1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "compat.h" 29 #include "hash.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "transaction.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "math.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->extent_commit_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched()) { 446 caching_ctl->progress = last; 447 btrfs_release_path(path); 448 up_read(&fs_info->extent_commit_sem); 449 mutex_unlock(&caching_ctl->mutex); 450 cond_resched(); 451 goto again; 452 } 453 454 ret = btrfs_next_leaf(extent_root, path); 455 if (ret < 0) 456 goto err; 457 if (ret) 458 break; 459 leaf = path->nodes[0]; 460 nritems = btrfs_header_nritems(leaf); 461 continue; 462 } 463 464 if (key.objectid < last) { 465 key.objectid = last; 466 key.offset = 0; 467 key.type = BTRFS_EXTENT_ITEM_KEY; 468 469 caching_ctl->progress = last; 470 btrfs_release_path(path); 471 goto next; 472 } 473 474 if (key.objectid < block_group->key.objectid) { 475 path->slots[0]++; 476 continue; 477 } 478 479 if (key.objectid >= block_group->key.objectid + 480 block_group->key.offset) 481 break; 482 483 if (key.type == BTRFS_EXTENT_ITEM_KEY || 484 key.type == BTRFS_METADATA_ITEM_KEY) { 485 total_found += add_new_free_space(block_group, 486 fs_info, last, 487 key.objectid); 488 if (key.type == BTRFS_METADATA_ITEM_KEY) 489 last = key.objectid + 490 fs_info->tree_root->leafsize; 491 else 492 last = key.objectid + key.offset; 493 494 if (total_found > (1024 * 1024 * 2)) { 495 total_found = 0; 496 wake_up(&caching_ctl->wait); 497 } 498 } 499 path->slots[0]++; 500 } 501 ret = 0; 502 503 total_found += add_new_free_space(block_group, fs_info, last, 504 block_group->key.objectid + 505 block_group->key.offset); 506 caching_ctl->progress = (u64)-1; 507 508 spin_lock(&block_group->lock); 509 block_group->caching_ctl = NULL; 510 block_group->cached = BTRFS_CACHE_FINISHED; 511 spin_unlock(&block_group->lock); 512 513 err: 514 btrfs_free_path(path); 515 up_read(&fs_info->extent_commit_sem); 516 517 free_excluded_extents(extent_root, block_group); 518 519 mutex_unlock(&caching_ctl->mutex); 520 out: 521 if (ret) { 522 spin_lock(&block_group->lock); 523 block_group->caching_ctl = NULL; 524 block_group->cached = BTRFS_CACHE_ERROR; 525 spin_unlock(&block_group->lock); 526 } 527 wake_up(&caching_ctl->wait); 528 529 put_caching_control(caching_ctl); 530 btrfs_put_block_group(block_group); 531 } 532 533 static int cache_block_group(struct btrfs_block_group_cache *cache, 534 int load_cache_only) 535 { 536 DEFINE_WAIT(wait); 537 struct btrfs_fs_info *fs_info = cache->fs_info; 538 struct btrfs_caching_control *caching_ctl; 539 int ret = 0; 540 541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 542 if (!caching_ctl) 543 return -ENOMEM; 544 545 INIT_LIST_HEAD(&caching_ctl->list); 546 mutex_init(&caching_ctl->mutex); 547 init_waitqueue_head(&caching_ctl->wait); 548 caching_ctl->block_group = cache; 549 caching_ctl->progress = cache->key.objectid; 550 atomic_set(&caching_ctl->count, 1); 551 caching_ctl->work.func = caching_thread; 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 } else { 600 if (load_cache_only) { 601 cache->caching_ctl = NULL; 602 cache->cached = BTRFS_CACHE_NO; 603 } else { 604 cache->cached = BTRFS_CACHE_STARTED; 605 } 606 } 607 spin_unlock(&cache->lock); 608 wake_up(&caching_ctl->wait); 609 if (ret == 1) { 610 put_caching_control(caching_ctl); 611 free_excluded_extents(fs_info->extent_root, cache); 612 return 0; 613 } 614 } else { 615 /* 616 * We are not going to do the fast caching, set cached to the 617 * appropriate value and wakeup any waiters. 618 */ 619 spin_lock(&cache->lock); 620 if (load_cache_only) { 621 cache->caching_ctl = NULL; 622 cache->cached = BTRFS_CACHE_NO; 623 } else { 624 cache->cached = BTRFS_CACHE_STARTED; 625 } 626 spin_unlock(&cache->lock); 627 wake_up(&caching_ctl->wait); 628 } 629 630 if (load_cache_only) { 631 put_caching_control(caching_ctl); 632 return 0; 633 } 634 635 down_write(&fs_info->extent_commit_sem); 636 atomic_inc(&caching_ctl->count); 637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 638 up_write(&fs_info->extent_commit_sem); 639 640 btrfs_get_block_group(cache); 641 642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 643 644 return ret; 645 } 646 647 /* 648 * return the block group that starts at or after bytenr 649 */ 650 static struct btrfs_block_group_cache * 651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 652 { 653 struct btrfs_block_group_cache *cache; 654 655 cache = block_group_cache_tree_search(info, bytenr, 0); 656 657 return cache; 658 } 659 660 /* 661 * return the block group that contains the given bytenr 662 */ 663 struct btrfs_block_group_cache *btrfs_lookup_block_group( 664 struct btrfs_fs_info *info, 665 u64 bytenr) 666 { 667 struct btrfs_block_group_cache *cache; 668 669 cache = block_group_cache_tree_search(info, bytenr, 1); 670 671 return cache; 672 } 673 674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 675 u64 flags) 676 { 677 struct list_head *head = &info->space_info; 678 struct btrfs_space_info *found; 679 680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 681 682 rcu_read_lock(); 683 list_for_each_entry_rcu(found, head, list) { 684 if (found->flags & flags) { 685 rcu_read_unlock(); 686 return found; 687 } 688 } 689 rcu_read_unlock(); 690 return NULL; 691 } 692 693 /* 694 * after adding space to the filesystem, we need to clear the full flags 695 * on all the space infos. 696 */ 697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 698 { 699 struct list_head *head = &info->space_info; 700 struct btrfs_space_info *found; 701 702 rcu_read_lock(); 703 list_for_each_entry_rcu(found, head, list) 704 found->full = 0; 705 rcu_read_unlock(); 706 } 707 708 /* simple helper to search for an existing extent at a given offset */ 709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 710 { 711 int ret; 712 struct btrfs_key key; 713 struct btrfs_path *path; 714 715 path = btrfs_alloc_path(); 716 if (!path) 717 return -ENOMEM; 718 719 key.objectid = start; 720 key.offset = len; 721 key.type = BTRFS_EXTENT_ITEM_KEY; 722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 723 0, 0); 724 if (ret > 0) { 725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 726 if (key.objectid == start && 727 key.type == BTRFS_METADATA_ITEM_KEY) 728 ret = 0; 729 } 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->leafsize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (metadata) { 772 key.objectid = bytenr; 773 key.type = BTRFS_METADATA_ITEM_KEY; 774 key.offset = offset; 775 } else { 776 key.objectid = bytenr; 777 key.type = BTRFS_EXTENT_ITEM_KEY; 778 key.offset = offset; 779 } 780 781 if (!trans) { 782 path->skip_locking = 1; 783 path->search_commit_root = 1; 784 } 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 metadata = 0; 793 if (path->slots[0]) { 794 path->slots[0]--; 795 btrfs_item_key_to_cpu(path->nodes[0], &key, 796 path->slots[0]); 797 if (key.objectid == bytenr && 798 key.type == BTRFS_EXTENT_ITEM_KEY && 799 key.offset == root->leafsize) 800 ret = 0; 801 } 802 if (ret) { 803 key.objectid = bytenr; 804 key.type = BTRFS_EXTENT_ITEM_KEY; 805 key.offset = root->leafsize; 806 btrfs_release_path(path); 807 goto again; 808 } 809 } 810 811 if (ret == 0) { 812 leaf = path->nodes[0]; 813 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 814 if (item_size >= sizeof(*ei)) { 815 ei = btrfs_item_ptr(leaf, path->slots[0], 816 struct btrfs_extent_item); 817 num_refs = btrfs_extent_refs(leaf, ei); 818 extent_flags = btrfs_extent_flags(leaf, ei); 819 } else { 820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 821 struct btrfs_extent_item_v0 *ei0; 822 BUG_ON(item_size != sizeof(*ei0)); 823 ei0 = btrfs_item_ptr(leaf, path->slots[0], 824 struct btrfs_extent_item_v0); 825 num_refs = btrfs_extent_refs_v0(leaf, ei0); 826 /* FIXME: this isn't correct for data */ 827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 828 #else 829 BUG(); 830 #endif 831 } 832 BUG_ON(num_refs == 0); 833 } else { 834 num_refs = 0; 835 extent_flags = 0; 836 ret = 0; 837 } 838 839 if (!trans) 840 goto out; 841 842 delayed_refs = &trans->transaction->delayed_refs; 843 spin_lock(&delayed_refs->lock); 844 head = btrfs_find_delayed_ref_head(trans, bytenr); 845 if (head) { 846 if (!mutex_trylock(&head->mutex)) { 847 atomic_inc(&head->node.refs); 848 spin_unlock(&delayed_refs->lock); 849 850 btrfs_release_path(path); 851 852 /* 853 * Mutex was contended, block until it's released and try 854 * again 855 */ 856 mutex_lock(&head->mutex); 857 mutex_unlock(&head->mutex); 858 btrfs_put_delayed_ref(&head->node); 859 goto again; 860 } 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 mutex_unlock(&head->mutex); 868 } 869 spin_unlock(&delayed_refs->lock); 870 out: 871 WARN_ON(num_refs == 0); 872 if (refs) 873 *refs = num_refs; 874 if (flags) 875 *flags = extent_flags; 876 out_free: 877 btrfs_free_path(path); 878 return ret; 879 } 880 881 /* 882 * Back reference rules. Back refs have three main goals: 883 * 884 * 1) differentiate between all holders of references to an extent so that 885 * when a reference is dropped we can make sure it was a valid reference 886 * before freeing the extent. 887 * 888 * 2) Provide enough information to quickly find the holders of an extent 889 * if we notice a given block is corrupted or bad. 890 * 891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 892 * maintenance. This is actually the same as #2, but with a slightly 893 * different use case. 894 * 895 * There are two kinds of back refs. The implicit back refs is optimized 896 * for pointers in non-shared tree blocks. For a given pointer in a block, 897 * back refs of this kind provide information about the block's owner tree 898 * and the pointer's key. These information allow us to find the block by 899 * b-tree searching. The full back refs is for pointers in tree blocks not 900 * referenced by their owner trees. The location of tree block is recorded 901 * in the back refs. Actually the full back refs is generic, and can be 902 * used in all cases the implicit back refs is used. The major shortcoming 903 * of the full back refs is its overhead. Every time a tree block gets 904 * COWed, we have to update back refs entry for all pointers in it. 905 * 906 * For a newly allocated tree block, we use implicit back refs for 907 * pointers in it. This means most tree related operations only involve 908 * implicit back refs. For a tree block created in old transaction, the 909 * only way to drop a reference to it is COW it. So we can detect the 910 * event that tree block loses its owner tree's reference and do the 911 * back refs conversion. 912 * 913 * When a tree block is COW'd through a tree, there are four cases: 914 * 915 * The reference count of the block is one and the tree is the block's 916 * owner tree. Nothing to do in this case. 917 * 918 * The reference count of the block is one and the tree is not the 919 * block's owner tree. In this case, full back refs is used for pointers 920 * in the block. Remove these full back refs, add implicit back refs for 921 * every pointers in the new block. 922 * 923 * The reference count of the block is greater than one and the tree is 924 * the block's owner tree. In this case, implicit back refs is used for 925 * pointers in the block. Add full back refs for every pointers in the 926 * block, increase lower level extents' reference counts. The original 927 * implicit back refs are entailed to the new block. 928 * 929 * The reference count of the block is greater than one and the tree is 930 * not the block's owner tree. Add implicit back refs for every pointer in 931 * the new block, increase lower level extents' reference count. 932 * 933 * Back Reference Key composing: 934 * 935 * The key objectid corresponds to the first byte in the extent, 936 * The key type is used to differentiate between types of back refs. 937 * There are different meanings of the key offset for different types 938 * of back refs. 939 * 940 * File extents can be referenced by: 941 * 942 * - multiple snapshots, subvolumes, or different generations in one subvol 943 * - different files inside a single subvolume 944 * - different offsets inside a file (bookend extents in file.c) 945 * 946 * The extent ref structure for the implicit back refs has fields for: 947 * 948 * - Objectid of the subvolume root 949 * - objectid of the file holding the reference 950 * - original offset in the file 951 * - how many bookend extents 952 * 953 * The key offset for the implicit back refs is hash of the first 954 * three fields. 955 * 956 * The extent ref structure for the full back refs has field for: 957 * 958 * - number of pointers in the tree leaf 959 * 960 * The key offset for the implicit back refs is the first byte of 961 * the tree leaf 962 * 963 * When a file extent is allocated, The implicit back refs is used. 964 * the fields are filled in: 965 * 966 * (root_key.objectid, inode objectid, offset in file, 1) 967 * 968 * When a file extent is removed file truncation, we find the 969 * corresponding implicit back refs and check the following fields: 970 * 971 * (btrfs_header_owner(leaf), inode objectid, offset in file) 972 * 973 * Btree extents can be referenced by: 974 * 975 * - Different subvolumes 976 * 977 * Both the implicit back refs and the full back refs for tree blocks 978 * only consist of key. The key offset for the implicit back refs is 979 * objectid of block's owner tree. The key offset for the full back refs 980 * is the first byte of parent block. 981 * 982 * When implicit back refs is used, information about the lowest key and 983 * level of the tree block are required. These information are stored in 984 * tree block info structure. 985 */ 986 987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 989 struct btrfs_root *root, 990 struct btrfs_path *path, 991 u64 owner, u32 extra_size) 992 { 993 struct btrfs_extent_item *item; 994 struct btrfs_extent_item_v0 *ei0; 995 struct btrfs_extent_ref_v0 *ref0; 996 struct btrfs_tree_block_info *bi; 997 struct extent_buffer *leaf; 998 struct btrfs_key key; 999 struct btrfs_key found_key; 1000 u32 new_size = sizeof(*item); 1001 u64 refs; 1002 int ret; 1003 1004 leaf = path->nodes[0]; 1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1006 1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1008 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1009 struct btrfs_extent_item_v0); 1010 refs = btrfs_extent_refs_v0(leaf, ei0); 1011 1012 if (owner == (u64)-1) { 1013 while (1) { 1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1015 ret = btrfs_next_leaf(root, path); 1016 if (ret < 0) 1017 return ret; 1018 BUG_ON(ret > 0); /* Corruption */ 1019 leaf = path->nodes[0]; 1020 } 1021 btrfs_item_key_to_cpu(leaf, &found_key, 1022 path->slots[0]); 1023 BUG_ON(key.objectid != found_key.objectid); 1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1025 path->slots[0]++; 1026 continue; 1027 } 1028 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1029 struct btrfs_extent_ref_v0); 1030 owner = btrfs_ref_objectid_v0(leaf, ref0); 1031 break; 1032 } 1033 } 1034 btrfs_release_path(path); 1035 1036 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1037 new_size += sizeof(*bi); 1038 1039 new_size -= sizeof(*ei0); 1040 ret = btrfs_search_slot(trans, root, &key, path, 1041 new_size + extra_size, 1); 1042 if (ret < 0) 1043 return ret; 1044 BUG_ON(ret); /* Corruption */ 1045 1046 btrfs_extend_item(root, path, new_size); 1047 1048 leaf = path->nodes[0]; 1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1050 btrfs_set_extent_refs(leaf, item, refs); 1051 /* FIXME: get real generation */ 1052 btrfs_set_extent_generation(leaf, item, 0); 1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1054 btrfs_set_extent_flags(leaf, item, 1055 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1056 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1057 bi = (struct btrfs_tree_block_info *)(item + 1); 1058 /* FIXME: get first key of the block */ 1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1060 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1061 } else { 1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1063 } 1064 btrfs_mark_buffer_dirty(leaf); 1065 return 0; 1066 } 1067 #endif 1068 1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1070 { 1071 u32 high_crc = ~(u32)0; 1072 u32 low_crc = ~(u32)0; 1073 __le64 lenum; 1074 1075 lenum = cpu_to_le64(root_objectid); 1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1077 lenum = cpu_to_le64(owner); 1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1079 lenum = cpu_to_le64(offset); 1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1081 1082 return ((u64)high_crc << 31) ^ (u64)low_crc; 1083 } 1084 1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref) 1087 { 1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1089 btrfs_extent_data_ref_objectid(leaf, ref), 1090 btrfs_extent_data_ref_offset(leaf, ref)); 1091 } 1092 1093 static int match_extent_data_ref(struct extent_buffer *leaf, 1094 struct btrfs_extent_data_ref *ref, 1095 u64 root_objectid, u64 owner, u64 offset) 1096 { 1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1099 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1100 return 0; 1101 return 1; 1102 } 1103 1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1105 struct btrfs_root *root, 1106 struct btrfs_path *path, 1107 u64 bytenr, u64 parent, 1108 u64 root_objectid, 1109 u64 owner, u64 offset) 1110 { 1111 struct btrfs_key key; 1112 struct btrfs_extent_data_ref *ref; 1113 struct extent_buffer *leaf; 1114 u32 nritems; 1115 int ret; 1116 int recow; 1117 int err = -ENOENT; 1118 1119 key.objectid = bytenr; 1120 if (parent) { 1121 key.type = BTRFS_SHARED_DATA_REF_KEY; 1122 key.offset = parent; 1123 } else { 1124 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1125 key.offset = hash_extent_data_ref(root_objectid, 1126 owner, offset); 1127 } 1128 again: 1129 recow = 0; 1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1131 if (ret < 0) { 1132 err = ret; 1133 goto fail; 1134 } 1135 1136 if (parent) { 1137 if (!ret) 1138 return 0; 1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1140 key.type = BTRFS_EXTENT_REF_V0_KEY; 1141 btrfs_release_path(path); 1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1143 if (ret < 0) { 1144 err = ret; 1145 goto fail; 1146 } 1147 if (!ret) 1148 return 0; 1149 #endif 1150 goto fail; 1151 } 1152 1153 leaf = path->nodes[0]; 1154 nritems = btrfs_header_nritems(leaf); 1155 while (1) { 1156 if (path->slots[0] >= nritems) { 1157 ret = btrfs_next_leaf(root, path); 1158 if (ret < 0) 1159 err = ret; 1160 if (ret) 1161 goto fail; 1162 1163 leaf = path->nodes[0]; 1164 nritems = btrfs_header_nritems(leaf); 1165 recow = 1; 1166 } 1167 1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1169 if (key.objectid != bytenr || 1170 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1171 goto fail; 1172 1173 ref = btrfs_item_ptr(leaf, path->slots[0], 1174 struct btrfs_extent_data_ref); 1175 1176 if (match_extent_data_ref(leaf, ref, root_objectid, 1177 owner, offset)) { 1178 if (recow) { 1179 btrfs_release_path(path); 1180 goto again; 1181 } 1182 err = 0; 1183 break; 1184 } 1185 path->slots[0]++; 1186 } 1187 fail: 1188 return err; 1189 } 1190 1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1192 struct btrfs_root *root, 1193 struct btrfs_path *path, 1194 u64 bytenr, u64 parent, 1195 u64 root_objectid, u64 owner, 1196 u64 offset, int refs_to_add) 1197 { 1198 struct btrfs_key key; 1199 struct extent_buffer *leaf; 1200 u32 size; 1201 u32 num_refs; 1202 int ret; 1203 1204 key.objectid = bytenr; 1205 if (parent) { 1206 key.type = BTRFS_SHARED_DATA_REF_KEY; 1207 key.offset = parent; 1208 size = sizeof(struct btrfs_shared_data_ref); 1209 } else { 1210 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1211 key.offset = hash_extent_data_ref(root_objectid, 1212 owner, offset); 1213 size = sizeof(struct btrfs_extent_data_ref); 1214 } 1215 1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1217 if (ret && ret != -EEXIST) 1218 goto fail; 1219 1220 leaf = path->nodes[0]; 1221 if (parent) { 1222 struct btrfs_shared_data_ref *ref; 1223 ref = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_shared_data_ref); 1225 if (ret == 0) { 1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1227 } else { 1228 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1229 num_refs += refs_to_add; 1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1231 } 1232 } else { 1233 struct btrfs_extent_data_ref *ref; 1234 while (ret == -EEXIST) { 1235 ref = btrfs_item_ptr(leaf, path->slots[0], 1236 struct btrfs_extent_data_ref); 1237 if (match_extent_data_ref(leaf, ref, root_objectid, 1238 owner, offset)) 1239 break; 1240 btrfs_release_path(path); 1241 key.offset++; 1242 ret = btrfs_insert_empty_item(trans, root, path, &key, 1243 size); 1244 if (ret && ret != -EEXIST) 1245 goto fail; 1246 1247 leaf = path->nodes[0]; 1248 } 1249 ref = btrfs_item_ptr(leaf, path->slots[0], 1250 struct btrfs_extent_data_ref); 1251 if (ret == 0) { 1252 btrfs_set_extent_data_ref_root(leaf, ref, 1253 root_objectid); 1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1257 } else { 1258 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1259 num_refs += refs_to_add; 1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1261 } 1262 } 1263 btrfs_mark_buffer_dirty(leaf); 1264 ret = 0; 1265 fail: 1266 btrfs_release_path(path); 1267 return ret; 1268 } 1269 1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1271 struct btrfs_root *root, 1272 struct btrfs_path *path, 1273 int refs_to_drop) 1274 { 1275 struct btrfs_key key; 1276 struct btrfs_extent_data_ref *ref1 = NULL; 1277 struct btrfs_shared_data_ref *ref2 = NULL; 1278 struct extent_buffer *leaf; 1279 u32 num_refs = 0; 1280 int ret = 0; 1281 1282 leaf = path->nodes[0]; 1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1284 1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1286 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1287 struct btrfs_extent_data_ref); 1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1290 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_shared_data_ref); 1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1295 struct btrfs_extent_ref_v0 *ref0; 1296 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1297 struct btrfs_extent_ref_v0); 1298 num_refs = btrfs_ref_count_v0(leaf, ref0); 1299 #endif 1300 } else { 1301 BUG(); 1302 } 1303 1304 BUG_ON(num_refs < refs_to_drop); 1305 num_refs -= refs_to_drop; 1306 1307 if (num_refs == 0) { 1308 ret = btrfs_del_item(trans, root, path); 1309 } else { 1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1315 else { 1316 struct btrfs_extent_ref_v0 *ref0; 1317 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_ref_v0); 1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1320 } 1321 #endif 1322 btrfs_mark_buffer_dirty(leaf); 1323 } 1324 return ret; 1325 } 1326 1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1328 struct btrfs_path *path, 1329 struct btrfs_extent_inline_ref *iref) 1330 { 1331 struct btrfs_key key; 1332 struct extent_buffer *leaf; 1333 struct btrfs_extent_data_ref *ref1; 1334 struct btrfs_shared_data_ref *ref2; 1335 u32 num_refs = 0; 1336 1337 leaf = path->nodes[0]; 1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1339 if (iref) { 1340 if (btrfs_extent_inline_ref_type(leaf, iref) == 1341 BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else { 1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 } 1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1349 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_extent_data_ref); 1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1353 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_shared_data_ref); 1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1358 struct btrfs_extent_ref_v0 *ref0; 1359 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1360 struct btrfs_extent_ref_v0); 1361 num_refs = btrfs_ref_count_v0(leaf, ref0); 1362 #endif 1363 } else { 1364 WARN_ON(1); 1365 } 1366 return num_refs; 1367 } 1368 1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *root, 1371 struct btrfs_path *path, 1372 u64 bytenr, u64 parent, 1373 u64 root_objectid) 1374 { 1375 struct btrfs_key key; 1376 int ret; 1377 1378 key.objectid = bytenr; 1379 if (parent) { 1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1381 key.offset = parent; 1382 } else { 1383 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1384 key.offset = root_objectid; 1385 } 1386 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1391 if (ret == -ENOENT && parent) { 1392 btrfs_release_path(path); 1393 key.type = BTRFS_EXTENT_REF_V0_KEY; 1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1395 if (ret > 0) 1396 ret = -ENOENT; 1397 } 1398 #endif 1399 return ret; 1400 } 1401 1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root, 1404 struct btrfs_path *path, 1405 u64 bytenr, u64 parent, 1406 u64 root_objectid) 1407 { 1408 struct btrfs_key key; 1409 int ret; 1410 1411 key.objectid = bytenr; 1412 if (parent) { 1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1414 key.offset = parent; 1415 } else { 1416 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1417 key.offset = root_objectid; 1418 } 1419 1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1421 btrfs_release_path(path); 1422 return ret; 1423 } 1424 1425 static inline int extent_ref_type(u64 parent, u64 owner) 1426 { 1427 int type; 1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1429 if (parent > 0) 1430 type = BTRFS_SHARED_BLOCK_REF_KEY; 1431 else 1432 type = BTRFS_TREE_BLOCK_REF_KEY; 1433 } else { 1434 if (parent > 0) 1435 type = BTRFS_SHARED_DATA_REF_KEY; 1436 else 1437 type = BTRFS_EXTENT_DATA_REF_KEY; 1438 } 1439 return type; 1440 } 1441 1442 static int find_next_key(struct btrfs_path *path, int level, 1443 struct btrfs_key *key) 1444 1445 { 1446 for (; level < BTRFS_MAX_LEVEL; level++) { 1447 if (!path->nodes[level]) 1448 break; 1449 if (path->slots[level] + 1 >= 1450 btrfs_header_nritems(path->nodes[level])) 1451 continue; 1452 if (level == 0) 1453 btrfs_item_key_to_cpu(path->nodes[level], key, 1454 path->slots[level] + 1); 1455 else 1456 btrfs_node_key_to_cpu(path->nodes[level], key, 1457 path->slots[level] + 1); 1458 return 0; 1459 } 1460 return 1; 1461 } 1462 1463 /* 1464 * look for inline back ref. if back ref is found, *ref_ret is set 1465 * to the address of inline back ref, and 0 is returned. 1466 * 1467 * if back ref isn't found, *ref_ret is set to the address where it 1468 * should be inserted, and -ENOENT is returned. 1469 * 1470 * if insert is true and there are too many inline back refs, the path 1471 * points to the extent item, and -EAGAIN is returned. 1472 * 1473 * NOTE: inline back refs are ordered in the same way that back ref 1474 * items in the tree are ordered. 1475 */ 1476 static noinline_for_stack 1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1478 struct btrfs_root *root, 1479 struct btrfs_path *path, 1480 struct btrfs_extent_inline_ref **ref_ret, 1481 u64 bytenr, u64 num_bytes, 1482 u64 parent, u64 root_objectid, 1483 u64 owner, u64 offset, int insert) 1484 { 1485 struct btrfs_key key; 1486 struct extent_buffer *leaf; 1487 struct btrfs_extent_item *ei; 1488 struct btrfs_extent_inline_ref *iref; 1489 u64 flags; 1490 u64 item_size; 1491 unsigned long ptr; 1492 unsigned long end; 1493 int extra_size; 1494 int type; 1495 int want; 1496 int ret; 1497 int err = 0; 1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1499 SKINNY_METADATA); 1500 1501 key.objectid = bytenr; 1502 key.type = BTRFS_EXTENT_ITEM_KEY; 1503 key.offset = num_bytes; 1504 1505 want = extent_ref_type(parent, owner); 1506 if (insert) { 1507 extra_size = btrfs_extent_inline_ref_size(want); 1508 path->keep_locks = 1; 1509 } else 1510 extra_size = -1; 1511 1512 /* 1513 * Owner is our parent level, so we can just add one to get the level 1514 * for the block we are interested in. 1515 */ 1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1517 key.type = BTRFS_METADATA_ITEM_KEY; 1518 key.offset = owner; 1519 } 1520 1521 again: 1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1523 if (ret < 0) { 1524 err = ret; 1525 goto out; 1526 } 1527 1528 /* 1529 * We may be a newly converted file system which still has the old fat 1530 * extent entries for metadata, so try and see if we have one of those. 