xref: /linux/fs/btrfs/extent-tree.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->extent_commit_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched()) {
446 				caching_ctl->progress = last;
447 				btrfs_release_path(path);
448 				up_read(&fs_info->extent_commit_sem);
449 				mutex_unlock(&caching_ctl->mutex);
450 				cond_resched();
451 				goto again;
452 			}
453 
454 			ret = btrfs_next_leaf(extent_root, path);
455 			if (ret < 0)
456 				goto err;
457 			if (ret)
458 				break;
459 			leaf = path->nodes[0];
460 			nritems = btrfs_header_nritems(leaf);
461 			continue;
462 		}
463 
464 		if (key.objectid < last) {
465 			key.objectid = last;
466 			key.offset = 0;
467 			key.type = BTRFS_EXTENT_ITEM_KEY;
468 
469 			caching_ctl->progress = last;
470 			btrfs_release_path(path);
471 			goto next;
472 		}
473 
474 		if (key.objectid < block_group->key.objectid) {
475 			path->slots[0]++;
476 			continue;
477 		}
478 
479 		if (key.objectid >= block_group->key.objectid +
480 		    block_group->key.offset)
481 			break;
482 
483 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 		    key.type == BTRFS_METADATA_ITEM_KEY) {
485 			total_found += add_new_free_space(block_group,
486 							  fs_info, last,
487 							  key.objectid);
488 			if (key.type == BTRFS_METADATA_ITEM_KEY)
489 				last = key.objectid +
490 					fs_info->tree_root->leafsize;
491 			else
492 				last = key.objectid + key.offset;
493 
494 			if (total_found > (1024 * 1024 * 2)) {
495 				total_found = 0;
496 				wake_up(&caching_ctl->wait);
497 			}
498 		}
499 		path->slots[0]++;
500 	}
501 	ret = 0;
502 
503 	total_found += add_new_free_space(block_group, fs_info, last,
504 					  block_group->key.objectid +
505 					  block_group->key.offset);
506 	caching_ctl->progress = (u64)-1;
507 
508 	spin_lock(&block_group->lock);
509 	block_group->caching_ctl = NULL;
510 	block_group->cached = BTRFS_CACHE_FINISHED;
511 	spin_unlock(&block_group->lock);
512 
513 err:
514 	btrfs_free_path(path);
515 	up_read(&fs_info->extent_commit_sem);
516 
517 	free_excluded_extents(extent_root, block_group);
518 
519 	mutex_unlock(&caching_ctl->mutex);
520 out:
521 	if (ret) {
522 		spin_lock(&block_group->lock);
523 		block_group->caching_ctl = NULL;
524 		block_group->cached = BTRFS_CACHE_ERROR;
525 		spin_unlock(&block_group->lock);
526 	}
527 	wake_up(&caching_ctl->wait);
528 
529 	put_caching_control(caching_ctl);
530 	btrfs_put_block_group(block_group);
531 }
532 
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 			     int load_cache_only)
535 {
536 	DEFINE_WAIT(wait);
537 	struct btrfs_fs_info *fs_info = cache->fs_info;
538 	struct btrfs_caching_control *caching_ctl;
539 	int ret = 0;
540 
541 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 	if (!caching_ctl)
543 		return -ENOMEM;
544 
545 	INIT_LIST_HEAD(&caching_ctl->list);
546 	mutex_init(&caching_ctl->mutex);
547 	init_waitqueue_head(&caching_ctl->wait);
548 	caching_ctl->block_group = cache;
549 	caching_ctl->progress = cache->key.objectid;
550 	atomic_set(&caching_ctl->count, 1);
551 	caching_ctl->work.func = caching_thread;
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 		} else {
600 			if (load_cache_only) {
601 				cache->caching_ctl = NULL;
602 				cache->cached = BTRFS_CACHE_NO;
603 			} else {
604 				cache->cached = BTRFS_CACHE_STARTED;
605 			}
606 		}
607 		spin_unlock(&cache->lock);
608 		wake_up(&caching_ctl->wait);
609 		if (ret == 1) {
610 			put_caching_control(caching_ctl);
611 			free_excluded_extents(fs_info->extent_root, cache);
612 			return 0;
613 		}
614 	} else {
615 		/*
616 		 * We are not going to do the fast caching, set cached to the
617 		 * appropriate value and wakeup any waiters.
618 		 */
619 		spin_lock(&cache->lock);
620 		if (load_cache_only) {
621 			cache->caching_ctl = NULL;
622 			cache->cached = BTRFS_CACHE_NO;
623 		} else {
624 			cache->cached = BTRFS_CACHE_STARTED;
625 		}
626 		spin_unlock(&cache->lock);
627 		wake_up(&caching_ctl->wait);
628 	}
629 
630 	if (load_cache_only) {
631 		put_caching_control(caching_ctl);
632 		return 0;
633 	}
634 
635 	down_write(&fs_info->extent_commit_sem);
636 	atomic_inc(&caching_ctl->count);
637 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 	up_write(&fs_info->extent_commit_sem);
639 
640 	btrfs_get_block_group(cache);
641 
642 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643 
644 	return ret;
645 }
646 
647 /*
648  * return the block group that starts at or after bytenr
649  */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 	struct btrfs_block_group_cache *cache;
654 
655 	cache = block_group_cache_tree_search(info, bytenr, 0);
656 
657 	return cache;
658 }
659 
660 /*
661  * return the block group that contains the given bytenr
662  */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 						 struct btrfs_fs_info *info,
665 						 u64 bytenr)
666 {
667 	struct btrfs_block_group_cache *cache;
668 
669 	cache = block_group_cache_tree_search(info, bytenr, 1);
670 
671 	return cache;
672 }
673 
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 						  u64 flags)
676 {
677 	struct list_head *head = &info->space_info;
678 	struct btrfs_space_info *found;
679 
680 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681 
682 	rcu_read_lock();
683 	list_for_each_entry_rcu(found, head, list) {
684 		if (found->flags & flags) {
685 			rcu_read_unlock();
686 			return found;
687 		}
688 	}
689 	rcu_read_unlock();
690 	return NULL;
691 }
692 
693 /*
694  * after adding space to the filesystem, we need to clear the full flags
695  * on all the space infos.
696  */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 	struct list_head *head = &info->space_info;
700 	struct btrfs_space_info *found;
701 
702 	rcu_read_lock();
703 	list_for_each_entry_rcu(found, head, list)
704 		found->full = 0;
705 	rcu_read_unlock();
706 }
707 
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 	int ret;
712 	struct btrfs_key key;
713 	struct btrfs_path *path;
714 
715 	path = btrfs_alloc_path();
716 	if (!path)
717 		return -ENOMEM;
718 
719 	key.objectid = start;
720 	key.offset = len;
721 	key.type = BTRFS_EXTENT_ITEM_KEY;
722 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 				0, 0);
724 	if (ret > 0) {
725 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 		if (key.objectid == start &&
727 		    key.type == BTRFS_METADATA_ITEM_KEY)
728 			ret = 0;
729 	}
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->leafsize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (metadata) {
772 		key.objectid = bytenr;
773 		key.type = BTRFS_METADATA_ITEM_KEY;
774 		key.offset = offset;
775 	} else {
776 		key.objectid = bytenr;
777 		key.type = BTRFS_EXTENT_ITEM_KEY;
778 		key.offset = offset;
779 	}
780 
781 	if (!trans) {
782 		path->skip_locking = 1;
783 		path->search_commit_root = 1;
784 	}
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		metadata = 0;
793 		if (path->slots[0]) {
794 			path->slots[0]--;
795 			btrfs_item_key_to_cpu(path->nodes[0], &key,
796 					      path->slots[0]);
797 			if (key.objectid == bytenr &&
798 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
799 			    key.offset == root->leafsize)
800 				ret = 0;
801 		}
802 		if (ret) {
803 			key.objectid = bytenr;
804 			key.type = BTRFS_EXTENT_ITEM_KEY;
805 			key.offset = root->leafsize;
806 			btrfs_release_path(path);
807 			goto again;
808 		}
809 	}
810 
811 	if (ret == 0) {
812 		leaf = path->nodes[0];
813 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 		if (item_size >= sizeof(*ei)) {
815 			ei = btrfs_item_ptr(leaf, path->slots[0],
816 					    struct btrfs_extent_item);
817 			num_refs = btrfs_extent_refs(leaf, ei);
818 			extent_flags = btrfs_extent_flags(leaf, ei);
819 		} else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 			struct btrfs_extent_item_v0 *ei0;
822 			BUG_ON(item_size != sizeof(*ei0));
823 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 					     struct btrfs_extent_item_v0);
825 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 			/* FIXME: this isn't correct for data */
827 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 			BUG();
830 #endif
831 		}
832 		BUG_ON(num_refs == 0);
833 	} else {
834 		num_refs = 0;
835 		extent_flags = 0;
836 		ret = 0;
837 	}
838 
839 	if (!trans)
840 		goto out;
841 
842 	delayed_refs = &trans->transaction->delayed_refs;
843 	spin_lock(&delayed_refs->lock);
844 	head = btrfs_find_delayed_ref_head(trans, bytenr);
845 	if (head) {
846 		if (!mutex_trylock(&head->mutex)) {
847 			atomic_inc(&head->node.refs);
848 			spin_unlock(&delayed_refs->lock);
849 
850 			btrfs_release_path(path);
851 
852 			/*
853 			 * Mutex was contended, block until it's released and try
854 			 * again
855 			 */
856 			mutex_lock(&head->mutex);
857 			mutex_unlock(&head->mutex);
858 			btrfs_put_delayed_ref(&head->node);
859 			goto again;
860 		}
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		mutex_unlock(&head->mutex);
868 	}
869 	spin_unlock(&delayed_refs->lock);
870 out:
871 	WARN_ON(num_refs == 0);
872 	if (refs)
873 		*refs = num_refs;
874 	if (flags)
875 		*flags = extent_flags;
876 out_free:
877 	btrfs_free_path(path);
878 	return ret;
879 }
880 
881 /*
882  * Back reference rules.  Back refs have three main goals:
883  *
884  * 1) differentiate between all holders of references to an extent so that
885  *    when a reference is dropped we can make sure it was a valid reference
886  *    before freeing the extent.
887  *
888  * 2) Provide enough information to quickly find the holders of an extent
889  *    if we notice a given block is corrupted or bad.
890  *
891  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892  *    maintenance.  This is actually the same as #2, but with a slightly
893  *    different use case.
894  *
895  * There are two kinds of back refs. The implicit back refs is optimized
896  * for pointers in non-shared tree blocks. For a given pointer in a block,
897  * back refs of this kind provide information about the block's owner tree
898  * and the pointer's key. These information allow us to find the block by
899  * b-tree searching. The full back refs is for pointers in tree blocks not
900  * referenced by their owner trees. The location of tree block is recorded
901  * in the back refs. Actually the full back refs is generic, and can be
902  * used in all cases the implicit back refs is used. The major shortcoming
903  * of the full back refs is its overhead. Every time a tree block gets
904  * COWed, we have to update back refs entry for all pointers in it.
905  *
906  * For a newly allocated tree block, we use implicit back refs for
907  * pointers in it. This means most tree related operations only involve
908  * implicit back refs. For a tree block created in old transaction, the
909  * only way to drop a reference to it is COW it. So we can detect the
910  * event that tree block loses its owner tree's reference and do the
911  * back refs conversion.
912  *
913  * When a tree block is COW'd through a tree, there are four cases:
914  *
915  * The reference count of the block is one and the tree is the block's
916  * owner tree. Nothing to do in this case.
917  *
918  * The reference count of the block is one and the tree is not the
919  * block's owner tree. In this case, full back refs is used for pointers
920  * in the block. Remove these full back refs, add implicit back refs for
921  * every pointers in the new block.
922  *
923  * The reference count of the block is greater than one and the tree is
924  * the block's owner tree. In this case, implicit back refs is used for
925  * pointers in the block. Add full back refs for every pointers in the
926  * block, increase lower level extents' reference counts. The original
927  * implicit back refs are entailed to the new block.
928  *
929  * The reference count of the block is greater than one and the tree is
930  * not the block's owner tree. Add implicit back refs for every pointer in
931  * the new block, increase lower level extents' reference count.
932  *
933  * Back Reference Key composing:
934  *
935  * The key objectid corresponds to the first byte in the extent,
936  * The key type is used to differentiate between types of back refs.
937  * There are different meanings of the key offset for different types
938  * of back refs.
939  *
940  * File extents can be referenced by:
941  *
942  * - multiple snapshots, subvolumes, or different generations in one subvol
943  * - different files inside a single subvolume
944  * - different offsets inside a file (bookend extents in file.c)
945  *
946  * The extent ref structure for the implicit back refs has fields for:
947  *
948  * - Objectid of the subvolume root
949  * - objectid of the file holding the reference
950  * - original offset in the file
951  * - how many bookend extents
952  *
953  * The key offset for the implicit back refs is hash of the first
954  * three fields.
955  *
956  * The extent ref structure for the full back refs has field for:
957  *
958  * - number of pointers in the tree leaf
959  *
960  * The key offset for the implicit back refs is the first byte of
961  * the tree leaf
962  *
963  * When a file extent is allocated, The implicit back refs is used.
964  * the fields are filled in:
965  *
966  *     (root_key.objectid, inode objectid, offset in file, 1)
967  *
968  * When a file extent is removed file truncation, we find the
969  * corresponding implicit back refs and check the following fields:
970  *
971  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
972  *
973  * Btree extents can be referenced by:
974  *
975  * - Different subvolumes
976  *
977  * Both the implicit back refs and the full back refs for tree blocks
978  * only consist of key. The key offset for the implicit back refs is
979  * objectid of block's owner tree. The key offset for the full back refs
980  * is the first byte of parent block.
981  *
982  * When implicit back refs is used, information about the lowest key and
983  * level of the tree block are required. These information are stored in
984  * tree block info structure.
985  */
986 
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 				  struct btrfs_root *root,
990 				  struct btrfs_path *path,
991 				  u64 owner, u32 extra_size)
992 {
993 	struct btrfs_extent_item *item;
994 	struct btrfs_extent_item_v0 *ei0;
995 	struct btrfs_extent_ref_v0 *ref0;
996 	struct btrfs_tree_block_info *bi;
997 	struct extent_buffer *leaf;
998 	struct btrfs_key key;
999 	struct btrfs_key found_key;
1000 	u32 new_size = sizeof(*item);
1001 	u64 refs;
1002 	int ret;
1003 
1004 	leaf = path->nodes[0];
1005 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006 
1007 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 			     struct btrfs_extent_item_v0);
1010 	refs = btrfs_extent_refs_v0(leaf, ei0);
1011 
1012 	if (owner == (u64)-1) {
1013 		while (1) {
1014 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 				ret = btrfs_next_leaf(root, path);
1016 				if (ret < 0)
1017 					return ret;
1018 				BUG_ON(ret > 0); /* Corruption */
1019 				leaf = path->nodes[0];
1020 			}
1021 			btrfs_item_key_to_cpu(leaf, &found_key,
1022 					      path->slots[0]);
1023 			BUG_ON(key.objectid != found_key.objectid);
1024 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 				path->slots[0]++;
1026 				continue;
1027 			}
1028 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 					      struct btrfs_extent_ref_v0);
1030 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 			break;
1032 		}
1033 	}
1034 	btrfs_release_path(path);
1035 
1036 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 		new_size += sizeof(*bi);
1038 
1039 	new_size -= sizeof(*ei0);
1040 	ret = btrfs_search_slot(trans, root, &key, path,
1041 				new_size + extra_size, 1);
1042 	if (ret < 0)
1043 		return ret;
1044 	BUG_ON(ret); /* Corruption */
1045 
1046 	btrfs_extend_item(root, path, new_size);
1047 
1048 	leaf = path->nodes[0];
1049 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 	btrfs_set_extent_refs(leaf, item, refs);
1051 	/* FIXME: get real generation */
1052 	btrfs_set_extent_generation(leaf, item, 0);
1053 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 		btrfs_set_extent_flags(leaf, item,
1055 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 		bi = (struct btrfs_tree_block_info *)(item + 1);
1058 		/* FIXME: get first key of the block */
1059 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 	} else {
1062 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 	}
1064 	btrfs_mark_buffer_dirty(leaf);
1065 	return 0;
1066 }
1067 #endif
1068 
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 	u32 high_crc = ~(u32)0;
1072 	u32 low_crc = ~(u32)0;
1073 	__le64 lenum;
1074 
1075 	lenum = cpu_to_le64(root_objectid);
1076 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 	lenum = cpu_to_le64(owner);
1078 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 	lenum = cpu_to_le64(offset);
1080 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081 
1082 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084 
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 				     struct btrfs_extent_data_ref *ref)
1087 {
1088 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 				    btrfs_extent_data_ref_objectid(leaf, ref),
1090 				    btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092 
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 				 struct btrfs_extent_data_ref *ref,
1095 				 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 		return 0;
1101 	return 1;
1102 }
1103 
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 					   struct btrfs_root *root,
1106 					   struct btrfs_path *path,
1107 					   u64 bytenr, u64 parent,
1108 					   u64 root_objectid,
1109 					   u64 owner, u64 offset)
1110 {
1111 	struct btrfs_key key;
1112 	struct btrfs_extent_data_ref *ref;
1113 	struct extent_buffer *leaf;
1114 	u32 nritems;
1115 	int ret;
1116 	int recow;
1117 	int err = -ENOENT;
1118 
1119 	key.objectid = bytenr;
1120 	if (parent) {
1121 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 		key.offset = parent;
1123 	} else {
1124 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 		key.offset = hash_extent_data_ref(root_objectid,
1126 						  owner, offset);
1127 	}
1128 again:
1129 	recow = 0;
1130 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 	if (ret < 0) {
1132 		err = ret;
1133 		goto fail;
1134 	}
1135 
1136 	if (parent) {
1137 		if (!ret)
1138 			return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 		btrfs_release_path(path);
1142 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 		if (ret < 0) {
1144 			err = ret;
1145 			goto fail;
1146 		}
1147 		if (!ret)
1148 			return 0;
1149 #endif
1150 		goto fail;
1151 	}
1152 
1153 	leaf = path->nodes[0];
1154 	nritems = btrfs_header_nritems(leaf);
1155 	while (1) {
1156 		if (path->slots[0] >= nritems) {
1157 			ret = btrfs_next_leaf(root, path);
1158 			if (ret < 0)
1159 				err = ret;
1160 			if (ret)
1161 				goto fail;
1162 
1163 			leaf = path->nodes[0];
1164 			nritems = btrfs_header_nritems(leaf);
1165 			recow = 1;
1166 		}
1167 
1168 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 		if (key.objectid != bytenr ||
1170 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 			goto fail;
1172 
1173 		ref = btrfs_item_ptr(leaf, path->slots[0],
1174 				     struct btrfs_extent_data_ref);
1175 
1176 		if (match_extent_data_ref(leaf, ref, root_objectid,
1177 					  owner, offset)) {
1178 			if (recow) {
1179 				btrfs_release_path(path);
1180 				goto again;
1181 			}
1182 			err = 0;
1183 			break;
1184 		}
1185 		path->slots[0]++;
1186 	}
1187 fail:
1188 	return err;
1189 }
1190 
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 					   struct btrfs_root *root,
1193 					   struct btrfs_path *path,
1194 					   u64 bytenr, u64 parent,
1195 					   u64 root_objectid, u64 owner,
1196 					   u64 offset, int refs_to_add)
1197 {
1198 	struct btrfs_key key;
1199 	struct extent_buffer *leaf;
1200 	u32 size;
1201 	u32 num_refs;
1202 	int ret;
1203 
1204 	key.objectid = bytenr;
1205 	if (parent) {
1206 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 		key.offset = parent;
1208 		size = sizeof(struct btrfs_shared_data_ref);
1209 	} else {
1210 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 		key.offset = hash_extent_data_ref(root_objectid,
1212 						  owner, offset);
1213 		size = sizeof(struct btrfs_extent_data_ref);
1214 	}
1215 
1216 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 	if (ret && ret != -EEXIST)
1218 		goto fail;
1219 
1220 	leaf = path->nodes[0];
1221 	if (parent) {
1222 		struct btrfs_shared_data_ref *ref;
1223 		ref = btrfs_item_ptr(leaf, path->slots[0],
1224 				     struct btrfs_shared_data_ref);
1225 		if (ret == 0) {
1226 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 		} else {
1228 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 			num_refs += refs_to_add;
1230 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 		}
1232 	} else {
1233 		struct btrfs_extent_data_ref *ref;
1234 		while (ret == -EEXIST) {
1235 			ref = btrfs_item_ptr(leaf, path->slots[0],
1236 					     struct btrfs_extent_data_ref);
1237 			if (match_extent_data_ref(leaf, ref, root_objectid,
1238 						  owner, offset))
1239 				break;
1240 			btrfs_release_path(path);
1241 			key.offset++;
1242 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 						      size);
1244 			if (ret && ret != -EEXIST)
1245 				goto fail;
1246 
1247 			leaf = path->nodes[0];
1248 		}
1249 		ref = btrfs_item_ptr(leaf, path->slots[0],
1250 				     struct btrfs_extent_data_ref);
1251 		if (ret == 0) {
1252 			btrfs_set_extent_data_ref_root(leaf, ref,
1253 						       root_objectid);
1254 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 		} else {
1258 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 			num_refs += refs_to_add;
1260 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 		}
1262 	}
1263 	btrfs_mark_buffer_dirty(leaf);
1264 	ret = 0;
1265 fail:
1266 	btrfs_release_path(path);
1267 	return ret;
1268 }
1269 
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 					   struct btrfs_root *root,
1272 					   struct btrfs_path *path,
1273 					   int refs_to_drop)
1274 {
1275 	struct btrfs_key key;
1276 	struct btrfs_extent_data_ref *ref1 = NULL;
1277 	struct btrfs_shared_data_ref *ref2 = NULL;
1278 	struct extent_buffer *leaf;
1279 	u32 num_refs = 0;
1280 	int ret = 0;
1281 
1282 	leaf = path->nodes[0];
1283 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 
1285 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 				      struct btrfs_extent_data_ref);
1288 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 				      struct btrfs_shared_data_ref);
1292 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 		struct btrfs_extent_ref_v0 *ref0;
1296 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 				      struct btrfs_extent_ref_v0);
1298 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 	} else {
1301 		BUG();
1302 	}
1303 
1304 	BUG_ON(num_refs < refs_to_drop);
1305 	num_refs -= refs_to_drop;
1306 
1307 	if (num_refs == 0) {
1308 		ret = btrfs_del_item(trans, root, path);
1309 	} else {
1310 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 		else {
1316 			struct btrfs_extent_ref_v0 *ref0;
1317 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 					struct btrfs_extent_ref_v0);
1319 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 		}
1321 #endif
1322 		btrfs_mark_buffer_dirty(leaf);
1323 	}
1324 	return ret;
1325 }
1326 
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 					  struct btrfs_path *path,
1329 					  struct btrfs_extent_inline_ref *iref)
1330 {
1331 	struct btrfs_key key;
1332 	struct extent_buffer *leaf;
1333 	struct btrfs_extent_data_ref *ref1;
1334 	struct btrfs_shared_data_ref *ref2;
1335 	u32 num_refs = 0;
1336 
1337 	leaf = path->nodes[0];
1338 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 	if (iref) {
1340 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 		    BTRFS_EXTENT_DATA_REF_KEY) {
1342 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 		} else {
1345 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 		}
1348 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 				      struct btrfs_extent_data_ref);
1351 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 				      struct btrfs_shared_data_ref);
1355 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 		struct btrfs_extent_ref_v0 *ref0;
1359 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 				      struct btrfs_extent_ref_v0);
1361 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 	} else {
1364 		WARN_ON(1);
1365 	}
1366 	return num_refs;
1367 }
1368 
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 					  struct btrfs_root *root,
1371 					  struct btrfs_path *path,
1372 					  u64 bytenr, u64 parent,
1373 					  u64 root_objectid)
1374 {
1375 	struct btrfs_key key;
1376 	int ret;
1377 
1378 	key.objectid = bytenr;
1379 	if (parent) {
1380 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 		key.offset = parent;
1382 	} else {
1383 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 		key.offset = root_objectid;
1385 	}
1386 
1387 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 	if (ret > 0)
1389 		ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 	if (ret == -ENOENT && parent) {
1392 		btrfs_release_path(path);
1393 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 		if (ret > 0)
1396 			ret = -ENOENT;
1397 	}
1398 #endif
1399 	return ret;
1400 }
1401 
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 					  struct btrfs_root *root,
1404 					  struct btrfs_path *path,
1405 					  u64 bytenr, u64 parent,
1406 					  u64 root_objectid)
1407 {
1408 	struct btrfs_key key;
1409 	int ret;
1410 
1411 	key.objectid = bytenr;
1412 	if (parent) {
1413 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 		key.offset = parent;
1415 	} else {
1416 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 		key.offset = root_objectid;
1418 	}
1419 
1420 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 	btrfs_release_path(path);
1422 	return ret;
1423 }
1424 
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 	int type;
1428 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 		if (parent > 0)
1430 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 		else
1432 			type = BTRFS_TREE_BLOCK_REF_KEY;
1433 	} else {
1434 		if (parent > 0)
1435 			type = BTRFS_SHARED_DATA_REF_KEY;
1436 		else
1437 			type = BTRFS_EXTENT_DATA_REF_KEY;
1438 	}
1439 	return type;
1440 }
1441 
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 			 struct btrfs_key *key)
1444 
1445 {
1446 	for (; level < BTRFS_MAX_LEVEL; level++) {
1447 		if (!path->nodes[level])
1448 			break;
1449 		if (path->slots[level] + 1 >=
1450 		    btrfs_header_nritems(path->nodes[level]))
1451 			continue;
1452 		if (level == 0)
1453 			btrfs_item_key_to_cpu(path->nodes[level], key,
1454 					      path->slots[level] + 1);
1455 		else
1456 			btrfs_node_key_to_cpu(path->nodes[level], key,
1457 					      path->slots[level] + 1);
1458 		return 0;
1459 	}
1460 	return 1;
1461 }
1462 
1463 /*
1464  * look for inline back ref. if back ref is found, *ref_ret is set
1465  * to the address of inline back ref, and 0 is returned.
1466  *
1467  * if back ref isn't found, *ref_ret is set to the address where it
1468  * should be inserted, and -ENOENT is returned.
1469  *
1470  * if insert is true and there are too many inline back refs, the path
1471  * points to the extent item, and -EAGAIN is returned.
1472  *
1473  * NOTE: inline back refs are ordered in the same way that back ref
1474  *	 items in the tree are ordered.
1475  */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 				 struct btrfs_root *root,
1479 				 struct btrfs_path *path,
1480 				 struct btrfs_extent_inline_ref **ref_ret,
1481 				 u64 bytenr, u64 num_bytes,
1482 				 u64 parent, u64 root_objectid,
1483 				 u64 owner, u64 offset, int insert)
1484 {
1485 	struct btrfs_key key;
1486 	struct extent_buffer *leaf;
1487 	struct btrfs_extent_item *ei;
1488 	struct btrfs_extent_inline_ref *iref;
1489 	u64 flags;
1490 	u64 item_size;
1491 	unsigned long ptr;
1492 	unsigned long end;
1493 	int extra_size;
1494 	int type;
1495 	int want;
1496 	int ret;
1497 	int err = 0;
1498 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 						 SKINNY_METADATA);
1500 
1501 	key.objectid = bytenr;
1502 	key.type = BTRFS_EXTENT_ITEM_KEY;
1503 	key.offset = num_bytes;
1504 
1505 	want = extent_ref_type(parent, owner);
1506 	if (insert) {
1507 		extra_size = btrfs_extent_inline_ref_size(want);
1508 		path->keep_locks = 1;
1509 	} else
1510 		extra_size = -1;
1511 
1512 	/*
1513 	 * Owner is our parent level, so we can just add one to get the level
1514 	 * for the block we are interested in.
1515 	 */
1516 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 		key.type = BTRFS_METADATA_ITEM_KEY;
1518 		key.offset = owner;
1519 	}
1520 
1521 again:
1522 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 	if (ret < 0) {
1524 		err = ret;
1525 		goto out;
1526 	}
1527 
1528 	/*
1529 	 * We may be a newly converted file system which still has the old fat
1530 	 * extent entries for metadata, so try and see if we have one of those.
1531 	 */
1532 	if (ret > 0 && skinny_metadata) {
1533 		skinny_metadata = false;
1534 		if (path->slots[0]) {
1535 			path->slots[0]--;
1536 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 					      path->slots[0]);
1538 			if (key.objectid == bytenr &&
1539 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 			    key.offset == num_bytes)
1541 				ret = 0;
1542 		}
1543 		if (ret) {
1544 			key.type = BTRFS_EXTENT_ITEM_KEY;
1545 			key.offset = num_bytes;
1546 			btrfs_release_path(path);
1547 			goto again;
1548 		}
1549 	}
1550 
1551 	if (ret && !insert) {
1552 		err = -ENOENT;
1553 		goto out;
1554 	} else if (ret) {
1555 		err = -EIO;
1556 		WARN_ON(1);
1557 		goto out;
1558 	}
1559 
1560 	leaf = path->nodes[0];
1561 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 	if (item_size < sizeof(*ei)) {
1564 		if (!insert) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		ret = convert_extent_item_v0(trans, root, path, owner,
1569 					     extra_size);
1570 		if (ret < 0) {
1571 			err = ret;
1572 			goto out;
1573 		}
1574 		leaf = path->nodes[0];
1575 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 	}
1577 #endif
1578 	BUG_ON(item_size < sizeof(*ei));
1579 
1580 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 	flags = btrfs_extent_flags(leaf, ei);
1582 
1583 	ptr = (unsigned long)(ei + 1);
1584 	end = (unsigned long)ei + item_size;
1585 
1586 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 		ptr += sizeof(struct btrfs_tree_block_info);
1588 		BUG_ON(ptr > end);
1589 	}
1590 
1591 	err = -ENOENT;
1592 	while (1) {
1593 		if (ptr >= end) {
1594 			WARN_ON(ptr > end);
1595 			break;
1596 		}
1597 		iref = (struct btrfs_extent_inline_ref *)ptr;
1598 		type = btrfs_extent_inline_ref_type(leaf, iref);
1599 		if (want < type)
1600 			break;
1601 		if (want > type) {
1602 			ptr += btrfs_extent_inline_ref_size(type);
1603 			continue;
1604 		}
1605 
1606 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 			struct btrfs_extent_data_ref *dref;
1608 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 			if (match_extent_data_ref(leaf, dref, root_objectid,
1610 						  owner, offset)) {
1611 				err = 0;
1612 				break;
1613 			}
1614 			if (hash_extent_data_ref_item(leaf, dref) <
1615 			    hash_extent_data_ref(root_objectid, owner, offset))
1616 				break;
1617 		} else {
1618 			u64 ref_offset;
1619 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 			if (parent > 0) {
1621 				if (parent == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < parent)
1626 					break;
1627 			} else {
1628 				if (root_objectid == ref_offset) {
1629 					err = 0;
1630 					break;
1631 				}
1632 				if (ref_offset < root_objectid)
1633 					break;
1634 			}
1635 		}
1636 		ptr += btrfs_extent_inline_ref_size(type);
1637 	}
1638 	if (err == -ENOENT && insert) {
1639 		if (item_size + extra_size >=
1640 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 			err = -EAGAIN;
1642 			goto out;
1643 		}
1644 		/*
1645 		 * To add new inline back ref, we have to make sure
1646 		 * there is no corresponding back ref item.
