xref: /linux/fs/btrfs/extent-tree.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 
47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 			       struct btrfs_delayed_ref_head *href,
49 			       struct btrfs_delayed_ref_node *node,
50 			       struct btrfs_delayed_extent_op *extra_op);
51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 				    struct extent_buffer *leaf,
53 				    struct btrfs_extent_item *ei);
54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 				      u64 parent, u64 root_objectid,
56 				      u64 flags, u64 owner, u64 offset,
57 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 				     struct btrfs_delayed_ref_node *node,
60 				     struct btrfs_delayed_extent_op *extent_op);
61 static int find_next_key(struct btrfs_path *path, int level,
62 			 struct btrfs_key *key);
63 
64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65 {
66 	return (cache->flags & bits) == bits;
67 }
68 
69 /* simple helper to search for an existing data extent at a given offset */
70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71 {
72 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 	int ret;
74 	struct btrfs_key key;
75 	struct btrfs_path *path;
76 
77 	path = btrfs_alloc_path();
78 	if (!path)
79 		return -ENOMEM;
80 
81 	key.objectid = start;
82 	key.offset = len;
83 	key.type = BTRFS_EXTENT_ITEM_KEY;
84 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 	btrfs_free_path(path);
86 	return ret;
87 }
88 
89 /*
90  * helper function to lookup reference count and flags of a tree block.
91  *
92  * the head node for delayed ref is used to store the sum of all the
93  * reference count modifications queued up in the rbtree. the head
94  * node may also store the extent flags to set. This way you can check
95  * to see what the reference count and extent flags would be if all of
96  * the delayed refs are not processed.
97  */
98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 			     struct btrfs_fs_info *fs_info, u64 bytenr,
100 			     u64 offset, int metadata, u64 *refs, u64 *flags,
101 			     u64 *owning_root)
102 {
103 	struct btrfs_root *extent_root;
104 	struct btrfs_delayed_ref_head *head;
105 	struct btrfs_delayed_ref_root *delayed_refs;
106 	struct btrfs_path *path;
107 	struct btrfs_key key;
108 	u64 num_refs;
109 	u64 extent_flags;
110 	u64 owner = 0;
111 	int ret;
112 
113 	/*
114 	 * If we don't have skinny metadata, don't bother doing anything
115 	 * different
116 	 */
117 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 		offset = fs_info->nodesize;
119 		metadata = 0;
120 	}
121 
122 	path = btrfs_alloc_path();
123 	if (!path)
124 		return -ENOMEM;
125 
126 search_again:
127 	key.objectid = bytenr;
128 	key.offset = offset;
129 	if (metadata)
130 		key.type = BTRFS_METADATA_ITEM_KEY;
131 	else
132 		key.type = BTRFS_EXTENT_ITEM_KEY;
133 
134 	extent_root = btrfs_extent_root(fs_info, bytenr);
135 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 	if (ret < 0)
137 		goto out_free;
138 
139 	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 		if (path->slots[0]) {
141 			path->slots[0]--;
142 			btrfs_item_key_to_cpu(path->nodes[0], &key,
143 					      path->slots[0]);
144 			if (key.objectid == bytenr &&
145 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
146 			    key.offset == fs_info->nodesize)
147 				ret = 0;
148 		}
149 	}
150 
151 	if (ret == 0) {
152 		struct extent_buffer *leaf = path->nodes[0];
153 		struct btrfs_extent_item *ei;
154 		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155 
156 		if (unlikely(item_size < sizeof(*ei))) {
157 			ret = -EUCLEAN;
158 			btrfs_err(fs_info,
159 			"unexpected extent item size, has %u expect >= %zu",
160 				  item_size, sizeof(*ei));
161 			btrfs_abort_transaction(trans, ret);
162 			goto out_free;
163 		}
164 
165 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 		num_refs = btrfs_extent_refs(leaf, ei);
167 		if (unlikely(num_refs == 0)) {
168 			ret = -EUCLEAN;
169 			btrfs_err(fs_info,
170 		"unexpected zero reference count for extent item (%llu %u %llu)",
171 				  key.objectid, key.type, key.offset);
172 			btrfs_abort_transaction(trans, ret);
173 			goto out_free;
174 		}
175 		extent_flags = btrfs_extent_flags(leaf, ei);
176 		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 	} else {
178 		num_refs = 0;
179 		extent_flags = 0;
180 		ret = 0;
181 	}
182 
183 	delayed_refs = &trans->transaction->delayed_refs;
184 	spin_lock(&delayed_refs->lock);
185 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
186 	if (head) {
187 		if (!mutex_trylock(&head->mutex)) {
188 			refcount_inc(&head->refs);