1531 */ 1532 if (ret > 0 && skinny_metadata) { 1533 skinny_metadata = false; 1534 if (path->slots[0]) { 1535 path->slots[0]--; 1536 btrfs_item_key_to_cpu(path->nodes[0], &key, 1537 path->slots[0]); 1538 if (key.objectid == bytenr && 1539 key.type == BTRFS_EXTENT_ITEM_KEY && 1540 key.offset == num_bytes) 1541 ret = 0; 1542 } 1543 if (ret) { 1544 key.type = BTRFS_EXTENT_ITEM_KEY; 1545 key.offset = num_bytes; 1546 btrfs_release_path(path); 1547 goto again; 1548 } 1549 } 1550 1551 if (ret && !insert) { 1552 err = -ENOENT; 1553 goto out; 1554 } else if (ret) { 1555 err = -EIO; 1556 WARN_ON(1); 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 int err = 0; 1983 1984 path = btrfs_alloc_path(); 1985 if (!path) 1986 return -ENOMEM; 1987 1988 path->reada = 1; 1989 path->leave_spinning = 1; 1990 /* this will setup the path even if it fails to insert the back ref */ 1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1992 path, bytenr, num_bytes, parent, 1993 root_objectid, owner, offset, 1994 refs_to_add, extent_op); 1995 if (ret == 0) 1996 goto out; 1997 1998 if (ret != -EAGAIN) { 1999 err = ret; 2000 goto out; 2001 } 2002 2003 leaf = path->nodes[0]; 2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2005 refs = btrfs_extent_refs(leaf, item); 2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2007 if (extent_op) 2008 __run_delayed_extent_op(extent_op, leaf, item); 2009 2010 btrfs_mark_buffer_dirty(leaf); 2011 btrfs_release_path(path); 2012 2013 path->reada = 1; 2014 path->leave_spinning = 1; 2015 2016 /* now insert the actual backref */ 2017 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2018 path, bytenr, parent, root_objectid, 2019 owner, offset, refs_to_add); 2020 if (ret) 2021 btrfs_abort_transaction(trans, root, ret); 2022 out: 2023 btrfs_free_path(path); 2024 return err; 2025 } 2026 2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2028 struct btrfs_root *root, 2029 struct btrfs_delayed_ref_node *node, 2030 struct btrfs_delayed_extent_op *extent_op, 2031 int insert_reserved) 2032 { 2033 int ret = 0; 2034 struct btrfs_delayed_data_ref *ref; 2035 struct btrfs_key ins; 2036 u64 parent = 0; 2037 u64 ref_root = 0; 2038 u64 flags = 0; 2039 2040 ins.objectid = node->bytenr; 2041 ins.offset = node->num_bytes; 2042 ins.type = BTRFS_EXTENT_ITEM_KEY; 2043 2044 ref = btrfs_delayed_node_to_data_ref(node); 2045 trace_run_delayed_data_ref(node, ref, node->action); 2046 2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2048 parent = ref->parent; 2049 else 2050 ref_root = ref->root; 2051 2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2053 if (extent_op) 2054 flags |= extent_op->flags_to_set; 2055 ret = alloc_reserved_file_extent(trans, root, 2056 parent, ref_root, flags, 2057 ref->objectid, ref->offset, 2058 &ins, node->ref_mod); 2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2066 ret = __btrfs_free_extent(trans, root, node->bytenr, 2067 node->num_bytes, parent, 2068 ref_root, ref->objectid, 2069 ref->offset, node->ref_mod, 2070 extent_op); 2071 } else { 2072 BUG(); 2073 } 2074 return ret; 2075 } 2076 2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2078 struct extent_buffer *leaf, 2079 struct btrfs_extent_item *ei) 2080 { 2081 u64 flags = btrfs_extent_flags(leaf, ei); 2082 if (extent_op->update_flags) { 2083 flags |= extent_op->flags_to_set; 2084 btrfs_set_extent_flags(leaf, ei, flags); 2085 } 2086 2087 if (extent_op->update_key) { 2088 struct btrfs_tree_block_info *bi; 2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2090 bi = (struct btrfs_tree_block_info *)(ei + 1); 2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2092 } 2093 } 2094 2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2096 struct btrfs_root *root, 2097 struct btrfs_delayed_ref_node *node, 2098 struct btrfs_delayed_extent_op *extent_op) 2099 { 2100 struct btrfs_key key; 2101 struct btrfs_path *path; 2102 struct btrfs_extent_item *ei; 2103 struct extent_buffer *leaf; 2104 u32 item_size; 2105 int ret; 2106 int err = 0; 2107 int metadata = !extent_op->is_data; 2108 2109 if (trans->aborted) 2110 return 0; 2111 2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2113 metadata = 0; 2114 2115 path = btrfs_alloc_path(); 2116 if (!path) 2117 return -ENOMEM; 2118 2119 key.objectid = node->bytenr; 2120 2121 if (metadata) { 2122 key.type = BTRFS_METADATA_ITEM_KEY; 2123 key.offset = extent_op->level; 2124 } else { 2125 key.type = BTRFS_EXTENT_ITEM_KEY; 2126 key.offset = node->num_bytes; 2127 } 2128 2129 again: 2130 path->reada = 1; 2131 path->leave_spinning = 1; 2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2133 path, 0, 1); 2134 if (ret < 0) { 2135 err = ret; 2136 goto out; 2137 } 2138 if (ret > 0) { 2139 if (metadata) { 2140 btrfs_release_path(path); 2141 metadata = 0; 2142 2143 key.offset = node->num_bytes; 2144 key.type = BTRFS_EXTENT_ITEM_KEY; 2145 goto again; 2146 } 2147 err = -EIO; 2148 goto out; 2149 } 2150 2151 leaf = path->nodes[0]; 2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2154 if (item_size < sizeof(*ei)) { 2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2156 path, (u64)-1, 0); 2157 if (ret < 0) { 2158 err = ret; 2159 goto out; 2160 } 2161 leaf = path->nodes[0]; 2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2163 } 2164 #endif 2165 BUG_ON(item_size < sizeof(*ei)); 2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2167 __run_delayed_extent_op(extent_op, leaf, ei); 2168 2169 btrfs_mark_buffer_dirty(leaf); 2170 out: 2171 btrfs_free_path(path); 2172 return err; 2173 } 2174 2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, 2177 struct btrfs_delayed_ref_node *node, 2178 struct btrfs_delayed_extent_op *extent_op, 2179 int insert_reserved) 2180 { 2181 int ret = 0; 2182 struct btrfs_delayed_tree_ref *ref; 2183 struct btrfs_key ins; 2184 u64 parent = 0; 2185 u64 ref_root = 0; 2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2187 SKINNY_METADATA); 2188 2189 ref = btrfs_delayed_node_to_tree_ref(node); 2190 trace_run_delayed_tree_ref(node, ref, node->action); 2191 2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2193 parent = ref->parent; 2194 else 2195 ref_root = ref->root; 2196 2197 ins.objectid = node->bytenr; 2198 if (skinny_metadata) { 2199 ins.offset = ref->level; 2200 ins.type = BTRFS_METADATA_ITEM_KEY; 2201 } else { 2202 ins.offset = node->num_bytes; 2203 ins.type = BTRFS_EXTENT_ITEM_KEY; 2204 } 2205 2206 BUG_ON(node->ref_mod != 1); 2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2208 BUG_ON(!extent_op || !extent_op->update_flags); 2209 ret = alloc_reserved_tree_block(trans, root, 2210 parent, ref_root, 2211 extent_op->flags_to_set, 2212 &extent_op->key, 2213 ref->level, &ins); 2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2216 node->num_bytes, parent, ref_root, 2217 ref->level, 0, 1, extent_op); 2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2219 ret = __btrfs_free_extent(trans, root, node->bytenr, 2220 node->num_bytes, parent, ref_root, 2221 ref->level, 0, 1, extent_op); 2222 } else { 2223 BUG(); 2224 } 2225 return ret; 2226 } 2227 2228 /* helper function to actually process a single delayed ref entry */ 2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_delayed_ref_node *node, 2232 struct btrfs_delayed_extent_op *extent_op, 2233 int insert_reserved) 2234 { 2235 int ret = 0; 2236 2237 if (trans->aborted) 2238 return 0; 2239 2240 if (btrfs_delayed_ref_is_head(node)) { 2241 struct btrfs_delayed_ref_head *head; 2242 /* 2243 * we've hit the end of the chain and we were supposed 2244 * to insert this extent into the tree. But, it got 2245 * deleted before we ever needed to insert it, so all 2246 * we have to do is clean up the accounting 2247 */ 2248 BUG_ON(extent_op); 2249 head = btrfs_delayed_node_to_head(node); 2250 trace_run_delayed_ref_head(node, head, node->action); 2251 2252 if (insert_reserved) { 2253 btrfs_pin_extent(root, node->bytenr, 2254 node->num_bytes, 1); 2255 if (head->is_data) { 2256 ret = btrfs_del_csums(trans, root, 2257 node->bytenr, 2258 node->num_bytes); 2259 } 2260 } 2261 return ret; 2262 } 2263 2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2266 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2267 insert_reserved); 2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2269 node->type == BTRFS_SHARED_DATA_REF_KEY) 2270 ret = run_delayed_data_ref(trans, root, node, extent_op, 2271 insert_reserved); 2272 else 2273 BUG(); 2274 return ret; 2275 } 2276 2277 static noinline struct btrfs_delayed_ref_node * 2278 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2279 { 2280 struct rb_node *node; 2281 struct btrfs_delayed_ref_node *ref; 2282 int action = BTRFS_ADD_DELAYED_REF; 2283 again: 2284 /* 2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2286 * this prevents ref count from going down to zero when 2287 * there still are pending delayed ref. 2288 */ 2289 node = rb_prev(&head->node.rb_node); 2290 while (1) { 2291 if (!node) 2292 break; 2293 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2294 rb_node); 2295 if (ref->bytenr != head->node.bytenr) 2296 break; 2297 if (ref->action == action) 2298 return ref; 2299 node = rb_prev(node); 2300 } 2301 if (action == BTRFS_ADD_DELAYED_REF) { 2302 action = BTRFS_DROP_DELAYED_REF; 2303 goto again; 2304 } 2305 return NULL; 2306 } 2307 2308 /* 2309 * Returns 0 on success or if called with an already aborted transaction. 2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2311 */ 2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct list_head *cluster) 2315 { 2316 struct btrfs_delayed_ref_root *delayed_refs; 2317 struct btrfs_delayed_ref_node *ref; 2318 struct btrfs_delayed_ref_head *locked_ref = NULL; 2319 struct btrfs_delayed_extent_op *extent_op; 2320 struct btrfs_fs_info *fs_info = root->fs_info; 2321 int ret; 2322 int count = 0; 2323 int must_insert_reserved = 0; 2324 2325 delayed_refs = &trans->transaction->delayed_refs; 2326 while (1) { 2327 if (!locked_ref) { 2328 /* pick a new head ref from the cluster list */ 2329 if (list_empty(cluster)) 2330 break; 2331 2332 locked_ref = list_entry(cluster->next, 2333 struct btrfs_delayed_ref_head, cluster); 2334 2335 /* grab the lock that says we are going to process 2336 * all the refs for this head */ 2337 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2338 2339 /* 2340 * we may have dropped the spin lock to get the head 2341 * mutex lock, and that might have given someone else 2342 * time to free the head. If that's true, it has been 2343 * removed from our list and we can move on. 2344 */ 2345 if (ret == -EAGAIN) { 2346 locked_ref = NULL; 2347 count++; 2348 continue; 2349 } 2350 } 2351 2352 /* 2353 * We need to try and merge add/drops of the same ref since we 2354 * can run into issues with relocate dropping the implicit ref 2355 * and then it being added back again before the drop can 2356 * finish. If we merged anything we need to re-loop so we can 2357 * get a good ref. 2358 */ 2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2360 locked_ref); 2361 2362 /* 2363 * locked_ref is the head node, so we have to go one 2364 * node back for any delayed ref updates 2365 */ 2366 ref = select_delayed_ref(locked_ref); 2367 2368 if (ref && ref->seq && 2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2370 /* 2371 * there are still refs with lower seq numbers in the 2372 * process of being added. Don't run this ref yet. 2373 */ 2374 list_del_init(&locked_ref->cluster); 2375 btrfs_delayed_ref_unlock(locked_ref); 2376 locked_ref = NULL; 2377 delayed_refs->num_heads_ready++; 2378 spin_unlock(&delayed_refs->lock); 2379 cond_resched(); 2380 spin_lock(&delayed_refs->lock); 2381 continue; 2382 } 2383 2384 /* 2385 * record the must insert reserved flag before we 2386 * drop the spin lock. 2387 */ 2388 must_insert_reserved = locked_ref->must_insert_reserved; 2389 locked_ref->must_insert_reserved = 0; 2390 2391 extent_op = locked_ref->extent_op; 2392 locked_ref->extent_op = NULL; 2393 2394 if (!ref) { 2395 /* All delayed refs have been processed, Go ahead 2396 * and send the head node to run_one_delayed_ref, 2397 * so that any accounting fixes can happen 2398 */ 2399 ref = &locked_ref->node; 2400 2401 if (extent_op && must_insert_reserved) { 2402 btrfs_free_delayed_extent_op(extent_op); 2403 extent_op = NULL; 2404 } 2405 2406 if (extent_op) { 2407 spin_unlock(&delayed_refs->lock); 2408 2409 ret = run_delayed_extent_op(trans, root, 2410 ref, extent_op); 2411 btrfs_free_delayed_extent_op(extent_op); 2412 2413 if (ret) { 2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2415 spin_lock(&delayed_refs->lock); 2416 btrfs_delayed_ref_unlock(locked_ref); 2417 return ret; 2418 } 2419 2420 goto next; 2421 } 2422 } 2423 2424 ref->in_tree = 0; 2425 rb_erase(&ref->rb_node, &delayed_refs->root); 2426 delayed_refs->num_entries--; 2427 if (!btrfs_delayed_ref_is_head(ref)) { 2428 /* 2429 * when we play the delayed ref, also correct the 2430 * ref_mod on head 2431 */ 2432 switch (ref->action) { 2433 case BTRFS_ADD_DELAYED_REF: 2434 case BTRFS_ADD_DELAYED_EXTENT: 2435 locked_ref->node.ref_mod -= ref->ref_mod; 2436 break; 2437 case BTRFS_DROP_DELAYED_REF: 2438 locked_ref->node.ref_mod += ref->ref_mod; 2439 break; 2440 default: 2441 WARN_ON(1); 2442 } 2443 } else { 2444 list_del_init(&locked_ref->cluster); 2445 } 2446 spin_unlock(&delayed_refs->lock); 2447 2448 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2449 must_insert_reserved); 2450 2451 btrfs_free_delayed_extent_op(extent_op); 2452 if (ret) { 2453 btrfs_delayed_ref_unlock(locked_ref); 2454 btrfs_put_delayed_ref(ref); 2455 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2456 spin_lock(&delayed_refs->lock); 2457 return ret; 2458 } 2459 2460 /* 2461 * If this node is a head, that means all the refs in this head 2462 * have been dealt with, and we will pick the next head to deal 2463 * with, so we must unlock the head and drop it from the cluster 2464 * list before we release it. 2465 */ 2466 if (btrfs_delayed_ref_is_head(ref)) { 2467 btrfs_delayed_ref_unlock(locked_ref); 2468 locked_ref = NULL; 2469 } 2470 btrfs_put_delayed_ref(ref); 2471 count++; 2472 next: 2473 cond_resched(); 2474 spin_lock(&delayed_refs->lock); 2475 } 2476 return count; 2477 } 2478 2479 #ifdef SCRAMBLE_DELAYED_REFS 2480 /* 2481 * Normally delayed refs get processed in ascending bytenr order. This 2482 * correlates in most cases to the order added. To expose dependencies on this 2483 * order, we start to process the tree in the middle instead of the beginning 2484 */ 2485 static u64 find_middle(struct rb_root *root) 2486 { 2487 struct rb_node *n = root->rb_node; 2488 struct btrfs_delayed_ref_node *entry; 2489 int alt = 1; 2490 u64 middle; 2491 u64 first = 0, last = 0; 2492 2493 n = rb_first(root); 2494 if (n) { 2495 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2496 first = entry->bytenr; 2497 } 2498 n = rb_last(root); 2499 if (n) { 2500 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2501 last = entry->bytenr; 2502 } 2503 n = root->rb_node; 2504 2505 while (n) { 2506 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2507 WARN_ON(!entry->in_tree); 2508 2509 middle = entry->bytenr; 2510 2511 if (alt) 2512 n = n->rb_left; 2513 else 2514 n = n->rb_right; 2515 2516 alt = 1 - alt; 2517 } 2518 return middle; 2519 } 2520 #endif 2521 2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2523 struct btrfs_fs_info *fs_info) 2524 { 2525 struct qgroup_update *qgroup_update; 2526 int ret = 0; 2527 2528 if (list_empty(&trans->qgroup_ref_list) != 2529 !trans->delayed_ref_elem.seq) { 2530 /* list without seq or seq without list */ 2531 btrfs_err(fs_info, 2532 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2533 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2534 (u32)(trans->delayed_ref_elem.seq >> 32), 2535 (u32)trans->delayed_ref_elem.seq); 2536 BUG(); 2537 } 2538 2539 if (!trans->delayed_ref_elem.seq) 2540 return 0; 2541 2542 while (!list_empty(&trans->qgroup_ref_list)) { 2543 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2544 struct qgroup_update, list); 2545 list_del(&qgroup_update->list); 2546 if (!ret) 2547 ret = btrfs_qgroup_account_ref( 2548 trans, fs_info, qgroup_update->node, 2549 qgroup_update->extent_op); 2550 kfree(qgroup_update); 2551 } 2552 2553 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2554 2555 return ret; 2556 } 2557 2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2559 int count) 2560 { 2561 int val = atomic_read(&delayed_refs->ref_seq); 2562 2563 if (val < seq || val >= seq + count) 2564 return 1; 2565 return 0; 2566 } 2567 2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2569 { 2570 u64 num_bytes; 2571 2572 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2573 sizeof(struct btrfs_extent_inline_ref)); 2574 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2575 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2576 2577 /* 2578 * We don't ever fill up leaves all the way so multiply by 2 just to be 2579 * closer to what we're really going to want to ouse. 2580 */ 2581 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2582 } 2583 2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2585 struct btrfs_root *root) 2586 { 2587 struct btrfs_block_rsv *global_rsv; 2588 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2589 u64 num_bytes; 2590 int ret = 0; 2591 2592 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2593 num_heads = heads_to_leaves(root, num_heads); 2594 if (num_heads > 1) 2595 num_bytes += (num_heads - 1) * root->leafsize; 2596 num_bytes <<= 1; 2597 global_rsv = &root->fs_info->global_block_rsv; 2598 2599 /* 2600 * If we can't allocate any more chunks lets make sure we have _lots_ of 2601 * wiggle room since running delayed refs can create more delayed refs. 2602 */ 2603 if (global_rsv->space_info->full) 2604 num_bytes <<= 1; 2605 2606 spin_lock(&global_rsv->lock); 2607 if (global_rsv->reserved <= num_bytes) 2608 ret = 1; 2609 spin_unlock(&global_rsv->lock); 2610 return ret; 2611 } 2612 2613 /* 2614 * this starts processing the delayed reference count updates and 2615 * extent insertions we have queued up so far. count can be 2616 * 0, which means to process everything in the tree at the start 2617 * of the run (but not newly added entries), or it can be some target 2618 * number you'd like to process. 2619 * 2620 * Returns 0 on success or if called with an aborted transaction 2621 * Returns <0 on error and aborts the transaction 2622 */ 2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2624 struct btrfs_root *root, unsigned long count) 2625 { 2626 struct rb_node *node; 2627 struct btrfs_delayed_ref_root *delayed_refs; 2628 struct btrfs_delayed_ref_node *ref; 2629 struct list_head cluster; 2630 int ret; 2631 u64 delayed_start; 2632 int run_all = count == (unsigned long)-1; 2633 int run_most = 0; 2634 int loops; 2635 2636 /* We'll clean this up in btrfs_cleanup_transaction */ 2637 if (trans->aborted) 2638 return 0; 2639 2640 if (root == root->fs_info->extent_root) 2641 root = root->fs_info->tree_root; 2642 2643 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2644 2645 delayed_refs = &trans->transaction->delayed_refs; 2646 INIT_LIST_HEAD(&cluster); 2647 if (count == 0) { 2648 count = delayed_refs->num_entries * 2; 2649 run_most = 1; 2650 } 2651 2652 if (!run_all && !run_most) { 2653 int old; 2654 int seq = atomic_read(&delayed_refs->ref_seq); 2655 2656 progress: 2657 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2658 if (old) { 2659 DEFINE_WAIT(__wait); 2660 if (delayed_refs->flushing || 2661 !btrfs_should_throttle_delayed_refs(trans, root)) 2662 return 0; 2663 2664 prepare_to_wait(&delayed_refs->wait, &__wait, 2665 TASK_UNINTERRUPTIBLE); 2666 2667 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2668 if (old) { 2669 schedule(); 2670 finish_wait(&delayed_refs->wait, &__wait); 2671 2672 if (!refs_newer(delayed_refs, seq, 256)) 2673 goto progress; 2674 else 2675 return 0; 2676 } else { 2677 finish_wait(&delayed_refs->wait, &__wait); 2678 goto again; 2679 } 2680 } 2681 2682 } else { 2683 atomic_inc(&delayed_refs->procs_running_refs); 2684 } 2685 2686 again: 2687 loops = 0; 2688 spin_lock(&delayed_refs->lock); 2689 2690 #ifdef SCRAMBLE_DELAYED_REFS 2691 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2692 #endif 2693 2694 while (1) { 2695 if (!(run_all || run_most) && 2696 !btrfs_should_throttle_delayed_refs(trans, root)) 2697 break; 2698 2699 /* 2700 * go find something we can process in the rbtree. We start at 2701 * the beginning of the tree, and then build a cluster 2702 * of refs to process starting at the first one we are able to 2703 * lock 2704 */ 2705 delayed_start = delayed_refs->run_delayed_start; 2706 ret = btrfs_find_ref_cluster(trans, &cluster, 2707 delayed_refs->run_delayed_start); 2708 if (ret) 2709 break; 2710 2711 ret = run_clustered_refs(trans, root, &cluster); 2712 if (ret < 0) { 2713 btrfs_release_ref_cluster(&cluster); 2714 spin_unlock(&delayed_refs->lock); 2715 btrfs_abort_transaction(trans, root, ret); 2716 atomic_dec(&delayed_refs->procs_running_refs); 2717 wake_up(&delayed_refs->wait); 2718 return ret; 2719 } 2720 2721 atomic_add(ret, &delayed_refs->ref_seq); 2722 2723 count -= min_t(unsigned long, ret, count); 2724 2725 if (count == 0) 2726 break; 2727 2728 if (delayed_start >= delayed_refs->run_delayed_start) { 2729 if (loops == 0) { 2730 /* 2731 * btrfs_find_ref_cluster looped. let's do one 2732 * more cycle. if we don't run any delayed ref 2733 * during that cycle (because we can't because 2734 * all of them are blocked), bail out. 2735 */ 2736 loops = 1; 2737 } else { 2738 /* 2739 * no runnable refs left, stop trying 2740 */ 2741 BUG_ON(run_all); 2742 break; 2743 } 2744 } 2745 if (ret) { 2746 /* refs were run, let's reset staleness detection */ 2747 loops = 0; 2748 } 2749 } 2750 2751 if (run_all) { 2752 if (!list_empty(&trans->new_bgs)) { 2753 spin_unlock(&delayed_refs->lock); 2754 btrfs_create_pending_block_groups(trans, root); 2755 spin_lock(&delayed_refs->lock); 2756 } 2757 2758 node = rb_first(&delayed_refs->root); 2759 if (!node) 2760 goto out; 2761 count = (unsigned long)-1; 2762 2763 while (node) { 2764 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2765 rb_node); 2766 if (btrfs_delayed_ref_is_head(ref)) { 2767 struct btrfs_delayed_ref_head *head; 2768 2769 head = btrfs_delayed_node_to_head(ref); 2770 atomic_inc(&ref->refs); 2771 2772 spin_unlock(&delayed_refs->lock); 2773 /* 2774 * Mutex was contended, block until it's 2775 * released and try again 2776 */ 2777 mutex_lock(&head->mutex); 2778 mutex_unlock(&head->mutex); 2779 2780 btrfs_put_delayed_ref(ref); 2781 cond_resched(); 2782 goto again; 2783 } 2784 node = rb_next(node); 2785 } 2786 spin_unlock(&delayed_refs->lock); 2787 schedule_timeout(1); 2788 goto again; 2789 } 2790 out: 2791 atomic_dec(&delayed_refs->procs_running_refs); 2792 smp_mb(); 2793 if (waitqueue_active(&delayed_refs->wait)) 2794 wake_up(&delayed_refs->wait); 2795 2796 spin_unlock(&delayed_refs->lock); 2797 assert_qgroups_uptodate(trans); 2798 return 0; 2799 } 2800 2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2802 struct btrfs_root *root, 2803 u64 bytenr, u64 num_bytes, u64 flags, 2804 int level, int is_data) 2805 { 2806 struct btrfs_delayed_extent_op *extent_op; 2807 int ret; 2808 2809 extent_op = btrfs_alloc_delayed_extent_op(); 2810 if (!extent_op) 2811 return -ENOMEM; 2812 2813 extent_op->flags_to_set = flags; 2814 extent_op->update_flags = 1; 2815 extent_op->update_key = 0; 2816 extent_op->is_data = is_data ? 1 : 0; 2817 extent_op->level = level; 2818 2819 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2820 num_bytes, extent_op); 2821 if (ret) 2822 btrfs_free_delayed_extent_op(extent_op); 2823 return ret; 2824 } 2825 2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2827 struct btrfs_root *root, 2828 struct btrfs_path *path, 2829 u64 objectid, u64 offset, u64 bytenr) 2830 { 2831 struct btrfs_delayed_ref_head *head; 2832 struct btrfs_delayed_ref_node *ref; 2833 struct btrfs_delayed_data_ref *data_ref; 2834 struct btrfs_delayed_ref_root *delayed_refs; 2835 struct rb_node *node; 2836 int ret = 0; 2837 2838 ret = -ENOENT; 2839 delayed_refs = &trans->transaction->delayed_refs; 2840 spin_lock(&delayed_refs->lock); 2841 head = btrfs_find_delayed_ref_head(trans, bytenr); 2842 if (!head) 2843 goto out; 2844 2845 if (!mutex_trylock(&head->mutex)) { 2846 atomic_inc(&head->node.refs); 2847 spin_unlock(&delayed_refs->lock); 2848 2849 btrfs_release_path(path); 2850 2851 /* 2852 * Mutex was contended, block until it's released and let 2853 * caller try again 2854 */ 2855 mutex_lock(&head->mutex); 2856 mutex_unlock(&head->mutex); 2857 btrfs_put_delayed_ref(&head->node); 2858 return -EAGAIN; 2859 } 2860 2861 node = rb_prev(&head->node.rb_node); 2862 if (!node) 2863 goto out_unlock; 2864 2865 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2866 2867 if (ref->bytenr != bytenr) 2868 goto out_unlock; 2869 2870 ret = 1; 2871 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2872 goto out_unlock; 2873 2874 data_ref = btrfs_delayed_node_to_data_ref(ref); 2875 2876 node = rb_prev(node); 2877 if (node) { 2878 int seq = ref->seq; 2879 2880 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2881 if (ref->bytenr == bytenr && ref->seq == seq) 2882 goto out_unlock; 2883 } 2884 2885 if (data_ref->root != root->root_key.objectid || 2886 data_ref->objectid != objectid || data_ref->offset != offset) 2887 goto out_unlock; 2888 2889 ret = 0; 2890 out_unlock: 2891 mutex_unlock(&head->mutex); 2892 out: 2893 spin_unlock(&delayed_refs->lock); 2894 return ret; 2895 } 2896 2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2898 struct btrfs_root *root, 2899 struct btrfs_path *path, 2900 u64 objectid, u64 offset, u64 bytenr) 2901 { 2902 struct btrfs_root *extent_root = root->fs_info->extent_root; 2903 struct extent_buffer *leaf; 2904 struct btrfs_extent_data_ref *ref; 2905 struct btrfs_extent_inline_ref *iref; 2906 struct btrfs_extent_item *ei; 2907 struct btrfs_key key; 2908 u32 item_size; 2909 int ret; 2910 2911 key.objectid = bytenr; 2912 key.offset = (u64)-1; 2913 key.type = BTRFS_EXTENT_ITEM_KEY; 2914 2915 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2916 if (ret < 0) 2917 goto out; 2918 BUG_ON(ret == 0); /* Corruption */ 2919 2920 ret = -ENOENT; 2921 if (path->slots[0] == 0) 2922 goto out; 2923 2924 path->slots[0]--; 2925 leaf = path->nodes[0]; 2926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2927 2928 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2929 goto out; 2930 2931 ret = 1; 2932 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2934 if (item_size < sizeof(*ei)) { 2935 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2936 goto out; 2937 } 2938 #endif 2939 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2940 2941 if (item_size != sizeof(*ei) + 2942 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2943 goto out; 2944 2945 if (btrfs_extent_generation(leaf, ei) <= 2946 btrfs_root_last_snapshot(&root->root_item)) 2947 goto out; 2948 2949 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2950 if (btrfs_extent_inline_ref_type(leaf, iref) != 2951 BTRFS_EXTENT_DATA_REF_KEY) 2952 goto out; 2953 2954 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2955 if (btrfs_extent_refs(leaf, ei) != 2956 btrfs_extent_data_ref_count(leaf, ref) || 2957 btrfs_extent_data_ref_root(leaf, ref) != 2958 root->root_key.objectid || 2959 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2960 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2961 goto out; 2962 2963 ret = 0; 2964 out: 2965 return ret; 2966 } 2967 2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2969 struct btrfs_root *root, 2970 u64 objectid, u64 offset, u64 bytenr) 2971 { 2972 struct btrfs_path *path; 2973 int ret; 2974 int ret2; 2975 2976 path = btrfs_alloc_path(); 2977 if (!path) 2978 return -ENOENT; 2979 2980 do { 2981 ret = check_committed_ref(trans, root, path, objectid, 2982 offset, bytenr); 2983 if (ret && ret != -ENOENT) 2984 goto out; 2985 2986 ret2 = check_delayed_ref(trans, root, path, objectid, 2987 offset, bytenr); 2988 } while (ret2 == -EAGAIN); 2989 2990 if (ret2 && ret2 != -ENOENT) { 2991 ret = ret2; 2992 goto out; 2993 } 2994 2995 if (ret != -ENOENT || ret2 != -ENOENT) 2996 ret = 0; 2997 out: 2998 btrfs_free_path(path); 2999 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3000 WARN_ON(ret > 0); 3001 return ret; 3002 } 3003 3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3005 struct btrfs_root *root, 3006 struct extent_buffer *buf, 3007 int full_backref, int inc, int for_cow) 3008 { 3009 u64 bytenr; 3010 u64 num_bytes; 3011 u64 parent; 3012 u64 ref_root; 3013 u32 nritems; 3014 struct btrfs_key key; 3015 struct btrfs_file_extent_item *fi; 3016 int i; 3017 int level; 3018 int ret = 0; 3019 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3020 u64, u64, u64, u64, u64, u64, int); 3021 3022 ref_root = btrfs_header_owner(buf); 3023 nritems = btrfs_header_nritems(buf); 3024 level = btrfs_header_level(buf); 3025 3026 if (!root->ref_cows && level == 0) 3027 return 0; 3028 3029 if (inc) 3030 process_func = btrfs_inc_extent_ref; 3031 else 3032 process_func = btrfs_free_extent; 3033 3034 if (full_backref) 3035 parent = buf->start; 3036 else 3037 parent = 0; 3038 3039 for (i = 0; i < nritems; i++) { 3040 if (level == 0) { 3041 btrfs_item_key_to_cpu(buf, &key, i); 3042 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3043 continue; 3044 fi = btrfs_item_ptr(buf, i, 3045 struct btrfs_file_extent_item); 3046 if (btrfs_file_extent_type(buf, fi) == 3047 BTRFS_FILE_EXTENT_INLINE) 3048 continue; 3049 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3050 if (bytenr == 0) 3051 continue; 3052 3053 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3054 key.offset -= btrfs_file_extent_offset(buf, fi); 3055 ret = process_func(trans, root, bytenr, num_bytes, 3056 parent, ref_root, key.objectid, 3057 key.offset, for_cow); 3058 if (ret) 3059 goto fail; 3060 } else { 3061 bytenr = btrfs_node_blockptr(buf, i); 3062 num_bytes = btrfs_level_size(root, level - 1); 3063 ret = process_func(trans, root, bytenr, num_bytes, 3064 parent, ref_root, level - 1, 0, 3065 for_cow); 3066 if (ret) 3067 goto fail; 3068 } 3069 } 3070 return 0; 3071 fail: 3072 return ret; 3073 } 3074 3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3076 struct extent_buffer *buf, int full_backref, int for_cow) 3077 { 3078 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3079 } 3080 3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3082 struct extent_buffer *buf, int full_backref, int for_cow) 3083 { 3084 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3085 } 3086 3087 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3088 struct btrfs_root *root, 3089 struct btrfs_path *path, 3090 struct btrfs_block_group_cache *cache) 3091 { 3092 int ret; 3093 struct btrfs_root *extent_root = root->fs_info->extent_root; 3094 unsigned long bi; 3095 struct extent_buffer *leaf; 3096 3097 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3098 if (ret < 0) 3099 goto fail; 3100 BUG_ON(ret); /* Corruption */ 3101 3102 leaf = path->nodes[0]; 3103 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3104 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3105 btrfs_mark_buffer_dirty(leaf); 3106 btrfs_release_path(path); 3107 fail: 3108 if (ret) { 3109 btrfs_abort_transaction(trans, root, ret); 3110 return ret; 3111 } 3112 return 0; 3113 3114 } 3115 3116 static struct btrfs_block_group_cache * 3117 next_block_group(struct btrfs_root *root, 3118 struct btrfs_block_group_cache *cache) 3119 { 3120 struct rb_node *node; 3121 spin_lock(&root->fs_info->block_group_cache_lock); 3122 node = rb_next(&cache->cache_node); 3123 btrfs_put_block_group(cache); 3124 if (node) { 3125 cache = rb_entry(node, struct btrfs_block_group_cache, 3126 cache_node); 3127 btrfs_get_block_group(cache); 3128 } else 3129 cache = NULL; 3130 spin_unlock(&root->fs_info->block_group_cache_lock); 3131 return cache; 3132 } 3133 3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3135 struct btrfs_trans_handle *trans, 3136 struct btrfs_path *path) 3137 { 3138 struct btrfs_root *root = block_group->fs_info->tree_root; 3139 struct inode *inode = NULL; 3140 u64 alloc_hint = 0; 3141 int dcs = BTRFS_DC_ERROR; 3142 int num_pages = 0; 3143 int retries = 0; 3144 int ret = 0; 3145 3146 /* 3147 * If this block group is smaller than 100 megs don't bother caching the 3148 * block group. 