1647 		 * For simplicity, we just do not add new inline back
1648 		 * ref if there is any kind of item for this block
1649 		 */
1650 		if (find_next_key(path, 0, &key) == 0 &&
1651 		    key.objectid == bytenr &&
1652 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 			err = -EAGAIN;
1654 			goto out;
1655 		}
1656 	}
1657 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 	if (insert) {
1660 		path->keep_locks = 0;
1661 		btrfs_unlock_up_safe(path, 1);
1662 	}
1663 	return err;
1664 }
1665 
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 				 struct btrfs_path *path,
1672 				 struct btrfs_extent_inline_ref *iref,
1673 				 u64 parent, u64 root_objectid,
1674 				 u64 owner, u64 offset, int refs_to_add,
1675 				 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_extent_item *ei;
1679 	unsigned long ptr;
1680 	unsigned long end;
1681 	unsigned long item_offset;
1682 	u64 refs;
1683 	int size;
1684 	int type;
1685 
1686 	leaf = path->nodes[0];
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	item_offset = (unsigned long)iref - (unsigned long)ei;
1689 
1690 	type = extent_ref_type(parent, owner);
1691 	size = btrfs_extent_inline_ref_size(type);
1692 
1693 	btrfs_extend_item(root, path, size);
1694 
1695 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 	refs = btrfs_extent_refs(leaf, ei);
1697 	refs += refs_to_add;
1698 	btrfs_set_extent_refs(leaf, ei, refs);
1699 	if (extent_op)
1700 		__run_delayed_extent_op(extent_op, leaf, ei);
1701 
1702 	ptr = (unsigned long)ei + item_offset;
1703 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 	if (ptr < end - size)
1705 		memmove_extent_buffer(leaf, ptr + size, ptr,
1706 				      end - size - ptr);
1707 
1708 	iref = (struct btrfs_extent_inline_ref *)ptr;
1709 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 		struct btrfs_extent_data_ref *dref;
1712 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 		struct btrfs_shared_data_ref *sref;
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 	} else {
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 	}
1727 	btrfs_mark_buffer_dirty(leaf);
1728 }
1729 
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 				 struct btrfs_root *root,
1732 				 struct btrfs_path *path,
1733 				 struct btrfs_extent_inline_ref **ref_ret,
1734 				 u64 bytenr, u64 num_bytes, u64 parent,
1735 				 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 	int ret;
1738 
1739 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 					   bytenr, num_bytes, parent,
1741 					   root_objectid, owner, offset, 0);
1742 	if (ret != -ENOENT)
1743 		return ret;
1744 
1745 	btrfs_release_path(path);
1746 	*ref_ret = NULL;
1747 
1748 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 					    root_objectid);
1751 	} else {
1752 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 					     root_objectid, owner, offset);
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 				  struct btrfs_path *path,
1764 				  struct btrfs_extent_inline_ref *iref,
1765 				  int refs_to_mod,
1766 				  struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 	struct extent_buffer *leaf;
1769 	struct btrfs_extent_item *ei;
1770 	struct btrfs_extent_data_ref *dref = NULL;
1771 	struct btrfs_shared_data_ref *sref = NULL;
1772 	unsigned long ptr;
1773 	unsigned long end;
1774 	u32 item_size;
1775 	int size;
1776 	int type;
1777 	u64 refs;
1778 
1779 	leaf = path->nodes[0];
1780 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 	refs = btrfs_extent_refs(leaf, ei);
1782 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 	refs += refs_to_mod;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	type = btrfs_extent_inline_ref_type(leaf, iref);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		size =  btrfs_extent_inline_ref_size(type);
1811 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 		ptr = (unsigned long)iref;
1813 		end = (unsigned long)ei + item_size;
1814 		if (ptr + size < end)
1815 			memmove_extent_buffer(leaf, ptr, ptr + size,
1816 					      end - ptr - size);
1817 		item_size -= size;
1818 		btrfs_truncate_item(root, path, item_size, 1);
1819 	}
1820 	btrfs_mark_buffer_dirty(leaf);
1821 }
1822 
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 				 struct btrfs_root *root,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 					   bytenr, num_bytes, parent,
1837 					   root_objectid, owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(root, path, iref,
1841 					     refs_to_add, extent_op);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(root, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_root *root,
1853 				 struct btrfs_path *path,
1854 				 u64 bytenr, u64 parent, u64 root_objectid,
1855 				 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 	int ret;
1858 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 		BUG_ON(refs_to_add != 1);
1860 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 					    parent, root_objectid);
1862 	} else {
1863 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 					     parent, root_objectid,
1865 					     owner, offset, refs_to_add);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 				 struct btrfs_root *root,
1872 				 struct btrfs_path *path,
1873 				 struct btrfs_extent_inline_ref *iref,
1874 				 int refs_to_drop, int is_data)
1875 {
1876 	int ret = 0;
1877 
1878 	BUG_ON(!is_data && refs_to_drop != 1);
1879 	if (iref) {
1880 		update_inline_extent_backref(root, path, iref,
1881 					     -refs_to_drop, NULL);
1882 	} else if (is_data) {
1883 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 	} else {
1885 		ret = btrfs_del_item(trans, root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 				u64 start, u64 len)
1892 {
1893 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895 
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 				u64 num_bytes, u64 *actual_bytes)
1898 {
1899 	int ret;
1900 	u64 discarded_bytes = 0;
1901 	struct btrfs_bio *bbio = NULL;
1902 
1903 
1904 	/* Tell the block device(s) that the sectors can be discarded */
1905 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 			      bytenr, &num_bytes, &bbio, 0);
1907 	/* Error condition is -ENOMEM */
1908 	if (!ret) {
1909 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 		int i;
1911 
1912 
1913 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 			if (!stripe->dev->can_discard)
1915 				continue;
1916 
1917 			ret = btrfs_issue_discard(stripe->dev->bdev,
1918 						  stripe->physical,
1919 						  stripe->length);
1920 			if (!ret)
1921 				discarded_bytes += stripe->length;
1922 			else if (ret != -EOPNOTSUPP)
1923 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 
1925 			/*
1926 			 * Just in case we get back EOPNOTSUPP for some reason,
1927 			 * just ignore the return value so we don't screw up
1928 			 * people calling discard_extent.
1929 			 */
1930 			ret = 0;
1931 		}
1932 		kfree(bbio);
1933 	}
1934 
1935 	if (actual_bytes)
1936 		*actual_bytes = discarded_bytes;
1937 
1938 
1939 	if (ret == -EOPNOTSUPP)
1940 		ret = 0;
1941 	return ret;
1942 }
1943 
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 			 struct btrfs_root *root,
1947 			 u64 bytenr, u64 num_bytes, u64 parent,
1948 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 	int ret;
1951 	struct btrfs_fs_info *fs_info = root->fs_info;
1952 
1953 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955 
1956 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 					num_bytes,
1959 					parent, root_objectid, (int)owner,
1960 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 	} else {
1962 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 					num_bytes,
1964 					parent, root_objectid, owner, offset,
1965 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 				  struct btrfs_root *root,
1972 				  u64 bytenr, u64 num_bytes,
1973 				  u64 parent, u64 root_objectid,
1974 				  u64 owner, u64 offset, int refs_to_add,
1975 				  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	u64 refs;
1981 	int ret;
1982 	int err = 0;
1983 
1984 	path = btrfs_alloc_path();
1985 	if (!path)
1986 		return -ENOMEM;
1987 
1988 	path->reada = 1;
1989 	path->leave_spinning = 1;
1990 	/* this will setup the path even if it fails to insert the back ref */
1991 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 					   path, bytenr, num_bytes, parent,
1993 					   root_objectid, owner, offset,
1994 					   refs_to_add, extent_op);
1995 	if (ret == 0)
1996 		goto out;
1997 
1998 	if (ret != -EAGAIN) {
1999 		err = ret;
2000 		goto out;
2001 	}
2002 
2003 	leaf = path->nodes[0];
2004 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 	refs = btrfs_extent_refs(leaf, item);
2006 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 	if (extent_op)
2008 		__run_delayed_extent_op(extent_op, leaf, item);
2009 
2010 	btrfs_mark_buffer_dirty(leaf);
2011 	btrfs_release_path(path);
2012 
2013 	path->reada = 1;
2014 	path->leave_spinning = 1;
2015 
2016 	/* now insert the actual backref */
2017 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 				    path, bytenr, parent, root_objectid,
2019 				    owner, offset, refs_to_add);
2020 	if (ret)
2021 		btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 	btrfs_free_path(path);
2024 	return err;
2025 }
2026 
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 				struct btrfs_root *root,
2029 				struct btrfs_delayed_ref_node *node,
2030 				struct btrfs_delayed_extent_op *extent_op,
2031 				int insert_reserved)
2032 {
2033 	int ret = 0;
2034 	struct btrfs_delayed_data_ref *ref;
2035 	struct btrfs_key ins;
2036 	u64 parent = 0;
2037 	u64 ref_root = 0;
2038 	u64 flags = 0;
2039 
2040 	ins.objectid = node->bytenr;
2041 	ins.offset = node->num_bytes;
2042 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2043 
2044 	ref = btrfs_delayed_node_to_data_ref(node);
2045 	trace_run_delayed_data_ref(node, ref, node->action);
2046 
2047 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 		parent = ref->parent;
2049 	else
2050 		ref_root = ref->root;
2051 
2052 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 		if (extent_op)
2054 			flags |= extent_op->flags_to_set;
2055 		ret = alloc_reserved_file_extent(trans, root,
2056 						 parent, ref_root, flags,
2057 						 ref->objectid, ref->offset,
2058 						 &ins, node->ref_mod);
2059 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 					     node->num_bytes, parent,
2062 					     ref_root, ref->objectid,
2063 					     ref->offset, node->ref_mod,
2064 					     extent_op);
2065 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 					  node->num_bytes, parent,
2068 					  ref_root, ref->objectid,
2069 					  ref->offset, node->ref_mod,
2070 					  extent_op);
2071 	} else {
2072 		BUG();
2073 	}
2074 	return ret;
2075 }
2076 
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 				    struct extent_buffer *leaf,
2079 				    struct btrfs_extent_item *ei)
2080 {
2081 	u64 flags = btrfs_extent_flags(leaf, ei);
2082 	if (extent_op->update_flags) {
2083 		flags |= extent_op->flags_to_set;
2084 		btrfs_set_extent_flags(leaf, ei, flags);
2085 	}
2086 
2087 	if (extent_op->update_key) {
2088 		struct btrfs_tree_block_info *bi;
2089 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 	}
2093 }
2094 
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 				 struct btrfs_root *root,
2097 				 struct btrfs_delayed_ref_node *node,
2098 				 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 	struct btrfs_key key;
2101 	struct btrfs_path *path;
2102 	struct btrfs_extent_item *ei;
2103 	struct extent_buffer *leaf;
2104 	u32 item_size;
2105 	int ret;
2106 	int err = 0;
2107 	int metadata = !extent_op->is_data;
2108 
2109 	if (trans->aborted)
2110 		return 0;
2111 
2112 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 		metadata = 0;
2114 
2115 	path = btrfs_alloc_path();
2116 	if (!path)
2117 		return -ENOMEM;
2118 
2119 	key.objectid = node->bytenr;
2120 
2121 	if (metadata) {
2122 		key.type = BTRFS_METADATA_ITEM_KEY;
2123 		key.offset = extent_op->level;
2124 	} else {
2125 		key.type = BTRFS_EXTENT_ITEM_KEY;
2126 		key.offset = node->num_bytes;
2127 	}
2128 
2129 again:
2130 	path->reada = 1;
2131 	path->leave_spinning = 1;
2132 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 				path, 0, 1);
2134 	if (ret < 0) {
2135 		err = ret;
2136 		goto out;
2137 	}
2138 	if (ret > 0) {
2139 		if (metadata) {
2140 			btrfs_release_path(path);
2141 			metadata = 0;
2142 
2143 			key.offset = node->num_bytes;
2144 			key.type = BTRFS_EXTENT_ITEM_KEY;
2145 			goto again;
2146 		}
2147 		err = -EIO;
2148 		goto out;
2149 	}
2150 
2151 	leaf = path->nodes[0];
2152 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 	if (item_size < sizeof(*ei)) {
2155 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 					     path, (u64)-1, 0);
2157 		if (ret < 0) {
2158 			err = ret;
2159 			goto out;
2160 		}
2161 		leaf = path->nodes[0];
2162 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 	}
2164 #endif
2165 	BUG_ON(item_size < sizeof(*ei));
2166 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 	__run_delayed_extent_op(extent_op, leaf, ei);
2168 
2169 	btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 	btrfs_free_path(path);
2172 	return err;
2173 }
2174 
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 				struct btrfs_root *root,
2177 				struct btrfs_delayed_ref_node *node,
2178 				struct btrfs_delayed_extent_op *extent_op,
2179 				int insert_reserved)
2180 {
2181 	int ret = 0;
2182 	struct btrfs_delayed_tree_ref *ref;
2183 	struct btrfs_key ins;
2184 	u64 parent = 0;
2185 	u64 ref_root = 0;
2186 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 						 SKINNY_METADATA);
2188 
2189 	ref = btrfs_delayed_node_to_tree_ref(node);
2190 	trace_run_delayed_tree_ref(node, ref, node->action);
2191 
2192 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 		parent = ref->parent;
2194 	else
2195 		ref_root = ref->root;
2196 
2197 	ins.objectid = node->bytenr;
2198 	if (skinny_metadata) {
2199 		ins.offset = ref->level;
2200 		ins.type = BTRFS_METADATA_ITEM_KEY;
2201 	} else {
2202 		ins.offset = node->num_bytes;
2203 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 	}
2205 
2206 	BUG_ON(node->ref_mod != 1);
2207 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 		BUG_ON(!extent_op || !extent_op->update_flags);
2209 		ret = alloc_reserved_tree_block(trans, root,
2210 						parent, ref_root,
2211 						extent_op->flags_to_set,
2212 						&extent_op->key,
2213 						ref->level, &ins);
2214 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 					     node->num_bytes, parent, ref_root,
2217 					     ref->level, 0, 1, extent_op);
2218 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 					  node->num_bytes, parent, ref_root,
2221 					  ref->level, 0, 1, extent_op);
2222 	} else {
2223 		BUG();
2224 	}
2225 	return ret;
2226 }
2227 
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 			       struct btrfs_root *root,
2231 			       struct btrfs_delayed_ref_node *node,
2232 			       struct btrfs_delayed_extent_op *extent_op,
2233 			       int insert_reserved)
2234 {
2235 	int ret = 0;
2236 
2237 	if (trans->aborted)
2238 		return 0;
2239 
2240 	if (btrfs_delayed_ref_is_head(node)) {
2241 		struct btrfs_delayed_ref_head *head;
2242 		/*
2243 		 * we've hit the end of the chain and we were supposed
2244 		 * to insert this extent into the tree.  But, it got
2245 		 * deleted before we ever needed to insert it, so all
2246 		 * we have to do is clean up the accounting
2247 		 */
2248 		BUG_ON(extent_op);
2249 		head = btrfs_delayed_node_to_head(node);
2250 		trace_run_delayed_ref_head(node, head, node->action);
2251 
2252 		if (insert_reserved) {
2253 			btrfs_pin_extent(root, node->bytenr,
2254 					 node->num_bytes, 1);
2255 			if (head->is_data) {
2256 				ret = btrfs_del_csums(trans, root,
2257 						      node->bytenr,
2258 						      node->num_bytes);
2259 			}
2260 		}
2261 		return ret;
2262 	}
2263 
2264 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 					   insert_reserved);
2268 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 					   insert_reserved);
2272 	else
2273 		BUG();
2274 	return ret;
2275 }
2276 
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 	struct rb_node *node;
2281 	struct btrfs_delayed_ref_node *ref;
2282 	int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 	/*
2285 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 	 * this prevents ref count from going down to zero when
2287 	 * there still are pending delayed ref.
2288 	 */
2289 	node = rb_prev(&head->node.rb_node);
2290 	while (1) {
2291 		if (!node)
2292 			break;
2293 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 				rb_node);
2295 		if (ref->bytenr != head->node.bytenr)
2296 			break;
2297 		if (ref->action == action)
2298 			return ref;
2299 		node = rb_prev(node);
2300 	}
2301 	if (action == BTRFS_ADD_DELAYED_REF) {
2302 		action = BTRFS_DROP_DELAYED_REF;
2303 		goto again;
2304 	}
2305 	return NULL;
2306 }
2307 
2308 /*
2309  * Returns 0 on success or if called with an already aborted transaction.
2310  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311  */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 				       struct btrfs_root *root,
2314 				       struct list_head *cluster)
2315 {
2316 	struct btrfs_delayed_ref_root *delayed_refs;
2317 	struct btrfs_delayed_ref_node *ref;
2318 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 	struct btrfs_delayed_extent_op *extent_op;
2320 	struct btrfs_fs_info *fs_info = root->fs_info;
2321 	int ret;
2322 	int count = 0;
2323 	int must_insert_reserved = 0;
2324 
2325 	delayed_refs = &trans->transaction->delayed_refs;
2326 	while (1) {
2327 		if (!locked_ref) {
2328 			/* pick a new head ref from the cluster list */
2329 			if (list_empty(cluster))
2330 				break;
2331 
2332 			locked_ref = list_entry(cluster->next,
2333 				     struct btrfs_delayed_ref_head, cluster);
2334 
2335 			/* grab the lock that says we are going to process
2336 			 * all the refs for this head */
2337 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338 
2339 			/*
2340 			 * we may have dropped the spin lock to get the head
2341 			 * mutex lock, and that might have given someone else
2342 			 * time to free the head.  If that's true, it has been
2343 			 * removed from our list and we can move on.
2344 			 */
2345 			if (ret == -EAGAIN) {
2346 				locked_ref = NULL;
2347 				count++;
2348 				continue;
2349 			}
2350 		}
2351 
2352 		/*
2353 		 * We need to try and merge add/drops of the same ref since we
2354 		 * can run into issues with relocate dropping the implicit ref
2355 		 * and then it being added back again before the drop can
2356 		 * finish.  If we merged anything we need to re-loop so we can
2357 		 * get a good ref.
2358 		 */
2359 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 					 locked_ref);
2361 
2362 		/*
2363 		 * locked_ref is the head node, so we have to go one
2364 		 * node back for any delayed ref updates
2365 		 */
2366 		ref = select_delayed_ref(locked_ref);
2367 
2368 		if (ref && ref->seq &&
2369 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 			/*
2371 			 * there are still refs with lower seq numbers in the
2372 			 * process of being added. Don't run this ref yet.
2373 			 */
2374 			list_del_init(&locked_ref->cluster);
2375 			btrfs_delayed_ref_unlock(locked_ref);
2376 			locked_ref = NULL;
2377 			delayed_refs->num_heads_ready++;
2378 			spin_unlock(&delayed_refs->lock);
2379 			cond_resched();
2380 			spin_lock(&delayed_refs->lock);
2381 			continue;
2382 		}
2383 
2384 		/*
2385 		 * record the must insert reserved flag before we
2386 		 * drop the spin lock.
2387 		 */
2388 		must_insert_reserved = locked_ref->must_insert_reserved;
2389 		locked_ref->must_insert_reserved = 0;
2390 
2391 		extent_op = locked_ref->extent_op;
2392 		locked_ref->extent_op = NULL;
2393 
2394 		if (!ref) {
2395 			/* All delayed refs have been processed, Go ahead
2396 			 * and send the head node to run_one_delayed_ref,
2397 			 * so that any accounting fixes can happen
2398 			 */
2399 			ref = &locked_ref->node;
2400 
2401 			if (extent_op && must_insert_reserved) {
2402 				btrfs_free_delayed_extent_op(extent_op);
2403 				extent_op = NULL;
2404 			}
2405 
2406 			if (extent_op) {
2407 				spin_unlock(&delayed_refs->lock);
2408 
2409 				ret = run_delayed_extent_op(trans, root,
2410 							    ref, extent_op);
2411 				btrfs_free_delayed_extent_op(extent_op);
2412 
2413 				if (ret) {
2414 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 					spin_lock(&delayed_refs->lock);
2416 					btrfs_delayed_ref_unlock(locked_ref);
2417 					return ret;
2418 				}
2419 
2420 				goto next;
2421 			}
2422 		}
2423 
2424 		ref->in_tree = 0;
2425 		rb_erase(&ref->rb_node, &delayed_refs->root);
2426 		delayed_refs->num_entries--;
2427 		if (!btrfs_delayed_ref_is_head(ref)) {
2428 			/*
2429 			 * when we play the delayed ref, also correct the
2430 			 * ref_mod on head
2431 			 */
2432 			switch (ref->action) {
2433 			case BTRFS_ADD_DELAYED_REF:
2434 			case BTRFS_ADD_DELAYED_EXTENT:
2435 				locked_ref->node.ref_mod -= ref->ref_mod;
2436 				break;
2437 			case BTRFS_DROP_DELAYED_REF:
2438 				locked_ref->node.ref_mod += ref->ref_mod;
2439 				break;
2440 			default:
2441 				WARN_ON(1);
2442 			}
2443 		} else {
2444 			list_del_init(&locked_ref->cluster);
2445 		}
2446 		spin_unlock(&delayed_refs->lock);
2447 
2448 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449 					  must_insert_reserved);
2450 
2451 		btrfs_free_delayed_extent_op(extent_op);
2452 		if (ret) {
2453 			btrfs_delayed_ref_unlock(locked_ref);
2454 			btrfs_put_delayed_ref(ref);
2455 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456 			spin_lock(&delayed_refs->lock);
2457 			return ret;
2458 		}
2459 
2460 		/*
2461 		 * If this node is a head, that means all the refs in this head
2462 		 * have been dealt with, and we will pick the next head to deal
2463 		 * with, so we must unlock the head and drop it from the cluster
2464 		 * list before we release it.
2465 		 */
2466 		if (btrfs_delayed_ref_is_head(ref)) {
2467 			btrfs_delayed_ref_unlock(locked_ref);
2468 			locked_ref = NULL;
2469 		}
2470 		btrfs_put_delayed_ref(ref);
2471 		count++;
2472 next:
2473 		cond_resched();
2474 		spin_lock(&delayed_refs->lock);
2475 	}
2476 	return count;
2477 }
2478 
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 /*
2481  * Normally delayed refs get processed in ascending bytenr order. This
2482  * correlates in most cases to the order added. To expose dependencies on this
2483  * order, we start to process the tree in the middle instead of the beginning
2484  */
2485 static u64 find_middle(struct rb_root *root)
2486 {
2487 	struct rb_node *n = root->rb_node;
2488 	struct btrfs_delayed_ref_node *entry;
2489 	int alt = 1;
2490 	u64 middle;
2491 	u64 first = 0, last = 0;
2492 
2493 	n = rb_first(root);
2494 	if (n) {
2495 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496 		first = entry->bytenr;
2497 	}
2498 	n = rb_last(root);
2499 	if (n) {
2500 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501 		last = entry->bytenr;
2502 	}
2503 	n = root->rb_node;
2504 
2505 	while (n) {
2506 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507 		WARN_ON(!entry->in_tree);
2508 
2509 		middle = entry->bytenr;
2510 
2511 		if (alt)
2512 			n = n->rb_left;
2513 		else
2514 			n = n->rb_right;
2515 
2516 		alt = 1 - alt;
2517 	}
2518 	return middle;
2519 }
2520 #endif
2521 
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523 					 struct btrfs_fs_info *fs_info)
2524 {
2525 	struct qgroup_update *qgroup_update;
2526 	int ret = 0;
2527 
2528 	if (list_empty(&trans->qgroup_ref_list) !=
2529 	    !trans->delayed_ref_elem.seq) {
2530 		/* list without seq or seq without list */
2531 		btrfs_err(fs_info,
2532 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534 			(u32)(trans->delayed_ref_elem.seq >> 32),
2535 			(u32)trans->delayed_ref_elem.seq);
2536 		BUG();
2537 	}
2538 
2539 	if (!trans->delayed_ref_elem.seq)
2540 		return 0;
2541 
2542 	while (!list_empty(&trans->qgroup_ref_list)) {
2543 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544 						 struct qgroup_update, list);
2545 		list_del(&qgroup_update->list);
2546 		if (!ret)
2547 			ret = btrfs_qgroup_account_ref(
2548 					trans, fs_info, qgroup_update->node,
2549 					qgroup_update->extent_op);
2550 		kfree(qgroup_update);
2551 	}
2552 
2553 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554 
2555 	return ret;
2556 }
2557 
2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559 		      int count)
2560 {
2561 	int val = atomic_read(&delayed_refs->ref_seq);
2562 
2563 	if (val < seq || val >= seq + count)
2564 		return 1;
2565 	return 0;
2566 }
2567 
2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569 {
2570 	u64 num_bytes;
2571 
2572 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573 			     sizeof(struct btrfs_extent_inline_ref));
2574 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576 
2577 	/*
2578 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2579 	 * closer to what we're really going to want to ouse.
2580 	 */
2581 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582 }
2583 
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585 				       struct btrfs_root *root)
2586 {
2587 	struct btrfs_block_rsv *global_rsv;
2588 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589 	u64 num_bytes;
2590 	int ret = 0;
2591 
2592 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593 	num_heads = heads_to_leaves(root, num_heads);
2594 	if (num_heads > 1)
2595 		num_bytes += (num_heads - 1) * root->leafsize;
2596 	num_bytes <<= 1;
2597 	global_rsv = &root->fs_info->global_block_rsv;
2598 
2599 	/*
2600 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2601 	 * wiggle room since running delayed refs can create more delayed refs.
2602 	 */
2603 	if (global_rsv->space_info->full)
2604 		num_bytes <<= 1;
2605 
2606 	spin_lock(&global_rsv->lock);
2607 	if (global_rsv->reserved <= num_bytes)
2608 		ret = 1;
2609 	spin_unlock(&global_rsv->lock);
2610 	return ret;
2611 }
2612 
2613 /*
2614  * this starts processing the delayed reference count updates and
2615  * extent insertions we have queued up so far.  count can be
2616  * 0, which means to process everything in the tree at the start
2617  * of the run (but not newly added entries), or it can be some target
2618  * number you'd like to process.
2619  *
2620  * Returns 0 on success or if called with an aborted transaction
2621  * Returns <0 on error and aborts the transaction
2622  */
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624 			   struct btrfs_root *root, unsigned long count)
2625 {
2626 	struct rb_node *node;
2627 	struct btrfs_delayed_ref_root *delayed_refs;
2628 	struct btrfs_delayed_ref_node *ref;
2629 	struct list_head cluster;
2630 	int ret;
2631 	u64 delayed_start;
2632 	int run_all = count == (unsigned long)-1;
2633 	int run_most = 0;
2634 	int loops;
2635 
2636 	/* We'll clean this up in btrfs_cleanup_transaction */
2637 	if (trans->aborted)
2638 		return 0;
2639 
2640 	if (root == root->fs_info->extent_root)
2641 		root = root->fs_info->tree_root;
2642 
2643 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644 
2645 	delayed_refs = &trans->transaction->delayed_refs;
2646 	INIT_LIST_HEAD(&cluster);
2647 	if (count == 0) {
2648 		count = delayed_refs->num_entries * 2;
2649 		run_most = 1;
2650 	}
2651 
2652 	if (!run_all && !run_most) {
2653 		int old;
2654 		int seq = atomic_read(&delayed_refs->ref_seq);
2655 
2656 progress:
2657 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658 		if (old) {
2659 			DEFINE_WAIT(__wait);
2660 			if (delayed_refs->flushing ||
2661 			    !btrfs_should_throttle_delayed_refs(trans, root))
2662 				return 0;
2663 
2664 			prepare_to_wait(&delayed_refs->wait, &__wait,
2665 					TASK_UNINTERRUPTIBLE);
2666 
2667 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668 			if (old) {
2669 				schedule();
2670 				finish_wait(&delayed_refs->wait, &__wait);
2671 
2672 				if (!refs_newer(delayed_refs, seq, 256))
2673 					goto progress;
2674 				else
2675 					return 0;
2676 			} else {
2677 				finish_wait(&delayed_refs->wait, &__wait);
2678 				goto again;
2679 			}
2680 		}
2681 
2682 	} else {
2683 		atomic_inc(&delayed_refs->procs_running_refs);
2684 	}
2685 
2686 again:
2687 	loops = 0;
2688 	spin_lock(&delayed_refs->lock);
2689 
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692 #endif
2693 
2694 	while (1) {
2695 		if (!(run_all || run_most) &&
2696 		    !btrfs_should_throttle_delayed_refs(trans, root))
2697 			break;
2698 
2699 		/*
2700 		 * go find something we can process in the rbtree.  We start at
2701 		 * the beginning of the tree, and then build a cluster
2702 		 * of refs to process starting at the first one we are able to
2703 		 * lock
2704 		 */
2705 		delayed_start = delayed_refs->run_delayed_start;
2706 		ret = btrfs_find_ref_cluster(trans, &cluster,
2707 					     delayed_refs->run_delayed_start);
2708 		if (ret)
2709 			break;
2710 
2711 		ret = run_clustered_refs(trans, root, &cluster);
2712 		if (ret < 0) {
2713 			btrfs_release_ref_cluster(&cluster);
2714 			spin_unlock(&delayed_refs->lock);
2715 			btrfs_abort_transaction(trans, root, ret);
2716 			atomic_dec(&delayed_refs->procs_running_refs);
2717 			wake_up(&delayed_refs->wait);
2718 			return ret;
2719 		}
2720 
2721 		atomic_add(ret, &delayed_refs->ref_seq);
2722 
2723 		count -= min_t(unsigned long, ret, count);
2724 
2725 		if (count == 0)
2726 			break;
2727 
2728 		if (delayed_start >= delayed_refs->run_delayed_start) {
2729 			if (loops == 0) {
2730 				/*
2731 				 * btrfs_find_ref_cluster looped. let's do one
2732 				 * more cycle. if we don't run any delayed ref
2733 				 * during that cycle (because we can't because
2734 				 * all of them are blocked), bail out.
