xref: /linux/fs/btrfs/extent-tree.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op,
85 				int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 					  struct btrfs_path *path,
1321 					  struct btrfs_extent_inline_ref *iref)
1322 {
1323 	struct btrfs_key key;
1324 	struct extent_buffer *leaf;
1325 	struct btrfs_extent_data_ref *ref1;
1326 	struct btrfs_shared_data_ref *ref2;
1327 	u32 num_refs = 0;
1328 
1329 	leaf = path->nodes[0];
1330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 	if (iref) {
1332 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 		    BTRFS_EXTENT_DATA_REF_KEY) {
1334 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 		} else {
1337 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 		}
1340 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 				      struct btrfs_extent_data_ref);
1343 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 				      struct btrfs_shared_data_ref);
1347 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 		struct btrfs_extent_ref_v0 *ref0;
1351 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 				      struct btrfs_extent_ref_v0);
1353 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 	} else {
1356 		WARN_ON(1);
1357 	}
1358 	return num_refs;
1359 }
1360 
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 					  struct btrfs_root *root,
1363 					  struct btrfs_path *path,
1364 					  u64 bytenr, u64 parent,
1365 					  u64 root_objectid)
1366 {
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	key.objectid = bytenr;
1371 	if (parent) {
1372 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 		key.offset = parent;
1374 	} else {
1375 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 		key.offset = root_objectid;
1377 	}
1378 
1379 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 	if (ret > 0)
1381 		ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 	if (ret == -ENOENT && parent) {
1384 		btrfs_release_path(path);
1385 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 		if (ret > 0)
1388 			ret = -ENOENT;
1389 	}
1390 #endif
1391 	return ret;
1392 }
1393 
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 					  struct btrfs_root *root,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_key key;
1401 	int ret;
1402 
1403 	key.objectid = bytenr;
1404 	if (parent) {
1405 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 		key.offset = parent;
1407 	} else {
1408 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 		key.offset = root_objectid;
1410 	}
1411 
1412 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 	btrfs_release_path(path);
1414 	return ret;
1415 }
1416 
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 	int type;
1420 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 		if (parent > 0)
1422 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 		else
1424 			type = BTRFS_TREE_BLOCK_REF_KEY;
1425 	} else {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_DATA_REF_KEY;
1428 		else
1429 			type = BTRFS_EXTENT_DATA_REF_KEY;
1430 	}
1431 	return type;
1432 }
1433 
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 			 struct btrfs_key *key)
1436 
1437 {
1438 	for (; level < BTRFS_MAX_LEVEL; level++) {
1439 		if (!path->nodes[level])
1440 			break;
1441 		if (path->slots[level] + 1 >=
1442 		    btrfs_header_nritems(path->nodes[level]))
1443 			continue;
1444 		if (level == 0)
1445 			btrfs_item_key_to_cpu(path->nodes[level], key,
1446 					      path->slots[level] + 1);
1447 		else
1448 			btrfs_node_key_to_cpu(path->nodes[level], key,
1449 					      path->slots[level] + 1);
1450 		return 0;
1451 	}
1452 	return 1;
1453 }
1454 
1455 /*
1456  * look for inline back ref. if back ref is found, *ref_ret is set
1457  * to the address of inline back ref, and 0 is returned.
1458  *
1459  * if back ref isn't found, *ref_ret is set to the address where it
1460  * should be inserted, and -ENOENT is returned.
1461  *
1462  * if insert is true and there are too many inline back refs, the path
1463  * points to the extent item, and -EAGAIN is returned.
1464  *
1465  * NOTE: inline back refs are ordered in the same way that back ref
1466  *	 items in the tree are ordered.
1467  */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 				 struct btrfs_root *root,
1471 				 struct btrfs_path *path,
1472 				 struct btrfs_extent_inline_ref **ref_ret,
1473 				 u64 bytenr, u64 num_bytes,
1474 				 u64 parent, u64 root_objectid,
1475 				 u64 owner, u64 offset, int insert)
1476 {
1477 	struct btrfs_key key;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_extent_inline_ref *iref;
1481 	u64 flags;
1482 	u64 item_size;
1483 	unsigned long ptr;
1484 	unsigned long end;
1485 	int extra_size;
1486 	int type;
1487 	int want;
1488 	int ret;
1489 	int err = 0;
1490 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 						 SKINNY_METADATA);
1492 
1493 	key.objectid = bytenr;
1494 	key.type = BTRFS_EXTENT_ITEM_KEY;
1495 	key.offset = num_bytes;
1496 
1497 	want = extent_ref_type(parent, owner);
1498 	if (insert) {
1499 		extra_size = btrfs_extent_inline_ref_size(want);
1500 		path->keep_locks = 1;
1501 	} else
1502 		extra_size = -1;
1503 
1504 	/*
1505 	 * Owner is our parent level, so we can just add one to get the level
1506 	 * for the block we are interested in.
1507 	 */
1508 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		key.type = BTRFS_METADATA_ITEM_KEY;
1510 		key.offset = owner;
1511 	}
1512 
1513 again:
1514 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 	if (ret < 0) {
1516 		err = ret;
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * We may be a newly converted file system which still has the old fat
1522 	 * extent entries for metadata, so try and see if we have one of those.
1523 	 */
1524 	if (ret > 0 && skinny_metadata) {
1525 		skinny_metadata = false;
1526 		if (path->slots[0]) {
1527 			path->slots[0]--;
1528 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 					      path->slots[0]);
1530 			if (key.objectid == bytenr &&
1531 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 			    key.offset == num_bytes)
1533 				ret = 0;
1534 		}
1535 		if (ret) {
1536 			key.objectid = bytenr;
1537 			key.type = BTRFS_EXTENT_ITEM_KEY;
1538 			key.offset = num_bytes;
1539 			btrfs_release_path(path);
1540 			goto again;
1541 		}
1542 	}
1543 
1544 	if (ret && !insert) {
1545 		err = -ENOENT;
1546 		goto out;
1547 	} else if (WARN_ON(ret)) {
1548 		err = -EIO;
1549 		goto out;
1550 	}
1551 
1552 	leaf = path->nodes[0];
1553 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 	if (item_size < sizeof(*ei)) {
1556 		if (!insert) {
1557 			err = -ENOENT;
1558 			goto out;
1559 		}
1560 		ret = convert_extent_item_v0(trans, root, path, owner,
1561 					     extra_size);
1562 		if (ret < 0) {
1563 			err = ret;
1564 			goto out;
1565 		}
1566 		leaf = path->nodes[0];
1567 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 	}
1569 #endif
1570 	BUG_ON(item_size < sizeof(*ei));
1571 
1572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 	flags = btrfs_extent_flags(leaf, ei);
1574 
1575 	ptr = (unsigned long)(ei + 1);
1576 	end = (unsigned long)ei + item_size;
1577 
1578 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 		ptr += sizeof(struct btrfs_tree_block_info);
1580 		BUG_ON(ptr > end);
1581 	}
1582 
1583 	err = -ENOENT;
1584 	while (1) {
1585 		if (ptr >= end) {
1586 			WARN_ON(ptr > end);
1587 			break;
1588 		}
1589 		iref = (struct btrfs_extent_inline_ref *)ptr;
1590 		type = btrfs_extent_inline_ref_type(leaf, iref);
1591 		if (want < type)
1592 			break;
1593 		if (want > type) {
1594 			ptr += btrfs_extent_inline_ref_size(type);
1595 			continue;
1596 		}
1597 
1598 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 			struct btrfs_extent_data_ref *dref;
1600 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 			if (match_extent_data_ref(leaf, dref, root_objectid,
1602 						  owner, offset)) {
1603 				err = 0;
1604 				break;
1605 			}
1606 			if (hash_extent_data_ref_item(leaf, dref) <
1607 			    hash_extent_data_ref(root_objectid, owner, offset))
1608 				break;
1609 		} else {
1610 			u64 ref_offset;
1611 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 			if (parent > 0) {
1613 				if (parent == ref_offset) {
1614 					err = 0;
1615 					break;
1616 				}
1617 				if (ref_offset < parent)
1618 					break;
1619 			} else {
1620 				if (root_objectid == ref_offset) {
1621 					err = 0;
1622 					break;
1623 				}
1624 				if (ref_offset < root_objectid)
1625 					break;
1626 			}
1627 		}
1628 		ptr += btrfs_extent_inline_ref_size(type);
1629 	}
1630 	if (err == -ENOENT && insert) {
1631 		if (item_size + extra_size >=
1632 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 			err = -EAGAIN;
1634 			goto out;
1635 		}
1636 		/*
1637 		 * To add new inline back ref, we have to make sure
1638 		 * there is no corresponding back ref item.
1639 		 * For simplicity, we just do not add new inline back
1640 		 * ref if there is any kind of item for this block
1641 		 */
1642 		if (find_next_key(path, 0, &key) == 0 &&
1643 		    key.objectid == bytenr &&
1644 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 	}
1649 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 	if (insert) {
1652 		path->keep_locks = 0;
1653 		btrfs_unlock_up_safe(path, 1);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  * helper to add new inline back ref
1660  */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref *iref,
1665 				 u64 parent, u64 root_objectid,
1666 				 u64 owner, u64 offset, int refs_to_add,
1667 				 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 	struct extent_buffer *leaf;
1670 	struct btrfs_extent_item *ei;
1671 	unsigned long ptr;
1672 	unsigned long end;
1673 	unsigned long item_offset;
1674 	u64 refs;
1675 	int size;
1676 	int type;
1677 
1678 	leaf = path->nodes[0];
1679 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 	item_offset = (unsigned long)iref - (unsigned long)ei;
1681 
1682 	type = extent_ref_type(parent, owner);
1683 	size = btrfs_extent_inline_ref_size(type);
1684 
1685 	btrfs_extend_item(root, path, size);
1686 
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	refs = btrfs_extent_refs(leaf, ei);
1689 	refs += refs_to_add;
1690 	btrfs_set_extent_refs(leaf, ei, refs);
1691 	if (extent_op)
1692 		__run_delayed_extent_op(extent_op, leaf, ei);
1693 
1694 	ptr = (unsigned long)ei + item_offset;
1695 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 	if (ptr < end - size)
1697 		memmove_extent_buffer(leaf, ptr + size, ptr,
1698 				      end - size - ptr);
1699 
1700 	iref = (struct btrfs_extent_inline_ref *)ptr;
1701 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 		struct btrfs_extent_data_ref *dref;
1704 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		struct btrfs_shared_data_ref *sref;
1711 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 	} else {
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 	}
1719 	btrfs_mark_buffer_dirty(leaf);
1720 }
1721 
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 				 struct btrfs_root *root,
1724 				 struct btrfs_path *path,
1725 				 struct btrfs_extent_inline_ref **ref_ret,
1726 				 u64 bytenr, u64 num_bytes, u64 parent,
1727 				 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 	int ret;
1730 
1731 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 					   bytenr, num_bytes, parent,
1733 					   root_objectid, owner, offset, 0);
1734 	if (ret != -ENOENT)
1735 		return ret;
1736 
1737 	btrfs_release_path(path);
1738 	*ref_ret = NULL;
1739 
1740 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 					    root_objectid);
1743 	} else {
1744 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 					     root_objectid, owner, offset);
1746 	}
1747 	return ret;
1748 }
1749 
1750 /*
1751  * helper to update/remove inline back ref
1752  */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 				  struct btrfs_path *path,
1756 				  struct btrfs_extent_inline_ref *iref,
1757 				  int refs_to_mod,
1758 				  struct btrfs_delayed_extent_op *extent_op,
1759 				  int *last_ref)
1760 {
1761 	struct extent_buffer *leaf;
1762 	struct btrfs_extent_item *ei;
1763 	struct btrfs_extent_data_ref *dref = NULL;
1764 	struct btrfs_shared_data_ref *sref = NULL;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	u32 item_size;
1768 	int size;
1769 	int type;
1770 	u64 refs;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	refs = btrfs_extent_refs(leaf, ei);
1775 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 	refs += refs_to_mod;
1777 	btrfs_set_extent_refs(leaf, ei, refs);
1778 	if (extent_op)
1779 		__run_delayed_extent_op(extent_op, leaf, ei);
1780 
1781 	type = btrfs_extent_inline_ref_type(leaf, iref);
1782 
1783 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 		refs = btrfs_extent_data_ref_count(leaf, dref);
1786 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 		refs = btrfs_shared_data_ref_count(leaf, sref);
1789 	} else {
1790 		refs = 1;
1791 		BUG_ON(refs_to_mod != -1);
1792 	}
1793 
1794 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 	refs += refs_to_mod;
1796 
1797 	if (refs > 0) {
1798 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 		else
1801 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 	} else {
1803 		*last_ref = 1;
1804 		size =  btrfs_extent_inline_ref_size(type);
1805 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 		ptr = (unsigned long)iref;
1807 		end = (unsigned long)ei + item_size;
1808 		if (ptr + size < end)
1809 			memmove_extent_buffer(leaf, ptr, ptr + size,
1810 					      end - ptr - size);
1811 		item_size -= size;
1812 		btrfs_truncate_item(root, path, item_size, 1);
1813 	}
1814 	btrfs_mark_buffer_dirty(leaf);
1815 }
1816 
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 				 struct btrfs_root *root,
1820 				 struct btrfs_path *path,
1821 				 u64 bytenr, u64 num_bytes, u64 parent,
1822 				 u64 root_objectid, u64 owner,
1823 				 u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct btrfs_extent_inline_ref *iref;
1827 	int ret;
1828 
1829 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 					   bytenr, num_bytes, parent,
1831 					   root_objectid, owner, offset, 1);
1832 	if (ret == 0) {
1833 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 		update_inline_extent_backref(root, path, iref,
1835 					     refs_to_add, extent_op, NULL);
1836 	} else if (ret == -ENOENT) {
1837 		setup_inline_extent_backref(root, path, iref, parent,
1838 					    root_objectid, owner, offset,
1839 					    refs_to_add, extent_op);
1840 		ret = 0;
1841 	}
1842 	return ret;
1843 }
1844 
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_root *root,
1847 				 struct btrfs_path *path,
1848 				 u64 bytenr, u64 parent, u64 root_objectid,
1849 				 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 	int ret;
1852 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 		BUG_ON(refs_to_add != 1);
1854 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 					    parent, root_objectid);
1856 	} else {
1857 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 					     parent, root_objectid,
1859 					     owner, offset, refs_to_add);
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 				 struct btrfs_root *root,
1866 				 struct btrfs_path *path,
1867 				 struct btrfs_extent_inline_ref *iref,
1868 				 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 	int ret = 0;
1871 
1872 	BUG_ON(!is_data && refs_to_drop != 1);
1873 	if (iref) {
1874 		update_inline_extent_backref(root, path, iref,
1875 					     -refs_to_drop, NULL, last_ref);
1876 	} else if (is_data) {
1877 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 					     last_ref);
1879 	} else {
1880 		*last_ref = 1;
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 				u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		kfree(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset,
1945 			 int no_quota)
1946 {
1947 	int ret;
1948 	struct btrfs_fs_info *fs_info = root->fs_info;
1949 
1950 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952 
1953 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 					num_bytes,
1956 					parent, root_objectid, (int)owner,
1957 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 	} else {
1959 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 					num_bytes,
1961 					parent, root_objectid, owner, offset,
1962 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 				  struct btrfs_root *root,
1969 				  u64 bytenr, u64 num_bytes,
1970 				  u64 parent, u64 root_objectid,
1971 				  u64 owner, u64 offset, int refs_to_add,
1972 				  int no_quota,
1973 				  struct btrfs_delayed_extent_op *extent_op)
1974 {
1975 	struct btrfs_fs_info *fs_info = root->fs_info;
1976 	struct btrfs_path *path;
1977 	struct extent_buffer *leaf;
1978 	struct btrfs_extent_item *item;
1979 	struct btrfs_key key;
1980 	u64 refs;
1981 	int ret;
1982 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1983 
1984 	path = btrfs_alloc_path();
1985 	if (!path)
1986 		return -ENOMEM;
1987 
1988 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1989 		no_quota = 1;
1990 
1991 	path->reada = 1;
1992 	path->leave_spinning = 1;
1993 	/* this will setup the path even if it fails to insert the back ref */
1994 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1995 					   bytenr, num_bytes, parent,
1996 					   root_objectid, owner, offset,
1997 					   refs_to_add, extent_op);
1998 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
1999 		goto out;
2000 	/*
2001 	 * Ok we were able to insert an inline extent and it appears to be a new
2002 	 * reference, deal with the qgroup accounting.
2003 	 */
2004 	if (!ret && !no_quota) {
2005 		ASSERT(root->fs_info->quota_enabled);
2006 		leaf = path->nodes[0];
2007 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2008 		item = btrfs_item_ptr(leaf, path->slots[0],
2009 				      struct btrfs_extent_item);
2010 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2011 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2012 		btrfs_release_path(path);
2013 
2014 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2015 					      bytenr, num_bytes, type, 0);
2016 		goto out;
2017 	}
2018 
2019 	/*
2020 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2021 	 * inline extent ref, so just update the reference count and add a
2022 	 * normal backref.
2023 	 */
2024 	leaf = path->nodes[0];
2025 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2026 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2027 	refs = btrfs_extent_refs(leaf, item);
2028 	if (refs)
2029 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2030 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2031 	if (extent_op)
2032 		__run_delayed_extent_op(extent_op, leaf, item);
2033 
2034 	btrfs_mark_buffer_dirty(leaf);
2035 	btrfs_release_path(path);
2036 
2037 	if (!no_quota) {
2038 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2039 					      bytenr, num_bytes, type, 0);
2040 		if (ret)
2041 			goto out;
2042 	}
2043 
2044 	path->reada = 1;
2045 	path->leave_spinning = 1;
2046 	/* now insert the actual backref */
2047 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2048 				    path, bytenr, parent, root_objectid,
2049 				    owner, offset, refs_to_add);
2050 	if (ret)
2051 		btrfs_abort_transaction(trans, root, ret);
2052 out:
2053 	btrfs_free_path(path);
2054 	return ret;
2055 }
2056 
2057 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2058 				struct btrfs_root *root,
2059 				struct btrfs_delayed_ref_node *node,
2060 				struct btrfs_delayed_extent_op *extent_op,
2061 				int insert_reserved)
2062 {
2063 	int ret = 0;
2064 	struct btrfs_delayed_data_ref *ref;
2065 	struct btrfs_key ins;
2066 	u64 parent = 0;
2067 	u64 ref_root = 0;
2068 	u64 flags = 0;
2069 
2070 	ins.objectid = node->bytenr;
2071 	ins.offset = node->num_bytes;
2072 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2073 
2074 	ref = btrfs_delayed_node_to_data_ref(node);
2075 	trace_run_delayed_data_ref(node, ref, node->action);
2076 
2077 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2078 		parent = ref->parent;
2079 	ref_root = ref->root;
2080 
2081 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2082 		if (extent_op)
2083 			flags |= extent_op->flags_to_set;
2084 		ret = alloc_reserved_file_extent(trans, root,
2085 						 parent, ref_root, flags,
2086 						 ref->objectid, ref->offset,
2087 						 &ins, node->ref_mod);
2088 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2089 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2090 					     node->num_bytes, parent,
2091 					     ref_root, ref->objectid,
2092 					     ref->offset, node->ref_mod,
2093 					     node->no_quota, extent_op);
2094 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2095 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2096 					  node->num_bytes, parent,
2097 					  ref_root, ref->objectid,
2098 					  ref->offset, node->ref_mod,
2099 					  extent_op, node->no_quota);
2100 	} else {
2101 		BUG();
2102 	}
2103 	return ret;
2104 }
2105 
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 				    struct extent_buffer *leaf,
2108 				    struct btrfs_extent_item *ei)
2109 {
2110 	u64 flags = btrfs_extent_flags(leaf, ei);
2111 	if (extent_op->update_flags) {
2112 		flags |= extent_op->flags_to_set;
2113 		btrfs_set_extent_flags(leaf, ei, flags);
2114 	}
2115 
2116 	if (extent_op->update_key) {
2117 		struct btrfs_tree_block_info *bi;
2118 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 	}
2122 }
2123 
2124 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 				 struct btrfs_root *root,
2126 				 struct btrfs_delayed_ref_node *node,
2127 				 struct btrfs_delayed_extent_op *extent_op)
2128 {
2129 	struct btrfs_key key;
2130 	struct btrfs_path *path;
2131 	struct btrfs_extent_item *ei;
2132 	struct extent_buffer *leaf;
2133 	u32 item_size;
2134 	int ret;
2135 	int err = 0;
2136 	int metadata = !extent_op->is_data;
2137 
2138 	if (trans->aborted)
2139 		return 0;
2140 
2141 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 		metadata = 0;
2143 
2144 	path = btrfs_alloc_path();
2145 	if (!path)
2146 		return -ENOMEM;
2147 
2148 	key.objectid = node->bytenr;
2149 
2150 	if (metadata) {
2151 		key.type = BTRFS_METADATA_ITEM_KEY;
2152 		key.offset = extent_op->level;
2153 	} else {
2154 		key.type = BTRFS_EXTENT_ITEM_KEY;
2155 		key.offset = node->num_bytes;
2156 	}
2157 
2158 again:
2159 	path->reada = 1;
2160 	path->leave_spinning = 1;
2161 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 				path, 0, 1);
2163 	if (ret < 0) {
2164 		err = ret;
2165 		goto out;
2166 	}
2167 	if (ret > 0) {
2168 		if (metadata) {
2169 			if (path->slots[0] > 0) {
2170 				path->slots[0]--;
2171 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 						      path->slots[0]);
2173 				if (key.objectid == node->bytenr &&
2174 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 				    key.offset == node->num_bytes)
2176 					ret = 0;
2177 			}
2178 			if (ret > 0) {
2179 				btrfs_release_path(path);
2180 				metadata = 0;
2181 
2182 				key.objectid = node->bytenr;
2183 				key.offset = node->num_bytes;
2184 				key.type = BTRFS_EXTENT_ITEM_KEY;
2185 				goto again;
2186 			}
2187 		} else {
2188 			err = -EIO;
2189 			goto out;
2190 		}
2191 	}
2192 
2193 	leaf = path->nodes[0];
2194 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 	if (item_size < sizeof(*ei)) {
2197 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 					     path, (u64)-1, 0);
2199 		if (ret < 0) {
2200 			err = ret;
2201 			goto out;
2202 		}
2203 		leaf = path->nodes[0];
2204 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 	}
2206 #endif
2207 	BUG_ON(item_size < sizeof(*ei));
2208 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 	__run_delayed_extent_op(extent_op, leaf, ei);
2210 
2211 	btrfs_mark_buffer_dirty(leaf);
2212 out:
2213 	btrfs_free_path(path);
2214 	return err;
2215 }
2216 
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 				struct btrfs_root *root,
2219 				struct btrfs_delayed_ref_node *node,
2220 				struct btrfs_delayed_extent_op *extent_op,
2221 				int insert_reserved)
2222 {
2223 	int ret = 0;
2224 	struct btrfs_delayed_tree_ref *ref;
2225 	struct btrfs_key ins;
2226 	u64 parent = 0;
2227 	u64 ref_root = 0;
2228 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 						 SKINNY_METADATA);
2230 
2231 	ref = btrfs_delayed_node_to_tree_ref(node);
2232 	trace_run_delayed_tree_ref(node, ref, node->action);
2233 
2234 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 		parent = ref->parent;
2236 	ref_root = ref->root;
2237 
2238 	ins.objectid = node->bytenr;
2239 	if (skinny_metadata) {
2240 		ins.offset = ref->level;
2241 		ins.type = BTRFS_METADATA_ITEM_KEY;
2242 	} else {
2243 		ins.offset = node->num_bytes;
2244 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 	}
2246 
2247 	BUG_ON(node->ref_mod != 1);
2248 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2249 		BUG_ON(!extent_op || !extent_op->update_flags);
2250 		ret = alloc_reserved_tree_block(trans, root,
2251 						parent, ref_root,
2252 						extent_op->flags_to_set,
2253 						&extent_op->key,
2254 						ref->level, &ins,
2255 						node->no_quota);
2256 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2257 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2258 					     node->num_bytes, parent, ref_root,
2259 					     ref->level, 0, 1, node->no_quota,
2260 					     extent_op);
2261 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2262 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2263 					  node->num_bytes, parent, ref_root,
2264 					  ref->level, 0, 1, extent_op,
2265 					  node->no_quota);
2266 	} else {
2267 		BUG();
2268 	}
2269 	return ret;
2270 }
2271 
2272 /* helper function to actually process a single delayed ref entry */
2273 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2274 			       struct btrfs_root *root,
2275 			       struct btrfs_delayed_ref_node *node,
2276 			       struct btrfs_delayed_extent_op *extent_op,
2277 			       int insert_reserved)
2278 {
2279 	int ret = 0;
2280 
2281 	if (trans->aborted) {
2282 		if (insert_reserved)
2283 			btrfs_pin_extent(root, node->bytenr,
2284 					 node->num_bytes, 1);
2285 		return 0;
2286 	}
2287 
2288 	if (btrfs_delayed_ref_is_head(node)) {
2289 		struct btrfs_delayed_ref_head *head;
2290 		/*
2291 		 * we've hit the end of the chain and we were supposed
2292 		 * to insert this extent into the tree.  But, it got
2293 		 * deleted before we ever needed to insert it, so all
2294 		 * we have to do is clean up the accounting
2295 		 */
2296 		BUG_ON(extent_op);
2297 		head = btrfs_delayed_node_to_head(node);
2298 		trace_run_delayed_ref_head(node, head, node->action);
2299 
2300 		if (insert_reserved) {
2301 			btrfs_pin_extent(root, node->bytenr,
2302 					 node->num_bytes, 1);
2303 			if (head->is_data) {
2304 				ret = btrfs_del_csums(trans, root,
2305 						      node->bytenr,
2306 						      node->num_bytes);
2307 			}
2308 		}
2309 		return ret;
2310 	}
2311 
2312 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2313 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2314 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2315 					   insert_reserved);
2316 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2317 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2318 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2319 					   insert_reserved);
2320 	else
2321 		BUG();
2322 	return ret;
2323 }
2324 
2325 static noinline struct btrfs_delayed_ref_node *
2326 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2327 {
2328 	struct rb_node *node;
2329 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2330 
2331 	/*
2332 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2333 	 * this prevents ref count from going down to zero when
2334 	 * there still are pending delayed ref.
2335 	 */
2336 	node = rb_first(&head->ref_root);
2337 	while (node) {
2338 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2339 				rb_node);
2340 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2341 			return ref;
2342 		else if (last == NULL)
2343 			last = ref;
2344 		node = rb_next(node);
2345 	}
2346 	return last;
2347 }
2348 
2349 /*
2350  * Returns 0 on success or if called with an already aborted transaction.
2351  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2352  */
2353 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2354 					     struct btrfs_root *root,
2355 					     unsigned long nr)
2356 {
2357 	struct btrfs_delayed_ref_root *delayed_refs;
2358 	struct btrfs_delayed_ref_node *ref;
2359 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2360 	struct btrfs_delayed_extent_op *extent_op;
2361 	struct btrfs_fs_info *fs_info = root->fs_info;
2362 	ktime_t start = ktime_get();
2363 	int ret;
2364 	unsigned long count = 0;
2365 	unsigned long actual_count = 0;
2366 	int must_insert_reserved = 0;
2367 
2368 	delayed_refs = &trans->transaction->delayed_refs;
2369 	while (1) {
2370 		if (!locked_ref) {
2371 			if (count >= nr)
2372 				break;
2373 
2374 			spin_lock(&delayed_refs->lock);
2375 			locked_ref = btrfs_select_ref_head(trans);
2376 			if (!locked_ref) {
2377 				spin_unlock(&delayed_refs->lock);
2378 				break;
2379 			}
2380 
2381 			/* grab the lock that says we are going to process
2382 			 * all the refs for this head */
2383 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2384 			spin_unlock(&delayed_refs->lock);
2385 			/*
2386 			 * we may have dropped the spin lock to get the head
2387 			 * mutex lock, and that might have given someone else
2388 			 * time to free the head.  If that's true, it has been
2389 			 * removed from our list and we can move on.
2390 			 */
2391 			if (ret == -EAGAIN) {
2392 				locked_ref = NULL;
2393 				count++;
2394 				continue;
2395 			}
2396 		}
2397 
2398 		/*
2399 		 * We need to try and merge add/drops of the same ref since we
2400 		 * can run into issues with relocate dropping the implicit ref
2401 		 * and then it being added back again before the drop can
2402 		 * finish.  If we merged anything we need to re-loop so we can
2403 		 * get a good ref.
2404 		 */
2405 		spin_lock(&locked_ref->lock);
2406 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2407 					 locked_ref);
2408 
2409 		/*
2410 		 * locked_ref is the head node, so we have to go one
2411 		 * node back for any delayed ref updates
2412 		 */
2413 		ref = select_delayed_ref(locked_ref);
2414 
2415 		if (ref && ref->seq &&
2416 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2417 			spin_unlock(&locked_ref->lock);
2418 			btrfs_delayed_ref_unlock(locked_ref);
2419 			spin_lock(&delayed_refs->lock);
2420 			locked_ref->processing = 0;
2421 			delayed_refs->num_heads_ready++;
2422 			spin_unlock(&delayed_refs->lock);
2423 			locked_ref = NULL;
2424 			cond_resched();
2425 			count++;
2426 			continue;
2427 		}
2428 
2429 		/*
2430 		 * record the must insert reserved flag before we
2431 		 * drop the spin lock.
2432 		 */
2433 		must_insert_reserved = locked_ref->must_insert_reserved;
2434 		locked_ref->must_insert_reserved = 0;
2435 
2436 		extent_op = locked_ref->extent_op;
2437 		locked_ref->extent_op = NULL;
2438 
2439 		if (!ref) {
2440 
2441 
2442 			/* All delayed refs have been processed, Go ahead
2443 			 * and send the head node to run_one_delayed_ref,
2444 			 * so that any accounting fixes can happen
2445 			 */
2446 			ref = &locked_ref->node;
2447 
2448 			if (extent_op && must_insert_reserved) {
2449 				btrfs_free_delayed_extent_op(extent_op);
2450 				extent_op = NULL;
2451 			}
2452 
2453 			if (extent_op) {
2454 				spin_unlock(&locked_ref->lock);
2455 				ret = run_delayed_extent_op(trans, root,
2456 							    ref, extent_op);
2457 				btrfs_free_delayed_extent_op(extent_op);
2458 
2459 				if (ret) {
2460 					/*
2461 					 * Need to reset must_insert_reserved if
2462 					 * there was an error so the abort stuff
2463 					 * can cleanup the reserved space
2464 					 * properly.
2465 					 */
2466 					if (must_insert_reserved)
2467 						locked_ref->must_insert_reserved = 1;
2468 					locked_ref->processing = 0;
2469 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2470 					btrfs_delayed_ref_unlock(locked_ref);
2471 					return ret;
2472 				}
2473 				continue;
2474 			}
2475 
2476 			/*
2477 			 * Need to drop our head ref lock and re-aqcuire the
2478 			 * delayed ref lock and then re-check to make sure
2479 			 * nobody got added.
2480 			 */
2481 			spin_unlock(&locked_ref->lock);
2482 			spin_lock(&delayed_refs->lock);
2483 			spin_lock(&locked_ref->lock);
2484 			if (rb_first(&locked_ref->ref_root) ||
2485 			    locked_ref->extent_op) {
2486 				spin_unlock(&locked_ref->lock);
2487 				spin_unlock(&delayed_refs->lock);
2488 				continue;
2489 			}
2490 			ref->in_tree = 0;
2491 			delayed_refs->num_heads--;
2492 			rb_erase(&locked_ref->href_node,
2493 				 &delayed_refs->href_root);
2494 			spin_unlock(&delayed_refs->lock);
2495 		} else {
2496 			actual_count++;
2497 			ref->in_tree = 0;
2498 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2499 		}
2500 		atomic_dec(&delayed_refs->num_entries);
2501 
2502 		if (!btrfs_delayed_ref_is_head(ref)) {
2503 			/*
2504 			 * when we play the delayed ref, also correct the
2505 			 * ref_mod on head
2506 			 */
2507 			switch (ref->action) {
2508 			case BTRFS_ADD_DELAYED_REF:
2509 			case BTRFS_ADD_DELAYED_EXTENT:
2510 				locked_ref->node.ref_mod -= ref->ref_mod;
2511 				break;
2512 			case BTRFS_DROP_DELAYED_REF:
2513 				locked_ref->node.ref_mod += ref->ref_mod;
2514 				break;
2515 			default:
2516 				WARN_ON(1);
2517 			}
2518 		}
2519 		spin_unlock(&locked_ref->lock);
2520 
2521 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2522 					  must_insert_reserved);
2523 
2524 		btrfs_free_delayed_extent_op(extent_op);
2525 		if (ret) {
2526 			locked_ref->processing = 0;
2527 			btrfs_delayed_ref_unlock(locked_ref);
2528 			btrfs_put_delayed_ref(ref);
2529 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2530 			return ret;
2531 		}
2532 
2533 		/*
2534 		 * If this node is a head, that means all the refs in this head
2535 		 * have been dealt with, and we will pick the next head to deal
2536 		 * with, so we must unlock the head and drop it from the cluster
2537 		 * list before we release it.