189 			spin_unlock(&delayed_refs->lock);
190 
191 			btrfs_release_path(path);
192 
193 			/*
194 			 * Mutex was contended, block until it's released and try
195 			 * again
196 			 */
197 			mutex_lock(&head->mutex);
198 			mutex_unlock(&head->mutex);
199 			btrfs_put_delayed_ref_head(head);
200 			goto search_again;
201 		}
202 		spin_lock(&head->lock);
203 		if (head->extent_op && head->extent_op->update_flags)
204 			extent_flags |= head->extent_op->flags_to_set;
205 
206 		num_refs += head->ref_mod;
207 		spin_unlock(&head->lock);
208 		mutex_unlock(&head->mutex);
209 	}
210 	spin_unlock(&delayed_refs->lock);
211 
212 	WARN_ON(num_refs == 0);
213 	if (refs)
214 		*refs = num_refs;
215 	if (flags)
216 		*flags = extent_flags;
217 	if (owning_root)
218 		*owning_root = owner;
219 out_free:
220 	btrfs_free_path(path);
221 	return ret;
222 }
223 
224 /*
225  * Back reference rules.  Back refs have three main goals:
226  *
227  * 1) differentiate between all holders of references to an extent so that
228  *    when a reference is dropped we can make sure it was a valid reference
229  *    before freeing the extent.
230  *
231  * 2) Provide enough information to quickly find the holders of an extent
232  *    if we notice a given block is corrupted or bad.
233  *
234  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235  *    maintenance.  This is actually the same as #2, but with a slightly
236  *    different use case.
237  *
238  * There are two kinds of back refs. The implicit back refs is optimized
239  * for pointers in non-shared tree blocks. For a given pointer in a block,
240  * back refs of this kind provide information about the block's owner tree
241  * and the pointer's key. These information allow us to find the block by
242  * b-tree searching. The full back refs is for pointers in tree blocks not
243  * referenced by their owner trees. The location of tree block is recorded
244  * in the back refs. Actually the full back refs is generic, and can be
245  * used in all cases the implicit back refs is used. The major shortcoming
246  * of the full back refs is its overhead. Every time a tree block gets
247  * COWed, we have to update back refs entry for all pointers in it.
248  *
249  * For a newly allocated tree block, we use implicit back refs for
250  * pointers in it. This means most tree related operations only involve
251  * implicit back refs. For a tree block created in old transaction, the
252  * only way to drop a reference to it is COW it. So we can detect the
253  * event that tree block loses its owner tree's reference and do the
254  * back refs conversion.
255  *
256  * When a tree block is COWed through a tree, there are four cases:
257  *
258  * The reference count of the block is one and the tree is the block's
259  * owner tree. Nothing to do in this case.
260  *
261  * The reference count of the block is one and the tree is not the
262  * block's owner tree. In this case, full back refs is used for pointers
263  * in the block. Remove these full back refs, add implicit back refs for
264  * every pointers in the new block.
265  *
266  * The reference count of the block is greater than one and the tree is
267  * the block's owner tree. In this case, implicit back refs is used for
268  * pointers in the block. Add full back refs for every pointers in the
269  * block, increase lower level extents' reference counts. The original
270  * implicit back refs are entailed to the new block.
271  *
272  * The reference count of the block is greater than one and the tree is
273  * not the block's owner tree. Add implicit back refs for every pointer in
274  * the new block, increase lower level extents' reference count.
275  *
276  * Back Reference Key composing:
277  *
278  * The key objectid corresponds to the first byte in the extent,
279  * The key type is used to differentiate between types of back refs.
280  * There are different meanings of the key offset for different types
281  * of back refs.
282  *
283  * File extents can be referenced by:
284  *
285  * - multiple snapshots, subvolumes, or different generations in one subvol
286  * - different files inside a single subvolume
287  * - different offsets inside a file (bookend extents in file.c)
288  *
289  * The extent ref structure for the implicit back refs has fields for:
290  *
291  * - Objectid of the subvolume root
292  * - objectid of the file holding the reference
293  * - original offset in the file
294  * - how many bookend extents
295  *
296  * The key offset for the implicit back refs is hash of the first
297  * three fields.
