1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 #include "raid-stripe-tree.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_head *href, 52 struct btrfs_delayed_ref_node *node, u64 parent, 53 u64 root_objectid, u64 owner_objectid, 54 u64 owner_offset, 55 struct btrfs_delayed_extent_op *extra_op); 56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 57 struct extent_buffer *leaf, 58 struct btrfs_extent_item *ei); 59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 60 u64 parent, u64 root_objectid, 61 u64 flags, u64 owner, u64 offset, 62 struct btrfs_key *ins, int ref_mod, u64 oref_root); 63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 64 struct btrfs_delayed_ref_node *node, 65 struct btrfs_delayed_extent_op *extent_op); 66 static int find_next_key(struct btrfs_path *path, int level, 67 struct btrfs_key *key); 68 69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 70 { 71 return (cache->flags & bits) == bits; 72 } 73 74 /* simple helper to search for an existing data extent at a given offset */ 75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 76 { 77 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 78 int ret; 79 struct btrfs_key key; 80 struct btrfs_path *path; 81 82 path = btrfs_alloc_path(); 83 if (!path) 84 return -ENOMEM; 85 86 key.objectid = start; 87 key.offset = len; 88 key.type = BTRFS_EXTENT_ITEM_KEY; 89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 90 btrfs_free_path(path); 91 return ret; 92 } 93 94 /* 95 * helper function to lookup reference count and flags of a tree block. 96 * 97 * the head node for delayed ref is used to store the sum of all the 98 * reference count modifications queued up in the rbtree. the head 99 * node may also store the extent flags to set. This way you can check 100 * to see what the reference count and extent flags would be if all of 101 * the delayed refs are not processed. 102 */ 103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 104 struct btrfs_fs_info *fs_info, u64 bytenr, 105 u64 offset, int metadata, u64 *refs, u64 *flags, 106 u64 *owning_root) 107 { 108 struct btrfs_root *extent_root; 109 struct btrfs_delayed_ref_head *head; 110 struct btrfs_delayed_ref_root *delayed_refs; 111 struct btrfs_path *path; 112 struct btrfs_extent_item *ei; 113 struct extent_buffer *leaf; 114 struct btrfs_key key; 115 u32 item_size; 116 u64 num_refs; 117 u64 extent_flags; 118 u64 owner = 0; 119 int ret; 120 121 /* 122 * If we don't have skinny metadata, don't bother doing anything 123 * different 124 */ 125 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 126 offset = fs_info->nodesize; 127 metadata = 0; 128 } 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 if (!trans) { 135 path->skip_locking = 1; 136 path->search_commit_root = 1; 137 } 138 139 search_again: 140 key.objectid = bytenr; 141 key.offset = offset; 142 if (metadata) 143 key.type = BTRFS_METADATA_ITEM_KEY; 144 else 145 key.type = BTRFS_EXTENT_ITEM_KEY; 146 147 extent_root = btrfs_extent_root(fs_info, bytenr); 148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 149 if (ret < 0) 150 goto out_free; 151 152 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 153 if (path->slots[0]) { 154 path->slots[0]--; 155 btrfs_item_key_to_cpu(path->nodes[0], &key, 156 path->slots[0]); 157 if (key.objectid == bytenr && 158 key.type == BTRFS_EXTENT_ITEM_KEY && 159 key.offset == fs_info->nodesize) 160 ret = 0; 161 } 162 } 163 164 if (ret == 0) { 165 leaf = path->nodes[0]; 166 item_size = btrfs_item_size(leaf, path->slots[0]); 167 if (item_size >= sizeof(*ei)) { 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_extent_item); 170 num_refs = btrfs_extent_refs(leaf, ei); 171 extent_flags = btrfs_extent_flags(leaf, ei); 172 owner = btrfs_get_extent_owner_root(fs_info, leaf, 173 path->slots[0]); 174 } else { 175 ret = -EUCLEAN; 176 btrfs_err(fs_info, 177 "unexpected extent item size, has %u expect >= %zu", 178 item_size, sizeof(*ei)); 179 if (trans) 180 btrfs_abort_transaction(trans, ret); 181 else 182 btrfs_handle_fs_error(fs_info, ret, NULL); 183 184 goto out_free; 185 } 186 187 BUG_ON(num_refs == 0); 188 } else { 189 num_refs = 0; 190 extent_flags = 0; 191 ret = 0; 192 } 193 194 if (!trans) 195 goto out; 196 197 delayed_refs = &trans->transaction->delayed_refs; 198 spin_lock(&delayed_refs->lock); 199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 200 if (head) { 201 if (!mutex_trylock(&head->mutex)) { 202 refcount_inc(&head->refs); 203 spin_unlock(&delayed_refs->lock); 204 205 btrfs_release_path(path); 206 207 /* 208 * Mutex was contended, block until it's released and try 209 * again 210 */ 211 mutex_lock(&head->mutex); 212 mutex_unlock(&head->mutex); 213 btrfs_put_delayed_ref_head(head); 214 goto search_again; 215 } 216 spin_lock(&head->lock); 217 if (head->extent_op && head->extent_op->update_flags) 218 extent_flags |= head->extent_op->flags_to_set; 219 else 220 BUG_ON(num_refs == 0); 221 222 num_refs += head->ref_mod; 223 spin_unlock(&head->lock); 224 mutex_unlock(&head->mutex); 225 } 226 spin_unlock(&delayed_refs->lock); 227 out: 228 WARN_ON(num_refs == 0); 229 if (refs) 230 *refs = num_refs; 231 if (flags) 232 *flags = extent_flags; 233 if (owning_root) 234 *owning_root = owner; 235 out_free: 236 btrfs_free_path(path); 237 return ret; 238 } 239 240 /* 241 * Back reference rules. Back refs have three main goals: 242 * 243 * 1) differentiate between all holders of references to an extent so that 244 * when a reference is dropped we can make sure it was a valid reference 245 * before freeing the extent. 246 * 247 * 2) Provide enough information to quickly find the holders of an extent 248 * if we notice a given block is corrupted or bad. 249 * 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 251 * maintenance. This is actually the same as #2, but with a slightly 252 * different use case. 253 * 254 * There are two kinds of back refs. The implicit back refs is optimized 255 * for pointers in non-shared tree blocks. For a given pointer in a block, 256 * back refs of this kind provide information about the block's owner tree 257 * and the pointer's key. These information allow us to find the block by 258 * b-tree searching. The full back refs is for pointers in tree blocks not 259 * referenced by their owner trees. The location of tree block is recorded 260 * in the back refs. Actually the full back refs is generic, and can be 261 * used in all cases the implicit back refs is used. The major shortcoming 262 * of the full back refs is its overhead. Every time a tree block gets 263 * COWed, we have to update back refs entry for all pointers in it. 264 * 265 * For a newly allocated tree block, we use implicit back refs for 266 * pointers in it. This means most tree related operations only involve 267 * implicit back refs. For a tree block created in old transaction, the 268 * only way to drop a reference to it is COW it. So we can detect the 269 * event that tree block loses its owner tree's reference and do the 270 * back refs conversion. 271 * 272 * When a tree block is COWed through a tree, there are four cases: 273 * 274 * The reference count of the block is one and the tree is the block's 275 * owner tree. Nothing to do in this case. 276 * 277 * The reference count of the block is one and the tree is not the 278 * block's owner tree. In this case, full back refs is used for pointers 279 * in the block. Remove these full back refs, add implicit back refs for 280 * every pointers in the new block. 281 * 282 * The reference count of the block is greater than one and the tree is 283 * the block's owner tree. In this case, implicit back refs is used for 284 * pointers in the block. Add full back refs for every pointers in the 285 * block, increase lower level extents' reference counts. The original 286 * implicit back refs are entailed to the new block. 287 * 288 * The reference count of the block is greater than one and the tree is 289 * not the block's owner tree. Add implicit back refs for every pointer in 290 * the new block, increase lower level extents' reference count. 291 * 292 * Back Reference Key composing: 293 * 294 * The key objectid corresponds to the first byte in the extent, 295 * The key type is used to differentiate between types of back refs. 296 * There are different meanings of the key offset for different types 297 * of back refs. 298 * 299 * File extents can be referenced by: 300 * 301 * - multiple snapshots, subvolumes, or different generations in one subvol 302 * - different files inside a single subvolume 303 * - different offsets inside a file (bookend extents in file.c) 304 * 305 * The extent ref structure for the implicit back refs has fields for: 306 * 307 * - Objectid of the subvolume root 308 * - objectid of the file holding the reference 309 * - original offset in the file 310 * - how many bookend extents 311 * 312 * The key offset for the implicit back refs is hash of the first 313 * three fields. 314 * 315 * The extent ref structure for the full back refs has field for: 316 * 317 * - number of pointers in the tree leaf 318 * 319 * The key offset for the implicit back refs is the first byte of 320 * the tree leaf 321 * 322 * When a file extent is allocated, The implicit back refs is used. 323 * the fields are filled in: 324 * 325 * (root_key.objectid, inode objectid, offset in file, 1) 326 * 327 * When a file extent is removed file truncation, we find the 328 * corresponding implicit back refs and check the following fields: 329 * 330 * (btrfs_header_owner(leaf), inode objectid, offset in file) 331 * 332 * Btree extents can be referenced by: 333 * 334 * - Different subvolumes 335 * 336 * Both the implicit back refs and the full back refs for tree blocks 337 * only consist of key. The key offset for the implicit back refs is 338 * objectid of block's owner tree. The key offset for the full back refs 339 * is the first byte of parent block. 340 * 341 * When implicit back refs is used, information about the lowest key and 342 * level of the tree block are required. These information are stored in 343 * tree block info structure. 344 */ 345 346 /* 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 350 */ 351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 352 struct btrfs_extent_inline_ref *iref, 353 enum btrfs_inline_ref_type is_data) 354 { 355 struct btrfs_fs_info *fs_info = eb->fs_info; 356 int type = btrfs_extent_inline_ref_type(eb, iref); 357 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 358 359 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 360 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 361 return type; 362 } 363 364 if (type == BTRFS_TREE_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_BLOCK_REF_KEY || 366 type == BTRFS_SHARED_DATA_REF_KEY || 367 type == BTRFS_EXTENT_DATA_REF_KEY) { 368 if (is_data == BTRFS_REF_TYPE_BLOCK) { 369 if (type == BTRFS_TREE_BLOCK_REF_KEY) 370 return type; 371 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 372 ASSERT(fs_info); 373 /* 374 * Every shared one has parent tree block, 375 * which must be aligned to sector size. 376 */ 377 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 WARN_ON(1); 400 btrfs_print_leaf(eb); 401 btrfs_err(fs_info, 402 "eb %llu iref 0x%lx invalid extent inline ref type %d", 403 eb->start, (unsigned long)iref, type); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(trans, leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else { 622 btrfs_err(trans->fs_info, 623 "unrecognized backref key (%llu %u %llu)", 624 key.objectid, key.type, key.offset); 625 btrfs_abort_transaction(trans, -EUCLEAN); 626 return -EUCLEAN; 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(trans, leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 if (iref) { 658 /* 659 * If type is invalid, we should have bailed out earlier than 660 * this call. 661 */ 662 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 663 ASSERT(type != BTRFS_REF_TYPE_INVALID); 664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 665 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 666 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 667 } else { 668 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 669 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 670 } 671 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 672 ref1 = btrfs_item_ptr(leaf, path->slots[0], 673 struct btrfs_extent_data_ref); 674 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 675 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 676 ref2 = btrfs_item_ptr(leaf, path->slots[0], 677 struct btrfs_shared_data_ref); 678 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 679 } else { 680 WARN_ON(1); 681 } 682 return num_refs; 683 } 684 685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 u64 bytenr, u64 parent, 688 u64 root_objectid) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = root_objectid; 701 } 702 703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 704 if (ret > 0) 705 ret = -ENOENT; 706 return ret; 707 } 708 709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 710 struct btrfs_path *path, 711 u64 bytenr, u64 parent, 712 u64 root_objectid) 713 { 714 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 715 struct btrfs_key key; 716 int ret; 717 718 key.objectid = bytenr; 719 if (parent) { 720 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 721 key.offset = parent; 722 } else { 723 key.type = BTRFS_TREE_BLOCK_REF_KEY; 724 key.offset = root_objectid; 725 } 726 727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 728 btrfs_release_path(path); 729 return ret; 730 } 731 732 static inline int extent_ref_type(u64 parent, u64 owner) 733 { 734 int type; 735 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 736 if (parent > 0) 737 type = BTRFS_SHARED_BLOCK_REF_KEY; 738 else 739 type = BTRFS_TREE_BLOCK_REF_KEY; 740 } else { 741 if (parent > 0) 742 type = BTRFS_SHARED_DATA_REF_KEY; 743 else 744 type = BTRFS_EXTENT_DATA_REF_KEY; 745 } 746 return type; 747 } 748 749 static int find_next_key(struct btrfs_path *path, int level, 750 struct btrfs_key *key) 751 752 { 753 for (; level < BTRFS_MAX_LEVEL; level++) { 754 if (!path->nodes[level]) 755 break; 756 if (path->slots[level] + 1 >= 757 btrfs_header_nritems(path->nodes[level])) 758 continue; 759 if (level == 0) 760 btrfs_item_key_to_cpu(path->nodes[level], key, 761 path->slots[level] + 1); 762 else 763 btrfs_node_key_to_cpu(path->nodes[level], key, 764 path->slots[level] + 1); 765 return 0; 766 } 767 return 1; 768 } 769 770 /* 771 * look for inline back ref. if back ref is found, *ref_ret is set 772 * to the address of inline back ref, and 0 is returned. 773 * 774 * if back ref isn't found, *ref_ret is set to the address where it 775 * should be inserted, and -ENOENT is returned. 776 * 777 * if insert is true and there are too many inline back refs, the path 778 * points to the extent item, and -EAGAIN is returned. 779 * 780 * NOTE: inline back refs are ordered in the same way that back ref 781 * items in the tree are ordered. 782 */ 783 static noinline_for_stack 784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 785 struct btrfs_path *path, 786 struct btrfs_extent_inline_ref **ref_ret, 787 u64 bytenr, u64 num_bytes, 788 u64 parent, u64 root_objectid, 789 u64 owner, u64 offset, int insert) 790 { 791 struct btrfs_fs_info *fs_info = trans->fs_info; 792 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 793 struct btrfs_key key; 794 struct extent_buffer *leaf; 795 struct btrfs_extent_item *ei; 796 struct btrfs_extent_inline_ref *iref; 797 u64 flags; 798 u64 item_size; 799 unsigned long ptr; 800 unsigned long end; 801 int extra_size; 802 int type; 803 int want; 804 int ret; 805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 806 int needed; 807 808 key.objectid = bytenr; 809 key.type = BTRFS_EXTENT_ITEM_KEY; 810 key.offset = num_bytes; 811 812 want = extent_ref_type(parent, owner); 813 if (insert) { 814 extra_size = btrfs_extent_inline_ref_size(want); 815 path->search_for_extension = 1; 816 path->keep_locks = 1; 817 } else 818 extra_size = -1; 819 820 /* 821 * Owner is our level, so we can just add one to get the level for the 822 * block we are interested in. 823 */ 824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 825 key.type = BTRFS_METADATA_ITEM_KEY; 826 key.offset = owner; 827 } 828 829 again: 830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 831 if (ret < 0) 832 goto out; 833 834 /* 835 * We may be a newly converted file system which still has the old fat 836 * extent entries for metadata, so try and see if we have one of those. 837 */ 838 if (ret > 0 && skinny_metadata) { 839 skinny_metadata = false; 840 if (path->slots[0]) { 841 path->slots[0]--; 842 btrfs_item_key_to_cpu(path->nodes[0], &key, 843 path->slots[0]); 844 if (key.objectid == bytenr && 845 key.type == BTRFS_EXTENT_ITEM_KEY && 846 key.offset == num_bytes) 847 ret = 0; 848 } 849 if (ret) { 850 key.objectid = bytenr; 851 key.type = BTRFS_EXTENT_ITEM_KEY; 852 key.offset = num_bytes; 853 btrfs_release_path(path); 854 goto again; 855 } 856 } 857 858 if (ret && !insert) { 859 ret = -ENOENT; 860 goto out; 861 } else if (WARN_ON(ret)) { 862 btrfs_print_leaf(path->nodes[0]); 863 btrfs_err(fs_info, 864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 865 bytenr, num_bytes, parent, root_objectid, owner, 866 offset); 867 ret = -EUCLEAN; 868 goto out; 869 } 870 871 leaf = path->nodes[0]; 872 item_size = btrfs_item_size(leaf, path->slots[0]); 873 if (unlikely(item_size < sizeof(*ei))) { 874 ret = -EUCLEAN; 875 btrfs_err(fs_info, 876 "unexpected extent item size, has %llu expect >= %zu", 877 item_size, sizeof(*ei)); 878 btrfs_abort_transaction(trans, ret); 879 goto out; 880 } 881 882 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 883 flags = btrfs_extent_flags(leaf, ei); 884 885 ptr = (unsigned long)(ei + 1); 886 end = (unsigned long)ei + item_size; 887 888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 889 ptr += sizeof(struct btrfs_tree_block_info); 890 BUG_ON(ptr > end); 891 } 892 893 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 894 needed = BTRFS_REF_TYPE_DATA; 895 else 896 needed = BTRFS_REF_TYPE_BLOCK; 897 898 ret = -ENOENT; 899 while (ptr < end) { 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 903 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 904 ptr += btrfs_extent_inline_ref_size(type); 905 continue; 906 } 907 if (type == BTRFS_REF_TYPE_INVALID) { 908 ret = -EUCLEAN; 909 goto out; 910 } 911 912 if (want < type) 913 break; 914 if (want > type) { 915 ptr += btrfs_extent_inline_ref_size(type); 916 continue; 917 } 918 919 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 920 struct btrfs_extent_data_ref *dref; 921 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 922 if (match_extent_data_ref(leaf, dref, root_objectid, 923 owner, offset)) { 924 ret = 0; 925 break; 926 } 927 if (hash_extent_data_ref_item(leaf, dref) < 928 hash_extent_data_ref(root_objectid, owner, offset)) 929 break; 930 } else { 931 u64 ref_offset; 932 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 933 if (parent > 0) { 934 if (parent == ref_offset) { 935 ret = 0; 936 break; 937 } 938 if (ref_offset < parent) 939 break; 940 } else { 941 if (root_objectid == ref_offset) { 942 ret = 0; 943 break; 944 } 945 if (ref_offset < root_objectid) 946 break; 947 } 948 } 949 ptr += btrfs_extent_inline_ref_size(type); 950 } 951 952 if (unlikely(ptr > end)) { 953 ret = -EUCLEAN; 954 btrfs_print_leaf(path->nodes[0]); 955 btrfs_crit(fs_info, 956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 957 path->slots[0], root_objectid, owner, offset, parent); 958 goto out; 959 } 960 961 if (ret == -ENOENT && insert) { 962 if (item_size + extra_size >= 963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 964 ret = -EAGAIN; 965 goto out; 966 } 967 /* 968 * To add new inline back ref, we have to make sure 969 * there is no corresponding back ref item. 970 * For simplicity, we just do not add new inline back 971 * ref if there is any kind of item for this block 972 */ 973 if (find_next_key(path, 0, &key) == 0 && 974 key.objectid == bytenr && 975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 976 ret = -EAGAIN; 977 goto out; 978 } 979 } 980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 981 out: 982 if (insert) { 983 path->keep_locks = 0; 984 path->search_for_extension = 0; 985 btrfs_unlock_up_safe(path, 1); 986 } 987 return ret; 988 } 989 990 /* 991 * helper to add new inline back ref 992 */ 993 static noinline_for_stack 994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 995 struct btrfs_path *path, 996 struct btrfs_extent_inline_ref *iref, 997 u64 parent, u64 root_objectid, 998 u64 owner, u64 offset, int refs_to_add, 999 struct btrfs_delayed_extent_op *extent_op) 1000 { 1001 struct extent_buffer *leaf; 1002 struct btrfs_extent_item *ei; 1003 unsigned long ptr; 1004 unsigned long end; 1005 unsigned long item_offset; 1006 u64 refs; 1007 int size; 1008 int type; 1009 1010 leaf = path->nodes[0]; 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 item_offset = (unsigned long)iref - (unsigned long)ei; 1013 1014 type = extent_ref_type(parent, owner); 1015 size = btrfs_extent_inline_ref_size(type); 1016 1017 btrfs_extend_item(trans, path, size); 1018 1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1020 refs = btrfs_extent_refs(leaf, ei); 1021 refs += refs_to_add; 1022 btrfs_set_extent_refs(leaf, ei, refs); 1023 if (extent_op) 1024 __run_delayed_extent_op(extent_op, leaf, ei); 1025 1026 ptr = (unsigned long)ei + item_offset; 1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1028 if (ptr < end - size) 1029 memmove_extent_buffer(leaf, ptr + size, ptr, 1030 end - size - ptr); 1031 1032 iref = (struct btrfs_extent_inline_ref *)ptr; 1033 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1035 struct btrfs_extent_data_ref *dref; 1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1042 struct btrfs_shared_data_ref *sref; 1043 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1048 } else { 1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1050 } 1051 btrfs_mark_buffer_dirty(trans, leaf); 1052 } 1053 1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1055 struct btrfs_path *path, 1056 struct btrfs_extent_inline_ref **ref_ret, 1057 u64 bytenr, u64 num_bytes, u64 parent, 1058 u64 root_objectid, u64 owner, u64 offset) 1059 { 1060 int ret; 1061 1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1063 num_bytes, parent, root_objectid, 1064 owner, offset, 0); 1065 if (ret != -ENOENT) 1066 return ret; 1067 1068 btrfs_release_path(path); 1069 *ref_ret = NULL; 1070 1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1073 root_objectid); 1074 } else { 1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1076 root_objectid, owner, offset); 1077 } 1078 return ret; 1079 } 1080 1081 /* 1082 * helper to update/remove inline back ref 1083 */ 1084 static noinline_for_stack int update_inline_extent_backref( 1085 struct btrfs_trans_handle *trans, 1086 struct btrfs_path *path, 1087 struct btrfs_extent_inline_ref *iref, 1088 int refs_to_mod, 1089 struct btrfs_delayed_extent_op *extent_op) 1090 { 1091 struct extent_buffer *leaf = path->nodes[0]; 1092 struct btrfs_fs_info *fs_info = leaf->fs_info; 1093 struct btrfs_extent_item *ei; 1094 struct btrfs_extent_data_ref *dref = NULL; 1095 struct btrfs_shared_data_ref *sref = NULL; 1096 unsigned long ptr; 1097 unsigned long end; 1098 u32 item_size; 1099 int size; 1100 int type; 1101 u64 refs; 1102 1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1104 refs = btrfs_extent_refs(leaf, ei); 1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1106 struct btrfs_key key; 1107 u32 extent_size; 1108 1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1110 if (key.type == BTRFS_METADATA_ITEM_KEY) 1111 extent_size = fs_info->nodesize; 1112 else 1113 extent_size = key.offset; 1114 btrfs_print_leaf(leaf); 1115 btrfs_err(fs_info, 1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1117 key.objectid, extent_size, refs_to_mod, refs); 1118 return -EUCLEAN; 1119 } 1120 refs += refs_to_mod; 1121 btrfs_set_extent_refs(leaf, ei, refs); 1122 if (extent_op) 1123 __run_delayed_extent_op(extent_op, leaf, ei); 1124 1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1126 /* 1127 * Function btrfs_get_extent_inline_ref_type() has already printed 1128 * error messages. 