3149 */ 3150 if (block_group->key.offset < (100 * 1024 * 1024)) { 3151 spin_lock(&block_group->lock); 3152 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3153 spin_unlock(&block_group->lock); 3154 return 0; 3155 } 3156 3157 again: 3158 inode = lookup_free_space_inode(root, block_group, path); 3159 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3160 ret = PTR_ERR(inode); 3161 btrfs_release_path(path); 3162 goto out; 3163 } 3164 3165 if (IS_ERR(inode)) { 3166 BUG_ON(retries); 3167 retries++; 3168 3169 if (block_group->ro) 3170 goto out_free; 3171 3172 ret = create_free_space_inode(root, trans, block_group, path); 3173 if (ret) 3174 goto out_free; 3175 goto again; 3176 } 3177 3178 /* We've already setup this transaction, go ahead and exit */ 3179 if (block_group->cache_generation == trans->transid && 3180 i_size_read(inode)) { 3181 dcs = BTRFS_DC_SETUP; 3182 goto out_put; 3183 } 3184 3185 /* 3186 * We want to set the generation to 0, that way if anything goes wrong 3187 * from here on out we know not to trust this cache when we load up next 3188 * time. 3189 */ 3190 BTRFS_I(inode)->generation = 0; 3191 ret = btrfs_update_inode(trans, root, inode); 3192 WARN_ON(ret); 3193 3194 if (i_size_read(inode) > 0) { 3195 ret = btrfs_check_trunc_cache_free_space(root, 3196 &root->fs_info->global_block_rsv); 3197 if (ret) 3198 goto out_put; 3199 3200 ret = btrfs_truncate_free_space_cache(root, trans, path, 3201 inode); 3202 if (ret) 3203 goto out_put; 3204 } 3205 3206 spin_lock(&block_group->lock); 3207 if (block_group->cached != BTRFS_CACHE_FINISHED || 3208 !btrfs_test_opt(root, SPACE_CACHE)) { 3209 /* 3210 * don't bother trying to write stuff out _if_ 3211 * a) we're not cached, 3212 * b) we're with nospace_cache mount option. 3213 */ 3214 dcs = BTRFS_DC_WRITTEN; 3215 spin_unlock(&block_group->lock); 3216 goto out_put; 3217 } 3218 spin_unlock(&block_group->lock); 3219 3220 /* 3221 * Try to preallocate enough space based on how big the block group is. 3222 * Keep in mind this has to include any pinned space which could end up 3223 * taking up quite a bit since it's not folded into the other space 3224 * cache. 3225 */ 3226 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3227 if (!num_pages) 3228 num_pages = 1; 3229 3230 num_pages *= 16; 3231 num_pages *= PAGE_CACHE_SIZE; 3232 3233 ret = btrfs_check_data_free_space(inode, num_pages); 3234 if (ret) 3235 goto out_put; 3236 3237 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3238 num_pages, num_pages, 3239 &alloc_hint); 3240 if (!ret) 3241 dcs = BTRFS_DC_SETUP; 3242 btrfs_free_reserved_data_space(inode, num_pages); 3243 3244 out_put: 3245 iput(inode); 3246 out_free: 3247 btrfs_release_path(path); 3248 out: 3249 spin_lock(&block_group->lock); 3250 if (!ret && dcs == BTRFS_DC_SETUP) 3251 block_group->cache_generation = trans->transid; 3252 block_group->disk_cache_state = dcs; 3253 spin_unlock(&block_group->lock); 3254 3255 return ret; 3256 } 3257 3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *root) 3260 { 3261 struct btrfs_block_group_cache *cache; 3262 int err = 0; 3263 struct btrfs_path *path; 3264 u64 last = 0; 3265 3266 path = btrfs_alloc_path(); 3267 if (!path) 3268 return -ENOMEM; 3269 3270 again: 3271 while (1) { 3272 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3273 while (cache) { 3274 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3275 break; 3276 cache = next_block_group(root, cache); 3277 } 3278 if (!cache) { 3279 if (last == 0) 3280 break; 3281 last = 0; 3282 continue; 3283 } 3284 err = cache_save_setup(cache, trans, path); 3285 last = cache->key.objectid + cache->key.offset; 3286 btrfs_put_block_group(cache); 3287 } 3288 3289 while (1) { 3290 if (last == 0) { 3291 err = btrfs_run_delayed_refs(trans, root, 3292 (unsigned long)-1); 3293 if (err) /* File system offline */ 3294 goto out; 3295 } 3296 3297 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3298 while (cache) { 3299 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3300 btrfs_put_block_group(cache); 3301 goto again; 3302 } 3303 3304 if (cache->dirty) 3305 break; 3306 cache = next_block_group(root, cache); 3307 } 3308 if (!cache) { 3309 if (last == 0) 3310 break; 3311 last = 0; 3312 continue; 3313 } 3314 3315 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3316 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3317 cache->dirty = 0; 3318 last = cache->key.objectid + cache->key.offset; 3319 3320 err = write_one_cache_group(trans, root, path, cache); 3321 if (err) /* File system offline */ 3322 goto out; 3323 3324 btrfs_put_block_group(cache); 3325 } 3326 3327 while (1) { 3328 /* 3329 * I don't think this is needed since we're just marking our 3330 * preallocated extent as written, but just in case it can't 3331 * hurt. 3332 */ 3333 if (last == 0) { 3334 err = btrfs_run_delayed_refs(trans, root, 3335 (unsigned long)-1); 3336 if (err) /* File system offline */ 3337 goto out; 3338 } 3339 3340 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3341 while (cache) { 3342 /* 3343 * Really this shouldn't happen, but it could if we 3344 * couldn't write the entire preallocated extent and 3345 * splitting the extent resulted in a new block. 3346 */ 3347 if (cache->dirty) { 3348 btrfs_put_block_group(cache); 3349 goto again; 3350 } 3351 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3352 break; 3353 cache = next_block_group(root, cache); 3354 } 3355 if (!cache) { 3356 if (last == 0) 3357 break; 3358 last = 0; 3359 continue; 3360 } 3361 3362 err = btrfs_write_out_cache(root, trans, cache, path); 3363 3364 /* 3365 * If we didn't have an error then the cache state is still 3366 * NEED_WRITE, so we can set it to WRITTEN. 3367 */ 3368 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3369 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3370 last = cache->key.objectid + cache->key.offset; 3371 btrfs_put_block_group(cache); 3372 } 3373 out: 3374 3375 btrfs_free_path(path); 3376 return err; 3377 } 3378 3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3380 { 3381 struct btrfs_block_group_cache *block_group; 3382 int readonly = 0; 3383 3384 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3385 if (!block_group || block_group->ro) 3386 readonly = 1; 3387 if (block_group) 3388 btrfs_put_block_group(block_group); 3389 return readonly; 3390 } 3391 3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3393 u64 total_bytes, u64 bytes_used, 3394 struct btrfs_space_info **space_info) 3395 { 3396 struct btrfs_space_info *found; 3397 int i; 3398 int factor; 3399 int ret; 3400 3401 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3402 BTRFS_BLOCK_GROUP_RAID10)) 3403 factor = 2; 3404 else 3405 factor = 1; 3406 3407 found = __find_space_info(info, flags); 3408 if (found) { 3409 spin_lock(&found->lock); 3410 found->total_bytes += total_bytes; 3411 found->disk_total += total_bytes * factor; 3412 found->bytes_used += bytes_used; 3413 found->disk_used += bytes_used * factor; 3414 found->full = 0; 3415 spin_unlock(&found->lock); 3416 *space_info = found; 3417 return 0; 3418 } 3419 found = kzalloc(sizeof(*found), GFP_NOFS); 3420 if (!found) 3421 return -ENOMEM; 3422 3423 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3424 if (ret) { 3425 kfree(found); 3426 return ret; 3427 } 3428 3429 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3430 INIT_LIST_HEAD(&found->block_groups[i]); 3431 init_rwsem(&found->groups_sem); 3432 spin_lock_init(&found->lock); 3433 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3434 found->total_bytes = total_bytes; 3435 found->disk_total = total_bytes * factor; 3436 found->bytes_used = bytes_used; 3437 found->disk_used = bytes_used * factor; 3438 found->bytes_pinned = 0; 3439 found->bytes_reserved = 0; 3440 found->bytes_readonly = 0; 3441 found->bytes_may_use = 0; 3442 found->full = 0; 3443 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3444 found->chunk_alloc = 0; 3445 found->flush = 0; 3446 init_waitqueue_head(&found->wait); 3447 *space_info = found; 3448 list_add_rcu(&found->list, &info->space_info); 3449 if (flags & BTRFS_BLOCK_GROUP_DATA) 3450 info->data_sinfo = found; 3451 return 0; 3452 } 3453 3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3455 { 3456 u64 extra_flags = chunk_to_extended(flags) & 3457 BTRFS_EXTENDED_PROFILE_MASK; 3458 3459 write_seqlock(&fs_info->profiles_lock); 3460 if (flags & BTRFS_BLOCK_GROUP_DATA) 3461 fs_info->avail_data_alloc_bits |= extra_flags; 3462 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3463 fs_info->avail_metadata_alloc_bits |= extra_flags; 3464 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3465 fs_info->avail_system_alloc_bits |= extra_flags; 3466 write_sequnlock(&fs_info->profiles_lock); 3467 } 3468 3469 /* 3470 * returns target flags in extended format or 0 if restripe for this 3471 * chunk_type is not in progress 3472 * 3473 * should be called with either volume_mutex or balance_lock held 3474 */ 3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3476 { 3477 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3478 u64 target = 0; 3479 3480 if (!bctl) 3481 return 0; 3482 3483 if (flags & BTRFS_BLOCK_GROUP_DATA && 3484 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3485 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3486 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3487 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3488 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3489 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3490 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3491 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3492 } 3493 3494 return target; 3495 } 3496 3497 /* 3498 * @flags: available profiles in extended format (see ctree.h) 3499 * 3500 * Returns reduced profile in chunk format. If profile changing is in 3501 * progress (either running or paused) picks the target profile (if it's 3502 * already available), otherwise falls back to plain reducing. 3503 */ 3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3505 { 3506 /* 3507 * we add in the count of missing devices because we want 3508 * to make sure that any RAID levels on a degraded FS 3509 * continue to be honored. 3510 */ 3511 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3512 root->fs_info->fs_devices->missing_devices; 3513 u64 target; 3514 u64 tmp; 3515 3516 /* 3517 * see if restripe for this chunk_type is in progress, if so 3518 * try to reduce to the target profile 3519 */ 3520 spin_lock(&root->fs_info->balance_lock); 3521 target = get_restripe_target(root->fs_info, flags); 3522 if (target) { 3523 /* pick target profile only if it's already available */ 3524 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3525 spin_unlock(&root->fs_info->balance_lock); 3526 return extended_to_chunk(target); 3527 } 3528 } 3529 spin_unlock(&root->fs_info->balance_lock); 3530 3531 /* First, mask out the RAID levels which aren't possible */ 3532 if (num_devices == 1) 3533 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3534 BTRFS_BLOCK_GROUP_RAID5); 3535 if (num_devices < 3) 3536 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3537 if (num_devices < 4) 3538 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3539 3540 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3541 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3542 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3543 flags &= ~tmp; 3544 3545 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3546 tmp = BTRFS_BLOCK_GROUP_RAID6; 3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3548 tmp = BTRFS_BLOCK_GROUP_RAID5; 3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3550 tmp = BTRFS_BLOCK_GROUP_RAID10; 3551 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3552 tmp = BTRFS_BLOCK_GROUP_RAID1; 3553 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3554 tmp = BTRFS_BLOCK_GROUP_RAID0; 3555 3556 return extended_to_chunk(flags | tmp); 3557 } 3558 3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3560 { 3561 unsigned seq; 3562 3563 do { 3564 seq = read_seqbegin(&root->fs_info->profiles_lock); 3565 3566 if (flags & BTRFS_BLOCK_GROUP_DATA) 3567 flags |= root->fs_info->avail_data_alloc_bits; 3568 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3569 flags |= root->fs_info->avail_system_alloc_bits; 3570 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3571 flags |= root->fs_info->avail_metadata_alloc_bits; 3572 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3573 3574 return btrfs_reduce_alloc_profile(root, flags); 3575 } 3576 3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3578 { 3579 u64 flags; 3580 u64 ret; 3581 3582 if (data) 3583 flags = BTRFS_BLOCK_GROUP_DATA; 3584 else if (root == root->fs_info->chunk_root) 3585 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3586 else 3587 flags = BTRFS_BLOCK_GROUP_METADATA; 3588 3589 ret = get_alloc_profile(root, flags); 3590 return ret; 3591 } 3592 3593 /* 3594 * This will check the space that the inode allocates from to make sure we have 3595 * enough space for bytes. 3596 */ 3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3598 { 3599 struct btrfs_space_info *data_sinfo; 3600 struct btrfs_root *root = BTRFS_I(inode)->root; 3601 struct btrfs_fs_info *fs_info = root->fs_info; 3602 u64 used; 3603 int ret = 0, committed = 0, alloc_chunk = 1; 3604 3605 /* make sure bytes are sectorsize aligned */ 3606 bytes = ALIGN(bytes, root->sectorsize); 3607 3608 if (root == root->fs_info->tree_root || 3609 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3610 alloc_chunk = 0; 3611 committed = 1; 3612 } 3613 3614 data_sinfo = fs_info->data_sinfo; 3615 if (!data_sinfo) 3616 goto alloc; 3617 3618 again: 3619 /* make sure we have enough space to handle the data first */ 3620 spin_lock(&data_sinfo->lock); 3621 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3622 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3623 data_sinfo->bytes_may_use; 3624 3625 if (used + bytes > data_sinfo->total_bytes) { 3626 struct btrfs_trans_handle *trans; 3627 3628 /* 3629 * if we don't have enough free bytes in this space then we need 3630 * to alloc a new chunk. 3631 */ 3632 if (!data_sinfo->full && alloc_chunk) { 3633 u64 alloc_target; 3634 3635 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3636 spin_unlock(&data_sinfo->lock); 3637 alloc: 3638 alloc_target = btrfs_get_alloc_profile(root, 1); 3639 trans = btrfs_join_transaction(root); 3640 if (IS_ERR(trans)) 3641 return PTR_ERR(trans); 3642 3643 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3644 alloc_target, 3645 CHUNK_ALLOC_NO_FORCE); 3646 btrfs_end_transaction(trans, root); 3647 if (ret < 0) { 3648 if (ret != -ENOSPC) 3649 return ret; 3650 else 3651 goto commit_trans; 3652 } 3653 3654 if (!data_sinfo) 3655 data_sinfo = fs_info->data_sinfo; 3656 3657 goto again; 3658 } 3659 3660 /* 3661 * If we don't have enough pinned space to deal with this 3662 * allocation don't bother committing the transaction. 3663 */ 3664 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3665 bytes) < 0) 3666 committed = 1; 3667 spin_unlock(&data_sinfo->lock); 3668 3669 /* commit the current transaction and try again */ 3670 commit_trans: 3671 if (!committed && 3672 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3673 committed = 1; 3674 3675 trans = btrfs_join_transaction(root); 3676 if (IS_ERR(trans)) 3677 return PTR_ERR(trans); 3678 ret = btrfs_commit_transaction(trans, root); 3679 if (ret) 3680 return ret; 3681 goto again; 3682 } 3683 3684 return -ENOSPC; 3685 } 3686 data_sinfo->bytes_may_use += bytes; 3687 trace_btrfs_space_reservation(root->fs_info, "space_info", 3688 data_sinfo->flags, bytes, 1); 3689 spin_unlock(&data_sinfo->lock); 3690 3691 return 0; 3692 } 3693 3694 /* 3695 * Called if we need to clear a data reservation for this inode. 3696 */ 3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3698 { 3699 struct btrfs_root *root = BTRFS_I(inode)->root; 3700 struct btrfs_space_info *data_sinfo; 3701 3702 /* make sure bytes are sectorsize aligned */ 3703 bytes = ALIGN(bytes, root->sectorsize); 3704 3705 data_sinfo = root->fs_info->data_sinfo; 3706 spin_lock(&data_sinfo->lock); 3707 WARN_ON(data_sinfo->bytes_may_use < bytes); 3708 data_sinfo->bytes_may_use -= bytes; 3709 trace_btrfs_space_reservation(root->fs_info, "space_info", 3710 data_sinfo->flags, bytes, 0); 3711 spin_unlock(&data_sinfo->lock); 3712 } 3713 3714 static void force_metadata_allocation(struct btrfs_fs_info *info) 3715 { 3716 struct list_head *head = &info->space_info; 3717 struct btrfs_space_info *found; 3718 3719 rcu_read_lock(); 3720 list_for_each_entry_rcu(found, head, list) { 3721 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3722 found->force_alloc = CHUNK_ALLOC_FORCE; 3723 } 3724 rcu_read_unlock(); 3725 } 3726 3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3728 { 3729 return (global->size << 1); 3730 } 3731 3732 static int should_alloc_chunk(struct btrfs_root *root, 3733 struct btrfs_space_info *sinfo, int force) 3734 { 3735 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3736 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3737 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3738 u64 thresh; 3739 3740 if (force == CHUNK_ALLOC_FORCE) 3741 return 1; 3742 3743 /* 3744 * We need to take into account the global rsv because for all intents 3745 * and purposes it's used space. Don't worry about locking the 3746 * global_rsv, it doesn't change except when the transaction commits. 3747 */ 3748 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3749 num_allocated += calc_global_rsv_need_space(global_rsv); 3750 3751 /* 3752 * in limited mode, we want to have some free space up to 3753 * about 1% of the FS size. 3754 */ 3755 if (force == CHUNK_ALLOC_LIMITED) { 3756 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3757 thresh = max_t(u64, 64 * 1024 * 1024, 3758 div_factor_fine(thresh, 1)); 3759 3760 if (num_bytes - num_allocated < thresh) 3761 return 1; 3762 } 3763 3764 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3765 return 0; 3766 return 1; 3767 } 3768 3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3770 { 3771 u64 num_dev; 3772 3773 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3774 BTRFS_BLOCK_GROUP_RAID0 | 3775 BTRFS_BLOCK_GROUP_RAID5 | 3776 BTRFS_BLOCK_GROUP_RAID6)) 3777 num_dev = root->fs_info->fs_devices->rw_devices; 3778 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3779 num_dev = 2; 3780 else 3781 num_dev = 1; /* DUP or single */ 3782 3783 /* metadata for updaing devices and chunk tree */ 3784 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3785 } 3786 3787 static void check_system_chunk(struct btrfs_trans_handle *trans, 3788 struct btrfs_root *root, u64 type) 3789 { 3790 struct btrfs_space_info *info; 3791 u64 left; 3792 u64 thresh; 3793 3794 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3795 spin_lock(&info->lock); 3796 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3797 info->bytes_reserved - info->bytes_readonly; 3798 spin_unlock(&info->lock); 3799 3800 thresh = get_system_chunk_thresh(root, type); 3801 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3802 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3803 left, thresh, type); 3804 dump_space_info(info, 0, 0); 3805 } 3806 3807 if (left < thresh) { 3808 u64 flags; 3809 3810 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3811 btrfs_alloc_chunk(trans, root, flags); 3812 } 3813 } 3814 3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *extent_root, u64 flags, int force) 3817 { 3818 struct btrfs_space_info *space_info; 3819 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3820 int wait_for_alloc = 0; 3821 int ret = 0; 3822 3823 /* Don't re-enter if we're already allocating a chunk */ 3824 if (trans->allocating_chunk) 3825 return -ENOSPC; 3826 3827 space_info = __find_space_info(extent_root->fs_info, flags); 3828 if (!space_info) { 3829 ret = update_space_info(extent_root->fs_info, flags, 3830 0, 0, &space_info); 3831 BUG_ON(ret); /* -ENOMEM */ 3832 } 3833 BUG_ON(!space_info); /* Logic error */ 3834 3835 again: 3836 spin_lock(&space_info->lock); 3837 if (force < space_info->force_alloc) 3838 force = space_info->force_alloc; 3839 if (space_info->full) { 3840 if (should_alloc_chunk(extent_root, space_info, force)) 3841 ret = -ENOSPC; 3842 else 3843 ret = 0; 3844 spin_unlock(&space_info->lock); 3845 return ret; 3846 } 3847 3848 if (!should_alloc_chunk(extent_root, space_info, force)) { 3849 spin_unlock(&space_info->lock); 3850 return 0; 3851 } else if (space_info->chunk_alloc) { 3852 wait_for_alloc = 1; 3853 } else { 3854 space_info->chunk_alloc = 1; 3855 } 3856 3857 spin_unlock(&space_info->lock); 3858 3859 mutex_lock(&fs_info->chunk_mutex); 3860 3861 /* 3862 * The chunk_mutex is held throughout the entirety of a chunk 3863 * allocation, so once we've acquired the chunk_mutex we know that the 3864 * other guy is done and we need to recheck and see if we should 3865 * allocate. 3866 */ 3867 if (wait_for_alloc) { 3868 mutex_unlock(&fs_info->chunk_mutex); 3869 wait_for_alloc = 0; 3870 goto again; 3871 } 3872 3873 trans->allocating_chunk = true; 3874 3875 /* 3876 * If we have mixed data/metadata chunks we want to make sure we keep 3877 * allocating mixed chunks instead of individual chunks. 3878 */ 3879 if (btrfs_mixed_space_info(space_info)) 3880 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3881 3882 /* 3883 * if we're doing a data chunk, go ahead and make sure that 3884 * we keep a reasonable number of metadata chunks allocated in the 3885 * FS as well. 3886 */ 3887 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3888 fs_info->data_chunk_allocations++; 3889 if (!(fs_info->data_chunk_allocations % 3890 fs_info->metadata_ratio)) 3891 force_metadata_allocation(fs_info); 3892 } 3893 3894 /* 3895 * Check if we have enough space in SYSTEM chunk because we may need 3896 * to update devices. 3897 */ 3898 check_system_chunk(trans, extent_root, flags); 3899 3900 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3901 trans->allocating_chunk = false; 3902 3903 spin_lock(&space_info->lock); 3904 if (ret < 0 && ret != -ENOSPC) 3905 goto out; 3906 if (ret) 3907 space_info->full = 1; 3908 else 3909 ret = 1; 3910 3911 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3912 out: 3913 space_info->chunk_alloc = 0; 3914 spin_unlock(&space_info->lock); 3915 mutex_unlock(&fs_info->chunk_mutex); 3916 return ret; 3917 } 3918 3919 static int can_overcommit(struct btrfs_root *root, 3920 struct btrfs_space_info *space_info, u64 bytes, 3921 enum btrfs_reserve_flush_enum flush) 3922 { 3923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3924 u64 profile = btrfs_get_alloc_profile(root, 0); 3925 u64 space_size; 3926 u64 avail; 3927 u64 used; 3928 u64 to_add; 3929 3930 used = space_info->bytes_used + space_info->bytes_reserved + 3931 space_info->bytes_pinned + space_info->bytes_readonly; 3932 3933 /* 3934 * We only want to allow over committing if we have lots of actual space 3935 * free, but if we don't have enough space to handle the global reserve 3936 * space then we could end up having a real enospc problem when trying 3937 * to allocate a chunk or some other such important allocation. 3938 */ 3939 spin_lock(&global_rsv->lock); 3940 space_size = calc_global_rsv_need_space(global_rsv); 3941 spin_unlock(&global_rsv->lock); 3942 if (used + space_size >= space_info->total_bytes) 3943 return 0; 3944 3945 used += space_info->bytes_may_use; 3946 3947 spin_lock(&root->fs_info->free_chunk_lock); 3948 avail = root->fs_info->free_chunk_space; 3949 spin_unlock(&root->fs_info->free_chunk_lock); 3950 3951 /* 3952 * If we have dup, raid1 or raid10 then only half of the free 3953 * space is actually useable. For raid56, the space info used 3954 * doesn't include the parity drive, so we don't have to 3955 * change the math 3956 */ 3957 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3958 BTRFS_BLOCK_GROUP_RAID1 | 3959 BTRFS_BLOCK_GROUP_RAID10)) 3960 avail >>= 1; 3961 3962 to_add = space_info->total_bytes; 3963 3964 /* 3965 * If we aren't flushing all things, let us overcommit up to 3966 * 1/2th of the space. If we can flush, don't let us overcommit 3967 * too much, let it overcommit up to 1/8 of the space. 3968 */ 3969 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3970 to_add >>= 3; 3971 else 3972 to_add >>= 1; 3973 3974 /* 3975 * Limit the overcommit to the amount of free space we could possibly 3976 * allocate for chunks. 3977 */ 3978 to_add = min(avail, to_add); 3979 3980 if (used + bytes < space_info->total_bytes + to_add) 3981 return 1; 3982 return 0; 3983 } 3984 3985 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3986 unsigned long nr_pages) 3987 { 3988 struct super_block *sb = root->fs_info->sb; 3989 3990 if (down_read_trylock(&sb->s_umount)) { 3991 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3992 up_read(&sb->s_umount); 3993 } else { 3994 /* 3995 * We needn't worry the filesystem going from r/w to r/o though 3996 * we don't acquire ->s_umount mutex, because the filesystem 3997 * should guarantee the delalloc inodes list be empty after 3998 * the filesystem is readonly(all dirty pages are written to 3999 * the disk). 4000 */ 4001 btrfs_start_all_delalloc_inodes(root->fs_info, 0); 4002 if (!current->journal_info) 4003 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4004 } 4005 } 4006 4007 /* 4008 * shrink metadata reservation for delalloc 4009 */ 4010 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4011 bool wait_ordered) 4012 { 4013 struct btrfs_block_rsv *block_rsv; 4014 struct btrfs_space_info *space_info; 4015 struct btrfs_trans_handle *trans; 4016 u64 delalloc_bytes; 4017 u64 max_reclaim; 4018 long time_left; 4019 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 4020 int loops = 0; 4021 enum btrfs_reserve_flush_enum flush; 4022 4023 trans = (struct btrfs_trans_handle *)current->journal_info; 4024 block_rsv = &root->fs_info->delalloc_block_rsv; 4025 space_info = block_rsv->space_info; 4026 4027 smp_mb(); 4028 delalloc_bytes = percpu_counter_sum_positive( 4029 &root->fs_info->delalloc_bytes); 4030 if (delalloc_bytes == 0) { 4031 if (trans) 4032 return; 4033 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4034 return; 4035 } 4036 4037 while (delalloc_bytes && loops < 3) { 4038 max_reclaim = min(delalloc_bytes, to_reclaim); 4039 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4040 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4041 /* 4042 * We need to wait for the async pages to actually start before 4043 * we do anything. 