1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 /* 40 * control flags for do_chunk_alloc's force field 41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 42 * if we really need one. 43 * 44 * CHUNK_ALLOC_LIMITED means to only try and allocate one 45 * if we have very few chunks already allocated. This is 46 * used as part of the clustering code to help make sure 47 * we have a good pool of storage to cluster in, without 48 * filling the FS with empty chunks 49 * 50 * CHUNK_ALLOC_FORCE means it must try to allocate one 51 * 52 */ 53 enum { 54 CHUNK_ALLOC_NO_FORCE = 0, 55 CHUNK_ALLOC_LIMITED = 1, 56 CHUNK_ALLOC_FORCE = 2, 57 }; 58 59 /* 60 * Control how reservations are dealt with. 61 * 62 * RESERVE_FREE - freeing a reservation. 63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 64 * ENOSPC accounting 65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 66 * bytes_may_use as the ENOSPC accounting is done elsewhere 67 */ 68 enum { 69 RESERVE_FREE = 0, 70 RESERVE_ALLOC = 1, 71 RESERVE_ALLOC_NO_ACCOUNT = 2, 72 }; 73 74 static int update_block_group(struct btrfs_trans_handle *trans, 75 struct btrfs_root *root, 76 u64 bytenr, u64 num_bytes, int alloc); 77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, 79 u64 bytenr, u64 num_bytes, u64 parent, 80 u64 root_objectid, u64 owner_objectid, 81 u64 owner_offset, int refs_to_drop, 82 struct btrfs_delayed_extent_op *extra_op); 83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 84 struct extent_buffer *leaf, 85 struct btrfs_extent_item *ei); 86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 87 struct btrfs_root *root, 88 u64 parent, u64 root_objectid, 89 u64 flags, u64 owner, u64 offset, 90 struct btrfs_key *ins, int ref_mod); 91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 92 struct btrfs_root *root, 93 u64 parent, u64 root_objectid, 94 u64 flags, struct btrfs_disk_key *key, 95 int level, struct btrfs_key *ins); 96 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 97 struct btrfs_root *extent_root, u64 alloc_bytes, 98 u64 flags, int force); 99 static int find_next_key(struct btrfs_path *path, int level, 100 struct btrfs_key *key); 101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 102 int dump_block_groups); 103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 104 u64 num_bytes, int reserve); 105 106 static noinline int 107 block_group_cache_done(struct btrfs_block_group_cache *cache) 108 { 109 smp_mb(); 110 return cache->cached == BTRFS_CACHE_FINISHED; 111 } 112 113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 114 { 115 return (cache->flags & bits) == bits; 116 } 117 118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 119 { 120 atomic_inc(&cache->count); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 124 { 125 if (atomic_dec_and_test(&cache->count)) { 126 WARN_ON(cache->pinned > 0); 127 WARN_ON(cache->reserved > 0); 128 kfree(cache->free_space_ctl); 129 kfree(cache); 130 } 131 } 132 133 /* 134 * this adds the block group to the fs_info rb tree for the block group 135 * cache 136 */ 137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 138 struct btrfs_block_group_cache *block_group) 139 { 140 struct rb_node **p; 141 struct rb_node *parent = NULL; 142 struct btrfs_block_group_cache *cache; 143 144 spin_lock(&info->block_group_cache_lock); 145 p = &info->block_group_cache_tree.rb_node; 146 147 while (*p) { 148 parent = *p; 149 cache = rb_entry(parent, struct btrfs_block_group_cache, 150 cache_node); 151 if (block_group->key.objectid < cache->key.objectid) { 152 p = &(*p)->rb_left; 153 } else if (block_group->key.objectid > cache->key.objectid) { 154 p = &(*p)->rb_right; 155 } else { 156 spin_unlock(&info->block_group_cache_lock); 157 return -EEXIST; 158 } 159 } 160 161 rb_link_node(&block_group->cache_node, parent, p); 162 rb_insert_color(&block_group->cache_node, 163 &info->block_group_cache_tree); 164 spin_unlock(&info->block_group_cache_lock); 165 166 return 0; 167 } 168 169 /* 170 * This will return the block group at or after bytenr if contains is 0, else 171 * it will return the block group that contains the bytenr 172 */ 173 static struct btrfs_block_group_cache * 174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 175 int contains) 176 { 177 struct btrfs_block_group_cache *cache, *ret = NULL; 178 struct rb_node *n; 179 u64 end, start; 180 181 spin_lock(&info->block_group_cache_lock); 182 n = info->block_group_cache_tree.rb_node; 183 184 while (n) { 185 cache = rb_entry(n, struct btrfs_block_group_cache, 186 cache_node); 187 end = cache->key.objectid + cache->key.offset - 1; 188 start = cache->key.objectid; 189 190 if (bytenr < start) { 191 if (!contains && (!ret || start < ret->key.objectid)) 192 ret = cache; 193 n = n->rb_left; 194 } else if (bytenr > start) { 195 if (contains && bytenr <= end) { 196 ret = cache; 197 break; 198 } 199 n = n->rb_right; 200 } else { 201 ret = cache; 202 break; 203 } 204 } 205 if (ret) 206 btrfs_get_block_group(ret); 207 spin_unlock(&info->block_group_cache_lock); 208 209 return ret; 210 } 211 212 static int add_excluded_extent(struct btrfs_root *root, 213 u64 start, u64 num_bytes) 214 { 215 u64 end = start + num_bytes - 1; 216 set_extent_bits(&root->fs_info->freed_extents[0], 217 start, end, EXTENT_UPTODATE, GFP_NOFS); 218 set_extent_bits(&root->fs_info->freed_extents[1], 219 start, end, EXTENT_UPTODATE, GFP_NOFS); 220 return 0; 221 } 222 223 static void free_excluded_extents(struct btrfs_root *root, 224 struct btrfs_block_group_cache *cache) 225 { 226 u64 start, end; 227 228 start = cache->key.objectid; 229 end = start + cache->key.offset - 1; 230 231 clear_extent_bits(&root->fs_info->freed_extents[0], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 clear_extent_bits(&root->fs_info->freed_extents[1], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 } 236 237 static int exclude_super_stripes(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 bytenr; 241 u64 *logical; 242 int stripe_len; 243 int i, nr, ret; 244 245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 247 cache->bytes_super += stripe_len; 248 ret = add_excluded_extent(root, cache->key.objectid, 249 stripe_len); 250 BUG_ON(ret); /* -ENOMEM */ 251 } 252 253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 254 bytenr = btrfs_sb_offset(i); 255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 256 cache->key.objectid, bytenr, 257 0, &logical, &nr, &stripe_len); 258 BUG_ON(ret); /* -ENOMEM */ 259 260 while (nr--) { 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, logical[nr], 263 stripe_len); 264 BUG_ON(ret); /* -ENOMEM */ 265 } 266 267 kfree(logical); 268 } 269 return 0; 270 } 271 272 static struct btrfs_caching_control * 273 get_caching_control(struct btrfs_block_group_cache *cache) 274 { 275 struct btrfs_caching_control *ctl; 276 277 spin_lock(&cache->lock); 278 if (cache->cached != BTRFS_CACHE_STARTED) { 279 spin_unlock(&cache->lock); 280 return NULL; 281 } 282 283 /* We're loading it the fast way, so we don't have a caching_ctl. */ 284 if (!cache->caching_ctl) { 285 spin_unlock(&cache->lock); 286 return NULL; 287 } 288 289 ctl = cache->caching_ctl; 290 atomic_inc(&ctl->count); 291 spin_unlock(&cache->lock); 292 return ctl; 293 } 294 295 static void put_caching_control(struct btrfs_caching_control *ctl) 296 { 297 if (atomic_dec_and_test(&ctl->count)) 298 kfree(ctl); 299 } 300 301 /* 302 * this is only called by cache_block_group, since we could have freed extents 303 * we need to check the pinned_extents for any extents that can't be used yet 304 * since their free space will be released as soon as the transaction commits. 305 */ 306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 307 struct btrfs_fs_info *info, u64 start, u64 end) 308 { 309 u64 extent_start, extent_end, size, total_added = 0; 310 int ret; 311 312 while (start < end) { 313 ret = find_first_extent_bit(info->pinned_extents, start, 314 &extent_start, &extent_end, 315 EXTENT_DIRTY | EXTENT_UPTODATE); 316 if (ret) 317 break; 318 319 if (extent_start <= start) { 320 start = extent_end + 1; 321 } else if (extent_start > start && extent_start < end) { 322 size = extent_start - start; 323 total_added += size; 324 ret = btrfs_add_free_space(block_group, start, 325 size); 326 BUG_ON(ret); /* -ENOMEM or logic error */ 327 start = extent_end + 1; 328 } else { 329 break; 330 } 331 } 332 333 if (start < end) { 334 size = end - start; 335 total_added += size; 336 ret = btrfs_add_free_space(block_group, start, size); 337 BUG_ON(ret); /* -ENOMEM or logic error */ 338 } 339 340 return total_added; 341 } 342 343 static noinline void caching_thread(struct btrfs_work *work) 344 { 345 struct btrfs_block_group_cache *block_group; 346 struct btrfs_fs_info *fs_info; 347 struct btrfs_caching_control *caching_ctl; 348 struct btrfs_root *extent_root; 349 struct btrfs_path *path; 350 struct extent_buffer *leaf; 351 struct btrfs_key key; 352 u64 total_found = 0; 353 u64 last = 0; 354 u32 nritems; 355 int ret = 0; 356 357 caching_ctl = container_of(work, struct btrfs_caching_control, work); 358 block_group = caching_ctl->block_group; 359 fs_info = block_group->fs_info; 360 extent_root = fs_info->extent_root; 361 362 path = btrfs_alloc_path(); 363 if (!path) 364 goto out; 365 366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 367 368 /* 369 * We don't want to deadlock with somebody trying to allocate a new 370 * extent for the extent root while also trying to search the extent 371 * root to add free space. So we skip locking and search the commit 372 * root, since its read-only 373 */ 374 path->skip_locking = 1; 375 path->search_commit_root = 1; 376 path->reada = 1; 377 378 key.objectid = last; 379 key.offset = 0; 380 key.type = BTRFS_EXTENT_ITEM_KEY; 381 again: 382 mutex_lock(&caching_ctl->mutex); 383 /* need to make sure the commit_root doesn't disappear */ 384 down_read(&fs_info->extent_commit_sem); 385 386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 387 if (ret < 0) 388 goto err; 389 390 leaf = path->nodes[0]; 391 nritems = btrfs_header_nritems(leaf); 392 393 while (1) { 394 if (btrfs_fs_closing(fs_info) > 1) { 395 last = (u64)-1; 396 break; 397 } 398 399 if (path->slots[0] < nritems) { 400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 401 } else { 402 ret = find_next_key(path, 0, &key); 403 if (ret) 404 break; 405 406 if (need_resched() || 407 btrfs_next_leaf(extent_root, path)) { 408 caching_ctl->progress = last; 409 btrfs_release_path(path); 410 up_read(&fs_info->extent_commit_sem); 411 mutex_unlock(&caching_ctl->mutex); 412 cond_resched(); 413 goto again; 414 } 415 leaf = path->nodes[0]; 416 nritems = btrfs_header_nritems(leaf); 417 continue; 418 } 419 420 if (key.objectid < block_group->key.objectid) { 421 path->slots[0]++; 422 continue; 423 } 424 425 if (key.objectid >= block_group->key.objectid + 426 block_group->key.offset) 427 break; 428 429 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 430 total_found += add_new_free_space(block_group, 431 fs_info, last, 432 key.objectid); 433 last = key.objectid + key.offset; 434 435 if (total_found > (1024 * 1024 * 2)) { 436 total_found = 0; 437 wake_up(&caching_ctl->wait); 438 } 439 } 440 path->slots[0]++; 441 } 442 ret = 0; 443 444 total_found += add_new_free_space(block_group, fs_info, last, 445 block_group->key.objectid + 446 block_group->key.offset); 447 caching_ctl->progress = (u64)-1; 448 449 spin_lock(&block_group->lock); 450 block_group->caching_ctl = NULL; 451 block_group->cached = BTRFS_CACHE_FINISHED; 452 spin_unlock(&block_group->lock); 453 454 err: 455 btrfs_free_path(path); 456 up_read(&fs_info->extent_commit_sem); 457 458 free_excluded_extents(extent_root, block_group); 459 460 mutex_unlock(&caching_ctl->mutex); 461 out: 462 wake_up(&caching_ctl->wait); 463 464 put_caching_control(caching_ctl); 465 btrfs_put_block_group(block_group); 466 } 467 468 static int cache_block_group(struct btrfs_block_group_cache *cache, 469 struct btrfs_trans_handle *trans, 470 struct btrfs_root *root, 471 int load_cache_only) 472 { 473 DEFINE_WAIT(wait); 474 struct btrfs_fs_info *fs_info = cache->fs_info; 475 struct btrfs_caching_control *caching_ctl; 476 int ret = 0; 477 478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 479 if (!caching_ctl) 480 return -ENOMEM; 481 482 INIT_LIST_HEAD(&caching_ctl->list); 483 mutex_init(&caching_ctl->mutex); 484 init_waitqueue_head(&caching_ctl->wait); 485 caching_ctl->block_group = cache; 486 caching_ctl->progress = cache->key.objectid; 487 atomic_set(&caching_ctl->count, 1); 488 caching_ctl->work.func = caching_thread; 489 490 spin_lock(&cache->lock); 491 /* 492 * This should be a rare occasion, but this could happen I think in the 493 * case where one thread starts to load the space cache info, and then 494 * some other thread starts a transaction commit which tries to do an 495 * allocation while the other thread is still loading the space cache 496 * info. The previous loop should have kept us from choosing this block 497 * group, but if we've moved to the state where we will wait on caching 498 * block groups we need to first check if we're doing a fast load here, 499 * so we can wait for it to finish, otherwise we could end up allocating 500 * from a block group who's cache gets evicted for one reason or 501 * another. 502 */ 503 while (cache->cached == BTRFS_CACHE_FAST) { 504 struct btrfs_caching_control *ctl; 505 506 ctl = cache->caching_ctl; 507 atomic_inc(&ctl->count); 508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 509 spin_unlock(&cache->lock); 510 511 schedule(); 512 513 finish_wait(&ctl->wait, &wait); 514 put_caching_control(ctl); 515 spin_lock(&cache->lock); 516 } 517 518 if (cache->cached != BTRFS_CACHE_NO) { 519 spin_unlock(&cache->lock); 520 kfree(caching_ctl); 521 return 0; 522 } 523 WARN_ON(cache->caching_ctl); 524 cache->caching_ctl = caching_ctl; 525 cache->cached = BTRFS_CACHE_FAST; 526 spin_unlock(&cache->lock); 527 528 /* 529 * We can't do the read from on-disk cache during a commit since we need 530 * to have the normal tree locking. Also if we are currently trying to 531 * allocate blocks for the tree root we can't do the fast caching since 532 * we likely hold important locks. 533 */ 534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 535 ret = load_free_space_cache(fs_info, cache); 536 537 spin_lock(&cache->lock); 538 if (ret == 1) { 539 cache->caching_ctl = NULL; 540 cache->cached = BTRFS_CACHE_FINISHED; 541 cache->last_byte_to_unpin = (u64)-1; 542 } else { 543 if (load_cache_only) { 544 cache->caching_ctl = NULL; 545 cache->cached = BTRFS_CACHE_NO; 546 } else { 547 cache->cached = BTRFS_CACHE_STARTED; 548 } 549 } 550 spin_unlock(&cache->lock); 551 wake_up(&caching_ctl->wait); 552 if (ret == 1) { 553 put_caching_control(caching_ctl); 554 free_excluded_extents(fs_info->extent_root, cache); 555 return 0; 556 } 557 } else { 558 /* 559 * We are not going to do the fast caching, set cached to the 560 * appropriate value and wakeup any waiters. 561 */ 562 spin_lock(&cache->lock); 563 if (load_cache_only) { 564 cache->caching_ctl = NULL; 565 cache->cached = BTRFS_CACHE_NO; 566 } else { 567 cache->cached = BTRFS_CACHE_STARTED; 568 } 569 spin_unlock(&cache->lock); 570 wake_up(&caching_ctl->wait); 571 } 572 573 if (load_cache_only) { 574 put_caching_control(caching_ctl); 575 return 0; 576 } 577 578 down_write(&fs_info->extent_commit_sem); 579 atomic_inc(&caching_ctl->count); 580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 581 up_write(&fs_info->extent_commit_sem); 582 583 btrfs_get_block_group(cache); 584 585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 586 587 return ret; 588 } 589 590 /* 591 * return the block group that starts at or after bytenr 592 */ 593 static struct btrfs_block_group_cache * 594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 595 { 596 struct btrfs_block_group_cache *cache; 597 598 cache = block_group_cache_tree_search(info, bytenr, 0); 599 600 return cache; 601 } 602 603 /* 604 * return the block group that contains the given bytenr 605 */ 606 struct btrfs_block_group_cache *btrfs_lookup_block_group( 607 struct btrfs_fs_info *info, 608 u64 bytenr) 609 { 610 struct btrfs_block_group_cache *cache; 611 612 cache = block_group_cache_tree_search(info, bytenr, 1); 613 614 return cache; 615 } 616 617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 618 u64 flags) 619 { 620 struct list_head *head = &info->space_info; 621 struct btrfs_space_info *found; 622 623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 624 625 rcu_read_lock(); 626 list_for_each_entry_rcu(found, head, list) { 627 if (found->flags & flags) { 628 rcu_read_unlock(); 629 return found; 630 } 631 } 632 rcu_read_unlock(); 633 return NULL; 634 } 635 636 /* 637 * after adding space to the filesystem, we need to clear the full flags 638 * on all the space infos. 639 */ 640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 641 { 642 struct list_head *head = &info->space_info; 643 struct btrfs_space_info *found; 644 645 rcu_read_lock(); 646 list_for_each_entry_rcu(found, head, list) 647 found->full = 0; 648 rcu_read_unlock(); 649 } 650 651 static u64 div_factor(u64 num, int factor) 652 { 653 if (factor == 10) 654 return num; 655 num *= factor; 656 do_div(num, 10); 657 return num; 658 } 659 660 static u64 div_factor_fine(u64 num, int factor) 661 { 662 if (factor == 100) 663 return num; 664 num *= factor; 665 do_div(num, 100); 666 return num; 667 } 668 669 u64 btrfs_find_block_group(struct btrfs_root *root, 670 u64 search_start, u64 search_hint, int owner) 671 { 672 struct btrfs_block_group_cache *cache; 673 u64 used; 674 u64 last = max(search_hint, search_start); 675 u64 group_start = 0; 676 int full_search = 0; 677 int factor = 9; 678 int wrapped = 0; 679 again: 680 while (1) { 681 cache = btrfs_lookup_first_block_group(root->fs_info, last); 682 if (!cache) 683 break; 684 685 spin_lock(&cache->lock); 686 last = cache->key.objectid + cache->key.offset; 687 used = btrfs_block_group_used(&cache->item); 688 689 if ((full_search || !cache->ro) && 690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 691 if (used + cache->pinned + cache->reserved < 692 div_factor(cache->key.offset, factor)) { 693 group_start = cache->key.objectid; 694 spin_unlock(&cache->lock); 695 btrfs_put_block_group(cache); 696 goto found; 697 } 698 } 699 spin_unlock(&cache->lock); 700 btrfs_put_block_group(cache); 701 cond_resched(); 702 } 703 if (!wrapped) { 704 last = search_start; 705 wrapped = 1; 706 goto again; 707 } 708 if (!full_search && factor < 10) { 709 last = search_start; 710 full_search = 1; 711 factor = 10; 712 goto again; 713 } 714 found: 715 return group_start; 716 } 717 718 /* simple helper to search for an existing extent at a given offset */ 719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 720 { 721 int ret; 722 struct btrfs_key key; 723 struct btrfs_path *path; 724 725 path = btrfs_alloc_path(); 726 if (!path) 727 return -ENOMEM; 728 729 key.objectid = start; 730 key.offset = len; 731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 733 0, 0); 734 btrfs_free_path(path); 735 return ret; 736 } 737 738 /* 739 * helper function to lookup reference count and flags of extent. 740 * 741 * the head node for delayed ref is used to store the sum of all the 742 * reference count modifications queued up in the rbtree. the head 743 * node may also store the extent flags to set. This way you can check 744 * to see what the reference count and extent flags would be if all of 745 * the delayed refs are not processed. 746 */ 747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 748 struct btrfs_root *root, u64 bytenr, 749 u64 num_bytes, u64 *refs, u64 *flags) 750 { 751 struct btrfs_delayed_ref_head *head; 752 struct btrfs_delayed_ref_root *delayed_refs; 753 struct btrfs_path *path; 754 struct btrfs_extent_item *ei; 755 struct extent_buffer *leaf; 756 struct btrfs_key key; 757 u32 item_size; 758 u64 num_refs; 759 u64 extent_flags; 760 int ret; 761 762 path = btrfs_alloc_path(); 763 if (!path) 764 return -ENOMEM; 765 766 key.objectid = bytenr; 767 key.type = BTRFS_EXTENT_ITEM_KEY; 768 key.offset = num_bytes; 769 if (!trans) { 770 path->skip_locking = 1; 771 path->search_commit_root = 1; 772 } 773 again: 774 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 775 &key, path, 0, 0); 776 if (ret < 0) 777 goto out_free; 778 779 if (ret == 0) { 780 leaf = path->nodes[0]; 781 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 782 if (item_size >= sizeof(*ei)) { 783 ei = btrfs_item_ptr(leaf, path->slots[0], 784 struct btrfs_extent_item); 785 num_refs = btrfs_extent_refs(leaf, ei); 786 extent_flags = btrfs_extent_flags(leaf, ei); 787 } else { 788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 789 struct btrfs_extent_item_v0 *ei0; 790 BUG_ON(item_size != sizeof(*ei0)); 791 ei0 = btrfs_item_ptr(leaf, path->slots[0], 792 struct btrfs_extent_item_v0); 793 num_refs = btrfs_extent_refs_v0(leaf, ei0); 794 /* FIXME: this isn't correct for data */ 795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 796 #else 797 BUG(); 798 #endif 799 } 800 BUG_ON(num_refs == 0); 801 } else { 802 num_refs = 0; 803 extent_flags = 0; 804 ret = 0; 805 } 806 807 if (!trans) 808 goto out; 809 810 delayed_refs = &trans->transaction->delayed_refs; 811 spin_lock(&delayed_refs->lock); 812 head = btrfs_find_delayed_ref_head(trans, bytenr); 813 if (head) { 814 if (!mutex_trylock(&head->mutex)) { 815 atomic_inc(&head->node.refs); 816 spin_unlock(&delayed_refs->lock); 817 818 btrfs_release_path(path); 819 820 /* 821 * Mutex was contended, block until it's released and try 822 * again 823 */ 824 mutex_lock(&head->mutex); 825 mutex_unlock(&head->mutex); 826 btrfs_put_delayed_ref(&head->node); 827 goto again; 828 } 829 if (head->extent_op && head->extent_op->update_flags) 830 extent_flags |= head->extent_op->flags_to_set; 831 else 832 BUG_ON(num_refs == 0); 833 834 num_refs += head->node.ref_mod; 835 mutex_unlock(&head->mutex); 836 } 837 spin_unlock(&delayed_refs->lock); 838 out: 839 WARN_ON(num_refs == 0); 840 if (refs) 841 *refs = num_refs; 842 if (flags) 843 *flags = extent_flags; 844 out_free: 845 btrfs_free_path(path); 846 return ret; 847 } 848 849 /* 850 * Back reference rules. Back refs have three main goals: 851 * 852 * 1) differentiate between all holders of references to an extent so that 853 * when a reference is dropped we can make sure it was a valid reference 854 * before freeing the extent. 855 * 856 * 2) Provide enough information to quickly find the holders of an extent 857 * if we notice a given block is corrupted or bad. 858 * 859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 860 * maintenance. This is actually the same as #2, but with a slightly 861 * different use case. 862 * 863 * There are two kinds of back refs. The implicit back refs is optimized 864 * for pointers in non-shared tree blocks. For a given pointer in a block, 865 * back refs of this kind provide information about the block's owner tree 866 * and the pointer's key. These information allow us to find the block by 867 * b-tree searching. The full back refs is for pointers in tree blocks not 868 * referenced by their owner trees. The location of tree block is recorded 869 * in the back refs. Actually the full back refs is generic, and can be 870 * used in all cases the implicit back refs is used. The major shortcoming 871 * of the full back refs is its overhead. Every time a tree block gets 872 * COWed, we have to update back refs entry for all pointers in it. 873 * 874 * For a newly allocated tree block, we use implicit back refs for 875 * pointers in it. This means most tree related operations only involve 876 * implicit back refs. For a tree block created in old transaction, the 877 * only way to drop a reference to it is COW it. So we can detect the 878 * event that tree block loses its owner tree's reference and do the 879 * back refs conversion. 880 * 881 * When a tree block is COW'd through a tree, there are four cases: 882 * 883 * The reference count of the block is one and the tree is the block's 884 * owner tree. Nothing to do in this case. 885 * 886 * The reference count of the block is one and the tree is not the 887 * block's owner tree. In this case, full back refs is used for pointers 888 * in the block. Remove these full back refs, add implicit back refs for 889 * every pointers in the new block. 890 * 891 * The reference count of the block is greater than one and the tree is 892 * the block's owner tree. In this case, implicit back refs is used for 893 * pointers in the block. Add full back refs for every pointers in the 894 * block, increase lower level extents' reference counts. The original 895 * implicit back refs are entailed to the new block. 896 * 897 * The reference count of the block is greater than one and the tree is 898 * not the block's owner tree. Add implicit back refs for every pointer in 899 * the new block, increase lower level extents' reference count. 900 * 901 * Back Reference Key composing: 902 * 903 * The key objectid corresponds to the first byte in the extent, 904 * The key type is used to differentiate between types of back refs. 905 * There are different meanings of the key offset for different types 906 * of back refs. 907 * 908 * File extents can be referenced by: 909 * 910 * - multiple snapshots, subvolumes, or different generations in one subvol 911 * - different files inside a single subvolume 912 * - different offsets inside a file (bookend extents in file.c) 913 * 914 * The extent ref structure for the implicit back refs has fields for: 915 * 916 * - Objectid of the subvolume root 917 * - objectid of the file holding the reference 918 * - original offset in the file 919 * - how many bookend extents 920 * 921 * The key offset for the implicit back refs is hash of the first 922 * three fields. 923 * 924 * The extent ref structure for the full back refs has field for: 925 * 926 * - number of pointers in the tree leaf 927 * 928 * The key offset for the implicit back refs is the first byte of 929 * the tree leaf 930 * 931 * When a file extent is allocated, The implicit back refs is used. 932 * the fields are filled in: 933 * 934 * (root_key.objectid, inode objectid, offset in file, 1) 935 * 936 * When a file extent is removed file truncation, we find the 937 * corresponding implicit back refs and check the following fields: 938 * 939 * (btrfs_header_owner(leaf), inode objectid, offset in file) 940 * 941 * Btree extents can be referenced by: 942 * 943 * - Different subvolumes 944 * 945 * Both the implicit back refs and the full back refs for tree blocks 946 * only consist of key. The key offset for the implicit back refs is 947 * objectid of block's owner tree. The key offset for the full back refs 948 * is the first byte of parent block. 949 * 950 * When implicit back refs is used, information about the lowest key and 951 * level of the tree block are required. These information are stored in 952 * tree block info structure. 