2735 				 */
2736 				loops = 1;
2737 			} else {
2738 				/*
2739 				 * no runnable refs left, stop trying
2740 				 */
2741 				BUG_ON(run_all);
2742 				break;
2743 			}
2744 		}
2745 		if (ret) {
2746 			/* refs were run, let's reset staleness detection */
2747 			loops = 0;
2748 		}
2749 	}
2750 
2751 	if (run_all) {
2752 		if (!list_empty(&trans->new_bgs)) {
2753 			spin_unlock(&delayed_refs->lock);
2754 			btrfs_create_pending_block_groups(trans, root);
2755 			spin_lock(&delayed_refs->lock);
2756 		}
2757 
2758 		node = rb_first(&delayed_refs->root);
2759 		if (!node)
2760 			goto out;
2761 		count = (unsigned long)-1;
2762 
2763 		while (node) {
2764 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765 				       rb_node);
2766 			if (btrfs_delayed_ref_is_head(ref)) {
2767 				struct btrfs_delayed_ref_head *head;
2768 
2769 				head = btrfs_delayed_node_to_head(ref);
2770 				atomic_inc(&ref->refs);
2771 
2772 				spin_unlock(&delayed_refs->lock);
2773 				/*
2774 				 * Mutex was contended, block until it's
2775 				 * released and try again
2776 				 */
2777 				mutex_lock(&head->mutex);
2778 				mutex_unlock(&head->mutex);
2779 
2780 				btrfs_put_delayed_ref(ref);
2781 				cond_resched();
2782 				goto again;
2783 			}
2784 			node = rb_next(node);
2785 		}
2786 		spin_unlock(&delayed_refs->lock);
2787 		schedule_timeout(1);
2788 		goto again;
2789 	}
2790 out:
2791 	atomic_dec(&delayed_refs->procs_running_refs);
2792 	smp_mb();
2793 	if (waitqueue_active(&delayed_refs->wait))
2794 		wake_up(&delayed_refs->wait);
2795 
2796 	spin_unlock(&delayed_refs->lock);
2797 	assert_qgroups_uptodate(trans);
2798 	return 0;
2799 }
2800 
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802 				struct btrfs_root *root,
2803 				u64 bytenr, u64 num_bytes, u64 flags,
2804 				int level, int is_data)
2805 {
2806 	struct btrfs_delayed_extent_op *extent_op;
2807 	int ret;
2808 
2809 	extent_op = btrfs_alloc_delayed_extent_op();
2810 	if (!extent_op)
2811 		return -ENOMEM;
2812 
2813 	extent_op->flags_to_set = flags;
2814 	extent_op->update_flags = 1;
2815 	extent_op->update_key = 0;
2816 	extent_op->is_data = is_data ? 1 : 0;
2817 	extent_op->level = level;
2818 
2819 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820 					  num_bytes, extent_op);
2821 	if (ret)
2822 		btrfs_free_delayed_extent_op(extent_op);
2823 	return ret;
2824 }
2825 
2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827 				      struct btrfs_root *root,
2828 				      struct btrfs_path *path,
2829 				      u64 objectid, u64 offset, u64 bytenr)
2830 {
2831 	struct btrfs_delayed_ref_head *head;
2832 	struct btrfs_delayed_ref_node *ref;
2833 	struct btrfs_delayed_data_ref *data_ref;
2834 	struct btrfs_delayed_ref_root *delayed_refs;
2835 	struct rb_node *node;
2836 	int ret = 0;
2837 
2838 	ret = -ENOENT;
2839 	delayed_refs = &trans->transaction->delayed_refs;
2840 	spin_lock(&delayed_refs->lock);
2841 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2842 	if (!head)
2843 		goto out;
2844 
2845 	if (!mutex_trylock(&head->mutex)) {
2846 		atomic_inc(&head->node.refs);
2847 		spin_unlock(&delayed_refs->lock);
2848 
2849 		btrfs_release_path(path);
2850 
2851 		/*
2852 		 * Mutex was contended, block until it's released and let
2853 		 * caller try again
2854 		 */
2855 		mutex_lock(&head->mutex);
2856 		mutex_unlock(&head->mutex);
2857 		btrfs_put_delayed_ref(&head->node);
2858 		return -EAGAIN;
2859 	}
2860 
2861 	node = rb_prev(&head->node.rb_node);
2862 	if (!node)
2863 		goto out_unlock;
2864 
2865 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866 
2867 	if (ref->bytenr != bytenr)
2868 		goto out_unlock;
2869 
2870 	ret = 1;
2871 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872 		goto out_unlock;
2873 
2874 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2875 
2876 	node = rb_prev(node);
2877 	if (node) {
2878 		int seq = ref->seq;
2879 
2880 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881 		if (ref->bytenr == bytenr && ref->seq == seq)
2882 			goto out_unlock;
2883 	}
2884 
2885 	if (data_ref->root != root->root_key.objectid ||
2886 	    data_ref->objectid != objectid || data_ref->offset != offset)
2887 		goto out_unlock;
2888 
2889 	ret = 0;
2890 out_unlock:
2891 	mutex_unlock(&head->mutex);
2892 out:
2893 	spin_unlock(&delayed_refs->lock);
2894 	return ret;
2895 }
2896 
2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898 					struct btrfs_root *root,
2899 					struct btrfs_path *path,
2900 					u64 objectid, u64 offset, u64 bytenr)
2901 {
2902 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2903 	struct extent_buffer *leaf;
2904 	struct btrfs_extent_data_ref *ref;
2905 	struct btrfs_extent_inline_ref *iref;
2906 	struct btrfs_extent_item *ei;
2907 	struct btrfs_key key;
2908 	u32 item_size;
2909 	int ret;
2910 
2911 	key.objectid = bytenr;
2912 	key.offset = (u64)-1;
2913 	key.type = BTRFS_EXTENT_ITEM_KEY;
2914 
2915 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916 	if (ret < 0)
2917 		goto out;
2918 	BUG_ON(ret == 0); /* Corruption */
2919 
2920 	ret = -ENOENT;
2921 	if (path->slots[0] == 0)
2922 		goto out;
2923 
2924 	path->slots[0]--;
2925 	leaf = path->nodes[0];
2926 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927 
2928 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929 		goto out;
2930 
2931 	ret = 1;
2932 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934 	if (item_size < sizeof(*ei)) {
2935 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936 		goto out;
2937 	}
2938 #endif
2939 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940 
2941 	if (item_size != sizeof(*ei) +
2942 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943 		goto out;
2944 
2945 	if (btrfs_extent_generation(leaf, ei) <=
2946 	    btrfs_root_last_snapshot(&root->root_item))
2947 		goto out;
2948 
2949 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951 	    BTRFS_EXTENT_DATA_REF_KEY)
2952 		goto out;
2953 
2954 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955 	if (btrfs_extent_refs(leaf, ei) !=
2956 	    btrfs_extent_data_ref_count(leaf, ref) ||
2957 	    btrfs_extent_data_ref_root(leaf, ref) !=
2958 	    root->root_key.objectid ||
2959 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961 		goto out;
2962 
2963 	ret = 0;
2964 out:
2965 	return ret;
2966 }
2967 
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969 			  struct btrfs_root *root,
2970 			  u64 objectid, u64 offset, u64 bytenr)
2971 {
2972 	struct btrfs_path *path;
2973 	int ret;
2974 	int ret2;
2975 
2976 	path = btrfs_alloc_path();
2977 	if (!path)
2978 		return -ENOENT;
2979 
2980 	do {
2981 		ret = check_committed_ref(trans, root, path, objectid,
2982 					  offset, bytenr);
2983 		if (ret && ret != -ENOENT)
2984 			goto out;
2985 
2986 		ret2 = check_delayed_ref(trans, root, path, objectid,
2987 					 offset, bytenr);
2988 	} while (ret2 == -EAGAIN);
2989 
2990 	if (ret2 && ret2 != -ENOENT) {
2991 		ret = ret2;
2992 		goto out;
2993 	}
2994 
2995 	if (ret != -ENOENT || ret2 != -ENOENT)
2996 		ret = 0;
2997 out:
2998 	btrfs_free_path(path);
2999 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000 		WARN_ON(ret > 0);
3001 	return ret;
3002 }
3003 
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005 			   struct btrfs_root *root,
3006 			   struct extent_buffer *buf,
3007 			   int full_backref, int inc, int for_cow)
3008 {
3009 	u64 bytenr;
3010 	u64 num_bytes;
3011 	u64 parent;
3012 	u64 ref_root;
3013 	u32 nritems;
3014 	struct btrfs_key key;
3015 	struct btrfs_file_extent_item *fi;
3016 	int i;
3017 	int level;
3018 	int ret = 0;
3019 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020 			    u64, u64, u64, u64, u64, u64, int);
3021 
3022 	ref_root = btrfs_header_owner(buf);
3023 	nritems = btrfs_header_nritems(buf);
3024 	level = btrfs_header_level(buf);
3025 
3026 	if (!root->ref_cows && level == 0)
3027 		return 0;
3028 
3029 	if (inc)
3030 		process_func = btrfs_inc_extent_ref;
3031 	else
3032 		process_func = btrfs_free_extent;
3033 
3034 	if (full_backref)
3035 		parent = buf->start;
3036 	else
3037 		parent = 0;
3038 
3039 	for (i = 0; i < nritems; i++) {
3040 		if (level == 0) {
3041 			btrfs_item_key_to_cpu(buf, &key, i);
3042 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043 				continue;
3044 			fi = btrfs_item_ptr(buf, i,
3045 					    struct btrfs_file_extent_item);
3046 			if (btrfs_file_extent_type(buf, fi) ==
3047 			    BTRFS_FILE_EXTENT_INLINE)
3048 				continue;
3049 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050 			if (bytenr == 0)
3051 				continue;
3052 
3053 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054 			key.offset -= btrfs_file_extent_offset(buf, fi);
3055 			ret = process_func(trans, root, bytenr, num_bytes,
3056 					   parent, ref_root, key.objectid,
3057 					   key.offset, for_cow);
3058 			if (ret)
3059 				goto fail;
3060 		} else {
3061 			bytenr = btrfs_node_blockptr(buf, i);
3062 			num_bytes = btrfs_level_size(root, level - 1);
3063 			ret = process_func(trans, root, bytenr, num_bytes,
3064 					   parent, ref_root, level - 1, 0,
3065 					   for_cow);
3066 			if (ret)
3067 				goto fail;
3068 		}
3069 	}
3070 	return 0;
3071 fail:
3072 	return ret;
3073 }
3074 
3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076 		  struct extent_buffer *buf, int full_backref, int for_cow)
3077 {
3078 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079 }
3080 
3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082 		  struct extent_buffer *buf, int full_backref, int for_cow)
3083 {
3084 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085 }
3086 
3087 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088 				 struct btrfs_root *root,
3089 				 struct btrfs_path *path,
3090 				 struct btrfs_block_group_cache *cache)
3091 {
3092 	int ret;
3093 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3094 	unsigned long bi;
3095 	struct extent_buffer *leaf;
3096 
3097 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098 	if (ret < 0)
3099 		goto fail;
3100 	BUG_ON(ret); /* Corruption */
3101 
3102 	leaf = path->nodes[0];
3103 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105 	btrfs_mark_buffer_dirty(leaf);
3106 	btrfs_release_path(path);
3107 fail:
3108 	if (ret) {
3109 		btrfs_abort_transaction(trans, root, ret);
3110 		return ret;
3111 	}
3112 	return 0;
3113 
3114 }
3115 
3116 static struct btrfs_block_group_cache *
3117 next_block_group(struct btrfs_root *root,
3118 		 struct btrfs_block_group_cache *cache)
3119 {
3120 	struct rb_node *node;
3121 	spin_lock(&root->fs_info->block_group_cache_lock);
3122 	node = rb_next(&cache->cache_node);
3123 	btrfs_put_block_group(cache);
3124 	if (node) {
3125 		cache = rb_entry(node, struct btrfs_block_group_cache,
3126 				 cache_node);
3127 		btrfs_get_block_group(cache);
3128 	} else
3129 		cache = NULL;
3130 	spin_unlock(&root->fs_info->block_group_cache_lock);
3131 	return cache;
3132 }
3133 
3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135 			    struct btrfs_trans_handle *trans,
3136 			    struct btrfs_path *path)
3137 {
3138 	struct btrfs_root *root = block_group->fs_info->tree_root;
3139 	struct inode *inode = NULL;
3140 	u64 alloc_hint = 0;
3141 	int dcs = BTRFS_DC_ERROR;
3142 	int num_pages = 0;
3143 	int retries = 0;
3144 	int ret = 0;
3145 
3146 	/*
3147 	 * If this block group is smaller than 100 megs don't bother caching the
3148 	 * block group.
3149 	 */
3150 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3151 		spin_lock(&block_group->lock);
3152 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153 		spin_unlock(&block_group->lock);
3154 		return 0;
3155 	}
3156 
3157 again:
3158 	inode = lookup_free_space_inode(root, block_group, path);
3159 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160 		ret = PTR_ERR(inode);
3161 		btrfs_release_path(path);
3162 		goto out;
3163 	}
3164 
3165 	if (IS_ERR(inode)) {
3166 		BUG_ON(retries);
3167 		retries++;
3168 
3169 		if (block_group->ro)
3170 			goto out_free;
3171 
3172 		ret = create_free_space_inode(root, trans, block_group, path);
3173 		if (ret)
3174 			goto out_free;
3175 		goto again;
3176 	}
3177 
3178 	/* We've already setup this transaction, go ahead and exit */
3179 	if (block_group->cache_generation == trans->transid &&
3180 	    i_size_read(inode)) {
3181 		dcs = BTRFS_DC_SETUP;
3182 		goto out_put;
3183 	}
3184 
3185 	/*
3186 	 * We want to set the generation to 0, that way if anything goes wrong
3187 	 * from here on out we know not to trust this cache when we load up next
3188 	 * time.
3189 	 */
3190 	BTRFS_I(inode)->generation = 0;
3191 	ret = btrfs_update_inode(trans, root, inode);
3192 	WARN_ON(ret);
3193 
3194 	if (i_size_read(inode) > 0) {
3195 		ret = btrfs_check_trunc_cache_free_space(root,
3196 					&root->fs_info->global_block_rsv);
3197 		if (ret)
3198 			goto out_put;
3199 
3200 		ret = btrfs_truncate_free_space_cache(root, trans, path,
3201 						      inode);
3202 		if (ret)
3203 			goto out_put;
3204 	}
3205 
3206 	spin_lock(&block_group->lock);
3207 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3209 		/*
3210 		 * don't bother trying to write stuff out _if_
3211 		 * a) we're not cached,
3212 		 * b) we're with nospace_cache mount option.
3213 		 */
3214 		dcs = BTRFS_DC_WRITTEN;
3215 		spin_unlock(&block_group->lock);
3216 		goto out_put;
3217 	}
3218 	spin_unlock(&block_group->lock);
3219 
3220 	/*
3221 	 * Try to preallocate enough space based on how big the block group is.
3222 	 * Keep in mind this has to include any pinned space which could end up
3223 	 * taking up quite a bit since it's not folded into the other space
3224 	 * cache.
3225 	 */
3226 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3227 	if (!num_pages)
3228 		num_pages = 1;
3229 
3230 	num_pages *= 16;
3231 	num_pages *= PAGE_CACHE_SIZE;
3232 
3233 	ret = btrfs_check_data_free_space(inode, num_pages);
3234 	if (ret)
3235 		goto out_put;
3236 
3237 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3238 					      num_pages, num_pages,
3239 					      &alloc_hint);
3240 	if (!ret)
3241 		dcs = BTRFS_DC_SETUP;
3242 	btrfs_free_reserved_data_space(inode, num_pages);
3243 
3244 out_put:
3245 	iput(inode);
3246 out_free:
3247 	btrfs_release_path(path);
3248 out:
3249 	spin_lock(&block_group->lock);
3250 	if (!ret && dcs == BTRFS_DC_SETUP)
3251 		block_group->cache_generation = trans->transid;
3252 	block_group->disk_cache_state = dcs;
3253 	spin_unlock(&block_group->lock);
3254 
3255 	return ret;
3256 }
3257 
3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3259 				   struct btrfs_root *root)
3260 {
3261 	struct btrfs_block_group_cache *cache;
3262 	int err = 0;
3263 	struct btrfs_path *path;
3264 	u64 last = 0;
3265 
3266 	path = btrfs_alloc_path();
3267 	if (!path)
3268 		return -ENOMEM;
3269 
3270 again:
3271 	while (1) {
3272 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3273 		while (cache) {
3274 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3275 				break;
3276 			cache = next_block_group(root, cache);
3277 		}
3278 		if (!cache) {
3279 			if (last == 0)
3280 				break;
3281 			last = 0;
3282 			continue;
3283 		}
3284 		err = cache_save_setup(cache, trans, path);
3285 		last = cache->key.objectid + cache->key.offset;
3286 		btrfs_put_block_group(cache);
3287 	}
3288 
3289 	while (1) {
3290 		if (last == 0) {
3291 			err = btrfs_run_delayed_refs(trans, root,
3292 						     (unsigned long)-1);
3293 			if (err) /* File system offline */
3294 				goto out;
3295 		}
3296 
3297 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298 		while (cache) {
3299 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3300 				btrfs_put_block_group(cache);
3301 				goto again;
3302 			}
3303 
3304 			if (cache->dirty)
3305 				break;
3306 			cache = next_block_group(root, cache);
3307 		}
3308 		if (!cache) {
3309 			if (last == 0)
3310 				break;
3311 			last = 0;
3312 			continue;
3313 		}
3314 
3315 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3316 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3317 		cache->dirty = 0;
3318 		last = cache->key.objectid + cache->key.offset;
3319 
3320 		err = write_one_cache_group(trans, root, path, cache);
3321 		if (err) /* File system offline */
3322 			goto out;
3323 
3324 		btrfs_put_block_group(cache);
3325 	}
3326 
3327 	while (1) {
3328 		/*
3329 		 * I don't think this is needed since we're just marking our
3330 		 * preallocated extent as written, but just in case it can't
3331 		 * hurt.
3332 		 */
3333 		if (last == 0) {
3334 			err = btrfs_run_delayed_refs(trans, root,
3335 						     (unsigned long)-1);
3336 			if (err) /* File system offline */
3337 				goto out;
3338 		}
3339 
3340 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3341 		while (cache) {
3342 			/*
3343 			 * Really this shouldn't happen, but it could if we
3344 			 * couldn't write the entire preallocated extent and
3345 			 * splitting the extent resulted in a new block.
3346 			 */
3347 			if (cache->dirty) {
3348 				btrfs_put_block_group(cache);
3349 				goto again;
3350 			}
3351 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3352 				break;
3353 			cache = next_block_group(root, cache);
3354 		}
3355 		if (!cache) {
3356 			if (last == 0)
3357 				break;
3358 			last = 0;
3359 			continue;
3360 		}
3361 
3362 		err = btrfs_write_out_cache(root, trans, cache, path);
3363 
3364 		/*
3365 		 * If we didn't have an error then the cache state is still
3366 		 * NEED_WRITE, so we can set it to WRITTEN.
3367 		 */
3368 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3369 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3370 		last = cache->key.objectid + cache->key.offset;
3371 		btrfs_put_block_group(cache);
3372 	}
3373 out:
3374 
3375 	btrfs_free_path(path);
3376 	return err;
3377 }
3378 
3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3380 {
3381 	struct btrfs_block_group_cache *block_group;
3382 	int readonly = 0;
3383 
3384 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3385 	if (!block_group || block_group->ro)
3386 		readonly = 1;
3387 	if (block_group)
3388 		btrfs_put_block_group(block_group);
3389 	return readonly;
3390 }
3391 
3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3393 			     u64 total_bytes, u64 bytes_used,
3394 			     struct btrfs_space_info **space_info)
3395 {
3396 	struct btrfs_space_info *found;
3397 	int i;
3398 	int factor;
3399 	int ret;
3400 
3401 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3402 		     BTRFS_BLOCK_GROUP_RAID10))
3403 		factor = 2;
3404 	else
3405 		factor = 1;
3406 
3407 	found = __find_space_info(info, flags);
3408 	if (found) {
3409 		spin_lock(&found->lock);
3410 		found->total_bytes += total_bytes;
3411 		found->disk_total += total_bytes * factor;
3412 		found->bytes_used += bytes_used;
3413 		found->disk_used += bytes_used * factor;
3414 		found->full = 0;
3415 		spin_unlock(&found->lock);
3416 		*space_info = found;
3417 		return 0;
3418 	}
3419 	found = kzalloc(sizeof(*found), GFP_NOFS);
3420 	if (!found)
3421 		return -ENOMEM;
3422 
3423 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3424 	if (ret) {
3425 		kfree(found);
3426 		return ret;
3427 	}
3428 
3429 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3430 		INIT_LIST_HEAD(&found->block_groups[i]);
3431 	init_rwsem(&found->groups_sem);
3432 	spin_lock_init(&found->lock);
3433 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3434 	found->total_bytes = total_bytes;
3435 	found->disk_total = total_bytes * factor;
3436 	found->bytes_used = bytes_used;
3437 	found->disk_used = bytes_used * factor;
3438 	found->bytes_pinned = 0;
3439 	found->bytes_reserved = 0;
3440 	found->bytes_readonly = 0;
3441 	found->bytes_may_use = 0;
3442 	found->full = 0;
3443 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3444 	found->chunk_alloc = 0;
3445 	found->flush = 0;
3446 	init_waitqueue_head(&found->wait);
3447 	*space_info = found;
3448 	list_add_rcu(&found->list, &info->space_info);
3449 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3450 		info->data_sinfo = found;
3451 	return 0;
3452 }
3453 
3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3455 {
3456 	u64 extra_flags = chunk_to_extended(flags) &
3457 				BTRFS_EXTENDED_PROFILE_MASK;
3458 
3459 	write_seqlock(&fs_info->profiles_lock);
3460 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3461 		fs_info->avail_data_alloc_bits |= extra_flags;
3462 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3463 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3464 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3465 		fs_info->avail_system_alloc_bits |= extra_flags;
3466 	write_sequnlock(&fs_info->profiles_lock);
3467 }
3468 
3469 /*
3470  * returns target flags in extended format or 0 if restripe for this
3471  * chunk_type is not in progress
3472  *
3473  * should be called with either volume_mutex or balance_lock held
3474  */
3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3476 {
3477 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478 	u64 target = 0;
3479 
3480 	if (!bctl)
3481 		return 0;
3482 
3483 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3484 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3485 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3486 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3487 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3489 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3490 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3492 	}
3493 
3494 	return target;
3495 }
3496 
3497 /*
3498  * @flags: available profiles in extended format (see ctree.h)
3499  *
3500  * Returns reduced profile in chunk format.  If profile changing is in
3501  * progress (either running or paused) picks the target profile (if it's
3502  * already available), otherwise falls back to plain reducing.
3503  */
3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3505 {
3506 	/*
3507 	 * we add in the count of missing devices because we want
3508 	 * to make sure that any RAID levels on a degraded FS
3509 	 * continue to be honored.
3510 	 */
3511 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3512 		root->fs_info->fs_devices->missing_devices;
3513 	u64 target;
3514 	u64 tmp;
3515 
3516 	/*
3517 	 * see if restripe for this chunk_type is in progress, if so
3518 	 * try to reduce to the target profile
3519 	 */
3520 	spin_lock(&root->fs_info->balance_lock);
3521 	target = get_restripe_target(root->fs_info, flags);
3522 	if (target) {
3523 		/* pick target profile only if it's already available */
3524 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525 			spin_unlock(&root->fs_info->balance_lock);
3526 			return extended_to_chunk(target);
3527 		}
3528 	}
3529 	spin_unlock(&root->fs_info->balance_lock);
3530 
3531 	/* First, mask out the RAID levels which aren't possible */
3532 	if (num_devices == 1)
3533 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534 			   BTRFS_BLOCK_GROUP_RAID5);
3535 	if (num_devices < 3)
3536 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537 	if (num_devices < 4)
3538 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539 
3540 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543 	flags &= ~tmp;
3544 
3545 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3547 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3549 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3551 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3553 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3555 
3556 	return extended_to_chunk(flags | tmp);
3557 }
3558 
3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3560 {
3561 	unsigned seq;
3562 
3563 	do {
3564 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3565 
3566 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3567 			flags |= root->fs_info->avail_data_alloc_bits;
3568 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3569 			flags |= root->fs_info->avail_system_alloc_bits;
3570 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3571 			flags |= root->fs_info->avail_metadata_alloc_bits;
3572 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3573 
3574 	return btrfs_reduce_alloc_profile(root, flags);
3575 }
3576 
3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3578 {
3579 	u64 flags;
3580 	u64 ret;
3581 
3582 	if (data)
3583 		flags = BTRFS_BLOCK_GROUP_DATA;
3584 	else if (root == root->fs_info->chunk_root)
3585 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3586 	else
3587 		flags = BTRFS_BLOCK_GROUP_METADATA;
3588 
3589 	ret = get_alloc_profile(root, flags);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * This will check the space that the inode allocates from to make sure we have
3595  * enough space for bytes.
3596  */
3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3598 {
3599 	struct btrfs_space_info *data_sinfo;
3600 	struct btrfs_root *root = BTRFS_I(inode)->root;
3601 	struct btrfs_fs_info *fs_info = root->fs_info;
3602 	u64 used;
3603 	int ret = 0, committed = 0, alloc_chunk = 1;
3604 
3605 	/* make sure bytes are sectorsize aligned */
3606 	bytes = ALIGN(bytes, root->sectorsize);
3607 
3608 	if (root == root->fs_info->tree_root ||
3609 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3610 		alloc_chunk = 0;
3611 		committed = 1;
3612 	}
3613 
3614 	data_sinfo = fs_info->data_sinfo;
3615 	if (!data_sinfo)
3616 		goto alloc;
3617 
3618 again:
3619 	/* make sure we have enough space to handle the data first */
3620 	spin_lock(&data_sinfo->lock);
3621 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3622 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3623 		data_sinfo->bytes_may_use;
3624 
3625 	if (used + bytes > data_sinfo->total_bytes) {
3626 		struct btrfs_trans_handle *trans;
3627 
3628 		/*
3629 		 * if we don't have enough free bytes in this space then we need
3630 		 * to alloc a new chunk.
3631 		 */
3632 		if (!data_sinfo->full && alloc_chunk) {
3633 			u64 alloc_target;
3634 
3635 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3636 			spin_unlock(&data_sinfo->lock);
3637 alloc:
3638 			alloc_target = btrfs_get_alloc_profile(root, 1);
3639 			trans = btrfs_join_transaction(root);
3640 			if (IS_ERR(trans))
3641 				return PTR_ERR(trans);
3642 
3643 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3644 					     alloc_target,
3645 					     CHUNK_ALLOC_NO_FORCE);
3646 			btrfs_end_transaction(trans, root);
3647 			if (ret < 0) {
3648 				if (ret != -ENOSPC)
3649 					return ret;
3650 				else
3651 					goto commit_trans;
3652 			}
3653 
3654 			if (!data_sinfo)
3655 				data_sinfo = fs_info->data_sinfo;
3656 
3657 			goto again;
3658 		}
3659 
3660 		/*
3661 		 * If we don't have enough pinned space to deal with this
3662 		 * allocation don't bother committing the transaction.
3663 		 */
3664 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3665 					   bytes) < 0)
3666 			committed = 1;
3667 		spin_unlock(&data_sinfo->lock);
3668 
3669 		/* commit the current transaction and try again */
3670 commit_trans:
3671 		if (!committed &&
3672 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3673 			committed = 1;
3674 
3675 			trans = btrfs_join_transaction(root);
3676 			if (IS_ERR(trans))
3677 				return PTR_ERR(trans);
3678 			ret = btrfs_commit_transaction(trans, root);
3679 			if (ret)
3680 				return ret;
3681 			goto again;
3682 		}
3683 
3684 		return -ENOSPC;
3685 	}
3686 	data_sinfo->bytes_may_use += bytes;
3687 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3688 				      data_sinfo->flags, bytes, 1);
3689 	spin_unlock(&data_sinfo->lock);
3690 
3691 	return 0;
3692 }
3693 
3694 /*
3695  * Called if we need to clear a data reservation for this inode.
3696  */
3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698 {
3699 	struct btrfs_root *root = BTRFS_I(inode)->root;
3700 	struct btrfs_space_info *data_sinfo;
3701 
3702 	/* make sure bytes are sectorsize aligned */
3703 	bytes = ALIGN(bytes, root->sectorsize);
3704 
3705 	data_sinfo = root->fs_info->data_sinfo;
3706 	spin_lock(&data_sinfo->lock);
3707 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3708 	data_sinfo->bytes_may_use -= bytes;
3709 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3710 				      data_sinfo->flags, bytes, 0);
3711 	spin_unlock(&data_sinfo->lock);
3712 }
3713 
3714 static void force_metadata_allocation(struct btrfs_fs_info *info)
3715 {
3716 	struct list_head *head = &info->space_info;
3717 	struct btrfs_space_info *found;
3718 
3719 	rcu_read_lock();
3720 	list_for_each_entry_rcu(found, head, list) {
3721 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722 			found->force_alloc = CHUNK_ALLOC_FORCE;
3723 	}
3724 	rcu_read_unlock();
3725 }
3726 
3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728 {
3729 	return (global->size << 1);
3730 }
3731 
3732 static int should_alloc_chunk(struct btrfs_root *root,
3733 			      struct btrfs_space_info *sinfo, int force)
3734 {
3735 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738 	u64 thresh;
3739 
3740 	if (force == CHUNK_ALLOC_FORCE)
3741 		return 1;
3742 
3743 	/*
3744 	 * We need to take into account the global rsv because for all intents
3745 	 * and purposes it's used space.  Don't worry about locking the
3746 	 * global_rsv, it doesn't change except when the transaction commits.
3747 	 */
3748 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 		num_allocated += calc_global_rsv_need_space(global_rsv);
3750 
3751 	/*
3752 	 * in limited mode, we want to have some free space up to
3753 	 * about 1% of the FS size.
3754 	 */
3755 	if (force == CHUNK_ALLOC_LIMITED) {
3756 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757 		thresh = max_t(u64, 64 * 1024 * 1024,
3758 			       div_factor_fine(thresh, 1));
3759 
3760 		if (num_bytes - num_allocated < thresh)
3761 			return 1;
3762 	}
3763 
3764 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765 		return 0;
3766 	return 1;
3767 }
3768 
3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770 {
3771 	u64 num_dev;
3772 
3773 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774 		    BTRFS_BLOCK_GROUP_RAID0 |
3775 		    BTRFS_BLOCK_GROUP_RAID5 |
3776 		    BTRFS_BLOCK_GROUP_RAID6))
3777 		num_dev = root->fs_info->fs_devices->rw_devices;
3778 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779 		num_dev = 2;
3780 	else
3781 		num_dev = 1;	/* DUP or single */
3782 
3783 	/* metadata for updaing devices and chunk tree */
3784 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785 }
3786 
3787 static void check_system_chunk(struct btrfs_trans_handle *trans,
3788 			       struct btrfs_root *root, u64 type)
3789 {
3790 	struct btrfs_space_info *info;
3791 	u64 left;
3792 	u64 thresh;
3793 
3794 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795 	spin_lock(&info->lock);
3796 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797 		info->bytes_reserved - info->bytes_readonly;
3798 	spin_unlock(&info->lock);
3799 
3800 	thresh = get_system_chunk_thresh(root, type);
3801 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803 			left, thresh, type);
3804 		dump_space_info(info, 0, 0);
3805 	}
3806 
3807 	if (left < thresh) {
3808 		u64 flags;
3809 
3810 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811 		btrfs_alloc_chunk(trans, root, flags);
3812 	}
3813 }
3814 
3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816 			  struct btrfs_root *extent_root, u64 flags, int force)
3817 {
3818 	struct btrfs_space_info *space_info;
3819 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820 	int wait_for_alloc = 0;
3821 	int ret = 0;
3822 
3823 	/* Don't re-enter if we're already allocating a chunk */
3824 	if (trans->allocating_chunk)
3825 		return -ENOSPC;
3826 
3827 	space_info = __find_space_info(extent_root->fs_info, flags);
3828 	if (!space_info) {
3829 		ret = update_space_info(extent_root->fs_info, flags,
3830 					0, 0, &space_info);
3831 		BUG_ON(ret); /* -ENOMEM */
3832 	}
3833 	BUG_ON(!space_info); /* Logic error */
3834 
3835 again:
3836 	spin_lock(&space_info->lock);
3837 	if (force < space_info->force_alloc)
3838 		force = space_info->force_alloc;
3839 	if (space_info->full) {
3840 		if (should_alloc_chunk(extent_root, space_info, force))
3841 			ret = -ENOSPC;
3842 		else
3843 			ret = 0;
3844 		spin_unlock(&space_info->lock);
3845 		return ret;
3846 	}
3847 
3848 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3849 		spin_unlock(&space_info->lock);
3850 		return 0;
3851 	} else if (space_info->chunk_alloc) {
3852 		wait_for_alloc = 1;
3853 	} else {
3854 		space_info->chunk_alloc = 1;
3855 	}
3856 
3857 	spin_unlock(&space_info->lock);
3858 
3859 	mutex_lock(&fs_info->chunk_mutex);
3860 
3861 	/*
3862 	 * The chunk_mutex is held throughout the entirety of a chunk
3863 	 * allocation, so once we've acquired the chunk_mutex we know that the
3864 	 * other guy is done and we need to recheck and see if we should
3865 	 * allocate.
3866 	 */
3867 	if (wait_for_alloc) {
3868 		mutex_unlock(&fs_info->chunk_mutex);
3869 		wait_for_alloc = 0;
3870 		goto again;
3871 	}
3872 
3873 	trans->allocating_chunk = true;
3874 
3875 	/*
3876 	 * If we have mixed data/metadata chunks we want to make sure we keep
3877 	 * allocating mixed chunks instead of individual chunks.
3878 	 */
3879 	if (btrfs_mixed_space_info(space_info))
3880 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881 
3882 	/*
3883 	 * if we're doing a data chunk, go ahead and make sure that
3884 	 * we keep a reasonable number of metadata chunks allocated in the
3885 	 * FS as well.
3886 	 */
3887 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888 		fs_info->data_chunk_allocations++;
3889 		if (!(fs_info->data_chunk_allocations %
3890 		      fs_info->metadata_ratio))
3891 			force_metadata_allocation(fs_info);
3892 	}
3893 
3894 	/*
3895 	 * Check if we have enough space in SYSTEM chunk because we may need
3896 	 * to update devices.