4044 */ 4045 wait_event(root->fs_info->async_submit_wait, 4046 !atomic_read(&root->fs_info->async_delalloc_pages)); 4047 4048 if (!trans) 4049 flush = BTRFS_RESERVE_FLUSH_ALL; 4050 else 4051 flush = BTRFS_RESERVE_NO_FLUSH; 4052 spin_lock(&space_info->lock); 4053 if (can_overcommit(root, space_info, orig, flush)) { 4054 spin_unlock(&space_info->lock); 4055 break; 4056 } 4057 spin_unlock(&space_info->lock); 4058 4059 loops++; 4060 if (wait_ordered && !trans) { 4061 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4062 } else { 4063 time_left = schedule_timeout_killable(1); 4064 if (time_left) 4065 break; 4066 } 4067 smp_mb(); 4068 delalloc_bytes = percpu_counter_sum_positive( 4069 &root->fs_info->delalloc_bytes); 4070 } 4071 } 4072 4073 /** 4074 * maybe_commit_transaction - possibly commit the transaction if its ok to 4075 * @root - the root we're allocating for 4076 * @bytes - the number of bytes we want to reserve 4077 * @force - force the commit 4078 * 4079 * This will check to make sure that committing the transaction will actually 4080 * get us somewhere and then commit the transaction if it does. Otherwise it 4081 * will return -ENOSPC. 4082 */ 4083 static int may_commit_transaction(struct btrfs_root *root, 4084 struct btrfs_space_info *space_info, 4085 u64 bytes, int force) 4086 { 4087 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4088 struct btrfs_trans_handle *trans; 4089 4090 trans = (struct btrfs_trans_handle *)current->journal_info; 4091 if (trans) 4092 return -EAGAIN; 4093 4094 if (force) 4095 goto commit; 4096 4097 /* See if there is enough pinned space to make this reservation */ 4098 spin_lock(&space_info->lock); 4099 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4100 bytes) >= 0) { 4101 spin_unlock(&space_info->lock); 4102 goto commit; 4103 } 4104 spin_unlock(&space_info->lock); 4105 4106 /* 4107 * See if there is some space in the delayed insertion reservation for 4108 * this reservation. 4109 */ 4110 if (space_info != delayed_rsv->space_info) 4111 return -ENOSPC; 4112 4113 spin_lock(&space_info->lock); 4114 spin_lock(&delayed_rsv->lock); 4115 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4116 bytes - delayed_rsv->size) >= 0) { 4117 spin_unlock(&delayed_rsv->lock); 4118 spin_unlock(&space_info->lock); 4119 return -ENOSPC; 4120 } 4121 spin_unlock(&delayed_rsv->lock); 4122 spin_unlock(&space_info->lock); 4123 4124 commit: 4125 trans = btrfs_join_transaction(root); 4126 if (IS_ERR(trans)) 4127 return -ENOSPC; 4128 4129 return btrfs_commit_transaction(trans, root); 4130 } 4131 4132 enum flush_state { 4133 FLUSH_DELAYED_ITEMS_NR = 1, 4134 FLUSH_DELAYED_ITEMS = 2, 4135 FLUSH_DELALLOC = 3, 4136 FLUSH_DELALLOC_WAIT = 4, 4137 ALLOC_CHUNK = 5, 4138 COMMIT_TRANS = 6, 4139 }; 4140 4141 static int flush_space(struct btrfs_root *root, 4142 struct btrfs_space_info *space_info, u64 num_bytes, 4143 u64 orig_bytes, int state) 4144 { 4145 struct btrfs_trans_handle *trans; 4146 int nr; 4147 int ret = 0; 4148 4149 switch (state) { 4150 case FLUSH_DELAYED_ITEMS_NR: 4151 case FLUSH_DELAYED_ITEMS: 4152 if (state == FLUSH_DELAYED_ITEMS_NR) { 4153 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 4154 4155 nr = (int)div64_u64(num_bytes, bytes); 4156 if (!nr) 4157 nr = 1; 4158 nr *= 2; 4159 } else { 4160 nr = -1; 4161 } 4162 trans = btrfs_join_transaction(root); 4163 if (IS_ERR(trans)) { 4164 ret = PTR_ERR(trans); 4165 break; 4166 } 4167 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4168 btrfs_end_transaction(trans, root); 4169 break; 4170 case FLUSH_DELALLOC: 4171 case FLUSH_DELALLOC_WAIT: 4172 shrink_delalloc(root, num_bytes, orig_bytes, 4173 state == FLUSH_DELALLOC_WAIT); 4174 break; 4175 case ALLOC_CHUNK: 4176 trans = btrfs_join_transaction(root); 4177 if (IS_ERR(trans)) { 4178 ret = PTR_ERR(trans); 4179 break; 4180 } 4181 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4182 btrfs_get_alloc_profile(root, 0), 4183 CHUNK_ALLOC_NO_FORCE); 4184 btrfs_end_transaction(trans, root); 4185 if (ret == -ENOSPC) 4186 ret = 0; 4187 break; 4188 case COMMIT_TRANS: 4189 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4190 break; 4191 default: 4192 ret = -ENOSPC; 4193 break; 4194 } 4195 4196 return ret; 4197 } 4198 /** 4199 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4200 * @root - the root we're allocating for 4201 * @block_rsv - the block_rsv we're allocating for 4202 * @orig_bytes - the number of bytes we want 4203 * @flush - whether or not we can flush to make our reservation 4204 * 4205 * This will reserve orgi_bytes number of bytes from the space info associated 4206 * with the block_rsv. If there is not enough space it will make an attempt to 4207 * flush out space to make room. It will do this by flushing delalloc if 4208 * possible or committing the transaction. If flush is 0 then no attempts to 4209 * regain reservations will be made and this will fail if there is not enough 4210 * space already. 4211 */ 4212 static int reserve_metadata_bytes(struct btrfs_root *root, 4213 struct btrfs_block_rsv *block_rsv, 4214 u64 orig_bytes, 4215 enum btrfs_reserve_flush_enum flush) 4216 { 4217 struct btrfs_space_info *space_info = block_rsv->space_info; 4218 u64 used; 4219 u64 num_bytes = orig_bytes; 4220 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4221 int ret = 0; 4222 bool flushing = false; 4223 4224 again: 4225 ret = 0; 4226 spin_lock(&space_info->lock); 4227 /* 4228 * We only want to wait if somebody other than us is flushing and we 4229 * are actually allowed to flush all things. 4230 */ 4231 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4232 space_info->flush) { 4233 spin_unlock(&space_info->lock); 4234 /* 4235 * If we have a trans handle we can't wait because the flusher 4236 * may have to commit the transaction, which would mean we would 4237 * deadlock since we are waiting for the flusher to finish, but 4238 * hold the current transaction open. 4239 */ 4240 if (current->journal_info) 4241 return -EAGAIN; 4242 ret = wait_event_killable(space_info->wait, !space_info->flush); 4243 /* Must have been killed, return */ 4244 if (ret) 4245 return -EINTR; 4246 4247 spin_lock(&space_info->lock); 4248 } 4249 4250 ret = -ENOSPC; 4251 used = space_info->bytes_used + space_info->bytes_reserved + 4252 space_info->bytes_pinned + space_info->bytes_readonly + 4253 space_info->bytes_may_use; 4254 4255 /* 4256 * The idea here is that we've not already over-reserved the block group 4257 * then we can go ahead and save our reservation first and then start 4258 * flushing if we need to. Otherwise if we've already overcommitted 4259 * lets start flushing stuff first and then come back and try to make 4260 * our reservation. 4261 */ 4262 if (used <= space_info->total_bytes) { 4263 if (used + orig_bytes <= space_info->total_bytes) { 4264 space_info->bytes_may_use += orig_bytes; 4265 trace_btrfs_space_reservation(root->fs_info, 4266 "space_info", space_info->flags, orig_bytes, 1); 4267 ret = 0; 4268 } else { 4269 /* 4270 * Ok set num_bytes to orig_bytes since we aren't 4271 * overocmmitted, this way we only try and reclaim what 4272 * we need. 4273 */ 4274 num_bytes = orig_bytes; 4275 } 4276 } else { 4277 /* 4278 * Ok we're over committed, set num_bytes to the overcommitted 4279 * amount plus the amount of bytes that we need for this 4280 * reservation. 4281 */ 4282 num_bytes = used - space_info->total_bytes + 4283 (orig_bytes * 2); 4284 } 4285 4286 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4287 space_info->bytes_may_use += orig_bytes; 4288 trace_btrfs_space_reservation(root->fs_info, "space_info", 4289 space_info->flags, orig_bytes, 4290 1); 4291 ret = 0; 4292 } 4293 4294 /* 4295 * Couldn't make our reservation, save our place so while we're trying 4296 * to reclaim space we can actually use it instead of somebody else 4297 * stealing it from us. 4298 * 4299 * We make the other tasks wait for the flush only when we can flush 4300 * all things. 4301 */ 4302 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4303 flushing = true; 4304 space_info->flush = 1; 4305 } 4306 4307 spin_unlock(&space_info->lock); 4308 4309 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4310 goto out; 4311 4312 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4313 flush_state); 4314 flush_state++; 4315 4316 /* 4317 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4318 * would happen. So skip delalloc flush. 4319 */ 4320 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4321 (flush_state == FLUSH_DELALLOC || 4322 flush_state == FLUSH_DELALLOC_WAIT)) 4323 flush_state = ALLOC_CHUNK; 4324 4325 if (!ret) 4326 goto again; 4327 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4328 flush_state < COMMIT_TRANS) 4329 goto again; 4330 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4331 flush_state <= COMMIT_TRANS) 4332 goto again; 4333 4334 out: 4335 if (ret == -ENOSPC && 4336 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4337 struct btrfs_block_rsv *global_rsv = 4338 &root->fs_info->global_block_rsv; 4339 4340 if (block_rsv != global_rsv && 4341 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4342 ret = 0; 4343 } 4344 if (flushing) { 4345 spin_lock(&space_info->lock); 4346 space_info->flush = 0; 4347 wake_up_all(&space_info->wait); 4348 spin_unlock(&space_info->lock); 4349 } 4350 return ret; 4351 } 4352 4353 static struct btrfs_block_rsv *get_block_rsv( 4354 const struct btrfs_trans_handle *trans, 4355 const struct btrfs_root *root) 4356 { 4357 struct btrfs_block_rsv *block_rsv = NULL; 4358 4359 if (root->ref_cows) 4360 block_rsv = trans->block_rsv; 4361 4362 if (root == root->fs_info->csum_root && trans->adding_csums) 4363 block_rsv = trans->block_rsv; 4364 4365 if (root == root->fs_info->uuid_root) 4366 block_rsv = trans->block_rsv; 4367 4368 if (!block_rsv) 4369 block_rsv = root->block_rsv; 4370 4371 if (!block_rsv) 4372 block_rsv = &root->fs_info->empty_block_rsv; 4373 4374 return block_rsv; 4375 } 4376 4377 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4378 u64 num_bytes) 4379 { 4380 int ret = -ENOSPC; 4381 spin_lock(&block_rsv->lock); 4382 if (block_rsv->reserved >= num_bytes) { 4383 block_rsv->reserved -= num_bytes; 4384 if (block_rsv->reserved < block_rsv->size) 4385 block_rsv->full = 0; 4386 ret = 0; 4387 } 4388 spin_unlock(&block_rsv->lock); 4389 return ret; 4390 } 4391 4392 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4393 u64 num_bytes, int update_size) 4394 { 4395 spin_lock(&block_rsv->lock); 4396 block_rsv->reserved += num_bytes; 4397 if (update_size) 4398 block_rsv->size += num_bytes; 4399 else if (block_rsv->reserved >= block_rsv->size) 4400 block_rsv->full = 1; 4401 spin_unlock(&block_rsv->lock); 4402 } 4403 4404 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4405 struct btrfs_block_rsv *dest, u64 num_bytes, 4406 int min_factor) 4407 { 4408 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4409 u64 min_bytes; 4410 4411 if (global_rsv->space_info != dest->space_info) 4412 return -ENOSPC; 4413 4414 spin_lock(&global_rsv->lock); 4415 min_bytes = div_factor(global_rsv->size, min_factor); 4416 if (global_rsv->reserved < min_bytes + num_bytes) { 4417 spin_unlock(&global_rsv->lock); 4418 return -ENOSPC; 4419 } 4420 global_rsv->reserved -= num_bytes; 4421 if (global_rsv->reserved < global_rsv->size) 4422 global_rsv->full = 0; 4423 spin_unlock(&global_rsv->lock); 4424 4425 block_rsv_add_bytes(dest, num_bytes, 1); 4426 return 0; 4427 } 4428 4429 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4430 struct btrfs_block_rsv *block_rsv, 4431 struct btrfs_block_rsv *dest, u64 num_bytes) 4432 { 4433 struct btrfs_space_info *space_info = block_rsv->space_info; 4434 4435 spin_lock(&block_rsv->lock); 4436 if (num_bytes == (u64)-1) 4437 num_bytes = block_rsv->size; 4438 block_rsv->size -= num_bytes; 4439 if (block_rsv->reserved >= block_rsv->size) { 4440 num_bytes = block_rsv->reserved - block_rsv->size; 4441 block_rsv->reserved = block_rsv->size; 4442 block_rsv->full = 1; 4443 } else { 4444 num_bytes = 0; 4445 } 4446 spin_unlock(&block_rsv->lock); 4447 4448 if (num_bytes > 0) { 4449 if (dest) { 4450 spin_lock(&dest->lock); 4451 if (!dest->full) { 4452 u64 bytes_to_add; 4453 4454 bytes_to_add = dest->size - dest->reserved; 4455 bytes_to_add = min(num_bytes, bytes_to_add); 4456 dest->reserved += bytes_to_add; 4457 if (dest->reserved >= dest->size) 4458 dest->full = 1; 4459 num_bytes -= bytes_to_add; 4460 } 4461 spin_unlock(&dest->lock); 4462 } 4463 if (num_bytes) { 4464 spin_lock(&space_info->lock); 4465 space_info->bytes_may_use -= num_bytes; 4466 trace_btrfs_space_reservation(fs_info, "space_info", 4467 space_info->flags, num_bytes, 0); 4468 space_info->reservation_progress++; 4469 spin_unlock(&space_info->lock); 4470 } 4471 } 4472 } 4473 4474 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4475 struct btrfs_block_rsv *dst, u64 num_bytes) 4476 { 4477 int ret; 4478 4479 ret = block_rsv_use_bytes(src, num_bytes); 4480 if (ret) 4481 return ret; 4482 4483 block_rsv_add_bytes(dst, num_bytes, 1); 4484 return 0; 4485 } 4486 4487 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4488 { 4489 memset(rsv, 0, sizeof(*rsv)); 4490 spin_lock_init(&rsv->lock); 4491 rsv->type = type; 4492 } 4493 4494 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4495 unsigned short type) 4496 { 4497 struct btrfs_block_rsv *block_rsv; 4498 struct btrfs_fs_info *fs_info = root->fs_info; 4499 4500 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4501 if (!block_rsv) 4502 return NULL; 4503 4504 btrfs_init_block_rsv(block_rsv, type); 4505 block_rsv->space_info = __find_space_info(fs_info, 4506 BTRFS_BLOCK_GROUP_METADATA); 4507 return block_rsv; 4508 } 4509 4510 void btrfs_free_block_rsv(struct btrfs_root *root, 4511 struct btrfs_block_rsv *rsv) 4512 { 4513 if (!rsv) 4514 return; 4515 btrfs_block_rsv_release(root, rsv, (u64)-1); 4516 kfree(rsv); 4517 } 4518 4519 int btrfs_block_rsv_add(struct btrfs_root *root, 4520 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4521 enum btrfs_reserve_flush_enum flush) 4522 { 4523 int ret; 4524 4525 if (num_bytes == 0) 4526 return 0; 4527 4528 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4529 if (!ret) { 4530 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4531 return 0; 4532 } 4533 4534 return ret; 4535 } 4536 4537 int btrfs_block_rsv_check(struct btrfs_root *root, 4538 struct btrfs_block_rsv *block_rsv, int min_factor) 4539 { 4540 u64 num_bytes = 0; 4541 int ret = -ENOSPC; 4542 4543 if (!block_rsv) 4544 return 0; 4545 4546 spin_lock(&block_rsv->lock); 4547 num_bytes = div_factor(block_rsv->size, min_factor); 4548 if (block_rsv->reserved >= num_bytes) 4549 ret = 0; 4550 spin_unlock(&block_rsv->lock); 4551 4552 return ret; 4553 } 4554 4555 int btrfs_block_rsv_refill(struct btrfs_root *root, 4556 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4557 enum btrfs_reserve_flush_enum flush) 4558 { 4559 u64 num_bytes = 0; 4560 int ret = -ENOSPC; 4561 4562 if (!block_rsv) 4563 return 0; 4564 4565 spin_lock(&block_rsv->lock); 4566 num_bytes = min_reserved; 4567 if (block_rsv->reserved >= num_bytes) 4568 ret = 0; 4569 else 4570 num_bytes -= block_rsv->reserved; 4571 spin_unlock(&block_rsv->lock); 4572 4573 if (!ret) 4574 return 0; 4575 4576 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4577 if (!ret) { 4578 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4579 return 0; 4580 } 4581 4582 return ret; 4583 } 4584 4585 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4586 struct btrfs_block_rsv *dst_rsv, 4587 u64 num_bytes) 4588 { 4589 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4590 } 4591 4592 void btrfs_block_rsv_release(struct btrfs_root *root, 4593 struct btrfs_block_rsv *block_rsv, 4594 u64 num_bytes) 4595 { 4596 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4597 if (global_rsv->full || global_rsv == block_rsv || 4598 block_rsv->space_info != global_rsv->space_info) 4599 global_rsv = NULL; 4600 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4601 num_bytes); 4602 } 4603 4604 /* 4605 * helper to calculate size of global block reservation. 4606 * the desired value is sum of space used by extent tree, 4607 * checksum tree and root tree 4608 */ 4609 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4610 { 4611 struct btrfs_space_info *sinfo; 4612 u64 num_bytes; 4613 u64 meta_used; 4614 u64 data_used; 4615 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4616 4617 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4618 spin_lock(&sinfo->lock); 4619 data_used = sinfo->bytes_used; 4620 spin_unlock(&sinfo->lock); 4621 4622 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4623 spin_lock(&sinfo->lock); 4624 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4625 data_used = 0; 4626 meta_used = sinfo->bytes_used; 4627 spin_unlock(&sinfo->lock); 4628 4629 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4630 csum_size * 2; 4631 num_bytes += div64_u64(data_used + meta_used, 50); 4632 4633 if (num_bytes * 3 > meta_used) 4634 num_bytes = div64_u64(meta_used, 3); 4635 4636 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4637 } 4638 4639 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4640 { 4641 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4642 struct btrfs_space_info *sinfo = block_rsv->space_info; 4643 u64 num_bytes; 4644 4645 num_bytes = calc_global_metadata_size(fs_info); 4646 4647 spin_lock(&sinfo->lock); 4648 spin_lock(&block_rsv->lock); 4649 4650 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4651 4652 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4653 sinfo->bytes_reserved + sinfo->bytes_readonly + 4654 sinfo->bytes_may_use; 4655 4656 if (sinfo->total_bytes > num_bytes) { 4657 num_bytes = sinfo->total_bytes - num_bytes; 4658 block_rsv->reserved += num_bytes; 4659 sinfo->bytes_may_use += num_bytes; 4660 trace_btrfs_space_reservation(fs_info, "space_info", 4661 sinfo->flags, num_bytes, 1); 4662 } 4663 4664 if (block_rsv->reserved >= block_rsv->size) { 4665 num_bytes = block_rsv->reserved - block_rsv->size; 4666 sinfo->bytes_may_use -= num_bytes; 4667 trace_btrfs_space_reservation(fs_info, "space_info", 4668 sinfo->flags, num_bytes, 0); 4669 sinfo->reservation_progress++; 4670 block_rsv->reserved = block_rsv->size; 4671 block_rsv->full = 1; 4672 } 4673 4674 spin_unlock(&block_rsv->lock); 4675 spin_unlock(&sinfo->lock); 4676 } 4677 4678 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4679 { 4680 struct btrfs_space_info *space_info; 4681 4682 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4683 fs_info->chunk_block_rsv.space_info = space_info; 4684 4685 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4686 fs_info->global_block_rsv.space_info = space_info; 4687 fs_info->delalloc_block_rsv.space_info = space_info; 4688 fs_info->trans_block_rsv.space_info = space_info; 4689 fs_info->empty_block_rsv.space_info = space_info; 4690 fs_info->delayed_block_rsv.space_info = space_info; 4691 4692 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4693 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4694 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4695 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4696 if (fs_info->quota_root) 4697 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4698 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4699 4700 update_global_block_rsv(fs_info); 4701 } 4702 4703 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4704 { 4705 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4706 (u64)-1); 4707 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4708 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4709 WARN_ON(fs_info->trans_block_rsv.size > 0); 4710 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4711 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4712 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4713 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4714 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4715 } 4716 4717 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4718 struct btrfs_root *root) 4719 { 4720 if (!trans->block_rsv) 4721 return; 4722 4723 if (!trans->bytes_reserved) 4724 return; 4725 4726 trace_btrfs_space_reservation(root->fs_info, "transaction", 4727 trans->transid, trans->bytes_reserved, 0); 4728 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4729 trans->bytes_reserved = 0; 4730 } 4731 4732 /* Can only return 0 or -ENOSPC */ 4733 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4734 struct inode *inode) 4735 { 4736 struct btrfs_root *root = BTRFS_I(inode)->root; 4737 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4738 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4739 4740 /* 4741 * We need to hold space in order to delete our orphan item once we've 4742 * added it, so this takes the reservation so we can release it later 4743 * when we are truly done with the orphan item. 4744 */ 4745 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4746 trace_btrfs_space_reservation(root->fs_info, "orphan", 4747 btrfs_ino(inode), num_bytes, 1); 4748 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4749 } 4750 4751 void btrfs_orphan_release_metadata(struct inode *inode) 4752 { 4753 struct btrfs_root *root = BTRFS_I(inode)->root; 4754 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4755 trace_btrfs_space_reservation(root->fs_info, "orphan", 4756 btrfs_ino(inode), num_bytes, 0); 4757 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4758 } 4759 4760 /* 4761 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4762 * root: the root of the parent directory 4763 * rsv: block reservation 4764 * items: the number of items that we need do reservation 4765 * qgroup_reserved: used to return the reserved size in qgroup 4766 * 4767 * This function is used to reserve the space for snapshot/subvolume 4768 * creation and deletion. Those operations are different with the 4769 * common file/directory operations, they change two fs/file trees 4770 * and root tree, the number of items that the qgroup reserves is 4771 * different with the free space reservation. So we can not use 4772 * the space reseravtion mechanism in start_transaction(). 4773 */ 4774 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4775 struct btrfs_block_rsv *rsv, 4776 int items, 4777 u64 *qgroup_reserved, 4778 bool use_global_rsv) 4779 { 4780 u64 num_bytes; 4781 int ret; 4782 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4783 4784 if (root->fs_info->quota_enabled) { 4785 /* One for parent inode, two for dir entries */ 4786 num_bytes = 3 * root->leafsize; 4787 ret = btrfs_qgroup_reserve(root, num_bytes); 4788 if (ret) 4789 return ret; 4790 } else { 4791 num_bytes = 0; 4792 } 4793 4794 *qgroup_reserved = num_bytes; 4795 4796 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4797 rsv->space_info = __find_space_info(root->fs_info, 4798 BTRFS_BLOCK_GROUP_METADATA); 4799 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4800 BTRFS_RESERVE_FLUSH_ALL); 4801 4802 if (ret == -ENOSPC && use_global_rsv) 4803 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4804 4805 if (ret) { 4806 if (*qgroup_reserved) 4807 btrfs_qgroup_free(root, *qgroup_reserved); 4808 } 4809 4810 return ret; 4811 } 4812 4813 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4814 struct btrfs_block_rsv *rsv, 4815 u64 qgroup_reserved) 4816 { 4817 btrfs_block_rsv_release(root, rsv, (u64)-1); 4818 if (qgroup_reserved) 4819 btrfs_qgroup_free(root, qgroup_reserved); 4820 } 4821 4822 /** 4823 * drop_outstanding_extent - drop an outstanding extent 4824 * @inode: the inode we're dropping the extent for 4825 * 4826 * This is called when we are freeing up an outstanding extent, either called 4827 * after an error or after an extent is written. This will return the number of 4828 * reserved extents that need to be freed. This must be called with 4829 * BTRFS_I(inode)->lock held. 4830 */ 4831 static unsigned drop_outstanding_extent(struct inode *inode) 4832 { 4833 unsigned drop_inode_space = 0; 4834 unsigned dropped_extents = 0; 4835 4836 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4837 BTRFS_I(inode)->outstanding_extents--; 4838 4839 if (BTRFS_I(inode)->outstanding_extents == 0 && 4840 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4841 &BTRFS_I(inode)->runtime_flags)) 4842 drop_inode_space = 1; 4843 4844 /* 4845 * If we have more or the same amount of outsanding extents than we have 4846 * reserved then we need to leave the reserved extents count alone. 4847 */ 4848 if (BTRFS_I(inode)->outstanding_extents >= 4849 BTRFS_I(inode)->reserved_extents) 4850 return drop_inode_space; 4851 4852 dropped_extents = BTRFS_I(inode)->reserved_extents - 4853 BTRFS_I(inode)->outstanding_extents; 4854 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4855 return dropped_extents + drop_inode_space; 4856 } 4857 4858 /** 4859 * calc_csum_metadata_size - return the amount of metada space that must be 4860 * reserved/free'd for the given bytes. 4861 * @inode: the inode we're manipulating 4862 * @num_bytes: the number of bytes in question 4863 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4864 * 4865 * This adjusts the number of csum_bytes in the inode and then returns the 4866 * correct amount of metadata that must either be reserved or freed. We 4867 * calculate how many checksums we can fit into one leaf and then divide the 4868 * number of bytes that will need to be checksumed by this value to figure out 4869 * how many checksums will be required. If we are adding bytes then the number 4870 * may go up and we will return the number of additional bytes that must be 4871 * reserved. If it is going down we will return the number of bytes that must 4872 * be freed. 4873 * 4874 * This must be called with BTRFS_I(inode)->lock held. 4875 */ 4876 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4877 int reserve) 4878 { 4879 struct btrfs_root *root = BTRFS_I(inode)->root; 4880 u64 csum_size; 4881 int num_csums_per_leaf; 4882 int num_csums; 4883 int old_csums; 4884 4885 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4886 BTRFS_I(inode)->csum_bytes == 0) 4887 return 0; 4888 4889 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4890 if (reserve) 4891 BTRFS_I(inode)->csum_bytes += num_bytes; 4892 else 4893 BTRFS_I(inode)->csum_bytes -= num_bytes; 4894 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4895 num_csums_per_leaf = (int)div64_u64(csum_size, 4896 sizeof(struct btrfs_csum_item) + 4897 sizeof(struct btrfs_disk_key)); 4898 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4899 num_csums = num_csums + num_csums_per_leaf - 1; 4900 num_csums = num_csums / num_csums_per_leaf; 4901 4902 old_csums = old_csums + num_csums_per_leaf - 1; 4903 old_csums = old_csums / num_csums_per_leaf; 4904 4905 /* No change, no need to reserve more */ 4906 if (old_csums == num_csums) 4907 return 0; 4908 4909 if (reserve) 4910 return btrfs_calc_trans_metadata_size(root, 4911 num_csums - old_csums); 4912 4913 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4914 } 4915 4916 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4917 { 4918 struct btrfs_root *root = BTRFS_I(inode)->root; 4919 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4920 u64 to_reserve = 0; 4921 u64 csum_bytes; 4922 unsigned nr_extents = 0; 4923 int extra_reserve = 0; 4924 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4925 int ret = 0; 4926 bool delalloc_lock = true; 4927 u64 to_free = 0; 4928 unsigned dropped; 4929 4930 /* If we are a free space inode we need to not flush since we will be in 4931 * the middle of a transaction commit. We also don't need the delalloc 4932 * mutex since we won't race with anybody. We need this mostly to make 4933 * lockdep shut its filthy mouth. 