xref: /linux/fs/btrfs/extent-tree.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 
37 #undef SCRAMBLE_DELAYED_REFS
38 
39 /*
40  * control flags for do_chunk_alloc's force field
41  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
42  * if we really need one.
43  *
44  * CHUNK_ALLOC_LIMITED means to only try and allocate one
45  * if we have very few chunks already allocated.  This is
46  * used as part of the clustering code to help make sure
47  * we have a good pool of storage to cluster in, without
48  * filling the FS with empty chunks
49  *
50  * CHUNK_ALLOC_FORCE means it must try to allocate one
51  *
52  */
53 enum {
54 	CHUNK_ALLOC_NO_FORCE = 0,
55 	CHUNK_ALLOC_LIMITED = 1,
56 	CHUNK_ALLOC_FORCE = 2,
57 };
58 
59 /*
60  * Control how reservations are dealt with.
61  *
62  * RESERVE_FREE - freeing a reservation.
63  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
64  *   ENOSPC accounting
65  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
66  *   bytes_may_use as the ENOSPC accounting is done elsewhere
67  */
68 enum {
69 	RESERVE_FREE = 0,
70 	RESERVE_ALLOC = 1,
71 	RESERVE_ALLOC_NO_ACCOUNT = 2,
72 };
73 
74 static int update_block_group(struct btrfs_trans_handle *trans,
75 			      struct btrfs_root *root,
76 			      u64 bytenr, u64 num_bytes, int alloc);
77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
78 				struct btrfs_root *root,
79 				u64 bytenr, u64 num_bytes, u64 parent,
80 				u64 root_objectid, u64 owner_objectid,
81 				u64 owner_offset, int refs_to_drop,
82 				struct btrfs_delayed_extent_op *extra_op);
83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
84 				    struct extent_buffer *leaf,
85 				    struct btrfs_extent_item *ei);
86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
87 				      struct btrfs_root *root,
88 				      u64 parent, u64 root_objectid,
89 				      u64 flags, u64 owner, u64 offset,
90 				      struct btrfs_key *ins, int ref_mod);
91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
92 				     struct btrfs_root *root,
93 				     u64 parent, u64 root_objectid,
94 				     u64 flags, struct btrfs_disk_key *key,
95 				     int level, struct btrfs_key *ins);
96 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
97 			  struct btrfs_root *extent_root, u64 alloc_bytes,
98 			  u64 flags, int force);
99 static int find_next_key(struct btrfs_path *path, int level,
100 			 struct btrfs_key *key);
101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
102 			    int dump_block_groups);
103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
104 				       u64 num_bytes, int reserve);
105 
106 static noinline int
107 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 {
109 	smp_mb();
110 	return cache->cached == BTRFS_CACHE_FINISHED;
111 }
112 
113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
114 {
115 	return (cache->flags & bits) == bits;
116 }
117 
118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
119 {
120 	atomic_inc(&cache->count);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
124 {
125 	if (atomic_dec_and_test(&cache->count)) {
126 		WARN_ON(cache->pinned > 0);
127 		WARN_ON(cache->reserved > 0);
128 		kfree(cache->free_space_ctl);
129 		kfree(cache);
130 	}
131 }
132 
133 /*
134  * this adds the block group to the fs_info rb tree for the block group
135  * cache
136  */
137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
138 				struct btrfs_block_group_cache *block_group)
139 {
140 	struct rb_node **p;
141 	struct rb_node *parent = NULL;
142 	struct btrfs_block_group_cache *cache;
143 
144 	spin_lock(&info->block_group_cache_lock);
145 	p = &info->block_group_cache_tree.rb_node;
146 
147 	while (*p) {
148 		parent = *p;
149 		cache = rb_entry(parent, struct btrfs_block_group_cache,
150 				 cache_node);
151 		if (block_group->key.objectid < cache->key.objectid) {
152 			p = &(*p)->rb_left;
153 		} else if (block_group->key.objectid > cache->key.objectid) {
154 			p = &(*p)->rb_right;
155 		} else {
156 			spin_unlock(&info->block_group_cache_lock);
157 			return -EEXIST;
158 		}
159 	}
160 
161 	rb_link_node(&block_group->cache_node, parent, p);
162 	rb_insert_color(&block_group->cache_node,
163 			&info->block_group_cache_tree);
164 	spin_unlock(&info->block_group_cache_lock);
165 
166 	return 0;
167 }
168 
169 /*
170  * This will return the block group at or after bytenr if contains is 0, else
171  * it will return the block group that contains the bytenr
172  */
173 static struct btrfs_block_group_cache *
174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 			      int contains)
176 {
177 	struct btrfs_block_group_cache *cache, *ret = NULL;
178 	struct rb_node *n;
179 	u64 end, start;
180 
181 	spin_lock(&info->block_group_cache_lock);
182 	n = info->block_group_cache_tree.rb_node;
183 
184 	while (n) {
185 		cache = rb_entry(n, struct btrfs_block_group_cache,
186 				 cache_node);
187 		end = cache->key.objectid + cache->key.offset - 1;
188 		start = cache->key.objectid;
189 
190 		if (bytenr < start) {
191 			if (!contains && (!ret || start < ret->key.objectid))
192 				ret = cache;
193 			n = n->rb_left;
194 		} else if (bytenr > start) {
195 			if (contains && bytenr <= end) {
196 				ret = cache;
197 				break;
198 			}
199 			n = n->rb_right;
200 		} else {
201 			ret = cache;
202 			break;
203 		}
204 	}
205 	if (ret)
206 		btrfs_get_block_group(ret);
207 	spin_unlock(&info->block_group_cache_lock);
208 
209 	return ret;
210 }
211 
212 static int add_excluded_extent(struct btrfs_root *root,
213 			       u64 start, u64 num_bytes)
214 {
215 	u64 end = start + num_bytes - 1;
216 	set_extent_bits(&root->fs_info->freed_extents[0],
217 			start, end, EXTENT_UPTODATE, GFP_NOFS);
218 	set_extent_bits(&root->fs_info->freed_extents[1],
219 			start, end, EXTENT_UPTODATE, GFP_NOFS);
220 	return 0;
221 }
222 
223 static void free_excluded_extents(struct btrfs_root *root,
224 				  struct btrfs_block_group_cache *cache)
225 {
226 	u64 start, end;
227 
228 	start = cache->key.objectid;
229 	end = start + cache->key.offset - 1;
230 
231 	clear_extent_bits(&root->fs_info->freed_extents[0],
232 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
233 	clear_extent_bits(&root->fs_info->freed_extents[1],
234 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
235 }
236 
237 static int exclude_super_stripes(struct btrfs_root *root,
238 				 struct btrfs_block_group_cache *cache)
239 {
240 	u64 bytenr;
241 	u64 *logical;
242 	int stripe_len;
243 	int i, nr, ret;
244 
245 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 		cache->bytes_super += stripe_len;
248 		ret = add_excluded_extent(root, cache->key.objectid,
249 					  stripe_len);
250 		BUG_ON(ret); /* -ENOMEM */
251 	}
252 
253 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
254 		bytenr = btrfs_sb_offset(i);
255 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
256 				       cache->key.objectid, bytenr,
257 				       0, &logical, &nr, &stripe_len);
258 		BUG_ON(ret); /* -ENOMEM */
259 
260 		while (nr--) {
261 			cache->bytes_super += stripe_len;
262 			ret = add_excluded_extent(root, logical[nr],
263 						  stripe_len);
264 			BUG_ON(ret); /* -ENOMEM */
265 		}
266 
267 		kfree(logical);
268 	}
269 	return 0;
270 }
271 
272 static struct btrfs_caching_control *
273 get_caching_control(struct btrfs_block_group_cache *cache)
274 {
275 	struct btrfs_caching_control *ctl;
276 
277 	spin_lock(&cache->lock);
278 	if (cache->cached != BTRFS_CACHE_STARTED) {
279 		spin_unlock(&cache->lock);
280 		return NULL;
281 	}
282 
283 	/* We're loading it the fast way, so we don't have a caching_ctl. */
284 	if (!cache->caching_ctl) {
285 		spin_unlock(&cache->lock);
286 		return NULL;
287 	}
288 
289 	ctl = cache->caching_ctl;
290 	atomic_inc(&ctl->count);
291 	spin_unlock(&cache->lock);
292 	return ctl;
293 }
294 
295 static void put_caching_control(struct btrfs_caching_control *ctl)
296 {
297 	if (atomic_dec_and_test(&ctl->count))
298 		kfree(ctl);
299 }
300 
301 /*
302  * this is only called by cache_block_group, since we could have freed extents
303  * we need to check the pinned_extents for any extents that can't be used yet
304  * since their free space will be released as soon as the transaction commits.
305  */
306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
307 			      struct btrfs_fs_info *info, u64 start, u64 end)
308 {
309 	u64 extent_start, extent_end, size, total_added = 0;
310 	int ret;
311 
312 	while (start < end) {
313 		ret = find_first_extent_bit(info->pinned_extents, start,
314 					    &extent_start, &extent_end,
315 					    EXTENT_DIRTY | EXTENT_UPTODATE);
316 		if (ret)
317 			break;
318 
319 		if (extent_start <= start) {
320 			start = extent_end + 1;
321 		} else if (extent_start > start && extent_start < end) {
322 			size = extent_start - start;
323 			total_added += size;
324 			ret = btrfs_add_free_space(block_group, start,
325 						   size);
326 			BUG_ON(ret); /* -ENOMEM or logic error */
327 			start = extent_end + 1;
328 		} else {
329 			break;
330 		}
331 	}
332 
333 	if (start < end) {
334 		size = end - start;
335 		total_added += size;
336 		ret = btrfs_add_free_space(block_group, start, size);
337 		BUG_ON(ret); /* -ENOMEM or logic error */
338 	}
339 
340 	return total_added;
341 }
342 
343 static noinline void caching_thread(struct btrfs_work *work)
344 {
345 	struct btrfs_block_group_cache *block_group;
346 	struct btrfs_fs_info *fs_info;
347 	struct btrfs_caching_control *caching_ctl;
348 	struct btrfs_root *extent_root;
349 	struct btrfs_path *path;
350 	struct extent_buffer *leaf;
351 	struct btrfs_key key;
352 	u64 total_found = 0;
353 	u64 last = 0;
354 	u32 nritems;
355 	int ret = 0;
356 
357 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
358 	block_group = caching_ctl->block_group;
359 	fs_info = block_group->fs_info;
360 	extent_root = fs_info->extent_root;
361 
362 	path = btrfs_alloc_path();
363 	if (!path)
364 		goto out;
365 
366 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367 
368 	/*
369 	 * We don't want to deadlock with somebody trying to allocate a new
370 	 * extent for the extent root while also trying to search the extent
371 	 * root to add free space.  So we skip locking and search the commit
372 	 * root, since its read-only
373 	 */
374 	path->skip_locking = 1;
375 	path->search_commit_root = 1;
376 	path->reada = 1;
377 
378 	key.objectid = last;
379 	key.offset = 0;
380 	key.type = BTRFS_EXTENT_ITEM_KEY;
381 again:
382 	mutex_lock(&caching_ctl->mutex);
383 	/* need to make sure the commit_root doesn't disappear */
384 	down_read(&fs_info->extent_commit_sem);
385 
386 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
387 	if (ret < 0)
388 		goto err;
389 
390 	leaf = path->nodes[0];
391 	nritems = btrfs_header_nritems(leaf);
392 
393 	while (1) {
394 		if (btrfs_fs_closing(fs_info) > 1) {
395 			last = (u64)-1;
396 			break;
397 		}
398 
399 		if (path->slots[0] < nritems) {
400 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
401 		} else {
402 			ret = find_next_key(path, 0, &key);
403 			if (ret)
404 				break;
405 
406 			if (need_resched() ||
407 			    btrfs_next_leaf(extent_root, path)) {
408 				caching_ctl->progress = last;
409 				btrfs_release_path(path);
410 				up_read(&fs_info->extent_commit_sem);
411 				mutex_unlock(&caching_ctl->mutex);
412 				cond_resched();
413 				goto again;
414 			}
415 			leaf = path->nodes[0];
416 			nritems = btrfs_header_nritems(leaf);
417 			continue;
418 		}
419 
420 		if (key.objectid < block_group->key.objectid) {
421 			path->slots[0]++;
422 			continue;
423 		}
424 
425 		if (key.objectid >= block_group->key.objectid +
426 		    block_group->key.offset)
427 			break;
428 
429 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
430 			total_found += add_new_free_space(block_group,
431 							  fs_info, last,
432 							  key.objectid);
433 			last = key.objectid + key.offset;
434 
435 			if (total_found > (1024 * 1024 * 2)) {
436 				total_found = 0;
437 				wake_up(&caching_ctl->wait);
438 			}
439 		}
440 		path->slots[0]++;
441 	}
442 	ret = 0;
443 
444 	total_found += add_new_free_space(block_group, fs_info, last,
445 					  block_group->key.objectid +
446 					  block_group->key.offset);
447 	caching_ctl->progress = (u64)-1;
448 
449 	spin_lock(&block_group->lock);
450 	block_group->caching_ctl = NULL;
451 	block_group->cached = BTRFS_CACHE_FINISHED;
452 	spin_unlock(&block_group->lock);
453 
454 err:
455 	btrfs_free_path(path);
456 	up_read(&fs_info->extent_commit_sem);
457 
458 	free_excluded_extents(extent_root, block_group);
459 
460 	mutex_unlock(&caching_ctl->mutex);
461 out:
462 	wake_up(&caching_ctl->wait);
463 
464 	put_caching_control(caching_ctl);
465 	btrfs_put_block_group(block_group);
466 }
467 
468 static int cache_block_group(struct btrfs_block_group_cache *cache,
469 			     struct btrfs_trans_handle *trans,
470 			     struct btrfs_root *root,
471 			     int load_cache_only)
472 {
473 	DEFINE_WAIT(wait);
474 	struct btrfs_fs_info *fs_info = cache->fs_info;
475 	struct btrfs_caching_control *caching_ctl;
476 	int ret = 0;
477 
478 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
479 	if (!caching_ctl)
480 		return -ENOMEM;
481 
482 	INIT_LIST_HEAD(&caching_ctl->list);
483 	mutex_init(&caching_ctl->mutex);
484 	init_waitqueue_head(&caching_ctl->wait);
485 	caching_ctl->block_group = cache;
486 	caching_ctl->progress = cache->key.objectid;
487 	atomic_set(&caching_ctl->count, 1);
488 	caching_ctl->work.func = caching_thread;
489 
490 	spin_lock(&cache->lock);
491 	/*
492 	 * This should be a rare occasion, but this could happen I think in the
493 	 * case where one thread starts to load the space cache info, and then
494 	 * some other thread starts a transaction commit which tries to do an
495 	 * allocation while the other thread is still loading the space cache
496 	 * info.  The previous loop should have kept us from choosing this block
497 	 * group, but if we've moved to the state where we will wait on caching
498 	 * block groups we need to first check if we're doing a fast load here,
499 	 * so we can wait for it to finish, otherwise we could end up allocating
500 	 * from a block group who's cache gets evicted for one reason or
501 	 * another.
502 	 */
503 	while (cache->cached == BTRFS_CACHE_FAST) {
504 		struct btrfs_caching_control *ctl;
505 
506 		ctl = cache->caching_ctl;
507 		atomic_inc(&ctl->count);
508 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
509 		spin_unlock(&cache->lock);
510 
511 		schedule();
512 
513 		finish_wait(&ctl->wait, &wait);
514 		put_caching_control(ctl);
515 		spin_lock(&cache->lock);
516 	}
517 
518 	if (cache->cached != BTRFS_CACHE_NO) {
519 		spin_unlock(&cache->lock);
520 		kfree(caching_ctl);
521 		return 0;
522 	}
523 	WARN_ON(cache->caching_ctl);
524 	cache->caching_ctl = caching_ctl;
525 	cache->cached = BTRFS_CACHE_FAST;
526 	spin_unlock(&cache->lock);
527 
528 	/*
529 	 * We can't do the read from on-disk cache during a commit since we need
530 	 * to have the normal tree locking.  Also if we are currently trying to
531 	 * allocate blocks for the tree root we can't do the fast caching since
532 	 * we likely hold important locks.
533 	 */
534 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
535 		ret = load_free_space_cache(fs_info, cache);
536 
537 		spin_lock(&cache->lock);
538 		if (ret == 1) {
539 			cache->caching_ctl = NULL;
540 			cache->cached = BTRFS_CACHE_FINISHED;
541 			cache->last_byte_to_unpin = (u64)-1;
542 		} else {
543 			if (load_cache_only) {
544 				cache->caching_ctl = NULL;
545 				cache->cached = BTRFS_CACHE_NO;
546 			} else {
547 				cache->cached = BTRFS_CACHE_STARTED;
548 			}
549 		}
550 		spin_unlock(&cache->lock);
551 		wake_up(&caching_ctl->wait);
552 		if (ret == 1) {
553 			put_caching_control(caching_ctl);
554 			free_excluded_extents(fs_info->extent_root, cache);
555 			return 0;
556 		}
557 	} else {
558 		/*
559 		 * We are not going to do the fast caching, set cached to the
560 		 * appropriate value and wakeup any waiters.
561 		 */
562 		spin_lock(&cache->lock);
563 		if (load_cache_only) {
564 			cache->caching_ctl = NULL;
565 			cache->cached = BTRFS_CACHE_NO;
566 		} else {
567 			cache->cached = BTRFS_CACHE_STARTED;
568 		}
569 		spin_unlock(&cache->lock);
570 		wake_up(&caching_ctl->wait);
571 	}
572 
573 	if (load_cache_only) {
574 		put_caching_control(caching_ctl);
575 		return 0;
576 	}
577 
578 	down_write(&fs_info->extent_commit_sem);
579 	atomic_inc(&caching_ctl->count);
580 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
581 	up_write(&fs_info->extent_commit_sem);
582 
583 	btrfs_get_block_group(cache);
584 
585 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
586 
587 	return ret;
588 }
589 
590 /*
591  * return the block group that starts at or after bytenr
592  */
593 static struct btrfs_block_group_cache *
594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
595 {
596 	struct btrfs_block_group_cache *cache;
597 
598 	cache = block_group_cache_tree_search(info, bytenr, 0);
599 
600 	return cache;
601 }
602 
603 /*
604  * return the block group that contains the given bytenr
605  */
606 struct btrfs_block_group_cache *btrfs_lookup_block_group(
607 						 struct btrfs_fs_info *info,
608 						 u64 bytenr)
609 {
610 	struct btrfs_block_group_cache *cache;
611 
612 	cache = block_group_cache_tree_search(info, bytenr, 1);
613 
614 	return cache;
615 }
616 
617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 						  u64 flags)
619 {
620 	struct list_head *head = &info->space_info;
621 	struct btrfs_space_info *found;
622 
623 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624 
625 	rcu_read_lock();
626 	list_for_each_entry_rcu(found, head, list) {
627 		if (found->flags & flags) {
628 			rcu_read_unlock();
629 			return found;
630 		}
631 	}
632 	rcu_read_unlock();
633 	return NULL;
634 }
635 
636 /*
637  * after adding space to the filesystem, we need to clear the full flags
638  * on all the space infos.
639  */
640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
641 {
642 	struct list_head *head = &info->space_info;
643 	struct btrfs_space_info *found;
644 
645 	rcu_read_lock();
646 	list_for_each_entry_rcu(found, head, list)
647 		found->full = 0;
648 	rcu_read_unlock();
649 }
650 
651 static u64 div_factor(u64 num, int factor)
652 {
653 	if (factor == 10)
654 		return num;
655 	num *= factor;
656 	do_div(num, 10);
657 	return num;
658 }
659 
660 static u64 div_factor_fine(u64 num, int factor)
661 {
662 	if (factor == 100)
663 		return num;
664 	num *= factor;
665 	do_div(num, 100);
666 	return num;
667 }
668 
669 u64 btrfs_find_block_group(struct btrfs_root *root,
670 			   u64 search_start, u64 search_hint, int owner)
671 {
672 	struct btrfs_block_group_cache *cache;
673 	u64 used;
674 	u64 last = max(search_hint, search_start);
675 	u64 group_start = 0;
676 	int full_search = 0;
677 	int factor = 9;
678 	int wrapped = 0;
679 again:
680 	while (1) {
681 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
682 		if (!cache)
683 			break;
684 
685 		spin_lock(&cache->lock);
686 		last = cache->key.objectid + cache->key.offset;
687 		used = btrfs_block_group_used(&cache->item);
688 
689 		if ((full_search || !cache->ro) &&
690 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
691 			if (used + cache->pinned + cache->reserved <
692 			    div_factor(cache->key.offset, factor)) {
693 				group_start = cache->key.objectid;
694 				spin_unlock(&cache->lock);
695 				btrfs_put_block_group(cache);
696 				goto found;
697 			}
698 		}
699 		spin_unlock(&cache->lock);
700 		btrfs_put_block_group(cache);
701 		cond_resched();
702 	}
703 	if (!wrapped) {
704 		last = search_start;
705 		wrapped = 1;
706 		goto again;
707 	}
708 	if (!full_search && factor < 10) {
709 		last = search_start;
710 		full_search = 1;
711 		factor = 10;
712 		goto again;
713 	}
714 found:
715 	return group_start;
716 }
717 
718 /* simple helper to search for an existing extent at a given offset */
719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 {
721 	int ret;
722 	struct btrfs_key key;
723 	struct btrfs_path *path;
724 
725 	path = btrfs_alloc_path();
726 	if (!path)
727 		return -ENOMEM;
728 
729 	key.objectid = start;
730 	key.offset = len;
731 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
732 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
733 				0, 0);
734 	btrfs_free_path(path);
735 	return ret;
736 }
737 
738 /*
739  * helper function to lookup reference count and flags of extent.
740  *
741  * the head node for delayed ref is used to store the sum of all the
742  * reference count modifications queued up in the rbtree. the head
743  * node may also store the extent flags to set. This way you can check
744  * to see what the reference count and extent flags would be if all of
745  * the delayed refs are not processed.
746  */
747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
748 			     struct btrfs_root *root, u64 bytenr,
749 			     u64 num_bytes, u64 *refs, u64 *flags)
750 {
751 	struct btrfs_delayed_ref_head *head;
752 	struct btrfs_delayed_ref_root *delayed_refs;
753 	struct btrfs_path *path;
754 	struct btrfs_extent_item *ei;
755 	struct extent_buffer *leaf;
756 	struct btrfs_key key;
757 	u32 item_size;
758 	u64 num_refs;
759 	u64 extent_flags;
760 	int ret;
761 
762 	path = btrfs_alloc_path();
763 	if (!path)
764 		return -ENOMEM;
765 
766 	key.objectid = bytenr;
767 	key.type = BTRFS_EXTENT_ITEM_KEY;
768 	key.offset = num_bytes;
769 	if (!trans) {
770 		path->skip_locking = 1;
771 		path->search_commit_root = 1;
772 	}
773 again:
774 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
775 				&key, path, 0, 0);
776 	if (ret < 0)
777 		goto out_free;
778 
779 	if (ret == 0) {
780 		leaf = path->nodes[0];
781 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 		if (item_size >= sizeof(*ei)) {
783 			ei = btrfs_item_ptr(leaf, path->slots[0],
784 					    struct btrfs_extent_item);
785 			num_refs = btrfs_extent_refs(leaf, ei);
786 			extent_flags = btrfs_extent_flags(leaf, ei);
787 		} else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 			struct btrfs_extent_item_v0 *ei0;
790 			BUG_ON(item_size != sizeof(*ei0));
791 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 					     struct btrfs_extent_item_v0);
793 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 			/* FIXME: this isn't correct for data */
795 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 			BUG();
798 #endif
799 		}
800 		BUG_ON(num_refs == 0);
801 	} else {
802 		num_refs = 0;
803 		extent_flags = 0;
804 		ret = 0;
805 	}
806 
807 	if (!trans)
808 		goto out;
809 
810 	delayed_refs = &trans->transaction->delayed_refs;
811 	spin_lock(&delayed_refs->lock);
812 	head = btrfs_find_delayed_ref_head(trans, bytenr);
813 	if (head) {
814 		if (!mutex_trylock(&head->mutex)) {
815 			atomic_inc(&head->node.refs);
816 			spin_unlock(&delayed_refs->lock);
817 
818 			btrfs_release_path(path);
819 
820 			/*
821 			 * Mutex was contended, block until it's released and try
822 			 * again
823 			 */
824 			mutex_lock(&head->mutex);
825 			mutex_unlock(&head->mutex);
826 			btrfs_put_delayed_ref(&head->node);
827 			goto again;
828 		}
829 		if (head->extent_op && head->extent_op->update_flags)
830 			extent_flags |= head->extent_op->flags_to_set;
831 		else
832 			BUG_ON(num_refs == 0);
833 
834 		num_refs += head->node.ref_mod;
835 		mutex_unlock(&head->mutex);
836 	}
837 	spin_unlock(&delayed_refs->lock);
838 out:
839 	WARN_ON(num_refs == 0);
840 	if (refs)
841 		*refs = num_refs;
842 	if (flags)
843 		*flags = extent_flags;
844 out_free:
845 	btrfs_free_path(path);
846 	return ret;
847 }
848 
849 /*
850  * Back reference rules.  Back refs have three main goals:
851  *
852  * 1) differentiate between all holders of references to an extent so that
853  *    when a reference is dropped we can make sure it was a valid reference
854  *    before freeing the extent.
855  *
856  * 2) Provide enough information to quickly find the holders of an extent
857  *    if we notice a given block is corrupted or bad.
858  *
859  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860  *    maintenance.  This is actually the same as #2, but with a slightly
861  *    different use case.
862  *
863  * There are two kinds of back refs. The implicit back refs is optimized
864  * for pointers in non-shared tree blocks. For a given pointer in a block,
865  * back refs of this kind provide information about the block's owner tree
866  * and the pointer's key. These information allow us to find the block by
867  * b-tree searching. The full back refs is for pointers in tree blocks not
868  * referenced by their owner trees. The location of tree block is recorded
869  * in the back refs. Actually the full back refs is generic, and can be
870  * used in all cases the implicit back refs is used. The major shortcoming
871  * of the full back refs is its overhead. Every time a tree block gets
872  * COWed, we have to update back refs entry for all pointers in it.
873  *
874  * For a newly allocated tree block, we use implicit back refs for
875  * pointers in it. This means most tree related operations only involve
876  * implicit back refs. For a tree block created in old transaction, the
877  * only way to drop a reference to it is COW it. So we can detect the
878  * event that tree block loses its owner tree's reference and do the
879  * back refs conversion.
880  *
881  * When a tree block is COW'd through a tree, there are four cases:
882  *
883  * The reference count of the block is one and the tree is the block's
884  * owner tree. Nothing to do in this case.
885  *
886  * The reference count of the block is one and the tree is not the
887  * block's owner tree. In this case, full back refs is used for pointers
888  * in the block. Remove these full back refs, add implicit back refs for
889  * every pointers in the new block.
890  *
891  * The reference count of the block is greater than one and the tree is
892  * the block's owner tree. In this case, implicit back refs is used for
893  * pointers in the block. Add full back refs for every pointers in the
894  * block, increase lower level extents' reference counts. The original
895  * implicit back refs are entailed to the new block.
896  *
897  * The reference count of the block is greater than one and the tree is
898  * not the block's owner tree. Add implicit back refs for every pointer in
899  * the new block, increase lower level extents' reference count.
900  *
901  * Back Reference Key composing:
902  *
903  * The key objectid corresponds to the first byte in the extent,
904  * The key type is used to differentiate between types of back refs.
905  * There are different meanings of the key offset for different types
906  * of back refs.
907  *
908  * File extents can be referenced by:
909  *
910  * - multiple snapshots, subvolumes, or different generations in one subvol
911  * - different files inside a single subvolume
912  * - different offsets inside a file (bookend extents in file.c)
913  *
914  * The extent ref structure for the implicit back refs has fields for:
915  *
916  * - Objectid of the subvolume root
917  * - objectid of the file holding the reference
918  * - original offset in the file
919  * - how many bookend extents
920  *
921  * The key offset for the implicit back refs is hash of the first
922  * three fields.
923  *
924  * The extent ref structure for the full back refs has field for:
925  *
926  * - number of pointers in the tree leaf
927  *
928  * The key offset for the implicit back refs is the first byte of
929  * the tree leaf
930  *
931  * When a file extent is allocated, The implicit back refs is used.
932  * the fields are filled in:
933  *
934  *     (root_key.objectid, inode objectid, offset in file, 1)
935  *
936  * When a file extent is removed file truncation, we find the
937  * corresponding implicit back refs and check the following fields:
938  *
939  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
940  *
941  * Btree extents can be referenced by:
942  *
943  * - Different subvolumes
944  *
945  * Both the implicit back refs and the full back refs for tree blocks
946  * only consist of key. The key offset for the implicit back refs is
947  * objectid of block's owner tree. The key offset for the full back refs
948  * is the first byte of parent block.
949  *
950  * When implicit back refs is used, information about the lowest key and
951  * level of the tree block are required. These information are stored in
952  * tree block info structure.