1129 */ 1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1131 return -EUCLEAN; 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 /* 1142 * For tree blocks we can only drop one ref for it, and tree 1143 * blocks should not have refs > 1. 1144 * 1145 * Furthermore if we're inserting a new inline backref, we 1146 * won't reach this path either. That would be 1147 * setup_inline_extent_backref(). 1148 */ 1149 if (unlikely(refs_to_mod != -1)) { 1150 struct btrfs_key key; 1151 1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1153 1154 btrfs_print_leaf(leaf); 1155 btrfs_err(fs_info, 1156 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1157 key.objectid, refs_to_mod); 1158 return -EUCLEAN; 1159 } 1160 } 1161 1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1163 struct btrfs_key key; 1164 u32 extent_size; 1165 1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1167 if (key.type == BTRFS_METADATA_ITEM_KEY) 1168 extent_size = fs_info->nodesize; 1169 else 1170 extent_size = key.offset; 1171 btrfs_print_leaf(leaf); 1172 btrfs_err(fs_info, 1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1174 (unsigned long)iref, key.objectid, extent_size, 1175 refs_to_mod, refs); 1176 return -EUCLEAN; 1177 } 1178 refs += refs_to_mod; 1179 1180 if (refs > 0) { 1181 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1182 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1183 else 1184 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1185 } else { 1186 size = btrfs_extent_inline_ref_size(type); 1187 item_size = btrfs_item_size(leaf, path->slots[0]); 1188 ptr = (unsigned long)iref; 1189 end = (unsigned long)ei + item_size; 1190 if (ptr + size < end) 1191 memmove_extent_buffer(leaf, ptr, ptr + size, 1192 end - ptr - size); 1193 item_size -= size; 1194 btrfs_truncate_item(trans, path, item_size, 1); 1195 } 1196 btrfs_mark_buffer_dirty(trans, leaf); 1197 return 0; 1198 } 1199 1200 static noinline_for_stack 1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1202 struct btrfs_path *path, 1203 u64 bytenr, u64 num_bytes, u64 parent, 1204 u64 root_objectid, u64 owner, 1205 u64 offset, int refs_to_add, 1206 struct btrfs_delayed_extent_op *extent_op) 1207 { 1208 struct btrfs_extent_inline_ref *iref; 1209 int ret; 1210 1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1212 num_bytes, parent, root_objectid, 1213 owner, offset, 1); 1214 if (ret == 0) { 1215 /* 1216 * We're adding refs to a tree block we already own, this 1217 * should not happen at all. 1218 */ 1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1220 btrfs_print_leaf(path->nodes[0]); 1221 btrfs_crit(trans->fs_info, 1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1223 bytenr, num_bytes, root_objectid, path->slots[0]); 1224 return -EUCLEAN; 1225 } 1226 ret = update_inline_extent_backref(trans, path, iref, 1227 refs_to_add, extent_op); 1228 } else if (ret == -ENOENT) { 1229 setup_inline_extent_backref(trans, path, iref, parent, 1230 root_objectid, owner, offset, 1231 refs_to_add, extent_op); 1232 ret = 0; 1233 } 1234 return ret; 1235 } 1236 1237 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1238 struct btrfs_root *root, 1239 struct btrfs_path *path, 1240 struct btrfs_extent_inline_ref *iref, 1241 int refs_to_drop, int is_data) 1242 { 1243 int ret = 0; 1244 1245 BUG_ON(!is_data && refs_to_drop != 1); 1246 if (iref) 1247 ret = update_inline_extent_backref(trans, path, iref, 1248 -refs_to_drop, NULL); 1249 else if (is_data) 1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1251 else 1252 ret = btrfs_del_item(trans, root, path); 1253 return ret; 1254 } 1255 1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1257 u64 *discarded_bytes) 1258 { 1259 int j, ret = 0; 1260 u64 bytes_left, end; 1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1262 1263 if (WARN_ON(start != aligned_start)) { 1264 len -= aligned_start - start; 1265 len = round_down(len, 1 << SECTOR_SHIFT); 1266 start = aligned_start; 1267 } 1268 1269 *discarded_bytes = 0; 1270 1271 if (!len) 1272 return 0; 1273 1274 end = start + len; 1275 bytes_left = len; 1276 1277 /* Skip any superblocks on this device. */ 1278 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1279 u64 sb_start = btrfs_sb_offset(j); 1280 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1281 u64 size = sb_start - start; 1282 1283 if (!in_range(sb_start, start, bytes_left) && 1284 !in_range(sb_end, start, bytes_left) && 1285 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1286 continue; 1287 1288 /* 1289 * Superblock spans beginning of range. Adjust start and 1290 * try again. 1291 */ 1292 if (sb_start <= start) { 1293 start += sb_end - start; 1294 if (start > end) { 1295 bytes_left = 0; 1296 break; 1297 } 1298 bytes_left = end - start; 1299 continue; 1300 } 1301 1302 if (size) { 1303 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1304 size >> SECTOR_SHIFT, 1305 GFP_NOFS); 1306 if (!ret) 1307 *discarded_bytes += size; 1308 else if (ret != -EOPNOTSUPP) 1309 return ret; 1310 } 1311 1312 start = sb_end; 1313 if (start > end) { 1314 bytes_left = 0; 1315 break; 1316 } 1317 bytes_left = end - start; 1318 } 1319 1320 if (bytes_left) { 1321 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1322 bytes_left >> SECTOR_SHIFT, 1323 GFP_NOFS); 1324 if (!ret) 1325 *discarded_bytes += bytes_left; 1326 } 1327 return ret; 1328 } 1329 1330 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1331 { 1332 struct btrfs_device *dev = stripe->dev; 1333 struct btrfs_fs_info *fs_info = dev->fs_info; 1334 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1335 u64 phys = stripe->physical; 1336 u64 len = stripe->length; 1337 u64 discarded = 0; 1338 int ret = 0; 1339 1340 /* Zone reset on a zoned filesystem */ 1341 if (btrfs_can_zone_reset(dev, phys, len)) { 1342 u64 src_disc; 1343 1344 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1345 if (ret) 1346 goto out; 1347 1348 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1349 dev != dev_replace->srcdev) 1350 goto out; 1351 1352 src_disc = discarded; 1353 1354 /* Send to replace target as well */ 1355 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1356 &discarded); 1357 discarded += src_disc; 1358 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1359 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1360 } else { 1361 ret = 0; 1362 *bytes = 0; 1363 } 1364 1365 out: 1366 *bytes = discarded; 1367 return ret; 1368 } 1369 1370 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1371 u64 num_bytes, u64 *actual_bytes) 1372 { 1373 int ret = 0; 1374 u64 discarded_bytes = 0; 1375 u64 end = bytenr + num_bytes; 1376 u64 cur = bytenr; 1377 1378 /* 1379 * Avoid races with device replace and make sure the devices in the 1380 * stripes don't go away while we are discarding. 1381 */ 1382 btrfs_bio_counter_inc_blocked(fs_info); 1383 while (cur < end) { 1384 struct btrfs_discard_stripe *stripes; 1385 unsigned int num_stripes; 1386 int i; 1387 1388 num_bytes = end - cur; 1389 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1390 if (IS_ERR(stripes)) { 1391 ret = PTR_ERR(stripes); 1392 if (ret == -EOPNOTSUPP) 1393 ret = 0; 1394 break; 1395 } 1396 1397 for (i = 0; i < num_stripes; i++) { 1398 struct btrfs_discard_stripe *stripe = stripes + i; 1399 u64 bytes; 1400 1401 if (!stripe->dev->bdev) { 1402 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1403 continue; 1404 } 1405 1406 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1407 &stripe->dev->dev_state)) 1408 continue; 1409 1410 ret = do_discard_extent(stripe, &bytes); 1411 if (ret) { 1412 /* 1413 * Keep going if discard is not supported by the 1414 * device. 1415 */ 1416 if (ret != -EOPNOTSUPP) 1417 break; 1418 ret = 0; 1419 } else { 1420 discarded_bytes += bytes; 1421 } 1422 } 1423 kfree(stripes); 1424 if (ret) 1425 break; 1426 cur += num_bytes; 1427 } 1428 btrfs_bio_counter_dec(fs_info); 1429 if (actual_bytes) 1430 *actual_bytes = discarded_bytes; 1431 return ret; 1432 } 1433 1434 /* Can return -ENOMEM */ 1435 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_ref *generic_ref) 1437 { 1438 struct btrfs_fs_info *fs_info = trans->fs_info; 1439 int ret; 1440 1441 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1442 generic_ref->action); 1443 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1444 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1445 1446 if (generic_ref->type == BTRFS_REF_METADATA) 1447 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1448 else 1449 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1450 1451 btrfs_ref_tree_mod(fs_info, generic_ref); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * Insert backreference for a given extent. 1458 * 1459 * The counterpart is in __btrfs_free_extent(), with examples and more details 1460 * how it works. 1461 * 1462 * @trans: Handle of transaction 1463 * 1464 * @node: The delayed ref node used to get the bytenr/length for 1465 * extent whose references are incremented. 1466 * 1467 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1468 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1469 * bytenr of the parent block. Since new extents are always 1470 * created with indirect references, this will only be the case 1471 * when relocating a shared extent. In that case, root_objectid 1472 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1473 * be 0 1474 * 1475 * @root_objectid: The id of the root where this modification has originated, 1476 * this can be either one of the well-known metadata trees or 1477 * the subvolume id which references this extent. 1478 * 1479 * @owner: For data extents it is the inode number of the owning file. 1480 * For metadata extents this parameter holds the level in the 1481 * tree of the extent. 1482 * 1483 * @offset: For metadata extents the offset is ignored and is currently 1484 * always passed as 0. For data extents it is the fileoffset 1485 * this extent belongs to. 1486 * 1487 * @extent_op Pointer to a structure, holding information necessary when 1488 * updating a tree block's flags 1489 * 1490 */ 1491 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1492 struct btrfs_delayed_ref_node *node, 1493 u64 parent, u64 root_objectid, 1494 u64 owner, u64 offset, 1495 struct btrfs_delayed_extent_op *extent_op) 1496 { 1497 struct btrfs_path *path; 1498 struct extent_buffer *leaf; 1499 struct btrfs_extent_item *item; 1500 struct btrfs_key key; 1501 u64 bytenr = node->bytenr; 1502 u64 num_bytes = node->num_bytes; 1503 u64 refs; 1504 int refs_to_add = node->ref_mod; 1505 int ret; 1506 1507 path = btrfs_alloc_path(); 1508 if (!path) 1509 return -ENOMEM; 1510 1511 /* this will setup the path even if it fails to insert the back ref */ 1512 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1513 parent, root_objectid, owner, 1514 offset, refs_to_add, extent_op); 1515 if ((ret < 0 && ret != -EAGAIN) || !ret) 1516 goto out; 1517 1518 /* 1519 * Ok we had -EAGAIN which means we didn't have space to insert and 1520 * inline extent ref, so just update the reference count and add a 1521 * normal backref. 1522 */ 1523 leaf = path->nodes[0]; 1524 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1525 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1526 refs = btrfs_extent_refs(leaf, item); 1527 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1528 if (extent_op) 1529 __run_delayed_extent_op(extent_op, leaf, item); 1530 1531 btrfs_mark_buffer_dirty(trans, leaf); 1532 btrfs_release_path(path); 1533 1534 /* now insert the actual backref */ 1535 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1536 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1537 root_objectid); 1538 else 1539 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1540 root_objectid, owner, offset, 1541 refs_to_add); 1542 1543 if (ret) 1544 btrfs_abort_transaction(trans, ret); 1545 out: 1546 btrfs_free_path(path); 1547 return ret; 1548 } 1549 1550 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1551 struct btrfs_delayed_ref_head *href) 1552 { 1553 u64 root = href->owning_root; 1554 1555 /* 1556 * Don't check must_insert_reserved, as this is called from contexts 1557 * where it has already been unset. 1558 */ 1559 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1560 !href->is_data || !is_fstree(root)) 1561 return; 1562 1563 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1564 BTRFS_QGROUP_RSV_DATA); 1565 } 1566 1567 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1568 struct btrfs_delayed_ref_head *href, 1569 struct btrfs_delayed_ref_node *node, 1570 struct btrfs_delayed_extent_op *extent_op, 1571 bool insert_reserved) 1572 { 1573 int ret = 0; 1574 struct btrfs_delayed_data_ref *ref; 1575 u64 parent = 0; 1576 u64 flags = 0; 1577 1578 ref = btrfs_delayed_node_to_data_ref(node); 1579 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1580 1581 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1582 parent = ref->parent; 1583 1584 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1585 struct btrfs_key key; 1586 struct btrfs_squota_delta delta = { 1587 .root = href->owning_root, 1588 .num_bytes = node->num_bytes, 1589 .is_data = true, 1590 .is_inc = true, 1591 .generation = trans->transid, 1592 }; 1593 1594 if (extent_op) 1595 flags |= extent_op->flags_to_set; 1596 1597 key.objectid = node->bytenr; 1598 key.type = BTRFS_EXTENT_ITEM_KEY; 1599 key.offset = node->num_bytes; 1600 1601 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1602 flags, ref->objectid, 1603 ref->offset, &key, 1604 node->ref_mod, href->owning_root); 1605 free_head_ref_squota_rsv(trans->fs_info, href); 1606 if (!ret) 1607 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1608 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1609 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1610 ref->objectid, ref->offset, 1611 extent_op); 1612 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1613 ret = __btrfs_free_extent(trans, href, node, parent, 1614 ref->root, ref->objectid, 1615 ref->offset, extent_op); 1616 } else { 1617 BUG(); 1618 } 1619 return ret; 1620 } 1621 1622 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1623 struct extent_buffer *leaf, 1624 struct btrfs_extent_item *ei) 1625 { 1626 u64 flags = btrfs_extent_flags(leaf, ei); 1627 if (extent_op->update_flags) { 1628 flags |= extent_op->flags_to_set; 1629 btrfs_set_extent_flags(leaf, ei, flags); 1630 } 1631 1632 if (extent_op->update_key) { 1633 struct btrfs_tree_block_info *bi; 1634 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1635 bi = (struct btrfs_tree_block_info *)(ei + 1); 1636 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1637 } 1638 } 1639 1640 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1641 struct btrfs_delayed_ref_head *head, 1642 struct btrfs_delayed_extent_op *extent_op) 1643 { 1644 struct btrfs_fs_info *fs_info = trans->fs_info; 1645 struct btrfs_root *root; 1646 struct btrfs_key key; 1647 struct btrfs_path *path; 1648 struct btrfs_extent_item *ei; 1649 struct extent_buffer *leaf; 1650 u32 item_size; 1651 int ret; 1652 int metadata = 1; 1653 1654 if (TRANS_ABORTED(trans)) 1655 return 0; 1656 1657 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1658 metadata = 0; 1659 1660 path = btrfs_alloc_path(); 1661 if (!path) 1662 return -ENOMEM; 1663 1664 key.objectid = head->bytenr; 1665 1666 if (metadata) { 1667 key.type = BTRFS_METADATA_ITEM_KEY; 1668 key.offset = extent_op->level; 1669 } else { 1670 key.type = BTRFS_EXTENT_ITEM_KEY; 1671 key.offset = head->num_bytes; 1672 } 1673 1674 root = btrfs_extent_root(fs_info, key.objectid); 1675 again: 1676 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1677 if (ret < 0) { 1678 goto out; 1679 } else if (ret > 0) { 1680 if (metadata) { 1681 if (path->slots[0] > 0) { 1682 path->slots[0]--; 1683 btrfs_item_key_to_cpu(path->nodes[0], &key, 1684 path->slots[0]); 1685 if (key.objectid == head->bytenr && 1686 key.type == BTRFS_EXTENT_ITEM_KEY && 1687 key.offset == head->num_bytes) 1688 ret = 0; 1689 } 1690 if (ret > 0) { 1691 btrfs_release_path(path); 1692 metadata = 0; 1693 1694 key.objectid = head->bytenr; 1695 key.offset = head->num_bytes; 1696 key.type = BTRFS_EXTENT_ITEM_KEY; 1697 goto again; 1698 } 1699 } else { 1700 ret = -EUCLEAN; 1701 btrfs_err(fs_info, 1702 "missing extent item for extent %llu num_bytes %llu level %d", 1703 head->bytenr, head->num_bytes, extent_op->level); 1704 goto out; 1705 } 1706 } 1707 1708 leaf = path->nodes[0]; 1709 item_size = btrfs_item_size(leaf, path->slots[0]); 1710 1711 if (unlikely(item_size < sizeof(*ei))) { 1712 ret = -EUCLEAN; 1713 btrfs_err(fs_info, 1714 "unexpected extent item size, has %u expect >= %zu", 1715 item_size, sizeof(*ei)); 1716 btrfs_abort_transaction(trans, ret); 1717 goto out; 1718 } 1719 1720 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1721 __run_delayed_extent_op(extent_op, leaf, ei); 1722 1723 btrfs_mark_buffer_dirty(trans, leaf); 1724 out: 1725 btrfs_free_path(path); 1726 return ret; 1727 } 1728 1729 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1730 struct btrfs_delayed_ref_head *href, 1731 struct btrfs_delayed_ref_node *node, 1732 struct btrfs_delayed_extent_op *extent_op, 1733 bool insert_reserved) 1734 { 1735 int ret = 0; 1736 struct btrfs_fs_info *fs_info = trans->fs_info; 1737 struct btrfs_delayed_tree_ref *ref; 1738 u64 parent = 0; 1739 u64 ref_root = 0; 1740 1741 ref = btrfs_delayed_node_to_tree_ref(node); 1742 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1743 1744 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1745 parent = ref->parent; 1746 ref_root = ref->root; 1747 1748 if (unlikely(node->ref_mod != 1)) { 1749 btrfs_err(trans->fs_info, 1750 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1751 node->bytenr, node->ref_mod, node->action, ref_root, 1752 parent); 1753 return -EUCLEAN; 1754 } 1755 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1756 struct btrfs_squota_delta delta = { 1757 .root = href->owning_root, 1758 .num_bytes = fs_info->nodesize, 1759 .is_data = false, 1760 .is_inc = true, 1761 .generation = trans->transid, 1762 }; 1763 1764 BUG_ON(!extent_op || !extent_op->update_flags); 1765 ret = alloc_reserved_tree_block(trans, node, extent_op); 1766 if (!ret) 1767 btrfs_record_squota_delta(fs_info, &delta); 1768 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1769 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1770 ref->level, 0, extent_op); 1771 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1772 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1773 ref->level, 0, extent_op); 1774 } else { 1775 BUG(); 1776 } 1777 return ret; 1778 } 1779 1780 /* helper function to actually process a single delayed ref entry */ 1781 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1782 struct btrfs_delayed_ref_head *href, 1783 struct btrfs_delayed_ref_node *node, 1784 struct btrfs_delayed_extent_op *extent_op, 1785 bool insert_reserved) 1786 { 1787 int ret = 0; 1788 1789 if (TRANS_ABORTED(trans)) { 1790 if (insert_reserved) { 1791 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1792 free_head_ref_squota_rsv(trans->fs_info, href); 1793 } 1794 return 0; 1795 } 1796 1797 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1798 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1799 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1800 insert_reserved); 1801 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1802 node->type == BTRFS_SHARED_DATA_REF_KEY) 1803 ret = run_delayed_data_ref(trans, href, node, extent_op, 1804 insert_reserved); 1805 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1806 ret = 0; 1807 else 1808 BUG(); 1809 if (ret && insert_reserved) 1810 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1811 if (ret < 0) 1812 btrfs_err(trans->fs_info, 1813 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1814 node->bytenr, node->num_bytes, node->type, 1815 node->action, node->ref_mod, ret); 1816 return ret; 1817 } 1818 1819 static inline struct btrfs_delayed_ref_node * 1820 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1821 { 1822 struct btrfs_delayed_ref_node *ref; 1823 1824 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1825 return NULL; 1826 1827 /* 1828 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1829 * This is to prevent a ref count from going down to zero, which deletes 1830 * the extent item from the extent tree, when there still are references 1831 * to add, which would fail because they would not find the extent item. 1832 */ 1833 if (!list_empty(&head->ref_add_list)) 1834 return list_first_entry(&head->ref_add_list, 1835 struct btrfs_delayed_ref_node, add_list); 1836 1837 ref = rb_entry(rb_first_cached(&head->ref_tree), 1838 struct btrfs_delayed_ref_node, ref_node); 1839 ASSERT(list_empty(&ref->add_list)); 1840 return ref; 1841 } 1842 1843 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1844 struct btrfs_delayed_ref_head *head) 1845 { 1846 spin_lock(&delayed_refs->lock); 1847 head->processing = false; 1848 delayed_refs->num_heads_ready++; 1849 spin_unlock(&delayed_refs->lock); 1850 btrfs_delayed_ref_unlock(head); 1851 } 1852 1853 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1854 struct btrfs_delayed_ref_head *head) 1855 { 1856 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1857 1858 if (!extent_op) 1859 return NULL; 1860 1861 if (head->must_insert_reserved) { 1862 head->extent_op = NULL; 1863 btrfs_free_delayed_extent_op(extent_op); 1864 return NULL; 1865 } 1866 return extent_op; 1867 } 1868 1869 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1870 struct btrfs_delayed_ref_head *head) 1871 { 1872 struct btrfs_delayed_extent_op *extent_op; 1873 int ret; 1874 1875 extent_op = cleanup_extent_op(head); 1876 if (!extent_op) 1877 return 0; 1878 head->extent_op = NULL; 1879 spin_unlock(&head->lock); 1880 ret = run_delayed_extent_op(trans, head, extent_op); 1881 btrfs_free_delayed_extent_op(extent_op); 1882 return ret ? ret : 1; 1883 } 1884 1885 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1886 struct btrfs_delayed_ref_root *delayed_refs, 1887 struct btrfs_delayed_ref_head *head) 1888 { 1889 u64 ret = 0; 1890 1891 /* 1892 * We had csum deletions accounted for in our delayed refs rsv, we need 1893 * to drop the csum leaves for this update from our delayed_refs_rsv. 1894 */ 1895 if (head->total_ref_mod < 0 && head->is_data) { 1896 int nr_csums; 1897 1898 spin_lock(&delayed_refs->lock); 1899 delayed_refs->pending_csums -= head->num_bytes; 1900 spin_unlock(&delayed_refs->lock); 1901 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1902 1903 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1904 1905 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1906 } 1907 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1908 if (head->must_insert_reserved) 1909 free_head_ref_squota_rsv(fs_info, head); 1910 1911 return ret; 1912 } 1913 1914 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1915 struct btrfs_delayed_ref_head *head, 1916 u64 *bytes_released) 1917 { 1918 1919 struct btrfs_fs_info *fs_info = trans->fs_info; 1920 struct btrfs_delayed_ref_root *delayed_refs; 1921 int ret; 1922 1923 delayed_refs = &trans->transaction->delayed_refs; 1924 1925 ret = run_and_cleanup_extent_op(trans, head); 1926 if (ret < 0) { 1927 unselect_delayed_ref_head(delayed_refs, head); 1928 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1929 return ret; 1930 } else if (ret) { 1931 return ret; 1932 } 1933 1934 /* 1935 * Need to drop our head ref lock and re-acquire the delayed ref lock 1936 * and then re-check to make sure nobody got added. 