4934 */ 4935 if (btrfs_is_free_space_inode(inode)) { 4936 flush = BTRFS_RESERVE_NO_FLUSH; 4937 delalloc_lock = false; 4938 } 4939 4940 if (flush != BTRFS_RESERVE_NO_FLUSH && 4941 btrfs_transaction_in_commit(root->fs_info)) 4942 schedule_timeout(1); 4943 4944 if (delalloc_lock) 4945 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4946 4947 num_bytes = ALIGN(num_bytes, root->sectorsize); 4948 4949 spin_lock(&BTRFS_I(inode)->lock); 4950 BTRFS_I(inode)->outstanding_extents++; 4951 4952 if (BTRFS_I(inode)->outstanding_extents > 4953 BTRFS_I(inode)->reserved_extents) 4954 nr_extents = BTRFS_I(inode)->outstanding_extents - 4955 BTRFS_I(inode)->reserved_extents; 4956 4957 /* 4958 * Add an item to reserve for updating the inode when we complete the 4959 * delalloc io. 4960 */ 4961 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4962 &BTRFS_I(inode)->runtime_flags)) { 4963 nr_extents++; 4964 extra_reserve = 1; 4965 } 4966 4967 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4968 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4969 csum_bytes = BTRFS_I(inode)->csum_bytes; 4970 spin_unlock(&BTRFS_I(inode)->lock); 4971 4972 if (root->fs_info->quota_enabled) { 4973 ret = btrfs_qgroup_reserve(root, num_bytes + 4974 nr_extents * root->leafsize); 4975 if (ret) 4976 goto out_fail; 4977 } 4978 4979 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4980 if (unlikely(ret)) { 4981 if (root->fs_info->quota_enabled) 4982 btrfs_qgroup_free(root, num_bytes + 4983 nr_extents * root->leafsize); 4984 goto out_fail; 4985 } 4986 4987 spin_lock(&BTRFS_I(inode)->lock); 4988 if (extra_reserve) { 4989 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4990 &BTRFS_I(inode)->runtime_flags); 4991 nr_extents--; 4992 } 4993 BTRFS_I(inode)->reserved_extents += nr_extents; 4994 spin_unlock(&BTRFS_I(inode)->lock); 4995 4996 if (delalloc_lock) 4997 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4998 4999 if (to_reserve) 5000 trace_btrfs_space_reservation(root->fs_info,"delalloc", 5001 btrfs_ino(inode), to_reserve, 1); 5002 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5003 5004 return 0; 5005 5006 out_fail: 5007 spin_lock(&BTRFS_I(inode)->lock); 5008 dropped = drop_outstanding_extent(inode); 5009 /* 5010 * If the inodes csum_bytes is the same as the original 5011 * csum_bytes then we know we haven't raced with any free()ers 5012 * so we can just reduce our inodes csum bytes and carry on. 5013 */ 5014 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5015 calc_csum_metadata_size(inode, num_bytes, 0); 5016 } else { 5017 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5018 u64 bytes; 5019 5020 /* 5021 * This is tricky, but first we need to figure out how much we 5022 * free'd from any free-ers that occured during this 5023 * reservation, so we reset ->csum_bytes to the csum_bytes 5024 * before we dropped our lock, and then call the free for the 5025 * number of bytes that were freed while we were trying our 5026 * reservation. 5027 */ 5028 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5029 BTRFS_I(inode)->csum_bytes = csum_bytes; 5030 to_free = calc_csum_metadata_size(inode, bytes, 0); 5031 5032 5033 /* 5034 * Now we need to see how much we would have freed had we not 5035 * been making this reservation and our ->csum_bytes were not 5036 * artificially inflated. 5037 */ 5038 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5039 bytes = csum_bytes - orig_csum_bytes; 5040 bytes = calc_csum_metadata_size(inode, bytes, 0); 5041 5042 /* 5043 * Now reset ->csum_bytes to what it should be. If bytes is 5044 * more than to_free then we would have free'd more space had we 5045 * not had an artificially high ->csum_bytes, so we need to free 5046 * the remainder. If bytes is the same or less then we don't 5047 * need to do anything, the other free-ers did the correct 5048 * thing. 5049 */ 5050 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5051 if (bytes > to_free) 5052 to_free = bytes - to_free; 5053 else 5054 to_free = 0; 5055 } 5056 spin_unlock(&BTRFS_I(inode)->lock); 5057 if (dropped) 5058 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5059 5060 if (to_free) { 5061 btrfs_block_rsv_release(root, block_rsv, to_free); 5062 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5063 btrfs_ino(inode), to_free, 0); 5064 } 5065 if (delalloc_lock) 5066 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5067 return ret; 5068 } 5069 5070 /** 5071 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5072 * @inode: the inode to release the reservation for 5073 * @num_bytes: the number of bytes we're releasing 5074 * 5075 * This will release the metadata reservation for an inode. This can be called 5076 * once we complete IO for a given set of bytes to release their metadata 5077 * reservations. 5078 */ 5079 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5080 { 5081 struct btrfs_root *root = BTRFS_I(inode)->root; 5082 u64 to_free = 0; 5083 unsigned dropped; 5084 5085 num_bytes = ALIGN(num_bytes, root->sectorsize); 5086 spin_lock(&BTRFS_I(inode)->lock); 5087 dropped = drop_outstanding_extent(inode); 5088 5089 if (num_bytes) 5090 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5091 spin_unlock(&BTRFS_I(inode)->lock); 5092 if (dropped > 0) 5093 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5094 5095 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5096 btrfs_ino(inode), to_free, 0); 5097 if (root->fs_info->quota_enabled) { 5098 btrfs_qgroup_free(root, num_bytes + 5099 dropped * root->leafsize); 5100 } 5101 5102 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5103 to_free); 5104 } 5105 5106 /** 5107 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5108 * @inode: inode we're writing to 5109 * @num_bytes: the number of bytes we want to allocate 5110 * 5111 * This will do the following things 5112 * 5113 * o reserve space in the data space info for num_bytes 5114 * o reserve space in the metadata space info based on number of outstanding 5115 * extents and how much csums will be needed 5116 * o add to the inodes ->delalloc_bytes 5117 * o add it to the fs_info's delalloc inodes list. 5118 * 5119 * This will return 0 for success and -ENOSPC if there is no space left. 5120 */ 5121 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5122 { 5123 int ret; 5124 5125 ret = btrfs_check_data_free_space(inode, num_bytes); 5126 if (ret) 5127 return ret; 5128 5129 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5130 if (ret) { 5131 btrfs_free_reserved_data_space(inode, num_bytes); 5132 return ret; 5133 } 5134 5135 return 0; 5136 } 5137 5138 /** 5139 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5140 * @inode: inode we're releasing space for 5141 * @num_bytes: the number of bytes we want to free up 5142 * 5143 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5144 * called in the case that we don't need the metadata AND data reservations 5145 * anymore. So if there is an error or we insert an inline extent. 5146 * 5147 * This function will release the metadata space that was not used and will 5148 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5149 * list if there are no delalloc bytes left. 5150 */ 5151 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5152 { 5153 btrfs_delalloc_release_metadata(inode, num_bytes); 5154 btrfs_free_reserved_data_space(inode, num_bytes); 5155 } 5156 5157 static int update_block_group(struct btrfs_root *root, 5158 u64 bytenr, u64 num_bytes, int alloc) 5159 { 5160 struct btrfs_block_group_cache *cache = NULL; 5161 struct btrfs_fs_info *info = root->fs_info; 5162 u64 total = num_bytes; 5163 u64 old_val; 5164 u64 byte_in_group; 5165 int factor; 5166 5167 /* block accounting for super block */ 5168 spin_lock(&info->delalloc_root_lock); 5169 old_val = btrfs_super_bytes_used(info->super_copy); 5170 if (alloc) 5171 old_val += num_bytes; 5172 else 5173 old_val -= num_bytes; 5174 btrfs_set_super_bytes_used(info->super_copy, old_val); 5175 spin_unlock(&info->delalloc_root_lock); 5176 5177 while (total) { 5178 cache = btrfs_lookup_block_group(info, bytenr); 5179 if (!cache) 5180 return -ENOENT; 5181 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5182 BTRFS_BLOCK_GROUP_RAID1 | 5183 BTRFS_BLOCK_GROUP_RAID10)) 5184 factor = 2; 5185 else 5186 factor = 1; 5187 /* 5188 * If this block group has free space cache written out, we 5189 * need to make sure to load it if we are removing space. This 5190 * is because we need the unpinning stage to actually add the 5191 * space back to the block group, otherwise we will leak space. 5192 */ 5193 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5194 cache_block_group(cache, 1); 5195 5196 byte_in_group = bytenr - cache->key.objectid; 5197 WARN_ON(byte_in_group > cache->key.offset); 5198 5199 spin_lock(&cache->space_info->lock); 5200 spin_lock(&cache->lock); 5201 5202 if (btrfs_test_opt(root, SPACE_CACHE) && 5203 cache->disk_cache_state < BTRFS_DC_CLEAR) 5204 cache->disk_cache_state = BTRFS_DC_CLEAR; 5205 5206 cache->dirty = 1; 5207 old_val = btrfs_block_group_used(&cache->item); 5208 num_bytes = min(total, cache->key.offset - byte_in_group); 5209 if (alloc) { 5210 old_val += num_bytes; 5211 btrfs_set_block_group_used(&cache->item, old_val); 5212 cache->reserved -= num_bytes; 5213 cache->space_info->bytes_reserved -= num_bytes; 5214 cache->space_info->bytes_used += num_bytes; 5215 cache->space_info->disk_used += num_bytes * factor; 5216 spin_unlock(&cache->lock); 5217 spin_unlock(&cache->space_info->lock); 5218 } else { 5219 old_val -= num_bytes; 5220 btrfs_set_block_group_used(&cache->item, old_val); 5221 cache->pinned += num_bytes; 5222 cache->space_info->bytes_pinned += num_bytes; 5223 cache->space_info->bytes_used -= num_bytes; 5224 cache->space_info->disk_used -= num_bytes * factor; 5225 spin_unlock(&cache->lock); 5226 spin_unlock(&cache->space_info->lock); 5227 5228 set_extent_dirty(info->pinned_extents, 5229 bytenr, bytenr + num_bytes - 1, 5230 GFP_NOFS | __GFP_NOFAIL); 5231 } 5232 btrfs_put_block_group(cache); 5233 total -= num_bytes; 5234 bytenr += num_bytes; 5235 } 5236 return 0; 5237 } 5238 5239 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5240 { 5241 struct btrfs_block_group_cache *cache; 5242 u64 bytenr; 5243 5244 spin_lock(&root->fs_info->block_group_cache_lock); 5245 bytenr = root->fs_info->first_logical_byte; 5246 spin_unlock(&root->fs_info->block_group_cache_lock); 5247 5248 if (bytenr < (u64)-1) 5249 return bytenr; 5250 5251 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5252 if (!cache) 5253 return 0; 5254 5255 bytenr = cache->key.objectid; 5256 btrfs_put_block_group(cache); 5257 5258 return bytenr; 5259 } 5260 5261 static int pin_down_extent(struct btrfs_root *root, 5262 struct btrfs_block_group_cache *cache, 5263 u64 bytenr, u64 num_bytes, int reserved) 5264 { 5265 spin_lock(&cache->space_info->lock); 5266 spin_lock(&cache->lock); 5267 cache->pinned += num_bytes; 5268 cache->space_info->bytes_pinned += num_bytes; 5269 if (reserved) { 5270 cache->reserved -= num_bytes; 5271 cache->space_info->bytes_reserved -= num_bytes; 5272 } 5273 spin_unlock(&cache->lock); 5274 spin_unlock(&cache->space_info->lock); 5275 5276 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5277 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5278 return 0; 5279 } 5280 5281 /* 5282 * this function must be called within transaction 5283 */ 5284 int btrfs_pin_extent(struct btrfs_root *root, 5285 u64 bytenr, u64 num_bytes, int reserved) 5286 { 5287 struct btrfs_block_group_cache *cache; 5288 5289 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5290 BUG_ON(!cache); /* Logic error */ 5291 5292 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5293 5294 btrfs_put_block_group(cache); 5295 return 0; 5296 } 5297 5298 /* 5299 * this function must be called within transaction 5300 */ 5301 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5302 u64 bytenr, u64 num_bytes) 5303 { 5304 struct btrfs_block_group_cache *cache; 5305 int ret; 5306 5307 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5308 if (!cache) 5309 return -EINVAL; 5310 5311 /* 5312 * pull in the free space cache (if any) so that our pin 5313 * removes the free space from the cache. We have load_only set 5314 * to one because the slow code to read in the free extents does check 5315 * the pinned extents. 5316 */ 5317 cache_block_group(cache, 1); 5318 5319 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5320 5321 /* remove us from the free space cache (if we're there at all) */ 5322 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5323 btrfs_put_block_group(cache); 5324 return ret; 5325 } 5326 5327 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5328 { 5329 int ret; 5330 struct btrfs_block_group_cache *block_group; 5331 struct btrfs_caching_control *caching_ctl; 5332 5333 block_group = btrfs_lookup_block_group(root->fs_info, start); 5334 if (!block_group) 5335 return -EINVAL; 5336 5337 cache_block_group(block_group, 0); 5338 caching_ctl = get_caching_control(block_group); 5339 5340 if (!caching_ctl) { 5341 /* Logic error */ 5342 BUG_ON(!block_group_cache_done(block_group)); 5343 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5344 } else { 5345 mutex_lock(&caching_ctl->mutex); 5346 5347 if (start >= caching_ctl->progress) { 5348 ret = add_excluded_extent(root, start, num_bytes); 5349 } else if (start + num_bytes <= caching_ctl->progress) { 5350 ret = btrfs_remove_free_space(block_group, 5351 start, num_bytes); 5352 } else { 5353 num_bytes = caching_ctl->progress - start; 5354 ret = btrfs_remove_free_space(block_group, 5355 start, num_bytes); 5356 if (ret) 5357 goto out_lock; 5358 5359 num_bytes = (start + num_bytes) - 5360 caching_ctl->progress; 5361 start = caching_ctl->progress; 5362 ret = add_excluded_extent(root, start, num_bytes); 5363 } 5364 out_lock: 5365 mutex_unlock(&caching_ctl->mutex); 5366 put_caching_control(caching_ctl); 5367 } 5368 btrfs_put_block_group(block_group); 5369 return ret; 5370 } 5371 5372 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5373 struct extent_buffer *eb) 5374 { 5375 struct btrfs_file_extent_item *item; 5376 struct btrfs_key key; 5377 int found_type; 5378 int i; 5379 5380 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5381 return 0; 5382 5383 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5384 btrfs_item_key_to_cpu(eb, &key, i); 5385 if (key.type != BTRFS_EXTENT_DATA_KEY) 5386 continue; 5387 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5388 found_type = btrfs_file_extent_type(eb, item); 5389 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5390 continue; 5391 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5392 continue; 5393 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5394 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5395 __exclude_logged_extent(log, key.objectid, key.offset); 5396 } 5397 5398 return 0; 5399 } 5400 5401 /** 5402 * btrfs_update_reserved_bytes - update the block_group and space info counters 5403 * @cache: The cache we are manipulating 5404 * @num_bytes: The number of bytes in question 5405 * @reserve: One of the reservation enums 5406 * 5407 * This is called by the allocator when it reserves space, or by somebody who is 5408 * freeing space that was never actually used on disk. For example if you 5409 * reserve some space for a new leaf in transaction A and before transaction A 5410 * commits you free that leaf, you call this with reserve set to 0 in order to 5411 * clear the reservation. 5412 * 5413 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5414 * ENOSPC accounting. For data we handle the reservation through clearing the 5415 * delalloc bits in the io_tree. We have to do this since we could end up 5416 * allocating less disk space for the amount of data we have reserved in the 5417 * case of compression. 5418 * 5419 * If this is a reservation and the block group has become read only we cannot 5420 * make the reservation and return -EAGAIN, otherwise this function always 5421 * succeeds. 5422 */ 5423 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5424 u64 num_bytes, int reserve) 5425 { 5426 struct btrfs_space_info *space_info = cache->space_info; 5427 int ret = 0; 5428 5429 spin_lock(&space_info->lock); 5430 spin_lock(&cache->lock); 5431 if (reserve != RESERVE_FREE) { 5432 if (cache->ro) { 5433 ret = -EAGAIN; 5434 } else { 5435 cache->reserved += num_bytes; 5436 space_info->bytes_reserved += num_bytes; 5437 if (reserve == RESERVE_ALLOC) { 5438 trace_btrfs_space_reservation(cache->fs_info, 5439 "space_info", space_info->flags, 5440 num_bytes, 0); 5441 space_info->bytes_may_use -= num_bytes; 5442 } 5443 } 5444 } else { 5445 if (cache->ro) 5446 space_info->bytes_readonly += num_bytes; 5447 cache->reserved -= num_bytes; 5448 space_info->bytes_reserved -= num_bytes; 5449 space_info->reservation_progress++; 5450 } 5451 spin_unlock(&cache->lock); 5452 spin_unlock(&space_info->lock); 5453 return ret; 5454 } 5455 5456 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5457 struct btrfs_root *root) 5458 { 5459 struct btrfs_fs_info *fs_info = root->fs_info; 5460 struct btrfs_caching_control *next; 5461 struct btrfs_caching_control *caching_ctl; 5462 struct btrfs_block_group_cache *cache; 5463 struct btrfs_space_info *space_info; 5464 5465 down_write(&fs_info->extent_commit_sem); 5466 5467 list_for_each_entry_safe(caching_ctl, next, 5468 &fs_info->caching_block_groups, list) { 5469 cache = caching_ctl->block_group; 5470 if (block_group_cache_done(cache)) { 5471 cache->last_byte_to_unpin = (u64)-1; 5472 list_del_init(&caching_ctl->list); 5473 put_caching_control(caching_ctl); 5474 } else { 5475 cache->last_byte_to_unpin = caching_ctl->progress; 5476 } 5477 } 5478 5479 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5480 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5481 else 5482 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5483 5484 up_write(&fs_info->extent_commit_sem); 5485 5486 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5487 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5488 5489 update_global_block_rsv(fs_info); 5490 } 5491 5492 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5493 { 5494 struct btrfs_fs_info *fs_info = root->fs_info; 5495 struct btrfs_block_group_cache *cache = NULL; 5496 struct btrfs_space_info *space_info; 5497 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5498 u64 len; 5499 bool readonly; 5500 5501 while (start <= end) { 5502 readonly = false; 5503 if (!cache || 5504 start >= cache->key.objectid + cache->key.offset) { 5505 if (cache) 5506 btrfs_put_block_group(cache); 5507 cache = btrfs_lookup_block_group(fs_info, start); 5508 BUG_ON(!cache); /* Logic error */ 5509 } 5510 5511 len = cache->key.objectid + cache->key.offset - start; 5512 len = min(len, end + 1 - start); 5513 5514 if (start < cache->last_byte_to_unpin) { 5515 len = min(len, cache->last_byte_to_unpin - start); 5516 btrfs_add_free_space(cache, start, len); 5517 } 5518 5519 start += len; 5520 space_info = cache->space_info; 5521 5522 spin_lock(&space_info->lock); 5523 spin_lock(&cache->lock); 5524 cache->pinned -= len; 5525 space_info->bytes_pinned -= len; 5526 if (cache->ro) { 5527 space_info->bytes_readonly += len; 5528 readonly = true; 5529 } 5530 spin_unlock(&cache->lock); 5531 if (!readonly && global_rsv->space_info == space_info) { 5532 spin_lock(&global_rsv->lock); 5533 if (!global_rsv->full) { 5534 len = min(len, global_rsv->size - 5535 global_rsv->reserved); 5536 global_rsv->reserved += len; 5537 space_info->bytes_may_use += len; 5538 if (global_rsv->reserved >= global_rsv->size) 5539 global_rsv->full = 1; 5540 } 5541 spin_unlock(&global_rsv->lock); 5542 } 5543 spin_unlock(&space_info->lock); 5544 } 5545 5546 if (cache) 5547 btrfs_put_block_group(cache); 5548 return 0; 5549 } 5550 5551 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5552 struct btrfs_root *root) 5553 { 5554 struct btrfs_fs_info *fs_info = root->fs_info; 5555 struct extent_io_tree *unpin; 5556 u64 start; 5557 u64 end; 5558 int ret; 5559 5560 if (trans->aborted) 5561 return 0; 5562 5563 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5564 unpin = &fs_info->freed_extents[1]; 5565 else 5566 unpin = &fs_info->freed_extents[0]; 5567 5568 while (1) { 5569 ret = find_first_extent_bit(unpin, 0, &start, &end, 5570 EXTENT_DIRTY, NULL); 5571 if (ret) 5572 break; 5573 5574 if (btrfs_test_opt(root, DISCARD)) 5575 ret = btrfs_discard_extent(root, start, 5576 end + 1 - start, NULL); 5577 5578 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5579 unpin_extent_range(root, start, end); 5580 cond_resched(); 5581 } 5582 5583 return 0; 5584 } 5585 5586 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5587 u64 owner, u64 root_objectid) 5588 { 5589 struct btrfs_space_info *space_info; 5590 u64 flags; 5591 5592 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5593 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5594 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5595 else 5596 flags = BTRFS_BLOCK_GROUP_METADATA; 5597 } else { 5598 flags = BTRFS_BLOCK_GROUP_DATA; 5599 } 5600 5601 space_info = __find_space_info(fs_info, flags); 5602 BUG_ON(!space_info); /* Logic bug */ 5603 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5604 } 5605 5606 5607 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5608 struct btrfs_root *root, 5609 u64 bytenr, u64 num_bytes, u64 parent, 5610 u64 root_objectid, u64 owner_objectid, 5611 u64 owner_offset, int refs_to_drop, 5612 struct btrfs_delayed_extent_op *extent_op) 5613 { 5614 struct btrfs_key key; 5615 struct btrfs_path *path; 5616 struct btrfs_fs_info *info = root->fs_info; 5617 struct btrfs_root *extent_root = info->extent_root; 5618 struct extent_buffer *leaf; 5619 struct btrfs_extent_item *ei; 5620 struct btrfs_extent_inline_ref *iref; 5621 int ret; 5622 int is_data; 5623 int extent_slot = 0; 5624 int found_extent = 0; 5625 int num_to_del = 1; 5626 u32 item_size; 5627 u64 refs; 5628 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5629 SKINNY_METADATA); 5630 5631 path = btrfs_alloc_path(); 5632 if (!path) 5633 return -ENOMEM; 5634 5635 path->reada = 1; 5636 path->leave_spinning = 1; 5637 5638 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5639 BUG_ON(!is_data && refs_to_drop != 1); 5640 5641 if (is_data) 5642 skinny_metadata = 0; 5643 5644 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5645 bytenr, num_bytes, parent, 5646 root_objectid, owner_objectid, 5647 owner_offset); 5648 if (ret == 0) { 5649 extent_slot = path->slots[0]; 5650 while (extent_slot >= 0) { 5651 btrfs_item_key_to_cpu(path->nodes[0], &key, 5652 extent_slot); 5653 if (key.objectid != bytenr) 5654 break; 5655 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5656 key.offset == num_bytes) { 5657 found_extent = 1; 5658 break; 5659 } 5660 if (key.type == BTRFS_METADATA_ITEM_KEY && 5661 key.offset == owner_objectid) { 5662 found_extent = 1; 5663 break; 5664 } 5665 if (path->slots[0] - extent_slot > 5) 5666 break; 5667 extent_slot--; 5668 } 5669 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5670 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5671 if (found_extent && item_size < sizeof(*ei)) 5672 found_extent = 0; 5673 #endif 5674 if (!found_extent) { 5675 BUG_ON(iref); 5676 ret = remove_extent_backref(trans, extent_root, path, 5677 NULL, refs_to_drop, 5678 is_data); 5679 if (ret) { 5680 btrfs_abort_transaction(trans, extent_root, ret); 5681 goto out; 5682 } 5683 btrfs_release_path(path); 5684 path->leave_spinning = 1; 5685 5686 key.objectid = bytenr; 5687 key.type = BTRFS_EXTENT_ITEM_KEY; 5688 key.offset = num_bytes; 5689 5690 if (!is_data && skinny_metadata) { 5691 key.type = BTRFS_METADATA_ITEM_KEY; 5692 key.offset = owner_objectid; 5693 } 5694 5695 ret = btrfs_search_slot(trans, extent_root, 5696 &key, path, -1, 1); 5697 if (ret > 0 && skinny_metadata && path->slots[0]) { 5698 /* 5699 * Couldn't find our skinny metadata item, 5700 * see if we have ye olde extent item. 5701 */ 5702 path->slots[0]--; 5703 btrfs_item_key_to_cpu(path->nodes[0], &key, 5704 path->slots[0]); 5705 if (key.objectid == bytenr && 5706 key.type == BTRFS_EXTENT_ITEM_KEY && 5707 key.offset == num_bytes) 5708 ret = 0; 5709 } 5710 5711 if (ret > 0 && skinny_metadata) { 5712 skinny_metadata = false; 5713 key.type = BTRFS_EXTENT_ITEM_KEY; 5714 key.offset = num_bytes; 5715 btrfs_release_path(path); 5716 ret = btrfs_search_slot(trans, extent_root, 5717 &key, path, -1, 1); 5718 } 5719 5720 if (ret) { 5721 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5722 ret, bytenr); 5723 if (ret > 0) 5724 btrfs_print_leaf(extent_root, 5725 path->nodes[0]); 5726 } 5727 if (ret < 0) { 5728 btrfs_abort_transaction(trans, extent_root, ret); 5729 goto out; 5730 } 5731 extent_slot = path->slots[0]; 5732 } 5733 } else if (ret == -ENOENT) { 5734 btrfs_print_leaf(extent_root, path->nodes[0]); 5735 WARN_ON(1); 5736 btrfs_err(info, 5737 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5738 bytenr, parent, root_objectid, owner_objectid, 5739 owner_offset); 5740 } else { 5741 btrfs_abort_transaction(trans, extent_root, ret); 5742 goto out; 5743 } 5744 5745 leaf = path->nodes[0]; 5746 item_size = btrfs_item_size_nr(leaf, extent_slot); 5747 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5748 if (item_size < sizeof(*ei)) { 5749 BUG_ON(found_extent || extent_slot != path->slots[0]); 5750 ret = convert_extent_item_v0(trans, extent_root, path, 5751 owner_objectid, 0); 5752 if (ret < 0) { 5753 btrfs_abort_transaction(trans, extent_root, ret); 5754 goto out; 5755 } 5756 5757 btrfs_release_path(path); 5758 path->leave_spinning = 1; 5759 5760 key.objectid = bytenr; 5761 key.type = BTRFS_EXTENT_ITEM_KEY; 5762 key.offset = num_bytes; 5763 5764 ret = btrfs_search_slot(trans, extent_root, &key, path, 5765 -1, 1); 5766 if (ret) { 5767 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5768 ret, bytenr); 5769 btrfs_print_leaf(extent_root, path->nodes[0]); 5770 } 5771 if (ret < 0) { 5772 btrfs_abort_transaction(trans, extent_root, ret); 5773 goto out; 5774 } 5775 5776 extent_slot = path->slots[0]; 5777 leaf = path->nodes[0]; 5778 item_size = btrfs_item_size_nr(leaf, extent_slot); 5779 } 5780 #endif 5781 BUG_ON(item_size < sizeof(*ei)); 5782 ei = btrfs_item_ptr(leaf, extent_slot, 5783 struct btrfs_extent_item); 5784 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5785 key.type == BTRFS_EXTENT_ITEM_KEY) { 5786 struct btrfs_tree_block_info *bi; 5787 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5788 bi = (struct btrfs_tree_block_info *)(ei + 1); 5789 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5790 } 5791 5792 refs = btrfs_extent_refs(leaf, ei); 5793 if (refs < refs_to_drop) { 5794 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5795 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5796 ret = -EINVAL; 5797 btrfs_abort_transaction(trans, extent_root, ret); 5798 goto out; 5799 } 5800 refs -= refs_to_drop; 5801 5802 if (refs > 0) { 5803 if (extent_op) 5804 __run_delayed_extent_op(extent_op, leaf, ei); 5805 /* 5806 * In the case of inline back ref, reference count will 5807 * be updated by remove_extent_backref 5808 */ 5809 if (iref) { 5810 BUG_ON(!found_extent); 5811 } else { 5812 btrfs_set_extent_refs(leaf, ei, refs); 5813 btrfs_mark_buffer_dirty(leaf); 5814 } 5815 if (found_extent) { 5816 ret = remove_extent_backref(trans, extent_root, path, 5817 iref, refs_to_drop, 5818 is_data); 5819 if (ret) { 5820 btrfs_abort_transaction(trans, extent_root, ret); 5821 goto out; 5822 } 5823 } 5824 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5825 root_objectid); 5826 } else { 5827 if (found_extent) { 5828 BUG_ON(is_data && refs_to_drop != 5829 extent_data_ref_count(root, path, iref)); 5830 if (iref) { 5831 BUG_ON(path->slots[0] != extent_slot); 5832 } else { 5833 BUG_ON(path->slots[0] != extent_slot + 1); 5834 path->slots[0] = extent_slot; 5835 num_to_del = 2; 5836 } 5837 } 5838 5839 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5840 num_to_del); 5841 if (ret) { 5842 btrfs_abort_transaction(trans, extent_root, ret); 5843 goto out; 5844 } 5845 btrfs_release_path(path); 5846 5847 if (is_data) { 5848 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5849 if (ret) { 5850 btrfs_abort_transaction(trans, extent_root, ret); 5851 goto out; 5852 } 5853 } 5854 5855 ret = update_block_group(root, bytenr, num_bytes, 0); 5856 if (ret) { 5857 btrfs_abort_transaction(trans, extent_root, ret); 5858 goto out; 5859 } 5860 } 5861 out: 5862 btrfs_free_path(path); 5863 return ret; 5864 } 5865 5866 /* 5867 * when we free an block, it is possible (and likely) that we free the last 5868 * delayed ref for that extent as well. This searches the delayed ref tree for 5869 * a given extent, and if there are no other delayed refs to be processed, it 5870 * removes it from the tree. 5871 */ 5872 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5873 struct btrfs_root *root, u64 bytenr) 5874 { 5875 struct btrfs_delayed_ref_head *head; 5876 struct btrfs_delayed_ref_root *delayed_refs; 5877 struct btrfs_delayed_ref_node *ref; 5878 struct rb_node *node; 5879 int ret = 0; 5880 5881 delayed_refs = &trans->transaction->delayed_refs; 5882 spin_lock(&delayed_refs->lock); 5883 head = btrfs_find_delayed_ref_head(trans, bytenr); 5884 if (!head) 5885 goto out; 5886 5887 node = rb_prev(&head->node.rb_node); 5888 if (!node) 5889 goto out; 5890 5891 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5892 5893 /* there are still entries for this ref, we can't drop it */ 5894 if (ref->bytenr == bytenr) 5895 goto out; 5896 5897 if (head->extent_op) { 5898 if (!head->must_insert_reserved) 5899 goto out; 5900 btrfs_free_delayed_extent_op(head->extent_op); 5901 head->extent_op = NULL; 5902 } 5903 5904 /* 5905 * waiting for the lock here would deadlock. If someone else has it 5906 * locked they are already in the process of dropping it anyway 5907 */ 5908 if (!mutex_trylock(&head->mutex)) 5909 goto out; 5910 5911 /* 5912 * at this point we have a head with no other entries. Go 5913 * ahead and process it. 5914 */ 5915 head->node.in_tree = 0; 5916 rb_erase(&head->node.rb_node, &delayed_refs->root); 5917 5918 delayed_refs->num_entries--; 5919 5920 /* 5921 * we don't take a ref on the node because we're removing it from the 5922 * tree, so we just steal the ref the tree was holding. 