2538 		 */
2539 		if (btrfs_delayed_ref_is_head(ref)) {
2540 			btrfs_delayed_ref_unlock(locked_ref);
2541 			locked_ref = NULL;
2542 		}
2543 		btrfs_put_delayed_ref(ref);
2544 		count++;
2545 		cond_resched();
2546 	}
2547 
2548 	/*
2549 	 * We don't want to include ref heads since we can have empty ref heads
2550 	 * and those will drastically skew our runtime down since we just do
2551 	 * accounting, no actual extent tree updates.
2552 	 */
2553 	if (actual_count > 0) {
2554 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2555 		u64 avg;
2556 
2557 		/*
2558 		 * We weigh the current average higher than our current runtime
2559 		 * to avoid large swings in the average.
2560 		 */
2561 		spin_lock(&delayed_refs->lock);
2562 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2563 		avg = div64_u64(avg, 4);
2564 		fs_info->avg_delayed_ref_runtime = avg;
2565 		spin_unlock(&delayed_refs->lock);
2566 	}
2567 	return 0;
2568 }
2569 
2570 #ifdef SCRAMBLE_DELAYED_REFS
2571 /*
2572  * Normally delayed refs get processed in ascending bytenr order. This
2573  * correlates in most cases to the order added. To expose dependencies on this
2574  * order, we start to process the tree in the middle instead of the beginning
2575  */
2576 static u64 find_middle(struct rb_root *root)
2577 {
2578 	struct rb_node *n = root->rb_node;
2579 	struct btrfs_delayed_ref_node *entry;
2580 	int alt = 1;
2581 	u64 middle;
2582 	u64 first = 0, last = 0;
2583 
2584 	n = rb_first(root);
2585 	if (n) {
2586 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2587 		first = entry->bytenr;
2588 	}
2589 	n = rb_last(root);
2590 	if (n) {
2591 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2592 		last = entry->bytenr;
2593 	}
2594 	n = root->rb_node;
2595 
2596 	while (n) {
2597 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 		WARN_ON(!entry->in_tree);
2599 
2600 		middle = entry->bytenr;
2601 
2602 		if (alt)
2603 			n = n->rb_left;
2604 		else
2605 			n = n->rb_right;
2606 
2607 		alt = 1 - alt;
2608 	}
2609 	return middle;
2610 }
2611 #endif
2612 
2613 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2614 {
2615 	u64 num_bytes;
2616 
2617 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2618 			     sizeof(struct btrfs_extent_inline_ref));
2619 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2620 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2621 
2622 	/*
2623 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 	 * closer to what we're really going to want to ouse.
2625 	 */
2626 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2627 }
2628 
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2630 				       struct btrfs_root *root)
2631 {
2632 	struct btrfs_block_rsv *global_rsv;
2633 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2634 	u64 num_bytes;
2635 	int ret = 0;
2636 
2637 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2638 	num_heads = heads_to_leaves(root, num_heads);
2639 	if (num_heads > 1)
2640 		num_bytes += (num_heads - 1) * root->nodesize;
2641 	num_bytes <<= 1;
2642 	global_rsv = &root->fs_info->global_block_rsv;
2643 
2644 	/*
2645 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 	 * wiggle room since running delayed refs can create more delayed refs.
2647 	 */
2648 	if (global_rsv->space_info->full)
2649 		num_bytes <<= 1;
2650 
2651 	spin_lock(&global_rsv->lock);
2652 	if (global_rsv->reserved <= num_bytes)
2653 		ret = 1;
2654 	spin_unlock(&global_rsv->lock);
2655 	return ret;
2656 }
2657 
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2659 				       struct btrfs_root *root)
2660 {
2661 	struct btrfs_fs_info *fs_info = root->fs_info;
2662 	u64 num_entries =
2663 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2664 	u64 avg_runtime;
2665 	u64 val;
2666 
2667 	smp_mb();
2668 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2669 	val = num_entries * avg_runtime;
2670 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2671 		return 1;
2672 	if (val >= NSEC_PER_SEC / 2)
2673 		return 2;
2674 
2675 	return btrfs_check_space_for_delayed_refs(trans, root);
2676 }
2677 
2678 struct async_delayed_refs {
2679 	struct btrfs_root *root;
2680 	int count;
2681 	int error;
2682 	int sync;
2683 	struct completion wait;
2684 	struct btrfs_work work;
2685 };
2686 
2687 static void delayed_ref_async_start(struct btrfs_work *work)
2688 {
2689 	struct async_delayed_refs *async;
2690 	struct btrfs_trans_handle *trans;
2691 	int ret;
2692 
2693 	async = container_of(work, struct async_delayed_refs, work);
2694 
2695 	trans = btrfs_join_transaction(async->root);
2696 	if (IS_ERR(trans)) {
2697 		async->error = PTR_ERR(trans);
2698 		goto done;
2699 	}
2700 
2701 	/*
2702 	 * trans->sync means that when we call end_transaciton, we won't
2703 	 * wait on delayed refs
2704 	 */
2705 	trans->sync = true;
2706 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2707 	if (ret)
2708 		async->error = ret;
2709 
2710 	ret = btrfs_end_transaction(trans, async->root);
2711 	if (ret && !async->error)
2712 		async->error = ret;
2713 done:
2714 	if (async->sync)
2715 		complete(&async->wait);
2716 	else
2717 		kfree(async);
2718 }
2719 
2720 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2721 				 unsigned long count, int wait)
2722 {
2723 	struct async_delayed_refs *async;
2724 	int ret;
2725 
2726 	async = kmalloc(sizeof(*async), GFP_NOFS);
2727 	if (!async)
2728 		return -ENOMEM;
2729 
2730 	async->root = root->fs_info->tree_root;
2731 	async->count = count;
2732 	async->error = 0;
2733 	if (wait)
2734 		async->sync = 1;
2735 	else
2736 		async->sync = 0;
2737 	init_completion(&async->wait);
2738 
2739 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2740 			delayed_ref_async_start, NULL, NULL);
2741 
2742 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2743 
2744 	if (wait) {
2745 		wait_for_completion(&async->wait);
2746 		ret = async->error;
2747 		kfree(async);
2748 		return ret;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /*
2754  * this starts processing the delayed reference count updates and
2755  * extent insertions we have queued up so far.  count can be
2756  * 0, which means to process everything in the tree at the start
2757  * of the run (but not newly added entries), or it can be some target
2758  * number you'd like to process.
2759  *
2760  * Returns 0 on success or if called with an aborted transaction
2761  * Returns <0 on error and aborts the transaction
2762  */
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2764 			   struct btrfs_root *root, unsigned long count)
2765 {
2766 	struct rb_node *node;
2767 	struct btrfs_delayed_ref_root *delayed_refs;
2768 	struct btrfs_delayed_ref_head *head;
2769 	int ret;
2770 	int run_all = count == (unsigned long)-1;
2771 	int run_most = 0;
2772 
2773 	/* We'll clean this up in btrfs_cleanup_transaction */
2774 	if (trans->aborted)
2775 		return 0;
2776 
2777 	if (root == root->fs_info->extent_root)
2778 		root = root->fs_info->tree_root;
2779 
2780 	delayed_refs = &trans->transaction->delayed_refs;
2781 	if (count == 0) {
2782 		count = atomic_read(&delayed_refs->num_entries) * 2;
2783 		run_most = 1;
2784 	}
2785 
2786 again:
2787 #ifdef SCRAMBLE_DELAYED_REFS
2788 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2789 #endif
2790 	ret = __btrfs_run_delayed_refs(trans, root, count);
2791 	if (ret < 0) {
2792 		btrfs_abort_transaction(trans, root, ret);
2793 		return ret;
2794 	}
2795 
2796 	if (run_all) {
2797 		if (!list_empty(&trans->new_bgs))
2798 			btrfs_create_pending_block_groups(trans, root);
2799 
2800 		spin_lock(&delayed_refs->lock);
2801 		node = rb_first(&delayed_refs->href_root);
2802 		if (!node) {
2803 			spin_unlock(&delayed_refs->lock);
2804 			goto out;
2805 		}
2806 		count = (unsigned long)-1;
2807 
2808 		while (node) {
2809 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2810 					href_node);
2811 			if (btrfs_delayed_ref_is_head(&head->node)) {
2812 				struct btrfs_delayed_ref_node *ref;
2813 
2814 				ref = &head->node;
2815 				atomic_inc(&ref->refs);
2816 
2817 				spin_unlock(&delayed_refs->lock);
2818 				/*
2819 				 * Mutex was contended, block until it's
2820 				 * released and try again
2821 				 */
2822 				mutex_lock(&head->mutex);
2823 				mutex_unlock(&head->mutex);
2824 
2825 				btrfs_put_delayed_ref(ref);
2826 				cond_resched();
2827 				goto again;
2828 			} else {
2829 				WARN_ON(1);
2830 			}
2831 			node = rb_next(node);
2832 		}
2833 		spin_unlock(&delayed_refs->lock);
2834 		cond_resched();
2835 		goto again;
2836 	}
2837 out:
2838 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2839 	if (ret)
2840 		return ret;
2841 	assert_qgroups_uptodate(trans);
2842 	return 0;
2843 }
2844 
2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2846 				struct btrfs_root *root,
2847 				u64 bytenr, u64 num_bytes, u64 flags,
2848 				int level, int is_data)
2849 {
2850 	struct btrfs_delayed_extent_op *extent_op;
2851 	int ret;
2852 
2853 	extent_op = btrfs_alloc_delayed_extent_op();
2854 	if (!extent_op)
2855 		return -ENOMEM;
2856 
2857 	extent_op->flags_to_set = flags;
2858 	extent_op->update_flags = 1;
2859 	extent_op->update_key = 0;
2860 	extent_op->is_data = is_data ? 1 : 0;
2861 	extent_op->level = level;
2862 
2863 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2864 					  num_bytes, extent_op);
2865 	if (ret)
2866 		btrfs_free_delayed_extent_op(extent_op);
2867 	return ret;
2868 }
2869 
2870 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2871 				      struct btrfs_root *root,
2872 				      struct btrfs_path *path,
2873 				      u64 objectid, u64 offset, u64 bytenr)
2874 {
2875 	struct btrfs_delayed_ref_head *head;
2876 	struct btrfs_delayed_ref_node *ref;
2877 	struct btrfs_delayed_data_ref *data_ref;
2878 	struct btrfs_delayed_ref_root *delayed_refs;
2879 	struct rb_node *node;
2880 	int ret = 0;
2881 
2882 	delayed_refs = &trans->transaction->delayed_refs;
2883 	spin_lock(&delayed_refs->lock);
2884 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2885 	if (!head) {
2886 		spin_unlock(&delayed_refs->lock);
2887 		return 0;
2888 	}
2889 
2890 	if (!mutex_trylock(&head->mutex)) {
2891 		atomic_inc(&head->node.refs);
2892 		spin_unlock(&delayed_refs->lock);
2893 
2894 		btrfs_release_path(path);
2895 
2896 		/*
2897 		 * Mutex was contended, block until it's released and let
2898 		 * caller try again
2899 		 */
2900 		mutex_lock(&head->mutex);
2901 		mutex_unlock(&head->mutex);
2902 		btrfs_put_delayed_ref(&head->node);
2903 		return -EAGAIN;
2904 	}
2905 	spin_unlock(&delayed_refs->lock);
2906 
2907 	spin_lock(&head->lock);
2908 	node = rb_first(&head->ref_root);
2909 	while (node) {
2910 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2911 		node = rb_next(node);
2912 
2913 		/* If it's a shared ref we know a cross reference exists */
2914 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2915 			ret = 1;
2916 			break;
2917 		}
2918 
2919 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2920 
2921 		/*
2922 		 * If our ref doesn't match the one we're currently looking at
2923 		 * then we have a cross reference.
2924 		 */
2925 		if (data_ref->root != root->root_key.objectid ||
2926 		    data_ref->objectid != objectid ||
2927 		    data_ref->offset != offset) {
2928 			ret = 1;
2929 			break;
2930 		}
2931 	}
2932 	spin_unlock(&head->lock);
2933 	mutex_unlock(&head->mutex);
2934 	return ret;
2935 }
2936 
2937 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2938 					struct btrfs_root *root,
2939 					struct btrfs_path *path,
2940 					u64 objectid, u64 offset, u64 bytenr)
2941 {
2942 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2943 	struct extent_buffer *leaf;
2944 	struct btrfs_extent_data_ref *ref;
2945 	struct btrfs_extent_inline_ref *iref;
2946 	struct btrfs_extent_item *ei;
2947 	struct btrfs_key key;
2948 	u32 item_size;
2949 	int ret;
2950 
2951 	key.objectid = bytenr;
2952 	key.offset = (u64)-1;
2953 	key.type = BTRFS_EXTENT_ITEM_KEY;
2954 
2955 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2956 	if (ret < 0)
2957 		goto out;
2958 	BUG_ON(ret == 0); /* Corruption */
2959 
2960 	ret = -ENOENT;
2961 	if (path->slots[0] == 0)
2962 		goto out;
2963 
2964 	path->slots[0]--;
2965 	leaf = path->nodes[0];
2966 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2967 
2968 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2969 		goto out;
2970 
2971 	ret = 1;
2972 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2974 	if (item_size < sizeof(*ei)) {
2975 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2976 		goto out;
2977 	}
2978 #endif
2979 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2980 
2981 	if (item_size != sizeof(*ei) +
2982 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2983 		goto out;
2984 
2985 	if (btrfs_extent_generation(leaf, ei) <=
2986 	    btrfs_root_last_snapshot(&root->root_item))
2987 		goto out;
2988 
2989 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2990 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2991 	    BTRFS_EXTENT_DATA_REF_KEY)
2992 		goto out;
2993 
2994 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2995 	if (btrfs_extent_refs(leaf, ei) !=
2996 	    btrfs_extent_data_ref_count(leaf, ref) ||
2997 	    btrfs_extent_data_ref_root(leaf, ref) !=
2998 	    root->root_key.objectid ||
2999 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3000 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3001 		goto out;
3002 
3003 	ret = 0;
3004 out:
3005 	return ret;
3006 }
3007 
3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3009 			  struct btrfs_root *root,
3010 			  u64 objectid, u64 offset, u64 bytenr)
3011 {
3012 	struct btrfs_path *path;
3013 	int ret;
3014 	int ret2;
3015 
3016 	path = btrfs_alloc_path();
3017 	if (!path)
3018 		return -ENOENT;
3019 
3020 	do {
3021 		ret = check_committed_ref(trans, root, path, objectid,
3022 					  offset, bytenr);
3023 		if (ret && ret != -ENOENT)
3024 			goto out;
3025 
3026 		ret2 = check_delayed_ref(trans, root, path, objectid,
3027 					 offset, bytenr);
3028 	} while (ret2 == -EAGAIN);
3029 
3030 	if (ret2 && ret2 != -ENOENT) {
3031 		ret = ret2;
3032 		goto out;
3033 	}
3034 
3035 	if (ret != -ENOENT || ret2 != -ENOENT)
3036 		ret = 0;
3037 out:
3038 	btrfs_free_path(path);
3039 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3040 		WARN_ON(ret > 0);
3041 	return ret;
3042 }
3043 
3044 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3045 			   struct btrfs_root *root,
3046 			   struct extent_buffer *buf,
3047 			   int full_backref, int inc)
3048 {
3049 	u64 bytenr;
3050 	u64 num_bytes;
3051 	u64 parent;
3052 	u64 ref_root;
3053 	u32 nritems;
3054 	struct btrfs_key key;
3055 	struct btrfs_file_extent_item *fi;
3056 	int i;
3057 	int level;
3058 	int ret = 0;
3059 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3060 			    u64, u64, u64, u64, u64, u64, int);
3061 
3062 
3063 	if (btrfs_test_is_dummy_root(root))
3064 		return 0;
3065 
3066 	ref_root = btrfs_header_owner(buf);
3067 	nritems = btrfs_header_nritems(buf);
3068 	level = btrfs_header_level(buf);
3069 
3070 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3071 		return 0;
3072 
3073 	if (inc)
3074 		process_func = btrfs_inc_extent_ref;
3075 	else
3076 		process_func = btrfs_free_extent;
3077 
3078 	if (full_backref)
3079 		parent = buf->start;
3080 	else
3081 		parent = 0;
3082 
3083 	for (i = 0; i < nritems; i++) {
3084 		if (level == 0) {
3085 			btrfs_item_key_to_cpu(buf, &key, i);
3086 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3087 				continue;
3088 			fi = btrfs_item_ptr(buf, i,
3089 					    struct btrfs_file_extent_item);
3090 			if (btrfs_file_extent_type(buf, fi) ==
3091 			    BTRFS_FILE_EXTENT_INLINE)
3092 				continue;
3093 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3094 			if (bytenr == 0)
3095 				continue;
3096 
3097 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3098 			key.offset -= btrfs_file_extent_offset(buf, fi);
3099 			ret = process_func(trans, root, bytenr, num_bytes,
3100 					   parent, ref_root, key.objectid,
3101 					   key.offset, 1);
3102 			if (ret)
3103 				goto fail;
3104 		} else {
3105 			bytenr = btrfs_node_blockptr(buf, i);
3106 			num_bytes = root->nodesize;
3107 			ret = process_func(trans, root, bytenr, num_bytes,
3108 					   parent, ref_root, level - 1, 0,
3109 					   1);
3110 			if (ret)
3111 				goto fail;
3112 		}
3113 	}
3114 	return 0;
3115 fail:
3116 	return ret;
3117 }
3118 
3119 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3120 		  struct extent_buffer *buf, int full_backref)
3121 {
3122 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3123 }
3124 
3125 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3126 		  struct extent_buffer *buf, int full_backref)
3127 {
3128 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3129 }
3130 
3131 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3132 				 struct btrfs_root *root,
3133 				 struct btrfs_path *path,
3134 				 struct btrfs_block_group_cache *cache)
3135 {
3136 	int ret;
3137 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3138 	unsigned long bi;
3139 	struct extent_buffer *leaf;
3140 
3141 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3142 	if (ret < 0)
3143 		goto fail;
3144 	BUG_ON(ret); /* Corruption */
3145 
3146 	leaf = path->nodes[0];
3147 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3148 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3149 	btrfs_mark_buffer_dirty(leaf);
3150 	btrfs_release_path(path);
3151 fail:
3152 	if (ret) {
3153 		btrfs_abort_transaction(trans, root, ret);
3154 		return ret;
3155 	}
3156 	return 0;
3157 
3158 }
3159 
3160 static struct btrfs_block_group_cache *
3161 next_block_group(struct btrfs_root *root,
3162 		 struct btrfs_block_group_cache *cache)
3163 {
3164 	struct rb_node *node;
3165 
3166 	spin_lock(&root->fs_info->block_group_cache_lock);
3167 
3168 	/* If our block group was removed, we need a full search. */
3169 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3170 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3171 
3172 		spin_unlock(&root->fs_info->block_group_cache_lock);
3173 		btrfs_put_block_group(cache);
3174 		cache = btrfs_lookup_first_block_group(root->fs_info,
3175 						       next_bytenr);
3176 		return cache;
3177 	}
3178 	node = rb_next(&cache->cache_node);
3179 	btrfs_put_block_group(cache);
3180 	if (node) {
3181 		cache = rb_entry(node, struct btrfs_block_group_cache,
3182 				 cache_node);
3183 		btrfs_get_block_group(cache);
3184 	} else
3185 		cache = NULL;
3186 	spin_unlock(&root->fs_info->block_group_cache_lock);
3187 	return cache;
3188 }
3189 
3190 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3191 			    struct btrfs_trans_handle *trans,
3192 			    struct btrfs_path *path)
3193 {
3194 	struct btrfs_root *root = block_group->fs_info->tree_root;
3195 	struct inode *inode = NULL;
3196 	u64 alloc_hint = 0;
3197 	int dcs = BTRFS_DC_ERROR;
3198 	int num_pages = 0;
3199 	int retries = 0;
3200 	int ret = 0;
3201 
3202 	/*
3203 	 * If this block group is smaller than 100 megs don't bother caching the
3204 	 * block group.
3205 	 */
3206 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3207 		spin_lock(&block_group->lock);
3208 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3209 		spin_unlock(&block_group->lock);
3210 		return 0;
3211 	}
3212 
3213 again:
3214 	inode = lookup_free_space_inode(root, block_group, path);
3215 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 		ret = PTR_ERR(inode);
3217 		btrfs_release_path(path);
3218 		goto out;
3219 	}
3220 
3221 	if (IS_ERR(inode)) {
3222 		BUG_ON(retries);
3223 		retries++;
3224 
3225 		if (block_group->ro)
3226 			goto out_free;
3227 
3228 		ret = create_free_space_inode(root, trans, block_group, path);
3229 		if (ret)
3230 			goto out_free;
3231 		goto again;
3232 	}
3233 
3234 	/* We've already setup this transaction, go ahead and exit */
3235 	if (block_group->cache_generation == trans->transid &&
3236 	    i_size_read(inode)) {
3237 		dcs = BTRFS_DC_SETUP;
3238 		goto out_put;
3239 	}
3240 
3241 	/*
3242 	 * We want to set the generation to 0, that way if anything goes wrong
3243 	 * from here on out we know not to trust this cache when we load up next
3244 	 * time.
3245 	 */
3246 	BTRFS_I(inode)->generation = 0;
3247 	ret = btrfs_update_inode(trans, root, inode);
3248 	WARN_ON(ret);
3249 
3250 	if (i_size_read(inode) > 0) {
3251 		ret = btrfs_check_trunc_cache_free_space(root,
3252 					&root->fs_info->global_block_rsv);
3253 		if (ret)
3254 			goto out_put;
3255 
3256 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3257 		if (ret)
3258 			goto out_put;
3259 	}
3260 
3261 	spin_lock(&block_group->lock);
3262 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3263 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3264 	    block_group->delalloc_bytes) {
3265 		/*
3266 		 * don't bother trying to write stuff out _if_
3267 		 * a) we're not cached,
3268 		 * b) we're with nospace_cache mount option.
3269 		 */
3270 		dcs = BTRFS_DC_WRITTEN;
3271 		spin_unlock(&block_group->lock);
3272 		goto out_put;
3273 	}
3274 	spin_unlock(&block_group->lock);
3275 
3276 	/*
3277 	 * Try to preallocate enough space based on how big the block group is.
3278 	 * Keep in mind this has to include any pinned space which could end up
3279 	 * taking up quite a bit since it's not folded into the other space
3280 	 * cache.
3281 	 */
3282 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3283 	if (!num_pages)
3284 		num_pages = 1;
3285 
3286 	num_pages *= 16;
3287 	num_pages *= PAGE_CACHE_SIZE;
3288 
3289 	ret = btrfs_check_data_free_space(inode, num_pages);
3290 	if (ret)
3291 		goto out_put;
3292 
3293 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3294 					      num_pages, num_pages,
3295 					      &alloc_hint);
3296 	if (!ret)
3297 		dcs = BTRFS_DC_SETUP;
3298 	btrfs_free_reserved_data_space(inode, num_pages);
3299 
3300 out_put:
3301 	iput(inode);
3302 out_free:
3303 	btrfs_release_path(path);
3304 out:
3305 	spin_lock(&block_group->lock);
3306 	if (!ret && dcs == BTRFS_DC_SETUP)
3307 		block_group->cache_generation = trans->transid;
3308 	block_group->disk_cache_state = dcs;
3309 	spin_unlock(&block_group->lock);
3310 
3311 	return ret;
3312 }
3313 
3314 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3315 				   struct btrfs_root *root)
3316 {
3317 	struct btrfs_block_group_cache *cache;
3318 	int err = 0;
3319 	struct btrfs_path *path;
3320 	u64 last = 0;
3321 
3322 	path = btrfs_alloc_path();
3323 	if (!path)
3324 		return -ENOMEM;
3325 
3326 again:
3327 	while (1) {
3328 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3329 		while (cache) {
3330 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3331 				break;
3332 			cache = next_block_group(root, cache);
3333 		}
3334 		if (!cache) {
3335 			if (last == 0)
3336 				break;
3337 			last = 0;
3338 			continue;
3339 		}
3340 		err = cache_save_setup(cache, trans, path);
3341 		last = cache->key.objectid + cache->key.offset;
3342 		btrfs_put_block_group(cache);
3343 	}
3344 
3345 	while (1) {
3346 		if (last == 0) {
3347 			err = btrfs_run_delayed_refs(trans, root,
3348 						     (unsigned long)-1);
3349 			if (err) /* File system offline */
3350 				goto out;
3351 		}
3352 
3353 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3354 		while (cache) {
3355 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3356 				btrfs_put_block_group(cache);
3357 				goto again;
3358 			}
3359 
3360 			if (cache->dirty)
3361 				break;
3362 			cache = next_block_group(root, cache);
3363 		}
3364 		if (!cache) {
3365 			if (last == 0)
3366 				break;
3367 			last = 0;
3368 			continue;
3369 		}
3370 
3371 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3372 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3373 		cache->dirty = 0;
3374 		last = cache->key.objectid + cache->key.offset;
3375 
3376 		err = write_one_cache_group(trans, root, path, cache);
3377 		btrfs_put_block_group(cache);
3378 		if (err) /* File system offline */
3379 			goto out;
3380 	}
3381 
3382 	while (1) {
3383 		/*
3384 		 * I don't think this is needed since we're just marking our
3385 		 * preallocated extent as written, but just in case it can't
3386 		 * hurt.
3387 		 */
3388 		if (last == 0) {
3389 			err = btrfs_run_delayed_refs(trans, root,
3390 						     (unsigned long)-1);
3391 			if (err) /* File system offline */
3392 				goto out;
3393 		}
3394 
3395 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3396 		while (cache) {
3397 			/*
3398 			 * Really this shouldn't happen, but it could if we
3399 			 * couldn't write the entire preallocated extent and
3400 			 * splitting the extent resulted in a new block.
3401 			 */
3402 			if (cache->dirty) {
3403 				btrfs_put_block_group(cache);
3404 				goto again;
3405 			}
3406 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3407 				break;
3408 			cache = next_block_group(root, cache);
3409 		}
3410 		if (!cache) {
3411 			if (last == 0)
3412 				break;
3413 			last = 0;
3414 			continue;
3415 		}
3416 
3417 		err = btrfs_write_out_cache(root, trans, cache, path);
3418 
3419 		/*
3420 		 * If we didn't have an error then the cache state is still
3421 		 * NEED_WRITE, so we can set it to WRITTEN.
3422 		 */
3423 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3424 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3425 		last = cache->key.objectid + cache->key.offset;
3426 		btrfs_put_block_group(cache);
3427 	}
3428 out:
3429 
3430 	btrfs_free_path(path);
3431 	return err;
3432 }
3433 
3434 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3435 {
3436 	struct btrfs_block_group_cache *block_group;
3437 	int readonly = 0;
3438 
3439 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3440 	if (!block_group || block_group->ro)
3441 		readonly = 1;
3442 	if (block_group)
3443 		btrfs_put_block_group(block_group);
3444 	return readonly;
3445 }
3446 
3447 static const char *alloc_name(u64 flags)
3448 {
3449 	switch (flags) {
3450 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3451 		return "mixed";
3452 	case BTRFS_BLOCK_GROUP_METADATA:
3453 		return "metadata";
3454 	case BTRFS_BLOCK_GROUP_DATA:
3455 		return "data";
3456 	case BTRFS_BLOCK_GROUP_SYSTEM:
3457 		return "system";
3458 	default:
3459 		WARN_ON(1);
3460 		return "invalid-combination";
3461 	};
3462 }
3463 
3464 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3465 			     u64 total_bytes, u64 bytes_used,
3466 			     struct btrfs_space_info **space_info)
3467 {
3468 	struct btrfs_space_info *found;
3469 	int i;
3470 	int factor;
3471 	int ret;
3472 
3473 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3474 		     BTRFS_BLOCK_GROUP_RAID10))
3475 		factor = 2;
3476 	else
3477 		factor = 1;
3478 
3479 	found = __find_space_info(info, flags);
3480 	if (found) {
3481 		spin_lock(&found->lock);
3482 		found->total_bytes += total_bytes;
3483 		found->disk_total += total_bytes * factor;
3484 		found->bytes_used += bytes_used;
3485 		found->disk_used += bytes_used * factor;
3486 		found->full = 0;
3487 		spin_unlock(&found->lock);
3488 		*space_info = found;
3489 		return 0;
3490 	}
3491 	found = kzalloc(sizeof(*found), GFP_NOFS);
3492 	if (!found)
3493 		return -ENOMEM;
3494 
3495 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3496 	if (ret) {
3497 		kfree(found);
3498 		return ret;
3499 	}
3500 
3501 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3502 		INIT_LIST_HEAD(&found->block_groups[i]);
3503 	init_rwsem(&found->groups_sem);
3504 	spin_lock_init(&found->lock);
3505 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3506 	found->total_bytes = total_bytes;
3507 	found->disk_total = total_bytes * factor;
3508 	found->bytes_used = bytes_used;
3509 	found->disk_used = bytes_used * factor;
3510 	found->bytes_pinned = 0;
3511 	found->bytes_reserved = 0;
3512 	found->bytes_readonly = 0;
3513 	found->bytes_may_use = 0;
3514 	found->full = 0;
3515 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3516 	found->chunk_alloc = 0;
3517 	found->flush = 0;
3518 	init_waitqueue_head(&found->wait);
3519 	INIT_LIST_HEAD(&found->ro_bgs);
3520 
3521 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3522 				    info->space_info_kobj, "%s",
3523 				    alloc_name(found->flags));
3524 	if (ret) {
3525 		kfree(found);
3526 		return ret;
3527 	}
3528 
3529 	*space_info = found;
3530 	list_add_rcu(&found->list, &info->space_info);
3531 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3532 		info->data_sinfo = found;
3533 
3534 	return ret;
3535 }
3536 
3537 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3538 {
3539 	u64 extra_flags = chunk_to_extended(flags) &
3540 				BTRFS_EXTENDED_PROFILE_MASK;
3541 
3542 	write_seqlock(&fs_info->profiles_lock);
3543 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3544 		fs_info->avail_data_alloc_bits |= extra_flags;
3545 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3546 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3547 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3548 		fs_info->avail_system_alloc_bits |= extra_flags;
3549 	write_sequnlock(&fs_info->profiles_lock);
3550 }
3551 
3552 /*
3553  * returns target flags in extended format or 0 if restripe for this
3554  * chunk_type is not in progress
3555  *
3556  * should be called with either volume_mutex or balance_lock held
3557  */
3558 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3559 {
3560 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3561 	u64 target = 0;
3562 
3563 	if (!bctl)
3564 		return 0;
3565 
3566 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3567 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3568 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3569 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3570 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3571 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3572 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3573 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3574 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3575 	}
3576 
3577 	return target;
3578 }
3579 
3580 /*
3581  * @flags: available profiles in extended format (see ctree.h)
3582  *
3583  * Returns reduced profile in chunk format.  If profile changing is in
3584  * progress (either running or paused) picks the target profile (if it's
3585  * already available), otherwise falls back to plain reducing.
3586  */
3587 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3588 {
3589 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3590 	u64 target;
3591 	u64 tmp;
3592 
3593 	/*
3594 	 * see if restripe for this chunk_type is in progress, if so
3595 	 * try to reduce to the target profile
3596 	 */
3597 	spin_lock(&root->fs_info->balance_lock);
3598 	target = get_restripe_target(root->fs_info, flags);
3599 	if (target) {
3600 		/* pick target profile only if it's already available */
3601 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3602 			spin_unlock(&root->fs_info->balance_lock);
3603 			return extended_to_chunk(target);
3604 		}
3605 	}
3606 	spin_unlock(&root->fs_info->balance_lock);
3607 
3608 	/* First, mask out the RAID levels which aren't possible */
3609 	if (num_devices == 1)
3610 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3611 			   BTRFS_BLOCK_GROUP_RAID5);
3612 	if (num_devices < 3)
3613 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3614 	if (num_devices < 4)
3615 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3616 
3617 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3618 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3619 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3620 	flags &= ~tmp;
3621 
3622 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3623 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3624 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3625 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3626 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3627 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3628 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3629 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3630 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3631 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3632 
3633 	return extended_to_chunk(flags | tmp);
3634 }
3635 
3636 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3637 {
3638 	unsigned seq;
3639 	u64 flags;
3640 
3641 	do {
3642 		flags = orig_flags;
3643 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3644 
3645 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3646 			flags |= root->fs_info->avail_data_alloc_bits;
3647 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3648 			flags |= root->fs_info->avail_system_alloc_bits;
3649 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3650 			flags |= root->fs_info->avail_metadata_alloc_bits;
3651 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3652 
3653 	return btrfs_reduce_alloc_profile(root, flags);
3654 }
3655 
3656 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3657 {
3658 	u64 flags;
3659 	u64 ret;
3660 
3661 	if (data)
3662 		flags = BTRFS_BLOCK_GROUP_DATA;
3663 	else if (root == root->fs_info->chunk_root)
3664 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3665 	else
3666 		flags = BTRFS_BLOCK_GROUP_METADATA;
3667 
3668 	ret = get_alloc_profile(root, flags);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * This will check the space that the inode allocates from to make sure we have
3674  * enough space for bytes.