3897 	 */
3898 	check_system_chunk(trans, extent_root, flags);
3899 
3900 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901 	trans->allocating_chunk = false;
3902 
3903 	spin_lock(&space_info->lock);
3904 	if (ret < 0 && ret != -ENOSPC)
3905 		goto out;
3906 	if (ret)
3907 		space_info->full = 1;
3908 	else
3909 		ret = 1;
3910 
3911 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912 out:
3913 	space_info->chunk_alloc = 0;
3914 	spin_unlock(&space_info->lock);
3915 	mutex_unlock(&fs_info->chunk_mutex);
3916 	return ret;
3917 }
3918 
3919 static int can_overcommit(struct btrfs_root *root,
3920 			  struct btrfs_space_info *space_info, u64 bytes,
3921 			  enum btrfs_reserve_flush_enum flush)
3922 {
3923 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924 	u64 profile = btrfs_get_alloc_profile(root, 0);
3925 	u64 space_size;
3926 	u64 avail;
3927 	u64 used;
3928 	u64 to_add;
3929 
3930 	used = space_info->bytes_used + space_info->bytes_reserved +
3931 		space_info->bytes_pinned + space_info->bytes_readonly;
3932 
3933 	/*
3934 	 * We only want to allow over committing if we have lots of actual space
3935 	 * free, but if we don't have enough space to handle the global reserve
3936 	 * space then we could end up having a real enospc problem when trying
3937 	 * to allocate a chunk or some other such important allocation.
3938 	 */
3939 	spin_lock(&global_rsv->lock);
3940 	space_size = calc_global_rsv_need_space(global_rsv);
3941 	spin_unlock(&global_rsv->lock);
3942 	if (used + space_size >= space_info->total_bytes)
3943 		return 0;
3944 
3945 	used += space_info->bytes_may_use;
3946 
3947 	spin_lock(&root->fs_info->free_chunk_lock);
3948 	avail = root->fs_info->free_chunk_space;
3949 	spin_unlock(&root->fs_info->free_chunk_lock);
3950 
3951 	/*
3952 	 * If we have dup, raid1 or raid10 then only half of the free
3953 	 * space is actually useable.  For raid56, the space info used
3954 	 * doesn't include the parity drive, so we don't have to
3955 	 * change the math
3956 	 */
3957 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3958 		       BTRFS_BLOCK_GROUP_RAID1 |
3959 		       BTRFS_BLOCK_GROUP_RAID10))
3960 		avail >>= 1;
3961 
3962 	to_add = space_info->total_bytes;
3963 
3964 	/*
3965 	 * If we aren't flushing all things, let us overcommit up to
3966 	 * 1/2th of the space. If we can flush, don't let us overcommit
3967 	 * too much, let it overcommit up to 1/8 of the space.
3968 	 */
3969 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3970 		to_add >>= 3;
3971 	else
3972 		to_add >>= 1;
3973 
3974 	/*
3975 	 * Limit the overcommit to the amount of free space we could possibly
3976 	 * allocate for chunks.
3977 	 */
3978 	to_add = min(avail, to_add);
3979 
3980 	if (used + bytes < space_info->total_bytes + to_add)
3981 		return 1;
3982 	return 0;
3983 }
3984 
3985 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3986 					 unsigned long nr_pages)
3987 {
3988 	struct super_block *sb = root->fs_info->sb;
3989 
3990 	if (down_read_trylock(&sb->s_umount)) {
3991 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3992 		up_read(&sb->s_umount);
3993 	} else {
3994 		/*
3995 		 * We needn't worry the filesystem going from r/w to r/o though
3996 		 * we don't acquire ->s_umount mutex, because the filesystem
3997 		 * should guarantee the delalloc inodes list be empty after
3998 		 * the filesystem is readonly(all dirty pages are written to
3999 		 * the disk).
4000 		 */
4001 		btrfs_start_all_delalloc_inodes(root->fs_info, 0);
4002 		if (!current->journal_info)
4003 			btrfs_wait_all_ordered_extents(root->fs_info, 0);
4004 	}
4005 }
4006 
4007 /*
4008  * shrink metadata reservation for delalloc
4009  */
4010 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4011 			    bool wait_ordered)
4012 {
4013 	struct btrfs_block_rsv *block_rsv;
4014 	struct btrfs_space_info *space_info;
4015 	struct btrfs_trans_handle *trans;
4016 	u64 delalloc_bytes;
4017 	u64 max_reclaim;
4018 	long time_left;
4019 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4020 	int loops = 0;
4021 	enum btrfs_reserve_flush_enum flush;
4022 
4023 	trans = (struct btrfs_trans_handle *)current->journal_info;
4024 	block_rsv = &root->fs_info->delalloc_block_rsv;
4025 	space_info = block_rsv->space_info;
4026 
4027 	smp_mb();
4028 	delalloc_bytes = percpu_counter_sum_positive(
4029 						&root->fs_info->delalloc_bytes);
4030 	if (delalloc_bytes == 0) {
4031 		if (trans)
4032 			return;
4033 		btrfs_wait_all_ordered_extents(root->fs_info, 0);
4034 		return;
4035 	}
4036 
4037 	while (delalloc_bytes && loops < 3) {
4038 		max_reclaim = min(delalloc_bytes, to_reclaim);
4039 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4040 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4041 		/*
4042 		 * We need to wait for the async pages to actually start before
4043 		 * we do anything.
4044 		 */
4045 		wait_event(root->fs_info->async_submit_wait,
4046 			   !atomic_read(&root->fs_info->async_delalloc_pages));
4047 
4048 		if (!trans)
4049 			flush = BTRFS_RESERVE_FLUSH_ALL;
4050 		else
4051 			flush = BTRFS_RESERVE_NO_FLUSH;
4052 		spin_lock(&space_info->lock);
4053 		if (can_overcommit(root, space_info, orig, flush)) {
4054 			spin_unlock(&space_info->lock);
4055 			break;
4056 		}
4057 		spin_unlock(&space_info->lock);
4058 
4059 		loops++;
4060 		if (wait_ordered && !trans) {
4061 			btrfs_wait_all_ordered_extents(root->fs_info, 0);
4062 		} else {
4063 			time_left = schedule_timeout_killable(1);
4064 			if (time_left)
4065 				break;
4066 		}
4067 		smp_mb();
4068 		delalloc_bytes = percpu_counter_sum_positive(
4069 						&root->fs_info->delalloc_bytes);
4070 	}
4071 }
4072 
4073 /**
4074  * maybe_commit_transaction - possibly commit the transaction if its ok to
4075  * @root - the root we're allocating for
4076  * @bytes - the number of bytes we want to reserve
4077  * @force - force the commit
4078  *
4079  * This will check to make sure that committing the transaction will actually
4080  * get us somewhere and then commit the transaction if it does.  Otherwise it
4081  * will return -ENOSPC.
4082  */
4083 static int may_commit_transaction(struct btrfs_root *root,
4084 				  struct btrfs_space_info *space_info,
4085 				  u64 bytes, int force)
4086 {
4087 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4088 	struct btrfs_trans_handle *trans;
4089 
4090 	trans = (struct btrfs_trans_handle *)current->journal_info;
4091 	if (trans)
4092 		return -EAGAIN;
4093 
4094 	if (force)
4095 		goto commit;
4096 
4097 	/* See if there is enough pinned space to make this reservation */
4098 	spin_lock(&space_info->lock);
4099 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4100 				   bytes) >= 0) {
4101 		spin_unlock(&space_info->lock);
4102 		goto commit;
4103 	}
4104 	spin_unlock(&space_info->lock);
4105 
4106 	/*
4107 	 * See if there is some space in the delayed insertion reservation for
4108 	 * this reservation.
4109 	 */
4110 	if (space_info != delayed_rsv->space_info)
4111 		return -ENOSPC;
4112 
4113 	spin_lock(&space_info->lock);
4114 	spin_lock(&delayed_rsv->lock);
4115 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4116 				   bytes - delayed_rsv->size) >= 0) {
4117 		spin_unlock(&delayed_rsv->lock);
4118 		spin_unlock(&space_info->lock);
4119 		return -ENOSPC;
4120 	}
4121 	spin_unlock(&delayed_rsv->lock);
4122 	spin_unlock(&space_info->lock);
4123 
4124 commit:
4125 	trans = btrfs_join_transaction(root);
4126 	if (IS_ERR(trans))
4127 		return -ENOSPC;
4128 
4129 	return btrfs_commit_transaction(trans, root);
4130 }
4131 
4132 enum flush_state {
4133 	FLUSH_DELAYED_ITEMS_NR	=	1,
4134 	FLUSH_DELAYED_ITEMS	=	2,
4135 	FLUSH_DELALLOC		=	3,
4136 	FLUSH_DELALLOC_WAIT	=	4,
4137 	ALLOC_CHUNK		=	5,
4138 	COMMIT_TRANS		=	6,
4139 };
4140 
4141 static int flush_space(struct btrfs_root *root,
4142 		       struct btrfs_space_info *space_info, u64 num_bytes,
4143 		       u64 orig_bytes, int state)
4144 {
4145 	struct btrfs_trans_handle *trans;
4146 	int nr;
4147 	int ret = 0;
4148 
4149 	switch (state) {
4150 	case FLUSH_DELAYED_ITEMS_NR:
4151 	case FLUSH_DELAYED_ITEMS:
4152 		if (state == FLUSH_DELAYED_ITEMS_NR) {
4153 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4154 
4155 			nr = (int)div64_u64(num_bytes, bytes);
4156 			if (!nr)
4157 				nr = 1;
4158 			nr *= 2;
4159 		} else {
4160 			nr = -1;
4161 		}
4162 		trans = btrfs_join_transaction(root);
4163 		if (IS_ERR(trans)) {
4164 			ret = PTR_ERR(trans);
4165 			break;
4166 		}
4167 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4168 		btrfs_end_transaction(trans, root);
4169 		break;
4170 	case FLUSH_DELALLOC:
4171 	case FLUSH_DELALLOC_WAIT:
4172 		shrink_delalloc(root, num_bytes, orig_bytes,
4173 				state == FLUSH_DELALLOC_WAIT);
4174 		break;
4175 	case ALLOC_CHUNK:
4176 		trans = btrfs_join_transaction(root);
4177 		if (IS_ERR(trans)) {
4178 			ret = PTR_ERR(trans);
4179 			break;
4180 		}
4181 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4182 				     btrfs_get_alloc_profile(root, 0),
4183 				     CHUNK_ALLOC_NO_FORCE);
4184 		btrfs_end_transaction(trans, root);
4185 		if (ret == -ENOSPC)
4186 			ret = 0;
4187 		break;
4188 	case COMMIT_TRANS:
4189 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4190 		break;
4191 	default:
4192 		ret = -ENOSPC;
4193 		break;
4194 	}
4195 
4196 	return ret;
4197 }
4198 /**
4199  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4200  * @root - the root we're allocating for
4201  * @block_rsv - the block_rsv we're allocating for
4202  * @orig_bytes - the number of bytes we want
4203  * @flush - whether or not we can flush to make our reservation
4204  *
4205  * This will reserve orgi_bytes number of bytes from the space info associated
4206  * with the block_rsv.  If there is not enough space it will make an attempt to
4207  * flush out space to make room.  It will do this by flushing delalloc if
4208  * possible or committing the transaction.  If flush is 0 then no attempts to
4209  * regain reservations will be made and this will fail if there is not enough
4210  * space already.
4211  */
4212 static int reserve_metadata_bytes(struct btrfs_root *root,
4213 				  struct btrfs_block_rsv *block_rsv,
4214 				  u64 orig_bytes,
4215 				  enum btrfs_reserve_flush_enum flush)
4216 {
4217 	struct btrfs_space_info *space_info = block_rsv->space_info;
4218 	u64 used;
4219 	u64 num_bytes = orig_bytes;
4220 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4221 	int ret = 0;
4222 	bool flushing = false;
4223 
4224 again:
4225 	ret = 0;
4226 	spin_lock(&space_info->lock);
4227 	/*
4228 	 * We only want to wait if somebody other than us is flushing and we
4229 	 * are actually allowed to flush all things.
4230 	 */
4231 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4232 	       space_info->flush) {
4233 		spin_unlock(&space_info->lock);
4234 		/*
4235 		 * If we have a trans handle we can't wait because the flusher
4236 		 * may have to commit the transaction, which would mean we would
4237 		 * deadlock since we are waiting for the flusher to finish, but
4238 		 * hold the current transaction open.
4239 		 */
4240 		if (current->journal_info)
4241 			return -EAGAIN;
4242 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4243 		/* Must have been killed, return */
4244 		if (ret)
4245 			return -EINTR;
4246 
4247 		spin_lock(&space_info->lock);
4248 	}
4249 
4250 	ret = -ENOSPC;
4251 	used = space_info->bytes_used + space_info->bytes_reserved +
4252 		space_info->bytes_pinned + space_info->bytes_readonly +
4253 		space_info->bytes_may_use;
4254 
4255 	/*
4256 	 * The idea here is that we've not already over-reserved the block group
4257 	 * then we can go ahead and save our reservation first and then start
4258 	 * flushing if we need to.  Otherwise if we've already overcommitted
4259 	 * lets start flushing stuff first and then come back and try to make
4260 	 * our reservation.
4261 	 */
4262 	if (used <= space_info->total_bytes) {
4263 		if (used + orig_bytes <= space_info->total_bytes) {
4264 			space_info->bytes_may_use += orig_bytes;
4265 			trace_btrfs_space_reservation(root->fs_info,
4266 				"space_info", space_info->flags, orig_bytes, 1);
4267 			ret = 0;
4268 		} else {
4269 			/*
4270 			 * Ok set num_bytes to orig_bytes since we aren't
4271 			 * overocmmitted, this way we only try and reclaim what
4272 			 * we need.
4273 			 */
4274 			num_bytes = orig_bytes;
4275 		}
4276 	} else {
4277 		/*
4278 		 * Ok we're over committed, set num_bytes to the overcommitted
4279 		 * amount plus the amount of bytes that we need for this
4280 		 * reservation.
4281 		 */
4282 		num_bytes = used - space_info->total_bytes +
4283 			(orig_bytes * 2);
4284 	}
4285 
4286 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4287 		space_info->bytes_may_use += orig_bytes;
4288 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4289 					      space_info->flags, orig_bytes,
4290 					      1);
4291 		ret = 0;
4292 	}
4293 
4294 	/*
4295 	 * Couldn't make our reservation, save our place so while we're trying
4296 	 * to reclaim space we can actually use it instead of somebody else
4297 	 * stealing it from us.
4298 	 *
4299 	 * We make the other tasks wait for the flush only when we can flush
4300 	 * all things.
4301 	 */
4302 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4303 		flushing = true;
4304 		space_info->flush = 1;
4305 	}
4306 
4307 	spin_unlock(&space_info->lock);
4308 
4309 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4310 		goto out;
4311 
4312 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4313 			  flush_state);
4314 	flush_state++;
4315 
4316 	/*
4317 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4318 	 * would happen. So skip delalloc flush.
4319 	 */
4320 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4321 	    (flush_state == FLUSH_DELALLOC ||
4322 	     flush_state == FLUSH_DELALLOC_WAIT))
4323 		flush_state = ALLOC_CHUNK;
4324 
4325 	if (!ret)
4326 		goto again;
4327 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4328 		 flush_state < COMMIT_TRANS)
4329 		goto again;
4330 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4331 		 flush_state <= COMMIT_TRANS)
4332 		goto again;
4333 
4334 out:
4335 	if (ret == -ENOSPC &&
4336 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4337 		struct btrfs_block_rsv *global_rsv =
4338 			&root->fs_info->global_block_rsv;
4339 
4340 		if (block_rsv != global_rsv &&
4341 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4342 			ret = 0;
4343 	}
4344 	if (flushing) {
4345 		spin_lock(&space_info->lock);
4346 		space_info->flush = 0;
4347 		wake_up_all(&space_info->wait);
4348 		spin_unlock(&space_info->lock);
4349 	}
4350 	return ret;
4351 }
4352 
4353 static struct btrfs_block_rsv *get_block_rsv(
4354 					const struct btrfs_trans_handle *trans,
4355 					const struct btrfs_root *root)
4356 {
4357 	struct btrfs_block_rsv *block_rsv = NULL;
4358 
4359 	if (root->ref_cows)
4360 		block_rsv = trans->block_rsv;
4361 
4362 	if (root == root->fs_info->csum_root && trans->adding_csums)
4363 		block_rsv = trans->block_rsv;
4364 
4365 	if (root == root->fs_info->uuid_root)
4366 		block_rsv = trans->block_rsv;
4367 
4368 	if (!block_rsv)
4369 		block_rsv = root->block_rsv;
4370 
4371 	if (!block_rsv)
4372 		block_rsv = &root->fs_info->empty_block_rsv;
4373 
4374 	return block_rsv;
4375 }
4376 
4377 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4378 			       u64 num_bytes)
4379 {
4380 	int ret = -ENOSPC;
4381 	spin_lock(&block_rsv->lock);
4382 	if (block_rsv->reserved >= num_bytes) {
4383 		block_rsv->reserved -= num_bytes;
4384 		if (block_rsv->reserved < block_rsv->size)
4385 			block_rsv->full = 0;
4386 		ret = 0;
4387 	}
4388 	spin_unlock(&block_rsv->lock);
4389 	return ret;
4390 }
4391 
4392 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4393 				u64 num_bytes, int update_size)
4394 {
4395 	spin_lock(&block_rsv->lock);
4396 	block_rsv->reserved += num_bytes;
4397 	if (update_size)
4398 		block_rsv->size += num_bytes;
4399 	else if (block_rsv->reserved >= block_rsv->size)
4400 		block_rsv->full = 1;
4401 	spin_unlock(&block_rsv->lock);
4402 }
4403 
4404 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4405 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4406 			     int min_factor)
4407 {
4408 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4409 	u64 min_bytes;
4410 
4411 	if (global_rsv->space_info != dest->space_info)
4412 		return -ENOSPC;
4413 
4414 	spin_lock(&global_rsv->lock);
4415 	min_bytes = div_factor(global_rsv->size, min_factor);
4416 	if (global_rsv->reserved < min_bytes + num_bytes) {
4417 		spin_unlock(&global_rsv->lock);
4418 		return -ENOSPC;
4419 	}
4420 	global_rsv->reserved -= num_bytes;
4421 	if (global_rsv->reserved < global_rsv->size)
4422 		global_rsv->full = 0;
4423 	spin_unlock(&global_rsv->lock);
4424 
4425 	block_rsv_add_bytes(dest, num_bytes, 1);
4426 	return 0;
4427 }
4428 
4429 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4430 				    struct btrfs_block_rsv *block_rsv,
4431 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4432 {
4433 	struct btrfs_space_info *space_info = block_rsv->space_info;
4434 
4435 	spin_lock(&block_rsv->lock);
4436 	if (num_bytes == (u64)-1)
4437 		num_bytes = block_rsv->size;
4438 	block_rsv->size -= num_bytes;
4439 	if (block_rsv->reserved >= block_rsv->size) {
4440 		num_bytes = block_rsv->reserved - block_rsv->size;
4441 		block_rsv->reserved = block_rsv->size;
4442 		block_rsv->full = 1;
4443 	} else {
4444 		num_bytes = 0;
4445 	}
4446 	spin_unlock(&block_rsv->lock);
4447 
4448 	if (num_bytes > 0) {
4449 		if (dest) {
4450 			spin_lock(&dest->lock);
4451 			if (!dest->full) {
4452 				u64 bytes_to_add;
4453 
4454 				bytes_to_add = dest->size - dest->reserved;
4455 				bytes_to_add = min(num_bytes, bytes_to_add);
4456 				dest->reserved += bytes_to_add;
4457 				if (dest->reserved >= dest->size)
4458 					dest->full = 1;
4459 				num_bytes -= bytes_to_add;
4460 			}
4461 			spin_unlock(&dest->lock);
4462 		}
4463 		if (num_bytes) {
4464 			spin_lock(&space_info->lock);
4465 			space_info->bytes_may_use -= num_bytes;
4466 			trace_btrfs_space_reservation(fs_info, "space_info",
4467 					space_info->flags, num_bytes, 0);
4468 			space_info->reservation_progress++;
4469 			spin_unlock(&space_info->lock);
4470 		}
4471 	}
4472 }
4473 
4474 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4475 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4476 {
4477 	int ret;
4478 
4479 	ret = block_rsv_use_bytes(src, num_bytes);
4480 	if (ret)
4481 		return ret;
4482 
4483 	block_rsv_add_bytes(dst, num_bytes, 1);
4484 	return 0;
4485 }
4486 
4487 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4488 {
4489 	memset(rsv, 0, sizeof(*rsv));
4490 	spin_lock_init(&rsv->lock);
4491 	rsv->type = type;
4492 }
4493 
4494 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4495 					      unsigned short type)
4496 {
4497 	struct btrfs_block_rsv *block_rsv;
4498 	struct btrfs_fs_info *fs_info = root->fs_info;
4499 
4500 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4501 	if (!block_rsv)
4502 		return NULL;
4503 
4504 	btrfs_init_block_rsv(block_rsv, type);
4505 	block_rsv->space_info = __find_space_info(fs_info,
4506 						  BTRFS_BLOCK_GROUP_METADATA);
4507 	return block_rsv;
4508 }
4509 
4510 void btrfs_free_block_rsv(struct btrfs_root *root,
4511 			  struct btrfs_block_rsv *rsv)
4512 {
4513 	if (!rsv)
4514 		return;
4515 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4516 	kfree(rsv);
4517 }
4518 
4519 int btrfs_block_rsv_add(struct btrfs_root *root,
4520 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4521 			enum btrfs_reserve_flush_enum flush)
4522 {
4523 	int ret;
4524 
4525 	if (num_bytes == 0)
4526 		return 0;
4527 
4528 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4529 	if (!ret) {
4530 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4531 		return 0;
4532 	}
4533 
4534 	return ret;
4535 }
4536 
4537 int btrfs_block_rsv_check(struct btrfs_root *root,
4538 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4539 {
4540 	u64 num_bytes = 0;
4541 	int ret = -ENOSPC;
4542 
4543 	if (!block_rsv)
4544 		return 0;
4545 
4546 	spin_lock(&block_rsv->lock);
4547 	num_bytes = div_factor(block_rsv->size, min_factor);
4548 	if (block_rsv->reserved >= num_bytes)
4549 		ret = 0;
4550 	spin_unlock(&block_rsv->lock);
4551 
4552 	return ret;
4553 }
4554 
4555 int btrfs_block_rsv_refill(struct btrfs_root *root,
4556 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4557 			   enum btrfs_reserve_flush_enum flush)
4558 {
4559 	u64 num_bytes = 0;
4560 	int ret = -ENOSPC;
4561 
4562 	if (!block_rsv)
4563 		return 0;
4564 
4565 	spin_lock(&block_rsv->lock);
4566 	num_bytes = min_reserved;
4567 	if (block_rsv->reserved >= num_bytes)
4568 		ret = 0;
4569 	else
4570 		num_bytes -= block_rsv->reserved;
4571 	spin_unlock(&block_rsv->lock);
4572 
4573 	if (!ret)
4574 		return 0;
4575 
4576 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4577 	if (!ret) {
4578 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4579 		return 0;
4580 	}
4581 
4582 	return ret;
4583 }
4584 
4585 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4586 			    struct btrfs_block_rsv *dst_rsv,
4587 			    u64 num_bytes)
4588 {
4589 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4590 }
4591 
4592 void btrfs_block_rsv_release(struct btrfs_root *root,
4593 			     struct btrfs_block_rsv *block_rsv,
4594 			     u64 num_bytes)
4595 {
4596 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4597 	if (global_rsv->full || global_rsv == block_rsv ||
4598 	    block_rsv->space_info != global_rsv->space_info)
4599 		global_rsv = NULL;
4600 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4601 				num_bytes);
4602 }
4603 
4604 /*
4605  * helper to calculate size of global block reservation.
4606  * the desired value is sum of space used by extent tree,
4607  * checksum tree and root tree
4608  */
4609 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4610 {
4611 	struct btrfs_space_info *sinfo;
4612 	u64 num_bytes;
4613 	u64 meta_used;
4614 	u64 data_used;
4615 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4616 
4617 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4618 	spin_lock(&sinfo->lock);
4619 	data_used = sinfo->bytes_used;
4620 	spin_unlock(&sinfo->lock);
4621 
4622 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4623 	spin_lock(&sinfo->lock);
4624 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4625 		data_used = 0;
4626 	meta_used = sinfo->bytes_used;
4627 	spin_unlock(&sinfo->lock);
4628 
4629 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4630 		    csum_size * 2;
4631 	num_bytes += div64_u64(data_used + meta_used, 50);
4632 
4633 	if (num_bytes * 3 > meta_used)
4634 		num_bytes = div64_u64(meta_used, 3);
4635 
4636 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4637 }
4638 
4639 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4640 {
4641 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4642 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4643 	u64 num_bytes;
4644 
4645 	num_bytes = calc_global_metadata_size(fs_info);
4646 
4647 	spin_lock(&sinfo->lock);
4648 	spin_lock(&block_rsv->lock);
4649 
4650 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4651 
4652 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4653 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4654 		    sinfo->bytes_may_use;
4655 
4656 	if (sinfo->total_bytes > num_bytes) {
4657 		num_bytes = sinfo->total_bytes - num_bytes;
4658 		block_rsv->reserved += num_bytes;
4659 		sinfo->bytes_may_use += num_bytes;
4660 		trace_btrfs_space_reservation(fs_info, "space_info",
4661 				      sinfo->flags, num_bytes, 1);
4662 	}
4663 
4664 	if (block_rsv->reserved >= block_rsv->size) {
4665 		num_bytes = block_rsv->reserved - block_rsv->size;
4666 		sinfo->bytes_may_use -= num_bytes;
4667 		trace_btrfs_space_reservation(fs_info, "space_info",
4668 				      sinfo->flags, num_bytes, 0);
4669 		sinfo->reservation_progress++;
4670 		block_rsv->reserved = block_rsv->size;
4671 		block_rsv->full = 1;
4672 	}
4673 
4674 	spin_unlock(&block_rsv->lock);
4675 	spin_unlock(&sinfo->lock);
4676 }
4677 
4678 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4679 {
4680 	struct btrfs_space_info *space_info;
4681 
4682 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4683 	fs_info->chunk_block_rsv.space_info = space_info;
4684 
4685 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4686 	fs_info->global_block_rsv.space_info = space_info;
4687 	fs_info->delalloc_block_rsv.space_info = space_info;
4688 	fs_info->trans_block_rsv.space_info = space_info;
4689 	fs_info->empty_block_rsv.space_info = space_info;
4690 	fs_info->delayed_block_rsv.space_info = space_info;
4691 
4692 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4693 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4694 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4695 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4696 	if (fs_info->quota_root)
4697 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4698 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4699 
4700 	update_global_block_rsv(fs_info);
4701 }
4702 
4703 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4704 {
4705 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4706 				(u64)-1);
4707 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4708 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4709 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4710 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4711 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4712 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4713 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4714 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4715 }
4716 
4717 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4718 				  struct btrfs_root *root)
4719 {
4720 	if (!trans->block_rsv)
4721 		return;
4722 
4723 	if (!trans->bytes_reserved)
4724 		return;
4725 
4726 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4727 				      trans->transid, trans->bytes_reserved, 0);
4728 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4729 	trans->bytes_reserved = 0;
4730 }
4731 
4732 /* Can only return 0 or -ENOSPC */
4733 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4734 				  struct inode *inode)
4735 {
4736 	struct btrfs_root *root = BTRFS_I(inode)->root;
4737 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4738 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4739 
4740 	/*
4741 	 * We need to hold space in order to delete our orphan item once we've
4742 	 * added it, so this takes the reservation so we can release it later
4743 	 * when we are truly done with the orphan item.
4744 	 */
4745 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4746 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4747 				      btrfs_ino(inode), num_bytes, 1);
4748 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4749 }
4750 
4751 void btrfs_orphan_release_metadata(struct inode *inode)
4752 {
4753 	struct btrfs_root *root = BTRFS_I(inode)->root;
4754 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4755 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4756 				      btrfs_ino(inode), num_bytes, 0);
4757 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4758 }
4759 
4760 /*
4761  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4762  * root: the root of the parent directory
4763  * rsv: block reservation
4764  * items: the number of items that we need do reservation
4765  * qgroup_reserved: used to return the reserved size in qgroup
4766  *
4767  * This function is used to reserve the space for snapshot/subvolume
4768  * creation and deletion. Those operations are different with the
4769  * common file/directory operations, they change two fs/file trees
4770  * and root tree, the number of items that the qgroup reserves is
4771  * different with the free space reservation. So we can not use
4772  * the space reseravtion mechanism in start_transaction().
4773  */
4774 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4775 				     struct btrfs_block_rsv *rsv,
4776 				     int items,
4777 				     u64 *qgroup_reserved,
4778 				     bool use_global_rsv)
4779 {
4780 	u64 num_bytes;
4781 	int ret;
4782 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4783 
4784 	if (root->fs_info->quota_enabled) {
4785 		/* One for parent inode, two for dir entries */
4786 		num_bytes = 3 * root->leafsize;
4787 		ret = btrfs_qgroup_reserve(root, num_bytes);
4788 		if (ret)
4789 			return ret;
4790 	} else {
4791 		num_bytes = 0;
4792 	}
4793 
4794 	*qgroup_reserved = num_bytes;
4795 
4796 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4797 	rsv->space_info = __find_space_info(root->fs_info,
4798 					    BTRFS_BLOCK_GROUP_METADATA);
4799 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4800 				  BTRFS_RESERVE_FLUSH_ALL);
4801 
4802 	if (ret == -ENOSPC && use_global_rsv)
4803 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4804 
4805 	if (ret) {
4806 		if (*qgroup_reserved)
4807 			btrfs_qgroup_free(root, *qgroup_reserved);
4808 	}
4809 
4810 	return ret;
4811 }
4812 
4813 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4814 				      struct btrfs_block_rsv *rsv,
4815 				      u64 qgroup_reserved)
4816 {
4817 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4818 	if (qgroup_reserved)
4819 		btrfs_qgroup_free(root, qgroup_reserved);
4820 }
4821 
4822 /**
4823  * drop_outstanding_extent - drop an outstanding extent
4824  * @inode: the inode we're dropping the extent for
4825  *
4826  * This is called when we are freeing up an outstanding extent, either called
4827  * after an error or after an extent is written.  This will return the number of
4828  * reserved extents that need to be freed.  This must be called with
4829  * BTRFS_I(inode)->lock held.
4830  */
4831 static unsigned drop_outstanding_extent(struct inode *inode)
4832 {
4833 	unsigned drop_inode_space = 0;
4834 	unsigned dropped_extents = 0;
4835 
4836 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4837 	BTRFS_I(inode)->outstanding_extents--;
4838 
4839 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4840 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4841 			       &BTRFS_I(inode)->runtime_flags))
4842 		drop_inode_space = 1;
4843 
4844 	/*
4845 	 * If we have more or the same amount of outsanding extents than we have
4846 	 * reserved then we need to leave the reserved extents count alone.
4847 	 */
4848 	if (BTRFS_I(inode)->outstanding_extents >=
4849 	    BTRFS_I(inode)->reserved_extents)
4850 		return drop_inode_space;
4851 
4852 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4853 		BTRFS_I(inode)->outstanding_extents;
4854 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4855 	return dropped_extents + drop_inode_space;
4856 }
4857 
4858 /**
4859  * calc_csum_metadata_size - return the amount of metada space that must be
4860  *	reserved/free'd for the given bytes.
