8771 8772 /* 8773 * when reference count of tree block is 1, it won't increase 8774 * again. once full backref flag is set, we never clear it. 8775 */ 8776 if (lookup_info && 8777 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8778 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8779 BUG_ON(!path->locks[level]); 8780 ret = btrfs_lookup_extent_info(trans, root, 8781 eb->start, level, 1, 8782 &wc->refs[level], 8783 &wc->flags[level]); 8784 BUG_ON(ret == -ENOMEM); 8785 if (ret) 8786 return ret; 8787 BUG_ON(wc->refs[level] == 0); 8788 } 8789 8790 if (wc->stage == DROP_REFERENCE) { 8791 if (wc->refs[level] > 1) 8792 return 1; 8793 8794 if (path->locks[level] && !wc->keep_locks) { 8795 btrfs_tree_unlock_rw(eb, path->locks[level]); 8796 path->locks[level] = 0; 8797 } 8798 return 0; 8799 } 8800 8801 /* wc->stage == UPDATE_BACKREF */ 8802 if (!(wc->flags[level] & flag)) { 8803 BUG_ON(!path->locks[level]); 8804 ret = btrfs_inc_ref(trans, root, eb, 1); 8805 BUG_ON(ret); /* -ENOMEM */ 8806 ret = btrfs_dec_ref(trans, root, eb, 0); 8807 BUG_ON(ret); /* -ENOMEM */ 8808 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8809 eb->len, flag, 8810 btrfs_header_level(eb), 0); 8811 BUG_ON(ret); /* -ENOMEM */ 8812 wc->flags[level] |= flag; 8813 } 8814 8815 /* 8816 * the block is shared by multiple trees, so it's not good to 8817 * keep the tree lock 8818 */ 8819 if (path->locks[level] && level > 0) { 8820 btrfs_tree_unlock_rw(eb, path->locks[level]); 8821 path->locks[level] = 0; 8822 } 8823 return 0; 8824 } 8825 8826 /* 8827 * helper to process tree block pointer. 8828 * 8829 * when wc->stage == DROP_REFERENCE, this function checks 8830 * reference count of the block pointed to. if the block 8831 * is shared and we need update back refs for the subtree 8832 * rooted at the block, this function changes wc->stage to 8833 * UPDATE_BACKREF. if the block is shared and there is no 8834 * need to update back, this function drops the reference 8835 * to the block. 8836 * 8837 * NOTE: return value 1 means we should stop walking down. 8838 */ 8839 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8840 struct btrfs_root *root, 8841 struct btrfs_path *path, 8842 struct walk_control *wc, int *lookup_info) 8843 { 8844 u64 bytenr; 8845 u64 generation; 8846 u64 parent; 8847 u32 blocksize; 8848 struct btrfs_key key; 8849 struct extent_buffer *next; 8850 int level = wc->level; 8851 int reada = 0; 8852 int ret = 0; 8853 bool need_account = false; 8854 8855 generation = btrfs_node_ptr_generation(path->nodes[level], 8856 path->slots[level]); 8857 /* 8858 * if the lower level block was created before the snapshot 8859 * was created, we know there is no need to update back refs 8860 * for the subtree 8861 */ 8862 if (wc->stage == UPDATE_BACKREF && 8863 generation <= root->root_key.offset) { 8864 *lookup_info = 1; 8865 return 1; 8866 } 8867 8868 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8869 blocksize = root->nodesize; 8870 8871 next = btrfs_find_tree_block(root->fs_info, bytenr); 8872 if (!next) { 8873 next = btrfs_find_create_tree_block(root, bytenr); 8874 if (IS_ERR(next)) 8875 return PTR_ERR(next); 8876 8877 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8878 level - 1); 8879 reada = 1; 8880 } 8881 btrfs_tree_lock(next); 8882 btrfs_set_lock_blocking(next); 8883 8884 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8885 &wc->refs[level - 1], 8886 &wc->flags[level - 1]); 8887 if (ret < 0) { 8888 btrfs_tree_unlock(next); 8889 return ret; 8890 } 8891 8892 if (unlikely(wc->refs[level - 1] == 0)) { 8893 btrfs_err(root->fs_info, "Missing references."); 8894 BUG(); 8895 } 8896 *lookup_info = 0; 8897 8898 if (wc->stage == DROP_REFERENCE) { 8899 if (wc->refs[level - 1] > 1) { 8900 need_account = true; 8901 if (level == 1 && 8902 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8903 goto skip; 8904 8905 if (!wc->update_ref || 8906 generation <= root->root_key.offset) 8907 goto skip; 8908 8909 btrfs_node_key_to_cpu(path->nodes[level], &key, 8910 path->slots[level]); 8911 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8912 if (ret < 0) 8913 goto skip; 8914 8915 wc->stage = UPDATE_BACKREF; 8916 wc->shared_level = level - 1; 8917 } 8918 } else { 8919 if (level == 1 && 8920 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8921 goto skip; 8922 } 8923 8924 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8925 btrfs_tree_unlock(next); 8926 free_extent_buffer(next); 8927 next = NULL; 8928 *lookup_info = 1; 8929 } 8930 8931 if (!next) { 8932 if (reada && level == 1) 8933 reada_walk_down(trans, root, wc, path); 8934 next = read_tree_block(root, bytenr, generation); 8935 if (IS_ERR(next)) { 8936 return PTR_ERR(next); 8937 } else if (!extent_buffer_uptodate(next)) { 8938 free_extent_buffer(next); 8939 return -EIO; 8940 } 8941 btrfs_tree_lock(next); 8942 btrfs_set_lock_blocking(next); 8943 } 8944 8945 level--; 8946 BUG_ON(level != btrfs_header_level(next)); 8947 path->nodes[level] = next; 8948 path->slots[level] = 0; 8949 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8950 wc->level = level; 8951 if (wc->level == 1) 8952 wc->reada_slot = 0; 8953 return 0; 8954 skip: 8955 wc->refs[level - 1] = 0; 8956 wc->flags[level - 1] = 0; 8957 if (wc->stage == DROP_REFERENCE) { 8958 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8959 parent = path->nodes[level]->start; 8960 } else { 8961 BUG_ON(root->root_key.objectid != 8962 btrfs_header_owner(path->nodes[level])); 8963 parent = 0; 8964 } 8965 8966 if (need_account) { 8967 ret = account_shared_subtree(trans, root, next, 8968 generation, level - 1); 8969 if (ret) { 8970 btrfs_err_rl(root->fs_info, 8971 "Error " 8972 "%d accounting shared subtree. Quota " 8973 "is out of sync, rescan required.", 8974 ret); 8975 } 8976 } 8977 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8978 root->root_key.objectid, level - 1, 0); 8979 BUG_ON(ret); /* -ENOMEM */ 8980 } 8981 btrfs_tree_unlock(next); 8982 free_extent_buffer(next); 8983 *lookup_info = 1; 8984 return 1; 8985 } 8986 8987 /* 8988 * helper to process tree block while walking up the tree. 8989 * 8990 * when wc->stage == DROP_REFERENCE, this function drops 8991 * reference count on the block. 8992 * 8993 * when wc->stage == UPDATE_BACKREF, this function changes 8994 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8995 * to UPDATE_BACKREF previously while processing the block. 8996 * 8997 * NOTE: return value 1 means we should stop walking up. 8998 */ 8999 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 9000 struct btrfs_root *root, 9001 struct btrfs_path *path, 9002 struct walk_control *wc) 9003 { 9004 int ret; 9005 int level = wc->level; 9006 struct extent_buffer *eb = path->nodes[level]; 9007 u64 parent = 0; 9008 9009 if (wc->stage == UPDATE_BACKREF) { 9010 BUG_ON(wc->shared_level < level); 9011 if (level < wc->shared_level) 9012 goto out; 9013 9014 ret = find_next_key(path, level + 1, &wc->update_progress); 9015 if (ret > 0) 9016 wc->update_ref = 0; 9017 9018 wc->stage = DROP_REFERENCE; 9019 wc->shared_level = -1; 9020 path->slots[level] = 0; 9021 9022 /* 9023 * check reference count again if the block isn't locked. 9024 * we should start walking down the tree again if reference 9025 * count is one. 9026 */ 9027 if (!path->locks[level]) { 9028 BUG_ON(level == 0); 9029 btrfs_tree_lock(eb); 9030 btrfs_set_lock_blocking(eb); 9031 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9032 9033 ret = btrfs_lookup_extent_info(trans, root, 9034 eb->start, level, 1, 9035 &wc->refs[level], 9036 &wc->flags[level]); 9037 if (ret < 0) { 9038 btrfs_tree_unlock_rw(eb, path->locks[level]); 9039 path->locks[level] = 0; 9040 return ret; 9041 } 9042 BUG_ON(wc->refs[level] == 0); 9043 if (wc->refs[level] == 1) { 9044 btrfs_tree_unlock_rw(eb, path->locks[level]); 9045 path->locks[level] = 0; 9046 return 1; 9047 } 9048 } 9049 } 9050 9051 /* wc->stage == DROP_REFERENCE */ 9052 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 9053 9054 if (wc->refs[level] == 1) { 9055 if (level == 0) { 9056 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9057 ret = btrfs_dec_ref(trans, root, eb, 1); 9058 else 9059 ret = btrfs_dec_ref(trans, root, eb, 0); 9060 BUG_ON(ret); /* -ENOMEM */ 9061 ret = account_leaf_items(trans, root, eb); 9062 if (ret) { 9063 btrfs_err_rl(root->fs_info, 9064 "error " 9065 "%d accounting leaf items. Quota " 9066 "is out of sync, rescan required.", 9067 ret); 9068 } 9069 } 9070 /* make block locked assertion in clean_tree_block happy */ 9071 if (!path->locks[level] && 9072 btrfs_header_generation(eb) == trans->transid) { 9073 btrfs_tree_lock(eb); 9074 btrfs_set_lock_blocking(eb); 9075 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9076 } 9077 clean_tree_block(trans, root->fs_info, eb); 9078 } 9079 9080 if (eb == root->node) { 9081 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9082 parent = eb->start; 9083 else 9084 BUG_ON(root->root_key.objectid != 9085 btrfs_header_owner(eb)); 9086 } else { 9087 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9088 parent = path->nodes[level + 1]->start; 9089 else 9090 BUG_ON(root->root_key.objectid != 9091 btrfs_header_owner(path->nodes[level + 1])); 9092 } 9093 9094 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9095 