3675  */
3676 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3677 {
3678 	struct btrfs_space_info *data_sinfo;
3679 	struct btrfs_root *root = BTRFS_I(inode)->root;
3680 	struct btrfs_fs_info *fs_info = root->fs_info;
3681 	u64 used;
3682 	int ret = 0, committed = 0, alloc_chunk = 1;
3683 
3684 	/* make sure bytes are sectorsize aligned */
3685 	bytes = ALIGN(bytes, root->sectorsize);
3686 
3687 	if (btrfs_is_free_space_inode(inode)) {
3688 		committed = 1;
3689 		ASSERT(current->journal_info);
3690 	}
3691 
3692 	data_sinfo = fs_info->data_sinfo;
3693 	if (!data_sinfo)
3694 		goto alloc;
3695 
3696 again:
3697 	/* make sure we have enough space to handle the data first */
3698 	spin_lock(&data_sinfo->lock);
3699 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3700 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3701 		data_sinfo->bytes_may_use;
3702 
3703 	if (used + bytes > data_sinfo->total_bytes) {
3704 		struct btrfs_trans_handle *trans;
3705 
3706 		/*
3707 		 * if we don't have enough free bytes in this space then we need
3708 		 * to alloc a new chunk.
3709 		 */
3710 		if (!data_sinfo->full && alloc_chunk) {
3711 			u64 alloc_target;
3712 
3713 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3714 			spin_unlock(&data_sinfo->lock);
3715 alloc:
3716 			alloc_target = btrfs_get_alloc_profile(root, 1);
3717 			/*
3718 			 * It is ugly that we don't call nolock join
3719 			 * transaction for the free space inode case here.
3720 			 * But it is safe because we only do the data space
3721 			 * reservation for the free space cache in the
3722 			 * transaction context, the common join transaction
3723 			 * just increase the counter of the current transaction
3724 			 * handler, doesn't try to acquire the trans_lock of
3725 			 * the fs.
3726 			 */
3727 			trans = btrfs_join_transaction(root);
3728 			if (IS_ERR(trans))
3729 				return PTR_ERR(trans);
3730 
3731 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3732 					     alloc_target,
3733 					     CHUNK_ALLOC_NO_FORCE);
3734 			btrfs_end_transaction(trans, root);
3735 			if (ret < 0) {
3736 				if (ret != -ENOSPC)
3737 					return ret;
3738 				else
3739 					goto commit_trans;
3740 			}
3741 
3742 			if (!data_sinfo)
3743 				data_sinfo = fs_info->data_sinfo;
3744 
3745 			goto again;
3746 		}
3747 
3748 		/*
3749 		 * If we don't have enough pinned space to deal with this
3750 		 * allocation don't bother committing the transaction.
3751 		 */
3752 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3753 					   bytes) < 0)
3754 			committed = 1;
3755 		spin_unlock(&data_sinfo->lock);
3756 
3757 		/* commit the current transaction and try again */
3758 commit_trans:
3759 		if (!committed &&
3760 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3761 			committed = 1;
3762 
3763 			trans = btrfs_join_transaction(root);
3764 			if (IS_ERR(trans))
3765 				return PTR_ERR(trans);
3766 			ret = btrfs_commit_transaction(trans, root);
3767 			if (ret)
3768 				return ret;
3769 			goto again;
3770 		}
3771 
3772 		trace_btrfs_space_reservation(root->fs_info,
3773 					      "space_info:enospc",
3774 					      data_sinfo->flags, bytes, 1);
3775 		return -ENOSPC;
3776 	}
3777 	data_sinfo->bytes_may_use += bytes;
3778 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3779 				      data_sinfo->flags, bytes, 1);
3780 	spin_unlock(&data_sinfo->lock);
3781 
3782 	return 0;
3783 }
3784 
3785 /*
3786  * Called if we need to clear a data reservation for this inode.
3787  */
3788 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3789 {
3790 	struct btrfs_root *root = BTRFS_I(inode)->root;
3791 	struct btrfs_space_info *data_sinfo;
3792 
3793 	/* make sure bytes are sectorsize aligned */
3794 	bytes = ALIGN(bytes, root->sectorsize);
3795 
3796 	data_sinfo = root->fs_info->data_sinfo;
3797 	spin_lock(&data_sinfo->lock);
3798 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3799 	data_sinfo->bytes_may_use -= bytes;
3800 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3801 				      data_sinfo->flags, bytes, 0);
3802 	spin_unlock(&data_sinfo->lock);
3803 }
3804 
3805 static void force_metadata_allocation(struct btrfs_fs_info *info)
3806 {
3807 	struct list_head *head = &info->space_info;
3808 	struct btrfs_space_info *found;
3809 
3810 	rcu_read_lock();
3811 	list_for_each_entry_rcu(found, head, list) {
3812 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3813 			found->force_alloc = CHUNK_ALLOC_FORCE;
3814 	}
3815 	rcu_read_unlock();
3816 }
3817 
3818 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3819 {
3820 	return (global->size << 1);
3821 }
3822 
3823 static int should_alloc_chunk(struct btrfs_root *root,
3824 			      struct btrfs_space_info *sinfo, int force)
3825 {
3826 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3827 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3828 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3829 	u64 thresh;
3830 
3831 	if (force == CHUNK_ALLOC_FORCE)
3832 		return 1;
3833 
3834 	/*
3835 	 * We need to take into account the global rsv because for all intents
3836 	 * and purposes it's used space.  Don't worry about locking the
3837 	 * global_rsv, it doesn't change except when the transaction commits.
3838 	 */
3839 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3840 		num_allocated += calc_global_rsv_need_space(global_rsv);
3841 
3842 	/*
3843 	 * in limited mode, we want to have some free space up to
3844 	 * about 1% of the FS size.
3845 	 */
3846 	if (force == CHUNK_ALLOC_LIMITED) {
3847 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3848 		thresh = max_t(u64, 64 * 1024 * 1024,
3849 			       div_factor_fine(thresh, 1));
3850 
3851 		if (num_bytes - num_allocated < thresh)
3852 			return 1;
3853 	}
3854 
3855 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3856 		return 0;
3857 	return 1;
3858 }
3859 
3860 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3861 {
3862 	u64 num_dev;
3863 
3864 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3865 		    BTRFS_BLOCK_GROUP_RAID0 |
3866 		    BTRFS_BLOCK_GROUP_RAID5 |
3867 		    BTRFS_BLOCK_GROUP_RAID6))
3868 		num_dev = root->fs_info->fs_devices->rw_devices;
3869 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3870 		num_dev = 2;
3871 	else
3872 		num_dev = 1;	/* DUP or single */
3873 
3874 	/* metadata for updaing devices and chunk tree */
3875 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3876 }
3877 
3878 static void check_system_chunk(struct btrfs_trans_handle *trans,
3879 			       struct btrfs_root *root, u64 type)
3880 {
3881 	struct btrfs_space_info *info;
3882 	u64 left;
3883 	u64 thresh;
3884 
3885 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3886 	spin_lock(&info->lock);
3887 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3888 		info->bytes_reserved - info->bytes_readonly;
3889 	spin_unlock(&info->lock);
3890 
3891 	thresh = get_system_chunk_thresh(root, type);
3892 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3893 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3894 			left, thresh, type);
3895 		dump_space_info(info, 0, 0);
3896 	}
3897 
3898 	if (left < thresh) {
3899 		u64 flags;
3900 
3901 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3902 		btrfs_alloc_chunk(trans, root, flags);
3903 	}
3904 }
3905 
3906 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3907 			  struct btrfs_root *extent_root, u64 flags, int force)
3908 {
3909 	struct btrfs_space_info *space_info;
3910 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3911 	int wait_for_alloc = 0;
3912 	int ret = 0;
3913 
3914 	/* Don't re-enter if we're already allocating a chunk */
3915 	if (trans->allocating_chunk)
3916 		return -ENOSPC;
3917 
3918 	space_info = __find_space_info(extent_root->fs_info, flags);
3919 	if (!space_info) {
3920 		ret = update_space_info(extent_root->fs_info, flags,
3921 					0, 0, &space_info);
3922 		BUG_ON(ret); /* -ENOMEM */
3923 	}
3924 	BUG_ON(!space_info); /* Logic error */
3925 
3926 again:
3927 	spin_lock(&space_info->lock);
3928 	if (force < space_info->force_alloc)
3929 		force = space_info->force_alloc;
3930 	if (space_info->full) {
3931 		if (should_alloc_chunk(extent_root, space_info, force))
3932 			ret = -ENOSPC;
3933 		else
3934 			ret = 0;
3935 		spin_unlock(&space_info->lock);
3936 		return ret;
3937 	}
3938 
3939 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3940 		spin_unlock(&space_info->lock);
3941 		return 0;
3942 	} else if (space_info->chunk_alloc) {
3943 		wait_for_alloc = 1;
3944 	} else {
3945 		space_info->chunk_alloc = 1;
3946 	}
3947 
3948 	spin_unlock(&space_info->lock);
3949 
3950 	mutex_lock(&fs_info->chunk_mutex);
3951 
3952 	/*
3953 	 * The chunk_mutex is held throughout the entirety of a chunk
3954 	 * allocation, so once we've acquired the chunk_mutex we know that the
3955 	 * other guy is done and we need to recheck and see if we should
3956 	 * allocate.
3957 	 */
3958 	if (wait_for_alloc) {
3959 		mutex_unlock(&fs_info->chunk_mutex);
3960 		wait_for_alloc = 0;
3961 		goto again;
3962 	}
3963 
3964 	trans->allocating_chunk = true;
3965 
3966 	/*
3967 	 * If we have mixed data/metadata chunks we want to make sure we keep
3968 	 * allocating mixed chunks instead of individual chunks.
3969 	 */
3970 	if (btrfs_mixed_space_info(space_info))
3971 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3972 
3973 	/*
3974 	 * if we're doing a data chunk, go ahead and make sure that
3975 	 * we keep a reasonable number of metadata chunks allocated in the
3976 	 * FS as well.
3977 	 */
3978 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3979 		fs_info->data_chunk_allocations++;
3980 		if (!(fs_info->data_chunk_allocations %
3981 		      fs_info->metadata_ratio))
3982 			force_metadata_allocation(fs_info);
3983 	}
3984 
3985 	/*
3986 	 * Check if we have enough space in SYSTEM chunk because we may need
3987 	 * to update devices.
3988 	 */
3989 	check_system_chunk(trans, extent_root, flags);
3990 
3991 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3992 	trans->allocating_chunk = false;
3993 
3994 	spin_lock(&space_info->lock);
3995 	if (ret < 0 && ret != -ENOSPC)
3996 		goto out;
3997 	if (ret)
3998 		space_info->full = 1;
3999 	else
4000 		ret = 1;
4001 
4002 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4003 out:
4004 	space_info->chunk_alloc = 0;
4005 	spin_unlock(&space_info->lock);
4006 	mutex_unlock(&fs_info->chunk_mutex);
4007 	return ret;
4008 }
4009 
4010 static int can_overcommit(struct btrfs_root *root,
4011 			  struct btrfs_space_info *space_info, u64 bytes,
4012 			  enum btrfs_reserve_flush_enum flush)
4013 {
4014 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4015 	u64 profile = btrfs_get_alloc_profile(root, 0);
4016 	u64 space_size;
4017 	u64 avail;
4018 	u64 used;
4019 
4020 	used = space_info->bytes_used + space_info->bytes_reserved +
4021 		space_info->bytes_pinned + space_info->bytes_readonly;
4022 
4023 	/*
4024 	 * We only want to allow over committing if we have lots of actual space
4025 	 * free, but if we don't have enough space to handle the global reserve
4026 	 * space then we could end up having a real enospc problem when trying
4027 	 * to allocate a chunk or some other such important allocation.
4028 	 */
4029 	spin_lock(&global_rsv->lock);
4030 	space_size = calc_global_rsv_need_space(global_rsv);
4031 	spin_unlock(&global_rsv->lock);
4032 	if (used + space_size >= space_info->total_bytes)
4033 		return 0;
4034 
4035 	used += space_info->bytes_may_use;
4036 
4037 	spin_lock(&root->fs_info->free_chunk_lock);
4038 	avail = root->fs_info->free_chunk_space;
4039 	spin_unlock(&root->fs_info->free_chunk_lock);
4040 
4041 	/*
4042 	 * If we have dup, raid1 or raid10 then only half of the free
4043 	 * space is actually useable.  For raid56, the space info used
4044 	 * doesn't include the parity drive, so we don't have to
4045 	 * change the math
4046 	 */
4047 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4048 		       BTRFS_BLOCK_GROUP_RAID1 |
4049 		       BTRFS_BLOCK_GROUP_RAID10))
4050 		avail >>= 1;
4051 
4052 	/*
4053 	 * If we aren't flushing all things, let us overcommit up to
4054 	 * 1/2th of the space. If we can flush, don't let us overcommit
4055 	 * too much, let it overcommit up to 1/8 of the space.
4056 	 */
4057 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4058 		avail >>= 3;
4059 	else
4060 		avail >>= 1;
4061 
4062 	if (used + bytes < space_info->total_bytes + avail)
4063 		return 1;
4064 	return 0;
4065 }
4066 
4067 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4068 					 unsigned long nr_pages, int nr_items)
4069 {
4070 	struct super_block *sb = root->fs_info->sb;
4071 
4072 	if (down_read_trylock(&sb->s_umount)) {
4073 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4074 		up_read(&sb->s_umount);
4075 	} else {
4076 		/*
4077 		 * We needn't worry the filesystem going from r/w to r/o though
4078 		 * we don't acquire ->s_umount mutex, because the filesystem
4079 		 * should guarantee the delalloc inodes list be empty after
4080 		 * the filesystem is readonly(all dirty pages are written to
4081 		 * the disk).
4082 		 */
4083 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4084 		if (!current->journal_info)
4085 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4086 	}
4087 }
4088 
4089 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4090 {
4091 	u64 bytes;
4092 	int nr;
4093 
4094 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4095 	nr = (int)div64_u64(to_reclaim, bytes);
4096 	if (!nr)
4097 		nr = 1;
4098 	return nr;
4099 }
4100 
4101 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4102 
4103 /*
4104  * shrink metadata reservation for delalloc
4105  */
4106 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4107 			    bool wait_ordered)
4108 {
4109 	struct btrfs_block_rsv *block_rsv;
4110 	struct btrfs_space_info *space_info;
4111 	struct btrfs_trans_handle *trans;
4112 	u64 delalloc_bytes;
4113 	u64 max_reclaim;
4114 	long time_left;
4115 	unsigned long nr_pages;
4116 	int loops;
4117 	int items;
4118 	enum btrfs_reserve_flush_enum flush;
4119 
4120 	/* Calc the number of the pages we need flush for space reservation */
4121 	items = calc_reclaim_items_nr(root, to_reclaim);
4122 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4123 
4124 	trans = (struct btrfs_trans_handle *)current->journal_info;
4125 	block_rsv = &root->fs_info->delalloc_block_rsv;
4126 	space_info = block_rsv->space_info;
4127 
4128 	delalloc_bytes = percpu_counter_sum_positive(
4129 						&root->fs_info->delalloc_bytes);
4130 	if (delalloc_bytes == 0) {
4131 		if (trans)
4132 			return;
4133 		if (wait_ordered)
4134 			btrfs_wait_ordered_roots(root->fs_info, items);
4135 		return;
4136 	}
4137 
4138 	loops = 0;
4139 	while (delalloc_bytes && loops < 3) {
4140 		max_reclaim = min(delalloc_bytes, to_reclaim);
4141 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4142 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4143 		/*
4144 		 * We need to wait for the async pages to actually start before
4145 		 * we do anything.
4146 		 */
4147 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4148 		if (!max_reclaim)
4149 			goto skip_async;
4150 
4151 		if (max_reclaim <= nr_pages)
4152 			max_reclaim = 0;
4153 		else
4154 			max_reclaim -= nr_pages;
4155 
4156 		wait_event(root->fs_info->async_submit_wait,
4157 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4158 			   (int)max_reclaim);
4159 skip_async:
4160 		if (!trans)
4161 			flush = BTRFS_RESERVE_FLUSH_ALL;
4162 		else
4163 			flush = BTRFS_RESERVE_NO_FLUSH;
4164 		spin_lock(&space_info->lock);
4165 		if (can_overcommit(root, space_info, orig, flush)) {
4166 			spin_unlock(&space_info->lock);
4167 			break;
4168 		}
4169 		spin_unlock(&space_info->lock);
4170 
4171 		loops++;
4172 		if (wait_ordered && !trans) {
4173 			btrfs_wait_ordered_roots(root->fs_info, items);
4174 		} else {
4175 			time_left = schedule_timeout_killable(1);
4176 			if (time_left)
4177 				break;
4178 		}
4179 		delalloc_bytes = percpu_counter_sum_positive(
4180 						&root->fs_info->delalloc_bytes);
4181 	}
4182 }
4183 
4184 /**
4185  * maybe_commit_transaction - possibly commit the transaction if its ok to
4186  * @root - the root we're allocating for
4187  * @bytes - the number of bytes we want to reserve
4188  * @force - force the commit
4189  *
4190  * This will check to make sure that committing the transaction will actually
4191  * get us somewhere and then commit the transaction if it does.  Otherwise it
4192  * will return -ENOSPC.
4193  */
4194 static int may_commit_transaction(struct btrfs_root *root,
4195 				  struct btrfs_space_info *space_info,
4196 				  u64 bytes, int force)
4197 {
4198 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4199 	struct btrfs_trans_handle *trans;
4200 
4201 	trans = (struct btrfs_trans_handle *)current->journal_info;
4202 	if (trans)
4203 		return -EAGAIN;
4204 
4205 	if (force)
4206 		goto commit;
4207 
4208 	/* See if there is enough pinned space to make this reservation */
4209 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4210 				   bytes) >= 0)
4211 		goto commit;
4212 
4213 	/*
4214 	 * See if there is some space in the delayed insertion reservation for
4215 	 * this reservation.
4216 	 */
4217 	if (space_info != delayed_rsv->space_info)
4218 		return -ENOSPC;
4219 
4220 	spin_lock(&delayed_rsv->lock);
4221 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4222 				   bytes - delayed_rsv->size) >= 0) {
4223 		spin_unlock(&delayed_rsv->lock);
4224 		return -ENOSPC;
4225 	}
4226 	spin_unlock(&delayed_rsv->lock);
4227 
4228 commit:
4229 	trans = btrfs_join_transaction(root);
4230 	if (IS_ERR(trans))
4231 		return -ENOSPC;
4232 
4233 	return btrfs_commit_transaction(trans, root);
4234 }
4235 
4236 enum flush_state {
4237 	FLUSH_DELAYED_ITEMS_NR	=	1,
4238 	FLUSH_DELAYED_ITEMS	=	2,
4239 	FLUSH_DELALLOC		=	3,
4240 	FLUSH_DELALLOC_WAIT	=	4,
4241 	ALLOC_CHUNK		=	5,
4242 	COMMIT_TRANS		=	6,
4243 };
4244 
4245 static int flush_space(struct btrfs_root *root,
4246 		       struct btrfs_space_info *space_info, u64 num_bytes,
4247 		       u64 orig_bytes, int state)
4248 {
4249 	struct btrfs_trans_handle *trans;
4250 	int nr;
4251 	int ret = 0;
4252 
4253 	switch (state) {
4254 	case FLUSH_DELAYED_ITEMS_NR:
4255 	case FLUSH_DELAYED_ITEMS:
4256 		if (state == FLUSH_DELAYED_ITEMS_NR)
4257 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4258 		else
4259 			nr = -1;
4260 
4261 		trans = btrfs_join_transaction(root);
4262 		if (IS_ERR(trans)) {
4263 			ret = PTR_ERR(trans);
4264 			break;
4265 		}
4266 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4267 		btrfs_end_transaction(trans, root);
4268 		break;
4269 	case FLUSH_DELALLOC:
4270 	case FLUSH_DELALLOC_WAIT:
4271 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4272 				state == FLUSH_DELALLOC_WAIT);
4273 		break;
4274 	case ALLOC_CHUNK:
4275 		trans = btrfs_join_transaction(root);
4276 		if (IS_ERR(trans)) {
4277 			ret = PTR_ERR(trans);
4278 			break;
4279 		}
4280 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4281 				     btrfs_get_alloc_profile(root, 0),
4282 				     CHUNK_ALLOC_NO_FORCE);
4283 		btrfs_end_transaction(trans, root);
4284 		if (ret == -ENOSPC)
4285 			ret = 0;
4286 		break;
4287 	case COMMIT_TRANS:
4288 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4289 		break;
4290 	default:
4291 		ret = -ENOSPC;
4292 		break;
4293 	}
4294 
4295 	return ret;
4296 }
4297 
4298 static inline u64
4299 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4300 				 struct btrfs_space_info *space_info)
4301 {
4302 	u64 used;
4303 	u64 expected;
4304 	u64 to_reclaim;
4305 
4306 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4307 				16 * 1024 * 1024);
4308 	spin_lock(&space_info->lock);
4309 	if (can_overcommit(root, space_info, to_reclaim,
4310 			   BTRFS_RESERVE_FLUSH_ALL)) {
4311 		to_reclaim = 0;
4312 		goto out;
4313 	}
4314 
4315 	used = space_info->bytes_used + space_info->bytes_reserved +
4316 	       space_info->bytes_pinned + space_info->bytes_readonly +
4317 	       space_info->bytes_may_use;
4318 	if (can_overcommit(root, space_info, 1024 * 1024,
4319 			   BTRFS_RESERVE_FLUSH_ALL))
4320 		expected = div_factor_fine(space_info->total_bytes, 95);
4321 	else
4322 		expected = div_factor_fine(space_info->total_bytes, 90);
4323 
4324 	if (used > expected)
4325 		to_reclaim = used - expected;
4326 	else
4327 		to_reclaim = 0;
4328 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4329 				     space_info->bytes_reserved);
4330 out:
4331 	spin_unlock(&space_info->lock);
4332 
4333 	return to_reclaim;
4334 }
4335 
4336 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4337 					struct btrfs_fs_info *fs_info, u64 used)
4338 {
4339 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4340 		!btrfs_fs_closing(fs_info) &&
4341 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4342 }
4343 
4344 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4345 				       struct btrfs_fs_info *fs_info,
4346 				       int flush_state)
4347 {
4348 	u64 used;
4349 
4350 	spin_lock(&space_info->lock);
4351 	/*
4352 	 * We run out of space and have not got any free space via flush_space,
4353 	 * so don't bother doing async reclaim.
4354 	 */
4355 	if (flush_state > COMMIT_TRANS && space_info->full) {
4356 		spin_unlock(&space_info->lock);
4357 		return 0;
4358 	}
4359 
4360 	used = space_info->bytes_used + space_info->bytes_reserved +
4361 	       space_info->bytes_pinned + space_info->bytes_readonly +
4362 	       space_info->bytes_may_use;
4363 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4364 		spin_unlock(&space_info->lock);
4365 		return 1;
4366 	}
4367 	spin_unlock(&space_info->lock);
4368 
4369 	return 0;
4370 }
4371 
4372 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4373 {
4374 	struct btrfs_fs_info *fs_info;
4375 	struct btrfs_space_info *space_info;
4376 	u64 to_reclaim;
4377 	int flush_state;
4378 
4379 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4380 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4381 
4382 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4383 						      space_info);
4384 	if (!to_reclaim)
4385 		return;
4386 
4387 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4388 	do {
4389 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4390 			    to_reclaim, flush_state);
4391 		flush_state++;
4392 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4393 						 flush_state))
4394 			return;
4395 	} while (flush_state <= COMMIT_TRANS);
4396 
4397 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4398 		queue_work(system_unbound_wq, work);
4399 }
4400 
4401 void btrfs_init_async_reclaim_work(struct work_struct *work)
4402 {
4403 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4404 }
4405 
4406 /**
4407  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4408  * @root - the root we're allocating for
4409  * @block_rsv - the block_rsv we're allocating for
4410  * @orig_bytes - the number of bytes we want
4411  * @flush - whether or not we can flush to make our reservation
4412  *
4413  * This will reserve orgi_bytes number of bytes from the space info associated
4414  * with the block_rsv.  If there is not enough space it will make an attempt to
4415  * flush out space to make room.  It will do this by flushing delalloc if
4416  * possible or committing the transaction.  If flush is 0 then no attempts to
4417  * regain reservations will be made and this will fail if there is not enough
4418  * space already.
4419  */
4420 static int reserve_metadata_bytes(struct btrfs_root *root,
4421 				  struct btrfs_block_rsv *block_rsv,
4422 				  u64 orig_bytes,
4423 				  enum btrfs_reserve_flush_enum flush)
4424 {
4425 	struct btrfs_space_info *space_info = block_rsv->space_info;
4426 	u64 used;
4427 	u64 num_bytes = orig_bytes;
4428 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4429 	int ret = 0;
4430 	bool flushing = false;
4431 
4432 again:
4433 	ret = 0;
4434 	spin_lock(&space_info->lock);
4435 	/*
4436 	 * We only want to wait if somebody other than us is flushing and we
4437 	 * are actually allowed to flush all things.
4438 	 */
4439 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4440 	       space_info->flush) {
4441 		spin_unlock(&space_info->lock);
4442 		/*
4443 		 * If we have a trans handle we can't wait because the flusher
4444 		 * may have to commit the transaction, which would mean we would
4445 		 * deadlock since we are waiting for the flusher to finish, but
4446 		 * hold the current transaction open.
4447 		 */
4448 		if (current->journal_info)
4449 			return -EAGAIN;
4450 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4451 		/* Must have been killed, return */
4452 		if (ret)
4453 			return -EINTR;
4454 
4455 		spin_lock(&space_info->lock);
4456 	}
4457 
4458 	ret = -ENOSPC;
4459 	used = space_info->bytes_used + space_info->bytes_reserved +
4460 		space_info->bytes_pinned + space_info->bytes_readonly +
4461 		space_info->bytes_may_use;
4462 
4463 	/*
4464 	 * The idea here is that we've not already over-reserved the block group
4465 	 * then we can go ahead and save our reservation first and then start
4466 	 * flushing if we need to.  Otherwise if we've already overcommitted
4467 	 * lets start flushing stuff first and then come back and try to make
4468 	 * our reservation.
4469 	 */
4470 	if (used <= space_info->total_bytes) {
4471 		if (used + orig_bytes <= space_info->total_bytes) {
4472 			space_info->bytes_may_use += orig_bytes;
4473 			trace_btrfs_space_reservation(root->fs_info,
4474 				"space_info", space_info->flags, orig_bytes, 1);
4475 			ret = 0;
4476 		} else {
4477 			/*
4478 			 * Ok set num_bytes to orig_bytes since we aren't
4479 			 * overocmmitted, this way we only try and reclaim what
4480 			 * we need.
4481 			 */
4482 			num_bytes = orig_bytes;
4483 		}
4484 	} else {
4485 		/*
4486 		 * Ok we're over committed, set num_bytes to the overcommitted
4487 		 * amount plus the amount of bytes that we need for this
4488 		 * reservation.
4489 		 */
4490 		num_bytes = used - space_info->total_bytes +
4491 			(orig_bytes * 2);
4492 	}
4493 
4494 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4495 		space_info->bytes_may_use += orig_bytes;
4496 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4497 					      space_info->flags, orig_bytes,
4498 					      1);
4499 		ret = 0;
4500 	}
4501 
4502 	/*
4503 	 * Couldn't make our reservation, save our place so while we're trying
4504 	 * to reclaim space we can actually use it instead of somebody else
4505 	 * stealing it from us.
4506 	 *
4507 	 * We make the other tasks wait for the flush only when we can flush
4508 	 * all things.
4509 	 */
4510 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4511 		flushing = true;
4512 		space_info->flush = 1;
4513 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4514 		used += orig_bytes;
4515 		/*
4516 		 * We will do the space reservation dance during log replay,
4517 		 * which means we won't have fs_info->fs_root set, so don't do
4518 		 * the async reclaim as we will panic.
4519 		 */
4520 		if (!root->fs_info->log_root_recovering &&
4521 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4522 		    !work_busy(&root->fs_info->async_reclaim_work))
4523 			queue_work(system_unbound_wq,
4524 				   &root->fs_info->async_reclaim_work);
4525 	}
4526 	spin_unlock(&space_info->lock);
4527 
4528 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4529 		goto out;
4530 
4531 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4532 			  flush_state);
4533 	flush_state++;
4534 
4535 	/*
4536 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4537 	 * would happen. So skip delalloc flush.