1937 */ 1938 spin_unlock(&head->lock); 1939 spin_lock(&delayed_refs->lock); 1940 spin_lock(&head->lock); 1941 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1942 spin_unlock(&head->lock); 1943 spin_unlock(&delayed_refs->lock); 1944 return 1; 1945 } 1946 btrfs_delete_ref_head(delayed_refs, head); 1947 spin_unlock(&head->lock); 1948 spin_unlock(&delayed_refs->lock); 1949 1950 if (head->must_insert_reserved) { 1951 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1952 if (head->is_data) { 1953 struct btrfs_root *csum_root; 1954 1955 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1956 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1957 head->num_bytes); 1958 } 1959 } 1960 1961 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1962 1963 trace_run_delayed_ref_head(fs_info, head, 0); 1964 btrfs_delayed_ref_unlock(head); 1965 btrfs_put_delayed_ref_head(head); 1966 return ret; 1967 } 1968 1969 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1970 struct btrfs_trans_handle *trans) 1971 { 1972 struct btrfs_delayed_ref_root *delayed_refs = 1973 &trans->transaction->delayed_refs; 1974 struct btrfs_delayed_ref_head *head = NULL; 1975 int ret; 1976 1977 spin_lock(&delayed_refs->lock); 1978 head = btrfs_select_ref_head(delayed_refs); 1979 if (!head) { 1980 spin_unlock(&delayed_refs->lock); 1981 return head; 1982 } 1983 1984 /* 1985 * Grab the lock that says we are going to process all the refs for 1986 * this head 1987 */ 1988 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1989 spin_unlock(&delayed_refs->lock); 1990 1991 /* 1992 * We may have dropped the spin lock to get the head mutex lock, and 1993 * that might have given someone else time to free the head. If that's 1994 * true, it has been removed from our list and we can move on. 1995 */ 1996 if (ret == -EAGAIN) 1997 head = ERR_PTR(-EAGAIN); 1998 1999 return head; 2000 } 2001 2002 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 2003 struct btrfs_delayed_ref_head *locked_ref, 2004 u64 *bytes_released) 2005 { 2006 struct btrfs_fs_info *fs_info = trans->fs_info; 2007 struct btrfs_delayed_ref_root *delayed_refs; 2008 struct btrfs_delayed_extent_op *extent_op; 2009 struct btrfs_delayed_ref_node *ref; 2010 bool must_insert_reserved; 2011 int ret; 2012 2013 delayed_refs = &trans->transaction->delayed_refs; 2014 2015 lockdep_assert_held(&locked_ref->mutex); 2016 lockdep_assert_held(&locked_ref->lock); 2017 2018 while ((ref = select_delayed_ref(locked_ref))) { 2019 if (ref->seq && 2020 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2021 spin_unlock(&locked_ref->lock); 2022 unselect_delayed_ref_head(delayed_refs, locked_ref); 2023 return -EAGAIN; 2024 } 2025 2026 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2027 RB_CLEAR_NODE(&ref->ref_node); 2028 if (!list_empty(&ref->add_list)) 2029 list_del(&ref->add_list); 2030 /* 2031 * When we play the delayed ref, also correct the ref_mod on 2032 * head 2033 */ 2034 switch (ref->action) { 2035 case BTRFS_ADD_DELAYED_REF: 2036 case BTRFS_ADD_DELAYED_EXTENT: 2037 locked_ref->ref_mod -= ref->ref_mod; 2038 break; 2039 case BTRFS_DROP_DELAYED_REF: 2040 locked_ref->ref_mod += ref->ref_mod; 2041 break; 2042 default: 2043 WARN_ON(1); 2044 } 2045 atomic_dec(&delayed_refs->num_entries); 2046 2047 /* 2048 * Record the must_insert_reserved flag before we drop the 2049 * spin lock. 2050 */ 2051 must_insert_reserved = locked_ref->must_insert_reserved; 2052 /* 2053 * Unsetting this on the head ref relinquishes ownership of 2054 * the rsv_bytes, so it is critical that every possible code 2055 * path from here forward frees all reserves including qgroup 2056 * reserve. 2057 */ 2058 locked_ref->must_insert_reserved = false; 2059 2060 extent_op = locked_ref->extent_op; 2061 locked_ref->extent_op = NULL; 2062 spin_unlock(&locked_ref->lock); 2063 2064 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2065 must_insert_reserved); 2066 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2067 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2068 2069 btrfs_free_delayed_extent_op(extent_op); 2070 if (ret) { 2071 unselect_delayed_ref_head(delayed_refs, locked_ref); 2072 btrfs_put_delayed_ref(ref); 2073 return ret; 2074 } 2075 2076 btrfs_put_delayed_ref(ref); 2077 cond_resched(); 2078 2079 spin_lock(&locked_ref->lock); 2080 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2081 } 2082 2083 return 0; 2084 } 2085 2086 /* 2087 * Returns 0 on success or if called with an already aborted transaction. 2088 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2089 */ 2090 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2091 u64 min_bytes) 2092 { 2093 struct btrfs_fs_info *fs_info = trans->fs_info; 2094 struct btrfs_delayed_ref_root *delayed_refs; 2095 struct btrfs_delayed_ref_head *locked_ref = NULL; 2096 int ret; 2097 unsigned long count = 0; 2098 unsigned long max_count = 0; 2099 u64 bytes_processed = 0; 2100 2101 delayed_refs = &trans->transaction->delayed_refs; 2102 if (min_bytes == 0) { 2103 max_count = delayed_refs->num_heads_ready; 2104 min_bytes = U64_MAX; 2105 } 2106 2107 do { 2108 if (!locked_ref) { 2109 locked_ref = btrfs_obtain_ref_head(trans); 2110 if (IS_ERR_OR_NULL(locked_ref)) { 2111 if (PTR_ERR(locked_ref) == -EAGAIN) { 2112 continue; 2113 } else { 2114 break; 2115 } 2116 } 2117 count++; 2118 } 2119 /* 2120 * We need to try and merge add/drops of the same ref since we 2121 * can run into issues with relocate dropping the implicit ref 2122 * and then it being added back again before the drop can 2123 * finish. If we merged anything we need to re-loop so we can 2124 * get a good ref. 2125 * Or we can get node references of the same type that weren't 2126 * merged when created due to bumps in the tree mod seq, and 2127 * we need to merge them to prevent adding an inline extent 2128 * backref before dropping it (triggering a BUG_ON at 2129 * insert_inline_extent_backref()). 2130 */ 2131 spin_lock(&locked_ref->lock); 2132 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2133 2134 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2135 if (ret < 0 && ret != -EAGAIN) { 2136 /* 2137 * Error, btrfs_run_delayed_refs_for_head already 2138 * unlocked everything so just bail out 2139 */ 2140 return ret; 2141 } else if (!ret) { 2142 /* 2143 * Success, perform the usual cleanup of a processed 2144 * head 2145 */ 2146 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2147 if (ret > 0 ) { 2148 /* We dropped our lock, we need to loop. */ 2149 ret = 0; 2150 continue; 2151 } else if (ret) { 2152 return ret; 2153 } 2154 } 2155 2156 /* 2157 * Either success case or btrfs_run_delayed_refs_for_head 2158 * returned -EAGAIN, meaning we need to select another head 2159 */ 2160 2161 locked_ref = NULL; 2162 cond_resched(); 2163 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2164 (max_count > 0 && count < max_count) || 2165 locked_ref); 2166 2167 return 0; 2168 } 2169 2170 #ifdef SCRAMBLE_DELAYED_REFS 2171 /* 2172 * Normally delayed refs get processed in ascending bytenr order. This 2173 * correlates in most cases to the order added. To expose dependencies on this 2174 * order, we start to process the tree in the middle instead of the beginning 2175 */ 2176 static u64 find_middle(struct rb_root *root) 2177 { 2178 struct rb_node *n = root->rb_node; 2179 struct btrfs_delayed_ref_node *entry; 2180 int alt = 1; 2181 u64 middle; 2182 u64 first = 0, last = 0; 2183 2184 n = rb_first(root); 2185 if (n) { 2186 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2187 first = entry->bytenr; 2188 } 2189 n = rb_last(root); 2190 if (n) { 2191 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2192 last = entry->bytenr; 2193 } 2194 n = root->rb_node; 2195 2196 while (n) { 2197 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2198 WARN_ON(!entry->in_tree); 2199 2200 middle = entry->bytenr; 2201 2202 if (alt) 2203 n = n->rb_left; 2204 else 2205 n = n->rb_right; 2206 2207 alt = 1 - alt; 2208 } 2209 return middle; 2210 } 2211 #endif 2212 2213 /* 2214 * Start processing the delayed reference count updates and extent insertions 2215 * we have queued up so far. 2216 * 2217 * @trans: Transaction handle. 2218 * @min_bytes: How many bytes of delayed references to process. After this 2219 * many bytes we stop processing delayed references if there are 2220 * any more. If 0 it means to run all existing delayed references, 2221 * but not new ones added after running all existing ones. 2222 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2223 * plus any new ones that are added. 2224 * 2225 * Returns 0 on success or if called with an aborted transaction 2226 * Returns <0 on error and aborts the transaction 2227 */ 2228 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2229 { 2230 struct btrfs_fs_info *fs_info = trans->fs_info; 2231 struct btrfs_delayed_ref_root *delayed_refs; 2232 int ret; 2233 2234 /* We'll clean this up in btrfs_cleanup_transaction */ 2235 if (TRANS_ABORTED(trans)) 2236 return 0; 2237 2238 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2239 return 0; 2240 2241 delayed_refs = &trans->transaction->delayed_refs; 2242 again: 2243 #ifdef SCRAMBLE_DELAYED_REFS 2244 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2245 #endif 2246 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2247 if (ret < 0) { 2248 btrfs_abort_transaction(trans, ret); 2249 return ret; 2250 } 2251 2252 if (min_bytes == U64_MAX) { 2253 btrfs_create_pending_block_groups(trans); 2254 2255 spin_lock(&delayed_refs->lock); 2256 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2257 spin_unlock(&delayed_refs->lock); 2258 return 0; 2259 } 2260 spin_unlock(&delayed_refs->lock); 2261 2262 cond_resched(); 2263 goto again; 2264 } 2265 2266 return 0; 2267 } 2268 2269 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2270 struct extent_buffer *eb, u64 flags) 2271 { 2272 struct btrfs_delayed_extent_op *extent_op; 2273 int level = btrfs_header_level(eb); 2274 int ret; 2275 2276 extent_op = btrfs_alloc_delayed_extent_op(); 2277 if (!extent_op) 2278 return -ENOMEM; 2279 2280 extent_op->flags_to_set = flags; 2281 extent_op->update_flags = true; 2282 extent_op->update_key = false; 2283 extent_op->level = level; 2284 2285 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2286 if (ret) 2287 btrfs_free_delayed_extent_op(extent_op); 2288 return ret; 2289 } 2290 2291 static noinline int check_delayed_ref(struct btrfs_root *root, 2292 struct btrfs_path *path, 2293 u64 objectid, u64 offset, u64 bytenr) 2294 { 2295 struct btrfs_delayed_ref_head *head; 2296 struct btrfs_delayed_ref_node *ref; 2297 struct btrfs_delayed_data_ref *data_ref; 2298 struct btrfs_delayed_ref_root *delayed_refs; 2299 struct btrfs_transaction *cur_trans; 2300 struct rb_node *node; 2301 int ret = 0; 2302 2303 spin_lock(&root->fs_info->trans_lock); 2304 cur_trans = root->fs_info->running_transaction; 2305 if (cur_trans) 2306 refcount_inc(&cur_trans->use_count); 2307 spin_unlock(&root->fs_info->trans_lock); 2308 if (!cur_trans) 2309 return 0; 2310 2311 delayed_refs = &cur_trans->delayed_refs; 2312 spin_lock(&delayed_refs->lock); 2313 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2314 if (!head) { 2315 spin_unlock(&delayed_refs->lock); 2316 btrfs_put_transaction(cur_trans); 2317 return 0; 2318 } 2319 2320 if (!mutex_trylock(&head->mutex)) { 2321 if (path->nowait) { 2322 spin_unlock(&delayed_refs->lock); 2323 btrfs_put_transaction(cur_trans); 2324 return -EAGAIN; 2325 } 2326 2327 refcount_inc(&head->refs); 2328 spin_unlock(&delayed_refs->lock); 2329 2330 btrfs_release_path(path); 2331 2332 /* 2333 * Mutex was contended, block until it's released and let 2334 * caller try again 2335 */ 2336 mutex_lock(&head->mutex); 2337 mutex_unlock(&head->mutex); 2338 btrfs_put_delayed_ref_head(head); 2339 btrfs_put_transaction(cur_trans); 2340 return -EAGAIN; 2341 } 2342 spin_unlock(&delayed_refs->lock); 2343 2344 spin_lock(&head->lock); 2345 /* 2346 * XXX: We should replace this with a proper search function in the 2347 * future. 2348 */ 2349 for (node = rb_first_cached(&head->ref_tree); node; 2350 node = rb_next(node)) { 2351 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2352 /* If it's a shared ref we know a cross reference exists */ 2353 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2354 ret = 1; 2355 break; 2356 } 2357 2358 data_ref = btrfs_delayed_node_to_data_ref(ref); 2359 2360 /* 2361 * If our ref doesn't match the one we're currently looking at 2362 * then we have a cross reference. 2363 */ 2364 if (data_ref->root != root->root_key.objectid || 2365 data_ref->objectid != objectid || 2366 data_ref->offset != offset) { 2367 ret = 1; 2368 break; 2369 } 2370 } 2371 spin_unlock(&head->lock); 2372 mutex_unlock(&head->mutex); 2373 btrfs_put_transaction(cur_trans); 2374 return ret; 2375 } 2376 2377 static noinline int check_committed_ref(struct btrfs_root *root, 2378 struct btrfs_path *path, 2379 u64 objectid, u64 offset, u64 bytenr, 2380 bool strict) 2381 { 2382 struct btrfs_fs_info *fs_info = root->fs_info; 2383 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2384 struct extent_buffer *leaf; 2385 struct btrfs_extent_data_ref *ref; 2386 struct btrfs_extent_inline_ref *iref; 2387 struct btrfs_extent_item *ei; 2388 struct btrfs_key key; 2389 u32 item_size; 2390 u32 expected_size; 2391 int type; 2392 int ret; 2393 2394 key.objectid = bytenr; 2395 key.offset = (u64)-1; 2396 key.type = BTRFS_EXTENT_ITEM_KEY; 2397 2398 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2399 if (ret < 0) 2400 goto out; 2401 BUG_ON(ret == 0); /* Corruption */ 2402 2403 ret = -ENOENT; 2404 if (path->slots[0] == 0) 2405 goto out; 2406 2407 path->slots[0]--; 2408 leaf = path->nodes[0]; 2409 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2410 2411 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2412 goto out; 2413 2414 ret = 1; 2415 item_size = btrfs_item_size(leaf, path->slots[0]); 2416 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2417 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2418 2419 /* No inline refs; we need to bail before checking for owner ref. */ 2420 if (item_size == sizeof(*ei)) 2421 goto out; 2422 2423 /* Check for an owner ref; skip over it to the real inline refs. */ 2424 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2425 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2426 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2427 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2428 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2429 } 2430 2431 /* If extent item has more than 1 inline ref then it's shared */ 2432 if (item_size != expected_size) 2433 goto out; 2434 2435 /* 2436 * If extent created before last snapshot => it's shared unless the 2437 * snapshot has been deleted. Use the heuristic if strict is false. 2438 */ 2439 if (!strict && 2440 (btrfs_extent_generation(leaf, ei) <= 2441 btrfs_root_last_snapshot(&root->root_item))) 2442 goto out; 2443 2444 /* If this extent has SHARED_DATA_REF then it's shared */ 2445 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2446 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2447 goto out; 2448 2449 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2450 if (btrfs_extent_refs(leaf, ei) != 2451 btrfs_extent_data_ref_count(leaf, ref) || 2452 btrfs_extent_data_ref_root(leaf, ref) != 2453 root->root_key.objectid || 2454 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2455 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2456 goto out; 2457 2458 ret = 0; 2459 out: 2460 return ret; 2461 } 2462 2463 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2464 u64 bytenr, bool strict, struct btrfs_path *path) 2465 { 2466 int ret; 2467 2468 do { 2469 ret = check_committed_ref(root, path, objectid, 2470 offset, bytenr, strict); 2471 if (ret && ret != -ENOENT) 2472 goto out; 2473 2474 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2475 } while (ret == -EAGAIN); 2476 2477 out: 2478 btrfs_release_path(path); 2479 if (btrfs_is_data_reloc_root(root)) 2480 WARN_ON(ret > 0); 2481 return ret; 2482 } 2483 2484 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2485 struct btrfs_root *root, 2486 struct extent_buffer *buf, 2487 int full_backref, int inc) 2488 { 2489 struct btrfs_fs_info *fs_info = root->fs_info; 2490 u64 bytenr; 2491 u64 num_bytes; 2492 u64 parent; 2493 u64 ref_root; 2494 u32 nritems; 2495 struct btrfs_key key; 2496 struct btrfs_file_extent_item *fi; 2497 struct btrfs_ref generic_ref = { 0 }; 2498 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2499 int i; 2500 int action; 2501 int level; 2502 int ret = 0; 2503 2504 if (btrfs_is_testing(fs_info)) 2505 return 0; 2506 2507 ref_root = btrfs_header_owner(buf); 2508 nritems = btrfs_header_nritems(buf); 2509 level = btrfs_header_level(buf); 2510 2511 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2512 return 0; 2513 2514 if (full_backref) 2515 parent = buf->start; 2516 else 2517 parent = 0; 2518 if (inc) 2519 action = BTRFS_ADD_DELAYED_REF; 2520 else 2521 action = BTRFS_DROP_DELAYED_REF; 2522 2523 for (i = 0; i < nritems; i++) { 2524 if (level == 0) { 2525 btrfs_item_key_to_cpu(buf, &key, i); 2526 if (key.type != BTRFS_EXTENT_DATA_KEY) 2527 continue; 2528 fi = btrfs_item_ptr(buf, i, 2529 struct btrfs_file_extent_item); 2530 if (btrfs_file_extent_type(buf, fi) == 2531 BTRFS_FILE_EXTENT_INLINE) 2532 continue; 2533 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2534 if (bytenr == 0) 2535 continue; 2536 2537 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2538 key.offset -= btrfs_file_extent_offset(buf, fi); 2539 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2540 num_bytes, parent, ref_root); 2541 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2542 key.offset, root->root_key.objectid, 2543 for_reloc); 2544 if (inc) 2545 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2546 else 2547 ret = btrfs_free_extent(trans, &generic_ref); 2548 if (ret) 2549 goto fail; 2550 } else { 2551 bytenr = btrfs_node_blockptr(buf, i); 2552 num_bytes = fs_info->nodesize; 2553 /* We don't know the owning_root, use 0. */ 2554 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2555 num_bytes, parent, 0); 2556 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2557 root->root_key.objectid, for_reloc); 2558 if (inc) 2559 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2560 else 2561 ret = btrfs_free_extent(trans, &generic_ref); 2562 if (ret) 2563 goto fail; 2564 } 2565 } 2566 return 0; 2567 fail: 2568 return ret; 2569 } 2570 2571 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2572 struct extent_buffer *buf, int full_backref) 2573 { 2574 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2575 } 2576 2577 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2578 struct extent_buffer *buf, int full_backref) 2579 { 2580 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2581 } 2582 2583 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2584 { 2585 struct btrfs_fs_info *fs_info = root->fs_info; 2586 u64 flags; 2587 u64 ret; 2588 2589 if (data) 2590 flags = BTRFS_BLOCK_GROUP_DATA; 2591 else if (root == fs_info->chunk_root) 2592 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2593 else 2594 flags = BTRFS_BLOCK_GROUP_METADATA; 2595 2596 ret = btrfs_get_alloc_profile(fs_info, flags); 2597 return ret; 2598 } 2599 2600 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2601 { 2602 struct rb_node *leftmost; 2603 u64 bytenr = 0; 2604 2605 read_lock(&fs_info->block_group_cache_lock); 2606 /* Get the block group with the lowest logical start address. */ 2607 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2608 if (leftmost) { 2609 struct btrfs_block_group *bg; 2610 2611 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2612 bytenr = bg->start; 2613 } 2614 read_unlock(&fs_info->block_group_cache_lock); 2615 2616 return bytenr; 2617 } 2618 2619 static int pin_down_extent(struct btrfs_trans_handle *trans, 2620 struct btrfs_block_group *cache, 2621 u64 bytenr, u64 num_bytes, int reserved) 2622 { 2623 struct btrfs_fs_info *fs_info = cache->fs_info; 2624 2625 spin_lock(&cache->space_info->lock); 2626 spin_lock(&cache->lock); 2627 cache->pinned += num_bytes; 2628 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2629 num_bytes); 2630 if (reserved) { 2631 cache->reserved -= num_bytes; 2632 cache->space_info->bytes_reserved -= num_bytes; 2633 } 2634 spin_unlock(&cache->lock); 2635 spin_unlock(&cache->space_info->lock); 2636 2637 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2638 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2639 return 0; 2640 } 2641 2642 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2643 u64 bytenr, u64 num_bytes, int reserved) 2644 { 2645 struct btrfs_block_group *cache; 2646 2647 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2648 BUG_ON(!cache); /* Logic error */ 2649 2650 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2651 2652 btrfs_put_block_group(cache); 2653 return 0; 2654 } 2655 2656 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2657 const struct extent_buffer *eb) 2658 { 2659 struct btrfs_block_group *cache; 2660 int ret; 2661 2662 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2663 if (!cache) 2664 return -EINVAL; 2665 2666 /* 2667 * Fully cache the free space first so that our pin removes the free space 2668 * from the cache. 