953  */
954 
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 				  struct btrfs_root *root,
958 				  struct btrfs_path *path,
959 				  u64 owner, u32 extra_size)
960 {
961 	struct btrfs_extent_item *item;
962 	struct btrfs_extent_item_v0 *ei0;
963 	struct btrfs_extent_ref_v0 *ref0;
964 	struct btrfs_tree_block_info *bi;
965 	struct extent_buffer *leaf;
966 	struct btrfs_key key;
967 	struct btrfs_key found_key;
968 	u32 new_size = sizeof(*item);
969 	u64 refs;
970 	int ret;
971 
972 	leaf = path->nodes[0];
973 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974 
975 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 			     struct btrfs_extent_item_v0);
978 	refs = btrfs_extent_refs_v0(leaf, ei0);
979 
980 	if (owner == (u64)-1) {
981 		while (1) {
982 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 				ret = btrfs_next_leaf(root, path);
984 				if (ret < 0)
985 					return ret;
986 				BUG_ON(ret > 0); /* Corruption */
987 				leaf = path->nodes[0];
988 			}
989 			btrfs_item_key_to_cpu(leaf, &found_key,
990 					      path->slots[0]);
991 			BUG_ON(key.objectid != found_key.objectid);
992 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 				path->slots[0]++;
994 				continue;
995 			}
996 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 					      struct btrfs_extent_ref_v0);
998 			owner = btrfs_ref_objectid_v0(leaf, ref0);
999 			break;
1000 		}
1001 	}
1002 	btrfs_release_path(path);
1003 
1004 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 		new_size += sizeof(*bi);
1006 
1007 	new_size -= sizeof(*ei0);
1008 	ret = btrfs_search_slot(trans, root, &key, path,
1009 				new_size + extra_size, 1);
1010 	if (ret < 0)
1011 		return ret;
1012 	BUG_ON(ret); /* Corruption */
1013 
1014 	btrfs_extend_item(trans, root, path, new_size);
1015 
1016 	leaf = path->nodes[0];
1017 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 	btrfs_set_extent_refs(leaf, item, refs);
1019 	/* FIXME: get real generation */
1020 	btrfs_set_extent_generation(leaf, item, 0);
1021 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 		btrfs_set_extent_flags(leaf, item,
1023 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 		bi = (struct btrfs_tree_block_info *)(item + 1);
1026 		/* FIXME: get first key of the block */
1027 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 	} else {
1030 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 	}
1032 	btrfs_mark_buffer_dirty(leaf);
1033 	return 0;
1034 }
1035 #endif
1036 
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 	u32 high_crc = ~(u32)0;
1040 	u32 low_crc = ~(u32)0;
1041 	__le64 lenum;
1042 
1043 	lenum = cpu_to_le64(root_objectid);
1044 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 	lenum = cpu_to_le64(owner);
1046 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 	lenum = cpu_to_le64(offset);
1048 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049 
1050 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052 
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 				     struct btrfs_extent_data_ref *ref)
1055 {
1056 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 				    btrfs_extent_data_ref_objectid(leaf, ref),
1058 				    btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060 
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 				 struct btrfs_extent_data_ref *ref,
1063 				 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 		return 0;
1069 	return 1;
1070 }
1071 
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 					   struct btrfs_root *root,
1074 					   struct btrfs_path *path,
1075 					   u64 bytenr, u64 parent,
1076 					   u64 root_objectid,
1077 					   u64 owner, u64 offset)
1078 {
1079 	struct btrfs_key key;
1080 	struct btrfs_extent_data_ref *ref;
1081 	struct extent_buffer *leaf;
1082 	u32 nritems;
1083 	int ret;
1084 	int recow;
1085 	int err = -ENOENT;
1086 
1087 	key.objectid = bytenr;
1088 	if (parent) {
1089 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 		key.offset = parent;
1091 	} else {
1092 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 		key.offset = hash_extent_data_ref(root_objectid,
1094 						  owner, offset);
1095 	}
1096 again:
1097 	recow = 0;
1098 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 	if (ret < 0) {
1100 		err = ret;
1101 		goto fail;
1102 	}
1103 
1104 	if (parent) {
1105 		if (!ret)
1106 			return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 		btrfs_release_path(path);
1110 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 		if (ret < 0) {
1112 			err = ret;
1113 			goto fail;
1114 		}
1115 		if (!ret)
1116 			return 0;
1117 #endif
1118 		goto fail;
1119 	}
1120 
1121 	leaf = path->nodes[0];
1122 	nritems = btrfs_header_nritems(leaf);
1123 	while (1) {
1124 		if (path->slots[0] >= nritems) {
1125 			ret = btrfs_next_leaf(root, path);
1126 			if (ret < 0)
1127 				err = ret;
1128 			if (ret)
1129 				goto fail;
1130 
1131 			leaf = path->nodes[0];
1132 			nritems = btrfs_header_nritems(leaf);
1133 			recow = 1;
1134 		}
1135 
1136 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 		if (key.objectid != bytenr ||
1138 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 			goto fail;
1140 
1141 		ref = btrfs_item_ptr(leaf, path->slots[0],
1142 				     struct btrfs_extent_data_ref);
1143 
1144 		if (match_extent_data_ref(leaf, ref, root_objectid,
1145 					  owner, offset)) {
1146 			if (recow) {
1147 				btrfs_release_path(path);
1148 				goto again;
1149 			}
1150 			err = 0;
1151 			break;
1152 		}
1153 		path->slots[0]++;
1154 	}
1155 fail:
1156 	return err;
1157 }
1158 
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 					   struct btrfs_root *root,
1161 					   struct btrfs_path *path,
1162 					   u64 bytenr, u64 parent,
1163 					   u64 root_objectid, u64 owner,
1164 					   u64 offset, int refs_to_add)
1165 {
1166 	struct btrfs_key key;
1167 	struct extent_buffer *leaf;
1168 	u32 size;
1169 	u32 num_refs;
1170 	int ret;
1171 
1172 	key.objectid = bytenr;
1173 	if (parent) {
1174 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 		key.offset = parent;
1176 		size = sizeof(struct btrfs_shared_data_ref);
1177 	} else {
1178 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 		key.offset = hash_extent_data_ref(root_objectid,
1180 						  owner, offset);
1181 		size = sizeof(struct btrfs_extent_data_ref);
1182 	}
1183 
1184 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 	if (ret && ret != -EEXIST)
1186 		goto fail;
1187 
1188 	leaf = path->nodes[0];
1189 	if (parent) {
1190 		struct btrfs_shared_data_ref *ref;
1191 		ref = btrfs_item_ptr(leaf, path->slots[0],
1192 				     struct btrfs_shared_data_ref);
1193 		if (ret == 0) {
1194 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 		} else {
1196 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 			num_refs += refs_to_add;
1198 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 		}
1200 	} else {
1201 		struct btrfs_extent_data_ref *ref;
1202 		while (ret == -EEXIST) {
1203 			ref = btrfs_item_ptr(leaf, path->slots[0],
1204 					     struct btrfs_extent_data_ref);
1205 			if (match_extent_data_ref(leaf, ref, root_objectid,
1206 						  owner, offset))
1207 				break;
1208 			btrfs_release_path(path);
1209 			key.offset++;
1210 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 						      size);
1212 			if (ret && ret != -EEXIST)
1213 				goto fail;
1214 
1215 			leaf = path->nodes[0];
1216 		}
1217 		ref = btrfs_item_ptr(leaf, path->slots[0],
1218 				     struct btrfs_extent_data_ref);
1219 		if (ret == 0) {
1220 			btrfs_set_extent_data_ref_root(leaf, ref,
1221 						       root_objectid);
1222 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 		} else {
1226 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 			num_refs += refs_to_add;
1228 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 		}
1230 	}
1231 	btrfs_mark_buffer_dirty(leaf);
1232 	ret = 0;
1233 fail:
1234 	btrfs_release_path(path);
1235 	return ret;
1236 }
1237 
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 					   struct btrfs_root *root,
1240 					   struct btrfs_path *path,
1241 					   int refs_to_drop)
1242 {
1243 	struct btrfs_key key;
1244 	struct btrfs_extent_data_ref *ref1 = NULL;
1245 	struct btrfs_shared_data_ref *ref2 = NULL;
1246 	struct extent_buffer *leaf;
1247 	u32 num_refs = 0;
1248 	int ret = 0;
1249 
1250 	leaf = path->nodes[0];
1251 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 
1253 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 				      struct btrfs_extent_data_ref);
1256 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 				      struct btrfs_shared_data_ref);
1260 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 		struct btrfs_extent_ref_v0 *ref0;
1264 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 				      struct btrfs_extent_ref_v0);
1266 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 	} else {
1269 		BUG();
1270 	}
1271 
1272 	BUG_ON(num_refs < refs_to_drop);
1273 	num_refs -= refs_to_drop;
1274 
1275 	if (num_refs == 0) {
1276 		ret = btrfs_del_item(trans, root, path);
1277 	} else {
1278 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 		else {
1284 			struct btrfs_extent_ref_v0 *ref0;
1285 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 					struct btrfs_extent_ref_v0);
1287 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 		}
1289 #endif
1290 		btrfs_mark_buffer_dirty(leaf);
1291 	}
1292 	return ret;
1293 }
1294 
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 					  struct btrfs_path *path,
1297 					  struct btrfs_extent_inline_ref *iref)
1298 {
1299 	struct btrfs_key key;
1300 	struct extent_buffer *leaf;
1301 	struct btrfs_extent_data_ref *ref1;
1302 	struct btrfs_shared_data_ref *ref2;
1303 	u32 num_refs = 0;
1304 
1305 	leaf = path->nodes[0];
1306 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 	if (iref) {
1308 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 		    BTRFS_EXTENT_DATA_REF_KEY) {
1310 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 		} else {
1313 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 		}
1316 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 				      struct btrfs_extent_data_ref);
1319 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 				      struct btrfs_shared_data_ref);
1323 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 		struct btrfs_extent_ref_v0 *ref0;
1327 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 				      struct btrfs_extent_ref_v0);
1329 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 	} else {
1332 		WARN_ON(1);
1333 	}
1334 	return num_refs;
1335 }
1336 
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 					  struct btrfs_root *root,
1339 					  struct btrfs_path *path,
1340 					  u64 bytenr, u64 parent,
1341 					  u64 root_objectid)
1342 {
1343 	struct btrfs_key key;
1344 	int ret;
1345 
1346 	key.objectid = bytenr;
1347 	if (parent) {
1348 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 		key.offset = parent;
1350 	} else {
1351 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 		key.offset = root_objectid;
1353 	}
1354 
1355 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 	if (ret > 0)
1357 		ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 	if (ret == -ENOENT && parent) {
1360 		btrfs_release_path(path);
1361 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 		if (ret > 0)
1364 			ret = -ENOENT;
1365 	}
1366 #endif
1367 	return ret;
1368 }
1369 
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 	btrfs_release_path(path);
1390 	return ret;
1391 }
1392 
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 	int type;
1396 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 		if (parent > 0)
1398 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 		else
1400 			type = BTRFS_TREE_BLOCK_REF_KEY;
1401 	} else {
1402 		if (parent > 0)
1403 			type = BTRFS_SHARED_DATA_REF_KEY;
1404 		else
1405 			type = BTRFS_EXTENT_DATA_REF_KEY;
1406 	}
1407 	return type;
1408 }
1409 
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 			 struct btrfs_key *key)
1412 
1413 {
1414 	for (; level < BTRFS_MAX_LEVEL; level++) {
1415 		if (!path->nodes[level])
1416 			break;
1417 		if (path->slots[level] + 1 >=
1418 		    btrfs_header_nritems(path->nodes[level]))
1419 			continue;
1420 		if (level == 0)
1421 			btrfs_item_key_to_cpu(path->nodes[level], key,
1422 					      path->slots[level] + 1);
1423 		else
1424 			btrfs_node_key_to_cpu(path->nodes[level], key,
1425 					      path->slots[level] + 1);
1426 		return 0;
1427 	}
1428 	return 1;
1429 }
1430 
1431 /*
1432  * look for inline back ref. if back ref is found, *ref_ret is set
1433  * to the address of inline back ref, and 0 is returned.
1434  *
1435  * if back ref isn't found, *ref_ret is set to the address where it
1436  * should be inserted, and -ENOENT is returned.
1437  *
1438  * if insert is true and there are too many inline back refs, the path
1439  * points to the extent item, and -EAGAIN is returned.
1440  *
1441  * NOTE: inline back refs are ordered in the same way that back ref
1442  *	 items in the tree are ordered.
1443  */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 				 struct btrfs_root *root,
1447 				 struct btrfs_path *path,
1448 				 struct btrfs_extent_inline_ref **ref_ret,
1449 				 u64 bytenr, u64 num_bytes,
1450 				 u64 parent, u64 root_objectid,
1451 				 u64 owner, u64 offset, int insert)
1452 {
1453 	struct btrfs_key key;
1454 	struct extent_buffer *leaf;
1455 	struct btrfs_extent_item *ei;
1456 	struct btrfs_extent_inline_ref *iref;
1457 	u64 flags;
1458 	u64 item_size;
1459 	unsigned long ptr;
1460 	unsigned long end;
1461 	int extra_size;
1462 	int type;
1463 	int want;
1464 	int ret;
1465 	int err = 0;
1466 
1467 	key.objectid = bytenr;
1468 	key.type = BTRFS_EXTENT_ITEM_KEY;
1469 	key.offset = num_bytes;
1470 
1471 	want = extent_ref_type(parent, owner);
1472 	if (insert) {
1473 		extra_size = btrfs_extent_inline_ref_size(want);
1474 		path->keep_locks = 1;
1475 	} else
1476 		extra_size = -1;
1477 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1478 	if (ret < 0) {
1479 		err = ret;
1480 		goto out;
1481 	}
1482 	if (ret && !insert) {
1483 		err = -ENOENT;
1484 		goto out;
1485 	}
1486 	BUG_ON(ret); /* Corruption */
1487 
1488 	leaf = path->nodes[0];
1489 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1491 	if (item_size < sizeof(*ei)) {
1492 		if (!insert) {
1493 			err = -ENOENT;
1494 			goto out;
1495 		}
1496 		ret = convert_extent_item_v0(trans, root, path, owner,
1497 					     extra_size);
1498 		if (ret < 0) {
1499 			err = ret;
1500 			goto out;
1501 		}
1502 		leaf = path->nodes[0];
1503 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 	}
1505 #endif
1506 	BUG_ON(item_size < sizeof(*ei));
1507 
1508 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1509 	flags = btrfs_extent_flags(leaf, ei);
1510 
1511 	ptr = (unsigned long)(ei + 1);
1512 	end = (unsigned long)ei + item_size;
1513 
1514 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1515 		ptr += sizeof(struct btrfs_tree_block_info);
1516 		BUG_ON(ptr > end);
1517 	} else {
1518 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 	}
1520 
1521 	err = -ENOENT;
1522 	while (1) {
1523 		if (ptr >= end) {
1524 			WARN_ON(ptr > end);
1525 			break;
1526 		}
1527 		iref = (struct btrfs_extent_inline_ref *)ptr;
1528 		type = btrfs_extent_inline_ref_type(leaf, iref);
1529 		if (want < type)
1530 			break;
1531 		if (want > type) {
1532 			ptr += btrfs_extent_inline_ref_size(type);
1533 			continue;
1534 		}
1535 
1536 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1537 			struct btrfs_extent_data_ref *dref;
1538 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1539 			if (match_extent_data_ref(leaf, dref, root_objectid,
1540 						  owner, offset)) {
1541 				err = 0;
1542 				break;
1543 			}
1544 			if (hash_extent_data_ref_item(leaf, dref) <
1545 			    hash_extent_data_ref(root_objectid, owner, offset))
1546 				break;
1547 		} else {
1548 			u64 ref_offset;
1549 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1550 			if (parent > 0) {
1551 				if (parent == ref_offset) {
1552 					err = 0;
1553 					break;
1554 				}
1555 				if (ref_offset < parent)
1556 					break;
1557 			} else {
1558 				if (root_objectid == ref_offset) {
1559 					err = 0;
1560 					break;
1561 				}
1562 				if (ref_offset < root_objectid)
1563 					break;
1564 			}
1565 		}
1566 		ptr += btrfs_extent_inline_ref_size(type);
1567 	}
1568 	if (err == -ENOENT && insert) {
1569 		if (item_size + extra_size >=
1570 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1571 			err = -EAGAIN;
1572 			goto out;
1573 		}
1574 		/*
1575 		 * To add new inline back ref, we have to make sure
1576 		 * there is no corresponding back ref item.
1577 		 * For simplicity, we just do not add new inline back
1578 		 * ref if there is any kind of item for this block
1579 		 */
1580 		if (find_next_key(path, 0, &key) == 0 &&
1581 		    key.objectid == bytenr &&
1582 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1583 			err = -EAGAIN;
1584 			goto out;
1585 		}
1586 	}
1587 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 out:
1589 	if (insert) {
1590 		path->keep_locks = 0;
1591 		btrfs_unlock_up_safe(path, 1);
1592 	}
1593 	return err;
1594 }
1595 
1596 /*
1597  * helper to add new inline back ref
1598  */
1599 static noinline_for_stack
1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1601 				 struct btrfs_root *root,
1602 				 struct btrfs_path *path,
1603 				 struct btrfs_extent_inline_ref *iref,
1604 				 u64 parent, u64 root_objectid,
1605 				 u64 owner, u64 offset, int refs_to_add,
1606 				 struct btrfs_delayed_extent_op *extent_op)
1607 {
1608 	struct extent_buffer *leaf;
1609 	struct btrfs_extent_item *ei;
1610 	unsigned long ptr;
1611 	unsigned long end;
1612 	unsigned long item_offset;
1613 	u64 refs;
1614 	int size;
1615 	int type;
1616 
1617 	leaf = path->nodes[0];
1618 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1619 	item_offset = (unsigned long)iref - (unsigned long)ei;
1620 
1621 	type = extent_ref_type(parent, owner);
1622 	size = btrfs_extent_inline_ref_size(type);
1623 
1624 	btrfs_extend_item(trans, root, path, size);
1625 
1626 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1627 	refs = btrfs_extent_refs(leaf, ei);
1628 	refs += refs_to_add;
1629 	btrfs_set_extent_refs(leaf, ei, refs);
1630 	if (extent_op)
1631 		__run_delayed_extent_op(extent_op, leaf, ei);
1632 
1633 	ptr = (unsigned long)ei + item_offset;
1634 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1635 	if (ptr < end - size)
1636 		memmove_extent_buffer(leaf, ptr + size, ptr,
1637 				      end - size - ptr);
1638 
1639 	iref = (struct btrfs_extent_inline_ref *)ptr;
1640 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1641 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1642 		struct btrfs_extent_data_ref *dref;
1643 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1644 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1645 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1646 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1647 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1648 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1649 		struct btrfs_shared_data_ref *sref;
1650 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1651 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1652 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1654 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1655 	} else {
1656 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1657 	}
1658 	btrfs_mark_buffer_dirty(leaf);
1659 }
1660 
1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1662 				 struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref **ref_ret,
1665 				 u64 bytenr, u64 num_bytes, u64 parent,
1666 				 u64 root_objectid, u64 owner, u64 offset)
1667 {
1668 	int ret;
1669 
1670 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1671 					   bytenr, num_bytes, parent,
1672 					   root_objectid, owner, offset, 0);
1673 	if (ret != -ENOENT)
1674 		return ret;
1675 
1676 	btrfs_release_path(path);
1677 	*ref_ret = NULL;
1678 
1679 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1680 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 					    root_objectid);
1682 	} else {
1683 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1684 					     root_objectid, owner, offset);
1685 	}
1686 	return ret;
1687 }
1688 
1689 /*
1690  * helper to update/remove inline back ref
1691  */
1692 static noinline_for_stack
1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1694 				  struct btrfs_root *root,
1695 				  struct btrfs_path *path,
1696 				  struct btrfs_extent_inline_ref *iref,
1697 				  int refs_to_mod,
1698 				  struct btrfs_delayed_extent_op *extent_op)
1699 {
1700 	struct extent_buffer *leaf;
1701 	struct btrfs_extent_item *ei;
1702 	struct btrfs_extent_data_ref *dref = NULL;
1703 	struct btrfs_shared_data_ref *sref = NULL;
1704 	unsigned long ptr;
1705 	unsigned long end;
1706 	u32 item_size;
1707 	int size;
1708 	int type;
1709 	u64 refs;
1710 
1711 	leaf = path->nodes[0];
1712 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 	refs = btrfs_extent_refs(leaf, ei);
1714 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1715 	refs += refs_to_mod;
1716 	btrfs_set_extent_refs(leaf, ei, refs);
1717 	if (extent_op)
1718 		__run_delayed_extent_op(extent_op, leaf, ei);
1719 
1720 	type = btrfs_extent_inline_ref_type(leaf, iref);
1721 
1722 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1723 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1724 		refs = btrfs_extent_data_ref_count(leaf, dref);
1725 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1726 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1727 		refs = btrfs_shared_data_ref_count(leaf, sref);
1728 	} else {
1729 		refs = 1;
1730 		BUG_ON(refs_to_mod != -1);
1731 	}
1732 
1733 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1734 	refs += refs_to_mod;
1735 
1736 	if (refs > 0) {
1737 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1738 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1739 		else
1740 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1741 	} else {
1742 		size =  btrfs_extent_inline_ref_size(type);
1743 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1744 		ptr = (unsigned long)iref;
1745 		end = (unsigned long)ei + item_size;
1746 		if (ptr + size < end)
1747 			memmove_extent_buffer(leaf, ptr, ptr + size,
1748 					      end - ptr - size);
1749 		item_size -= size;
1750 		btrfs_truncate_item(trans, root, path, item_size, 1);
1751 	}
1752 	btrfs_mark_buffer_dirty(leaf);
1753 }
1754 
1755 static noinline_for_stack
1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1757 				 struct btrfs_root *root,
1758 				 struct btrfs_path *path,
1759 				 u64 bytenr, u64 num_bytes, u64 parent,
1760 				 u64 root_objectid, u64 owner,
1761 				 u64 offset, int refs_to_add,
1762 				 struct btrfs_delayed_extent_op *extent_op)
1763 {
1764 	struct btrfs_extent_inline_ref *iref;
1765 	int ret;
1766 
1767 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1768 					   bytenr, num_bytes, parent,
1769 					   root_objectid, owner, offset, 1);
1770 	if (ret == 0) {
1771 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1772 		update_inline_extent_backref(trans, root, path, iref,
1773 					     refs_to_add, extent_op);
1774 	} else if (ret == -ENOENT) {
1775 		setup_inline_extent_backref(trans, root, path, iref, parent,
1776 					    root_objectid, owner, offset,
1777 					    refs_to_add, extent_op);
1778 		ret = 0;
1779 	}
1780 	return ret;
1781 }
1782 
1783 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1784 				 struct btrfs_root *root,
1785 				 struct btrfs_path *path,
1786 				 u64 bytenr, u64 parent, u64 root_objectid,
1787 				 u64 owner, u64 offset, int refs_to_add)
1788 {
1789 	int ret;
1790 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1791 		BUG_ON(refs_to_add != 1);
1792 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1793 					    parent, root_objectid);
1794 	} else {
1795 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1796 					     parent, root_objectid,
1797 					     owner, offset, refs_to_add);
1798 	}
1799 	return ret;
1800 }
1801 
1802 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1803 				 struct btrfs_root *root,
1804 				 struct btrfs_path *path,
1805 				 struct btrfs_extent_inline_ref *iref,
1806 				 int refs_to_drop, int is_data)
1807 {
1808 	int ret = 0;
1809 
1810 	BUG_ON(!is_data && refs_to_drop != 1);
1811 	if (iref) {
1812 		update_inline_extent_backref(trans, root, path, iref,
1813 					     -refs_to_drop, NULL);
1814 	} else if (is_data) {
1815 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1816 	} else {
1817 		ret = btrfs_del_item(trans, root, path);
1818 	}
1819 	return ret;
1820 }
1821 
1822 static int btrfs_issue_discard(struct block_device *bdev,
1823 				u64 start, u64 len)
1824 {
1825 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 }
1827 
1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1829 				u64 num_bytes, u64 *actual_bytes)
1830 {
1831 	int ret;
1832 	u64 discarded_bytes = 0;
1833 	struct btrfs_bio *bbio = NULL;
1834 
1835 
1836 	/* Tell the block device(s) that the sectors can be discarded */
1837 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1838 			      bytenr, &num_bytes, &bbio, 0);
1839 	/* Error condition is -ENOMEM */
1840 	if (!ret) {
1841 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1842 		int i;
1843 
1844 
1845 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1846 			if (!stripe->dev->can_discard)
1847 				continue;
1848 
1849 			ret = btrfs_issue_discard(stripe->dev->bdev,
1850 						  stripe->physical,
1851 						  stripe->length);
1852 			if (!ret)
1853 				discarded_bytes += stripe->length;
1854 			else if (ret != -EOPNOTSUPP)
1855 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856 
1857 			/*
1858 			 * Just in case we get back EOPNOTSUPP for some reason,
1859 			 * just ignore the return value so we don't screw up
1860 			 * people calling discard_extent.
1861 			 */
1862 			ret = 0;
1863 		}
1864 		kfree(bbio);
1865 	}
1866 
1867 	if (actual_bytes)
1868 		*actual_bytes = discarded_bytes;
1869 
1870 
1871 	return ret;
1872 }
1873 
1874 /* Can return -ENOMEM */
1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1876 			 struct btrfs_root *root,
1877 			 u64 bytenr, u64 num_bytes, u64 parent,
1878 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 {
1880 	int ret;
1881 	struct btrfs_fs_info *fs_info = root->fs_info;
1882 
1883 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1884 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1885 
1886 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1887 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1888 					num_bytes,
1889 					parent, root_objectid, (int)owner,
1890 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1891 	} else {
1892 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1893 					num_bytes,
1894 					parent, root_objectid, owner, offset,
1895 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1896 	}
1897 	return ret;
1898 }
1899 
1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1901 				  struct btrfs_root *root,
1902 				  u64 bytenr, u64 num_bytes,
1903 				  u64 parent, u64 root_objectid,
1904 				  u64 owner, u64 offset, int refs_to_add,
1905 				  struct btrfs_delayed_extent_op *extent_op)
1906 {
1907 	struct btrfs_path *path;
1908 	struct extent_buffer *leaf;
1909 	struct btrfs_extent_item *item;
1910 	u64 refs;
1911 	int ret;
1912 	int err = 0;
1913 
1914 	path = btrfs_alloc_path();
1915 	if (!path)
1916 		return -ENOMEM;
1917 
1918 	path->reada = 1;
1919 	path->leave_spinning = 1;
1920 	/* this will setup the path even if it fails to insert the back ref */
1921 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1922 					   path, bytenr, num_bytes, parent,
1923 					   root_objectid, owner, offset,
1924 					   refs_to_add, extent_op);
1925 	if (ret == 0)
1926 		goto out;
1927 
1928 	if (ret != -EAGAIN) {
1929 		err = ret;
1930 		goto out;
1931 	}
1932 
1933 	leaf = path->nodes[0];
1934 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1935 	refs = btrfs_extent_refs(leaf, item);
1936 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1937 	if (extent_op)
1938 		__run_delayed_extent_op(extent_op, leaf, item);
1939 
1940 	btrfs_mark_buffer_dirty(leaf);
1941 	btrfs_release_path(path);
1942 
1943 	path->reada = 1;
1944 	path->leave_spinning = 1;
1945 
1946 	/* now insert the actual backref */
1947 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1948 				    path, bytenr, parent, root_objectid,
1949 				    owner, offset, refs_to_add);
1950 	if (ret)
1951 		btrfs_abort_transaction(trans, root, ret);
1952 out:
1953 	btrfs_free_path(path);
1954 	return err;
1955 }
1956 
1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1958 				struct btrfs_root *root,
1959 				struct btrfs_delayed_ref_node *node,
1960 				struct btrfs_delayed_extent_op *extent_op,
1961 				int insert_reserved)
1962 {
1963 	int ret = 0;
1964 	struct btrfs_delayed_data_ref *ref;
1965 	struct btrfs_key ins;
1966 	u64 parent = 0;
1967 	u64 ref_root = 0;
1968 	u64 flags = 0;
1969 
1970 	ins.objectid = node->bytenr;
1971 	ins.offset = node->num_bytes;
1972 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1973 
1974 	ref = btrfs_delayed_node_to_data_ref(node);
1975 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1976 		parent = ref->parent;
1977 	else
1978 		ref_root = ref->root;
1979 
1980 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1981 		if (extent_op) {
1982 			BUG_ON(extent_op->update_key);
1983 			flags |= extent_op->flags_to_set;
1984 		}
1985 		ret = alloc_reserved_file_extent(trans, root,
1986 						 parent, ref_root, flags,
1987 						 ref->objectid, ref->offset,
1988 						 &ins, node->ref_mod);
1989 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1990 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1991 					     node->num_bytes, parent,
1992 					     ref_root, ref->objectid,
1993 					     ref->offset, node->ref_mod,
1994 					     extent_op);
1995 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1996 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1997 					  node->num_bytes, parent,
1998 					  ref_root, ref->objectid,
1999 					  ref->offset, node->ref_mod,
2000 					  extent_op);
2001 	} else {
2002 		BUG();
2003 	}
2004 	return ret;
2005 }
2006 
2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2008 				    struct extent_buffer *leaf,
2009 				    struct btrfs_extent_item *ei)
2010 {
2011 	u64 flags = btrfs_extent_flags(leaf, ei);
2012 	if (extent_op->update_flags) {
2013 		flags |= extent_op->flags_to_set;
2014 		btrfs_set_extent_flags(leaf, ei, flags);
2015 	}
2016 
2017 	if (extent_op->update_key) {
2018 		struct btrfs_tree_block_info *bi;
2019 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2020 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2021 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2022 	}
2023 }
2024 
2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2026 				 struct btrfs_root *root,
2027 				 struct btrfs_delayed_ref_node *node,
2028 				 struct btrfs_delayed_extent_op *extent_op)
2029 {
2030 	struct btrfs_key key;
2031 	struct btrfs_path *path;
2032 	struct btrfs_extent_item *ei;
2033 	struct extent_buffer *leaf;
2034 	u32 item_size;
2035 	int ret;
2036 	int err = 0;
2037 
2038 	if (trans->aborted)
2039 		return 0;
2040 
2041 	path = btrfs_alloc_path();
2042 	if (!path)
2043 		return -ENOMEM;
2044 
2045 	key.objectid = node->bytenr;
2046 	key.type = BTRFS_EXTENT_ITEM_KEY;
2047 	key.offset = node->num_bytes;
2048 
2049 	path->reada = 1;
2050 	path->leave_spinning = 1;
2051 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2052 				path, 0, 1);
2053 	if (ret < 0) {
2054 		err = ret;
2055 		goto out;
2056 	}
2057 	if (ret > 0) {
2058 		err = -EIO;
2059 		goto out;
2060 	}
2061 
2062 	leaf = path->nodes[0];
2063 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2065 	if (item_size < sizeof(*ei)) {
2066 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2067 					     path, (u64)-1, 0);
2068 		if (ret < 0) {
2069 			err = ret;
2070 			goto out;
2071 		}
2072 		leaf = path->nodes[0];
2073 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 	}
2075 #endif
2076 	BUG_ON(item_size < sizeof(*ei));
2077 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2078 	__run_delayed_extent_op(extent_op, leaf, ei);
2079 
2080 	btrfs_mark_buffer_dirty(leaf);
2081 out:
2082 	btrfs_free_path(path);
2083 	return err;
2084 }
2085 
2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2087 				struct btrfs_root *root,
2088 				struct btrfs_delayed_ref_node *node,
2089 				struct btrfs_delayed_extent_op *extent_op,
2090 				int insert_reserved)
2091 {
2092 	int ret = 0;
2093 	struct btrfs_delayed_tree_ref *ref;
2094 	struct btrfs_key ins;
2095 	u64 parent = 0;
2096 	u64 ref_root = 0;
2097 
2098 	ins.objectid = node->bytenr;
2099 	ins.offset = node->num_bytes;
2100 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2101 
2102 	ref = btrfs_delayed_node_to_tree_ref(node);
2103 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2104 		parent = ref->parent;
2105 	else
2106 		ref_root = ref->root;
2107 
2108 	BUG_ON(node->ref_mod != 1);
2109 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2110 		BUG_ON(!extent_op || !extent_op->update_flags ||
2111 		       !extent_op->update_key);
2112 		ret = alloc_reserved_tree_block(trans, root,
2113 						parent, ref_root,
2114 						extent_op->flags_to_set,
2115 						&extent_op->key,
2116 						ref->level, &ins);
2117 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2118 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2119 					     node->num_bytes, parent, ref_root,
2120 					     ref->level, 0, 1, extent_op);
2121 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2122 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2123 					  node->num_bytes, parent, ref_root,
2124 					  ref->level, 0, 1, extent_op);
2125 	} else {
2126 		BUG();
2127 	}
2128 	return ret;
2129 }
2130 
2131 /* helper function to actually process a single delayed ref entry */
2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2133 			       struct btrfs_root *root,
2134 			       struct btrfs_delayed_ref_node *node,
2135 			       struct btrfs_delayed_extent_op *extent_op,
2136 			       int insert_reserved)
2137 {
2138 	int ret = 0;
2139 
2140 	if (trans->aborted)
2141 		return 0;
2142 
2143 	if (btrfs_delayed_ref_is_head(node)) {
2144 		struct btrfs_delayed_ref_head *head;
2145 		/*
2146 		 * we've hit the end of the chain and we were supposed
2147 		 * to insert this extent into the tree.  But, it got
2148 		 * deleted before we ever needed to insert it, so all
2149 		 * we have to do is clean up the accounting
2150 		 */
2151 		BUG_ON(extent_op);
2152 		head = btrfs_delayed_node_to_head(node);
2153 		if (insert_reserved) {
2154 			btrfs_pin_extent(root, node->bytenr,
2155 					 node->num_bytes, 1);
2156 			if (head->is_data) {
2157 				ret = btrfs_del_csums(trans, root,
2158 						      node->bytenr,
2159 						      node->num_bytes);
2160 			}
2161 		}
2162 		mutex_unlock(&head->mutex);
2163 		return ret;
2164 	}
2165 
2166 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2167 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2168 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2169 					   insert_reserved);
2170 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2171 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2172 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2173 					   insert_reserved);
2174 	else
2175 		BUG();
2176 	return ret;
2177 }
2178 
2179 static noinline struct btrfs_delayed_ref_node *
2180 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2181 {
2182 	struct rb_node *node;
2183 	struct btrfs_delayed_ref_node *ref;
2184 	int action = BTRFS_ADD_DELAYED_REF;
2185 again:
2186 	/*
2187 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2188 	 * this prevents ref count from going down to zero when
2189 	 * there still are pending delayed ref.