298  *
299  * The extent ref structure for the full back refs has field for:
300  *
301  * - number of pointers in the tree leaf
302  *
303  * The key offset for the implicit back refs is the first byte of
304  * the tree leaf
305  *
306  * When a file extent is allocated, The implicit back refs is used.
307  * the fields are filled in:
308  *
309  *     (root_key.objectid, inode objectid, offset in file, 1)
310  *
311  * When a file extent is removed file truncation, we find the
312  * corresponding implicit back refs and check the following fields:
313  *
314  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
315  *
316  * Btree extents can be referenced by:
317  *
318  * - Different subvolumes
319  *
320  * Both the implicit back refs and the full back refs for tree blocks
321  * only consist of key. The key offset for the implicit back refs is
322  * objectid of block's owner tree. The key offset for the full back refs
323  * is the first byte of parent block.
324  *
325  * When implicit back refs is used, information about the lowest key and
326  * level of the tree block are required. These information are stored in
327  * tree block info structure.
328  */
329 
330 /*
331  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334  */
335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 				     struct btrfs_extent_inline_ref *iref,
337 				     enum btrfs_inline_ref_type is_data)
338 {
339 	struct btrfs_fs_info *fs_info = eb->fs_info;
340 	int type = btrfs_extent_inline_ref_type(eb, iref);
341 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342 
343 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 		return type;
346 	}
347 
348 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 	    type == BTRFS_SHARED_DATA_REF_KEY ||
351 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
352 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 				return type;
355 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 				ASSERT(fs_info);
357 				/*
358 				 * Every shared one has parent tree block,
359 				 * which must be aligned to sector size.
360 				 */
361 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 					return type;
363 			}
364 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
365 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 				return type;
367 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 				ASSERT(fs_info);
369 				/*
370 				 * Every shared one has parent tree block,
371 				 * which must be aligned to sector size.
372 				 */
373 				if (offset &&
374 				    IS_ALIGNED(offset, fs_info->sectorsize))
375 					return type;
376 			}
377 		} else {
378 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 			return type;
380 		}
381 	}
382 
383 	WARN_ON(1);
384 	btrfs_print_leaf(eb);
385 	btrfs_err(fs_info,
386 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 		  eb->start, (unsigned long)iref, type);
388 
389 	return BTRFS_REF_TYPE_INVALID;
390 }
391 
392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393 {
394 	u32 high_crc = ~(u32)0;
395 	u32 low_crc = ~(u32)0;
396 	__le64 lenum;
397 
398 	lenum = cpu_to_le64(root_objectid);
399 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 	lenum = cpu_to_le64(owner);
401 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 	lenum = cpu_to_le64(offset);
403 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404 
405 	return ((u64)high_crc << 31) ^ (u64)low_crc;
406 }
407 
408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 				     struct btrfs_extent_data_ref *ref)
410 {
411 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 				    btrfs_extent_data_ref_objectid(leaf, ref),
413 				    btrfs_extent_data_ref_offset(leaf, ref));
414 }
415 
416 static int match_extent_data_ref(struct extent_buffer *leaf,
417 				 struct btrfs_extent_data_ref *ref,
418 				 u64 root_objectid, u64 owner, u64 offset)
419 {
420 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 		return 0;
424 	return 1;
425 }
426 
427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 					   struct btrfs_path *path,
429 					   u64 bytenr, u64 parent,
430 					   u64 root_objectid,
431 					   u64 owner, u64 offset)
432 {
433 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 	struct btrfs_key key;
435 	struct btrfs_extent_data_ref *ref;
436 	struct extent_buffer *leaf;
437 	u32 nritems;
438 	int recow;
439 	int ret;
440 
441 	key.objectid = bytenr;
442 	if (parent) {
443 		key.type = BTRFS_SHARED_DATA_REF_KEY;
444 		key.offset = parent;
445 	} else {
446 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 		key.offset = hash_extent_data_ref(root_objectid,
448 						  owner, offset);
449 	}
450 again:
451 	recow = 0;
452 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 	if (ret < 0)
454 		return ret;
455 
456 	if (parent) {
457 		if (ret)
458 			return -ENOENT;
459 		return 0;
460 	}
461 
462 	ret = -ENOENT;
463 	leaf = path->nodes[0];
464 	nritems = btrfs_header_nritems(leaf);
465 	while (1) {
466 		if (path->slots[0] >= nritems) {
467 			ret = btrfs_next_leaf(root, path);
468 			if (ret) {