4861  * @inode: the inode we're manipulating
4862  * @num_bytes: the number of bytes in question
4863  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4864  *
4865  * This adjusts the number of csum_bytes in the inode and then returns the
4866  * correct amount of metadata that must either be reserved or freed.  We
4867  * calculate how many checksums we can fit into one leaf and then divide the
4868  * number of bytes that will need to be checksumed by this value to figure out
4869  * how many checksums will be required.  If we are adding bytes then the number
4870  * may go up and we will return the number of additional bytes that must be
4871  * reserved.  If it is going down we will return the number of bytes that must
4872  * be freed.
4873  *
4874  * This must be called with BTRFS_I(inode)->lock held.
4875  */
4876 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4877 				   int reserve)
4878 {
4879 	struct btrfs_root *root = BTRFS_I(inode)->root;
4880 	u64 csum_size;
4881 	int num_csums_per_leaf;
4882 	int num_csums;
4883 	int old_csums;
4884 
4885 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4886 	    BTRFS_I(inode)->csum_bytes == 0)
4887 		return 0;
4888 
4889 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4890 	if (reserve)
4891 		BTRFS_I(inode)->csum_bytes += num_bytes;
4892 	else
4893 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4894 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4895 	num_csums_per_leaf = (int)div64_u64(csum_size,
4896 					    sizeof(struct btrfs_csum_item) +
4897 					    sizeof(struct btrfs_disk_key));
4898 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4899 	num_csums = num_csums + num_csums_per_leaf - 1;
4900 	num_csums = num_csums / num_csums_per_leaf;
4901 
4902 	old_csums = old_csums + num_csums_per_leaf - 1;
4903 	old_csums = old_csums / num_csums_per_leaf;
4904 
4905 	/* No change, no need to reserve more */
4906 	if (old_csums == num_csums)
4907 		return 0;
4908 
4909 	if (reserve)
4910 		return btrfs_calc_trans_metadata_size(root,
4911 						      num_csums - old_csums);
4912 
4913 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4914 }
4915 
4916 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4917 {
4918 	struct btrfs_root *root = BTRFS_I(inode)->root;
4919 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4920 	u64 to_reserve = 0;
4921 	u64 csum_bytes;
4922 	unsigned nr_extents = 0;
4923 	int extra_reserve = 0;
4924 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4925 	int ret = 0;
4926 	bool delalloc_lock = true;
4927 	u64 to_free = 0;
4928 	unsigned dropped;
4929 
4930 	/* If we are a free space inode we need to not flush since we will be in
4931 	 * the middle of a transaction commit.  We also don't need the delalloc
4932 	 * mutex since we won't race with anybody.  We need this mostly to make
4933 	 * lockdep shut its filthy mouth.
4934 	 */
4935 	if (btrfs_is_free_space_inode(inode)) {
4936 		flush = BTRFS_RESERVE_NO_FLUSH;
4937 		delalloc_lock = false;
4938 	}
4939 
4940 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4941 	    btrfs_transaction_in_commit(root->fs_info))
4942 		schedule_timeout(1);
4943 
4944 	if (delalloc_lock)
4945 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4946 
4947 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4948 
4949 	spin_lock(&BTRFS_I(inode)->lock);
4950 	BTRFS_I(inode)->outstanding_extents++;
4951 
4952 	if (BTRFS_I(inode)->outstanding_extents >
4953 	    BTRFS_I(inode)->reserved_extents)
4954 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4955 			BTRFS_I(inode)->reserved_extents;
4956 
4957 	/*
4958 	 * Add an item to reserve for updating the inode when we complete the
4959 	 * delalloc io.
4960 	 */
4961 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4962 		      &BTRFS_I(inode)->runtime_flags)) {
4963 		nr_extents++;
4964 		extra_reserve = 1;
4965 	}
4966 
4967 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4968 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4969 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4970 	spin_unlock(&BTRFS_I(inode)->lock);
4971 
4972 	if (root->fs_info->quota_enabled) {
4973 		ret = btrfs_qgroup_reserve(root, num_bytes +
4974 					   nr_extents * root->leafsize);
4975 		if (ret)
4976 			goto out_fail;
4977 	}
4978 
4979 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4980 	if (unlikely(ret)) {
4981 		if (root->fs_info->quota_enabled)
4982 			btrfs_qgroup_free(root, num_bytes +
4983 						nr_extents * root->leafsize);
4984 		goto out_fail;
4985 	}
4986 
4987 	spin_lock(&BTRFS_I(inode)->lock);
4988 	if (extra_reserve) {
4989 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4990 			&BTRFS_I(inode)->runtime_flags);
4991 		nr_extents--;
4992 	}
4993 	BTRFS_I(inode)->reserved_extents += nr_extents;
4994 	spin_unlock(&BTRFS_I(inode)->lock);
4995 
4996 	if (delalloc_lock)
4997 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4998 
4999 	if (to_reserve)
5000 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
5001 					      btrfs_ino(inode), to_reserve, 1);
5002 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5003 
5004 	return 0;
5005 
5006 out_fail:
5007 	spin_lock(&BTRFS_I(inode)->lock);
5008 	dropped = drop_outstanding_extent(inode);
5009 	/*
5010 	 * If the inodes csum_bytes is the same as the original
5011 	 * csum_bytes then we know we haven't raced with any free()ers
5012 	 * so we can just reduce our inodes csum bytes and carry on.
5013 	 */
5014 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5015 		calc_csum_metadata_size(inode, num_bytes, 0);
5016 	} else {
5017 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5018 		u64 bytes;
5019 
5020 		/*
5021 		 * This is tricky, but first we need to figure out how much we
5022 		 * free'd from any free-ers that occured during this
5023 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5024 		 * before we dropped our lock, and then call the free for the
5025 		 * number of bytes that were freed while we were trying our
5026 		 * reservation.
5027 		 */
5028 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5029 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5030 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5031 
5032 
5033 		/*
5034 		 * Now we need to see how much we would have freed had we not
5035 		 * been making this reservation and our ->csum_bytes were not
5036 		 * artificially inflated.
5037 		 */
5038 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5039 		bytes = csum_bytes - orig_csum_bytes;
5040 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5041 
5042 		/*
5043 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5044 		 * more than to_free then we would have free'd more space had we
5045 		 * not had an artificially high ->csum_bytes, so we need to free
5046 		 * the remainder.  If bytes is the same or less then we don't
5047 		 * need to do anything, the other free-ers did the correct
5048 		 * thing.
5049 		 */
5050 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5051 		if (bytes > to_free)
5052 			to_free = bytes - to_free;
5053 		else
5054 			to_free = 0;
5055 	}
5056 	spin_unlock(&BTRFS_I(inode)->lock);
5057 	if (dropped)
5058 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5059 
5060 	if (to_free) {
5061 		btrfs_block_rsv_release(root, block_rsv, to_free);
5062 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5063 					      btrfs_ino(inode), to_free, 0);
5064 	}
5065 	if (delalloc_lock)
5066 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5067 	return ret;
5068 }
5069 
5070 /**
5071  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5072  * @inode: the inode to release the reservation for
5073  * @num_bytes: the number of bytes we're releasing
5074  *
5075  * This will release the metadata reservation for an inode.  This can be called
5076  * once we complete IO for a given set of bytes to release their metadata
5077  * reservations.
5078  */
5079 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5080 {
5081 	struct btrfs_root *root = BTRFS_I(inode)->root;
5082 	u64 to_free = 0;
5083 	unsigned dropped;
5084 
5085 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5086 	spin_lock(&BTRFS_I(inode)->lock);
5087 	dropped = drop_outstanding_extent(inode);
5088 
5089 	if (num_bytes)
5090 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5091 	spin_unlock(&BTRFS_I(inode)->lock);
5092 	if (dropped > 0)
5093 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5094 
5095 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5096 				      btrfs_ino(inode), to_free, 0);
5097 	if (root->fs_info->quota_enabled) {
5098 		btrfs_qgroup_free(root, num_bytes +
5099 					dropped * root->leafsize);
5100 	}
5101 
5102 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5103 				to_free);
5104 }
5105 
5106 /**
5107  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5108  * @inode: inode we're writing to
5109  * @num_bytes: the number of bytes we want to allocate
5110  *
5111  * This will do the following things
5112  *
5113  * o reserve space in the data space info for num_bytes
5114  * o reserve space in the metadata space info based on number of outstanding
5115  *   extents and how much csums will be needed
5116  * o add to the inodes ->delalloc_bytes
5117  * o add it to the fs_info's delalloc inodes list.
5118  *
5119  * This will return 0 for success and -ENOSPC if there is no space left.
5120  */
5121 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5122 {
5123 	int ret;
5124 
5125 	ret = btrfs_check_data_free_space(inode, num_bytes);
5126 	if (ret)
5127 		return ret;
5128 
5129 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5130 	if (ret) {
5131 		btrfs_free_reserved_data_space(inode, num_bytes);
5132 		return ret;
5133 	}
5134 
5135 	return 0;
5136 }
5137 
5138 /**
5139  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5140  * @inode: inode we're releasing space for
5141  * @num_bytes: the number of bytes we want to free up
5142  *
5143  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5144  * called in the case that we don't need the metadata AND data reservations
5145  * anymore.  So if there is an error or we insert an inline extent.
5146  *
5147  * This function will release the metadata space that was not used and will
5148  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5149  * list if there are no delalloc bytes left.
5150  */
5151 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5152 {
5153 	btrfs_delalloc_release_metadata(inode, num_bytes);
5154 	btrfs_free_reserved_data_space(inode, num_bytes);
5155 }
5156 
5157 static int update_block_group(struct btrfs_root *root,
5158 			      u64 bytenr, u64 num_bytes, int alloc)
5159 {
5160 	struct btrfs_block_group_cache *cache = NULL;
5161 	struct btrfs_fs_info *info = root->fs_info;
5162 	u64 total = num_bytes;
5163 	u64 old_val;
5164 	u64 byte_in_group;
5165 	int factor;
5166 
5167 	/* block accounting for super block */
5168 	spin_lock(&info->delalloc_root_lock);
5169 	old_val = btrfs_super_bytes_used(info->super_copy);
5170 	if (alloc)
5171 		old_val += num_bytes;
5172 	else
5173 		old_val -= num_bytes;
5174 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5175 	spin_unlock(&info->delalloc_root_lock);
5176 
5177 	while (total) {
5178 		cache = btrfs_lookup_block_group(info, bytenr);
5179 		if (!cache)
5180 			return -ENOENT;
5181 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5182 				    BTRFS_BLOCK_GROUP_RAID1 |
5183 				    BTRFS_BLOCK_GROUP_RAID10))
5184 			factor = 2;
5185 		else
5186 			factor = 1;
5187 		/*
5188 		 * If this block group has free space cache written out, we
5189 		 * need to make sure to load it if we are removing space.  This
5190 		 * is because we need the unpinning stage to actually add the
5191 		 * space back to the block group, otherwise we will leak space.
5192 		 */
5193 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5194 			cache_block_group(cache, 1);
5195 
5196 		byte_in_group = bytenr - cache->key.objectid;
5197 		WARN_ON(byte_in_group > cache->key.offset);
5198 
5199 		spin_lock(&cache->space_info->lock);
5200 		spin_lock(&cache->lock);
5201 
5202 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5203 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5204 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5205 
5206 		cache->dirty = 1;
5207 		old_val = btrfs_block_group_used(&cache->item);
5208 		num_bytes = min(total, cache->key.offset - byte_in_group);
5209 		if (alloc) {
5210 			old_val += num_bytes;
5211 			btrfs_set_block_group_used(&cache->item, old_val);
5212 			cache->reserved -= num_bytes;
5213 			cache->space_info->bytes_reserved -= num_bytes;
5214 			cache->space_info->bytes_used += num_bytes;
5215 			cache->space_info->disk_used += num_bytes * factor;
5216 			spin_unlock(&cache->lock);
5217 			spin_unlock(&cache->space_info->lock);
5218 		} else {
5219 			old_val -= num_bytes;
5220 			btrfs_set_block_group_used(&cache->item, old_val);
5221 			cache->pinned += num_bytes;
5222 			cache->space_info->bytes_pinned += num_bytes;
5223 			cache->space_info->bytes_used -= num_bytes;
5224 			cache->space_info->disk_used -= num_bytes * factor;
5225 			spin_unlock(&cache->lock);
5226 			spin_unlock(&cache->space_info->lock);
5227 
5228 			set_extent_dirty(info->pinned_extents,
5229 					 bytenr, bytenr + num_bytes - 1,
5230 					 GFP_NOFS | __GFP_NOFAIL);
5231 		}
5232 		btrfs_put_block_group(cache);
5233 		total -= num_bytes;
5234 		bytenr += num_bytes;
5235 	}
5236 	return 0;
5237 }
5238 
5239 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5240 {
5241 	struct btrfs_block_group_cache *cache;
5242 	u64 bytenr;
5243 
5244 	spin_lock(&root->fs_info->block_group_cache_lock);
5245 	bytenr = root->fs_info->first_logical_byte;
5246 	spin_unlock(&root->fs_info->block_group_cache_lock);
5247 
5248 	if (bytenr < (u64)-1)
5249 		return bytenr;
5250 
5251 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5252 	if (!cache)
5253 		return 0;
5254 
5255 	bytenr = cache->key.objectid;
5256 	btrfs_put_block_group(cache);
5257 
5258 	return bytenr;
5259 }
5260 
5261 static int pin_down_extent(struct btrfs_root *root,
5262 			   struct btrfs_block_group_cache *cache,
5263 			   u64 bytenr, u64 num_bytes, int reserved)
5264 {
5265 	spin_lock(&cache->space_info->lock);
5266 	spin_lock(&cache->lock);
5267 	cache->pinned += num_bytes;
5268 	cache->space_info->bytes_pinned += num_bytes;
5269 	if (reserved) {
5270 		cache->reserved -= num_bytes;
5271 		cache->space_info->bytes_reserved -= num_bytes;
5272 	}
5273 	spin_unlock(&cache->lock);
5274 	spin_unlock(&cache->space_info->lock);
5275 
5276 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5277 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5278 	return 0;
5279 }
5280 
5281 /*
5282  * this function must be called within transaction
5283  */
5284 int btrfs_pin_extent(struct btrfs_root *root,
5285 		     u64 bytenr, u64 num_bytes, int reserved)
5286 {
5287 	struct btrfs_block_group_cache *cache;
5288 
5289 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5290 	BUG_ON(!cache); /* Logic error */
5291 
5292 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5293 
5294 	btrfs_put_block_group(cache);
5295 	return 0;
5296 }
5297 
5298 /*
5299  * this function must be called within transaction
5300  */
5301 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5302 				    u64 bytenr, u64 num_bytes)
5303 {
5304 	struct btrfs_block_group_cache *cache;
5305 	int ret;
5306 
5307 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5308 	if (!cache)
5309 		return -EINVAL;
5310 
5311 	/*
5312 	 * pull in the free space cache (if any) so that our pin
5313 	 * removes the free space from the cache.  We have load_only set
5314 	 * to one because the slow code to read in the free extents does check
5315 	 * the pinned extents.
5316 	 */
5317 	cache_block_group(cache, 1);
5318 
5319 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5320 
5321 	/* remove us from the free space cache (if we're there at all) */
5322 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5323 	btrfs_put_block_group(cache);
5324 	return ret;
5325 }
5326 
5327 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5328 {
5329 	int ret;
5330 	struct btrfs_block_group_cache *block_group;
5331 	struct btrfs_caching_control *caching_ctl;
5332 
5333 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5334 	if (!block_group)
5335 		return -EINVAL;
5336 
5337 	cache_block_group(block_group, 0);
5338 	caching_ctl = get_caching_control(block_group);
5339 
5340 	if (!caching_ctl) {
5341 		/* Logic error */
5342 		BUG_ON(!block_group_cache_done(block_group));
5343 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5344 	} else {
5345 		mutex_lock(&caching_ctl->mutex);
5346 
5347 		if (start >= caching_ctl->progress) {
5348 			ret = add_excluded_extent(root, start, num_bytes);
5349 		} else if (start + num_bytes <= caching_ctl->progress) {
5350 			ret = btrfs_remove_free_space(block_group,
5351 						      start, num_bytes);
5352 		} else {
5353 			num_bytes = caching_ctl->progress - start;
5354 			ret = btrfs_remove_free_space(block_group,
5355 						      start, num_bytes);
5356 			if (ret)
5357 				goto out_lock;
5358 
5359 			num_bytes = (start + num_bytes) -
5360 				caching_ctl->progress;
5361 			start = caching_ctl->progress;
5362 			ret = add_excluded_extent(root, start, num_bytes);
5363 		}
5364 out_lock:
5365 		mutex_unlock(&caching_ctl->mutex);
5366 		put_caching_control(caching_ctl);
5367 	}
5368 	btrfs_put_block_group(block_group);
5369 	return ret;
5370 }
5371 
5372 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5373 				 struct extent_buffer *eb)
5374 {
5375 	struct btrfs_file_extent_item *item;
5376 	struct btrfs_key key;
5377 	int found_type;
5378 	int i;
5379 
5380 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5381 		return 0;
5382 
5383 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5384 		btrfs_item_key_to_cpu(eb, &key, i);
5385 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5386 			continue;
5387 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5388 		found_type = btrfs_file_extent_type(eb, item);
5389 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5390 			continue;
5391 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5392 			continue;
5393 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5394 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5395 		__exclude_logged_extent(log, key.objectid, key.offset);
5396 	}
5397 
5398 	return 0;
5399 }
5400 
5401 /**
5402  * btrfs_update_reserved_bytes - update the block_group and space info counters
5403  * @cache:	The cache we are manipulating
5404  * @num_bytes:	The number of bytes in question
5405  * @reserve:	One of the reservation enums
5406  *
5407  * This is called by the allocator when it reserves space, or by somebody who is
5408  * freeing space that was never actually used on disk.  For example if you
5409  * reserve some space for a new leaf in transaction A and before transaction A
5410  * commits you free that leaf, you call this with reserve set to 0 in order to
5411  * clear the reservation.
5412  *
5413  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5414  * ENOSPC accounting.  For data we handle the reservation through clearing the
5415  * delalloc bits in the io_tree.  We have to do this since we could end up
5416  * allocating less disk space for the amount of data we have reserved in the
5417  * case of compression.
5418  *
5419  * If this is a reservation and the block group has become read only we cannot
5420  * make the reservation and return -EAGAIN, otherwise this function always
5421  * succeeds.
5422  */
5423 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5424 				       u64 num_bytes, int reserve)
5425 {
5426 	struct btrfs_space_info *space_info = cache->space_info;
5427 	int ret = 0;
5428 
5429 	spin_lock(&space_info->lock);
5430 	spin_lock(&cache->lock);
5431 	if (reserve != RESERVE_FREE) {
5432 		if (cache->ro) {
5433 			ret = -EAGAIN;
5434 		} else {
5435 			cache->reserved += num_bytes;
5436 			space_info->bytes_reserved += num_bytes;
5437 			if (reserve == RESERVE_ALLOC) {
5438 				trace_btrfs_space_reservation(cache->fs_info,
5439 						"space_info", space_info->flags,
5440 						num_bytes, 0);
5441 				space_info->bytes_may_use -= num_bytes;
5442 			}
5443 		}
5444 	} else {
5445 		if (cache->ro)
5446 			space_info->bytes_readonly += num_bytes;
5447 		cache->reserved -= num_bytes;
5448 		space_info->bytes_reserved -= num_bytes;
5449 		space_info->reservation_progress++;
5450 	}
5451 	spin_unlock(&cache->lock);
5452 	spin_unlock(&space_info->lock);
5453 	return ret;
5454 }
5455 
5456 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5457 				struct btrfs_root *root)
5458 {
5459 	struct btrfs_fs_info *fs_info = root->fs_info;
5460 	struct btrfs_caching_control *next;
5461 	struct btrfs_caching_control *caching_ctl;
5462 	struct btrfs_block_group_cache *cache;
5463 	struct btrfs_space_info *space_info;
5464 
5465 	down_write(&fs_info->extent_commit_sem);
5466 
5467 	list_for_each_entry_safe(caching_ctl, next,
5468 				 &fs_info->caching_block_groups, list) {
5469 		cache = caching_ctl->block_group;
5470 		if (block_group_cache_done(cache)) {
5471 			cache->last_byte_to_unpin = (u64)-1;
5472 			list_del_init(&caching_ctl->list);
5473 			put_caching_control(caching_ctl);
5474 		} else {
5475 			cache->last_byte_to_unpin = caching_ctl->progress;
5476 		}
5477 	}
5478 
5479 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5480 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5481 	else
5482 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5483 
5484 	up_write(&fs_info->extent_commit_sem);
5485 
5486 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5487 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5488 
5489 	update_global_block_rsv(fs_info);
5490 }
5491 
5492 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5493 {
5494 	struct btrfs_fs_info *fs_info = root->fs_info;
5495 	struct btrfs_block_group_cache *cache = NULL;
5496 	struct btrfs_space_info *space_info;
5497 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5498 	u64 len;
5499 	bool readonly;
5500 
5501 	while (start <= end) {
5502 		readonly = false;
5503 		if (!cache ||
5504 		    start >= cache->key.objectid + cache->key.offset) {
5505 			if (cache)
5506 				btrfs_put_block_group(cache);
5507 			cache = btrfs_lookup_block_group(fs_info, start);
5508 			BUG_ON(!cache); /* Logic error */
5509 		}
5510 
5511 		len = cache->key.objectid + cache->key.offset - start;
5512 		len = min(len, end + 1 - start);
5513 
5514 		if (start < cache->last_byte_to_unpin) {
5515 			len = min(len, cache->last_byte_to_unpin - start);
5516 			btrfs_add_free_space(cache, start, len);
5517 		}
5518 
5519 		start += len;
5520 		space_info = cache->space_info;
5521 
5522 		spin_lock(&space_info->lock);
5523 		spin_lock(&cache->lock);
5524 		cache->pinned -= len;
5525 		space_info->bytes_pinned -= len;
5526 		if (cache->ro) {
5527 			space_info->bytes_readonly += len;
5528 			readonly = true;
5529 		}
5530 		spin_unlock(&cache->lock);
5531 		if (!readonly && global_rsv->space_info == space_info) {
5532 			spin_lock(&global_rsv->lock);
5533 			if (!global_rsv->full) {
5534 				len = min(len, global_rsv->size -
5535 					  global_rsv->reserved);
5536 				global_rsv->reserved += len;
5537 				space_info->bytes_may_use += len;
5538 				if (global_rsv->reserved >= global_rsv->size)
5539 					global_rsv->full = 1;
5540 			}
5541 			spin_unlock(&global_rsv->lock);
5542 		}
5543 		spin_unlock(&space_info->lock);
5544 	}
5545 
5546 	if (cache)
5547 		btrfs_put_block_group(cache);
5548 	return 0;
5549 }
5550 
5551 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5552 			       struct btrfs_root *root)
5553 {
5554 	struct btrfs_fs_info *fs_info = root->fs_info;
5555 	struct extent_io_tree *unpin;
5556 	u64 start;
5557 	u64 end;
5558 	int ret;
5559 
5560 	if (trans->aborted)
5561 		return 0;
5562 
5563 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5564 		unpin = &fs_info->freed_extents[1];
5565 	else
5566 		unpin = &fs_info->freed_extents[0];
5567 
5568 	while (1) {
5569 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5570 					    EXTENT_DIRTY, NULL);
5571 		if (ret)
5572 			break;
5573 
5574 		if (btrfs_test_opt(root, DISCARD))
5575 			ret = btrfs_discard_extent(root, start,
5576 						   end + 1 - start, NULL);
5577 
5578 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5579 		unpin_extent_range(root, start, end);
5580 		cond_resched();
5581 	}
5582 
5583 	return 0;
5584 }
5585 
5586 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5587 			     u64 owner, u64 root_objectid)
5588 {
5589 	struct btrfs_space_info *space_info;
5590 	u64 flags;
5591 
5592 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5593 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5594 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5595 		else
5596 			flags = BTRFS_BLOCK_GROUP_METADATA;
5597 	} else {
5598 		flags = BTRFS_BLOCK_GROUP_DATA;
5599 	}
5600 
5601 	space_info = __find_space_info(fs_info, flags);
5602 	BUG_ON(!space_info); /* Logic bug */
5603 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5604 }
5605 
5606 
5607 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5608 				struct btrfs_root *root,
5609 				u64 bytenr, u64 num_bytes, u64 parent,
5610 				u64 root_objectid, u64 owner_objectid,
5611 				u64 owner_offset, int refs_to_drop,
5612 				struct btrfs_delayed_extent_op *extent_op)
5613 {
5614 	struct btrfs_key key;
5615 	struct btrfs_path *path;
5616 	struct btrfs_fs_info *info = root->fs_info;
5617 	struct btrfs_root *extent_root = info->extent_root;
5618 	struct extent_buffer *leaf;
5619 	struct btrfs_extent_item *ei;
5620 	struct btrfs_extent_inline_ref *iref;
5621 	int ret;
5622 	int is_data;
5623 	int extent_slot = 0;
5624 	int found_extent = 0;
5625 	int num_to_del = 1;
5626 	u32 item_size;
5627 	u64 refs;
5628 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5629 						 SKINNY_METADATA);
5630 
5631 	path = btrfs_alloc_path();
5632 	if (!path)
5633 		return -ENOMEM;
5634 
5635 	path->reada = 1;
5636 	path->leave_spinning = 1;
5637 
5638 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5639 	BUG_ON(!is_data && refs_to_drop != 1);
5640 
5641 	if (is_data)
5642 		skinny_metadata = 0;
5643 
5644 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5645 				    bytenr, num_bytes, parent,
5646 				    root_objectid, owner_objectid,
5647 				    owner_offset);
5648 	if (ret == 0) {
5649 		extent_slot = path->slots[0];
5650 		while (extent_slot >= 0) {
5651 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5652 					      extent_slot);
5653 			if (key.objectid != bytenr)
5654 				break;
5655 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5656 			    key.offset == num_bytes) {
5657 				found_extent = 1;
5658 				break;
5659 			}
5660 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5661 			    key.offset == owner_objectid) {
5662 				found_extent = 1;
5663 				break;
5664 			}
5665 			if (path->slots[0] - extent_slot > 5)
5666 				break;
5667 			extent_slot--;
5668 		}
5669 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5670 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5671 		if (found_extent && item_size < sizeof(*ei))
5672 			found_extent = 0;
5673 #endif
5674 		if (!found_extent) {
5675 			BUG_ON(iref);
5676 			ret = remove_extent_backref(trans, extent_root, path,
5677 						    NULL, refs_to_drop,
5678 						    is_data);
5679 			if (ret) {
5680 				btrfs_abort_transaction(trans, extent_root, ret);
5681 				goto out;
5682 			}
5683 			btrfs_release_path(path);
5684 			path->leave_spinning = 1;
5685 
5686 			key.objectid = bytenr;
5687 			key.type = BTRFS_EXTENT_ITEM_KEY;
5688 			key.offset = num_bytes;
5689 
5690 			if (!is_data && skinny_metadata) {
5691 				key.type = BTRFS_METADATA_ITEM_KEY;
5692 				key.offset = owner_objectid;
5693 			}
5694 
5695 			ret = btrfs_search_slot(trans, extent_root,
5696 						&key, path, -1, 1);
5697 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5698 				/*
5699 				 * Couldn't find our skinny metadata item,
5700 				 * see if we have ye olde extent item.
5701 				 */
5702 				path->slots[0]--;
5703 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5704 						      path->slots[0]);
5705 				if (key.objectid == bytenr &&
5706 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5707 				    key.offset == num_bytes)
5708 					ret = 0;
5709 			}
5710 
5711 			if (ret > 0 && skinny_metadata) {
5712 				skinny_metadata = false;
5713 				key.type = BTRFS_EXTENT_ITEM_KEY;
5714 				key.offset = num_bytes;
5715 				btrfs_release_path(path);
5716 				ret = btrfs_search_slot(trans, extent_root,
5717 							&key, path, -1, 1);
5718 			}
5719 
5720 			if (ret) {
5721 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5722 					ret, bytenr);
5723 				if (ret > 0)
5724 					btrfs_print_leaf(extent_root,
5725 							 path->nodes[0]);
5726 			}
5727 			if (ret < 0) {
5728 				btrfs_abort_transaction(trans, extent_root, ret);
5729 				goto out;
5730 			}
5731 			extent_slot = path->slots[0];
5732 		}
5733 	} else if (ret == -ENOENT) {
5734 		btrfs_print_leaf(extent_root, path->nodes[0]);
5735 		WARN_ON(1);
5736 		btrfs_err(info,
5737 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5738 			bytenr, parent, root_objectid, owner_objectid,
5739 			owner_offset);
5740 	} else {
5741 		btrfs_abort_transaction(trans, extent_root, ret);
5742 		goto out;
5743 	}
5744 
5745 	leaf = path->nodes[0];
5746 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5747 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5748 	if (item_size < sizeof(*ei)) {
5749 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5750 		ret = convert_extent_item_v0(trans, extent_root, path,
5751 					     owner_objectid, 0);
5752 		if (ret < 0) {
5753 			btrfs_abort_transaction(trans, extent_root, ret);
5754 			goto out;
5755 		}
5756 
5757 		btrfs_release_path(path);
5758 		path->leave_spinning = 1;
5759 
5760 		key.objectid = bytenr;
5761 		key.type = BTRFS_EXTENT_ITEM_KEY;
5762 		key.offset = num_bytes;
5763 
5764 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5765 					-1, 1);
5766 		if (ret) {
5767 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5768 				ret, bytenr);
5769 			btrfs_print_leaf(extent_root, path->nodes[0]);
5770 		}
5771 		if (ret < 0) {
5772 			btrfs_abort_transaction(trans, extent_root, ret);
5773 			goto out;
5774 		}
5775 
5776 		extent_slot = path->slots[0];
5777 		leaf = path->nodes[0];
5778 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5779 	}
5780 #endif
5781 	BUG_ON(item_size < sizeof(*ei));
5782 	ei = btrfs_item_ptr(leaf, extent_slot,
5783 			    struct btrfs_extent_item);
5784 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5785 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5786 		struct btrfs_tree_block_info *bi;
5787 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5788 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5789 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5790 	}
5791 
5792 	refs = btrfs_extent_refs(leaf, ei);
5793 	if (refs < refs_to_drop) {
5794 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5795 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5796 		ret = -EINVAL;
5797 		btrfs_abort_transaction(trans, extent_root, ret);
5798 		goto out;
5799 	}
5800 	refs -= refs_to_drop;
5801 
5802 	if (refs > 0) {
5803 		if (extent_op)
5804 			__run_delayed_extent_op(extent_op, leaf, ei);
5805 		/*
5806 		 * In the case of inline back ref, reference count will
5807 		 * be updated by remove_extent_backref
5808 		 */
5809 		if (iref) {
5810 			BUG_ON(!found_extent);
5811 		} else {
5812 			btrfs_set_extent_refs(leaf, ei, refs);
5813 			btrfs_mark_buffer_dirty(leaf);
5814 		}
5815 		if (found_extent) {
5816 			ret = remove_extent_backref(trans, extent_root, path,
5817 						    iref, refs_to_drop,
5818 						    is_data);
5819 			if (ret) {
5820 				btrfs_abort_transaction(trans, extent_root, ret);
5821 				goto out;
5822 			}
5823 		}
5824 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5825 				 root_objectid);
5826 	} else {
5827 		if (found_extent) {
5828 			BUG_ON(is_data && refs_to_drop !=
5829 			       extent_data_ref_count(root, path, iref));
5830 			if (iref) {
5831 				BUG_ON(path->slots[0] != extent_slot);
5832 			} else {
5833 				BUG_ON(path->slots[0] != extent_slot + 1);
5834 				path->slots[0] = extent_slot;
5835 				num_to_del = 2;
5836 			}
5837 		}
5838 
5839 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5840 				      num_to_del);
5841 		if (ret) {
5842 			btrfs_abort_transaction(trans, extent_root, ret);
5843 			goto out;
5844 		}
5845 		btrfs_release_path(path);
5846 
5847 		if (is_data) {
5848 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5849 			if (ret) {
5850 				btrfs_abort_transaction(trans, extent_root, ret);
5851 				goto out;
5852 			}
5853 		}
5854 
5855 		ret = update_block_group(root, bytenr, num_bytes, 0);
5856 		if (ret) {
5857 			btrfs_abort_transaction(trans, extent_root, ret);
5858 			goto out;
5859 		}
5860 	}
5861 out:
5862 	btrfs_free_path(path);
5863 	return ret;
5864 }
5865 
5866 /*
5867  * when we free an block, it is possible (and likely) that we free the last
5868  * delayed ref for that extent as well.  This searches the delayed ref tree for
5869  * a given extent, and if there are no other delayed refs to be processed, it
5870  * removes it from the tree.