2190 	 */
2191 	node = rb_prev(&head->node.rb_node);
2192 	while (1) {
2193 		if (!node)
2194 			break;
2195 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2196 				rb_node);
2197 		if (ref->bytenr != head->node.bytenr)
2198 			break;
2199 		if (ref->action == action)
2200 			return ref;
2201 		node = rb_prev(node);
2202 	}
2203 	if (action == BTRFS_ADD_DELAYED_REF) {
2204 		action = BTRFS_DROP_DELAYED_REF;
2205 		goto again;
2206 	}
2207 	return NULL;
2208 }
2209 
2210 /*
2211  * Returns 0 on success or if called with an already aborted transaction.
2212  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2213  */
2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2215 				       struct btrfs_root *root,
2216 				       struct list_head *cluster)
2217 {
2218 	struct btrfs_delayed_ref_root *delayed_refs;
2219 	struct btrfs_delayed_ref_node *ref;
2220 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2221 	struct btrfs_delayed_extent_op *extent_op;
2222 	struct btrfs_fs_info *fs_info = root->fs_info;
2223 	int ret;
2224 	int count = 0;
2225 	int must_insert_reserved = 0;
2226 
2227 	delayed_refs = &trans->transaction->delayed_refs;
2228 	while (1) {
2229 		if (!locked_ref) {
2230 			/* pick a new head ref from the cluster list */
2231 			if (list_empty(cluster))
2232 				break;
2233 
2234 			locked_ref = list_entry(cluster->next,
2235 				     struct btrfs_delayed_ref_head, cluster);
2236 
2237 			/* grab the lock that says we are going to process
2238 			 * all the refs for this head */
2239 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2240 
2241 			/*
2242 			 * we may have dropped the spin lock to get the head
2243 			 * mutex lock, and that might have given someone else
2244 			 * time to free the head.  If that's true, it has been
2245 			 * removed from our list and we can move on.
2246 			 */
2247 			if (ret == -EAGAIN) {
2248 				locked_ref = NULL;
2249 				count++;
2250 				continue;
2251 			}
2252 		}
2253 
2254 		/*
2255 		 * We need to try and merge add/drops of the same ref since we
2256 		 * can run into issues with relocate dropping the implicit ref
2257 		 * and then it being added back again before the drop can
2258 		 * finish.  If we merged anything we need to re-loop so we can
2259 		 * get a good ref.
2260 		 */
2261 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2262 					 locked_ref);
2263 
2264 		/*
2265 		 * locked_ref is the head node, so we have to go one
2266 		 * node back for any delayed ref updates
2267 		 */
2268 		ref = select_delayed_ref(locked_ref);
2269 
2270 		if (ref && ref->seq &&
2271 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2272 			/*
2273 			 * there are still refs with lower seq numbers in the
2274 			 * process of being added. Don't run this ref yet.
2275 			 */
2276 			list_del_init(&locked_ref->cluster);
2277 			mutex_unlock(&locked_ref->mutex);
2278 			locked_ref = NULL;
2279 			delayed_refs->num_heads_ready++;
2280 			spin_unlock(&delayed_refs->lock);
2281 			cond_resched();
2282 			spin_lock(&delayed_refs->lock);
2283 			continue;
2284 		}
2285 
2286 		/*
2287 		 * record the must insert reserved flag before we
2288 		 * drop the spin lock.
2289 		 */
2290 		must_insert_reserved = locked_ref->must_insert_reserved;
2291 		locked_ref->must_insert_reserved = 0;
2292 
2293 		extent_op = locked_ref->extent_op;
2294 		locked_ref->extent_op = NULL;
2295 
2296 		if (!ref) {
2297 			/* All delayed refs have been processed, Go ahead
2298 			 * and send the head node to run_one_delayed_ref,
2299 			 * so that any accounting fixes can happen
2300 			 */
2301 			ref = &locked_ref->node;
2302 
2303 			if (extent_op && must_insert_reserved) {
2304 				kfree(extent_op);
2305 				extent_op = NULL;
2306 			}
2307 
2308 			if (extent_op) {
2309 				spin_unlock(&delayed_refs->lock);
2310 
2311 				ret = run_delayed_extent_op(trans, root,
2312 							    ref, extent_op);
2313 				kfree(extent_op);
2314 
2315 				if (ret) {
2316 					printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2317 					spin_lock(&delayed_refs->lock);
2318 					return ret;
2319 				}
2320 
2321 				goto next;
2322 			}
2323 
2324 			list_del_init(&locked_ref->cluster);
2325 			locked_ref = NULL;
2326 		}
2327 
2328 		ref->in_tree = 0;
2329 		rb_erase(&ref->rb_node, &delayed_refs->root);
2330 		delayed_refs->num_entries--;
2331 		if (locked_ref) {
2332 			/*
2333 			 * when we play the delayed ref, also correct the
2334 			 * ref_mod on head
2335 			 */
2336 			switch (ref->action) {
2337 			case BTRFS_ADD_DELAYED_REF:
2338 			case BTRFS_ADD_DELAYED_EXTENT:
2339 				locked_ref->node.ref_mod -= ref->ref_mod;
2340 				break;
2341 			case BTRFS_DROP_DELAYED_REF:
2342 				locked_ref->node.ref_mod += ref->ref_mod;
2343 				break;
2344 			default:
2345 				WARN_ON(1);
2346 			}
2347 		}
2348 		spin_unlock(&delayed_refs->lock);
2349 
2350 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2351 					  must_insert_reserved);
2352 
2353 		btrfs_put_delayed_ref(ref);
2354 		kfree(extent_op);
2355 		count++;
2356 
2357 		if (ret) {
2358 			printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2359 			spin_lock(&delayed_refs->lock);
2360 			return ret;
2361 		}
2362 
2363 next:
2364 		do_chunk_alloc(trans, fs_info->extent_root,
2365 			       2 * 1024 * 1024,
2366 			       btrfs_get_alloc_profile(root, 0),
2367 			       CHUNK_ALLOC_NO_FORCE);
2368 		cond_resched();
2369 		spin_lock(&delayed_refs->lock);
2370 	}
2371 	return count;
2372 }
2373 
2374 #ifdef SCRAMBLE_DELAYED_REFS
2375 /*
2376  * Normally delayed refs get processed in ascending bytenr order. This
2377  * correlates in most cases to the order added. To expose dependencies on this
2378  * order, we start to process the tree in the middle instead of the beginning
2379  */
2380 static u64 find_middle(struct rb_root *root)
2381 {
2382 	struct rb_node *n = root->rb_node;
2383 	struct btrfs_delayed_ref_node *entry;
2384 	int alt = 1;
2385 	u64 middle;
2386 	u64 first = 0, last = 0;
2387 
2388 	n = rb_first(root);
2389 	if (n) {
2390 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2391 		first = entry->bytenr;
2392 	}
2393 	n = rb_last(root);
2394 	if (n) {
2395 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2396 		last = entry->bytenr;
2397 	}
2398 	n = root->rb_node;
2399 
2400 	while (n) {
2401 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2402 		WARN_ON(!entry->in_tree);
2403 
2404 		middle = entry->bytenr;
2405 
2406 		if (alt)
2407 			n = n->rb_left;
2408 		else
2409 			n = n->rb_right;
2410 
2411 		alt = 1 - alt;
2412 	}
2413 	return middle;
2414 }
2415 #endif
2416 
2417 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2418 					 struct btrfs_fs_info *fs_info)
2419 {
2420 	struct qgroup_update *qgroup_update;
2421 	int ret = 0;
2422 
2423 	if (list_empty(&trans->qgroup_ref_list) !=
2424 	    !trans->delayed_ref_elem.seq) {
2425 		/* list without seq or seq without list */
2426 		printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2427 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2428 			trans->delayed_ref_elem.seq);
2429 		BUG();
2430 	}
2431 
2432 	if (!trans->delayed_ref_elem.seq)
2433 		return 0;
2434 
2435 	while (!list_empty(&trans->qgroup_ref_list)) {
2436 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2437 						 struct qgroup_update, list);
2438 		list_del(&qgroup_update->list);
2439 		if (!ret)
2440 			ret = btrfs_qgroup_account_ref(
2441 					trans, fs_info, qgroup_update->node,
2442 					qgroup_update->extent_op);
2443 		kfree(qgroup_update);
2444 	}
2445 
2446 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2447 
2448 	return ret;
2449 }
2450 
2451 /*
2452  * this starts processing the delayed reference count updates and
2453  * extent insertions we have queued up so far.  count can be
2454  * 0, which means to process everything in the tree at the start
2455  * of the run (but not newly added entries), or it can be some target
2456  * number you'd like to process.
2457  *
2458  * Returns 0 on success or if called with an aborted transaction
2459  * Returns <0 on error and aborts the transaction
2460  */
2461 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2462 			   struct btrfs_root *root, unsigned long count)
2463 {
2464 	struct rb_node *node;
2465 	struct btrfs_delayed_ref_root *delayed_refs;
2466 	struct btrfs_delayed_ref_node *ref;
2467 	struct list_head cluster;
2468 	int ret;
2469 	u64 delayed_start;
2470 	int run_all = count == (unsigned long)-1;
2471 	int run_most = 0;
2472 	int loops;
2473 
2474 	/* We'll clean this up in btrfs_cleanup_transaction */
2475 	if (trans->aborted)
2476 		return 0;
2477 
2478 	if (root == root->fs_info->extent_root)
2479 		root = root->fs_info->tree_root;
2480 
2481 	do_chunk_alloc(trans, root->fs_info->extent_root,
2482 		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2483 		       CHUNK_ALLOC_NO_FORCE);
2484 
2485 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2486 
2487 	delayed_refs = &trans->transaction->delayed_refs;
2488 	INIT_LIST_HEAD(&cluster);
2489 again:
2490 	loops = 0;
2491 	spin_lock(&delayed_refs->lock);
2492 
2493 #ifdef SCRAMBLE_DELAYED_REFS
2494 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2495 #endif
2496 
2497 	if (count == 0) {
2498 		count = delayed_refs->num_entries * 2;
2499 		run_most = 1;
2500 	}
2501 	while (1) {
2502 		if (!(run_all || run_most) &&
2503 		    delayed_refs->num_heads_ready < 64)
2504 			break;
2505 
2506 		/*
2507 		 * go find something we can process in the rbtree.  We start at
2508 		 * the beginning of the tree, and then build a cluster
2509 		 * of refs to process starting at the first one we are able to
2510 		 * lock
2511 		 */
2512 		delayed_start = delayed_refs->run_delayed_start;
2513 		ret = btrfs_find_ref_cluster(trans, &cluster,
2514 					     delayed_refs->run_delayed_start);
2515 		if (ret)
2516 			break;
2517 
2518 		ret = run_clustered_refs(trans, root, &cluster);
2519 		if (ret < 0) {
2520 			spin_unlock(&delayed_refs->lock);
2521 			btrfs_abort_transaction(trans, root, ret);
2522 			return ret;
2523 		}
2524 
2525 		count -= min_t(unsigned long, ret, count);
2526 
2527 		if (count == 0)
2528 			break;
2529 
2530 		if (delayed_start >= delayed_refs->run_delayed_start) {
2531 			if (loops == 0) {
2532 				/*
2533 				 * btrfs_find_ref_cluster looped. let's do one
2534 				 * more cycle. if we don't run any delayed ref
2535 				 * during that cycle (because we can't because
2536 				 * all of them are blocked), bail out.
2537 				 */
2538 				loops = 1;
2539 			} else {
2540 				/*
2541 				 * no runnable refs left, stop trying
2542 				 */
2543 				BUG_ON(run_all);
2544 				break;
2545 			}
2546 		}
2547 		if (ret) {
2548 			/* refs were run, let's reset staleness detection */
2549 			loops = 0;
2550 		}
2551 	}
2552 
2553 	if (run_all) {
2554 		node = rb_first(&delayed_refs->root);
2555 		if (!node)
2556 			goto out;
2557 		count = (unsigned long)-1;
2558 
2559 		while (node) {
2560 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2561 				       rb_node);
2562 			if (btrfs_delayed_ref_is_head(ref)) {
2563 				struct btrfs_delayed_ref_head *head;
2564 
2565 				head = btrfs_delayed_node_to_head(ref);
2566 				atomic_inc(&ref->refs);
2567 
2568 				spin_unlock(&delayed_refs->lock);
2569 				/*
2570 				 * Mutex was contended, block until it's
2571 				 * released and try again
2572 				 */
2573 				mutex_lock(&head->mutex);
2574 				mutex_unlock(&head->mutex);
2575 
2576 				btrfs_put_delayed_ref(ref);
2577 				cond_resched();
2578 				goto again;
2579 			}
2580 			node = rb_next(node);
2581 		}
2582 		spin_unlock(&delayed_refs->lock);
2583 		schedule_timeout(1);
2584 		goto again;
2585 	}
2586 out:
2587 	spin_unlock(&delayed_refs->lock);
2588 	assert_qgroups_uptodate(trans);
2589 	return 0;
2590 }
2591 
2592 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2593 				struct btrfs_root *root,
2594 				u64 bytenr, u64 num_bytes, u64 flags,
2595 				int is_data)
2596 {
2597 	struct btrfs_delayed_extent_op *extent_op;
2598 	int ret;
2599 
2600 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2601 	if (!extent_op)
2602 		return -ENOMEM;
2603 
2604 	extent_op->flags_to_set = flags;
2605 	extent_op->update_flags = 1;
2606 	extent_op->update_key = 0;
2607 	extent_op->is_data = is_data ? 1 : 0;
2608 
2609 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2610 					  num_bytes, extent_op);
2611 	if (ret)
2612 		kfree(extent_op);
2613 	return ret;
2614 }
2615 
2616 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2617 				      struct btrfs_root *root,
2618 				      struct btrfs_path *path,
2619 				      u64 objectid, u64 offset, u64 bytenr)
2620 {
2621 	struct btrfs_delayed_ref_head *head;
2622 	struct btrfs_delayed_ref_node *ref;
2623 	struct btrfs_delayed_data_ref *data_ref;
2624 	struct btrfs_delayed_ref_root *delayed_refs;
2625 	struct rb_node *node;
2626 	int ret = 0;
2627 
2628 	ret = -ENOENT;
2629 	delayed_refs = &trans->transaction->delayed_refs;
2630 	spin_lock(&delayed_refs->lock);
2631 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2632 	if (!head)
2633 		goto out;
2634 
2635 	if (!mutex_trylock(&head->mutex)) {
2636 		atomic_inc(&head->node.refs);
2637 		spin_unlock(&delayed_refs->lock);
2638 
2639 		btrfs_release_path(path);
2640 
2641 		/*
2642 		 * Mutex was contended, block until it's released and let
2643 		 * caller try again
2644 		 */
2645 		mutex_lock(&head->mutex);
2646 		mutex_unlock(&head->mutex);
2647 		btrfs_put_delayed_ref(&head->node);
2648 		return -EAGAIN;
2649 	}
2650 
2651 	node = rb_prev(&head->node.rb_node);
2652 	if (!node)
2653 		goto out_unlock;
2654 
2655 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2656 
2657 	if (ref->bytenr != bytenr)
2658 		goto out_unlock;
2659 
2660 	ret = 1;
2661 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2662 		goto out_unlock;
2663 
2664 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2665 
2666 	node = rb_prev(node);
2667 	if (node) {
2668 		int seq = ref->seq;
2669 
2670 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2671 		if (ref->bytenr == bytenr && ref->seq == seq)
2672 			goto out_unlock;
2673 	}
2674 
2675 	if (data_ref->root != root->root_key.objectid ||
2676 	    data_ref->objectid != objectid || data_ref->offset != offset)
2677 		goto out_unlock;
2678 
2679 	ret = 0;
2680 out_unlock:
2681 	mutex_unlock(&head->mutex);
2682 out:
2683 	spin_unlock(&delayed_refs->lock);
2684 	return ret;
2685 }
2686 
2687 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2688 					struct btrfs_root *root,
2689 					struct btrfs_path *path,
2690 					u64 objectid, u64 offset, u64 bytenr)
2691 {
2692 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2693 	struct extent_buffer *leaf;
2694 	struct btrfs_extent_data_ref *ref;
2695 	struct btrfs_extent_inline_ref *iref;
2696 	struct btrfs_extent_item *ei;
2697 	struct btrfs_key key;
2698 	u32 item_size;
2699 	int ret;
2700 
2701 	key.objectid = bytenr;
2702 	key.offset = (u64)-1;
2703 	key.type = BTRFS_EXTENT_ITEM_KEY;
2704 
2705 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2706 	if (ret < 0)
2707 		goto out;
2708 	BUG_ON(ret == 0); /* Corruption */
2709 
2710 	ret = -ENOENT;
2711 	if (path->slots[0] == 0)
2712 		goto out;
2713 
2714 	path->slots[0]--;
2715 	leaf = path->nodes[0];
2716 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2717 
2718 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2719 		goto out;
2720 
2721 	ret = 1;
2722 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2723 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2724 	if (item_size < sizeof(*ei)) {
2725 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2726 		goto out;
2727 	}
2728 #endif
2729 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2730 
2731 	if (item_size != sizeof(*ei) +
2732 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2733 		goto out;
2734 
2735 	if (btrfs_extent_generation(leaf, ei) <=
2736 	    btrfs_root_last_snapshot(&root->root_item))
2737 		goto out;
2738 
2739 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2740 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2741 	    BTRFS_EXTENT_DATA_REF_KEY)
2742 		goto out;
2743 
2744 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2745 	if (btrfs_extent_refs(leaf, ei) !=
2746 	    btrfs_extent_data_ref_count(leaf, ref) ||
2747 	    btrfs_extent_data_ref_root(leaf, ref) !=
2748 	    root->root_key.objectid ||
2749 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2750 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2751 		goto out;
2752 
2753 	ret = 0;
2754 out:
2755 	return ret;
2756 }
2757 
2758 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2759 			  struct btrfs_root *root,
2760 			  u64 objectid, u64 offset, u64 bytenr)
2761 {
2762 	struct btrfs_path *path;
2763 	int ret;
2764 	int ret2;
2765 
2766 	path = btrfs_alloc_path();
2767 	if (!path)
2768 		return -ENOENT;
2769 
2770 	do {
2771 		ret = check_committed_ref(trans, root, path, objectid,
2772 					  offset, bytenr);
2773 		if (ret && ret != -ENOENT)
2774 			goto out;
2775 
2776 		ret2 = check_delayed_ref(trans, root, path, objectid,
2777 					 offset, bytenr);
2778 	} while (ret2 == -EAGAIN);
2779 
2780 	if (ret2 && ret2 != -ENOENT) {
2781 		ret = ret2;
2782 		goto out;
2783 	}
2784 
2785 	if (ret != -ENOENT || ret2 != -ENOENT)
2786 		ret = 0;
2787 out:
2788 	btrfs_free_path(path);
2789 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2790 		WARN_ON(ret > 0);
2791 	return ret;
2792 }
2793 
2794 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2795 			   struct btrfs_root *root,
2796 			   struct extent_buffer *buf,
2797 			   int full_backref, int inc, int for_cow)
2798 {
2799 	u64 bytenr;
2800 	u64 num_bytes;
2801 	u64 parent;
2802 	u64 ref_root;
2803 	u32 nritems;
2804 	struct btrfs_key key;
2805 	struct btrfs_file_extent_item *fi;
2806 	int i;
2807 	int level;
2808 	int ret = 0;
2809 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2810 			    u64, u64, u64, u64, u64, u64, int);
2811 
2812 	ref_root = btrfs_header_owner(buf);
2813 	nritems = btrfs_header_nritems(buf);
2814 	level = btrfs_header_level(buf);
2815 
2816 	if (!root->ref_cows && level == 0)
2817 		return 0;
2818 
2819 	if (inc)
2820 		process_func = btrfs_inc_extent_ref;
2821 	else
2822 		process_func = btrfs_free_extent;
2823 
2824 	if (full_backref)
2825 		parent = buf->start;
2826 	else
2827 		parent = 0;
2828 
2829 	for (i = 0; i < nritems; i++) {
2830 		if (level == 0) {
2831 			btrfs_item_key_to_cpu(buf, &key, i);
2832 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2833 				continue;
2834 			fi = btrfs_item_ptr(buf, i,
2835 					    struct btrfs_file_extent_item);
2836 			if (btrfs_file_extent_type(buf, fi) ==
2837 			    BTRFS_FILE_EXTENT_INLINE)
2838 				continue;
2839 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2840 			if (bytenr == 0)
2841 				continue;
2842 
2843 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2844 			key.offset -= btrfs_file_extent_offset(buf, fi);
2845 			ret = process_func(trans, root, bytenr, num_bytes,
2846 					   parent, ref_root, key.objectid,
2847 					   key.offset, for_cow);
2848 			if (ret)
2849 				goto fail;
2850 		} else {
2851 			bytenr = btrfs_node_blockptr(buf, i);
2852 			num_bytes = btrfs_level_size(root, level - 1);
2853 			ret = process_func(trans, root, bytenr, num_bytes,
2854 					   parent, ref_root, level - 1, 0,
2855 					   for_cow);
2856 			if (ret)
2857 				goto fail;
2858 		}
2859 	}
2860 	return 0;
2861 fail:
2862 	return ret;
2863 }
2864 
2865 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2866 		  struct extent_buffer *buf, int full_backref, int for_cow)
2867 {
2868 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2869 }
2870 
2871 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2872 		  struct extent_buffer *buf, int full_backref, int for_cow)
2873 {
2874 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2875 }
2876 
2877 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2878 				 struct btrfs_root *root,
2879 				 struct btrfs_path *path,
2880 				 struct btrfs_block_group_cache *cache)
2881 {
2882 	int ret;
2883 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2884 	unsigned long bi;
2885 	struct extent_buffer *leaf;
2886 
2887 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2888 	if (ret < 0)
2889 		goto fail;
2890 	BUG_ON(ret); /* Corruption */
2891 
2892 	leaf = path->nodes[0];
2893 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2894 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2895 	btrfs_mark_buffer_dirty(leaf);
2896 	btrfs_release_path(path);
2897 fail:
2898 	if (ret) {
2899 		btrfs_abort_transaction(trans, root, ret);
2900 		return ret;
2901 	}
2902 	return 0;
2903 
2904 }
2905 
2906 static struct btrfs_block_group_cache *
2907 next_block_group(struct btrfs_root *root,
2908 		 struct btrfs_block_group_cache *cache)
2909 {
2910 	struct rb_node *node;
2911 	spin_lock(&root->fs_info->block_group_cache_lock);
2912 	node = rb_next(&cache->cache_node);
2913 	btrfs_put_block_group(cache);
2914 	if (node) {
2915 		cache = rb_entry(node, struct btrfs_block_group_cache,
2916 				 cache_node);
2917 		btrfs_get_block_group(cache);
2918 	} else
2919 		cache = NULL;
2920 	spin_unlock(&root->fs_info->block_group_cache_lock);
2921 	return cache;
2922 }
2923 
2924 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2925 			    struct btrfs_trans_handle *trans,
2926 			    struct btrfs_path *path)
2927 {
2928 	struct btrfs_root *root = block_group->fs_info->tree_root;
2929 	struct inode *inode = NULL;
2930 	u64 alloc_hint = 0;
2931 	int dcs = BTRFS_DC_ERROR;
2932 	int num_pages = 0;
2933 	int retries = 0;
2934 	int ret = 0;
2935 
2936 	/*
2937 	 * If this block group is smaller than 100 megs don't bother caching the
2938 	 * block group.
2939 	 */
2940 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2941 		spin_lock(&block_group->lock);
2942 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2943 		spin_unlock(&block_group->lock);
2944 		return 0;
2945 	}
2946 
2947 again:
2948 	inode = lookup_free_space_inode(root, block_group, path);
2949 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2950 		ret = PTR_ERR(inode);
2951 		btrfs_release_path(path);
2952 		goto out;
2953 	}
2954 
2955 	if (IS_ERR(inode)) {
2956 		BUG_ON(retries);
2957 		retries++;
2958 
2959 		if (block_group->ro)
2960 			goto out_free;
2961 
2962 		ret = create_free_space_inode(root, trans, block_group, path);
2963 		if (ret)
2964 			goto out_free;
2965 		goto again;
2966 	}
2967 
2968 	/* We've already setup this transaction, go ahead and exit */
2969 	if (block_group->cache_generation == trans->transid &&
2970 	    i_size_read(inode)) {
2971 		dcs = BTRFS_DC_SETUP;
2972 		goto out_put;
2973 	}
2974 
2975 	/*
2976 	 * We want to set the generation to 0, that way if anything goes wrong
2977 	 * from here on out we know not to trust this cache when we load up next
2978 	 * time.
2979 	 */
2980 	BTRFS_I(inode)->generation = 0;
2981 	ret = btrfs_update_inode(trans, root, inode);
2982 	WARN_ON(ret);
2983 
2984 	if (i_size_read(inode) > 0) {
2985 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2986 						      inode);
2987 		if (ret)
2988 			goto out_put;
2989 	}
2990 
2991 	spin_lock(&block_group->lock);
2992 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2993 	    !btrfs_test_opt(root, SPACE_CACHE)) {
2994 		/*
2995 		 * don't bother trying to write stuff out _if_
2996 		 * a) we're not cached,
2997 		 * b) we're with nospace_cache mount option.
2998 		 */
2999 		dcs = BTRFS_DC_WRITTEN;
3000 		spin_unlock(&block_group->lock);
3001 		goto out_put;
3002 	}
3003 	spin_unlock(&block_group->lock);
3004 
3005 	/*
3006 	 * Try to preallocate enough space based on how big the block group is.
3007 	 * Keep in mind this has to include any pinned space which could end up
3008 	 * taking up quite a bit since it's not folded into the other space
3009 	 * cache.
3010 	 */
3011 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3012 	if (!num_pages)
3013 		num_pages = 1;
3014 
3015 	num_pages *= 16;
3016 	num_pages *= PAGE_CACHE_SIZE;
3017 
3018 	ret = btrfs_check_data_free_space(inode, num_pages);
3019 	if (ret)
3020 		goto out_put;
3021 
3022 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3023 					      num_pages, num_pages,
3024 					      &alloc_hint);
3025 	if (!ret)
3026 		dcs = BTRFS_DC_SETUP;
3027 	btrfs_free_reserved_data_space(inode, num_pages);
3028 
3029 out_put:
3030 	iput(inode);
3031 out_free:
3032 	btrfs_release_path(path);
3033 out:
3034 	spin_lock(&block_group->lock);
3035 	if (!ret && dcs == BTRFS_DC_SETUP)
3036 		block_group->cache_generation = trans->transid;
3037 	block_group->disk_cache_state = dcs;
3038 	spin_unlock(&block_group->lock);
3039 
3040 	return ret;
3041 }
3042 
3043 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3044 				   struct btrfs_root *root)
3045 {
3046 	struct btrfs_block_group_cache *cache;
3047 	int err = 0;
3048 	struct btrfs_path *path;
3049 	u64 last = 0;
3050 
3051 	path = btrfs_alloc_path();
3052 	if (!path)
3053 		return -ENOMEM;
3054 
3055 again:
3056 	while (1) {
3057 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3058 		while (cache) {
3059 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3060 				break;
3061 			cache = next_block_group(root, cache);
3062 		}
3063 		if (!cache) {
3064 			if (last == 0)
3065 				break;
3066 			last = 0;
3067 			continue;
3068 		}
3069 		err = cache_save_setup(cache, trans, path);
3070 		last = cache->key.objectid + cache->key.offset;
3071 		btrfs_put_block_group(cache);
3072 	}
3073 
3074 	while (1) {
3075 		if (last == 0) {
3076 			err = btrfs_run_delayed_refs(trans, root,
3077 						     (unsigned long)-1);
3078 			if (err) /* File system offline */
3079 				goto out;
3080 		}
3081 
3082 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3083 		while (cache) {
3084 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3085 				btrfs_put_block_group(cache);
3086 				goto again;
3087 			}
3088 
3089 			if (cache->dirty)
3090 				break;
3091 			cache = next_block_group(root, cache);
3092 		}
3093 		if (!cache) {
3094 			if (last == 0)
3095 				break;
3096 			last = 0;
3097 			continue;
3098 		}
3099 
3100 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3101 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3102 		cache->dirty = 0;
3103 		last = cache->key.objectid + cache->key.offset;
3104 
3105 		err = write_one_cache_group(trans, root, path, cache);
3106 		if (err) /* File system offline */
3107 			goto out;
3108 
3109 		btrfs_put_block_group(cache);
3110 	}
3111 
3112 	while (1) {
3113 		/*
3114 		 * I don't think this is needed since we're just marking our
3115 		 * preallocated extent as written, but just in case it can't
3116 		 * hurt.
3117 		 */
3118 		if (last == 0) {
3119 			err = btrfs_run_delayed_refs(trans, root,
3120 						     (unsigned long)-1);
3121 			if (err) /* File system offline */
3122 				goto out;
3123 		}
3124 
3125 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3126 		while (cache) {
3127 			/*
3128 			 * Really this shouldn't happen, but it could if we
3129 			 * couldn't write the entire preallocated extent and
3130 			 * splitting the extent resulted in a new block.
3131 			 */
3132 			if (cache->dirty) {
3133 				btrfs_put_block_group(cache);
3134 				goto again;
3135 			}
3136 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3137 				break;
3138 			cache = next_block_group(root, cache);
3139 		}
3140 		if (!cache) {
3141 			if (last == 0)
3142 				break;
3143 			last = 0;
3144 			continue;
3145 		}
3146 
3147 		err = btrfs_write_out_cache(root, trans, cache, path);
3148 
3149 		/*
3150 		 * If we didn't have an error then the cache state is still
3151 		 * NEED_WRITE, so we can set it to WRITTEN.