2669 */ 2670 ret = btrfs_cache_block_group(cache, true); 2671 if (ret) 2672 goto out; 2673 2674 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2675 2676 /* remove us from the free space cache (if we're there at all) */ 2677 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2678 out: 2679 btrfs_put_block_group(cache); 2680 return ret; 2681 } 2682 2683 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2684 u64 start, u64 num_bytes) 2685 { 2686 int ret; 2687 struct btrfs_block_group *block_group; 2688 2689 block_group = btrfs_lookup_block_group(fs_info, start); 2690 if (!block_group) 2691 return -EINVAL; 2692 2693 ret = btrfs_cache_block_group(block_group, true); 2694 if (ret) 2695 goto out; 2696 2697 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2698 out: 2699 btrfs_put_block_group(block_group); 2700 return ret; 2701 } 2702 2703 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2704 { 2705 struct btrfs_fs_info *fs_info = eb->fs_info; 2706 struct btrfs_file_extent_item *item; 2707 struct btrfs_key key; 2708 int found_type; 2709 int i; 2710 int ret = 0; 2711 2712 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2713 return 0; 2714 2715 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2716 btrfs_item_key_to_cpu(eb, &key, i); 2717 if (key.type != BTRFS_EXTENT_DATA_KEY) 2718 continue; 2719 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2720 found_type = btrfs_file_extent_type(eb, item); 2721 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2722 continue; 2723 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2724 continue; 2725 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2726 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2727 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2728 if (ret) 2729 break; 2730 } 2731 2732 return ret; 2733 } 2734 2735 static void 2736 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2737 { 2738 atomic_inc(&bg->reservations); 2739 } 2740 2741 /* 2742 * Returns the free cluster for the given space info and sets empty_cluster to 2743 * what it should be based on the mount options. 2744 */ 2745 static struct btrfs_free_cluster * 2746 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2747 struct btrfs_space_info *space_info, u64 *empty_cluster) 2748 { 2749 struct btrfs_free_cluster *ret = NULL; 2750 2751 *empty_cluster = 0; 2752 if (btrfs_mixed_space_info(space_info)) 2753 return ret; 2754 2755 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2756 ret = &fs_info->meta_alloc_cluster; 2757 if (btrfs_test_opt(fs_info, SSD)) 2758 *empty_cluster = SZ_2M; 2759 else 2760 *empty_cluster = SZ_64K; 2761 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2762 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2763 *empty_cluster = SZ_2M; 2764 ret = &fs_info->data_alloc_cluster; 2765 } 2766 2767 return ret; 2768 } 2769 2770 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2771 u64 start, u64 end, 2772 const bool return_free_space) 2773 { 2774 struct btrfs_block_group *cache = NULL; 2775 struct btrfs_space_info *space_info; 2776 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2777 struct btrfs_free_cluster *cluster = NULL; 2778 u64 len; 2779 u64 total_unpinned = 0; 2780 u64 empty_cluster = 0; 2781 bool readonly; 2782 2783 while (start <= end) { 2784 readonly = false; 2785 if (!cache || 2786 start >= cache->start + cache->length) { 2787 if (cache) 2788 btrfs_put_block_group(cache); 2789 total_unpinned = 0; 2790 cache = btrfs_lookup_block_group(fs_info, start); 2791 BUG_ON(!cache); /* Logic error */ 2792 2793 cluster = fetch_cluster_info(fs_info, 2794 cache->space_info, 2795 &empty_cluster); 2796 empty_cluster <<= 1; 2797 } 2798 2799 len = cache->start + cache->length - start; 2800 len = min(len, end + 1 - start); 2801 2802 if (return_free_space) 2803 btrfs_add_free_space(cache, start, len); 2804 2805 start += len; 2806 total_unpinned += len; 2807 space_info = cache->space_info; 2808 2809 /* 2810 * If this space cluster has been marked as fragmented and we've 2811 * unpinned enough in this block group to potentially allow a 2812 * cluster to be created inside of it go ahead and clear the 2813 * fragmented check. 2814 */ 2815 if (cluster && cluster->fragmented && 2816 total_unpinned > empty_cluster) { 2817 spin_lock(&cluster->lock); 2818 cluster->fragmented = 0; 2819 spin_unlock(&cluster->lock); 2820 } 2821 2822 spin_lock(&space_info->lock); 2823 spin_lock(&cache->lock); 2824 cache->pinned -= len; 2825 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2826 space_info->max_extent_size = 0; 2827 if (cache->ro) { 2828 space_info->bytes_readonly += len; 2829 readonly = true; 2830 } else if (btrfs_is_zoned(fs_info)) { 2831 /* Need reset before reusing in a zoned block group */ 2832 space_info->bytes_zone_unusable += len; 2833 readonly = true; 2834 } 2835 spin_unlock(&cache->lock); 2836 if (!readonly && return_free_space && 2837 global_rsv->space_info == space_info) { 2838 spin_lock(&global_rsv->lock); 2839 if (!global_rsv->full) { 2840 u64 to_add = min(len, global_rsv->size - 2841 global_rsv->reserved); 2842 2843 global_rsv->reserved += to_add; 2844 btrfs_space_info_update_bytes_may_use(fs_info, 2845 space_info, to_add); 2846 if (global_rsv->reserved >= global_rsv->size) 2847 global_rsv->full = 1; 2848 len -= to_add; 2849 } 2850 spin_unlock(&global_rsv->lock); 2851 } 2852 /* Add to any tickets we may have */ 2853 if (!readonly && return_free_space && len) 2854 btrfs_try_granting_tickets(fs_info, space_info); 2855 spin_unlock(&space_info->lock); 2856 } 2857 2858 if (cache) 2859 btrfs_put_block_group(cache); 2860 return 0; 2861 } 2862 2863 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2864 { 2865 struct btrfs_fs_info *fs_info = trans->fs_info; 2866 struct btrfs_block_group *block_group, *tmp; 2867 struct list_head *deleted_bgs; 2868 struct extent_io_tree *unpin; 2869 u64 start; 2870 u64 end; 2871 int ret; 2872 2873 unpin = &trans->transaction->pinned_extents; 2874 2875 while (!TRANS_ABORTED(trans)) { 2876 struct extent_state *cached_state = NULL; 2877 2878 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2879 if (!find_first_extent_bit(unpin, 0, &start, &end, 2880 EXTENT_DIRTY, &cached_state)) { 2881 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2882 break; 2883 } 2884 2885 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2886 ret = btrfs_discard_extent(fs_info, start, 2887 end + 1 - start, NULL); 2888 2889 clear_extent_dirty(unpin, start, end, &cached_state); 2890 unpin_extent_range(fs_info, start, end, true); 2891 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2892 free_extent_state(cached_state); 2893 cond_resched(); 2894 } 2895 2896 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2897 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2898 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2899 } 2900 2901 /* 2902 * Transaction is finished. We don't need the lock anymore. We 2903 * do need to clean up the block groups in case of a transaction 2904 * abort. 2905 */ 2906 deleted_bgs = &trans->transaction->deleted_bgs; 2907 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2908 u64 trimmed = 0; 2909 2910 ret = -EROFS; 2911 if (!TRANS_ABORTED(trans)) 2912 ret = btrfs_discard_extent(fs_info, 2913 block_group->start, 2914 block_group->length, 2915 &trimmed); 2916 2917 list_del_init(&block_group->bg_list); 2918 btrfs_unfreeze_block_group(block_group); 2919 btrfs_put_block_group(block_group); 2920 2921 if (ret) { 2922 const char *errstr = btrfs_decode_error(ret); 2923 btrfs_warn(fs_info, 2924 "discard failed while removing blockgroup: errno=%d %s", 2925 ret, errstr); 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /* 2933 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2934 * 2935 * @fs_info: the btrfs_fs_info for this mount 2936 * @leaf: a leaf in the extent tree containing the extent item 2937 * @slot: the slot in the leaf where the extent item is found 2938 * 2939 * Returns the objectid of the root that originally allocated the extent item 2940 * if the inline owner ref is expected and present, otherwise 0. 2941 * 2942 * If an extent item has an owner ref item, it will be the first inline ref 2943 * item. Therefore the logic is to check whether there are any inline ref 2944 * items, then check the type of the first one. 2945 */ 2946 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2947 struct extent_buffer *leaf, int slot) 2948 { 2949 struct btrfs_extent_item *ei; 2950 struct btrfs_extent_inline_ref *iref; 2951 struct btrfs_extent_owner_ref *oref; 2952 unsigned long ptr; 2953 unsigned long end; 2954 int type; 2955 2956 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2957 return 0; 2958 2959 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2960 ptr = (unsigned long)(ei + 1); 2961 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2962 2963 /* No inline ref items of any kind, can't check type. */ 2964 if (ptr == end) 2965 return 0; 2966 2967 iref = (struct btrfs_extent_inline_ref *)ptr; 2968 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2969 2970 /* We found an owner ref, get the root out of it. */ 2971 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2972 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2973 return btrfs_extent_owner_ref_root_id(leaf, oref); 2974 } 2975 2976 /* We have inline refs, but not an owner ref. */ 2977 return 0; 2978 } 2979 2980 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2981 u64 bytenr, struct btrfs_squota_delta *delta) 2982 { 2983 int ret; 2984 u64 num_bytes = delta->num_bytes; 2985 2986 if (delta->is_data) { 2987 struct btrfs_root *csum_root; 2988 2989 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2990 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2991 if (ret) { 2992 btrfs_abort_transaction(trans, ret); 2993 return ret; 2994 } 2995 2996 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2997 if (ret) { 2998 btrfs_abort_transaction(trans, ret); 2999 return ret; 3000 } 3001 } 3002 3003 ret = btrfs_record_squota_delta(trans->fs_info, delta); 3004 if (ret) { 3005 btrfs_abort_transaction(trans, ret); 3006 return ret; 3007 } 3008 3009 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3010 if (ret) { 3011 btrfs_abort_transaction(trans, ret); 3012 return ret; 3013 } 3014 3015 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3016 if (ret) 3017 btrfs_abort_transaction(trans, ret); 3018 3019 return ret; 3020 } 3021 3022 #define abort_and_dump(trans, path, fmt, args...) \ 3023 ({ \ 3024 btrfs_abort_transaction(trans, -EUCLEAN); \ 3025 btrfs_print_leaf(path->nodes[0]); \ 3026 btrfs_crit(trans->fs_info, fmt, ##args); \ 3027 }) 3028 3029 /* 3030 * Drop one or more refs of @node. 3031 * 3032 * 1. Locate the extent refs. 3033 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3034 * Locate it, then reduce the refs number or remove the ref line completely. 3035 * 3036 * 2. Update the refs count in EXTENT/METADATA_ITEM 3037 * 3038 * Inline backref case: 3039 * 3040 * in extent tree we have: 3041 * 3042 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3043 * refs 2 gen 6 flags DATA 3044 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3045 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3046 * 3047 * This function gets called with: 3048 * 3049 * node->bytenr = 13631488 3050 * node->num_bytes = 1048576 3051 * root_objectid = FS_TREE 3052 * owner_objectid = 257 3053 * owner_offset = 0 3054 * refs_to_drop = 1 3055 * 3056 * Then we should get some like: 3057 * 3058 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3059 * refs 1 gen 6 flags DATA 3060 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3061 * 3062 * Keyed backref case: 3063 * 3064 * in extent tree we have: 3065 * 3066 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3067 * refs 754 gen 6 flags DATA 3068 * [...] 3069 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3070 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3071 * 3072 * This function get called with: 3073 * 3074 * node->bytenr = 13631488 3075 * node->num_bytes = 1048576 3076 * root_objectid = FS_TREE 3077 * owner_objectid = 866 3078 * owner_offset = 0 3079 * refs_to_drop = 1 3080 * 3081 * Then we should get some like: 3082 * 3083 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3084 * refs 753 gen 6 flags DATA 3085 * 3086 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3087 */ 3088 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3089 struct btrfs_delayed_ref_head *href, 3090 struct btrfs_delayed_ref_node *node, u64 parent, 3091 u64 root_objectid, u64 owner_objectid, 3092 u64 owner_offset, 3093 struct btrfs_delayed_extent_op *extent_op) 3094 { 3095 struct btrfs_fs_info *info = trans->fs_info; 3096 struct btrfs_key key; 3097 struct btrfs_path *path; 3098 struct btrfs_root *extent_root; 3099 struct extent_buffer *leaf; 3100 struct btrfs_extent_item *ei; 3101 struct btrfs_extent_inline_ref *iref; 3102 int ret; 3103 int is_data; 3104 int extent_slot = 0; 3105 int found_extent = 0; 3106 int num_to_del = 1; 3107 int refs_to_drop = node->ref_mod; 3108 u32 item_size; 3109 u64 refs; 3110 u64 bytenr = node->bytenr; 3111 u64 num_bytes = node->num_bytes; 3112 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3113 u64 delayed_ref_root = href->owning_root; 3114 3115 extent_root = btrfs_extent_root(info, bytenr); 3116 ASSERT(extent_root); 3117 3118 path = btrfs_alloc_path(); 3119 if (!path) 3120 return -ENOMEM; 3121 3122 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3123 3124 if (!is_data && refs_to_drop != 1) { 3125 btrfs_crit(info, 3126 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3127 node->bytenr, refs_to_drop); 3128 ret = -EINVAL; 3129 btrfs_abort_transaction(trans, ret); 3130 goto out; 3131 } 3132 3133 if (is_data) 3134 skinny_metadata = false; 3135 3136 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3137 parent, root_objectid, owner_objectid, 3138 owner_offset); 3139 if (ret == 0) { 3140 /* 3141 * Either the inline backref or the SHARED_DATA_REF/ 3142 * SHARED_BLOCK_REF is found 3143 * 3144 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3145 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3146 */ 3147 extent_slot = path->slots[0]; 3148 while (extent_slot >= 0) { 3149 btrfs_item_key_to_cpu(path->nodes[0], &key, 3150 extent_slot); 3151 if (key.objectid != bytenr) 3152 break; 3153 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3154 key.offset == num_bytes) { 3155 found_extent = 1; 3156 break; 3157 } 3158 if (key.type == BTRFS_METADATA_ITEM_KEY && 3159 key.offset == owner_objectid) { 3160 found_extent = 1; 3161 break; 3162 } 3163 3164 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3165 if (path->slots[0] - extent_slot > 5) 3166 break; 3167 extent_slot--; 3168 } 3169 3170 if (!found_extent) { 3171 if (iref) { 3172 abort_and_dump(trans, path, 3173 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3174 path->slots[0]); 3175 ret = -EUCLEAN; 3176 goto out; 3177 } 3178 /* Must be SHARED_* item, remove the backref first */ 3179 ret = remove_extent_backref(trans, extent_root, path, 3180 NULL, refs_to_drop, is_data); 3181 if (ret) { 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 btrfs_release_path(path); 3186 3187 /* Slow path to locate EXTENT/METADATA_ITEM */ 3188 key.objectid = bytenr; 3189 key.type = BTRFS_EXTENT_ITEM_KEY; 3190 key.offset = num_bytes; 3191 3192 if (!is_data && skinny_metadata) { 3193 key.type = BTRFS_METADATA_ITEM_KEY; 3194 key.offset = owner_objectid; 3195 } 3196 3197 ret = btrfs_search_slot(trans, extent_root, 3198 &key, path, -1, 1); 3199 if (ret > 0 && skinny_metadata && path->slots[0]) { 3200 /* 3201 * Couldn't find our skinny metadata item, 3202 * see if we have ye olde extent item. 3203 */ 3204 path->slots[0]--; 3205 btrfs_item_key_to_cpu(path->nodes[0], &key, 3206 path->slots[0]); 3207 if (key.objectid == bytenr && 3208 key.type == BTRFS_EXTENT_ITEM_KEY && 3209 key.offset == num_bytes) 3210 ret = 0; 3211 } 3212 3213 if (ret > 0 && skinny_metadata) { 3214 skinny_metadata = false; 3215 key.objectid = bytenr; 3216 key.type = BTRFS_EXTENT_ITEM_KEY; 3217 key.offset = num_bytes; 3218 btrfs_release_path(path); 3219 ret = btrfs_search_slot(trans, extent_root, 3220 &key, path, -1, 1); 3221 } 3222 3223 if (ret) { 3224 if (ret > 0) 3225 btrfs_print_leaf(path->nodes[0]); 3226 btrfs_err(info, 3227 "umm, got %d back from search, was looking for %llu, slot %d", 3228 ret, bytenr, path->slots[0]); 3229 } 3230 if (ret < 0) { 3231 btrfs_abort_transaction(trans, ret); 3232 goto out; 3233 } 3234 extent_slot = path->slots[0]; 3235 } 3236 } else if (WARN_ON(ret == -ENOENT)) { 3237 abort_and_dump(trans, path, 3238 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3239 bytenr, parent, root_objectid, owner_objectid, 3240 owner_offset, path->slots[0]); 3241 goto out; 3242 } else { 3243 btrfs_abort_transaction(trans, ret); 3244 goto out; 3245 } 3246 3247 leaf = path->nodes[0]; 3248 item_size = btrfs_item_size(leaf, extent_slot); 3249 if (unlikely(item_size < sizeof(*ei))) { 3250 ret = -EUCLEAN; 3251 btrfs_err(trans->fs_info, 3252 "unexpected extent item size, has %u expect >= %zu", 3253 item_size, sizeof(*ei)); 3254 btrfs_abort_transaction(trans, ret); 3255 goto out; 3256 } 3257 ei = btrfs_item_ptr(leaf, extent_slot, 3258 struct btrfs_extent_item); 3259 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3260 key.type == BTRFS_EXTENT_ITEM_KEY) { 3261 struct btrfs_tree_block_info *bi; 3262 3263 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3264 abort_and_dump(trans, path, 3265 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3266 key.objectid, key.type, key.offset, 3267 path->slots[0], owner_objectid, item_size, 3268 sizeof(*ei) + sizeof(*bi)); 3269 ret = -EUCLEAN; 3270 goto out; 3271 } 3272 bi = (struct btrfs_tree_block_info *)(ei + 1); 3273 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3274 } 3275 3276 refs = btrfs_extent_refs(leaf, ei); 3277 if (refs < refs_to_drop) { 3278 abort_and_dump(trans, path, 3279 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3280 refs_to_drop, refs, bytenr, path->slots[0]); 3281 ret = -EUCLEAN; 3282 goto out; 3283 } 3284 refs -= refs_to_drop; 3285 3286 if (refs > 0) { 3287 if (extent_op) 3288 __run_delayed_extent_op(extent_op, leaf, ei); 3289 /* 3290 * In the case of inline back ref, reference count will 3291 * be updated by remove_extent_backref 3292 */ 3293 if (iref) { 3294 if (!found_extent) { 3295 abort_and_dump(trans, path, 3296 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3297 path->slots[0]); 3298 ret = -EUCLEAN; 3299 goto out; 3300 } 3301 } else { 3302 btrfs_set_extent_refs(leaf, ei, refs); 3303 btrfs_mark_buffer_dirty(trans, leaf); 3304 } 3305 if (found_extent) { 3306 ret = remove_extent_backref(trans, extent_root, path, 3307 iref, refs_to_drop, is_data); 3308 if (ret) { 3309 btrfs_abort_transaction(trans, ret); 3310 goto out; 3311 } 3312 } 3313 } else { 3314 struct btrfs_squota_delta delta = { 3315 .root = delayed_ref_root, 3316 .num_bytes = num_bytes, 3317 .is_data = is_data, 3318 .is_inc = false, 3319 .generation = btrfs_extent_generation(leaf, ei), 3320 }; 3321 3322 /* In this branch refs == 1 */ 3323 if (found_extent) { 3324 if (is_data && refs_to_drop != 3325 extent_data_ref_count(path, iref)) { 3326 abort_and_dump(trans, path, 3327 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3328 extent_data_ref_count(path, iref), 3329 refs_to_drop, path->slots[0]); 3330 ret = -EUCLEAN; 3331 goto out; 3332 } 3333 if (iref) { 3334 if (path->slots[0] != extent_slot) { 3335 abort_and_dump(trans, path, 3336 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3337 key.objectid, key.type, 3338 key.offset, path->slots[0]); 3339 ret = -EUCLEAN; 3340 goto out; 3341 } 3342 } else { 3343 /* 3344 * No inline ref, we must be at SHARED_* item, 3345 * And it's single ref, it must be: 3346 * | extent_slot ||extent_slot + 1| 3347 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3348 */ 3349 if (path->slots[0] != extent_slot + 1) { 3350 abort_and_dump(trans, path, 3351 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3352 path->slots[0]); 3353 ret = -EUCLEAN; 3354 goto out; 3355 } 3356 path->slots[0] = extent_slot; 3357 num_to_del = 2; 3358 } 3359 } 3360 /* 3361 * We can't infer the data owner from the delayed ref, so we need 3362 * to try to get it from the owning ref item. 3363 * 3364 * If it is not present, then that extent was not written under 3365 * simple quotas mode, so we don't need to account for its deletion. 