4538 	 */
4539 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4540 	    (flush_state == FLUSH_DELALLOC ||
4541 	     flush_state == FLUSH_DELALLOC_WAIT))
4542 		flush_state = ALLOC_CHUNK;
4543 
4544 	if (!ret)
4545 		goto again;
4546 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4547 		 flush_state < COMMIT_TRANS)
4548 		goto again;
4549 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4550 		 flush_state <= COMMIT_TRANS)
4551 		goto again;
4552 
4553 out:
4554 	if (ret == -ENOSPC &&
4555 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4556 		struct btrfs_block_rsv *global_rsv =
4557 			&root->fs_info->global_block_rsv;
4558 
4559 		if (block_rsv != global_rsv &&
4560 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4561 			ret = 0;
4562 	}
4563 	if (ret == -ENOSPC)
4564 		trace_btrfs_space_reservation(root->fs_info,
4565 					      "space_info:enospc",
4566 					      space_info->flags, orig_bytes, 1);
4567 	if (flushing) {
4568 		spin_lock(&space_info->lock);
4569 		space_info->flush = 0;
4570 		wake_up_all(&space_info->wait);
4571 		spin_unlock(&space_info->lock);
4572 	}
4573 	return ret;
4574 }
4575 
4576 static struct btrfs_block_rsv *get_block_rsv(
4577 					const struct btrfs_trans_handle *trans,
4578 					const struct btrfs_root *root)
4579 {
4580 	struct btrfs_block_rsv *block_rsv = NULL;
4581 
4582 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4583 		block_rsv = trans->block_rsv;
4584 
4585 	if (root == root->fs_info->csum_root && trans->adding_csums)
4586 		block_rsv = trans->block_rsv;
4587 
4588 	if (root == root->fs_info->uuid_root)
4589 		block_rsv = trans->block_rsv;
4590 
4591 	if (!block_rsv)
4592 		block_rsv = root->block_rsv;
4593 
4594 	if (!block_rsv)
4595 		block_rsv = &root->fs_info->empty_block_rsv;
4596 
4597 	return block_rsv;
4598 }
4599 
4600 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4601 			       u64 num_bytes)
4602 {
4603 	int ret = -ENOSPC;
4604 	spin_lock(&block_rsv->lock);
4605 	if (block_rsv->reserved >= num_bytes) {
4606 		block_rsv->reserved -= num_bytes;
4607 		if (block_rsv->reserved < block_rsv->size)
4608 			block_rsv->full = 0;
4609 		ret = 0;
4610 	}
4611 	spin_unlock(&block_rsv->lock);
4612 	return ret;
4613 }
4614 
4615 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4616 				u64 num_bytes, int update_size)
4617 {
4618 	spin_lock(&block_rsv->lock);
4619 	block_rsv->reserved += num_bytes;
4620 	if (update_size)
4621 		block_rsv->size += num_bytes;
4622 	else if (block_rsv->reserved >= block_rsv->size)
4623 		block_rsv->full = 1;
4624 	spin_unlock(&block_rsv->lock);
4625 }
4626 
4627 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4628 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4629 			     int min_factor)
4630 {
4631 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4632 	u64 min_bytes;
4633 
4634 	if (global_rsv->space_info != dest->space_info)
4635 		return -ENOSPC;
4636 
4637 	spin_lock(&global_rsv->lock);
4638 	min_bytes = div_factor(global_rsv->size, min_factor);
4639 	if (global_rsv->reserved < min_bytes + num_bytes) {
4640 		spin_unlock(&global_rsv->lock);
4641 		return -ENOSPC;
4642 	}
4643 	global_rsv->reserved -= num_bytes;
4644 	if (global_rsv->reserved < global_rsv->size)
4645 		global_rsv->full = 0;
4646 	spin_unlock(&global_rsv->lock);
4647 
4648 	block_rsv_add_bytes(dest, num_bytes, 1);
4649 	return 0;
4650 }
4651 
4652 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4653 				    struct btrfs_block_rsv *block_rsv,
4654 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4655 {
4656 	struct btrfs_space_info *space_info = block_rsv->space_info;
4657 
4658 	spin_lock(&block_rsv->lock);
4659 	if (num_bytes == (u64)-1)
4660 		num_bytes = block_rsv->size;
4661 	block_rsv->size -= num_bytes;
4662 	if (block_rsv->reserved >= block_rsv->size) {
4663 		num_bytes = block_rsv->reserved - block_rsv->size;
4664 		block_rsv->reserved = block_rsv->size;
4665 		block_rsv->full = 1;
4666 	} else {
4667 		num_bytes = 0;
4668 	}
4669 	spin_unlock(&block_rsv->lock);
4670 
4671 	if (num_bytes > 0) {
4672 		if (dest) {
4673 			spin_lock(&dest->lock);
4674 			if (!dest->full) {
4675 				u64 bytes_to_add;
4676 
4677 				bytes_to_add = dest->size - dest->reserved;
4678 				bytes_to_add = min(num_bytes, bytes_to_add);
4679 				dest->reserved += bytes_to_add;
4680 				if (dest->reserved >= dest->size)
4681 					dest->full = 1;
4682 				num_bytes -= bytes_to_add;
4683 			}
4684 			spin_unlock(&dest->lock);
4685 		}
4686 		if (num_bytes) {
4687 			spin_lock(&space_info->lock);
4688 			space_info->bytes_may_use -= num_bytes;
4689 			trace_btrfs_space_reservation(fs_info, "space_info",
4690 					space_info->flags, num_bytes, 0);
4691 			spin_unlock(&space_info->lock);
4692 		}
4693 	}
4694 }
4695 
4696 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4697 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4698 {
4699 	int ret;
4700 
4701 	ret = block_rsv_use_bytes(src, num_bytes);
4702 	if (ret)
4703 		return ret;
4704 
4705 	block_rsv_add_bytes(dst, num_bytes, 1);
4706 	return 0;
4707 }
4708 
4709 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4710 {
4711 	memset(rsv, 0, sizeof(*rsv));
4712 	spin_lock_init(&rsv->lock);
4713 	rsv->type = type;
4714 }
4715 
4716 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4717 					      unsigned short type)
4718 {
4719 	struct btrfs_block_rsv *block_rsv;
4720 	struct btrfs_fs_info *fs_info = root->fs_info;
4721 
4722 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4723 	if (!block_rsv)
4724 		return NULL;
4725 
4726 	btrfs_init_block_rsv(block_rsv, type);
4727 	block_rsv->space_info = __find_space_info(fs_info,
4728 						  BTRFS_BLOCK_GROUP_METADATA);
4729 	return block_rsv;
4730 }
4731 
4732 void btrfs_free_block_rsv(struct btrfs_root *root,
4733 			  struct btrfs_block_rsv *rsv)
4734 {
4735 	if (!rsv)
4736 		return;
4737 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4738 	kfree(rsv);
4739 }
4740 
4741 int btrfs_block_rsv_add(struct btrfs_root *root,
4742 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4743 			enum btrfs_reserve_flush_enum flush)
4744 {
4745 	int ret;
4746 
4747 	if (num_bytes == 0)
4748 		return 0;
4749 
4750 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4751 	if (!ret) {
4752 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4753 		return 0;
4754 	}
4755 
4756 	return ret;
4757 }
4758 
4759 int btrfs_block_rsv_check(struct btrfs_root *root,
4760 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4761 {
4762 	u64 num_bytes = 0;
4763 	int ret = -ENOSPC;
4764 
4765 	if (!block_rsv)
4766 		return 0;
4767 
4768 	spin_lock(&block_rsv->lock);
4769 	num_bytes = div_factor(block_rsv->size, min_factor);
4770 	if (block_rsv->reserved >= num_bytes)
4771 		ret = 0;
4772 	spin_unlock(&block_rsv->lock);
4773 
4774 	return ret;
4775 }
4776 
4777 int btrfs_block_rsv_refill(struct btrfs_root *root,
4778 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4779 			   enum btrfs_reserve_flush_enum flush)
4780 {
4781 	u64 num_bytes = 0;
4782 	int ret = -ENOSPC;
4783 
4784 	if (!block_rsv)
4785 		return 0;
4786 
4787 	spin_lock(&block_rsv->lock);
4788 	num_bytes = min_reserved;
4789 	if (block_rsv->reserved >= num_bytes)
4790 		ret = 0;
4791 	else
4792 		num_bytes -= block_rsv->reserved;
4793 	spin_unlock(&block_rsv->lock);
4794 
4795 	if (!ret)
4796 		return 0;
4797 
4798 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4799 	if (!ret) {
4800 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4801 		return 0;
4802 	}
4803 
4804 	return ret;
4805 }
4806 
4807 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4808 			    struct btrfs_block_rsv *dst_rsv,
4809 			    u64 num_bytes)
4810 {
4811 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4812 }
4813 
4814 void btrfs_block_rsv_release(struct btrfs_root *root,
4815 			     struct btrfs_block_rsv *block_rsv,
4816 			     u64 num_bytes)
4817 {
4818 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4819 	if (global_rsv == block_rsv ||
4820 	    block_rsv->space_info != global_rsv->space_info)
4821 		global_rsv = NULL;
4822 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4823 				num_bytes);
4824 }
4825 
4826 /*
4827  * helper to calculate size of global block reservation.
4828  * the desired value is sum of space used by extent tree,
4829  * checksum tree and root tree
4830  */
4831 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4832 {
4833 	struct btrfs_space_info *sinfo;
4834 	u64 num_bytes;
4835 	u64 meta_used;
4836 	u64 data_used;
4837 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4838 
4839 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4840 	spin_lock(&sinfo->lock);
4841 	data_used = sinfo->bytes_used;
4842 	spin_unlock(&sinfo->lock);
4843 
4844 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4845 	spin_lock(&sinfo->lock);
4846 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4847 		data_used = 0;
4848 	meta_used = sinfo->bytes_used;
4849 	spin_unlock(&sinfo->lock);
4850 
4851 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4852 		    csum_size * 2;
4853 	num_bytes += div64_u64(data_used + meta_used, 50);
4854 
4855 	if (num_bytes * 3 > meta_used)
4856 		num_bytes = div64_u64(meta_used, 3);
4857 
4858 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4859 }
4860 
4861 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4862 {
4863 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4864 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4865 	u64 num_bytes;
4866 
4867 	num_bytes = calc_global_metadata_size(fs_info);
4868 
4869 	spin_lock(&sinfo->lock);
4870 	spin_lock(&block_rsv->lock);
4871 
4872 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4873 
4874 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4875 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4876 		    sinfo->bytes_may_use;
4877 
4878 	if (sinfo->total_bytes > num_bytes) {
4879 		num_bytes = sinfo->total_bytes - num_bytes;
4880 		block_rsv->reserved += num_bytes;
4881 		sinfo->bytes_may_use += num_bytes;
4882 		trace_btrfs_space_reservation(fs_info, "space_info",
4883 				      sinfo->flags, num_bytes, 1);
4884 	}
4885 
4886 	if (block_rsv->reserved >= block_rsv->size) {
4887 		num_bytes = block_rsv->reserved - block_rsv->size;
4888 		sinfo->bytes_may_use -= num_bytes;
4889 		trace_btrfs_space_reservation(fs_info, "space_info",
4890 				      sinfo->flags, num_bytes, 0);
4891 		block_rsv->reserved = block_rsv->size;
4892 		block_rsv->full = 1;
4893 	}
4894 
4895 	spin_unlock(&block_rsv->lock);
4896 	spin_unlock(&sinfo->lock);
4897 }
4898 
4899 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4900 {
4901 	struct btrfs_space_info *space_info;
4902 
4903 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4904 	fs_info->chunk_block_rsv.space_info = space_info;
4905 
4906 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4907 	fs_info->global_block_rsv.space_info = space_info;
4908 	fs_info->delalloc_block_rsv.space_info = space_info;
4909 	fs_info->trans_block_rsv.space_info = space_info;
4910 	fs_info->empty_block_rsv.space_info = space_info;
4911 	fs_info->delayed_block_rsv.space_info = space_info;
4912 
4913 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4914 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4915 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4916 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4917 	if (fs_info->quota_root)
4918 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4919 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4920 
4921 	update_global_block_rsv(fs_info);
4922 }
4923 
4924 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4925 {
4926 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4927 				(u64)-1);
4928 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4929 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4930 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4931 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4932 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4933 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4934 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4935 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4936 }
4937 
4938 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4939 				  struct btrfs_root *root)
4940 {
4941 	if (!trans->block_rsv)
4942 		return;
4943 
4944 	if (!trans->bytes_reserved)
4945 		return;
4946 
4947 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4948 				      trans->transid, trans->bytes_reserved, 0);
4949 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4950 	trans->bytes_reserved = 0;
4951 }
4952 
4953 /* Can only return 0 or -ENOSPC */
4954 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4955 				  struct inode *inode)
4956 {
4957 	struct btrfs_root *root = BTRFS_I(inode)->root;
4958 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4959 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4960 
4961 	/*
4962 	 * We need to hold space in order to delete our orphan item once we've
4963 	 * added it, so this takes the reservation so we can release it later
4964 	 * when we are truly done with the orphan item.
4965 	 */
4966 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4967 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4968 				      btrfs_ino(inode), num_bytes, 1);
4969 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4970 }
4971 
4972 void btrfs_orphan_release_metadata(struct inode *inode)
4973 {
4974 	struct btrfs_root *root = BTRFS_I(inode)->root;
4975 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4976 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4977 				      btrfs_ino(inode), num_bytes, 0);
4978 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4979 }
4980 
4981 /*
4982  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4983  * root: the root of the parent directory
4984  * rsv: block reservation
4985  * items: the number of items that we need do reservation
4986  * qgroup_reserved: used to return the reserved size in qgroup
4987  *
4988  * This function is used to reserve the space for snapshot/subvolume
4989  * creation and deletion. Those operations are different with the
4990  * common file/directory operations, they change two fs/file trees
4991  * and root tree, the number of items that the qgroup reserves is
4992  * different with the free space reservation. So we can not use
4993  * the space reseravtion mechanism in start_transaction().
4994  */
4995 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4996 				     struct btrfs_block_rsv *rsv,
4997 				     int items,
4998 				     u64 *qgroup_reserved,
4999 				     bool use_global_rsv)
5000 {
5001 	u64 num_bytes;
5002 	int ret;
5003 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5004 
5005 	if (root->fs_info->quota_enabled) {
5006 		/* One for parent inode, two for dir entries */
5007 		num_bytes = 3 * root->nodesize;
5008 		ret = btrfs_qgroup_reserve(root, num_bytes);
5009 		if (ret)
5010 			return ret;
5011 	} else {
5012 		num_bytes = 0;
5013 	}
5014 
5015 	*qgroup_reserved = num_bytes;
5016 
5017 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5018 	rsv->space_info = __find_space_info(root->fs_info,
5019 					    BTRFS_BLOCK_GROUP_METADATA);
5020 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5021 				  BTRFS_RESERVE_FLUSH_ALL);
5022 
5023 	if (ret == -ENOSPC && use_global_rsv)
5024 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5025 
5026 	if (ret) {
5027 		if (*qgroup_reserved)
5028 			btrfs_qgroup_free(root, *qgroup_reserved);
5029 	}
5030 
5031 	return ret;
5032 }
5033 
5034 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5035 				      struct btrfs_block_rsv *rsv,
5036 				      u64 qgroup_reserved)
5037 {
5038 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5039 	if (qgroup_reserved)
5040 		btrfs_qgroup_free(root, qgroup_reserved);
5041 }
5042 
5043 /**
5044  * drop_outstanding_extent - drop an outstanding extent
5045  * @inode: the inode we're dropping the extent for
5046  *
5047  * This is called when we are freeing up an outstanding extent, either called
5048  * after an error or after an extent is written.  This will return the number of
5049  * reserved extents that need to be freed.  This must be called with
5050  * BTRFS_I(inode)->lock held.
5051  */
5052 static unsigned drop_outstanding_extent(struct inode *inode)
5053 {
5054 	unsigned drop_inode_space = 0;
5055 	unsigned dropped_extents = 0;
5056 
5057 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5058 	BTRFS_I(inode)->outstanding_extents--;
5059 
5060 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5061 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5062 			       &BTRFS_I(inode)->runtime_flags))
5063 		drop_inode_space = 1;
5064 
5065 	/*
5066 	 * If we have more or the same amount of outsanding extents than we have
5067 	 * reserved then we need to leave the reserved extents count alone.
5068 	 */
5069 	if (BTRFS_I(inode)->outstanding_extents >=
5070 	    BTRFS_I(inode)->reserved_extents)
5071 		return drop_inode_space;
5072 
5073 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5074 		BTRFS_I(inode)->outstanding_extents;
5075 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5076 	return dropped_extents + drop_inode_space;
5077 }
5078 
5079 /**
5080  * calc_csum_metadata_size - return the amount of metada space that must be
5081  *	reserved/free'd for the given bytes.
5082  * @inode: the inode we're manipulating
5083  * @num_bytes: the number of bytes in question
5084  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5085  *
5086  * This adjusts the number of csum_bytes in the inode and then returns the
5087  * correct amount of metadata that must either be reserved or freed.  We
5088  * calculate how many checksums we can fit into one leaf and then divide the
5089  * number of bytes that will need to be checksumed by this value to figure out
5090  * how many checksums will be required.  If we are adding bytes then the number
5091  * may go up and we will return the number of additional bytes that must be
5092  * reserved.  If it is going down we will return the number of bytes that must
5093  * be freed.
5094  *
5095  * This must be called with BTRFS_I(inode)->lock held.
5096  */
5097 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5098 				   int reserve)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(inode)->root;
5101 	u64 csum_size;
5102 	int num_csums_per_leaf;
5103 	int num_csums;
5104 	int old_csums;
5105 
5106 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5107 	    BTRFS_I(inode)->csum_bytes == 0)
5108 		return 0;
5109 
5110 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5111 	if (reserve)
5112 		BTRFS_I(inode)->csum_bytes += num_bytes;
5113 	else
5114 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5115 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5116 	num_csums_per_leaf = (int)div64_u64(csum_size,
5117 					    sizeof(struct btrfs_csum_item) +
5118 					    sizeof(struct btrfs_disk_key));
5119 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5120 	num_csums = num_csums + num_csums_per_leaf - 1;
5121 	num_csums = num_csums / num_csums_per_leaf;
5122 
5123 	old_csums = old_csums + num_csums_per_leaf - 1;
5124 	old_csums = old_csums / num_csums_per_leaf;
5125 
5126 	/* No change, no need to reserve more */
5127 	if (old_csums == num_csums)
5128 		return 0;
5129 
5130 	if (reserve)
5131 		return btrfs_calc_trans_metadata_size(root,
5132 						      num_csums - old_csums);
5133 
5134 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5135 }
5136 
5137 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5138 {
5139 	struct btrfs_root *root = BTRFS_I(inode)->root;
5140 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5141 	u64 to_reserve = 0;
5142 	u64 csum_bytes;
5143 	unsigned nr_extents = 0;
5144 	int extra_reserve = 0;
5145 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5146 	int ret = 0;
5147 	bool delalloc_lock = true;
5148 	u64 to_free = 0;
5149 	unsigned dropped;
5150 
5151 	/* If we are a free space inode we need to not flush since we will be in
5152 	 * the middle of a transaction commit.  We also don't need the delalloc
5153 	 * mutex since we won't race with anybody.  We need this mostly to make
5154 	 * lockdep shut its filthy mouth.
5155 	 */
5156 	if (btrfs_is_free_space_inode(inode)) {
5157 		flush = BTRFS_RESERVE_NO_FLUSH;
5158 		delalloc_lock = false;
5159 	}
5160 
5161 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5162 	    btrfs_transaction_in_commit(root->fs_info))
5163 		schedule_timeout(1);
5164 
5165 	if (delalloc_lock)
5166 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5167 
5168 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5169 
5170 	spin_lock(&BTRFS_I(inode)->lock);
5171 	BTRFS_I(inode)->outstanding_extents++;
5172 
5173 	if (BTRFS_I(inode)->outstanding_extents >
5174 	    BTRFS_I(inode)->reserved_extents)
5175 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5176 			BTRFS_I(inode)->reserved_extents;
5177 
5178 	/*
5179 	 * Add an item to reserve for updating the inode when we complete the
5180 	 * delalloc io.
5181 	 */
5182 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5183 		      &BTRFS_I(inode)->runtime_flags)) {
5184 		nr_extents++;
5185 		extra_reserve = 1;
5186 	}
5187 
5188 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5189 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5190 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5191 	spin_unlock(&BTRFS_I(inode)->lock);
5192 
5193 	if (root->fs_info->quota_enabled) {
5194 		ret = btrfs_qgroup_reserve(root, num_bytes +
5195 					   nr_extents * root->nodesize);
5196 		if (ret)
5197 			goto out_fail;
5198 	}
5199 
5200 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5201 	if (unlikely(ret)) {
5202 		if (root->fs_info->quota_enabled)
5203 			btrfs_qgroup_free(root, num_bytes +
5204 						nr_extents * root->nodesize);
5205 		goto out_fail;
5206 	}
5207 
5208 	spin_lock(&BTRFS_I(inode)->lock);
5209 	if (extra_reserve) {
5210 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5211 			&BTRFS_I(inode)->runtime_flags);
5212 		nr_extents--;
5213 	}
5214 	BTRFS_I(inode)->reserved_extents += nr_extents;
5215 	spin_unlock(&BTRFS_I(inode)->lock);
5216 
5217 	if (delalloc_lock)
5218 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5219 
5220 	if (to_reserve)
5221 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5222 					      btrfs_ino(inode), to_reserve, 1);
5223 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5224 
5225 	return 0;
5226 
5227 out_fail:
5228 	spin_lock(&BTRFS_I(inode)->lock);
5229 	dropped = drop_outstanding_extent(inode);
5230 	/*
5231 	 * If the inodes csum_bytes is the same as the original
5232 	 * csum_bytes then we know we haven't raced with any free()ers
5233 	 * so we can just reduce our inodes csum bytes and carry on.
5234 	 */
5235 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5236 		calc_csum_metadata_size(inode, num_bytes, 0);
5237 	} else {
5238 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5239 		u64 bytes;
5240 
5241 		/*
5242 		 * This is tricky, but first we need to figure out how much we
5243 		 * free'd from any free-ers that occured during this
5244 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5245 		 * before we dropped our lock, and then call the free for the
5246 		 * number of bytes that were freed while we were trying our
5247 		 * reservation.
5248 		 */
5249 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5250 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5251 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5252 
5253 
5254 		/*
5255 		 * Now we need to see how much we would have freed had we not
5256 		 * been making this reservation and our ->csum_bytes were not
5257 		 * artificially inflated.
5258 		 */
5259 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5260 		bytes = csum_bytes - orig_csum_bytes;
5261 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5262 
5263 		/*
5264 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5265 		 * more than to_free then we would have free'd more space had we
5266 		 * not had an artificially high ->csum_bytes, so we need to free
5267 		 * the remainder.  If bytes is the same or less then we don't
5268 		 * need to do anything, the other free-ers did the correct
5269 		 * thing.
5270 		 */
5271 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5272 		if (bytes > to_free)
5273 			to_free = bytes - to_free;
5274 		else
5275 			to_free = 0;
5276 	}
5277 	spin_unlock(&BTRFS_I(inode)->lock);
5278 	if (dropped)
5279 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5280 
5281 	if (to_free) {
5282 		btrfs_block_rsv_release(root, block_rsv, to_free);
5283 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5284 					      btrfs_ino(inode), to_free, 0);
5285 	}
5286 	if (delalloc_lock)
5287 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5288 	return ret;
5289 }
5290 
5291 /**
5292  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5293  * @inode: the inode to release the reservation for
5294  * @num_bytes: the number of bytes we're releasing
5295  *
5296  * This will release the metadata reservation for an inode.  This can be called
5297  * once we complete IO for a given set of bytes to release their metadata
5298  * reservations.
5299  */
5300 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5301 {
5302 	struct btrfs_root *root = BTRFS_I(inode)->root;
5303 	u64 to_free = 0;
5304 	unsigned dropped;
5305 
5306 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5307 	spin_lock(&BTRFS_I(inode)->lock);
5308 	dropped = drop_outstanding_extent(inode);
5309 
5310 	if (num_bytes)
5311 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5312 	spin_unlock(&BTRFS_I(inode)->lock);
5313 	if (dropped > 0)
5314 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5315 
5316 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5317 				      btrfs_ino(inode), to_free, 0);
5318 	if (root->fs_info->quota_enabled) {
5319 		btrfs_qgroup_free(root, num_bytes +
5320 					dropped * root->nodesize);
5321 	}
5322 
5323 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5324 				to_free);
5325 }
5326 
5327 /**
5328  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5329  * @inode: inode we're writing to
5330  * @num_bytes: the number of bytes we want to allocate
5331  *
5332  * This will do the following things
5333  *
5334  * o reserve space in the data space info for num_bytes
5335  * o reserve space in the metadata space info based on number of outstanding
5336  *   extents and how much csums will be needed
5337  * o add to the inodes ->delalloc_bytes
5338  * o add it to the fs_info's delalloc inodes list.
5339  *
5340  * This will return 0 for success and -ENOSPC if there is no space left.
5341  */
5342 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5343 {
5344 	int ret;
5345 
5346 	ret = btrfs_check_data_free_space(inode, num_bytes);
5347 	if (ret)
5348 		return ret;
5349 
5350 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5351 	if (ret) {
5352 		btrfs_free_reserved_data_space(inode, num_bytes);
5353 		return ret;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 /**
5360  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5361  * @inode: inode we're releasing space for
5362  * @num_bytes: the number of bytes we want to free up
5363  *
5364  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5365  * called in the case that we don't need the metadata AND data reservations
5366  * anymore.  So if there is an error or we insert an inline extent.
5367  *
5368  * This function will release the metadata space that was not used and will
5369  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5370  * list if there are no delalloc bytes left.
5371  */
5372 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5373 {
5374 	btrfs_delalloc_release_metadata(inode, num_bytes);
5375 	btrfs_free_reserved_data_space(inode, num_bytes);
5376 }
5377 
5378 static int update_block_group(struct btrfs_root *root,
5379 			      u64 bytenr, u64 num_bytes, int alloc)
5380 {
5381 	struct btrfs_block_group_cache *cache = NULL;
5382 	struct btrfs_fs_info *info = root->fs_info;
5383 	u64 total = num_bytes;
5384 	u64 old_val;
5385 	u64 byte_in_group;
5386 	int factor;
5387 
5388 	/* block accounting for super block */
5389 	spin_lock(&info->delalloc_root_lock);
5390 	old_val = btrfs_super_bytes_used(info->super_copy);
5391 	if (alloc)
5392 		old_val += num_bytes;
5393 	else
5394 		old_val -= num_bytes;
5395 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5396 	spin_unlock(&info->delalloc_root_lock);
5397 
5398 	while (total) {
5399 		cache = btrfs_lookup_block_group(info, bytenr);
5400 		if (!cache)
5401 			return -ENOENT;
5402 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5403 				    BTRFS_BLOCK_GROUP_RAID1 |
5404 				    BTRFS_BLOCK_GROUP_RAID10))
5405 			factor = 2;
5406 		else
5407 			factor = 1;
5408 		/*
5409 		 * If this block group has free space cache written out, we
5410 		 * need to make sure to load it if we are removing space.  This
5411 		 * is because we need the unpinning stage to actually add the
5412 		 * space back to the block group, otherwise we will leak space.
5413 		 */
5414 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5415 			cache_block_group(cache, 1);
5416 
5417 		byte_in_group = bytenr - cache->key.objectid;
5418 		WARN_ON(byte_in_group > cache->key.offset);
5419 
5420 		spin_lock(&cache->space_info->lock);
5421 		spin_lock(&cache->lock);
5422 
5423 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5424 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5425 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5426 
5427 		cache->dirty = 1;
5428 		old_val = btrfs_block_group_used(&cache->item);
5429 		num_bytes = min(total, cache->key.offset - byte_in_group);
5430 		if (alloc) {
5431 			old_val += num_bytes;
5432 			btrfs_set_block_group_used(&cache->item, old_val);
5433 			cache->reserved -= num_bytes;
5434 			cache->space_info->bytes_reserved -= num_bytes;
5435 			cache->space_info->bytes_used += num_bytes;
5436 			cache->space_info->disk_used += num_bytes * factor;
5437 			spin_unlock(&cache->lock);
5438 			spin_unlock(&cache->space_info->lock);
5439 		} else {
5440 			old_val -= num_bytes;
5441 			btrfs_set_block_group_used(&cache->item, old_val);
5442 			cache->pinned += num_bytes;
5443 			cache->space_info->bytes_pinned += num_bytes;
5444 			cache->space_info->bytes_used -= num_bytes;
5445 			cache->space_info->disk_used -= num_bytes * factor;
5446 			spin_unlock(&cache->lock);
5447 			spin_unlock(&cache->space_info->lock);
5448 
5449 			set_extent_dirty(info->pinned_extents,
5450 					 bytenr, bytenr + num_bytes - 1,
5451 					 GFP_NOFS | __GFP_NOFAIL);
5452 			/*
5453 			 * No longer have used bytes in this block group, queue
5454 			 * it for deletion.
5455 			 */
5456 			if (old_val == 0) {
5457 				spin_lock(&info->unused_bgs_lock);
5458 				if (list_empty(&cache->bg_list)) {
5459 					btrfs_get_block_group(cache);
5460 					list_add_tail(&cache->bg_list,
5461 						      &info->unused_bgs);
5462 				}
5463 				spin_unlock(&info->unused_bgs_lock);
5464 			}
5465 		}
5466 		btrfs_put_block_group(cache);
5467 		total -= num_bytes;
5468 		bytenr += num_bytes;
5469 	}
5470 	return 0;
5471 }
5472 
5473 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5474 {
5475 	struct btrfs_block_group_cache *cache;
5476 	u64 bytenr;
5477 
5478 	spin_lock(&root->fs_info->block_group_cache_lock);
5479 	bytenr = root->fs_info->first_logical_byte;
5480 	spin_unlock(&root->fs_info->block_group_cache_lock);
5481 
5482 	if (bytenr < (u64)-1)
5483 		return bytenr;
5484 
5485 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5486 	if (!cache)
5487 		return 0;
5488 
5489 	bytenr = cache->key.objectid;
5490 	btrfs_put_block_group(cache);
5491 
5492 	return bytenr;
5493 }
5494 
5495 static int pin_down_extent(struct btrfs_root *root,
5496 			   struct btrfs_block_group_cache *cache,
5497 			   u64 bytenr, u64 num_bytes, int reserved)
5498 {
5499 	spin_lock(&cache->space_info->lock);
5500 	spin_lock(&cache->lock);
5501 	cache->pinned += num_bytes;
5502 	cache->space_info->bytes_pinned += num_bytes;
5503 	if (reserved) {
5504 		cache->reserved -= num_bytes;
5505 		cache->space_info->bytes_reserved -= num_bytes;
5506 	}
5507 	spin_unlock(&cache->lock);
5508 	spin_unlock(&cache->space_info->lock);
5509 
5510 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5511 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5512 	if (reserved)
5513 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5514 	return 0;
5515 }
5516 
5517 /*
5518  * this function must be called within transaction
5519  */
5520 int btrfs_pin_extent(struct btrfs_root *root,
5521 		     u64 bytenr, u64 num_bytes, int reserved)
5522 {
5523 	struct btrfs_block_group_cache *cache;
5524 
5525 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5526 	BUG_ON(!cache); /* Logic error */
5527 
5528 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5529 
5530 	btrfs_put_block_group(cache);
5531 	return 0;
5532 }
5533 
5534 /*
5535  * this function must be called within transaction
5536  */
5537 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5538 				    u64 bytenr, u64 num_bytes)
5539 {
5540 	struct btrfs_block_group_cache *cache;
5541 	int ret;
5542 
5543 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5544 	if (!cache)
5545 		return -EINVAL;
5546 
5547 	/*
5548 	 * pull in the free space cache (if any) so that our pin
5549 	 * removes the free space from the cache.  We have load_only set
5550 	 * to one because the slow code to read in the free extents does check
5551 	 * the pinned extents.
5552 	 */
5553 	cache_block_group(cache, 1);
5554 
5555 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5556 
5557 	/* remove us from the free space cache (if we're there at all) */
5558 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5559 	btrfs_put_block_group(cache);
5560 	return ret;
5561 }
5562 
5563 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5564 {
5565 	int ret;
5566 	struct btrfs_block_group_cache *block_group;
5567 	struct btrfs_caching_control *caching_ctl;
5568 
5569 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5570 	if (!block_group)
5571 		return -EINVAL;
5572 
5573 	cache_block_group(block_group, 0);
5574 	caching_ctl = get_caching_control(block_group);
5575 
5576 	if (!caching_ctl) {
5577 		/* Logic error */
5578 		BUG_ON(!block_group_cache_done(block_group));
5579 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5580 	} else {
5581 		mutex_lock(&caching_ctl->mutex);
5582 
5583 		if (start >= caching_ctl->progress) {
5584 			ret = add_excluded_extent(root, start, num_bytes);
5585 		} else if (start + num_bytes <= caching_ctl->progress) {
5586 			ret = btrfs_remove_free_space(block_group,
5587 						      start, num_bytes);
5588 		} else {
5589 			num_bytes = caching_ctl->progress - start;
5590 			ret = btrfs_remove_free_space(block_group,
5591 						      start, num_bytes);
5592 			if (ret)
5593 				goto out_lock;
5594 
5595 			num_bytes = (start + num_bytes) -
5596 				caching_ctl->progress;
5597 			start = caching_ctl->progress;
5598 			ret = add_excluded_extent(root, start, num_bytes);
5599 		}
5600 out_lock:
5601 		mutex_unlock(&caching_ctl->mutex);
5602 		put_caching_control(caching_ctl);
5603 	}
5604 	btrfs_put_block_group(block_group);
5605 	return ret;
5606 }
5607 
5608 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5609 				 struct extent_buffer *eb)
5610 {
5611 	struct btrfs_file_extent_item *item;
5612 	struct btrfs_key key;
5613 	int found_type;
5614 	int i;
5615 
5616 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5617 		return 0;
5618 
5619 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5620 		btrfs_item_key_to_cpu(eb, &key, i);
5621 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5622 			continue;
5623 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5624 		found_type = btrfs_file_extent_type(eb, item);
5625 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5626 			continue;
5627 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5628 			continue;
5629 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5630 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5631 		__exclude_logged_extent(log, key.objectid, key.offset);
5632 	}
5633 
5634 	return 0;
5635 }
5636 
5637 /**
5638  * btrfs_update_reserved_bytes - update the block_group and space info counters
5639  * @cache:	The cache we are manipulating
5640  * @num_bytes:	The number of bytes in question
5641  * @reserve:	One of the reservation enums
5642  * @delalloc:   The blocks are allocated for the delalloc write
5643  *
5644  * This is called by the allocator when it reserves space, or by somebody who is
5645  * freeing space that was never actually used on disk.  For example if you
5646  * reserve some space for a new leaf in transaction A and before transaction A
5647  * commits you free that leaf, you call this with reserve set to 0 in order to
5648  * clear the reservation.
5649  *
5650  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5651  * ENOSPC accounting.  For data we handle the reservation through clearing the
5652  * delalloc bits in the io_tree.  We have to do this since we could end up
5653  * allocating less disk space for the amount of data we have reserved in the
5654  * case of compression.
5655  *
5656  * If this is a reservation and the block group has become read only we cannot
5657  * make the reservation and return -EAGAIN, otherwise this function always
5658  * succeeds.