5871  */
5872 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5873 				      struct btrfs_root *root, u64 bytenr)
5874 {
5875 	struct btrfs_delayed_ref_head *head;
5876 	struct btrfs_delayed_ref_root *delayed_refs;
5877 	struct btrfs_delayed_ref_node *ref;
5878 	struct rb_node *node;
5879 	int ret = 0;
5880 
5881 	delayed_refs = &trans->transaction->delayed_refs;
5882 	spin_lock(&delayed_refs->lock);
5883 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5884 	if (!head)
5885 		goto out;
5886 
5887 	node = rb_prev(&head->node.rb_node);
5888 	if (!node)
5889 		goto out;
5890 
5891 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5892 
5893 	/* there are still entries for this ref, we can't drop it */
5894 	if (ref->bytenr == bytenr)
5895 		goto out;
5896 
5897 	if (head->extent_op) {
5898 		if (!head->must_insert_reserved)
5899 			goto out;
5900 		btrfs_free_delayed_extent_op(head->extent_op);
5901 		head->extent_op = NULL;
5902 	}
5903 
5904 	/*
5905 	 * waiting for the lock here would deadlock.  If someone else has it
5906 	 * locked they are already in the process of dropping it anyway
5907 	 */
5908 	if (!mutex_trylock(&head->mutex))
5909 		goto out;
5910 
5911 	/*
5912 	 * at this point we have a head with no other entries.  Go
5913 	 * ahead and process it.
5914 	 */
5915 	head->node.in_tree = 0;
5916 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5917 
5918 	delayed_refs->num_entries--;
5919 
5920 	/*
5921 	 * we don't take a ref on the node because we're removing it from the
5922 	 * tree, so we just steal the ref the tree was holding.
5923 	 */
5924 	delayed_refs->num_heads--;
5925 	if (list_empty(&head->cluster))
5926 		delayed_refs->num_heads_ready--;
5927 
5928 	list_del_init(&head->cluster);
5929 	spin_unlock(&delayed_refs->lock);
5930 
5931 	BUG_ON(head->extent_op);
5932 	if (head->must_insert_reserved)
5933 		ret = 1;
5934 
5935 	mutex_unlock(&head->mutex);
5936 	btrfs_put_delayed_ref(&head->node);
5937 	return ret;
5938 out:
5939 	spin_unlock(&delayed_refs->lock);
5940 	return 0;
5941 }
5942 
5943 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5944 			   struct btrfs_root *root,
5945 			   struct extent_buffer *buf,
5946 			   u64 parent, int last_ref)
5947 {
5948 	struct btrfs_block_group_cache *cache = NULL;
5949 	int pin = 1;
5950 	int ret;
5951 
5952 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5953 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5954 					buf->start, buf->len,
5955 					parent, root->root_key.objectid,
5956 					btrfs_header_level(buf),
5957 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5958 		BUG_ON(ret); /* -ENOMEM */
5959 	}
5960 
5961 	if (!last_ref)
5962 		return;
5963 
5964 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5965 
5966 	if (btrfs_header_generation(buf) == trans->transid) {
5967 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5968 			ret = check_ref_cleanup(trans, root, buf->start);
5969 			if (!ret)
5970 				goto out;
5971 		}
5972 
5973 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5974 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5975 			goto out;
5976 		}
5977 
5978 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5979 
5980 		btrfs_add_free_space(cache, buf->start, buf->len);
5981 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5982 		pin = 0;
5983 	}
5984 out:
5985 	if (pin)
5986 		add_pinned_bytes(root->fs_info, buf->len,
5987 				 btrfs_header_level(buf),
5988 				 root->root_key.objectid);
5989 
5990 	/*
5991 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5992 	 * anymore.
5993 	 */
5994 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5995 	btrfs_put_block_group(cache);
5996 }
5997 
5998 /* Can return -ENOMEM */
5999 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6000 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6001 		      u64 owner, u64 offset, int for_cow)
6002 {
6003 	int ret;
6004 	struct btrfs_fs_info *fs_info = root->fs_info;
6005 
6006 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6007 
6008 	/*
6009 	 * tree log blocks never actually go into the extent allocation
6010 	 * tree, just update pinning info and exit early.
6011 	 */
6012 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6013 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6014 		/* unlocks the pinned mutex */
6015 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6016 		ret = 0;
6017 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6018 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6019 					num_bytes,
6020 					parent, root_objectid, (int)owner,
6021 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6022 	} else {
6023 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6024 						num_bytes,
6025 						parent, root_objectid, owner,
6026 						offset, BTRFS_DROP_DELAYED_REF,
6027 						NULL, for_cow);
6028 	}
6029 	return ret;
6030 }
6031 
6032 static u64 stripe_align(struct btrfs_root *root,
6033 			struct btrfs_block_group_cache *cache,
6034 			u64 val, u64 num_bytes)
6035 {
6036 	u64 ret = ALIGN(val, root->stripesize);
6037 	return ret;
6038 }
6039 
6040 /*
6041  * when we wait for progress in the block group caching, its because
6042  * our allocation attempt failed at least once.  So, we must sleep
6043  * and let some progress happen before we try again.
6044  *
6045  * This function will sleep at least once waiting for new free space to
6046  * show up, and then it will check the block group free space numbers
6047  * for our min num_bytes.  Another option is to have it go ahead
6048  * and look in the rbtree for a free extent of a given size, but this
6049  * is a good start.
6050  *
6051  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6052  * any of the information in this block group.
6053  */
6054 static noinline void
6055 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6056 				u64 num_bytes)
6057 {
6058 	struct btrfs_caching_control *caching_ctl;
6059 
6060 	caching_ctl = get_caching_control(cache);
6061 	if (!caching_ctl)
6062 		return;
6063 
6064 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6065 		   (cache->free_space_ctl->free_space >= num_bytes));
6066 
6067 	put_caching_control(caching_ctl);
6068 }
6069 
6070 static noinline int
6071 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6072 {
6073 	struct btrfs_caching_control *caching_ctl;
6074 	int ret = 0;
6075 
6076 	caching_ctl = get_caching_control(cache);
6077 	if (!caching_ctl)
6078 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6079 
6080 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6081 	if (cache->cached == BTRFS_CACHE_ERROR)
6082 		ret = -EIO;
6083 	put_caching_control(caching_ctl);
6084 	return ret;
6085 }
6086 
6087 int __get_raid_index(u64 flags)
6088 {
6089 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6090 		return BTRFS_RAID_RAID10;
6091 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6092 		return BTRFS_RAID_RAID1;
6093 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6094 		return BTRFS_RAID_DUP;
6095 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6096 		return BTRFS_RAID_RAID0;
6097 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6098 		return BTRFS_RAID_RAID5;
6099 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6100 		return BTRFS_RAID_RAID6;
6101 
6102 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6103 }
6104 
6105 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6106 {
6107 	return __get_raid_index(cache->flags);
6108 }
6109 
6110 enum btrfs_loop_type {
6111 	LOOP_CACHING_NOWAIT = 0,
6112 	LOOP_CACHING_WAIT = 1,
6113 	LOOP_ALLOC_CHUNK = 2,
6114 	LOOP_NO_EMPTY_SIZE = 3,
6115 };
6116 
6117 /*
6118  * walks the btree of allocated extents and find a hole of a given size.
6119  * The key ins is changed to record the hole:
6120  * ins->objectid == block start
6121  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6122  * ins->offset == number of blocks
6123  * Any available blocks before search_start are skipped.
6124  */
6125 static noinline int find_free_extent(struct btrfs_root *orig_root,
6126 				     u64 num_bytes, u64 empty_size,
6127 				     u64 hint_byte, struct btrfs_key *ins,
6128 				     u64 flags)
6129 {
6130 	int ret = 0;
6131 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6132 	struct btrfs_free_cluster *last_ptr = NULL;
6133 	struct btrfs_block_group_cache *block_group = NULL;
6134 	struct btrfs_block_group_cache *used_block_group;
6135 	u64 search_start = 0;
6136 	int empty_cluster = 2 * 1024 * 1024;
6137 	struct btrfs_space_info *space_info;
6138 	int loop = 0;
6139 	int index = __get_raid_index(flags);
6140 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6141 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6142 	bool found_uncached_bg = false;
6143 	bool failed_cluster_refill = false;
6144 	bool failed_alloc = false;
6145 	bool use_cluster = true;
6146 	bool have_caching_bg = false;
6147 
6148 	WARN_ON(num_bytes < root->sectorsize);
6149 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6150 	ins->objectid = 0;
6151 	ins->offset = 0;
6152 
6153 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6154 
6155 	space_info = __find_space_info(root->fs_info, flags);
6156 	if (!space_info) {
6157 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6158 		return -ENOSPC;
6159 	}
6160 
6161 	/*
6162 	 * If the space info is for both data and metadata it means we have a
6163 	 * small filesystem and we can't use the clustering stuff.
6164 	 */
6165 	if (btrfs_mixed_space_info(space_info))
6166 		use_cluster = false;
6167 
6168 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6169 		last_ptr = &root->fs_info->meta_alloc_cluster;
6170 		if (!btrfs_test_opt(root, SSD))
6171 			empty_cluster = 64 * 1024;
6172 	}
6173 
6174 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6175 	    btrfs_test_opt(root, SSD)) {
6176 		last_ptr = &root->fs_info->data_alloc_cluster;
6177 	}
6178 
6179 	if (last_ptr) {
6180 		spin_lock(&last_ptr->lock);
6181 		if (last_ptr->block_group)
6182 			hint_byte = last_ptr->window_start;
6183 		spin_unlock(&last_ptr->lock);
6184 	}
6185 
6186 	search_start = max(search_start, first_logical_byte(root, 0));
6187 	search_start = max(search_start, hint_byte);
6188 
6189 	if (!last_ptr)
6190 		empty_cluster = 0;
6191 
6192 	if (search_start == hint_byte) {
6193 		block_group = btrfs_lookup_block_group(root->fs_info,
6194 						       search_start);
6195 		used_block_group = block_group;
6196 		/*
6197 		 * we don't want to use the block group if it doesn't match our
6198 		 * allocation bits, or if its not cached.
6199 		 *
6200 		 * However if we are re-searching with an ideal block group
6201 		 * picked out then we don't care that the block group is cached.
6202 		 */
6203 		if (block_group && block_group_bits(block_group, flags) &&
6204 		    block_group->cached != BTRFS_CACHE_NO) {
6205 			down_read(&space_info->groups_sem);
6206 			if (list_empty(&block_group->list) ||
6207 			    block_group->ro) {
6208 				/*
6209 				 * someone is removing this block group,
6210 				 * we can't jump into the have_block_group
6211 				 * target because our list pointers are not
6212 				 * valid
6213 				 */
6214 				btrfs_put_block_group(block_group);
6215 				up_read(&space_info->groups_sem);
6216 			} else {
6217 				index = get_block_group_index(block_group);
6218 				goto have_block_group;
6219 			}
6220 		} else if (block_group) {
6221 			btrfs_put_block_group(block_group);
6222 		}
6223 	}
6224 search:
6225 	have_caching_bg = false;
6226 	down_read(&space_info->groups_sem);
6227 	list_for_each_entry(block_group, &space_info->block_groups[index],
6228 			    list) {
6229 		u64 offset;
6230 		int cached;
6231 
6232 		used_block_group = block_group;
6233 		btrfs_get_block_group(block_group);
6234 		search_start = block_group->key.objectid;
6235 
6236 		/*
6237 		 * this can happen if we end up cycling through all the
6238 		 * raid types, but we want to make sure we only allocate
6239 		 * for the proper type.
6240 		 */
6241 		if (!block_group_bits(block_group, flags)) {
6242 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6243 				BTRFS_BLOCK_GROUP_RAID1 |
6244 				BTRFS_BLOCK_GROUP_RAID5 |
6245 				BTRFS_BLOCK_GROUP_RAID6 |
6246 				BTRFS_BLOCK_GROUP_RAID10;
6247 
6248 			/*
6249 			 * if they asked for extra copies and this block group
6250 			 * doesn't provide them, bail.  This does allow us to
6251 			 * fill raid0 from raid1.
6252 			 */
6253 			if ((flags & extra) && !(block_group->flags & extra))
6254 				goto loop;
6255 		}
6256 
6257 have_block_group:
6258 		cached = block_group_cache_done(block_group);
6259 		if (unlikely(!cached)) {
6260 			found_uncached_bg = true;
6261 			ret = cache_block_group(block_group, 0);
6262 			BUG_ON(ret < 0);
6263 			ret = 0;
6264 		}
6265 
6266 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6267 			goto loop;
6268 		if (unlikely(block_group->ro))
6269 			goto loop;
6270 
6271 		/*
6272 		 * Ok we want to try and use the cluster allocator, so
6273 		 * lets look there
6274 		 */
6275 		if (last_ptr) {
6276 			unsigned long aligned_cluster;
6277 			/*
6278 			 * the refill lock keeps out other
6279 			 * people trying to start a new cluster
6280 			 */
6281 			spin_lock(&last_ptr->refill_lock);
6282 			used_block_group = last_ptr->block_group;
6283 			if (used_block_group != block_group &&
6284 			    (!used_block_group ||
6285 			     used_block_group->ro ||
6286 			     !block_group_bits(used_block_group, flags))) {
6287 				used_block_group = block_group;
6288 				goto refill_cluster;
6289 			}
6290 
6291 			if (used_block_group != block_group)
6292 				btrfs_get_block_group(used_block_group);
6293 
6294 			offset = btrfs_alloc_from_cluster(used_block_group,
6295 			  last_ptr, num_bytes, used_block_group->key.objectid);
6296 			if (offset) {
6297 				/* we have a block, we're done */
6298 				spin_unlock(&last_ptr->refill_lock);
6299 				trace_btrfs_reserve_extent_cluster(root,
6300 					block_group, search_start, num_bytes);
6301 				goto checks;
6302 			}
6303 
6304 			WARN_ON(last_ptr->block_group != used_block_group);
6305 			if (used_block_group != block_group) {
6306 				btrfs_put_block_group(used_block_group);
6307 				used_block_group = block_group;
6308 			}
6309 refill_cluster:
6310 			BUG_ON(used_block_group != block_group);
6311 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6312 			 * set up a new clusters, so lets just skip it
6313 			 * and let the allocator find whatever block
6314 			 * it can find.  If we reach this point, we
6315 			 * will have tried the cluster allocator
6316 			 * plenty of times and not have found
6317 			 * anything, so we are likely way too
6318 			 * fragmented for the clustering stuff to find
6319 			 * anything.
6320 			 *
6321 			 * However, if the cluster is taken from the
6322 			 * current block group, release the cluster
6323 			 * first, so that we stand a better chance of
6324 			 * succeeding in the unclustered
6325 			 * allocation.  */
6326 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6327 			    last_ptr->block_group != block_group) {
6328 				spin_unlock(&last_ptr->refill_lock);
6329 				goto unclustered_alloc;
6330 			}
6331 
6332 			/*
6333 			 * this cluster didn't work out, free it and
6334 			 * start over
6335 			 */
6336 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6337 
6338 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6339 				spin_unlock(&last_ptr->refill_lock);
6340 				goto unclustered_alloc;
6341 			}
6342 
6343 			aligned_cluster = max_t(unsigned long,
6344 						empty_cluster + empty_size,
6345 					      block_group->full_stripe_len);
6346 
6347 			/* allocate a cluster in this block group */
6348 			ret = btrfs_find_space_cluster(root, block_group,
6349 						       last_ptr, search_start,
6350 						       num_bytes,
6351 						       aligned_cluster);
6352 			if (ret == 0) {
6353 				/*
6354 				 * now pull our allocation out of this
6355 				 * cluster
6356 				 */
6357 				offset = btrfs_alloc_from_cluster(block_group,
6358 						  last_ptr, num_bytes,
6359 						  search_start);
6360 				if (offset) {
6361 					/* we found one, proceed */
6362 					spin_unlock(&last_ptr->refill_lock);
6363 					trace_btrfs_reserve_extent_cluster(root,
6364 						block_group, search_start,
6365 						num_bytes);
6366 					goto checks;
6367 				}
6368 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6369 				   && !failed_cluster_refill) {
6370 				spin_unlock(&last_ptr->refill_lock);
6371 
6372 				failed_cluster_refill = true;
6373 				wait_block_group_cache_progress(block_group,
6374 				       num_bytes + empty_cluster + empty_size);
6375 				goto have_block_group;
6376 			}
6377 
6378 			/*
6379 			 * at this point we either didn't find a cluster
6380 			 * or we weren't able to allocate a block from our
6381 			 * cluster.  Free the cluster we've been trying
6382 			 * to use, and go to the next block group
6383 			 */
6384 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6385 			spin_unlock(&last_ptr->refill_lock);
6386 			goto loop;
6387 		}
6388 
6389 unclustered_alloc:
6390 		spin_lock(&block_group->free_space_ctl->tree_lock);
6391 		if (cached &&
6392 		    block_group->free_space_ctl->free_space <
6393 		    num_bytes + empty_cluster + empty_size) {
6394 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6395 			goto loop;
6396 		}
6397 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6398 
6399 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6400 						    num_bytes, empty_size);
6401 		/*
6402 		 * If we didn't find a chunk, and we haven't failed on this
6403 		 * block group before, and this block group is in the middle of
6404 		 * caching and we are ok with waiting, then go ahead and wait
6405 		 * for progress to be made, and set failed_alloc to true.
6406 		 *
6407 		 * If failed_alloc is true then we've already waited on this
6408 		 * block group once and should move on to the next block group.
6409 		 */
6410 		if (!offset && !failed_alloc && !cached &&
6411 		    loop > LOOP_CACHING_NOWAIT) {
6412 			wait_block_group_cache_progress(block_group,
6413 						num_bytes + empty_size);
6414 			failed_alloc = true;
6415 			goto have_block_group;
6416 		} else if (!offset) {
6417 			if (!cached)
6418 				have_caching_bg = true;
6419 			goto loop;
6420 		}
6421 checks:
6422 		search_start = stripe_align(root, used_block_group,
6423 					    offset, num_bytes);
6424 
6425 		/* move on to the next group */
6426 		if (search_start + num_bytes >
6427 		    used_block_group->key.objectid + used_block_group->key.offset) {
6428 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6429 			goto loop;
6430 		}
6431 
6432 		if (offset < search_start)
6433 			btrfs_add_free_space(used_block_group, offset,
6434 					     search_start - offset);
6435 		BUG_ON(offset > search_start);
6436 
6437 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6438 						  alloc_type);
6439 		if (ret == -EAGAIN) {
6440 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6441 			goto loop;
6442 		}
6443 
6444 		/* we are all good, lets return */
6445 		ins->objectid = search_start;
6446 		ins->offset = num_bytes;
6447 
6448 		trace_btrfs_reserve_extent(orig_root, block_group,
6449 					   search_start, num_bytes);
6450 		if (used_block_group != block_group)
6451 			btrfs_put_block_group(used_block_group);
6452 		btrfs_put_block_group(block_group);
6453 		break;
6454 loop:
6455 		failed_cluster_refill = false;
6456 		failed_alloc = false;
6457 		BUG_ON(index != get_block_group_index(block_group));
6458 		if (used_block_group != block_group)
6459 			btrfs_put_block_group(used_block_group);
6460 		btrfs_put_block_group(block_group);
6461 	}
6462 	up_read(&space_info->groups_sem);
6463 
6464 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6465 		goto search;
6466 
6467 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6468 		goto search;
6469 
6470 	/*
6471 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6472 	 *			caching kthreads as we move along
6473 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6474 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6475 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6476 	 *			again
6477 	 */
6478 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6479 		index = 0;
6480 		loop++;
6481 		if (loop == LOOP_ALLOC_CHUNK) {
6482 			struct btrfs_trans_handle *trans;
6483 
6484 			trans = btrfs_join_transaction(root);
6485 			if (IS_ERR(trans)) {
6486 				ret = PTR_ERR(trans);
6487 				goto out;
6488 			}
6489 
6490 			ret = do_chunk_alloc(trans, root, flags,
6491 					     CHUNK_ALLOC_FORCE);
6492 			/*
6493 			 * Do not bail out on ENOSPC since we
6494 			 * can do more things.
6495 			 */
6496 			if (ret < 0 && ret != -ENOSPC)
6497 				btrfs_abort_transaction(trans,
6498 							root, ret);
6499 			else
6500 				ret = 0;
6501 			btrfs_end_transaction(trans, root);
6502 			if (ret)
6503 				goto out;
6504 		}
6505 
6506 		if (loop == LOOP_NO_EMPTY_SIZE) {
6507 			empty_size = 0;
6508 			empty_cluster = 0;
6509 		}
6510 
6511 		goto search;
6512 	} else if (!ins->objectid) {
6513 		ret = -ENOSPC;
6514 	} else if (ins->objectid) {
6515 		ret = 0;
6516 	}
6517 out:
6518 
6519 	return ret;
6520 }
6521 
6522 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6523 			    int dump_block_groups)
6524 {
6525 	struct btrfs_block_group_cache *cache;
6526 	int index = 0;
6527 
6528 	spin_lock(&info->lock);
6529 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6530 	       info->flags,
6531 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6532 	       info->bytes_reserved - info->bytes_readonly,
6533 	       (info->full) ? "" : "not ");
6534 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6535 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6536 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6537 	       info->bytes_reserved, info->bytes_may_use,
6538 	       info->bytes_readonly);
6539 	spin_unlock(&info->lock);
6540 
6541 	if (!dump_block_groups)
6542 		return;
6543 
6544 	down_read(&info->groups_sem);
6545 again:
6546 	list_for_each_entry(cache, &info->block_groups[index], list) {
6547 		spin_lock(&cache->lock);
6548 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6549 		       cache->key.objectid, cache->key.offset,
6550 		       btrfs_block_group_used(&cache->item), cache->pinned,
6551 		       cache->reserved, cache->ro ? "[readonly]" : "");
6552 		btrfs_dump_free_space(cache, bytes);
6553 		spin_unlock(&cache->lock);
6554 	}
6555 	if (++index < BTRFS_NR_RAID_TYPES)
6556 		goto again;
6557 	up_read(&info->groups_sem);
6558 }
6559 
6560 int btrfs_reserve_extent(struct btrfs_root *root,
6561 			 u64 num_bytes, u64 min_alloc_size,
6562 			 u64 empty_size, u64 hint_byte,
6563 			 struct btrfs_key *ins, int is_data)
6564 {
6565 	bool final_tried = false;
6566 	u64 flags;
6567 	int ret;
6568 
6569 	flags = btrfs_get_alloc_profile(root, is_data);
6570 again:
6571 	WARN_ON(num_bytes < root->sectorsize);
6572 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6573 			       flags);
6574 
6575 	if (ret == -ENOSPC) {
6576 		if (!final_tried) {
6577 			num_bytes = num_bytes >> 1;
6578 			num_bytes = round_down(num_bytes, root->sectorsize);
6579 			num_bytes = max(num_bytes, min_alloc_size);
6580 			if (num_bytes == min_alloc_size)
6581 				final_tried = true;
6582 			goto again;
6583 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6584 			struct btrfs_space_info *sinfo;
6585 
6586 			sinfo = __find_space_info(root->fs_info, flags);
6587 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6588 				flags, num_bytes);
6589 			if (sinfo)
6590 				dump_space_info(sinfo, num_bytes, 1);
6591 		}
6592 	}
6593 
6594 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6595 
6596 	return ret;
6597 }
6598 
6599 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6600 					u64 start, u64 len, int pin)
6601 {
6602 	struct btrfs_block_group_cache *cache;
6603 	int ret = 0;
6604 
6605 	cache = btrfs_lookup_block_group(root->fs_info, start);
6606 	if (!cache) {
6607 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6608 			start);
6609 		return -ENOSPC;
6610 	}
6611 
6612 	if (btrfs_test_opt(root, DISCARD))
6613 		ret = btrfs_discard_extent(root, start, len, NULL);
6614 
6615 	if (pin)
6616 		pin_down_extent(root, cache, start, len, 1);
6617 	else {
6618 		btrfs_add_free_space(cache, start, len);
6619 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6620 	}
6621 	btrfs_put_block_group(cache);
6622 
6623 	trace_btrfs_reserved_extent_free(root, start, len);
6624 
6625 	return ret;
6626 }
6627 
6628 int btrfs_free_reserved_extent(struct btrfs_root *root,
6629 					u64 start, u64 len)
6630 {
6631 	return __btrfs_free_reserved_extent(root, start, len, 0);
6632 }
6633 
6634 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6635 				       u64 start, u64 len)
6636 {
6637 	return __btrfs_free_reserved_extent(root, start, len, 1);
6638 }
6639 
6640 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6641 				      struct btrfs_root *root,
6642 				      u64 parent, u64 root_objectid,
6643 				      u64 flags, u64 owner, u64 offset,
6644 				      struct btrfs_key *ins, int ref_mod)
6645 {
6646 	int ret;
6647 	struct btrfs_fs_info *fs_info = root->fs_info;
6648 	struct btrfs_extent_item *extent_item;
6649 	struct btrfs_extent_inline_ref *iref;
6650 	struct btrfs_path *path;
6651 	struct extent_buffer *leaf;
6652 	int type;
6653 	u32 size;
6654 
6655 	if (parent > 0)
6656 		type = BTRFS_SHARED_DATA_REF_KEY;
6657 	else
6658 		type = BTRFS_EXTENT_DATA_REF_KEY;
6659 
6660 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6661 
6662 	path = btrfs_alloc_path();
6663 	if (!path)
6664 		return -ENOMEM;
6665 
6666 	path->leave_spinning = 1;
6667 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6668 				      ins, size);
6669 	if (ret) {
6670 		btrfs_free_path(path);
6671 		return ret;
6672 	}
6673 
6674 	leaf = path->nodes[0];
6675 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6676 				     struct btrfs_extent_item);
6677 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6678 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6679 	btrfs_set_extent_flags(leaf, extent_item,
6680 			       flags | BTRFS_EXTENT_FLAG_DATA);
6681 
6682 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6683 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6684 	if (parent > 0) {
6685 		struct btrfs_shared_data_ref *ref;
6686 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6687 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6688 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6689 	} else {
6690 		struct btrfs_extent_data_ref *ref;
6691 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6692 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6693 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6694 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6695 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6696 	}
6697 
6698 	btrfs_mark_buffer_dirty(path->nodes[0]);
6699 	btrfs_free_path(path);
6700 
6701 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6702 	if (ret) { /* -ENOENT, logic error */
6703 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6704 			ins->objectid, ins->offset);
6705 		BUG();
6706 	}
6707 	return ret;
6708 }
6709 
6710 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6711 				     struct btrfs_root *root,
6712 				     u64 parent, u64 root_objectid,
6713 				     u64 flags, struct btrfs_disk_key *key,
6714 				     int level, struct btrfs_key *ins)
6715 {
6716 	int ret;
6717 	struct btrfs_fs_info *fs_info = root->fs_info;
6718 	struct btrfs_extent_item *extent_item;
6719 	struct btrfs_tree_block_info *block_info;
6720 	struct btrfs_extent_inline_ref *iref;
6721 	struct btrfs_path *path;
6722 	struct extent_buffer *leaf;
6723 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6724 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6725 						 SKINNY_METADATA);
6726 
6727 	if (!skinny_metadata)
6728 		size += sizeof(*block_info);
6729 
6730 	path = btrfs_alloc_path();
6731 	if (!path)
6732 		return -ENOMEM;
6733 
6734 	path->leave_spinning = 1;
6735 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6736 				      ins, size);
6737 	if (ret) {
6738 		btrfs_free_path(path);
6739 		return ret;
6740 	}
6741 
6742 	leaf = path->nodes[0];
6743 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6744 				     struct btrfs_extent_item);
6745 	btrfs_set_extent_refs(leaf, extent_item, 1);
6746 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6747 	btrfs_set_extent_flags(leaf, extent_item,
6748 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6749 
6750 	if (skinny_metadata) {
6751 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6752 	} else {
6753 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6754 		btrfs_set_tree_block_key(leaf, block_info, key);
6755 		btrfs_set_tree_block_level(leaf, block_info, level);
6756 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6757 	}
6758 
6759 	if (parent > 0) {
6760 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6761 		btrfs_set_extent_inline_ref_type(leaf, iref,
6762 						 BTRFS_SHARED_BLOCK_REF_KEY);
6763 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6764 	} else {
6765 		btrfs_set_extent_inline_ref_type(leaf, iref,
6766 						 BTRFS_TREE_BLOCK_REF_KEY);
6767 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6768 	}
6769 
6770 	btrfs_mark_buffer_dirty(leaf);
6771 	btrfs_free_path(path);
6772 
6773 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6774 	if (ret) { /* -ENOENT, logic error */
6775 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6776 			ins->objectid, ins->offset);
6777 		BUG();
6778 	}
6779 	return ret;
6780 }
6781 
6782 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6783 				     struct btrfs_root *root,
6784 				     u64 root_objectid, u64 owner,
6785 				     u64 offset, struct btrfs_key *ins)
6786 {
6787 	int ret;
6788 
6789 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6790 
6791 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6792 					 ins->offset, 0,
6793 					 root_objectid, owner, offset,
6794 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6795 	return ret;
6796 }
6797 
6798 /*
6799  * this is used by the tree logging recovery code.  It records that
6800  * an extent has been allocated and makes sure to clear the free
6801  * space cache bits as well
6802  */
6803 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6804 				   struct btrfs_root *root,
6805 				   u64 root_objectid, u64 owner, u64 offset,
6806 				   struct btrfs_key *ins)
6807 {
6808 	int ret;
6809 	struct btrfs_block_group_cache *block_group;
6810 
6811 	/*
6812 	 * Mixed block groups will exclude before processing the log so we only
6813 	 * need to do the exlude dance if this fs isn't mixed.
6814 	 */
6815 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6816 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6817 		if (ret)
6818 			return ret;
6819 	}
6820 
6821 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6822 	if (!block_group)
6823 		return -EINVAL;
6824 
6825 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6826 					  RESERVE_ALLOC_NO_ACCOUNT);
6827 	BUG_ON(ret); /* logic error */
6828 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6829 					 0, owner, offset, ins, 1);
6830 	btrfs_put_block_group(block_group);
6831 	return ret;
6832 }
6833 
6834 static struct extent_buffer *
6835 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6836 		      u64 bytenr, u32 blocksize, int level)
6837 {
6838 	struct extent_buffer *buf;
6839 
6840 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6841 	if (!buf)
6842 		return ERR_PTR(-ENOMEM);
6843 	btrfs_set_header_generation(buf, trans->transid);
6844 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6845 	btrfs_tree_lock(buf);
6846 	clean_tree_block(trans, root, buf);
6847 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6848 
6849 	btrfs_set_lock_blocking(buf);
6850 	btrfs_set_buffer_uptodate(buf);
6851 
6852 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6853 		/*
6854 		 * we allow two log transactions at a time, use different
6855 		 * EXENT bit to differentiate dirty pages.