3152 		 */
3153 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3154 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3155 		last = cache->key.objectid + cache->key.offset;
3156 		btrfs_put_block_group(cache);
3157 	}
3158 out:
3159 
3160 	btrfs_free_path(path);
3161 	return err;
3162 }
3163 
3164 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3165 {
3166 	struct btrfs_block_group_cache *block_group;
3167 	int readonly = 0;
3168 
3169 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3170 	if (!block_group || block_group->ro)
3171 		readonly = 1;
3172 	if (block_group)
3173 		btrfs_put_block_group(block_group);
3174 	return readonly;
3175 }
3176 
3177 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3178 			     u64 total_bytes, u64 bytes_used,
3179 			     struct btrfs_space_info **space_info)
3180 {
3181 	struct btrfs_space_info *found;
3182 	int i;
3183 	int factor;
3184 
3185 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3186 		     BTRFS_BLOCK_GROUP_RAID10))
3187 		factor = 2;
3188 	else
3189 		factor = 1;
3190 
3191 	found = __find_space_info(info, flags);
3192 	if (found) {
3193 		spin_lock(&found->lock);
3194 		found->total_bytes += total_bytes;
3195 		found->disk_total += total_bytes * factor;
3196 		found->bytes_used += bytes_used;
3197 		found->disk_used += bytes_used * factor;
3198 		found->full = 0;
3199 		spin_unlock(&found->lock);
3200 		*space_info = found;
3201 		return 0;
3202 	}
3203 	found = kzalloc(sizeof(*found), GFP_NOFS);
3204 	if (!found)
3205 		return -ENOMEM;
3206 
3207 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3208 		INIT_LIST_HEAD(&found->block_groups[i]);
3209 	init_rwsem(&found->groups_sem);
3210 	spin_lock_init(&found->lock);
3211 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3212 	found->total_bytes = total_bytes;
3213 	found->disk_total = total_bytes * factor;
3214 	found->bytes_used = bytes_used;
3215 	found->disk_used = bytes_used * factor;
3216 	found->bytes_pinned = 0;
3217 	found->bytes_reserved = 0;
3218 	found->bytes_readonly = 0;
3219 	found->bytes_may_use = 0;
3220 	found->full = 0;
3221 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3222 	found->chunk_alloc = 0;
3223 	found->flush = 0;
3224 	init_waitqueue_head(&found->wait);
3225 	*space_info = found;
3226 	list_add_rcu(&found->list, &info->space_info);
3227 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3228 		info->data_sinfo = found;
3229 	return 0;
3230 }
3231 
3232 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3233 {
3234 	u64 extra_flags = chunk_to_extended(flags) &
3235 				BTRFS_EXTENDED_PROFILE_MASK;
3236 
3237 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3238 		fs_info->avail_data_alloc_bits |= extra_flags;
3239 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3240 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3241 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3242 		fs_info->avail_system_alloc_bits |= extra_flags;
3243 }
3244 
3245 /*
3246  * returns target flags in extended format or 0 if restripe for this
3247  * chunk_type is not in progress
3248  *
3249  * should be called with either volume_mutex or balance_lock held
3250  */
3251 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3252 {
3253 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3254 	u64 target = 0;
3255 
3256 	if (!bctl)
3257 		return 0;
3258 
3259 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3260 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3261 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3262 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3263 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3264 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3265 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3266 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3267 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3268 	}
3269 
3270 	return target;
3271 }
3272 
3273 /*
3274  * @flags: available profiles in extended format (see ctree.h)
3275  *
3276  * Returns reduced profile in chunk format.  If profile changing is in
3277  * progress (either running or paused) picks the target profile (if it's
3278  * already available), otherwise falls back to plain reducing.
3279  */
3280 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3281 {
3282 	/*
3283 	 * we add in the count of missing devices because we want
3284 	 * to make sure that any RAID levels on a degraded FS
3285 	 * continue to be honored.
3286 	 */
3287 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3288 		root->fs_info->fs_devices->missing_devices;
3289 	u64 target;
3290 
3291 	/*
3292 	 * see if restripe for this chunk_type is in progress, if so
3293 	 * try to reduce to the target profile
3294 	 */
3295 	spin_lock(&root->fs_info->balance_lock);
3296 	target = get_restripe_target(root->fs_info, flags);
3297 	if (target) {
3298 		/* pick target profile only if it's already available */
3299 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3300 			spin_unlock(&root->fs_info->balance_lock);
3301 			return extended_to_chunk(target);
3302 		}
3303 	}
3304 	spin_unlock(&root->fs_info->balance_lock);
3305 
3306 	if (num_devices == 1)
3307 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3308 	if (num_devices < 4)
3309 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3310 
3311 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3312 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3313 		      BTRFS_BLOCK_GROUP_RAID10))) {
3314 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3315 	}
3316 
3317 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3318 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3319 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3320 	}
3321 
3322 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3323 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3324 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3325 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3326 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3327 	}
3328 
3329 	return extended_to_chunk(flags);
3330 }
3331 
3332 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3333 {
3334 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3335 		flags |= root->fs_info->avail_data_alloc_bits;
3336 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3337 		flags |= root->fs_info->avail_system_alloc_bits;
3338 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3339 		flags |= root->fs_info->avail_metadata_alloc_bits;
3340 
3341 	return btrfs_reduce_alloc_profile(root, flags);
3342 }
3343 
3344 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3345 {
3346 	u64 flags;
3347 
3348 	if (data)
3349 		flags = BTRFS_BLOCK_GROUP_DATA;
3350 	else if (root == root->fs_info->chunk_root)
3351 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3352 	else
3353 		flags = BTRFS_BLOCK_GROUP_METADATA;
3354 
3355 	return get_alloc_profile(root, flags);
3356 }
3357 
3358 /*
3359  * This will check the space that the inode allocates from to make sure we have
3360  * enough space for bytes.
3361  */
3362 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3363 {
3364 	struct btrfs_space_info *data_sinfo;
3365 	struct btrfs_root *root = BTRFS_I(inode)->root;
3366 	struct btrfs_fs_info *fs_info = root->fs_info;
3367 	u64 used;
3368 	int ret = 0, committed = 0, alloc_chunk = 1;
3369 
3370 	/* make sure bytes are sectorsize aligned */
3371 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3372 
3373 	if (root == root->fs_info->tree_root ||
3374 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3375 		alloc_chunk = 0;
3376 		committed = 1;
3377 	}
3378 
3379 	data_sinfo = fs_info->data_sinfo;
3380 	if (!data_sinfo)
3381 		goto alloc;
3382 
3383 again:
3384 	/* make sure we have enough space to handle the data first */
3385 	spin_lock(&data_sinfo->lock);
3386 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3387 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3388 		data_sinfo->bytes_may_use;
3389 
3390 	if (used + bytes > data_sinfo->total_bytes) {
3391 		struct btrfs_trans_handle *trans;
3392 
3393 		/*
3394 		 * if we don't have enough free bytes in this space then we need
3395 		 * to alloc a new chunk.
3396 		 */
3397 		if (!data_sinfo->full && alloc_chunk) {
3398 			u64 alloc_target;
3399 
3400 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3401 			spin_unlock(&data_sinfo->lock);
3402 alloc:
3403 			alloc_target = btrfs_get_alloc_profile(root, 1);
3404 			trans = btrfs_join_transaction(root);
3405 			if (IS_ERR(trans))
3406 				return PTR_ERR(trans);
3407 
3408 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3409 					     bytes + 2 * 1024 * 1024,
3410 					     alloc_target,
3411 					     CHUNK_ALLOC_NO_FORCE);
3412 			btrfs_end_transaction(trans, root);
3413 			if (ret < 0) {
3414 				if (ret != -ENOSPC)
3415 					return ret;
3416 				else
3417 					goto commit_trans;
3418 			}
3419 
3420 			if (!data_sinfo)
3421 				data_sinfo = fs_info->data_sinfo;
3422 
3423 			goto again;
3424 		}
3425 
3426 		/*
3427 		 * If we have less pinned bytes than we want to allocate then
3428 		 * don't bother committing the transaction, it won't help us.
3429 		 */
3430 		if (data_sinfo->bytes_pinned < bytes)
3431 			committed = 1;
3432 		spin_unlock(&data_sinfo->lock);
3433 
3434 		/* commit the current transaction and try again */
3435 commit_trans:
3436 		if (!committed &&
3437 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3438 			committed = 1;
3439 			trans = btrfs_join_transaction(root);
3440 			if (IS_ERR(trans))
3441 				return PTR_ERR(trans);
3442 			ret = btrfs_commit_transaction(trans, root);
3443 			if (ret)
3444 				return ret;
3445 			goto again;
3446 		}
3447 
3448 		return -ENOSPC;
3449 	}
3450 	data_sinfo->bytes_may_use += bytes;
3451 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3452 				      data_sinfo->flags, bytes, 1);
3453 	spin_unlock(&data_sinfo->lock);
3454 
3455 	return 0;
3456 }
3457 
3458 /*
3459  * Called if we need to clear a data reservation for this inode.
3460  */
3461 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3462 {
3463 	struct btrfs_root *root = BTRFS_I(inode)->root;
3464 	struct btrfs_space_info *data_sinfo;
3465 
3466 	/* make sure bytes are sectorsize aligned */
3467 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3468 
3469 	data_sinfo = root->fs_info->data_sinfo;
3470 	spin_lock(&data_sinfo->lock);
3471 	data_sinfo->bytes_may_use -= bytes;
3472 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3473 				      data_sinfo->flags, bytes, 0);
3474 	spin_unlock(&data_sinfo->lock);
3475 }
3476 
3477 static void force_metadata_allocation(struct btrfs_fs_info *info)
3478 {
3479 	struct list_head *head = &info->space_info;
3480 	struct btrfs_space_info *found;
3481 
3482 	rcu_read_lock();
3483 	list_for_each_entry_rcu(found, head, list) {
3484 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3485 			found->force_alloc = CHUNK_ALLOC_FORCE;
3486 	}
3487 	rcu_read_unlock();
3488 }
3489 
3490 static int should_alloc_chunk(struct btrfs_root *root,
3491 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3492 			      int force)
3493 {
3494 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3495 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3496 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3497 	u64 thresh;
3498 
3499 	if (force == CHUNK_ALLOC_FORCE)
3500 		return 1;
3501 
3502 	/*
3503 	 * We need to take into account the global rsv because for all intents
3504 	 * and purposes it's used space.  Don't worry about locking the
3505 	 * global_rsv, it doesn't change except when the transaction commits.
3506 	 */
3507 	num_allocated += global_rsv->size;
3508 
3509 	/*
3510 	 * in limited mode, we want to have some free space up to
3511 	 * about 1% of the FS size.
3512 	 */
3513 	if (force == CHUNK_ALLOC_LIMITED) {
3514 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3515 		thresh = max_t(u64, 64 * 1024 * 1024,
3516 			       div_factor_fine(thresh, 1));
3517 
3518 		if (num_bytes - num_allocated < thresh)
3519 			return 1;
3520 	}
3521 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3522 
3523 	/* 256MB or 2% of the FS */
3524 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3525 	/* system chunks need a much small threshold */
3526 	if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3527 		thresh = 32 * 1024 * 1024;
3528 
3529 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3530 		return 0;
3531 	return 1;
3532 }
3533 
3534 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3535 {
3536 	u64 num_dev;
3537 
3538 	if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3539 	    type & BTRFS_BLOCK_GROUP_RAID0)
3540 		num_dev = root->fs_info->fs_devices->rw_devices;
3541 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3542 		num_dev = 2;
3543 	else
3544 		num_dev = 1;	/* DUP or single */
3545 
3546 	/* metadata for updaing devices and chunk tree */
3547 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3548 }
3549 
3550 static void check_system_chunk(struct btrfs_trans_handle *trans,
3551 			       struct btrfs_root *root, u64 type)
3552 {
3553 	struct btrfs_space_info *info;
3554 	u64 left;
3555 	u64 thresh;
3556 
3557 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3558 	spin_lock(&info->lock);
3559 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3560 		info->bytes_reserved - info->bytes_readonly;
3561 	spin_unlock(&info->lock);
3562 
3563 	thresh = get_system_chunk_thresh(root, type);
3564 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3565 		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3566 		       left, thresh, type);
3567 		dump_space_info(info, 0, 0);
3568 	}
3569 
3570 	if (left < thresh) {
3571 		u64 flags;
3572 
3573 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3574 		btrfs_alloc_chunk(trans, root, flags);
3575 	}
3576 }
3577 
3578 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3579 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3580 			  u64 flags, int force)
3581 {
3582 	struct btrfs_space_info *space_info;
3583 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3584 	int wait_for_alloc = 0;
3585 	int ret = 0;
3586 
3587 	space_info = __find_space_info(extent_root->fs_info, flags);
3588 	if (!space_info) {
3589 		ret = update_space_info(extent_root->fs_info, flags,
3590 					0, 0, &space_info);
3591 		BUG_ON(ret); /* -ENOMEM */
3592 	}
3593 	BUG_ON(!space_info); /* Logic error */
3594 
3595 again:
3596 	spin_lock(&space_info->lock);
3597 	if (force < space_info->force_alloc)
3598 		force = space_info->force_alloc;
3599 	if (space_info->full) {
3600 		spin_unlock(&space_info->lock);
3601 		return 0;
3602 	}
3603 
3604 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3605 		spin_unlock(&space_info->lock);
3606 		return 0;
3607 	} else if (space_info->chunk_alloc) {
3608 		wait_for_alloc = 1;
3609 	} else {
3610 		space_info->chunk_alloc = 1;
3611 	}
3612 
3613 	spin_unlock(&space_info->lock);
3614 
3615 	mutex_lock(&fs_info->chunk_mutex);
3616 
3617 	/*
3618 	 * The chunk_mutex is held throughout the entirety of a chunk
3619 	 * allocation, so once we've acquired the chunk_mutex we know that the
3620 	 * other guy is done and we need to recheck and see if we should
3621 	 * allocate.
3622 	 */
3623 	if (wait_for_alloc) {
3624 		mutex_unlock(&fs_info->chunk_mutex);
3625 		wait_for_alloc = 0;
3626 		goto again;
3627 	}
3628 
3629 	/*
3630 	 * If we have mixed data/metadata chunks we want to make sure we keep
3631 	 * allocating mixed chunks instead of individual chunks.
3632 	 */
3633 	if (btrfs_mixed_space_info(space_info))
3634 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3635 
3636 	/*
3637 	 * if we're doing a data chunk, go ahead and make sure that
3638 	 * we keep a reasonable number of metadata chunks allocated in the
3639 	 * FS as well.
3640 	 */
3641 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3642 		fs_info->data_chunk_allocations++;
3643 		if (!(fs_info->data_chunk_allocations %
3644 		      fs_info->metadata_ratio))
3645 			force_metadata_allocation(fs_info);
3646 	}
3647 
3648 	/*
3649 	 * Check if we have enough space in SYSTEM chunk because we may need
3650 	 * to update devices.
3651 	 */
3652 	check_system_chunk(trans, extent_root, flags);
3653 
3654 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3655 	if (ret < 0 && ret != -ENOSPC)
3656 		goto out;
3657 
3658 	spin_lock(&space_info->lock);
3659 	if (ret)
3660 		space_info->full = 1;
3661 	else
3662 		ret = 1;
3663 
3664 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3665 	space_info->chunk_alloc = 0;
3666 	spin_unlock(&space_info->lock);
3667 out:
3668 	mutex_unlock(&fs_info->chunk_mutex);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * shrink metadata reservation for delalloc
3674  */
3675 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3676 			    bool wait_ordered)
3677 {
3678 	struct btrfs_block_rsv *block_rsv;
3679 	struct btrfs_space_info *space_info;
3680 	struct btrfs_trans_handle *trans;
3681 	u64 delalloc_bytes;
3682 	u64 max_reclaim;
3683 	long time_left;
3684 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3685 	int loops = 0;
3686 
3687 	trans = (struct btrfs_trans_handle *)current->journal_info;
3688 	block_rsv = &root->fs_info->delalloc_block_rsv;
3689 	space_info = block_rsv->space_info;
3690 
3691 	smp_mb();
3692 	delalloc_bytes = root->fs_info->delalloc_bytes;
3693 	if (delalloc_bytes == 0) {
3694 		if (trans)
3695 			return;
3696 		btrfs_wait_ordered_extents(root, 0, 0);
3697 		return;
3698 	}
3699 
3700 	while (delalloc_bytes && loops < 3) {
3701 		max_reclaim = min(delalloc_bytes, to_reclaim);
3702 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3703 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3704 					       WB_REASON_FS_FREE_SPACE);
3705 
3706 		spin_lock(&space_info->lock);
3707 		if (space_info->bytes_used + space_info->bytes_reserved +
3708 		    space_info->bytes_pinned + space_info->bytes_readonly +
3709 		    space_info->bytes_may_use + orig <=
3710 		    space_info->total_bytes) {
3711 			spin_unlock(&space_info->lock);
3712 			break;
3713 		}
3714 		spin_unlock(&space_info->lock);
3715 
3716 		loops++;
3717 		if (wait_ordered && !trans) {
3718 			btrfs_wait_ordered_extents(root, 0, 0);
3719 		} else {
3720 			time_left = schedule_timeout_killable(1);
3721 			if (time_left)
3722 				break;
3723 		}
3724 		smp_mb();
3725 		delalloc_bytes = root->fs_info->delalloc_bytes;
3726 	}
3727 }
3728 
3729 /**
3730  * maybe_commit_transaction - possibly commit the transaction if its ok to
3731  * @root - the root we're allocating for
3732  * @bytes - the number of bytes we want to reserve
3733  * @force - force the commit
3734  *
3735  * This will check to make sure that committing the transaction will actually
3736  * get us somewhere and then commit the transaction if it does.  Otherwise it
3737  * will return -ENOSPC.
3738  */
3739 static int may_commit_transaction(struct btrfs_root *root,
3740 				  struct btrfs_space_info *space_info,
3741 				  u64 bytes, int force)
3742 {
3743 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3744 	struct btrfs_trans_handle *trans;
3745 
3746 	trans = (struct btrfs_trans_handle *)current->journal_info;
3747 	if (trans)
3748 		return -EAGAIN;
3749 
3750 	if (force)
3751 		goto commit;
3752 
3753 	/* See if there is enough pinned space to make this reservation */
3754 	spin_lock(&space_info->lock);
3755 	if (space_info->bytes_pinned >= bytes) {
3756 		spin_unlock(&space_info->lock);
3757 		goto commit;
3758 	}
3759 	spin_unlock(&space_info->lock);
3760 
3761 	/*
3762 	 * See if there is some space in the delayed insertion reservation for
3763 	 * this reservation.
3764 	 */
3765 	if (space_info != delayed_rsv->space_info)
3766 		return -ENOSPC;
3767 
3768 	spin_lock(&space_info->lock);
3769 	spin_lock(&delayed_rsv->lock);
3770 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3771 		spin_unlock(&delayed_rsv->lock);
3772 		spin_unlock(&space_info->lock);
3773 		return -ENOSPC;
3774 	}
3775 	spin_unlock(&delayed_rsv->lock);
3776 	spin_unlock(&space_info->lock);
3777 
3778 commit:
3779 	trans = btrfs_join_transaction(root);
3780 	if (IS_ERR(trans))
3781 		return -ENOSPC;
3782 
3783 	return btrfs_commit_transaction(trans, root);
3784 }
3785 
3786 enum flush_state {
3787 	FLUSH_DELALLOC		=	1,
3788 	FLUSH_DELALLOC_WAIT	=	2,
3789 	FLUSH_DELAYED_ITEMS_NR	=	3,
3790 	FLUSH_DELAYED_ITEMS	=	4,
3791 	COMMIT_TRANS		=	5,
3792 };
3793 
3794 static int flush_space(struct btrfs_root *root,
3795 		       struct btrfs_space_info *space_info, u64 num_bytes,
3796 		       u64 orig_bytes, int state)
3797 {
3798 	struct btrfs_trans_handle *trans;
3799 	int nr;
3800 	int ret = 0;
3801 
3802 	switch (state) {
3803 	case FLUSH_DELALLOC:
3804 	case FLUSH_DELALLOC_WAIT:
3805 		shrink_delalloc(root, num_bytes, orig_bytes,
3806 				state == FLUSH_DELALLOC_WAIT);
3807 		break;
3808 	case FLUSH_DELAYED_ITEMS_NR:
3809 	case FLUSH_DELAYED_ITEMS:
3810 		if (state == FLUSH_DELAYED_ITEMS_NR) {
3811 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3812 
3813 			nr = (int)div64_u64(num_bytes, bytes);
3814 			if (!nr)
3815 				nr = 1;
3816 			nr *= 2;
3817 		} else {
3818 			nr = -1;
3819 		}
3820 		trans = btrfs_join_transaction(root);
3821 		if (IS_ERR(trans)) {
3822 			ret = PTR_ERR(trans);
3823 			break;
3824 		}
3825 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
3826 		btrfs_end_transaction(trans, root);
3827 		break;
3828 	case COMMIT_TRANS:
3829 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3830 		break;
3831 	default:
3832 		ret = -ENOSPC;
3833 		break;
3834 	}
3835 
3836 	return ret;
3837 }
3838 /**
3839  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3840  * @root - the root we're allocating for
3841  * @block_rsv - the block_rsv we're allocating for
3842  * @orig_bytes - the number of bytes we want
3843  * @flush - wether or not we can flush to make our reservation
3844  *
3845  * This will reserve orgi_bytes number of bytes from the space info associated
3846  * with the block_rsv.  If there is not enough space it will make an attempt to
3847  * flush out space to make room.  It will do this by flushing delalloc if
3848  * possible or committing the transaction.  If flush is 0 then no attempts to
3849  * regain reservations will be made and this will fail if there is not enough
3850  * space already.
3851  */
3852 static int reserve_metadata_bytes(struct btrfs_root *root,
3853 				  struct btrfs_block_rsv *block_rsv,
3854 				  u64 orig_bytes, int flush)
3855 {
3856 	struct btrfs_space_info *space_info = block_rsv->space_info;
3857 	u64 used;
3858 	u64 num_bytes = orig_bytes;
3859 	int flush_state = FLUSH_DELALLOC;
3860 	int ret = 0;
3861 	bool flushing = false;
3862 	bool committed = false;
3863 
3864 again:
3865 	ret = 0;
3866 	spin_lock(&space_info->lock);
3867 	/*
3868 	 * We only want to wait if somebody other than us is flushing and we are
3869 	 * actually alloed to flush.
3870 	 */
3871 	while (flush && !flushing && space_info->flush) {
3872 		spin_unlock(&space_info->lock);
3873 		/*
3874 		 * If we have a trans handle we can't wait because the flusher
3875 		 * may have to commit the transaction, which would mean we would
3876 		 * deadlock since we are waiting for the flusher to finish, but
3877 		 * hold the current transaction open.
3878 		 */
3879 		if (current->journal_info)
3880 			return -EAGAIN;
3881 		ret = wait_event_killable(space_info->wait, !space_info->flush);
3882 		/* Must have been killed, return */
3883 		if (ret)
3884 			return -EINTR;
3885 
3886 		spin_lock(&space_info->lock);
3887 	}
3888 
3889 	ret = -ENOSPC;
3890 	used = space_info->bytes_used + space_info->bytes_reserved +
3891 		space_info->bytes_pinned + space_info->bytes_readonly +
3892 		space_info->bytes_may_use;
3893 
3894 	/*
3895 	 * The idea here is that we've not already over-reserved the block group
3896 	 * then we can go ahead and save our reservation first and then start
3897 	 * flushing if we need to.  Otherwise if we've already overcommitted
3898 	 * lets start flushing stuff first and then come back and try to make
3899 	 * our reservation.
3900 	 */
3901 	if (used <= space_info->total_bytes) {
3902 		if (used + orig_bytes <= space_info->total_bytes) {
3903 			space_info->bytes_may_use += orig_bytes;
3904 			trace_btrfs_space_reservation(root->fs_info,
3905 				"space_info", space_info->flags, orig_bytes, 1);
3906 			ret = 0;
3907 		} else {
3908 			/*
3909 			 * Ok set num_bytes to orig_bytes since we aren't
3910 			 * overocmmitted, this way we only try and reclaim what
3911 			 * we need.
3912 			 */
3913 			num_bytes = orig_bytes;
3914 		}
3915 	} else {
3916 		/*
3917 		 * Ok we're over committed, set num_bytes to the overcommitted
3918 		 * amount plus the amount of bytes that we need for this
3919 		 * reservation.
3920 		 */
3921 		num_bytes = used - space_info->total_bytes +
3922 			(orig_bytes * 2);
3923 	}
3924 
3925 	if (ret) {
3926 		u64 profile = btrfs_get_alloc_profile(root, 0);
3927 		u64 avail;
3928 
3929 		/*
3930 		 * If we have a lot of space that's pinned, don't bother doing
3931 		 * the overcommit dance yet and just commit the transaction.
3932 		 */
3933 		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3934 		do_div(avail, 10);
3935 		if (space_info->bytes_pinned >= avail && flush && !committed) {
3936 			space_info->flush = 1;
3937 			flushing = true;
3938 			spin_unlock(&space_info->lock);
3939 			ret = may_commit_transaction(root, space_info,
3940 						     orig_bytes, 1);
3941 			if (ret)
3942 				goto out;
3943 			committed = true;
3944 			goto again;
3945 		}
3946 
3947 		spin_lock(&root->fs_info->free_chunk_lock);
3948 		avail = root->fs_info->free_chunk_space;
3949 
3950 		/*
3951 		 * If we have dup, raid1 or raid10 then only half of the free
3952 		 * space is actually useable.
3953 		 */
3954 		if (profile & (BTRFS_BLOCK_GROUP_DUP |
3955 			       BTRFS_BLOCK_GROUP_RAID1 |
3956 			       BTRFS_BLOCK_GROUP_RAID10))
3957 			avail >>= 1;
3958 
3959 		/*
3960 		 * If we aren't flushing don't let us overcommit too much, say
3961 		 * 1/8th of the space.  If we can flush, let it overcommit up to
3962 		 * 1/2 of the space.
3963 		 */
3964 		if (flush)
3965 			avail >>= 3;
3966 		else
3967 			avail >>= 1;
3968 		 spin_unlock(&root->fs_info->free_chunk_lock);
3969 
3970 		if (used + num_bytes < space_info->total_bytes + avail) {
3971 			space_info->bytes_may_use += orig_bytes;
3972 			trace_btrfs_space_reservation(root->fs_info,
3973 				"space_info", space_info->flags, orig_bytes, 1);
3974 			ret = 0;
3975 		}
3976 	}
3977 
3978 	/*
3979 	 * Couldn't make our reservation, save our place so while we're trying
3980 	 * to reclaim space we can actually use it instead of somebody else
3981 	 * stealing it from us.
3982 	 */
3983 	if (ret && flush) {
3984 		flushing = true;
3985 		space_info->flush = 1;
3986 	}
3987 
3988 	spin_unlock(&space_info->lock);
3989 
3990 	if (!ret || !flush)
3991 		goto out;
3992 
3993 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
3994 			  flush_state);
3995 	flush_state++;
3996 	if (!ret)
3997 		goto again;
3998 	else if (flush_state <= COMMIT_TRANS)
3999 		goto again;
4000 
4001 out:
4002 	if (flushing) {
4003 		spin_lock(&space_info->lock);
4004 		space_info->flush = 0;
4005 		wake_up_all(&space_info->wait);
4006 		spin_unlock(&space_info->lock);
4007 	}
4008 	return ret;
4009 }
4010 
4011 static struct btrfs_block_rsv *get_block_rsv(
4012 					const struct btrfs_trans_handle *trans,
4013 					const struct btrfs_root *root)
4014 {
4015 	struct btrfs_block_rsv *block_rsv = NULL;
4016 
4017 	if (root->ref_cows)
4018 		block_rsv = trans->block_rsv;
4019 
4020 	if (root == root->fs_info->csum_root && trans->adding_csums)
4021 		block_rsv = trans->block_rsv;
4022 
4023 	if (!block_rsv)
4024 		block_rsv = root->block_rsv;
4025 
4026 	if (!block_rsv)
4027 		block_rsv = &root->fs_info->empty_block_rsv;
4028 
4029 	return block_rsv;
4030 }
4031 
4032 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4033 			       u64 num_bytes)
4034 {
4035 	int ret = -ENOSPC;
4036 	spin_lock(&block_rsv->lock);
4037 	if (block_rsv->reserved >= num_bytes) {
4038 		block_rsv->reserved -= num_bytes;
4039 		if (block_rsv->reserved < block_rsv->size)
4040 			block_rsv->full = 0;
4041 		ret = 0;
4042 	}
4043 	spin_unlock(&block_rsv->lock);
4044 	return ret;
4045 }
4046 
4047 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4048 				u64 num_bytes, int update_size)
4049 {
4050 	spin_lock(&block_rsv->lock);
4051 	block_rsv->reserved += num_bytes;
4052 	if (update_size)
4053 		block_rsv->size += num_bytes;
4054 	else if (block_rsv->reserved >= block_rsv->size)
4055 		block_rsv->full = 1;
4056 	spin_unlock(&block_rsv->lock);
4057 }
4058 
4059 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4060 				    struct btrfs_block_rsv *block_rsv,
4061 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4062 {
4063 	struct btrfs_space_info *space_info = block_rsv->space_info;
4064 
4065 	spin_lock(&block_rsv->lock);
4066 	if (num_bytes == (u64)-1)
4067 		num_bytes = block_rsv->size;
4068 	block_rsv->size -= num_bytes;
4069 	if (block_rsv->reserved >= block_rsv->size) {
4070 		num_bytes = block_rsv->reserved - block_rsv->size;
4071 		block_rsv->reserved = block_rsv->size;
4072 		block_rsv->full = 1;
4073 	} else {
4074 		num_bytes = 0;
4075 	}
4076 	spin_unlock(&block_rsv->lock);
4077 
4078 	if (num_bytes > 0) {
4079 		if (dest) {
4080 			spin_lock(&dest->lock);
4081 			if (!dest->full) {
4082 				u64 bytes_to_add;
4083 
4084 				bytes_to_add = dest->size - dest->reserved;
4085 				bytes_to_add = min(num_bytes, bytes_to_add);
4086 				dest->reserved += bytes_to_add;
4087 				if (dest->reserved >= dest->size)
4088 					dest->full = 1;
4089 				num_bytes -= bytes_to_add;
4090 			}
4091 			spin_unlock(&dest->lock);
4092 		}
4093 		if (num_bytes) {
4094 			spin_lock(&space_info->lock);
4095 			space_info->bytes_may_use -= num_bytes;
4096 			trace_btrfs_space_reservation(fs_info, "space_info",
4097 					space_info->flags, num_bytes, 0);
4098 			space_info->reservation_progress++;
4099 			spin_unlock(&space_info->lock);
4100 		}
4101 	}
4102 }
4103 
4104 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4105 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4106 {
4107 	int ret;
4108 
4109 	ret = block_rsv_use_bytes(src, num_bytes);
4110 	if (ret)
4111 		return ret;
4112 
4113 	block_rsv_add_bytes(dst, num_bytes, 1);
4114 	return 0;
4115 }
4116 
4117 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4118 {
4119 	memset(rsv, 0, sizeof(*rsv));
4120 	spin_lock_init(&rsv->lock);
4121 }
4122 
4123 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4124 {
4125 	struct btrfs_block_rsv *block_rsv;
4126 	struct btrfs_fs_info *fs_info = root->fs_info;
4127 
4128 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4129 	if (!block_rsv)
4130 		return NULL;
4131 
4132 	btrfs_init_block_rsv(block_rsv);
4133 	block_rsv->space_info = __find_space_info(fs_info,
4134 						  BTRFS_BLOCK_GROUP_METADATA);
4135 	return block_rsv;
4136 }
4137 
4138 void btrfs_free_block_rsv(struct btrfs_root *root,
4139 			  struct btrfs_block_rsv *rsv)
4140 {
4141 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4142 	kfree(rsv);
4143 }
4144 
4145 static inline int __block_rsv_add(struct btrfs_root *root,
4146 				  struct btrfs_block_rsv *block_rsv,
4147 				  u64 num_bytes, int flush)
4148 {
4149 	int ret;
4150 
4151 	if (num_bytes == 0)
4152 		return 0;
4153 
4154 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4155 	if (!ret) {
4156 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4157 		return 0;
4158 	}
4159 
4160 	return ret;
4161 }
4162 
4163 int btrfs_block_rsv_add(struct btrfs_root *root,
4164 			struct btrfs_block_rsv *block_rsv,
4165 			u64 num_bytes)
4166 {
4167 	return __block_rsv_add(root, block_rsv, num_bytes, 1);
4168 }
4169 
4170 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4171 				struct btrfs_block_rsv *block_rsv,
4172 				u64 num_bytes)
4173 {
4174 	return __block_rsv_add(root, block_rsv, num_bytes, 0);
4175 }
4176 
4177 int btrfs_block_rsv_check(struct btrfs_root *root,
4178 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4179 {
4180 	u64 num_bytes = 0;
4181 	int ret = -ENOSPC;
4182 
4183 	if (!block_rsv)
4184 		return 0;
4185 
4186 	spin_lock(&block_rsv->lock);
4187 	num_bytes = div_factor(block_rsv->size, min_factor);
4188 	if (block_rsv->reserved >= num_bytes)
4189 		ret = 0;
4190 	spin_unlock(&block_rsv->lock);
4191 
4192 	return ret;
4193 }
4194 
4195 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4196 					   struct btrfs_block_rsv *block_rsv,
4197 					   u64 min_reserved, int flush)
4198 {
4199 	u64 num_bytes = 0;
4200 	int ret = -ENOSPC;
4201 
4202 	if (!block_rsv)
4203 		return 0;
4204 
4205 	spin_lock(&block_rsv->lock);
4206 	num_bytes = min_reserved;
4207 	if (block_rsv->reserved >= num_bytes)
4208 		ret = 0;
4209 	else
4210 		num_bytes -= block_rsv->reserved;
4211 	spin_unlock(&block_rsv->lock);
4212 
4213 	if (!ret)
4214 		return 0;
4215 
4216 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4217 	if (!ret) {
4218 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4219 		return 0;
4220 	}
4221 
4222 	return ret;
4223 }
4224 
4225 int btrfs_block_rsv_refill(struct btrfs_root *root,
4226 			   struct btrfs_block_rsv *block_rsv,
4227 			   u64 min_reserved)
4228 {
4229 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4230 }
4231 
4232 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4233 				   struct btrfs_block_rsv *block_rsv,
4234 				   u64 min_reserved)
4235 {
4236 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4237 }
4238 
4239 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4240 			    struct btrfs_block_rsv *dst_rsv,
4241 			    u64 num_bytes)
4242 {
4243 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4244 }
4245 
4246 void btrfs_block_rsv_release(struct btrfs_root *root,
4247 			     struct btrfs_block_rsv *block_rsv,
4248 			     u64 num_bytes)
4249 {
4250 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4251 	if (global_rsv->full || global_rsv == block_rsv ||
4252 	    block_rsv->space_info != global_rsv->space_info)
4253 		global_rsv = NULL;
4254 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4255 				num_bytes);
4256 }
4257 
4258 /*
4259  * helper to calculate size of global block reservation.