5659  */
5660 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5661 				       u64 num_bytes, int reserve, int delalloc)
5662 {
5663 	struct btrfs_space_info *space_info = cache->space_info;
5664 	int ret = 0;
5665 
5666 	spin_lock(&space_info->lock);
5667 	spin_lock(&cache->lock);
5668 	if (reserve != RESERVE_FREE) {
5669 		if (cache->ro) {
5670 			ret = -EAGAIN;
5671 		} else {
5672 			cache->reserved += num_bytes;
5673 			space_info->bytes_reserved += num_bytes;
5674 			if (reserve == RESERVE_ALLOC) {
5675 				trace_btrfs_space_reservation(cache->fs_info,
5676 						"space_info", space_info->flags,
5677 						num_bytes, 0);
5678 				space_info->bytes_may_use -= num_bytes;
5679 			}
5680 
5681 			if (delalloc)
5682 				cache->delalloc_bytes += num_bytes;
5683 		}
5684 	} else {
5685 		if (cache->ro)
5686 			space_info->bytes_readonly += num_bytes;
5687 		cache->reserved -= num_bytes;
5688 		space_info->bytes_reserved -= num_bytes;
5689 
5690 		if (delalloc)
5691 			cache->delalloc_bytes -= num_bytes;
5692 	}
5693 	spin_unlock(&cache->lock);
5694 	spin_unlock(&space_info->lock);
5695 	return ret;
5696 }
5697 
5698 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5699 				struct btrfs_root *root)
5700 {
5701 	struct btrfs_fs_info *fs_info = root->fs_info;
5702 	struct btrfs_caching_control *next;
5703 	struct btrfs_caching_control *caching_ctl;
5704 	struct btrfs_block_group_cache *cache;
5705 
5706 	down_write(&fs_info->commit_root_sem);
5707 
5708 	list_for_each_entry_safe(caching_ctl, next,
5709 				 &fs_info->caching_block_groups, list) {
5710 		cache = caching_ctl->block_group;
5711 		if (block_group_cache_done(cache)) {
5712 			cache->last_byte_to_unpin = (u64)-1;
5713 			list_del_init(&caching_ctl->list);
5714 			put_caching_control(caching_ctl);
5715 		} else {
5716 			cache->last_byte_to_unpin = caching_ctl->progress;
5717 		}
5718 	}
5719 
5720 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5721 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5722 	else
5723 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5724 
5725 	up_write(&fs_info->commit_root_sem);
5726 
5727 	update_global_block_rsv(fs_info);
5728 }
5729 
5730 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5731 {
5732 	struct btrfs_fs_info *fs_info = root->fs_info;
5733 	struct btrfs_block_group_cache *cache = NULL;
5734 	struct btrfs_space_info *space_info;
5735 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5736 	u64 len;
5737 	bool readonly;
5738 
5739 	while (start <= end) {
5740 		readonly = false;
5741 		if (!cache ||
5742 		    start >= cache->key.objectid + cache->key.offset) {
5743 			if (cache)
5744 				btrfs_put_block_group(cache);
5745 			cache = btrfs_lookup_block_group(fs_info, start);
5746 			BUG_ON(!cache); /* Logic error */
5747 		}
5748 
5749 		len = cache->key.objectid + cache->key.offset - start;
5750 		len = min(len, end + 1 - start);
5751 
5752 		if (start < cache->last_byte_to_unpin) {
5753 			len = min(len, cache->last_byte_to_unpin - start);
5754 			btrfs_add_free_space(cache, start, len);
5755 		}
5756 
5757 		start += len;
5758 		space_info = cache->space_info;
5759 
5760 		spin_lock(&space_info->lock);
5761 		spin_lock(&cache->lock);
5762 		cache->pinned -= len;
5763 		space_info->bytes_pinned -= len;
5764 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5765 		if (cache->ro) {
5766 			space_info->bytes_readonly += len;
5767 			readonly = true;
5768 		}
5769 		spin_unlock(&cache->lock);
5770 		if (!readonly && global_rsv->space_info == space_info) {
5771 			spin_lock(&global_rsv->lock);
5772 			if (!global_rsv->full) {
5773 				len = min(len, global_rsv->size -
5774 					  global_rsv->reserved);
5775 				global_rsv->reserved += len;
5776 				space_info->bytes_may_use += len;
5777 				if (global_rsv->reserved >= global_rsv->size)
5778 					global_rsv->full = 1;
5779 			}
5780 			spin_unlock(&global_rsv->lock);
5781 		}
5782 		spin_unlock(&space_info->lock);
5783 	}
5784 
5785 	if (cache)
5786 		btrfs_put_block_group(cache);
5787 	return 0;
5788 }
5789 
5790 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5791 			       struct btrfs_root *root)
5792 {
5793 	struct btrfs_fs_info *fs_info = root->fs_info;
5794 	struct extent_io_tree *unpin;
5795 	u64 start;
5796 	u64 end;
5797 	int ret;
5798 
5799 	if (trans->aborted)
5800 		return 0;
5801 
5802 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5803 		unpin = &fs_info->freed_extents[1];
5804 	else
5805 		unpin = &fs_info->freed_extents[0];
5806 
5807 	while (1) {
5808 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5809 					    EXTENT_DIRTY, NULL);
5810 		if (ret)
5811 			break;
5812 
5813 		if (btrfs_test_opt(root, DISCARD))
5814 			ret = btrfs_discard_extent(root, start,
5815 						   end + 1 - start, NULL);
5816 
5817 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5818 		unpin_extent_range(root, start, end);
5819 		cond_resched();
5820 	}
5821 
5822 	return 0;
5823 }
5824 
5825 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5826 			     u64 owner, u64 root_objectid)
5827 {
5828 	struct btrfs_space_info *space_info;
5829 	u64 flags;
5830 
5831 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5832 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5833 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5834 		else
5835 			flags = BTRFS_BLOCK_GROUP_METADATA;
5836 	} else {
5837 		flags = BTRFS_BLOCK_GROUP_DATA;
5838 	}
5839 
5840 	space_info = __find_space_info(fs_info, flags);
5841 	BUG_ON(!space_info); /* Logic bug */
5842 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5843 }
5844 
5845 
5846 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5847 				struct btrfs_root *root,
5848 				u64 bytenr, u64 num_bytes, u64 parent,
5849 				u64 root_objectid, u64 owner_objectid,
5850 				u64 owner_offset, int refs_to_drop,
5851 				struct btrfs_delayed_extent_op *extent_op,
5852 				int no_quota)
5853 {
5854 	struct btrfs_key key;
5855 	struct btrfs_path *path;
5856 	struct btrfs_fs_info *info = root->fs_info;
5857 	struct btrfs_root *extent_root = info->extent_root;
5858 	struct extent_buffer *leaf;
5859 	struct btrfs_extent_item *ei;
5860 	struct btrfs_extent_inline_ref *iref;
5861 	int ret;
5862 	int is_data;
5863 	int extent_slot = 0;
5864 	int found_extent = 0;
5865 	int num_to_del = 1;
5866 	u32 item_size;
5867 	u64 refs;
5868 	int last_ref = 0;
5869 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5870 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5871 						 SKINNY_METADATA);
5872 
5873 	if (!info->quota_enabled || !is_fstree(root_objectid))
5874 		no_quota = 1;
5875 
5876 	path = btrfs_alloc_path();
5877 	if (!path)
5878 		return -ENOMEM;
5879 
5880 	path->reada = 1;
5881 	path->leave_spinning = 1;
5882 
5883 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5884 	BUG_ON(!is_data && refs_to_drop != 1);
5885 
5886 	if (is_data)
5887 		skinny_metadata = 0;
5888 
5889 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5890 				    bytenr, num_bytes, parent,
5891 				    root_objectid, owner_objectid,
5892 				    owner_offset);
5893 	if (ret == 0) {
5894 		extent_slot = path->slots[0];
5895 		while (extent_slot >= 0) {
5896 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5897 					      extent_slot);
5898 			if (key.objectid != bytenr)
5899 				break;
5900 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5901 			    key.offset == num_bytes) {
5902 				found_extent = 1;
5903 				break;
5904 			}
5905 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5906 			    key.offset == owner_objectid) {
5907 				found_extent = 1;
5908 				break;
5909 			}
5910 			if (path->slots[0] - extent_slot > 5)
5911 				break;
5912 			extent_slot--;
5913 		}
5914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5915 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5916 		if (found_extent && item_size < sizeof(*ei))
5917 			found_extent = 0;
5918 #endif
5919 		if (!found_extent) {
5920 			BUG_ON(iref);
5921 			ret = remove_extent_backref(trans, extent_root, path,
5922 						    NULL, refs_to_drop,
5923 						    is_data, &last_ref);
5924 			if (ret) {
5925 				btrfs_abort_transaction(trans, extent_root, ret);
5926 				goto out;
5927 			}
5928 			btrfs_release_path(path);
5929 			path->leave_spinning = 1;
5930 
5931 			key.objectid = bytenr;
5932 			key.type = BTRFS_EXTENT_ITEM_KEY;
5933 			key.offset = num_bytes;
5934 
5935 			if (!is_data && skinny_metadata) {
5936 				key.type = BTRFS_METADATA_ITEM_KEY;
5937 				key.offset = owner_objectid;
5938 			}
5939 
5940 			ret = btrfs_search_slot(trans, extent_root,
5941 						&key, path, -1, 1);
5942 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5943 				/*
5944 				 * Couldn't find our skinny metadata item,
5945 				 * see if we have ye olde extent item.
5946 				 */
5947 				path->slots[0]--;
5948 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5949 						      path->slots[0]);
5950 				if (key.objectid == bytenr &&
5951 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5952 				    key.offset == num_bytes)
5953 					ret = 0;
5954 			}
5955 
5956 			if (ret > 0 && skinny_metadata) {
5957 				skinny_metadata = false;
5958 				key.objectid = bytenr;
5959 				key.type = BTRFS_EXTENT_ITEM_KEY;
5960 				key.offset = num_bytes;
5961 				btrfs_release_path(path);
5962 				ret = btrfs_search_slot(trans, extent_root,
5963 							&key, path, -1, 1);
5964 			}
5965 
5966 			if (ret) {
5967 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5968 					ret, bytenr);
5969 				if (ret > 0)
5970 					btrfs_print_leaf(extent_root,
5971 							 path->nodes[0]);
5972 			}
5973 			if (ret < 0) {
5974 				btrfs_abort_transaction(trans, extent_root, ret);
5975 				goto out;
5976 			}
5977 			extent_slot = path->slots[0];
5978 		}
5979 	} else if (WARN_ON(ret == -ENOENT)) {
5980 		btrfs_print_leaf(extent_root, path->nodes[0]);
5981 		btrfs_err(info,
5982 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5983 			bytenr, parent, root_objectid, owner_objectid,
5984 			owner_offset);
5985 		btrfs_abort_transaction(trans, extent_root, ret);
5986 		goto out;
5987 	} else {
5988 		btrfs_abort_transaction(trans, extent_root, ret);
5989 		goto out;
5990 	}
5991 
5992 	leaf = path->nodes[0];
5993 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5995 	if (item_size < sizeof(*ei)) {
5996 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5997 		ret = convert_extent_item_v0(trans, extent_root, path,
5998 					     owner_objectid, 0);
5999 		if (ret < 0) {
6000 			btrfs_abort_transaction(trans, extent_root, ret);
6001 			goto out;
6002 		}
6003 
6004 		btrfs_release_path(path);
6005 		path->leave_spinning = 1;
6006 
6007 		key.objectid = bytenr;
6008 		key.type = BTRFS_EXTENT_ITEM_KEY;
6009 		key.offset = num_bytes;
6010 
6011 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6012 					-1, 1);
6013 		if (ret) {
6014 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6015 				ret, bytenr);
6016 			btrfs_print_leaf(extent_root, path->nodes[0]);
6017 		}
6018 		if (ret < 0) {
6019 			btrfs_abort_transaction(trans, extent_root, ret);
6020 			goto out;
6021 		}
6022 
6023 		extent_slot = path->slots[0];
6024 		leaf = path->nodes[0];
6025 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6026 	}
6027 #endif
6028 	BUG_ON(item_size < sizeof(*ei));
6029 	ei = btrfs_item_ptr(leaf, extent_slot,
6030 			    struct btrfs_extent_item);
6031 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6032 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6033 		struct btrfs_tree_block_info *bi;
6034 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6035 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6036 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6037 	}
6038 
6039 	refs = btrfs_extent_refs(leaf, ei);
6040 	if (refs < refs_to_drop) {
6041 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6042 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6043 		ret = -EINVAL;
6044 		btrfs_abort_transaction(trans, extent_root, ret);
6045 		goto out;
6046 	}
6047 	refs -= refs_to_drop;
6048 
6049 	if (refs > 0) {
6050 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6051 		if (extent_op)
6052 			__run_delayed_extent_op(extent_op, leaf, ei);
6053 		/*
6054 		 * In the case of inline back ref, reference count will
6055 		 * be updated by remove_extent_backref
6056 		 */
6057 		if (iref) {
6058 			BUG_ON(!found_extent);
6059 		} else {
6060 			btrfs_set_extent_refs(leaf, ei, refs);
6061 			btrfs_mark_buffer_dirty(leaf);
6062 		}
6063 		if (found_extent) {
6064 			ret = remove_extent_backref(trans, extent_root, path,
6065 						    iref, refs_to_drop,
6066 						    is_data, &last_ref);
6067 			if (ret) {
6068 				btrfs_abort_transaction(trans, extent_root, ret);
6069 				goto out;
6070 			}
6071 		}
6072 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6073 				 root_objectid);
6074 	} else {
6075 		if (found_extent) {
6076 			BUG_ON(is_data && refs_to_drop !=
6077 			       extent_data_ref_count(root, path, iref));
6078 			if (iref) {
6079 				BUG_ON(path->slots[0] != extent_slot);
6080 			} else {
6081 				BUG_ON(path->slots[0] != extent_slot + 1);
6082 				path->slots[0] = extent_slot;
6083 				num_to_del = 2;
6084 			}
6085 		}
6086 
6087 		last_ref = 1;
6088 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6089 				      num_to_del);
6090 		if (ret) {
6091 			btrfs_abort_transaction(trans, extent_root, ret);
6092 			goto out;
6093 		}
6094 		btrfs_release_path(path);
6095 
6096 		if (is_data) {
6097 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6098 			if (ret) {
6099 				btrfs_abort_transaction(trans, extent_root, ret);
6100 				goto out;
6101 			}
6102 		}
6103 
6104 		ret = update_block_group(root, bytenr, num_bytes, 0);
6105 		if (ret) {
6106 			btrfs_abort_transaction(trans, extent_root, ret);
6107 			goto out;
6108 		}
6109 	}
6110 	btrfs_release_path(path);
6111 
6112 	/* Deal with the quota accounting */
6113 	if (!ret && last_ref && !no_quota) {
6114 		int mod_seq = 0;
6115 
6116 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6117 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6118 			mod_seq = 1;
6119 
6120 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6121 					      bytenr, num_bytes, type,
6122 					      mod_seq);
6123 	}
6124 out:
6125 	btrfs_free_path(path);
6126 	return ret;
6127 }
6128 
6129 /*
6130  * when we free an block, it is possible (and likely) that we free the last
6131  * delayed ref for that extent as well.  This searches the delayed ref tree for
6132  * a given extent, and if there are no other delayed refs to be processed, it
6133  * removes it from the tree.
6134  */
6135 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6136 				      struct btrfs_root *root, u64 bytenr)
6137 {
6138 	struct btrfs_delayed_ref_head *head;
6139 	struct btrfs_delayed_ref_root *delayed_refs;
6140 	int ret = 0;
6141 
6142 	delayed_refs = &trans->transaction->delayed_refs;
6143 	spin_lock(&delayed_refs->lock);
6144 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6145 	if (!head)
6146 		goto out_delayed_unlock;
6147 
6148 	spin_lock(&head->lock);
6149 	if (rb_first(&head->ref_root))
6150 		goto out;
6151 
6152 	if (head->extent_op) {
6153 		if (!head->must_insert_reserved)
6154 			goto out;
6155 		btrfs_free_delayed_extent_op(head->extent_op);
6156 		head->extent_op = NULL;
6157 	}
6158 
6159 	/*
6160 	 * waiting for the lock here would deadlock.  If someone else has it
6161 	 * locked they are already in the process of dropping it anyway
6162 	 */
6163 	if (!mutex_trylock(&head->mutex))
6164 		goto out;
6165 
6166 	/*
6167 	 * at this point we have a head with no other entries.  Go
6168 	 * ahead and process it.
6169 	 */
6170 	head->node.in_tree = 0;
6171 	rb_erase(&head->href_node, &delayed_refs->href_root);
6172 
6173 	atomic_dec(&delayed_refs->num_entries);
6174 
6175 	/*
6176 	 * we don't take a ref on the node because we're removing it from the
6177 	 * tree, so we just steal the ref the tree was holding.
6178 	 */
6179 	delayed_refs->num_heads--;
6180 	if (head->processing == 0)
6181 		delayed_refs->num_heads_ready--;
6182 	head->processing = 0;
6183 	spin_unlock(&head->lock);
6184 	spin_unlock(&delayed_refs->lock);
6185 
6186 	BUG_ON(head->extent_op);
6187 	if (head->must_insert_reserved)
6188 		ret = 1;
6189 
6190 	mutex_unlock(&head->mutex);
6191 	btrfs_put_delayed_ref(&head->node);
6192 	return ret;
6193 out:
6194 	spin_unlock(&head->lock);
6195 
6196 out_delayed_unlock:
6197 	spin_unlock(&delayed_refs->lock);
6198 	return 0;
6199 }
6200 
6201 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6202 			   struct btrfs_root *root,
6203 			   struct extent_buffer *buf,
6204 			   u64 parent, int last_ref)
6205 {
6206 	struct btrfs_block_group_cache *cache = NULL;
6207 	int pin = 1;
6208 	int ret;
6209 
6210 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6211 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6212 					buf->start, buf->len,
6213 					parent, root->root_key.objectid,
6214 					btrfs_header_level(buf),
6215 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6216 		BUG_ON(ret); /* -ENOMEM */
6217 	}
6218 
6219 	if (!last_ref)
6220 		return;
6221 
6222 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6223 
6224 	if (btrfs_header_generation(buf) == trans->transid) {
6225 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6226 			ret = check_ref_cleanup(trans, root, buf->start);
6227 			if (!ret)
6228 				goto out;
6229 		}
6230 
6231 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6232 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6233 			goto out;
6234 		}
6235 
6236 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6237 
6238 		btrfs_add_free_space(cache, buf->start, buf->len);
6239 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6240 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6241 		pin = 0;
6242 	}
6243 out:
6244 	if (pin)
6245 		add_pinned_bytes(root->fs_info, buf->len,
6246 				 btrfs_header_level(buf),
6247 				 root->root_key.objectid);
6248 
6249 	/*
6250 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6251 	 * anymore.
6252 	 */
6253 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6254 	btrfs_put_block_group(cache);
6255 }
6256 
6257 /* Can return -ENOMEM */
6258 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6259 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6260 		      u64 owner, u64 offset, int no_quota)
6261 {
6262 	int ret;
6263 	struct btrfs_fs_info *fs_info = root->fs_info;
6264 
6265 	if (btrfs_test_is_dummy_root(root))
6266 		return 0;
6267 
6268 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6269 
6270 	/*
6271 	 * tree log blocks never actually go into the extent allocation
6272 	 * tree, just update pinning info and exit early.
6273 	 */
6274 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6275 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6276 		/* unlocks the pinned mutex */
6277 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6278 		ret = 0;
6279 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6280 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6281 					num_bytes,
6282 					parent, root_objectid, (int)owner,
6283 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6284 	} else {
6285 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6286 						num_bytes,
6287 						parent, root_objectid, owner,
6288 						offset, BTRFS_DROP_DELAYED_REF,
6289 						NULL, no_quota);
6290 	}
6291 	return ret;
6292 }
6293 
6294 /*
6295  * when we wait for progress in the block group caching, its because
6296  * our allocation attempt failed at least once.  So, we must sleep
6297  * and let some progress happen before we try again.
6298  *
6299  * This function will sleep at least once waiting for new free space to
6300  * show up, and then it will check the block group free space numbers
6301  * for our min num_bytes.  Another option is to have it go ahead
6302  * and look in the rbtree for a free extent of a given size, but this
6303  * is a good start.
6304  *
6305  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6306  * any of the information in this block group.
6307  */
6308 static noinline void
6309 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6310 				u64 num_bytes)
6311 {
6312 	struct btrfs_caching_control *caching_ctl;
6313 
6314 	caching_ctl = get_caching_control(cache);
6315 	if (!caching_ctl)
6316 		return;
6317 
6318 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6319 		   (cache->free_space_ctl->free_space >= num_bytes));
6320 
6321 	put_caching_control(caching_ctl);
6322 }
6323 
6324 static noinline int
6325 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6326 {
6327 	struct btrfs_caching_control *caching_ctl;
6328 	int ret = 0;
6329 
6330 	caching_ctl = get_caching_control(cache);
6331 	if (!caching_ctl)
6332 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6333 
6334 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6335 	if (cache->cached == BTRFS_CACHE_ERROR)
6336 		ret = -EIO;
6337 	put_caching_control(caching_ctl);
6338 	return ret;
6339 }
6340 
6341 int __get_raid_index(u64 flags)
6342 {
6343 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6344 		return BTRFS_RAID_RAID10;
6345 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6346 		return BTRFS_RAID_RAID1;
6347 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6348 		return BTRFS_RAID_DUP;
6349 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6350 		return BTRFS_RAID_RAID0;
6351 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6352 		return BTRFS_RAID_RAID5;
6353 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6354 		return BTRFS_RAID_RAID6;
6355 
6356 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6357 }
6358 
6359 int get_block_group_index(struct btrfs_block_group_cache *cache)
6360 {
6361 	return __get_raid_index(cache->flags);
6362 }
6363 
6364 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6365 	[BTRFS_RAID_RAID10]	= "raid10",
6366 	[BTRFS_RAID_RAID1]	= "raid1",
6367 	[BTRFS_RAID_DUP]	= "dup",
6368 	[BTRFS_RAID_RAID0]	= "raid0",
6369 	[BTRFS_RAID_SINGLE]	= "single",
6370 	[BTRFS_RAID_RAID5]	= "raid5",
6371 	[BTRFS_RAID_RAID6]	= "raid6",
6372 };
6373 
6374 static const char *get_raid_name(enum btrfs_raid_types type)
6375 {
6376 	if (type >= BTRFS_NR_RAID_TYPES)
6377 		return NULL;
6378 
6379 	return btrfs_raid_type_names[type];
6380 }
6381 
6382 enum btrfs_loop_type {
6383 	LOOP_CACHING_NOWAIT = 0,
6384 	LOOP_CACHING_WAIT = 1,
6385 	LOOP_ALLOC_CHUNK = 2,
6386 	LOOP_NO_EMPTY_SIZE = 3,
6387 };
6388 
6389 static inline void
6390 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6391 		       int delalloc)
6392 {
6393 	if (delalloc)
6394 		down_read(&cache->data_rwsem);
6395 }
6396 
6397 static inline void
6398 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6399 		       int delalloc)
6400 {
6401 	btrfs_get_block_group(cache);
6402 	if (delalloc)
6403 		down_read(&cache->data_rwsem);
6404 }
6405 
6406 static struct btrfs_block_group_cache *
6407 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6408 		   struct btrfs_free_cluster *cluster,
6409 		   int delalloc)
6410 {
6411 	struct btrfs_block_group_cache *used_bg;
6412 	bool locked = false;
6413 again:
6414 	spin_lock(&cluster->refill_lock);
6415 	if (locked) {
6416 		if (used_bg == cluster->block_group)
6417 			return used_bg;
6418 
6419 		up_read(&used_bg->data_rwsem);
6420 		btrfs_put_block_group(used_bg);
6421 	}
6422 
6423 	used_bg = cluster->block_group;
6424 	if (!used_bg)
6425 		return NULL;
6426 
6427 	if (used_bg == block_group)
6428 		return used_bg;
6429 
6430 	btrfs_get_block_group(used_bg);
6431 
6432 	if (!delalloc)
6433 		return used_bg;
6434 
6435 	if (down_read_trylock(&used_bg->data_rwsem))
6436 		return used_bg;
6437 
6438 	spin_unlock(&cluster->refill_lock);
6439 	down_read(&used_bg->data_rwsem);
6440 	locked = true;
6441 	goto again;
6442 }
6443 
6444 static inline void
6445 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6446 			 int delalloc)
6447 {
6448 	if (delalloc)
6449 		up_read(&cache->data_rwsem);
6450 	btrfs_put_block_group(cache);
6451 }
6452 
6453 /*
6454  * walks the btree of allocated extents and find a hole of a given size.
6455  * The key ins is changed to record the hole:
6456  * ins->objectid == start position
6457  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6458  * ins->offset == the size of the hole.
6459  * Any available blocks before search_start are skipped.
6460  *
6461  * If there is no suitable free space, we will record the max size of
6462  * the free space extent currently.
6463  */
6464 static noinline int find_free_extent(struct btrfs_root *orig_root,
6465 				     u64 num_bytes, u64 empty_size,
6466 				     u64 hint_byte, struct btrfs_key *ins,
6467 				     u64 flags, int delalloc)
6468 {
6469 	int ret = 0;
6470 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6471 	struct btrfs_free_cluster *last_ptr = NULL;
6472 	struct btrfs_block_group_cache *block_group = NULL;
6473 	u64 search_start = 0;
6474 	u64 max_extent_size = 0;
6475 	int empty_cluster = 2 * 1024 * 1024;
6476 	struct btrfs_space_info *space_info;
6477 	int loop = 0;
6478 	int index = __get_raid_index(flags);
6479 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6480 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6481 	bool failed_cluster_refill = false;
6482 	bool failed_alloc = false;
6483 	bool use_cluster = true;
6484 	bool have_caching_bg = false;
6485 
6486 	WARN_ON(num_bytes < root->sectorsize);
6487 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6488 	ins->objectid = 0;
6489 	ins->offset = 0;
6490 
6491 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6492 
6493 	space_info = __find_space_info(root->fs_info, flags);
6494 	if (!space_info) {
6495 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6496 		return -ENOSPC;
6497 	}
6498 
6499 	/*
6500 	 * If the space info is for both data and metadata it means we have a
6501 	 * small filesystem and we can't use the clustering stuff.
6502 	 */
6503 	if (btrfs_mixed_space_info(space_info))
6504 		use_cluster = false;
6505 
6506 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6507 		last_ptr = &root->fs_info->meta_alloc_cluster;
6508 		if (!btrfs_test_opt(root, SSD))
6509 			empty_cluster = 64 * 1024;
6510 	}
6511 
6512 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6513 	    btrfs_test_opt(root, SSD)) {
6514 		last_ptr = &root->fs_info->data_alloc_cluster;
6515 	}
6516 
6517 	if (last_ptr) {
6518 		spin_lock(&last_ptr->lock);
6519 		if (last_ptr->block_group)
6520 			hint_byte = last_ptr->window_start;
6521 		spin_unlock(&last_ptr->lock);
6522 	}
6523 
6524 	search_start = max(search_start, first_logical_byte(root, 0));
6525 	search_start = max(search_start, hint_byte);
6526 
6527 	if (!last_ptr)
6528 		empty_cluster = 0;
6529 
6530 	if (search_start == hint_byte) {
6531 		block_group = btrfs_lookup_block_group(root->fs_info,
6532 						       search_start);
6533 		/*
6534 		 * we don't want to use the block group if it doesn't match our
6535 		 * allocation bits, or if its not cached.
6536 		 *
6537 		 * However if we are re-searching with an ideal block group
6538 		 * picked out then we don't care that the block group is cached.
6539 		 */
6540 		if (block_group && block_group_bits(block_group, flags) &&
6541 		    block_group->cached != BTRFS_CACHE_NO) {
6542 			down_read(&space_info->groups_sem);
6543 			if (list_empty(&block_group->list) ||
6544 			    block_group->ro) {
6545 				/*
6546 				 * someone is removing this block group,
6547 				 * we can't jump into the have_block_group
6548 				 * target because our list pointers are not
6549 				 * valid
6550 				 */
6551 				btrfs_put_block_group(block_group);
6552 				up_read(&space_info->groups_sem);
6553 			} else {
6554 				index = get_block_group_index(block_group);
6555 				btrfs_lock_block_group(block_group, delalloc);
6556 				goto have_block_group;
6557 			}
6558 		} else if (block_group) {
6559 			btrfs_put_block_group(block_group);
6560 		}
6561 	}
6562 search:
6563 	have_caching_bg = false;
6564 	down_read(&space_info->groups_sem);
6565 	list_for_each_entry(block_group, &space_info->block_groups[index],
6566 			    list) {
6567 		u64 offset;
6568 		int cached;
6569 
6570 		btrfs_grab_block_group(block_group, delalloc);
6571 		search_start = block_group->key.objectid;
6572 
6573 		/*
6574 		 * this can happen if we end up cycling through all the
6575 		 * raid types, but we want to make sure we only allocate
6576 		 * for the proper type.
6577 		 */
6578 		if (!block_group_bits(block_group, flags)) {
6579 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6580 				BTRFS_BLOCK_GROUP_RAID1 |
6581 				BTRFS_BLOCK_GROUP_RAID5 |
6582 				BTRFS_BLOCK_GROUP_RAID6 |
6583 				BTRFS_BLOCK_GROUP_RAID10;
6584 
6585 			/*
6586 			 * if they asked for extra copies and this block group
6587 			 * doesn't provide them, bail.  This does allow us to
6588 			 * fill raid0 from raid1.
6589 			 */
6590 			if ((flags & extra) && !(block_group->flags & extra))
6591 				goto loop;
6592 		}
6593 
6594 have_block_group:
6595 		cached = block_group_cache_done(block_group);
6596 		if (unlikely(!cached)) {
6597 			ret = cache_block_group(block_group, 0);
6598 			BUG_ON(ret < 0);
6599 			ret = 0;
6600 		}
6601 
6602 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6603 			goto loop;
6604 		if (unlikely(block_group->ro))
6605 			goto loop;
6606 
6607 		/*
6608 		 * Ok we want to try and use the cluster allocator, so
6609 		 * lets look there
6610 		 */
6611 		if (last_ptr) {
6612 			struct btrfs_block_group_cache *used_block_group;
6613 			unsigned long aligned_cluster;
6614 			/*
6615 			 * the refill lock keeps out other
6616 			 * people trying to start a new cluster
6617 			 */
6618 			used_block_group = btrfs_lock_cluster(block_group,
6619 							      last_ptr,
6620 							      delalloc);
6621 			if (!used_block_group)
6622 				goto refill_cluster;
6623 
6624 			if (used_block_group != block_group &&
6625 			    (used_block_group->ro ||
6626 			     !block_group_bits(used_block_group, flags)))
6627 				goto release_cluster;
6628 
6629 			offset = btrfs_alloc_from_cluster(used_block_group,
6630 						last_ptr,
6631 						num_bytes,
6632 						used_block_group->key.objectid,
6633 						&max_extent_size);
6634 			if (offset) {
6635 				/* we have a block, we're done */
6636 				spin_unlock(&last_ptr->refill_lock);
6637 				trace_btrfs_reserve_extent_cluster(root,
6638 						used_block_group,
6639 						search_start, num_bytes);
6640 				if (used_block_group != block_group) {
6641 					btrfs_release_block_group(block_group,
6642 								  delalloc);
6643 					block_group = used_block_group;
6644 				}
6645 				goto checks;
6646 			}
6647 
6648 			WARN_ON(last_ptr->block_group != used_block_group);
6649 release_cluster:
6650 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6651 			 * set up a new clusters, so lets just skip it
6652 			 * and let the allocator find whatever block
6653 			 * it can find.  If we reach this point, we
6654 			 * will have tried the cluster allocator
6655 			 * plenty of times and not have found
6656 			 * anything, so we are likely way too
6657 			 * fragmented for the clustering stuff to find
6658 			 * anything.