out: 9096 wc->refs[level] = 0; 9097 wc->flags[level] = 0; 9098 return 0; 9099 } 9100 9101 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9102 struct btrfs_root *root, 9103 struct btrfs_path *path, 9104 struct walk_control *wc) 9105 { 9106 int level = wc->level; 9107 int lookup_info = 1; 9108 int ret; 9109 9110 while (level >= 0) { 9111 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9112 if (ret > 0) 9113 break; 9114 9115 if (level == 0) 9116 break; 9117 9118 if (path->slots[level] >= 9119 btrfs_header_nritems(path->nodes[level])) 9120 break; 9121 9122 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9123 if (ret > 0) { 9124 path->slots[level]++; 9125 continue; 9126 } else if (ret < 0) 9127 return ret; 9128 level = wc->level; 9129 } 9130 return 0; 9131 } 9132 9133 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9134 struct btrfs_root *root, 9135 struct btrfs_path *path, 9136 struct walk_control *wc, int max_level) 9137 { 9138 int level = wc->level; 9139 int ret; 9140 9141 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9142 while (level < max_level && path->nodes[level]) { 9143 wc->level = level; 9144 if (path->slots[level] + 1 < 9145 btrfs_header_nritems(path->nodes[level])) { 9146 path->slots[level]++; 9147 return 0; 9148 } else { 9149 ret = walk_up_proc(trans, root, path, wc); 9150 if (ret > 0) 9151 return 0; 9152 9153 if (path->locks[level]) { 9154 btrfs_tree_unlock_rw(path->nodes[level], 9155 path->locks[level]); 9156 path->locks[level] = 0; 9157 } 9158 free_extent_buffer(path->nodes[level]); 9159 path->nodes[level] = NULL; 9160 level++; 9161 } 9162 } 9163 return 1; 9164 } 9165 9166 /* 9167 * drop a subvolume tree. 9168 * 9169 * this function traverses the tree freeing any blocks that only 9170 * referenced by the tree. 9171 * 9172 * when a shared tree block is found. this function decreases its 9173 * reference count by one. if update_ref is true, this function 9174 * also make sure backrefs for the shared block and all lower level 9175 * blocks are properly updated. 9176 * 9177 * If called with for_reloc == 0, may exit early with -EAGAIN 9178 */ 9179 int btrfs_drop_snapshot(struct btrfs_root *root, 9180 struct btrfs_block_rsv *block_rsv, int update_ref, 9181 int for_reloc) 9182 { 9183 struct btrfs_path *path; 9184 struct btrfs_trans_handle *trans; 9185 struct btrfs_root *tree_root = root->fs_info->tree_root; 9186 struct btrfs_root_item *root_item = &root->root_item; 9187 struct walk_control *wc; 9188 struct btrfs_key key; 9189 int err = 0; 9190 int ret; 9191 int level; 9192 bool root_dropped = false; 9193 9194 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 9195 9196 path = btrfs_alloc_path(); 9197 if (!path) { 9198 err = -ENOMEM; 9199 goto out; 9200 } 9201 9202 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9203 if (!wc) { 9204 btrfs_free_path(path); 9205 err = -ENOMEM; 9206 goto out; 9207 } 9208 9209 trans = btrfs_start_transaction(tree_root, 0); 9210 if (IS_ERR(trans)) { 9211 err = PTR_ERR(trans); 9212 goto out_free; 9213 } 9214 9215 if (block_rsv) 9216 trans->block_rsv = block_rsv; 9217 9218 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9219 level = btrfs_header_level(root->node); 9220 path->nodes[level] = btrfs_lock_root_node(root); 9221 btrfs_set_lock_blocking(path->nodes[level]); 9222 path->slots[level] = 0; 9223 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9224 memset(&wc->update_progress, 0, 9225 sizeof(wc->update_progress)); 9226 } else { 9227 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9228 memcpy(&wc->update_progress, &key, 9229 sizeof(wc->update_progress)); 9230 9231 level = root_item->drop_level; 9232 BUG_ON(level == 0); 9233 path->lowest_level = level; 9234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9235 path->lowest_level = 0; 9236 if (ret < 0) { 9237 err = ret; 9238 goto out_end_trans; 9239 } 9240 WARN_ON(ret > 0); 9241 9242 /* 9243 * unlock our path, this is safe because only this 9244 * function is allowed to delete this snapshot 9245 */ 9246 btrfs_unlock_up_safe(path, 0); 9247 9248 level = btrfs_header_level(root->node); 9249 while (1) { 9250 btrfs_tree_lock(path->nodes[level]); 9251 btrfs_set_lock_blocking(path->nodes[level]); 9252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9253 9254 ret = btrfs_lookup_extent_info(trans, root, 9255 path->nodes[level]->start, 9256 level, 1, &wc->refs[level], 9257 &wc->flags[level]); 9258 if (ret < 0) { 9259 err = ret; 9260 goto out_end_trans; 9261 } 9262 BUG_ON(wc->refs[level] == 0); 9263 9264 if (level == root_item->drop_level) 9265 break; 9266 9267 btrfs_tree_unlock(path->nodes[level]); 9268 path->locks[level] = 0; 9269 WARN_ON(wc->refs[level] != 1); 9270 level--; 9271 } 9272 } 9273 9274 wc->level = level; 9275 wc->shared_level = -1; 9276 wc->stage = DROP_REFERENCE; 9277 wc->update_ref = update_ref; 9278 wc->keep_locks = 0; 9279 wc->for_reloc = for_reloc; 9280 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9281 9282 while (1) { 9283 9284 ret = walk_down_tree(trans, root, path, wc); 9285 if (ret < 0) { 9286 err = ret; 9287 break; 9288 } 9289 9290 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9291 if (ret < 0) { 9292 err = ret; 9293 break; 9294 } 9295 9296 if (ret > 0) { 9297 BUG_ON(wc->stage != DROP_REFERENCE); 9298 break; 9299 } 9300 9301 if (wc->stage == DROP_REFERENCE) { 9302 level = wc->level; 9303 btrfs_node_key(path->nodes[level], 9304 &root_item->drop_progress, 9305 path->slots[level]); 9306 root_item->drop_level = level; 9307 } 9308 9309 BUG_ON(wc->level == 0); 9310 if (btrfs_should_end_transaction(trans, tree_root) || 9311 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9312 ret = btrfs_update_root(trans, tree_root, 9313 &root->root_key, 9314 root_item); 9315 if (ret) { 9316 btrfs_abort_transaction(trans, ret); 9317 err = ret; 9318 goto out_end_trans; 9319 } 9320 9321 btrfs_end_transaction_throttle(trans, tree_root); 9322 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9323 pr_debug("BTRFS: drop snapshot early exit\n"); 9324 err = -EAGAIN; 9325 goto out_free; 9326 } 9327 9328 trans = btrfs_start_transaction(tree_root, 0); 9329 if (IS_ERR(trans)) { 9330 err = PTR_ERR(trans); 9331 goto out_free; 9332 } 9333 if (block_rsv) 9334 trans->block_rsv = block_rsv; 9335 } 9336 } 9337 btrfs_release_path(path); 9338 if (err) 9339 goto out_end_trans; 9340 9341 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9342 if (ret) { 9343 btrfs_abort_transaction(trans, ret); 9344 goto out_end_trans; 9345 } 9346 9347 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9348 ret = btrfs_find_root(tree_root, &root->root_key, path, 9349 NULL, NULL); 9350 if (ret < 0) { 9351 btrfs_abort_transaction(trans, ret); 9352 err = ret; 9353 goto out_end_trans; 9354 } else if (ret > 0) { 9355 /* if we fail to delete the orphan item this time 9356 * around, it'll get picked up the next time. 9357 * 9358 * The most common failure here is just -ENOENT. 9359 */ 9360 btrfs_del_orphan_item(trans, tree_root, 9361 root->root_key.objectid); 9362 } 9363 } 9364 9365 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9366 btrfs_add_dropped_root(trans, root); 9367 } else { 9368 free_extent_buffer(root->node); 9369 free_extent_buffer(root->commit_root); 9370 btrfs_put_fs_root(root); 9371 } 9372 root_dropped = true; 9373 out_end_trans: 9374 btrfs_end_transaction_throttle(trans, tree_root); 9375 out_free: 9376 kfree(wc); 9377 btrfs_free_path(path); 9378 out: 9379 /* 9380 * So if we need to stop dropping the snapshot for whatever reason we 9381 * need to make sure to add it back to the dead root list so that we 9382 * keep trying to do the work later. This also cleans up roots if we 9383 * don't have it in the radix (like when we recover after a power fail 9384 * or unmount) so we don't leak memory. 9385 */ 9386 if (!for_reloc && root_dropped == false) 9387 btrfs_add_dead_root(root); 9388 if (err && err != -EAGAIN) 9389 btrfs_handle_fs_error(root->fs_info, err, NULL); 9390 return err; 9391 } 9392 9393 /* 9394 * drop subtree rooted at tree block 'node'. 