4260  * the desired value is sum of space used by extent tree,
4261  * checksum tree and root tree
4262  */
4263 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4264 {
4265 	struct btrfs_space_info *sinfo;
4266 	u64 num_bytes;
4267 	u64 meta_used;
4268 	u64 data_used;
4269 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4270 
4271 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4272 	spin_lock(&sinfo->lock);
4273 	data_used = sinfo->bytes_used;
4274 	spin_unlock(&sinfo->lock);
4275 
4276 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4277 	spin_lock(&sinfo->lock);
4278 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4279 		data_used = 0;
4280 	meta_used = sinfo->bytes_used;
4281 	spin_unlock(&sinfo->lock);
4282 
4283 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4284 		    csum_size * 2;
4285 	num_bytes += div64_u64(data_used + meta_used, 50);
4286 
4287 	if (num_bytes * 3 > meta_used)
4288 		num_bytes = div64_u64(meta_used, 3);
4289 
4290 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4291 }
4292 
4293 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4294 {
4295 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4296 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4297 	u64 num_bytes;
4298 
4299 	num_bytes = calc_global_metadata_size(fs_info);
4300 
4301 	spin_lock(&sinfo->lock);
4302 	spin_lock(&block_rsv->lock);
4303 
4304 	block_rsv->size = num_bytes;
4305 
4306 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4307 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4308 		    sinfo->bytes_may_use;
4309 
4310 	if (sinfo->total_bytes > num_bytes) {
4311 		num_bytes = sinfo->total_bytes - num_bytes;
4312 		block_rsv->reserved += num_bytes;
4313 		sinfo->bytes_may_use += num_bytes;
4314 		trace_btrfs_space_reservation(fs_info, "space_info",
4315 				      sinfo->flags, num_bytes, 1);
4316 	}
4317 
4318 	if (block_rsv->reserved >= block_rsv->size) {
4319 		num_bytes = block_rsv->reserved - block_rsv->size;
4320 		sinfo->bytes_may_use -= num_bytes;
4321 		trace_btrfs_space_reservation(fs_info, "space_info",
4322 				      sinfo->flags, num_bytes, 0);
4323 		sinfo->reservation_progress++;
4324 		block_rsv->reserved = block_rsv->size;
4325 		block_rsv->full = 1;
4326 	}
4327 
4328 	spin_unlock(&block_rsv->lock);
4329 	spin_unlock(&sinfo->lock);
4330 }
4331 
4332 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4333 {
4334 	struct btrfs_space_info *space_info;
4335 
4336 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4337 	fs_info->chunk_block_rsv.space_info = space_info;
4338 
4339 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4340 	fs_info->global_block_rsv.space_info = space_info;
4341 	fs_info->delalloc_block_rsv.space_info = space_info;
4342 	fs_info->trans_block_rsv.space_info = space_info;
4343 	fs_info->empty_block_rsv.space_info = space_info;
4344 	fs_info->delayed_block_rsv.space_info = space_info;
4345 
4346 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4347 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4348 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4349 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4350 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4351 
4352 	update_global_block_rsv(fs_info);
4353 }
4354 
4355 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4356 {
4357 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4358 				(u64)-1);
4359 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4360 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4361 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4362 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4363 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4364 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4365 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4366 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4367 }
4368 
4369 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4370 				  struct btrfs_root *root)
4371 {
4372 	if (!trans->block_rsv)
4373 		return;
4374 
4375 	if (!trans->bytes_reserved)
4376 		return;
4377 
4378 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4379 				      trans->transid, trans->bytes_reserved, 0);
4380 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4381 	trans->bytes_reserved = 0;
4382 }
4383 
4384 /* Can only return 0 or -ENOSPC */
4385 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4386 				  struct inode *inode)
4387 {
4388 	struct btrfs_root *root = BTRFS_I(inode)->root;
4389 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4390 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4391 
4392 	/*
4393 	 * We need to hold space in order to delete our orphan item once we've
4394 	 * added it, so this takes the reservation so we can release it later
4395 	 * when we are truly done with the orphan item.
4396 	 */
4397 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4398 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4399 				      btrfs_ino(inode), num_bytes, 1);
4400 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4401 }
4402 
4403 void btrfs_orphan_release_metadata(struct inode *inode)
4404 {
4405 	struct btrfs_root *root = BTRFS_I(inode)->root;
4406 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4407 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4408 				      btrfs_ino(inode), num_bytes, 0);
4409 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4410 }
4411 
4412 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4413 				struct btrfs_pending_snapshot *pending)
4414 {
4415 	struct btrfs_root *root = pending->root;
4416 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4417 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4418 	/*
4419 	 * two for root back/forward refs, two for directory entries
4420 	 * and one for root of the snapshot.
4421 	 */
4422 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4423 	dst_rsv->space_info = src_rsv->space_info;
4424 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4425 }
4426 
4427 /**
4428  * drop_outstanding_extent - drop an outstanding extent
4429  * @inode: the inode we're dropping the extent for
4430  *
4431  * This is called when we are freeing up an outstanding extent, either called
4432  * after an error or after an extent is written.  This will return the number of
4433  * reserved extents that need to be freed.  This must be called with
4434  * BTRFS_I(inode)->lock held.
4435  */
4436 static unsigned drop_outstanding_extent(struct inode *inode)
4437 {
4438 	unsigned drop_inode_space = 0;
4439 	unsigned dropped_extents = 0;
4440 
4441 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4442 	BTRFS_I(inode)->outstanding_extents--;
4443 
4444 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4445 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4446 			       &BTRFS_I(inode)->runtime_flags))
4447 		drop_inode_space = 1;
4448 
4449 	/*
4450 	 * If we have more or the same amount of outsanding extents than we have
4451 	 * reserved then we need to leave the reserved extents count alone.
4452 	 */
4453 	if (BTRFS_I(inode)->outstanding_extents >=
4454 	    BTRFS_I(inode)->reserved_extents)
4455 		return drop_inode_space;
4456 
4457 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4458 		BTRFS_I(inode)->outstanding_extents;
4459 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4460 	return dropped_extents + drop_inode_space;
4461 }
4462 
4463 /**
4464  * calc_csum_metadata_size - return the amount of metada space that must be
4465  *	reserved/free'd for the given bytes.
4466  * @inode: the inode we're manipulating
4467  * @num_bytes: the number of bytes in question
4468  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4469  *
4470  * This adjusts the number of csum_bytes in the inode and then returns the
4471  * correct amount of metadata that must either be reserved or freed.  We
4472  * calculate how many checksums we can fit into one leaf and then divide the
4473  * number of bytes that will need to be checksumed by this value to figure out
4474  * how many checksums will be required.  If we are adding bytes then the number
4475  * may go up and we will return the number of additional bytes that must be
4476  * reserved.  If it is going down we will return the number of bytes that must
4477  * be freed.
4478  *
4479  * This must be called with BTRFS_I(inode)->lock held.
4480  */
4481 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4482 				   int reserve)
4483 {
4484 	struct btrfs_root *root = BTRFS_I(inode)->root;
4485 	u64 csum_size;
4486 	int num_csums_per_leaf;
4487 	int num_csums;
4488 	int old_csums;
4489 
4490 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4491 	    BTRFS_I(inode)->csum_bytes == 0)
4492 		return 0;
4493 
4494 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4495 	if (reserve)
4496 		BTRFS_I(inode)->csum_bytes += num_bytes;
4497 	else
4498 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4499 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4500 	num_csums_per_leaf = (int)div64_u64(csum_size,
4501 					    sizeof(struct btrfs_csum_item) +
4502 					    sizeof(struct btrfs_disk_key));
4503 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4504 	num_csums = num_csums + num_csums_per_leaf - 1;
4505 	num_csums = num_csums / num_csums_per_leaf;
4506 
4507 	old_csums = old_csums + num_csums_per_leaf - 1;
4508 	old_csums = old_csums / num_csums_per_leaf;
4509 
4510 	/* No change, no need to reserve more */
4511 	if (old_csums == num_csums)
4512 		return 0;
4513 
4514 	if (reserve)
4515 		return btrfs_calc_trans_metadata_size(root,
4516 						      num_csums - old_csums);
4517 
4518 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4519 }
4520 
4521 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4522 {
4523 	struct btrfs_root *root = BTRFS_I(inode)->root;
4524 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4525 	u64 to_reserve = 0;
4526 	u64 csum_bytes;
4527 	unsigned nr_extents = 0;
4528 	int extra_reserve = 0;
4529 	int flush = 1;
4530 	int ret;
4531 
4532 	/* Need to be holding the i_mutex here if we aren't free space cache */
4533 	if (btrfs_is_free_space_inode(inode))
4534 		flush = 0;
4535 
4536 	if (flush && btrfs_transaction_in_commit(root->fs_info))
4537 		schedule_timeout(1);
4538 
4539 	mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4540 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4541 
4542 	spin_lock(&BTRFS_I(inode)->lock);
4543 	BTRFS_I(inode)->outstanding_extents++;
4544 
4545 	if (BTRFS_I(inode)->outstanding_extents >
4546 	    BTRFS_I(inode)->reserved_extents)
4547 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4548 			BTRFS_I(inode)->reserved_extents;
4549 
4550 	/*
4551 	 * Add an item to reserve for updating the inode when we complete the
4552 	 * delalloc io.
4553 	 */
4554 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4555 		      &BTRFS_I(inode)->runtime_flags)) {
4556 		nr_extents++;
4557 		extra_reserve = 1;
4558 	}
4559 
4560 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4561 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4562 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4563 	spin_unlock(&BTRFS_I(inode)->lock);
4564 
4565 	if (root->fs_info->quota_enabled) {
4566 		ret = btrfs_qgroup_reserve(root, num_bytes +
4567 					   nr_extents * root->leafsize);
4568 		if (ret) {
4569 			mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4570 			return ret;
4571 		}
4572 	}
4573 
4574 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4575 	if (ret) {
4576 		u64 to_free = 0;
4577 		unsigned dropped;
4578 
4579 		spin_lock(&BTRFS_I(inode)->lock);
4580 		dropped = drop_outstanding_extent(inode);
4581 		/*
4582 		 * If the inodes csum_bytes is the same as the original
4583 		 * csum_bytes then we know we haven't raced with any free()ers
4584 		 * so we can just reduce our inodes csum bytes and carry on.
4585 		 * Otherwise we have to do the normal free thing to account for
4586 		 * the case that the free side didn't free up its reserve
4587 		 * because of this outstanding reservation.
4588 		 */
4589 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4590 			calc_csum_metadata_size(inode, num_bytes, 0);
4591 		else
4592 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4593 		spin_unlock(&BTRFS_I(inode)->lock);
4594 		if (dropped)
4595 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4596 
4597 		if (to_free) {
4598 			btrfs_block_rsv_release(root, block_rsv, to_free);
4599 			trace_btrfs_space_reservation(root->fs_info,
4600 						      "delalloc",
4601 						      btrfs_ino(inode),
4602 						      to_free, 0);
4603 		}
4604 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4605 		return ret;
4606 	}
4607 
4608 	spin_lock(&BTRFS_I(inode)->lock);
4609 	if (extra_reserve) {
4610 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4611 			&BTRFS_I(inode)->runtime_flags);
4612 		nr_extents--;
4613 	}
4614 	BTRFS_I(inode)->reserved_extents += nr_extents;
4615 	spin_unlock(&BTRFS_I(inode)->lock);
4616 	mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4617 
4618 	if (to_reserve)
4619 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4620 					      btrfs_ino(inode), to_reserve, 1);
4621 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4622 
4623 	return 0;
4624 }
4625 
4626 /**
4627  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4628  * @inode: the inode to release the reservation for
4629  * @num_bytes: the number of bytes we're releasing
4630  *
4631  * This will release the metadata reservation for an inode.  This can be called
4632  * once we complete IO for a given set of bytes to release their metadata
4633  * reservations.
4634  */
4635 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4636 {
4637 	struct btrfs_root *root = BTRFS_I(inode)->root;
4638 	u64 to_free = 0;
4639 	unsigned dropped;
4640 
4641 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4642 	spin_lock(&BTRFS_I(inode)->lock);
4643 	dropped = drop_outstanding_extent(inode);
4644 
4645 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4646 	spin_unlock(&BTRFS_I(inode)->lock);
4647 	if (dropped > 0)
4648 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4649 
4650 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4651 				      btrfs_ino(inode), to_free, 0);
4652 	if (root->fs_info->quota_enabled) {
4653 		btrfs_qgroup_free(root, num_bytes +
4654 					dropped * root->leafsize);
4655 	}
4656 
4657 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4658 				to_free);
4659 }
4660 
4661 /**
4662  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4663  * @inode: inode we're writing to
4664  * @num_bytes: the number of bytes we want to allocate
4665  *
4666  * This will do the following things
4667  *
4668  * o reserve space in the data space info for num_bytes
4669  * o reserve space in the metadata space info based on number of outstanding
4670  *   extents and how much csums will be needed
4671  * o add to the inodes ->delalloc_bytes
4672  * o add it to the fs_info's delalloc inodes list.
4673  *
4674  * This will return 0 for success and -ENOSPC if there is no space left.
4675  */
4676 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4677 {
4678 	int ret;
4679 
4680 	ret = btrfs_check_data_free_space(inode, num_bytes);
4681 	if (ret)
4682 		return ret;
4683 
4684 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4685 	if (ret) {
4686 		btrfs_free_reserved_data_space(inode, num_bytes);
4687 		return ret;
4688 	}
4689 
4690 	return 0;
4691 }
4692 
4693 /**
4694  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4695  * @inode: inode we're releasing space for
4696  * @num_bytes: the number of bytes we want to free up
4697  *
4698  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4699  * called in the case that we don't need the metadata AND data reservations
4700  * anymore.  So if there is an error or we insert an inline extent.
4701  *
4702  * This function will release the metadata space that was not used and will
4703  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4704  * list if there are no delalloc bytes left.
4705  */
4706 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4707 {
4708 	btrfs_delalloc_release_metadata(inode, num_bytes);
4709 	btrfs_free_reserved_data_space(inode, num_bytes);
4710 }
4711 
4712 static int update_block_group(struct btrfs_trans_handle *trans,
4713 			      struct btrfs_root *root,
4714 			      u64 bytenr, u64 num_bytes, int alloc)
4715 {
4716 	struct btrfs_block_group_cache *cache = NULL;
4717 	struct btrfs_fs_info *info = root->fs_info;
4718 	u64 total = num_bytes;
4719 	u64 old_val;
4720 	u64 byte_in_group;
4721 	int factor;
4722 
4723 	/* block accounting for super block */
4724 	spin_lock(&info->delalloc_lock);
4725 	old_val = btrfs_super_bytes_used(info->super_copy);
4726 	if (alloc)
4727 		old_val += num_bytes;
4728 	else
4729 		old_val -= num_bytes;
4730 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4731 	spin_unlock(&info->delalloc_lock);
4732 
4733 	while (total) {
4734 		cache = btrfs_lookup_block_group(info, bytenr);
4735 		if (!cache)
4736 			return -ENOENT;
4737 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4738 				    BTRFS_BLOCK_GROUP_RAID1 |
4739 				    BTRFS_BLOCK_GROUP_RAID10))
4740 			factor = 2;
4741 		else
4742 			factor = 1;
4743 		/*
4744 		 * If this block group has free space cache written out, we
4745 		 * need to make sure to load it if we are removing space.  This
4746 		 * is because we need the unpinning stage to actually add the
4747 		 * space back to the block group, otherwise we will leak space.
4748 		 */
4749 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4750 			cache_block_group(cache, trans, NULL, 1);
4751 
4752 		byte_in_group = bytenr - cache->key.objectid;
4753 		WARN_ON(byte_in_group > cache->key.offset);
4754 
4755 		spin_lock(&cache->space_info->lock);
4756 		spin_lock(&cache->lock);
4757 
4758 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4759 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4760 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4761 
4762 		cache->dirty = 1;
4763 		old_val = btrfs_block_group_used(&cache->item);
4764 		num_bytes = min(total, cache->key.offset - byte_in_group);
4765 		if (alloc) {
4766 			old_val += num_bytes;
4767 			btrfs_set_block_group_used(&cache->item, old_val);
4768 			cache->reserved -= num_bytes;
4769 			cache->space_info->bytes_reserved -= num_bytes;
4770 			cache->space_info->bytes_used += num_bytes;
4771 			cache->space_info->disk_used += num_bytes * factor;
4772 			spin_unlock(&cache->lock);
4773 			spin_unlock(&cache->space_info->lock);
4774 		} else {
4775 			old_val -= num_bytes;
4776 			btrfs_set_block_group_used(&cache->item, old_val);
4777 			cache->pinned += num_bytes;
4778 			cache->space_info->bytes_pinned += num_bytes;
4779 			cache->space_info->bytes_used -= num_bytes;
4780 			cache->space_info->disk_used -= num_bytes * factor;
4781 			spin_unlock(&cache->lock);
4782 			spin_unlock(&cache->space_info->lock);
4783 
4784 			set_extent_dirty(info->pinned_extents,
4785 					 bytenr, bytenr + num_bytes - 1,
4786 					 GFP_NOFS | __GFP_NOFAIL);
4787 		}
4788 		btrfs_put_block_group(cache);
4789 		total -= num_bytes;
4790 		bytenr += num_bytes;
4791 	}
4792 	return 0;
4793 }
4794 
4795 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4796 {
4797 	struct btrfs_block_group_cache *cache;
4798 	u64 bytenr;
4799 
4800 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4801 	if (!cache)
4802 		return 0;
4803 
4804 	bytenr = cache->key.objectid;
4805 	btrfs_put_block_group(cache);
4806 
4807 	return bytenr;
4808 }
4809 
4810 static int pin_down_extent(struct btrfs_root *root,
4811 			   struct btrfs_block_group_cache *cache,
4812 			   u64 bytenr, u64 num_bytes, int reserved)
4813 {
4814 	spin_lock(&cache->space_info->lock);
4815 	spin_lock(&cache->lock);
4816 	cache->pinned += num_bytes;
4817 	cache->space_info->bytes_pinned += num_bytes;
4818 	if (reserved) {
4819 		cache->reserved -= num_bytes;
4820 		cache->space_info->bytes_reserved -= num_bytes;
4821 	}
4822 	spin_unlock(&cache->lock);
4823 	spin_unlock(&cache->space_info->lock);
4824 
4825 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4826 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4827 	return 0;
4828 }
4829 
4830 /*
4831  * this function must be called within transaction
4832  */
4833 int btrfs_pin_extent(struct btrfs_root *root,
4834 		     u64 bytenr, u64 num_bytes, int reserved)
4835 {
4836 	struct btrfs_block_group_cache *cache;
4837 
4838 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4839 	BUG_ON(!cache); /* Logic error */
4840 
4841 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4842 
4843 	btrfs_put_block_group(cache);
4844 	return 0;
4845 }
4846 
4847 /*
4848  * this function must be called within transaction
4849  */
4850 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4851 				    struct btrfs_root *root,
4852 				    u64 bytenr, u64 num_bytes)
4853 {
4854 	struct btrfs_block_group_cache *cache;
4855 
4856 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4857 	BUG_ON(!cache); /* Logic error */
4858 
4859 	/*
4860 	 * pull in the free space cache (if any) so that our pin
4861 	 * removes the free space from the cache.  We have load_only set
4862 	 * to one because the slow code to read in the free extents does check
4863 	 * the pinned extents.
4864 	 */
4865 	cache_block_group(cache, trans, root, 1);
4866 
4867 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4868 
4869 	/* remove us from the free space cache (if we're there at all) */
4870 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4871 	btrfs_put_block_group(cache);
4872 	return 0;
4873 }
4874 
4875 /**
4876  * btrfs_update_reserved_bytes - update the block_group and space info counters
4877  * @cache:	The cache we are manipulating
4878  * @num_bytes:	The number of bytes in question
4879  * @reserve:	One of the reservation enums
4880  *
4881  * This is called by the allocator when it reserves space, or by somebody who is
4882  * freeing space that was never actually used on disk.  For example if you
4883  * reserve some space for a new leaf in transaction A and before transaction A
4884  * commits you free that leaf, you call this with reserve set to 0 in order to
4885  * clear the reservation.
4886  *
4887  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4888  * ENOSPC accounting.  For data we handle the reservation through clearing the
4889  * delalloc bits in the io_tree.  We have to do this since we could end up
4890  * allocating less disk space for the amount of data we have reserved in the
4891  * case of compression.
4892  *
4893  * If this is a reservation and the block group has become read only we cannot
4894  * make the reservation and return -EAGAIN, otherwise this function always
4895  * succeeds.
4896  */
4897 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4898 				       u64 num_bytes, int reserve)
4899 {
4900 	struct btrfs_space_info *space_info = cache->space_info;
4901 	int ret = 0;
4902 
4903 	spin_lock(&space_info->lock);
4904 	spin_lock(&cache->lock);
4905 	if (reserve != RESERVE_FREE) {
4906 		if (cache->ro) {
4907 			ret = -EAGAIN;
4908 		} else {
4909 			cache->reserved += num_bytes;
4910 			space_info->bytes_reserved += num_bytes;
4911 			if (reserve == RESERVE_ALLOC) {
4912 				trace_btrfs_space_reservation(cache->fs_info,
4913 						"space_info", space_info->flags,
4914 						num_bytes, 0);
4915 				space_info->bytes_may_use -= num_bytes;
4916 			}
4917 		}
4918 	} else {
4919 		if (cache->ro)
4920 			space_info->bytes_readonly += num_bytes;
4921 		cache->reserved -= num_bytes;
4922 		space_info->bytes_reserved -= num_bytes;
4923 		space_info->reservation_progress++;
4924 	}
4925 	spin_unlock(&cache->lock);
4926 	spin_unlock(&space_info->lock);
4927 	return ret;
4928 }
4929 
4930 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4931 				struct btrfs_root *root)
4932 {
4933 	struct btrfs_fs_info *fs_info = root->fs_info;
4934 	struct btrfs_caching_control *next;
4935 	struct btrfs_caching_control *caching_ctl;
4936 	struct btrfs_block_group_cache *cache;
4937 
4938 	down_write(&fs_info->extent_commit_sem);
4939 
4940 	list_for_each_entry_safe(caching_ctl, next,
4941 				 &fs_info->caching_block_groups, list) {
4942 		cache = caching_ctl->block_group;
4943 		if (block_group_cache_done(cache)) {
4944 			cache->last_byte_to_unpin = (u64)-1;
4945 			list_del_init(&caching_ctl->list);
4946 			put_caching_control(caching_ctl);
4947 		} else {
4948 			cache->last_byte_to_unpin = caching_ctl->progress;
4949 		}
4950 	}
4951 
4952 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4953 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4954 	else
4955 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4956 
4957 	up_write(&fs_info->extent_commit_sem);
4958 
4959 	update_global_block_rsv(fs_info);
4960 }
4961 
4962 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4963 {
4964 	struct btrfs_fs_info *fs_info = root->fs_info;
4965 	struct btrfs_block_group_cache *cache = NULL;
4966 	u64 len;
4967 
4968 	while (start <= end) {
4969 		if (!cache ||
4970 		    start >= cache->key.objectid + cache->key.offset) {
4971 			if (cache)
4972 				btrfs_put_block_group(cache);
4973 			cache = btrfs_lookup_block_group(fs_info, start);
4974 			BUG_ON(!cache); /* Logic error */
4975 		}
4976 
4977 		len = cache->key.objectid + cache->key.offset - start;
4978 		len = min(len, end + 1 - start);
4979 
4980 		if (start < cache->last_byte_to_unpin) {
4981 			len = min(len, cache->last_byte_to_unpin - start);
4982 			btrfs_add_free_space(cache, start, len);
4983 		}
4984 
4985 		start += len;
4986 
4987 		spin_lock(&cache->space_info->lock);
4988 		spin_lock(&cache->lock);
4989 		cache->pinned -= len;
4990 		cache->space_info->bytes_pinned -= len;
4991 		if (cache->ro)
4992 			cache->space_info->bytes_readonly += len;
4993 		spin_unlock(&cache->lock);
4994 		spin_unlock(&cache->space_info->lock);
4995 	}
4996 
4997 	if (cache)
4998 		btrfs_put_block_group(cache);
4999 	return 0;
5000 }
5001 
5002 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5003 			       struct btrfs_root *root)
5004 {
5005 	struct btrfs_fs_info *fs_info = root->fs_info;
5006 	struct extent_io_tree *unpin;
5007 	u64 start;
5008 	u64 end;
5009 	int ret;
5010 
5011 	if (trans->aborted)
5012 		return 0;
5013 
5014 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5015 		unpin = &fs_info->freed_extents[1];
5016 	else
5017 		unpin = &fs_info->freed_extents[0];
5018 
5019 	while (1) {
5020 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5021 					    EXTENT_DIRTY);
5022 		if (ret)
5023 			break;
5024 
5025 		if (btrfs_test_opt(root, DISCARD))
5026 			ret = btrfs_discard_extent(root, start,
5027 						   end + 1 - start, NULL);
5028 
5029 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5030 		unpin_extent_range(root, start, end);
5031 		cond_resched();
5032 	}
5033 
5034 	return 0;
5035 }
5036 
5037 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5038 				struct btrfs_root *root,
5039 				u64 bytenr, u64 num_bytes, u64 parent,
5040 				u64 root_objectid, u64 owner_objectid,
5041 				u64 owner_offset, int refs_to_drop,
5042 				struct btrfs_delayed_extent_op *extent_op)
5043 {
5044 	struct btrfs_key key;
5045 	struct btrfs_path *path;
5046 	struct btrfs_fs_info *info = root->fs_info;
5047 	struct btrfs_root *extent_root = info->extent_root;
5048 	struct extent_buffer *leaf;
5049 	struct btrfs_extent_item *ei;
5050 	struct btrfs_extent_inline_ref *iref;
5051 	int ret;
5052 	int is_data;
5053 	int extent_slot = 0;
5054 	int found_extent = 0;
5055 	int num_to_del = 1;
5056 	u32 item_size;
5057 	u64 refs;
5058 
5059 	path = btrfs_alloc_path();
5060 	if (!path)
5061 		return -ENOMEM;
5062 
5063 	path->reada = 1;
5064 	path->leave_spinning = 1;
5065 
5066 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5067 	BUG_ON(!is_data && refs_to_drop != 1);
5068 
5069 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5070 				    bytenr, num_bytes, parent,
5071 				    root_objectid, owner_objectid,
5072 				    owner_offset);
5073 	if (ret == 0) {
5074 		extent_slot = path->slots[0];
5075 		while (extent_slot >= 0) {
5076 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5077 					      extent_slot);
5078 			if (key.objectid != bytenr)
5079 				break;
5080 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5081 			    key.offset == num_bytes) {
5082 				found_extent = 1;
5083 				break;
5084 			}
5085 			if (path->slots[0] - extent_slot > 5)
5086 				break;
5087 			extent_slot--;
5088 		}
5089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5090 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5091 		if (found_extent && item_size < sizeof(*ei))
5092 			found_extent = 0;
5093 #endif
5094 		if (!found_extent) {
5095 			BUG_ON(iref);
5096 			ret = remove_extent_backref(trans, extent_root, path,
5097 						    NULL, refs_to_drop,
5098 						    is_data);
5099 			if (ret)
5100 				goto abort;
5101 			btrfs_release_path(path);
5102 			path->leave_spinning = 1;
5103 
5104 			key.objectid = bytenr;
5105 			key.type = BTRFS_EXTENT_ITEM_KEY;
5106 			key.offset = num_bytes;
5107 
5108 			ret = btrfs_search_slot(trans, extent_root,
5109 						&key, path, -1, 1);
5110 			if (ret) {
5111 				printk(KERN_ERR "umm, got %d back from search"
5112 				       ", was looking for %llu\n", ret,
5113 				       (unsigned long long)bytenr);
5114 				if (ret > 0)
5115 					btrfs_print_leaf(extent_root,
5116 							 path->nodes[0]);
5117 			}
5118 			if (ret < 0)
5119 				goto abort;
5120 			extent_slot = path->slots[0];
5121 		}
5122 	} else if (ret == -ENOENT) {
5123 		btrfs_print_leaf(extent_root, path->nodes[0]);
5124 		WARN_ON(1);
5125 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5126 		       "parent %llu root %llu  owner %llu offset %llu\n",
5127 		       (unsigned long long)bytenr,
5128 		       (unsigned long long)parent,
5129 		       (unsigned long long)root_objectid,
5130 		       (unsigned long long)owner_objectid,
5131 		       (unsigned long long)owner_offset);
5132 	} else {
5133 		goto abort;
5134 	}
5135 
5136 	leaf = path->nodes[0];
5137 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5139 	if (item_size < sizeof(*ei)) {
5140 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5141 		ret = convert_extent_item_v0(trans, extent_root, path,
5142 					     owner_objectid, 0);
5143 		if (ret < 0)
5144 			goto abort;
5145 
5146 		btrfs_release_path(path);
5147 		path->leave_spinning = 1;
5148 
5149 		key.objectid = bytenr;
5150 		key.type = BTRFS_EXTENT_ITEM_KEY;
5151 		key.offset = num_bytes;
5152 
5153 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5154 					-1, 1);
5155 		if (ret) {
5156 			printk(KERN_ERR "umm, got %d back from search"
5157 			       ", was looking for %llu\n", ret,
5158 			       (unsigned long long)bytenr);
5159 			btrfs_print_leaf(extent_root, path->nodes[0]);
5160 		}
5161 		if (ret < 0)
5162 			goto abort;
5163 		extent_slot = path->slots[0];
5164 		leaf = path->nodes[0];
5165 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5166 	}
5167 #endif
5168 	BUG_ON(item_size < sizeof(*ei));
5169 	ei = btrfs_item_ptr(leaf, extent_slot,
5170 			    struct btrfs_extent_item);
5171 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5172 		struct btrfs_tree_block_info *bi;
5173 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5174 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5175 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5176 	}
5177 
5178 	refs = btrfs_extent_refs(leaf, ei);
5179 	BUG_ON(refs < refs_to_drop);
5180 	refs -= refs_to_drop;
5181 
5182 	if (refs > 0) {
5183 		if (extent_op)
5184 			__run_delayed_extent_op(extent_op, leaf, ei);
5185 		/*
5186 		 * In the case of inline back ref, reference count will
5187 		 * be updated by remove_extent_backref
5188 		 */
5189 		if (iref) {
5190 			BUG_ON(!found_extent);
5191 		} else {
5192 			btrfs_set_extent_refs(leaf, ei, refs);
5193 			btrfs_mark_buffer_dirty(leaf);
5194 		}
5195 		if (found_extent) {
5196 			ret = remove_extent_backref(trans, extent_root, path,
5197 						    iref, refs_to_drop,
5198 						    is_data);
5199 			if (ret)
5200 				goto abort;
5201 		}
5202 	} else {
5203 		if (found_extent) {
5204 			BUG_ON(is_data && refs_to_drop !=
5205 			       extent_data_ref_count(root, path, iref));
5206 			if (iref) {
5207 				BUG_ON(path->slots[0] != extent_slot);
5208 			} else {
5209 				BUG_ON(path->slots[0] != extent_slot + 1);
5210 				path->slots[0] = extent_slot;
5211 				num_to_del = 2;
5212 			}
5213 		}
5214 
5215 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5216 				      num_to_del);
5217 		if (ret)
5218 			goto abort;
5219 		btrfs_release_path(path);
5220 
5221 		if (is_data) {
5222 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5223 			if (ret)
5224 				goto abort;
5225 		}
5226 
5227 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5228 		if (ret)
5229 			goto abort;
5230 	}
5231 out:
5232 	btrfs_free_path(path);
5233 	return ret;
5234 
5235 abort:
5236 	btrfs_abort_transaction(trans, extent_root, ret);
5237 	goto out;
5238 }
5239 
5240 /*
5241  * when we free an block, it is possible (and likely) that we free the last
5242  * delayed ref for that extent as well.  This searches the delayed ref tree for
5243  * a given extent, and if there are no other delayed refs to be processed, it
5244  * removes it from the tree.