5923 */ 5924 delayed_refs->num_heads--; 5925 if (list_empty(&head->cluster)) 5926 delayed_refs->num_heads_ready--; 5927 5928 list_del_init(&head->cluster); 5929 spin_unlock(&delayed_refs->lock); 5930 5931 BUG_ON(head->extent_op); 5932 if (head->must_insert_reserved) 5933 ret = 1; 5934 5935 mutex_unlock(&head->mutex); 5936 btrfs_put_delayed_ref(&head->node); 5937 return ret; 5938 out: 5939 spin_unlock(&delayed_refs->lock); 5940 return 0; 5941 } 5942 5943 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5944 struct btrfs_root *root, 5945 struct extent_buffer *buf, 5946 u64 parent, int last_ref) 5947 { 5948 struct btrfs_block_group_cache *cache = NULL; 5949 int pin = 1; 5950 int ret; 5951 5952 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5953 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5954 buf->start, buf->len, 5955 parent, root->root_key.objectid, 5956 btrfs_header_level(buf), 5957 BTRFS_DROP_DELAYED_REF, NULL, 0); 5958 BUG_ON(ret); /* -ENOMEM */ 5959 } 5960 5961 if (!last_ref) 5962 return; 5963 5964 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5965 5966 if (btrfs_header_generation(buf) == trans->transid) { 5967 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5968 ret = check_ref_cleanup(trans, root, buf->start); 5969 if (!ret) 5970 goto out; 5971 } 5972 5973 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5974 pin_down_extent(root, cache, buf->start, buf->len, 1); 5975 goto out; 5976 } 5977 5978 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5979 5980 btrfs_add_free_space(cache, buf->start, buf->len); 5981 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5982 pin = 0; 5983 } 5984 out: 5985 if (pin) 5986 add_pinned_bytes(root->fs_info, buf->len, 5987 btrfs_header_level(buf), 5988 root->root_key.objectid); 5989 5990 /* 5991 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5992 * anymore. 5993 */ 5994 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5995 btrfs_put_block_group(cache); 5996 } 5997 5998 /* Can return -ENOMEM */ 5999 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6000 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6001 u64 owner, u64 offset, int for_cow) 6002 { 6003 int ret; 6004 struct btrfs_fs_info *fs_info = root->fs_info; 6005 6006 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6007 6008 /* 6009 * tree log blocks never actually go into the extent allocation 6010 * tree, just update pinning info and exit early. 6011 */ 6012 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6013 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6014 /* unlocks the pinned mutex */ 6015 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6016 ret = 0; 6017 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6018 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6019 num_bytes, 6020 parent, root_objectid, (int)owner, 6021 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6022 } else { 6023 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6024 num_bytes, 6025 parent, root_objectid, owner, 6026 offset, BTRFS_DROP_DELAYED_REF, 6027 NULL, for_cow); 6028 } 6029 return ret; 6030 } 6031 6032 static u64 stripe_align(struct btrfs_root *root, 6033 struct btrfs_block_group_cache *cache, 6034 u64 val, u64 num_bytes) 6035 { 6036 u64 ret = ALIGN(val, root->stripesize); 6037 return ret; 6038 } 6039 6040 /* 6041 * when we wait for progress in the block group caching, its because 6042 * our allocation attempt failed at least once. So, we must sleep 6043 * and let some progress happen before we try again. 6044 * 6045 * This function will sleep at least once waiting for new free space to 6046 * show up, and then it will check the block group free space numbers 6047 * for our min num_bytes. Another option is to have it go ahead 6048 * and look in the rbtree for a free extent of a given size, but this 6049 * is a good start. 6050 * 6051 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6052 * any of the information in this block group. 6053 */ 6054 static noinline void 6055 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6056 u64 num_bytes) 6057 { 6058 struct btrfs_caching_control *caching_ctl; 6059 6060 caching_ctl = get_caching_control(cache); 6061 if (!caching_ctl) 6062 return; 6063 6064 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6065 (cache->free_space_ctl->free_space >= num_bytes)); 6066 6067 put_caching_control(caching_ctl); 6068 } 6069 6070 static noinline int 6071 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6072 { 6073 struct btrfs_caching_control *caching_ctl; 6074 int ret = 0; 6075 6076 caching_ctl = get_caching_control(cache); 6077 if (!caching_ctl) 6078 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6079 6080 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6081 if (cache->cached == BTRFS_CACHE_ERROR) 6082 ret = -EIO; 6083 put_caching_control(caching_ctl); 6084 return ret; 6085 } 6086 6087 int __get_raid_index(u64 flags) 6088 { 6089 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6090 return BTRFS_RAID_RAID10; 6091 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6092 return BTRFS_RAID_RAID1; 6093 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6094 return BTRFS_RAID_DUP; 6095 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6096 return BTRFS_RAID_RAID0; 6097 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6098 return BTRFS_RAID_RAID5; 6099 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6100 return BTRFS_RAID_RAID6; 6101 6102 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6103 } 6104 6105 static int get_block_group_index(struct btrfs_block_group_cache *cache) 6106 { 6107 return __get_raid_index(cache->flags); 6108 } 6109 6110 enum btrfs_loop_type { 6111 LOOP_CACHING_NOWAIT = 0, 6112 LOOP_CACHING_WAIT = 1, 6113 LOOP_ALLOC_CHUNK = 2, 6114 LOOP_NO_EMPTY_SIZE = 3, 6115 }; 6116 6117 /* 6118 * walks the btree of allocated extents and find a hole of a given size. 6119 * The key ins is changed to record the hole: 6120 * ins->objectid == block start 6121 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6122 * ins->offset == number of blocks 6123 * Any available blocks before search_start are skipped. 6124 */ 6125 static noinline int find_free_extent(struct btrfs_root *orig_root, 6126 u64 num_bytes, u64 empty_size, 6127 u64 hint_byte, struct btrfs_key *ins, 6128 u64 flags) 6129 { 6130 int ret = 0; 6131 struct btrfs_root *root = orig_root->fs_info->extent_root; 6132 struct btrfs_free_cluster *last_ptr = NULL; 6133 struct btrfs_block_group_cache *block_group = NULL; 6134 struct btrfs_block_group_cache *used_block_group; 6135 u64 search_start = 0; 6136 int empty_cluster = 2 * 1024 * 1024; 6137 struct btrfs_space_info *space_info; 6138 int loop = 0; 6139 int index = __get_raid_index(flags); 6140 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6141 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6142 bool found_uncached_bg = false; 6143 bool failed_cluster_refill = false; 6144 bool failed_alloc = false; 6145 bool use_cluster = true; 6146 bool have_caching_bg = false; 6147 6148 WARN_ON(num_bytes < root->sectorsize); 6149 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6150 ins->objectid = 0; 6151 ins->offset = 0; 6152 6153 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6154 6155 space_info = __find_space_info(root->fs_info, flags); 6156 if (!space_info) { 6157 btrfs_err(root->fs_info, "No space info for %llu", flags); 6158 return -ENOSPC; 6159 } 6160 6161 /* 6162 * If the space info is for both data and metadata it means we have a 6163 * small filesystem and we can't use the clustering stuff. 6164 */ 6165 if (btrfs_mixed_space_info(space_info)) 6166 use_cluster = false; 6167 6168 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6169 last_ptr = &root->fs_info->meta_alloc_cluster; 6170 if (!btrfs_test_opt(root, SSD)) 6171 empty_cluster = 64 * 1024; 6172 } 6173 6174 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6175 btrfs_test_opt(root, SSD)) { 6176 last_ptr = &root->fs_info->data_alloc_cluster; 6177 } 6178 6179 if (last_ptr) { 6180 spin_lock(&last_ptr->lock); 6181 if (last_ptr->block_group) 6182 hint_byte = last_ptr->window_start; 6183 spin_unlock(&last_ptr->lock); 6184 } 6185 6186 search_start = max(search_start, first_logical_byte(root, 0)); 6187 search_start = max(search_start, hint_byte); 6188 6189 if (!last_ptr) 6190 empty_cluster = 0; 6191 6192 if (search_start == hint_byte) { 6193 block_group = btrfs_lookup_block_group(root->fs_info, 6194 search_start); 6195 used_block_group = block_group; 6196 /* 6197 * we don't want to use the block group if it doesn't match our 6198 * allocation bits, or if its not cached. 6199 * 6200 * However if we are re-searching with an ideal block group 6201 * picked out then we don't care that the block group is cached. 6202 */ 6203 if (block_group && block_group_bits(block_group, flags) && 6204 block_group->cached != BTRFS_CACHE_NO) { 6205 down_read(&space_info->groups_sem); 6206 if (list_empty(&block_group->list) || 6207 block_group->ro) { 6208 /* 6209 * someone is removing this block group, 6210 * we can't jump into the have_block_group 6211 * target because our list pointers are not 6212 * valid 6213 */ 6214 btrfs_put_block_group(block_group); 6215 up_read(&space_info->groups_sem); 6216 } else { 6217 index = get_block_group_index(block_group); 6218 goto have_block_group; 6219 } 6220 } else if (block_group) { 6221 btrfs_put_block_group(block_group); 6222 } 6223 } 6224 search: 6225 have_caching_bg = false; 6226 down_read(&space_info->groups_sem); 6227 list_for_each_entry(block_group, &space_info->block_groups[index], 6228 list) { 6229 u64 offset; 6230 int cached; 6231 6232 used_block_group = block_group; 6233 btrfs_get_block_group(block_group); 6234 search_start = block_group->key.objectid; 6235 6236 /* 6237 * this can happen if we end up cycling through all the 6238 * raid types, but we want to make sure we only allocate 6239 * for the proper type. 6240 */ 6241 if (!block_group_bits(block_group, flags)) { 6242 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6243 BTRFS_BLOCK_GROUP_RAID1 | 6244 BTRFS_BLOCK_GROUP_RAID5 | 6245 BTRFS_BLOCK_GROUP_RAID6 | 6246 BTRFS_BLOCK_GROUP_RAID10; 6247 6248 /* 6249 * if they asked for extra copies and this block group 6250 * doesn't provide them, bail. This does allow us to 6251 * fill raid0 from raid1. 6252 */ 6253 if ((flags & extra) && !(block_group->flags & extra)) 6254 goto loop; 6255 } 6256 6257 have_block_group: 6258 cached = block_group_cache_done(block_group); 6259 if (unlikely(!cached)) { 6260 found_uncached_bg = true; 6261 ret = cache_block_group(block_group, 0); 6262 BUG_ON(ret < 0); 6263 ret = 0; 6264 } 6265 6266 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6267 goto loop; 6268 if (unlikely(block_group->ro)) 6269 goto loop; 6270 6271 /* 6272 * Ok we want to try and use the cluster allocator, so 6273 * lets look there 6274 */ 6275 if (last_ptr) { 6276 unsigned long aligned_cluster; 6277 /* 6278 * the refill lock keeps out other 6279 * people trying to start a new cluster 6280 */ 6281 spin_lock(&last_ptr->refill_lock); 6282 used_block_group = last_ptr->block_group; 6283 if (used_block_group != block_group && 6284 (!used_block_group || 6285 used_block_group->ro || 6286 !block_group_bits(used_block_group, flags))) { 6287 used_block_group = block_group; 6288 goto refill_cluster; 6289 } 6290 6291 if (used_block_group != block_group) 6292 btrfs_get_block_group(used_block_group); 6293 6294 offset = btrfs_alloc_from_cluster(used_block_group, 6295 last_ptr, num_bytes, used_block_group->key.objectid); 6296 if (offset) { 6297 /* we have a block, we're done */ 6298 spin_unlock(&last_ptr->refill_lock); 6299 trace_btrfs_reserve_extent_cluster(root, 6300 block_group, search_start, num_bytes); 6301 goto checks; 6302 } 6303 6304 WARN_ON(last_ptr->block_group != used_block_group); 6305 if (used_block_group != block_group) { 6306 btrfs_put_block_group(used_block_group); 6307 used_block_group = block_group; 6308 } 6309 refill_cluster: 6310 BUG_ON(used_block_group != block_group); 6311 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6312 * set up a new clusters, so lets just skip it 6313 * and let the allocator find whatever block 6314 * it can find. If we reach this point, we 6315 * will have tried the cluster allocator 6316 * plenty of times and not have found 6317 * anything, so we are likely way too 6318 * fragmented for the clustering stuff to find 6319 * anything. 6320 * 6321 * However, if the cluster is taken from the 6322 * current block group, release the cluster 6323 * first, so that we stand a better chance of 6324 * succeeding in the unclustered 6325 * allocation. */ 6326 if (loop >= LOOP_NO_EMPTY_SIZE && 6327 last_ptr->block_group != block_group) { 6328 spin_unlock(&last_ptr->refill_lock); 6329 goto unclustered_alloc; 6330 } 6331 6332 /* 6333 * this cluster didn't work out, free it and 6334 * start over 6335 */ 6336 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6337 6338 if (loop >= LOOP_NO_EMPTY_SIZE) { 6339 spin_unlock(&last_ptr->refill_lock); 6340 goto unclustered_alloc; 6341 } 6342 6343 aligned_cluster = max_t(unsigned long, 6344 empty_cluster + empty_size, 6345 block_group->full_stripe_len); 6346 6347 /* allocate a cluster in this block group */ 6348 ret = btrfs_find_space_cluster(root, block_group, 6349 last_ptr, search_start, 6350 num_bytes, 6351 aligned_cluster); 6352 if (ret == 0) { 6353 /* 6354 * now pull our allocation out of this 6355 * cluster 6356 */ 6357 offset = btrfs_alloc_from_cluster(block_group, 6358 last_ptr, num_bytes, 6359 search_start); 6360 if (offset) { 6361 /* we found one, proceed */ 6362 spin_unlock(&last_ptr->refill_lock); 6363 trace_btrfs_reserve_extent_cluster(root, 6364 block_group, search_start, 6365 num_bytes); 6366 goto checks; 6367 } 6368 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6369 && !failed_cluster_refill) { 6370 spin_unlock(&last_ptr->refill_lock); 6371 6372 failed_cluster_refill = true; 6373 wait_block_group_cache_progress(block_group, 6374 num_bytes + empty_cluster + empty_size); 6375 goto have_block_group; 6376 } 6377 6378 /* 6379 * at this point we either didn't find a cluster 6380 * or we weren't able to allocate a block from our 6381 * cluster. Free the cluster we've been trying 6382 * to use, and go to the next block group 6383 */ 6384 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6385 spin_unlock(&last_ptr->refill_lock); 6386 goto loop; 6387 } 6388 6389 unclustered_alloc: 6390 spin_lock(&block_group->free_space_ctl->tree_lock); 6391 if (cached && 6392 block_group->free_space_ctl->free_space < 6393 num_bytes + empty_cluster + empty_size) { 6394 spin_unlock(&block_group->free_space_ctl->tree_lock); 6395 goto loop; 6396 } 6397 spin_unlock(&block_group->free_space_ctl->tree_lock); 6398 6399 offset = btrfs_find_space_for_alloc(block_group, search_start, 6400 num_bytes, empty_size); 6401 /* 6402 * If we didn't find a chunk, and we haven't failed on this 6403 * block group before, and this block group is in the middle of 6404 * caching and we are ok with waiting, then go ahead and wait 6405 * for progress to be made, and set failed_alloc to true. 6406 * 6407 * If failed_alloc is true then we've already waited on this 6408 * block group once and should move on to the next block group. 6409 */ 6410 if (!offset && !failed_alloc && !cached && 6411 loop > LOOP_CACHING_NOWAIT) { 6412 wait_block_group_cache_progress(block_group, 6413 num_bytes + empty_size); 6414 failed_alloc = true; 6415 goto have_block_group; 6416 } else if (!offset) { 6417 if (!cached) 6418 have_caching_bg = true; 6419 goto loop; 6420 } 6421 checks: 6422 search_start = stripe_align(root, used_block_group, 6423 offset, num_bytes); 6424 6425 /* move on to the next group */ 6426 if (search_start + num_bytes > 6427 used_block_group->key.objectid + used_block_group->key.offset) { 6428 btrfs_add_free_space(used_block_group, offset, num_bytes); 6429 goto loop; 6430 } 6431 6432 if (offset < search_start) 6433 btrfs_add_free_space(used_block_group, offset, 6434 search_start - offset); 6435 BUG_ON(offset > search_start); 6436 6437 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6438 alloc_type); 6439 if (ret == -EAGAIN) { 6440 btrfs_add_free_space(used_block_group, offset, num_bytes); 6441 goto loop; 6442 } 6443 6444 /* we are all good, lets return */ 6445 ins->objectid = search_start; 6446 ins->offset = num_bytes; 6447 6448 trace_btrfs_reserve_extent(orig_root, block_group, 6449 search_start, num_bytes); 6450 if (used_block_group != block_group) 6451 btrfs_put_block_group(used_block_group); 6452 btrfs_put_block_group(block_group); 6453 break; 6454 loop: 6455 failed_cluster_refill = false; 6456 failed_alloc = false; 6457 BUG_ON(index != get_block_group_index(block_group)); 6458 if (used_block_group != block_group) 6459 btrfs_put_block_group(used_block_group); 6460 btrfs_put_block_group(block_group); 6461 } 6462 up_read(&space_info->groups_sem); 6463 6464 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6465 goto search; 6466 6467 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6468 goto search; 6469 6470 /* 6471 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6472 * caching kthreads as we move along 6473 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6474 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6475 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6476 * again 6477 */ 6478 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6479 index = 0; 6480 loop++; 6481 if (loop == LOOP_ALLOC_CHUNK) { 6482 struct btrfs_trans_handle *trans; 6483 6484 trans = btrfs_join_transaction(root); 6485 if (IS_ERR(trans)) { 6486 ret = PTR_ERR(trans); 6487 goto out; 6488 } 6489 6490 ret = do_chunk_alloc(trans, root, flags, 6491 CHUNK_ALLOC_FORCE); 6492 /* 6493 * Do not bail out on ENOSPC since we 6494 * can do more things. 6495 */ 6496 if (ret < 0 && ret != -ENOSPC) 6497 btrfs_abort_transaction(trans, 6498 root, ret); 6499 else 6500 ret = 0; 6501 btrfs_end_transaction(trans, root); 6502 if (ret) 6503 goto out; 6504 } 6505 6506 if (loop == LOOP_NO_EMPTY_SIZE) { 6507 empty_size = 0; 6508 empty_cluster = 0; 6509 } 6510 6511 goto search; 6512 } else if (!ins->objectid) { 6513 ret = -ENOSPC; 6514 } else if (ins->objectid) { 6515 ret = 0; 6516 } 6517 out: 6518 6519 return ret; 6520 } 6521 6522 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6523 int dump_block_groups) 6524 { 6525 struct btrfs_block_group_cache *cache; 6526 int index = 0; 6527 6528 spin_lock(&info->lock); 6529 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6530 info->flags, 6531 info->total_bytes - info->bytes_used - info->bytes_pinned - 6532 info->bytes_reserved - info->bytes_readonly, 6533 (info->full) ? "" : "not "); 6534 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6535 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6536 info->total_bytes, info->bytes_used, info->bytes_pinned, 6537 info->bytes_reserved, info->bytes_may_use, 6538 info->bytes_readonly); 6539 spin_unlock(&info->lock); 6540 6541 if (!dump_block_groups) 6542 return; 6543 6544 down_read(&info->groups_sem); 6545 again: 6546 list_for_each_entry(cache, &info->block_groups[index], list) { 6547 spin_lock(&cache->lock); 6548 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6549 cache->key.objectid, cache->key.offset, 6550 btrfs_block_group_used(&cache->item), cache->pinned, 6551 cache->reserved, cache->ro ? "[readonly]" : ""); 6552 btrfs_dump_free_space(cache, bytes); 6553 spin_unlock(&cache->lock); 6554 } 6555 if (++index < BTRFS_NR_RAID_TYPES) 6556 goto again; 6557 up_read(&info->groups_sem); 6558 } 6559 6560 int btrfs_reserve_extent(struct btrfs_root *root, 6561 u64 num_bytes, u64 min_alloc_size, 6562 u64 empty_size, u64 hint_byte, 6563 struct btrfs_key *ins, int is_data) 6564 { 6565 bool final_tried = false; 6566 u64 flags; 6567 int ret; 6568 6569 flags = btrfs_get_alloc_profile(root, is_data); 6570 again: 6571 WARN_ON(num_bytes < root->sectorsize); 6572 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6573 flags); 6574 6575 if (ret == -ENOSPC) { 6576 if (!final_tried) { 6577 num_bytes = num_bytes >> 1; 6578 num_bytes = round_down(num_bytes, root->sectorsize); 6579 num_bytes = max(num_bytes, min_alloc_size); 6580 if (num_bytes == min_alloc_size) 6581 final_tried = true; 6582 goto again; 6583 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6584 struct btrfs_space_info *sinfo; 6585 6586 sinfo = __find_space_info(root->fs_info, flags); 6587 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6588 flags, num_bytes); 6589 if (sinfo) 6590 dump_space_info(sinfo, num_bytes, 1); 6591 } 6592 } 6593 6594 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6595 6596 return ret; 6597 } 6598 6599 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6600 u64 start, u64 len, int pin) 6601 { 6602 struct btrfs_block_group_cache *cache; 6603 int ret = 0; 6604 6605 cache = btrfs_lookup_block_group(root->fs_info, start); 6606 if (!cache) { 6607 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6608 start); 6609 return -ENOSPC; 6610 } 6611 6612 if (btrfs_test_opt(root, DISCARD)) 6613 ret = btrfs_discard_extent(root, start, len, NULL); 6614 6615 if (pin) 6616 pin_down_extent(root, cache, start, len, 1); 6617 else { 6618 btrfs_add_free_space(cache, start, len); 6619 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6620 } 6621 btrfs_put_block_group(cache); 6622 6623 trace_btrfs_reserved_extent_free(root, start, len); 6624 6625 return ret; 6626 } 6627 6628 int btrfs_free_reserved_extent(struct btrfs_root *root, 6629 u64 start, u64 len) 6630 { 6631 return __btrfs_free_reserved_extent(root, start, len, 0); 6632 } 6633 6634 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6635 u64 start, u64 len) 6636 { 6637 return __btrfs_free_reserved_extent(root, start, len, 1); 6638 } 6639 6640 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6641 struct btrfs_root *root, 6642 u64 parent, u64 root_objectid, 6643 u64 flags, u64 owner, u64 offset, 6644 struct btrfs_key *ins, int ref_mod) 6645 { 6646 int ret; 6647 struct btrfs_fs_info *fs_info = root->fs_info; 6648 struct btrfs_extent_item *extent_item; 6649 struct btrfs_extent_inline_ref *iref; 6650 struct btrfs_path *path; 6651 struct extent_buffer *leaf; 6652 int type; 6653 u32 size; 6654 6655 if (parent > 0) 6656 type = BTRFS_SHARED_DATA_REF_KEY; 6657 else 6658 type = BTRFS_EXTENT_DATA_REF_KEY; 6659 6660 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6661 6662 path = btrfs_alloc_path(); 6663 if (!path) 6664 return -ENOMEM; 6665 6666 path->leave_spinning = 1; 6667 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6668 ins, size); 6669 if (ret) { 6670 btrfs_free_path(path); 6671 return ret; 6672 } 6673 6674 leaf = path->nodes[0]; 6675 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6676 struct btrfs_extent_item); 6677 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6678 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6679 btrfs_set_extent_flags(leaf, extent_item, 6680 flags | BTRFS_EXTENT_FLAG_DATA); 6681 6682 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6683 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6684 if (parent > 0) { 6685 struct btrfs_shared_data_ref *ref; 6686 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6687 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6688 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6689 } else { 6690 struct btrfs_extent_data_ref *ref; 6691 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6692 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6693 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6694 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6695 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6696 } 6697 6698 btrfs_mark_buffer_dirty(path->nodes[0]); 6699 btrfs_free_path(path); 6700 6701 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6702 if (ret) { /* -ENOENT, logic error */ 6703 btrfs_err(fs_info, "update block group failed for %llu %llu", 6704 ins->objectid, ins->offset); 6705 BUG(); 6706 } 6707 return ret; 6708 } 6709 6710 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6711 struct btrfs_root *root, 6712 u64 parent, u64 root_objectid, 6713 u64 flags, struct btrfs_disk_key *key, 6714 int level, struct btrfs_key *ins) 6715 { 6716 int ret; 6717 struct btrfs_fs_info *fs_info = root->fs_info; 6718 struct btrfs_extent_item *extent_item; 6719 struct btrfs_tree_block_info *block_info; 6720 struct btrfs_extent_inline_ref *iref; 6721 struct btrfs_path *path; 6722 struct extent_buffer *leaf; 6723 u32 size = sizeof(*extent_item) + sizeof(*iref); 6724 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6725 SKINNY_METADATA); 6726 6727 if (!skinny_metadata) 6728 size += sizeof(*block_info); 6729 6730 path = btrfs_alloc_path(); 6731 if (!path) 6732 return -ENOMEM; 6733 6734 path->leave_spinning = 1; 6735 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6736 ins, size); 6737 if (ret) { 6738 btrfs_free_path(path); 6739 return ret; 6740 } 6741 6742 leaf = path->nodes[0]; 6743 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6744 struct btrfs_extent_item); 6745 btrfs_set_extent_refs(leaf, extent_item, 1); 6746 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6747 btrfs_set_extent_flags(leaf, extent_item, 6748 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6749 6750 if (skinny_metadata) { 6751 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6752 } else { 6753 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6754 btrfs_set_tree_block_key(leaf, block_info, key); 6755 btrfs_set_tree_block_level(leaf, block_info, level); 6756 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6757 } 6758 6759 if (parent > 0) { 6760 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6761 btrfs_set_extent_inline_ref_type(leaf, iref, 6762 BTRFS_SHARED_BLOCK_REF_KEY); 6763 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6764 } else { 6765 btrfs_set_extent_inline_ref_type(leaf, iref, 6766 BTRFS_TREE_BLOCK_REF_KEY); 6767 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6768 } 6769 6770 btrfs_mark_buffer_dirty(leaf); 6771 btrfs_free_path(path); 6772 6773 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6774 if (ret) { /* -ENOENT, logic error */ 6775 btrfs_err(fs_info, "update block group failed for %llu %llu", 6776 ins->objectid, ins->offset); 6777 BUG(); 6778 } 6779 return ret; 6780 } 6781 6782 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6783 struct btrfs_root *root, 6784 u64 root_objectid, u64 owner, 6785 u64 offset, struct btrfs_key *ins) 6786 { 6787 int ret; 6788 6789 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6790 6791 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6792 ins->offset, 0, 6793 root_objectid, owner, offset, 6794 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6795 return ret; 6796 } 6797 6798 /* 6799 * this is used by the tree logging recovery code. It records that 6800 * an extent has been allocated and makes sure to clear the free 6801 * space cache bits as well 6802 */ 6803 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6804 struct btrfs_root *root, 6805 u64 root_objectid, u64 owner, u64 offset, 6806 struct btrfs_key *ins) 6807 { 6808 int ret; 6809 struct btrfs_block_group_cache *block_group; 6810 6811 /* 6812 * Mixed block groups will exclude before processing the log so we only 6813 * need to do the exlude dance if this fs isn't mixed. 6814 */ 6815 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6816 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6817 if (ret) 6818 return ret; 6819 } 6820 6821 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6822 if (!block_group) 6823 return -EINVAL; 6824 6825 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6826 RESERVE_ALLOC_NO_ACCOUNT); 6827 BUG_ON(ret); /* logic error */ 6828 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6829 0, owner, offset, ins, 1); 6830 btrfs_put_block_group(block_group); 6831 return ret; 6832 } 6833 6834 static struct extent_buffer * 6835 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6836 u64 bytenr, u32 blocksize, int level) 6837 { 6838 struct extent_buffer *buf; 6839 6840 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6841 if (!buf) 6842 return ERR_PTR(-ENOMEM); 6843 btrfs_set_header_generation(buf, trans->transid); 6844 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6845 btrfs_tree_lock(buf); 6846 clean_tree_block(trans, root, buf); 6847 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6848 6849 btrfs_set_lock_blocking(buf); 6850 btrfs_set_buffer_uptodate(buf); 6851 6852 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6853 /* 6854 * we allow two log transactions at a time, use different 6855 * EXENT bit to differentiate dirty pages. 