953 */ 954 955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 957 struct btrfs_root *root, 958 struct btrfs_path *path, 959 u64 owner, u32 extra_size) 960 { 961 struct btrfs_extent_item *item; 962 struct btrfs_extent_item_v0 *ei0; 963 struct btrfs_extent_ref_v0 *ref0; 964 struct btrfs_tree_block_info *bi; 965 struct extent_buffer *leaf; 966 struct btrfs_key key; 967 struct btrfs_key found_key; 968 u32 new_size = sizeof(*item); 969 u64 refs; 970 int ret; 971 972 leaf = path->nodes[0]; 973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 974 975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 976 ei0 = btrfs_item_ptr(leaf, path->slots[0], 977 struct btrfs_extent_item_v0); 978 refs = btrfs_extent_refs_v0(leaf, ei0); 979 980 if (owner == (u64)-1) { 981 while (1) { 982 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 983 ret = btrfs_next_leaf(root, path); 984 if (ret < 0) 985 return ret; 986 BUG_ON(ret > 0); /* Corruption */ 987 leaf = path->nodes[0]; 988 } 989 btrfs_item_key_to_cpu(leaf, &found_key, 990 path->slots[0]); 991 BUG_ON(key.objectid != found_key.objectid); 992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 993 path->slots[0]++; 994 continue; 995 } 996 ref0 = btrfs_item_ptr(leaf, path->slots[0], 997 struct btrfs_extent_ref_v0); 998 owner = btrfs_ref_objectid_v0(leaf, ref0); 999 break; 1000 } 1001 } 1002 btrfs_release_path(path); 1003 1004 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1005 new_size += sizeof(*bi); 1006 1007 new_size -= sizeof(*ei0); 1008 ret = btrfs_search_slot(trans, root, &key, path, 1009 new_size + extra_size, 1); 1010 if (ret < 0) 1011 return ret; 1012 BUG_ON(ret); /* Corruption */ 1013 1014 btrfs_extend_item(trans, root, path, new_size); 1015 1016 leaf = path->nodes[0]; 1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1018 btrfs_set_extent_refs(leaf, item, refs); 1019 /* FIXME: get real generation */ 1020 btrfs_set_extent_generation(leaf, item, 0); 1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1022 btrfs_set_extent_flags(leaf, item, 1023 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1024 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1025 bi = (struct btrfs_tree_block_info *)(item + 1); 1026 /* FIXME: get first key of the block */ 1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1028 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1029 } else { 1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1031 } 1032 btrfs_mark_buffer_dirty(leaf); 1033 return 0; 1034 } 1035 #endif 1036 1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1038 { 1039 u32 high_crc = ~(u32)0; 1040 u32 low_crc = ~(u32)0; 1041 __le64 lenum; 1042 1043 lenum = cpu_to_le64(root_objectid); 1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1045 lenum = cpu_to_le64(owner); 1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1047 lenum = cpu_to_le64(offset); 1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1049 1050 return ((u64)high_crc << 31) ^ (u64)low_crc; 1051 } 1052 1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1054 struct btrfs_extent_data_ref *ref) 1055 { 1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1057 btrfs_extent_data_ref_objectid(leaf, ref), 1058 btrfs_extent_data_ref_offset(leaf, ref)); 1059 } 1060 1061 static int match_extent_data_ref(struct extent_buffer *leaf, 1062 struct btrfs_extent_data_ref *ref, 1063 u64 root_objectid, u64 owner, u64 offset) 1064 { 1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1067 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1068 return 0; 1069 return 1; 1070 } 1071 1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1073 struct btrfs_root *root, 1074 struct btrfs_path *path, 1075 u64 bytenr, u64 parent, 1076 u64 root_objectid, 1077 u64 owner, u64 offset) 1078 { 1079 struct btrfs_key key; 1080 struct btrfs_extent_data_ref *ref; 1081 struct extent_buffer *leaf; 1082 u32 nritems; 1083 int ret; 1084 int recow; 1085 int err = -ENOENT; 1086 1087 key.objectid = bytenr; 1088 if (parent) { 1089 key.type = BTRFS_SHARED_DATA_REF_KEY; 1090 key.offset = parent; 1091 } else { 1092 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1093 key.offset = hash_extent_data_ref(root_objectid, 1094 owner, offset); 1095 } 1096 again: 1097 recow = 0; 1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1099 if (ret < 0) { 1100 err = ret; 1101 goto fail; 1102 } 1103 1104 if (parent) { 1105 if (!ret) 1106 return 0; 1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1108 key.type = BTRFS_EXTENT_REF_V0_KEY; 1109 btrfs_release_path(path); 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret < 0) { 1112 err = ret; 1113 goto fail; 1114 } 1115 if (!ret) 1116 return 0; 1117 #endif 1118 goto fail; 1119 } 1120 1121 leaf = path->nodes[0]; 1122 nritems = btrfs_header_nritems(leaf); 1123 while (1) { 1124 if (path->slots[0] >= nritems) { 1125 ret = btrfs_next_leaf(root, path); 1126 if (ret < 0) 1127 err = ret; 1128 if (ret) 1129 goto fail; 1130 1131 leaf = path->nodes[0]; 1132 nritems = btrfs_header_nritems(leaf); 1133 recow = 1; 1134 } 1135 1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1137 if (key.objectid != bytenr || 1138 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1139 goto fail; 1140 1141 ref = btrfs_item_ptr(leaf, path->slots[0], 1142 struct btrfs_extent_data_ref); 1143 1144 if (match_extent_data_ref(leaf, ref, root_objectid, 1145 owner, offset)) { 1146 if (recow) { 1147 btrfs_release_path(path); 1148 goto again; 1149 } 1150 err = 0; 1151 break; 1152 } 1153 path->slots[0]++; 1154 } 1155 fail: 1156 return err; 1157 } 1158 1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1160 struct btrfs_root *root, 1161 struct btrfs_path *path, 1162 u64 bytenr, u64 parent, 1163 u64 root_objectid, u64 owner, 1164 u64 offset, int refs_to_add) 1165 { 1166 struct btrfs_key key; 1167 struct extent_buffer *leaf; 1168 u32 size; 1169 u32 num_refs; 1170 int ret; 1171 1172 key.objectid = bytenr; 1173 if (parent) { 1174 key.type = BTRFS_SHARED_DATA_REF_KEY; 1175 key.offset = parent; 1176 size = sizeof(struct btrfs_shared_data_ref); 1177 } else { 1178 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1179 key.offset = hash_extent_data_ref(root_objectid, 1180 owner, offset); 1181 size = sizeof(struct btrfs_extent_data_ref); 1182 } 1183 1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1185 if (ret && ret != -EEXIST) 1186 goto fail; 1187 1188 leaf = path->nodes[0]; 1189 if (parent) { 1190 struct btrfs_shared_data_ref *ref; 1191 ref = btrfs_item_ptr(leaf, path->slots[0], 1192 struct btrfs_shared_data_ref); 1193 if (ret == 0) { 1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1195 } else { 1196 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1197 num_refs += refs_to_add; 1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1199 } 1200 } else { 1201 struct btrfs_extent_data_ref *ref; 1202 while (ret == -EEXIST) { 1203 ref = btrfs_item_ptr(leaf, path->slots[0], 1204 struct btrfs_extent_data_ref); 1205 if (match_extent_data_ref(leaf, ref, root_objectid, 1206 owner, offset)) 1207 break; 1208 btrfs_release_path(path); 1209 key.offset++; 1210 ret = btrfs_insert_empty_item(trans, root, path, &key, 1211 size); 1212 if (ret && ret != -EEXIST) 1213 goto fail; 1214 1215 leaf = path->nodes[0]; 1216 } 1217 ref = btrfs_item_ptr(leaf, path->slots[0], 1218 struct btrfs_extent_data_ref); 1219 if (ret == 0) { 1220 btrfs_set_extent_data_ref_root(leaf, ref, 1221 root_objectid); 1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1225 } else { 1226 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1227 num_refs += refs_to_add; 1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1229 } 1230 } 1231 btrfs_mark_buffer_dirty(leaf); 1232 ret = 0; 1233 fail: 1234 btrfs_release_path(path); 1235 return ret; 1236 } 1237 1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1239 struct btrfs_root *root, 1240 struct btrfs_path *path, 1241 int refs_to_drop) 1242 { 1243 struct btrfs_key key; 1244 struct btrfs_extent_data_ref *ref1 = NULL; 1245 struct btrfs_shared_data_ref *ref2 = NULL; 1246 struct extent_buffer *leaf; 1247 u32 num_refs = 0; 1248 int ret = 0; 1249 1250 leaf = path->nodes[0]; 1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1252 1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1254 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_extent_data_ref); 1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1258 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1259 struct btrfs_shared_data_ref); 1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1263 struct btrfs_extent_ref_v0 *ref0; 1264 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1265 struct btrfs_extent_ref_v0); 1266 num_refs = btrfs_ref_count_v0(leaf, ref0); 1267 #endif 1268 } else { 1269 BUG(); 1270 } 1271 1272 BUG_ON(num_refs < refs_to_drop); 1273 num_refs -= refs_to_drop; 1274 1275 if (num_refs == 0) { 1276 ret = btrfs_del_item(trans, root, path); 1277 } else { 1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1283 else { 1284 struct btrfs_extent_ref_v0 *ref0; 1285 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1286 struct btrfs_extent_ref_v0); 1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1288 } 1289 #endif 1290 btrfs_mark_buffer_dirty(leaf); 1291 } 1292 return ret; 1293 } 1294 1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1296 struct btrfs_path *path, 1297 struct btrfs_extent_inline_ref *iref) 1298 { 1299 struct btrfs_key key; 1300 struct extent_buffer *leaf; 1301 struct btrfs_extent_data_ref *ref1; 1302 struct btrfs_shared_data_ref *ref2; 1303 u32 num_refs = 0; 1304 1305 leaf = path->nodes[0]; 1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1307 if (iref) { 1308 if (btrfs_extent_inline_ref_type(leaf, iref) == 1309 BTRFS_EXTENT_DATA_REF_KEY) { 1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1312 } else { 1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1315 } 1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1317 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_data_ref); 1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1321 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1322 struct btrfs_shared_data_ref); 1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1326 struct btrfs_extent_ref_v0 *ref0; 1327 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1328 struct btrfs_extent_ref_v0); 1329 num_refs = btrfs_ref_count_v0(leaf, ref0); 1330 #endif 1331 } else { 1332 WARN_ON(1); 1333 } 1334 return num_refs; 1335 } 1336 1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1338 struct btrfs_root *root, 1339 struct btrfs_path *path, 1340 u64 bytenr, u64 parent, 1341 u64 root_objectid) 1342 { 1343 struct btrfs_key key; 1344 int ret; 1345 1346 key.objectid = bytenr; 1347 if (parent) { 1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1349 key.offset = parent; 1350 } else { 1351 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1352 key.offset = root_objectid; 1353 } 1354 1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1356 if (ret > 0) 1357 ret = -ENOENT; 1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1359 if (ret == -ENOENT && parent) { 1360 btrfs_release_path(path); 1361 key.type = BTRFS_EXTENT_REF_V0_KEY; 1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 } 1366 #endif 1367 return ret; 1368 } 1369 1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1389 btrfs_release_path(path); 1390 return ret; 1391 } 1392 1393 static inline int extent_ref_type(u64 parent, u64 owner) 1394 { 1395 int type; 1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1397 if (parent > 0) 1398 type = BTRFS_SHARED_BLOCK_REF_KEY; 1399 else 1400 type = BTRFS_TREE_BLOCK_REF_KEY; 1401 } else { 1402 if (parent > 0) 1403 type = BTRFS_SHARED_DATA_REF_KEY; 1404 else 1405 type = BTRFS_EXTENT_DATA_REF_KEY; 1406 } 1407 return type; 1408 } 1409 1410 static int find_next_key(struct btrfs_path *path, int level, 1411 struct btrfs_key *key) 1412 1413 { 1414 for (; level < BTRFS_MAX_LEVEL; level++) { 1415 if (!path->nodes[level]) 1416 break; 1417 if (path->slots[level] + 1 >= 1418 btrfs_header_nritems(path->nodes[level])) 1419 continue; 1420 if (level == 0) 1421 btrfs_item_key_to_cpu(path->nodes[level], key, 1422 path->slots[level] + 1); 1423 else 1424 btrfs_node_key_to_cpu(path->nodes[level], key, 1425 path->slots[level] + 1); 1426 return 0; 1427 } 1428 return 1; 1429 } 1430 1431 /* 1432 * look for inline back ref. if back ref is found, *ref_ret is set 1433 * to the address of inline back ref, and 0 is returned. 1434 * 1435 * if back ref isn't found, *ref_ret is set to the address where it 1436 * should be inserted, and -ENOENT is returned. 1437 * 1438 * if insert is true and there are too many inline back refs, the path 1439 * points to the extent item, and -EAGAIN is returned. 1440 * 1441 * NOTE: inline back refs are ordered in the same way that back ref 1442 * items in the tree are ordered. 1443 */ 1444 static noinline_for_stack 1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root, 1447 struct btrfs_path *path, 1448 struct btrfs_extent_inline_ref **ref_ret, 1449 u64 bytenr, u64 num_bytes, 1450 u64 parent, u64 root_objectid, 1451 u64 owner, u64 offset, int insert) 1452 { 1453 struct btrfs_key key; 1454 struct extent_buffer *leaf; 1455 struct btrfs_extent_item *ei; 1456 struct btrfs_extent_inline_ref *iref; 1457 u64 flags; 1458 u64 item_size; 1459 unsigned long ptr; 1460 unsigned long end; 1461 int extra_size; 1462 int type; 1463 int want; 1464 int ret; 1465 int err = 0; 1466 1467 key.objectid = bytenr; 1468 key.type = BTRFS_EXTENT_ITEM_KEY; 1469 key.offset = num_bytes; 1470 1471 want = extent_ref_type(parent, owner); 1472 if (insert) { 1473 extra_size = btrfs_extent_inline_ref_size(want); 1474 path->keep_locks = 1; 1475 } else 1476 extra_size = -1; 1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1478 if (ret < 0) { 1479 err = ret; 1480 goto out; 1481 } 1482 if (ret && !insert) { 1483 err = -ENOENT; 1484 goto out; 1485 } 1486 BUG_ON(ret); /* Corruption */ 1487 1488 leaf = path->nodes[0]; 1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1491 if (item_size < sizeof(*ei)) { 1492 if (!insert) { 1493 err = -ENOENT; 1494 goto out; 1495 } 1496 ret = convert_extent_item_v0(trans, root, path, owner, 1497 extra_size); 1498 if (ret < 0) { 1499 err = ret; 1500 goto out; 1501 } 1502 leaf = path->nodes[0]; 1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1504 } 1505 #endif 1506 BUG_ON(item_size < sizeof(*ei)); 1507 1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1509 flags = btrfs_extent_flags(leaf, ei); 1510 1511 ptr = (unsigned long)(ei + 1); 1512 end = (unsigned long)ei + item_size; 1513 1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1515 ptr += sizeof(struct btrfs_tree_block_info); 1516 BUG_ON(ptr > end); 1517 } else { 1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1519 } 1520 1521 err = -ENOENT; 1522 while (1) { 1523 if (ptr >= end) { 1524 WARN_ON(ptr > end); 1525 break; 1526 } 1527 iref = (struct btrfs_extent_inline_ref *)ptr; 1528 type = btrfs_extent_inline_ref_type(leaf, iref); 1529 if (want < type) 1530 break; 1531 if (want > type) { 1532 ptr += btrfs_extent_inline_ref_size(type); 1533 continue; 1534 } 1535 1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1537 struct btrfs_extent_data_ref *dref; 1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1539 if (match_extent_data_ref(leaf, dref, root_objectid, 1540 owner, offset)) { 1541 err = 0; 1542 break; 1543 } 1544 if (hash_extent_data_ref_item(leaf, dref) < 1545 hash_extent_data_ref(root_objectid, owner, offset)) 1546 break; 1547 } else { 1548 u64 ref_offset; 1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1550 if (parent > 0) { 1551 if (parent == ref_offset) { 1552 err = 0; 1553 break; 1554 } 1555 if (ref_offset < parent) 1556 break; 1557 } else { 1558 if (root_objectid == ref_offset) { 1559 err = 0; 1560 break; 1561 } 1562 if (ref_offset < root_objectid) 1563 break; 1564 } 1565 } 1566 ptr += btrfs_extent_inline_ref_size(type); 1567 } 1568 if (err == -ENOENT && insert) { 1569 if (item_size + extra_size >= 1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1571 err = -EAGAIN; 1572 goto out; 1573 } 1574 /* 1575 * To add new inline back ref, we have to make sure 1576 * there is no corresponding back ref item. 1577 * For simplicity, we just do not add new inline back 1578 * ref if there is any kind of item for this block 1579 */ 1580 if (find_next_key(path, 0, &key) == 0 && 1581 key.objectid == bytenr && 1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1583 err = -EAGAIN; 1584 goto out; 1585 } 1586 } 1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1588 out: 1589 if (insert) { 1590 path->keep_locks = 0; 1591 btrfs_unlock_up_safe(path, 1); 1592 } 1593 return err; 1594 } 1595 1596 /* 1597 * helper to add new inline back ref 1598 */ 1599 static noinline_for_stack 1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1601 struct btrfs_root *root, 1602 struct btrfs_path *path, 1603 struct btrfs_extent_inline_ref *iref, 1604 u64 parent, u64 root_objectid, 1605 u64 owner, u64 offset, int refs_to_add, 1606 struct btrfs_delayed_extent_op *extent_op) 1607 { 1608 struct extent_buffer *leaf; 1609 struct btrfs_extent_item *ei; 1610 unsigned long ptr; 1611 unsigned long end; 1612 unsigned long item_offset; 1613 u64 refs; 1614 int size; 1615 int type; 1616 1617 leaf = path->nodes[0]; 1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1619 item_offset = (unsigned long)iref - (unsigned long)ei; 1620 1621 type = extent_ref_type(parent, owner); 1622 size = btrfs_extent_inline_ref_size(type); 1623 1624 btrfs_extend_item(trans, root, path, size); 1625 1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1627 refs = btrfs_extent_refs(leaf, ei); 1628 refs += refs_to_add; 1629 btrfs_set_extent_refs(leaf, ei, refs); 1630 if (extent_op) 1631 __run_delayed_extent_op(extent_op, leaf, ei); 1632 1633 ptr = (unsigned long)ei + item_offset; 1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1635 if (ptr < end - size) 1636 memmove_extent_buffer(leaf, ptr + size, ptr, 1637 end - size - ptr); 1638 1639 iref = (struct btrfs_extent_inline_ref *)ptr; 1640 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1642 struct btrfs_extent_data_ref *dref; 1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1649 struct btrfs_shared_data_ref *sref; 1650 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1655 } else { 1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1657 } 1658 btrfs_mark_buffer_dirty(leaf); 1659 } 1660 1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1662 struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref **ref_ret, 1665 u64 bytenr, u64 num_bytes, u64 parent, 1666 u64 root_objectid, u64 owner, u64 offset) 1667 { 1668 int ret; 1669 1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1671 bytenr, num_bytes, parent, 1672 root_objectid, owner, offset, 0); 1673 if (ret != -ENOENT) 1674 return ret; 1675 1676 btrfs_release_path(path); 1677 *ref_ret = NULL; 1678 1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1681 root_objectid); 1682 } else { 1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1684 root_objectid, owner, offset); 1685 } 1686 return ret; 1687 } 1688 1689 /* 1690 * helper to update/remove inline back ref 1691 */ 1692 static noinline_for_stack 1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1694 struct btrfs_root *root, 1695 struct btrfs_path *path, 1696 struct btrfs_extent_inline_ref *iref, 1697 int refs_to_mod, 1698 struct btrfs_delayed_extent_op *extent_op) 1699 { 1700 struct extent_buffer *leaf; 1701 struct btrfs_extent_item *ei; 1702 struct btrfs_extent_data_ref *dref = NULL; 1703 struct btrfs_shared_data_ref *sref = NULL; 1704 unsigned long ptr; 1705 unsigned long end; 1706 u32 item_size; 1707 int size; 1708 int type; 1709 u64 refs; 1710 1711 leaf = path->nodes[0]; 1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1713 refs = btrfs_extent_refs(leaf, ei); 1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1715 refs += refs_to_mod; 1716 btrfs_set_extent_refs(leaf, ei, refs); 1717 if (extent_op) 1718 __run_delayed_extent_op(extent_op, leaf, ei); 1719 1720 type = btrfs_extent_inline_ref_type(leaf, iref); 1721 1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1724 refs = btrfs_extent_data_ref_count(leaf, dref); 1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1726 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1727 refs = btrfs_shared_data_ref_count(leaf, sref); 1728 } else { 1729 refs = 1; 1730 BUG_ON(refs_to_mod != -1); 1731 } 1732 1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1734 refs += refs_to_mod; 1735 1736 if (refs > 0) { 1737 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1738 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1739 else 1740 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1741 } else { 1742 size = btrfs_extent_inline_ref_size(type); 1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1744 ptr = (unsigned long)iref; 1745 end = (unsigned long)ei + item_size; 1746 if (ptr + size < end) 1747 memmove_extent_buffer(leaf, ptr, ptr + size, 1748 end - ptr - size); 1749 item_size -= size; 1750 btrfs_truncate_item(trans, root, path, item_size, 1); 1751 } 1752 btrfs_mark_buffer_dirty(leaf); 1753 } 1754 1755 static noinline_for_stack 1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path, 1759 u64 bytenr, u64 num_bytes, u64 parent, 1760 u64 root_objectid, u64 owner, 1761 u64 offset, int refs_to_add, 1762 struct btrfs_delayed_extent_op *extent_op) 1763 { 1764 struct btrfs_extent_inline_ref *iref; 1765 int ret; 1766 1767 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1768 bytenr, num_bytes, parent, 1769 root_objectid, owner, offset, 1); 1770 if (ret == 0) { 1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1772 update_inline_extent_backref(trans, root, path, iref, 1773 refs_to_add, extent_op); 1774 } else if (ret == -ENOENT) { 1775 setup_inline_extent_backref(trans, root, path, iref, parent, 1776 root_objectid, owner, offset, 1777 refs_to_add, extent_op); 1778 ret = 0; 1779 } 1780 return ret; 1781 } 1782 1783 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1784 struct btrfs_root *root, 1785 struct btrfs_path *path, 1786 u64 bytenr, u64 parent, u64 root_objectid, 1787 u64 owner, u64 offset, int refs_to_add) 1788 { 1789 int ret; 1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1791 BUG_ON(refs_to_add != 1); 1792 ret = insert_tree_block_ref(trans, root, path, bytenr, 1793 parent, root_objectid); 1794 } else { 1795 ret = insert_extent_data_ref(trans, root, path, bytenr, 1796 parent, root_objectid, 1797 owner, offset, refs_to_add); 1798 } 1799 return ret; 1800 } 1801 1802 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 struct btrfs_extent_inline_ref *iref, 1806 int refs_to_drop, int is_data) 1807 { 1808 int ret = 0; 1809 1810 BUG_ON(!is_data && refs_to_drop != 1); 1811 if (iref) { 1812 update_inline_extent_backref(trans, root, path, iref, 1813 -refs_to_drop, NULL); 1814 } else if (is_data) { 1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1816 } else { 1817 ret = btrfs_del_item(trans, root, path); 1818 } 1819 return ret; 1820 } 1821 1822 static int btrfs_issue_discard(struct block_device *bdev, 1823 u64 start, u64 len) 1824 { 1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1826 } 1827 1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1829 u64 num_bytes, u64 *actual_bytes) 1830 { 1831 int ret; 1832 u64 discarded_bytes = 0; 1833 struct btrfs_bio *bbio = NULL; 1834 1835 1836 /* Tell the block device(s) that the sectors can be discarded */ 1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1838 bytenr, &num_bytes, &bbio, 0); 1839 /* Error condition is -ENOMEM */ 1840 if (!ret) { 1841 struct btrfs_bio_stripe *stripe = bbio->stripes; 1842 int i; 1843 1844 1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1846 if (!stripe->dev->can_discard) 1847 continue; 1848 1849 ret = btrfs_issue_discard(stripe->dev->bdev, 1850 stripe->physical, 1851 stripe->length); 1852 if (!ret) 1853 discarded_bytes += stripe->length; 1854 else if (ret != -EOPNOTSUPP) 1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1856 1857 /* 1858 * Just in case we get back EOPNOTSUPP for some reason, 1859 * just ignore the return value so we don't screw up 1860 * people calling discard_extent. 1861 */ 1862 ret = 0; 1863 } 1864 kfree(bbio); 1865 } 1866 1867 if (actual_bytes) 1868 *actual_bytes = discarded_bytes; 1869 1870 1871 return ret; 1872 } 1873 1874 /* Can return -ENOMEM */ 1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1876 struct btrfs_root *root, 1877 u64 bytenr, u64 num_bytes, u64 parent, 1878 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1879 { 1880 int ret; 1881 struct btrfs_fs_info *fs_info = root->fs_info; 1882 1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1884 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1885 1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1888 num_bytes, 1889 parent, root_objectid, (int)owner, 1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1891 } else { 1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1893 num_bytes, 1894 parent, root_objectid, owner, offset, 1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1896 } 1897 return ret; 1898 } 1899 1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1901 struct btrfs_root *root, 1902 u64 bytenr, u64 num_bytes, 1903 u64 parent, u64 root_objectid, 1904 u64 owner, u64 offset, int refs_to_add, 1905 struct btrfs_delayed_extent_op *extent_op) 1906 { 1907 struct btrfs_path *path; 1908 struct extent_buffer *leaf; 1909 struct btrfs_extent_item *item; 1910 u64 refs; 1911 int ret; 1912 int err = 0; 1913 1914 path = btrfs_alloc_path(); 1915 if (!path) 1916 return -ENOMEM; 1917 1918 path->reada = 1; 1919 path->leave_spinning = 1; 1920 /* this will setup the path even if it fails to insert the back ref */ 1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1922 path, bytenr, num_bytes, parent, 1923 root_objectid, owner, offset, 1924 refs_to_add, extent_op); 1925 if (ret == 0) 1926 goto out; 1927 1928 if (ret != -EAGAIN) { 1929 err = ret; 1930 goto out; 1931 } 1932 1933 leaf = path->nodes[0]; 1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1935 refs = btrfs_extent_refs(leaf, item); 1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1937 if (extent_op) 1938 __run_delayed_extent_op(extent_op, leaf, item); 1939 1940 btrfs_mark_buffer_dirty(leaf); 1941 btrfs_release_path(path); 1942 1943 path->reada = 1; 1944 path->leave_spinning = 1; 1945 1946 /* now insert the actual backref */ 1947 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1948 path, bytenr, parent, root_objectid, 1949 owner, offset, refs_to_add); 1950 if (ret) 1951 btrfs_abort_transaction(trans, root, ret); 1952 out: 1953 btrfs_free_path(path); 1954 return err; 1955 } 1956 1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1958 struct btrfs_root *root, 1959 struct btrfs_delayed_ref_node *node, 1960 struct btrfs_delayed_extent_op *extent_op, 1961 int insert_reserved) 1962 { 1963 int ret = 0; 1964 struct btrfs_delayed_data_ref *ref; 1965 struct btrfs_key ins; 1966 u64 parent = 0; 1967 u64 ref_root = 0; 1968 u64 flags = 0; 1969 1970 ins.objectid = node->bytenr; 1971 ins.offset = node->num_bytes; 1972 ins.type = BTRFS_EXTENT_ITEM_KEY; 1973 1974 ref = btrfs_delayed_node_to_data_ref(node); 1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1976 parent = ref->parent; 1977 else 1978 ref_root = ref->root; 1979 1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1981 if (extent_op) { 1982 BUG_ON(extent_op->update_key); 1983 flags |= extent_op->flags_to_set; 1984 } 1985 ret = alloc_reserved_file_extent(trans, root, 1986 parent, ref_root, flags, 1987 ref->objectid, ref->offset, 1988 &ins, node->ref_mod); 1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1991 node->num_bytes, parent, 1992 ref_root, ref->objectid, 1993 ref->offset, node->ref_mod, 1994 extent_op); 1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1996 ret = __btrfs_free_extent(trans, root, node->bytenr, 1997 node->num_bytes, parent, 1998 ref_root, ref->objectid, 1999 ref->offset, node->ref_mod, 2000 extent_op); 2001 } else { 2002 BUG(); 2003 } 2004 return ret; 2005 } 2006 2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2008 struct extent_buffer *leaf, 2009 struct btrfs_extent_item *ei) 2010 { 2011 u64 flags = btrfs_extent_flags(leaf, ei); 2012 if (extent_op->update_flags) { 2013 flags |= extent_op->flags_to_set; 2014 btrfs_set_extent_flags(leaf, ei, flags); 2015 } 2016 2017 if (extent_op->update_key) { 2018 struct btrfs_tree_block_info *bi; 2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2020 bi = (struct btrfs_tree_block_info *)(ei + 1); 2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2022 } 2023 } 2024 2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2026 struct btrfs_root *root, 2027 struct btrfs_delayed_ref_node *node, 2028 struct btrfs_delayed_extent_op *extent_op) 2029 { 2030 struct btrfs_key key; 2031 struct btrfs_path *path; 2032 struct btrfs_extent_item *ei; 2033 struct extent_buffer *leaf; 2034 u32 item_size; 2035 int ret; 2036 int err = 0; 2037 2038 if (trans->aborted) 2039 return 0; 2040 2041 path = btrfs_alloc_path(); 2042 if (!path) 2043 return -ENOMEM; 2044 2045 key.objectid = node->bytenr; 2046 key.type = BTRFS_EXTENT_ITEM_KEY; 2047 key.offset = node->num_bytes; 2048 2049 path->reada = 1; 2050 path->leave_spinning = 1; 2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2052 path, 0, 1); 2053 if (ret < 0) { 2054 err = ret; 2055 goto out; 2056 } 2057 if (ret > 0) { 2058 err = -EIO; 2059 goto out; 2060 } 2061 2062 leaf = path->nodes[0]; 2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2065 if (item_size < sizeof(*ei)) { 2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2067 path, (u64)-1, 0); 2068 if (ret < 0) { 2069 err = ret; 2070 goto out; 2071 } 2072 leaf = path->nodes[0]; 2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2074 } 2075 #endif 2076 BUG_ON(item_size < sizeof(*ei)); 2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 __run_delayed_extent_op(extent_op, leaf, ei); 2079 2080 btrfs_mark_buffer_dirty(leaf); 2081 out: 2082 btrfs_free_path(path); 2083 return err; 2084 } 2085 2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2087 struct btrfs_root *root, 2088 struct btrfs_delayed_ref_node *node, 2089 struct btrfs_delayed_extent_op *extent_op, 2090 int insert_reserved) 2091 { 2092 int ret = 0; 2093 struct btrfs_delayed_tree_ref *ref; 2094 struct btrfs_key ins; 2095 u64 parent = 0; 2096 u64 ref_root = 0; 2097 2098 ins.objectid = node->bytenr; 2099 ins.offset = node->num_bytes; 2100 ins.type = BTRFS_EXTENT_ITEM_KEY; 2101 2102 ref = btrfs_delayed_node_to_tree_ref(node); 2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2104 parent = ref->parent; 2105 else 2106 ref_root = ref->root; 2107 2108 BUG_ON(node->ref_mod != 1); 2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2110 BUG_ON(!extent_op || !extent_op->update_flags || 2111 !extent_op->update_key); 2112 ret = alloc_reserved_tree_block(trans, root, 2113 parent, ref_root, 2114 extent_op->flags_to_set, 2115 &extent_op->key, 2116 ref->level, &ins); 2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2119 node->num_bytes, parent, ref_root, 2120 ref->level, 0, 1, extent_op); 2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2122 ret = __btrfs_free_extent(trans, root, node->bytenr, 2123 node->num_bytes, parent, ref_root, 2124 ref->level, 0, 1, extent_op); 2125 } else { 2126 BUG(); 2127 } 2128 return ret; 2129 } 2130 2131 /* helper function to actually process a single delayed ref entry */ 2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_delayed_ref_node *node, 2135 struct btrfs_delayed_extent_op *extent_op, 2136 int insert_reserved) 2137 { 2138 int ret = 0; 2139 2140 if (trans->aborted) 2141 return 0; 2142 2143 if (btrfs_delayed_ref_is_head(node)) { 2144 struct btrfs_delayed_ref_head *head; 2145 /* 2146 * we've hit the end of the chain and we were supposed 2147 * to insert this extent into the tree. But, it got 2148 * deleted before we ever needed to insert it, so all 2149 * we have to do is clean up the accounting 2150 */ 2151 BUG_ON(extent_op); 2152 head = btrfs_delayed_node_to_head(node); 2153 if (insert_reserved) { 2154 btrfs_pin_extent(root, node->bytenr, 2155 node->num_bytes, 1); 2156 if (head->is_data) { 2157 ret = btrfs_del_csums(trans, root, 2158 node->bytenr, 2159 node->num_bytes); 2160 } 2161 } 2162 mutex_unlock(&head->mutex); 2163 return ret; 2164 } 2165 2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2168 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2169 insert_reserved); 2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2171 node->type == BTRFS_SHARED_DATA_REF_KEY) 2172 ret = run_delayed_data_ref(trans, root, node, extent_op, 2173 insert_reserved); 2174 else 2175 BUG(); 2176 return ret; 2177 } 2178 2179 static noinline struct btrfs_delayed_ref_node * 2180 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2181 { 2182 struct rb_node *node; 2183 struct btrfs_delayed_ref_node *ref; 2184 int action = BTRFS_ADD_DELAYED_REF; 2185 again: 2186 /* 2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2188 * this prevents ref count from going down to zero when 2189 * there still are pending delayed ref. 2190 */ 2191 node = rb_prev(&head->node.rb_node); 2192 while (1) { 2193 if (!node) 2194 break; 2195 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2196 rb_node); 2197 if (ref->bytenr != head->node.bytenr) 2198 break; 2199 if (ref->action == action) 2200 return ref; 2201 node = rb_prev(node); 2202 } 2203 if (action == BTRFS_ADD_DELAYED_REF) { 2204 action = BTRFS_DROP_DELAYED_REF; 2205 goto again; 2206 } 2207 return NULL; 2208 } 2209 2210 /* 2211 * Returns 0 on success or if called with an already aborted transaction. 