6856 		 */
6857 		if (root->log_transid % 2 == 0)
6858 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6859 					buf->start + buf->len - 1, GFP_NOFS);
6860 		else
6861 			set_extent_new(&root->dirty_log_pages, buf->start,
6862 					buf->start + buf->len - 1, GFP_NOFS);
6863 	} else {
6864 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6865 			 buf->start + buf->len - 1, GFP_NOFS);
6866 	}
6867 	trans->blocks_used++;
6868 	/* this returns a buffer locked for blocking */
6869 	return buf;
6870 }
6871 
6872 static struct btrfs_block_rsv *
6873 use_block_rsv(struct btrfs_trans_handle *trans,
6874 	      struct btrfs_root *root, u32 blocksize)
6875 {
6876 	struct btrfs_block_rsv *block_rsv;
6877 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6878 	int ret;
6879 	bool global_updated = false;
6880 
6881 	block_rsv = get_block_rsv(trans, root);
6882 
6883 	if (unlikely(block_rsv->size == 0))
6884 		goto try_reserve;
6885 again:
6886 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6887 	if (!ret)
6888 		return block_rsv;
6889 
6890 	if (block_rsv->failfast)
6891 		return ERR_PTR(ret);
6892 
6893 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6894 		global_updated = true;
6895 		update_global_block_rsv(root->fs_info);
6896 		goto again;
6897 	}
6898 
6899 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6900 		static DEFINE_RATELIMIT_STATE(_rs,
6901 				DEFAULT_RATELIMIT_INTERVAL * 10,
6902 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6903 		if (__ratelimit(&_rs))
6904 			WARN(1, KERN_DEBUG
6905 				"btrfs: block rsv returned %d\n", ret);
6906 	}
6907 try_reserve:
6908 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6909 				     BTRFS_RESERVE_NO_FLUSH);
6910 	if (!ret)
6911 		return block_rsv;
6912 	/*
6913 	 * If we couldn't reserve metadata bytes try and use some from
6914 	 * the global reserve if its space type is the same as the global
6915 	 * reservation.
6916 	 */
6917 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6918 	    block_rsv->space_info == global_rsv->space_info) {
6919 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6920 		if (!ret)
6921 			return global_rsv;
6922 	}
6923 	return ERR_PTR(ret);
6924 }
6925 
6926 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6927 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6928 {
6929 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6930 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6931 }
6932 
6933 /*
6934  * finds a free extent and does all the dirty work required for allocation
6935  * returns the key for the extent through ins, and a tree buffer for
6936  * the first block of the extent through buf.
6937  *
6938  * returns the tree buffer or NULL.
6939  */
6940 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6941 					struct btrfs_root *root, u32 blocksize,
6942 					u64 parent, u64 root_objectid,
6943 					struct btrfs_disk_key *key, int level,
6944 					u64 hint, u64 empty_size)
6945 {
6946 	struct btrfs_key ins;
6947 	struct btrfs_block_rsv *block_rsv;
6948 	struct extent_buffer *buf;
6949 	u64 flags = 0;
6950 	int ret;
6951 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6952 						 SKINNY_METADATA);
6953 
6954 	block_rsv = use_block_rsv(trans, root, blocksize);
6955 	if (IS_ERR(block_rsv))
6956 		return ERR_CAST(block_rsv);
6957 
6958 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
6959 				   empty_size, hint, &ins, 0);
6960 	if (ret) {
6961 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6962 		return ERR_PTR(ret);
6963 	}
6964 
6965 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6966 				    blocksize, level);
6967 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6968 
6969 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6970 		if (parent == 0)
6971 			parent = ins.objectid;
6972 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6973 	} else
6974 		BUG_ON(parent > 0);
6975 
6976 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6977 		struct btrfs_delayed_extent_op *extent_op;
6978 		extent_op = btrfs_alloc_delayed_extent_op();
6979 		BUG_ON(!extent_op); /* -ENOMEM */
6980 		if (key)
6981 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6982 		else
6983 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6984 		extent_op->flags_to_set = flags;
6985 		if (skinny_metadata)
6986 			extent_op->update_key = 0;
6987 		else
6988 			extent_op->update_key = 1;
6989 		extent_op->update_flags = 1;
6990 		extent_op->is_data = 0;
6991 		extent_op->level = level;
6992 
6993 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6994 					ins.objectid,
6995 					ins.offset, parent, root_objectid,
6996 					level, BTRFS_ADD_DELAYED_EXTENT,
6997 					extent_op, 0);
6998 		BUG_ON(ret); /* -ENOMEM */
6999 	}
7000 	return buf;
7001 }
7002 
7003 struct walk_control {
7004 	u64 refs[BTRFS_MAX_LEVEL];
7005 	u64 flags[BTRFS_MAX_LEVEL];
7006 	struct btrfs_key update_progress;
7007 	int stage;
7008 	int level;
7009 	int shared_level;
7010 	int update_ref;
7011 	int keep_locks;
7012 	int reada_slot;
7013 	int reada_count;
7014 	int for_reloc;
7015 };
7016 
7017 #define DROP_REFERENCE	1
7018 #define UPDATE_BACKREF	2
7019 
7020 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7021 				     struct btrfs_root *root,
7022 				     struct walk_control *wc,
7023 				     struct btrfs_path *path)
7024 {
7025 	u64 bytenr;
7026 	u64 generation;
7027 	u64 refs;
7028 	u64 flags;
7029 	u32 nritems;
7030 	u32 blocksize;
7031 	struct btrfs_key key;
7032 	struct extent_buffer *eb;
7033 	int ret;
7034 	int slot;
7035 	int nread = 0;
7036 
7037 	if (path->slots[wc->level] < wc->reada_slot) {
7038 		wc->reada_count = wc->reada_count * 2 / 3;
7039 		wc->reada_count = max(wc->reada_count, 2);
7040 	} else {
7041 		wc->reada_count = wc->reada_count * 3 / 2;
7042 		wc->reada_count = min_t(int, wc->reada_count,
7043 					BTRFS_NODEPTRS_PER_BLOCK(root));
7044 	}
7045 
7046 	eb = path->nodes[wc->level];
7047 	nritems = btrfs_header_nritems(eb);
7048 	blocksize = btrfs_level_size(root, wc->level - 1);
7049 
7050 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7051 		if (nread >= wc->reada_count)
7052 			break;
7053 
7054 		cond_resched();
7055 		bytenr = btrfs_node_blockptr(eb, slot);
7056 		generation = btrfs_node_ptr_generation(eb, slot);
7057 
7058 		if (slot == path->slots[wc->level])
7059 			goto reada;
7060 
7061 		if (wc->stage == UPDATE_BACKREF &&
7062 		    generation <= root->root_key.offset)
7063 			continue;
7064 
7065 		/* We don't lock the tree block, it's OK to be racy here */
7066 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7067 					       wc->level - 1, 1, &refs,
7068 					       &flags);
7069 		/* We don't care about errors in readahead. */
7070 		if (ret < 0)
7071 			continue;
7072 		BUG_ON(refs == 0);
7073 
7074 		if (wc->stage == DROP_REFERENCE) {
7075 			if (refs == 1)
7076 				goto reada;
7077 
7078 			if (wc->level == 1 &&
7079 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7080 				continue;
7081 			if (!wc->update_ref ||
7082 			    generation <= root->root_key.offset)
7083 				continue;
7084 			btrfs_node_key_to_cpu(eb, &key, slot);
7085 			ret = btrfs_comp_cpu_keys(&key,
7086 						  &wc->update_progress);
7087 			if (ret < 0)
7088 				continue;
7089 		} else {
7090 			if (wc->level == 1 &&
7091 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7092 				continue;
7093 		}
7094 reada:
7095 		ret = readahead_tree_block(root, bytenr, blocksize,
7096 					   generation);
7097 		if (ret)
7098 			break;
7099 		nread++;
7100 	}
7101 	wc->reada_slot = slot;
7102 }
7103 
7104 /*
7105  * helper to process tree block while walking down the tree.
7106  *
7107  * when wc->stage == UPDATE_BACKREF, this function updates
7108  * back refs for pointers in the block.
7109  *
7110  * NOTE: return value 1 means we should stop walking down.
7111  */
7112 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7113 				   struct btrfs_root *root,
7114 				   struct btrfs_path *path,
7115 				   struct walk_control *wc, int lookup_info)
7116 {
7117 	int level = wc->level;
7118 	struct extent_buffer *eb = path->nodes[level];
7119 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7120 	int ret;
7121 
7122 	if (wc->stage == UPDATE_BACKREF &&
7123 	    btrfs_header_owner(eb) != root->root_key.objectid)
7124 		return 1;
7125 
7126 	/*
7127 	 * when reference count of tree block is 1, it won't increase
7128 	 * again. once full backref flag is set, we never clear it.
7129 	 */
7130 	if (lookup_info &&
7131 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7132 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7133 		BUG_ON(!path->locks[level]);
7134 		ret = btrfs_lookup_extent_info(trans, root,
7135 					       eb->start, level, 1,
7136 					       &wc->refs[level],
7137 					       &wc->flags[level]);
7138 		BUG_ON(ret == -ENOMEM);
7139 		if (ret)
7140 			return ret;
7141 		BUG_ON(wc->refs[level] == 0);
7142 	}
7143 
7144 	if (wc->stage == DROP_REFERENCE) {
7145 		if (wc->refs[level] > 1)
7146 			return 1;
7147 
7148 		if (path->locks[level] && !wc->keep_locks) {
7149 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7150 			path->locks[level] = 0;
7151 		}
7152 		return 0;
7153 	}
7154 
7155 	/* wc->stage == UPDATE_BACKREF */
7156 	if (!(wc->flags[level] & flag)) {
7157 		BUG_ON(!path->locks[level]);
7158 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7159 		BUG_ON(ret); /* -ENOMEM */
7160 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7161 		BUG_ON(ret); /* -ENOMEM */
7162 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7163 						  eb->len, flag,
7164 						  btrfs_header_level(eb), 0);
7165 		BUG_ON(ret); /* -ENOMEM */
7166 		wc->flags[level] |= flag;
7167 	}
7168 
7169 	/*
7170 	 * the block is shared by multiple trees, so it's not good to
7171 	 * keep the tree lock
7172 	 */
7173 	if (path->locks[level] && level > 0) {
7174 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7175 		path->locks[level] = 0;
7176 	}
7177 	return 0;
7178 }
7179 
7180 /*
7181  * helper to process tree block pointer.
7182  *
7183  * when wc->stage == DROP_REFERENCE, this function checks
7184  * reference count of the block pointed to. if the block
7185  * is shared and we need update back refs for the subtree
7186  * rooted at the block, this function changes wc->stage to
7187  * UPDATE_BACKREF. if the block is shared and there is no
7188  * need to update back, this function drops the reference
7189  * to the block.
7190  *
7191  * NOTE: return value 1 means we should stop walking down.
7192  */
7193 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7194 				 struct btrfs_root *root,
7195 				 struct btrfs_path *path,
7196 				 struct walk_control *wc, int *lookup_info)
7197 {
7198 	u64 bytenr;
7199 	u64 generation;
7200 	u64 parent;
7201 	u32 blocksize;
7202 	struct btrfs_key key;
7203 	struct extent_buffer *next;
7204 	int level = wc->level;
7205 	int reada = 0;
7206 	int ret = 0;
7207 
7208 	generation = btrfs_node_ptr_generation(path->nodes[level],
7209 					       path->slots[level]);
7210 	/*
7211 	 * if the lower level block was created before the snapshot
7212 	 * was created, we know there is no need to update back refs
7213 	 * for the subtree
7214 	 */
7215 	if (wc->stage == UPDATE_BACKREF &&
7216 	    generation <= root->root_key.offset) {
7217 		*lookup_info = 1;
7218 		return 1;
7219 	}
7220 
7221 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7222 	blocksize = btrfs_level_size(root, level - 1);
7223 
7224 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7225 	if (!next) {
7226 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7227 		if (!next)
7228 			return -ENOMEM;
7229 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7230 					       level - 1);
7231 		reada = 1;
7232 	}
7233 	btrfs_tree_lock(next);
7234 	btrfs_set_lock_blocking(next);
7235 
7236 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7237 				       &wc->refs[level - 1],
7238 				       &wc->flags[level - 1]);
7239 	if (ret < 0) {
7240 		btrfs_tree_unlock(next);
7241 		return ret;
7242 	}
7243 
7244 	if (unlikely(wc->refs[level - 1] == 0)) {
7245 		btrfs_err(root->fs_info, "Missing references.");
7246 		BUG();
7247 	}
7248 	*lookup_info = 0;
7249 
7250 	if (wc->stage == DROP_REFERENCE) {
7251 		if (wc->refs[level - 1] > 1) {
7252 			if (level == 1 &&
7253 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7254 				goto skip;
7255 
7256 			if (!wc->update_ref ||
7257 			    generation <= root->root_key.offset)
7258 				goto skip;
7259 
7260 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7261 					      path->slots[level]);
7262 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7263 			if (ret < 0)
7264 				goto skip;
7265 
7266 			wc->stage = UPDATE_BACKREF;
7267 			wc->shared_level = level - 1;
7268 		}
7269 	} else {
7270 		if (level == 1 &&
7271 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7272 			goto skip;
7273 	}
7274 
7275 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7276 		btrfs_tree_unlock(next);
7277 		free_extent_buffer(next);
7278 		next = NULL;
7279 		*lookup_info = 1;
7280 	}
7281 
7282 	if (!next) {
7283 		if (reada && level == 1)
7284 			reada_walk_down(trans, root, wc, path);
7285 		next = read_tree_block(root, bytenr, blocksize, generation);
7286 		if (!next || !extent_buffer_uptodate(next)) {
7287 			free_extent_buffer(next);
7288 			return -EIO;
7289 		}
7290 		btrfs_tree_lock(next);
7291 		btrfs_set_lock_blocking(next);
7292 	}
7293 
7294 	level--;
7295 	BUG_ON(level != btrfs_header_level(next));
7296 	path->nodes[level] = next;
7297 	path->slots[level] = 0;
7298 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7299 	wc->level = level;
7300 	if (wc->level == 1)
7301 		wc->reada_slot = 0;
7302 	return 0;
7303 skip:
7304 	wc->refs[level - 1] = 0;
7305 	wc->flags[level - 1] = 0;
7306 	if (wc->stage == DROP_REFERENCE) {
7307 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7308 			parent = path->nodes[level]->start;
7309 		} else {
7310 			BUG_ON(root->root_key.objectid !=
7311 			       btrfs_header_owner(path->nodes[level]));
7312 			parent = 0;
7313 		}
7314 
7315 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7316 				root->root_key.objectid, level - 1, 0, 0);
7317 		BUG_ON(ret); /* -ENOMEM */
7318 	}
7319 	btrfs_tree_unlock(next);
7320 	free_extent_buffer(next);
7321 	*lookup_info = 1;
7322 	return 1;
7323 }
7324 
7325 /*
7326  * helper to process tree block while walking up the tree.
7327  *
7328  * when wc->stage == DROP_REFERENCE, this function drops
7329  * reference count on the block.
7330  *
7331  * when wc->stage == UPDATE_BACKREF, this function changes
7332  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7333  * to UPDATE_BACKREF previously while processing the block.
7334  *
7335  * NOTE: return value 1 means we should stop walking up.
7336  */
7337 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7338 				 struct btrfs_root *root,
7339 				 struct btrfs_path *path,
7340 				 struct walk_control *wc)
7341 {
7342 	int ret;
7343 	int level = wc->level;
7344 	struct extent_buffer *eb = path->nodes[level];
7345 	u64 parent = 0;
7346 
7347 	if (wc->stage == UPDATE_BACKREF) {
7348 		BUG_ON(wc->shared_level < level);
7349 		if (level < wc->shared_level)
7350 			goto out;
7351 
7352 		ret = find_next_key(path, level + 1, &wc->update_progress);
7353 		if (ret > 0)
7354 			wc->update_ref = 0;
7355 
7356 		wc->stage = DROP_REFERENCE;
7357 		wc->shared_level = -1;
7358 		path->slots[level] = 0;
7359 
7360 		/*
7361 		 * check reference count again if the block isn't locked.
7362 		 * we should start walking down the tree again if reference
7363 		 * count is one.
7364 		 */
7365 		if (!path->locks[level]) {
7366 			BUG_ON(level == 0);
7367 			btrfs_tree_lock(eb);
7368 			btrfs_set_lock_blocking(eb);
7369 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7370 
7371 			ret = btrfs_lookup_extent_info(trans, root,
7372 						       eb->start, level, 1,
7373 						       &wc->refs[level],
7374 						       &wc->flags[level]);
7375 			if (ret < 0) {
7376 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7377 				path->locks[level] = 0;
7378 				return ret;
7379 			}
7380 			BUG_ON(wc->refs[level] == 0);
7381 			if (wc->refs[level] == 1) {
7382 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7383 				path->locks[level] = 0;
7384 				return 1;
7385 			}
7386 		}
7387 	}
7388 
7389 	/* wc->stage == DROP_REFERENCE */
7390 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7391 
7392 	if (wc->refs[level] == 1) {
7393 		if (level == 0) {
7394 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7395 				ret = btrfs_dec_ref(trans, root, eb, 1,
7396 						    wc->for_reloc);
7397 			else
7398 				ret = btrfs_dec_ref(trans, root, eb, 0,
7399 						    wc->for_reloc);
7400 			BUG_ON(ret); /* -ENOMEM */
7401 		}
7402 		/* make block locked assertion in clean_tree_block happy */
7403 		if (!path->locks[level] &&
7404 		    btrfs_header_generation(eb) == trans->transid) {
7405 			btrfs_tree_lock(eb);
7406 			btrfs_set_lock_blocking(eb);
7407 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7408 		}
7409 		clean_tree_block(trans, root, eb);
7410 	}
7411 
7412 	if (eb == root->node) {
7413 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7414 			parent = eb->start;
7415 		else
7416 			BUG_ON(root->root_key.objectid !=
7417 			       btrfs_header_owner(eb));
7418 	} else {
7419 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7420 			parent = path->nodes[level + 1]->start;
7421 		else
7422 			BUG_ON(root->root_key.objectid !=
7423 			       btrfs_header_owner(path->nodes[level + 1]));
7424 	}
7425 
7426 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7427 out:
7428 	wc->refs[level] = 0;
7429 	wc->flags[level] = 0;
7430 	return 0;
7431 }
7432 
7433 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7434 				   struct btrfs_root *root,
7435 				   struct btrfs_path *path,
7436 				   struct walk_control *wc)
7437 {
7438 	int level = wc->level;
7439 	int lookup_info = 1;
7440 	int ret;
7441 
7442 	while (level >= 0) {
7443 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7444 		if (ret > 0)
7445 			break;
7446 
7447 		if (level == 0)
7448 			break;
7449 
7450 		if (path->slots[level] >=
7451 		    btrfs_header_nritems(path->nodes[level]))
7452 			break;
7453 
7454 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7455 		if (ret > 0) {
7456 			path->slots[level]++;
7457 			continue;
7458 		} else if (ret < 0)
7459 			return ret;
7460 		level = wc->level;
7461 	}
7462 	return 0;
7463 }
7464 
7465 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7466 				 struct btrfs_root *root,
7467 				 struct btrfs_path *path,
7468 				 struct walk_control *wc, int max_level)
7469 {
7470 	int level = wc->level;
7471 	int ret;
7472 
7473 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7474 	while (level < max_level && path->nodes[level]) {
7475 		wc->level = level;
7476 		if (path->slots[level] + 1 <
7477 		    btrfs_header_nritems(path->nodes[level])) {
7478 			path->slots[level]++;
7479 			return 0;
7480 		} else {
7481 			ret = walk_up_proc(trans, root, path, wc);
7482 			if (ret > 0)
7483 				return 0;
7484 
7485 			if (path->locks[level]) {
7486 				btrfs_tree_unlock_rw(path->nodes[level],
7487 						     path->locks[level]);
7488 				path->locks[level] = 0;
7489 			}
7490 			free_extent_buffer(path->nodes[level]);
7491 			path->nodes[level] = NULL;
7492 			level++;
7493 		}
7494 	}
7495 	return 1;
7496 }
7497 
7498 /*
7499  * drop a subvolume tree.
7500  *
7501  * this function traverses the tree freeing any blocks that only
7502  * referenced by the tree.
7503  *
7504  * when a shared tree block is found. this function decreases its
7505  * reference count by one. if update_ref is true, this function
7506  * also make sure backrefs for the shared block and all lower level
7507  * blocks are properly updated.
7508  *
7509  * If called with for_reloc == 0, may exit early with -EAGAIN
7510  */
7511 int btrfs_drop_snapshot(struct btrfs_root *root,
7512 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7513 			 int for_reloc)
7514 {
7515 	struct btrfs_path *path;
7516 	struct btrfs_trans_handle *trans;
7517 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7518 	struct btrfs_root_item *root_item = &root->root_item;
7519 	struct walk_control *wc;
7520 	struct btrfs_key key;
7521 	int err = 0;
7522 	int ret;
7523 	int level;
7524 	bool root_dropped = false;
7525 
7526 	path = btrfs_alloc_path();
7527 	if (!path) {
7528 		err = -ENOMEM;
7529 		goto out;
7530 	}
7531 
7532 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7533 	if (!wc) {
7534 		btrfs_free_path(path);
7535 		err = -ENOMEM;
7536 		goto out;
7537 	}
7538 
7539 	trans = btrfs_start_transaction(tree_root, 0);
7540 	if (IS_ERR(trans)) {
7541 		err = PTR_ERR(trans);
7542 		goto out_free;
7543 	}
7544 
7545 	if (block_rsv)
7546 		trans->block_rsv = block_rsv;
7547 
7548 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7549 		level = btrfs_header_level(root->node);
7550 		path->nodes[level] = btrfs_lock_root_node(root);
7551 		btrfs_set_lock_blocking(path->nodes[level]);
7552 		path->slots[level] = 0;
7553 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7554 		memset(&wc->update_progress, 0,
7555 		       sizeof(wc->update_progress));
7556 	} else {
7557 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7558 		memcpy(&wc->update_progress, &key,
7559 		       sizeof(wc->update_progress));
7560 
7561 		level = root_item->drop_level;
7562 		BUG_ON(level == 0);
7563 		path->lowest_level = level;
7564 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7565 		path->lowest_level = 0;
7566 		if (ret < 0) {
7567 			err = ret;
7568 			goto out_end_trans;
7569 		}
7570 		WARN_ON(ret > 0);
7571 
7572 		/*
7573 		 * unlock our path, this is safe because only this
7574 		 * function is allowed to delete this snapshot
7575 		 */
7576 		btrfs_unlock_up_safe(path, 0);
7577 
7578 		level = btrfs_header_level(root->node);
7579 		while (1) {
7580 			btrfs_tree_lock(path->nodes[level]);
7581 			btrfs_set_lock_blocking(path->nodes[level]);
7582 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7583 
7584 			ret = btrfs_lookup_extent_info(trans, root,
7585 						path->nodes[level]->start,
7586 						level, 1, &wc->refs[level],
7587 						&wc->flags[level]);
7588 			if (ret < 0) {
7589 				err = ret;
7590 				goto out_end_trans;
7591 			}
7592 			BUG_ON(wc->refs[level] == 0);
7593 
7594 			if (level == root_item->drop_level)
7595 				break;
7596 
7597 			btrfs_tree_unlock(path->nodes[level]);
7598 			path->locks[level] = 0;
7599 			WARN_ON(wc->refs[level] != 1);
7600 			level--;
7601 		}
7602 	}
7603 
7604 	wc->level = level;
7605 	wc->shared_level = -1;
7606 	wc->stage = DROP_REFERENCE;
7607 	wc->update_ref = update_ref;
7608 	wc->keep_locks = 0;
7609 	wc->for_reloc = for_reloc;
7610 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7611 
7612 	while (1) {
7613 
7614 		ret = walk_down_tree(trans, root, path, wc);
7615 		if (ret < 0) {
7616 			err = ret;
7617 			break;
7618 		}
7619 
7620 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7621 		if (ret < 0) {
7622 			err = ret;
7623 			break;
7624 		}
7625 
7626 		if (ret > 0) {
7627 			BUG_ON(wc->stage != DROP_REFERENCE);
7628 			break;
7629 		}
7630 
7631 		if (wc->stage == DROP_REFERENCE) {
7632 			level = wc->level;
7633 			btrfs_node_key(path->nodes[level],
7634 				       &root_item->drop_progress,
7635 				       path->slots[level]);
7636 			root_item->drop_level = level;
7637 		}
7638 
7639 		BUG_ON(wc->level == 0);
7640 		if (btrfs_should_end_transaction(trans, tree_root) ||
7641 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7642 			ret = btrfs_update_root(trans, tree_root,
7643 						&root->root_key,
7644 						root_item);
7645 			if (ret) {
7646 				btrfs_abort_transaction(trans, tree_root, ret);
7647 				err = ret;
7648 				goto out_end_trans;
7649 			}
7650 
7651 			btrfs_end_transaction_throttle(trans, tree_root);
7652 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7653 				pr_debug("btrfs: drop snapshot early exit\n");
7654 				err = -EAGAIN;
7655 				goto out_free;
7656 			}
7657 
7658 			trans = btrfs_start_transaction(tree_root, 0);
7659 			if (IS_ERR(trans)) {
7660 				err = PTR_ERR(trans);
7661 				goto out_free;
7662 			}
7663 			if (block_rsv)
7664 				trans->block_rsv = block_rsv;
7665 		}
7666 	}
7667 	btrfs_release_path(path);
7668 	if (err)
7669 		goto out_end_trans;
7670 
7671 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7672 	if (ret) {
7673 		btrfs_abort_transaction(trans, tree_root, ret);
7674 		goto out_end_trans;
7675 	}
7676 
7677 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7678 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7679 				      NULL, NULL);
7680 		if (ret < 0) {
7681 			btrfs_abort_transaction(trans, tree_root, ret);
7682 			err = ret;
7683 			goto out_end_trans;
7684 		} else if (ret > 0) {
7685 			/* if we fail to delete the orphan item this time
7686 			 * around, it'll get picked up the next time.
7687 			 *
7688 			 * The most common failure here is just -ENOENT.
7689 			 */
7690 			btrfs_del_orphan_item(trans, tree_root,
7691 					      root->root_key.objectid);
7692 		}
7693 	}
7694 
7695 	if (root->in_radix) {
7696 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7697 	} else {
7698 		free_extent_buffer(root->node);
7699 		free_extent_buffer(root->commit_root);
7700 		btrfs_put_fs_root(root);
7701 	}
7702 	root_dropped = true;
7703 out_end_trans:
7704 	btrfs_end_transaction_throttle(trans, tree_root);
7705 out_free:
7706 	kfree(wc);
7707 	btrfs_free_path(path);
7708 out:
7709 	/*
7710 	 * So if we need to stop dropping the snapshot for whatever reason we
7711 	 * need to make sure to add it back to the dead root list so that we
7712 	 * keep trying to do the work later.  This also cleans up roots if we
7713 	 * don't have it in the radix (like when we recover after a power fail
7714 	 * or unmount) so we don't leak memory.
7715 	 */
7716 	if (!for_reloc && root_dropped == false)
7717 		btrfs_add_dead_root(root);
7718 	if (err)
7719 		btrfs_std_error(root->fs_info, err);
7720 	return err;
7721 }
7722 
7723 /*
7724  * drop subtree rooted at tree block 'node'.
7725  *
7726  * NOTE: this function will unlock and release tree block 'node'
7727  * only used by relocation code
7728  */
7729 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7730 			struct btrfs_root *root,
7731 			struct extent_buffer *node,
7732 			struct extent_buffer *parent)
7733 {
7734 	struct btrfs_path *path;
7735 	struct walk_control *wc;
7736 	int level;
7737 	int parent_level;
7738 	int ret = 0;
7739 	int wret;
7740 
7741 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7742 
7743 	path = btrfs_alloc_path();
7744 	if (!path)
7745 		return -ENOMEM;
7746 
7747 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7748 	if (!wc) {
7749 		btrfs_free_path(path);
7750 		return -ENOMEM;
7751 	}
7752 
7753 	btrfs_assert_tree_locked(parent);
7754 	parent_level = btrfs_header_level(parent);
7755 	extent_buffer_get(parent);
7756 	path->nodes[parent_level] = parent;
7757 	path->slots[parent_level] = btrfs_header_nritems(parent);
7758 
7759 	btrfs_assert_tree_locked(node);
7760 	level = btrfs_header_level(node);
7761 	path->nodes[level] = node;
7762 	path->slots[level] = 0;
7763 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7764 
7765 	wc->refs[parent_level] = 1;
7766 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7767 	wc->level = level;
7768 	wc->shared_level = -1;
7769 	wc->stage = DROP_REFERENCE;
7770 	wc->update_ref = 0;
7771 	wc->keep_locks = 1;
7772 	wc->for_reloc = 1;
7773 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7774 
7775 	while (1) {
7776 		wret = walk_down_tree(trans, root, path, wc);
7777 		if (wret < 0) {
7778 			ret = wret;
7779 			break;
7780 		}
7781 
7782 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7783 		if (wret < 0)
7784 			ret = wret;
7785 		if (wret != 0)
7786 			break;
7787 	}
7788 
7789 	kfree(wc);
7790 	btrfs_free_path(path);
7791 	return ret;
7792 }
7793 
7794 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7795 {
7796 	u64 num_devices;
7797 	u64 stripped;
7798 
7799 	/*
7800 	 * if restripe for this chunk_type is on pick target profile and
7801 	 * return, otherwise do the usual balance
7802 	 */
7803 	stripped = get_restripe_target(root->fs_info, flags);
7804 	if (stripped)
7805 		return extended_to_chunk(stripped);
7806 
7807 	/*
7808 	 * we add in the count of missing devices because we want
7809 	 * to make sure that any RAID levels on a degraded FS
7810 	 * continue to be honored.
7811 	 */
7812 	num_devices = root->fs_info->fs_devices->rw_devices +
7813 		root->fs_info->fs_devices->missing_devices;
7814 
7815 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7816 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7817 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7818 
7819 	if (num_devices == 1) {
7820 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7821 		stripped = flags & ~stripped;
7822 
7823 		/* turn raid0 into single device chunks */
7824 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7825 			return stripped;
7826 
7827 		/* turn mirroring into duplication */
7828 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7829 			     BTRFS_BLOCK_GROUP_RAID10))
7830 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7831 	} else {
7832 		/* they already had raid on here, just return */
7833 		if (flags & stripped)
7834 			return flags;
7835 
7836 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7837 		stripped = flags & ~stripped;
7838 
7839 		/* switch duplicated blocks with raid1 */
7840 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7841 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7842 
7843 		/* this is drive concat, leave it alone */
7844 	}
7845 
7846 	return flags;
7847 }
7848 
7849 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7850 {
7851 	struct btrfs_space_info *sinfo = cache->space_info;
7852 	u64 num_bytes;
7853 	u64 min_allocable_bytes;
7854 	int ret = -ENOSPC;
7855 
7856 
7857 	/*
7858 	 * We need some metadata space and system metadata space for
7859 	 * allocating chunks in some corner cases until we force to set
7860 	 * it to be readonly.
7861 	 */
7862 	if ((sinfo->flags &
7863 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7864 	    !force)
7865 		min_allocable_bytes = 1 * 1024 * 1024;
7866 	else
7867 		min_allocable_bytes = 0;
7868 
7869 	spin_lock(&sinfo->lock);
7870 	spin_lock(&cache->lock);
7871 
7872 	if (cache->ro) {
7873 		ret = 0;
7874 		goto out;
7875 	}
7876 
7877 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7878 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7879 
7880 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7881 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7882 	    min_allocable_bytes <= sinfo->total_bytes) {
7883 		sinfo->bytes_readonly += num_bytes;
7884 		cache->ro = 1;
7885 		ret = 0;
7886 	}
7887 out:
7888 	spin_unlock(&cache->lock);
7889 	spin_unlock(&sinfo->lock);
7890 	return ret;
7891 }
7892 
7893 int btrfs_set_block_group_ro(struct btrfs_root *root,
7894 			     struct btrfs_block_group_cache *cache)
7895 
7896 {
7897 	struct btrfs_trans_handle *trans;
7898 	u64 alloc_flags;
7899 	int ret;
7900 
7901 	BUG_ON(cache->ro);
7902 
7903 	trans = btrfs_join_transaction(root);
7904 	if (IS_ERR(trans))
7905 		return PTR_ERR(trans);
7906 
7907 	alloc_flags = update_block_group_flags(root, cache->flags);
7908 	if (alloc_flags != cache->flags) {
7909 		ret = do_chunk_alloc(trans, root, alloc_flags,
7910 				     CHUNK_ALLOC_FORCE);
7911 		if (ret < 0)
7912 			goto out;
7913 	}
7914 
7915 	ret = set_block_group_ro(cache, 0);
7916 	if (!ret)
7917 		goto out;
7918 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7919 	ret = do_chunk_alloc(trans, root, alloc_flags,
7920 			     CHUNK_ALLOC_FORCE);
7921 	if (ret < 0)
7922 		goto out;
7923 	ret = set_block_group_ro(cache, 0);
7924 out:
7925 	btrfs_end_transaction(trans, root);
7926 	return ret;
7927 }
7928 
7929 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7930 			    struct btrfs_root *root, u64 type)
7931 {
7932 	u64 alloc_flags = get_alloc_profile(root, type);
7933 	return do_chunk_alloc(trans, root, alloc_flags,
7934 			      CHUNK_ALLOC_FORCE);
7935 }
7936 
7937 /*
7938  * helper to account the unused space of all the readonly block group in the
7939  * list. takes mirrors into account.