6659 			 *
6660 			 * However, if the cluster is taken from the
6661 			 * current block group, release the cluster
6662 			 * first, so that we stand a better chance of
6663 			 * succeeding in the unclustered
6664 			 * allocation.  */
6665 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6666 			    used_block_group != block_group) {
6667 				spin_unlock(&last_ptr->refill_lock);
6668 				btrfs_release_block_group(used_block_group,
6669 							  delalloc);
6670 				goto unclustered_alloc;
6671 			}
6672 
6673 			/*
6674 			 * this cluster didn't work out, free it and
6675 			 * start over
6676 			 */
6677 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6678 
6679 			if (used_block_group != block_group)
6680 				btrfs_release_block_group(used_block_group,
6681 							  delalloc);
6682 refill_cluster:
6683 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6684 				spin_unlock(&last_ptr->refill_lock);
6685 				goto unclustered_alloc;
6686 			}
6687 
6688 			aligned_cluster = max_t(unsigned long,
6689 						empty_cluster + empty_size,
6690 					      block_group->full_stripe_len);
6691 
6692 			/* allocate a cluster in this block group */
6693 			ret = btrfs_find_space_cluster(root, block_group,
6694 						       last_ptr, search_start,
6695 						       num_bytes,
6696 						       aligned_cluster);
6697 			if (ret == 0) {
6698 				/*
6699 				 * now pull our allocation out of this
6700 				 * cluster
6701 				 */
6702 				offset = btrfs_alloc_from_cluster(block_group,
6703 							last_ptr,
6704 							num_bytes,
6705 							search_start,
6706 							&max_extent_size);
6707 				if (offset) {
6708 					/* we found one, proceed */
6709 					spin_unlock(&last_ptr->refill_lock);
6710 					trace_btrfs_reserve_extent_cluster(root,
6711 						block_group, search_start,
6712 						num_bytes);
6713 					goto checks;
6714 				}
6715 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6716 				   && !failed_cluster_refill) {
6717 				spin_unlock(&last_ptr->refill_lock);
6718 
6719 				failed_cluster_refill = true;
6720 				wait_block_group_cache_progress(block_group,
6721 				       num_bytes + empty_cluster + empty_size);
6722 				goto have_block_group;
6723 			}
6724 
6725 			/*
6726 			 * at this point we either didn't find a cluster
6727 			 * or we weren't able to allocate a block from our
6728 			 * cluster.  Free the cluster we've been trying
6729 			 * to use, and go to the next block group
6730 			 */
6731 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6732 			spin_unlock(&last_ptr->refill_lock);
6733 			goto loop;
6734 		}
6735 
6736 unclustered_alloc:
6737 		spin_lock(&block_group->free_space_ctl->tree_lock);
6738 		if (cached &&
6739 		    block_group->free_space_ctl->free_space <
6740 		    num_bytes + empty_cluster + empty_size) {
6741 			if (block_group->free_space_ctl->free_space >
6742 			    max_extent_size)
6743 				max_extent_size =
6744 					block_group->free_space_ctl->free_space;
6745 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6746 			goto loop;
6747 		}
6748 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6749 
6750 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6751 						    num_bytes, empty_size,
6752 						    &max_extent_size);
6753 		/*
6754 		 * If we didn't find a chunk, and we haven't failed on this
6755 		 * block group before, and this block group is in the middle of
6756 		 * caching and we are ok with waiting, then go ahead and wait
6757 		 * for progress to be made, and set failed_alloc to true.
6758 		 *
6759 		 * If failed_alloc is true then we've already waited on this
6760 		 * block group once and should move on to the next block group.
6761 		 */
6762 		if (!offset && !failed_alloc && !cached &&
6763 		    loop > LOOP_CACHING_NOWAIT) {
6764 			wait_block_group_cache_progress(block_group,
6765 						num_bytes + empty_size);
6766 			failed_alloc = true;
6767 			goto have_block_group;
6768 		} else if (!offset) {
6769 			if (!cached)
6770 				have_caching_bg = true;
6771 			goto loop;
6772 		}
6773 checks:
6774 		search_start = ALIGN(offset, root->stripesize);
6775 
6776 		/* move on to the next group */
6777 		if (search_start + num_bytes >
6778 		    block_group->key.objectid + block_group->key.offset) {
6779 			btrfs_add_free_space(block_group, offset, num_bytes);
6780 			goto loop;
6781 		}
6782 
6783 		if (offset < search_start)
6784 			btrfs_add_free_space(block_group, offset,
6785 					     search_start - offset);
6786 		BUG_ON(offset > search_start);
6787 
6788 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6789 						  alloc_type, delalloc);
6790 		if (ret == -EAGAIN) {
6791 			btrfs_add_free_space(block_group, offset, num_bytes);
6792 			goto loop;
6793 		}
6794 
6795 		/* we are all good, lets return */
6796 		ins->objectid = search_start;
6797 		ins->offset = num_bytes;
6798 
6799 		trace_btrfs_reserve_extent(orig_root, block_group,
6800 					   search_start, num_bytes);
6801 		btrfs_release_block_group(block_group, delalloc);
6802 		break;
6803 loop:
6804 		failed_cluster_refill = false;
6805 		failed_alloc = false;
6806 		BUG_ON(index != get_block_group_index(block_group));
6807 		btrfs_release_block_group(block_group, delalloc);
6808 	}
6809 	up_read(&space_info->groups_sem);
6810 
6811 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6812 		goto search;
6813 
6814 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6815 		goto search;
6816 
6817 	/*
6818 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6819 	 *			caching kthreads as we move along
6820 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6821 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6822 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6823 	 *			again
6824 	 */
6825 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6826 		index = 0;
6827 		loop++;
6828 		if (loop == LOOP_ALLOC_CHUNK) {
6829 			struct btrfs_trans_handle *trans;
6830 			int exist = 0;
6831 
6832 			trans = current->journal_info;
6833 			if (trans)
6834 				exist = 1;
6835 			else
6836 				trans = btrfs_join_transaction(root);
6837 
6838 			if (IS_ERR(trans)) {
6839 				ret = PTR_ERR(trans);
6840 				goto out;
6841 			}
6842 
6843 			ret = do_chunk_alloc(trans, root, flags,
6844 					     CHUNK_ALLOC_FORCE);
6845 			/*
6846 			 * Do not bail out on ENOSPC since we
6847 			 * can do more things.
6848 			 */
6849 			if (ret < 0 && ret != -ENOSPC)
6850 				btrfs_abort_transaction(trans,
6851 							root, ret);
6852 			else
6853 				ret = 0;
6854 			if (!exist)
6855 				btrfs_end_transaction(trans, root);
6856 			if (ret)
6857 				goto out;
6858 		}
6859 
6860 		if (loop == LOOP_NO_EMPTY_SIZE) {
6861 			empty_size = 0;
6862 			empty_cluster = 0;
6863 		}
6864 
6865 		goto search;
6866 	} else if (!ins->objectid) {
6867 		ret = -ENOSPC;
6868 	} else if (ins->objectid) {
6869 		ret = 0;
6870 	}
6871 out:
6872 	if (ret == -ENOSPC)
6873 		ins->offset = max_extent_size;
6874 	return ret;
6875 }
6876 
6877 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6878 			    int dump_block_groups)
6879 {
6880 	struct btrfs_block_group_cache *cache;
6881 	int index = 0;
6882 
6883 	spin_lock(&info->lock);
6884 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6885 	       info->flags,
6886 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6887 	       info->bytes_reserved - info->bytes_readonly,
6888 	       (info->full) ? "" : "not ");
6889 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6890 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6891 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6892 	       info->bytes_reserved, info->bytes_may_use,
6893 	       info->bytes_readonly);
6894 	spin_unlock(&info->lock);
6895 
6896 	if (!dump_block_groups)
6897 		return;
6898 
6899 	down_read(&info->groups_sem);
6900 again:
6901 	list_for_each_entry(cache, &info->block_groups[index], list) {
6902 		spin_lock(&cache->lock);
6903 		printk(KERN_INFO "BTRFS: "
6904 			   "block group %llu has %llu bytes, "
6905 			   "%llu used %llu pinned %llu reserved %s\n",
6906 		       cache->key.objectid, cache->key.offset,
6907 		       btrfs_block_group_used(&cache->item), cache->pinned,
6908 		       cache->reserved, cache->ro ? "[readonly]" : "");
6909 		btrfs_dump_free_space(cache, bytes);
6910 		spin_unlock(&cache->lock);
6911 	}
6912 	if (++index < BTRFS_NR_RAID_TYPES)
6913 		goto again;
6914 	up_read(&info->groups_sem);
6915 }
6916 
6917 int btrfs_reserve_extent(struct btrfs_root *root,
6918 			 u64 num_bytes, u64 min_alloc_size,
6919 			 u64 empty_size, u64 hint_byte,
6920 			 struct btrfs_key *ins, int is_data, int delalloc)
6921 {
6922 	bool final_tried = false;
6923 	u64 flags;
6924 	int ret;
6925 
6926 	flags = btrfs_get_alloc_profile(root, is_data);
6927 again:
6928 	WARN_ON(num_bytes < root->sectorsize);
6929 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6930 			       flags, delalloc);
6931 
6932 	if (ret == -ENOSPC) {
6933 		if (!final_tried && ins->offset) {
6934 			num_bytes = min(num_bytes >> 1, ins->offset);
6935 			num_bytes = round_down(num_bytes, root->sectorsize);
6936 			num_bytes = max(num_bytes, min_alloc_size);
6937 			if (num_bytes == min_alloc_size)
6938 				final_tried = true;
6939 			goto again;
6940 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6941 			struct btrfs_space_info *sinfo;
6942 
6943 			sinfo = __find_space_info(root->fs_info, flags);
6944 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6945 				flags, num_bytes);
6946 			if (sinfo)
6947 				dump_space_info(sinfo, num_bytes, 1);
6948 		}
6949 	}
6950 
6951 	return ret;
6952 }
6953 
6954 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6955 					u64 start, u64 len,
6956 					int pin, int delalloc)
6957 {
6958 	struct btrfs_block_group_cache *cache;
6959 	int ret = 0;
6960 
6961 	cache = btrfs_lookup_block_group(root->fs_info, start);
6962 	if (!cache) {
6963 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6964 			start);
6965 		return -ENOSPC;
6966 	}
6967 
6968 	if (btrfs_test_opt(root, DISCARD))
6969 		ret = btrfs_discard_extent(root, start, len, NULL);
6970 
6971 	if (pin)
6972 		pin_down_extent(root, cache, start, len, 1);
6973 	else {
6974 		btrfs_add_free_space(cache, start, len);
6975 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6976 	}
6977 	btrfs_put_block_group(cache);
6978 
6979 	trace_btrfs_reserved_extent_free(root, start, len);
6980 
6981 	return ret;
6982 }
6983 
6984 int btrfs_free_reserved_extent(struct btrfs_root *root,
6985 			       u64 start, u64 len, int delalloc)
6986 {
6987 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6988 }
6989 
6990 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6991 				       u64 start, u64 len)
6992 {
6993 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6994 }
6995 
6996 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6997 				      struct btrfs_root *root,
6998 				      u64 parent, u64 root_objectid,
6999 				      u64 flags, u64 owner, u64 offset,
7000 				      struct btrfs_key *ins, int ref_mod)
7001 {
7002 	int ret;
7003 	struct btrfs_fs_info *fs_info = root->fs_info;
7004 	struct btrfs_extent_item *extent_item;
7005 	struct btrfs_extent_inline_ref *iref;
7006 	struct btrfs_path *path;
7007 	struct extent_buffer *leaf;
7008 	int type;
7009 	u32 size;
7010 
7011 	if (parent > 0)
7012 		type = BTRFS_SHARED_DATA_REF_KEY;
7013 	else
7014 		type = BTRFS_EXTENT_DATA_REF_KEY;
7015 
7016 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7017 
7018 	path = btrfs_alloc_path();
7019 	if (!path)
7020 		return -ENOMEM;
7021 
7022 	path->leave_spinning = 1;
7023 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7024 				      ins, size);
7025 	if (ret) {
7026 		btrfs_free_path(path);
7027 		return ret;
7028 	}
7029 
7030 	leaf = path->nodes[0];
7031 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7032 				     struct btrfs_extent_item);
7033 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7034 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7035 	btrfs_set_extent_flags(leaf, extent_item,
7036 			       flags | BTRFS_EXTENT_FLAG_DATA);
7037 
7038 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7039 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7040 	if (parent > 0) {
7041 		struct btrfs_shared_data_ref *ref;
7042 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7044 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7045 	} else {
7046 		struct btrfs_extent_data_ref *ref;
7047 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7048 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7049 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7050 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7051 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7052 	}
7053 
7054 	btrfs_mark_buffer_dirty(path->nodes[0]);
7055 	btrfs_free_path(path);
7056 
7057 	/* Always set parent to 0 here since its exclusive anyway. */
7058 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7059 				      ins->objectid, ins->offset,
7060 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7061 	if (ret)
7062 		return ret;
7063 
7064 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
7065 	if (ret) { /* -ENOENT, logic error */
7066 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7067 			ins->objectid, ins->offset);
7068 		BUG();
7069 	}
7070 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7071 	return ret;
7072 }
7073 
7074 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7075 				     struct btrfs_root *root,
7076 				     u64 parent, u64 root_objectid,
7077 				     u64 flags, struct btrfs_disk_key *key,
7078 				     int level, struct btrfs_key *ins,
7079 				     int no_quota)
7080 {
7081 	int ret;
7082 	struct btrfs_fs_info *fs_info = root->fs_info;
7083 	struct btrfs_extent_item *extent_item;
7084 	struct btrfs_tree_block_info *block_info;
7085 	struct btrfs_extent_inline_ref *iref;
7086 	struct btrfs_path *path;
7087 	struct extent_buffer *leaf;
7088 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7089 	u64 num_bytes = ins->offset;
7090 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7091 						 SKINNY_METADATA);
7092 
7093 	if (!skinny_metadata)
7094 		size += sizeof(*block_info);
7095 
7096 	path = btrfs_alloc_path();
7097 	if (!path) {
7098 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7099 						   root->nodesize);
7100 		return -ENOMEM;
7101 	}
7102 
7103 	path->leave_spinning = 1;
7104 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7105 				      ins, size);
7106 	if (ret) {
7107 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7108 						   root->nodesize);
7109 		btrfs_free_path(path);
7110 		return ret;
7111 	}
7112 
7113 	leaf = path->nodes[0];
7114 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7115 				     struct btrfs_extent_item);
7116 	btrfs_set_extent_refs(leaf, extent_item, 1);
7117 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7118 	btrfs_set_extent_flags(leaf, extent_item,
7119 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7120 
7121 	if (skinny_metadata) {
7122 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7123 		num_bytes = root->nodesize;
7124 	} else {
7125 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7126 		btrfs_set_tree_block_key(leaf, block_info, key);
7127 		btrfs_set_tree_block_level(leaf, block_info, level);
7128 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7129 	}
7130 
7131 	if (parent > 0) {
7132 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7133 		btrfs_set_extent_inline_ref_type(leaf, iref,
7134 						 BTRFS_SHARED_BLOCK_REF_KEY);
7135 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7136 	} else {
7137 		btrfs_set_extent_inline_ref_type(leaf, iref,
7138 						 BTRFS_TREE_BLOCK_REF_KEY);
7139 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7140 	}
7141 
7142 	btrfs_mark_buffer_dirty(leaf);
7143 	btrfs_free_path(path);
7144 
7145 	if (!no_quota) {
7146 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7147 					      ins->objectid, num_bytes,
7148 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7149 		if (ret)
7150 			return ret;
7151 	}
7152 
7153 	ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7154 	if (ret) { /* -ENOENT, logic error */
7155 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7156 			ins->objectid, ins->offset);
7157 		BUG();
7158 	}
7159 
7160 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7161 	return ret;
7162 }
7163 
7164 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7165 				     struct btrfs_root *root,
7166 				     u64 root_objectid, u64 owner,
7167 				     u64 offset, struct btrfs_key *ins)
7168 {
7169 	int ret;
7170 
7171 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7172 
7173 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7174 					 ins->offset, 0,
7175 					 root_objectid, owner, offset,
7176 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7177 	return ret;
7178 }
7179 
7180 /*
7181  * this is used by the tree logging recovery code.  It records that
7182  * an extent has been allocated and makes sure to clear the free
7183  * space cache bits as well
7184  */
7185 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7186 				   struct btrfs_root *root,
7187 				   u64 root_objectid, u64 owner, u64 offset,
7188 				   struct btrfs_key *ins)
7189 {
7190 	int ret;
7191 	struct btrfs_block_group_cache *block_group;
7192 
7193 	/*
7194 	 * Mixed block groups will exclude before processing the log so we only
7195 	 * need to do the exlude dance if this fs isn't mixed.
7196 	 */
7197 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7198 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7199 		if (ret)
7200 			return ret;
7201 	}
7202 
7203 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7204 	if (!block_group)
7205 		return -EINVAL;
7206 
7207 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7208 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7209 	BUG_ON(ret); /* logic error */
7210 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7211 					 0, owner, offset, ins, 1);
7212 	btrfs_put_block_group(block_group);
7213 	return ret;
7214 }
7215 
7216 static struct extent_buffer *
7217 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7218 		      u64 bytenr, u32 blocksize, int level)
7219 {
7220 	struct extent_buffer *buf;
7221 
7222 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7223 	if (!buf)
7224 		return ERR_PTR(-ENOMEM);
7225 	btrfs_set_header_generation(buf, trans->transid);
7226 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7227 	btrfs_tree_lock(buf);
7228 	clean_tree_block(trans, root, buf);
7229 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7230 
7231 	btrfs_set_lock_blocking(buf);
7232 	btrfs_set_buffer_uptodate(buf);
7233 
7234 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7235 		buf->log_index = root->log_transid % 2;
7236 		/*
7237 		 * we allow two log transactions at a time, use different
7238 		 * EXENT bit to differentiate dirty pages.
7239 		 */
7240 		if (buf->log_index == 0)
7241 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7242 					buf->start + buf->len - 1, GFP_NOFS);
7243 		else
7244 			set_extent_new(&root->dirty_log_pages, buf->start,
7245 					buf->start + buf->len - 1, GFP_NOFS);
7246 	} else {
7247 		buf->log_index = -1;
7248 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7249 			 buf->start + buf->len - 1, GFP_NOFS);
7250 	}
7251 	trans->blocks_used++;
7252 	/* this returns a buffer locked for blocking */
7253 	return buf;
7254 }
7255 
7256 static struct btrfs_block_rsv *
7257 use_block_rsv(struct btrfs_trans_handle *trans,
7258 	      struct btrfs_root *root, u32 blocksize)
7259 {
7260 	struct btrfs_block_rsv *block_rsv;
7261 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7262 	int ret;
7263 	bool global_updated = false;
7264 
7265 	block_rsv = get_block_rsv(trans, root);
7266 
7267 	if (unlikely(block_rsv->size == 0))
7268 		goto try_reserve;
7269 again:
7270 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7271 	if (!ret)
7272 		return block_rsv;
7273 
7274 	if (block_rsv->failfast)
7275 		return ERR_PTR(ret);
7276 
7277 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7278 		global_updated = true;
7279 		update_global_block_rsv(root->fs_info);
7280 		goto again;
7281 	}
7282 
7283 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7284 		static DEFINE_RATELIMIT_STATE(_rs,
7285 				DEFAULT_RATELIMIT_INTERVAL * 10,
7286 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7287 		if (__ratelimit(&_rs))
7288 			WARN(1, KERN_DEBUG
7289 				"BTRFS: block rsv returned %d\n", ret);
7290 	}
7291 try_reserve:
7292 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7293 				     BTRFS_RESERVE_NO_FLUSH);
7294 	if (!ret)
7295 		return block_rsv;
7296 	/*
7297 	 * If we couldn't reserve metadata bytes try and use some from
7298 	 * the global reserve if its space type is the same as the global
7299 	 * reservation.
7300 	 */
7301 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7302 	    block_rsv->space_info == global_rsv->space_info) {
7303 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7304 		if (!ret)
7305 			return global_rsv;
7306 	}
7307 	return ERR_PTR(ret);
7308 }
7309 
7310 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7311 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7312 {
7313 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7314 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7315 }
7316 
7317 /*
7318  * finds a free extent and does all the dirty work required for allocation
7319  * returns the key for the extent through ins, and a tree buffer for
7320  * the first block of the extent through buf.
7321  *
7322  * returns the tree buffer or NULL.
7323  */
7324 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7325 					struct btrfs_root *root,
7326 					u64 parent, u64 root_objectid,
7327 					struct btrfs_disk_key *key, int level,
7328 					u64 hint, u64 empty_size)
7329 {
7330 	struct btrfs_key ins;
7331 	struct btrfs_block_rsv *block_rsv;
7332 	struct extent_buffer *buf;
7333 	u64 flags = 0;
7334 	int ret;
7335 	u32 blocksize = root->nodesize;
7336 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7337 						 SKINNY_METADATA);
7338 
7339 	if (btrfs_test_is_dummy_root(root)) {
7340 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7341 					    blocksize, level);
7342 		if (!IS_ERR(buf))
7343 			root->alloc_bytenr += blocksize;
7344 		return buf;
7345 	}
7346 
7347 	block_rsv = use_block_rsv(trans, root, blocksize);
7348 	if (IS_ERR(block_rsv))
7349 		return ERR_CAST(block_rsv);
7350 
7351 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7352 				   empty_size, hint, &ins, 0, 0);
7353 	if (ret) {
7354 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7355 		return ERR_PTR(ret);
7356 	}
7357 
7358 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7359 				    blocksize, level);
7360 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7361 
7362 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7363 		if (parent == 0)
7364 			parent = ins.objectid;
7365 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7366 	} else
7367 		BUG_ON(parent > 0);
7368 
7369 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7370 		struct btrfs_delayed_extent_op *extent_op;
7371 		extent_op = btrfs_alloc_delayed_extent_op();
7372 		BUG_ON(!extent_op); /* -ENOMEM */
7373 		if (key)
7374 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7375 		else
7376 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7377 		extent_op->flags_to_set = flags;
7378 		if (skinny_metadata)
7379 			extent_op->update_key = 0;
7380 		else
7381 			extent_op->update_key = 1;
7382 		extent_op->update_flags = 1;
7383 		extent_op->is_data = 0;
7384 		extent_op->level = level;
7385 
7386 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7387 					ins.objectid,
7388 					ins.offset, parent, root_objectid,
7389 					level, BTRFS_ADD_DELAYED_EXTENT,
7390 					extent_op, 0);
7391 		BUG_ON(ret); /* -ENOMEM */
7392 	}
7393 	return buf;
7394 }
7395 
7396 struct walk_control {
7397 	u64 refs[BTRFS_MAX_LEVEL];
7398 	u64 flags[BTRFS_MAX_LEVEL];
7399 	struct btrfs_key update_progress;
7400 	int stage;
7401 	int level;
7402 	int shared_level;
7403 	int update_ref;
7404 	int keep_locks;
7405 	int reada_slot;
7406 	int reada_count;
7407 	int for_reloc;
7408 };
7409 
7410 #define DROP_REFERENCE	1
7411 #define UPDATE_BACKREF	2
7412 
7413 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7414 				     struct btrfs_root *root,
7415 				     struct walk_control *wc,
7416 				     struct btrfs_path *path)
7417 {
7418 	u64 bytenr;
7419 	u64 generation;
7420 	u64 refs;
7421 	u64 flags;
7422 	u32 nritems;
7423 	u32 blocksize;
7424 	struct btrfs_key key;
7425 	struct extent_buffer *eb;
7426 	int ret;
7427 	int slot;
7428 	int nread = 0;
7429 
7430 	if (path->slots[wc->level] < wc->reada_slot) {
7431 		wc->reada_count = wc->reada_count * 2 / 3;
7432 		wc->reada_count = max(wc->reada_count, 2);
7433 	} else {
7434 		wc->reada_count = wc->reada_count * 3 / 2;
7435 		wc->reada_count = min_t(int, wc->reada_count,
7436 					BTRFS_NODEPTRS_PER_BLOCK(root));
7437 	}
7438 
7439 	eb = path->nodes[wc->level];
7440 	nritems = btrfs_header_nritems(eb);
7441 	blocksize = root->nodesize;
7442 
7443 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7444 		if (nread >= wc->reada_count)
7445 			break;
7446 
7447 		cond_resched();
7448 		bytenr = btrfs_node_blockptr(eb, slot);
7449 		generation = btrfs_node_ptr_generation(eb, slot);
7450 
7451 		if (slot == path->slots[wc->level])
7452 			goto reada;
7453 
7454 		if (wc->stage == UPDATE_BACKREF &&
7455 		    generation <= root->root_key.offset)
7456 			continue;
7457 
7458 		/* We don't lock the tree block, it's OK to be racy here */
7459 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7460 					       wc->level - 1, 1, &refs,
7461 					       &flags);
7462 		/* We don't care about errors in readahead. */
7463 		if (ret < 0)
7464 			continue;
7465 		BUG_ON(refs == 0);
7466 
7467 		if (wc->stage == DROP_REFERENCE) {
7468 			if (refs == 1)
7469 				goto reada;
7470 
7471 			if (wc->level == 1 &&
7472 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7473 				continue;
7474 			if (!wc->update_ref ||
7475 			    generation <= root->root_key.offset)
7476 				continue;
7477 			btrfs_node_key_to_cpu(eb, &key, slot);
7478 			ret = btrfs_comp_cpu_keys(&key,
7479 						  &wc->update_progress);
7480 			if (ret < 0)
7481 				continue;
7482 		} else {
7483 			if (wc->level == 1 &&
7484 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7485 				continue;
7486 		}
7487 reada:
7488 		readahead_tree_block(root, bytenr, blocksize);
7489 		nread++;
7490 	}
7491 	wc->reada_slot = slot;
7492 }
7493 
7494 static int account_leaf_items(struct btrfs_trans_handle *trans,
7495 			      struct btrfs_root *root,
7496 			      struct extent_buffer *eb)
7497 {
7498 	int nr = btrfs_header_nritems(eb);
7499 	int i, extent_type, ret;
7500 	struct btrfs_key key;
7501 	struct btrfs_file_extent_item *fi;
7502 	u64 bytenr, num_bytes;
7503 
7504 	for (i = 0; i < nr; i++) {
7505 		btrfs_item_key_to_cpu(eb, &key, i);
7506 
7507 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7508 			continue;
7509 
7510 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7511 		/* filter out non qgroup-accountable extents  */
7512 		extent_type = btrfs_file_extent_type(eb, fi);
7513 
7514 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7515 			continue;
7516 
7517 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7518 		if (!bytenr)
7519 			continue;
7520 
7521 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7522 
7523 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7524 					      root->objectid,
7525 					      bytenr, num_bytes,
7526 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7527 		if (ret)
7528 			return ret;
7529 	}
7530 	return 0;
7531 }
7532 
7533 /*
7534  * Walk up the tree from the bottom, freeing leaves and any interior
7535  * nodes which have had all slots visited. If a node (leaf or
7536  * interior) is freed, the node above it will have it's slot
7537  * incremented. The root node will never be freed.
7538  *
7539  * At the end of this function, we should have a path which has all
7540  * slots incremented to the next position for a search. If we need to
7541  * read a new node it will be NULL and the node above it will have the
7542  * correct slot selected for a later read.
7543  *
7544  * If we increment the root nodes slot counter past the number of
7545  * elements, 1 is returned to signal completion of the search.
7546  */
7547 static int adjust_slots_upwards(struct btrfs_root *root,
7548 				struct btrfs_path *path, int root_level)
7549 {
7550 	int level = 0;
7551 	int nr, slot;
7552 	struct extent_buffer *eb;
7553 
7554 	if (root_level == 0)
7555 		return 1;
7556 
7557 	while (level <= root_level) {
7558 		eb = path->nodes[level];
7559 		nr = btrfs_header_nritems(eb);
7560 		path->slots[level]++;
7561 		slot = path->slots[level];
7562 		if (slot >= nr || level == 0) {
7563 			/*
7564 			 * Don't free the root -  we will detect this
7565 			 * condition after our loop and return a
7566 			 * positive value for caller to stop walking the tree.
7567 			 */
7568 			if (level != root_level) {
7569 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7570 				path->locks[level] = 0;
7571 
7572 				free_extent_buffer(eb);
7573 				path->nodes[level] = NULL;
7574 				path->slots[level] = 0;
7575 			}
7576 		} else {
7577 			/*
7578 			 * We have a valid slot to walk back down
7579 			 * from. Stop here so caller can process these
7580 			 * new nodes.
7581 			 */
7582 			break;
7583 		}
7584 
7585 		level++;
7586 	}
7587 
7588 	eb = path->nodes[root_level];
7589 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7590 		return 1;
7591 
7592 	return 0;
7593 }
7594 
7595 /*
7596  * root_eb is the subtree root and is locked before this function is called.
7597  */
7598 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7599 				  struct btrfs_root *root,
7600 				  struct extent_buffer *root_eb,
7601 				  u64 root_gen,
7602 				  int root_level)
7603 {
7604 	int ret = 0;
7605 	int level;
7606 	struct extent_buffer *eb = root_eb;
7607 	struct btrfs_path *path = NULL;
7608 
7609 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7610 	BUG_ON(root_eb == NULL);
7611 
7612 	if (!root->fs_info->quota_enabled)
7613 		return 0;
7614 
7615 	if (!extent_buffer_uptodate(root_eb)) {
7616 		ret = btrfs_read_buffer(root_eb, root_gen);
7617 		if (ret)
7618 			goto out;
7619 	}
7620 
7621 	if (root_level == 0) {
7622 		ret = account_leaf_items(trans, root, root_eb);
7623 		goto out;
7624 	}
7625 
7626 	path = btrfs_alloc_path();
7627 	if (!path)
7628 		return -ENOMEM;
7629 
7630 	/*
7631 	 * Walk down the tree.  Missing extent blocks are filled in as
7632 	 * we go. Metadata is accounted every time we read a new
7633 	 * extent block.
7634 	 *
7635 	 * When we reach a leaf, we account for file extent items in it,
7636 	 * walk back up the tree (adjusting slot pointers as we go)
7637 	 * and restart the search process.
7638 	 */
7639 	extent_buffer_get(root_eb); /* For path */
7640 	path->nodes[root_level] = root_eb;
7641 	path->slots[root_level] = 0;
7642 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7643 walk_down:
7644 	level = root_level;
7645 	while (level >= 0) {
7646 		if (path->nodes[level] == NULL) {
7647 			int parent_slot;
7648 			u64 child_gen;
7649 			u64 child_bytenr;
7650 
7651 			/* We need to get child blockptr/gen from
7652 			 * parent before we can read it. */
7653 			eb = path->nodes[level + 1];
7654 			parent_slot = path->slots[level + 1];
7655 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7656 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7657 
7658 			eb = read_tree_block(root, child_bytenr, child_gen);
7659 			if (!eb || !extent_buffer_uptodate(eb)) {
7660 				ret = -EIO;
7661 				goto out;
7662 			}
7663 
7664 			path->nodes[level] = eb;
7665 			path->slots[level] = 0;
7666 
7667 			btrfs_tree_read_lock(eb);
7668 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7669 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7670 
7671 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7672 						root->objectid,
7673 						child_bytenr,
7674 						root->nodesize,
7675 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7676 						0);
7677 			if (ret)
7678 				goto out;
7679 
7680 		}
7681 
7682 		if (level == 0) {
7683 			ret = account_leaf_items(trans, root, path->nodes[level]);
7684 			if (ret)
7685 				goto out;
7686 
7687 			/* Nonzero return here means we completed our search */
7688 			ret = adjust_slots_upwards(root, path, root_level);
7689 			if (ret)
7690 				break;
7691 
7692 			/* Restart search with new slots */
7693 			goto walk_down;
7694 		}
7695 
7696 		level--;
7697 	}
7698 
7699 	ret = 0;
7700 out:
7701 	btrfs_free_path(path);
7702 
7703 	return ret;
7704 }
7705 
7706 /*
7707  * helper to process tree block while walking down the tree.
7708  *
7709  * when wc->stage == UPDATE_BACKREF, this function updates
7710  * back refs for pointers in the block.
7711  *
7712  * NOTE: return value 1 means we should stop walking down.
7713  */
7714 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7715 				   struct btrfs_root *root,
7716 				   struct btrfs_path *path,
7717 				   struct walk_control *wc, int lookup_info)
7718 {
7719 	int level = wc->level;
7720 	struct extent_buffer *eb = path->nodes[level];
7721 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7722 	int ret;
7723 
7724 	if (wc->stage == UPDATE_BACKREF &&
7725 	    btrfs_header_owner(eb) != root->root_key.objectid)
7726 		return 1;
7727 
7728 	/*
7729 	 * when reference count of tree block is 1, it won't increase
7730 	 * again. once full backref flag is set, we never clear it.
7731 	 */
7732 	if (lookup_info &&
7733 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7734 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7735 		BUG_ON(!path->locks[level]);
7736 		ret = btrfs_lookup_extent_info(trans, root,
7737 					       eb->start, level, 1,
7738 					       &wc->refs[level],
7739 					       &wc->flags[level]);
7740 		BUG_ON(ret == -ENOMEM);
7741 		if (ret)
7742 			return ret;
7743 		BUG_ON(wc->refs[level] == 0);
7744 	}
7745 
7746 	if (wc->stage == DROP_REFERENCE) {
7747 		if (wc->refs[level] > 1)
7748 			return 1;
7749 
7750 		if (path->locks[level] && !wc->keep_locks) {
7751 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7752 			path->locks[level] = 0;
7753 		}
7754 		return 0;
7755 	}
7756 
7757 	/* wc->stage == UPDATE_BACKREF */
7758 	if (!(wc->flags[level] & flag)) {
7759 		BUG_ON(!path->locks[level]);
7760 		ret = btrfs_inc_ref(trans, root, eb, 1);
7761 		BUG_ON(ret); /* -ENOMEM */
7762 		ret = btrfs_dec_ref(trans, root, eb, 0);
7763 		BUG_ON(ret); /* -ENOMEM */
7764 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7765 						  eb->len, flag,
7766 						  btrfs_header_level(eb), 0);
7767 		BUG_ON(ret); /* -ENOMEM */
7768 		wc->flags[level] |= flag;
7769 	}
7770 
7771 	/*
7772 	 * the block is shared by multiple trees, so it's not good to
7773 	 * keep the tree lock
7774 	 */
7775 	if (path->locks[level] && level > 0) {
7776 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7777 		path->locks[level] = 0;
7778 	}
7779 	return 0;
7780 }
7781 
7782 /*
7783  * helper to process tree block pointer.