9395 * 9396 * NOTE: this function will unlock and release tree block 'node' 9397 * only used by relocation code 9398 */ 9399 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9400 struct btrfs_root *root, 9401 struct extent_buffer *node, 9402 struct extent_buffer *parent) 9403 { 9404 struct btrfs_path *path; 9405 struct walk_control *wc; 9406 int level; 9407 int parent_level; 9408 int ret = 0; 9409 int wret; 9410 9411 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9412 9413 path = btrfs_alloc_path(); 9414 if (!path) 9415 return -ENOMEM; 9416 9417 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9418 if (!wc) { 9419 btrfs_free_path(path); 9420 return -ENOMEM; 9421 } 9422 9423 btrfs_assert_tree_locked(parent); 9424 parent_level = btrfs_header_level(parent); 9425 extent_buffer_get(parent); 9426 path->nodes[parent_level] = parent; 9427 path->slots[parent_level] = btrfs_header_nritems(parent); 9428 9429 btrfs_assert_tree_locked(node); 9430 level = btrfs_header_level(node); 9431 path->nodes[level] = node; 9432 path->slots[level] = 0; 9433 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9434 9435 wc->refs[parent_level] = 1; 9436 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9437 wc->level = level; 9438 wc->shared_level = -1; 9439 wc->stage = DROP_REFERENCE; 9440 wc->update_ref = 0; 9441 wc->keep_locks = 1; 9442 wc->for_reloc = 1; 9443 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9444 9445 while (1) { 9446 wret = walk_down_tree(trans, root, path, wc); 9447 if (wret < 0) { 9448 ret = wret; 9449 break; 9450 } 9451 9452 wret = walk_up_tree(trans, root, path, wc, parent_level); 9453 if (wret < 0) 9454 ret = wret; 9455 if (wret != 0) 9456 break; 9457 } 9458 9459 kfree(wc); 9460 btrfs_free_path(path); 9461 return ret; 9462 } 9463 9464 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9465 { 9466 u64 num_devices; 9467 u64 stripped; 9468 9469 /* 9470 * if restripe for this chunk_type is on pick target profile and 9471 * return, otherwise do the usual balance 9472 */ 9473 stripped = get_restripe_target(root->fs_info, flags); 9474 if (stripped) 9475 return extended_to_chunk(stripped); 9476 9477 num_devices = root->fs_info->fs_devices->rw_devices; 9478 9479 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9480 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9481 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9482 9483 if (num_devices == 1) { 9484 stripped |= BTRFS_BLOCK_GROUP_DUP; 9485 stripped = flags & ~stripped; 9486 9487 /* turn raid0 into single device chunks */ 9488 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9489 return stripped; 9490 9491 /* turn mirroring into duplication */ 9492 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9493 BTRFS_BLOCK_GROUP_RAID10)) 9494 return stripped | BTRFS_BLOCK_GROUP_DUP; 9495 } else { 9496 /* they already had raid on here, just return */ 9497 if (flags & stripped) 9498 return flags; 9499 9500 stripped |= BTRFS_BLOCK_GROUP_DUP; 9501 stripped = flags & ~stripped; 9502 9503 /* switch duplicated blocks with raid1 */ 9504 if (flags & BTRFS_BLOCK_GROUP_DUP) 9505 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9506 9507 /* this is drive concat, leave it alone */ 9508 } 9509 9510 return flags; 9511 } 9512 9513 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9514 { 9515 struct btrfs_space_info *sinfo = cache->space_info; 9516 u64 num_bytes; 9517 u64 min_allocable_bytes; 9518 int ret = -ENOSPC; 9519 9520 /* 9521 * We need some metadata space and system metadata space for 9522 * allocating chunks in some corner cases until we force to set 9523 * it to be readonly. 9524 */ 9525 if ((sinfo->flags & 9526 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9527 !force) 9528 min_allocable_bytes = SZ_1M; 9529 else 9530 min_allocable_bytes = 0; 9531 9532 spin_lock(&sinfo->lock); 9533 spin_lock(&cache->lock); 9534 9535 if (cache->ro) { 9536 cache->ro++; 9537 ret = 0; 9538 goto out; 9539 } 9540 9541 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9542 cache->bytes_super - btrfs_block_group_used(&cache->item); 9543 9544 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9545 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9546 min_allocable_bytes <= sinfo->total_bytes) { 9547 sinfo->bytes_readonly += num_bytes; 9548 cache->ro++; 9549 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9550 ret = 0; 9551 } 9552 out: 9553 spin_unlock(&cache->lock); 9554 spin_unlock(&sinfo->lock); 9555 return ret; 9556 } 9557 9558 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9559 struct btrfs_block_group_cache *cache) 9560 9561 { 9562 struct btrfs_trans_handle *trans; 9563 u64 alloc_flags; 9564 int ret; 9565 9566 again: 9567 trans = btrfs_join_transaction(root); 9568 if (IS_ERR(trans)) 9569 return PTR_ERR(trans); 9570 9571 /* 9572 * we're not allowed to set block groups readonly after the dirty 9573 * block groups cache has started writing. If it already started, 9574 * back off and let this transaction commit 9575 */ 9576 mutex_lock(&root->fs_info->ro_block_group_mutex); 9577 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9578 u64 transid = trans->transid; 9579 9580 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9581 btrfs_end_transaction(trans, root); 9582 9583 ret = btrfs_wait_for_commit(root, transid); 9584 if (ret) 9585 return ret; 9586 goto again; 9587 } 9588 9589 /* 9590 * if we are changing raid levels, try to allocate a corresponding 9591 * block group with the new raid level. 9592 */ 9593 alloc_flags = update_block_group_flags(root, cache->flags); 9594 if (alloc_flags != cache->flags) { 9595 ret = do_chunk_alloc(trans, root, alloc_flags, 9596 CHUNK_ALLOC_FORCE); 9597 /* 9598 * ENOSPC is allowed here, we may have enough space 9599 * already allocated at the new raid level to 9600 * carry on 9601 */ 9602 if (ret == -ENOSPC) 9603 ret = 0; 9604 if (ret < 0) 9605 goto out; 9606 } 9607 9608 ret = inc_block_group_ro(cache, 0); 9609 if (!ret) 9610 goto out; 9611 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9612 ret = do_chunk_alloc(trans, root, alloc_flags, 9613 CHUNK_ALLOC_FORCE); 9614 if (ret < 0) 9615 goto out; 9616 ret = inc_block_group_ro(cache, 0); 9617 out: 9618 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9619 alloc_flags = update_block_group_flags(root, cache->flags); 9620 lock_chunks(root->fs_info->chunk_root); 9621 check_system_chunk(trans, root, alloc_flags); 9622 unlock_chunks(root->fs_info->chunk_root); 9623 } 9624 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9625 9626 btrfs_end_transaction(trans, root); 9627 return ret; 9628 } 9629 9630 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9631 struct btrfs_root *root, u64 type) 9632 { 9633 u64 alloc_flags = get_alloc_profile(root, type); 9634 return do_chunk_alloc(trans, root, alloc_flags, 9635 CHUNK_ALLOC_FORCE); 9636 } 9637 9638 /* 9639 * helper to account the unused space of all the readonly block group in the 9640 * space_info. takes mirrors into account. 9641 */ 9642 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9643 { 9644 struct btrfs_block_group_cache *block_group; 9645 u64 free_bytes = 0; 9646 int factor; 9647 9648 /* It's df, we don't care if it's racy */ 9649 if (list_empty(&sinfo->ro_bgs)) 9650 return 0; 9651 9652 spin_lock(&sinfo->lock); 9653 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9654 spin_lock(&block_group->lock); 9655 9656 if (!block_group->ro) { 9657 spin_unlock(&block_group->lock); 9658 continue; 9659 } 9660 9661 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9662 BTRFS_BLOCK_GROUP_RAID10 | 9663 BTRFS_BLOCK_GROUP_DUP)) 9664 factor = 2; 9665 else 9666 factor = 1; 9667 9668 free_bytes += (block_group->key.offset - 9669 btrfs_block_group_used(&block_group->item)) * 9670 factor; 9671 9672 spin_unlock(&block_group->lock); 9673 } 9674 spin_unlock(&sinfo->lock); 9675 9676 return free_bytes; 9677 } 9678 9679 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9680 struct btrfs_block_group_cache *cache) 9681 { 9682 struct btrfs_space_info *sinfo = cache->space_info; 9683 u64 num_bytes; 9684 9685 BUG_ON(!cache->ro); 9686 9687 spin_lock(&sinfo->lock); 9688 spin_lock(&cache->lock); 9689 if (!--cache->ro) { 9690 num_bytes = cache->key.offset - cache->reserved - 9691 cache->pinned - cache->bytes_super - 9692 btrfs_block_group_used(&cache->item); 9693 sinfo->bytes_readonly -= num_bytes; 9694 list_del_init(&cache->ro_list); 9695 } 9696 spin_unlock(&cache->lock); 9697 spin_unlock(&sinfo->lock); 9698 } 9699 9700 /* 9701 * checks to see if its even possible to relocate this block group. 9702 * 9703 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9704 * ok to go ahead and try. 9705 */ 9706 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9707 { 9708 struct btrfs_block_group_cache *block_group; 9709 struct btrfs_space_info *space_info; 9710 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9711 struct btrfs_device *device; 9712 struct btrfs_trans_handle *trans; 9713 u64 min_free; 9714 u64 dev_min = 1; 9715 u64 dev_nr = 0; 9716 u64 target; 9717 int debug; 9718 int index; 9719 int full = 0; 9720 int ret = 0; 9721 9722 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG); 9723 9724 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9725 9726 /* odd, couldn't find the block group, leave it alone */ 9727 if (!block_group) { 9728 if (debug) 9729 btrfs_warn(root->fs_info, 9730 "can't find block group for bytenr %llu", 9731 bytenr); 9732 return -1; 9733 } 9734 9735 min_free = btrfs_block_group_used(&block_group->item); 9736 9737 /* no bytes used, we're good */ 9738 if (!min_free) 9739 goto out; 9740 9741 space_info = block_group->space_info; 9742 spin_lock(&space_info->lock); 9743 9744 full = space_info->full; 9745 9746 /* 9747 * if this is the last block group we have in this space, we can't 9748 * relocate it unless we're able to allocate a new chunk below. 