2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2213 */ 2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct list_head *cluster) 2217 { 2218 struct btrfs_delayed_ref_root *delayed_refs; 2219 struct btrfs_delayed_ref_node *ref; 2220 struct btrfs_delayed_ref_head *locked_ref = NULL; 2221 struct btrfs_delayed_extent_op *extent_op; 2222 struct btrfs_fs_info *fs_info = root->fs_info; 2223 int ret; 2224 int count = 0; 2225 int must_insert_reserved = 0; 2226 2227 delayed_refs = &trans->transaction->delayed_refs; 2228 while (1) { 2229 if (!locked_ref) { 2230 /* pick a new head ref from the cluster list */ 2231 if (list_empty(cluster)) 2232 break; 2233 2234 locked_ref = list_entry(cluster->next, 2235 struct btrfs_delayed_ref_head, cluster); 2236 2237 /* grab the lock that says we are going to process 2238 * all the refs for this head */ 2239 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2240 2241 /* 2242 * we may have dropped the spin lock to get the head 2243 * mutex lock, and that might have given someone else 2244 * time to free the head. If that's true, it has been 2245 * removed from our list and we can move on. 2246 */ 2247 if (ret == -EAGAIN) { 2248 locked_ref = NULL; 2249 count++; 2250 continue; 2251 } 2252 } 2253 2254 /* 2255 * We need to try and merge add/drops of the same ref since we 2256 * can run into issues with relocate dropping the implicit ref 2257 * and then it being added back again before the drop can 2258 * finish. If we merged anything we need to re-loop so we can 2259 * get a good ref. 2260 */ 2261 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2262 locked_ref); 2263 2264 /* 2265 * locked_ref is the head node, so we have to go one 2266 * node back for any delayed ref updates 2267 */ 2268 ref = select_delayed_ref(locked_ref); 2269 2270 if (ref && ref->seq && 2271 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2272 /* 2273 * there are still refs with lower seq numbers in the 2274 * process of being added. Don't run this ref yet. 2275 */ 2276 list_del_init(&locked_ref->cluster); 2277 mutex_unlock(&locked_ref->mutex); 2278 locked_ref = NULL; 2279 delayed_refs->num_heads_ready++; 2280 spin_unlock(&delayed_refs->lock); 2281 cond_resched(); 2282 spin_lock(&delayed_refs->lock); 2283 continue; 2284 } 2285 2286 /* 2287 * record the must insert reserved flag before we 2288 * drop the spin lock. 2289 */ 2290 must_insert_reserved = locked_ref->must_insert_reserved; 2291 locked_ref->must_insert_reserved = 0; 2292 2293 extent_op = locked_ref->extent_op; 2294 locked_ref->extent_op = NULL; 2295 2296 if (!ref) { 2297 /* All delayed refs have been processed, Go ahead 2298 * and send the head node to run_one_delayed_ref, 2299 * so that any accounting fixes can happen 2300 */ 2301 ref = &locked_ref->node; 2302 2303 if (extent_op && must_insert_reserved) { 2304 kfree(extent_op); 2305 extent_op = NULL; 2306 } 2307 2308 if (extent_op) { 2309 spin_unlock(&delayed_refs->lock); 2310 2311 ret = run_delayed_extent_op(trans, root, 2312 ref, extent_op); 2313 kfree(extent_op); 2314 2315 if (ret) { 2316 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret); 2317 spin_lock(&delayed_refs->lock); 2318 return ret; 2319 } 2320 2321 goto next; 2322 } 2323 2324 list_del_init(&locked_ref->cluster); 2325 locked_ref = NULL; 2326 } 2327 2328 ref->in_tree = 0; 2329 rb_erase(&ref->rb_node, &delayed_refs->root); 2330 delayed_refs->num_entries--; 2331 if (locked_ref) { 2332 /* 2333 * when we play the delayed ref, also correct the 2334 * ref_mod on head 2335 */ 2336 switch (ref->action) { 2337 case BTRFS_ADD_DELAYED_REF: 2338 case BTRFS_ADD_DELAYED_EXTENT: 2339 locked_ref->node.ref_mod -= ref->ref_mod; 2340 break; 2341 case BTRFS_DROP_DELAYED_REF: 2342 locked_ref->node.ref_mod += ref->ref_mod; 2343 break; 2344 default: 2345 WARN_ON(1); 2346 } 2347 } 2348 spin_unlock(&delayed_refs->lock); 2349 2350 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2351 must_insert_reserved); 2352 2353 btrfs_put_delayed_ref(ref); 2354 kfree(extent_op); 2355 count++; 2356 2357 if (ret) { 2358 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret); 2359 spin_lock(&delayed_refs->lock); 2360 return ret; 2361 } 2362 2363 next: 2364 do_chunk_alloc(trans, fs_info->extent_root, 2365 2 * 1024 * 1024, 2366 btrfs_get_alloc_profile(root, 0), 2367 CHUNK_ALLOC_NO_FORCE); 2368 cond_resched(); 2369 spin_lock(&delayed_refs->lock); 2370 } 2371 return count; 2372 } 2373 2374 #ifdef SCRAMBLE_DELAYED_REFS 2375 /* 2376 * Normally delayed refs get processed in ascending bytenr order. This 2377 * correlates in most cases to the order added. To expose dependencies on this 2378 * order, we start to process the tree in the middle instead of the beginning 2379 */ 2380 static u64 find_middle(struct rb_root *root) 2381 { 2382 struct rb_node *n = root->rb_node; 2383 struct btrfs_delayed_ref_node *entry; 2384 int alt = 1; 2385 u64 middle; 2386 u64 first = 0, last = 0; 2387 2388 n = rb_first(root); 2389 if (n) { 2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2391 first = entry->bytenr; 2392 } 2393 n = rb_last(root); 2394 if (n) { 2395 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2396 last = entry->bytenr; 2397 } 2398 n = root->rb_node; 2399 2400 while (n) { 2401 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2402 WARN_ON(!entry->in_tree); 2403 2404 middle = entry->bytenr; 2405 2406 if (alt) 2407 n = n->rb_left; 2408 else 2409 n = n->rb_right; 2410 2411 alt = 1 - alt; 2412 } 2413 return middle; 2414 } 2415 #endif 2416 2417 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2418 struct btrfs_fs_info *fs_info) 2419 { 2420 struct qgroup_update *qgroup_update; 2421 int ret = 0; 2422 2423 if (list_empty(&trans->qgroup_ref_list) != 2424 !trans->delayed_ref_elem.seq) { 2425 /* list without seq or seq without list */ 2426 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2427 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2428 trans->delayed_ref_elem.seq); 2429 BUG(); 2430 } 2431 2432 if (!trans->delayed_ref_elem.seq) 2433 return 0; 2434 2435 while (!list_empty(&trans->qgroup_ref_list)) { 2436 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2437 struct qgroup_update, list); 2438 list_del(&qgroup_update->list); 2439 if (!ret) 2440 ret = btrfs_qgroup_account_ref( 2441 trans, fs_info, qgroup_update->node, 2442 qgroup_update->extent_op); 2443 kfree(qgroup_update); 2444 } 2445 2446 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2447 2448 return ret; 2449 } 2450 2451 /* 2452 * this starts processing the delayed reference count updates and 2453 * extent insertions we have queued up so far. count can be 2454 * 0, which means to process everything in the tree at the start 2455 * of the run (but not newly added entries), or it can be some target 2456 * number you'd like to process. 2457 * 2458 * Returns 0 on success or if called with an aborted transaction 2459 * Returns <0 on error and aborts the transaction 2460 */ 2461 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2462 struct btrfs_root *root, unsigned long count) 2463 { 2464 struct rb_node *node; 2465 struct btrfs_delayed_ref_root *delayed_refs; 2466 struct btrfs_delayed_ref_node *ref; 2467 struct list_head cluster; 2468 int ret; 2469 u64 delayed_start; 2470 int run_all = count == (unsigned long)-1; 2471 int run_most = 0; 2472 int loops; 2473 2474 /* We'll clean this up in btrfs_cleanup_transaction */ 2475 if (trans->aborted) 2476 return 0; 2477 2478 if (root == root->fs_info->extent_root) 2479 root = root->fs_info->tree_root; 2480 2481 do_chunk_alloc(trans, root->fs_info->extent_root, 2482 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0), 2483 CHUNK_ALLOC_NO_FORCE); 2484 2485 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2486 2487 delayed_refs = &trans->transaction->delayed_refs; 2488 INIT_LIST_HEAD(&cluster); 2489 again: 2490 loops = 0; 2491 spin_lock(&delayed_refs->lock); 2492 2493 #ifdef SCRAMBLE_DELAYED_REFS 2494 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2495 #endif 2496 2497 if (count == 0) { 2498 count = delayed_refs->num_entries * 2; 2499 run_most = 1; 2500 } 2501 while (1) { 2502 if (!(run_all || run_most) && 2503 delayed_refs->num_heads_ready < 64) 2504 break; 2505 2506 /* 2507 * go find something we can process in the rbtree. We start at 2508 * the beginning of the tree, and then build a cluster 2509 * of refs to process starting at the first one we are able to 2510 * lock 2511 */ 2512 delayed_start = delayed_refs->run_delayed_start; 2513 ret = btrfs_find_ref_cluster(trans, &cluster, 2514 delayed_refs->run_delayed_start); 2515 if (ret) 2516 break; 2517 2518 ret = run_clustered_refs(trans, root, &cluster); 2519 if (ret < 0) { 2520 spin_unlock(&delayed_refs->lock); 2521 btrfs_abort_transaction(trans, root, ret); 2522 return ret; 2523 } 2524 2525 count -= min_t(unsigned long, ret, count); 2526 2527 if (count == 0) 2528 break; 2529 2530 if (delayed_start >= delayed_refs->run_delayed_start) { 2531 if (loops == 0) { 2532 /* 2533 * btrfs_find_ref_cluster looped. let's do one 2534 * more cycle. if we don't run any delayed ref 2535 * during that cycle (because we can't because 2536 * all of them are blocked), bail out. 2537 */ 2538 loops = 1; 2539 } else { 2540 /* 2541 * no runnable refs left, stop trying 2542 */ 2543 BUG_ON(run_all); 2544 break; 2545 } 2546 } 2547 if (ret) { 2548 /* refs were run, let's reset staleness detection */ 2549 loops = 0; 2550 } 2551 } 2552 2553 if (run_all) { 2554 node = rb_first(&delayed_refs->root); 2555 if (!node) 2556 goto out; 2557 count = (unsigned long)-1; 2558 2559 while (node) { 2560 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2561 rb_node); 2562 if (btrfs_delayed_ref_is_head(ref)) { 2563 struct btrfs_delayed_ref_head *head; 2564 2565 head = btrfs_delayed_node_to_head(ref); 2566 atomic_inc(&ref->refs); 2567 2568 spin_unlock(&delayed_refs->lock); 2569 /* 2570 * Mutex was contended, block until it's 2571 * released and try again 2572 */ 2573 mutex_lock(&head->mutex); 2574 mutex_unlock(&head->mutex); 2575 2576 btrfs_put_delayed_ref(ref); 2577 cond_resched(); 2578 goto again; 2579 } 2580 node = rb_next(node); 2581 } 2582 spin_unlock(&delayed_refs->lock); 2583 schedule_timeout(1); 2584 goto again; 2585 } 2586 out: 2587 spin_unlock(&delayed_refs->lock); 2588 assert_qgroups_uptodate(trans); 2589 return 0; 2590 } 2591 2592 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2593 struct btrfs_root *root, 2594 u64 bytenr, u64 num_bytes, u64 flags, 2595 int is_data) 2596 { 2597 struct btrfs_delayed_extent_op *extent_op; 2598 int ret; 2599 2600 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2601 if (!extent_op) 2602 return -ENOMEM; 2603 2604 extent_op->flags_to_set = flags; 2605 extent_op->update_flags = 1; 2606 extent_op->update_key = 0; 2607 extent_op->is_data = is_data ? 1 : 0; 2608 2609 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2610 num_bytes, extent_op); 2611 if (ret) 2612 kfree(extent_op); 2613 return ret; 2614 } 2615 2616 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2617 struct btrfs_root *root, 2618 struct btrfs_path *path, 2619 u64 objectid, u64 offset, u64 bytenr) 2620 { 2621 struct btrfs_delayed_ref_head *head; 2622 struct btrfs_delayed_ref_node *ref; 2623 struct btrfs_delayed_data_ref *data_ref; 2624 struct btrfs_delayed_ref_root *delayed_refs; 2625 struct rb_node *node; 2626 int ret = 0; 2627 2628 ret = -ENOENT; 2629 delayed_refs = &trans->transaction->delayed_refs; 2630 spin_lock(&delayed_refs->lock); 2631 head = btrfs_find_delayed_ref_head(trans, bytenr); 2632 if (!head) 2633 goto out; 2634 2635 if (!mutex_trylock(&head->mutex)) { 2636 atomic_inc(&head->node.refs); 2637 spin_unlock(&delayed_refs->lock); 2638 2639 btrfs_release_path(path); 2640 2641 /* 2642 * Mutex was contended, block until it's released and let 2643 * caller try again 2644 */ 2645 mutex_lock(&head->mutex); 2646 mutex_unlock(&head->mutex); 2647 btrfs_put_delayed_ref(&head->node); 2648 return -EAGAIN; 2649 } 2650 2651 node = rb_prev(&head->node.rb_node); 2652 if (!node) 2653 goto out_unlock; 2654 2655 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2656 2657 if (ref->bytenr != bytenr) 2658 goto out_unlock; 2659 2660 ret = 1; 2661 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2662 goto out_unlock; 2663 2664 data_ref = btrfs_delayed_node_to_data_ref(ref); 2665 2666 node = rb_prev(node); 2667 if (node) { 2668 int seq = ref->seq; 2669 2670 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2671 if (ref->bytenr == bytenr && ref->seq == seq) 2672 goto out_unlock; 2673 } 2674 2675 if (data_ref->root != root->root_key.objectid || 2676 data_ref->objectid != objectid || data_ref->offset != offset) 2677 goto out_unlock; 2678 2679 ret = 0; 2680 out_unlock: 2681 mutex_unlock(&head->mutex); 2682 out: 2683 spin_unlock(&delayed_refs->lock); 2684 return ret; 2685 } 2686 2687 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2688 struct btrfs_root *root, 2689 struct btrfs_path *path, 2690 u64 objectid, u64 offset, u64 bytenr) 2691 { 2692 struct btrfs_root *extent_root = root->fs_info->extent_root; 2693 struct extent_buffer *leaf; 2694 struct btrfs_extent_data_ref *ref; 2695 struct btrfs_extent_inline_ref *iref; 2696 struct btrfs_extent_item *ei; 2697 struct btrfs_key key; 2698 u32 item_size; 2699 int ret; 2700 2701 key.objectid = bytenr; 2702 key.offset = (u64)-1; 2703 key.type = BTRFS_EXTENT_ITEM_KEY; 2704 2705 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2706 if (ret < 0) 2707 goto out; 2708 BUG_ON(ret == 0); /* Corruption */ 2709 2710 ret = -ENOENT; 2711 if (path->slots[0] == 0) 2712 goto out; 2713 2714 path->slots[0]--; 2715 leaf = path->nodes[0]; 2716 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2717 2718 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2719 goto out; 2720 2721 ret = 1; 2722 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2723 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2724 if (item_size < sizeof(*ei)) { 2725 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2726 goto out; 2727 } 2728 #endif 2729 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2730 2731 if (item_size != sizeof(*ei) + 2732 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2733 goto out; 2734 2735 if (btrfs_extent_generation(leaf, ei) <= 2736 btrfs_root_last_snapshot(&root->root_item)) 2737 goto out; 2738 2739 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2740 if (btrfs_extent_inline_ref_type(leaf, iref) != 2741 BTRFS_EXTENT_DATA_REF_KEY) 2742 goto out; 2743 2744 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2745 if (btrfs_extent_refs(leaf, ei) != 2746 btrfs_extent_data_ref_count(leaf, ref) || 2747 btrfs_extent_data_ref_root(leaf, ref) != 2748 root->root_key.objectid || 2749 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2750 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2751 goto out; 2752 2753 ret = 0; 2754 out: 2755 return ret; 2756 } 2757 2758 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2759 struct btrfs_root *root, 2760 u64 objectid, u64 offset, u64 bytenr) 2761 { 2762 struct btrfs_path *path; 2763 int ret; 2764 int ret2; 2765 2766 path = btrfs_alloc_path(); 2767 if (!path) 2768 return -ENOENT; 2769 2770 do { 2771 ret = check_committed_ref(trans, root, path, objectid, 2772 offset, bytenr); 2773 if (ret && ret != -ENOENT) 2774 goto out; 2775 2776 ret2 = check_delayed_ref(trans, root, path, objectid, 2777 offset, bytenr); 2778 } while (ret2 == -EAGAIN); 2779 2780 if (ret2 && ret2 != -ENOENT) { 2781 ret = ret2; 2782 goto out; 2783 } 2784 2785 if (ret != -ENOENT || ret2 != -ENOENT) 2786 ret = 0; 2787 out: 2788 btrfs_free_path(path); 2789 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2790 WARN_ON(ret > 0); 2791 return ret; 2792 } 2793 2794 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2795 struct btrfs_root *root, 2796 struct extent_buffer *buf, 2797 int full_backref, int inc, int for_cow) 2798 { 2799 u64 bytenr; 2800 u64 num_bytes; 2801 u64 parent; 2802 u64 ref_root; 2803 u32 nritems; 2804 struct btrfs_key key; 2805 struct btrfs_file_extent_item *fi; 2806 int i; 2807 int level; 2808 int ret = 0; 2809 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2810 u64, u64, u64, u64, u64, u64, int); 2811 2812 ref_root = btrfs_header_owner(buf); 2813 nritems = btrfs_header_nritems(buf); 2814 level = btrfs_header_level(buf); 2815 2816 if (!root->ref_cows && level == 0) 2817 return 0; 2818 2819 if (inc) 2820 process_func = btrfs_inc_extent_ref; 2821 else 2822 process_func = btrfs_free_extent; 2823 2824 if (full_backref) 2825 parent = buf->start; 2826 else 2827 parent = 0; 2828 2829 for (i = 0; i < nritems; i++) { 2830 if (level == 0) { 2831 btrfs_item_key_to_cpu(buf, &key, i); 2832 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2833 continue; 2834 fi = btrfs_item_ptr(buf, i, 2835 struct btrfs_file_extent_item); 2836 if (btrfs_file_extent_type(buf, fi) == 2837 BTRFS_FILE_EXTENT_INLINE) 2838 continue; 2839 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2840 if (bytenr == 0) 2841 continue; 2842 2843 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2844 key.offset -= btrfs_file_extent_offset(buf, fi); 2845 ret = process_func(trans, root, bytenr, num_bytes, 2846 parent, ref_root, key.objectid, 2847 key.offset, for_cow); 2848 if (ret) 2849 goto fail; 2850 } else { 2851 bytenr = btrfs_node_blockptr(buf, i); 2852 num_bytes = btrfs_level_size(root, level - 1); 2853 ret = process_func(trans, root, bytenr, num_bytes, 2854 parent, ref_root, level - 1, 0, 2855 for_cow); 2856 if (ret) 2857 goto fail; 2858 } 2859 } 2860 return 0; 2861 fail: 2862 return ret; 2863 } 2864 2865 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2866 struct extent_buffer *buf, int full_backref, int for_cow) 2867 { 2868 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2869 } 2870 2871 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2872 struct extent_buffer *buf, int full_backref, int for_cow) 2873 { 2874 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2875 } 2876 2877 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2878 struct btrfs_root *root, 2879 struct btrfs_path *path, 2880 struct btrfs_block_group_cache *cache) 2881 { 2882 int ret; 2883 struct btrfs_root *extent_root = root->fs_info->extent_root; 2884 unsigned long bi; 2885 struct extent_buffer *leaf; 2886 2887 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2888 if (ret < 0) 2889 goto fail; 2890 BUG_ON(ret); /* Corruption */ 2891 2892 leaf = path->nodes[0]; 2893 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2894 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2895 btrfs_mark_buffer_dirty(leaf); 2896 btrfs_release_path(path); 2897 fail: 2898 if (ret) { 2899 btrfs_abort_transaction(trans, root, ret); 2900 return ret; 2901 } 2902 return 0; 2903 2904 } 2905 2906 static struct btrfs_block_group_cache * 2907 next_block_group(struct btrfs_root *root, 2908 struct btrfs_block_group_cache *cache) 2909 { 2910 struct rb_node *node; 2911 spin_lock(&root->fs_info->block_group_cache_lock); 2912 node = rb_next(&cache->cache_node); 2913 btrfs_put_block_group(cache); 2914 if (node) { 2915 cache = rb_entry(node, struct btrfs_block_group_cache, 2916 cache_node); 2917 btrfs_get_block_group(cache); 2918 } else 2919 cache = NULL; 2920 spin_unlock(&root->fs_info->block_group_cache_lock); 2921 return cache; 2922 } 2923 2924 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2925 struct btrfs_trans_handle *trans, 2926 struct btrfs_path *path) 2927 { 2928 struct btrfs_root *root = block_group->fs_info->tree_root; 2929 struct inode *inode = NULL; 2930 u64 alloc_hint = 0; 2931 int dcs = BTRFS_DC_ERROR; 2932 int num_pages = 0; 2933 int retries = 0; 2934 int ret = 0; 2935 2936 /* 2937 * If this block group is smaller than 100 megs don't bother caching the 2938 * block group. 2939 */ 2940 if (block_group->key.offset < (100 * 1024 * 1024)) { 2941 spin_lock(&block_group->lock); 2942 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2943 spin_unlock(&block_group->lock); 2944 return 0; 2945 } 2946 2947 again: 2948 inode = lookup_free_space_inode(root, block_group, path); 2949 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2950 ret = PTR_ERR(inode); 2951 btrfs_release_path(path); 2952 goto out; 2953 } 2954 2955 if (IS_ERR(inode)) { 2956 BUG_ON(retries); 2957 retries++; 2958 2959 if (block_group->ro) 2960 goto out_free; 2961 2962 ret = create_free_space_inode(root, trans, block_group, path); 2963 if (ret) 2964 goto out_free; 2965 goto again; 2966 } 2967 2968 /* We've already setup this transaction, go ahead and exit */ 2969 if (block_group->cache_generation == trans->transid && 2970 i_size_read(inode)) { 2971 dcs = BTRFS_DC_SETUP; 2972 goto out_put; 2973 } 2974 2975 /* 2976 * We want to set the generation to 0, that way if anything goes wrong 2977 * from here on out we know not to trust this cache when we load up next 2978 * time. 2979 */ 2980 BTRFS_I(inode)->generation = 0; 2981 ret = btrfs_update_inode(trans, root, inode); 2982 WARN_ON(ret); 2983 2984 if (i_size_read(inode) > 0) { 2985 ret = btrfs_truncate_free_space_cache(root, trans, path, 2986 inode); 2987 if (ret) 2988 goto out_put; 2989 } 2990 2991 spin_lock(&block_group->lock); 2992 if (block_group->cached != BTRFS_CACHE_FINISHED || 2993 !btrfs_test_opt(root, SPACE_CACHE)) { 2994 /* 2995 * don't bother trying to write stuff out _if_ 2996 * a) we're not cached, 2997 * b) we're with nospace_cache mount option. 2998 */ 2999 dcs = BTRFS_DC_WRITTEN; 3000 spin_unlock(&block_group->lock); 3001 goto out_put; 3002 } 3003 spin_unlock(&block_group->lock); 3004 3005 /* 3006 * Try to preallocate enough space based on how big the block group is. 3007 * Keep in mind this has to include any pinned space which could end up 3008 * taking up quite a bit since it's not folded into the other space 3009 * cache. 3010 */ 3011 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3012 if (!num_pages) 3013 num_pages = 1; 3014 3015 num_pages *= 16; 3016 num_pages *= PAGE_CACHE_SIZE; 3017 3018 ret = btrfs_check_data_free_space(inode, num_pages); 3019 if (ret) 3020 goto out_put; 3021 3022 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3023 num_pages, num_pages, 3024 &alloc_hint); 3025 if (!ret) 3026 dcs = BTRFS_DC_SETUP; 3027 btrfs_free_reserved_data_space(inode, num_pages); 3028 3029 out_put: 3030 iput(inode); 3031 out_free: 3032 btrfs_release_path(path); 3033 out: 3034 spin_lock(&block_group->lock); 3035 if (!ret && dcs == BTRFS_DC_SETUP) 3036 block_group->cache_generation = trans->transid; 3037 block_group->disk_cache_state = dcs; 3038 spin_unlock(&block_group->lock); 3039 3040 return ret; 3041 } 3042 3043 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3044 struct btrfs_root *root) 3045 { 3046 struct btrfs_block_group_cache *cache; 3047 int err = 0; 3048 struct btrfs_path *path; 3049 u64 last = 0; 3050 3051 path = btrfs_alloc_path(); 3052 if (!path) 3053 return -ENOMEM; 3054 3055 again: 3056 while (1) { 3057 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3058 while (cache) { 3059 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3060 break; 3061 cache = next_block_group(root, cache); 3062 } 3063 if (!cache) { 3064 if (last == 0) 3065 break; 3066 last = 0; 3067 continue; 3068 } 3069 err = cache_save_setup(cache, trans, path); 3070 last = cache->key.objectid + cache->key.offset; 3071 btrfs_put_block_group(cache); 3072 } 3073 3074 while (1) { 3075 if (last == 0) { 3076 err = btrfs_run_delayed_refs(trans, root, 3077 (unsigned long)-1); 3078 if (err) /* File system offline */ 3079 goto out; 3080 } 3081 3082 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3083 while (cache) { 3084 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3085 btrfs_put_block_group(cache); 3086 goto again; 3087 } 3088 3089 if (cache->dirty) 3090 break; 3091 cache = next_block_group(root, cache); 3092 } 3093 if (!cache) { 3094 if (last == 0) 3095 break; 3096 last = 0; 3097 continue; 3098 } 3099 3100 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3101 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3102 cache->dirty = 0; 3103 last = cache->key.objectid + cache->key.offset; 3104 3105 err = write_one_cache_group(trans, root, path, cache); 3106 if (err) /* File system offline */ 3107 goto out; 3108 3109 btrfs_put_block_group(cache); 3110 } 3111 3112 while (1) { 3113 /* 3114 * I don't think this is needed since we're just marking our 3115 * preallocated extent as written, but just in case it can't 3116 * hurt. 3117 */ 3118 if (last == 0) { 3119 err = btrfs_run_delayed_refs(trans, root, 3120 (unsigned long)-1); 3121 if (err) /* File system offline */ 3122 goto out; 3123 } 3124 3125 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3126 while (cache) { 3127 /* 3128 * Really this shouldn't happen, but it could if we 3129 * couldn't write the entire preallocated extent and 3130 * splitting the extent resulted in a new block. 3131 */ 3132 if (cache->dirty) { 3133 btrfs_put_block_group(cache); 3134 goto again; 3135 } 3136 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3137 break; 3138 cache = next_block_group(root, cache); 3139 } 3140 if (!cache) { 3141 if (last == 0) 3142 break; 3143 last = 0; 3144 continue; 3145 } 3146 3147 err = btrfs_write_out_cache(root, trans, cache, path); 3148 3149 /* 3150 * If we didn't have an error then the cache state is still 3151 * NEED_WRITE, so we can set it to WRITTEN. 3152 */ 3153 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3154 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3155 last = cache->key.objectid + cache->key.offset; 3156 btrfs_put_block_group(cache); 3157 } 3158 out: 3159 3160 btrfs_free_path(path); 3161 return err; 3162 } 3163 3164 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3165 { 3166 struct btrfs_block_group_cache *block_group; 3167 int readonly = 0; 3168 3169 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3170 if (!block_group || block_group->ro) 3171 readonly = 1; 3172 if (block_group) 3173 btrfs_put_block_group(block_group); 3174 return readonly; 3175 } 3176 3177 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3178 u64 total_bytes, u64 bytes_used, 3179 struct btrfs_space_info **space_info) 3180 { 3181 struct btrfs_space_info *found; 3182 int i; 3183 int factor; 3184 3185 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3186 BTRFS_BLOCK_GROUP_RAID10)) 3187 factor = 2; 3188 else 3189 factor = 1; 3190 3191 found = __find_space_info(info, flags); 3192 if (found) { 3193 spin_lock(&found->lock); 3194 found->total_bytes += total_bytes; 3195 found->disk_total += total_bytes * factor; 3196 found->bytes_used += bytes_used; 3197 found->disk_used += bytes_used * factor; 3198 found->full = 0; 3199 spin_unlock(&found->lock); 3200 *space_info = found; 3201 return 0; 3202 } 3203 found = kzalloc(sizeof(*found), GFP_NOFS); 3204 if (!found) 3205 return -ENOMEM; 3206 3207 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3208 INIT_LIST_HEAD(&found->block_groups[i]); 3209 init_rwsem(&found->groups_sem); 3210 spin_lock_init(&found->lock); 3211 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3212 found->total_bytes = total_bytes; 3213 found->disk_total = total_bytes * factor; 3214 found->bytes_used = bytes_used; 3215 found->disk_used = bytes_used * factor; 3216 found->bytes_pinned = 0; 3217 found->bytes_reserved = 0; 3218 found->bytes_readonly = 0; 3219 found->bytes_may_use = 0; 3220 found->full = 0; 3221 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3222 found->chunk_alloc = 0; 3223 found->flush = 0; 3224 init_waitqueue_head(&found->wait); 3225 *space_info = found; 3226 list_add_rcu(&found->list, &info->space_info); 3227 if (flags & BTRFS_BLOCK_GROUP_DATA) 3228 info->data_sinfo = found; 3229 return 0; 3230 } 3231 3232 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3233 { 3234 u64 extra_flags = chunk_to_extended(flags) & 3235 BTRFS_EXTENDED_PROFILE_MASK; 3236 3237 if (flags & BTRFS_BLOCK_GROUP_DATA) 3238 fs_info->avail_data_alloc_bits |= extra_flags; 3239 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3240 fs_info->avail_metadata_alloc_bits |= extra_flags; 3241 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3242 fs_info->avail_system_alloc_bits |= extra_flags; 3243 } 3244 3245 /* 3246 * returns target flags in extended format or 0 if restripe for this 3247 * chunk_type is not in progress 3248 * 3249 * should be called with either volume_mutex or balance_lock held 3250 */ 3251 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3252 { 3253 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3254 u64 target = 0; 3255 3256 if (!bctl) 3257 return 0; 3258 3259 if (flags & BTRFS_BLOCK_GROUP_DATA && 3260 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3261 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3262 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3263 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3264 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3265 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3266 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3267 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3268 } 3269 3270 return target; 3271 } 3272 3273 /* 3274 * @flags: available profiles in extended format (see ctree.h) 3275 * 3276 * Returns reduced profile in chunk format. If profile changing is in 3277 * progress (either running or paused) picks the target profile (if it's 3278 * already available), otherwise falls back to plain reducing. 