7940  */
7941 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7942 {
7943 	struct btrfs_block_group_cache *block_group;
7944 	u64 free_bytes = 0;
7945 	int factor;
7946 
7947 	list_for_each_entry(block_group, groups_list, list) {
7948 		spin_lock(&block_group->lock);
7949 
7950 		if (!block_group->ro) {
7951 			spin_unlock(&block_group->lock);
7952 			continue;
7953 		}
7954 
7955 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7956 					  BTRFS_BLOCK_GROUP_RAID10 |
7957 					  BTRFS_BLOCK_GROUP_DUP))
7958 			factor = 2;
7959 		else
7960 			factor = 1;
7961 
7962 		free_bytes += (block_group->key.offset -
7963 			       btrfs_block_group_used(&block_group->item)) *
7964 			       factor;
7965 
7966 		spin_unlock(&block_group->lock);
7967 	}
7968 
7969 	return free_bytes;
7970 }
7971 
7972 /*
7973  * helper to account the unused space of all the readonly block group in the
7974  * space_info. takes mirrors into account.
7975  */
7976 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7977 {
7978 	int i;
7979 	u64 free_bytes = 0;
7980 
7981 	spin_lock(&sinfo->lock);
7982 
7983 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7984 		if (!list_empty(&sinfo->block_groups[i]))
7985 			free_bytes += __btrfs_get_ro_block_group_free_space(
7986 						&sinfo->block_groups[i]);
7987 
7988 	spin_unlock(&sinfo->lock);
7989 
7990 	return free_bytes;
7991 }
7992 
7993 void btrfs_set_block_group_rw(struct btrfs_root *root,
7994 			      struct btrfs_block_group_cache *cache)
7995 {
7996 	struct btrfs_space_info *sinfo = cache->space_info;
7997 	u64 num_bytes;
7998 
7999 	BUG_ON(!cache->ro);
8000 
8001 	spin_lock(&sinfo->lock);
8002 	spin_lock(&cache->lock);
8003 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8004 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8005 	sinfo->bytes_readonly -= num_bytes;
8006 	cache->ro = 0;
8007 	spin_unlock(&cache->lock);
8008 	spin_unlock(&sinfo->lock);
8009 }
8010 
8011 /*
8012  * checks to see if its even possible to relocate this block group.
8013  *
8014  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8015  * ok to go ahead and try.
8016  */
8017 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8018 {
8019 	struct btrfs_block_group_cache *block_group;
8020 	struct btrfs_space_info *space_info;
8021 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8022 	struct btrfs_device *device;
8023 	struct btrfs_trans_handle *trans;
8024 	u64 min_free;
8025 	u64 dev_min = 1;
8026 	u64 dev_nr = 0;
8027 	u64 target;
8028 	int index;
8029 	int full = 0;
8030 	int ret = 0;
8031 
8032 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8033 
8034 	/* odd, couldn't find the block group, leave it alone */
8035 	if (!block_group)
8036 		return -1;
8037 
8038 	min_free = btrfs_block_group_used(&block_group->item);
8039 
8040 	/* no bytes used, we're good */
8041 	if (!min_free)
8042 		goto out;
8043 
8044 	space_info = block_group->space_info;
8045 	spin_lock(&space_info->lock);
8046 
8047 	full = space_info->full;
8048 
8049 	/*
8050 	 * if this is the last block group we have in this space, we can't
8051 	 * relocate it unless we're able to allocate a new chunk below.
8052 	 *
8053 	 * Otherwise, we need to make sure we have room in the space to handle
8054 	 * all of the extents from this block group.  If we can, we're good
8055 	 */
8056 	if ((space_info->total_bytes != block_group->key.offset) &&
8057 	    (space_info->bytes_used + space_info->bytes_reserved +
8058 	     space_info->bytes_pinned + space_info->bytes_readonly +
8059 	     min_free < space_info->total_bytes)) {
8060 		spin_unlock(&space_info->lock);
8061 		goto out;
8062 	}
8063 	spin_unlock(&space_info->lock);
8064 
8065 	/*
8066 	 * ok we don't have enough space, but maybe we have free space on our
8067 	 * devices to allocate new chunks for relocation, so loop through our
8068 	 * alloc devices and guess if we have enough space.  if this block
8069 	 * group is going to be restriped, run checks against the target
8070 	 * profile instead of the current one.
8071 	 */
8072 	ret = -1;
8073 
8074 	/*
8075 	 * index:
8076 	 *      0: raid10
8077 	 *      1: raid1
8078 	 *      2: dup
8079 	 *      3: raid0
8080 	 *      4: single
8081 	 */
8082 	target = get_restripe_target(root->fs_info, block_group->flags);
8083 	if (target) {
8084 		index = __get_raid_index(extended_to_chunk(target));
8085 	} else {
8086 		/*
8087 		 * this is just a balance, so if we were marked as full
8088 		 * we know there is no space for a new chunk
8089 		 */
8090 		if (full)
8091 			goto out;
8092 
8093 		index = get_block_group_index(block_group);
8094 	}
8095 
8096 	if (index == BTRFS_RAID_RAID10) {
8097 		dev_min = 4;
8098 		/* Divide by 2 */
8099 		min_free >>= 1;
8100 	} else if (index == BTRFS_RAID_RAID1) {
8101 		dev_min = 2;
8102 	} else if (index == BTRFS_RAID_DUP) {
8103 		/* Multiply by 2 */
8104 		min_free <<= 1;
8105 	} else if (index == BTRFS_RAID_RAID0) {
8106 		dev_min = fs_devices->rw_devices;
8107 		do_div(min_free, dev_min);
8108 	}
8109 
8110 	/* We need to do this so that we can look at pending chunks */
8111 	trans = btrfs_join_transaction(root);
8112 	if (IS_ERR(trans)) {
8113 		ret = PTR_ERR(trans);
8114 		goto out;
8115 	}
8116 
8117 	mutex_lock(&root->fs_info->chunk_mutex);
8118 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8119 		u64 dev_offset;
8120 
8121 		/*
8122 		 * check to make sure we can actually find a chunk with enough
8123 		 * space to fit our block group in.
8124 		 */
8125 		if (device->total_bytes > device->bytes_used + min_free &&
8126 		    !device->is_tgtdev_for_dev_replace) {
8127 			ret = find_free_dev_extent(trans, device, min_free,
8128 						   &dev_offset, NULL);
8129 			if (!ret)
8130 				dev_nr++;
8131 
8132 			if (dev_nr >= dev_min)
8133 				break;
8134 
8135 			ret = -1;
8136 		}
8137 	}
8138 	mutex_unlock(&root->fs_info->chunk_mutex);
8139 	btrfs_end_transaction(trans, root);
8140 out:
8141 	btrfs_put_block_group(block_group);
8142 	return ret;
8143 }
8144 
8145 static int find_first_block_group(struct btrfs_root *root,
8146 		struct btrfs_path *path, struct btrfs_key *key)
8147 {
8148 	int ret = 0;
8149 	struct btrfs_key found_key;
8150 	struct extent_buffer *leaf;
8151 	int slot;
8152 
8153 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8154 	if (ret < 0)
8155 		goto out;
8156 
8157 	while (1) {
8158 		slot = path->slots[0];
8159 		leaf = path->nodes[0];
8160 		if (slot >= btrfs_header_nritems(leaf)) {
8161 			ret = btrfs_next_leaf(root, path);
8162 			if (ret == 0)
8163 				continue;
8164 			if (ret < 0)
8165 				goto out;
8166 			break;
8167 		}
8168 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8169 
8170 		if (found_key.objectid >= key->objectid &&
8171 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8172 			ret = 0;
8173 			goto out;
8174 		}
8175 		path->slots[0]++;
8176 	}
8177 out:
8178 	return ret;
8179 }
8180 
8181 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8182 {
8183 	struct btrfs_block_group_cache *block_group;
8184 	u64 last = 0;
8185 
8186 	while (1) {
8187 		struct inode *inode;
8188 
8189 		block_group = btrfs_lookup_first_block_group(info, last);
8190 		while (block_group) {
8191 			spin_lock(&block_group->lock);
8192 			if (block_group->iref)
8193 				break;
8194 			spin_unlock(&block_group->lock);
8195 			block_group = next_block_group(info->tree_root,
8196 						       block_group);
8197 		}
8198 		if (!block_group) {
8199 			if (last == 0)
8200 				break;
8201 			last = 0;
8202 			continue;
8203 		}
8204 
8205 		inode = block_group->inode;
8206 		block_group->iref = 0;
8207 		block_group->inode = NULL;
8208 		spin_unlock(&block_group->lock);
8209 		iput(inode);
8210 		last = block_group->key.objectid + block_group->key.offset;
8211 		btrfs_put_block_group(block_group);
8212 	}
8213 }
8214 
8215 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8216 {
8217 	struct btrfs_block_group_cache *block_group;
8218 	struct btrfs_space_info *space_info;
8219 	struct btrfs_caching_control *caching_ctl;
8220 	struct rb_node *n;
8221 
8222 	down_write(&info->extent_commit_sem);
8223 	while (!list_empty(&info->caching_block_groups)) {
8224 		caching_ctl = list_entry(info->caching_block_groups.next,
8225 					 struct btrfs_caching_control, list);
8226 		list_del(&caching_ctl->list);
8227 		put_caching_control(caching_ctl);
8228 	}
8229 	up_write(&info->extent_commit_sem);
8230 
8231 	spin_lock(&info->block_group_cache_lock);
8232 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8233 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8234 				       cache_node);
8235 		rb_erase(&block_group->cache_node,
8236 			 &info->block_group_cache_tree);
8237 		spin_unlock(&info->block_group_cache_lock);
8238 
8239 		down_write(&block_group->space_info->groups_sem);
8240 		list_del(&block_group->list);
8241 		up_write(&block_group->space_info->groups_sem);
8242 
8243 		if (block_group->cached == BTRFS_CACHE_STARTED)
8244 			wait_block_group_cache_done(block_group);
8245 
8246 		/*
8247 		 * We haven't cached this block group, which means we could
8248 		 * possibly have excluded extents on this block group.
8249 		 */
8250 		if (block_group->cached == BTRFS_CACHE_NO ||
8251 		    block_group->cached == BTRFS_CACHE_ERROR)
8252 			free_excluded_extents(info->extent_root, block_group);
8253 
8254 		btrfs_remove_free_space_cache(block_group);
8255 		btrfs_put_block_group(block_group);
8256 
8257 		spin_lock(&info->block_group_cache_lock);
8258 	}
8259 	spin_unlock(&info->block_group_cache_lock);
8260 
8261 	/* now that all the block groups are freed, go through and
8262 	 * free all the space_info structs.  This is only called during
8263 	 * the final stages of unmount, and so we know nobody is
8264 	 * using them.  We call synchronize_rcu() once before we start,
8265 	 * just to be on the safe side.
8266 	 */
8267 	synchronize_rcu();
8268 
8269 	release_global_block_rsv(info);
8270 
8271 	while(!list_empty(&info->space_info)) {
8272 		space_info = list_entry(info->space_info.next,
8273 					struct btrfs_space_info,
8274 					list);
8275 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8276 			if (space_info->bytes_pinned > 0 ||
8277 			    space_info->bytes_reserved > 0 ||
8278 			    space_info->bytes_may_use > 0) {
8279 				WARN_ON(1);
8280 				dump_space_info(space_info, 0, 0);
8281 			}
8282 		}
8283 		percpu_counter_destroy(&space_info->total_bytes_pinned);
8284 		list_del(&space_info->list);
8285 		kfree(space_info);
8286 	}
8287 	return 0;
8288 }
8289 
8290 static void __link_block_group(struct btrfs_space_info *space_info,
8291 			       struct btrfs_block_group_cache *cache)
8292 {
8293 	int index = get_block_group_index(cache);
8294 
8295 	down_write(&space_info->groups_sem);
8296 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8297 	up_write(&space_info->groups_sem);
8298 }
8299 
8300 int btrfs_read_block_groups(struct btrfs_root *root)
8301 {
8302 	struct btrfs_path *path;
8303 	int ret;
8304 	struct btrfs_block_group_cache *cache;
8305 	struct btrfs_fs_info *info = root->fs_info;
8306 	struct btrfs_space_info *space_info;
8307 	struct btrfs_key key;
8308 	struct btrfs_key found_key;
8309 	struct extent_buffer *leaf;
8310 	int need_clear = 0;
8311 	u64 cache_gen;
8312 
8313 	root = info->extent_root;
8314 	key.objectid = 0;
8315 	key.offset = 0;
8316 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8317 	path = btrfs_alloc_path();
8318 	if (!path)
8319 		return -ENOMEM;
8320 	path->reada = 1;
8321 
8322 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8323 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8324 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8325 		need_clear = 1;
8326 	if (btrfs_test_opt(root, CLEAR_CACHE))
8327 		need_clear = 1;
8328 
8329 	while (1) {
8330 		ret = find_first_block_group(root, path, &key);
8331 		if (ret > 0)
8332 			break;
8333 		if (ret != 0)
8334 			goto error;
8335 		leaf = path->nodes[0];
8336 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8337 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8338 		if (!cache) {
8339 			ret = -ENOMEM;
8340 			goto error;
8341 		}
8342 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8343 						GFP_NOFS);
8344 		if (!cache->free_space_ctl) {
8345 			kfree(cache);
8346 			ret = -ENOMEM;
8347 			goto error;
8348 		}
8349 
8350 		atomic_set(&cache->count, 1);
8351 		spin_lock_init(&cache->lock);
8352 		cache->fs_info = info;
8353 		INIT_LIST_HEAD(&cache->list);
8354 		INIT_LIST_HEAD(&cache->cluster_list);
8355 
8356 		if (need_clear) {
8357 			/*
8358 			 * When we mount with old space cache, we need to
8359 			 * set BTRFS_DC_CLEAR and set dirty flag.
8360 			 *
8361 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8362 			 *    truncate the old free space cache inode and
8363 			 *    setup a new one.
8364 			 * b) Setting 'dirty flag' makes sure that we flush
8365 			 *    the new space cache info onto disk.
8366 			 */
8367 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8368 			if (btrfs_test_opt(root, SPACE_CACHE))
8369 				cache->dirty = 1;
8370 		}
8371 
8372 		read_extent_buffer(leaf, &cache->item,
8373 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8374 				   sizeof(cache->item));
8375 		memcpy(&cache->key, &found_key, sizeof(found_key));
8376 
8377 		key.objectid = found_key.objectid + found_key.offset;
8378 		btrfs_release_path(path);
8379 		cache->flags = btrfs_block_group_flags(&cache->item);
8380 		cache->sectorsize = root->sectorsize;
8381 		cache->full_stripe_len = btrfs_full_stripe_len(root,
8382 					       &root->fs_info->mapping_tree,
8383 					       found_key.objectid);
8384 		btrfs_init_free_space_ctl(cache);
8385 
8386 		/*
8387 		 * We need to exclude the super stripes now so that the space
8388 		 * info has super bytes accounted for, otherwise we'll think
8389 		 * we have more space than we actually do.
8390 		 */
8391 		ret = exclude_super_stripes(root, cache);
8392 		if (ret) {
8393 			/*
8394 			 * We may have excluded something, so call this just in
8395 			 * case.
8396 			 */
8397 			free_excluded_extents(root, cache);
8398 			kfree(cache->free_space_ctl);
8399 			kfree(cache);
8400 			goto error;
8401 		}
8402 
8403 		/*
8404 		 * check for two cases, either we are full, and therefore
8405 		 * don't need to bother with the caching work since we won't
8406 		 * find any space, or we are empty, and we can just add all
8407 		 * the space in and be done with it.  This saves us _alot_ of
8408 		 * time, particularly in the full case.
8409 		 */
8410 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8411 			cache->last_byte_to_unpin = (u64)-1;
8412 			cache->cached = BTRFS_CACHE_FINISHED;
8413 			free_excluded_extents(root, cache);
8414 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8415 			cache->last_byte_to_unpin = (u64)-1;
8416 			cache->cached = BTRFS_CACHE_FINISHED;
8417 			add_new_free_space(cache, root->fs_info,
8418 					   found_key.objectid,
8419 					   found_key.objectid +
8420 					   found_key.offset);
8421 			free_excluded_extents(root, cache);
8422 		}
8423 
8424 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8425 		if (ret) {
8426 			btrfs_remove_free_space_cache(cache);
8427 			btrfs_put_block_group(cache);
8428 			goto error;
8429 		}
8430 
8431 		ret = update_space_info(info, cache->flags, found_key.offset,
8432 					btrfs_block_group_used(&cache->item),
8433 					&space_info);
8434 		if (ret) {
8435 			btrfs_remove_free_space_cache(cache);
8436 			spin_lock(&info->block_group_cache_lock);
8437 			rb_erase(&cache->cache_node,
8438 				 &info->block_group_cache_tree);
8439 			spin_unlock(&info->block_group_cache_lock);
8440 			btrfs_put_block_group(cache);
8441 			goto error;
8442 		}
8443 
8444 		cache->space_info = space_info;
8445 		spin_lock(&cache->space_info->lock);
8446 		cache->space_info->bytes_readonly += cache->bytes_super;
8447 		spin_unlock(&cache->space_info->lock);
8448 
8449 		__link_block_group(space_info, cache);
8450 
8451 		set_avail_alloc_bits(root->fs_info, cache->flags);
8452 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8453 			set_block_group_ro(cache, 1);
8454 	}
8455 
8456 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8457 		if (!(get_alloc_profile(root, space_info->flags) &
8458 		      (BTRFS_BLOCK_GROUP_RAID10 |
8459 		       BTRFS_BLOCK_GROUP_RAID1 |
8460 		       BTRFS_BLOCK_GROUP_RAID5 |
8461 		       BTRFS_BLOCK_GROUP_RAID6 |
8462 		       BTRFS_BLOCK_GROUP_DUP)))
8463 			continue;
8464 		/*
8465 		 * avoid allocating from un-mirrored block group if there are
8466 		 * mirrored block groups.
8467 		 */
8468 		list_for_each_entry(cache,
8469 				&space_info->block_groups[BTRFS_RAID_RAID0],
8470 				list)
8471 			set_block_group_ro(cache, 1);
8472 		list_for_each_entry(cache,
8473 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8474 				list)
8475 			set_block_group_ro(cache, 1);
8476 	}
8477 
8478 	init_global_block_rsv(info);
8479 	ret = 0;
8480 error:
8481 	btrfs_free_path(path);
8482 	return ret;
8483 }
8484 
8485 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8486 				       struct btrfs_root *root)
8487 {
8488 	struct btrfs_block_group_cache *block_group, *tmp;
8489 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8490 	struct btrfs_block_group_item item;
8491 	struct btrfs_key key;
8492 	int ret = 0;
8493 
8494 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8495 				 new_bg_list) {
8496 		list_del_init(&block_group->new_bg_list);
8497 
8498 		if (ret)
8499 			continue;
8500 
8501 		spin_lock(&block_group->lock);
8502 		memcpy(&item, &block_group->item, sizeof(item));
8503 		memcpy(&key, &block_group->key, sizeof(key));
8504 		spin_unlock(&block_group->lock);
8505 
8506 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8507 					sizeof(item));
8508 		if (ret)
8509 			btrfs_abort_transaction(trans, extent_root, ret);
8510 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8511 					       key.objectid, key.offset);
8512 		if (ret)
8513 			btrfs_abort_transaction(trans, extent_root, ret);
8514 	}
8515 }
8516 
8517 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8518 			   struct btrfs_root *root, u64 bytes_used,
8519 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8520 			   u64 size)
8521 {
8522 	int ret;
8523 	struct btrfs_root *extent_root;
8524 	struct btrfs_block_group_cache *cache;
8525 
8526 	extent_root = root->fs_info->extent_root;
8527 
8528 	root->fs_info->last_trans_log_full_commit = trans->transid;
8529 
8530 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8531 	if (!cache)
8532 		return -ENOMEM;
8533 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8534 					GFP_NOFS);
8535 	if (!cache->free_space_ctl) {
8536 		kfree(cache);
8537 		return -ENOMEM;
8538 	}
8539 
8540 	cache->key.objectid = chunk_offset;
8541 	cache->key.offset = size;
8542 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8543 	cache->sectorsize = root->sectorsize;
8544 	cache->fs_info = root->fs_info;
8545 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8546 					       &root->fs_info->mapping_tree,
8547 					       chunk_offset);
8548 
8549 	atomic_set(&cache->count, 1);
8550 	spin_lock_init(&cache->lock);
8551 	INIT_LIST_HEAD(&cache->list);
8552 	INIT_LIST_HEAD(&cache->cluster_list);
8553 	INIT_LIST_HEAD(&cache->new_bg_list);
8554 
8555 	btrfs_init_free_space_ctl(cache);
8556 
8557 	btrfs_set_block_group_used(&cache->item, bytes_used);
8558 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8559 	cache->flags = type;
8560 	btrfs_set_block_group_flags(&cache->item, type);
8561 
8562 	cache->last_byte_to_unpin = (u64)-1;
8563 	cache->cached = BTRFS_CACHE_FINISHED;
8564 	ret = exclude_super_stripes(root, cache);
8565 	if (ret) {
8566 		/*
8567 		 * We may have excluded something, so call this just in
8568 		 * case.
8569 		 */
8570 		free_excluded_extents(root, cache);
8571 		kfree(cache->free_space_ctl);
8572 		kfree(cache);
8573 		return ret;
8574 	}
8575 
8576 	add_new_free_space(cache, root->fs_info, chunk_offset,
8577 			   chunk_offset + size);
8578 
8579 	free_excluded_extents(root, cache);
8580 
8581 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8582 	if (ret) {
8583 		btrfs_remove_free_space_cache(cache);
8584 		btrfs_put_block_group(cache);
8585 		return ret;
8586 	}
8587 
8588 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8589 				&cache->space_info);
8590 	if (ret) {
8591 		btrfs_remove_free_space_cache(cache);
8592 		spin_lock(&root->fs_info->block_group_cache_lock);
8593 		rb_erase(&cache->cache_node,
8594 			 &root->fs_info->block_group_cache_tree);
8595 		spin_unlock(&root->fs_info->block_group_cache_lock);
8596 		btrfs_put_block_group(cache);
8597 		return ret;
8598 	}
8599 	update_global_block_rsv(root->fs_info);
8600 
8601 	spin_lock(&cache->space_info->lock);
8602 	cache->space_info->bytes_readonly += cache->bytes_super;
8603 	spin_unlock(&cache->space_info->lock);
8604 
8605 	__link_block_group(cache->space_info, cache);
8606 
8607 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8608 
8609 	set_avail_alloc_bits(extent_root->fs_info, type);
8610 
8611 	return 0;
8612 }
8613 
8614 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8615 {
8616 	u64 extra_flags = chunk_to_extended(flags) &
8617 				BTRFS_EXTENDED_PROFILE_MASK;
8618 
8619 	write_seqlock(&fs_info->profiles_lock);
8620 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8621 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8622 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8623 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8624 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8625 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8626 	write_sequnlock(&fs_info->profiles_lock);
8627 }
8628 
8629 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8630 			     struct btrfs_root *root, u64 group_start)
8631 {
8632 	struct btrfs_path *path;
8633 	struct btrfs_block_group_cache *block_group;
8634 	struct btrfs_free_cluster *cluster;
8635 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8636 	struct btrfs_key key;
8637 	struct inode *inode;
8638 	int ret;
8639 	int index;
8640 	int factor;
8641 
8642 	root = root->fs_info->extent_root;
8643 
8644 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8645 	BUG_ON(!block_group);
8646 	BUG_ON(!block_group->ro);
8647 
8648 	/*
8649 	 * Free the reserved super bytes from this block group before
8650 	 * remove it.
8651 	 */
8652 	free_excluded_extents(root, block_group);
8653 
8654 	memcpy(&key, &block_group->key, sizeof(key));
8655 	index = get_block_group_index(block_group);
8656 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8657 				  BTRFS_BLOCK_GROUP_RAID1 |
8658 				  BTRFS_BLOCK_GROUP_RAID10))
8659 		factor = 2;
8660 	else
8661 		factor = 1;
8662 
8663 	/* make sure this block group isn't part of an allocation cluster */
8664 	cluster = &root->fs_info->data_alloc_cluster;
8665 	spin_lock(&cluster->refill_lock);
8666 	btrfs_return_cluster_to_free_space(block_group, cluster);
8667 	spin_unlock(&cluster->refill_lock);
8668 
8669 	/*
8670 	 * make sure this block group isn't part of a metadata
8671 	 * allocation cluster
8672 	 */
8673 	cluster = &root->fs_info->meta_alloc_cluster;
8674 	spin_lock(&cluster->refill_lock);
8675 	btrfs_return_cluster_to_free_space(block_group, cluster);
8676 	spin_unlock(&cluster->refill_lock);
8677 
8678 	path = btrfs_alloc_path();
8679 	if (!path) {
8680 		ret = -ENOMEM;
8681 		goto out;
8682 	}
8683 
8684 	inode = lookup_free_space_inode(tree_root, block_group, path);
8685 	if (!IS_ERR(inode)) {
8686 		ret = btrfs_orphan_add(trans, inode);
8687 		if (ret) {
8688 			btrfs_add_delayed_iput(inode);
8689 			goto out;
8690 		}
8691 		clear_nlink(inode);
8692 		/* One for the block groups ref */
8693 		spin_lock(&block_group->lock);
8694 		if (block_group->iref) {
8695 			block_group->iref = 0;
8696 			block_group->inode = NULL;
8697 			spin_unlock(&block_group->lock);
8698 			iput(inode);
8699 		} else {
8700 			spin_unlock(&block_group->lock);
8701 		}
8702 		/* One for our lookup ref */
8703 		btrfs_add_delayed_iput(inode);
8704 	}
8705 
8706 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8707 	key.offset = block_group->key.objectid;
8708 	key.type = 0;
8709 
8710 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8711 	if (ret < 0)
8712 		goto out;
8713 	if (ret > 0)
8714 		btrfs_release_path(path);
8715 	if (ret == 0) {
8716 		ret = btrfs_del_item(trans, tree_root, path);
8717 		if (ret)
8718 			goto out;
8719 		btrfs_release_path(path);
8720 	}
8721 
8722 	spin_lock(&root->fs_info->block_group_cache_lock);
8723 	rb_erase(&block_group->cache_node,
8724 		 &root->fs_info->block_group_cache_tree);
8725 
8726 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8727 		root->fs_info->first_logical_byte = (u64)-1;
8728 	spin_unlock(&root->fs_info->block_group_cache_lock);
8729 
8730 	down_write(&block_group->space_info->groups_sem);
8731 	/*
8732 	 * we must use list_del_init so people can check to see if they
8733 	 * are still on the list after taking the semaphore
8734 	 */
8735 	list_del_init(&block_group->list);
8736 	if (list_empty(&block_group->space_info->block_groups[index]))
8737 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8738 	up_write(&block_group->space_info->groups_sem);
8739 
8740 	if (block_group->cached == BTRFS_CACHE_STARTED)
8741 		wait_block_group_cache_done(block_group);
8742 
8743 	btrfs_remove_free_space_cache(block_group);
8744 
8745 	spin_lock(&block_group->space_info->lock);
8746 	block_group->space_info->total_bytes -= block_group->key.offset;
8747 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8748 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8749 	spin_unlock(&block_group->space_info->lock);
8750 
8751 	memcpy(&key, &block_group->key, sizeof(key));
8752 
8753 	btrfs_clear_space_info_full(root->fs_info);
8754 
8755 	btrfs_put_block_group(block_group);
8756 	btrfs_put_block_group(block_group);
8757 
8758 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8759 	if (ret > 0)
8760 		ret = -EIO;
8761 	if (ret < 0)
8762 		goto out;
8763 
8764 	ret = btrfs_del_item(trans, root, path);
8765 out:
8766 	btrfs_free_path(path);
8767 	return ret;
8768 }
8769 
8770 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8771 {
8772 	struct btrfs_space_info *space_info;
8773 	struct btrfs_super_block *disk_super;
8774 	u64 features;
8775 	u64 flags;
8776 	int mixed = 0;
8777 	int ret;
8778 
8779 	disk_super = fs_info->super_copy;
8780 	if (!btrfs_super_root(disk_super))
8781 		return 1;
8782 
8783 	features = btrfs_super_incompat_flags(disk_super);
8784 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8785 		mixed = 1;
8786 
8787 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8788 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8789 	if (ret)
8790 		goto out;
8791 
8792 	if (mixed) {
8793 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8794 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8795 	} else {
8796 		flags = BTRFS_BLOCK_GROUP_METADATA;
8797 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8798 		if (ret)
8799 			goto out;
8800 
8801 		flags = BTRFS_BLOCK_GROUP_DATA;
8802 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8803 	}
8804 out:
8805 	return ret;
8806 }
8807 
8808 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8809 {
8810 	return unpin_extent_range(root, start, end);
8811 }
8812 
8813 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8814 			       u64 num_bytes, u64 *actual_bytes)
8815 {
8816 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8817 }
8818 
8819 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8820 {
8821 	struct btrfs_fs_info *fs_info = root->fs_info;
8822 	struct btrfs_block_group_cache *cache = NULL;
8823 	u64 group_trimmed;
8824 	u64 start;
8825 	u64 end;
8826 	u64 trimmed = 0;
8827 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8828 	int ret = 0;
8829 
8830 	/*
8831 	 * try to trim all FS space, our block group may start from non-zero.
8832 	 */
8833 	if (range->len == total_bytes)
8834 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8835 	else
8836 		cache = btrfs_lookup_block_group(fs_info, range->start);
8837 
8838 	while (cache) {
8839 		if (cache->key.objectid >= (range->start + range->len)) {
8840 			btrfs_put_block_group(cache);
8841 			break;
8842 		}
8843 
8844 		start = max(range->start, cache->key.objectid);
8845 		end = min(range->start + range->len,
8846 				cache->key.objectid + cache->key.offset);
8847 
8848 		if (end - start >= range->minlen) {
8849 			if (!block_group_cache_done(cache)) {
8850 				ret = cache_block_group(cache, 0);
8851 				if (ret) {
8852 					btrfs_put_block_group(cache);
8853 					break;
8854 				}
8855 				ret = wait_block_group_cache_done(cache);
8856 				if (ret) {
8857 					btrfs_put_block_group(cache);
8858 					break;
8859 				}
8860 			}
8861 			ret = btrfs_trim_block_group(cache,
8862 						     &group_trimmed,
8863 						     start,
8864 						     end,
8865 						     range->minlen);
8866 
8867 			trimmed += group_trimmed;
8868 			if (ret) {
8869 				btrfs_put_block_group(cache);
8870 				break;
8871 			}
8872 		}
8873 
8874 		cache = next_block_group(fs_info->tree_root, cache);
8875 	}
8876 
8877 	range->len = trimmed;
8878 	return ret;
8879 }
8880