9749 * 9750 * Otherwise, we need to make sure we have room in the space to handle 9751 * all of the extents from this block group. If we can, we're good 9752 */ 9753 if ((space_info->total_bytes != block_group->key.offset) && 9754 (space_info->bytes_used + space_info->bytes_reserved + 9755 space_info->bytes_pinned + space_info->bytes_readonly + 9756 min_free < space_info->total_bytes)) { 9757 spin_unlock(&space_info->lock); 9758 goto out; 9759 } 9760 spin_unlock(&space_info->lock); 9761 9762 /* 9763 * ok we don't have enough space, but maybe we have free space on our 9764 * devices to allocate new chunks for relocation, so loop through our 9765 * alloc devices and guess if we have enough space. if this block 9766 * group is going to be restriped, run checks against the target 9767 * profile instead of the current one. 9768 */ 9769 ret = -1; 9770 9771 /* 9772 * index: 9773 * 0: raid10 9774 * 1: raid1 9775 * 2: dup 9776 * 3: raid0 9777 * 4: single 9778 */ 9779 target = get_restripe_target(root->fs_info, block_group->flags); 9780 if (target) { 9781 index = __get_raid_index(extended_to_chunk(target)); 9782 } else { 9783 /* 9784 * this is just a balance, so if we were marked as full 9785 * we know there is no space for a new chunk 9786 */ 9787 if (full) { 9788 if (debug) 9789 btrfs_warn(root->fs_info, 9790 "no space to alloc new chunk for block group %llu", 9791 block_group->key.objectid); 9792 goto out; 9793 } 9794 9795 index = get_block_group_index(block_group); 9796 } 9797 9798 if (index == BTRFS_RAID_RAID10) { 9799 dev_min = 4; 9800 /* Divide by 2 */ 9801 min_free >>= 1; 9802 } else if (index == BTRFS_RAID_RAID1) { 9803 dev_min = 2; 9804 } else if (index == BTRFS_RAID_DUP) { 9805 /* Multiply by 2 */ 9806 min_free <<= 1; 9807 } else if (index == BTRFS_RAID_RAID0) { 9808 dev_min = fs_devices->rw_devices; 9809 min_free = div64_u64(min_free, dev_min); 9810 } 9811 9812 /* We need to do this so that we can look at pending chunks */ 9813 trans = btrfs_join_transaction(root); 9814 if (IS_ERR(trans)) { 9815 ret = PTR_ERR(trans); 9816 goto out; 9817 } 9818 9819 mutex_lock(&root->fs_info->chunk_mutex); 9820 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9821 u64 dev_offset; 9822 9823 /* 9824 * check to make sure we can actually find a chunk with enough 9825 * space to fit our block group in. 9826 */ 9827 if (device->total_bytes > device->bytes_used + min_free && 9828 !device->is_tgtdev_for_dev_replace) { 9829 ret = find_free_dev_extent(trans, device, min_free, 9830 &dev_offset, NULL); 9831 if (!ret) 9832 dev_nr++; 9833 9834 if (dev_nr >= dev_min) 9835 break; 9836 9837 ret = -1; 9838 } 9839 } 9840 if (debug && ret == -1) 9841 btrfs_warn(root->fs_info, 9842 "no space to allocate a new chunk for block group %llu", 9843 block_group->key.objectid); 9844 mutex_unlock(&root->fs_info->chunk_mutex); 9845 btrfs_end_transaction(trans, root); 9846 out: 9847 btrfs_put_block_group(block_group); 9848 return ret; 9849 } 9850 9851 static int find_first_block_group(struct btrfs_root *root, 9852 struct btrfs_path *path, struct btrfs_key *key) 9853 { 9854 int ret = 0; 9855 struct btrfs_key found_key; 9856 struct extent_buffer *leaf; 9857 int slot; 9858 9859 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9860 if (ret < 0) 9861 goto out; 9862 9863 while (1) { 9864 slot = path->slots[0]; 9865 leaf = path->nodes[0]; 9866 if (slot >= btrfs_header_nritems(leaf)) { 9867 ret = btrfs_next_leaf(root, path); 9868 if (ret == 0) 9869 continue; 9870 if (ret < 0) 9871 goto out; 9872 break; 9873 } 9874 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9875 9876 if (found_key.objectid >= key->objectid && 9877 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9878 struct extent_map_tree *em_tree; 9879 struct extent_map *em; 9880 9881 em_tree = &root->fs_info->mapping_tree.map_tree; 9882 read_lock(&em_tree->lock); 9883 em = lookup_extent_mapping(em_tree, found_key.objectid, 9884 found_key.offset); 9885 read_unlock(&em_tree->lock); 9886 if (!em) { 9887 btrfs_err(root->fs_info, 9888 "logical %llu len %llu found bg but no related chunk", 9889 found_key.objectid, found_key.offset); 9890 ret = -ENOENT; 9891 } else { 9892 ret = 0; 9893 } 9894 free_extent_map(em); 9895 goto out; 9896 } 9897 path->slots[0]++; 9898 } 9899 out: 9900 return ret; 9901 } 9902 9903 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9904 { 9905 struct btrfs_block_group_cache *block_group; 9906 u64 last = 0; 9907 9908 while (1) { 9909 struct inode *inode; 9910 9911 block_group = btrfs_lookup_first_block_group(info, last); 9912 while (block_group) { 9913 spin_lock(&block_group->lock); 9914 if (block_group->iref) 9915 break; 9916 spin_unlock(&block_group->lock); 9917 block_group = next_block_group(info->tree_root, 9918 block_group); 9919 } 9920 if (!block_group) { 9921 if (last == 0) 9922 break; 9923 last = 0; 9924 continue; 9925 } 9926 9927 inode = block_group->inode; 9928 block_group->iref = 0; 9929 block_group->inode = NULL; 9930 spin_unlock(&block_group->lock); 9931 ASSERT(block_group->io_ctl.inode == NULL); 9932 iput(inode); 9933 last = block_group->key.objectid + block_group->key.offset; 9934 btrfs_put_block_group(block_group); 9935 } 9936 } 9937 9938 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9939 { 9940 struct btrfs_block_group_cache *block_group; 9941 struct btrfs_space_info *space_info; 9942 struct btrfs_caching_control *caching_ctl; 9943 struct rb_node *n; 9944 9945 down_write(&info->commit_root_sem); 9946 while (!list_empty(&info->caching_block_groups)) { 9947 caching_ctl = list_entry(info->caching_block_groups.next, 9948 struct btrfs_caching_control, list); 9949 list_del(&caching_ctl->list); 9950 put_caching_control(caching_ctl); 9951 } 9952 up_write(&info->commit_root_sem); 9953 9954 spin_lock(&info->unused_bgs_lock); 9955 while (!list_empty(&info->unused_bgs)) { 9956 block_group = list_first_entry(&info->unused_bgs, 9957 struct btrfs_block_group_cache, 9958 bg_list); 9959 list_del_init(&block_group->bg_list); 9960 btrfs_put_block_group(block_group); 9961 } 9962 spin_unlock(&info->unused_bgs_lock); 9963 9964 spin_lock(&info->block_group_cache_lock); 9965 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9966 block_group = rb_entry(n, struct btrfs_block_group_cache, 9967 cache_node); 9968 rb_erase(&block_group->cache_node, 9969 &info->block_group_cache_tree); 9970 RB_CLEAR_NODE(&block_group->cache_node); 9971 spin_unlock(&info->block_group_cache_lock); 9972 9973 down_write(&block_group->space_info->groups_sem); 9974 list_del(&block_group->list); 9975 up_write(&block_group->space_info->groups_sem); 9976 9977 if (block_group->cached == BTRFS_CACHE_STARTED) 9978 wait_block_group_cache_done(block_group); 9979 9980 /* 9981 * We haven't cached this block group, which means we could 9982 * possibly have excluded extents on this block group. 9983 */ 9984 if (block_group->cached == BTRFS_CACHE_NO || 9985 block_group->cached == BTRFS_CACHE_ERROR) 9986 free_excluded_extents(info->extent_root, block_group); 9987 9988 btrfs_remove_free_space_cache(block_group); 9989 ASSERT(list_empty(&block_group->dirty_list)); 9990 ASSERT(list_empty(&block_group->io_list)); 9991 ASSERT(list_empty(&block_group->bg_list)); 9992 ASSERT(atomic_read(&block_group->count) == 1); 9993 btrfs_put_block_group(block_group); 9994 9995 spin_lock(&info->block_group_cache_lock); 9996 } 9997 spin_unlock(&info->block_group_cache_lock); 9998 9999 /* now that all the block groups are freed, go through and 10000 * free all the space_info structs. This is only called during 10001 * the final stages of unmount, and so we know nobody is 10002 * using them. We call synchronize_rcu() once before we start, 10003 * just to be on the safe side. 10004 */ 10005 synchronize_rcu(); 10006 10007 release_global_block_rsv(info); 10008 10009 while (!list_empty(&info->space_info)) { 10010 int i; 10011 10012 space_info = list_entry(info->space_info.next, 10013 struct btrfs_space_info, 10014 list); 10015 10016 /* 10017 * Do not hide this behind enospc_debug, this is actually 10018 * important and indicates a real bug if this happens. 10019 */ 10020 if (WARN_ON(space_info->bytes_pinned > 0 || 10021 space_info->bytes_reserved > 0 || 10022 space_info->bytes_may_use > 0)) 10023 dump_space_info(space_info, 0, 0); 10024 list_del(&space_info->list); 10025 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 10026 struct kobject *kobj; 10027 kobj = space_info->block_group_kobjs[i]; 10028 space_info->block_group_kobjs[i] = NULL; 10029 if (kobj) { 10030 kobject_del(kobj); 10031 kobject_put(kobj); 10032 } 10033 } 10034 kobject_del(&space_info->kobj); 10035 kobject_put(&space_info->kobj); 10036 } 10037 return 0; 10038 } 10039 10040 static void __link_block_group(struct btrfs_space_info *space_info, 10041 struct btrfs_block_group_cache *cache) 10042 { 10043 int index = get_block_group_index(cache); 10044 bool first = false; 10045 10046 down_write(&space_info->groups_sem); 10047 if (list_empty(&space_info->block_groups[index])) 10048 first = true; 10049 list_add_tail(&cache->list, &space_info->block_groups[index]); 10050 up_write(&space_info->groups_sem); 10051 10052 if (first) { 10053 struct raid_kobject *rkobj; 10054 int ret; 10055 10056 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10057 if (!rkobj) 10058 goto out_err; 10059 rkobj->raid_type = index; 10060 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10061 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 10062 "%s", get_raid_name(index)); 10063 if (ret) { 10064 kobject_put(&rkobj->kobj); 10065 goto out_err; 10066 } 10067 space_info->block_group_kobjs[index] = &rkobj->kobj; 10068 } 10069 10070 return; 10071 out_err: 10072 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 10073 } 10074 10075 static struct btrfs_block_group_cache * 10076 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 10077 { 10078 struct btrfs_block_group_cache *cache; 10079 10080 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10081 if (!cache) 10082 return NULL; 10083 10084 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10085 GFP_NOFS); 10086 if (!cache->free_space_ctl) { 10087 kfree(cache); 10088 return NULL; 10089 } 10090 10091 cache->key.objectid = start; 10092 cache->key.offset = size; 10093 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10094 10095 cache->sectorsize = root->sectorsize; 10096 cache->fs_info = root->fs_info; 10097 cache->full_stripe_len = btrfs_full_stripe_len(root, 10098 &root->fs_info->mapping_tree, 10099 start); 10100 set_free_space_tree_thresholds(cache); 10101 10102 atomic_set(&cache->count, 1); 10103 spin_lock_init(&cache->lock); 10104 init_rwsem(&cache->data_rwsem); 10105 INIT_LIST_HEAD(&cache->list); 10106 INIT_LIST_HEAD(&cache->cluster_list); 10107 INIT_LIST_HEAD(&cache->bg_list); 10108 INIT_LIST_HEAD(&cache->ro_list); 10109 INIT_LIST_HEAD(&cache->dirty_list); 10110 INIT_LIST_HEAD(&cache->io_list); 10111 btrfs_init_free_space_ctl(cache); 10112 atomic_set(&cache->trimming, 0); 10113 mutex_init(&cache->free_space_lock); 10114 10115 return cache; 10116 } 10117 10118 int btrfs_read_block_groups(struct btrfs_root *root) 10119 { 10120 struct btrfs_path *path; 10121 int ret; 10122 struct btrfs_block_group_cache *cache; 10123 struct btrfs_fs_info *info = root->fs_info; 10124 struct btrfs_space_info *space_info; 10125 struct btrfs_key key; 10126 struct btrfs_key found_key; 10127 struct extent_buffer *leaf; 10128 int need_clear = 0; 10129 u64 cache_gen; 10130 10131 root = info->extent_root; 10132 key.objectid = 0; 10133 key.offset = 0; 10134 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10135 path = btrfs_alloc_path(); 10136 if (!path) 10137 return -ENOMEM; 10138 path->reada = READA_FORWARD; 10139 10140 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 10141 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 10142 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 10143 need_clear = 1; 10144 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE)) 10145 need_clear = 1; 10146 10147 while (1) { 10148 ret = find_first_block_group(root, path, &key); 10149 if (ret > 0) 10150 break; 10151 if (ret != 0) 10152 goto error; 10153 10154 leaf = path->nodes[0]; 10155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10156 10157 cache = btrfs_create_block_group_cache(root, found_key.objectid, 10158 found_key.offset); 10159 if (!cache) { 10160 ret = -ENOMEM; 10161 goto error; 10162 } 10163 10164 if (need_clear) { 10165 /* 10166 * When we mount with old space cache, we need to 10167 * set BTRFS_DC_CLEAR and set dirty flag. 10168 * 10169 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10170 * truncate the old free space cache inode and 10171 * setup a new one. 10172 * b) Setting 'dirty flag' makes sure that we flush 10173 * the new space cache info onto disk. 10174 */ 10175 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 10176 cache->disk_cache_state = BTRFS_DC_CLEAR; 10177 } 10178 10179 read_extent_buffer(leaf, &cache->item, 10180 btrfs_item_ptr_offset(leaf, path->slots[0]), 10181 sizeof(cache->item)); 10182 cache->flags = btrfs_block_group_flags(&cache->item); 10183 10184 key.objectid = found_key.objectid + found_key.offset; 10185 btrfs_release_path(path); 10186 10187 /* 10188 * We need to exclude the super stripes now so that the space 10189 * info has super bytes accounted for, otherwise we'll think 10190 * we have more space than we actually do. 10191 */ 10192 ret = exclude_super_stripes(root, cache); 10193 if (ret) { 10194 /* 10195 * We may have excluded something, so call this just in 10196 * case. 10197 */ 10198 free_excluded_extents(root, cache); 10199 btrfs_put_block_group(cache); 10200 goto error; 10201 } 10202 10203 /* 10204 * check for two cases, either we are full, and therefore 10205 * don't need to bother with the caching work since we won't 10206 * find any space, or we are empty, and we can just add all 10207 * the space in and be done with it. This saves us _alot_ of 10208 * time, particularly in the full case. 10209 */ 10210 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10211 cache->last_byte_to_unpin = (u64)-1; 10212 cache->cached = BTRFS_CACHE_FINISHED; 10213 free_excluded_extents(root, cache); 10214 } else if (btrfs_block_group_used(&cache->item) == 0) { 10215 cache->last_byte_to_unpin = (u64)-1; 10216 cache->cached = BTRFS_CACHE_FINISHED; 10217 add_new_free_space(cache, root->fs_info, 10218 found_key.objectid, 10219 found_key.objectid + 10220 found_key.offset); 10221 free_excluded_extents(root, cache); 10222 } 10223 10224 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10225 if (ret) { 10226 btrfs_remove_free_space_cache(cache); 10227 btrfs_put_block_group(cache); 10228 goto error; 10229 } 10230 10231 trace_btrfs_add_block_group(root->fs_info, cache, 0); 10232 ret = update_space_info(info, cache->flags, found_key.offset, 10233 btrfs_block_group_used(&cache->item), 10234 cache->bytes_super, &space_info); 10235 if (ret) { 10236 btrfs_remove_free_space_cache(cache); 10237 spin_lock(&info->block_group_cache_lock); 10238 rb_erase(&cache->cache_node, 10239 &info->block_group_cache_tree); 10240 RB_CLEAR_NODE(&cache->cache_node); 10241 spin_unlock(&info->block_group_cache_lock); 10242 btrfs_put_block_group(cache); 10243 goto error; 10244 } 10245 10246 cache->space_info = space_info; 10247 10248 __link_block_group(space_info, cache); 10249 10250 set_avail_alloc_bits(root->fs_info, cache->flags); 10251 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10252 inc_block_group_ro(cache, 1); 10253 } else if (btrfs_block_group_used(&cache->item) == 0) { 10254 spin_lock(&info->unused_bgs_lock); 10255 /* Should always be true but just in case. */ 10256 if (list_empty(&cache->bg_list)) { 10257 btrfs_get_block_group(cache); 10258 list_add_tail(&cache->bg_list, 10259 &info->unused_bgs); 10260 } 10261 spin_unlock(&info->unused_bgs_lock); 10262 } 10263 } 10264 10265 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10266 if (!(get_alloc_profile(root, space_info->flags) & 10267 (BTRFS_BLOCK_GROUP_RAID10 | 10268 BTRFS_BLOCK_GROUP_RAID1 | 10269 BTRFS_BLOCK_GROUP_RAID5 | 10270 BTRFS_BLOCK_GROUP_RAID6 | 10271 BTRFS_BLOCK_GROUP_DUP))) 10272 continue; 10273 /* 10274 * avoid allocating from un-mirrored block group if there are 10275 * mirrored block groups. 10276 */ 10277 list_for_each_entry(cache, 10278 &space_info->block_groups[BTRFS_RAID_RAID0], 10279 list) 10280 inc_block_group_ro(cache, 1); 10281 list_for_each_entry(cache, 10282 &space_info->block_groups[BTRFS_RAID_SINGLE], 10283 list) 10284 inc_block_group_ro(cache, 1); 10285 } 10286 10287 init_global_block_rsv(info); 10288 ret = 0; 10289 error: 10290 btrfs_free_path(path); 10291 return ret; 10292 } 10293 10294 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10295 struct btrfs_root *root) 10296 { 10297 struct btrfs_block_group_cache *block_group, *tmp; 10298 struct btrfs_root *extent_root = root->fs_info->extent_root; 10299 struct btrfs_block_group_item item; 10300 struct btrfs_key key; 10301 int ret = 0; 10302 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10303 10304 trans->can_flush_pending_bgs = false; 10305 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10306 if (ret) 10307 goto next; 10308 10309 spin_lock(&block_group->lock); 10310 memcpy(&item, &block_group->item, sizeof(item)); 10311 memcpy(&key, &block_group->key, sizeof(key)); 10312 spin_unlock(&block_group->lock); 10313 10314 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10315 sizeof(item)); 10316 if (ret) 10317 btrfs_abort_transaction(trans, ret); 10318 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10319 key.objectid, key.offset); 10320 if (ret) 10321 btrfs_abort_transaction(trans, ret); 10322 add_block_group_free_space(trans, root->fs_info, block_group); 10323 /* already aborted the transaction if it failed. */ 10324 next: 10325 list_del_init(&block_group->bg_list); 10326 } 10327 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10328 } 10329 10330 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10331 struct btrfs_root *root, u64 bytes_used, 10332 u64 type, u64 chunk_objectid, u64 chunk_offset, 10333 u64 size) 10334 { 10335 int ret; 10336 struct btrfs_root *extent_root; 10337 struct btrfs_block_group_cache *cache; 10338 extent_root = root->fs_info->extent_root; 10339 10340 btrfs_set_log_full_commit(root->fs_info, trans); 10341 10342 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10343 if (!cache) 10344 return -ENOMEM; 10345 10346 btrfs_set_block_group_used(&cache->item, bytes_used); 10347 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10348 btrfs_set_block_group_flags(&cache->item, type); 10349 10350 cache->flags = type; 10351 cache->last_byte_to_unpin = (u64)-1; 10352 cache->cached = BTRFS_CACHE_FINISHED; 10353 cache->needs_free_space = 1; 10354 ret = exclude_super_stripes(root, cache); 10355 if (ret) { 10356 /* 10357 * We may have excluded something, so call this just in 10358 * case. 10359 */ 10360 free_excluded_extents(root, cache); 10361 btrfs_put_block_group(cache); 10362 return ret; 10363 } 10364 10365 add_new_free_space(cache, root->fs_info, chunk_offset, 10366 chunk_offset + size); 10367 10368 free_excluded_extents(root, cache); 10369 10370 #ifdef CONFIG_BTRFS_DEBUG 10371 if (btrfs_should_fragment_free_space(root, cache)) { 10372 u64 new_bytes_used = size - bytes_used; 10373 10374 bytes_used += new_bytes_used >> 1; 10375 fragment_free_space(root, cache); 10376 } 10377 #endif 10378 /* 10379 * Call to ensure the corresponding space_info object is created and 10380 * assigned to our block group, but don't update its counters just yet. 10381 * We want our bg to be added to the rbtree with its ->space_info set. 10382 */ 10383 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0, 10384 &cache->space_info); 10385 if (ret) { 10386 btrfs_remove_free_space_cache(cache); 10387 btrfs_put_block_group(cache); 10388 return ret; 10389 } 10390 10391 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10392 if (ret) { 10393 btrfs_remove_free_space_cache(cache); 10394 btrfs_put_block_group(cache); 10395 return ret; 10396 } 10397 10398 /* 10399 * Now that our block group has its ->space_info set and is inserted in 10400 * the rbtree, update the space info's counters. 