3366 */ 3367 if (is_data) 3368 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3369 leaf, extent_slot); 3370 3371 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3372 num_to_del); 3373 if (ret) { 3374 btrfs_abort_transaction(trans, ret); 3375 goto out; 3376 } 3377 btrfs_release_path(path); 3378 3379 ret = do_free_extent_accounting(trans, bytenr, &delta); 3380 } 3381 btrfs_release_path(path); 3382 3383 out: 3384 btrfs_free_path(path); 3385 return ret; 3386 } 3387 3388 /* 3389 * when we free an block, it is possible (and likely) that we free the last 3390 * delayed ref for that extent as well. This searches the delayed ref tree for 3391 * a given extent, and if there are no other delayed refs to be processed, it 3392 * removes it from the tree. 3393 */ 3394 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3395 u64 bytenr) 3396 { 3397 struct btrfs_delayed_ref_head *head; 3398 struct btrfs_delayed_ref_root *delayed_refs; 3399 int ret = 0; 3400 3401 delayed_refs = &trans->transaction->delayed_refs; 3402 spin_lock(&delayed_refs->lock); 3403 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3404 if (!head) 3405 goto out_delayed_unlock; 3406 3407 spin_lock(&head->lock); 3408 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3409 goto out; 3410 3411 if (cleanup_extent_op(head) != NULL) 3412 goto out; 3413 3414 /* 3415 * waiting for the lock here would deadlock. If someone else has it 3416 * locked they are already in the process of dropping it anyway 3417 */ 3418 if (!mutex_trylock(&head->mutex)) 3419 goto out; 3420 3421 btrfs_delete_ref_head(delayed_refs, head); 3422 head->processing = false; 3423 3424 spin_unlock(&head->lock); 3425 spin_unlock(&delayed_refs->lock); 3426 3427 BUG_ON(head->extent_op); 3428 if (head->must_insert_reserved) 3429 ret = 1; 3430 3431 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3432 mutex_unlock(&head->mutex); 3433 btrfs_put_delayed_ref_head(head); 3434 return ret; 3435 out: 3436 spin_unlock(&head->lock); 3437 3438 out_delayed_unlock: 3439 spin_unlock(&delayed_refs->lock); 3440 return 0; 3441 } 3442 3443 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3444 u64 root_id, 3445 struct extent_buffer *buf, 3446 u64 parent, int last_ref) 3447 { 3448 struct btrfs_fs_info *fs_info = trans->fs_info; 3449 struct btrfs_ref generic_ref = { 0 }; 3450 int ret; 3451 3452 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3453 buf->start, buf->len, parent, btrfs_header_owner(buf)); 3454 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3455 root_id, 0, false); 3456 3457 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3458 btrfs_ref_tree_mod(fs_info, &generic_ref); 3459 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3460 BUG_ON(ret); /* -ENOMEM */ 3461 } 3462 3463 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3464 struct btrfs_block_group *cache; 3465 bool must_pin = false; 3466 3467 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3468 ret = check_ref_cleanup(trans, buf->start); 3469 if (!ret) { 3470 btrfs_redirty_list_add(trans->transaction, buf); 3471 goto out; 3472 } 3473 } 3474 3475 cache = btrfs_lookup_block_group(fs_info, buf->start); 3476 3477 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3478 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3479 btrfs_put_block_group(cache); 3480 goto out; 3481 } 3482 3483 /* 3484 * If there are tree mod log users we may have recorded mod log 3485 * operations for this node. If we re-allocate this node we 3486 * could replay operations on this node that happened when it 3487 * existed in a completely different root. For example if it 3488 * was part of root A, then was reallocated to root B, and we 3489 * are doing a btrfs_old_search_slot(root b), we could replay 3490 * operations that happened when the block was part of root A, 3491 * giving us an inconsistent view of the btree. 3492 * 3493 * We are safe from races here because at this point no other 3494 * node or root points to this extent buffer, so if after this 3495 * check a new tree mod log user joins we will not have an 3496 * existing log of operations on this node that we have to 3497 * contend with. 3498 */ 3499 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3500 must_pin = true; 3501 3502 if (must_pin || btrfs_is_zoned(fs_info)) { 3503 btrfs_redirty_list_add(trans->transaction, buf); 3504 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3505 btrfs_put_block_group(cache); 3506 goto out; 3507 } 3508 3509 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3510 3511 btrfs_add_free_space(cache, buf->start, buf->len); 3512 btrfs_free_reserved_bytes(cache, buf->len, 0); 3513 btrfs_put_block_group(cache); 3514 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3515 } 3516 out: 3517 if (last_ref) { 3518 /* 3519 * Deleting the buffer, clear the corrupt flag since it doesn't 3520 * matter anymore. 3521 */ 3522 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3523 } 3524 } 3525 3526 /* Can return -ENOMEM */ 3527 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3528 { 3529 struct btrfs_fs_info *fs_info = trans->fs_info; 3530 int ret; 3531 3532 if (btrfs_is_testing(fs_info)) 3533 return 0; 3534 3535 /* 3536 * tree log blocks never actually go into the extent allocation 3537 * tree, just update pinning info and exit early. 3538 */ 3539 if ((ref->type == BTRFS_REF_METADATA && 3540 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3541 (ref->type == BTRFS_REF_DATA && 3542 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3543 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3544 ret = 0; 3545 } else if (ref->type == BTRFS_REF_METADATA) { 3546 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3547 } else { 3548 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3549 } 3550 3551 if (!((ref->type == BTRFS_REF_METADATA && 3552 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3553 (ref->type == BTRFS_REF_DATA && 3554 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3555 btrfs_ref_tree_mod(fs_info, ref); 3556 3557 return ret; 3558 } 3559 3560 enum btrfs_loop_type { 3561 /* 3562 * Start caching block groups but do not wait for progress or for them 3563 * to be done. 3564 */ 3565 LOOP_CACHING_NOWAIT, 3566 3567 /* 3568 * Wait for the block group free_space >= the space we're waiting for if 3569 * the block group isn't cached. 3570 */ 3571 LOOP_CACHING_WAIT, 3572 3573 /* 3574 * Allow allocations to happen from block groups that do not yet have a 3575 * size classification. 3576 */ 3577 LOOP_UNSET_SIZE_CLASS, 3578 3579 /* 3580 * Allocate a chunk and then retry the allocation. 3581 */ 3582 LOOP_ALLOC_CHUNK, 3583 3584 /* 3585 * Ignore the size class restrictions for this allocation. 3586 */ 3587 LOOP_WRONG_SIZE_CLASS, 3588 3589 /* 3590 * Ignore the empty size, only try to allocate the number of bytes 3591 * needed for this allocation. 3592 */ 3593 LOOP_NO_EMPTY_SIZE, 3594 }; 3595 3596 static inline void 3597 btrfs_lock_block_group(struct btrfs_block_group *cache, 3598 int delalloc) 3599 { 3600 if (delalloc) 3601 down_read(&cache->data_rwsem); 3602 } 3603 3604 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3605 int delalloc) 3606 { 3607 btrfs_get_block_group(cache); 3608 if (delalloc) 3609 down_read(&cache->data_rwsem); 3610 } 3611 3612 static struct btrfs_block_group *btrfs_lock_cluster( 3613 struct btrfs_block_group *block_group, 3614 struct btrfs_free_cluster *cluster, 3615 int delalloc) 3616 __acquires(&cluster->refill_lock) 3617 { 3618 struct btrfs_block_group *used_bg = NULL; 3619 3620 spin_lock(&cluster->refill_lock); 3621 while (1) { 3622 used_bg = cluster->block_group; 3623 if (!used_bg) 3624 return NULL; 3625 3626 if (used_bg == block_group) 3627 return used_bg; 3628 3629 btrfs_get_block_group(used_bg); 3630 3631 if (!delalloc) 3632 return used_bg; 3633 3634 if (down_read_trylock(&used_bg->data_rwsem)) 3635 return used_bg; 3636 3637 spin_unlock(&cluster->refill_lock); 3638 3639 /* We should only have one-level nested. */ 3640 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3641 3642 spin_lock(&cluster->refill_lock); 3643 if (used_bg == cluster->block_group) 3644 return used_bg; 3645 3646 up_read(&used_bg->data_rwsem); 3647 btrfs_put_block_group(used_bg); 3648 } 3649 } 3650 3651 static inline void 3652 btrfs_release_block_group(struct btrfs_block_group *cache, 3653 int delalloc) 3654 { 3655 if (delalloc) 3656 up_read(&cache->data_rwsem); 3657 btrfs_put_block_group(cache); 3658 } 3659 3660 /* 3661 * Helper function for find_free_extent(). 3662 * 3663 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3664 * Return >0 to inform caller that we find nothing 3665 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3666 */ 3667 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3668 struct find_free_extent_ctl *ffe_ctl, 3669 struct btrfs_block_group **cluster_bg_ret) 3670 { 3671 struct btrfs_block_group *cluster_bg; 3672 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3673 u64 aligned_cluster; 3674 u64 offset; 3675 int ret; 3676 3677 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3678 if (!cluster_bg) 3679 goto refill_cluster; 3680 if (cluster_bg != bg && (cluster_bg->ro || 3681 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3682 goto release_cluster; 3683 3684 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3685 ffe_ctl->num_bytes, cluster_bg->start, 3686 &ffe_ctl->max_extent_size); 3687 if (offset) { 3688 /* We have a block, we're done */ 3689 spin_unlock(&last_ptr->refill_lock); 3690 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3691 *cluster_bg_ret = cluster_bg; 3692 ffe_ctl->found_offset = offset; 3693 return 0; 3694 } 3695 WARN_ON(last_ptr->block_group != cluster_bg); 3696 3697 release_cluster: 3698 /* 3699 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3700 * lets just skip it and let the allocator find whatever block it can 3701 * find. If we reach this point, we will have tried the cluster 3702 * allocator plenty of times and not have found anything, so we are 3703 * likely way too fragmented for the clustering stuff to find anything. 3704 * 3705 * However, if the cluster is taken from the current block group, 3706 * release the cluster first, so that we stand a better chance of 3707 * succeeding in the unclustered allocation. 3708 */ 3709 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3710 spin_unlock(&last_ptr->refill_lock); 3711 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3712 return -ENOENT; 3713 } 3714 3715 /* This cluster didn't work out, free it and start over */ 3716 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3717 3718 if (cluster_bg != bg) 3719 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3720 3721 refill_cluster: 3722 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3723 spin_unlock(&last_ptr->refill_lock); 3724 return -ENOENT; 3725 } 3726 3727 aligned_cluster = max_t(u64, 3728 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3729 bg->full_stripe_len); 3730 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3731 ffe_ctl->num_bytes, aligned_cluster); 3732 if (ret == 0) { 3733 /* Now pull our allocation out of this cluster */ 3734 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3735 ffe_ctl->num_bytes, ffe_ctl->search_start, 3736 &ffe_ctl->max_extent_size); 3737 if (offset) { 3738 /* We found one, proceed */ 3739 spin_unlock(&last_ptr->refill_lock); 3740 ffe_ctl->found_offset = offset; 3741 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3742 return 0; 3743 } 3744 } 3745 /* 3746 * At this point we either didn't find a cluster or we weren't able to 3747 * allocate a block from our cluster. Free the cluster we've been 3748 * trying to use, and go to the next block group. 3749 */ 3750 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3751 spin_unlock(&last_ptr->refill_lock); 3752 return 1; 3753 } 3754 3755 /* 3756 * Return >0 to inform caller that we find nothing 3757 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3758 */ 3759 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3760 struct find_free_extent_ctl *ffe_ctl) 3761 { 3762 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3763 u64 offset; 3764 3765 /* 3766 * We are doing an unclustered allocation, set the fragmented flag so 3767 * we don't bother trying to setup a cluster again until we get more 3768 * space. 3769 */ 3770 if (unlikely(last_ptr)) { 3771 spin_lock(&last_ptr->lock); 3772 last_ptr->fragmented = 1; 3773 spin_unlock(&last_ptr->lock); 3774 } 3775 if (ffe_ctl->cached) { 3776 struct btrfs_free_space_ctl *free_space_ctl; 3777 3778 free_space_ctl = bg->free_space_ctl; 3779 spin_lock(&free_space_ctl->tree_lock); 3780 if (free_space_ctl->free_space < 3781 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3782 ffe_ctl->empty_size) { 3783 ffe_ctl->total_free_space = max_t(u64, 3784 ffe_ctl->total_free_space, 3785 free_space_ctl->free_space); 3786 spin_unlock(&free_space_ctl->tree_lock); 3787 return 1; 3788 } 3789 spin_unlock(&free_space_ctl->tree_lock); 3790 } 3791 3792 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3793 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3794 &ffe_ctl->max_extent_size); 3795 if (!offset) 3796 return 1; 3797 ffe_ctl->found_offset = offset; 3798 return 0; 3799 } 3800 3801 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3802 struct find_free_extent_ctl *ffe_ctl, 3803 struct btrfs_block_group **bg_ret) 3804 { 3805 int ret; 3806 3807 /* We want to try and use the cluster allocator, so lets look there */ 3808 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3809 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3810 if (ret >= 0) 3811 return ret; 3812 /* ret == -ENOENT case falls through */ 3813 } 3814 3815 return find_free_extent_unclustered(block_group, ffe_ctl); 3816 } 3817 3818 /* 3819 * Tree-log block group locking 3820 * ============================ 3821 * 3822 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3823 * indicates the starting address of a block group, which is reserved only 3824 * for tree-log metadata. 3825 * 3826 * Lock nesting 3827 * ============ 3828 * 3829 * space_info::lock 3830 * block_group::lock 3831 * fs_info::treelog_bg_lock 3832 */ 3833 3834 /* 3835 * Simple allocator for sequential-only block group. It only allows sequential 3836 * allocation. No need to play with trees. This function also reserves the 3837 * bytes as in btrfs_add_reserved_bytes. 3838 */ 3839 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3840 struct find_free_extent_ctl *ffe_ctl, 3841 struct btrfs_block_group **bg_ret) 3842 { 3843 struct btrfs_fs_info *fs_info = block_group->fs_info; 3844 struct btrfs_space_info *space_info = block_group->space_info; 3845 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3846 u64 start = block_group->start; 3847 u64 num_bytes = ffe_ctl->num_bytes; 3848 u64 avail; 3849 u64 bytenr = block_group->start; 3850 u64 log_bytenr; 3851 u64 data_reloc_bytenr; 3852 int ret = 0; 3853 bool skip = false; 3854 3855 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3856 3857 /* 3858 * Do not allow non-tree-log blocks in the dedicated tree-log block 3859 * group, and vice versa. 3860 */ 3861 spin_lock(&fs_info->treelog_bg_lock); 3862 log_bytenr = fs_info->treelog_bg; 3863 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3864 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3865 skip = true; 3866 spin_unlock(&fs_info->treelog_bg_lock); 3867 if (skip) 3868 return 1; 3869 3870 /* 3871 * Do not allow non-relocation blocks in the dedicated relocation block 3872 * group, and vice versa. 3873 */ 3874 spin_lock(&fs_info->relocation_bg_lock); 3875 data_reloc_bytenr = fs_info->data_reloc_bg; 3876 if (data_reloc_bytenr && 3877 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3878 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3879 skip = true; 3880 spin_unlock(&fs_info->relocation_bg_lock); 3881 if (skip) 3882 return 1; 3883 3884 /* Check RO and no space case before trying to activate it */ 3885 spin_lock(&block_group->lock); 3886 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3887 ret = 1; 3888 /* 3889 * May need to clear fs_info->{treelog,data_reloc}_bg. 3890 * Return the error after taking the locks. 3891 */ 3892 } 3893 spin_unlock(&block_group->lock); 3894 3895 /* Metadata block group is activated at write time. */ 3896 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3897 !btrfs_zone_activate(block_group)) { 3898 ret = 1; 3899 /* 3900 * May need to clear fs_info->{treelog,data_reloc}_bg. 3901 * Return the error after taking the locks. 3902 */ 3903 } 3904 3905 spin_lock(&space_info->lock); 3906 spin_lock(&block_group->lock); 3907 spin_lock(&fs_info->treelog_bg_lock); 3908 spin_lock(&fs_info->relocation_bg_lock); 3909 3910 if (ret) 3911 goto out; 3912 3913 ASSERT(!ffe_ctl->for_treelog || 3914 block_group->start == fs_info->treelog_bg || 3915 fs_info->treelog_bg == 0); 3916 ASSERT(!ffe_ctl->for_data_reloc || 3917 block_group->start == fs_info->data_reloc_bg || 3918 fs_info->data_reloc_bg == 0); 3919 3920 if (block_group->ro || 3921 (!ffe_ctl->for_data_reloc && 3922 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3923 ret = 1; 3924 goto out; 3925 } 3926 3927 /* 3928 * Do not allow currently using block group to be tree-log dedicated 3929 * block group. 3930 */ 3931 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3932 (block_group->used || block_group->reserved)) { 3933 ret = 1; 3934 goto out; 3935 } 3936 3937 /* 3938 * Do not allow currently used block group to be the data relocation 3939 * dedicated block group. 3940 */ 3941 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3942 (block_group->used || block_group->reserved)) { 3943 ret = 1; 3944 goto out; 3945 } 3946 3947 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3948 avail = block_group->zone_capacity - block_group->alloc_offset; 3949 if (avail < num_bytes) { 3950 if (ffe_ctl->max_extent_size < avail) { 3951 /* 3952 * With sequential allocator, free space is always 3953 * contiguous 3954 */ 3955 ffe_ctl->max_extent_size = avail; 3956 ffe_ctl->total_free_space = avail; 3957 } 3958 ret = 1; 3959 goto out; 3960 } 3961 3962 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3963 fs_info->treelog_bg = block_group->start; 3964 3965 if (ffe_ctl->for_data_reloc) { 3966 if (!fs_info->data_reloc_bg) 3967 fs_info->data_reloc_bg = block_group->start; 3968 /* 3969 * Do not allow allocations from this block group, unless it is 3970 * for data relocation. Compared to increasing the ->ro, setting 3971 * the ->zoned_data_reloc_ongoing flag still allows nocow 3972 * writers to come in. See btrfs_inc_nocow_writers(). 3973 * 3974 * We need to disable an allocation to avoid an allocation of 3975 * regular (non-relocation data) extent. With mix of relocation 3976 * extents and regular extents, we can dispatch WRITE commands 3977 * (for relocation extents) and ZONE APPEND commands (for 3978 * regular extents) at the same time to the same zone, which 3979 * easily break the write pointer. 3980 * 3981 * Also, this flag avoids this block group to be zone finished. 3982 */ 3983 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3984 } 3985 3986 ffe_ctl->found_offset = start + block_group->alloc_offset; 3987 block_group->alloc_offset += num_bytes; 3988 spin_lock(&ctl->tree_lock); 3989 ctl->free_space -= num_bytes; 3990 spin_unlock(&ctl->tree_lock); 3991 3992 /* 3993 * We do not check if found_offset is aligned to stripesize. The 3994 * address is anyway rewritten when using zone append writing. 3995 */ 3996 3997 ffe_ctl->search_start = ffe_ctl->found_offset; 3998 3999 out: 4000 if (ret && ffe_ctl->for_treelog) 4001 fs_info->treelog_bg = 0; 4002 if (ret && ffe_ctl->for_data_reloc) 4003 fs_info->data_reloc_bg = 0; 4004 spin_unlock(&fs_info->relocation_bg_lock); 4005 spin_unlock(&fs_info->treelog_bg_lock); 4006 spin_unlock(&block_group->lock); 4007 spin_unlock(&space_info->lock); 4008 return ret; 4009 } 4010 4011 static int do_allocation(struct btrfs_block_group *block_group, 4012 struct find_free_extent_ctl *ffe_ctl, 4013 struct btrfs_block_group **bg_ret) 4014 { 4015 switch (ffe_ctl->policy) { 4016 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4017 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4018 case BTRFS_EXTENT_ALLOC_ZONED: 4019 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4020 default: 4021 BUG(); 4022 } 4023 } 4024 4025 static void release_block_group(struct btrfs_block_group *block_group, 4026 struct find_free_extent_ctl *ffe_ctl, 4027 int delalloc) 4028 { 4029 switch (ffe_ctl->policy) { 4030 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4031 ffe_ctl->retry_uncached = false; 4032 break; 4033 case BTRFS_EXTENT_ALLOC_ZONED: 4034 /* Nothing to do */ 4035 break; 4036 default: 4037 BUG(); 4038 } 4039 4040 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4041 ffe_ctl->index); 4042 btrfs_release_block_group(block_group, delalloc); 4043 } 4044 4045 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4046 struct btrfs_key *ins) 4047 { 4048 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4049 4050 if (!ffe_ctl->use_cluster && last_ptr) { 4051 spin_lock(&last_ptr->lock); 4052 last_ptr->window_start = ins->objectid; 4053 spin_unlock(&last_ptr->lock); 4054 } 4055 } 4056 4057 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4058 struct btrfs_key *ins) 4059 { 4060 switch (ffe_ctl->policy) { 4061 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4062 found_extent_clustered(ffe_ctl, ins); 4063 break; 4064 case BTRFS_EXTENT_ALLOC_ZONED: 4065 /* Nothing to do */ 4066 break; 4067 default: 4068 BUG(); 4069 } 4070 } 4071 4072 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4073 struct find_free_extent_ctl *ffe_ctl) 4074 { 4075 /* Block group's activeness is not a requirement for METADATA block groups. */ 4076 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4077 return 0; 4078 4079 /* If we can activate new zone, just allocate a chunk and use it */ 4080 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4081 return 0; 4082 4083 /* 4084 * We already reached the max active zones. Try to finish one block 4085 * group to make a room for a new block group. This is only possible 4086 * for a data block group because btrfs_zone_finish() may need to wait 4087 * for a running transaction which can cause a deadlock for metadata 4088 * allocation. 4089 */ 4090 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4091 int ret = btrfs_zone_finish_one_bg(fs_info); 4092 4093 if (ret == 1) 4094 return 0; 4095 else if (ret < 0) 4096 return ret; 4097 } 4098 4099 /* 4100 * If we have enough free space left in an already active block group 4101 * and we can't activate any other zone now, do not allow allocating a 4102 * new chunk and let find_free_extent() retry with a smaller size. 4103 */ 4104 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4105 return -ENOSPC; 4106 4107 /* 4108 * Even min_alloc_size is not left in any block groups. Since we cannot 4109 * activate a new block group, allocating it may not help. Let's tell a 4110 * caller to try again and hope it progress something by writing some 4111 * parts of the region. That is only possible for data block groups, 4112 * where a part of the region can be written. 