3279 */ 3280 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3281 { 3282 /* 3283 * we add in the count of missing devices because we want 3284 * to make sure that any RAID levels on a degraded FS 3285 * continue to be honored. 3286 */ 3287 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3288 root->fs_info->fs_devices->missing_devices; 3289 u64 target; 3290 3291 /* 3292 * see if restripe for this chunk_type is in progress, if so 3293 * try to reduce to the target profile 3294 */ 3295 spin_lock(&root->fs_info->balance_lock); 3296 target = get_restripe_target(root->fs_info, flags); 3297 if (target) { 3298 /* pick target profile only if it's already available */ 3299 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3300 spin_unlock(&root->fs_info->balance_lock); 3301 return extended_to_chunk(target); 3302 } 3303 } 3304 spin_unlock(&root->fs_info->balance_lock); 3305 3306 if (num_devices == 1) 3307 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3308 if (num_devices < 4) 3309 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3310 3311 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3312 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3313 BTRFS_BLOCK_GROUP_RAID10))) { 3314 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3315 } 3316 3317 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3318 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3319 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3320 } 3321 3322 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3323 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3324 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3325 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3326 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3327 } 3328 3329 return extended_to_chunk(flags); 3330 } 3331 3332 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3333 { 3334 if (flags & BTRFS_BLOCK_GROUP_DATA) 3335 flags |= root->fs_info->avail_data_alloc_bits; 3336 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3337 flags |= root->fs_info->avail_system_alloc_bits; 3338 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3339 flags |= root->fs_info->avail_metadata_alloc_bits; 3340 3341 return btrfs_reduce_alloc_profile(root, flags); 3342 } 3343 3344 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3345 { 3346 u64 flags; 3347 3348 if (data) 3349 flags = BTRFS_BLOCK_GROUP_DATA; 3350 else if (root == root->fs_info->chunk_root) 3351 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3352 else 3353 flags = BTRFS_BLOCK_GROUP_METADATA; 3354 3355 return get_alloc_profile(root, flags); 3356 } 3357 3358 /* 3359 * This will check the space that the inode allocates from to make sure we have 3360 * enough space for bytes. 3361 */ 3362 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3363 { 3364 struct btrfs_space_info *data_sinfo; 3365 struct btrfs_root *root = BTRFS_I(inode)->root; 3366 struct btrfs_fs_info *fs_info = root->fs_info; 3367 u64 used; 3368 int ret = 0, committed = 0, alloc_chunk = 1; 3369 3370 /* make sure bytes are sectorsize aligned */ 3371 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3372 3373 if (root == root->fs_info->tree_root || 3374 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3375 alloc_chunk = 0; 3376 committed = 1; 3377 } 3378 3379 data_sinfo = fs_info->data_sinfo; 3380 if (!data_sinfo) 3381 goto alloc; 3382 3383 again: 3384 /* make sure we have enough space to handle the data first */ 3385 spin_lock(&data_sinfo->lock); 3386 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3387 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3388 data_sinfo->bytes_may_use; 3389 3390 if (used + bytes > data_sinfo->total_bytes) { 3391 struct btrfs_trans_handle *trans; 3392 3393 /* 3394 * if we don't have enough free bytes in this space then we need 3395 * to alloc a new chunk. 3396 */ 3397 if (!data_sinfo->full && alloc_chunk) { 3398 u64 alloc_target; 3399 3400 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3401 spin_unlock(&data_sinfo->lock); 3402 alloc: 3403 alloc_target = btrfs_get_alloc_profile(root, 1); 3404 trans = btrfs_join_transaction(root); 3405 if (IS_ERR(trans)) 3406 return PTR_ERR(trans); 3407 3408 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3409 bytes + 2 * 1024 * 1024, 3410 alloc_target, 3411 CHUNK_ALLOC_NO_FORCE); 3412 btrfs_end_transaction(trans, root); 3413 if (ret < 0) { 3414 if (ret != -ENOSPC) 3415 return ret; 3416 else 3417 goto commit_trans; 3418 } 3419 3420 if (!data_sinfo) 3421 data_sinfo = fs_info->data_sinfo; 3422 3423 goto again; 3424 } 3425 3426 /* 3427 * If we have less pinned bytes than we want to allocate then 3428 * don't bother committing the transaction, it won't help us. 3429 */ 3430 if (data_sinfo->bytes_pinned < bytes) 3431 committed = 1; 3432 spin_unlock(&data_sinfo->lock); 3433 3434 /* commit the current transaction and try again */ 3435 commit_trans: 3436 if (!committed && 3437 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3438 committed = 1; 3439 trans = btrfs_join_transaction(root); 3440 if (IS_ERR(trans)) 3441 return PTR_ERR(trans); 3442 ret = btrfs_commit_transaction(trans, root); 3443 if (ret) 3444 return ret; 3445 goto again; 3446 } 3447 3448 return -ENOSPC; 3449 } 3450 data_sinfo->bytes_may_use += bytes; 3451 trace_btrfs_space_reservation(root->fs_info, "space_info", 3452 data_sinfo->flags, bytes, 1); 3453 spin_unlock(&data_sinfo->lock); 3454 3455 return 0; 3456 } 3457 3458 /* 3459 * Called if we need to clear a data reservation for this inode. 3460 */ 3461 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3462 { 3463 struct btrfs_root *root = BTRFS_I(inode)->root; 3464 struct btrfs_space_info *data_sinfo; 3465 3466 /* make sure bytes are sectorsize aligned */ 3467 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3468 3469 data_sinfo = root->fs_info->data_sinfo; 3470 spin_lock(&data_sinfo->lock); 3471 data_sinfo->bytes_may_use -= bytes; 3472 trace_btrfs_space_reservation(root->fs_info, "space_info", 3473 data_sinfo->flags, bytes, 0); 3474 spin_unlock(&data_sinfo->lock); 3475 } 3476 3477 static void force_metadata_allocation(struct btrfs_fs_info *info) 3478 { 3479 struct list_head *head = &info->space_info; 3480 struct btrfs_space_info *found; 3481 3482 rcu_read_lock(); 3483 list_for_each_entry_rcu(found, head, list) { 3484 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3485 found->force_alloc = CHUNK_ALLOC_FORCE; 3486 } 3487 rcu_read_unlock(); 3488 } 3489 3490 static int should_alloc_chunk(struct btrfs_root *root, 3491 struct btrfs_space_info *sinfo, u64 alloc_bytes, 3492 int force) 3493 { 3494 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3495 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3496 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3497 u64 thresh; 3498 3499 if (force == CHUNK_ALLOC_FORCE) 3500 return 1; 3501 3502 /* 3503 * We need to take into account the global rsv because for all intents 3504 * and purposes it's used space. Don't worry about locking the 3505 * global_rsv, it doesn't change except when the transaction commits. 3506 */ 3507 num_allocated += global_rsv->size; 3508 3509 /* 3510 * in limited mode, we want to have some free space up to 3511 * about 1% of the FS size. 3512 */ 3513 if (force == CHUNK_ALLOC_LIMITED) { 3514 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3515 thresh = max_t(u64, 64 * 1024 * 1024, 3516 div_factor_fine(thresh, 1)); 3517 3518 if (num_bytes - num_allocated < thresh) 3519 return 1; 3520 } 3521 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3522 3523 /* 256MB or 2% of the FS */ 3524 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2)); 3525 /* system chunks need a much small threshold */ 3526 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM) 3527 thresh = 32 * 1024 * 1024; 3528 3529 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8)) 3530 return 0; 3531 return 1; 3532 } 3533 3534 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3535 { 3536 u64 num_dev; 3537 3538 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3539 type & BTRFS_BLOCK_GROUP_RAID0) 3540 num_dev = root->fs_info->fs_devices->rw_devices; 3541 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3542 num_dev = 2; 3543 else 3544 num_dev = 1; /* DUP or single */ 3545 3546 /* metadata for updaing devices and chunk tree */ 3547 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3548 } 3549 3550 static void check_system_chunk(struct btrfs_trans_handle *trans, 3551 struct btrfs_root *root, u64 type) 3552 { 3553 struct btrfs_space_info *info; 3554 u64 left; 3555 u64 thresh; 3556 3557 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3558 spin_lock(&info->lock); 3559 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3560 info->bytes_reserved - info->bytes_readonly; 3561 spin_unlock(&info->lock); 3562 3563 thresh = get_system_chunk_thresh(root, type); 3564 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3565 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3566 left, thresh, type); 3567 dump_space_info(info, 0, 0); 3568 } 3569 3570 if (left < thresh) { 3571 u64 flags; 3572 3573 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3574 btrfs_alloc_chunk(trans, root, flags); 3575 } 3576 } 3577 3578 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3579 struct btrfs_root *extent_root, u64 alloc_bytes, 3580 u64 flags, int force) 3581 { 3582 struct btrfs_space_info *space_info; 3583 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3584 int wait_for_alloc = 0; 3585 int ret = 0; 3586 3587 space_info = __find_space_info(extent_root->fs_info, flags); 3588 if (!space_info) { 3589 ret = update_space_info(extent_root->fs_info, flags, 3590 0, 0, &space_info); 3591 BUG_ON(ret); /* -ENOMEM */ 3592 } 3593 BUG_ON(!space_info); /* Logic error */ 3594 3595 again: 3596 spin_lock(&space_info->lock); 3597 if (force < space_info->force_alloc) 3598 force = space_info->force_alloc; 3599 if (space_info->full) { 3600 spin_unlock(&space_info->lock); 3601 return 0; 3602 } 3603 3604 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { 3605 spin_unlock(&space_info->lock); 3606 return 0; 3607 } else if (space_info->chunk_alloc) { 3608 wait_for_alloc = 1; 3609 } else { 3610 space_info->chunk_alloc = 1; 3611 } 3612 3613 spin_unlock(&space_info->lock); 3614 3615 mutex_lock(&fs_info->chunk_mutex); 3616 3617 /* 3618 * The chunk_mutex is held throughout the entirety of a chunk 3619 * allocation, so once we've acquired the chunk_mutex we know that the 3620 * other guy is done and we need to recheck and see if we should 3621 * allocate. 3622 */ 3623 if (wait_for_alloc) { 3624 mutex_unlock(&fs_info->chunk_mutex); 3625 wait_for_alloc = 0; 3626 goto again; 3627 } 3628 3629 /* 3630 * If we have mixed data/metadata chunks we want to make sure we keep 3631 * allocating mixed chunks instead of individual chunks. 3632 */ 3633 if (btrfs_mixed_space_info(space_info)) 3634 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3635 3636 /* 3637 * if we're doing a data chunk, go ahead and make sure that 3638 * we keep a reasonable number of metadata chunks allocated in the 3639 * FS as well. 3640 */ 3641 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3642 fs_info->data_chunk_allocations++; 3643 if (!(fs_info->data_chunk_allocations % 3644 fs_info->metadata_ratio)) 3645 force_metadata_allocation(fs_info); 3646 } 3647 3648 /* 3649 * Check if we have enough space in SYSTEM chunk because we may need 3650 * to update devices. 3651 */ 3652 check_system_chunk(trans, extent_root, flags); 3653 3654 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3655 if (ret < 0 && ret != -ENOSPC) 3656 goto out; 3657 3658 spin_lock(&space_info->lock); 3659 if (ret) 3660 space_info->full = 1; 3661 else 3662 ret = 1; 3663 3664 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3665 space_info->chunk_alloc = 0; 3666 spin_unlock(&space_info->lock); 3667 out: 3668 mutex_unlock(&fs_info->chunk_mutex); 3669 return ret; 3670 } 3671 3672 /* 3673 * shrink metadata reservation for delalloc 3674 */ 3675 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3676 bool wait_ordered) 3677 { 3678 struct btrfs_block_rsv *block_rsv; 3679 struct btrfs_space_info *space_info; 3680 struct btrfs_trans_handle *trans; 3681 u64 delalloc_bytes; 3682 u64 max_reclaim; 3683 long time_left; 3684 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3685 int loops = 0; 3686 3687 trans = (struct btrfs_trans_handle *)current->journal_info; 3688 block_rsv = &root->fs_info->delalloc_block_rsv; 3689 space_info = block_rsv->space_info; 3690 3691 smp_mb(); 3692 delalloc_bytes = root->fs_info->delalloc_bytes; 3693 if (delalloc_bytes == 0) { 3694 if (trans) 3695 return; 3696 btrfs_wait_ordered_extents(root, 0, 0); 3697 return; 3698 } 3699 3700 while (delalloc_bytes && loops < 3) { 3701 max_reclaim = min(delalloc_bytes, to_reclaim); 3702 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3703 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, 3704 WB_REASON_FS_FREE_SPACE); 3705 3706 spin_lock(&space_info->lock); 3707 if (space_info->bytes_used + space_info->bytes_reserved + 3708 space_info->bytes_pinned + space_info->bytes_readonly + 3709 space_info->bytes_may_use + orig <= 3710 space_info->total_bytes) { 3711 spin_unlock(&space_info->lock); 3712 break; 3713 } 3714 spin_unlock(&space_info->lock); 3715 3716 loops++; 3717 if (wait_ordered && !trans) { 3718 btrfs_wait_ordered_extents(root, 0, 0); 3719 } else { 3720 time_left = schedule_timeout_killable(1); 3721 if (time_left) 3722 break; 3723 } 3724 smp_mb(); 3725 delalloc_bytes = root->fs_info->delalloc_bytes; 3726 } 3727 } 3728 3729 /** 3730 * maybe_commit_transaction - possibly commit the transaction if its ok to 3731 * @root - the root we're allocating for 3732 * @bytes - the number of bytes we want to reserve 3733 * @force - force the commit 3734 * 3735 * This will check to make sure that committing the transaction will actually 3736 * get us somewhere and then commit the transaction if it does. Otherwise it 3737 * will return -ENOSPC. 3738 */ 3739 static int may_commit_transaction(struct btrfs_root *root, 3740 struct btrfs_space_info *space_info, 3741 u64 bytes, int force) 3742 { 3743 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3744 struct btrfs_trans_handle *trans; 3745 3746 trans = (struct btrfs_trans_handle *)current->journal_info; 3747 if (trans) 3748 return -EAGAIN; 3749 3750 if (force) 3751 goto commit; 3752 3753 /* See if there is enough pinned space to make this reservation */ 3754 spin_lock(&space_info->lock); 3755 if (space_info->bytes_pinned >= bytes) { 3756 spin_unlock(&space_info->lock); 3757 goto commit; 3758 } 3759 spin_unlock(&space_info->lock); 3760 3761 /* 3762 * See if there is some space in the delayed insertion reservation for 3763 * this reservation. 3764 */ 3765 if (space_info != delayed_rsv->space_info) 3766 return -ENOSPC; 3767 3768 spin_lock(&space_info->lock); 3769 spin_lock(&delayed_rsv->lock); 3770 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3771 spin_unlock(&delayed_rsv->lock); 3772 spin_unlock(&space_info->lock); 3773 return -ENOSPC; 3774 } 3775 spin_unlock(&delayed_rsv->lock); 3776 spin_unlock(&space_info->lock); 3777 3778 commit: 3779 trans = btrfs_join_transaction(root); 3780 if (IS_ERR(trans)) 3781 return -ENOSPC; 3782 3783 return btrfs_commit_transaction(trans, root); 3784 } 3785 3786 enum flush_state { 3787 FLUSH_DELALLOC = 1, 3788 FLUSH_DELALLOC_WAIT = 2, 3789 FLUSH_DELAYED_ITEMS_NR = 3, 3790 FLUSH_DELAYED_ITEMS = 4, 3791 COMMIT_TRANS = 5, 3792 }; 3793 3794 static int flush_space(struct btrfs_root *root, 3795 struct btrfs_space_info *space_info, u64 num_bytes, 3796 u64 orig_bytes, int state) 3797 { 3798 struct btrfs_trans_handle *trans; 3799 int nr; 3800 int ret = 0; 3801 3802 switch (state) { 3803 case FLUSH_DELALLOC: 3804 case FLUSH_DELALLOC_WAIT: 3805 shrink_delalloc(root, num_bytes, orig_bytes, 3806 state == FLUSH_DELALLOC_WAIT); 3807 break; 3808 case FLUSH_DELAYED_ITEMS_NR: 3809 case FLUSH_DELAYED_ITEMS: 3810 if (state == FLUSH_DELAYED_ITEMS_NR) { 3811 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3812 3813 nr = (int)div64_u64(num_bytes, bytes); 3814 if (!nr) 3815 nr = 1; 3816 nr *= 2; 3817 } else { 3818 nr = -1; 3819 } 3820 trans = btrfs_join_transaction(root); 3821 if (IS_ERR(trans)) { 3822 ret = PTR_ERR(trans); 3823 break; 3824 } 3825 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3826 btrfs_end_transaction(trans, root); 3827 break; 3828 case COMMIT_TRANS: 3829 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3830 break; 3831 default: 3832 ret = -ENOSPC; 3833 break; 3834 } 3835 3836 return ret; 3837 } 3838 /** 3839 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3840 * @root - the root we're allocating for 3841 * @block_rsv - the block_rsv we're allocating for 3842 * @orig_bytes - the number of bytes we want 3843 * @flush - wether or not we can flush to make our reservation 3844 * 3845 * This will reserve orgi_bytes number of bytes from the space info associated 3846 * with the block_rsv. If there is not enough space it will make an attempt to 3847 * flush out space to make room. It will do this by flushing delalloc if 3848 * possible or committing the transaction. If flush is 0 then no attempts to 3849 * regain reservations will be made and this will fail if there is not enough 3850 * space already. 3851 */ 3852 static int reserve_metadata_bytes(struct btrfs_root *root, 3853 struct btrfs_block_rsv *block_rsv, 3854 u64 orig_bytes, int flush) 3855 { 3856 struct btrfs_space_info *space_info = block_rsv->space_info; 3857 u64 used; 3858 u64 num_bytes = orig_bytes; 3859 int flush_state = FLUSH_DELALLOC; 3860 int ret = 0; 3861 bool flushing = false; 3862 bool committed = false; 3863 3864 again: 3865 ret = 0; 3866 spin_lock(&space_info->lock); 3867 /* 3868 * We only want to wait if somebody other than us is flushing and we are 3869 * actually alloed to flush. 3870 */ 3871 while (flush && !flushing && space_info->flush) { 3872 spin_unlock(&space_info->lock); 3873 /* 3874 * If we have a trans handle we can't wait because the flusher 3875 * may have to commit the transaction, which would mean we would 3876 * deadlock since we are waiting for the flusher to finish, but 3877 * hold the current transaction open. 3878 */ 3879 if (current->journal_info) 3880 return -EAGAIN; 3881 ret = wait_event_killable(space_info->wait, !space_info->flush); 3882 /* Must have been killed, return */ 3883 if (ret) 3884 return -EINTR; 3885 3886 spin_lock(&space_info->lock); 3887 } 3888 3889 ret = -ENOSPC; 3890 used = space_info->bytes_used + space_info->bytes_reserved + 3891 space_info->bytes_pinned + space_info->bytes_readonly + 3892 space_info->bytes_may_use; 3893 3894 /* 3895 * The idea here is that we've not already over-reserved the block group 3896 * then we can go ahead and save our reservation first and then start 3897 * flushing if we need to. Otherwise if we've already overcommitted 3898 * lets start flushing stuff first and then come back and try to make 3899 * our reservation. 3900 */ 3901 if (used <= space_info->total_bytes) { 3902 if (used + orig_bytes <= space_info->total_bytes) { 3903 space_info->bytes_may_use += orig_bytes; 3904 trace_btrfs_space_reservation(root->fs_info, 3905 "space_info", space_info->flags, orig_bytes, 1); 3906 ret = 0; 3907 } else { 3908 /* 3909 * Ok set num_bytes to orig_bytes since we aren't 3910 * overocmmitted, this way we only try and reclaim what 3911 * we need. 3912 */ 3913 num_bytes = orig_bytes; 3914 } 3915 } else { 3916 /* 3917 * Ok we're over committed, set num_bytes to the overcommitted 3918 * amount plus the amount of bytes that we need for this 3919 * reservation. 3920 */ 3921 num_bytes = used - space_info->total_bytes + 3922 (orig_bytes * 2); 3923 } 3924 3925 if (ret) { 3926 u64 profile = btrfs_get_alloc_profile(root, 0); 3927 u64 avail; 3928 3929 /* 3930 * If we have a lot of space that's pinned, don't bother doing 3931 * the overcommit dance yet and just commit the transaction. 3932 */ 3933 avail = (space_info->total_bytes - space_info->bytes_used) * 8; 3934 do_div(avail, 10); 3935 if (space_info->bytes_pinned >= avail && flush && !committed) { 3936 space_info->flush = 1; 3937 flushing = true; 3938 spin_unlock(&space_info->lock); 3939 ret = may_commit_transaction(root, space_info, 3940 orig_bytes, 1); 3941 if (ret) 3942 goto out; 3943 committed = true; 3944 goto again; 3945 } 3946 3947 spin_lock(&root->fs_info->free_chunk_lock); 3948 avail = root->fs_info->free_chunk_space; 3949 3950 /* 3951 * If we have dup, raid1 or raid10 then only half of the free 3952 * space is actually useable. 3953 */ 3954 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3955 BTRFS_BLOCK_GROUP_RAID1 | 3956 BTRFS_BLOCK_GROUP_RAID10)) 3957 avail >>= 1; 3958 3959 /* 3960 * If we aren't flushing don't let us overcommit too much, say 3961 * 1/8th of the space. If we can flush, let it overcommit up to 3962 * 1/2 of the space. 3963 */ 3964 if (flush) 3965 avail >>= 3; 3966 else 3967 avail >>= 1; 3968 spin_unlock(&root->fs_info->free_chunk_lock); 3969 3970 if (used + num_bytes < space_info->total_bytes + avail) { 3971 space_info->bytes_may_use += orig_bytes; 3972 trace_btrfs_space_reservation(root->fs_info, 3973 "space_info", space_info->flags, orig_bytes, 1); 3974 ret = 0; 3975 } 3976 } 3977 3978 /* 3979 * Couldn't make our reservation, save our place so while we're trying 3980 * to reclaim space we can actually use it instead of somebody else 3981 * stealing it from us. 3982 */ 3983 if (ret && flush) { 3984 flushing = true; 3985 space_info->flush = 1; 3986 } 3987 3988 spin_unlock(&space_info->lock); 3989 3990 if (!ret || !flush) 3991 goto out; 3992 3993 ret = flush_space(root, space_info, num_bytes, orig_bytes, 3994 flush_state); 3995 flush_state++; 3996 if (!ret) 3997 goto again; 3998 else if (flush_state <= COMMIT_TRANS) 3999 goto again; 4000 4001 out: 4002 if (flushing) { 4003 spin_lock(&space_info->lock); 4004 space_info->flush = 0; 4005 wake_up_all(&space_info->wait); 4006 spin_unlock(&space_info->lock); 4007 } 4008 return ret; 4009 } 4010 4011 static struct btrfs_block_rsv *get_block_rsv( 4012 const struct btrfs_trans_handle *trans, 4013 const struct btrfs_root *root) 4014 { 4015 struct btrfs_block_rsv *block_rsv = NULL; 4016 4017 if (root->ref_cows) 4018 block_rsv = trans->block_rsv; 4019 4020 if (root == root->fs_info->csum_root && trans->adding_csums) 4021 block_rsv = trans->block_rsv; 4022 4023 if (!block_rsv) 4024 block_rsv = root->block_rsv; 4025 4026 if (!block_rsv) 4027 block_rsv = &root->fs_info->empty_block_rsv; 4028 4029 return block_rsv; 4030 } 4031 4032 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4033 u64 num_bytes) 4034 { 4035 int ret = -ENOSPC; 4036 spin_lock(&block_rsv->lock); 4037 if (block_rsv->reserved >= num_bytes) { 4038 block_rsv->reserved -= num_bytes; 4039 if (block_rsv->reserved < block_rsv->size) 4040 block_rsv->full = 0; 4041 ret = 0; 4042 } 4043 spin_unlock(&block_rsv->lock); 4044 return ret; 4045 } 4046 4047 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4048 u64 num_bytes, int update_size) 4049 { 4050 spin_lock(&block_rsv->lock); 4051 block_rsv->reserved += num_bytes; 4052 if (update_size) 4053 block_rsv->size += num_bytes; 4054 else if (block_rsv->reserved >= block_rsv->size) 4055 block_rsv->full = 1; 4056 spin_unlock(&block_rsv->lock); 4057 } 4058 4059 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4060 struct btrfs_block_rsv *block_rsv, 4061 struct btrfs_block_rsv *dest, u64 num_bytes) 4062 { 4063 struct btrfs_space_info *space_info = block_rsv->space_info; 4064 4065 spin_lock(&block_rsv->lock); 4066 if (num_bytes == (u64)-1) 4067 num_bytes = block_rsv->size; 4068 block_rsv->size -= num_bytes; 4069 if (block_rsv->reserved >= block_rsv->size) { 4070 num_bytes = block_rsv->reserved - block_rsv->size; 4071 block_rsv->reserved = block_rsv->size; 4072 block_rsv->full = 1; 4073 } else { 4074 num_bytes = 0; 4075 } 4076 spin_unlock(&block_rsv->lock); 4077 4078 if (num_bytes > 0) { 4079 if (dest) { 4080 spin_lock(&dest->lock); 4081 if (!dest->full) { 4082 u64 bytes_to_add; 4083 4084 bytes_to_add = dest->size - dest->reserved; 4085 bytes_to_add = min(num_bytes, bytes_to_add); 4086 dest->reserved += bytes_to_add; 4087 if (dest->reserved >= dest->size) 4088 dest->full = 1; 4089 num_bytes -= bytes_to_add; 4090 } 4091 spin_unlock(&dest->lock); 4092 } 4093 if (num_bytes) { 4094 spin_lock(&space_info->lock); 4095 space_info->bytes_may_use -= num_bytes; 4096 trace_btrfs_space_reservation(fs_info, "space_info", 4097 space_info->flags, num_bytes, 0); 4098 space_info->reservation_progress++; 4099 spin_unlock(&space_info->lock); 4100 } 4101 } 4102 } 4103 4104 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4105 struct btrfs_block_rsv *dst, u64 num_bytes) 4106 { 4107 int ret; 4108 4109 ret = block_rsv_use_bytes(src, num_bytes); 4110 if (ret) 4111 return ret; 4112 4113 block_rsv_add_bytes(dst, num_bytes, 1); 4114 return 0; 4115 } 4116 4117 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 4118 { 4119 memset(rsv, 0, sizeof(*rsv)); 4120 spin_lock_init(&rsv->lock); 4121 } 4122 4123 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 4124 { 4125 struct btrfs_block_rsv *block_rsv; 4126 struct btrfs_fs_info *fs_info = root->fs_info; 4127 4128 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4129 if (!block_rsv) 4130 return NULL; 4131 4132 btrfs_init_block_rsv(block_rsv); 4133 block_rsv->space_info = __find_space_info(fs_info, 4134 BTRFS_BLOCK_GROUP_METADATA); 4135 return block_rsv; 4136 } 4137 4138 void btrfs_free_block_rsv(struct btrfs_root *root, 4139 struct btrfs_block_rsv *rsv) 4140 { 4141 btrfs_block_rsv_release(root, rsv, (u64)-1); 4142 kfree(rsv); 4143 } 4144 4145 static inline int __block_rsv_add(struct btrfs_root *root, 4146 struct btrfs_block_rsv *block_rsv, 4147 u64 num_bytes, int flush) 4148 { 4149 int ret; 4150 4151 if (num_bytes == 0) 4152 return 0; 4153 4154 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4155 if (!ret) { 4156 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4157 return 0; 4158 } 4159 4160 return ret; 4161 } 4162 4163 int btrfs_block_rsv_add(struct btrfs_root *root, 4164 struct btrfs_block_rsv *block_rsv, 4165 u64 num_bytes) 4166 { 4167 return __block_rsv_add(root, block_rsv, num_bytes, 1); 4168 } 4169 4170 int btrfs_block_rsv_add_noflush(struct btrfs_root *root, 4171 struct btrfs_block_rsv *block_rsv, 4172 u64 num_bytes) 4173 { 4174 return __block_rsv_add(root, block_rsv, num_bytes, 0); 4175 } 4176 4177 int btrfs_block_rsv_check(struct btrfs_root *root, 4178 struct btrfs_block_rsv *block_rsv, int min_factor) 4179 { 4180 u64 num_bytes = 0; 4181 int ret = -ENOSPC; 4182 4183 if (!block_rsv) 4184 return 0; 4185 4186 spin_lock(&block_rsv->lock); 4187 num_bytes = div_factor(block_rsv->size, min_factor); 4188 if (block_rsv->reserved >= num_bytes) 4189 ret = 0; 4190 spin_unlock(&block_rsv->lock); 4191 4192 return ret; 4193 } 4194 4195 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, 4196 struct btrfs_block_rsv *block_rsv, 4197 u64 min_reserved, int flush) 4198 { 4199 u64 num_bytes = 0; 4200 int ret = -ENOSPC; 4201 4202 if (!block_rsv) 4203 return 0; 4204 4205 spin_lock(&block_rsv->lock); 4206 num_bytes = min_reserved; 4207 if (block_rsv->reserved >= num_bytes) 4208 ret = 0; 4209 else 4210 num_bytes -= block_rsv->reserved; 4211 spin_unlock(&block_rsv->lock); 4212 4213 if (!ret) 4214 return 0; 4215 4216 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4217 if (!ret) { 4218 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4219 return 0; 4220 } 4221 4222 return ret; 4223 } 4224 4225 int btrfs_block_rsv_refill(struct btrfs_root *root, 4226 struct btrfs_block_rsv *block_rsv, 4227 u64 min_reserved) 4228 { 4229 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); 4230 } 4231 4232 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, 4233 struct btrfs_block_rsv *block_rsv, 4234 u64 min_reserved) 4235 { 4236 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); 4237 } 4238 4239 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4240 struct btrfs_block_rsv *dst_rsv, 4241 u64 num_bytes) 4242 { 4243 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4244 } 4245 4246 void btrfs_block_rsv_release(struct btrfs_root *root, 4247 struct btrfs_block_rsv *block_rsv, 4248 u64 num_bytes) 4249 { 4250 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4251 if (global_rsv->full || global_rsv == block_rsv || 4252 block_rsv->space_info != global_rsv->space_info) 4253 global_rsv = NULL; 4254 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4255 num_bytes); 4256 } 4257 4258 /* 4259 * helper to calculate size of global block reservation. 