10401 */ 10402 trace_btrfs_add_block_group(root->fs_info, cache, 1); 10403 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10404 cache->bytes_super, &cache->space_info); 10405 if (ret) { 10406 btrfs_remove_free_space_cache(cache); 10407 spin_lock(&root->fs_info->block_group_cache_lock); 10408 rb_erase(&cache->cache_node, 10409 &root->fs_info->block_group_cache_tree); 10410 RB_CLEAR_NODE(&cache->cache_node); 10411 spin_unlock(&root->fs_info->block_group_cache_lock); 10412 btrfs_put_block_group(cache); 10413 return ret; 10414 } 10415 update_global_block_rsv(root->fs_info); 10416 10417 __link_block_group(cache->space_info, cache); 10418 10419 list_add_tail(&cache->bg_list, &trans->new_bgs); 10420 10421 set_avail_alloc_bits(extent_root->fs_info, type); 10422 return 0; 10423 } 10424 10425 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10426 { 10427 u64 extra_flags = chunk_to_extended(flags) & 10428 BTRFS_EXTENDED_PROFILE_MASK; 10429 10430 write_seqlock(&fs_info->profiles_lock); 10431 if (flags & BTRFS_BLOCK_GROUP_DATA) 10432 fs_info->avail_data_alloc_bits &= ~extra_flags; 10433 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10434 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10435 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10436 fs_info->avail_system_alloc_bits &= ~extra_flags; 10437 write_sequnlock(&fs_info->profiles_lock); 10438 } 10439 10440 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10441 struct btrfs_root *root, u64 group_start, 10442 struct extent_map *em) 10443 { 10444 struct btrfs_path *path; 10445 struct btrfs_block_group_cache *block_group; 10446 struct btrfs_free_cluster *cluster; 10447 struct btrfs_root *tree_root = root->fs_info->tree_root; 10448 struct btrfs_key key; 10449 struct inode *inode; 10450 struct kobject *kobj = NULL; 10451 int ret; 10452 int index; 10453 int factor; 10454 struct btrfs_caching_control *caching_ctl = NULL; 10455 bool remove_em; 10456 10457 root = root->fs_info->extent_root; 10458 10459 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10460 BUG_ON(!block_group); 10461 BUG_ON(!block_group->ro); 10462 10463 /* 10464 * Free the reserved super bytes from this block group before 10465 * remove it. 10466 */ 10467 free_excluded_extents(root, block_group); 10468 10469 memcpy(&key, &block_group->key, sizeof(key)); 10470 index = get_block_group_index(block_group); 10471 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10472 BTRFS_BLOCK_GROUP_RAID1 | 10473 BTRFS_BLOCK_GROUP_RAID10)) 10474 factor = 2; 10475 else 10476 factor = 1; 10477 10478 /* make sure this block group isn't part of an allocation cluster */ 10479 cluster = &root->fs_info->data_alloc_cluster; 10480 spin_lock(&cluster->refill_lock); 10481 btrfs_return_cluster_to_free_space(block_group, cluster); 10482 spin_unlock(&cluster->refill_lock); 10483 10484 /* 10485 * make sure this block group isn't part of a metadata 10486 * allocation cluster 10487 */ 10488 cluster = &root->fs_info->meta_alloc_cluster; 10489 spin_lock(&cluster->refill_lock); 10490 btrfs_return_cluster_to_free_space(block_group, cluster); 10491 spin_unlock(&cluster->refill_lock); 10492 10493 path = btrfs_alloc_path(); 10494 if (!path) { 10495 ret = -ENOMEM; 10496 goto out; 10497 } 10498 10499 /* 10500 * get the inode first so any iput calls done for the io_list 10501 * aren't the final iput (no unlinks allowed now) 10502 */ 10503 inode = lookup_free_space_inode(tree_root, block_group, path); 10504 10505 mutex_lock(&trans->transaction->cache_write_mutex); 10506 /* 10507 * make sure our free spache cache IO is done before remove the 10508 * free space inode 10509 */ 10510 spin_lock(&trans->transaction->dirty_bgs_lock); 10511 if (!list_empty(&block_group->io_list)) { 10512 list_del_init(&block_group->io_list); 10513 10514 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10515 10516 spin_unlock(&trans->transaction->dirty_bgs_lock); 10517 btrfs_wait_cache_io(root, trans, block_group, 10518 &block_group->io_ctl, path, 10519 block_group->key.objectid); 10520 btrfs_put_block_group(block_group); 10521 spin_lock(&trans->transaction->dirty_bgs_lock); 10522 } 10523 10524 if (!list_empty(&block_group->dirty_list)) { 10525 list_del_init(&block_group->dirty_list); 10526 btrfs_put_block_group(block_group); 10527 } 10528 spin_unlock(&trans->transaction->dirty_bgs_lock); 10529 mutex_unlock(&trans->transaction->cache_write_mutex); 10530 10531 if (!IS_ERR(inode)) { 10532 ret = btrfs_orphan_add(trans, inode); 10533 if (ret) { 10534 btrfs_add_delayed_iput(inode); 10535 goto out; 10536 } 10537 clear_nlink(inode); 10538 /* One for the block groups ref */ 10539 spin_lock(&block_group->lock); 10540 if (block_group->iref) { 10541 block_group->iref = 0; 10542 block_group->inode = NULL; 10543 spin_unlock(&block_group->lock); 10544 iput(inode); 10545 } else { 10546 spin_unlock(&block_group->lock); 10547 } 10548 /* One for our lookup ref */ 10549 btrfs_add_delayed_iput(inode); 10550 } 10551 10552 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10553 key.offset = block_group->key.objectid; 10554 key.type = 0; 10555 10556 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10557 if (ret < 0) 10558 goto out; 10559 if (ret > 0) 10560 btrfs_release_path(path); 10561 if (ret == 0) { 10562 ret = btrfs_del_item(trans, tree_root, path); 10563 if (ret) 10564 goto out; 10565 btrfs_release_path(path); 10566 } 10567 10568 spin_lock(&root->fs_info->block_group_cache_lock); 10569 rb_erase(&block_group->cache_node, 10570 &root->fs_info->block_group_cache_tree); 10571 RB_CLEAR_NODE(&block_group->cache_node); 10572 10573 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10574 root->fs_info->first_logical_byte = (u64)-1; 10575 spin_unlock(&root->fs_info->block_group_cache_lock); 10576 10577 down_write(&block_group->space_info->groups_sem); 10578 /* 10579 * we must use list_del_init so people can check to see if they 10580 * are still on the list after taking the semaphore 10581 */ 10582 list_del_init(&block_group->list); 10583 if (list_empty(&block_group->space_info->block_groups[index])) { 10584 kobj = block_group->space_info->block_group_kobjs[index]; 10585 block_group->space_info->block_group_kobjs[index] = NULL; 10586 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10587 } 10588 up_write(&block_group->space_info->groups_sem); 10589 if (kobj) { 10590 kobject_del(kobj); 10591 kobject_put(kobj); 10592 } 10593 10594 if (block_group->has_caching_ctl) 10595 caching_ctl = get_caching_control(block_group); 10596 if (block_group->cached == BTRFS_CACHE_STARTED) 10597 wait_block_group_cache_done(block_group); 10598 if (block_group->has_caching_ctl) { 10599 down_write(&root->fs_info->commit_root_sem); 10600 if (!caching_ctl) { 10601 struct btrfs_caching_control *ctl; 10602 10603 list_for_each_entry(ctl, 10604 &root->fs_info->caching_block_groups, list) 10605 if (ctl->block_group == block_group) { 10606 caching_ctl = ctl; 10607 atomic_inc(&caching_ctl->count); 10608 break; 10609 } 10610 } 10611 if (caching_ctl) 10612 list_del_init(&caching_ctl->list); 10613 up_write(&root->fs_info->commit_root_sem); 10614 if (caching_ctl) { 10615 /* Once for the caching bgs list and once for us. */ 10616 put_caching_control(caching_ctl); 10617 put_caching_control(caching_ctl); 10618 } 10619 } 10620 10621 spin_lock(&trans->transaction->dirty_bgs_lock); 10622 if (!list_empty(&block_group->dirty_list)) { 10623 WARN_ON(1); 10624 } 10625 if (!list_empty(&block_group->io_list)) { 10626 WARN_ON(1); 10627 } 10628 spin_unlock(&trans->transaction->dirty_bgs_lock); 10629 btrfs_remove_free_space_cache(block_group); 10630 10631 spin_lock(&block_group->space_info->lock); 10632 list_del_init(&block_group->ro_list); 10633 10634 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 10635 WARN_ON(block_group->space_info->total_bytes 10636 < block_group->key.offset); 10637 WARN_ON(block_group->space_info->bytes_readonly 10638 < block_group->key.offset); 10639 WARN_ON(block_group->space_info->disk_total 10640 < block_group->key.offset * factor); 10641 } 10642 block_group->space_info->total_bytes -= block_group->key.offset; 10643 block_group->space_info->bytes_readonly -= block_group->key.offset; 10644 block_group->space_info->disk_total -= block_group->key.offset * factor; 10645 10646 spin_unlock(&block_group->space_info->lock); 10647 10648 memcpy(&key, &block_group->key, sizeof(key)); 10649 10650 lock_chunks(root); 10651 if (!list_empty(&em->list)) { 10652 /* We're in the transaction->pending_chunks list. */ 10653 free_extent_map(em); 10654 } 10655 spin_lock(&block_group->lock); 10656 block_group->removed = 1; 10657 /* 10658 * At this point trimming can't start on this block group, because we 10659 * removed the block group from the tree fs_info->block_group_cache_tree 10660 * so no one can't find it anymore and even if someone already got this 10661 * block group before we removed it from the rbtree, they have already 10662 * incremented block_group->trimming - if they didn't, they won't find 10663 * any free space entries because we already removed them all when we 10664 * called btrfs_remove_free_space_cache(). 