469 				if (ret > 0)
470 					return -ENOENT;
471 				return ret;
472 			}
473 
474 			leaf = path->nodes[0];
475 			nritems = btrfs_header_nritems(leaf);
476 			recow = 1;
477 		}
478 
479 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 		if (key.objectid != bytenr ||
481 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 			goto fail;
483 
484 		ref = btrfs_item_ptr(leaf, path->slots[0],
485 				     struct btrfs_extent_data_ref);
486 
487 		if (match_extent_data_ref(leaf, ref, root_objectid,
488 					  owner, offset)) {
489 			if (recow) {
490 				btrfs_release_path(path);
491 				goto again;
492 			}
493 			ret = 0;
494 			break;
495 		}
496 		path->slots[0]++;
497 	}
498 fail:
499 	return ret;
500 }
501 
502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 					   struct btrfs_path *path,
504 					   struct btrfs_delayed_ref_node *node,
505 					   u64 bytenr)
506 {
507 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 	struct btrfs_key key;
509 	struct extent_buffer *leaf;
510 	u64 owner = btrfs_delayed_ref_owner(node);
511 	u64 offset = btrfs_delayed_ref_offset(node);
512 	u32 size;
513 	u32 num_refs;
514 	int ret;
515 
516 	key.objectid = bytenr;
517 	if (node->parent) {
518 		key.type = BTRFS_SHARED_DATA_REF_KEY;
519 		key.offset = node->parent;
520 		size = sizeof(struct btrfs_shared_data_ref);
521 	} else {
522 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 		size = sizeof(struct btrfs_extent_data_ref);
525 	}
526 
527 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 	if (ret && ret != -EEXIST)
529 		goto fail;
530 
531 	leaf = path->nodes[0];
532 	if (node->parent) {
533 		struct btrfs_shared_data_ref *ref;
534 		ref = btrfs_item_ptr(leaf, path->slots[0],
535 				     struct btrfs_shared_data_ref);
536 		if (ret == 0) {
537 			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 		} else {
539 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 			num_refs += node->ref_mod;
541 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 		}
543 	} else {
544 		struct btrfs_extent_data_ref *ref;
545 		while (ret == -EEXIST) {
546 			ref = btrfs_item_ptr(leaf, path->slots[0],
547 					     struct btrfs_extent_data_ref);
548 			if (match_extent_data_ref(leaf, ref, node->ref_root,
549 						  owner, offset))
550 				break;
551 			btrfs_release_path(path);
552 			key.offset++;
553 			ret = btrfs_insert_empty_item(trans, root, path, &key,
554 						      size);
555 			if (ret && ret != -EEXIST)
556 				goto fail;
557 
558 			leaf = path->nodes[0];
559 		}
560 		ref = btrfs_item_ptr(leaf, path->slots[0],
561 				     struct btrfs_extent_data_ref);
562 		if (ret == 0) {
563 			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 		} else {
568 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 			num_refs += node->ref_mod;
570 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 		}
572 	}
573 	btrfs_mark_buffer_dirty(trans, leaf);
574 	ret = 0;
575 fail:
576 	btrfs_release_path(path);
577 	return ret;
578 }
579 
580 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
581 					   struct btrfs_root *root,
582 					   struct btrfs_path *path,
583 					   int refs_to_drop)
584 {
585 	struct btrfs_key key;
586 	struct btrfs_extent_data_ref *ref1 = NULL;
587 	struct btrfs_shared_data_ref *ref2 = NULL;
588 	struct extent_buffer *leaf;
589 	u32 num_refs = 0;
590 	int ret = 0;
591 
592 	leaf = path->nodes[0];
593 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594 
595 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
596 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
597 				      struct btrfs_extent_data_ref);
598 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
599 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
600 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
601 				      struct btrfs_shared_data_ref);
602 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
603 	} else {
604 		btrfs_err(trans->fs_info,
605 			  "unrecognized backref key (%llu %u %llu)",
606 			  key.objectid, key.type, key.offset);
607 		btrfs_abort_transaction(trans, -EUCLEAN);
608 		return -EUCLEAN;
609 	}
610 
611 	BUG_ON(num_refs < refs_to_drop);
612 	num_refs -= refs_to_drop;
613 
614 	if (num_refs == 0) {
615 		ret = btrfs_del_item(trans, root, path);
616 	} else {
617 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
618 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
619 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
620 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
621 		btrfs_mark_buffer_dirty(trans, leaf);
622 	}
623 	return ret;
624 }
625 
626 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
627 					  struct btrfs_extent_inline_ref *iref)
628 {
629 	struct btrfs_key key;
630 	struct extent_buffer *leaf;
631 	struct btrfs_extent_data_ref *ref1;
632 	struct btrfs_shared_data_ref *ref2;
633 	u32 num_refs = 0;
634 	int type;
635 
636 	leaf = path->nodes[0];
637 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638 
639 	if (iref) {
640 		/*
641 		 * If type is invalid, we should have bailed out earlier than
642 		 * this call.