5245  */
5246 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5247 				      struct btrfs_root *root, u64 bytenr)
5248 {
5249 	struct btrfs_delayed_ref_head *head;
5250 	struct btrfs_delayed_ref_root *delayed_refs;
5251 	struct btrfs_delayed_ref_node *ref;
5252 	struct rb_node *node;
5253 	int ret = 0;
5254 
5255 	delayed_refs = &trans->transaction->delayed_refs;
5256 	spin_lock(&delayed_refs->lock);
5257 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5258 	if (!head)
5259 		goto out;
5260 
5261 	node = rb_prev(&head->node.rb_node);
5262 	if (!node)
5263 		goto out;
5264 
5265 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5266 
5267 	/* there are still entries for this ref, we can't drop it */
5268 	if (ref->bytenr == bytenr)
5269 		goto out;
5270 
5271 	if (head->extent_op) {
5272 		if (!head->must_insert_reserved)
5273 			goto out;
5274 		kfree(head->extent_op);
5275 		head->extent_op = NULL;
5276 	}
5277 
5278 	/*
5279 	 * waiting for the lock here would deadlock.  If someone else has it
5280 	 * locked they are already in the process of dropping it anyway
5281 	 */
5282 	if (!mutex_trylock(&head->mutex))
5283 		goto out;
5284 
5285 	/*
5286 	 * at this point we have a head with no other entries.  Go
5287 	 * ahead and process it.
5288 	 */
5289 	head->node.in_tree = 0;
5290 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5291 
5292 	delayed_refs->num_entries--;
5293 
5294 	/*
5295 	 * we don't take a ref on the node because we're removing it from the
5296 	 * tree, so we just steal the ref the tree was holding.
5297 	 */
5298 	delayed_refs->num_heads--;
5299 	if (list_empty(&head->cluster))
5300 		delayed_refs->num_heads_ready--;
5301 
5302 	list_del_init(&head->cluster);
5303 	spin_unlock(&delayed_refs->lock);
5304 
5305 	BUG_ON(head->extent_op);
5306 	if (head->must_insert_reserved)
5307 		ret = 1;
5308 
5309 	mutex_unlock(&head->mutex);
5310 	btrfs_put_delayed_ref(&head->node);
5311 	return ret;
5312 out:
5313 	spin_unlock(&delayed_refs->lock);
5314 	return 0;
5315 }
5316 
5317 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5318 			   struct btrfs_root *root,
5319 			   struct extent_buffer *buf,
5320 			   u64 parent, int last_ref)
5321 {
5322 	struct btrfs_block_group_cache *cache = NULL;
5323 	int ret;
5324 
5325 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5326 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5327 					buf->start, buf->len,
5328 					parent, root->root_key.objectid,
5329 					btrfs_header_level(buf),
5330 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5331 		BUG_ON(ret); /* -ENOMEM */
5332 	}
5333 
5334 	if (!last_ref)
5335 		return;
5336 
5337 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5338 
5339 	if (btrfs_header_generation(buf) == trans->transid) {
5340 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5341 			ret = check_ref_cleanup(trans, root, buf->start);
5342 			if (!ret)
5343 				goto out;
5344 		}
5345 
5346 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5347 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5348 			goto out;
5349 		}
5350 
5351 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5352 
5353 		btrfs_add_free_space(cache, buf->start, buf->len);
5354 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5355 	}
5356 out:
5357 	/*
5358 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5359 	 * anymore.
5360 	 */
5361 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5362 	btrfs_put_block_group(cache);
5363 }
5364 
5365 /* Can return -ENOMEM */
5366 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5367 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5368 		      u64 owner, u64 offset, int for_cow)
5369 {
5370 	int ret;
5371 	struct btrfs_fs_info *fs_info = root->fs_info;
5372 
5373 	/*
5374 	 * tree log blocks never actually go into the extent allocation
5375 	 * tree, just update pinning info and exit early.
5376 	 */
5377 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5378 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5379 		/* unlocks the pinned mutex */
5380 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5381 		ret = 0;
5382 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5383 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5384 					num_bytes,
5385 					parent, root_objectid, (int)owner,
5386 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5387 	} else {
5388 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5389 						num_bytes,
5390 						parent, root_objectid, owner,
5391 						offset, BTRFS_DROP_DELAYED_REF,
5392 						NULL, for_cow);
5393 	}
5394 	return ret;
5395 }
5396 
5397 static u64 stripe_align(struct btrfs_root *root, u64 val)
5398 {
5399 	u64 mask = ((u64)root->stripesize - 1);
5400 	u64 ret = (val + mask) & ~mask;
5401 	return ret;
5402 }
5403 
5404 /*
5405  * when we wait for progress in the block group caching, its because
5406  * our allocation attempt failed at least once.  So, we must sleep
5407  * and let some progress happen before we try again.
5408  *
5409  * This function will sleep at least once waiting for new free space to
5410  * show up, and then it will check the block group free space numbers
5411  * for our min num_bytes.  Another option is to have it go ahead
5412  * and look in the rbtree for a free extent of a given size, but this
5413  * is a good start.
5414  */
5415 static noinline int
5416 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5417 				u64 num_bytes)
5418 {
5419 	struct btrfs_caching_control *caching_ctl;
5420 	DEFINE_WAIT(wait);
5421 
5422 	caching_ctl = get_caching_control(cache);
5423 	if (!caching_ctl)
5424 		return 0;
5425 
5426 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5427 		   (cache->free_space_ctl->free_space >= num_bytes));
5428 
5429 	put_caching_control(caching_ctl);
5430 	return 0;
5431 }
5432 
5433 static noinline int
5434 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5435 {
5436 	struct btrfs_caching_control *caching_ctl;
5437 	DEFINE_WAIT(wait);
5438 
5439 	caching_ctl = get_caching_control(cache);
5440 	if (!caching_ctl)
5441 		return 0;
5442 
5443 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5444 
5445 	put_caching_control(caching_ctl);
5446 	return 0;
5447 }
5448 
5449 static int __get_block_group_index(u64 flags)
5450 {
5451 	int index;
5452 
5453 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5454 		index = 0;
5455 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5456 		index = 1;
5457 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5458 		index = 2;
5459 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5460 		index = 3;
5461 	else
5462 		index = 4;
5463 
5464 	return index;
5465 }
5466 
5467 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5468 {
5469 	return __get_block_group_index(cache->flags);
5470 }
5471 
5472 enum btrfs_loop_type {
5473 	LOOP_CACHING_NOWAIT = 0,
5474 	LOOP_CACHING_WAIT = 1,
5475 	LOOP_ALLOC_CHUNK = 2,
5476 	LOOP_NO_EMPTY_SIZE = 3,
5477 };
5478 
5479 /*
5480  * walks the btree of allocated extents and find a hole of a given size.
5481  * The key ins is changed to record the hole:
5482  * ins->objectid == block start
5483  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5484  * ins->offset == number of blocks
5485  * Any available blocks before search_start are skipped.
5486  */
5487 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5488 				     struct btrfs_root *orig_root,
5489 				     u64 num_bytes, u64 empty_size,
5490 				     u64 hint_byte, struct btrfs_key *ins,
5491 				     u64 data)
5492 {
5493 	int ret = 0;
5494 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5495 	struct btrfs_free_cluster *last_ptr = NULL;
5496 	struct btrfs_block_group_cache *block_group = NULL;
5497 	struct btrfs_block_group_cache *used_block_group;
5498 	u64 search_start = 0;
5499 	int empty_cluster = 2 * 1024 * 1024;
5500 	int allowed_chunk_alloc = 0;
5501 	int done_chunk_alloc = 0;
5502 	struct btrfs_space_info *space_info;
5503 	int loop = 0;
5504 	int index = 0;
5505 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5506 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5507 	bool found_uncached_bg = false;
5508 	bool failed_cluster_refill = false;
5509 	bool failed_alloc = false;
5510 	bool use_cluster = true;
5511 	bool have_caching_bg = false;
5512 
5513 	WARN_ON(num_bytes < root->sectorsize);
5514 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5515 	ins->objectid = 0;
5516 	ins->offset = 0;
5517 
5518 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5519 
5520 	space_info = __find_space_info(root->fs_info, data);
5521 	if (!space_info) {
5522 		printk(KERN_ERR "No space info for %llu\n", data);
5523 		return -ENOSPC;
5524 	}
5525 
5526 	/*
5527 	 * If the space info is for both data and metadata it means we have a
5528 	 * small filesystem and we can't use the clustering stuff.
5529 	 */
5530 	if (btrfs_mixed_space_info(space_info))
5531 		use_cluster = false;
5532 
5533 	if (orig_root->ref_cows || empty_size)
5534 		allowed_chunk_alloc = 1;
5535 
5536 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5537 		last_ptr = &root->fs_info->meta_alloc_cluster;
5538 		if (!btrfs_test_opt(root, SSD))
5539 			empty_cluster = 64 * 1024;
5540 	}
5541 
5542 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5543 	    btrfs_test_opt(root, SSD)) {
5544 		last_ptr = &root->fs_info->data_alloc_cluster;
5545 	}
5546 
5547 	if (last_ptr) {
5548 		spin_lock(&last_ptr->lock);
5549 		if (last_ptr->block_group)
5550 			hint_byte = last_ptr->window_start;
5551 		spin_unlock(&last_ptr->lock);
5552 	}
5553 
5554 	search_start = max(search_start, first_logical_byte(root, 0));
5555 	search_start = max(search_start, hint_byte);
5556 
5557 	if (!last_ptr)
5558 		empty_cluster = 0;
5559 
5560 	if (search_start == hint_byte) {
5561 		block_group = btrfs_lookup_block_group(root->fs_info,
5562 						       search_start);
5563 		used_block_group = block_group;
5564 		/*
5565 		 * we don't want to use the block group if it doesn't match our
5566 		 * allocation bits, or if its not cached.
5567 		 *
5568 		 * However if we are re-searching with an ideal block group
5569 		 * picked out then we don't care that the block group is cached.
5570 		 */
5571 		if (block_group && block_group_bits(block_group, data) &&
5572 		    block_group->cached != BTRFS_CACHE_NO) {
5573 			down_read(&space_info->groups_sem);
5574 			if (list_empty(&block_group->list) ||
5575 			    block_group->ro) {
5576 				/*
5577 				 * someone is removing this block group,
5578 				 * we can't jump into the have_block_group
5579 				 * target because our list pointers are not
5580 				 * valid
5581 				 */
5582 				btrfs_put_block_group(block_group);
5583 				up_read(&space_info->groups_sem);
5584 			} else {
5585 				index = get_block_group_index(block_group);
5586 				goto have_block_group;
5587 			}
5588 		} else if (block_group) {
5589 			btrfs_put_block_group(block_group);
5590 		}
5591 	}
5592 search:
5593 	have_caching_bg = false;
5594 	down_read(&space_info->groups_sem);
5595 	list_for_each_entry(block_group, &space_info->block_groups[index],
5596 			    list) {
5597 		u64 offset;
5598 		int cached;
5599 
5600 		used_block_group = block_group;
5601 		btrfs_get_block_group(block_group);
5602 		search_start = block_group->key.objectid;
5603 
5604 		/*
5605 		 * this can happen if we end up cycling through all the
5606 		 * raid types, but we want to make sure we only allocate
5607 		 * for the proper type.
5608 		 */
5609 		if (!block_group_bits(block_group, data)) {
5610 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5611 				BTRFS_BLOCK_GROUP_RAID1 |
5612 				BTRFS_BLOCK_GROUP_RAID10;
5613 
5614 			/*
5615 			 * if they asked for extra copies and this block group
5616 			 * doesn't provide them, bail.  This does allow us to
5617 			 * fill raid0 from raid1.
5618 			 */
5619 			if ((data & extra) && !(block_group->flags & extra))
5620 				goto loop;
5621 		}
5622 
5623 have_block_group:
5624 		cached = block_group_cache_done(block_group);
5625 		if (unlikely(!cached)) {
5626 			found_uncached_bg = true;
5627 			ret = cache_block_group(block_group, trans,
5628 						orig_root, 0);
5629 			BUG_ON(ret < 0);
5630 			ret = 0;
5631 		}
5632 
5633 		if (unlikely(block_group->ro))
5634 			goto loop;
5635 
5636 		/*
5637 		 * Ok we want to try and use the cluster allocator, so
5638 		 * lets look there
5639 		 */
5640 		if (last_ptr) {
5641 			/*
5642 			 * the refill lock keeps out other
5643 			 * people trying to start a new cluster
5644 			 */
5645 			spin_lock(&last_ptr->refill_lock);
5646 			used_block_group = last_ptr->block_group;
5647 			if (used_block_group != block_group &&
5648 			    (!used_block_group ||
5649 			     used_block_group->ro ||
5650 			     !block_group_bits(used_block_group, data))) {
5651 				used_block_group = block_group;
5652 				goto refill_cluster;
5653 			}
5654 
5655 			if (used_block_group != block_group)
5656 				btrfs_get_block_group(used_block_group);
5657 
5658 			offset = btrfs_alloc_from_cluster(used_block_group,
5659 			  last_ptr, num_bytes, used_block_group->key.objectid);
5660 			if (offset) {
5661 				/* we have a block, we're done */
5662 				spin_unlock(&last_ptr->refill_lock);
5663 				trace_btrfs_reserve_extent_cluster(root,
5664 					block_group, search_start, num_bytes);
5665 				goto checks;
5666 			}
5667 
5668 			WARN_ON(last_ptr->block_group != used_block_group);
5669 			if (used_block_group != block_group) {
5670 				btrfs_put_block_group(used_block_group);
5671 				used_block_group = block_group;
5672 			}
5673 refill_cluster:
5674 			BUG_ON(used_block_group != block_group);
5675 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5676 			 * set up a new clusters, so lets just skip it
5677 			 * and let the allocator find whatever block
5678 			 * it can find.  If we reach this point, we
5679 			 * will have tried the cluster allocator
5680 			 * plenty of times and not have found
5681 			 * anything, so we are likely way too
5682 			 * fragmented for the clustering stuff to find
5683 			 * anything.
5684 			 *
5685 			 * However, if the cluster is taken from the
5686 			 * current block group, release the cluster
5687 			 * first, so that we stand a better chance of
5688 			 * succeeding in the unclustered
5689 			 * allocation.  */
5690 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5691 			    last_ptr->block_group != block_group) {
5692 				spin_unlock(&last_ptr->refill_lock);
5693 				goto unclustered_alloc;
5694 			}
5695 
5696 			/*
5697 			 * this cluster didn't work out, free it and
5698 			 * start over
5699 			 */
5700 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5701 
5702 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5703 				spin_unlock(&last_ptr->refill_lock);
5704 				goto unclustered_alloc;
5705 			}
5706 
5707 			/* allocate a cluster in this block group */
5708 			ret = btrfs_find_space_cluster(trans, root,
5709 					       block_group, last_ptr,
5710 					       search_start, num_bytes,
5711 					       empty_cluster + empty_size);
5712 			if (ret == 0) {
5713 				/*
5714 				 * now pull our allocation out of this
5715 				 * cluster
5716 				 */
5717 				offset = btrfs_alloc_from_cluster(block_group,
5718 						  last_ptr, num_bytes,
5719 						  search_start);
5720 				if (offset) {
5721 					/* we found one, proceed */
5722 					spin_unlock(&last_ptr->refill_lock);
5723 					trace_btrfs_reserve_extent_cluster(root,
5724 						block_group, search_start,
5725 						num_bytes);
5726 					goto checks;
5727 				}
5728 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5729 				   && !failed_cluster_refill) {
5730 				spin_unlock(&last_ptr->refill_lock);
5731 
5732 				failed_cluster_refill = true;
5733 				wait_block_group_cache_progress(block_group,
5734 				       num_bytes + empty_cluster + empty_size);
5735 				goto have_block_group;
5736 			}
5737 
5738 			/*
5739 			 * at this point we either didn't find a cluster
5740 			 * or we weren't able to allocate a block from our
5741 			 * cluster.  Free the cluster we've been trying
5742 			 * to use, and go to the next block group
5743 			 */
5744 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5745 			spin_unlock(&last_ptr->refill_lock);
5746 			goto loop;
5747 		}
5748 
5749 unclustered_alloc:
5750 		spin_lock(&block_group->free_space_ctl->tree_lock);
5751 		if (cached &&
5752 		    block_group->free_space_ctl->free_space <
5753 		    num_bytes + empty_cluster + empty_size) {
5754 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5755 			goto loop;
5756 		}
5757 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5758 
5759 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5760 						    num_bytes, empty_size);
5761 		/*
5762 		 * If we didn't find a chunk, and we haven't failed on this
5763 		 * block group before, and this block group is in the middle of
5764 		 * caching and we are ok with waiting, then go ahead and wait
5765 		 * for progress to be made, and set failed_alloc to true.
5766 		 *
5767 		 * If failed_alloc is true then we've already waited on this
5768 		 * block group once and should move on to the next block group.
5769 		 */
5770 		if (!offset && !failed_alloc && !cached &&
5771 		    loop > LOOP_CACHING_NOWAIT) {
5772 			wait_block_group_cache_progress(block_group,
5773 						num_bytes + empty_size);
5774 			failed_alloc = true;
5775 			goto have_block_group;
5776 		} else if (!offset) {
5777 			if (!cached)
5778 				have_caching_bg = true;
5779 			goto loop;
5780 		}
5781 checks:
5782 		search_start = stripe_align(root, offset);
5783 
5784 		/* move on to the next group */
5785 		if (search_start + num_bytes >
5786 		    used_block_group->key.objectid + used_block_group->key.offset) {
5787 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5788 			goto loop;
5789 		}
5790 
5791 		if (offset < search_start)
5792 			btrfs_add_free_space(used_block_group, offset,
5793 					     search_start - offset);
5794 		BUG_ON(offset > search_start);
5795 
5796 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5797 						  alloc_type);
5798 		if (ret == -EAGAIN) {
5799 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5800 			goto loop;
5801 		}
5802 
5803 		/* we are all good, lets return */
5804 		ins->objectid = search_start;
5805 		ins->offset = num_bytes;
5806 
5807 		trace_btrfs_reserve_extent(orig_root, block_group,
5808 					   search_start, num_bytes);
5809 		if (offset < search_start)
5810 			btrfs_add_free_space(used_block_group, offset,
5811 					     search_start - offset);
5812 		BUG_ON(offset > search_start);
5813 		if (used_block_group != block_group)
5814 			btrfs_put_block_group(used_block_group);
5815 		btrfs_put_block_group(block_group);
5816 		break;
5817 loop:
5818 		failed_cluster_refill = false;
5819 		failed_alloc = false;
5820 		BUG_ON(index != get_block_group_index(block_group));
5821 		if (used_block_group != block_group)
5822 			btrfs_put_block_group(used_block_group);
5823 		btrfs_put_block_group(block_group);
5824 	}
5825 	up_read(&space_info->groups_sem);
5826 
5827 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5828 		goto search;
5829 
5830 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5831 		goto search;
5832 
5833 	/*
5834 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5835 	 *			caching kthreads as we move along
5836 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5837 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5838 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5839 	 *			again
5840 	 */
5841 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5842 		index = 0;
5843 		loop++;
5844 		if (loop == LOOP_ALLOC_CHUNK) {
5845 		       if (allowed_chunk_alloc) {
5846 				ret = do_chunk_alloc(trans, root, num_bytes +
5847 						     2 * 1024 * 1024, data,
5848 						     CHUNK_ALLOC_LIMITED);
5849 				/*
5850 				 * Do not bail out on ENOSPC since we
5851 				 * can do more things.
5852 				 */
5853 				if (ret < 0 && ret != -ENOSPC) {
5854 					btrfs_abort_transaction(trans,
5855 								root, ret);
5856 					goto out;
5857 				}
5858 				allowed_chunk_alloc = 0;
5859 				if (ret == 1)
5860 					done_chunk_alloc = 1;
5861 			} else if (!done_chunk_alloc &&
5862 				   space_info->force_alloc ==
5863 				   CHUNK_ALLOC_NO_FORCE) {
5864 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5865 			}
5866 
5867 		       /*
5868 			* We didn't allocate a chunk, go ahead and drop the
5869 			* empty size and loop again.
5870 			*/
5871 		       if (!done_chunk_alloc)
5872 			       loop = LOOP_NO_EMPTY_SIZE;
5873 		}
5874 
5875 		if (loop == LOOP_NO_EMPTY_SIZE) {
5876 			empty_size = 0;
5877 			empty_cluster = 0;
5878 		}
5879 
5880 		goto search;
5881 	} else if (!ins->objectid) {
5882 		ret = -ENOSPC;
5883 	} else if (ins->objectid) {
5884 		ret = 0;
5885 	}
5886 out:
5887 
5888 	return ret;
5889 }
5890 
5891 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5892 			    int dump_block_groups)
5893 {
5894 	struct btrfs_block_group_cache *cache;
5895 	int index = 0;
5896 
5897 	spin_lock(&info->lock);
5898 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5899 	       (unsigned long long)info->flags,
5900 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5901 				    info->bytes_pinned - info->bytes_reserved -
5902 				    info->bytes_readonly),
5903 	       (info->full) ? "" : "not ");
5904 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5905 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5906 	       (unsigned long long)info->total_bytes,
5907 	       (unsigned long long)info->bytes_used,
5908 	       (unsigned long long)info->bytes_pinned,
5909 	       (unsigned long long)info->bytes_reserved,
5910 	       (unsigned long long)info->bytes_may_use,
5911 	       (unsigned long long)info->bytes_readonly);
5912 	spin_unlock(&info->lock);
5913 
5914 	if (!dump_block_groups)
5915 		return;
5916 
5917 	down_read(&info->groups_sem);
5918 again:
5919 	list_for_each_entry(cache, &info->block_groups[index], list) {
5920 		spin_lock(&cache->lock);
5921 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5922 		       (unsigned long long)cache->key.objectid,
5923 		       (unsigned long long)cache->key.offset,
5924 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5925 		       (unsigned long long)cache->pinned,
5926 		       (unsigned long long)cache->reserved,
5927 		       cache->ro ? "[readonly]" : "");
5928 		btrfs_dump_free_space(cache, bytes);
5929 		spin_unlock(&cache->lock);
5930 	}
5931 	if (++index < BTRFS_NR_RAID_TYPES)
5932 		goto again;
5933 	up_read(&info->groups_sem);
5934 }
5935 
5936 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5937 			 struct btrfs_root *root,
5938 			 u64 num_bytes, u64 min_alloc_size,
5939 			 u64 empty_size, u64 hint_byte,
5940 			 struct btrfs_key *ins, u64 data)
5941 {
5942 	bool final_tried = false;
5943 	int ret;
5944 
5945 	data = btrfs_get_alloc_profile(root, data);
5946 again:
5947 	/*
5948 	 * the only place that sets empty_size is btrfs_realloc_node, which
5949 	 * is not called recursively on allocations
5950 	 */
5951 	if (empty_size || root->ref_cows) {
5952 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5953 				     num_bytes + 2 * 1024 * 1024, data,
5954 				     CHUNK_ALLOC_NO_FORCE);
5955 		if (ret < 0 && ret != -ENOSPC) {
5956 			btrfs_abort_transaction(trans, root, ret);
5957 			return ret;
5958 		}
5959 	}
5960 
5961 	WARN_ON(num_bytes < root->sectorsize);
5962 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5963 			       hint_byte, ins, data);
5964 
5965 	if (ret == -ENOSPC) {
5966 		if (!final_tried) {
5967 			num_bytes = num_bytes >> 1;
5968 			num_bytes = num_bytes & ~(root->sectorsize - 1);
5969 			num_bytes = max(num_bytes, min_alloc_size);
5970 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5971 				       num_bytes, data, CHUNK_ALLOC_FORCE);
5972 			if (ret < 0 && ret != -ENOSPC) {
5973 				btrfs_abort_transaction(trans, root, ret);
5974 				return ret;
5975 			}
5976 			if (num_bytes == min_alloc_size)
5977 				final_tried = true;
5978 			goto again;
5979 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5980 			struct btrfs_space_info *sinfo;
5981 
5982 			sinfo = __find_space_info(root->fs_info, data);
5983 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
5984 			       "wanted %llu\n", (unsigned long long)data,
5985 			       (unsigned long long)num_bytes);
5986 			if (sinfo)
5987 				dump_space_info(sinfo, num_bytes, 1);
5988 		}
5989 	}
5990 
5991 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5992 
5993 	return ret;
5994 }
5995 
5996 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5997 					u64 start, u64 len, int pin)
5998 {
5999 	struct btrfs_block_group_cache *cache;
6000 	int ret = 0;
6001 
6002 	cache = btrfs_lookup_block_group(root->fs_info, start);
6003 	if (!cache) {
6004 		printk(KERN_ERR "Unable to find block group for %llu\n",
6005 		       (unsigned long long)start);
6006 		return -ENOSPC;
6007 	}
6008 
6009 	if (btrfs_test_opt(root, DISCARD))
6010 		ret = btrfs_discard_extent(root, start, len, NULL);
6011 
6012 	if (pin)
6013 		pin_down_extent(root, cache, start, len, 1);
6014 	else {
6015 		btrfs_add_free_space(cache, start, len);
6016 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6017 	}
6018 	btrfs_put_block_group(cache);
6019 
6020 	trace_btrfs_reserved_extent_free(root, start, len);
6021 
6022 	return ret;
6023 }
6024 
6025 int btrfs_free_reserved_extent(struct btrfs_root *root,
6026 					u64 start, u64 len)
6027 {
6028 	return __btrfs_free_reserved_extent(root, start, len, 0);
6029 }
6030 
6031 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6032 				       u64 start, u64 len)
6033 {
6034 	return __btrfs_free_reserved_extent(root, start, len, 1);
6035 }
6036 
6037 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6038 				      struct btrfs_root *root,
6039 				      u64 parent, u64 root_objectid,
6040 				      u64 flags, u64 owner, u64 offset,
6041 				      struct btrfs_key *ins, int ref_mod)
6042 {
6043 	int ret;
6044 	struct btrfs_fs_info *fs_info = root->fs_info;
6045 	struct btrfs_extent_item *extent_item;
6046 	struct btrfs_extent_inline_ref *iref;
6047 	struct btrfs_path *path;
6048 	struct extent_buffer *leaf;
6049 	int type;
6050 	u32 size;
6051 
6052 	if (parent > 0)
6053 		type = BTRFS_SHARED_DATA_REF_KEY;
6054 	else
6055 		type = BTRFS_EXTENT_DATA_REF_KEY;
6056 
6057 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6058 
6059 	path = btrfs_alloc_path();
6060 	if (!path)
6061 		return -ENOMEM;
6062 
6063 	path->leave_spinning = 1;
6064 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6065 				      ins, size);
6066 	if (ret) {
6067 		btrfs_free_path(path);
6068 		return ret;
6069 	}
6070 
6071 	leaf = path->nodes[0];
6072 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6073 				     struct btrfs_extent_item);
6074 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6075 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6076 	btrfs_set_extent_flags(leaf, extent_item,
6077 			       flags | BTRFS_EXTENT_FLAG_DATA);
6078 
6079 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6080 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6081 	if (parent > 0) {
6082 		struct btrfs_shared_data_ref *ref;
6083 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6084 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6085 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6086 	} else {
6087 		struct btrfs_extent_data_ref *ref;
6088 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6089 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6090 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6091 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6092 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6093 	}
6094 
6095 	btrfs_mark_buffer_dirty(path->nodes[0]);
6096 	btrfs_free_path(path);
6097 
6098 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6099 	if (ret) { /* -ENOENT, logic error */
6100 		printk(KERN_ERR "btrfs update block group failed for %llu "
6101 		       "%llu\n", (unsigned long long)ins->objectid,
6102 		       (unsigned long long)ins->offset);
6103 		BUG();
6104 	}
6105 	return ret;
6106 }
6107 
6108 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6109 				     struct btrfs_root *root,
6110 				     u64 parent, u64 root_objectid,
6111 				     u64 flags, struct btrfs_disk_key *key,
6112 				     int level, struct btrfs_key *ins)
6113 {
6114 	int ret;
6115 	struct btrfs_fs_info *fs_info = root->fs_info;
6116 	struct btrfs_extent_item *extent_item;
6117 	struct btrfs_tree_block_info *block_info;
6118 	struct btrfs_extent_inline_ref *iref;
6119 	struct btrfs_path *path;
6120 	struct extent_buffer *leaf;
6121 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6122 
6123 	path = btrfs_alloc_path();
6124 	if (!path)
6125 		return -ENOMEM;
6126 
6127 	path->leave_spinning = 1;
6128 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6129 				      ins, size);
6130 	if (ret) {
6131 		btrfs_free_path(path);
6132 		return ret;
6133 	}
6134 
6135 	leaf = path->nodes[0];
6136 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6137 				     struct btrfs_extent_item);
6138 	btrfs_set_extent_refs(leaf, extent_item, 1);
6139 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6140 	btrfs_set_extent_flags(leaf, extent_item,
6141 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6142 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6143 
6144 	btrfs_set_tree_block_key(leaf, block_info, key);
6145 	btrfs_set_tree_block_level(leaf, block_info, level);
6146 
6147 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6148 	if (parent > 0) {
6149 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6150 		btrfs_set_extent_inline_ref_type(leaf, iref,
6151 						 BTRFS_SHARED_BLOCK_REF_KEY);
6152 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6153 	} else {
6154 		btrfs_set_extent_inline_ref_type(leaf, iref,
6155 						 BTRFS_TREE_BLOCK_REF_KEY);
6156 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6157 	}
6158 
6159 	btrfs_mark_buffer_dirty(leaf);
6160 	btrfs_free_path(path);
6161 
6162 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6163 	if (ret) { /* -ENOENT, logic error */
6164 		printk(KERN_ERR "btrfs update block group failed for %llu "
6165 		       "%llu\n", (unsigned long long)ins->objectid,
6166 		       (unsigned long long)ins->offset);
6167 		BUG();
6168 	}
6169 	return ret;
6170 }
6171 
6172 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6173 				     struct btrfs_root *root,
6174 				     u64 root_objectid, u64 owner,
6175 				     u64 offset, struct btrfs_key *ins)
6176 {
6177 	int ret;
6178 
6179 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6180 
6181 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6182 					 ins->offset, 0,
6183 					 root_objectid, owner, offset,
6184 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6185 	return ret;
6186 }
6187 
6188 /*
6189  * this is used by the tree logging recovery code.  It records that
6190  * an extent has been allocated and makes sure to clear the free
6191  * space cache bits as well
6192  */
6193 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6194 				   struct btrfs_root *root,
6195 				   u64 root_objectid, u64 owner, u64 offset,
6196 				   struct btrfs_key *ins)
6197 {
6198 	int ret;
6199 	struct btrfs_block_group_cache *block_group;
6200 	struct btrfs_caching_control *caching_ctl;
6201 	u64 start = ins->objectid;
6202 	u64 num_bytes = ins->offset;
6203 
6204 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6205 	cache_block_group(block_group, trans, NULL, 0);
6206 	caching_ctl = get_caching_control(block_group);
6207 
6208 	if (!caching_ctl) {
6209 		BUG_ON(!block_group_cache_done(block_group));
6210 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6211 		BUG_ON(ret); /* -ENOMEM */
6212 	} else {
6213 		mutex_lock(&caching_ctl->mutex);
6214 
6215 		if (start >= caching_ctl->progress) {
6216 			ret = add_excluded_extent(root, start, num_bytes);
6217 			BUG_ON(ret); /* -ENOMEM */
6218 		} else if (start + num_bytes <= caching_ctl->progress) {
6219 			ret = btrfs_remove_free_space(block_group,
6220 						      start, num_bytes);
6221 			BUG_ON(ret); /* -ENOMEM */
6222 		} else {
6223 			num_bytes = caching_ctl->progress - start;
6224 			ret = btrfs_remove_free_space(block_group,
6225 						      start, num_bytes);
6226 			BUG_ON(ret); /* -ENOMEM */
6227 
6228 			start = caching_ctl->progress;
6229 			num_bytes = ins->objectid + ins->offset -
6230 				    caching_ctl->progress;
6231 			ret = add_excluded_extent(root, start, num_bytes);
6232 			BUG_ON(ret); /* -ENOMEM */
6233 		}
6234 
6235 		mutex_unlock(&caching_ctl->mutex);
6236 		put_caching_control(caching_ctl);
6237 	}
6238 
6239 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6240 					  RESERVE_ALLOC_NO_ACCOUNT);
6241 	BUG_ON(ret); /* logic error */
6242 	btrfs_put_block_group(block_group);
6243 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6244 					 0, owner, offset, ins, 1);
6245 	return ret;
6246 }
6247 
6248 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6249 					    struct btrfs_root *root,
6250 					    u64 bytenr, u32 blocksize,
6251 					    int level)
6252 {
6253 	struct extent_buffer *buf;
6254 
6255 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6256 	if (!buf)
6257 		return ERR_PTR(-ENOMEM);
6258 	btrfs_set_header_generation(buf, trans->transid);
6259 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6260 	btrfs_tree_lock(buf);
6261 	clean_tree_block(trans, root, buf);
6262 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6263 
6264 	btrfs_set_lock_blocking(buf);
6265 	btrfs_set_buffer_uptodate(buf);
6266 
6267 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6268 		/*
6269 		 * we allow two log transactions at a time, use different
6270 		 * EXENT bit to differentiate dirty pages.