10665 * 10666 * And we must not remove the extent map from the fs_info->mapping_tree 10667 * to prevent the same logical address range and physical device space 10668 * ranges from being reused for a new block group. This is because our 10669 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10670 * completely transactionless, so while it is trimming a range the 10671 * currently running transaction might finish and a new one start, 10672 * allowing for new block groups to be created that can reuse the same 10673 * physical device locations unless we take this special care. 10674 * 10675 * There may also be an implicit trim operation if the file system 10676 * is mounted with -odiscard. The same protections must remain 10677 * in place until the extents have been discarded completely when 10678 * the transaction commit has completed. 10679 */ 10680 remove_em = (atomic_read(&block_group->trimming) == 0); 10681 /* 10682 * Make sure a trimmer task always sees the em in the pinned_chunks list 10683 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10684 * before checking block_group->removed). 10685 */ 10686 if (!remove_em) { 10687 /* 10688 * Our em might be in trans->transaction->pending_chunks which 10689 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10690 * and so is the fs_info->pinned_chunks list. 10691 * 10692 * So at this point we must be holding the chunk_mutex to avoid 10693 * any races with chunk allocation (more specifically at 10694 * volumes.c:contains_pending_extent()), to ensure it always 10695 * sees the em, either in the pending_chunks list or in the 10696 * pinned_chunks list. 10697 */ 10698 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10699 } 10700 spin_unlock(&block_group->lock); 10701 10702 if (remove_em) { 10703 struct extent_map_tree *em_tree; 10704 10705 em_tree = &root->fs_info->mapping_tree.map_tree; 10706 write_lock(&em_tree->lock); 10707 /* 10708 * The em might be in the pending_chunks list, so make sure the 10709 * chunk mutex is locked, since remove_extent_mapping() will 10710 * delete us from that list. 10711 */ 10712 remove_extent_mapping(em_tree, em); 10713 write_unlock(&em_tree->lock); 10714 /* once for the tree */ 10715 free_extent_map(em); 10716 } 10717 10718 unlock_chunks(root); 10719 10720 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10721 if (ret) 10722 goto out; 10723 10724 btrfs_put_block_group(block_group); 10725 btrfs_put_block_group(block_group); 10726 10727 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10728 if (ret > 0) 10729 ret = -EIO; 10730 if (ret < 0) 10731 goto out; 10732 10733 ret = btrfs_del_item(trans, root, path); 10734 out: 10735 btrfs_free_path(path); 10736 return ret; 10737 } 10738 10739 struct btrfs_trans_handle * 10740 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10741 const u64 chunk_offset) 10742 { 10743 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10744 struct extent_map *em; 10745 struct map_lookup *map; 10746 unsigned int num_items; 10747 10748 read_lock(&em_tree->lock); 10749 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10750 read_unlock(&em_tree->lock); 10751 ASSERT(em && em->start == chunk_offset); 10752 10753 /* 10754 * We need to reserve 3 + N units from the metadata space info in order 10755 * to remove a block group (done at btrfs_remove_chunk() and at 10756 * btrfs_remove_block_group()), which are used for: 10757 * 10758 * 1 unit for adding the free space inode's orphan (located in the tree 10759 * of tree roots). 10760 * 1 unit for deleting the block group item (located in the extent 10761 * tree). 10762 * 1 unit for deleting the free space item (located in tree of tree 10763 * roots). 10764 * N units for deleting N device extent items corresponding to each 10765 * stripe (located in the device tree). 10766 * 10767 * In order to remove a block group we also need to reserve units in the 10768 * system space info in order to update the chunk tree (update one or 10769 * more device items and remove one chunk item), but this is done at 10770 * btrfs_remove_chunk() through a call to check_system_chunk(). 10771 */ 10772 map = em->map_lookup; 10773 num_items = 3 + map->num_stripes; 10774 free_extent_map(em); 10775 10776 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10777 num_items, 1); 10778 } 10779 10780 /* 10781 * Process the unused_bgs list and remove any that don't have any allocated 10782 * space inside of them. 10783 */ 10784 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10785 { 10786 struct btrfs_block_group_cache *block_group; 10787 struct btrfs_space_info *space_info; 10788 struct btrfs_root *root = fs_info->extent_root; 10789 struct btrfs_trans_handle *trans; 10790 int ret = 0; 10791 10792 if (!fs_info->open) 10793 return; 10794 10795 spin_lock(&fs_info->unused_bgs_lock); 10796 while (!list_empty(&fs_info->unused_bgs)) { 10797 u64 start, end; 10798 int trimming; 10799 10800 block_group = list_first_entry(&fs_info->unused_bgs, 10801 struct btrfs_block_group_cache, 10802 bg_list); 10803 list_del_init(&block_group->bg_list); 10804 10805 space_info = block_group->space_info; 10806 10807 if (ret || btrfs_mixed_space_info(space_info)) { 10808 btrfs_put_block_group(block_group); 10809 continue; 10810 } 10811 spin_unlock(&fs_info->unused_bgs_lock); 10812 10813 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10814 10815 /* Don't want to race with allocators so take the groups_sem */ 10816 down_write(&space_info->groups_sem); 10817 spin_lock(&block_group->lock); 10818 if (block_group->reserved || 10819 btrfs_block_group_used(&block_group->item) || 10820 block_group->ro || 10821 list_is_singular(&block_group->list)) { 10822 /* 10823 * We want to bail if we made new allocations or have 10824 * outstanding allocations in this block group. We do 10825 * the ro check in case balance is currently acting on 10826 * this block group. 10827 */ 10828 spin_unlock(&block_group->lock); 10829 up_write(&space_info->groups_sem); 10830 goto next; 10831 } 10832 spin_unlock(&block_group->lock); 10833 10834 /* We don't want to force the issue, only flip if it's ok. */ 10835 ret = inc_block_group_ro(block_group, 0); 10836 up_write(&space_info->groups_sem); 10837 if (ret < 0) { 10838 ret = 0; 10839 goto next; 10840 } 10841 10842 /* 10843 * Want to do this before we do anything else so we can recover 10844 * properly if we fail to join the transaction. 10845 */ 10846 trans = btrfs_start_trans_remove_block_group(fs_info, 10847 block_group->key.objectid); 10848 if (IS_ERR(trans)) { 10849 btrfs_dec_block_group_ro(root, block_group); 10850 ret = PTR_ERR(trans); 10851 goto next; 10852 } 10853 10854 /* 10855 * We could have pending pinned extents for this block group, 10856 * just delete them, we don't care about them anymore. 10857 */ 10858 start = block_group->key.objectid; 10859 end = start + block_group->key.offset - 1; 10860 /* 10861 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10862 * btrfs_finish_extent_commit(). If we are at transaction N, 10863 * another task might be running finish_extent_commit() for the 10864 * previous transaction N - 1, and have seen a range belonging 10865 * to the block group in freed_extents[] before we were able to 10866 * clear the whole block group range from freed_extents[]. This 10867 * means that task can lookup for the block group after we 10868 * unpinned it from freed_extents[] and removed it, leading to 10869 * a BUG_ON() at btrfs_unpin_extent_range(). 10870 */ 10871 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10872 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10873 EXTENT_DIRTY); 10874 if (ret) { 10875 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10876 btrfs_dec_block_group_ro(root, block_group); 10877 goto end_trans; 10878 } 10879 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10880 EXTENT_DIRTY); 10881 if (ret) { 10882 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10883 btrfs_dec_block_group_ro(root, block_group); 10884 goto end_trans; 10885 } 10886 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10887 10888 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10889 spin_lock(&space_info->lock); 10890 spin_lock(&block_group->lock); 10891 10892 space_info->bytes_pinned -= block_group->pinned; 10893 space_info->bytes_readonly += block_group->pinned; 10894 percpu_counter_add(&space_info->total_bytes_pinned, 10895 -block_group->pinned); 10896 block_group->pinned = 0; 10897 10898 spin_unlock(&block_group->lock); 10899 spin_unlock(&space_info->lock); 10900 10901 /* DISCARD can flip during remount */ 10902 trimming = btrfs_test_opt(root->fs_info, DISCARD); 10903 10904 /* Implicit trim during transaction commit. */ 10905 if (trimming) 10906 btrfs_get_block_group_trimming(block_group); 10907 10908 /* 10909 * Btrfs_remove_chunk will abort the transaction if things go 10910 * horribly wrong. 