7784  *
7785  * when wc->stage == DROP_REFERENCE, this function checks
7786  * reference count of the block pointed to. if the block
7787  * is shared and we need update back refs for the subtree
7788  * rooted at the block, this function changes wc->stage to
7789  * UPDATE_BACKREF. if the block is shared and there is no
7790  * need to update back, this function drops the reference
7791  * to the block.
7792  *
7793  * NOTE: return value 1 means we should stop walking down.
7794  */
7795 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7796 				 struct btrfs_root *root,
7797 				 struct btrfs_path *path,
7798 				 struct walk_control *wc, int *lookup_info)
7799 {
7800 	u64 bytenr;
7801 	u64 generation;
7802 	u64 parent;
7803 	u32 blocksize;
7804 	struct btrfs_key key;
7805 	struct extent_buffer *next;
7806 	int level = wc->level;
7807 	int reada = 0;
7808 	int ret = 0;
7809 	bool need_account = false;
7810 
7811 	generation = btrfs_node_ptr_generation(path->nodes[level],
7812 					       path->slots[level]);
7813 	/*
7814 	 * if the lower level block was created before the snapshot
7815 	 * was created, we know there is no need to update back refs
7816 	 * for the subtree
7817 	 */
7818 	if (wc->stage == UPDATE_BACKREF &&
7819 	    generation <= root->root_key.offset) {
7820 		*lookup_info = 1;
7821 		return 1;
7822 	}
7823 
7824 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7825 	blocksize = root->nodesize;
7826 
7827 	next = btrfs_find_tree_block(root, bytenr);
7828 	if (!next) {
7829 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7830 		if (!next)
7831 			return -ENOMEM;
7832 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7833 					       level - 1);
7834 		reada = 1;
7835 	}
7836 	btrfs_tree_lock(next);
7837 	btrfs_set_lock_blocking(next);
7838 
7839 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7840 				       &wc->refs[level - 1],
7841 				       &wc->flags[level - 1]);
7842 	if (ret < 0) {
7843 		btrfs_tree_unlock(next);
7844 		return ret;
7845 	}
7846 
7847 	if (unlikely(wc->refs[level - 1] == 0)) {
7848 		btrfs_err(root->fs_info, "Missing references.");
7849 		BUG();
7850 	}
7851 	*lookup_info = 0;
7852 
7853 	if (wc->stage == DROP_REFERENCE) {
7854 		if (wc->refs[level - 1] > 1) {
7855 			need_account = true;
7856 			if (level == 1 &&
7857 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7858 				goto skip;
7859 
7860 			if (!wc->update_ref ||
7861 			    generation <= root->root_key.offset)
7862 				goto skip;
7863 
7864 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7865 					      path->slots[level]);
7866 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7867 			if (ret < 0)
7868 				goto skip;
7869 
7870 			wc->stage = UPDATE_BACKREF;
7871 			wc->shared_level = level - 1;
7872 		}
7873 	} else {
7874 		if (level == 1 &&
7875 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7876 			goto skip;
7877 	}
7878 
7879 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7880 		btrfs_tree_unlock(next);
7881 		free_extent_buffer(next);
7882 		next = NULL;
7883 		*lookup_info = 1;
7884 	}
7885 
7886 	if (!next) {
7887 		if (reada && level == 1)
7888 			reada_walk_down(trans, root, wc, path);
7889 		next = read_tree_block(root, bytenr, generation);
7890 		if (!next || !extent_buffer_uptodate(next)) {
7891 			free_extent_buffer(next);
7892 			return -EIO;
7893 		}
7894 		btrfs_tree_lock(next);
7895 		btrfs_set_lock_blocking(next);
7896 	}
7897 
7898 	level--;
7899 	BUG_ON(level != btrfs_header_level(next));
7900 	path->nodes[level] = next;
7901 	path->slots[level] = 0;
7902 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7903 	wc->level = level;
7904 	if (wc->level == 1)
7905 		wc->reada_slot = 0;
7906 	return 0;
7907 skip:
7908 	wc->refs[level - 1] = 0;
7909 	wc->flags[level - 1] = 0;
7910 	if (wc->stage == DROP_REFERENCE) {
7911 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7912 			parent = path->nodes[level]->start;
7913 		} else {
7914 			BUG_ON(root->root_key.objectid !=
7915 			       btrfs_header_owner(path->nodes[level]));
7916 			parent = 0;
7917 		}
7918 
7919 		if (need_account) {
7920 			ret = account_shared_subtree(trans, root, next,
7921 						     generation, level - 1);
7922 			if (ret) {
7923 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7924 					"%d accounting shared subtree. Quota "
7925 					"is out of sync, rescan required.\n",
7926 					root->fs_info->sb->s_id, ret);
7927 			}
7928 		}
7929 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7930 				root->root_key.objectid, level - 1, 0, 0);
7931 		BUG_ON(ret); /* -ENOMEM */
7932 	}
7933 	btrfs_tree_unlock(next);
7934 	free_extent_buffer(next);
7935 	*lookup_info = 1;
7936 	return 1;
7937 }
7938 
7939 /*
7940  * helper to process tree block while walking up the tree.
7941  *
7942  * when wc->stage == DROP_REFERENCE, this function drops
7943  * reference count on the block.
7944  *
7945  * when wc->stage == UPDATE_BACKREF, this function changes
7946  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7947  * to UPDATE_BACKREF previously while processing the block.
7948  *
7949  * NOTE: return value 1 means we should stop walking up.
7950  */
7951 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7952 				 struct btrfs_root *root,
7953 				 struct btrfs_path *path,
7954 				 struct walk_control *wc)
7955 {
7956 	int ret;
7957 	int level = wc->level;
7958 	struct extent_buffer *eb = path->nodes[level];
7959 	u64 parent = 0;
7960 
7961 	if (wc->stage == UPDATE_BACKREF) {
7962 		BUG_ON(wc->shared_level < level);
7963 		if (level < wc->shared_level)
7964 			goto out;
7965 
7966 		ret = find_next_key(path, level + 1, &wc->update_progress);
7967 		if (ret > 0)
7968 			wc->update_ref = 0;
7969 
7970 		wc->stage = DROP_REFERENCE;
7971 		wc->shared_level = -1;
7972 		path->slots[level] = 0;
7973 
7974 		/*
7975 		 * check reference count again if the block isn't locked.
7976 		 * we should start walking down the tree again if reference
7977 		 * count is one.
7978 		 */
7979 		if (!path->locks[level]) {
7980 			BUG_ON(level == 0);
7981 			btrfs_tree_lock(eb);
7982 			btrfs_set_lock_blocking(eb);
7983 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7984 
7985 			ret = btrfs_lookup_extent_info(trans, root,
7986 						       eb->start, level, 1,
7987 						       &wc->refs[level],
7988 						       &wc->flags[level]);
7989 			if (ret < 0) {
7990 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7991 				path->locks[level] = 0;
7992 				return ret;
7993 			}
7994 			BUG_ON(wc->refs[level] == 0);
7995 			if (wc->refs[level] == 1) {
7996 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7997 				path->locks[level] = 0;
7998 				return 1;
7999 			}
8000 		}
8001 	}
8002 
8003 	/* wc->stage == DROP_REFERENCE */
8004 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8005 
8006 	if (wc->refs[level] == 1) {
8007 		if (level == 0) {
8008 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8009 				ret = btrfs_dec_ref(trans, root, eb, 1);
8010 			else
8011 				ret = btrfs_dec_ref(trans, root, eb, 0);
8012 			BUG_ON(ret); /* -ENOMEM */
8013 			ret = account_leaf_items(trans, root, eb);
8014 			if (ret) {
8015 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8016 					"%d accounting leaf items. Quota "
8017 					"is out of sync, rescan required.\n",
8018 					root->fs_info->sb->s_id, ret);
8019 			}
8020 		}
8021 		/* make block locked assertion in clean_tree_block happy */
8022 		if (!path->locks[level] &&
8023 		    btrfs_header_generation(eb) == trans->transid) {
8024 			btrfs_tree_lock(eb);
8025 			btrfs_set_lock_blocking(eb);
8026 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8027 		}
8028 		clean_tree_block(trans, root, eb);
8029 	}
8030 
8031 	if (eb == root->node) {
8032 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8033 			parent = eb->start;
8034 		else
8035 			BUG_ON(root->root_key.objectid !=
8036 			       btrfs_header_owner(eb));
8037 	} else {
8038 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8039 			parent = path->nodes[level + 1]->start;
8040 		else
8041 			BUG_ON(root->root_key.objectid !=
8042 			       btrfs_header_owner(path->nodes[level + 1]));
8043 	}
8044 
8045 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8046 out:
8047 	wc->refs[level] = 0;
8048 	wc->flags[level] = 0;
8049 	return 0;
8050 }
8051 
8052 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8053 				   struct btrfs_root *root,
8054 				   struct btrfs_path *path,
8055 				   struct walk_control *wc)
8056 {
8057 	int level = wc->level;
8058 	int lookup_info = 1;
8059 	int ret;
8060 
8061 	while (level >= 0) {
8062 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8063 		if (ret > 0)
8064 			break;
8065 
8066 		if (level == 0)
8067 			break;
8068 
8069 		if (path->slots[level] >=
8070 		    btrfs_header_nritems(path->nodes[level]))
8071 			break;
8072 
8073 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8074 		if (ret > 0) {
8075 			path->slots[level]++;
8076 			continue;
8077 		} else if (ret < 0)
8078 			return ret;
8079 		level = wc->level;
8080 	}
8081 	return 0;
8082 }
8083 
8084 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8085 				 struct btrfs_root *root,
8086 				 struct btrfs_path *path,
8087 				 struct walk_control *wc, int max_level)
8088 {
8089 	int level = wc->level;
8090 	int ret;
8091 
8092 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8093 	while (level < max_level && path->nodes[level]) {
8094 		wc->level = level;
8095 		if (path->slots[level] + 1 <
8096 		    btrfs_header_nritems(path->nodes[level])) {
8097 			path->slots[level]++;
8098 			return 0;
8099 		} else {
8100 			ret = walk_up_proc(trans, root, path, wc);
8101 			if (ret > 0)
8102 				return 0;
8103 
8104 			if (path->locks[level]) {
8105 				btrfs_tree_unlock_rw(path->nodes[level],
8106 						     path->locks[level]);
8107 				path->locks[level] = 0;
8108 			}
8109 			free_extent_buffer(path->nodes[level]);
8110 			path->nodes[level] = NULL;
8111 			level++;
8112 		}
8113 	}
8114 	return 1;
8115 }
8116 
8117 /*
8118  * drop a subvolume tree.
8119  *
8120  * this function traverses the tree freeing any blocks that only
8121  * referenced by the tree.
8122  *
8123  * when a shared tree block is found. this function decreases its
8124  * reference count by one. if update_ref is true, this function
8125  * also make sure backrefs for the shared block and all lower level
8126  * blocks are properly updated.
8127  *
8128  * If called with for_reloc == 0, may exit early with -EAGAIN
8129  */
8130 int btrfs_drop_snapshot(struct btrfs_root *root,
8131 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8132 			 int for_reloc)
8133 {
8134 	struct btrfs_path *path;
8135 	struct btrfs_trans_handle *trans;
8136 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8137 	struct btrfs_root_item *root_item = &root->root_item;
8138 	struct walk_control *wc;
8139 	struct btrfs_key key;
8140 	int err = 0;
8141 	int ret;
8142 	int level;
8143 	bool root_dropped = false;
8144 
8145 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8146 
8147 	path = btrfs_alloc_path();
8148 	if (!path) {
8149 		err = -ENOMEM;
8150 		goto out;
8151 	}
8152 
8153 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8154 	if (!wc) {
8155 		btrfs_free_path(path);
8156 		err = -ENOMEM;
8157 		goto out;
8158 	}
8159 
8160 	trans = btrfs_start_transaction(tree_root, 0);
8161 	if (IS_ERR(trans)) {
8162 		err = PTR_ERR(trans);
8163 		goto out_free;
8164 	}
8165 
8166 	if (block_rsv)
8167 		trans->block_rsv = block_rsv;
8168 
8169 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8170 		level = btrfs_header_level(root->node);
8171 		path->nodes[level] = btrfs_lock_root_node(root);
8172 		btrfs_set_lock_blocking(path->nodes[level]);
8173 		path->slots[level] = 0;
8174 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8175 		memset(&wc->update_progress, 0,
8176 		       sizeof(wc->update_progress));
8177 	} else {
8178 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8179 		memcpy(&wc->update_progress, &key,
8180 		       sizeof(wc->update_progress));
8181 
8182 		level = root_item->drop_level;
8183 		BUG_ON(level == 0);
8184 		path->lowest_level = level;
8185 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8186 		path->lowest_level = 0;
8187 		if (ret < 0) {
8188 			err = ret;
8189 			goto out_end_trans;
8190 		}
8191 		WARN_ON(ret > 0);
8192 
8193 		/*
8194 		 * unlock our path, this is safe because only this
8195 		 * function is allowed to delete this snapshot
8196 		 */
8197 		btrfs_unlock_up_safe(path, 0);
8198 
8199 		level = btrfs_header_level(root->node);
8200 		while (1) {
8201 			btrfs_tree_lock(path->nodes[level]);
8202 			btrfs_set_lock_blocking(path->nodes[level]);
8203 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8204 
8205 			ret = btrfs_lookup_extent_info(trans, root,
8206 						path->nodes[level]->start,
8207 						level, 1, &wc->refs[level],
8208 						&wc->flags[level]);
8209 			if (ret < 0) {
8210 				err = ret;
8211 				goto out_end_trans;
8212 			}
8213 			BUG_ON(wc->refs[level] == 0);
8214 
8215 			if (level == root_item->drop_level)
8216 				break;
8217 
8218 			btrfs_tree_unlock(path->nodes[level]);
8219 			path->locks[level] = 0;
8220 			WARN_ON(wc->refs[level] != 1);
8221 			level--;
8222 		}
8223 	}
8224 
8225 	wc->level = level;
8226 	wc->shared_level = -1;
8227 	wc->stage = DROP_REFERENCE;
8228 	wc->update_ref = update_ref;
8229 	wc->keep_locks = 0;
8230 	wc->for_reloc = for_reloc;
8231 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8232 
8233 	while (1) {
8234 
8235 		ret = walk_down_tree(trans, root, path, wc);
8236 		if (ret < 0) {
8237 			err = ret;
8238 			break;
8239 		}
8240 
8241 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8242 		if (ret < 0) {
8243 			err = ret;
8244 			break;
8245 		}
8246 
8247 		if (ret > 0) {
8248 			BUG_ON(wc->stage != DROP_REFERENCE);
8249 			break;
8250 		}
8251 
8252 		if (wc->stage == DROP_REFERENCE) {
8253 			level = wc->level;
8254 			btrfs_node_key(path->nodes[level],
8255 				       &root_item->drop_progress,
8256 				       path->slots[level]);
8257 			root_item->drop_level = level;
8258 		}
8259 
8260 		BUG_ON(wc->level == 0);
8261 		if (btrfs_should_end_transaction(trans, tree_root) ||
8262 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8263 			ret = btrfs_update_root(trans, tree_root,
8264 						&root->root_key,
8265 						root_item);
8266 			if (ret) {
8267 				btrfs_abort_transaction(trans, tree_root, ret);
8268 				err = ret;
8269 				goto out_end_trans;
8270 			}
8271 
8272 			/*
8273 			 * Qgroup update accounting is run from
8274 			 * delayed ref handling. This usually works
8275 			 * out because delayed refs are normally the
8276 			 * only way qgroup updates are added. However,
8277 			 * we may have added updates during our tree
8278 			 * walk so run qgroups here to make sure we
8279 			 * don't lose any updates.
8280 			 */
8281 			ret = btrfs_delayed_qgroup_accounting(trans,
8282 							      root->fs_info);
8283 			if (ret)
8284 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8285 						   "running qgroup updates "
8286 						   "during snapshot delete. "
8287 						   "Quota is out of sync, "
8288 						   "rescan required.\n", ret);
8289 
8290 			btrfs_end_transaction_throttle(trans, tree_root);
8291 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8292 				pr_debug("BTRFS: drop snapshot early exit\n");
8293 				err = -EAGAIN;
8294 				goto out_free;
8295 			}
8296 
8297 			trans = btrfs_start_transaction(tree_root, 0);
8298 			if (IS_ERR(trans)) {
8299 				err = PTR_ERR(trans);
8300 				goto out_free;
8301 			}
8302 			if (block_rsv)
8303 				trans->block_rsv = block_rsv;
8304 		}
8305 	}
8306 	btrfs_release_path(path);
8307 	if (err)
8308 		goto out_end_trans;
8309 
8310 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8311 	if (ret) {
8312 		btrfs_abort_transaction(trans, tree_root, ret);
8313 		goto out_end_trans;
8314 	}
8315 
8316 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8317 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8318 				      NULL, NULL);
8319 		if (ret < 0) {
8320 			btrfs_abort_transaction(trans, tree_root, ret);
8321 			err = ret;
8322 			goto out_end_trans;
8323 		} else if (ret > 0) {
8324 			/* if we fail to delete the orphan item this time
8325 			 * around, it'll get picked up the next time.
8326 			 *
8327 			 * The most common failure here is just -ENOENT.
8328 			 */
8329 			btrfs_del_orphan_item(trans, tree_root,
8330 					      root->root_key.objectid);
8331 		}
8332 	}
8333 
8334 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8335 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8336 	} else {
8337 		free_extent_buffer(root->node);
8338 		free_extent_buffer(root->commit_root);
8339 		btrfs_put_fs_root(root);
8340 	}
8341 	root_dropped = true;
8342 out_end_trans:
8343 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8344 	if (ret)
8345 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8346 				   "running qgroup updates "
8347 				   "during snapshot delete. "
8348 				   "Quota is out of sync, "
8349 				   "rescan required.\n", ret);
8350 
8351 	btrfs_end_transaction_throttle(trans, tree_root);
8352 out_free:
8353 	kfree(wc);
8354 	btrfs_free_path(path);
8355 out:
8356 	/*
8357 	 * So if we need to stop dropping the snapshot for whatever reason we
8358 	 * need to make sure to add it back to the dead root list so that we
8359 	 * keep trying to do the work later.  This also cleans up roots if we
8360 	 * don't have it in the radix (like when we recover after a power fail
8361 	 * or unmount) so we don't leak memory.
8362 	 */
8363 	if (!for_reloc && root_dropped == false)
8364 		btrfs_add_dead_root(root);
8365 	if (err && err != -EAGAIN)
8366 		btrfs_std_error(root->fs_info, err);
8367 	return err;
8368 }
8369 
8370 /*
8371  * drop subtree rooted at tree block 'node'.
8372  *
8373  * NOTE: this function will unlock and release tree block 'node'
8374  * only used by relocation code
8375  */
8376 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8377 			struct btrfs_root *root,
8378 			struct extent_buffer *node,
8379 			struct extent_buffer *parent)
8380 {
8381 	struct btrfs_path *path;
8382 	struct walk_control *wc;
8383 	int level;
8384 	int parent_level;
8385 	int ret = 0;
8386 	int wret;
8387 
8388 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8389 
8390 	path = btrfs_alloc_path();
8391 	if (!path)
8392 		return -ENOMEM;
8393 
8394 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8395 	if (!wc) {
8396 		btrfs_free_path(path);
8397 		return -ENOMEM;
8398 	}
8399 
8400 	btrfs_assert_tree_locked(parent);
8401 	parent_level = btrfs_header_level(parent);
8402 	extent_buffer_get(parent);
8403 	path->nodes[parent_level] = parent;
8404 	path->slots[parent_level] = btrfs_header_nritems(parent);
8405 
8406 	btrfs_assert_tree_locked(node);
8407 	level = btrfs_header_level(node);
8408 	path->nodes[level] = node;
8409 	path->slots[level] = 0;
8410 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8411 
8412 	wc->refs[parent_level] = 1;
8413 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8414 	wc->level = level;
8415 	wc->shared_level = -1;
8416 	wc->stage = DROP_REFERENCE;
8417 	wc->update_ref = 0;
8418 	wc->keep_locks = 1;
8419 	wc->for_reloc = 1;
8420 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8421 
8422 	while (1) {
8423 		wret = walk_down_tree(trans, root, path, wc);
8424 		if (wret < 0) {
8425 			ret = wret;
8426 			break;
8427 		}
8428 
8429 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8430 		if (wret < 0)
8431 			ret = wret;
8432 		if (wret != 0)
8433 			break;
8434 	}
8435 
8436 	kfree(wc);
8437 	btrfs_free_path(path);
8438 	return ret;
8439 }
8440 
8441 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8442 {
8443 	u64 num_devices;
8444 	u64 stripped;
8445 
8446 	/*
8447 	 * if restripe for this chunk_type is on pick target profile and
8448 	 * return, otherwise do the usual balance
8449 	 */
8450 	stripped = get_restripe_target(root->fs_info, flags);
8451 	if (stripped)
8452 		return extended_to_chunk(stripped);
8453 
8454 	num_devices = root->fs_info->fs_devices->rw_devices;
8455 
8456 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8457 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8458 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8459 
8460 	if (num_devices == 1) {
8461 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8462 		stripped = flags & ~stripped;
8463 
8464 		/* turn raid0 into single device chunks */
8465 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8466 			return stripped;
8467 
8468 		/* turn mirroring into duplication */
8469 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8470 			     BTRFS_BLOCK_GROUP_RAID10))
8471 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8472 	} else {
8473 		/* they already had raid on here, just return */
8474 		if (flags & stripped)
8475 			return flags;
8476 
8477 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8478 		stripped = flags & ~stripped;
8479 
8480 		/* switch duplicated blocks with raid1 */
8481 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8482 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8483 
8484 		/* this is drive concat, leave it alone */
8485 	}
8486 
8487 	return flags;
8488 }
8489 
8490 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8491 {
8492 	struct btrfs_space_info *sinfo = cache->space_info;
8493 	u64 num_bytes;
8494 	u64 min_allocable_bytes;
8495 	int ret = -ENOSPC;
8496 
8497 
8498 	/*
8499 	 * We need some metadata space and system metadata space for
8500 	 * allocating chunks in some corner cases until we force to set
8501 	 * it to be readonly.
8502 	 */
8503 	if ((sinfo->flags &
8504 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8505 	    !force)
8506 		min_allocable_bytes = 1 * 1024 * 1024;
8507 	else
8508 		min_allocable_bytes = 0;
8509 
8510 	spin_lock(&sinfo->lock);
8511 	spin_lock(&cache->lock);
8512 
8513 	if (cache->ro) {
8514 		ret = 0;
8515 		goto out;
8516 	}
8517 
8518 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8519 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8520 
8521 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8522 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8523 	    min_allocable_bytes <= sinfo->total_bytes) {
8524 		sinfo->bytes_readonly += num_bytes;
8525 		cache->ro = 1;
8526 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8527 		ret = 0;
8528 	}
8529 out:
8530 	spin_unlock(&cache->lock);
8531 	spin_unlock(&sinfo->lock);
8532 	return ret;
8533 }
8534 
8535 int btrfs_set_block_group_ro(struct btrfs_root *root,
8536 			     struct btrfs_block_group_cache *cache)
8537 
8538 {
8539 	struct btrfs_trans_handle *trans;
8540 	u64 alloc_flags;
8541 	int ret;
8542 
8543 	BUG_ON(cache->ro);
8544 
8545 	trans = btrfs_join_transaction(root);
8546 	if (IS_ERR(trans))
8547 		return PTR_ERR(trans);
8548 
8549 	alloc_flags = update_block_group_flags(root, cache->flags);
8550 	if (alloc_flags != cache->flags) {
8551 		ret = do_chunk_alloc(trans, root, alloc_flags,
8552 				     CHUNK_ALLOC_FORCE);
8553 		if (ret < 0)
8554 			goto out;
8555 	}
8556 
8557 	ret = set_block_group_ro(cache, 0);
8558 	if (!ret)
8559 		goto out;
8560 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8561 	ret = do_chunk_alloc(trans, root, alloc_flags,
8562 			     CHUNK_ALLOC_FORCE);
8563 	if (ret < 0)
8564 		goto out;
8565 	ret = set_block_group_ro(cache, 0);
8566 out:
8567 	btrfs_end_transaction(trans, root);
8568 	return ret;
8569 }
8570 
8571 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8572 			    struct btrfs_root *root, u64 type)
8573 {
8574 	u64 alloc_flags = get_alloc_profile(root, type);
8575 	return do_chunk_alloc(trans, root, alloc_flags,
8576 			      CHUNK_ALLOC_FORCE);
8577 }
8578 
8579 /*
8580  * helper to account the unused space of all the readonly block group in the
8581  * space_info. takes mirrors into account.
8582  */
8583 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8584 {
8585 	struct btrfs_block_group_cache *block_group;
8586 	u64 free_bytes = 0;
8587 	int factor;
8588 
8589 	/* It's df, we don't care if it's racey */
8590 	if (list_empty(&sinfo->ro_bgs))
8591 		return 0;
8592 
8593 	spin_lock(&sinfo->lock);
8594 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8595 		spin_lock(&block_group->lock);
8596 
8597 		if (!block_group->ro) {
8598 			spin_unlock(&block_group->lock);
8599 			continue;
8600 		}
8601 
8602 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8603 					  BTRFS_BLOCK_GROUP_RAID10 |
8604 					  BTRFS_BLOCK_GROUP_DUP))
8605 			factor = 2;
8606 		else
8607 			factor = 1;
8608 
8609 		free_bytes += (block_group->key.offset -
8610 			       btrfs_block_group_used(&block_group->item)) *
8611 			       factor;
8612 
8613 		spin_unlock(&block_group->lock);
8614 	}
8615 	spin_unlock(&sinfo->lock);
8616 
8617 	return free_bytes;
8618 }
8619 
8620 void btrfs_set_block_group_rw(struct btrfs_root *root,
8621 			      struct btrfs_block_group_cache *cache)
8622 {
8623 	struct btrfs_space_info *sinfo = cache->space_info;
8624 	u64 num_bytes;
8625 
8626 	BUG_ON(!cache->ro);
8627 
8628 	spin_lock(&sinfo->lock);
8629 	spin_lock(&cache->lock);
8630 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8631 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8632 	sinfo->bytes_readonly -= num_bytes;
8633 	cache->ro = 0;
8634 	list_del_init(&cache->ro_list);
8635 	spin_unlock(&cache->lock);
8636 	spin_unlock(&sinfo->lock);
8637 }
8638 
8639 /*
8640  * checks to see if its even possible to relocate this block group.
8641  *
8642  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8643  * ok to go ahead and try.
8644  */
8645 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8646 {
8647 	struct btrfs_block_group_cache *block_group;
8648 	struct btrfs_space_info *space_info;
8649 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8650 	struct btrfs_device *device;
8651 	struct btrfs_trans_handle *trans;
8652 	u64 min_free;
8653 	u64 dev_min = 1;
8654 	u64 dev_nr = 0;
8655 	u64 target;
8656 	int index;
8657 	int full = 0;
8658 	int ret = 0;
8659 
8660 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8661 
8662 	/* odd, couldn't find the block group, leave it alone */
8663 	if (!block_group)
8664 		return -1;
8665 
8666 	min_free = btrfs_block_group_used(&block_group->item);
8667 
8668 	/* no bytes used, we're good */
8669 	if (!min_free)
8670 		goto out;
8671 
8672 	space_info = block_group->space_info;
8673 	spin_lock(&space_info->lock);
8674 
8675 	full = space_info->full;
8676 
8677 	/*
8678 	 * if this is the last block group we have in this space, we can't
8679 	 * relocate it unless we're able to allocate a new chunk below.
8680 	 *
8681 	 * Otherwise, we need to make sure we have room in the space to handle
8682 	 * all of the extents from this block group.  If we can, we're good
8683 	 */
8684 	if ((space_info->total_bytes != block_group->key.offset) &&
8685 	    (space_info->bytes_used + space_info->bytes_reserved +
8686 	     space_info->bytes_pinned + space_info->bytes_readonly +
8687 	     min_free < space_info->total_bytes)) {
8688 		spin_unlock(&space_info->lock);
8689 		goto out;
8690 	}
8691 	spin_unlock(&space_info->lock);
8692 
8693 	/*
8694 	 * ok we don't have enough space, but maybe we have free space on our
8695 	 * devices to allocate new chunks for relocation, so loop through our
8696 	 * alloc devices and guess if we have enough space.  if this block
8697 	 * group is going to be restriped, run checks against the target
8698 	 * profile instead of the current one.
8699 	 */
8700 	ret = -1;
8701 
8702 	/*
8703 	 * index:
8704 	 *      0: raid10
8705 	 *      1: raid1
8706 	 *      2: dup
8707 	 *      3: raid0
8708 	 *      4: single
8709 	 */
8710 	target = get_restripe_target(root->fs_info, block_group->flags);
8711 	if (target) {
8712 		index = __get_raid_index(extended_to_chunk(target));
8713 	} else {
8714 		/*
8715 		 * this is just a balance, so if we were marked as full
8716 		 * we know there is no space for a new chunk
8717 		 */
8718 		if (full)
8719 			goto out;
8720 
8721 		index = get_block_group_index(block_group);
8722 	}
8723 
8724 	if (index == BTRFS_RAID_RAID10) {
8725 		dev_min = 4;
8726 		/* Divide by 2 */
8727 		min_free >>= 1;
8728 	} else if (index == BTRFS_RAID_RAID1) {
8729 		dev_min = 2;
8730 	} else if (index == BTRFS_RAID_DUP) {
8731 		/* Multiply by 2 */
8732 		min_free <<= 1;
8733 	} else if (index == BTRFS_RAID_RAID0) {
8734 		dev_min = fs_devices->rw_devices;
8735 		do_div(min_free, dev_min);
8736 	}
8737 
8738 	/* We need to do this so that we can look at pending chunks */
8739 	trans = btrfs_join_transaction(root);
8740 	if (IS_ERR(trans)) {
8741 		ret = PTR_ERR(trans);
8742 		goto out;
8743 	}
8744 
8745 	mutex_lock(&root->fs_info->chunk_mutex);
8746 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8747 		u64 dev_offset;
8748 
8749 		/*
8750 		 * check to make sure we can actually find a chunk with enough
8751 		 * space to fit our block group in.
8752 		 */
8753 		if (device->total_bytes > device->bytes_used + min_free &&
8754 		    !device->is_tgtdev_for_dev_replace) {
8755 			ret = find_free_dev_extent(trans, device, min_free,
8756 						   &dev_offset, NULL);
8757 			if (!ret)
8758 				dev_nr++;
8759 
8760 			if (dev_nr >= dev_min)
8761 				break;
8762 
8763 			ret = -1;
8764 		}
8765 	}
8766 	mutex_unlock(&root->fs_info->chunk_mutex);
8767 	btrfs_end_transaction(trans, root);
8768 out:
8769 	btrfs_put_block_group(block_group);
8770 	return ret;
8771 }
8772 
8773 static int find_first_block_group(struct btrfs_root *root,
8774 		struct btrfs_path *path, struct btrfs_key *key)
8775 {
8776 	int ret = 0;
8777 	struct btrfs_key found_key;
8778 	struct extent_buffer *leaf;
8779 	int slot;
8780 
8781 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8782 	if (ret < 0)
8783 		goto out;
8784 
8785 	while (1) {
8786 		slot = path->slots[0];
8787 		leaf = path->nodes[0];
8788 		if (slot >= btrfs_header_nritems(leaf)) {
8789 			ret = btrfs_next_leaf(root, path);
8790 			if (ret == 0)
8791 				continue;
8792 			if (ret < 0)
8793 				goto out;
8794 			break;
8795 		}
8796 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8797 
8798 		if (found_key.objectid >= key->objectid &&
8799 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8800 			ret = 0;
8801 			goto out;
8802 		}
8803 		path->slots[0]++;
8804 	}
8805 out:
8806 	return ret;
8807 }
8808 
8809 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8810 {
8811 	struct btrfs_block_group_cache *block_group;
8812 	u64 last = 0;
8813 
8814 	while (1) {
8815 		struct inode *inode;
8816 
8817 		block_group = btrfs_lookup_first_block_group(info, last);
8818 		while (block_group) {
8819 			spin_lock(&block_group->lock);
8820 			if (block_group->iref)
8821 				break;
8822 			spin_unlock(&block_group->lock);
8823 			block_group = next_block_group(info->tree_root,
8824 						       block_group);
8825 		}
8826 		if (!block_group) {
8827 			if (last == 0)
8828 				break;
8829 			last = 0;
8830 			continue;
8831 		}
8832 
8833 		inode = block_group->inode;
8834 		block_group->iref = 0;
8835 		block_group->inode = NULL;
8836 		spin_unlock(&block_group->lock);
8837 		iput(inode);
8838 		last = block_group->key.objectid + block_group->key.offset;
8839 		btrfs_put_block_group(block_group);
8840 	}
8841 }
8842 
8843 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8844 {
8845 	struct btrfs_block_group_cache *block_group;
8846 	struct btrfs_space_info *space_info;
8847 	struct btrfs_caching_control *caching_ctl;
8848 	struct rb_node *n;
8849 
8850 	down_write(&info->commit_root_sem);
8851 	while (!list_empty(&info->caching_block_groups)) {
8852 		caching_ctl = list_entry(info->caching_block_groups.next,
8853 					 struct btrfs_caching_control, list);
8854 		list_del(&caching_ctl->list);
8855 		put_caching_control(caching_ctl);
8856 	}
8857 	up_write(&info->commit_root_sem);
8858 
8859 	spin_lock(&info->unused_bgs_lock);
8860 	while (!list_empty(&info->unused_bgs)) {
8861 		block_group = list_first_entry(&info->unused_bgs,
8862 					       struct btrfs_block_group_cache,
8863 					       bg_list);
8864 		list_del_init(&block_group->bg_list);
8865 		btrfs_put_block_group(block_group);
8866 	}
8867 	spin_unlock(&info->unused_bgs_lock);
8868 
8869 	spin_lock(&info->block_group_cache_lock);
8870 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8871 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8872 				       cache_node);
8873 		rb_erase(&block_group->cache_node,
8874 			 &info->block_group_cache_tree);
8875 		spin_unlock(&info->block_group_cache_lock);
8876 
8877 		down_write(&block_group->space_info->groups_sem);
8878 		list_del(&block_group->list);
8879 		up_write(&block_group->space_info->groups_sem);
8880 
8881 		if (block_group->cached == BTRFS_CACHE_STARTED)
8882 			wait_block_group_cache_done(block_group);
8883 
8884 		/*
8885 		 * We haven't cached this block group, which means we could
8886 		 * possibly have excluded extents on this block group.