6856 */ 6857 if (root->log_transid % 2 == 0) 6858 set_extent_dirty(&root->dirty_log_pages, buf->start, 6859 buf->start + buf->len - 1, GFP_NOFS); 6860 else 6861 set_extent_new(&root->dirty_log_pages, buf->start, 6862 buf->start + buf->len - 1, GFP_NOFS); 6863 } else { 6864 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6865 buf->start + buf->len - 1, GFP_NOFS); 6866 } 6867 trans->blocks_used++; 6868 /* this returns a buffer locked for blocking */ 6869 return buf; 6870 } 6871 6872 static struct btrfs_block_rsv * 6873 use_block_rsv(struct btrfs_trans_handle *trans, 6874 struct btrfs_root *root, u32 blocksize) 6875 { 6876 struct btrfs_block_rsv *block_rsv; 6877 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6878 int ret; 6879 bool global_updated = false; 6880 6881 block_rsv = get_block_rsv(trans, root); 6882 6883 if (unlikely(block_rsv->size == 0)) 6884 goto try_reserve; 6885 again: 6886 ret = block_rsv_use_bytes(block_rsv, blocksize); 6887 if (!ret) 6888 return block_rsv; 6889 6890 if (block_rsv->failfast) 6891 return ERR_PTR(ret); 6892 6893 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6894 global_updated = true; 6895 update_global_block_rsv(root->fs_info); 6896 goto again; 6897 } 6898 6899 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6900 static DEFINE_RATELIMIT_STATE(_rs, 6901 DEFAULT_RATELIMIT_INTERVAL * 10, 6902 /*DEFAULT_RATELIMIT_BURST*/ 1); 6903 if (__ratelimit(&_rs)) 6904 WARN(1, KERN_DEBUG 6905 "btrfs: block rsv returned %d\n", ret); 6906 } 6907 try_reserve: 6908 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6909 BTRFS_RESERVE_NO_FLUSH); 6910 if (!ret) 6911 return block_rsv; 6912 /* 6913 * If we couldn't reserve metadata bytes try and use some from 6914 * the global reserve if its space type is the same as the global 6915 * reservation. 6916 */ 6917 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6918 block_rsv->space_info == global_rsv->space_info) { 6919 ret = block_rsv_use_bytes(global_rsv, blocksize); 6920 if (!ret) 6921 return global_rsv; 6922 } 6923 return ERR_PTR(ret); 6924 } 6925 6926 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6927 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6928 { 6929 block_rsv_add_bytes(block_rsv, blocksize, 0); 6930 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6931 } 6932 6933 /* 6934 * finds a free extent and does all the dirty work required for allocation 6935 * returns the key for the extent through ins, and a tree buffer for 6936 * the first block of the extent through buf. 6937 * 6938 * returns the tree buffer or NULL. 6939 */ 6940 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6941 struct btrfs_root *root, u32 blocksize, 6942 u64 parent, u64 root_objectid, 6943 struct btrfs_disk_key *key, int level, 6944 u64 hint, u64 empty_size) 6945 { 6946 struct btrfs_key ins; 6947 struct btrfs_block_rsv *block_rsv; 6948 struct extent_buffer *buf; 6949 u64 flags = 0; 6950 int ret; 6951 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6952 SKINNY_METADATA); 6953 6954 block_rsv = use_block_rsv(trans, root, blocksize); 6955 if (IS_ERR(block_rsv)) 6956 return ERR_CAST(block_rsv); 6957 6958 ret = btrfs_reserve_extent(root, blocksize, blocksize, 6959 empty_size, hint, &ins, 0); 6960 if (ret) { 6961 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6962 return ERR_PTR(ret); 6963 } 6964 6965 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6966 blocksize, level); 6967 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6968 6969 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6970 if (parent == 0) 6971 parent = ins.objectid; 6972 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6973 } else 6974 BUG_ON(parent > 0); 6975 6976 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6977 struct btrfs_delayed_extent_op *extent_op; 6978 extent_op = btrfs_alloc_delayed_extent_op(); 6979 BUG_ON(!extent_op); /* -ENOMEM */ 6980 if (key) 6981 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6982 else 6983 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6984 extent_op->flags_to_set = flags; 6985 if (skinny_metadata) 6986 extent_op->update_key = 0; 6987 else 6988 extent_op->update_key = 1; 6989 extent_op->update_flags = 1; 6990 extent_op->is_data = 0; 6991 extent_op->level = level; 6992 6993 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6994 ins.objectid, 6995 ins.offset, parent, root_objectid, 6996 level, BTRFS_ADD_DELAYED_EXTENT, 6997 extent_op, 0); 6998 BUG_ON(ret); /* -ENOMEM */ 6999 } 7000 return buf; 7001 } 7002 7003 struct walk_control { 7004 u64 refs[BTRFS_MAX_LEVEL]; 7005 u64 flags[BTRFS_MAX_LEVEL]; 7006 struct btrfs_key update_progress; 7007 int stage; 7008 int level; 7009 int shared_level; 7010 int update_ref; 7011 int keep_locks; 7012 int reada_slot; 7013 int reada_count; 7014 int for_reloc; 7015 }; 7016 7017 #define DROP_REFERENCE 1 7018 #define UPDATE_BACKREF 2 7019 7020 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7021 struct btrfs_root *root, 7022 struct walk_control *wc, 7023 struct btrfs_path *path) 7024 { 7025 u64 bytenr; 7026 u64 generation; 7027 u64 refs; 7028 u64 flags; 7029 u32 nritems; 7030 u32 blocksize; 7031 struct btrfs_key key; 7032 struct extent_buffer *eb; 7033 int ret; 7034 int slot; 7035 int nread = 0; 7036 7037 if (path->slots[wc->level] < wc->reada_slot) { 7038 wc->reada_count = wc->reada_count * 2 / 3; 7039 wc->reada_count = max(wc->reada_count, 2); 7040 } else { 7041 wc->reada_count = wc->reada_count * 3 / 2; 7042 wc->reada_count = min_t(int, wc->reada_count, 7043 BTRFS_NODEPTRS_PER_BLOCK(root)); 7044 } 7045 7046 eb = path->nodes[wc->level]; 7047 nritems = btrfs_header_nritems(eb); 7048 blocksize = btrfs_level_size(root, wc->level - 1); 7049 7050 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7051 if (nread >= wc->reada_count) 7052 break; 7053 7054 cond_resched(); 7055 bytenr = btrfs_node_blockptr(eb, slot); 7056 generation = btrfs_node_ptr_generation(eb, slot); 7057 7058 if (slot == path->slots[wc->level]) 7059 goto reada; 7060 7061 if (wc->stage == UPDATE_BACKREF && 7062 generation <= root->root_key.offset) 7063 continue; 7064 7065 /* We don't lock the tree block, it's OK to be racy here */ 7066 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7067 wc->level - 1, 1, &refs, 7068 &flags); 7069 /* We don't care about errors in readahead. */ 7070 if (ret < 0) 7071 continue; 7072 BUG_ON(refs == 0); 7073 7074 if (wc->stage == DROP_REFERENCE) { 7075 if (refs == 1) 7076 goto reada; 7077 7078 if (wc->level == 1 && 7079 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7080 continue; 7081 if (!wc->update_ref || 7082 generation <= root->root_key.offset) 7083 continue; 7084 btrfs_node_key_to_cpu(eb, &key, slot); 7085 ret = btrfs_comp_cpu_keys(&key, 7086 &wc->update_progress); 7087 if (ret < 0) 7088 continue; 7089 } else { 7090 if (wc->level == 1 && 7091 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7092 continue; 7093 } 7094 reada: 7095 ret = readahead_tree_block(root, bytenr, blocksize, 7096 generation); 7097 if (ret) 7098 break; 7099 nread++; 7100 } 7101 wc->reada_slot = slot; 7102 } 7103 7104 /* 7105 * helper to process tree block while walking down the tree. 7106 * 7107 * when wc->stage == UPDATE_BACKREF, this function updates 7108 * back refs for pointers in the block. 7109 * 7110 * NOTE: return value 1 means we should stop walking down. 7111 */ 7112 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7113 struct btrfs_root *root, 7114 struct btrfs_path *path, 7115 struct walk_control *wc, int lookup_info) 7116 { 7117 int level = wc->level; 7118 struct extent_buffer *eb = path->nodes[level]; 7119 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7120 int ret; 7121 7122 if (wc->stage == UPDATE_BACKREF && 7123 btrfs_header_owner(eb) != root->root_key.objectid) 7124 return 1; 7125 7126 /* 7127 * when reference count of tree block is 1, it won't increase 7128 * again. once full backref flag is set, we never clear it. 7129 */ 7130 if (lookup_info && 7131 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7132 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7133 BUG_ON(!path->locks[level]); 7134 ret = btrfs_lookup_extent_info(trans, root, 7135 eb->start, level, 1, 7136 &wc->refs[level], 7137 &wc->flags[level]); 7138 BUG_ON(ret == -ENOMEM); 7139 if (ret) 7140 return ret; 7141 BUG_ON(wc->refs[level] == 0); 7142 } 7143 7144 if (wc->stage == DROP_REFERENCE) { 7145 if (wc->refs[level] > 1) 7146 return 1; 7147 7148 if (path->locks[level] && !wc->keep_locks) { 7149 btrfs_tree_unlock_rw(eb, path->locks[level]); 7150 path->locks[level] = 0; 7151 } 7152 return 0; 7153 } 7154 7155 /* wc->stage == UPDATE_BACKREF */ 7156 if (!(wc->flags[level] & flag)) { 7157 BUG_ON(!path->locks[level]); 7158 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7159 BUG_ON(ret); /* -ENOMEM */ 7160 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7161 BUG_ON(ret); /* -ENOMEM */ 7162 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7163 eb->len, flag, 7164 btrfs_header_level(eb), 0); 7165 BUG_ON(ret); /* -ENOMEM */ 7166 wc->flags[level] |= flag; 7167 } 7168 7169 /* 7170 * the block is shared by multiple trees, so it's not good to 7171 * keep the tree lock 7172 */ 7173 if (path->locks[level] && level > 0) { 7174 btrfs_tree_unlock_rw(eb, path->locks[level]); 7175 path->locks[level] = 0; 7176 } 7177 return 0; 7178 } 7179 7180 /* 7181 * helper to process tree block pointer. 7182 * 7183 * when wc->stage == DROP_REFERENCE, this function checks 7184 * reference count of the block pointed to. if the block 7185 * is shared and we need update back refs for the subtree 7186 * rooted at the block, this function changes wc->stage to 7187 * UPDATE_BACKREF. if the block is shared and there is no 7188 * need to update back, this function drops the reference 7189 * to the block. 7190 * 7191 * NOTE: return value 1 means we should stop walking down. 7192 */ 7193 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7194 struct btrfs_root *root, 7195 struct btrfs_path *path, 7196 struct walk_control *wc, int *lookup_info) 7197 { 7198 u64 bytenr; 7199 u64 generation; 7200 u64 parent; 7201 u32 blocksize; 7202 struct btrfs_key key; 7203 struct extent_buffer *next; 7204 int level = wc->level; 7205 int reada = 0; 7206 int ret = 0; 7207 7208 generation = btrfs_node_ptr_generation(path->nodes[level], 7209 path->slots[level]); 7210 /* 7211 * if the lower level block was created before the snapshot 7212 * was created, we know there is no need to update back refs 7213 * for the subtree 7214 */ 7215 if (wc->stage == UPDATE_BACKREF && 7216 generation <= root->root_key.offset) { 7217 *lookup_info = 1; 7218 return 1; 7219 } 7220 7221 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7222 blocksize = btrfs_level_size(root, level - 1); 7223 7224 next = btrfs_find_tree_block(root, bytenr, blocksize); 7225 if (!next) { 7226 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7227 if (!next) 7228 return -ENOMEM; 7229 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7230 level - 1); 7231 reada = 1; 7232 } 7233 btrfs_tree_lock(next); 7234 btrfs_set_lock_blocking(next); 7235 7236 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7237 &wc->refs[level - 1], 7238 &wc->flags[level - 1]); 7239 if (ret < 0) { 7240 btrfs_tree_unlock(next); 7241 return ret; 7242 } 7243 7244 if (unlikely(wc->refs[level - 1] == 0)) { 7245 btrfs_err(root->fs_info, "Missing references."); 7246 BUG(); 7247 } 7248 *lookup_info = 0; 7249 7250 if (wc->stage == DROP_REFERENCE) { 7251 if (wc->refs[level - 1] > 1) { 7252 if (level == 1 && 7253 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7254 goto skip; 7255 7256 if (!wc->update_ref || 7257 generation <= root->root_key.offset) 7258 goto skip; 7259 7260 btrfs_node_key_to_cpu(path->nodes[level], &key, 7261 path->slots[level]); 7262 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7263 if (ret < 0) 7264 goto skip; 7265 7266 wc->stage = UPDATE_BACKREF; 7267 wc->shared_level = level - 1; 7268 } 7269 } else { 7270 if (level == 1 && 7271 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7272 goto skip; 7273 } 7274 7275 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7276 btrfs_tree_unlock(next); 7277 free_extent_buffer(next); 7278 next = NULL; 7279 *lookup_info = 1; 7280 } 7281 7282 if (!next) { 7283 if (reada && level == 1) 7284 reada_walk_down(trans, root, wc, path); 7285 next = read_tree_block(root, bytenr, blocksize, generation); 7286 if (!next || !extent_buffer_uptodate(next)) { 7287 free_extent_buffer(next); 7288 return -EIO; 7289 } 7290 btrfs_tree_lock(next); 7291 btrfs_set_lock_blocking(next); 7292 } 7293 7294 level--; 7295 BUG_ON(level != btrfs_header_level(next)); 7296 path->nodes[level] = next; 7297 path->slots[level] = 0; 7298 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7299 wc->level = level; 7300 if (wc->level == 1) 7301 wc->reada_slot = 0; 7302 return 0; 7303 skip: 7304 wc->refs[level - 1] = 0; 7305 wc->flags[level - 1] = 0; 7306 if (wc->stage == DROP_REFERENCE) { 7307 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7308 parent = path->nodes[level]->start; 7309 } else { 7310 BUG_ON(root->root_key.objectid != 7311 btrfs_header_owner(path->nodes[level])); 7312 parent = 0; 7313 } 7314 7315 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7316 root->root_key.objectid, level - 1, 0, 0); 7317 BUG_ON(ret); /* -ENOMEM */ 7318 } 7319 btrfs_tree_unlock(next); 7320 free_extent_buffer(next); 7321 *lookup_info = 1; 7322 return 1; 7323 } 7324 7325 /* 7326 * helper to process tree block while walking up the tree. 7327 * 7328 * when wc->stage == DROP_REFERENCE, this function drops 7329 * reference count on the block. 7330 * 7331 * when wc->stage == UPDATE_BACKREF, this function changes 7332 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7333 * to UPDATE_BACKREF previously while processing the block. 7334 * 7335 * NOTE: return value 1 means we should stop walking up. 7336 */ 7337 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7338 struct btrfs_root *root, 7339 struct btrfs_path *path, 7340 struct walk_control *wc) 7341 { 7342 int ret; 7343 int level = wc->level; 7344 struct extent_buffer *eb = path->nodes[level]; 7345 u64 parent = 0; 7346 7347 if (wc->stage == UPDATE_BACKREF) { 7348 BUG_ON(wc->shared_level < level); 7349 if (level < wc->shared_level) 7350 goto out; 7351 7352 ret = find_next_key(path, level + 1, &wc->update_progress); 7353 if (ret > 0) 7354 wc->update_ref = 0; 7355 7356 wc->stage = DROP_REFERENCE; 7357 wc->shared_level = -1; 7358 path->slots[level] = 0; 7359 7360 /* 7361 * check reference count again if the block isn't locked. 7362 * we should start walking down the tree again if reference 7363 * count is one. 7364 */ 7365 if (!path->locks[level]) { 7366 BUG_ON(level == 0); 7367 btrfs_tree_lock(eb); 7368 btrfs_set_lock_blocking(eb); 7369 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7370 7371 ret = btrfs_lookup_extent_info(trans, root, 7372 eb->start, level, 1, 7373 &wc->refs[level], 7374 &wc->flags[level]); 7375 if (ret < 0) { 7376 btrfs_tree_unlock_rw(eb, path->locks[level]); 7377 path->locks[level] = 0; 7378 return ret; 7379 } 7380 BUG_ON(wc->refs[level] == 0); 7381 if (wc->refs[level] == 1) { 7382 btrfs_tree_unlock_rw(eb, path->locks[level]); 7383 path->locks[level] = 0; 7384 return 1; 7385 } 7386 } 7387 } 7388 7389 /* wc->stage == DROP_REFERENCE */ 7390 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7391 7392 if (wc->refs[level] == 1) { 7393 if (level == 0) { 7394 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7395 ret = btrfs_dec_ref(trans, root, eb, 1, 7396 wc->for_reloc); 7397 else 7398 ret = btrfs_dec_ref(trans, root, eb, 0, 7399 wc->for_reloc); 7400 BUG_ON(ret); /* -ENOMEM */ 7401 } 7402 /* make block locked assertion in clean_tree_block happy */ 7403 if (!path->locks[level] && 7404 btrfs_header_generation(eb) == trans->transid) { 7405 btrfs_tree_lock(eb); 7406 btrfs_set_lock_blocking(eb); 7407 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7408 } 7409 clean_tree_block(trans, root, eb); 7410 } 7411 7412 if (eb == root->node) { 7413 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7414 parent = eb->start; 7415 else 7416 BUG_ON(root->root_key.objectid != 7417 btrfs_header_owner(eb)); 7418 } else { 7419 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7420 parent = path->nodes[level + 1]->start; 7421 else 7422 BUG_ON(root->root_key.objectid != 7423 btrfs_header_owner(path->nodes[level + 1])); 7424 } 7425 7426 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7427 out: 7428 wc->refs[level] = 0; 7429 wc->flags[level] = 0; 7430 return 0; 7431 } 7432 7433 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7434 struct btrfs_root *root, 7435 struct btrfs_path *path, 7436 struct walk_control *wc) 7437 { 7438 int level = wc->level; 7439 int lookup_info = 1; 7440 int ret; 7441 7442 while (level >= 0) { 7443 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7444 if (ret > 0) 7445 break; 7446 7447 if (level == 0) 7448 break; 7449 7450 if (path->slots[level] >= 7451 btrfs_header_nritems(path->nodes[level])) 7452 break; 7453 7454 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7455 if (ret > 0) { 7456 path->slots[level]++; 7457 continue; 7458 } else if (ret < 0) 7459 return ret; 7460 level = wc->level; 7461 } 7462 return 0; 7463 } 7464 7465 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7466 struct btrfs_root *root, 7467 struct btrfs_path *path, 7468 struct walk_control *wc, int max_level) 7469 { 7470 int level = wc->level; 7471 int ret; 7472 7473 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7474 while (level < max_level && path->nodes[level]) { 7475 wc->level = level; 7476 if (path->slots[level] + 1 < 7477 btrfs_header_nritems(path->nodes[level])) { 7478 path->slots[level]++; 7479 return 0; 7480 } else { 7481 ret = walk_up_proc(trans, root, path, wc); 7482 if (ret > 0) 7483 return 0; 7484 7485 if (path->locks[level]) { 7486 btrfs_tree_unlock_rw(path->nodes[level], 7487 path->locks[level]); 7488 path->locks[level] = 0; 7489 } 7490 free_extent_buffer(path->nodes[level]); 7491 path->nodes[level] = NULL; 7492 level++; 7493 } 7494 } 7495 return 1; 7496 } 7497 7498 /* 7499 * drop a subvolume tree. 7500 * 7501 * this function traverses the tree freeing any blocks that only 7502 * referenced by the tree. 7503 * 7504 * when a shared tree block is found. this function decreases its 7505 * reference count by one. if update_ref is true, this function 7506 * also make sure backrefs for the shared block and all lower level 7507 * blocks are properly updated. 7508 * 7509 * If called with for_reloc == 0, may exit early with -EAGAIN 7510 */ 7511 int btrfs_drop_snapshot(struct btrfs_root *root, 7512 struct btrfs_block_rsv *block_rsv, int update_ref, 7513 int for_reloc) 7514 { 7515 struct btrfs_path *path; 7516 struct btrfs_trans_handle *trans; 7517 struct btrfs_root *tree_root = root->fs_info->tree_root; 7518 struct btrfs_root_item *root_item = &root->root_item; 7519 struct walk_control *wc; 7520 struct btrfs_key key; 7521 int err = 0; 7522 int ret; 7523 int level; 7524 bool root_dropped = false; 7525 7526 path = btrfs_alloc_path(); 7527 if (!path) { 7528 err = -ENOMEM; 7529 goto out; 7530 } 7531 7532 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7533 if (!wc) { 7534 btrfs_free_path(path); 7535 err = -ENOMEM; 7536 goto out; 7537 } 7538 7539 trans = btrfs_start_transaction(tree_root, 0); 7540 if (IS_ERR(trans)) { 7541 err = PTR_ERR(trans); 7542 goto out_free; 7543 } 7544 7545 if (block_rsv) 7546 trans->block_rsv = block_rsv; 7547 7548 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7549 level = btrfs_header_level(root->node); 7550 path->nodes[level] = btrfs_lock_root_node(root); 7551 btrfs_set_lock_blocking(path->nodes[level]); 7552 path->slots[level] = 0; 7553 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7554 memset(&wc->update_progress, 0, 7555 sizeof(wc->update_progress)); 7556 } else { 7557 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7558 memcpy(&wc->update_progress, &key, 7559 sizeof(wc->update_progress)); 7560 7561 level = root_item->drop_level; 7562 BUG_ON(level == 0); 7563 path->lowest_level = level; 7564 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7565 path->lowest_level = 0; 7566 if (ret < 0) { 7567 err = ret; 7568 goto out_end_trans; 7569 } 7570 WARN_ON(ret > 0); 7571 7572 /* 7573 * unlock our path, this is safe because only this 7574 * function is allowed to delete this snapshot 7575 */ 7576 btrfs_unlock_up_safe(path, 0); 7577 7578 level = btrfs_header_level(root->node); 7579 while (1) { 7580 btrfs_tree_lock(path->nodes[level]); 7581 btrfs_set_lock_blocking(path->nodes[level]); 7582 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7583 7584 ret = btrfs_lookup_extent_info(trans, root, 7585 path->nodes[level]->start, 7586 level, 1, &wc->refs[level], 7587 &wc->flags[level]); 7588 if (ret < 0) { 7589 err = ret; 7590 goto out_end_trans; 7591 } 7592 BUG_ON(wc->refs[level] == 0); 7593 7594 if (level == root_item->drop_level) 7595 break; 7596 7597 btrfs_tree_unlock(path->nodes[level]); 7598 path->locks[level] = 0; 7599 WARN_ON(wc->refs[level] != 1); 7600 level--; 7601 } 7602 } 7603 7604 wc->level = level; 7605 wc->shared_level = -1; 7606 wc->stage = DROP_REFERENCE; 7607 wc->update_ref = update_ref; 7608 wc->keep_locks = 0; 7609 wc->for_reloc = for_reloc; 7610 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7611 7612 while (1) { 7613 7614 ret = walk_down_tree(trans, root, path, wc); 7615 if (ret < 0) { 7616 err = ret; 7617 break; 7618 } 7619 7620 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7621 if (ret < 0) { 7622 err = ret; 7623 break; 7624 } 7625 7626 if (ret > 0) { 7627 BUG_ON(wc->stage != DROP_REFERENCE); 7628 break; 7629 } 7630 7631 if (wc->stage == DROP_REFERENCE) { 7632 level = wc->level; 7633 btrfs_node_key(path->nodes[level], 7634 &root_item->drop_progress, 7635 path->slots[level]); 7636 root_item->drop_level = level; 7637 } 7638 7639 BUG_ON(wc->level == 0); 7640 if (btrfs_should_end_transaction(trans, tree_root) || 7641 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7642 ret = btrfs_update_root(trans, tree_root, 7643 &root->root_key, 7644 root_item); 7645 if (ret) { 7646 btrfs_abort_transaction(trans, tree_root, ret); 7647 err = ret; 7648 goto out_end_trans; 7649 } 7650 7651 btrfs_end_transaction_throttle(trans, tree_root); 7652 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7653 pr_debug("btrfs: drop snapshot early exit\n"); 7654 err = -EAGAIN; 7655 goto out_free; 7656 } 7657 7658 trans = btrfs_start_transaction(tree_root, 0); 7659 if (IS_ERR(trans)) { 7660 err = PTR_ERR(trans); 7661 goto out_free; 7662 } 7663 if (block_rsv) 7664 trans->block_rsv = block_rsv; 7665 } 7666 } 7667 btrfs_release_path(path); 7668 if (err) 7669 goto out_end_trans; 7670 7671 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7672 if (ret) { 7673 btrfs_abort_transaction(trans, tree_root, ret); 7674 goto out_end_trans; 7675 } 7676 7677 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7678 ret = btrfs_find_root(tree_root, &root->root_key, path, 7679 NULL, NULL); 7680 if (ret < 0) { 7681 btrfs_abort_transaction(trans, tree_root, ret); 7682 err = ret; 7683 goto out_end_trans; 7684 } else if (ret > 0) { 7685 /* if we fail to delete the orphan item this time 7686 * around, it'll get picked up the next time. 7687 * 7688 * The most common failure here is just -ENOENT. 7689 */ 7690 btrfs_del_orphan_item(trans, tree_root, 7691 root->root_key.objectid); 7692 } 7693 } 7694 7695 if (root->in_radix) { 7696 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7697 } else { 7698 free_extent_buffer(root->node); 7699 free_extent_buffer(root->commit_root); 7700 btrfs_put_fs_root(root); 7701 } 7702 root_dropped = true; 7703 out_end_trans: 7704 btrfs_end_transaction_throttle(trans, tree_root); 7705 out_free: 7706 kfree(wc); 7707 btrfs_free_path(path); 7708 out: 7709 /* 7710 * So if we need to stop dropping the snapshot for whatever reason we 7711 * need to make sure to add it back to the dead root list so that we 7712 * keep trying to do the work later. This also cleans up roots if we 7713 * don't have it in the radix (like when we recover after a power fail 7714 * or unmount) so we don't leak memory. 7715 */ 7716 if (!for_reloc && root_dropped == false) 7717 btrfs_add_dead_root(root); 7718 if (err) 7719 btrfs_std_error(root->fs_info, err); 7720 return err; 7721 } 7722 7723 /* 7724 * drop subtree rooted at tree block 'node'. 7725 * 7726 * NOTE: this function will unlock and release tree block 'node' 7727 * only used by relocation code 7728 */ 7729 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7730 struct btrfs_root *root, 7731 struct extent_buffer *node, 7732 struct extent_buffer *parent) 7733 { 7734 struct btrfs_path *path; 7735 struct walk_control *wc; 7736 int level; 7737 int parent_level; 7738 int ret = 0; 7739 int wret; 7740 7741 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7742 7743 path = btrfs_alloc_path(); 7744 if (!path) 7745 return -ENOMEM; 7746 7747 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7748 if (!wc) { 7749 btrfs_free_path(path); 7750 return -ENOMEM; 7751 } 7752 7753 btrfs_assert_tree_locked(parent); 7754 parent_level = btrfs_header_level(parent); 7755 extent_buffer_get(parent); 7756 path->nodes[parent_level] = parent; 7757 path->slots[parent_level] = btrfs_header_nritems(parent); 7758 7759 btrfs_assert_tree_locked(node); 7760 level = btrfs_header_level(node); 7761 path->nodes[level] = node; 7762 path->slots[level] = 0; 7763 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7764 7765 wc->refs[parent_level] = 1; 7766 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7767 wc->level = level; 7768 wc->shared_level = -1; 7769 wc->stage = DROP_REFERENCE; 7770 wc->update_ref = 0; 7771 wc->keep_locks = 1; 7772 wc->for_reloc = 1; 7773 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7774 7775 while (1) { 7776 wret = walk_down_tree(trans, root, path, wc); 7777 if (wret < 0) { 7778 ret = wret; 7779 break; 7780 } 7781 7782 wret = walk_up_tree(trans, root, path, wc, parent_level); 7783 if (wret < 0) 7784 ret = wret; 7785 if (wret != 0) 7786 break; 7787 } 7788 7789 kfree(wc); 7790 btrfs_free_path(path); 7791 return ret; 7792 } 7793 7794 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7795 { 7796 u64 num_devices; 7797 u64 stripped; 7798 7799 /* 7800 * if restripe for this chunk_type is on pick target profile and 7801 * return, otherwise do the usual balance 7802 */ 7803 stripped = get_restripe_target(root->fs_info, flags); 7804 if (stripped) 7805 return extended_to_chunk(stripped); 7806 7807 /* 7808 * we add in the count of missing devices because we want 7809 * to make sure that any RAID levels on a degraded FS 7810 * continue to be honored. 7811 */ 7812 num_devices = root->fs_info->fs_devices->rw_devices + 7813 root->fs_info->fs_devices->missing_devices; 7814 7815 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7816 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7817 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7818 7819 if (num_devices == 1) { 7820 stripped |= BTRFS_BLOCK_GROUP_DUP; 7821 stripped = flags & ~stripped; 7822 7823 /* turn raid0 into single device chunks */ 7824 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7825 return stripped; 7826 7827 /* turn mirroring into duplication */ 7828 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7829 BTRFS_BLOCK_GROUP_RAID10)) 7830 return stripped | BTRFS_BLOCK_GROUP_DUP; 7831 } else { 7832 /* they already had raid on here, just return */ 7833 if (flags & stripped) 7834 return flags; 7835 7836 stripped |= BTRFS_BLOCK_GROUP_DUP; 7837 stripped = flags & ~stripped; 7838 7839 /* switch duplicated blocks with raid1 */ 7840 if (flags & BTRFS_BLOCK_GROUP_DUP) 7841 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7842 7843 /* this is drive concat, leave it alone */ 7844 } 7845 7846 return flags; 7847 } 7848 7849 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7850 { 7851 struct btrfs_space_info *sinfo = cache->space_info; 7852 u64 num_bytes; 7853 u64 min_allocable_bytes; 7854 int ret = -ENOSPC; 7855 7856 7857 /* 7858 * We need some metadata space and system metadata space for 7859 * allocating chunks in some corner cases until we force to set 7860 * it to be readonly. 