6271 		 */
6272 		if (root->log_transid % 2 == 0)
6273 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6274 					buf->start + buf->len - 1, GFP_NOFS);
6275 		else
6276 			set_extent_new(&root->dirty_log_pages, buf->start,
6277 					buf->start + buf->len - 1, GFP_NOFS);
6278 	} else {
6279 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6280 			 buf->start + buf->len - 1, GFP_NOFS);
6281 	}
6282 	trans->blocks_used++;
6283 	/* this returns a buffer locked for blocking */
6284 	return buf;
6285 }
6286 
6287 static struct btrfs_block_rsv *
6288 use_block_rsv(struct btrfs_trans_handle *trans,
6289 	      struct btrfs_root *root, u32 blocksize)
6290 {
6291 	struct btrfs_block_rsv *block_rsv;
6292 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6293 	int ret;
6294 
6295 	block_rsv = get_block_rsv(trans, root);
6296 
6297 	if (block_rsv->size == 0) {
6298 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6299 		/*
6300 		 * If we couldn't reserve metadata bytes try and use some from
6301 		 * the global reserve.
6302 		 */
6303 		if (ret && block_rsv != global_rsv) {
6304 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6305 			if (!ret)
6306 				return global_rsv;
6307 			return ERR_PTR(ret);
6308 		} else if (ret) {
6309 			return ERR_PTR(ret);
6310 		}
6311 		return block_rsv;
6312 	}
6313 
6314 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6315 	if (!ret)
6316 		return block_rsv;
6317 	if (ret) {
6318 		static DEFINE_RATELIMIT_STATE(_rs,
6319 				DEFAULT_RATELIMIT_INTERVAL,
6320 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6321 		if (__ratelimit(&_rs)) {
6322 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6323 			WARN_ON(1);
6324 		}
6325 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6326 		if (!ret) {
6327 			return block_rsv;
6328 		} else if (ret && block_rsv != global_rsv) {
6329 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6330 			if (!ret)
6331 				return global_rsv;
6332 		}
6333 	}
6334 
6335 	return ERR_PTR(-ENOSPC);
6336 }
6337 
6338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6339 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6340 {
6341 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6342 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6343 }
6344 
6345 /*
6346  * finds a free extent and does all the dirty work required for allocation
6347  * returns the key for the extent through ins, and a tree buffer for
6348  * the first block of the extent through buf.
6349  *
6350  * returns the tree buffer or NULL.
6351  */
6352 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6353 					struct btrfs_root *root, u32 blocksize,
6354 					u64 parent, u64 root_objectid,
6355 					struct btrfs_disk_key *key, int level,
6356 					u64 hint, u64 empty_size)
6357 {
6358 	struct btrfs_key ins;
6359 	struct btrfs_block_rsv *block_rsv;
6360 	struct extent_buffer *buf;
6361 	u64 flags = 0;
6362 	int ret;
6363 
6364 
6365 	block_rsv = use_block_rsv(trans, root, blocksize);
6366 	if (IS_ERR(block_rsv))
6367 		return ERR_CAST(block_rsv);
6368 
6369 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6370 				   empty_size, hint, &ins, 0);
6371 	if (ret) {
6372 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6373 		return ERR_PTR(ret);
6374 	}
6375 
6376 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6377 				    blocksize, level);
6378 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6379 
6380 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6381 		if (parent == 0)
6382 			parent = ins.objectid;
6383 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6384 	} else
6385 		BUG_ON(parent > 0);
6386 
6387 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6388 		struct btrfs_delayed_extent_op *extent_op;
6389 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6390 		BUG_ON(!extent_op); /* -ENOMEM */
6391 		if (key)
6392 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6393 		else
6394 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6395 		extent_op->flags_to_set = flags;
6396 		extent_op->update_key = 1;
6397 		extent_op->update_flags = 1;
6398 		extent_op->is_data = 0;
6399 
6400 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6401 					ins.objectid,
6402 					ins.offset, parent, root_objectid,
6403 					level, BTRFS_ADD_DELAYED_EXTENT,
6404 					extent_op, 0);
6405 		BUG_ON(ret); /* -ENOMEM */
6406 	}
6407 	return buf;
6408 }
6409 
6410 struct walk_control {
6411 	u64 refs[BTRFS_MAX_LEVEL];
6412 	u64 flags[BTRFS_MAX_LEVEL];
6413 	struct btrfs_key update_progress;
6414 	int stage;
6415 	int level;
6416 	int shared_level;
6417 	int update_ref;
6418 	int keep_locks;
6419 	int reada_slot;
6420 	int reada_count;
6421 	int for_reloc;
6422 };
6423 
6424 #define DROP_REFERENCE	1
6425 #define UPDATE_BACKREF	2
6426 
6427 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6428 				     struct btrfs_root *root,
6429 				     struct walk_control *wc,
6430 				     struct btrfs_path *path)
6431 {
6432 	u64 bytenr;
6433 	u64 generation;
6434 	u64 refs;
6435 	u64 flags;
6436 	u32 nritems;
6437 	u32 blocksize;
6438 	struct btrfs_key key;
6439 	struct extent_buffer *eb;
6440 	int ret;
6441 	int slot;
6442 	int nread = 0;
6443 
6444 	if (path->slots[wc->level] < wc->reada_slot) {
6445 		wc->reada_count = wc->reada_count * 2 / 3;
6446 		wc->reada_count = max(wc->reada_count, 2);
6447 	} else {
6448 		wc->reada_count = wc->reada_count * 3 / 2;
6449 		wc->reada_count = min_t(int, wc->reada_count,
6450 					BTRFS_NODEPTRS_PER_BLOCK(root));
6451 	}
6452 
6453 	eb = path->nodes[wc->level];
6454 	nritems = btrfs_header_nritems(eb);
6455 	blocksize = btrfs_level_size(root, wc->level - 1);
6456 
6457 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6458 		if (nread >= wc->reada_count)
6459 			break;
6460 
6461 		cond_resched();
6462 		bytenr = btrfs_node_blockptr(eb, slot);
6463 		generation = btrfs_node_ptr_generation(eb, slot);
6464 
6465 		if (slot == path->slots[wc->level])
6466 			goto reada;
6467 
6468 		if (wc->stage == UPDATE_BACKREF &&
6469 		    generation <= root->root_key.offset)
6470 			continue;
6471 
6472 		/* We don't lock the tree block, it's OK to be racy here */
6473 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6474 					       &refs, &flags);
6475 		/* We don't care about errors in readahead. */
6476 		if (ret < 0)
6477 			continue;
6478 		BUG_ON(refs == 0);
6479 
6480 		if (wc->stage == DROP_REFERENCE) {
6481 			if (refs == 1)
6482 				goto reada;
6483 
6484 			if (wc->level == 1 &&
6485 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6486 				continue;
6487 			if (!wc->update_ref ||
6488 			    generation <= root->root_key.offset)
6489 				continue;
6490 			btrfs_node_key_to_cpu(eb, &key, slot);
6491 			ret = btrfs_comp_cpu_keys(&key,
6492 						  &wc->update_progress);
6493 			if (ret < 0)
6494 				continue;
6495 		} else {
6496 			if (wc->level == 1 &&
6497 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6498 				continue;
6499 		}
6500 reada:
6501 		ret = readahead_tree_block(root, bytenr, blocksize,
6502 					   generation);
6503 		if (ret)
6504 			break;
6505 		nread++;
6506 	}
6507 	wc->reada_slot = slot;
6508 }
6509 
6510 /*
6511  * hepler to process tree block while walking down the tree.
6512  *
6513  * when wc->stage == UPDATE_BACKREF, this function updates
6514  * back refs for pointers in the block.
6515  *
6516  * NOTE: return value 1 means we should stop walking down.
6517  */
6518 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6519 				   struct btrfs_root *root,
6520 				   struct btrfs_path *path,
6521 				   struct walk_control *wc, int lookup_info)
6522 {
6523 	int level = wc->level;
6524 	struct extent_buffer *eb = path->nodes[level];
6525 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6526 	int ret;
6527 
6528 	if (wc->stage == UPDATE_BACKREF &&
6529 	    btrfs_header_owner(eb) != root->root_key.objectid)
6530 		return 1;
6531 
6532 	/*
6533 	 * when reference count of tree block is 1, it won't increase
6534 	 * again. once full backref flag is set, we never clear it.
6535 	 */
6536 	if (lookup_info &&
6537 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6538 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6539 		BUG_ON(!path->locks[level]);
6540 		ret = btrfs_lookup_extent_info(trans, root,
6541 					       eb->start, eb->len,
6542 					       &wc->refs[level],
6543 					       &wc->flags[level]);
6544 		BUG_ON(ret == -ENOMEM);
6545 		if (ret)
6546 			return ret;
6547 		BUG_ON(wc->refs[level] == 0);
6548 	}
6549 
6550 	if (wc->stage == DROP_REFERENCE) {
6551 		if (wc->refs[level] > 1)
6552 			return 1;
6553 
6554 		if (path->locks[level] && !wc->keep_locks) {
6555 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6556 			path->locks[level] = 0;
6557 		}
6558 		return 0;
6559 	}
6560 
6561 	/* wc->stage == UPDATE_BACKREF */
6562 	if (!(wc->flags[level] & flag)) {
6563 		BUG_ON(!path->locks[level]);
6564 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6565 		BUG_ON(ret); /* -ENOMEM */
6566 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6567 		BUG_ON(ret); /* -ENOMEM */
6568 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6569 						  eb->len, flag, 0);
6570 		BUG_ON(ret); /* -ENOMEM */
6571 		wc->flags[level] |= flag;
6572 	}
6573 
6574 	/*
6575 	 * the block is shared by multiple trees, so it's not good to
6576 	 * keep the tree lock
6577 	 */
6578 	if (path->locks[level] && level > 0) {
6579 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6580 		path->locks[level] = 0;
6581 	}
6582 	return 0;
6583 }
6584 
6585 /*
6586  * hepler to process tree block pointer.
6587  *
6588  * when wc->stage == DROP_REFERENCE, this function checks
6589  * reference count of the block pointed to. if the block
6590  * is shared and we need update back refs for the subtree
6591  * rooted at the block, this function changes wc->stage to
6592  * UPDATE_BACKREF. if the block is shared and there is no
6593  * need to update back, this function drops the reference
6594  * to the block.
6595  *
6596  * NOTE: return value 1 means we should stop walking down.
6597  */
6598 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6599 				 struct btrfs_root *root,
6600 				 struct btrfs_path *path,
6601 				 struct walk_control *wc, int *lookup_info)
6602 {
6603 	u64 bytenr;
6604 	u64 generation;
6605 	u64 parent;
6606 	u32 blocksize;
6607 	struct btrfs_key key;
6608 	struct extent_buffer *next;
6609 	int level = wc->level;
6610 	int reada = 0;
6611 	int ret = 0;
6612 
6613 	generation = btrfs_node_ptr_generation(path->nodes[level],
6614 					       path->slots[level]);
6615 	/*
6616 	 * if the lower level block was created before the snapshot
6617 	 * was created, we know there is no need to update back refs
6618 	 * for the subtree
6619 	 */
6620 	if (wc->stage == UPDATE_BACKREF &&
6621 	    generation <= root->root_key.offset) {
6622 		*lookup_info = 1;
6623 		return 1;
6624 	}
6625 
6626 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6627 	blocksize = btrfs_level_size(root, level - 1);
6628 
6629 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6630 	if (!next) {
6631 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6632 		if (!next)
6633 			return -ENOMEM;
6634 		reada = 1;
6635 	}
6636 	btrfs_tree_lock(next);
6637 	btrfs_set_lock_blocking(next);
6638 
6639 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6640 				       &wc->refs[level - 1],
6641 				       &wc->flags[level - 1]);
6642 	if (ret < 0) {
6643 		btrfs_tree_unlock(next);
6644 		return ret;
6645 	}
6646 
6647 	BUG_ON(wc->refs[level - 1] == 0);
6648 	*lookup_info = 0;
6649 
6650 	if (wc->stage == DROP_REFERENCE) {
6651 		if (wc->refs[level - 1] > 1) {
6652 			if (level == 1 &&
6653 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6654 				goto skip;
6655 
6656 			if (!wc->update_ref ||
6657 			    generation <= root->root_key.offset)
6658 				goto skip;
6659 
6660 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6661 					      path->slots[level]);
6662 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6663 			if (ret < 0)
6664 				goto skip;
6665 
6666 			wc->stage = UPDATE_BACKREF;
6667 			wc->shared_level = level - 1;
6668 		}
6669 	} else {
6670 		if (level == 1 &&
6671 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6672 			goto skip;
6673 	}
6674 
6675 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6676 		btrfs_tree_unlock(next);
6677 		free_extent_buffer(next);
6678 		next = NULL;
6679 		*lookup_info = 1;
6680 	}
6681 
6682 	if (!next) {
6683 		if (reada && level == 1)
6684 			reada_walk_down(trans, root, wc, path);
6685 		next = read_tree_block(root, bytenr, blocksize, generation);
6686 		if (!next)
6687 			return -EIO;
6688 		btrfs_tree_lock(next);
6689 		btrfs_set_lock_blocking(next);
6690 	}
6691 
6692 	level--;
6693 	BUG_ON(level != btrfs_header_level(next));
6694 	path->nodes[level] = next;
6695 	path->slots[level] = 0;
6696 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6697 	wc->level = level;
6698 	if (wc->level == 1)
6699 		wc->reada_slot = 0;
6700 	return 0;
6701 skip:
6702 	wc->refs[level - 1] = 0;
6703 	wc->flags[level - 1] = 0;
6704 	if (wc->stage == DROP_REFERENCE) {
6705 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6706 			parent = path->nodes[level]->start;
6707 		} else {
6708 			BUG_ON(root->root_key.objectid !=
6709 			       btrfs_header_owner(path->nodes[level]));
6710 			parent = 0;
6711 		}
6712 
6713 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6714 				root->root_key.objectid, level - 1, 0, 0);
6715 		BUG_ON(ret); /* -ENOMEM */
6716 	}
6717 	btrfs_tree_unlock(next);
6718 	free_extent_buffer(next);
6719 	*lookup_info = 1;
6720 	return 1;
6721 }
6722 
6723 /*
6724  * hepler to process tree block while walking up the tree.
6725  *
6726  * when wc->stage == DROP_REFERENCE, this function drops
6727  * reference count on the block.
6728  *
6729  * when wc->stage == UPDATE_BACKREF, this function changes
6730  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6731  * to UPDATE_BACKREF previously while processing the block.
6732  *
6733  * NOTE: return value 1 means we should stop walking up.
6734  */
6735 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6736 				 struct btrfs_root *root,
6737 				 struct btrfs_path *path,
6738 				 struct walk_control *wc)
6739 {
6740 	int ret;
6741 	int level = wc->level;
6742 	struct extent_buffer *eb = path->nodes[level];
6743 	u64 parent = 0;
6744 
6745 	if (wc->stage == UPDATE_BACKREF) {
6746 		BUG_ON(wc->shared_level < level);
6747 		if (level < wc->shared_level)
6748 			goto out;
6749 
6750 		ret = find_next_key(path, level + 1, &wc->update_progress);
6751 		if (ret > 0)
6752 			wc->update_ref = 0;
6753 
6754 		wc->stage = DROP_REFERENCE;
6755 		wc->shared_level = -1;
6756 		path->slots[level] = 0;
6757 
6758 		/*
6759 		 * check reference count again if the block isn't locked.
6760 		 * we should start walking down the tree again if reference
6761 		 * count is one.
6762 		 */
6763 		if (!path->locks[level]) {
6764 			BUG_ON(level == 0);
6765 			btrfs_tree_lock(eb);
6766 			btrfs_set_lock_blocking(eb);
6767 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6768 
6769 			ret = btrfs_lookup_extent_info(trans, root,
6770 						       eb->start, eb->len,
6771 						       &wc->refs[level],
6772 						       &wc->flags[level]);
6773 			if (ret < 0) {
6774 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6775 				return ret;
6776 			}
6777 			BUG_ON(wc->refs[level] == 0);
6778 			if (wc->refs[level] == 1) {
6779 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6780 				return 1;
6781 			}
6782 		}
6783 	}
6784 
6785 	/* wc->stage == DROP_REFERENCE */
6786 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6787 
6788 	if (wc->refs[level] == 1) {
6789 		if (level == 0) {
6790 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6791 				ret = btrfs_dec_ref(trans, root, eb, 1,
6792 						    wc->for_reloc);
6793 			else
6794 				ret = btrfs_dec_ref(trans, root, eb, 0,
6795 						    wc->for_reloc);
6796 			BUG_ON(ret); /* -ENOMEM */
6797 		}
6798 		/* make block locked assertion in clean_tree_block happy */
6799 		if (!path->locks[level] &&
6800 		    btrfs_header_generation(eb) == trans->transid) {
6801 			btrfs_tree_lock(eb);
6802 			btrfs_set_lock_blocking(eb);
6803 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6804 		}
6805 		clean_tree_block(trans, root, eb);
6806 	}
6807 
6808 	if (eb == root->node) {
6809 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6810 			parent = eb->start;
6811 		else
6812 			BUG_ON(root->root_key.objectid !=
6813 			       btrfs_header_owner(eb));
6814 	} else {
6815 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6816 			parent = path->nodes[level + 1]->start;
6817 		else
6818 			BUG_ON(root->root_key.objectid !=
6819 			       btrfs_header_owner(path->nodes[level + 1]));
6820 	}
6821 
6822 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6823 out:
6824 	wc->refs[level] = 0;
6825 	wc->flags[level] = 0;
6826 	return 0;
6827 }
6828 
6829 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6830 				   struct btrfs_root *root,
6831 				   struct btrfs_path *path,
6832 				   struct walk_control *wc)
6833 {
6834 	int level = wc->level;
6835 	int lookup_info = 1;
6836 	int ret;
6837 
6838 	while (level >= 0) {
6839 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6840 		if (ret > 0)
6841 			break;
6842 
6843 		if (level == 0)
6844 			break;
6845 
6846 		if (path->slots[level] >=
6847 		    btrfs_header_nritems(path->nodes[level]))
6848 			break;
6849 
6850 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6851 		if (ret > 0) {
6852 			path->slots[level]++;
6853 			continue;
6854 		} else if (ret < 0)
6855 			return ret;
6856 		level = wc->level;
6857 	}
6858 	return 0;
6859 }
6860 
6861 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6862 				 struct btrfs_root *root,
6863 				 struct btrfs_path *path,
6864 				 struct walk_control *wc, int max_level)
6865 {
6866 	int level = wc->level;
6867 	int ret;
6868 
6869 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6870 	while (level < max_level && path->nodes[level]) {
6871 		wc->level = level;
6872 		if (path->slots[level] + 1 <
6873 		    btrfs_header_nritems(path->nodes[level])) {
6874 			path->slots[level]++;
6875 			return 0;
6876 		} else {
6877 			ret = walk_up_proc(trans, root, path, wc);
6878 			if (ret > 0)
6879 				return 0;
6880 
6881 			if (path->locks[level]) {
6882 				btrfs_tree_unlock_rw(path->nodes[level],
6883 						     path->locks[level]);
6884 				path->locks[level] = 0;
6885 			}
6886 			free_extent_buffer(path->nodes[level]);
6887 			path->nodes[level] = NULL;
6888 			level++;
6889 		}
6890 	}
6891 	return 1;
6892 }
6893 
6894 /*
6895  * drop a subvolume tree.
6896  *
6897  * this function traverses the tree freeing any blocks that only
6898  * referenced by the tree.
6899  *
6900  * when a shared tree block is found. this function decreases its
6901  * reference count by one. if update_ref is true, this function
6902  * also make sure backrefs for the shared block and all lower level
6903  * blocks are properly updated.
6904  */
6905 int btrfs_drop_snapshot(struct btrfs_root *root,
6906 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6907 			 int for_reloc)
6908 {
6909 	struct btrfs_path *path;
6910 	struct btrfs_trans_handle *trans;
6911 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6912 	struct btrfs_root_item *root_item = &root->root_item;
6913 	struct walk_control *wc;
6914 	struct btrfs_key key;
6915 	int err = 0;
6916 	int ret;
6917 	int level;
6918 
6919 	path = btrfs_alloc_path();
6920 	if (!path) {
6921 		err = -ENOMEM;
6922 		goto out;
6923 	}
6924 
6925 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6926 	if (!wc) {
6927 		btrfs_free_path(path);
6928 		err = -ENOMEM;
6929 		goto out;
6930 	}
6931 
6932 	trans = btrfs_start_transaction(tree_root, 0);
6933 	if (IS_ERR(trans)) {
6934 		err = PTR_ERR(trans);
6935 		goto out_free;
6936 	}
6937 
6938 	if (block_rsv)
6939 		trans->block_rsv = block_rsv;
6940 
6941 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6942 		level = btrfs_header_level(root->node);
6943 		path->nodes[level] = btrfs_lock_root_node(root);
6944 		btrfs_set_lock_blocking(path->nodes[level]);
6945 		path->slots[level] = 0;
6946 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6947 		memset(&wc->update_progress, 0,
6948 		       sizeof(wc->update_progress));
6949 	} else {
6950 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6951 		memcpy(&wc->update_progress, &key,
6952 		       sizeof(wc->update_progress));
6953 
6954 		level = root_item->drop_level;
6955 		BUG_ON(level == 0);
6956 		path->lowest_level = level;
6957 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6958 		path->lowest_level = 0;
6959 		if (ret < 0) {
6960 			err = ret;
6961 			goto out_end_trans;
6962 		}
6963 		WARN_ON(ret > 0);
6964 
6965 		/*
6966 		 * unlock our path, this is safe because only this
6967 		 * function is allowed to delete this snapshot
6968 		 */
6969 		btrfs_unlock_up_safe(path, 0);
6970 
6971 		level = btrfs_header_level(root->node);
6972 		while (1) {
6973 			btrfs_tree_lock(path->nodes[level]);
6974 			btrfs_set_lock_blocking(path->nodes[level]);
6975 
6976 			ret = btrfs_lookup_extent_info(trans, root,
6977 						path->nodes[level]->start,
6978 						path->nodes[level]->len,
6979 						&wc->refs[level],
6980 						&wc->flags[level]);
6981 			if (ret < 0) {
6982 				err = ret;
6983 				goto out_end_trans;
6984 			}
6985 			BUG_ON(wc->refs[level] == 0);
6986 
6987 			if (level == root_item->drop_level)
6988 				break;
6989 
6990 			btrfs_tree_unlock(path->nodes[level]);
6991 			WARN_ON(wc->refs[level] != 1);
6992 			level--;
6993 		}
6994 	}
6995 
6996 	wc->level = level;
6997 	wc->shared_level = -1;
6998 	wc->stage = DROP_REFERENCE;
6999 	wc->update_ref = update_ref;
7000 	wc->keep_locks = 0;
7001 	wc->for_reloc = for_reloc;
7002 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7003 
7004 	while (1) {
7005 		ret = walk_down_tree(trans, root, path, wc);
7006 		if (ret < 0) {
7007 			err = ret;
7008 			break;
7009 		}
7010 
7011 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7012 		if (ret < 0) {
7013 			err = ret;
7014 			break;
7015 		}
7016 
7017 		if (ret > 0) {
7018 			BUG_ON(wc->stage != DROP_REFERENCE);
7019 			break;
7020 		}
7021 
7022 		if (wc->stage == DROP_REFERENCE) {
7023 			level = wc->level;
7024 			btrfs_node_key(path->nodes[level],
7025 				       &root_item->drop_progress,
7026 				       path->slots[level]);
7027 			root_item->drop_level = level;
7028 		}
7029 
7030 		BUG_ON(wc->level == 0);
7031 		if (btrfs_should_end_transaction(trans, tree_root)) {
7032 			ret = btrfs_update_root(trans, tree_root,
7033 						&root->root_key,
7034 						root_item);
7035 			if (ret) {
7036 				btrfs_abort_transaction(trans, tree_root, ret);
7037 				err = ret;
7038 				goto out_end_trans;
7039 			}
7040 
7041 			btrfs_end_transaction_throttle(trans, tree_root);
7042 			trans = btrfs_start_transaction(tree_root, 0);
7043 			if (IS_ERR(trans)) {
7044 				err = PTR_ERR(trans);
7045 				goto out_free;
7046 			}
7047 			if (block_rsv)
7048 				trans->block_rsv = block_rsv;
7049 		}
7050 	}
7051 	btrfs_release_path(path);
7052 	if (err)
7053 		goto out_end_trans;
7054 
7055 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7056 	if (ret) {
7057 		btrfs_abort_transaction(trans, tree_root, ret);
7058 		goto out_end_trans;
7059 	}
7060 
7061 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7062 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7063 					   NULL, NULL);
7064 		if (ret < 0) {
7065 			btrfs_abort_transaction(trans, tree_root, ret);
7066 			err = ret;
7067 			goto out_end_trans;
7068 		} else if (ret > 0) {
7069 			/* if we fail to delete the orphan item this time
7070 			 * around, it'll get picked up the next time.
7071 			 *
7072 			 * The most common failure here is just -ENOENT.
7073 			 */
7074 			btrfs_del_orphan_item(trans, tree_root,
7075 					      root->root_key.objectid);
7076 		}
7077 	}
7078 
7079 	if (root->in_radix) {
7080 		btrfs_free_fs_root(tree_root->fs_info, root);
7081 	} else {
7082 		free_extent_buffer(root->node);
7083 		free_extent_buffer(root->commit_root);
7084 		kfree(root);
7085 	}
7086 out_end_trans:
7087 	btrfs_end_transaction_throttle(trans, tree_root);
7088 out_free:
7089 	kfree(wc);
7090 	btrfs_free_path(path);
7091 out:
7092 	if (err)
7093 		btrfs_std_error(root->fs_info, err);
7094 	return err;
7095 }
7096 
7097 /*
7098  * drop subtree rooted at tree block 'node'.