8887 		 */
8888 		if (block_group->cached == BTRFS_CACHE_NO ||
8889 		    block_group->cached == BTRFS_CACHE_ERROR)
8890 			free_excluded_extents(info->extent_root, block_group);
8891 
8892 		btrfs_remove_free_space_cache(block_group);
8893 		btrfs_put_block_group(block_group);
8894 
8895 		spin_lock(&info->block_group_cache_lock);
8896 	}
8897 	spin_unlock(&info->block_group_cache_lock);
8898 
8899 	/* now that all the block groups are freed, go through and
8900 	 * free all the space_info structs.  This is only called during
8901 	 * the final stages of unmount, and so we know nobody is
8902 	 * using them.  We call synchronize_rcu() once before we start,
8903 	 * just to be on the safe side.
8904 	 */
8905 	synchronize_rcu();
8906 
8907 	release_global_block_rsv(info);
8908 
8909 	while (!list_empty(&info->space_info)) {
8910 		int i;
8911 
8912 		space_info = list_entry(info->space_info.next,
8913 					struct btrfs_space_info,
8914 					list);
8915 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8916 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8917 			    space_info->bytes_reserved > 0 ||
8918 			    space_info->bytes_may_use > 0)) {
8919 				dump_space_info(space_info, 0, 0);
8920 			}
8921 		}
8922 		list_del(&space_info->list);
8923 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8924 			struct kobject *kobj;
8925 			kobj = space_info->block_group_kobjs[i];
8926 			space_info->block_group_kobjs[i] = NULL;
8927 			if (kobj) {
8928 				kobject_del(kobj);
8929 				kobject_put(kobj);
8930 			}
8931 		}
8932 		kobject_del(&space_info->kobj);
8933 		kobject_put(&space_info->kobj);
8934 	}
8935 	return 0;
8936 }
8937 
8938 static void __link_block_group(struct btrfs_space_info *space_info,
8939 			       struct btrfs_block_group_cache *cache)
8940 {
8941 	int index = get_block_group_index(cache);
8942 	bool first = false;
8943 
8944 	down_write(&space_info->groups_sem);
8945 	if (list_empty(&space_info->block_groups[index]))
8946 		first = true;
8947 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8948 	up_write(&space_info->groups_sem);
8949 
8950 	if (first) {
8951 		struct raid_kobject *rkobj;
8952 		int ret;
8953 
8954 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8955 		if (!rkobj)
8956 			goto out_err;
8957 		rkobj->raid_type = index;
8958 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8959 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8960 				  "%s", get_raid_name(index));
8961 		if (ret) {
8962 			kobject_put(&rkobj->kobj);
8963 			goto out_err;
8964 		}
8965 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8966 	}
8967 
8968 	return;
8969 out_err:
8970 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8971 }
8972 
8973 static struct btrfs_block_group_cache *
8974 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8975 {
8976 	struct btrfs_block_group_cache *cache;
8977 
8978 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8979 	if (!cache)
8980 		return NULL;
8981 
8982 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8983 					GFP_NOFS);
8984 	if (!cache->free_space_ctl) {
8985 		kfree(cache);
8986 		return NULL;
8987 	}
8988 
8989 	cache->key.objectid = start;
8990 	cache->key.offset = size;
8991 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8992 
8993 	cache->sectorsize = root->sectorsize;
8994 	cache->fs_info = root->fs_info;
8995 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8996 					       &root->fs_info->mapping_tree,
8997 					       start);
8998 	atomic_set(&cache->count, 1);
8999 	spin_lock_init(&cache->lock);
9000 	init_rwsem(&cache->data_rwsem);
9001 	INIT_LIST_HEAD(&cache->list);
9002 	INIT_LIST_HEAD(&cache->cluster_list);
9003 	INIT_LIST_HEAD(&cache->bg_list);
9004 	INIT_LIST_HEAD(&cache->ro_list);
9005 	btrfs_init_free_space_ctl(cache);
9006 	atomic_set(&cache->trimming, 0);
9007 
9008 	return cache;
9009 }
9010 
9011 int btrfs_read_block_groups(struct btrfs_root *root)
9012 {
9013 	struct btrfs_path *path;
9014 	int ret;
9015 	struct btrfs_block_group_cache *cache;
9016 	struct btrfs_fs_info *info = root->fs_info;
9017 	struct btrfs_space_info *space_info;
9018 	struct btrfs_key key;
9019 	struct btrfs_key found_key;
9020 	struct extent_buffer *leaf;
9021 	int need_clear = 0;
9022 	u64 cache_gen;
9023 
9024 	root = info->extent_root;
9025 	key.objectid = 0;
9026 	key.offset = 0;
9027 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9028 	path = btrfs_alloc_path();
9029 	if (!path)
9030 		return -ENOMEM;
9031 	path->reada = 1;
9032 
9033 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9034 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9035 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9036 		need_clear = 1;
9037 	if (btrfs_test_opt(root, CLEAR_CACHE))
9038 		need_clear = 1;
9039 
9040 	while (1) {
9041 		ret = find_first_block_group(root, path, &key);
9042 		if (ret > 0)
9043 			break;
9044 		if (ret != 0)
9045 			goto error;
9046 
9047 		leaf = path->nodes[0];
9048 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9049 
9050 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9051 						       found_key.offset);
9052 		if (!cache) {
9053 			ret = -ENOMEM;
9054 			goto error;
9055 		}
9056 
9057 		if (need_clear) {
9058 			/*
9059 			 * When we mount with old space cache, we need to
9060 			 * set BTRFS_DC_CLEAR and set dirty flag.
9061 			 *
9062 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9063 			 *    truncate the old free space cache inode and
9064 			 *    setup a new one.
9065 			 * b) Setting 'dirty flag' makes sure that we flush
9066 			 *    the new space cache info onto disk.
9067 			 */
9068 			cache->disk_cache_state = BTRFS_DC_CLEAR;
9069 			if (btrfs_test_opt(root, SPACE_CACHE))
9070 				cache->dirty = 1;
9071 		}
9072 
9073 		read_extent_buffer(leaf, &cache->item,
9074 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9075 				   sizeof(cache->item));
9076 		cache->flags = btrfs_block_group_flags(&cache->item);
9077 
9078 		key.objectid = found_key.objectid + found_key.offset;
9079 		btrfs_release_path(path);
9080 
9081 		/*
9082 		 * We need to exclude the super stripes now so that the space
9083 		 * info has super bytes accounted for, otherwise we'll think
9084 		 * we have more space than we actually do.
9085 		 */
9086 		ret = exclude_super_stripes(root, cache);
9087 		if (ret) {
9088 			/*
9089 			 * We may have excluded something, so call this just in
9090 			 * case.
9091 			 */
9092 			free_excluded_extents(root, cache);
9093 			btrfs_put_block_group(cache);
9094 			goto error;
9095 		}
9096 
9097 		/*
9098 		 * check for two cases, either we are full, and therefore
9099 		 * don't need to bother with the caching work since we won't
9100 		 * find any space, or we are empty, and we can just add all
9101 		 * the space in and be done with it.  This saves us _alot_ of
9102 		 * time, particularly in the full case.
9103 		 */
9104 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9105 			cache->last_byte_to_unpin = (u64)-1;
9106 			cache->cached = BTRFS_CACHE_FINISHED;
9107 			free_excluded_extents(root, cache);
9108 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9109 			cache->last_byte_to_unpin = (u64)-1;
9110 			cache->cached = BTRFS_CACHE_FINISHED;
9111 			add_new_free_space(cache, root->fs_info,
9112 					   found_key.objectid,
9113 					   found_key.objectid +
9114 					   found_key.offset);
9115 			free_excluded_extents(root, cache);
9116 		}
9117 
9118 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9119 		if (ret) {
9120 			btrfs_remove_free_space_cache(cache);
9121 			btrfs_put_block_group(cache);
9122 			goto error;
9123 		}
9124 
9125 		ret = update_space_info(info, cache->flags, found_key.offset,
9126 					btrfs_block_group_used(&cache->item),
9127 					&space_info);
9128 		if (ret) {
9129 			btrfs_remove_free_space_cache(cache);
9130 			spin_lock(&info->block_group_cache_lock);
9131 			rb_erase(&cache->cache_node,
9132 				 &info->block_group_cache_tree);
9133 			spin_unlock(&info->block_group_cache_lock);
9134 			btrfs_put_block_group(cache);
9135 			goto error;
9136 		}
9137 
9138 		cache->space_info = space_info;
9139 		spin_lock(&cache->space_info->lock);
9140 		cache->space_info->bytes_readonly += cache->bytes_super;
9141 		spin_unlock(&cache->space_info->lock);
9142 
9143 		__link_block_group(space_info, cache);
9144 
9145 		set_avail_alloc_bits(root->fs_info, cache->flags);
9146 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9147 			set_block_group_ro(cache, 1);
9148 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9149 			spin_lock(&info->unused_bgs_lock);
9150 			/* Should always be true but just in case. */
9151 			if (list_empty(&cache->bg_list)) {
9152 				btrfs_get_block_group(cache);
9153 				list_add_tail(&cache->bg_list,
9154 					      &info->unused_bgs);
9155 			}
9156 			spin_unlock(&info->unused_bgs_lock);
9157 		}
9158 	}
9159 
9160 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9161 		if (!(get_alloc_profile(root, space_info->flags) &
9162 		      (BTRFS_BLOCK_GROUP_RAID10 |
9163 		       BTRFS_BLOCK_GROUP_RAID1 |
9164 		       BTRFS_BLOCK_GROUP_RAID5 |
9165 		       BTRFS_BLOCK_GROUP_RAID6 |
9166 		       BTRFS_BLOCK_GROUP_DUP)))
9167 			continue;
9168 		/*
9169 		 * avoid allocating from un-mirrored block group if there are
9170 		 * mirrored block groups.
9171 		 */
9172 		list_for_each_entry(cache,
9173 				&space_info->block_groups[BTRFS_RAID_RAID0],
9174 				list)
9175 			set_block_group_ro(cache, 1);
9176 		list_for_each_entry(cache,
9177 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9178 				list)
9179 			set_block_group_ro(cache, 1);
9180 	}
9181 
9182 	init_global_block_rsv(info);
9183 	ret = 0;
9184 error:
9185 	btrfs_free_path(path);
9186 	return ret;
9187 }
9188 
9189 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9190 				       struct btrfs_root *root)
9191 {
9192 	struct btrfs_block_group_cache *block_group, *tmp;
9193 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9194 	struct btrfs_block_group_item item;
9195 	struct btrfs_key key;
9196 	int ret = 0;
9197 
9198 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9199 		if (ret)
9200 			goto next;
9201 
9202 		spin_lock(&block_group->lock);
9203 		memcpy(&item, &block_group->item, sizeof(item));
9204 		memcpy(&key, &block_group->key, sizeof(key));
9205 		spin_unlock(&block_group->lock);
9206 
9207 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9208 					sizeof(item));
9209 		if (ret)
9210 			btrfs_abort_transaction(trans, extent_root, ret);
9211 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9212 					       key.objectid, key.offset);
9213 		if (ret)
9214 			btrfs_abort_transaction(trans, extent_root, ret);
9215 next:
9216 		list_del_init(&block_group->bg_list);
9217 	}
9218 }
9219 
9220 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9221 			   struct btrfs_root *root, u64 bytes_used,
9222 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9223 			   u64 size)
9224 {
9225 	int ret;
9226 	struct btrfs_root *extent_root;
9227 	struct btrfs_block_group_cache *cache;
9228 
9229 	extent_root = root->fs_info->extent_root;
9230 
9231 	btrfs_set_log_full_commit(root->fs_info, trans);
9232 
9233 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9234 	if (!cache)
9235 		return -ENOMEM;
9236 
9237 	btrfs_set_block_group_used(&cache->item, bytes_used);
9238 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9239 	btrfs_set_block_group_flags(&cache->item, type);
9240 
9241 	cache->flags = type;
9242 	cache->last_byte_to_unpin = (u64)-1;
9243 	cache->cached = BTRFS_CACHE_FINISHED;
9244 	ret = exclude_super_stripes(root, cache);
9245 	if (ret) {
9246 		/*
9247 		 * We may have excluded something, so call this just in
9248 		 * case.
9249 		 */
9250 		free_excluded_extents(root, cache);
9251 		btrfs_put_block_group(cache);
9252 		return ret;
9253 	}
9254 
9255 	add_new_free_space(cache, root->fs_info, chunk_offset,
9256 			   chunk_offset + size);
9257 
9258 	free_excluded_extents(root, cache);
9259 
9260 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9261 	if (ret) {
9262 		btrfs_remove_free_space_cache(cache);
9263 		btrfs_put_block_group(cache);
9264 		return ret;
9265 	}
9266 
9267 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9268 				&cache->space_info);
9269 	if (ret) {
9270 		btrfs_remove_free_space_cache(cache);
9271 		spin_lock(&root->fs_info->block_group_cache_lock);
9272 		rb_erase(&cache->cache_node,
9273 			 &root->fs_info->block_group_cache_tree);
9274 		spin_unlock(&root->fs_info->block_group_cache_lock);
9275 		btrfs_put_block_group(cache);
9276 		return ret;
9277 	}
9278 	update_global_block_rsv(root->fs_info);
9279 
9280 	spin_lock(&cache->space_info->lock);
9281 	cache->space_info->bytes_readonly += cache->bytes_super;
9282 	spin_unlock(&cache->space_info->lock);
9283 
9284 	__link_block_group(cache->space_info, cache);
9285 
9286 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9287 
9288 	set_avail_alloc_bits(extent_root->fs_info, type);
9289 
9290 	return 0;
9291 }
9292 
9293 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9294 {
9295 	u64 extra_flags = chunk_to_extended(flags) &
9296 				BTRFS_EXTENDED_PROFILE_MASK;
9297 
9298 	write_seqlock(&fs_info->profiles_lock);
9299 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9300 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9301 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9302 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9303 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9304 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9305 	write_sequnlock(&fs_info->profiles_lock);
9306 }
9307 
9308 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9309 			     struct btrfs_root *root, u64 group_start,
9310 			     struct extent_map *em)
9311 {
9312 	struct btrfs_path *path;
9313 	struct btrfs_block_group_cache *block_group;
9314 	struct btrfs_free_cluster *cluster;
9315 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9316 	struct btrfs_key key;
9317 	struct inode *inode;
9318 	struct kobject *kobj = NULL;
9319 	int ret;
9320 	int index;
9321 	int factor;
9322 	struct btrfs_caching_control *caching_ctl = NULL;
9323 	bool remove_em;
9324 
9325 	root = root->fs_info->extent_root;
9326 
9327 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9328 	BUG_ON(!block_group);
9329 	BUG_ON(!block_group->ro);
9330 
9331 	/*
9332 	 * Free the reserved super bytes from this block group before
9333 	 * remove it.
9334 	 */
9335 	free_excluded_extents(root, block_group);
9336 
9337 	memcpy(&key, &block_group->key, sizeof(key));
9338 	index = get_block_group_index(block_group);
9339 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9340 				  BTRFS_BLOCK_GROUP_RAID1 |
9341 				  BTRFS_BLOCK_GROUP_RAID10))
9342 		factor = 2;
9343 	else
9344 		factor = 1;
9345 
9346 	/* make sure this block group isn't part of an allocation cluster */
9347 	cluster = &root->fs_info->data_alloc_cluster;
9348 	spin_lock(&cluster->refill_lock);
9349 	btrfs_return_cluster_to_free_space(block_group, cluster);
9350 	spin_unlock(&cluster->refill_lock);
9351 
9352 	/*
9353 	 * make sure this block group isn't part of a metadata
9354 	 * allocation cluster
9355 	 */
9356 	cluster = &root->fs_info->meta_alloc_cluster;
9357 	spin_lock(&cluster->refill_lock);
9358 	btrfs_return_cluster_to_free_space(block_group, cluster);
9359 	spin_unlock(&cluster->refill_lock);
9360 
9361 	path = btrfs_alloc_path();
9362 	if (!path) {
9363 		ret = -ENOMEM;
9364 		goto out;
9365 	}
9366 
9367 	inode = lookup_free_space_inode(tree_root, block_group, path);
9368 	if (!IS_ERR(inode)) {
9369 		ret = btrfs_orphan_add(trans, inode);
9370 		if (ret) {
9371 			btrfs_add_delayed_iput(inode);
9372 			goto out;
9373 		}
9374 		clear_nlink(inode);
9375 		/* One for the block groups ref */
9376 		spin_lock(&block_group->lock);
9377 		if (block_group->iref) {
9378 			block_group->iref = 0;
9379 			block_group->inode = NULL;
9380 			spin_unlock(&block_group->lock);
9381 			iput(inode);
9382 		} else {
9383 			spin_unlock(&block_group->lock);
9384 		}
9385 		/* One for our lookup ref */
9386 		btrfs_add_delayed_iput(inode);
9387 	}
9388 
9389 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9390 	key.offset = block_group->key.objectid;
9391 	key.type = 0;
9392 
9393 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9394 	if (ret < 0)
9395 		goto out;
9396 	if (ret > 0)
9397 		btrfs_release_path(path);
9398 	if (ret == 0) {
9399 		ret = btrfs_del_item(trans, tree_root, path);
9400 		if (ret)
9401 			goto out;
9402 		btrfs_release_path(path);
9403 	}
9404 
9405 	spin_lock(&root->fs_info->block_group_cache_lock);
9406 	rb_erase(&block_group->cache_node,
9407 		 &root->fs_info->block_group_cache_tree);
9408 	RB_CLEAR_NODE(&block_group->cache_node);
9409 
9410 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9411 		root->fs_info->first_logical_byte = (u64)-1;
9412 	spin_unlock(&root->fs_info->block_group_cache_lock);
9413 
9414 	down_write(&block_group->space_info->groups_sem);
9415 	/*
9416 	 * we must use list_del_init so people can check to see if they
9417 	 * are still on the list after taking the semaphore
9418 	 */
9419 	list_del_init(&block_group->list);
9420 	list_del_init(&block_group->ro_list);
9421 	if (list_empty(&block_group->space_info->block_groups[index])) {
9422 		kobj = block_group->space_info->block_group_kobjs[index];
9423 		block_group->space_info->block_group_kobjs[index] = NULL;
9424 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9425 	}
9426 	up_write(&block_group->space_info->groups_sem);
9427 	if (kobj) {
9428 		kobject_del(kobj);
9429 		kobject_put(kobj);
9430 	}
9431 
9432 	if (block_group->has_caching_ctl)
9433 		caching_ctl = get_caching_control(block_group);
9434 	if (block_group->cached == BTRFS_CACHE_STARTED)
9435 		wait_block_group_cache_done(block_group);
9436 	if (block_group->has_caching_ctl) {
9437 		down_write(&root->fs_info->commit_root_sem);
9438 		if (!caching_ctl) {
9439 			struct btrfs_caching_control *ctl;
9440 
9441 			list_for_each_entry(ctl,
9442 				    &root->fs_info->caching_block_groups, list)
9443 				if (ctl->block_group == block_group) {
9444 					caching_ctl = ctl;
9445 					atomic_inc(&caching_ctl->count);
9446 					break;
9447 				}
9448 		}
9449 		if (caching_ctl)
9450 			list_del_init(&caching_ctl->list);
9451 		up_write(&root->fs_info->commit_root_sem);
9452 		if (caching_ctl) {
9453 			/* Once for the caching bgs list and once for us. */
9454 			put_caching_control(caching_ctl);
9455 			put_caching_control(caching_ctl);
9456 		}
9457 	}
9458 
9459 	btrfs_remove_free_space_cache(block_group);
9460 
9461 	spin_lock(&block_group->space_info->lock);
9462 	block_group->space_info->total_bytes -= block_group->key.offset;
9463 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9464 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9465 	spin_unlock(&block_group->space_info->lock);
9466 
9467 	memcpy(&key, &block_group->key, sizeof(key));
9468 
9469 	lock_chunks(root);
9470 	if (!list_empty(&em->list)) {
9471 		/* We're in the transaction->pending_chunks list. */
9472 		free_extent_map(em);
9473 	}
9474 	spin_lock(&block_group->lock);
9475 	block_group->removed = 1;
9476 	/*
9477 	 * At this point trimming can't start on this block group, because we
9478 	 * removed the block group from the tree fs_info->block_group_cache_tree
9479 	 * so no one can't find it anymore and even if someone already got this
9480 	 * block group before we removed it from the rbtree, they have already
9481 	 * incremented block_group->trimming - if they didn't, they won't find
9482 	 * any free space entries because we already removed them all when we
9483 	 * called btrfs_remove_free_space_cache().
9484 	 *
9485 	 * And we must not remove the extent map from the fs_info->mapping_tree
9486 	 * to prevent the same logical address range and physical device space
9487 	 * ranges from being reused for a new block group. This is because our
9488 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9489 	 * completely transactionless, so while it is trimming a range the
9490 	 * currently running transaction might finish and a new one start,
9491 	 * allowing for new block groups to be created that can reuse the same
9492 	 * physical device locations unless we take this special care.
9493 	 */
9494 	remove_em = (atomic_read(&block_group->trimming) == 0);
9495 	/*
9496 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9497 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9498 	 * before checking block_group->removed).
9499 	 */
9500 	if (!remove_em) {
9501 		/*
9502 		 * Our em might be in trans->transaction->pending_chunks which
9503 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9504 		 * and so is the fs_info->pinned_chunks list.
9505 		 *
9506 		 * So at this point we must be holding the chunk_mutex to avoid
9507 		 * any races with chunk allocation (more specifically at
9508 		 * volumes.c:contains_pending_extent()), to ensure it always
9509 		 * sees the em, either in the pending_chunks list or in the
9510 		 * pinned_chunks list.
9511 		 */
9512 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9513 	}
9514 	spin_unlock(&block_group->lock);
9515 
9516 	if (remove_em) {
9517 		struct extent_map_tree *em_tree;
9518 
9519 		em_tree = &root->fs_info->mapping_tree.map_tree;
9520 		write_lock(&em_tree->lock);
9521 		/*
9522 		 * The em might be in the pending_chunks list, so make sure the
9523 		 * chunk mutex is locked, since remove_extent_mapping() will
9524 		 * delete us from that list.
9525 		 */
9526 		remove_extent_mapping(em_tree, em);
9527 		write_unlock(&em_tree->lock);
9528 		/* once for the tree */
9529 		free_extent_map(em);
9530 	}
9531 
9532 	unlock_chunks(root);
9533 
9534 	btrfs_put_block_group(block_group);
9535 	btrfs_put_block_group(block_group);
9536 
9537 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9538 	if (ret > 0)
9539 		ret = -EIO;
9540 	if (ret < 0)
9541 		goto out;
9542 
9543 	ret = btrfs_del_item(trans, root, path);
9544 out:
9545 	btrfs_free_path(path);
9546 	return ret;
9547 }
9548 
9549 /*
9550  * Process the unused_bgs list and remove any that don't have any allocated
9551  * space inside of them.
9552  */
9553 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9554 {
9555 	struct btrfs_block_group_cache *block_group;
9556 	struct btrfs_space_info *space_info;
9557 	struct btrfs_root *root = fs_info->extent_root;
9558 	struct btrfs_trans_handle *trans;
9559 	int ret = 0;
9560 
9561 	if (!fs_info->open)
9562 		return;
9563 
9564 	spin_lock(&fs_info->unused_bgs_lock);
9565 	while (!list_empty(&fs_info->unused_bgs)) {
9566 		u64 start, end;
9567 
9568 		block_group = list_first_entry(&fs_info->unused_bgs,
9569 					       struct btrfs_block_group_cache,
9570 					       bg_list);
9571 		space_info = block_group->space_info;
9572 		list_del_init(&block_group->bg_list);
9573 		if (ret || btrfs_mixed_space_info(space_info)) {
9574 			btrfs_put_block_group(block_group);
9575 			continue;
9576 		}
9577 		spin_unlock(&fs_info->unused_bgs_lock);
9578 
9579 		/* Don't want to race with allocators so take the groups_sem */
9580 		down_write(&space_info->groups_sem);
9581 		spin_lock(&block_group->lock);
9582 		if (block_group->reserved ||
9583 		    btrfs_block_group_used(&block_group->item) ||
9584 		    block_group->ro) {
9585 			/*
9586 			 * We want to bail if we made new allocations or have
9587 			 * outstanding allocations in this block group.  We do
9588 			 * the ro check in case balance is currently acting on
9589 			 * this block group.
9590 			 */
9591 			spin_unlock(&block_group->lock);
9592 			up_write(&space_info->groups_sem);
9593 			goto next;
9594 		}
9595 		spin_unlock(&block_group->lock);
9596 
9597 		/* We don't want to force the issue, only flip if it's ok. */
9598 		ret = set_block_group_ro(block_group, 0);
9599 		up_write(&space_info->groups_sem);
9600 		if (ret < 0) {
9601 			ret = 0;
9602 			goto next;
9603 		}
9604 
9605 		/*
9606 		 * Want to do this before we do anything else so we can recover
9607 		 * properly if we fail to join the transaction.
9608 		 */
9609 		trans = btrfs_join_transaction(root);
9610 		if (IS_ERR(trans)) {
9611 			btrfs_set_block_group_rw(root, block_group);
9612 			ret = PTR_ERR(trans);
9613 			goto next;
9614 		}
9615 
9616 		/*
9617 		 * We could have pending pinned extents for this block group,
9618 		 * just delete them, we don't care about them anymore.
9619 		 */
9620 		start = block_group->key.objectid;
9621 		end = start + block_group->key.offset - 1;
9622 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9623 				  EXTENT_DIRTY, GFP_NOFS);
9624 		if (ret) {
9625 			btrfs_set_block_group_rw(root, block_group);
9626 			goto end_trans;
9627 		}
9628 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9629 				  EXTENT_DIRTY, GFP_NOFS);
9630 		if (ret) {
9631 			btrfs_set_block_group_rw(root, block_group);
9632 			goto end_trans;
9633 		}
9634 
9635 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9636 		block_group->pinned = 0;
9637 
9638 		/*
9639 		 * Btrfs_remove_chunk will abort the transaction if things go
9640 		 * horribly wrong.
9641 		 */
9642 		ret = btrfs_remove_chunk(trans, root,
9643 					 block_group->key.objectid);
9644 end_trans:
9645 		btrfs_end_transaction(trans, root);
9646 next:
9647 		btrfs_put_block_group(block_group);
9648 		spin_lock(&fs_info->unused_bgs_lock);
9649 	}
9650 	spin_unlock(&fs_info->unused_bgs_lock);
9651 }
9652 
9653 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9654 {
9655 	struct btrfs_space_info *space_info;
9656 	struct btrfs_super_block *disk_super;
9657 	u64 features;
9658 	u64 flags;
9659 	int mixed = 0;
9660 	int ret;
9661 
9662 	disk_super = fs_info->super_copy;
9663 	if (!btrfs_super_root(disk_super))
9664 		return 1;
9665 
9666 	features = btrfs_super_incompat_flags(disk_super);
9667 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9668 		mixed = 1;
9669 
9670 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9671 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9672 	if (ret)
9673 		goto out;
9674 
9675 	if (mixed) {
9676 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9677 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9678 	} else {
9679 		flags = BTRFS_BLOCK_GROUP_METADATA;
9680 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9681 		if (ret)
9682 			goto out;
9683 
9684 		flags = BTRFS_BLOCK_GROUP_DATA;
9685 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9686 	}
9687 out:
9688 	return ret;
9689 }
9690 
9691 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9692 {
9693 	return unpin_extent_range(root, start, end);
9694 }
9695 
9696 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9697 			       u64 num_bytes, u64 *actual_bytes)
9698 {
9699 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9700 }
9701 
9702 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9703 {
9704 	struct btrfs_fs_info *fs_info = root->fs_info;
9705 	struct btrfs_block_group_cache *cache = NULL;
9706 	u64 group_trimmed;
9707 	u64 start;
9708 	u64 end;
9709 	u64 trimmed = 0;
9710 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9711 	int ret = 0;
9712 
9713 	/*
9714 	 * try to trim all FS space, our block group may start from non-zero.
9715 	 */
9716 	if (range->len == total_bytes)
9717 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9718 	else
9719 		cache = btrfs_lookup_block_group(fs_info, range->start);
9720 
9721 	while (cache) {
9722 		if (cache->key.objectid >= (range->start + range->len)) {
9723 			btrfs_put_block_group(cache);
9724 			break;
9725 		}
9726 
9727 		start = max(range->start, cache->key.objectid);
9728 		end = min(range->start + range->len,
9729 				cache->key.objectid + cache->key.offset);
9730 
9731 		if (end - start >= range->minlen) {
9732 			if (!block_group_cache_done(cache)) {
9733 				ret = cache_block_group(cache, 0);
9734 				if (ret) {
9735 					btrfs_put_block_group(cache);
9736 					break;
9737 				}
9738 				ret = wait_block_group_cache_done(cache);
9739 				if (ret) {
9740 					btrfs_put_block_group(cache);
9741 					break;
9742 				}
9743 			}
9744 			ret = btrfs_trim_block_group(cache,
9745 						     &group_trimmed,
9746 						     start,
9747 						     end,
9748 						     range->minlen);
9749 
9750 			trimmed += group_trimmed;
9751 			if (ret) {
9752 				btrfs_put_block_group(cache);
9753 				break;
9754 			}
9755 		}
9756 
9757 		cache = next_block_group(fs_info->tree_root, cache);
9758 	}
9759 
9760 	range->len = trimmed;
9761 	return ret;
9762 }
9763 
9764 /*
9765  * btrfs_{start,end}_write_no_snapshoting() are similar to
9766  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
9767  * data into the page cache through nocow before the subvolume is snapshoted,
9768  * but flush the data into disk after the snapshot creation, or to prevent
9769  * operations while snapshoting is ongoing and that cause the snapshot to be
9770  * inconsistent (writes followed by expanding truncates for example).
9771  */
9772 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
9773 {
9774 	percpu_counter_dec(&root->subv_writers->counter);
9775 	/*
9776 	 * Make sure counter is updated before we wake up
9777 	 * waiters.
9778 	 */
9779 	smp_mb();
9780 	if (waitqueue_active(&root->subv_writers->wait))
9781 		wake_up(&root->subv_writers->wait);
9782 }
9783 
9784 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
9785 {
9786 	if (atomic_read(&root->will_be_snapshoted))
9787 		return 0;
9788 
9789 	percpu_counter_inc(&root->subv_writers->counter);
9790 	/*
9791 	 * Make sure counter is updated before we check for snapshot creation.
9792 	 */
9793 	smp_mb();
9794 	if (atomic_read(&root->will_be_snapshoted)) {
9795 		btrfs_end_write_no_snapshoting(root);
9796 		return 0;
9797 	}
9798 	return 1;
9799 }
9800