10911 */ 10912 ret = btrfs_remove_chunk(trans, root, 10913 block_group->key.objectid); 10914 10915 if (ret) { 10916 if (trimming) 10917 btrfs_put_block_group_trimming(block_group); 10918 goto end_trans; 10919 } 10920 10921 /* 10922 * If we're not mounted with -odiscard, we can just forget 10923 * about this block group. Otherwise we'll need to wait 10924 * until transaction commit to do the actual discard. 10925 */ 10926 if (trimming) { 10927 spin_lock(&fs_info->unused_bgs_lock); 10928 /* 10929 * A concurrent scrub might have added us to the list 10930 * fs_info->unused_bgs, so use a list_move operation 10931 * to add the block group to the deleted_bgs list. 10932 */ 10933 list_move(&block_group->bg_list, 10934 &trans->transaction->deleted_bgs); 10935 spin_unlock(&fs_info->unused_bgs_lock); 10936 btrfs_get_block_group(block_group); 10937 } 10938 end_trans: 10939 btrfs_end_transaction(trans, root); 10940 next: 10941 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10942 btrfs_put_block_group(block_group); 10943 spin_lock(&fs_info->unused_bgs_lock); 10944 } 10945 spin_unlock(&fs_info->unused_bgs_lock); 10946 } 10947 10948 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10949 { 10950 struct btrfs_space_info *space_info; 10951 struct btrfs_super_block *disk_super; 10952 u64 features; 10953 u64 flags; 10954 int mixed = 0; 10955 int ret; 10956 10957 disk_super = fs_info->super_copy; 10958 if (!btrfs_super_root(disk_super)) 10959 return -EINVAL; 10960 10961 features = btrfs_super_incompat_flags(disk_super); 10962 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10963 mixed = 1; 10964 10965 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10966 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10967 if (ret) 10968 goto out; 10969 10970 if (mixed) { 10971 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10972 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10973 } else { 10974 flags = BTRFS_BLOCK_GROUP_METADATA; 10975 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10976 if (ret) 10977 goto out; 10978 10979 flags = BTRFS_BLOCK_GROUP_DATA; 10980 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10981 } 10982 out: 10983 return ret; 10984 } 10985 10986 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10987 { 10988 return unpin_extent_range(root, start, end, false); 10989 } 10990 10991 /* 10992 * It used to be that old block groups would be left around forever. 10993 * Iterating over them would be enough to trim unused space. Since we 10994 * now automatically remove them, we also need to iterate over unallocated 10995 * space. 10996 * 10997 * We don't want a transaction for this since the discard may take a 10998 * substantial amount of time. We don't require that a transaction be 10999 * running, but we do need to take a running transaction into account 11000 * to ensure that we're not discarding chunks that were released in 11001 * the current transaction. 11002 * 11003 * Holding the chunks lock will prevent other threads from allocating 11004 * or releasing chunks, but it won't prevent a running transaction 11005 * from committing and releasing the memory that the pending chunks 11006 * list head uses. For that, we need to take a reference to the 11007 * transaction. 11008 */ 11009 static int btrfs_trim_free_extents(struct btrfs_device *device, 11010 u64 minlen, u64 *trimmed) 11011 { 11012 u64 start = 0, len = 0; 11013 int ret; 11014 11015 *trimmed = 0; 11016 11017 /* Not writeable = nothing to do. */ 11018 if (!device->writeable) 11019 return 0; 11020 11021 /* No free space = nothing to do. */ 11022 if (device->total_bytes <= device->bytes_used) 11023 return 0; 11024 11025 ret = 0; 11026 11027 while (1) { 11028 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 11029 struct btrfs_transaction *trans; 11030 u64 bytes; 11031 11032 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 11033 if (ret) 11034 return ret; 11035 11036 down_read(&fs_info->commit_root_sem); 11037 11038 spin_lock(&fs_info->trans_lock); 11039 trans = fs_info->running_transaction; 11040 if (trans) 11041 atomic_inc(&trans->use_count); 11042 spin_unlock(&fs_info->trans_lock); 11043 11044 ret = find_free_dev_extent_start(trans, device, minlen, start, 11045 &start, &len); 11046 if (trans) 11047 btrfs_put_transaction(trans); 11048 11049 if (ret) { 11050 up_read(&fs_info->commit_root_sem); 11051 mutex_unlock(&fs_info->chunk_mutex); 11052 if (ret == -ENOSPC) 11053 ret = 0; 11054 break; 11055 } 11056 11057 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 11058 up_read(&fs_info->commit_root_sem); 11059 mutex_unlock(&fs_info->chunk_mutex); 11060 11061 if (ret) 11062 break; 11063 11064 start += len; 11065 *trimmed += bytes; 11066 11067 if (fatal_signal_pending(current)) { 11068 ret = -ERESTARTSYS; 11069 break; 11070 } 11071 11072 cond_resched(); 11073 } 11074 11075 return ret; 11076 } 11077 11078 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 11079 { 11080 struct btrfs_fs_info *fs_info = root->fs_info; 11081 struct btrfs_block_group_cache *cache = NULL; 11082 struct btrfs_device *device; 11083 struct list_head *devices; 11084 u64 group_trimmed; 11085 u64 start; 11086 u64 end; 11087 u64 trimmed = 0; 11088 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11089 int ret = 0; 11090 11091 /* 11092 * try to trim all FS space, our block group may start from non-zero. 11093 */ 11094 if (range->len == total_bytes) 11095 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11096 else 11097 cache = btrfs_lookup_block_group(fs_info, range->start); 11098 11099 while (cache) { 11100 if (cache->key.objectid >= (range->start + range->len)) { 11101 btrfs_put_block_group(cache); 11102 break; 11103 } 11104 11105 start = max(range->start, cache->key.objectid); 11106 end = min(range->start + range->len, 11107 cache->key.objectid + cache->key.offset); 11108 11109 if (end - start >= range->minlen) { 11110 if (!block_group_cache_done(cache)) { 11111 ret = cache_block_group(cache, 0); 11112 if (ret) { 11113 btrfs_put_block_group(cache); 11114 break; 11115 } 11116 ret = wait_block_group_cache_done(cache); 11117 if (ret) { 11118 btrfs_put_block_group(cache); 11119 break; 11120 } 11121 } 11122 ret = btrfs_trim_block_group(cache, 11123 &group_trimmed, 11124 start, 11125 end, 11126 range->minlen); 11127 11128 trimmed += group_trimmed; 11129 if (ret) { 11130 btrfs_put_block_group(cache); 11131 break; 11132 } 11133 } 11134 11135 cache = next_block_group(fs_info->tree_root, cache); 11136 } 11137 11138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 11139 devices = &root->fs_info->fs_devices->alloc_list; 11140 list_for_each_entry(device, devices, dev_alloc_list) { 11141 ret = btrfs_trim_free_extents(device, range->minlen, 11142 &group_trimmed); 11143 if (ret) 11144 break; 11145 11146 trimmed += group_trimmed; 11147 } 11148 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 11149 11150 range->len = trimmed; 11151 return ret; 11152 } 11153 11154 /* 11155 * btrfs_{start,end}_write_no_snapshoting() are similar to 11156 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11157 * data into the page cache through nocow before the subvolume is snapshoted, 11158 * but flush the data into disk after the snapshot creation, or to prevent 11159 * operations while snapshoting is ongoing and that cause the snapshot to be 11160 * inconsistent (writes followed by expanding truncates for example). 11161 */ 11162 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11163 { 11164 percpu_counter_dec(&root->subv_writers->counter); 11165 /* 11166 * Make sure counter is updated before we wake up waiters. 11167 */ 11168 smp_mb(); 11169 if (waitqueue_active(&root->subv_writers->wait)) 11170 wake_up(&root->subv_writers->wait); 11171 } 11172 11173 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11174 { 11175 if (atomic_read(&root->will_be_snapshoted)) 11176 return 0; 11177 11178 percpu_counter_inc(&root->subv_writers->counter); 11179 /* 11180 * Make sure counter is updated before we check for snapshot creation. 11181 */ 11182 smp_mb(); 11183 if (atomic_read(&root->will_be_snapshoted)) { 11184 btrfs_end_write_no_snapshoting(root); 11185 return 0; 11186 } 11187 return 1; 11188 } 11189 11190 static int wait_snapshoting_atomic_t(atomic_t *a) 11191 { 11192 schedule(); 11193 return 0; 11194 } 11195 11196 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11197 { 11198 while (true) { 11199 int ret; 11200 11201 ret = btrfs_start_write_no_snapshoting(root); 11202 if (ret) 11203 break; 11204 wait_on_atomic_t(&root->will_be_snapshoted, 11205 wait_snapshoting_atomic_t, 11206 TASK_UNINTERRUPTIBLE); 11207 } 11208 } 11209