643 		 */
644 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
645 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
646 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
647 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
648 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 		} else {
650 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
651 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
652 		}
653 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
654 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
655 				      struct btrfs_extent_data_ref);
656 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
657 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
658 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
659 				      struct btrfs_shared_data_ref);
660 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
661 	} else {
662 		WARN_ON(1);
663 	}
664 	return num_refs;
665 }
666 
667 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
668 					  struct btrfs_path *path,
669 					  u64 bytenr, u64 parent,
670 					  u64 root_objectid)
671 {
672 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
673 	struct btrfs_key key;
674 	int ret;
675 
676 	key.objectid = bytenr;
677 	if (parent) {
678 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
679 		key.offset = parent;
680 	} else {
681 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
682 		key.offset = root_objectid;
683 	}
684 
685 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
686 	if (ret > 0)
687 		ret = -ENOENT;
688 	return ret;
689 }
690 
691 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
692 					  struct btrfs_path *path,
693 					  struct btrfs_delayed_ref_node *node,
694 					  u64 bytenr)
695 {
696 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
697 	struct btrfs_key key;
698 	int ret;
699 
700 	key.objectid = bytenr;
701 	if (node->parent) {
702 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
703 		key.offset = node->parent;
704 	} else {
705 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
706 		key.offset = node->ref_root;
707 	}
708 
709 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
710 	btrfs_release_path(path);
711 	return ret;
712 }
713 
714 static inline int extent_ref_type(u64 parent, u64 owner)
715 {
716 	int type;
717 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
718 		if (parent > 0)
719 			type = BTRFS_SHARED_BLOCK_REF_KEY;
720 		else
721 			type = BTRFS_TREE_BLOCK_REF_KEY;
722 	} else {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_DATA_REF_KEY;
725 		else
726 			type = BTRFS_EXTENT_DATA_REF_KEY;
727 	}
728 	return type;
729 }
730 
731 static int find_next_key(struct btrfs_path *path, int level,
732 			 struct btrfs_key *key)
733 
734 {
735 	for (; level < BTRFS_MAX_LEVEL; level++) {
736 		if (!path->nodes[level])
737 			break;
738 		if (path->slots[level] + 1 >=
739 		    btrfs_header_nritems(path->nodes[level]))
740 			continue;
741 		if (level == 0)
742 			btrfs_item_key_to_cpu(path->nodes[level], key,
743 					      path->slots[level] + 1);
744 		else
745 			btrfs_node_key_to_cpu(path->nodes[level], key,
746 					      path->slots[level] + 1);
747 		return 0;
748 	}
749 	return 1;
750 }
751 
752 /*
753  * look for inline back ref. if back ref is found, *ref_ret is set
754  * to the address of inline back ref, and 0 is returned.
755  *
756  * if back ref isn't found, *ref_ret is set to the address where it
757  * should be inserted, and -ENOENT is returned.
758  *
759  * if insert is true and there are too many inline back refs, the path
760  * points to the extent item, and -EAGAIN is returned.
761  *
762  * NOTE: inline back refs are ordered in the same way that back ref
763  *	 items in the tree are ordered.