7099  *
7100  * NOTE: this function will unlock and release tree block 'node'
7101  * only used by relocation code
7102  */
7103 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7104 			struct btrfs_root *root,
7105 			struct extent_buffer *node,
7106 			struct extent_buffer *parent)
7107 {
7108 	struct btrfs_path *path;
7109 	struct walk_control *wc;
7110 	int level;
7111 	int parent_level;
7112 	int ret = 0;
7113 	int wret;
7114 
7115 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7116 
7117 	path = btrfs_alloc_path();
7118 	if (!path)
7119 		return -ENOMEM;
7120 
7121 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7122 	if (!wc) {
7123 		btrfs_free_path(path);
7124 		return -ENOMEM;
7125 	}
7126 
7127 	btrfs_assert_tree_locked(parent);
7128 	parent_level = btrfs_header_level(parent);
7129 	extent_buffer_get(parent);
7130 	path->nodes[parent_level] = parent;
7131 	path->slots[parent_level] = btrfs_header_nritems(parent);
7132 
7133 	btrfs_assert_tree_locked(node);
7134 	level = btrfs_header_level(node);
7135 	path->nodes[level] = node;
7136 	path->slots[level] = 0;
7137 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7138 
7139 	wc->refs[parent_level] = 1;
7140 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7141 	wc->level = level;
7142 	wc->shared_level = -1;
7143 	wc->stage = DROP_REFERENCE;
7144 	wc->update_ref = 0;
7145 	wc->keep_locks = 1;
7146 	wc->for_reloc = 1;
7147 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7148 
7149 	while (1) {
7150 		wret = walk_down_tree(trans, root, path, wc);
7151 		if (wret < 0) {
7152 			ret = wret;
7153 			break;
7154 		}
7155 
7156 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7157 		if (wret < 0)
7158 			ret = wret;
7159 		if (wret != 0)
7160 			break;
7161 	}
7162 
7163 	kfree(wc);
7164 	btrfs_free_path(path);
7165 	return ret;
7166 }
7167 
7168 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7169 {
7170 	u64 num_devices;
7171 	u64 stripped;
7172 
7173 	/*
7174 	 * if restripe for this chunk_type is on pick target profile and
7175 	 * return, otherwise do the usual balance
7176 	 */
7177 	stripped = get_restripe_target(root->fs_info, flags);
7178 	if (stripped)
7179 		return extended_to_chunk(stripped);
7180 
7181 	/*
7182 	 * we add in the count of missing devices because we want
7183 	 * to make sure that any RAID levels on a degraded FS
7184 	 * continue to be honored.
7185 	 */
7186 	num_devices = root->fs_info->fs_devices->rw_devices +
7187 		root->fs_info->fs_devices->missing_devices;
7188 
7189 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7190 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7191 
7192 	if (num_devices == 1) {
7193 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7194 		stripped = flags & ~stripped;
7195 
7196 		/* turn raid0 into single device chunks */
7197 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7198 			return stripped;
7199 
7200 		/* turn mirroring into duplication */
7201 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7202 			     BTRFS_BLOCK_GROUP_RAID10))
7203 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7204 	} else {
7205 		/* they already had raid on here, just return */
7206 		if (flags & stripped)
7207 			return flags;
7208 
7209 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7210 		stripped = flags & ~stripped;
7211 
7212 		/* switch duplicated blocks with raid1 */
7213 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7214 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7215 
7216 		/* this is drive concat, leave it alone */
7217 	}
7218 
7219 	return flags;
7220 }
7221 
7222 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7223 {
7224 	struct btrfs_space_info *sinfo = cache->space_info;
7225 	u64 num_bytes;
7226 	u64 min_allocable_bytes;
7227 	int ret = -ENOSPC;
7228 
7229 
7230 	/*
7231 	 * We need some metadata space and system metadata space for
7232 	 * allocating chunks in some corner cases until we force to set
7233 	 * it to be readonly.
7234 	 */
7235 	if ((sinfo->flags &
7236 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7237 	    !force)
7238 		min_allocable_bytes = 1 * 1024 * 1024;
7239 	else
7240 		min_allocable_bytes = 0;
7241 
7242 	spin_lock(&sinfo->lock);
7243 	spin_lock(&cache->lock);
7244 
7245 	if (cache->ro) {
7246 		ret = 0;
7247 		goto out;
7248 	}
7249 
7250 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7251 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7252 
7253 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7254 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7255 	    min_allocable_bytes <= sinfo->total_bytes) {
7256 		sinfo->bytes_readonly += num_bytes;
7257 		cache->ro = 1;
7258 		ret = 0;
7259 	}
7260 out:
7261 	spin_unlock(&cache->lock);
7262 	spin_unlock(&sinfo->lock);
7263 	return ret;
7264 }
7265 
7266 int btrfs_set_block_group_ro(struct btrfs_root *root,
7267 			     struct btrfs_block_group_cache *cache)
7268 
7269 {
7270 	struct btrfs_trans_handle *trans;
7271 	u64 alloc_flags;
7272 	int ret;
7273 
7274 	BUG_ON(cache->ro);
7275 
7276 	trans = btrfs_join_transaction(root);
7277 	if (IS_ERR(trans))
7278 		return PTR_ERR(trans);
7279 
7280 	alloc_flags = update_block_group_flags(root, cache->flags);
7281 	if (alloc_flags != cache->flags) {
7282 		ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7283 				     CHUNK_ALLOC_FORCE);
7284 		if (ret < 0)
7285 			goto out;
7286 	}
7287 
7288 	ret = set_block_group_ro(cache, 0);
7289 	if (!ret)
7290 		goto out;
7291 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7292 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7293 			     CHUNK_ALLOC_FORCE);
7294 	if (ret < 0)
7295 		goto out;
7296 	ret = set_block_group_ro(cache, 0);
7297 out:
7298 	btrfs_end_transaction(trans, root);
7299 	return ret;
7300 }
7301 
7302 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7303 			    struct btrfs_root *root, u64 type)
7304 {
7305 	u64 alloc_flags = get_alloc_profile(root, type);
7306 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7307 			      CHUNK_ALLOC_FORCE);
7308 }
7309 
7310 /*
7311  * helper to account the unused space of all the readonly block group in the
7312  * list. takes mirrors into account.
7313  */
7314 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7315 {
7316 	struct btrfs_block_group_cache *block_group;
7317 	u64 free_bytes = 0;
7318 	int factor;
7319 
7320 	list_for_each_entry(block_group, groups_list, list) {
7321 		spin_lock(&block_group->lock);
7322 
7323 		if (!block_group->ro) {
7324 			spin_unlock(&block_group->lock);
7325 			continue;
7326 		}
7327 
7328 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7329 					  BTRFS_BLOCK_GROUP_RAID10 |
7330 					  BTRFS_BLOCK_GROUP_DUP))
7331 			factor = 2;
7332 		else
7333 			factor = 1;
7334 
7335 		free_bytes += (block_group->key.offset -
7336 			       btrfs_block_group_used(&block_group->item)) *
7337 			       factor;
7338 
7339 		spin_unlock(&block_group->lock);
7340 	}
7341 
7342 	return free_bytes;
7343 }
7344 
7345 /*
7346  * helper to account the unused space of all the readonly block group in the
7347  * space_info. takes mirrors into account.
7348  */
7349 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7350 {
7351 	int i;
7352 	u64 free_bytes = 0;
7353 
7354 	spin_lock(&sinfo->lock);
7355 
7356 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7357 		if (!list_empty(&sinfo->block_groups[i]))
7358 			free_bytes += __btrfs_get_ro_block_group_free_space(
7359 						&sinfo->block_groups[i]);
7360 
7361 	spin_unlock(&sinfo->lock);
7362 
7363 	return free_bytes;
7364 }
7365 
7366 void btrfs_set_block_group_rw(struct btrfs_root *root,
7367 			      struct btrfs_block_group_cache *cache)
7368 {
7369 	struct btrfs_space_info *sinfo = cache->space_info;
7370 	u64 num_bytes;
7371 
7372 	BUG_ON(!cache->ro);
7373 
7374 	spin_lock(&sinfo->lock);
7375 	spin_lock(&cache->lock);
7376 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7377 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7378 	sinfo->bytes_readonly -= num_bytes;
7379 	cache->ro = 0;
7380 	spin_unlock(&cache->lock);
7381 	spin_unlock(&sinfo->lock);
7382 }
7383 
7384 /*
7385  * checks to see if its even possible to relocate this block group.
7386  *
7387  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7388  * ok to go ahead and try.
7389  */
7390 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7391 {
7392 	struct btrfs_block_group_cache *block_group;
7393 	struct btrfs_space_info *space_info;
7394 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7395 	struct btrfs_device *device;
7396 	u64 min_free;
7397 	u64 dev_min = 1;
7398 	u64 dev_nr = 0;
7399 	u64 target;
7400 	int index;
7401 	int full = 0;
7402 	int ret = 0;
7403 
7404 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7405 
7406 	/* odd, couldn't find the block group, leave it alone */
7407 	if (!block_group)
7408 		return -1;
7409 
7410 	min_free = btrfs_block_group_used(&block_group->item);
7411 
7412 	/* no bytes used, we're good */
7413 	if (!min_free)
7414 		goto out;
7415 
7416 	space_info = block_group->space_info;
7417 	spin_lock(&space_info->lock);
7418 
7419 	full = space_info->full;
7420 
7421 	/*
7422 	 * if this is the last block group we have in this space, we can't
7423 	 * relocate it unless we're able to allocate a new chunk below.
7424 	 *
7425 	 * Otherwise, we need to make sure we have room in the space to handle
7426 	 * all of the extents from this block group.  If we can, we're good
7427 	 */
7428 	if ((space_info->total_bytes != block_group->key.offset) &&
7429 	    (space_info->bytes_used + space_info->bytes_reserved +
7430 	     space_info->bytes_pinned + space_info->bytes_readonly +
7431 	     min_free < space_info->total_bytes)) {
7432 		spin_unlock(&space_info->lock);
7433 		goto out;
7434 	}
7435 	spin_unlock(&space_info->lock);
7436 
7437 	/*
7438 	 * ok we don't have enough space, but maybe we have free space on our
7439 	 * devices to allocate new chunks for relocation, so loop through our
7440 	 * alloc devices and guess if we have enough space.  if this block
7441 	 * group is going to be restriped, run checks against the target
7442 	 * profile instead of the current one.
7443 	 */
7444 	ret = -1;
7445 
7446 	/*
7447 	 * index:
7448 	 *      0: raid10
7449 	 *      1: raid1
7450 	 *      2: dup
7451 	 *      3: raid0
7452 	 *      4: single
7453 	 */
7454 	target = get_restripe_target(root->fs_info, block_group->flags);
7455 	if (target) {
7456 		index = __get_block_group_index(extended_to_chunk(target));
7457 	} else {
7458 		/*
7459 		 * this is just a balance, so if we were marked as full
7460 		 * we know there is no space for a new chunk
7461 		 */
7462 		if (full)
7463 			goto out;
7464 
7465 		index = get_block_group_index(block_group);
7466 	}
7467 
7468 	if (index == 0) {
7469 		dev_min = 4;
7470 		/* Divide by 2 */
7471 		min_free >>= 1;
7472 	} else if (index == 1) {
7473 		dev_min = 2;
7474 	} else if (index == 2) {
7475 		/* Multiply by 2 */
7476 		min_free <<= 1;
7477 	} else if (index == 3) {
7478 		dev_min = fs_devices->rw_devices;
7479 		do_div(min_free, dev_min);
7480 	}
7481 
7482 	mutex_lock(&root->fs_info->chunk_mutex);
7483 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7484 		u64 dev_offset;
7485 
7486 		/*
7487 		 * check to make sure we can actually find a chunk with enough
7488 		 * space to fit our block group in.
7489 		 */
7490 		if (device->total_bytes > device->bytes_used + min_free) {
7491 			ret = find_free_dev_extent(device, min_free,
7492 						   &dev_offset, NULL);
7493 			if (!ret)
7494 				dev_nr++;
7495 
7496 			if (dev_nr >= dev_min)
7497 				break;
7498 
7499 			ret = -1;
7500 		}
7501 	}
7502 	mutex_unlock(&root->fs_info->chunk_mutex);
7503 out:
7504 	btrfs_put_block_group(block_group);
7505 	return ret;
7506 }
7507 
7508 static int find_first_block_group(struct btrfs_root *root,
7509 		struct btrfs_path *path, struct btrfs_key *key)
7510 {
7511 	int ret = 0;
7512 	struct btrfs_key found_key;
7513 	struct extent_buffer *leaf;
7514 	int slot;
7515 
7516 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7517 	if (ret < 0)
7518 		goto out;
7519 
7520 	while (1) {
7521 		slot = path->slots[0];
7522 		leaf = path->nodes[0];
7523 		if (slot >= btrfs_header_nritems(leaf)) {
7524 			ret = btrfs_next_leaf(root, path);
7525 			if (ret == 0)
7526 				continue;
7527 			if (ret < 0)
7528 				goto out;
7529 			break;
7530 		}
7531 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7532 
7533 		if (found_key.objectid >= key->objectid &&
7534 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7535 			ret = 0;
7536 			goto out;
7537 		}
7538 		path->slots[0]++;
7539 	}
7540 out:
7541 	return ret;
7542 }
7543 
7544 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7545 {
7546 	struct btrfs_block_group_cache *block_group;
7547 	u64 last = 0;
7548 
7549 	while (1) {
7550 		struct inode *inode;
7551 
7552 		block_group = btrfs_lookup_first_block_group(info, last);
7553 		while (block_group) {
7554 			spin_lock(&block_group->lock);
7555 			if (block_group->iref)
7556 				break;
7557 			spin_unlock(&block_group->lock);
7558 			block_group = next_block_group(info->tree_root,
7559 						       block_group);
7560 		}
7561 		if (!block_group) {
7562 			if (last == 0)
7563 				break;
7564 			last = 0;
7565 			continue;
7566 		}
7567 
7568 		inode = block_group->inode;
7569 		block_group->iref = 0;
7570 		block_group->inode = NULL;
7571 		spin_unlock(&block_group->lock);
7572 		iput(inode);
7573 		last = block_group->key.objectid + block_group->key.offset;
7574 		btrfs_put_block_group(block_group);
7575 	}
7576 }
7577 
7578 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7579 {
7580 	struct btrfs_block_group_cache *block_group;
7581 	struct btrfs_space_info *space_info;
7582 	struct btrfs_caching_control *caching_ctl;
7583 	struct rb_node *n;
7584 
7585 	down_write(&info->extent_commit_sem);
7586 	while (!list_empty(&info->caching_block_groups)) {
7587 		caching_ctl = list_entry(info->caching_block_groups.next,
7588 					 struct btrfs_caching_control, list);
7589 		list_del(&caching_ctl->list);
7590 		put_caching_control(caching_ctl);
7591 	}
7592 	up_write(&info->extent_commit_sem);
7593 
7594 	spin_lock(&info->block_group_cache_lock);
7595 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7596 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7597 				       cache_node);
7598 		rb_erase(&block_group->cache_node,
7599 			 &info->block_group_cache_tree);
7600 		spin_unlock(&info->block_group_cache_lock);
7601 
7602 		down_write(&block_group->space_info->groups_sem);
7603 		list_del(&block_group->list);
7604 		up_write(&block_group->space_info->groups_sem);
7605 
7606 		if (block_group->cached == BTRFS_CACHE_STARTED)
7607 			wait_block_group_cache_done(block_group);
7608 
7609 		/*
7610 		 * We haven't cached this block group, which means we could
7611 		 * possibly have excluded extents on this block group.
7612 		 */
7613 		if (block_group->cached == BTRFS_CACHE_NO)
7614 			free_excluded_extents(info->extent_root, block_group);
7615 
7616 		btrfs_remove_free_space_cache(block_group);
7617 		btrfs_put_block_group(block_group);
7618 
7619 		spin_lock(&info->block_group_cache_lock);
7620 	}
7621 	spin_unlock(&info->block_group_cache_lock);
7622 
7623 	/* now that all the block groups are freed, go through and
7624 	 * free all the space_info structs.  This is only called during
7625 	 * the final stages of unmount, and so we know nobody is
7626 	 * using them.  We call synchronize_rcu() once before we start,
7627 	 * just to be on the safe side.
7628 	 */
7629 	synchronize_rcu();
7630 
7631 	release_global_block_rsv(info);
7632 
7633 	while(!list_empty(&info->space_info)) {
7634 		space_info = list_entry(info->space_info.next,
7635 					struct btrfs_space_info,
7636 					list);
7637 		if (space_info->bytes_pinned > 0 ||
7638 		    space_info->bytes_reserved > 0 ||
7639 		    space_info->bytes_may_use > 0) {
7640 			WARN_ON(1);
7641 			dump_space_info(space_info, 0, 0);
7642 		}
7643 		list_del(&space_info->list);
7644 		kfree(space_info);
7645 	}
7646 	return 0;
7647 }
7648 
7649 static void __link_block_group(struct btrfs_space_info *space_info,
7650 			       struct btrfs_block_group_cache *cache)
7651 {
7652 	int index = get_block_group_index(cache);
7653 
7654 	down_write(&space_info->groups_sem);
7655 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7656 	up_write(&space_info->groups_sem);
7657 }
7658 
7659 int btrfs_read_block_groups(struct btrfs_root *root)
7660 {
7661 	struct btrfs_path *path;
7662 	int ret;
7663 	struct btrfs_block_group_cache *cache;
7664 	struct btrfs_fs_info *info = root->fs_info;
7665 	struct btrfs_space_info *space_info;
7666 	struct btrfs_key key;
7667 	struct btrfs_key found_key;
7668 	struct extent_buffer *leaf;
7669 	int need_clear = 0;
7670 	u64 cache_gen;
7671 
7672 	root = info->extent_root;
7673 	key.objectid = 0;
7674 	key.offset = 0;
7675 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7676 	path = btrfs_alloc_path();
7677 	if (!path)
7678 		return -ENOMEM;
7679 	path->reada = 1;
7680 
7681 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7682 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7683 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7684 		need_clear = 1;
7685 	if (btrfs_test_opt(root, CLEAR_CACHE))
7686 		need_clear = 1;
7687 
7688 	while (1) {
7689 		ret = find_first_block_group(root, path, &key);
7690 		if (ret > 0)
7691 			break;
7692 		if (ret != 0)
7693 			goto error;
7694 		leaf = path->nodes[0];
7695 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7696 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7697 		if (!cache) {
7698 			ret = -ENOMEM;
7699 			goto error;
7700 		}
7701 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7702 						GFP_NOFS);
7703 		if (!cache->free_space_ctl) {
7704 			kfree(cache);
7705 			ret = -ENOMEM;
7706 			goto error;
7707 		}
7708 
7709 		atomic_set(&cache->count, 1);
7710 		spin_lock_init(&cache->lock);
7711 		cache->fs_info = info;
7712 		INIT_LIST_HEAD(&cache->list);
7713 		INIT_LIST_HEAD(&cache->cluster_list);
7714 
7715 		if (need_clear) {
7716 			/*
7717 			 * When we mount with old space cache, we need to
7718 			 * set BTRFS_DC_CLEAR and set dirty flag.
7719 			 *
7720 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7721 			 *    truncate the old free space cache inode and
7722 			 *    setup a new one.
7723 			 * b) Setting 'dirty flag' makes sure that we flush
7724 			 *    the new space cache info onto disk.
7725 			 */
7726 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7727 			if (btrfs_test_opt(root, SPACE_CACHE))
7728 				cache->dirty = 1;
7729 		}
7730 
7731 		read_extent_buffer(leaf, &cache->item,
7732 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7733 				   sizeof(cache->item));
7734 		memcpy(&cache->key, &found_key, sizeof(found_key));
7735 
7736 		key.objectid = found_key.objectid + found_key.offset;
7737 		btrfs_release_path(path);
7738 		cache->flags = btrfs_block_group_flags(&cache->item);
7739 		cache->sectorsize = root->sectorsize;
7740 
7741 		btrfs_init_free_space_ctl(cache);
7742 
7743 		/*
7744 		 * We need to exclude the super stripes now so that the space
7745 		 * info has super bytes accounted for, otherwise we'll think
7746 		 * we have more space than we actually do.
7747 		 */
7748 		exclude_super_stripes(root, cache);
7749 
7750 		/*
7751 		 * check for two cases, either we are full, and therefore
7752 		 * don't need to bother with the caching work since we won't
7753 		 * find any space, or we are empty, and we can just add all
7754 		 * the space in and be done with it.  This saves us _alot_ of
7755 		 * time, particularly in the full case.
7756 		 */
7757 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7758 			cache->last_byte_to_unpin = (u64)-1;
7759 			cache->cached = BTRFS_CACHE_FINISHED;
7760 			free_excluded_extents(root, cache);
7761 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7762 			cache->last_byte_to_unpin = (u64)-1;
7763 			cache->cached = BTRFS_CACHE_FINISHED;
7764 			add_new_free_space(cache, root->fs_info,
7765 					   found_key.objectid,
7766 					   found_key.objectid +
7767 					   found_key.offset);
7768 			free_excluded_extents(root, cache);
7769 		}
7770 
7771 		ret = update_space_info(info, cache->flags, found_key.offset,
7772 					btrfs_block_group_used(&cache->item),
7773 					&space_info);
7774 		BUG_ON(ret); /* -ENOMEM */
7775 		cache->space_info = space_info;
7776 		spin_lock(&cache->space_info->lock);
7777 		cache->space_info->bytes_readonly += cache->bytes_super;
7778 		spin_unlock(&cache->space_info->lock);
7779 
7780 		__link_block_group(space_info, cache);
7781 
7782 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7783 		BUG_ON(ret); /* Logic error */
7784 
7785 		set_avail_alloc_bits(root->fs_info, cache->flags);
7786 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7787 			set_block_group_ro(cache, 1);
7788 	}
7789 
7790 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7791 		if (!(get_alloc_profile(root, space_info->flags) &
7792 		      (BTRFS_BLOCK_GROUP_RAID10 |
7793 		       BTRFS_BLOCK_GROUP_RAID1 |
7794 		       BTRFS_BLOCK_GROUP_DUP)))
7795 			continue;
7796 		/*
7797 		 * avoid allocating from un-mirrored block group if there are
7798 		 * mirrored block groups.
7799 		 */
7800 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7801 			set_block_group_ro(cache, 1);
7802 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7803 			set_block_group_ro(cache, 1);
7804 	}
7805 
7806 	init_global_block_rsv(info);
7807 	ret = 0;
7808 error:
7809 	btrfs_free_path(path);
7810 	return ret;
7811 }
7812 
7813 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7814 			   struct btrfs_root *root, u64 bytes_used,
7815 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7816 			   u64 size)
7817 {
7818 	int ret;
7819 	struct btrfs_root *extent_root;
7820 	struct btrfs_block_group_cache *cache;
7821 
7822 	extent_root = root->fs_info->extent_root;
7823 
7824 	root->fs_info->last_trans_log_full_commit = trans->transid;
7825 
7826 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7827 	if (!cache)
7828 		return -ENOMEM;
7829 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7830 					GFP_NOFS);
7831 	if (!cache->free_space_ctl) {
7832 		kfree(cache);
7833 		return -ENOMEM;
7834 	}
7835 
7836 	cache->key.objectid = chunk_offset;
7837 	cache->key.offset = size;
7838 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7839 	cache->sectorsize = root->sectorsize;
7840 	cache->fs_info = root->fs_info;
7841 
7842 	atomic_set(&cache->count, 1);
7843 	spin_lock_init(&cache->lock);
7844 	INIT_LIST_HEAD(&cache->list);
7845 	INIT_LIST_HEAD(&cache->cluster_list);
7846 
7847 	btrfs_init_free_space_ctl(cache);
7848 
7849 	btrfs_set_block_group_used(&cache->item, bytes_used);
7850 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7851 	cache->flags = type;
7852 	btrfs_set_block_group_flags(&cache->item, type);
7853 
7854 	cache->last_byte_to_unpin = (u64)-1;
7855 	cache->cached = BTRFS_CACHE_FINISHED;
7856 	exclude_super_stripes(root, cache);
7857 
7858 	add_new_free_space(cache, root->fs_info, chunk_offset,
7859 			   chunk_offset + size);
7860 
7861 	free_excluded_extents(root, cache);
7862 
7863 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7864 				&cache->space_info);
7865 	BUG_ON(ret); /* -ENOMEM */
7866 	update_global_block_rsv(root->fs_info);
7867 
7868 	spin_lock(&cache->space_info->lock);
7869 	cache->space_info->bytes_readonly += cache->bytes_super;
7870 	spin_unlock(&cache->space_info->lock);
7871 
7872 	__link_block_group(cache->space_info, cache);
7873 
7874 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7875 	BUG_ON(ret); /* Logic error */
7876 
7877 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7878 				sizeof(cache->item));
7879 	if (ret) {
7880 		btrfs_abort_transaction(trans, extent_root, ret);
7881 		return ret;
7882 	}
7883 
7884 	set_avail_alloc_bits(extent_root->fs_info, type);
7885 
7886 	return 0;
7887 }
7888 
7889 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7890 {
7891 	u64 extra_flags = chunk_to_extended(flags) &
7892 				BTRFS_EXTENDED_PROFILE_MASK;
7893 
7894 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7895 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7896 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7897 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7898 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7899 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7900 }
7901 
7902 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7903 			     struct btrfs_root *root, u64 group_start)
7904 {
7905 	struct btrfs_path *path;
7906 	struct btrfs_block_group_cache *block_group;
7907 	struct btrfs_free_cluster *cluster;
7908 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7909 	struct btrfs_key key;
7910 	struct inode *inode;
7911 	int ret;
7912 	int index;
7913 	int factor;
7914 
7915 	root = root->fs_info->extent_root;
7916 
7917 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7918 	BUG_ON(!block_group);
7919 	BUG_ON(!block_group->ro);
7920 
7921 	/*
7922 	 * Free the reserved super bytes from this block group before
7923 	 * remove it.
7924 	 */
7925 	free_excluded_extents(root, block_group);
7926 
7927 	memcpy(&key, &block_group->key, sizeof(key));
7928 	index = get_block_group_index(block_group);
7929 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7930 				  BTRFS_BLOCK_GROUP_RAID1 |
7931 				  BTRFS_BLOCK_GROUP_RAID10))
7932 		factor = 2;
7933 	else
7934 		factor = 1;
7935 
7936 	/* make sure this block group isn't part of an allocation cluster */
7937 	cluster = &root->fs_info->data_alloc_cluster;
7938 	spin_lock(&cluster->refill_lock);
7939 	btrfs_return_cluster_to_free_space(block_group, cluster);
7940 	spin_unlock(&cluster->refill_lock);
7941 
7942 	/*
7943 	 * make sure this block group isn't part of a metadata
7944 	 * allocation cluster
7945 	 */
7946 	cluster = &root->fs_info->meta_alloc_cluster;
7947 	spin_lock(&cluster->refill_lock);
7948 	btrfs_return_cluster_to_free_space(block_group, cluster);
7949 	spin_unlock(&cluster->refill_lock);
7950 
7951 	path = btrfs_alloc_path();
7952 	if (!path) {
7953 		ret = -ENOMEM;
7954 		goto out;
7955 	}
7956 
7957 	inode = lookup_free_space_inode(tree_root, block_group, path);
7958 	if (!IS_ERR(inode)) {
7959 		ret = btrfs_orphan_add(trans, inode);
7960 		if (ret) {
7961 			btrfs_add_delayed_iput(inode);
7962 			goto out;
7963 		}
7964 		clear_nlink(inode);
7965 		/* One for the block groups ref */
7966 		spin_lock(&block_group->lock);
7967 		if (block_group->iref) {
7968 			block_group->iref = 0;
7969 			block_group->inode = NULL;
7970 			spin_unlock(&block_group->lock);
7971 			iput(inode);
7972 		} else {
7973 			spin_unlock(&block_group->lock);
7974 		}
7975 		/* One for our lookup ref */
7976 		btrfs_add_delayed_iput(inode);
7977 	}
7978 
7979 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7980 	key.offset = block_group->key.objectid;
7981 	key.type = 0;
7982 
7983 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7984 	if (ret < 0)
7985 		goto out;
7986 	if (ret > 0)
7987 		btrfs_release_path(path);
7988 	if (ret == 0) {
7989 		ret = btrfs_del_item(trans, tree_root, path);
7990 		if (ret)
7991 			goto out;
7992 		btrfs_release_path(path);
7993 	}
7994 
7995 	spin_lock(&root->fs_info->block_group_cache_lock);
7996 	rb_erase(&block_group->cache_node,
7997 		 &root->fs_info->block_group_cache_tree);
7998 	spin_unlock(&root->fs_info->block_group_cache_lock);
7999 
8000 	down_write(&block_group->space_info->groups_sem);
8001 	/*
8002 	 * we must use list_del_init so people can check to see if they
8003 	 * are still on the list after taking the semaphore
8004 	 */
8005 	list_del_init(&block_group->list);
8006 	if (list_empty(&block_group->space_info->block_groups[index]))
8007 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8008 	up_write(&block_group->space_info->groups_sem);
8009 
8010 	if (block_group->cached == BTRFS_CACHE_STARTED)
8011 		wait_block_group_cache_done(block_group);
8012 
8013 	btrfs_remove_free_space_cache(block_group);
8014 
8015 	spin_lock(&block_group->space_info->lock);
8016 	block_group->space_info->total_bytes -= block_group->key.offset;
8017 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8018 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8019 	spin_unlock(&block_group->space_info->lock);
8020 
8021 	memcpy(&key, &block_group->key, sizeof(key));
8022 
8023 	btrfs_clear_space_info_full(root->fs_info);
8024 
8025 	btrfs_put_block_group(block_group);
8026 	btrfs_put_block_group(block_group);
8027 
8028 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8029 	if (ret > 0)
8030 		ret = -EIO;
8031 	if (ret < 0)
8032 		goto out;
8033 
8034 	ret = btrfs_del_item(trans, root, path);
8035 out:
8036 	btrfs_free_path(path);
8037 	return ret;
8038 }
8039 
8040 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8041 {
8042 	struct btrfs_space_info *space_info;
8043 	struct btrfs_super_block *disk_super;
8044 	u64 features;
8045 	u64 flags;
8046 	int mixed = 0;
8047 	int ret;
8048 
8049 	disk_super = fs_info->super_copy;
8050 	if (!btrfs_super_root(disk_super))
8051 		return 1;
8052 
8053 	features = btrfs_super_incompat_flags(disk_super);
8054 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8055 		mixed = 1;
8056 
8057 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8058 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8059 	if (ret)
8060 		goto out;
8061 
8062 	if (mixed) {
8063 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8064 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8065 	} else {
8066 		flags = BTRFS_BLOCK_GROUP_METADATA;
8067 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8068 		if (ret)
8069 			goto out;
8070 
8071 		flags = BTRFS_BLOCK_GROUP_DATA;
8072 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8073 	}
8074 out:
8075 	return ret;
8076 }
8077 
8078 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8079 {
8080 	return unpin_extent_range(root, start, end);
8081 }
8082 
8083 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8084 			       u64 num_bytes, u64 *actual_bytes)
8085 {
8086 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8087 }
8088 
8089 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8090 {
8091 	struct btrfs_fs_info *fs_info = root->fs_info;
8092 	struct btrfs_block_group_cache *cache = NULL;
8093 	u64 group_trimmed;
8094 	u64 start;
8095 	u64 end;
8096 	u64 trimmed = 0;
8097 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8098 	int ret = 0;
8099 
8100 	/*
8101 	 * try to trim all FS space, our block group may start from non-zero.
8102 	 */
8103 	if (range->len == total_bytes)
8104 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8105 	else
8106 		cache = btrfs_lookup_block_group(fs_info, range->start);
8107 
8108 	while (cache) {
8109 		if (cache->key.objectid >= (range->start + range->len)) {
8110 			btrfs_put_block_group(cache);
8111 			break;
8112 		}
8113 
8114 		start = max(range->start, cache->key.objectid);
8115 		end = min(range->start + range->len,
8116 				cache->key.objectid + cache->key.offset);
8117 
8118 		if (end - start >= range->minlen) {
8119 			if (!block_group_cache_done(cache)) {
8120 				ret = cache_block_group(cache, NULL, root, 0);
8121 				if (!ret)
8122 					wait_block_group_cache_done(cache);
8123 			}
8124 			ret = btrfs_trim_block_group(cache,
8125 						     &group_trimmed,
8126 						     start,
8127 						     end,
8128 						     range->minlen);
8129 
8130 			trimmed += group_trimmed;
8131 			if (ret) {
8132 				btrfs_put_block_group(cache);
8133 				break;
8134 			}
8135 		}
8136 
8137 		cache = next_block_group(fs_info->tree_root, cache);
8138 	}
8139 
8140 	range->len = trimmed;
8141 	return ret;
8142 }
8143