4260 * the desired value is sum of space used by extent tree, 4261 * checksum tree and root tree 4262 */ 4263 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4264 { 4265 struct btrfs_space_info *sinfo; 4266 u64 num_bytes; 4267 u64 meta_used; 4268 u64 data_used; 4269 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4270 4271 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4272 spin_lock(&sinfo->lock); 4273 data_used = sinfo->bytes_used; 4274 spin_unlock(&sinfo->lock); 4275 4276 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4277 spin_lock(&sinfo->lock); 4278 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4279 data_used = 0; 4280 meta_used = sinfo->bytes_used; 4281 spin_unlock(&sinfo->lock); 4282 4283 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4284 csum_size * 2; 4285 num_bytes += div64_u64(data_used + meta_used, 50); 4286 4287 if (num_bytes * 3 > meta_used) 4288 num_bytes = div64_u64(meta_used, 3); 4289 4290 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4291 } 4292 4293 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4294 { 4295 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4296 struct btrfs_space_info *sinfo = block_rsv->space_info; 4297 u64 num_bytes; 4298 4299 num_bytes = calc_global_metadata_size(fs_info); 4300 4301 spin_lock(&sinfo->lock); 4302 spin_lock(&block_rsv->lock); 4303 4304 block_rsv->size = num_bytes; 4305 4306 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4307 sinfo->bytes_reserved + sinfo->bytes_readonly + 4308 sinfo->bytes_may_use; 4309 4310 if (sinfo->total_bytes > num_bytes) { 4311 num_bytes = sinfo->total_bytes - num_bytes; 4312 block_rsv->reserved += num_bytes; 4313 sinfo->bytes_may_use += num_bytes; 4314 trace_btrfs_space_reservation(fs_info, "space_info", 4315 sinfo->flags, num_bytes, 1); 4316 } 4317 4318 if (block_rsv->reserved >= block_rsv->size) { 4319 num_bytes = block_rsv->reserved - block_rsv->size; 4320 sinfo->bytes_may_use -= num_bytes; 4321 trace_btrfs_space_reservation(fs_info, "space_info", 4322 sinfo->flags, num_bytes, 0); 4323 sinfo->reservation_progress++; 4324 block_rsv->reserved = block_rsv->size; 4325 block_rsv->full = 1; 4326 } 4327 4328 spin_unlock(&block_rsv->lock); 4329 spin_unlock(&sinfo->lock); 4330 } 4331 4332 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4333 { 4334 struct btrfs_space_info *space_info; 4335 4336 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4337 fs_info->chunk_block_rsv.space_info = space_info; 4338 4339 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4340 fs_info->global_block_rsv.space_info = space_info; 4341 fs_info->delalloc_block_rsv.space_info = space_info; 4342 fs_info->trans_block_rsv.space_info = space_info; 4343 fs_info->empty_block_rsv.space_info = space_info; 4344 fs_info->delayed_block_rsv.space_info = space_info; 4345 4346 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4347 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4348 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4349 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4350 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4351 4352 update_global_block_rsv(fs_info); 4353 } 4354 4355 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4356 { 4357 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4358 (u64)-1); 4359 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4360 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4361 WARN_ON(fs_info->trans_block_rsv.size > 0); 4362 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4363 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4364 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4365 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4366 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4367 } 4368 4369 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4370 struct btrfs_root *root) 4371 { 4372 if (!trans->block_rsv) 4373 return; 4374 4375 if (!trans->bytes_reserved) 4376 return; 4377 4378 trace_btrfs_space_reservation(root->fs_info, "transaction", 4379 trans->transid, trans->bytes_reserved, 0); 4380 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4381 trans->bytes_reserved = 0; 4382 } 4383 4384 /* Can only return 0 or -ENOSPC */ 4385 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4386 struct inode *inode) 4387 { 4388 struct btrfs_root *root = BTRFS_I(inode)->root; 4389 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4390 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4391 4392 /* 4393 * We need to hold space in order to delete our orphan item once we've 4394 * added it, so this takes the reservation so we can release it later 4395 * when we are truly done with the orphan item. 4396 */ 4397 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4398 trace_btrfs_space_reservation(root->fs_info, "orphan", 4399 btrfs_ino(inode), num_bytes, 1); 4400 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4401 } 4402 4403 void btrfs_orphan_release_metadata(struct inode *inode) 4404 { 4405 struct btrfs_root *root = BTRFS_I(inode)->root; 4406 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4407 trace_btrfs_space_reservation(root->fs_info, "orphan", 4408 btrfs_ino(inode), num_bytes, 0); 4409 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4410 } 4411 4412 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4413 struct btrfs_pending_snapshot *pending) 4414 { 4415 struct btrfs_root *root = pending->root; 4416 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4417 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4418 /* 4419 * two for root back/forward refs, two for directory entries 4420 * and one for root of the snapshot. 4421 */ 4422 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4423 dst_rsv->space_info = src_rsv->space_info; 4424 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4425 } 4426 4427 /** 4428 * drop_outstanding_extent - drop an outstanding extent 4429 * @inode: the inode we're dropping the extent for 4430 * 4431 * This is called when we are freeing up an outstanding extent, either called 4432 * after an error or after an extent is written. This will return the number of 4433 * reserved extents that need to be freed. This must be called with 4434 * BTRFS_I(inode)->lock held. 4435 */ 4436 static unsigned drop_outstanding_extent(struct inode *inode) 4437 { 4438 unsigned drop_inode_space = 0; 4439 unsigned dropped_extents = 0; 4440 4441 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4442 BTRFS_I(inode)->outstanding_extents--; 4443 4444 if (BTRFS_I(inode)->outstanding_extents == 0 && 4445 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4446 &BTRFS_I(inode)->runtime_flags)) 4447 drop_inode_space = 1; 4448 4449 /* 4450 * If we have more or the same amount of outsanding extents than we have 4451 * reserved then we need to leave the reserved extents count alone. 4452 */ 4453 if (BTRFS_I(inode)->outstanding_extents >= 4454 BTRFS_I(inode)->reserved_extents) 4455 return drop_inode_space; 4456 4457 dropped_extents = BTRFS_I(inode)->reserved_extents - 4458 BTRFS_I(inode)->outstanding_extents; 4459 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4460 return dropped_extents + drop_inode_space; 4461 } 4462 4463 /** 4464 * calc_csum_metadata_size - return the amount of metada space that must be 4465 * reserved/free'd for the given bytes. 4466 * @inode: the inode we're manipulating 4467 * @num_bytes: the number of bytes in question 4468 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4469 * 4470 * This adjusts the number of csum_bytes in the inode and then returns the 4471 * correct amount of metadata that must either be reserved or freed. We 4472 * calculate how many checksums we can fit into one leaf and then divide the 4473 * number of bytes that will need to be checksumed by this value to figure out 4474 * how many checksums will be required. If we are adding bytes then the number 4475 * may go up and we will return the number of additional bytes that must be 4476 * reserved. If it is going down we will return the number of bytes that must 4477 * be freed. 4478 * 4479 * This must be called with BTRFS_I(inode)->lock held. 4480 */ 4481 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4482 int reserve) 4483 { 4484 struct btrfs_root *root = BTRFS_I(inode)->root; 4485 u64 csum_size; 4486 int num_csums_per_leaf; 4487 int num_csums; 4488 int old_csums; 4489 4490 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4491 BTRFS_I(inode)->csum_bytes == 0) 4492 return 0; 4493 4494 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4495 if (reserve) 4496 BTRFS_I(inode)->csum_bytes += num_bytes; 4497 else 4498 BTRFS_I(inode)->csum_bytes -= num_bytes; 4499 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4500 num_csums_per_leaf = (int)div64_u64(csum_size, 4501 sizeof(struct btrfs_csum_item) + 4502 sizeof(struct btrfs_disk_key)); 4503 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4504 num_csums = num_csums + num_csums_per_leaf - 1; 4505 num_csums = num_csums / num_csums_per_leaf; 4506 4507 old_csums = old_csums + num_csums_per_leaf - 1; 4508 old_csums = old_csums / num_csums_per_leaf; 4509 4510 /* No change, no need to reserve more */ 4511 if (old_csums == num_csums) 4512 return 0; 4513 4514 if (reserve) 4515 return btrfs_calc_trans_metadata_size(root, 4516 num_csums - old_csums); 4517 4518 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4519 } 4520 4521 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4522 { 4523 struct btrfs_root *root = BTRFS_I(inode)->root; 4524 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4525 u64 to_reserve = 0; 4526 u64 csum_bytes; 4527 unsigned nr_extents = 0; 4528 int extra_reserve = 0; 4529 int flush = 1; 4530 int ret; 4531 4532 /* Need to be holding the i_mutex here if we aren't free space cache */ 4533 if (btrfs_is_free_space_inode(inode)) 4534 flush = 0; 4535 4536 if (flush && btrfs_transaction_in_commit(root->fs_info)) 4537 schedule_timeout(1); 4538 4539 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4540 num_bytes = ALIGN(num_bytes, root->sectorsize); 4541 4542 spin_lock(&BTRFS_I(inode)->lock); 4543 BTRFS_I(inode)->outstanding_extents++; 4544 4545 if (BTRFS_I(inode)->outstanding_extents > 4546 BTRFS_I(inode)->reserved_extents) 4547 nr_extents = BTRFS_I(inode)->outstanding_extents - 4548 BTRFS_I(inode)->reserved_extents; 4549 4550 /* 4551 * Add an item to reserve for updating the inode when we complete the 4552 * delalloc io. 4553 */ 4554 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4555 &BTRFS_I(inode)->runtime_flags)) { 4556 nr_extents++; 4557 extra_reserve = 1; 4558 } 4559 4560 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4561 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4562 csum_bytes = BTRFS_I(inode)->csum_bytes; 4563 spin_unlock(&BTRFS_I(inode)->lock); 4564 4565 if (root->fs_info->quota_enabled) { 4566 ret = btrfs_qgroup_reserve(root, num_bytes + 4567 nr_extents * root->leafsize); 4568 if (ret) { 4569 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4570 return ret; 4571 } 4572 } 4573 4574 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4575 if (ret) { 4576 u64 to_free = 0; 4577 unsigned dropped; 4578 4579 spin_lock(&BTRFS_I(inode)->lock); 4580 dropped = drop_outstanding_extent(inode); 4581 /* 4582 * If the inodes csum_bytes is the same as the original 4583 * csum_bytes then we know we haven't raced with any free()ers 4584 * so we can just reduce our inodes csum bytes and carry on. 4585 * Otherwise we have to do the normal free thing to account for 4586 * the case that the free side didn't free up its reserve 4587 * because of this outstanding reservation. 4588 */ 4589 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4590 calc_csum_metadata_size(inode, num_bytes, 0); 4591 else 4592 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4593 spin_unlock(&BTRFS_I(inode)->lock); 4594 if (dropped) 4595 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4596 4597 if (to_free) { 4598 btrfs_block_rsv_release(root, block_rsv, to_free); 4599 trace_btrfs_space_reservation(root->fs_info, 4600 "delalloc", 4601 btrfs_ino(inode), 4602 to_free, 0); 4603 } 4604 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4605 return ret; 4606 } 4607 4608 spin_lock(&BTRFS_I(inode)->lock); 4609 if (extra_reserve) { 4610 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4611 &BTRFS_I(inode)->runtime_flags); 4612 nr_extents--; 4613 } 4614 BTRFS_I(inode)->reserved_extents += nr_extents; 4615 spin_unlock(&BTRFS_I(inode)->lock); 4616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4617 4618 if (to_reserve) 4619 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4620 btrfs_ino(inode), to_reserve, 1); 4621 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4622 4623 return 0; 4624 } 4625 4626 /** 4627 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4628 * @inode: the inode to release the reservation for 4629 * @num_bytes: the number of bytes we're releasing 4630 * 4631 * This will release the metadata reservation for an inode. This can be called 4632 * once we complete IO for a given set of bytes to release their metadata 4633 * reservations. 4634 */ 4635 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4636 { 4637 struct btrfs_root *root = BTRFS_I(inode)->root; 4638 u64 to_free = 0; 4639 unsigned dropped; 4640 4641 num_bytes = ALIGN(num_bytes, root->sectorsize); 4642 spin_lock(&BTRFS_I(inode)->lock); 4643 dropped = drop_outstanding_extent(inode); 4644 4645 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4646 spin_unlock(&BTRFS_I(inode)->lock); 4647 if (dropped > 0) 4648 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4649 4650 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4651 btrfs_ino(inode), to_free, 0); 4652 if (root->fs_info->quota_enabled) { 4653 btrfs_qgroup_free(root, num_bytes + 4654 dropped * root->leafsize); 4655 } 4656 4657 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4658 to_free); 4659 } 4660 4661 /** 4662 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4663 * @inode: inode we're writing to 4664 * @num_bytes: the number of bytes we want to allocate 4665 * 4666 * This will do the following things 4667 * 4668 * o reserve space in the data space info for num_bytes 4669 * o reserve space in the metadata space info based on number of outstanding 4670 * extents and how much csums will be needed 4671 * o add to the inodes ->delalloc_bytes 4672 * o add it to the fs_info's delalloc inodes list. 4673 * 4674 * This will return 0 for success and -ENOSPC if there is no space left. 4675 */ 4676 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4677 { 4678 int ret; 4679 4680 ret = btrfs_check_data_free_space(inode, num_bytes); 4681 if (ret) 4682 return ret; 4683 4684 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4685 if (ret) { 4686 btrfs_free_reserved_data_space(inode, num_bytes); 4687 return ret; 4688 } 4689 4690 return 0; 4691 } 4692 4693 /** 4694 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4695 * @inode: inode we're releasing space for 4696 * @num_bytes: the number of bytes we want to free up 4697 * 4698 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4699 * called in the case that we don't need the metadata AND data reservations 4700 * anymore. So if there is an error or we insert an inline extent. 4701 * 4702 * This function will release the metadata space that was not used and will 4703 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4704 * list if there are no delalloc bytes left. 4705 */ 4706 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4707 { 4708 btrfs_delalloc_release_metadata(inode, num_bytes); 4709 btrfs_free_reserved_data_space(inode, num_bytes); 4710 } 4711 4712 static int update_block_group(struct btrfs_trans_handle *trans, 4713 struct btrfs_root *root, 4714 u64 bytenr, u64 num_bytes, int alloc) 4715 { 4716 struct btrfs_block_group_cache *cache = NULL; 4717 struct btrfs_fs_info *info = root->fs_info; 4718 u64 total = num_bytes; 4719 u64 old_val; 4720 u64 byte_in_group; 4721 int factor; 4722 4723 /* block accounting for super block */ 4724 spin_lock(&info->delalloc_lock); 4725 old_val = btrfs_super_bytes_used(info->super_copy); 4726 if (alloc) 4727 old_val += num_bytes; 4728 else 4729 old_val -= num_bytes; 4730 btrfs_set_super_bytes_used(info->super_copy, old_val); 4731 spin_unlock(&info->delalloc_lock); 4732 4733 while (total) { 4734 cache = btrfs_lookup_block_group(info, bytenr); 4735 if (!cache) 4736 return -ENOENT; 4737 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4738 BTRFS_BLOCK_GROUP_RAID1 | 4739 BTRFS_BLOCK_GROUP_RAID10)) 4740 factor = 2; 4741 else 4742 factor = 1; 4743 /* 4744 * If this block group has free space cache written out, we 4745 * need to make sure to load it if we are removing space. This 4746 * is because we need the unpinning stage to actually add the 4747 * space back to the block group, otherwise we will leak space. 4748 */ 4749 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4750 cache_block_group(cache, trans, NULL, 1); 4751 4752 byte_in_group = bytenr - cache->key.objectid; 4753 WARN_ON(byte_in_group > cache->key.offset); 4754 4755 spin_lock(&cache->space_info->lock); 4756 spin_lock(&cache->lock); 4757 4758 if (btrfs_test_opt(root, SPACE_CACHE) && 4759 cache->disk_cache_state < BTRFS_DC_CLEAR) 4760 cache->disk_cache_state = BTRFS_DC_CLEAR; 4761 4762 cache->dirty = 1; 4763 old_val = btrfs_block_group_used(&cache->item); 4764 num_bytes = min(total, cache->key.offset - byte_in_group); 4765 if (alloc) { 4766 old_val += num_bytes; 4767 btrfs_set_block_group_used(&cache->item, old_val); 4768 cache->reserved -= num_bytes; 4769 cache->space_info->bytes_reserved -= num_bytes; 4770 cache->space_info->bytes_used += num_bytes; 4771 cache->space_info->disk_used += num_bytes * factor; 4772 spin_unlock(&cache->lock); 4773 spin_unlock(&cache->space_info->lock); 4774 } else { 4775 old_val -= num_bytes; 4776 btrfs_set_block_group_used(&cache->item, old_val); 4777 cache->pinned += num_bytes; 4778 cache->space_info->bytes_pinned += num_bytes; 4779 cache->space_info->bytes_used -= num_bytes; 4780 cache->space_info->disk_used -= num_bytes * factor; 4781 spin_unlock(&cache->lock); 4782 spin_unlock(&cache->space_info->lock); 4783 4784 set_extent_dirty(info->pinned_extents, 4785 bytenr, bytenr + num_bytes - 1, 4786 GFP_NOFS | __GFP_NOFAIL); 4787 } 4788 btrfs_put_block_group(cache); 4789 total -= num_bytes; 4790 bytenr += num_bytes; 4791 } 4792 return 0; 4793 } 4794 4795 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4796 { 4797 struct btrfs_block_group_cache *cache; 4798 u64 bytenr; 4799 4800 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4801 if (!cache) 4802 return 0; 4803 4804 bytenr = cache->key.objectid; 4805 btrfs_put_block_group(cache); 4806 4807 return bytenr; 4808 } 4809 4810 static int pin_down_extent(struct btrfs_root *root, 4811 struct btrfs_block_group_cache *cache, 4812 u64 bytenr, u64 num_bytes, int reserved) 4813 { 4814 spin_lock(&cache->space_info->lock); 4815 spin_lock(&cache->lock); 4816 cache->pinned += num_bytes; 4817 cache->space_info->bytes_pinned += num_bytes; 4818 if (reserved) { 4819 cache->reserved -= num_bytes; 4820 cache->space_info->bytes_reserved -= num_bytes; 4821 } 4822 spin_unlock(&cache->lock); 4823 spin_unlock(&cache->space_info->lock); 4824 4825 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4826 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4827 return 0; 4828 } 4829 4830 /* 4831 * this function must be called within transaction 4832 */ 4833 int btrfs_pin_extent(struct btrfs_root *root, 4834 u64 bytenr, u64 num_bytes, int reserved) 4835 { 4836 struct btrfs_block_group_cache *cache; 4837 4838 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4839 BUG_ON(!cache); /* Logic error */ 4840 4841 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4842 4843 btrfs_put_block_group(cache); 4844 return 0; 4845 } 4846 4847 /* 4848 * this function must be called within transaction 4849 */ 4850 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4851 struct btrfs_root *root, 4852 u64 bytenr, u64 num_bytes) 4853 { 4854 struct btrfs_block_group_cache *cache; 4855 4856 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4857 BUG_ON(!cache); /* Logic error */ 4858 4859 /* 4860 * pull in the free space cache (if any) so that our pin 4861 * removes the free space from the cache. We have load_only set 4862 * to one because the slow code to read in the free extents does check 4863 * the pinned extents. 4864 */ 4865 cache_block_group(cache, trans, root, 1); 4866 4867 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4868 4869 /* remove us from the free space cache (if we're there at all) */ 4870 btrfs_remove_free_space(cache, bytenr, num_bytes); 4871 btrfs_put_block_group(cache); 4872 return 0; 4873 } 4874 4875 /** 4876 * btrfs_update_reserved_bytes - update the block_group and space info counters 4877 * @cache: The cache we are manipulating 4878 * @num_bytes: The number of bytes in question 4879 * @reserve: One of the reservation enums 4880 * 4881 * This is called by the allocator when it reserves space, or by somebody who is 4882 * freeing space that was never actually used on disk. For example if you 4883 * reserve some space for a new leaf in transaction A and before transaction A 4884 * commits you free that leaf, you call this with reserve set to 0 in order to 4885 * clear the reservation. 4886 * 4887 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4888 * ENOSPC accounting. For data we handle the reservation through clearing the 4889 * delalloc bits in the io_tree. We have to do this since we could end up 4890 * allocating less disk space for the amount of data we have reserved in the 4891 * case of compression. 4892 * 4893 * If this is a reservation and the block group has become read only we cannot 4894 * make the reservation and return -EAGAIN, otherwise this function always 4895 * succeeds. 4896 */ 4897 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4898 u64 num_bytes, int reserve) 4899 { 4900 struct btrfs_space_info *space_info = cache->space_info; 4901 int ret = 0; 4902 4903 spin_lock(&space_info->lock); 4904 spin_lock(&cache->lock); 4905 if (reserve != RESERVE_FREE) { 4906 if (cache->ro) { 4907 ret = -EAGAIN; 4908 } else { 4909 cache->reserved += num_bytes; 4910 space_info->bytes_reserved += num_bytes; 4911 if (reserve == RESERVE_ALLOC) { 4912 trace_btrfs_space_reservation(cache->fs_info, 4913 "space_info", space_info->flags, 4914 num_bytes, 0); 4915 space_info->bytes_may_use -= num_bytes; 4916 } 4917 } 4918 } else { 4919 if (cache->ro) 4920 space_info->bytes_readonly += num_bytes; 4921 cache->reserved -= num_bytes; 4922 space_info->bytes_reserved -= num_bytes; 4923 space_info->reservation_progress++; 4924 } 4925 spin_unlock(&cache->lock); 4926 spin_unlock(&space_info->lock); 4927 return ret; 4928 } 4929 4930 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4931 struct btrfs_root *root) 4932 { 4933 struct btrfs_fs_info *fs_info = root->fs_info; 4934 struct btrfs_caching_control *next; 4935 struct btrfs_caching_control *caching_ctl; 4936 struct btrfs_block_group_cache *cache; 4937 4938 down_write(&fs_info->extent_commit_sem); 4939 4940 list_for_each_entry_safe(caching_ctl, next, 4941 &fs_info->caching_block_groups, list) { 4942 cache = caching_ctl->block_group; 4943 if (block_group_cache_done(cache)) { 4944 cache->last_byte_to_unpin = (u64)-1; 4945 list_del_init(&caching_ctl->list); 4946 put_caching_control(caching_ctl); 4947 } else { 4948 cache->last_byte_to_unpin = caching_ctl->progress; 4949 } 4950 } 4951 4952 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4953 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4954 else 4955 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4956 4957 up_write(&fs_info->extent_commit_sem); 4958 4959 update_global_block_rsv(fs_info); 4960 } 4961 4962 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4963 { 4964 struct btrfs_fs_info *fs_info = root->fs_info; 4965 struct btrfs_block_group_cache *cache = NULL; 4966 u64 len; 4967 4968 while (start <= end) { 4969 if (!cache || 4970 start >= cache->key.objectid + cache->key.offset) { 4971 if (cache) 4972 btrfs_put_block_group(cache); 4973 cache = btrfs_lookup_block_group(fs_info, start); 4974 BUG_ON(!cache); /* Logic error */ 4975 } 4976 4977 len = cache->key.objectid + cache->key.offset - start; 4978 len = min(len, end + 1 - start); 4979 4980 if (start < cache->last_byte_to_unpin) { 4981 len = min(len, cache->last_byte_to_unpin - start); 4982 btrfs_add_free_space(cache, start, len); 4983 } 4984 4985 start += len; 4986 4987 spin_lock(&cache->space_info->lock); 4988 spin_lock(&cache->lock); 4989 cache->pinned -= len; 4990 cache->space_info->bytes_pinned -= len; 4991 if (cache->ro) 4992 cache->space_info->bytes_readonly += len; 4993 spin_unlock(&cache->lock); 4994 spin_unlock(&cache->space_info->lock); 4995 } 4996 4997 if (cache) 4998 btrfs_put_block_group(cache); 4999 return 0; 5000 } 5001 5002 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5003 struct btrfs_root *root) 5004 { 5005 struct btrfs_fs_info *fs_info = root->fs_info; 5006 struct extent_io_tree *unpin; 5007 u64 start; 5008 u64 end; 5009 int ret; 5010 5011 if (trans->aborted) 5012 return 0; 5013 5014 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5015 unpin = &fs_info->freed_extents[1]; 5016 else 5017 unpin = &fs_info->freed_extents[0]; 5018 5019 while (1) { 5020 ret = find_first_extent_bit(unpin, 0, &start, &end, 5021 EXTENT_DIRTY); 5022 if (ret) 5023 break; 5024 5025 if (btrfs_test_opt(root, DISCARD)) 5026 ret = btrfs_discard_extent(root, start, 5027 end + 1 - start, NULL); 5028 5029 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5030 unpin_extent_range(root, start, end); 5031 cond_resched(); 5032 } 5033 5034 return 0; 5035 } 5036 5037 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5038 struct btrfs_root *root, 5039 u64 bytenr, u64 num_bytes, u64 parent, 5040 u64 root_objectid, u64 owner_objectid, 5041 u64 owner_offset, int refs_to_drop, 5042 struct btrfs_delayed_extent_op *extent_op) 5043 { 5044 struct btrfs_key key; 5045 struct btrfs_path *path; 5046 struct btrfs_fs_info *info = root->fs_info; 5047 struct btrfs_root *extent_root = info->extent_root; 5048 struct extent_buffer *leaf; 5049 struct btrfs_extent_item *ei; 5050 struct btrfs_extent_inline_ref *iref; 5051 int ret; 5052 int is_data; 5053 int extent_slot = 0; 5054 int found_extent = 0; 5055 int num_to_del = 1; 5056 u32 item_size; 5057 u64 refs; 5058 5059 path = btrfs_alloc_path(); 5060 if (!path) 5061 return -ENOMEM; 5062 5063 path->reada = 1; 5064 path->leave_spinning = 1; 5065 5066 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5067 BUG_ON(!is_data && refs_to_drop != 1); 5068 5069 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5070 bytenr, num_bytes, parent, 5071 root_objectid, owner_objectid, 5072 owner_offset); 5073 if (ret == 0) { 5074 extent_slot = path->slots[0]; 5075 while (extent_slot >= 0) { 5076 btrfs_item_key_to_cpu(path->nodes[0], &key, 5077 extent_slot); 5078 if (key.objectid != bytenr) 5079 break; 5080 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5081 key.offset == num_bytes) { 5082 found_extent = 1; 5083 break; 5084 } 5085 if (path->slots[0] - extent_slot > 5) 5086 break; 5087 extent_slot--; 5088 } 5089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5090 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5091 if (found_extent && item_size < sizeof(*ei)) 5092 found_extent = 0; 5093 #endif 5094 if (!found_extent) { 5095 BUG_ON(iref); 5096 ret = remove_extent_backref(trans, extent_root, path, 5097 NULL, refs_to_drop, 5098 is_data); 5099 if (ret) 5100 goto abort; 5101 btrfs_release_path(path); 5102 path->leave_spinning = 1; 5103 5104 key.objectid = bytenr; 5105 key.type = BTRFS_EXTENT_ITEM_KEY; 5106 key.offset = num_bytes; 5107 5108 ret = btrfs_search_slot(trans, extent_root, 5109 &key, path, -1, 1); 5110 if (ret) { 5111 printk(KERN_ERR "umm, got %d back from search" 5112 ", was looking for %llu\n", ret, 5113 (unsigned long long)bytenr); 5114 if (ret > 0) 5115 btrfs_print_leaf(extent_root, 5116 path->nodes[0]); 5117 } 5118 if (ret < 0) 5119 goto abort; 5120 extent_slot = path->slots[0]; 5121 } 5122 } else if (ret == -ENOENT) { 5123 btrfs_print_leaf(extent_root, path->nodes[0]); 5124 WARN_ON(1); 5125 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5126 "parent %llu root %llu owner %llu offset %llu\n", 5127 (unsigned long long)bytenr, 5128 (unsigned long long)parent, 5129 (unsigned long long)root_objectid, 5130 (unsigned long long)owner_objectid, 5131 (unsigned long long)owner_offset); 5132 } else { 5133 goto abort; 5134 } 5135 5136 leaf = path->nodes[0]; 5137 item_size = btrfs_item_size_nr(leaf, extent_slot); 5138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5139 if (item_size < sizeof(*ei)) { 5140 BUG_ON(found_extent || extent_slot != path->slots[0]); 5141 ret = convert_extent_item_v0(trans, extent_root, path, 5142 owner_objectid, 0); 5143 if (ret < 0) 5144 goto abort; 5145 5146 btrfs_release_path(path); 5147 path->leave_spinning = 1; 5148 5149 key.objectid = bytenr; 5150 key.type = BTRFS_EXTENT_ITEM_KEY; 5151 key.offset = num_bytes; 5152 5153 ret = btrfs_search_slot(trans, extent_root, &key, path, 5154 -1, 1); 5155 if (ret) { 5156 printk(KERN_ERR "umm, got %d back from search" 5157 ", was looking for %llu\n", ret, 5158 (unsigned long long)bytenr); 5159 btrfs_print_leaf(extent_root, path->nodes[0]); 5160 } 5161 if (ret < 0) 5162 goto abort; 5163 extent_slot = path->slots[0]; 5164 leaf = path->nodes[0]; 5165 item_size = btrfs_item_size_nr(leaf, extent_slot); 5166 } 5167 #endif 5168 BUG_ON(item_size < sizeof(*ei)); 5169 ei = btrfs_item_ptr(leaf, extent_slot, 5170 struct btrfs_extent_item); 5171 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5172 struct btrfs_tree_block_info *bi; 5173 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5174 bi = (struct btrfs_tree_block_info *)(ei + 1); 5175 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5176 } 5177 5178 refs = btrfs_extent_refs(leaf, ei); 5179 BUG_ON(refs < refs_to_drop); 5180 refs -= refs_to_drop; 5181 5182 if (refs > 0) { 5183 if (extent_op) 5184 __run_delayed_extent_op(extent_op, leaf, ei); 5185 /* 5186 * In the case of inline back ref, reference count will 5187 * be updated by remove_extent_backref 5188 */ 5189 if (iref) { 5190 BUG_ON(!found_extent); 5191 } else { 5192 btrfs_set_extent_refs(leaf, ei, refs); 5193 btrfs_mark_buffer_dirty(leaf); 5194 } 5195 if (found_extent) { 5196 ret = remove_extent_backref(trans, extent_root, path, 5197 iref, refs_to_drop, 5198 is_data); 5199 if (ret) 5200 goto abort; 5201 } 5202 } else { 5203 if (found_extent) { 5204 BUG_ON(is_data && refs_to_drop != 5205 extent_data_ref_count(root, path, iref)); 5206 if (iref) { 5207 BUG_ON(path->slots[0] != extent_slot); 5208 } else { 5209 BUG_ON(path->slots[0] != extent_slot + 1); 5210 path->slots[0] = extent_slot; 5211 num_to_del = 2; 5212 } 5213 } 5214 5215 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5216 num_to_del); 5217 if (ret) 5218 goto abort; 5219 btrfs_release_path(path); 5220 5221 if (is_data) { 5222 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5223 if (ret) 5224 goto abort; 5225 } 5226 5227 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5228 if (ret) 5229 goto abort; 5230 } 5231 out: 5232 btrfs_free_path(path); 5233 return ret; 5234 5235 abort: 5236 btrfs_abort_transaction(trans, extent_root, ret); 5237 goto out; 5238 } 5239 5240 /* 5241 * when we free an block, it is possible (and likely) that we free the last 5242 * delayed ref for that extent as well. This searches the delayed ref tree for 5243 * a given extent, and if there are no other delayed refs to be processed, it 5244 * removes it from the tree. 5245 */ 5246 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5247 struct btrfs_root *root, u64 bytenr) 5248 { 5249 struct btrfs_delayed_ref_head *head; 5250 struct btrfs_delayed_ref_root *delayed_refs; 5251 struct btrfs_delayed_ref_node *ref; 5252 struct rb_node *node; 5253 int ret = 0; 5254 5255 delayed_refs = &trans->transaction->delayed_refs; 5256 spin_lock(&delayed_refs->lock); 5257 head = btrfs_find_delayed_ref_head(trans, bytenr); 5258 if (!head) 5259 goto out; 5260 5261 node = rb_prev(&head->node.rb_node); 5262 if (!node) 5263 goto out; 5264 5265 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5266 5267 /* there are still entries for this ref, we can't drop it */ 5268 if (ref->bytenr == bytenr) 5269 goto out; 5270 5271 if (head->extent_op) { 5272 if (!head->must_insert_reserved) 5273 goto out; 5274 kfree(head->extent_op); 5275 head->extent_op = NULL; 5276 } 5277 5278 /* 5279 * waiting for the lock here would deadlock. If someone else has it 5280 * locked they are already in the process of dropping it anyway 5281 */ 5282 if (!mutex_trylock(&head->mutex)) 5283 goto out; 5284 5285 /* 5286 * at this point we have a head with no other entries. Go 5287 * ahead and process it. 5288 */ 5289 head->node.in_tree = 0; 5290 rb_erase(&head->node.rb_node, &delayed_refs->root); 5291 5292 delayed_refs->num_entries--; 5293 5294 /* 5295 * we don't take a ref on the node because we're removing it from the 5296 * tree, so we just steal the ref the tree was holding. 5297 */ 5298 delayed_refs->num_heads--; 5299 if (list_empty(&head->cluster)) 5300 delayed_refs->num_heads_ready--; 5301 5302 list_del_init(&head->cluster); 5303 spin_unlock(&delayed_refs->lock); 5304 5305 BUG_ON(head->extent_op); 5306 if (head->must_insert_reserved) 5307 ret = 1; 5308 5309 mutex_unlock(&head->mutex); 5310 btrfs_put_delayed_ref(&head->node); 5311 return ret; 5312 out: 5313 spin_unlock(&delayed_refs->lock); 5314 return 0; 5315 } 5316 5317 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5318 struct btrfs_root *root, 5319 struct extent_buffer *buf, 5320 u64 parent, int last_ref) 5321 { 5322 struct btrfs_block_group_cache *cache = NULL; 5323 int ret; 5324 5325 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5326 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5327 buf->start, buf->len, 5328 parent, root->root_key.objectid, 5329 btrfs_header_level(buf), 5330 BTRFS_DROP_DELAYED_REF, NULL, 0); 5331 BUG_ON(ret); /* -ENOMEM */ 5332 } 5333 5334 if (!last_ref) 5335 return; 5336 5337 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5338 5339 if (btrfs_header_generation(buf) == trans->transid) { 5340 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5341 ret = check_ref_cleanup(trans, root, buf->start); 5342 if (!ret) 5343 goto out; 5344 } 5345 5346 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5347 pin_down_extent(root, cache, buf->start, buf->len, 1); 5348 goto out; 5349 } 5350 5351 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5352 5353 btrfs_add_free_space(cache, buf->start, buf->len); 5354 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5355 } 5356 out: 5357 /* 5358 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5359 * anymore. 5360 */ 5361 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5362 btrfs_put_block_group(cache); 5363 } 5364 5365 /* Can return -ENOMEM */ 5366 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5367 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5368 u64 owner, u64 offset, int for_cow) 5369 { 5370 int ret; 5371 struct btrfs_fs_info *fs_info = root->fs_info; 5372 5373 /* 5374 * tree log blocks never actually go into the extent allocation 5375 * tree, just update pinning info and exit early. 5376 */ 5377 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5378 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5379 /* unlocks the pinned mutex */ 5380 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5381 ret = 0; 5382 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5383 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5384 num_bytes, 5385 parent, root_objectid, (int)owner, 5386 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5387 } else { 5388 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5389 num_bytes, 5390 parent, root_objectid, owner, 5391 offset, BTRFS_DROP_DELAYED_REF, 5392 NULL, for_cow); 5393 } 5394 return ret; 5395 } 5396 5397 static u64 stripe_align(struct btrfs_root *root, u64 val) 5398 { 5399 u64 mask = ((u64)root->stripesize - 1); 5400 u64 ret = (val + mask) & ~mask; 5401 return ret; 5402 } 5403 5404 /* 5405 * when we wait for progress in the block group caching, its because 5406 * our allocation attempt failed at least once. So, we must sleep 5407 * and let some progress happen before we try again. 5408 * 5409 * This function will sleep at least once waiting for new free space to 5410 * show up, and then it will check the block group free space numbers 5411 * for our min num_bytes. Another option is to have it go ahead 5412 * and look in the rbtree for a free extent of a given size, but this 5413 * is a good start. 5414 */ 5415 static noinline int 5416 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5417 u64 num_bytes) 5418 { 5419 struct btrfs_caching_control *caching_ctl; 5420 DEFINE_WAIT(wait); 5421 5422 caching_ctl = get_caching_control(cache); 5423 if (!caching_ctl) 5424 return 0; 5425 5426 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5427 (cache->free_space_ctl->free_space >= num_bytes)); 5428 5429 put_caching_control(caching_ctl); 5430 return 0; 5431 } 5432 5433 static noinline int 5434 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5435 { 5436 struct btrfs_caching_control *caching_ctl; 5437 DEFINE_WAIT(wait); 5438 5439 caching_ctl = get_caching_control(cache); 5440 if (!caching_ctl) 5441 return 0; 5442 5443 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5444 5445 put_caching_control(caching_ctl); 5446 return 0; 5447 } 5448 5449 static int __get_block_group_index(u64 flags) 5450 { 5451 int index; 5452 5453 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5454 index = 0; 5455 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5456 index = 1; 5457 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5458 index = 2; 5459 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5460 index = 3; 5461 else 5462 index = 4; 5463 5464 return index; 5465 } 5466 5467 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5468 { 5469 return __get_block_group_index(cache->flags); 5470 } 5471 5472 enum btrfs_loop_type { 5473 LOOP_CACHING_NOWAIT = 0, 5474 LOOP_CACHING_WAIT = 1, 5475 LOOP_ALLOC_CHUNK = 2, 5476 LOOP_NO_EMPTY_SIZE = 3, 5477 }; 5478 5479 /* 5480 * walks the btree of allocated extents and find a hole of a given size. 5481 * The key ins is changed to record the hole: 5482 * ins->objectid == block start 5483 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5484 * ins->offset == number of blocks 5485 * Any available blocks before search_start are skipped. 5486 */ 5487 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5488 struct btrfs_root *orig_root, 5489 u64 num_bytes, u64 empty_size, 5490 u64 hint_byte, struct btrfs_key *ins, 5491 u64 data) 5492 { 5493 int ret = 0; 5494 struct btrfs_root *root = orig_root->fs_info->extent_root; 5495 struct btrfs_free_cluster *last_ptr = NULL; 5496 struct btrfs_block_group_cache *block_group = NULL; 5497 struct btrfs_block_group_cache *used_block_group; 5498 u64 search_start = 0; 5499 int empty_cluster = 2 * 1024 * 1024; 5500 int allowed_chunk_alloc = 0; 5501 int done_chunk_alloc = 0; 5502 struct btrfs_space_info *space_info; 5503 int loop = 0; 5504 int index = 0; 5505 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5506 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5507 bool found_uncached_bg = false; 5508 bool failed_cluster_refill = false; 5509 bool failed_alloc = false; 5510 bool use_cluster = true; 5511 bool have_caching_bg = false; 5512 5513 WARN_ON(num_bytes < root->sectorsize); 5514 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5515 ins->objectid = 0; 5516 ins->offset = 0; 5517 5518 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5519 5520 space_info = __find_space_info(root->fs_info, data); 5521 if (!space_info) { 5522 printk(KERN_ERR "No space info for %llu\n", data); 5523 return -ENOSPC; 5524 } 5525 5526 /* 5527 * If the space info is for both data and metadata it means we have a 5528 * small filesystem and we can't use the clustering stuff. 5529 */ 5530 if (btrfs_mixed_space_info(space_info)) 5531 use_cluster = false; 5532 5533 if (orig_root->ref_cows || empty_size) 5534 allowed_chunk_alloc = 1; 5535 5536 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5537 last_ptr = &root->fs_info->meta_alloc_cluster; 5538 if (!btrfs_test_opt(root, SSD)) 5539 empty_cluster = 64 * 1024; 5540 } 5541 5542 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5543 btrfs_test_opt(root, SSD)) { 5544 last_ptr = &root->fs_info->data_alloc_cluster; 5545 } 5546 5547 if (last_ptr) { 5548 spin_lock(&last_ptr->lock); 5549 if (last_ptr->block_group) 5550 hint_byte = last_ptr->window_start; 5551 spin_unlock(&last_ptr->lock); 5552 } 5553 5554 search_start = max(search_start, first_logical_byte(root, 0)); 5555 search_start = max(search_start, hint_byte); 5556 5557 if (!last_ptr) 5558 empty_cluster = 0; 5559 5560 if (search_start == hint_byte) { 5561 block_group = btrfs_lookup_block_group(root->fs_info, 5562 search_start); 5563 used_block_group = block_group; 5564 /* 5565 * we don't want to use the block group if it doesn't match our 5566 * allocation bits, or if its not cached. 5567 * 5568 * However if we are re-searching with an ideal block group 5569 * picked out then we don't care that the block group is cached. 5570 */ 5571 if (block_group && block_group_bits(block_group, data) && 5572 block_group->cached != BTRFS_CACHE_NO) { 5573 down_read(&space_info->groups_sem); 5574 if (list_empty(&block_group->list) || 5575 block_group->ro) { 5576 /* 5577 * someone is removing this block group, 5578 * we can't jump into the have_block_group 5579 * target because our list pointers are not 5580 * valid 5581 */ 5582 btrfs_put_block_group(block_group); 5583 up_read(&space_info->groups_sem); 5584 } else { 5585 index = get_block_group_index(block_group); 5586 goto have_block_group; 5587 } 5588 } else if (block_group) { 5589 btrfs_put_block_group(block_group); 5590 } 5591 } 5592 search: 5593 have_caching_bg = false; 5594 down_read(&space_info->groups_sem); 5595 list_for_each_entry(block_group, &space_info->block_groups[index], 5596 list) { 5597 u64 offset; 5598 int cached; 5599 5600 used_block_group = block_group; 5601 btrfs_get_block_group(block_group); 5602 search_start = block_group->key.objectid; 5603 5604 /* 5605 * this can happen if we end up cycling through all the 5606 * raid types, but we want to make sure we only allocate 5607 * for the proper type. 5608 */ 5609 if (!block_group_bits(block_group, data)) { 5610 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5611 BTRFS_BLOCK_GROUP_RAID1 | 5612 BTRFS_BLOCK_GROUP_RAID10; 5613 5614 /* 5615 * if they asked for extra copies and this block group 5616 * doesn't provide them, bail. This does allow us to 5617 * fill raid0 from raid1. 5618 */ 5619 if ((data & extra) && !(block_group->flags & extra)) 5620 goto loop; 5621 } 5622 5623 have_block_group: 5624 cached = block_group_cache_done(block_group); 5625 if (unlikely(!cached)) { 5626 found_uncached_bg = true; 5627 ret = cache_block_group(block_group, trans, 5628 orig_root, 0); 5629 BUG_ON(ret < 0); 5630 ret = 0; 5631 } 5632 5633 if (unlikely(block_group->ro)) 5634 goto loop; 5635 5636 /* 5637 * Ok we want to try and use the cluster allocator, so 5638 * lets look there 5639 */ 5640 if (last_ptr) { 5641 /* 5642 * the refill lock keeps out other 5643 * people trying to start a new cluster 5644 */ 5645 spin_lock(&last_ptr->refill_lock); 5646 used_block_group = last_ptr->block_group; 5647 if (used_block_group != block_group && 5648 (!used_block_group || 5649 used_block_group->ro || 5650 !block_group_bits(used_block_group, data))) { 5651 used_block_group = block_group; 5652 goto refill_cluster; 5653 } 5654 5655 if (used_block_group != block_group) 5656 btrfs_get_block_group(used_block_group); 5657 5658 offset = btrfs_alloc_from_cluster(used_block_group, 5659 last_ptr, num_bytes, used_block_group->key.objectid); 5660 if (offset) { 5661 /* we have a block, we're done */ 5662 spin_unlock(&last_ptr->refill_lock); 5663 trace_btrfs_reserve_extent_cluster(root, 5664 block_group, search_start, num_bytes); 5665 goto checks; 5666 } 5667 5668 WARN_ON(last_ptr->block_group != used_block_group); 5669 if (used_block_group != block_group) { 5670 btrfs_put_block_group(used_block_group); 5671 used_block_group = block_group; 5672 } 5673 refill_cluster: 5674 BUG_ON(used_block_group != block_group); 5675 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5676 * set up a new clusters, so lets just skip it 5677 * and let the allocator find whatever block 5678 * it can find. If we reach this point, we 5679 * will have tried the cluster allocator 5680 * plenty of times and not have found 5681 * anything, so we are likely way too 5682 * fragmented for the clustering stuff to find 5683 * anything. 5684 * 5685 * However, if the cluster is taken from the 5686 * current block group, release the cluster 5687 * first, so that we stand a better chance of 5688 * succeeding in the unclustered 5689 * allocation. */ 5690 if (loop >= LOOP_NO_EMPTY_SIZE && 5691 last_ptr->block_group != block_group) { 5692 spin_unlock(&last_ptr->refill_lock); 5693 goto unclustered_alloc; 5694 } 5695 5696 /* 5697 * this cluster didn't work out, free it and 5698 * start over 5699 */ 5700 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5701 5702 if (loop >= LOOP_NO_EMPTY_SIZE) { 5703 spin_unlock(&last_ptr->refill_lock); 5704 goto unclustered_alloc; 5705 } 5706 5707 /* allocate a cluster in this block group */ 5708 ret = btrfs_find_space_cluster(trans, root, 5709 block_group, last_ptr, 5710 search_start, num_bytes, 5711 empty_cluster + empty_size); 5712 if (ret == 0) { 5713 /* 5714 * now pull our allocation out of this 5715 * cluster 5716 */ 5717 offset = btrfs_alloc_from_cluster(block_group, 5718 last_ptr, num_bytes, 5719 search_start); 5720 if (offset) { 5721 /* we found one, proceed */ 5722 spin_unlock(&last_ptr->refill_lock); 5723 trace_btrfs_reserve_extent_cluster(root, 5724 block_group, search_start, 5725 num_bytes); 5726 goto checks; 5727 } 5728 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5729 && !failed_cluster_refill) { 5730 spin_unlock(&last_ptr->refill_lock); 5731 5732 failed_cluster_refill = true; 5733 wait_block_group_cache_progress(block_group, 5734 num_bytes + empty_cluster + empty_size); 5735 goto have_block_group; 5736 } 5737 5738 /* 5739 * at this point we either didn't find a cluster 5740 * or we weren't able to allocate a block from our 5741 * cluster. Free the cluster we've been trying 5742 * to use, and go to the next block group 5743 */ 5744 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5745 spin_unlock(&last_ptr->refill_lock); 5746 goto loop; 5747 } 5748 5749 unclustered_alloc: 5750 spin_lock(&block_group->free_space_ctl->tree_lock); 5751 if (cached && 5752 block_group->free_space_ctl->free_space < 5753 num_bytes + empty_cluster + empty_size) { 5754 spin_unlock(&block_group->free_space_ctl->tree_lock); 5755 goto loop; 5756 } 5757 spin_unlock(&block_group->free_space_ctl->tree_lock); 5758 5759 offset = btrfs_find_space_for_alloc(block_group, search_start, 5760 num_bytes, empty_size); 5761 /* 5762 * If we didn't find a chunk, and we haven't failed on this 5763 * block group before, and this block group is in the middle of 5764 * caching and we are ok with waiting, then go ahead and wait 5765 * for progress to be made, and set failed_alloc to true. 5766 * 5767 * If failed_alloc is true then we've already waited on this 5768 * block group once and should move on to the next block group. 5769 */ 5770 if (!offset && !failed_alloc && !cached && 5771 loop > LOOP_CACHING_NOWAIT) { 5772 wait_block_group_cache_progress(block_group, 5773 num_bytes + empty_size); 5774 failed_alloc = true; 5775 goto have_block_group; 5776 } else if (!offset) { 5777 if (!cached) 5778 have_caching_bg = true; 5779 goto loop; 5780 } 5781 checks: 5782 search_start = stripe_align(root, offset); 5783 5784 /* move on to the next group */ 5785 if (search_start + num_bytes > 5786 used_block_group->key.objectid + used_block_group->key.offset) { 5787 btrfs_add_free_space(used_block_group, offset, num_bytes); 5788 goto loop; 5789 } 5790 5791 if (offset < search_start) 5792 btrfs_add_free_space(used_block_group, offset, 5793 search_start - offset); 5794 BUG_ON(offset > search_start); 5795 5796 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5797 alloc_type); 5798 if (ret == -EAGAIN) { 5799 btrfs_add_free_space(used_block_group, offset, num_bytes); 5800 goto loop; 5801 } 5802 5803 /* we are all good, lets return */ 5804 ins->objectid = search_start; 5805 ins->offset = num_bytes; 5806 5807 trace_btrfs_reserve_extent(orig_root, block_group, 5808 search_start, num_bytes); 5809 if (offset < search_start) 5810 btrfs_add_free_space(used_block_group, offset, 5811 search_start - offset); 5812 BUG_ON(offset > search_start); 5813 if (used_block_group != block_group) 5814 btrfs_put_block_group(used_block_group); 5815 btrfs_put_block_group(block_group); 5816 break; 5817 loop: 5818 failed_cluster_refill = false; 5819 failed_alloc = false; 5820 BUG_ON(index != get_block_group_index(block_group)); 5821 if (used_block_group != block_group) 5822 btrfs_put_block_group(used_block_group); 5823 btrfs_put_block_group(block_group); 5824 } 5825 up_read(&space_info->groups_sem); 5826 5827 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5828 goto search; 5829 5830 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5831 goto search; 5832 5833 /* 5834 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5835 * caching kthreads as we move along 5836 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5837 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5838 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5839 * again 5840 */ 5841 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5842 index = 0; 5843 loop++; 5844 if (loop == LOOP_ALLOC_CHUNK) { 5845 if (allowed_chunk_alloc) { 5846 ret = do_chunk_alloc(trans, root, num_bytes + 5847 2 * 1024 * 1024, data, 5848 CHUNK_ALLOC_LIMITED); 5849 /* 5850 * Do not bail out on ENOSPC since we 5851 * can do more things. 5852 */ 5853 if (ret < 0 && ret != -ENOSPC) { 5854 btrfs_abort_transaction(trans, 5855 root, ret); 5856 goto out; 5857 } 5858 allowed_chunk_alloc = 0; 5859 if (ret == 1) 5860 done_chunk_alloc = 1; 5861 } else if (!done_chunk_alloc && 5862 space_info->force_alloc == 5863 CHUNK_ALLOC_NO_FORCE) { 5864 space_info->force_alloc = CHUNK_ALLOC_LIMITED; 5865 } 5866 5867 /* 5868 * We didn't allocate a chunk, go ahead and drop the 5869 * empty size and loop again. 5870 */ 5871 if (!done_chunk_alloc) 5872 loop = LOOP_NO_EMPTY_SIZE; 5873 } 5874 5875 if (loop == LOOP_NO_EMPTY_SIZE) { 5876 empty_size = 0; 5877 empty_cluster = 0; 5878 } 5879 5880 goto search; 5881 } else if (!ins->objectid) { 5882 ret = -ENOSPC; 5883 } else if (ins->objectid) { 5884 ret = 0; 5885 } 5886 out: 5887 5888 return ret; 5889 } 5890 5891 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5892 int dump_block_groups) 5893 { 5894 struct btrfs_block_group_cache *cache; 5895 int index = 0; 5896 5897 spin_lock(&info->lock); 5898 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5899 (unsigned long long)info->flags, 5900 (unsigned long long)(info->total_bytes - info->bytes_used - 5901 info->bytes_pinned - info->bytes_reserved - 5902 info->bytes_readonly), 5903 (info->full) ? "" : "not "); 5904 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5905 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5906 (unsigned long long)info->total_bytes, 5907 (unsigned long long)info->bytes_used, 5908 (unsigned long long)info->bytes_pinned, 5909 (unsigned long long)info->bytes_reserved, 5910 (unsigned long long)info->bytes_may_use, 5911 (unsigned long long)info->bytes_readonly); 5912 spin_unlock(&info->lock); 5913 5914 if (!dump_block_groups) 5915 return; 5916 5917 down_read(&info->groups_sem); 5918 again: 5919 list_for_each_entry(cache, &info->block_groups[index], list) { 5920 spin_lock(&cache->lock); 5921 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 5922 (unsigned long long)cache->key.objectid, 5923 (unsigned long long)cache->key.offset, 5924 (unsigned long long)btrfs_block_group_used(&cache->item), 5925 (unsigned long long)cache->pinned, 5926 (unsigned long long)cache->reserved, 5927 cache->ro ? "[readonly]" : ""); 5928 btrfs_dump_free_space(cache, bytes); 5929 spin_unlock(&cache->lock); 5930 } 5931 if (++index < BTRFS_NR_RAID_TYPES) 5932 goto again; 5933 up_read(&info->groups_sem); 5934 } 5935 5936 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5937 struct btrfs_root *root, 5938 u64 num_bytes, u64 min_alloc_size, 5939 u64 empty_size, u64 hint_byte, 5940 struct btrfs_key *ins, u64 data) 5941 { 5942 bool final_tried = false; 5943 int ret; 5944 5945 data = btrfs_get_alloc_profile(root, data); 5946 again: 5947 /* 5948 * the only place that sets empty_size is btrfs_realloc_node, which 5949 * is not called recursively on allocations 5950 */ 5951 if (empty_size || root->ref_cows) { 5952 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5953 num_bytes + 2 * 1024 * 1024, data, 5954 CHUNK_ALLOC_NO_FORCE); 5955 if (ret < 0 && ret != -ENOSPC) { 5956 btrfs_abort_transaction(trans, root, ret); 5957 return ret; 5958 } 5959 } 5960 5961 WARN_ON(num_bytes < root->sectorsize); 5962 ret = find_free_extent(trans, root, num_bytes, empty_size, 5963 hint_byte, ins, data); 5964 5965 if (ret == -ENOSPC) { 5966 if (!final_tried) { 5967 num_bytes = num_bytes >> 1; 5968 num_bytes = num_bytes & ~(root->sectorsize - 1); 5969 num_bytes = max(num_bytes, min_alloc_size); 5970 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5971 num_bytes, data, CHUNK_ALLOC_FORCE); 5972 if (ret < 0 && ret != -ENOSPC) { 5973 btrfs_abort_transaction(trans, root, ret); 5974 return ret; 5975 } 5976 if (num_bytes == min_alloc_size) 5977 final_tried = true; 5978 goto again; 5979 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5980 struct btrfs_space_info *sinfo; 5981 5982 sinfo = __find_space_info(root->fs_info, data); 5983 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5984 "wanted %llu\n", (unsigned long long)data, 5985 (unsigned long long)num_bytes); 5986 if (sinfo) 5987 dump_space_info(sinfo, num_bytes, 1); 5988 } 5989 } 5990 5991 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5992 5993 return ret; 5994 } 5995 5996 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 5997 u64 start, u64 len, int pin) 5998 { 5999 struct btrfs_block_group_cache *cache; 6000 int ret = 0; 6001 6002 cache = btrfs_lookup_block_group(root->fs_info, start); 6003 if (!cache) { 6004 printk(KERN_ERR "Unable to find block group for %llu\n", 6005 (unsigned long long)start); 6006 return -ENOSPC; 6007 } 6008 6009 if (btrfs_test_opt(root, DISCARD)) 6010 ret = btrfs_discard_extent(root, start, len, NULL); 6011 6012 if (pin) 6013 pin_down_extent(root, cache, start, len, 1); 6014 else { 6015 btrfs_add_free_space(cache, start, len); 6016 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6017 } 6018 btrfs_put_block_group(cache); 6019 6020 trace_btrfs_reserved_extent_free(root, start, len); 6021 6022 return ret; 6023 } 6024 6025 int btrfs_free_reserved_extent(struct btrfs_root *root, 6026 u64 start, u64 len) 6027 { 6028 return __btrfs_free_reserved_extent(root, start, len, 0); 6029 } 6030 6031 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6032 u64 start, u64 len) 6033 { 6034 return __btrfs_free_reserved_extent(root, start, len, 1); 6035 } 6036 6037 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6038 struct btrfs_root *root, 6039 u64 parent, u64 root_objectid, 6040 u64 flags, u64 owner, u64 offset, 6041 struct btrfs_key *ins, int ref_mod) 6042 { 6043 int ret; 6044 struct btrfs_fs_info *fs_info = root->fs_info; 6045 struct btrfs_extent_item *extent_item; 6046 struct btrfs_extent_inline_ref *iref; 6047 struct btrfs_path *path; 6048 struct extent_buffer *leaf; 6049 int type; 6050 u32 size; 6051 6052 if (parent > 0) 6053 type = BTRFS_SHARED_DATA_REF_KEY; 6054 else 6055 type = BTRFS_EXTENT_DATA_REF_KEY; 6056 6057 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6058 6059 path = btrfs_alloc_path(); 6060 if (!path) 6061 return -ENOMEM; 6062 6063 path->leave_spinning = 1; 6064 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6065 ins, size); 6066 if (ret) { 6067 btrfs_free_path(path); 6068 return ret; 6069 } 6070 6071 leaf = path->nodes[0]; 6072 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6073 struct btrfs_extent_item); 6074 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6075 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6076 btrfs_set_extent_flags(leaf, extent_item, 6077 flags | BTRFS_EXTENT_FLAG_DATA); 6078 6079 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6080 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6081 if (parent > 0) { 6082 struct btrfs_shared_data_ref *ref; 6083 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6084 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6085 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6086 } else { 6087 struct btrfs_extent_data_ref *ref; 6088 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6089 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6090 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6091 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6092 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6093 } 6094 6095 btrfs_mark_buffer_dirty(path->nodes[0]); 6096 btrfs_free_path(path); 6097 6098 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6099 if (ret) { /* -ENOENT, logic error */ 6100 printk(KERN_ERR "btrfs update block group failed for %llu " 6101 "%llu\n", (unsigned long long)ins->objectid, 6102 (unsigned long long)ins->offset); 6103 BUG(); 6104 } 6105 return ret; 6106 } 6107 6108 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6109 struct btrfs_root *root, 6110 u64 parent, u64 root_objectid, 6111 u64 flags, struct btrfs_disk_key *key, 6112 int level, struct btrfs_key *ins) 6113 { 6114 int ret; 6115 struct btrfs_fs_info *fs_info = root->fs_info; 6116 struct btrfs_extent_item *extent_item; 6117 struct btrfs_tree_block_info *block_info; 6118 struct btrfs_extent_inline_ref *iref; 6119 struct btrfs_path *path; 6120 struct extent_buffer *leaf; 6121 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6122 6123 path = btrfs_alloc_path(); 6124 if (!path) 6125 return -ENOMEM; 6126 6127 path->leave_spinning = 1; 6128 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6129 ins, size); 6130 if (ret) { 6131 btrfs_free_path(path); 6132 return ret; 6133 } 6134 6135 leaf = path->nodes[0]; 6136 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6137 struct btrfs_extent_item); 6138 btrfs_set_extent_refs(leaf, extent_item, 1); 6139 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6140 btrfs_set_extent_flags(leaf, extent_item, 6141 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6142 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6143 6144 btrfs_set_tree_block_key(leaf, block_info, key); 6145 btrfs_set_tree_block_level(leaf, block_info, level); 6146 6147 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6148 if (parent > 0) { 6149 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6150 btrfs_set_extent_inline_ref_type(leaf, iref, 6151 BTRFS_SHARED_BLOCK_REF_KEY); 6152 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6153 } else { 6154 btrfs_set_extent_inline_ref_type(leaf, iref, 6155 BTRFS_TREE_BLOCK_REF_KEY); 6156 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6157 } 6158 6159 btrfs_mark_buffer_dirty(leaf); 6160 btrfs_free_path(path); 6161 6162 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6163 if (ret) { /* -ENOENT, logic error */ 6164 printk(KERN_ERR "btrfs update block group failed for %llu " 6165 "%llu\n", (unsigned long long)ins->objectid, 6166 (unsigned long long)ins->offset); 6167 BUG(); 6168 } 6169 return ret; 6170 } 6171 6172 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6173 struct btrfs_root *root, 6174 u64 root_objectid, u64 owner, 6175 u64 offset, struct btrfs_key *ins) 6176 { 6177 int ret; 6178 6179 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6180 6181 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6182 ins->offset, 0, 6183 root_objectid, owner, offset, 6184 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6185 return ret; 6186 } 6187 6188 /* 6189 * this is used by the tree logging recovery code. It records that 6190 * an extent has been allocated and makes sure to clear the free 6191 * space cache bits as well 6192 */ 6193 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6194 struct btrfs_root *root, 6195 u64 root_objectid, u64 owner, u64 offset, 6196 struct btrfs_key *ins) 6197 { 6198 int ret; 6199 struct btrfs_block_group_cache *block_group; 6200 struct btrfs_caching_control *caching_ctl; 6201 u64 start = ins->objectid; 6202 u64 num_bytes = ins->offset; 6203 6204 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6205 cache_block_group(block_group, trans, NULL, 0); 6206 caching_ctl = get_caching_control(block_group); 6207 6208 if (!caching_ctl) { 6209 BUG_ON(!block_group_cache_done(block_group)); 6210 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6211 BUG_ON(ret); /* -ENOMEM */ 6212 } else { 6213 mutex_lock(&caching_ctl->mutex); 6214 6215 if (start >= caching_ctl->progress) { 6216 ret = add_excluded_extent(root, start, num_bytes); 6217 BUG_ON(ret); /* -ENOMEM */ 6218 } else if (start + num_bytes <= caching_ctl->progress) { 6219 ret = btrfs_remove_free_space(block_group, 6220 start, num_bytes); 6221 BUG_ON(ret); /* -ENOMEM */ 6222 } else { 6223 num_bytes = caching_ctl->progress - start; 6224 ret = btrfs_remove_free_space(block_group, 6225 start, num_bytes); 6226 BUG_ON(ret); /* -ENOMEM */ 6227 6228 start = caching_ctl->progress; 6229 num_bytes = ins->objectid + ins->offset - 6230 caching_ctl->progress; 6231 ret = add_excluded_extent(root, start, num_bytes); 6232 BUG_ON(ret); /* -ENOMEM */ 6233 } 6234 6235 mutex_unlock(&caching_ctl->mutex); 6236 put_caching_control(caching_ctl); 6237 } 6238 6239 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6240 RESERVE_ALLOC_NO_ACCOUNT); 6241 BUG_ON(ret); /* logic error */ 6242 btrfs_put_block_group(block_group); 6243 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6244 0, owner, offset, ins, 1); 6245 return ret; 6246 } 6247 6248 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6249 struct btrfs_root *root, 6250 u64 bytenr, u32 blocksize, 6251 int level) 6252 { 6253 struct extent_buffer *buf; 6254 6255 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6256 if (!buf) 6257 return ERR_PTR(-ENOMEM); 6258 btrfs_set_header_generation(buf, trans->transid); 6259 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6260 btrfs_tree_lock(buf); 6261 clean_tree_block(trans, root, buf); 6262 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6263 6264 btrfs_set_lock_blocking(buf); 6265 btrfs_set_buffer_uptodate(buf); 6266 6267 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6268 /* 6269 * we allow two log transactions at a time, use different 6270 * EXENT bit to differentiate dirty pages. 6271 */ 6272 if (root->log_transid % 2 == 0) 6273 set_extent_dirty(&root->dirty_log_pages, buf->start, 6274 buf->start + buf->len - 1, GFP_NOFS); 6275 else 6276 set_extent_new(&root->dirty_log_pages, buf->start, 6277 buf->start + buf->len - 1, GFP_NOFS); 6278 } else { 6279 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6280 buf->start + buf->len - 1, GFP_NOFS); 6281 } 6282 trans->blocks_used++; 6283 /* this returns a buffer locked for blocking */ 6284 return buf; 6285 } 6286 6287 static struct btrfs_block_rsv * 6288 use_block_rsv(struct btrfs_trans_handle *trans, 6289 struct btrfs_root *root, u32 blocksize) 6290 { 6291 struct btrfs_block_rsv *block_rsv; 6292 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6293 int ret; 6294 6295 block_rsv = get_block_rsv(trans, root); 6296 6297 if (block_rsv->size == 0) { 6298 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6299 /* 6300 * If we couldn't reserve metadata bytes try and use some from 6301 * the global reserve. 6302 */ 6303 if (ret && block_rsv != global_rsv) { 6304 ret = block_rsv_use_bytes(global_rsv, blocksize); 6305 if (!ret) 6306 return global_rsv; 6307 return ERR_PTR(ret); 6308 } else if (ret) { 6309 return ERR_PTR(ret); 6310 } 6311 return block_rsv; 6312 } 6313 6314 ret = block_rsv_use_bytes(block_rsv, blocksize); 6315 if (!ret) 6316 return block_rsv; 6317 if (ret) { 6318 static DEFINE_RATELIMIT_STATE(_rs, 6319 DEFAULT_RATELIMIT_INTERVAL, 6320 /*DEFAULT_RATELIMIT_BURST*/ 2); 6321 if (__ratelimit(&_rs)) { 6322 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); 6323 WARN_ON(1); 6324 } 6325 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6326 if (!ret) { 6327 return block_rsv; 6328 } else if (ret && block_rsv != global_rsv) { 6329 ret = block_rsv_use_bytes(global_rsv, blocksize); 6330 if (!ret) 6331 return global_rsv; 6332 } 6333 } 6334 6335 return ERR_PTR(-ENOSPC); 6336 } 6337 6338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6339 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6340 { 6341 block_rsv_add_bytes(block_rsv, blocksize, 0); 6342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6343 } 6344 6345 /* 6346 * finds a free extent and does all the dirty work required for allocation 6347 * returns the key for the extent through ins, and a tree buffer for 6348 * the first block of the extent through buf. 6349 * 6350 * returns the tree buffer or NULL. 6351 */ 6352 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6353 struct btrfs_root *root, u32 blocksize, 6354 u64 parent, u64 root_objectid, 6355 struct btrfs_disk_key *key, int level, 6356 u64 hint, u64 empty_size) 6357 { 6358 struct btrfs_key ins; 6359 struct btrfs_block_rsv *block_rsv; 6360 struct extent_buffer *buf; 6361 u64 flags = 0; 6362 int ret; 6363 6364 6365 block_rsv = use_block_rsv(trans, root, blocksize); 6366 if (IS_ERR(block_rsv)) 6367 return ERR_CAST(block_rsv); 6368 6369 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6370 empty_size, hint, &ins, 0); 6371 if (ret) { 6372 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6373 return ERR_PTR(ret); 6374 } 6375 6376 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6377 blocksize, level); 6378 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6379 6380 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6381 if (parent == 0) 6382 parent = ins.objectid; 6383 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6384 } else 6385 BUG_ON(parent > 0); 6386 6387 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6388 struct btrfs_delayed_extent_op *extent_op; 6389 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6390 BUG_ON(!extent_op); /* -ENOMEM */ 6391 if (key) 6392 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6393 else 6394 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6395 extent_op->flags_to_set = flags; 6396 extent_op->update_key = 1; 6397 extent_op->update_flags = 1; 6398 extent_op->is_data = 0; 6399 6400 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6401 ins.objectid, 6402 ins.offset, parent, root_objectid, 6403 level, BTRFS_ADD_DELAYED_EXTENT, 6404 extent_op, 0); 6405 BUG_ON(ret); /* -ENOMEM */ 6406 } 6407 return buf; 6408 } 6409 6410 struct walk_control { 6411 u64 refs[BTRFS_MAX_LEVEL]; 6412 u64 flags[BTRFS_MAX_LEVEL]; 6413 struct btrfs_key update_progress; 6414 int stage; 6415 int level; 6416 int shared_level; 6417 int update_ref; 6418 int keep_locks; 6419 int reada_slot; 6420 int reada_count; 6421 int for_reloc; 6422 }; 6423 6424 #define DROP_REFERENCE 1 6425 #define UPDATE_BACKREF 2 6426 6427 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6428 struct btrfs_root *root, 6429 struct walk_control *wc, 6430 struct btrfs_path *path) 6431 { 6432 u64 bytenr; 6433 u64 generation; 6434 u64 refs; 6435 u64 flags; 6436 u32 nritems; 6437 u32 blocksize; 6438 struct btrfs_key key; 6439 struct extent_buffer *eb; 6440 int ret; 6441 int slot; 6442 int nread = 0; 6443 6444 if (path->slots[wc->level] < wc->reada_slot) { 6445 wc->reada_count = wc->reada_count * 2 / 3; 6446 wc->reada_count = max(wc->reada_count, 2); 6447 } else { 6448 wc->reada_count = wc->reada_count * 3 / 2; 6449 wc->reada_count = min_t(int, wc->reada_count, 6450 BTRFS_NODEPTRS_PER_BLOCK(root)); 6451 } 6452 6453 eb = path->nodes[wc->level]; 6454 nritems = btrfs_header_nritems(eb); 6455 blocksize = btrfs_level_size(root, wc->level - 1); 6456 6457 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6458 if (nread >= wc->reada_count) 6459 break; 6460 6461 cond_resched(); 6462 bytenr = btrfs_node_blockptr(eb, slot); 6463 generation = btrfs_node_ptr_generation(eb, slot); 6464 6465 if (slot == path->slots[wc->level]) 6466 goto reada; 6467 6468 if (wc->stage == UPDATE_BACKREF && 6469 generation <= root->root_key.offset) 6470 continue; 6471 6472 /* We don't lock the tree block, it's OK to be racy here */ 6473 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6474 &refs, &flags); 6475 /* We don't care about errors in readahead. */ 6476 if (ret < 0) 6477 continue; 6478 BUG_ON(refs == 0); 6479 6480 if (wc->stage == DROP_REFERENCE) { 6481 if (refs == 1) 6482 goto reada; 6483 6484 if (wc->level == 1 && 6485 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6486 continue; 6487 if (!wc->update_ref || 6488 generation <= root->root_key.offset) 6489 continue; 6490 btrfs_node_key_to_cpu(eb, &key, slot); 6491 ret = btrfs_comp_cpu_keys(&key, 6492 &wc->update_progress); 6493 if (ret < 0) 6494 continue; 6495 } else { 6496 if (wc->level == 1 && 6497 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6498 continue; 6499 } 6500 reada: 6501 ret = readahead_tree_block(root, bytenr, blocksize, 6502 generation); 6503 if (ret) 6504 break; 6505 nread++; 6506 } 6507 wc->reada_slot = slot; 6508 } 6509 6510 /* 6511 * hepler to process tree block while walking down the tree. 6512 * 6513 * when wc->stage == UPDATE_BACKREF, this function updates 6514 * back refs for pointers in the block. 6515 * 6516 * NOTE: return value 1 means we should stop walking down. 6517 */ 6518 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6519 struct btrfs_root *root, 6520 struct btrfs_path *path, 6521 struct walk_control *wc, int lookup_info) 6522 { 6523 int level = wc->level; 6524 struct extent_buffer *eb = path->nodes[level]; 6525 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6526 int ret; 6527 6528 if (wc->stage == UPDATE_BACKREF && 6529 btrfs_header_owner(eb) != root->root_key.objectid) 6530 return 1; 6531 6532 /* 6533 * when reference count of tree block is 1, it won't increase 6534 * again. once full backref flag is set, we never clear it. 6535 */ 6536 if (lookup_info && 6537 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6538 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6539 BUG_ON(!path->locks[level]); 6540 ret = btrfs_lookup_extent_info(trans, root, 6541 eb->start, eb->len, 6542 &wc->refs[level], 6543 &wc->flags[level]); 6544 BUG_ON(ret == -ENOMEM); 6545 if (ret) 6546 return ret; 6547 BUG_ON(wc->refs[level] == 0); 6548 } 6549 6550 if (wc->stage == DROP_REFERENCE) { 6551 if (wc->refs[level] > 1) 6552 return 1; 6553 6554 if (path->locks[level] && !wc->keep_locks) { 6555 btrfs_tree_unlock_rw(eb, path->locks[level]); 6556 path->locks[level] = 0; 6557 } 6558 return 0; 6559 } 6560 6561 /* wc->stage == UPDATE_BACKREF */ 6562 if (!(wc->flags[level] & flag)) { 6563 BUG_ON(!path->locks[level]); 6564 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6565 BUG_ON(ret); /* -ENOMEM */ 6566 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6567 BUG_ON(ret); /* -ENOMEM */ 6568 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6569 eb->len, flag, 0); 6570 BUG_ON(ret); /* -ENOMEM */ 6571 wc->flags[level] |= flag; 6572 } 6573 6574 /* 6575 * the block is shared by multiple trees, so it's not good to 6576 * keep the tree lock 6577 */ 6578 if (path->locks[level] && level > 0) { 6579 btrfs_tree_unlock_rw(eb, path->locks[level]); 6580 path->locks[level] = 0; 6581 } 6582 return 0; 6583 } 6584 6585 /* 6586 * hepler to process tree block pointer. 6587 * 6588 * when wc->stage == DROP_REFERENCE, this function checks 6589 * reference count of the block pointed to. if the block 6590 * is shared and we need update back refs for the subtree 6591 * rooted at the block, this function changes wc->stage to 6592 * UPDATE_BACKREF. if the block is shared and there is no 6593 * need to update back, this function drops the reference 6594 * to the block. 6595 * 6596 * NOTE: return value 1 means we should stop walking down. 6597 */ 6598 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6599 struct btrfs_root *root, 6600 struct btrfs_path *path, 6601 struct walk_control *wc, int *lookup_info) 6602 { 6603 u64 bytenr; 6604 u64 generation; 6605 u64 parent; 6606 u32 blocksize; 6607 struct btrfs_key key; 6608 struct extent_buffer *next; 6609 int level = wc->level; 6610 int reada = 0; 6611 int ret = 0; 6612 6613 generation = btrfs_node_ptr_generation(path->nodes[level], 6614 path->slots[level]); 6615 /* 6616 * if the lower level block was created before the snapshot 6617 * was created, we know there is no need to update back refs 6618 * for the subtree 6619 */ 6620 if (wc->stage == UPDATE_BACKREF && 6621 generation <= root->root_key.offset) { 6622 *lookup_info = 1; 6623 return 1; 6624 } 6625 6626 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6627 blocksize = btrfs_level_size(root, level - 1); 6628 6629 next = btrfs_find_tree_block(root, bytenr, blocksize); 6630 if (!next) { 6631 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6632 if (!next) 6633 return -ENOMEM; 6634 reada = 1; 6635 } 6636 btrfs_tree_lock(next); 6637 btrfs_set_lock_blocking(next); 6638 6639 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6640 &wc->refs[level - 1], 6641 &wc->flags[level - 1]); 6642 if (ret < 0) { 6643 btrfs_tree_unlock(next); 6644 return ret; 6645 } 6646 6647 BUG_ON(wc->refs[level - 1] == 0); 6648 *lookup_info = 0; 6649 6650 if (wc->stage == DROP_REFERENCE) { 6651 if (wc->refs[level - 1] > 1) { 6652 if (level == 1 && 6653 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6654 goto skip; 6655 6656 if (!wc->update_ref || 6657 generation <= root->root_key.offset) 6658 goto skip; 6659 6660 btrfs_node_key_to_cpu(path->nodes[level], &key, 6661 path->slots[level]); 6662 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6663 if (ret < 0) 6664 goto skip; 6665 6666 wc->stage = UPDATE_BACKREF; 6667 wc->shared_level = level - 1; 6668 } 6669 } else { 6670 if (level == 1 && 6671 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6672 goto skip; 6673 } 6674 6675 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6676 btrfs_tree_unlock(next); 6677 free_extent_buffer(next); 6678 next = NULL; 6679 *lookup_info = 1; 6680 } 6681 6682 if (!next) { 6683 if (reada && level == 1) 6684 reada_walk_down(trans, root, wc, path); 6685 next = read_tree_block(root, bytenr, blocksize, generation); 6686 if (!next) 6687 return -EIO; 6688 btrfs_tree_lock(next); 6689 btrfs_set_lock_blocking(next); 6690 } 6691 6692 level--; 6693 BUG_ON(level != btrfs_header_level(next)); 6694 path->nodes[level] = next; 6695 path->slots[level] = 0; 6696 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6697 wc->level = level; 6698 if (wc->level == 1) 6699 wc->reada_slot = 0; 6700 return 0; 6701 skip: 6702 wc->refs[level - 1] = 0; 6703 wc->flags[level - 1] = 0; 6704 if (wc->stage == DROP_REFERENCE) { 6705 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6706 parent = path->nodes[level]->start; 6707 } else { 6708 BUG_ON(root->root_key.objectid != 6709 btrfs_header_owner(path->nodes[level])); 6710 parent = 0; 6711 } 6712 6713 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6714 root->root_key.objectid, level - 1, 0, 0); 6715 BUG_ON(ret); /* -ENOMEM */ 6716 } 6717 btrfs_tree_unlock(next); 6718 free_extent_buffer(next); 6719 *lookup_info = 1; 6720 return 1; 6721 } 6722 6723 /* 6724 * hepler to process tree block while walking up the tree. 6725 * 6726 * when wc->stage == DROP_REFERENCE, this function drops 6727 * reference count on the block. 6728 * 6729 * when wc->stage == UPDATE_BACKREF, this function changes 6730 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6731 * to UPDATE_BACKREF previously while processing the block. 6732 * 6733 * NOTE: return value 1 means we should stop walking up. 6734 */ 6735 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6736 struct btrfs_root *root, 6737 struct btrfs_path *path, 6738 struct walk_control *wc) 6739 { 6740 int ret; 6741 int level = wc->level; 6742 struct extent_buffer *eb = path->nodes[level]; 6743 u64 parent = 0; 6744 6745 if (wc->stage == UPDATE_BACKREF) { 6746 BUG_ON(wc->shared_level < level); 6747 if (level < wc->shared_level) 6748 goto out; 6749 6750 ret = find_next_key(path, level + 1, &wc->update_progress); 6751 if (ret > 0) 6752 wc->update_ref = 0; 6753 6754 wc->stage = DROP_REFERENCE; 6755 wc->shared_level = -1; 6756 path->slots[level] = 0; 6757 6758 /* 6759 * check reference count again if the block isn't locked. 6760 * we should start walking down the tree again if reference 6761 * count is one. 6762 */ 6763 if (!path->locks[level]) { 6764 BUG_ON(level == 0); 6765 btrfs_tree_lock(eb); 6766 btrfs_set_lock_blocking(eb); 6767 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6768 6769 ret = btrfs_lookup_extent_info(trans, root, 6770 eb->start, eb->len, 6771 &wc->refs[level], 6772 &wc->flags[level]); 6773 if (ret < 0) { 6774 btrfs_tree_unlock_rw(eb, path->locks[level]); 6775 return ret; 6776 } 6777 BUG_ON(wc->refs[level] == 0); 6778 if (wc->refs[level] == 1) { 6779 btrfs_tree_unlock_rw(eb, path->locks[level]); 6780 return 1; 6781 } 6782 } 6783 } 6784 6785 /* wc->stage == DROP_REFERENCE */ 6786 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6787 6788 if (wc->refs[level] == 1) { 6789 if (level == 0) { 6790 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6791 ret = btrfs_dec_ref(trans, root, eb, 1, 6792 wc->for_reloc); 6793 else 6794 ret = btrfs_dec_ref(trans, root, eb, 0, 6795 wc->for_reloc); 6796 BUG_ON(ret); /* -ENOMEM */ 6797 } 6798 /* make block locked assertion in clean_tree_block happy */ 6799 if (!path->locks[level] && 6800 btrfs_header_generation(eb) == trans->transid) { 6801 btrfs_tree_lock(eb); 6802 btrfs_set_lock_blocking(eb); 6803 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6804 } 6805 clean_tree_block(trans, root, eb); 6806 } 6807 6808 if (eb == root->node) { 6809 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6810 parent = eb->start; 6811 else 6812 BUG_ON(root->root_key.objectid != 6813 btrfs_header_owner(eb)); 6814 } else { 6815 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6816 parent = path->nodes[level + 1]->start; 6817 else 6818 BUG_ON(root->root_key.objectid != 6819 btrfs_header_owner(path->nodes[level + 1])); 6820 } 6821 6822 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6823 out: 6824 wc->refs[level] = 0; 6825 wc->flags[level] = 0; 6826 return 0; 6827 } 6828 6829 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6830 struct btrfs_root *root, 6831 struct btrfs_path *path, 6832 struct walk_control *wc) 6833 { 6834 int level = wc->level; 6835 int lookup_info = 1; 6836 int ret; 6837 6838 while (level >= 0) { 6839 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6840 if (ret > 0) 6841 break; 6842 6843 if (level == 0) 6844 break; 6845 6846 if (path->slots[level] >= 6847 btrfs_header_nritems(path->nodes[level])) 6848 break; 6849 6850 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6851 if (ret > 0) { 6852 path->slots[level]++; 6853 continue; 6854 } else if (ret < 0) 6855 return ret; 6856 level = wc->level; 6857 } 6858 return 0; 6859 } 6860 6861 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6862 struct btrfs_root *root, 6863 struct btrfs_path *path, 6864 struct walk_control *wc, int max_level) 6865 { 6866 int level = wc->level; 6867 int ret; 6868 6869 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6870 while (level < max_level && path->nodes[level]) { 6871 wc->level = level; 6872 if (path->slots[level] + 1 < 6873 btrfs_header_nritems(path->nodes[level])) { 6874 path->slots[level]++; 6875 return 0; 6876 } else { 6877 ret = walk_up_proc(trans, root, path, wc); 6878 if (ret > 0) 6879 return 0; 6880 6881 if (path->locks[level]) { 6882 btrfs_tree_unlock_rw(path->nodes[level], 6883 path->locks[level]); 6884 path->locks[level] = 0; 6885 } 6886 free_extent_buffer(path->nodes[level]); 6887 path->nodes[level] = NULL; 6888 level++; 6889 } 6890 } 6891 return 1; 6892 } 6893 6894 /* 6895 * drop a subvolume tree. 6896 * 6897 * this function traverses the tree freeing any blocks that only 6898 * referenced by the tree. 6899 * 6900 * when a shared tree block is found. this function decreases its 6901 * reference count by one. if update_ref is true, this function 6902 * also make sure backrefs for the shared block and all lower level 6903 * blocks are properly updated. 6904 */ 6905 int btrfs_drop_snapshot(struct btrfs_root *root, 6906 struct btrfs_block_rsv *block_rsv, int update_ref, 6907 int for_reloc) 6908 { 6909 struct btrfs_path *path; 6910 struct btrfs_trans_handle *trans; 6911 struct btrfs_root *tree_root = root->fs_info->tree_root; 6912 struct btrfs_root_item *root_item = &root->root_item; 6913 struct walk_control *wc; 6914 struct btrfs_key key; 6915 int err = 0; 6916 int ret; 6917 int level; 6918 6919 path = btrfs_alloc_path(); 6920 if (!path) { 6921 err = -ENOMEM; 6922 goto out; 6923 } 6924 6925 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6926 if (!wc) { 6927 btrfs_free_path(path); 6928 err = -ENOMEM; 6929 goto out; 6930 } 6931 6932 trans = btrfs_start_transaction(tree_root, 0); 6933 if (IS_ERR(trans)) { 6934 err = PTR_ERR(trans); 6935 goto out_free; 6936 } 6937 6938 if (block_rsv) 6939 trans->block_rsv = block_rsv; 6940 6941 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6942 level = btrfs_header_level(root->node); 6943 path->nodes[level] = btrfs_lock_root_node(root); 6944 btrfs_set_lock_blocking(path->nodes[level]); 6945 path->slots[level] = 0; 6946 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6947 memset(&wc->update_progress, 0, 6948 sizeof(wc->update_progress)); 6949 } else { 6950 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6951 memcpy(&wc->update_progress, &key, 6952 sizeof(wc->update_progress)); 6953 6954 level = root_item->drop_level; 6955 BUG_ON(level == 0); 6956 path->lowest_level = level; 6957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6958 path->lowest_level = 0; 6959 if (ret < 0) { 6960 err = ret; 6961 goto out_end_trans; 6962 } 6963 WARN_ON(ret > 0); 6964 6965 /* 6966 * unlock our path, this is safe because only this 6967 * function is allowed to delete this snapshot 6968 */ 6969 btrfs_unlock_up_safe(path, 0); 6970 6971 level = btrfs_header_level(root->node); 6972 while (1) { 6973 btrfs_tree_lock(path->nodes[level]); 6974 btrfs_set_lock_blocking(path->nodes[level]); 6975 6976 ret = btrfs_lookup_extent_info(trans, root, 6977 path->nodes[level]->start, 6978 path->nodes[level]->len, 6979 &wc->refs[level], 6980 &wc->flags[level]); 6981 if (ret < 0) { 6982 err = ret; 6983 goto out_end_trans; 6984 } 6985 BUG_ON(wc->refs[level] == 0); 6986 6987 if (level == root_item->drop_level) 6988 break; 6989 6990 btrfs_tree_unlock(path->nodes[level]); 6991 WARN_ON(wc->refs[level] != 1); 6992 level--; 6993 } 6994 } 6995 6996 wc->level = level; 6997 wc->shared_level = -1; 6998 wc->stage = DROP_REFERENCE; 6999 wc->update_ref = update_ref; 7000 wc->keep_locks = 0; 7001 wc->for_reloc = for_reloc; 7002 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7003 7004 while (1) { 7005 ret = walk_down_tree(trans, root, path, wc); 7006 if (ret < 0) { 7007 err = ret; 7008 break; 7009 } 7010 7011 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7012 if (ret < 0) { 7013 err = ret; 7014 break; 7015 } 7016 7017 if (ret > 0) { 7018 BUG_ON(wc->stage != DROP_REFERENCE); 7019 break; 7020 } 7021 7022 if (wc->stage == DROP_REFERENCE) { 7023 level = wc->level; 7024 btrfs_node_key(path->nodes[level], 7025 &root_item->drop_progress, 7026 path->slots[level]); 7027 root_item->drop_level = level; 7028 } 7029 7030 BUG_ON(wc->level == 0); 7031 if (btrfs_should_end_transaction(trans, tree_root)) { 7032 ret = btrfs_update_root(trans, tree_root, 7033 &root->root_key, 7034 root_item); 7035 if (ret) { 7036 btrfs_abort_transaction(trans, tree_root, ret); 7037 err = ret; 7038 goto out_end_trans; 7039 } 7040 7041 btrfs_end_transaction_throttle(trans, tree_root); 7042 trans = btrfs_start_transaction(tree_root, 0); 7043 if (IS_ERR(trans)) { 7044 err = PTR_ERR(trans); 7045 goto out_free; 7046 } 7047 if (block_rsv) 7048 trans->block_rsv = block_rsv; 7049 } 7050 } 7051 btrfs_release_path(path); 7052 if (err) 7053 goto out_end_trans; 7054 7055 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7056 if (ret) { 7057 btrfs_abort_transaction(trans, tree_root, ret); 7058 goto out_end_trans; 7059 } 7060 7061 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7062 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7063 NULL, NULL); 7064 if (ret < 0) { 7065 btrfs_abort_transaction(trans, tree_root, ret); 7066 err = ret; 7067 goto out_end_trans; 7068 } else if (ret > 0) { 7069 /* if we fail to delete the orphan item this time 7070 * around, it'll get picked up the next time. 7071 * 7072 * The most common failure here is just -ENOENT. 7073 */ 7074 btrfs_del_orphan_item(trans, tree_root, 7075 root->root_key.objectid); 7076 } 7077 } 7078 7079 if (root->in_radix) { 7080 btrfs_free_fs_root(tree_root->fs_info, root); 7081 } else { 7082 free_extent_buffer(root->node); 7083 free_extent_buffer(root->commit_root); 7084 kfree(root); 7085 } 7086 out_end_trans: 7087 btrfs_end_transaction_throttle(trans, tree_root); 7088 out_free: 7089 kfree(wc); 7090 btrfs_free_path(path); 7091 out: 7092 if (err) 7093 btrfs_std_error(root->fs_info, err); 7094 return err; 7095 } 7096 7097 /* 7098 * drop subtree rooted at tree block 'node'. 