764  */
765 static noinline_for_stack
766 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
767 				 struct btrfs_path *path,
768 				 struct btrfs_extent_inline_ref **ref_ret,
769 				 u64 bytenr, u64 num_bytes,
770 				 u64 parent, u64 root_objectid,
771 				 u64 owner, u64 offset, int insert)
772 {
773 	struct btrfs_fs_info *fs_info = trans->fs_info;
774 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
775 	struct btrfs_key key;
776 	struct extent_buffer *leaf;
777 	struct btrfs_extent_item *ei;
778 	struct btrfs_extent_inline_ref *iref;
779 	u64 flags;
780 	u64 item_size;
781 	unsigned long ptr;
782 	unsigned long end;
783 	int extra_size;
784 	int type;
785 	int want;
786 	int ret;
787 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
788 	int needed;
789 
790 	key.objectid = bytenr;
791 	key.type = BTRFS_EXTENT_ITEM_KEY;
792 	key.offset = num_bytes;
793 
794 	want = extent_ref_type(parent, owner);
795 	if (insert) {
796 		extra_size = btrfs_extent_inline_ref_size(want);
797 		path->search_for_extension = 1;
798 	} else
799 		extra_size = -1;
800 
801 	/*
802 	 * Owner is our level, so we can just add one to get the level for the
803 	 * block we are interested in.
804 	 */
805 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
806 		key.type = BTRFS_METADATA_ITEM_KEY;
807 		key.offset = owner;
808 	}
809 
810 again:
811 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
812 	if (ret < 0)
813 		goto out;
814 
815 	/*
816 	 * We may be a newly converted file system which still has the old fat
817 	 * extent entries for metadata, so try and see if we have one of those.
818 	 */
819 	if (ret > 0 && skinny_metadata) {
820 		skinny_metadata = false;
821 		if (path->slots[0]) {
822 			path->slots[0]--;
823 			btrfs_item_key_to_cpu(path->nodes[0], &key,
824 					      path->slots[0]);
825 			if (key.objectid == bytenr &&
826 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
827 			    key.offset == num_bytes)
828 				ret = 0;
829 		}
830 		if (ret) {
831 			key.objectid = bytenr;
832 			key.type = BTRFS_EXTENT_ITEM_KEY;
833 			key.offset = num_bytes;
834 			btrfs_release_path(path);
835 			goto again;
836 		}
837 	}
838 
839 	if (ret && !insert) {
840 		ret = -ENOENT;
841 		goto out;
842 	} else if (WARN_ON(ret)) {
843 		btrfs_print_leaf(path->nodes[0]);
844 		btrfs_err(fs_info,
845 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
846 			  bytenr, num_bytes, parent, root_objectid, owner,
847 			  offset);
848 		ret = -EUCLEAN;
849 		goto out;
850 	}
851 
852 	leaf = path->nodes[0];
853 	item_size = btrfs_item_size(leaf, path->slots[0]);
854 	if (unlikely(item_size < sizeof(*ei))) {
855 		ret = -EUCLEAN;
856 		btrfs_err(fs_info,
857 			  "unexpected extent item size, has %llu expect >= %zu",
858 			  item_size, sizeof(*ei));
859 		btrfs_abort_transaction(trans, ret);
860 		goto out;
861 	}
862 
863 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
864 	flags = btrfs_extent_flags(leaf, ei);
865 
866 	ptr = (unsigned long)(ei + 1);
867 	end = (unsigned long)ei + item_size;
868 
869 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
870 		ptr += sizeof(struct btrfs_tree_block_info);
871 		BUG_ON(ptr > end);
872 	}
873 
874 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
875 		needed = BTRFS_REF_TYPE_DATA;
876 	else
877 		needed = BTRFS_REF_TYPE_BLOCK;
878 
879 	ret = -ENOENT;
880 	while (ptr < end) {
881 		iref = (struct btrfs_extent_inline_ref *)ptr;
882 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
883 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
884 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
885 			ptr += btrfs_extent_inline_ref_size(type);
886 			continue;
887 		}
888 		if (type == BTRFS_REF_TYPE_INVALID) {
889 			ret = -EUCLEAN;
890 			goto out;
891 		}
892 
893 		if (want < type)
894 			break;
895 		if (want > type) {
896 			ptr += btrfs_extent_inline_ref_size(type);
897 			continue;
898 		}
899 
900 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
901 			struct btrfs_extent_data_ref *dref;
902 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
903 			if (match_extent_data_ref(leaf, dref, root_objectid,
904 						  owner, offset)) {
905 				ret = 0;
906 				break;
907 			}
908 			if (hash_extent_data_ref_item(leaf, dref) <
909 			    hash_extent_data_ref(root_objectid, owner, offset))
910 				break;
911 		} else {
912 			u64 ref_offset;
913 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