4113 */ 4114 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4115 return -EAGAIN; 4116 4117 /* 4118 * We cannot activate a new block group and no enough space left in any 4119 * block groups. So, allocating a new block group may not help. But, 4120 * there is nothing to do anyway, so let's go with it. 4121 */ 4122 return 0; 4123 } 4124 4125 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4126 struct find_free_extent_ctl *ffe_ctl) 4127 { 4128 switch (ffe_ctl->policy) { 4129 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4130 return 0; 4131 case BTRFS_EXTENT_ALLOC_ZONED: 4132 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4133 default: 4134 BUG(); 4135 } 4136 } 4137 4138 /* 4139 * Return >0 means caller needs to re-search for free extent 4140 * Return 0 means we have the needed free extent. 4141 * Return <0 means we failed to locate any free extent. 4142 */ 4143 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4144 struct btrfs_key *ins, 4145 struct find_free_extent_ctl *ffe_ctl, 4146 bool full_search) 4147 { 4148 struct btrfs_root *root = fs_info->chunk_root; 4149 int ret; 4150 4151 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4152 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4153 ffe_ctl->orig_have_caching_bg = true; 4154 4155 if (ins->objectid) { 4156 found_extent(ffe_ctl, ins); 4157 return 0; 4158 } 4159 4160 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4161 return 1; 4162 4163 ffe_ctl->index++; 4164 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4165 return 1; 4166 4167 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4168 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4169 ffe_ctl->index = 0; 4170 /* 4171 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4172 * any uncached bgs and we've already done a full search 4173 * through. 4174 */ 4175 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4176 (!ffe_ctl->orig_have_caching_bg && full_search)) 4177 ffe_ctl->loop++; 4178 ffe_ctl->loop++; 4179 4180 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4181 struct btrfs_trans_handle *trans; 4182 int exist = 0; 4183 4184 /* Check if allocation policy allows to create a new chunk */ 4185 ret = can_allocate_chunk(fs_info, ffe_ctl); 4186 if (ret) 4187 return ret; 4188 4189 trans = current->journal_info; 4190 if (trans) 4191 exist = 1; 4192 else 4193 trans = btrfs_join_transaction(root); 4194 4195 if (IS_ERR(trans)) { 4196 ret = PTR_ERR(trans); 4197 return ret; 4198 } 4199 4200 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4201 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4202 4203 /* Do not bail out on ENOSPC since we can do more. */ 4204 if (ret == -ENOSPC) { 4205 ret = 0; 4206 ffe_ctl->loop++; 4207 } 4208 else if (ret < 0) 4209 btrfs_abort_transaction(trans, ret); 4210 else 4211 ret = 0; 4212 if (!exist) 4213 btrfs_end_transaction(trans); 4214 if (ret) 4215 return ret; 4216 } 4217 4218 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4219 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4220 return -ENOSPC; 4221 4222 /* 4223 * Don't loop again if we already have no empty_size and 4224 * no empty_cluster. 4225 */ 4226 if (ffe_ctl->empty_size == 0 && 4227 ffe_ctl->empty_cluster == 0) 4228 return -ENOSPC; 4229 ffe_ctl->empty_size = 0; 4230 ffe_ctl->empty_cluster = 0; 4231 } 4232 return 1; 4233 } 4234 return -ENOSPC; 4235 } 4236 4237 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4238 struct btrfs_block_group *bg) 4239 { 4240 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4241 return true; 4242 if (!btrfs_block_group_should_use_size_class(bg)) 4243 return true; 4244 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4245 return true; 4246 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4247 bg->size_class == BTRFS_BG_SZ_NONE) 4248 return true; 4249 return ffe_ctl->size_class == bg->size_class; 4250 } 4251 4252 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4253 struct find_free_extent_ctl *ffe_ctl, 4254 struct btrfs_space_info *space_info, 4255 struct btrfs_key *ins) 4256 { 4257 /* 4258 * If our free space is heavily fragmented we may not be able to make 4259 * big contiguous allocations, so instead of doing the expensive search 4260 * for free space, simply return ENOSPC with our max_extent_size so we 4261 * can go ahead and search for a more manageable chunk. 4262 * 4263 * If our max_extent_size is large enough for our allocation simply 4264 * disable clustering since we will likely not be able to find enough 4265 * space to create a cluster and induce latency trying. 4266 */ 4267 if (space_info->max_extent_size) { 4268 spin_lock(&space_info->lock); 4269 if (space_info->max_extent_size && 4270 ffe_ctl->num_bytes > space_info->max_extent_size) { 4271 ins->offset = space_info->max_extent_size; 4272 spin_unlock(&space_info->lock); 4273 return -ENOSPC; 4274 } else if (space_info->max_extent_size) { 4275 ffe_ctl->use_cluster = false; 4276 } 4277 spin_unlock(&space_info->lock); 4278 } 4279 4280 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4281 &ffe_ctl->empty_cluster); 4282 if (ffe_ctl->last_ptr) { 4283 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4284 4285 spin_lock(&last_ptr->lock); 4286 if (last_ptr->block_group) 4287 ffe_ctl->hint_byte = last_ptr->window_start; 4288 if (last_ptr->fragmented) { 4289 /* 4290 * We still set window_start so we can keep track of the 4291 * last place we found an allocation to try and save 4292 * some time. 4293 */ 4294 ffe_ctl->hint_byte = last_ptr->window_start; 4295 ffe_ctl->use_cluster = false; 4296 } 4297 spin_unlock(&last_ptr->lock); 4298 } 4299 4300 return 0; 4301 } 4302 4303 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4304 struct find_free_extent_ctl *ffe_ctl, 4305 struct btrfs_space_info *space_info, 4306 struct btrfs_key *ins) 4307 { 4308 switch (ffe_ctl->policy) { 4309 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4310 return prepare_allocation_clustered(fs_info, ffe_ctl, 4311 space_info, ins); 4312 case BTRFS_EXTENT_ALLOC_ZONED: 4313 if (ffe_ctl->for_treelog) { 4314 spin_lock(&fs_info->treelog_bg_lock); 4315 if (fs_info->treelog_bg) 4316 ffe_ctl->hint_byte = fs_info->treelog_bg; 4317 spin_unlock(&fs_info->treelog_bg_lock); 4318 } 4319 if (ffe_ctl->for_data_reloc) { 4320 spin_lock(&fs_info->relocation_bg_lock); 4321 if (fs_info->data_reloc_bg) 4322 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4323 spin_unlock(&fs_info->relocation_bg_lock); 4324 } 4325 return 0; 4326 default: 4327 BUG(); 4328 } 4329 } 4330 4331 /* 4332 * walks the btree of allocated extents and find a hole of a given size. 4333 * The key ins is changed to record the hole: 4334 * ins->objectid == start position 4335 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4336 * ins->offset == the size of the hole. 4337 * Any available blocks before search_start are skipped. 4338 * 4339 * If there is no suitable free space, we will record the max size of 4340 * the free space extent currently. 4341 * 4342 * The overall logic and call chain: 4343 * 4344 * find_free_extent() 4345 * |- Iterate through all block groups 4346 * | |- Get a valid block group 4347 * | |- Try to do clustered allocation in that block group 4348 * | |- Try to do unclustered allocation in that block group 4349 * | |- Check if the result is valid 4350 * | | |- If valid, then exit 4351 * | |- Jump to next block group 4352 * | 4353 * |- Push harder to find free extents 4354 * |- If not found, re-iterate all block groups 4355 */ 4356 static noinline int find_free_extent(struct btrfs_root *root, 4357 struct btrfs_key *ins, 4358 struct find_free_extent_ctl *ffe_ctl) 4359 { 4360 struct btrfs_fs_info *fs_info = root->fs_info; 4361 int ret = 0; 4362 int cache_block_group_error = 0; 4363 struct btrfs_block_group *block_group = NULL; 4364 struct btrfs_space_info *space_info; 4365 bool full_search = false; 4366 4367 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4368 4369 ffe_ctl->search_start = 0; 4370 /* For clustered allocation */ 4371 ffe_ctl->empty_cluster = 0; 4372 ffe_ctl->last_ptr = NULL; 4373 ffe_ctl->use_cluster = true; 4374 ffe_ctl->have_caching_bg = false; 4375 ffe_ctl->orig_have_caching_bg = false; 4376 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4377 ffe_ctl->loop = 0; 4378 ffe_ctl->retry_uncached = false; 4379 ffe_ctl->cached = 0; 4380 ffe_ctl->max_extent_size = 0; 4381 ffe_ctl->total_free_space = 0; 4382 ffe_ctl->found_offset = 0; 4383 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4384 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4385 4386 if (btrfs_is_zoned(fs_info)) 4387 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4388 4389 ins->type = BTRFS_EXTENT_ITEM_KEY; 4390 ins->objectid = 0; 4391 ins->offset = 0; 4392 4393 trace_find_free_extent(root, ffe_ctl); 4394 4395 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4396 if (!space_info) { 4397 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4398 return -ENOSPC; 4399 } 4400 4401 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4402 if (ret < 0) 4403 return ret; 4404 4405 ffe_ctl->search_start = max(ffe_ctl->search_start, 4406 first_logical_byte(fs_info)); 4407 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4408 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4409 block_group = btrfs_lookup_block_group(fs_info, 4410 ffe_ctl->search_start); 4411 /* 4412 * we don't want to use the block group if it doesn't match our 4413 * allocation bits, or if its not cached. 4414 * 4415 * However if we are re-searching with an ideal block group 4416 * picked out then we don't care that the block group is cached. 4417 */ 4418 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4419 block_group->cached != BTRFS_CACHE_NO) { 4420 down_read(&space_info->groups_sem); 4421 if (list_empty(&block_group->list) || 4422 block_group->ro) { 4423 /* 4424 * someone is removing this block group, 4425 * we can't jump into the have_block_group 4426 * target because our list pointers are not 4427 * valid 4428 */ 4429 btrfs_put_block_group(block_group); 4430 up_read(&space_info->groups_sem); 4431 } else { 4432 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4433 block_group->flags); 4434 btrfs_lock_block_group(block_group, 4435 ffe_ctl->delalloc); 4436 ffe_ctl->hinted = true; 4437 goto have_block_group; 4438 } 4439 } else if (block_group) { 4440 btrfs_put_block_group(block_group); 4441 } 4442 } 4443 search: 4444 trace_find_free_extent_search_loop(root, ffe_ctl); 4445 ffe_ctl->have_caching_bg = false; 4446 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4447 ffe_ctl->index == 0) 4448 full_search = true; 4449 down_read(&space_info->groups_sem); 4450 list_for_each_entry(block_group, 4451 &space_info->block_groups[ffe_ctl->index], list) { 4452 struct btrfs_block_group *bg_ret; 4453 4454 ffe_ctl->hinted = false; 4455 /* If the block group is read-only, we can skip it entirely. */ 4456 if (unlikely(block_group->ro)) { 4457 if (ffe_ctl->for_treelog) 4458 btrfs_clear_treelog_bg(block_group); 4459 if (ffe_ctl->for_data_reloc) 4460 btrfs_clear_data_reloc_bg(block_group); 4461 continue; 4462 } 4463 4464 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4465 ffe_ctl->search_start = block_group->start; 4466 4467 /* 4468 * this can happen if we end up cycling through all the 4469 * raid types, but we want to make sure we only allocate 4470 * for the proper type. 4471 */ 4472 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4473 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4474 BTRFS_BLOCK_GROUP_RAID1_MASK | 4475 BTRFS_BLOCK_GROUP_RAID56_MASK | 4476 BTRFS_BLOCK_GROUP_RAID10; 4477 4478 /* 4479 * if they asked for extra copies and this block group 4480 * doesn't provide them, bail. This does allow us to 4481 * fill raid0 from raid1. 4482 */ 4483 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4484 goto loop; 4485 4486 /* 4487 * This block group has different flags than we want. 4488 * It's possible that we have MIXED_GROUP flag but no 4489 * block group is mixed. Just skip such block group. 4490 */ 4491 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4492 continue; 4493 } 4494 4495 have_block_group: 4496 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4497 ffe_ctl->cached = btrfs_block_group_done(block_group); 4498 if (unlikely(!ffe_ctl->cached)) { 4499 ffe_ctl->have_caching_bg = true; 4500 ret = btrfs_cache_block_group(block_group, false); 4501 4502 /* 4503 * If we get ENOMEM here or something else we want to 4504 * try other block groups, because it may not be fatal. 4505 * However if we can't find anything else we need to 4506 * save our return here so that we return the actual 4507 * error that caused problems, not ENOSPC. 4508 */ 4509 if (ret < 0) { 4510 if (!cache_block_group_error) 4511 cache_block_group_error = ret; 4512 ret = 0; 4513 goto loop; 4514 } 4515 ret = 0; 4516 } 4517 4518 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4519 if (!cache_block_group_error) 4520 cache_block_group_error = -EIO; 4521 goto loop; 4522 } 4523 4524 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4525 goto loop; 4526 4527 bg_ret = NULL; 4528 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4529 if (ret > 0) 4530 goto loop; 4531 4532 if (bg_ret && bg_ret != block_group) { 4533 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4534 block_group = bg_ret; 4535 } 4536 4537 /* Checks */ 4538 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4539 fs_info->stripesize); 4540 4541 /* move on to the next group */ 4542 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4543 block_group->start + block_group->length) { 4544 btrfs_add_free_space_unused(block_group, 4545 ffe_ctl->found_offset, 4546 ffe_ctl->num_bytes); 4547 goto loop; 4548 } 4549 4550 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4551 btrfs_add_free_space_unused(block_group, 4552 ffe_ctl->found_offset, 4553 ffe_ctl->search_start - ffe_ctl->found_offset); 4554 4555 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4556 ffe_ctl->num_bytes, 4557 ffe_ctl->delalloc, 4558 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4559 if (ret == -EAGAIN) { 4560 btrfs_add_free_space_unused(block_group, 4561 ffe_ctl->found_offset, 4562 ffe_ctl->num_bytes); 4563 goto loop; 4564 } 4565 btrfs_inc_block_group_reservations(block_group); 4566 4567 /* we are all good, lets return */ 4568 ins->objectid = ffe_ctl->search_start; 4569 ins->offset = ffe_ctl->num_bytes; 4570 4571 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4572 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4573 break; 4574 loop: 4575 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4576 !ffe_ctl->retry_uncached) { 4577 ffe_ctl->retry_uncached = true; 4578 btrfs_wait_block_group_cache_progress(block_group, 4579 ffe_ctl->num_bytes + 4580 ffe_ctl->empty_cluster + 4581 ffe_ctl->empty_size); 4582 goto have_block_group; 4583 } 4584 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4585 cond_resched(); 4586 } 4587 up_read(&space_info->groups_sem); 4588 4589 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4590 if (ret > 0) 4591 goto search; 4592 4593 if (ret == -ENOSPC && !cache_block_group_error) { 4594 /* 4595 * Use ffe_ctl->total_free_space as fallback if we can't find 4596 * any contiguous hole. 4597 */ 4598 if (!ffe_ctl->max_extent_size) 4599 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4600 spin_lock(&space_info->lock); 4601 space_info->max_extent_size = ffe_ctl->max_extent_size; 4602 spin_unlock(&space_info->lock); 4603 ins->offset = ffe_ctl->max_extent_size; 4604 } else if (ret == -ENOSPC) { 4605 ret = cache_block_group_error; 4606 } 4607 return ret; 4608 } 4609 4610 /* 4611 * Entry point to the extent allocator. Tries to find a hole that is at least 4612 * as big as @num_bytes. 4613 * 4614 * @root - The root that will contain this extent 4615 * 4616 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4617 * is used for accounting purposes. This value differs 4618 * from @num_bytes only in the case of compressed extents. 4619 * 4620 * @num_bytes - Number of bytes to allocate on-disk. 4621 * 4622 * @min_alloc_size - Indicates the minimum amount of space that the 4623 * allocator should try to satisfy. In some cases 4624 * @num_bytes may be larger than what is required and if 4625 * the filesystem is fragmented then allocation fails. 4626 * However, the presence of @min_alloc_size gives a 4627 * chance to try and satisfy the smaller allocation. 4628 * 4629 * @empty_size - A hint that you plan on doing more COW. This is the 4630 * size in bytes the allocator should try to find free 4631 * next to the block it returns. This is just a hint and 4632 * may be ignored by the allocator. 4633 * 4634 * @hint_byte - Hint to the allocator to start searching above the byte 4635 * address passed. It might be ignored. 4636 * 4637 * @ins - This key is modified to record the found hole. It will 4638 * have the following values: 4639 * ins->objectid == start position 4640 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4641 * ins->offset == the size of the hole. 4642 * 4643 * @is_data - Boolean flag indicating whether an extent is 4644 * allocated for data (true) or metadata (false) 4645 * 4646 * @delalloc - Boolean flag indicating whether this allocation is for 4647 * delalloc or not. If 'true' data_rwsem of block groups 4648 * is going to be acquired. 4649 * 4650 * 4651 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4652 * case -ENOSPC is returned then @ins->offset will contain the size of the 4653 * largest available hole the allocator managed to find. 4654 */ 4655 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4656 u64 num_bytes, u64 min_alloc_size, 4657 u64 empty_size, u64 hint_byte, 4658 struct btrfs_key *ins, int is_data, int delalloc) 4659 { 4660 struct btrfs_fs_info *fs_info = root->fs_info; 4661 struct find_free_extent_ctl ffe_ctl = {}; 4662 bool final_tried = num_bytes == min_alloc_size; 4663 u64 flags; 4664 int ret; 4665 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4666 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4667 4668 flags = get_alloc_profile_by_root(root, is_data); 4669 again: 4670 WARN_ON(num_bytes < fs_info->sectorsize); 4671 4672 ffe_ctl.ram_bytes = ram_bytes; 4673 ffe_ctl.num_bytes = num_bytes; 4674 ffe_ctl.min_alloc_size = min_alloc_size; 4675 ffe_ctl.empty_size = empty_size; 4676 ffe_ctl.flags = flags; 4677 ffe_ctl.delalloc = delalloc; 4678 ffe_ctl.hint_byte = hint_byte; 4679 ffe_ctl.for_treelog = for_treelog; 4680 ffe_ctl.for_data_reloc = for_data_reloc; 4681 4682 ret = find_free_extent(root, ins, &ffe_ctl); 4683 if (!ret && !is_data) { 4684 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4685 } else if (ret == -ENOSPC) { 4686 if (!final_tried && ins->offset) { 4687 num_bytes = min(num_bytes >> 1, ins->offset); 4688 num_bytes = round_down(num_bytes, 4689 fs_info->sectorsize); 4690 num_bytes = max(num_bytes, min_alloc_size); 4691 ram_bytes = num_bytes; 4692 if (num_bytes == min_alloc_size) 4693 final_tried = true; 4694 goto again; 4695 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4696 struct btrfs_space_info *sinfo; 4697 4698 sinfo = btrfs_find_space_info(fs_info, flags); 4699 btrfs_err(fs_info, 4700 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4701 flags, num_bytes, for_treelog, for_data_reloc); 4702 if (sinfo) 4703 btrfs_dump_space_info(fs_info, sinfo, 4704 num_bytes, 1); 4705 } 4706 } 4707 4708 return ret; 4709 } 4710 4711 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4712 u64 start, u64 len, int delalloc) 4713 { 4714 struct btrfs_block_group *cache; 4715 4716 cache = btrfs_lookup_block_group(fs_info, start); 4717 if (!cache) { 4718 btrfs_err(fs_info, "Unable to find block group for %llu", 4719 start); 4720 return -ENOSPC; 4721 } 4722 4723 btrfs_add_free_space(cache, start, len); 4724 btrfs_free_reserved_bytes(cache, len, delalloc); 4725 trace_btrfs_reserved_extent_free(fs_info, start, len); 4726 4727 btrfs_put_block_group(cache); 4728 return 0; 4729 } 4730 4731 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4732 const struct extent_buffer *eb) 4733 { 4734 struct btrfs_block_group *cache; 4735 int ret = 0; 4736 4737 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4738 if (!cache) { 4739 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4740 eb->start); 4741 return -ENOSPC; 4742 } 4743 4744 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4745 btrfs_put_block_group(cache); 4746 return ret; 4747 } 4748 4749 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4750 u64 num_bytes) 4751 { 4752 struct btrfs_fs_info *fs_info = trans->fs_info; 4753 int ret; 4754 4755 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4756 if (ret) 4757 return ret; 4758 4759 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4760 if (ret) { 4761 ASSERT(!ret); 4762 btrfs_err(fs_info, "update block group failed for %llu %llu", 4763 bytenr, num_bytes); 4764 return ret; 4765 } 4766 4767 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4768 return 0; 4769 } 4770 4771 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4772 u64 parent, u64 root_objectid, 4773 u64 flags, u64 owner, u64 offset, 4774 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4775 { 4776 struct btrfs_fs_info *fs_info = trans->fs_info; 4777 struct btrfs_root *extent_root; 4778 int ret; 4779 struct btrfs_extent_item *extent_item; 4780 struct btrfs_extent_owner_ref *oref; 4781 struct btrfs_extent_inline_ref *iref; 4782 struct btrfs_path *path; 4783 struct extent_buffer *leaf; 4784 int type; 4785 u32 size; 4786 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4787 4788 if (parent > 0) 4789 type = BTRFS_SHARED_DATA_REF_KEY; 4790 else 4791 type = BTRFS_EXTENT_DATA_REF_KEY; 4792 4793 size = sizeof(*extent_item); 4794 if (simple_quota) 4795 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4796 size += btrfs_extent_inline_ref_size(type); 4797 4798 path = btrfs_alloc_path(); 4799 if (!path) 4800 return -ENOMEM; 4801 4802 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4803 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4804 if (ret) { 4805 btrfs_free_path(path); 4806 return ret; 4807 } 4808 4809 leaf = path->nodes[0]; 4810 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4811 struct btrfs_extent_item); 4812 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4813 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4814 btrfs_set_extent_flags(leaf, extent_item, 4815 flags | BTRFS_EXTENT_FLAG_DATA); 4816 4817 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4818 if (simple_quota) { 4819 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4820 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4821 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4822 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4823 } 4824 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4825 4826 if (parent > 0) { 4827 struct btrfs_shared_data_ref *ref; 4828 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4829 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4830 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4831 } else { 4832 struct btrfs_extent_data_ref *ref; 4833 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4834 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4835 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4836 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4837 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4838 } 4839 4840 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4841 btrfs_free_path(path); 4842 4843 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4844 } 4845 4846 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4847 struct btrfs_delayed_ref_node *node, 4848 struct btrfs_delayed_extent_op *extent_op) 4849 { 4850 struct btrfs_fs_info *fs_info = trans->fs_info; 4851 struct btrfs_root *extent_root; 4852 int ret; 4853 struct btrfs_extent_item *extent_item; 4854 struct btrfs_key extent_key; 4855 struct btrfs_tree_block_info *block_info; 4856 struct btrfs_extent_inline_ref *iref; 4857 struct btrfs_path *path; 4858 struct extent_buffer *leaf; 4859 struct btrfs_delayed_tree_ref *ref; 4860 u32 size = sizeof(*extent_item) + sizeof(*iref); 4861 u64 flags = extent_op->flags_to_set; 4862 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4863 4864 ref = btrfs_delayed_node_to_tree_ref(node); 4865 4866 extent_key.objectid = node->bytenr; 4867 if (skinny_metadata) { 4868 extent_key.offset = ref->level; 4869 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4870 } else { 4871 extent_key.offset = node->num_bytes; 4872 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4873 size += sizeof(*block_info); 4874 } 4875 4876 path = btrfs_alloc_path(); 4877 if (!path) 4878 return -ENOMEM; 4879 4880 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4881 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4882 size); 4883 if (ret) { 4884 btrfs_free_path(path); 4885 return ret; 4886 } 4887 4888 leaf = path->nodes[0]; 4889 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4890 struct btrfs_extent_item); 4891 btrfs_set_extent_refs(leaf, extent_item, 1); 4892 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4893 btrfs_set_extent_flags(leaf, extent_item, 4894 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4895 4896 if (skinny_metadata) { 4897 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4898 } else { 4899 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4900 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4901 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4902 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4903 } 4904 4905 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4906 btrfs_set_extent_inline_ref_type(leaf, iref, 4907 BTRFS_SHARED_BLOCK_REF_KEY); 4908 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4909 } else { 4910 btrfs_set_extent_inline_ref_type(leaf, iref, 4911 BTRFS_TREE_BLOCK_REF_KEY); 4912 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4913 } 4914 4915 btrfs_mark_buffer_dirty(trans, leaf); 4916 btrfs_free_path(path); 4917 4918 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4919 } 4920 4921 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4922 struct btrfs_root *root, u64 owner, 4923 u64 offset, u64 ram_bytes, 4924 struct btrfs_key *ins) 4925 { 4926 struct btrfs_ref generic_ref = { 0 }; 4927 u64 root_objectid = root->root_key.objectid; 4928 u64 owning_root = root_objectid; 4929 4930 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 4931 4932 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4933 owning_root = root->relocation_src_root; 4934 4935 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4936 ins->objectid, ins->offset, 0, owning_root); 4937 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4938 offset, 0, false); 4939 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4940 4941 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4942 } 4943 4944 /* 4945 * this is used by the tree logging recovery code. It records that 4946 * an extent has been allocated and makes sure to clear the free 4947 * space cache bits as well 4948 */ 4949 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4950 u64 root_objectid, u64 owner, u64 offset, 4951 struct btrfs_key *ins) 4952 { 4953 struct btrfs_fs_info *fs_info = trans->fs_info; 4954 int ret; 4955 struct btrfs_block_group *block_group; 4956 struct btrfs_space_info *space_info; 4957 struct btrfs_squota_delta delta = { 4958 .root = root_objectid, 4959 .num_bytes = ins->offset, 4960 .generation = trans->transid, 4961 .is_data = true, 4962 .is_inc = true, 4963 }; 4964 4965 /* 4966 * Mixed block groups will exclude before processing the log so we only 4967 * need to do the exclude dance if this fs isn't mixed. 4968 */ 4969 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4970 ret = __exclude_logged_extent(fs_info, ins->objectid, 4971 ins->offset); 4972 if (ret) 4973 return ret; 4974 } 4975 4976 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4977 if (!block_group) 4978 return -EINVAL; 4979 4980 space_info = block_group->space_info; 4981 spin_lock(&space_info->lock); 4982 spin_lock(&block_group->lock); 4983 space_info->bytes_reserved += ins->offset; 4984 block_group->reserved += ins->offset; 4985 spin_unlock(&block_group->lock); 4986 spin_unlock(&space_info->lock); 4987 4988 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4989 offset, ins, 1, root_objectid); 4990 if (ret) 4991 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4992 ret = btrfs_record_squota_delta(fs_info, &delta); 4993 btrfs_put_block_group(block_group); 4994 return ret; 4995 } 4996 4997 #ifdef CONFIG_BTRFS_DEBUG 4998 /* 4999 * Extra safety check in case the extent tree is corrupted and extent allocator 5000 * chooses to use a tree block which is already used and locked. 5001 */ 5002 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5003 { 5004 if (eb->lock_owner == current->pid) { 5005 btrfs_err_rl(eb->fs_info, 5006 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5007 eb->start, btrfs_header_owner(eb), current->pid); 5008 return true; 5009 } 5010 return false; 5011 } 5012 #else 5013 static bool check_eb_lock_owner(struct extent_buffer *eb) 5014 { 5015 return false; 5016 } 5017 #endif 5018 5019 static struct extent_buffer * 5020 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5021 u64 bytenr, int level, u64 owner, 5022 enum btrfs_lock_nesting nest) 5023 { 5024 struct btrfs_fs_info *fs_info = root->fs_info; 5025 struct extent_buffer *buf; 5026 u64 lockdep_owner = owner; 5027 5028 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5029 if (IS_ERR(buf)) 5030 return buf; 5031 5032 if (check_eb_lock_owner(buf)) { 5033 free_extent_buffer(buf); 5034 return ERR_PTR(-EUCLEAN); 5035 } 5036 5037 /* 5038 * The reloc trees are just snapshots, so we need them to appear to be 5039 * just like any other fs tree WRT lockdep. 5040 * 5041 * The exception however is in replace_path() in relocation, where we 5042 * hold the lock on the original fs root and then search for the reloc 5043 * root. At that point we need to make sure any reloc root buffers are 5044 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5045 * lockdep happy. 5046 */ 5047 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5048 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5049 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5050 5051 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5052 btrfs_set_header_generation(buf, trans->transid); 5053 5054 /* 5055 * This needs to stay, because we could allocate a freed block from an 5056 * old tree into a new tree, so we need to make sure this new block is 5057 * set to the appropriate level and owner. 5058 */ 5059 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5060 5061 __btrfs_tree_lock(buf, nest); 5062 btrfs_clear_buffer_dirty(trans, buf); 5063 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5064 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 5065 5066 set_extent_buffer_uptodate(buf); 5067 5068 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5069 btrfs_set_header_level(buf, level); 5070 btrfs_set_header_bytenr(buf, buf->start); 5071 btrfs_set_header_generation(buf, trans->transid); 5072 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5073 btrfs_set_header_owner(buf, owner); 5074 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5075 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5076 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5077 buf->log_index = root->log_transid % 2; 5078 /* 5079 * we allow two log transactions at a time, use different 5080 * EXTENT bit to differentiate dirty pages. 5081 */ 5082 if (buf->log_index == 0) 5083 set_extent_bit(&root->dirty_log_pages, buf->start, 5084 buf->start + buf->len - 1, 5085 EXTENT_DIRTY, NULL); 5086 else 5087 set_extent_bit(&root->dirty_log_pages, buf->start, 5088 buf->start + buf->len - 1, 5089 EXTENT_NEW, NULL); 5090 } else { 5091 buf->log_index = -1; 5092 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5093 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5094 } 5095 /* this returns a buffer locked for blocking */ 5096 return buf; 5097 } 5098 5099 /* 5100 * finds a free extent and does all the dirty work required for allocation 5101 * returns the tree buffer or an ERR_PTR on error. 5102 */ 5103 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5104 struct btrfs_root *root, 5105 u64 parent, u64 root_objectid, 5106 const struct btrfs_disk_key *key, 5107 int level, u64 hint, 5108 u64 empty_size, 5109 u64 reloc_src_root, 5110 enum btrfs_lock_nesting nest) 5111 { 5112 struct btrfs_fs_info *fs_info = root->fs_info; 5113 struct btrfs_key ins; 5114 struct btrfs_block_rsv *block_rsv; 5115 struct extent_buffer *buf; 5116 struct btrfs_delayed_extent_op *extent_op; 5117 struct btrfs_ref generic_ref = { 0 }; 5118 u64 flags = 0; 5119 int ret; 5120 u32 blocksize = fs_info->nodesize; 5121 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5122 u64 owning_root; 5123 5124 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5125 if (btrfs_is_testing(fs_info)) { 5126 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5127 level, root_objectid, nest); 5128 if (!IS_ERR(buf)) 5129 root->alloc_bytenr += blocksize; 5130 return buf; 5131 } 5132 #endif 5133 5134 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5135 if (IS_ERR(block_rsv)) 5136 return ERR_CAST(block_rsv); 5137 5138 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5139 empty_size, hint, &ins, 0, 0); 5140 if (ret) 5141 goto out_unuse; 5142 5143 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5144 root_objectid, nest); 5145 if (IS_ERR(buf)) { 5146 ret = PTR_ERR(buf); 5147 goto out_free_reserved; 5148 } 5149 owning_root = btrfs_header_owner(buf); 5150 5151 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5152 if (parent == 0) 5153 parent = ins.objectid; 5154 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5155 owning_root = reloc_src_root; 5156 } else 5157 BUG_ON(parent > 0); 5158 5159 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5160 extent_op = btrfs_alloc_delayed_extent_op(); 5161 if (!extent_op) { 5162 ret = -ENOMEM; 5163 goto out_free_buf; 5164 } 5165 if (key) 5166 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5167 else 5168 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5169 extent_op->flags_to_set = flags; 5170 extent_op->update_key = skinny_metadata ? false : true; 5171 extent_op->update_flags = true; 5172 extent_op->level = level; 5173 5174 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5175 ins.objectid, ins.offset, parent, owning_root); 5176 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5177 root->root_key.objectid, false); 5178 btrfs_ref_tree_mod(fs_info, &generic_ref); 5179 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5180 if (ret) 5181 goto out_free_delayed; 5182 } 5183 return buf; 5184 5185 out_free_delayed: 5186 btrfs_free_delayed_extent_op(extent_op); 5187 out_free_buf: 5188 btrfs_tree_unlock(buf); 5189 free_extent_buffer(buf); 5190 out_free_reserved: 5191 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5192 out_unuse: 5193 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5194 return ERR_PTR(ret); 5195 } 5196 5197 struct walk_control { 5198 u64 refs[BTRFS_MAX_LEVEL]; 5199 u64 flags[BTRFS_MAX_LEVEL]; 5200 struct btrfs_key update_progress; 5201 struct btrfs_key drop_progress; 5202 int drop_level; 5203 int stage; 5204 int level; 5205 int shared_level; 5206 int update_ref; 5207 int keep_locks; 5208 int reada_slot; 5209 int reada_count; 5210 int restarted; 5211 }; 5212 5213 #define DROP_REFERENCE 1 5214 #define UPDATE_BACKREF 2 5215 5216 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5217 struct btrfs_root *root, 5218 struct walk_control *wc, 5219 struct btrfs_path *path) 5220 { 5221 struct btrfs_fs_info *fs_info = root->fs_info; 5222 u64 bytenr; 5223 u64 generation; 5224 u64 refs; 5225 u64 flags; 5226 u32 nritems; 5227 struct btrfs_key key; 5228 struct extent_buffer *eb; 5229 int ret; 5230 int slot; 5231 int nread = 0; 5232 5233 if (path->slots[wc->level] < wc->reada_slot) { 5234 wc->reada_count = wc->reada_count * 2 / 3; 5235 wc->reada_count = max(wc->reada_count, 2); 5236 } else { 5237 wc->reada_count = wc->reada_count * 3 / 2; 5238 wc->reada_count = min_t(int, wc->reada_count, 5239 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5240 } 5241 5242 eb = path->nodes[wc->level]; 5243 nritems = btrfs_header_nritems(eb); 5244 5245 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5246 if (nread >= wc->reada_count) 5247 break; 5248 5249 cond_resched(); 5250 bytenr = btrfs_node_blockptr(eb, slot); 5251 generation = btrfs_node_ptr_generation(eb, slot); 5252 5253 if (slot == path->slots[wc->level]) 5254 goto reada; 5255 5256 if (wc->stage == UPDATE_BACKREF && 5257 generation <= root->root_key.offset) 5258 continue; 5259 5260 /* We don't lock the tree block, it's OK to be racy here */ 5261 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5262 wc->level - 1, 1, &refs, 5263 &flags, NULL); 5264 /* We don't care about errors in readahead. */ 5265 if (ret < 0) 5266 continue; 5267 BUG_ON(refs == 0); 5268 5269 if (wc->stage == DROP_REFERENCE) { 5270 if (refs == 1) 5271 goto reada; 5272 5273 if (wc->level == 1 && 5274 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5275 continue; 5276 if (!wc->update_ref || 5277 generation <= root->root_key.offset) 5278 continue; 5279 btrfs_node_key_to_cpu(eb, &key, slot); 5280 ret = btrfs_comp_cpu_keys(&key, 5281 &wc->update_progress); 5282 if (ret < 0) 5283 continue; 5284 } else { 5285 if (wc->level == 1 && 5286 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5287 continue; 5288 } 5289 reada: 5290 btrfs_readahead_node_child(eb, slot); 5291 nread++; 5292 } 5293 wc->reada_slot = slot; 5294 } 5295 5296 /* 5297 * helper to process tree block while walking down the tree. 5298 * 5299 * when wc->stage == UPDATE_BACKREF, this function updates 5300 * back refs for pointers in the block. 5301 * 5302 * NOTE: return value 1 means we should stop walking down. 5303 */ 5304 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5305 struct btrfs_root *root, 5306 struct btrfs_path *path, 5307 struct walk_control *wc, int lookup_info) 5308 { 5309 struct btrfs_fs_info *fs_info = root->fs_info; 5310 int level = wc->level; 5311 struct extent_buffer *eb = path->nodes[level]; 5312 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5313 int ret; 5314 5315 if (wc->stage == UPDATE_BACKREF && 5316 btrfs_header_owner(eb) != root->root_key.objectid) 5317 return 1; 5318 5319 /* 5320 * when reference count of tree block is 1, it won't increase 5321 * again. once full backref flag is set, we never clear it. 5322 */ 5323 if (lookup_info && 5324 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5325 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5326 BUG_ON(!path->locks[level]); 5327 ret = btrfs_lookup_extent_info(trans, fs_info, 5328 eb->start, level, 1, 5329 &wc->refs[level], 5330 &wc->flags[level], 5331 NULL); 5332 BUG_ON(ret == -ENOMEM); 5333 if (ret) 5334 return ret; 5335 BUG_ON(wc->refs[level] == 0); 5336 } 5337 5338 if (wc->stage == DROP_REFERENCE) { 5339 if (wc->refs[level] > 1) 5340 return 1; 5341 5342 if (path->locks[level] && !wc->keep_locks) { 5343 btrfs_tree_unlock_rw(eb, path->locks[level]); 5344 path->locks[level] = 0; 5345 } 5346 return 0; 5347 } 5348 5349 /* wc->stage == UPDATE_BACKREF */ 5350 if (!(wc->flags[level] & flag)) { 5351 BUG_ON(!path->locks[level]); 5352 ret = btrfs_inc_ref(trans, root, eb, 1); 5353 BUG_ON(ret); /* -ENOMEM */ 5354 ret = btrfs_dec_ref(trans, root, eb, 0); 5355 BUG_ON(ret); /* -ENOMEM */ 5356 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5357 BUG_ON(ret); /* -ENOMEM */ 5358 wc->flags[level] |= flag; 5359 } 5360 5361 /* 5362 * the block is shared by multiple trees, so it's not good to 5363 * keep the tree lock 5364 */ 5365 if (path->locks[level] && level > 0) { 5366 btrfs_tree_unlock_rw(eb, path->locks[level]); 5367 path->locks[level] = 0; 5368 } 5369 return 0; 5370 } 5371 5372 /* 5373 * This is used to verify a ref exists for this root to deal with a bug where we 5374 * would have a drop_progress key that hadn't been updated properly. 5375 */ 5376 static int check_ref_exists(struct btrfs_trans_handle *trans, 5377 struct btrfs_root *root, u64 bytenr, u64 parent, 5378 int level) 5379 { 5380 struct btrfs_path *path; 5381 struct btrfs_extent_inline_ref *iref; 5382 int ret; 5383 5384 path = btrfs_alloc_path(); 5385 if (!path) 5386 return -ENOMEM; 5387 5388 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5389 root->fs_info->nodesize, parent, 5390 root->root_key.objectid, level, 0); 5391 btrfs_free_path(path); 5392 if (ret == -ENOENT) 5393 return 0; 5394 if (ret < 0) 5395 return ret; 5396 return 1; 5397 } 5398 5399 /* 5400 * helper to process tree block pointer. 5401 * 5402 * when wc->stage == DROP_REFERENCE, this function checks 5403 * reference count of the block pointed to. if the block 5404 * is shared and we need update back refs for the subtree 5405 * rooted at the block, this function changes wc->stage to 5406 * UPDATE_BACKREF. if the block is shared and there is no 5407 * need to update back, this function drops the reference 5408 * to the block. 5409 * 5410 * NOTE: return value 1 means we should stop walking down. 5411 */ 5412 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5413 struct btrfs_root *root, 5414 struct btrfs_path *path, 5415 struct walk_control *wc, int *lookup_info) 5416 { 5417 struct btrfs_fs_info *fs_info = root->fs_info; 5418 u64 bytenr; 5419 u64 generation; 5420 u64 parent; 5421 u64 owner_root = 0; 5422 struct btrfs_tree_parent_check check = { 0 }; 5423 struct btrfs_key key; 5424 struct btrfs_ref ref = { 0 }; 5425 struct extent_buffer *next; 5426 int level = wc->level; 5427 int reada = 0; 5428 int ret = 0; 5429 bool need_account = false; 5430 5431 generation = btrfs_node_ptr_generation(path->nodes[level], 5432 path->slots[level]); 5433 /* 5434 * if the lower level block was created before the snapshot 5435 * was created, we know there is no need to update back refs 5436 * for the subtree 5437 */ 5438 if (wc->stage == UPDATE_BACKREF && 5439 generation <= root->root_key.offset) { 5440 *lookup_info = 1; 5441 return 1; 5442 } 5443 5444 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5445 5446 check.level = level - 1; 5447 check.transid = generation; 5448 check.owner_root = root->root_key.objectid; 5449 check.has_first_key = true; 5450 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5451 path->slots[level]); 5452 5453 next = find_extent_buffer(fs_info, bytenr); 5454 if (!next) { 5455 next = btrfs_find_create_tree_block(fs_info, bytenr, 5456 root->root_key.objectid, level - 1); 5457 if (IS_ERR(next)) 5458 return PTR_ERR(next); 5459 reada = 1; 5460 } 5461 btrfs_tree_lock(next); 5462 5463 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5464 &wc->refs[level - 1], 5465 &wc->flags[level - 1], 5466 &owner_root); 5467 if (ret < 0) 5468 goto out_unlock; 5469 5470 if (unlikely(wc->refs[level - 1] == 0)) { 5471 btrfs_err(fs_info, "Missing references."); 5472 ret = -EIO; 5473 goto out_unlock; 5474 } 5475 *lookup_info = 0; 5476 5477 if (wc->stage == DROP_REFERENCE) { 5478 if (wc->refs[level - 1] > 1) { 5479 need_account = true; 5480 if (level == 1 && 5481 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5482 goto skip; 5483 5484 if (!wc->update_ref || 5485 generation <= root->root_key.offset) 5486 goto skip; 5487 5488 btrfs_node_key_to_cpu(path->nodes[level], &key, 5489 path->slots[level]); 5490 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5491 if (ret < 0) 5492 goto skip; 5493 5494 wc->stage = UPDATE_BACKREF; 5495 wc->shared_level = level - 1; 5496 } 5497 } else { 5498 if (level == 1 && 5499 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5500 goto skip; 5501 } 5502 5503 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5504 btrfs_tree_unlock(next); 5505 free_extent_buffer(next); 5506 next = NULL; 5507 *lookup_info = 1; 5508 } 5509 5510 if (!next) { 5511 if (reada && level == 1) 5512 reada_walk_down(trans, root, wc, path); 5513 next = read_tree_block(fs_info, bytenr, &check); 5514 if (IS_ERR(next)) { 5515 return PTR_ERR(next); 5516 } else if (!extent_buffer_uptodate(next)) { 5517 free_extent_buffer(next); 5518 return -EIO; 5519 } 5520 btrfs_tree_lock(next); 5521 } 5522 5523 level--; 5524 ASSERT(level == btrfs_header_level(next)); 5525 if (level != btrfs_header_level(next)) { 5526 btrfs_err(root->fs_info, "mismatched level"); 5527 ret = -EIO; 5528 goto out_unlock; 5529 } 5530 path->nodes[level] = next; 5531 path->slots[level] = 0; 5532 path->locks[level] = BTRFS_WRITE_LOCK; 5533 wc->level = level; 5534 if (wc->level == 1) 5535 wc->reada_slot = 0; 5536 return 0; 5537 skip: 5538 wc->refs[level - 1] = 0; 5539 wc->flags[level - 1] = 0; 5540 if (wc->stage == DROP_REFERENCE) { 5541 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5542 parent = path->nodes[level]->start; 5543 } else { 5544 ASSERT(root->root_key.objectid == 5545 btrfs_header_owner(path->nodes[level])); 5546 if (root->root_key.objectid != 5547 btrfs_header_owner(path->nodes[level])) { 5548 btrfs_err(root->fs_info, 5549 "mismatched block owner"); 5550 ret = -EIO; 5551 goto out_unlock; 5552 } 5553 parent = 0; 5554 } 5555 5556 /* 5557 * If we had a drop_progress we need to verify the refs are set 5558 * as expected. If we find our ref then we know that from here 5559 * on out everything should be correct, and we can clear the 5560 * ->restarted flag. 5561 */ 5562 if (wc->restarted) { 5563 ret = check_ref_exists(trans, root, bytenr, parent, 5564 level - 1); 5565 if (ret < 0) 5566 goto out_unlock; 5567 if (ret == 0) 5568 goto no_delete; 5569 ret = 0; 5570 wc->restarted = 0; 5571 } 5572 5573 /* 5574 * Reloc tree doesn't contribute to qgroup numbers, and we have 5575 * already accounted them at merge time (replace_path), 5576 * thus we could skip expensive subtree trace here. 5577 */ 5578 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5579 need_account) { 5580 ret = btrfs_qgroup_trace_subtree(trans, next, 5581 generation, level - 1); 5582 if (ret) { 5583 btrfs_err_rl(fs_info, 5584 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5585 ret); 5586 } 5587 } 5588 5589 /* 5590 * We need to update the next key in our walk control so we can 5591 * update the drop_progress key accordingly. We don't care if 5592 * find_next_key doesn't find a key because that means we're at 5593 * the end and are going to clean up now. 5594 */ 5595 wc->drop_level = level; 5596 find_next_key(path, level, &wc->drop_progress); 5597 5598 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5599 fs_info->nodesize, parent, owner_root); 5600 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5601 0, false); 5602 ret = btrfs_free_extent(trans, &ref); 5603 if (ret) 5604 goto out_unlock; 5605 } 5606 no_delete: 5607 *lookup_info = 1; 5608 ret = 1; 5609 5610 out_unlock: 5611 btrfs_tree_unlock(next); 5612 free_extent_buffer(next); 5613 5614 return ret; 5615 } 5616 5617 /* 5618 * helper to process tree block while walking up the tree. 5619 * 5620 * when wc->stage == DROP_REFERENCE, this function drops 5621 * reference count on the block. 