7099 * 7100 * NOTE: this function will unlock and release tree block 'node' 7101 * only used by relocation code 7102 */ 7103 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7104 struct btrfs_root *root, 7105 struct extent_buffer *node, 7106 struct extent_buffer *parent) 7107 { 7108 struct btrfs_path *path; 7109 struct walk_control *wc; 7110 int level; 7111 int parent_level; 7112 int ret = 0; 7113 int wret; 7114 7115 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7116 7117 path = btrfs_alloc_path(); 7118 if (!path) 7119 return -ENOMEM; 7120 7121 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7122 if (!wc) { 7123 btrfs_free_path(path); 7124 return -ENOMEM; 7125 } 7126 7127 btrfs_assert_tree_locked(parent); 7128 parent_level = btrfs_header_level(parent); 7129 extent_buffer_get(parent); 7130 path->nodes[parent_level] = parent; 7131 path->slots[parent_level] = btrfs_header_nritems(parent); 7132 7133 btrfs_assert_tree_locked(node); 7134 level = btrfs_header_level(node); 7135 path->nodes[level] = node; 7136 path->slots[level] = 0; 7137 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7138 7139 wc->refs[parent_level] = 1; 7140 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7141 wc->level = level; 7142 wc->shared_level = -1; 7143 wc->stage = DROP_REFERENCE; 7144 wc->update_ref = 0; 7145 wc->keep_locks = 1; 7146 wc->for_reloc = 1; 7147 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7148 7149 while (1) { 7150 wret = walk_down_tree(trans, root, path, wc); 7151 if (wret < 0) { 7152 ret = wret; 7153 break; 7154 } 7155 7156 wret = walk_up_tree(trans, root, path, wc, parent_level); 7157 if (wret < 0) 7158 ret = wret; 7159 if (wret != 0) 7160 break; 7161 } 7162 7163 kfree(wc); 7164 btrfs_free_path(path); 7165 return ret; 7166 } 7167 7168 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7169 { 7170 u64 num_devices; 7171 u64 stripped; 7172 7173 /* 7174 * if restripe for this chunk_type is on pick target profile and 7175 * return, otherwise do the usual balance 7176 */ 7177 stripped = get_restripe_target(root->fs_info, flags); 7178 if (stripped) 7179 return extended_to_chunk(stripped); 7180 7181 /* 7182 * we add in the count of missing devices because we want 7183 * to make sure that any RAID levels on a degraded FS 7184 * continue to be honored. 7185 */ 7186 num_devices = root->fs_info->fs_devices->rw_devices + 7187 root->fs_info->fs_devices->missing_devices; 7188 7189 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7190 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7191 7192 if (num_devices == 1) { 7193 stripped |= BTRFS_BLOCK_GROUP_DUP; 7194 stripped = flags & ~stripped; 7195 7196 /* turn raid0 into single device chunks */ 7197 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7198 return stripped; 7199 7200 /* turn mirroring into duplication */ 7201 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7202 BTRFS_BLOCK_GROUP_RAID10)) 7203 return stripped | BTRFS_BLOCK_GROUP_DUP; 7204 } else { 7205 /* they already had raid on here, just return */ 7206 if (flags & stripped) 7207 return flags; 7208 7209 stripped |= BTRFS_BLOCK_GROUP_DUP; 7210 stripped = flags & ~stripped; 7211 7212 /* switch duplicated blocks with raid1 */ 7213 if (flags & BTRFS_BLOCK_GROUP_DUP) 7214 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7215 7216 /* this is drive concat, leave it alone */ 7217 } 7218 7219 return flags; 7220 } 7221 7222 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7223 { 7224 struct btrfs_space_info *sinfo = cache->space_info; 7225 u64 num_bytes; 7226 u64 min_allocable_bytes; 7227 int ret = -ENOSPC; 7228 7229 7230 /* 7231 * We need some metadata space and system metadata space for 7232 * allocating chunks in some corner cases until we force to set 7233 * it to be readonly. 7234 */ 7235 if ((sinfo->flags & 7236 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7237 !force) 7238 min_allocable_bytes = 1 * 1024 * 1024; 7239 else 7240 min_allocable_bytes = 0; 7241 7242 spin_lock(&sinfo->lock); 7243 spin_lock(&cache->lock); 7244 7245 if (cache->ro) { 7246 ret = 0; 7247 goto out; 7248 } 7249 7250 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7251 cache->bytes_super - btrfs_block_group_used(&cache->item); 7252 7253 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7254 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7255 min_allocable_bytes <= sinfo->total_bytes) { 7256 sinfo->bytes_readonly += num_bytes; 7257 cache->ro = 1; 7258 ret = 0; 7259 } 7260 out: 7261 spin_unlock(&cache->lock); 7262 spin_unlock(&sinfo->lock); 7263 return ret; 7264 } 7265 7266 int btrfs_set_block_group_ro(struct btrfs_root *root, 7267 struct btrfs_block_group_cache *cache) 7268 7269 { 7270 struct btrfs_trans_handle *trans; 7271 u64 alloc_flags; 7272 int ret; 7273 7274 BUG_ON(cache->ro); 7275 7276 trans = btrfs_join_transaction(root); 7277 if (IS_ERR(trans)) 7278 return PTR_ERR(trans); 7279 7280 alloc_flags = update_block_group_flags(root, cache->flags); 7281 if (alloc_flags != cache->flags) { 7282 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7283 CHUNK_ALLOC_FORCE); 7284 if (ret < 0) 7285 goto out; 7286 } 7287 7288 ret = set_block_group_ro(cache, 0); 7289 if (!ret) 7290 goto out; 7291 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7292 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7293 CHUNK_ALLOC_FORCE); 7294 if (ret < 0) 7295 goto out; 7296 ret = set_block_group_ro(cache, 0); 7297 out: 7298 btrfs_end_transaction(trans, root); 7299 return ret; 7300 } 7301 7302 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7303 struct btrfs_root *root, u64 type) 7304 { 7305 u64 alloc_flags = get_alloc_profile(root, type); 7306 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7307 CHUNK_ALLOC_FORCE); 7308 } 7309 7310 /* 7311 * helper to account the unused space of all the readonly block group in the 7312 * list. takes mirrors into account. 7313 */ 7314 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7315 { 7316 struct btrfs_block_group_cache *block_group; 7317 u64 free_bytes = 0; 7318 int factor; 7319 7320 list_for_each_entry(block_group, groups_list, list) { 7321 spin_lock(&block_group->lock); 7322 7323 if (!block_group->ro) { 7324 spin_unlock(&block_group->lock); 7325 continue; 7326 } 7327 7328 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7329 BTRFS_BLOCK_GROUP_RAID10 | 7330 BTRFS_BLOCK_GROUP_DUP)) 7331 factor = 2; 7332 else 7333 factor = 1; 7334 7335 free_bytes += (block_group->key.offset - 7336 btrfs_block_group_used(&block_group->item)) * 7337 factor; 7338 7339 spin_unlock(&block_group->lock); 7340 } 7341 7342 return free_bytes; 7343 } 7344 7345 /* 7346 * helper to account the unused space of all the readonly block group in the 7347 * space_info. takes mirrors into account. 7348 */ 7349 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7350 { 7351 int i; 7352 u64 free_bytes = 0; 7353 7354 spin_lock(&sinfo->lock); 7355 7356 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7357 if (!list_empty(&sinfo->block_groups[i])) 7358 free_bytes += __btrfs_get_ro_block_group_free_space( 7359 &sinfo->block_groups[i]); 7360 7361 spin_unlock(&sinfo->lock); 7362 7363 return free_bytes; 7364 } 7365 7366 void btrfs_set_block_group_rw(struct btrfs_root *root, 7367 struct btrfs_block_group_cache *cache) 7368 { 7369 struct btrfs_space_info *sinfo = cache->space_info; 7370 u64 num_bytes; 7371 7372 BUG_ON(!cache->ro); 7373 7374 spin_lock(&sinfo->lock); 7375 spin_lock(&cache->lock); 7376 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7377 cache->bytes_super - btrfs_block_group_used(&cache->item); 7378 sinfo->bytes_readonly -= num_bytes; 7379 cache->ro = 0; 7380 spin_unlock(&cache->lock); 7381 spin_unlock(&sinfo->lock); 7382 } 7383 7384 /* 7385 * checks to see if its even possible to relocate this block group. 7386 * 7387 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7388 * ok to go ahead and try. 7389 */ 7390 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7391 { 7392 struct btrfs_block_group_cache *block_group; 7393 struct btrfs_space_info *space_info; 7394 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7395 struct btrfs_device *device; 7396 u64 min_free; 7397 u64 dev_min = 1; 7398 u64 dev_nr = 0; 7399 u64 target; 7400 int index; 7401 int full = 0; 7402 int ret = 0; 7403 7404 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7405 7406 /* odd, couldn't find the block group, leave it alone */ 7407 if (!block_group) 7408 return -1; 7409 7410 min_free = btrfs_block_group_used(&block_group->item); 7411 7412 /* no bytes used, we're good */ 7413 if (!min_free) 7414 goto out; 7415 7416 space_info = block_group->space_info; 7417 spin_lock(&space_info->lock); 7418 7419 full = space_info->full; 7420 7421 /* 7422 * if this is the last block group we have in this space, we can't 7423 * relocate it unless we're able to allocate a new chunk below. 7424 * 7425 * Otherwise, we need to make sure we have room in the space to handle 7426 * all of the extents from this block group. If we can, we're good 7427 */ 7428 if ((space_info->total_bytes != block_group->key.offset) && 7429 (space_info->bytes_used + space_info->bytes_reserved + 7430 space_info->bytes_pinned + space_info->bytes_readonly + 7431 min_free < space_info->total_bytes)) { 7432 spin_unlock(&space_info->lock); 7433 goto out; 7434 } 7435 spin_unlock(&space_info->lock); 7436 7437 /* 7438 * ok we don't have enough space, but maybe we have free space on our 7439 * devices to allocate new chunks for relocation, so loop through our 7440 * alloc devices and guess if we have enough space. if this block 7441 * group is going to be restriped, run checks against the target 7442 * profile instead of the current one. 7443 */ 7444 ret = -1; 7445 7446 /* 7447 * index: 7448 * 0: raid10 7449 * 1: raid1 7450 * 2: dup 7451 * 3: raid0 7452 * 4: single 7453 */ 7454 target = get_restripe_target(root->fs_info, block_group->flags); 7455 if (target) { 7456 index = __get_block_group_index(extended_to_chunk(target)); 7457 } else { 7458 /* 7459 * this is just a balance, so if we were marked as full 7460 * we know there is no space for a new chunk 7461 */ 7462 if (full) 7463 goto out; 7464 7465 index = get_block_group_index(block_group); 7466 } 7467 7468 if (index == 0) { 7469 dev_min = 4; 7470 /* Divide by 2 */ 7471 min_free >>= 1; 7472 } else if (index == 1) { 7473 dev_min = 2; 7474 } else if (index == 2) { 7475 /* Multiply by 2 */ 7476 min_free <<= 1; 7477 } else if (index == 3) { 7478 dev_min = fs_devices->rw_devices; 7479 do_div(min_free, dev_min); 7480 } 7481 7482 mutex_lock(&root->fs_info->chunk_mutex); 7483 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7484 u64 dev_offset; 7485 7486 /* 7487 * check to make sure we can actually find a chunk with enough 7488 * space to fit our block group in. 7489 */ 7490 if (device->total_bytes > device->bytes_used + min_free) { 7491 ret = find_free_dev_extent(device, min_free, 7492 &dev_offset, NULL); 7493 if (!ret) 7494 dev_nr++; 7495 7496 if (dev_nr >= dev_min) 7497 break; 7498 7499 ret = -1; 7500 } 7501 } 7502 mutex_unlock(&root->fs_info->chunk_mutex); 7503 out: 7504 btrfs_put_block_group(block_group); 7505 return ret; 7506 } 7507 7508 static int find_first_block_group(struct btrfs_root *root, 7509 struct btrfs_path *path, struct btrfs_key *key) 7510 { 7511 int ret = 0; 7512 struct btrfs_key found_key; 7513 struct extent_buffer *leaf; 7514 int slot; 7515 7516 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7517 if (ret < 0) 7518 goto out; 7519 7520 while (1) { 7521 slot = path->slots[0]; 7522 leaf = path->nodes[0]; 7523 if (slot >= btrfs_header_nritems(leaf)) { 7524 ret = btrfs_next_leaf(root, path); 7525 if (ret == 0) 7526 continue; 7527 if (ret < 0) 7528 goto out; 7529 break; 7530 } 7531 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7532 7533 if (found_key.objectid >= key->objectid && 7534 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7535 ret = 0; 7536 goto out; 7537 } 7538 path->slots[0]++; 7539 } 7540 out: 7541 return ret; 7542 } 7543 7544 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7545 { 7546 struct btrfs_block_group_cache *block_group; 7547 u64 last = 0; 7548 7549 while (1) { 7550 struct inode *inode; 7551 7552 block_group = btrfs_lookup_first_block_group(info, last); 7553 while (block_group) { 7554 spin_lock(&block_group->lock); 7555 if (block_group->iref) 7556 break; 7557 spin_unlock(&block_group->lock); 7558 block_group = next_block_group(info->tree_root, 7559 block_group); 7560 } 7561 if (!block_group) { 7562 if (last == 0) 7563 break; 7564 last = 0; 7565 continue; 7566 } 7567 7568 inode = block_group->inode; 7569 block_group->iref = 0; 7570 block_group->inode = NULL; 7571 spin_unlock(&block_group->lock); 7572 iput(inode); 7573 last = block_group->key.objectid + block_group->key.offset; 7574 btrfs_put_block_group(block_group); 7575 } 7576 } 7577 7578 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7579 { 7580 struct btrfs_block_group_cache *block_group; 7581 struct btrfs_space_info *space_info; 7582 struct btrfs_caching_control *caching_ctl; 7583 struct rb_node *n; 7584 7585 down_write(&info->extent_commit_sem); 7586 while (!list_empty(&info->caching_block_groups)) { 7587 caching_ctl = list_entry(info->caching_block_groups.next, 7588 struct btrfs_caching_control, list); 7589 list_del(&caching_ctl->list); 7590 put_caching_control(caching_ctl); 7591 } 7592 up_write(&info->extent_commit_sem); 7593 7594 spin_lock(&info->block_group_cache_lock); 7595 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7596 block_group = rb_entry(n, struct btrfs_block_group_cache, 7597 cache_node); 7598 rb_erase(&block_group->cache_node, 7599 &info->block_group_cache_tree); 7600 spin_unlock(&info->block_group_cache_lock); 7601 7602 down_write(&block_group->space_info->groups_sem); 7603 list_del(&block_group->list); 7604 up_write(&block_group->space_info->groups_sem); 7605 7606 if (block_group->cached == BTRFS_CACHE_STARTED) 7607 wait_block_group_cache_done(block_group); 7608 7609 /* 7610 * We haven't cached this block group, which means we could 7611 * possibly have excluded extents on this block group. 7612 */ 7613 if (block_group->cached == BTRFS_CACHE_NO) 7614 free_excluded_extents(info->extent_root, block_group); 7615 7616 btrfs_remove_free_space_cache(block_group); 7617 btrfs_put_block_group(block_group); 7618 7619 spin_lock(&info->block_group_cache_lock); 7620 } 7621 spin_unlock(&info->block_group_cache_lock); 7622 7623 /* now that all the block groups are freed, go through and 7624 * free all the space_info structs. This is only called during 7625 * the final stages of unmount, and so we know nobody is 7626 * using them. We call synchronize_rcu() once before we start, 7627 * just to be on the safe side. 7628 */ 7629 synchronize_rcu(); 7630 7631 release_global_block_rsv(info); 7632 7633 while(!list_empty(&info->space_info)) { 7634 space_info = list_entry(info->space_info.next, 7635 struct btrfs_space_info, 7636 list); 7637 if (space_info->bytes_pinned > 0 || 7638 space_info->bytes_reserved > 0 || 7639 space_info->bytes_may_use > 0) { 7640 WARN_ON(1); 7641 dump_space_info(space_info, 0, 0); 7642 } 7643 list_del(&space_info->list); 7644 kfree(space_info); 7645 } 7646 return 0; 7647 } 7648 7649 static void __link_block_group(struct btrfs_space_info *space_info, 7650 struct btrfs_block_group_cache *cache) 7651 { 7652 int index = get_block_group_index(cache); 7653 7654 down_write(&space_info->groups_sem); 7655 list_add_tail(&cache->list, &space_info->block_groups[index]); 7656 up_write(&space_info->groups_sem); 7657 } 7658 7659 int btrfs_read_block_groups(struct btrfs_root *root) 7660 { 7661 struct btrfs_path *path; 7662 int ret; 7663 struct btrfs_block_group_cache *cache; 7664 struct btrfs_fs_info *info = root->fs_info; 7665 struct btrfs_space_info *space_info; 7666 struct btrfs_key key; 7667 struct btrfs_key found_key; 7668 struct extent_buffer *leaf; 7669 int need_clear = 0; 7670 u64 cache_gen; 7671 7672 root = info->extent_root; 7673 key.objectid = 0; 7674 key.offset = 0; 7675 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7676 path = btrfs_alloc_path(); 7677 if (!path) 7678 return -ENOMEM; 7679 path->reada = 1; 7680 7681 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7682 if (btrfs_test_opt(root, SPACE_CACHE) && 7683 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7684 need_clear = 1; 7685 if (btrfs_test_opt(root, CLEAR_CACHE)) 7686 need_clear = 1; 7687 7688 while (1) { 7689 ret = find_first_block_group(root, path, &key); 7690 if (ret > 0) 7691 break; 7692 if (ret != 0) 7693 goto error; 7694 leaf = path->nodes[0]; 7695 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7696 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7697 if (!cache) { 7698 ret = -ENOMEM; 7699 goto error; 7700 } 7701 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7702 GFP_NOFS); 7703 if (!cache->free_space_ctl) { 7704 kfree(cache); 7705 ret = -ENOMEM; 7706 goto error; 7707 } 7708 7709 atomic_set(&cache->count, 1); 7710 spin_lock_init(&cache->lock); 7711 cache->fs_info = info; 7712 INIT_LIST_HEAD(&cache->list); 7713 INIT_LIST_HEAD(&cache->cluster_list); 7714 7715 if (need_clear) { 7716 /* 7717 * When we mount with old space cache, we need to 7718 * set BTRFS_DC_CLEAR and set dirty flag. 7719 * 7720 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7721 * truncate the old free space cache inode and 7722 * setup a new one. 7723 * b) Setting 'dirty flag' makes sure that we flush 7724 * the new space cache info onto disk. 7725 */ 7726 cache->disk_cache_state = BTRFS_DC_CLEAR; 7727 if (btrfs_test_opt(root, SPACE_CACHE)) 7728 cache->dirty = 1; 7729 } 7730 7731 read_extent_buffer(leaf, &cache->item, 7732 btrfs_item_ptr_offset(leaf, path->slots[0]), 7733 sizeof(cache->item)); 7734 memcpy(&cache->key, &found_key, sizeof(found_key)); 7735 7736 key.objectid = found_key.objectid + found_key.offset; 7737 btrfs_release_path(path); 7738 cache->flags = btrfs_block_group_flags(&cache->item); 7739 cache->sectorsize = root->sectorsize; 7740 7741 btrfs_init_free_space_ctl(cache); 7742 7743 /* 7744 * We need to exclude the super stripes now so that the space 7745 * info has super bytes accounted for, otherwise we'll think 7746 * we have more space than we actually do. 7747 */ 7748 exclude_super_stripes(root, cache); 7749 7750 /* 7751 * check for two cases, either we are full, and therefore 7752 * don't need to bother with the caching work since we won't 7753 * find any space, or we are empty, and we can just add all 7754 * the space in and be done with it. This saves us _alot_ of 7755 * time, particularly in the full case. 7756 */ 7757 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7758 cache->last_byte_to_unpin = (u64)-1; 7759 cache->cached = BTRFS_CACHE_FINISHED; 7760 free_excluded_extents(root, cache); 7761 } else if (btrfs_block_group_used(&cache->item) == 0) { 7762 cache->last_byte_to_unpin = (u64)-1; 7763 cache->cached = BTRFS_CACHE_FINISHED; 7764 add_new_free_space(cache, root->fs_info, 7765 found_key.objectid, 7766 found_key.objectid + 7767 found_key.offset); 7768 free_excluded_extents(root, cache); 7769 } 7770 7771 ret = update_space_info(info, cache->flags, found_key.offset, 7772 btrfs_block_group_used(&cache->item), 7773 &space_info); 7774 BUG_ON(ret); /* -ENOMEM */ 7775 cache->space_info = space_info; 7776 spin_lock(&cache->space_info->lock); 7777 cache->space_info->bytes_readonly += cache->bytes_super; 7778 spin_unlock(&cache->space_info->lock); 7779 7780 __link_block_group(space_info, cache); 7781 7782 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7783 BUG_ON(ret); /* Logic error */ 7784 7785 set_avail_alloc_bits(root->fs_info, cache->flags); 7786 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7787 set_block_group_ro(cache, 1); 7788 } 7789 7790 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7791 if (!(get_alloc_profile(root, space_info->flags) & 7792 (BTRFS_BLOCK_GROUP_RAID10 | 7793 BTRFS_BLOCK_GROUP_RAID1 | 7794 BTRFS_BLOCK_GROUP_DUP))) 7795 continue; 7796 /* 7797 * avoid allocating from un-mirrored block group if there are 7798 * mirrored block groups. 7799 */ 7800 list_for_each_entry(cache, &space_info->block_groups[3], list) 7801 set_block_group_ro(cache, 1); 7802 list_for_each_entry(cache, &space_info->block_groups[4], list) 7803 set_block_group_ro(cache, 1); 7804 } 7805 7806 init_global_block_rsv(info); 7807 ret = 0; 7808 error: 7809 btrfs_free_path(path); 7810 return ret; 7811 } 7812 7813 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7814 struct btrfs_root *root, u64 bytes_used, 7815 u64 type, u64 chunk_objectid, u64 chunk_offset, 7816 u64 size) 7817 { 7818 int ret; 7819 struct btrfs_root *extent_root; 7820 struct btrfs_block_group_cache *cache; 7821 7822 extent_root = root->fs_info->extent_root; 7823 7824 root->fs_info->last_trans_log_full_commit = trans->transid; 7825 7826 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7827 if (!cache) 7828 return -ENOMEM; 7829 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7830 GFP_NOFS); 7831 if (!cache->free_space_ctl) { 7832 kfree(cache); 7833 return -ENOMEM; 7834 } 7835 7836 cache->key.objectid = chunk_offset; 7837 cache->key.offset = size; 7838 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7839 cache->sectorsize = root->sectorsize; 7840 cache->fs_info = root->fs_info; 7841 7842 atomic_set(&cache->count, 1); 7843 spin_lock_init(&cache->lock); 7844 INIT_LIST_HEAD(&cache->list); 7845 INIT_LIST_HEAD(&cache->cluster_list); 7846 7847 btrfs_init_free_space_ctl(cache); 7848 7849 btrfs_set_block_group_used(&cache->item, bytes_used); 7850 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7851 cache->flags = type; 7852 btrfs_set_block_group_flags(&cache->item, type); 7853 7854 cache->last_byte_to_unpin = (u64)-1; 7855 cache->cached = BTRFS_CACHE_FINISHED; 7856 exclude_super_stripes(root, cache); 7857 7858 add_new_free_space(cache, root->fs_info, chunk_offset, 7859 chunk_offset + size); 7860 7861 free_excluded_extents(root, cache); 7862 7863 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7864 &cache->space_info); 7865 BUG_ON(ret); /* -ENOMEM */ 7866 update_global_block_rsv(root->fs_info); 7867 7868 spin_lock(&cache->space_info->lock); 7869 cache->space_info->bytes_readonly += cache->bytes_super; 7870 spin_unlock(&cache->space_info->lock); 7871 7872 __link_block_group(cache->space_info, cache); 7873 7874 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7875 BUG_ON(ret); /* Logic error */ 7876 7877 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 7878 sizeof(cache->item)); 7879 if (ret) { 7880 btrfs_abort_transaction(trans, extent_root, ret); 7881 return ret; 7882 } 7883 7884 set_avail_alloc_bits(extent_root->fs_info, type); 7885 7886 return 0; 7887 } 7888 7889 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7890 { 7891 u64 extra_flags = chunk_to_extended(flags) & 7892 BTRFS_EXTENDED_PROFILE_MASK; 7893 7894 if (flags & BTRFS_BLOCK_GROUP_DATA) 7895 fs_info->avail_data_alloc_bits &= ~extra_flags; 7896 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7897 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7898 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7899 fs_info->avail_system_alloc_bits &= ~extra_flags; 7900 } 7901 7902 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7903 struct btrfs_root *root, u64 group_start) 7904 { 7905 struct btrfs_path *path; 7906 struct btrfs_block_group_cache *block_group; 7907 struct btrfs_free_cluster *cluster; 7908 struct btrfs_root *tree_root = root->fs_info->tree_root; 7909 struct btrfs_key key; 7910 struct inode *inode; 7911 int ret; 7912 int index; 7913 int factor; 7914 7915 root = root->fs_info->extent_root; 7916 7917 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7918 BUG_ON(!block_group); 7919 BUG_ON(!block_group->ro); 7920 7921 /* 7922 * Free the reserved super bytes from this block group before 7923 * remove it. 7924 */ 7925 free_excluded_extents(root, block_group); 7926 7927 memcpy(&key, &block_group->key, sizeof(key)); 7928 index = get_block_group_index(block_group); 7929 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7930 BTRFS_BLOCK_GROUP_RAID1 | 7931 BTRFS_BLOCK_GROUP_RAID10)) 7932 factor = 2; 7933 else 7934 factor = 1; 7935 7936 /* make sure this block group isn't part of an allocation cluster */ 7937 cluster = &root->fs_info->data_alloc_cluster; 7938 spin_lock(&cluster->refill_lock); 7939 btrfs_return_cluster_to_free_space(block_group, cluster); 7940 spin_unlock(&cluster->refill_lock); 7941 7942 /* 7943 * make sure this block group isn't part of a metadata 7944 * allocation cluster 7945 */ 7946 cluster = &root->fs_info->meta_alloc_cluster; 7947 spin_lock(&cluster->refill_lock); 7948 btrfs_return_cluster_to_free_space(block_group, cluster); 7949 spin_unlock(&cluster->refill_lock); 7950 7951 path = btrfs_alloc_path(); 7952 if (!path) { 7953 ret = -ENOMEM; 7954 goto out; 7955 } 7956 7957 inode = lookup_free_space_inode(tree_root, block_group, path); 7958 if (!IS_ERR(inode)) { 7959 ret = btrfs_orphan_add(trans, inode); 7960 if (ret) { 7961 btrfs_add_delayed_iput(inode); 7962 goto out; 7963 } 7964 clear_nlink(inode); 7965 /* One for the block groups ref */ 7966 spin_lock(&block_group->lock); 7967 if (block_group->iref) { 7968 block_group->iref = 0; 7969 block_group->inode = NULL; 7970 spin_unlock(&block_group->lock); 7971 iput(inode); 7972 } else { 7973 spin_unlock(&block_group->lock); 7974 } 7975 /* One for our lookup ref */ 7976 btrfs_add_delayed_iput(inode); 7977 } 7978 7979 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7980 key.offset = block_group->key.objectid; 7981 key.type = 0; 7982 7983 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7984 if (ret < 0) 7985 goto out; 7986 if (ret > 0) 7987 btrfs_release_path(path); 7988 if (ret == 0) { 7989 ret = btrfs_del_item(trans, tree_root, path); 7990 if (ret) 7991 goto out; 7992 btrfs_release_path(path); 7993 } 7994 7995 spin_lock(&root->fs_info->block_group_cache_lock); 7996 rb_erase(&block_group->cache_node, 7997 &root->fs_info->block_group_cache_tree); 7998 spin_unlock(&root->fs_info->block_group_cache_lock); 7999 8000 down_write(&block_group->space_info->groups_sem); 8001 /* 8002 * we must use list_del_init so people can check to see if they 8003 * are still on the list after taking the semaphore 8004 */ 8005 list_del_init(&block_group->list); 8006 if (list_empty(&block_group->space_info->block_groups[index])) 8007 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8008 up_write(&block_group->space_info->groups_sem); 8009 8010 if (block_group->cached == BTRFS_CACHE_STARTED) 8011 wait_block_group_cache_done(block_group); 8012 8013 btrfs_remove_free_space_cache(block_group); 8014 8015 spin_lock(&block_group->space_info->lock); 8016 block_group->space_info->total_bytes -= block_group->key.offset; 8017 block_group->space_info->bytes_readonly -= block_group->key.offset; 8018 block_group->space_info->disk_total -= block_group->key.offset * factor; 8019 spin_unlock(&block_group->space_info->lock); 8020 8021 memcpy(&key, &block_group->key, sizeof(key)); 8022 8023 btrfs_clear_space_info_full(root->fs_info); 8024 8025 btrfs_put_block_group(block_group); 8026 btrfs_put_block_group(block_group); 8027 8028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8029 if (ret > 0) 8030 ret = -EIO; 8031 if (ret < 0) 8032 goto out; 8033 8034 ret = btrfs_del_item(trans, root, path); 8035 out: 8036 btrfs_free_path(path); 8037 return ret; 8038 } 8039 8040 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8041 { 8042 struct btrfs_space_info *space_info; 8043 struct btrfs_super_block *disk_super; 8044 u64 features; 8045 u64 flags; 8046 int mixed = 0; 8047 int ret; 8048 8049 disk_super = fs_info->super_copy; 8050 if (!btrfs_super_root(disk_super)) 8051 return 1; 8052 8053 features = btrfs_super_incompat_flags(disk_super); 8054 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8055 mixed = 1; 8056 8057 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8058 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8059 if (ret) 8060 goto out; 8061 8062 if (mixed) { 8063 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8064 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8065 } else { 8066 flags = BTRFS_BLOCK_GROUP_METADATA; 8067 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8068 if (ret) 8069 goto out; 8070 8071 flags = BTRFS_BLOCK_GROUP_DATA; 8072 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8073 } 8074 out: 8075 return ret; 8076 } 8077 8078 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8079 { 8080 return unpin_extent_range(root, start, end); 8081 } 8082 8083 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8084 u64 num_bytes, u64 *actual_bytes) 8085 { 8086 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8087 } 8088 8089 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8090 { 8091 struct btrfs_fs_info *fs_info = root->fs_info; 8092 struct btrfs_block_group_cache *cache = NULL; 8093 u64 group_trimmed; 8094 u64 start; 8095 u64 end; 8096 u64 trimmed = 0; 8097 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8098 int ret = 0; 8099 8100 /* 8101 * try to trim all FS space, our block group may start from non-zero. 8102 */ 8103 if (range->len == total_bytes) 8104 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8105 else 8106 cache = btrfs_lookup_block_group(fs_info, range->start); 8107 8108 while (cache) { 8109 if (cache->key.objectid >= (range->start + range->len)) { 8110 btrfs_put_block_group(cache); 8111 break; 8112 } 8113 8114 start = max(range->start, cache->key.objectid); 8115 end = min(range->start + range->len, 8116 cache->key.objectid + cache->key.offset); 8117 8118 if (end - start >= range->minlen) { 8119 if (!block_group_cache_done(cache)) { 8120 ret = cache_block_group(cache, NULL, root, 0); 8121 if (!ret) 8122 wait_block_group_cache_done(cache); 8123 } 8124 ret = btrfs_trim_block_group(cache, 8125 &group_trimmed, 8126 start, 8127 end, 8128 range->minlen); 8129 8130 trimmed += group_trimmed; 8131 if (ret) { 8132 btrfs_put_block_group(cache); 8133 break; 8134 } 8135 } 8136 8137 cache = next_block_group(fs_info->tree_root, cache); 8138 } 8139 8140 range->len = trimmed; 8141 return ret; 8142 } 8143