7861 */ 7862 if ((sinfo->flags & 7863 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7864 !force) 7865 min_allocable_bytes = 1 * 1024 * 1024; 7866 else 7867 min_allocable_bytes = 0; 7868 7869 spin_lock(&sinfo->lock); 7870 spin_lock(&cache->lock); 7871 7872 if (cache->ro) { 7873 ret = 0; 7874 goto out; 7875 } 7876 7877 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7878 cache->bytes_super - btrfs_block_group_used(&cache->item); 7879 7880 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7881 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7882 min_allocable_bytes <= sinfo->total_bytes) { 7883 sinfo->bytes_readonly += num_bytes; 7884 cache->ro = 1; 7885 ret = 0; 7886 } 7887 out: 7888 spin_unlock(&cache->lock); 7889 spin_unlock(&sinfo->lock); 7890 return ret; 7891 } 7892 7893 int btrfs_set_block_group_ro(struct btrfs_root *root, 7894 struct btrfs_block_group_cache *cache) 7895 7896 { 7897 struct btrfs_trans_handle *trans; 7898 u64 alloc_flags; 7899 int ret; 7900 7901 BUG_ON(cache->ro); 7902 7903 trans = btrfs_join_transaction(root); 7904 if (IS_ERR(trans)) 7905 return PTR_ERR(trans); 7906 7907 alloc_flags = update_block_group_flags(root, cache->flags); 7908 if (alloc_flags != cache->flags) { 7909 ret = do_chunk_alloc(trans, root, alloc_flags, 7910 CHUNK_ALLOC_FORCE); 7911 if (ret < 0) 7912 goto out; 7913 } 7914 7915 ret = set_block_group_ro(cache, 0); 7916 if (!ret) 7917 goto out; 7918 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7919 ret = do_chunk_alloc(trans, root, alloc_flags, 7920 CHUNK_ALLOC_FORCE); 7921 if (ret < 0) 7922 goto out; 7923 ret = set_block_group_ro(cache, 0); 7924 out: 7925 btrfs_end_transaction(trans, root); 7926 return ret; 7927 } 7928 7929 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7930 struct btrfs_root *root, u64 type) 7931 { 7932 u64 alloc_flags = get_alloc_profile(root, type); 7933 return do_chunk_alloc(trans, root, alloc_flags, 7934 CHUNK_ALLOC_FORCE); 7935 } 7936 7937 /* 7938 * helper to account the unused space of all the readonly block group in the 7939 * list. takes mirrors into account. 7940 */ 7941 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7942 { 7943 struct btrfs_block_group_cache *block_group; 7944 u64 free_bytes = 0; 7945 int factor; 7946 7947 list_for_each_entry(block_group, groups_list, list) { 7948 spin_lock(&block_group->lock); 7949 7950 if (!block_group->ro) { 7951 spin_unlock(&block_group->lock); 7952 continue; 7953 } 7954 7955 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7956 BTRFS_BLOCK_GROUP_RAID10 | 7957 BTRFS_BLOCK_GROUP_DUP)) 7958 factor = 2; 7959 else 7960 factor = 1; 7961 7962 free_bytes += (block_group->key.offset - 7963 btrfs_block_group_used(&block_group->item)) * 7964 factor; 7965 7966 spin_unlock(&block_group->lock); 7967 } 7968 7969 return free_bytes; 7970 } 7971 7972 /* 7973 * helper to account the unused space of all the readonly block group in the 7974 * space_info. takes mirrors into account. 7975 */ 7976 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7977 { 7978 int i; 7979 u64 free_bytes = 0; 7980 7981 spin_lock(&sinfo->lock); 7982 7983 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7984 if (!list_empty(&sinfo->block_groups[i])) 7985 free_bytes += __btrfs_get_ro_block_group_free_space( 7986 &sinfo->block_groups[i]); 7987 7988 spin_unlock(&sinfo->lock); 7989 7990 return free_bytes; 7991 } 7992 7993 void btrfs_set_block_group_rw(struct btrfs_root *root, 7994 struct btrfs_block_group_cache *cache) 7995 { 7996 struct btrfs_space_info *sinfo = cache->space_info; 7997 u64 num_bytes; 7998 7999 BUG_ON(!cache->ro); 8000 8001 spin_lock(&sinfo->lock); 8002 spin_lock(&cache->lock); 8003 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8004 cache->bytes_super - btrfs_block_group_used(&cache->item); 8005 sinfo->bytes_readonly -= num_bytes; 8006 cache->ro = 0; 8007 spin_unlock(&cache->lock); 8008 spin_unlock(&sinfo->lock); 8009 } 8010 8011 /* 8012 * checks to see if its even possible to relocate this block group. 8013 * 8014 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8015 * ok to go ahead and try. 8016 */ 8017 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8018 { 8019 struct btrfs_block_group_cache *block_group; 8020 struct btrfs_space_info *space_info; 8021 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8022 struct btrfs_device *device; 8023 struct btrfs_trans_handle *trans; 8024 u64 min_free; 8025 u64 dev_min = 1; 8026 u64 dev_nr = 0; 8027 u64 target; 8028 int index; 8029 int full = 0; 8030 int ret = 0; 8031 8032 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8033 8034 /* odd, couldn't find the block group, leave it alone */ 8035 if (!block_group) 8036 return -1; 8037 8038 min_free = btrfs_block_group_used(&block_group->item); 8039 8040 /* no bytes used, we're good */ 8041 if (!min_free) 8042 goto out; 8043 8044 space_info = block_group->space_info; 8045 spin_lock(&space_info->lock); 8046 8047 full = space_info->full; 8048 8049 /* 8050 * if this is the last block group we have in this space, we can't 8051 * relocate it unless we're able to allocate a new chunk below. 8052 * 8053 * Otherwise, we need to make sure we have room in the space to handle 8054 * all of the extents from this block group. If we can, we're good 8055 */ 8056 if ((space_info->total_bytes != block_group->key.offset) && 8057 (space_info->bytes_used + space_info->bytes_reserved + 8058 space_info->bytes_pinned + space_info->bytes_readonly + 8059 min_free < space_info->total_bytes)) { 8060 spin_unlock(&space_info->lock); 8061 goto out; 8062 } 8063 spin_unlock(&space_info->lock); 8064 8065 /* 8066 * ok we don't have enough space, but maybe we have free space on our 8067 * devices to allocate new chunks for relocation, so loop through our 8068 * alloc devices and guess if we have enough space. if this block 8069 * group is going to be restriped, run checks against the target 8070 * profile instead of the current one. 8071 */ 8072 ret = -1; 8073 8074 /* 8075 * index: 8076 * 0: raid10 8077 * 1: raid1 8078 * 2: dup 8079 * 3: raid0 8080 * 4: single 8081 */ 8082 target = get_restripe_target(root->fs_info, block_group->flags); 8083 if (target) { 8084 index = __get_raid_index(extended_to_chunk(target)); 8085 } else { 8086 /* 8087 * this is just a balance, so if we were marked as full 8088 * we know there is no space for a new chunk 8089 */ 8090 if (full) 8091 goto out; 8092 8093 index = get_block_group_index(block_group); 8094 } 8095 8096 if (index == BTRFS_RAID_RAID10) { 8097 dev_min = 4; 8098 /* Divide by 2 */ 8099 min_free >>= 1; 8100 } else if (index == BTRFS_RAID_RAID1) { 8101 dev_min = 2; 8102 } else if (index == BTRFS_RAID_DUP) { 8103 /* Multiply by 2 */ 8104 min_free <<= 1; 8105 } else if (index == BTRFS_RAID_RAID0) { 8106 dev_min = fs_devices->rw_devices; 8107 do_div(min_free, dev_min); 8108 } 8109 8110 /* We need to do this so that we can look at pending chunks */ 8111 trans = btrfs_join_transaction(root); 8112 if (IS_ERR(trans)) { 8113 ret = PTR_ERR(trans); 8114 goto out; 8115 } 8116 8117 mutex_lock(&root->fs_info->chunk_mutex); 8118 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8119 u64 dev_offset; 8120 8121 /* 8122 * check to make sure we can actually find a chunk with enough 8123 * space to fit our block group in. 8124 */ 8125 if (device->total_bytes > device->bytes_used + min_free && 8126 !device->is_tgtdev_for_dev_replace) { 8127 ret = find_free_dev_extent(trans, device, min_free, 8128 &dev_offset, NULL); 8129 if (!ret) 8130 dev_nr++; 8131 8132 if (dev_nr >= dev_min) 8133 break; 8134 8135 ret = -1; 8136 } 8137 } 8138 mutex_unlock(&root->fs_info->chunk_mutex); 8139 btrfs_end_transaction(trans, root); 8140 out: 8141 btrfs_put_block_group(block_group); 8142 return ret; 8143 } 8144 8145 static int find_first_block_group(struct btrfs_root *root, 8146 struct btrfs_path *path, struct btrfs_key *key) 8147 { 8148 int ret = 0; 8149 struct btrfs_key found_key; 8150 struct extent_buffer *leaf; 8151 int slot; 8152 8153 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8154 if (ret < 0) 8155 goto out; 8156 8157 while (1) { 8158 slot = path->slots[0]; 8159 leaf = path->nodes[0]; 8160 if (slot >= btrfs_header_nritems(leaf)) { 8161 ret = btrfs_next_leaf(root, path); 8162 if (ret == 0) 8163 continue; 8164 if (ret < 0) 8165 goto out; 8166 break; 8167 } 8168 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8169 8170 if (found_key.objectid >= key->objectid && 8171 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8172 ret = 0; 8173 goto out; 8174 } 8175 path->slots[0]++; 8176 } 8177 out: 8178 return ret; 8179 } 8180 8181 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8182 { 8183 struct btrfs_block_group_cache *block_group; 8184 u64 last = 0; 8185 8186 while (1) { 8187 struct inode *inode; 8188 8189 block_group = btrfs_lookup_first_block_group(info, last); 8190 while (block_group) { 8191 spin_lock(&block_group->lock); 8192 if (block_group->iref) 8193 break; 8194 spin_unlock(&block_group->lock); 8195 block_group = next_block_group(info->tree_root, 8196 block_group); 8197 } 8198 if (!block_group) { 8199 if (last == 0) 8200 break; 8201 last = 0; 8202 continue; 8203 } 8204 8205 inode = block_group->inode; 8206 block_group->iref = 0; 8207 block_group->inode = NULL; 8208 spin_unlock(&block_group->lock); 8209 iput(inode); 8210 last = block_group->key.objectid + block_group->key.offset; 8211 btrfs_put_block_group(block_group); 8212 } 8213 } 8214 8215 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8216 { 8217 struct btrfs_block_group_cache *block_group; 8218 struct btrfs_space_info *space_info; 8219 struct btrfs_caching_control *caching_ctl; 8220 struct rb_node *n; 8221 8222 down_write(&info->extent_commit_sem); 8223 while (!list_empty(&info->caching_block_groups)) { 8224 caching_ctl = list_entry(info->caching_block_groups.next, 8225 struct btrfs_caching_control, list); 8226 list_del(&caching_ctl->list); 8227 put_caching_control(caching_ctl); 8228 } 8229 up_write(&info->extent_commit_sem); 8230 8231 spin_lock(&info->block_group_cache_lock); 8232 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8233 block_group = rb_entry(n, struct btrfs_block_group_cache, 8234 cache_node); 8235 rb_erase(&block_group->cache_node, 8236 &info->block_group_cache_tree); 8237 spin_unlock(&info->block_group_cache_lock); 8238 8239 down_write(&block_group->space_info->groups_sem); 8240 list_del(&block_group->list); 8241 up_write(&block_group->space_info->groups_sem); 8242 8243 if (block_group->cached == BTRFS_CACHE_STARTED) 8244 wait_block_group_cache_done(block_group); 8245 8246 /* 8247 * We haven't cached this block group, which means we could 8248 * possibly have excluded extents on this block group. 8249 */ 8250 if (block_group->cached == BTRFS_CACHE_NO || 8251 block_group->cached == BTRFS_CACHE_ERROR) 8252 free_excluded_extents(info->extent_root, block_group); 8253 8254 btrfs_remove_free_space_cache(block_group); 8255 btrfs_put_block_group(block_group); 8256 8257 spin_lock(&info->block_group_cache_lock); 8258 } 8259 spin_unlock(&info->block_group_cache_lock); 8260 8261 /* now that all the block groups are freed, go through and 8262 * free all the space_info structs. This is only called during 8263 * the final stages of unmount, and so we know nobody is 8264 * using them. We call synchronize_rcu() once before we start, 8265 * just to be on the safe side. 8266 */ 8267 synchronize_rcu(); 8268 8269 release_global_block_rsv(info); 8270 8271 while(!list_empty(&info->space_info)) { 8272 space_info = list_entry(info->space_info.next, 8273 struct btrfs_space_info, 8274 list); 8275 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8276 if (space_info->bytes_pinned > 0 || 8277 space_info->bytes_reserved > 0 || 8278 space_info->bytes_may_use > 0) { 8279 WARN_ON(1); 8280 dump_space_info(space_info, 0, 0); 8281 } 8282 } 8283 percpu_counter_destroy(&space_info->total_bytes_pinned); 8284 list_del(&space_info->list); 8285 kfree(space_info); 8286 } 8287 return 0; 8288 } 8289 8290 static void __link_block_group(struct btrfs_space_info *space_info, 8291 struct btrfs_block_group_cache *cache) 8292 { 8293 int index = get_block_group_index(cache); 8294 8295 down_write(&space_info->groups_sem); 8296 list_add_tail(&cache->list, &space_info->block_groups[index]); 8297 up_write(&space_info->groups_sem); 8298 } 8299 8300 int btrfs_read_block_groups(struct btrfs_root *root) 8301 { 8302 struct btrfs_path *path; 8303 int ret; 8304 struct btrfs_block_group_cache *cache; 8305 struct btrfs_fs_info *info = root->fs_info; 8306 struct btrfs_space_info *space_info; 8307 struct btrfs_key key; 8308 struct btrfs_key found_key; 8309 struct extent_buffer *leaf; 8310 int need_clear = 0; 8311 u64 cache_gen; 8312 8313 root = info->extent_root; 8314 key.objectid = 0; 8315 key.offset = 0; 8316 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8317 path = btrfs_alloc_path(); 8318 if (!path) 8319 return -ENOMEM; 8320 path->reada = 1; 8321 8322 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8323 if (btrfs_test_opt(root, SPACE_CACHE) && 8324 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8325 need_clear = 1; 8326 if (btrfs_test_opt(root, CLEAR_CACHE)) 8327 need_clear = 1; 8328 8329 while (1) { 8330 ret = find_first_block_group(root, path, &key); 8331 if (ret > 0) 8332 break; 8333 if (ret != 0) 8334 goto error; 8335 leaf = path->nodes[0]; 8336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8337 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8338 if (!cache) { 8339 ret = -ENOMEM; 8340 goto error; 8341 } 8342 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8343 GFP_NOFS); 8344 if (!cache->free_space_ctl) { 8345 kfree(cache); 8346 ret = -ENOMEM; 8347 goto error; 8348 } 8349 8350 atomic_set(&cache->count, 1); 8351 spin_lock_init(&cache->lock); 8352 cache->fs_info = info; 8353 INIT_LIST_HEAD(&cache->list); 8354 INIT_LIST_HEAD(&cache->cluster_list); 8355 8356 if (need_clear) { 8357 /* 8358 * When we mount with old space cache, we need to 8359 * set BTRFS_DC_CLEAR and set dirty flag. 8360 * 8361 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8362 * truncate the old free space cache inode and 8363 * setup a new one. 8364 * b) Setting 'dirty flag' makes sure that we flush 8365 * the new space cache info onto disk. 8366 */ 8367 cache->disk_cache_state = BTRFS_DC_CLEAR; 8368 if (btrfs_test_opt(root, SPACE_CACHE)) 8369 cache->dirty = 1; 8370 } 8371 8372 read_extent_buffer(leaf, &cache->item, 8373 btrfs_item_ptr_offset(leaf, path->slots[0]), 8374 sizeof(cache->item)); 8375 memcpy(&cache->key, &found_key, sizeof(found_key)); 8376 8377 key.objectid = found_key.objectid + found_key.offset; 8378 btrfs_release_path(path); 8379 cache->flags = btrfs_block_group_flags(&cache->item); 8380 cache->sectorsize = root->sectorsize; 8381 cache->full_stripe_len = btrfs_full_stripe_len(root, 8382 &root->fs_info->mapping_tree, 8383 found_key.objectid); 8384 btrfs_init_free_space_ctl(cache); 8385 8386 /* 8387 * We need to exclude the super stripes now so that the space 8388 * info has super bytes accounted for, otherwise we'll think 8389 * we have more space than we actually do. 8390 */ 8391 ret = exclude_super_stripes(root, cache); 8392 if (ret) { 8393 /* 8394 * We may have excluded something, so call this just in 8395 * case. 8396 */ 8397 free_excluded_extents(root, cache); 8398 kfree(cache->free_space_ctl); 8399 kfree(cache); 8400 goto error; 8401 } 8402 8403 /* 8404 * check for two cases, either we are full, and therefore 8405 * don't need to bother with the caching work since we won't 8406 * find any space, or we are empty, and we can just add all 8407 * the space in and be done with it. This saves us _alot_ of 8408 * time, particularly in the full case. 8409 */ 8410 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8411 cache->last_byte_to_unpin = (u64)-1; 8412 cache->cached = BTRFS_CACHE_FINISHED; 8413 free_excluded_extents(root, cache); 8414 } else if (btrfs_block_group_used(&cache->item) == 0) { 8415 cache->last_byte_to_unpin = (u64)-1; 8416 cache->cached = BTRFS_CACHE_FINISHED; 8417 add_new_free_space(cache, root->fs_info, 8418 found_key.objectid, 8419 found_key.objectid + 8420 found_key.offset); 8421 free_excluded_extents(root, cache); 8422 } 8423 8424 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8425 if (ret) { 8426 btrfs_remove_free_space_cache(cache); 8427 btrfs_put_block_group(cache); 8428 goto error; 8429 } 8430 8431 ret = update_space_info(info, cache->flags, found_key.offset, 8432 btrfs_block_group_used(&cache->item), 8433 &space_info); 8434 if (ret) { 8435 btrfs_remove_free_space_cache(cache); 8436 spin_lock(&info->block_group_cache_lock); 8437 rb_erase(&cache->cache_node, 8438 &info->block_group_cache_tree); 8439 spin_unlock(&info->block_group_cache_lock); 8440 btrfs_put_block_group(cache); 8441 goto error; 8442 } 8443 8444 cache->space_info = space_info; 8445 spin_lock(&cache->space_info->lock); 8446 cache->space_info->bytes_readonly += cache->bytes_super; 8447 spin_unlock(&cache->space_info->lock); 8448 8449 __link_block_group(space_info, cache); 8450 8451 set_avail_alloc_bits(root->fs_info, cache->flags); 8452 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8453 set_block_group_ro(cache, 1); 8454 } 8455 8456 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8457 if (!(get_alloc_profile(root, space_info->flags) & 8458 (BTRFS_BLOCK_GROUP_RAID10 | 8459 BTRFS_BLOCK_GROUP_RAID1 | 8460 BTRFS_BLOCK_GROUP_RAID5 | 8461 BTRFS_BLOCK_GROUP_RAID6 | 8462 BTRFS_BLOCK_GROUP_DUP))) 8463 continue; 8464 /* 8465 * avoid allocating from un-mirrored block group if there are 8466 * mirrored block groups. 8467 */ 8468 list_for_each_entry(cache, 8469 &space_info->block_groups[BTRFS_RAID_RAID0], 8470 list) 8471 set_block_group_ro(cache, 1); 8472 list_for_each_entry(cache, 8473 &space_info->block_groups[BTRFS_RAID_SINGLE], 8474 list) 8475 set_block_group_ro(cache, 1); 8476 } 8477 8478 init_global_block_rsv(info); 8479 ret = 0; 8480 error: 8481 btrfs_free_path(path); 8482 return ret; 8483 } 8484 8485 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8486 struct btrfs_root *root) 8487 { 8488 struct btrfs_block_group_cache *block_group, *tmp; 8489 struct btrfs_root *extent_root = root->fs_info->extent_root; 8490 struct btrfs_block_group_item item; 8491 struct btrfs_key key; 8492 int ret = 0; 8493 8494 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8495 new_bg_list) { 8496 list_del_init(&block_group->new_bg_list); 8497 8498 if (ret) 8499 continue; 8500 8501 spin_lock(&block_group->lock); 8502 memcpy(&item, &block_group->item, sizeof(item)); 8503 memcpy(&key, &block_group->key, sizeof(key)); 8504 spin_unlock(&block_group->lock); 8505 8506 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8507 sizeof(item)); 8508 if (ret) 8509 btrfs_abort_transaction(trans, extent_root, ret); 8510 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8511 key.objectid, key.offset); 8512 if (ret) 8513 btrfs_abort_transaction(trans, extent_root, ret); 8514 } 8515 } 8516 8517 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8518 struct btrfs_root *root, u64 bytes_used, 8519 u64 type, u64 chunk_objectid, u64 chunk_offset, 8520 u64 size) 8521 { 8522 int ret; 8523 struct btrfs_root *extent_root; 8524 struct btrfs_block_group_cache *cache; 8525 8526 extent_root = root->fs_info->extent_root; 8527 8528 root->fs_info->last_trans_log_full_commit = trans->transid; 8529 8530 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8531 if (!cache) 8532 return -ENOMEM; 8533 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8534 GFP_NOFS); 8535 if (!cache->free_space_ctl) { 8536 kfree(cache); 8537 return -ENOMEM; 8538 } 8539 8540 cache->key.objectid = chunk_offset; 8541 cache->key.offset = size; 8542 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8543 cache->sectorsize = root->sectorsize; 8544 cache->fs_info = root->fs_info; 8545 cache->full_stripe_len = btrfs_full_stripe_len(root, 8546 &root->fs_info->mapping_tree, 8547 chunk_offset); 8548 8549 atomic_set(&cache->count, 1); 8550 spin_lock_init(&cache->lock); 8551 INIT_LIST_HEAD(&cache->list); 8552 INIT_LIST_HEAD(&cache->cluster_list); 8553 INIT_LIST_HEAD(&cache->new_bg_list); 8554 8555 btrfs_init_free_space_ctl(cache); 8556 8557 btrfs_set_block_group_used(&cache->item, bytes_used); 8558 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8559 cache->flags = type; 8560 btrfs_set_block_group_flags(&cache->item, type); 8561 8562 cache->last_byte_to_unpin = (u64)-1; 8563 cache->cached = BTRFS_CACHE_FINISHED; 8564 ret = exclude_super_stripes(root, cache); 8565 if (ret) { 8566 /* 8567 * We may have excluded something, so call this just in 8568 * case. 8569 */ 8570 free_excluded_extents(root, cache); 8571 kfree(cache->free_space_ctl); 8572 kfree(cache); 8573 return ret; 8574 } 8575 8576 add_new_free_space(cache, root->fs_info, chunk_offset, 8577 chunk_offset + size); 8578 8579 free_excluded_extents(root, cache); 8580 8581 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8582 if (ret) { 8583 btrfs_remove_free_space_cache(cache); 8584 btrfs_put_block_group(cache); 8585 return ret; 8586 } 8587 8588 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8589 &cache->space_info); 8590 if (ret) { 8591 btrfs_remove_free_space_cache(cache); 8592 spin_lock(&root->fs_info->block_group_cache_lock); 8593 rb_erase(&cache->cache_node, 8594 &root->fs_info->block_group_cache_tree); 8595 spin_unlock(&root->fs_info->block_group_cache_lock); 8596 btrfs_put_block_group(cache); 8597 return ret; 8598 } 8599 update_global_block_rsv(root->fs_info); 8600 8601 spin_lock(&cache->space_info->lock); 8602 cache->space_info->bytes_readonly += cache->bytes_super; 8603 spin_unlock(&cache->space_info->lock); 8604 8605 __link_block_group(cache->space_info, cache); 8606 8607 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8608 8609 set_avail_alloc_bits(extent_root->fs_info, type); 8610 8611 return 0; 8612 } 8613 8614 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8615 { 8616 u64 extra_flags = chunk_to_extended(flags) & 8617 BTRFS_EXTENDED_PROFILE_MASK; 8618 8619 write_seqlock(&fs_info->profiles_lock); 8620 if (flags & BTRFS_BLOCK_GROUP_DATA) 8621 fs_info->avail_data_alloc_bits &= ~extra_flags; 8622 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8623 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8624 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8625 fs_info->avail_system_alloc_bits &= ~extra_flags; 8626 write_sequnlock(&fs_info->profiles_lock); 8627 } 8628 8629 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8630 struct btrfs_root *root, u64 group_start) 8631 { 8632 struct btrfs_path *path; 8633 struct btrfs_block_group_cache *block_group; 8634 struct btrfs_free_cluster *cluster; 8635 struct btrfs_root *tree_root = root->fs_info->tree_root; 8636 struct btrfs_key key; 8637 struct inode *inode; 8638 int ret; 8639 int index; 8640 int factor; 8641 8642 root = root->fs_info->extent_root; 8643 8644 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8645 BUG_ON(!block_group); 8646 BUG_ON(!block_group->ro); 8647 8648 /* 8649 * Free the reserved super bytes from this block group before 8650 * remove it. 8651 */ 8652 free_excluded_extents(root, block_group); 8653 8654 memcpy(&key, &block_group->key, sizeof(key)); 8655 index = get_block_group_index(block_group); 8656 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8657 BTRFS_BLOCK_GROUP_RAID1 | 8658 BTRFS_BLOCK_GROUP_RAID10)) 8659 factor = 2; 8660 else 8661 factor = 1; 8662 8663 /* make sure this block group isn't part of an allocation cluster */ 8664 cluster = &root->fs_info->data_alloc_cluster; 8665 spin_lock(&cluster->refill_lock); 8666 btrfs_return_cluster_to_free_space(block_group, cluster); 8667 spin_unlock(&cluster->refill_lock); 8668 8669 /* 8670 * make sure this block group isn't part of a metadata 8671 * allocation cluster 8672 */ 8673 cluster = &root->fs_info->meta_alloc_cluster; 8674 spin_lock(&cluster->refill_lock); 8675 btrfs_return_cluster_to_free_space(block_group, cluster); 8676 spin_unlock(&cluster->refill_lock); 8677 8678 path = btrfs_alloc_path(); 8679 if (!path) { 8680 ret = -ENOMEM; 8681 goto out; 8682 } 8683 8684 inode = lookup_free_space_inode(tree_root, block_group, path); 8685 if (!IS_ERR(inode)) { 8686 ret = btrfs_orphan_add(trans, inode); 8687 if (ret) { 8688 btrfs_add_delayed_iput(inode); 8689 goto out; 8690 } 8691 clear_nlink(inode); 8692 /* One for the block groups ref */ 8693 spin_lock(&block_group->lock); 8694 if (block_group->iref) { 8695 block_group->iref = 0; 8696 block_group->inode = NULL; 8697 spin_unlock(&block_group->lock); 8698 iput(inode); 8699 } else { 8700 spin_unlock(&block_group->lock); 8701 } 8702 /* One for our lookup ref */ 8703 btrfs_add_delayed_iput(inode); 8704 } 8705 8706 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8707 key.offset = block_group->key.objectid; 8708 key.type = 0; 8709 8710 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8711 if (ret < 0) 8712 goto out; 8713 if (ret > 0) 8714 btrfs_release_path(path); 8715 if (ret == 0) { 8716 ret = btrfs_del_item(trans, tree_root, path); 8717 if (ret) 8718 goto out; 8719 btrfs_release_path(path); 8720 } 8721 8722 spin_lock(&root->fs_info->block_group_cache_lock); 8723 rb_erase(&block_group->cache_node, 8724 &root->fs_info->block_group_cache_tree); 8725 8726 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8727 root->fs_info->first_logical_byte = (u64)-1; 8728 spin_unlock(&root->fs_info->block_group_cache_lock); 8729 8730 down_write(&block_group->space_info->groups_sem); 8731 /* 8732 * we must use list_del_init so people can check to see if they 8733 * are still on the list after taking the semaphore 8734 */ 8735 list_del_init(&block_group->list); 8736 if (list_empty(&block_group->space_info->block_groups[index])) 8737 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8738 up_write(&block_group->space_info->groups_sem); 8739 8740 if (block_group->cached == BTRFS_CACHE_STARTED) 8741 wait_block_group_cache_done(block_group); 8742 8743 btrfs_remove_free_space_cache(block_group); 8744 8745 spin_lock(&block_group->space_info->lock); 8746 block_group->space_info->total_bytes -= block_group->key.offset; 8747 block_group->space_info->bytes_readonly -= block_group->key.offset; 8748 block_group->space_info->disk_total -= block_group->key.offset * factor; 8749 spin_unlock(&block_group->space_info->lock); 8750 8751 memcpy(&key, &block_group->key, sizeof(key)); 8752 8753 btrfs_clear_space_info_full(root->fs_info); 8754 8755 btrfs_put_block_group(block_group); 8756 btrfs_put_block_group(block_group); 8757 8758 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8759 if (ret > 0) 8760 ret = -EIO; 8761 if (ret < 0) 8762 goto out; 8763 8764 ret = btrfs_del_item(trans, root, path); 8765 out: 8766 btrfs_free_path(path); 8767 return ret; 8768 } 8769 8770 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8771 { 8772 struct btrfs_space_info *space_info; 8773 struct btrfs_super_block *disk_super; 8774 u64 features; 8775 u64 flags; 8776 int mixed = 0; 8777 int ret; 8778 8779 disk_super = fs_info->super_copy; 8780 if (!btrfs_super_root(disk_super)) 8781 return 1; 8782 8783 features = btrfs_super_incompat_flags(disk_super); 8784 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8785 mixed = 1; 8786 8787 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8788 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8789 if (ret) 8790 goto out; 8791 8792 if (mixed) { 8793 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8794 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8795 } else { 8796 flags = BTRFS_BLOCK_GROUP_METADATA; 8797 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8798 if (ret) 8799 goto out; 8800 8801 flags = BTRFS_BLOCK_GROUP_DATA; 8802 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8803 } 8804 out: 8805 return ret; 8806 } 8807 8808 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8809 { 8810 return unpin_extent_range(root, start, end); 8811 } 8812 8813 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8814 u64 num_bytes, u64 *actual_bytes) 8815 { 8816 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8817 } 8818 8819 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8820 { 8821 struct btrfs_fs_info *fs_info = root->fs_info; 8822 struct btrfs_block_group_cache *cache = NULL; 8823 u64 group_trimmed; 8824 u64 start; 8825 u64 end; 8826 u64 trimmed = 0; 8827 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8828 int ret = 0; 8829 8830 /* 8831 * try to trim all FS space, our block group may start from non-zero. 8832 */ 8833 if (range->len == total_bytes) 8834 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8835 else 8836 cache = btrfs_lookup_block_group(fs_info, range->start); 8837 8838 while (cache) { 8839 if (cache->key.objectid >= (range->start + range->len)) { 8840 btrfs_put_block_group(cache); 8841 break; 8842 } 8843 8844 start = max(range->start, cache->key.objectid); 8845 end = min(range->start + range->len, 8846 cache->key.objectid + cache->key.offset); 8847 8848 if (end - start >= range->minlen) { 8849 if (!block_group_cache_done(cache)) { 8850 ret = cache_block_group(cache, 0); 8851 if (ret) { 8852 btrfs_put_block_group(cache); 8853 break; 8854 } 8855 ret = wait_block_group_cache_done(cache); 8856 if (ret) { 8857 btrfs_put_block_group(cache); 8858 break; 8859 } 8860 } 8861 ret = btrfs_trim_block_group(cache, 8862 &group_trimmed, 8863 start, 8864 end, 8865 range->minlen); 8866 8867 trimmed += group_trimmed; 8868 if (ret) { 8869 btrfs_put_block_group(cache); 8870 break; 8871 } 8872 } 8873 8874 cache = next_block_group(fs_info->tree_root, cache); 8875 } 8876 8877 range->len = trimmed; 8878 return ret; 8879 } 8880