5622 * 5623 * when wc->stage == UPDATE_BACKREF, this function changes 5624 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5625 * to UPDATE_BACKREF previously while processing the block. 5626 * 5627 * NOTE: return value 1 means we should stop walking up. 5628 */ 5629 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5630 struct btrfs_root *root, 5631 struct btrfs_path *path, 5632 struct walk_control *wc) 5633 { 5634 struct btrfs_fs_info *fs_info = root->fs_info; 5635 int ret; 5636 int level = wc->level; 5637 struct extent_buffer *eb = path->nodes[level]; 5638 u64 parent = 0; 5639 5640 if (wc->stage == UPDATE_BACKREF) { 5641 BUG_ON(wc->shared_level < level); 5642 if (level < wc->shared_level) 5643 goto out; 5644 5645 ret = find_next_key(path, level + 1, &wc->update_progress); 5646 if (ret > 0) 5647 wc->update_ref = 0; 5648 5649 wc->stage = DROP_REFERENCE; 5650 wc->shared_level = -1; 5651 path->slots[level] = 0; 5652 5653 /* 5654 * check reference count again if the block isn't locked. 5655 * we should start walking down the tree again if reference 5656 * count is one. 5657 */ 5658 if (!path->locks[level]) { 5659 BUG_ON(level == 0); 5660 btrfs_tree_lock(eb); 5661 path->locks[level] = BTRFS_WRITE_LOCK; 5662 5663 ret = btrfs_lookup_extent_info(trans, fs_info, 5664 eb->start, level, 1, 5665 &wc->refs[level], 5666 &wc->flags[level], 5667 NULL); 5668 if (ret < 0) { 5669 btrfs_tree_unlock_rw(eb, path->locks[level]); 5670 path->locks[level] = 0; 5671 return ret; 5672 } 5673 BUG_ON(wc->refs[level] == 0); 5674 if (wc->refs[level] == 1) { 5675 btrfs_tree_unlock_rw(eb, path->locks[level]); 5676 path->locks[level] = 0; 5677 return 1; 5678 } 5679 } 5680 } 5681 5682 /* wc->stage == DROP_REFERENCE */ 5683 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5684 5685 if (wc->refs[level] == 1) { 5686 if (level == 0) { 5687 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5688 ret = btrfs_dec_ref(trans, root, eb, 1); 5689 else 5690 ret = btrfs_dec_ref(trans, root, eb, 0); 5691 BUG_ON(ret); /* -ENOMEM */ 5692 if (is_fstree(root->root_key.objectid)) { 5693 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5694 if (ret) { 5695 btrfs_err_rl(fs_info, 5696 "error %d accounting leaf items, quota is out of sync, rescan required", 5697 ret); 5698 } 5699 } 5700 } 5701 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5702 if (!path->locks[level]) { 5703 btrfs_tree_lock(eb); 5704 path->locks[level] = BTRFS_WRITE_LOCK; 5705 } 5706 btrfs_clear_buffer_dirty(trans, eb); 5707 } 5708 5709 if (eb == root->node) { 5710 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5711 parent = eb->start; 5712 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5713 goto owner_mismatch; 5714 } else { 5715 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5716 parent = path->nodes[level + 1]->start; 5717 else if (root->root_key.objectid != 5718 btrfs_header_owner(path->nodes[level + 1])) 5719 goto owner_mismatch; 5720 } 5721 5722 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5723 wc->refs[level] == 1); 5724 out: 5725 wc->refs[level] = 0; 5726 wc->flags[level] = 0; 5727 return 0; 5728 5729 owner_mismatch: 5730 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5731 btrfs_header_owner(eb), root->root_key.objectid); 5732 return -EUCLEAN; 5733 } 5734 5735 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5736 struct btrfs_root *root, 5737 struct btrfs_path *path, 5738 struct walk_control *wc) 5739 { 5740 int level = wc->level; 5741 int lookup_info = 1; 5742 int ret = 0; 5743 5744 while (level >= 0) { 5745 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5746 if (ret) 5747 break; 5748 5749 if (level == 0) 5750 break; 5751 5752 if (path->slots[level] >= 5753 btrfs_header_nritems(path->nodes[level])) 5754 break; 5755 5756 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5757 if (ret > 0) { 5758 path->slots[level]++; 5759 continue; 5760 } else if (ret < 0) 5761 break; 5762 level = wc->level; 5763 } 5764 return (ret == 1) ? 0 : ret; 5765 } 5766 5767 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5768 struct btrfs_root *root, 5769 struct btrfs_path *path, 5770 struct walk_control *wc, int max_level) 5771 { 5772 int level = wc->level; 5773 int ret; 5774 5775 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5776 while (level < max_level && path->nodes[level]) { 5777 wc->level = level; 5778 if (path->slots[level] + 1 < 5779 btrfs_header_nritems(path->nodes[level])) { 5780 path->slots[level]++; 5781 return 0; 5782 } else { 5783 ret = walk_up_proc(trans, root, path, wc); 5784 if (ret > 0) 5785 return 0; 5786 if (ret < 0) 5787 return ret; 5788 5789 if (path->locks[level]) { 5790 btrfs_tree_unlock_rw(path->nodes[level], 5791 path->locks[level]); 5792 path->locks[level] = 0; 5793 } 5794 free_extent_buffer(path->nodes[level]); 5795 path->nodes[level] = NULL; 5796 level++; 5797 } 5798 } 5799 return 1; 5800 } 5801 5802 /* 5803 * drop a subvolume tree. 5804 * 5805 * this function traverses the tree freeing any blocks that only 5806 * referenced by the tree. 5807 * 5808 * when a shared tree block is found. this function decreases its 5809 * reference count by one. if update_ref is true, this function 5810 * also make sure backrefs for the shared block and all lower level 5811 * blocks are properly updated. 5812 * 5813 * If called with for_reloc == 0, may exit early with -EAGAIN 5814 */ 5815 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5816 { 5817 const bool is_reloc_root = (root->root_key.objectid == 5818 BTRFS_TREE_RELOC_OBJECTID); 5819 struct btrfs_fs_info *fs_info = root->fs_info; 5820 struct btrfs_path *path; 5821 struct btrfs_trans_handle *trans; 5822 struct btrfs_root *tree_root = fs_info->tree_root; 5823 struct btrfs_root_item *root_item = &root->root_item; 5824 struct walk_control *wc; 5825 struct btrfs_key key; 5826 int err = 0; 5827 int ret; 5828 int level; 5829 bool root_dropped = false; 5830 bool unfinished_drop = false; 5831 5832 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5833 5834 path = btrfs_alloc_path(); 5835 if (!path) { 5836 err = -ENOMEM; 5837 goto out; 5838 } 5839 5840 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5841 if (!wc) { 5842 btrfs_free_path(path); 5843 err = -ENOMEM; 5844 goto out; 5845 } 5846 5847 /* 5848 * Use join to avoid potential EINTR from transaction start. See 5849 * wait_reserve_ticket and the whole reservation callchain. 5850 */ 5851 if (for_reloc) 5852 trans = btrfs_join_transaction(tree_root); 5853 else 5854 trans = btrfs_start_transaction(tree_root, 0); 5855 if (IS_ERR(trans)) { 5856 err = PTR_ERR(trans); 5857 goto out_free; 5858 } 5859 5860 err = btrfs_run_delayed_items(trans); 5861 if (err) 5862 goto out_end_trans; 5863 5864 /* 5865 * This will help us catch people modifying the fs tree while we're 5866 * dropping it. It is unsafe to mess with the fs tree while it's being 5867 * dropped as we unlock the root node and parent nodes as we walk down 5868 * the tree, assuming nothing will change. If something does change 5869 * then we'll have stale information and drop references to blocks we've 5870 * already dropped. 5871 */ 5872 set_bit(BTRFS_ROOT_DELETING, &root->state); 5873 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5874 5875 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5876 level = btrfs_header_level(root->node); 5877 path->nodes[level] = btrfs_lock_root_node(root); 5878 path->slots[level] = 0; 5879 path->locks[level] = BTRFS_WRITE_LOCK; 5880 memset(&wc->update_progress, 0, 5881 sizeof(wc->update_progress)); 5882 } else { 5883 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5884 memcpy(&wc->update_progress, &key, 5885 sizeof(wc->update_progress)); 5886 5887 level = btrfs_root_drop_level(root_item); 5888 BUG_ON(level == 0); 5889 path->lowest_level = level; 5890 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5891 path->lowest_level = 0; 5892 if (ret < 0) { 5893 err = ret; 5894 goto out_end_trans; 5895 } 5896 WARN_ON(ret > 0); 5897 5898 /* 5899 * unlock our path, this is safe because only this 5900 * function is allowed to delete this snapshot 5901 */ 5902 btrfs_unlock_up_safe(path, 0); 5903 5904 level = btrfs_header_level(root->node); 5905 while (1) { 5906 btrfs_tree_lock(path->nodes[level]); 5907 path->locks[level] = BTRFS_WRITE_LOCK; 5908 5909 ret = btrfs_lookup_extent_info(trans, fs_info, 5910 path->nodes[level]->start, 5911 level, 1, &wc->refs[level], 5912 &wc->flags[level], NULL); 5913 if (ret < 0) { 5914 err = ret; 5915 goto out_end_trans; 5916 } 5917 BUG_ON(wc->refs[level] == 0); 5918 5919 if (level == btrfs_root_drop_level(root_item)) 5920 break; 5921 5922 btrfs_tree_unlock(path->nodes[level]); 5923 path->locks[level] = 0; 5924 WARN_ON(wc->refs[level] != 1); 5925 level--; 5926 } 5927 } 5928 5929 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5930 wc->level = level; 5931 wc->shared_level = -1; 5932 wc->stage = DROP_REFERENCE; 5933 wc->update_ref = update_ref; 5934 wc->keep_locks = 0; 5935 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5936 5937 while (1) { 5938 5939 ret = walk_down_tree(trans, root, path, wc); 5940 if (ret < 0) { 5941 btrfs_abort_transaction(trans, ret); 5942 err = ret; 5943 break; 5944 } 5945 5946 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5947 if (ret < 0) { 5948 btrfs_abort_transaction(trans, ret); 5949 err = ret; 5950 break; 5951 } 5952 5953 if (ret > 0) { 5954 BUG_ON(wc->stage != DROP_REFERENCE); 5955 break; 5956 } 5957 5958 if (wc->stage == DROP_REFERENCE) { 5959 wc->drop_level = wc->level; 5960 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5961 &wc->drop_progress, 5962 path->slots[wc->drop_level]); 5963 } 5964 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5965 &wc->drop_progress); 5966 btrfs_set_root_drop_level(root_item, wc->drop_level); 5967 5968 BUG_ON(wc->level == 0); 5969 if (btrfs_should_end_transaction(trans) || 5970 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5971 ret = btrfs_update_root(trans, tree_root, 5972 &root->root_key, 5973 root_item); 5974 if (ret) { 5975 btrfs_abort_transaction(trans, ret); 5976 err = ret; 5977 goto out_end_trans; 5978 } 5979 5980 if (!is_reloc_root) 5981 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5982 5983 btrfs_end_transaction_throttle(trans); 5984 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5985 btrfs_debug(fs_info, 5986 "drop snapshot early exit"); 5987 err = -EAGAIN; 5988 goto out_free; 5989 } 5990 5991 /* 5992 * Use join to avoid potential EINTR from transaction 5993 * start. See wait_reserve_ticket and the whole 5994 * reservation callchain. 5995 */ 5996 if (for_reloc) 5997 trans = btrfs_join_transaction(tree_root); 5998 else 5999 trans = btrfs_start_transaction(tree_root, 0); 6000 if (IS_ERR(trans)) { 6001 err = PTR_ERR(trans); 6002 goto out_free; 6003 } 6004 } 6005 } 6006 btrfs_release_path(path); 6007 if (err) 6008 goto out_end_trans; 6009 6010 ret = btrfs_del_root(trans, &root->root_key); 6011 if (ret) { 6012 btrfs_abort_transaction(trans, ret); 6013 err = ret; 6014 goto out_end_trans; 6015 } 6016 6017 if (!is_reloc_root) { 6018 ret = btrfs_find_root(tree_root, &root->root_key, path, 6019 NULL, NULL); 6020 if (ret < 0) { 6021 btrfs_abort_transaction(trans, ret); 6022 err = ret; 6023 goto out_end_trans; 6024 } else if (ret > 0) { 6025 /* if we fail to delete the orphan item this time 6026 * around, it'll get picked up the next time. 6027 * 6028 * The most common failure here is just -ENOENT. 6029 */ 6030 btrfs_del_orphan_item(trans, tree_root, 6031 root->root_key.objectid); 6032 } 6033 } 6034 6035 /* 6036 * This subvolume is going to be completely dropped, and won't be 6037 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6038 * commit transaction time. So free it here manually. 6039 */ 6040 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6041 btrfs_qgroup_free_meta_all_pertrans(root); 6042 6043 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6044 btrfs_add_dropped_root(trans, root); 6045 else 6046 btrfs_put_root(root); 6047 root_dropped = true; 6048 out_end_trans: 6049 if (!is_reloc_root) 6050 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6051 6052 btrfs_end_transaction_throttle(trans); 6053 out_free: 6054 kfree(wc); 6055 btrfs_free_path(path); 6056 out: 6057 /* 6058 * We were an unfinished drop root, check to see if there are any 6059 * pending, and if not clear and wake up any waiters. 6060 */ 6061 if (!err && unfinished_drop) 6062 btrfs_maybe_wake_unfinished_drop(fs_info); 6063 6064 /* 6065 * So if we need to stop dropping the snapshot for whatever reason we 6066 * need to make sure to add it back to the dead root list so that we 6067 * keep trying to do the work later. This also cleans up roots if we 6068 * don't have it in the radix (like when we recover after a power fail 6069 * or unmount) so we don't leak memory. 6070 */ 6071 if (!for_reloc && !root_dropped) 6072 btrfs_add_dead_root(root); 6073 return err; 6074 } 6075 6076 /* 6077 * drop subtree rooted at tree block 'node'. 6078 * 6079 * NOTE: this function will unlock and release tree block 'node' 6080 * only used by relocation code 6081 */ 6082 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6083 struct btrfs_root *root, 6084 struct extent_buffer *node, 6085 struct extent_buffer *parent) 6086 { 6087 struct btrfs_fs_info *fs_info = root->fs_info; 6088 struct btrfs_path *path; 6089 struct walk_control *wc; 6090 int level; 6091 int parent_level; 6092 int ret = 0; 6093 int wret; 6094 6095 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6096 6097 path = btrfs_alloc_path(); 6098 if (!path) 6099 return -ENOMEM; 6100 6101 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6102 if (!wc) { 6103 btrfs_free_path(path); 6104 return -ENOMEM; 6105 } 6106 6107 btrfs_assert_tree_write_locked(parent); 6108 parent_level = btrfs_header_level(parent); 6109 atomic_inc(&parent->refs); 6110 path->nodes[parent_level] = parent; 6111 path->slots[parent_level] = btrfs_header_nritems(parent); 6112 6113 btrfs_assert_tree_write_locked(node); 6114 level = btrfs_header_level(node); 6115 path->nodes[level] = node; 6116 path->slots[level] = 0; 6117 path->locks[level] = BTRFS_WRITE_LOCK; 6118 6119 wc->refs[parent_level] = 1; 6120 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6121 wc->level = level; 6122 wc->shared_level = -1; 6123 wc->stage = DROP_REFERENCE; 6124 wc->update_ref = 0; 6125 wc->keep_locks = 1; 6126 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6127 6128 while (1) { 6129 wret = walk_down_tree(trans, root, path, wc); 6130 if (wret < 0) { 6131 ret = wret; 6132 break; 6133 } 6134 6135 wret = walk_up_tree(trans, root, path, wc, parent_level); 6136 if (wret < 0) 6137 ret = wret; 6138 if (wret != 0) 6139 break; 6140 } 6141 6142 kfree(wc); 6143 btrfs_free_path(path); 6144 return ret; 6145 } 6146 6147 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6148 u64 start, u64 end) 6149 { 6150 return unpin_extent_range(fs_info, start, end, false); 6151 } 6152 6153 /* 6154 * It used to be that old block groups would be left around forever. 6155 * Iterating over them would be enough to trim unused space. Since we 6156 * now automatically remove them, we also need to iterate over unallocated 6157 * space. 6158 * 6159 * We don't want a transaction for this since the discard may take a 6160 * substantial amount of time. We don't require that a transaction be 6161 * running, but we do need to take a running transaction into account 6162 * to ensure that we're not discarding chunks that were released or 6163 * allocated in the current transaction. 6164 * 6165 * Holding the chunks lock will prevent other threads from allocating 6166 * or releasing chunks, but it won't prevent a running transaction 6167 * from committing and releasing the memory that the pending chunks 6168 * list head uses. For that, we need to take a reference to the 6169 * transaction and hold the commit root sem. We only need to hold 6170 * it while performing the free space search since we have already 6171 * held back allocations. 6172 */ 6173 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6174 { 6175 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6176 int ret; 6177 6178 *trimmed = 0; 6179 6180 /* Discard not supported = nothing to do. */ 6181 if (!bdev_max_discard_sectors(device->bdev)) 6182 return 0; 6183 6184 /* Not writable = nothing to do. */ 6185 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6186 return 0; 6187 6188 /* No free space = nothing to do. */ 6189 if (device->total_bytes <= device->bytes_used) 6190 return 0; 6191 6192 ret = 0; 6193 6194 while (1) { 6195 struct btrfs_fs_info *fs_info = device->fs_info; 6196 u64 bytes; 6197 6198 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6199 if (ret) 6200 break; 6201 6202 find_first_clear_extent_bit(&device->alloc_state, start, 6203 &start, &end, 6204 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6205 6206 /* Check if there are any CHUNK_* bits left */ 6207 if (start > device->total_bytes) { 6208 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6209 btrfs_warn_in_rcu(fs_info, 6210 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6211 start, end - start + 1, 6212 btrfs_dev_name(device), 6213 device->total_bytes); 6214 mutex_unlock(&fs_info->chunk_mutex); 6215 ret = 0; 6216 break; 6217 } 6218 6219 /* Ensure we skip the reserved space on each device. */ 6220 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6221 6222 /* 6223 * If find_first_clear_extent_bit find a range that spans the 6224 * end of the device it will set end to -1, in this case it's up 6225 * to the caller to trim the value to the size of the device. 6226 */ 6227 end = min(end, device->total_bytes - 1); 6228 6229 len = end - start + 1; 6230 6231 /* We didn't find any extents */ 6232 if (!len) { 6233 mutex_unlock(&fs_info->chunk_mutex); 6234 ret = 0; 6235 break; 6236 } 6237 6238 ret = btrfs_issue_discard(device->bdev, start, len, 6239 &bytes); 6240 if (!ret) 6241 set_extent_bit(&device->alloc_state, start, 6242 start + bytes - 1, CHUNK_TRIMMED, NULL); 6243 mutex_unlock(&fs_info->chunk_mutex); 6244 6245 if (ret) 6246 break; 6247 6248 start += len; 6249 *trimmed += bytes; 6250 6251 if (fatal_signal_pending(current)) { 6252 ret = -ERESTARTSYS; 6253 break; 6254 } 6255 6256 cond_resched(); 6257 } 6258 6259 return ret; 6260 } 6261 6262 /* 6263 * Trim the whole filesystem by: 6264 * 1) trimming the free space in each block group 6265 * 2) trimming the unallocated space on each device 6266 * 6267 * This will also continue trimming even if a block group or device encounters 6268 * an error. The return value will be the last error, or 0 if nothing bad 6269 * happens. 6270 */ 6271 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6272 { 6273 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6274 struct btrfs_block_group *cache = NULL; 6275 struct btrfs_device *device; 6276 u64 group_trimmed; 6277 u64 range_end = U64_MAX; 6278 u64 start; 6279 u64 end; 6280 u64 trimmed = 0; 6281 u64 bg_failed = 0; 6282 u64 dev_failed = 0; 6283 int bg_ret = 0; 6284 int dev_ret = 0; 6285 int ret = 0; 6286 6287 if (range->start == U64_MAX) 6288 return -EINVAL; 6289 6290 /* 6291 * Check range overflow if range->len is set. 6292 * The default range->len is U64_MAX. 6293 */ 6294 if (range->len != U64_MAX && 6295 check_add_overflow(range->start, range->len, &range_end)) 6296 return -EINVAL; 6297 6298 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6299 for (; cache; cache = btrfs_next_block_group(cache)) { 6300 if (cache->start >= range_end) { 6301 btrfs_put_block_group(cache); 6302 break; 6303 } 6304 6305 start = max(range->start, cache->start); 6306 end = min(range_end, cache->start + cache->length); 6307 6308 if (end - start >= range->minlen) { 6309 if (!btrfs_block_group_done(cache)) { 6310 ret = btrfs_cache_block_group(cache, true); 6311 if (ret) { 6312 bg_failed++; 6313 bg_ret = ret; 6314 continue; 6315 } 6316 } 6317 ret = btrfs_trim_block_group(cache, 6318 &group_trimmed, 6319 start, 6320 end, 6321 range->minlen); 6322 6323 trimmed += group_trimmed; 6324 if (ret) { 6325 bg_failed++; 6326 bg_ret = ret; 6327 continue; 6328 } 6329 } 6330 } 6331 6332 if (bg_failed) 6333 btrfs_warn(fs_info, 6334 "failed to trim %llu block group(s), last error %d", 6335 bg_failed, bg_ret); 6336 6337 mutex_lock(&fs_devices->device_list_mutex); 6338 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6339 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6340 continue; 6341 6342 ret = btrfs_trim_free_extents(device, &group_trimmed); 6343 if (ret) { 6344 dev_failed++; 6345 dev_ret = ret; 6346 break; 6347 } 6348 6349 trimmed += group_trimmed; 6350 } 6351 mutex_unlock(&fs_devices->device_list_mutex); 6352 6353 if (dev_failed) 6354 btrfs_warn(fs_info, 6355 "failed to trim %llu device(s), last error %d", 6356 dev_failed, dev_ret); 6357 range->len = trimmed; 6358 if (bg_ret) 6359 return bg_ret; 6360 return dev_ret; 6361 } 6362