914 			if (parent > 0) {
915 				if (parent == ref_offset) {
916 					ret = 0;
917 					break;
918 				}
919 				if (ref_offset < parent)
920 					break;
921 			} else {
922 				if (root_objectid == ref_offset) {
923 					ret = 0;
924 					break;
925 				}
926 				if (ref_offset < root_objectid)
927 					break;
928 			}
929 		}
930 		ptr += btrfs_extent_inline_ref_size(type);
931 	}
932 
933 	if (unlikely(ptr > end)) {
934 		ret = -EUCLEAN;
935 		btrfs_print_leaf(path->nodes[0]);
936 		btrfs_crit(fs_info,
937 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
938 			   path->slots[0], root_objectid, owner, offset, parent);
939 		goto out;
940 	}
941 
942 	if (ret == -ENOENT && insert) {
943 		if (item_size + extra_size >=
944 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
945 			ret = -EAGAIN;
946 			goto out;
947 		}
948 
949 		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
950 			struct btrfs_key tmp_key;
951 
952 			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
953 			if (tmp_key.objectid == bytenr &&
954 			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
955 				ret = -EAGAIN;
956 				goto out;
957 			}
958 			goto out_no_entry;
959 		}
960 
961 		if (!path->keep_locks) {
962 			btrfs_release_path(path);
963 			path->keep_locks = 1;
964 			goto again;
965 		}
966 
967 		/*
968 		 * To add new inline back ref, we have to make sure
969 		 * there is no corresponding back ref item.
970 		 * For simplicity, we just do not add new inline back
971 		 * ref if there is any kind of item for this block
972 		 */
973 		if (find_next_key(path, 0, &key) == 0 &&
974 		    key.objectid == bytenr &&
975 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 			ret = -EAGAIN;
977 			goto out;
978 		}
979 	}
980 out_no_entry:
981 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
982 out:
983 	if (path->keep_locks) {
984 		path->keep_locks = 0;
985 		btrfs_unlock_up_safe(path, 1);
986 	}
987 	if (insert)
988 		path->search_for_extension = 0;
989 	return ret;
990 }
991 
992 /*
993  * helper to add new inline back ref
994  */
995 static noinline_for_stack
996 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
997 				 struct btrfs_path *path,
998 				 struct btrfs_extent_inline_ref *iref,
999 				 u64 parent, u64 root_objectid,
1000 				 u64 owner, u64 offset, int refs_to_add,
1001 				 struct btrfs_delayed_extent_op *extent_op)
1002 {
1003 	struct extent_buffer *leaf;
1004 	struct btrfs_extent_item *ei;
1005 	unsigned long ptr;
1006 	unsigned long end;
1007 	unsigned long item_offset;
1008 	u64 refs;
1009 	int size;
1010 	int type;
1011 
1012 	leaf = path->nodes[0];
1013 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014 	item_offset = (unsigned long)iref - (unsigned long)ei;
1015 
1016 	type = extent_ref_type(parent, owner);
1017 	size = btrfs_extent_inline_ref_size(type);
1018 
1019 	btrfs_extend_item(trans, path, size);
1020 
1021 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1022 	refs = btrfs_extent_refs(leaf, ei);
1023 	refs += refs_to_add;
1024 	btrfs_set_extent_refs(leaf, ei, refs);
1025 	if (extent_op)
1026 		__run_delayed_extent_op(extent_op, leaf, ei);
1027 
1028 	ptr = (unsigned long)ei + item_offset;
1029 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1030 	if (ptr < end - size)
1031 		memmove_extent_buffer(leaf, ptr + size, ptr,
1032 				      end - size - ptr);
1033 
1034 	iref = (struct btrfs_extent_inline_ref *)ptr;
1035 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1036 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1037 		struct btrfs_extent_data_ref *dref;
1038 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1039 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1040 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1041 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1042 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1043 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1044 		struct btrfs_shared_data_ref *sref;
1045 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1046 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1049 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1050 	} else {
1051 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1052 	}
1053 	btrfs_mark_buffer_dirty(trans, leaf);
1054 }
1055 
1056 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1057 				 struct btrfs_path *path,
1058 				 struct btrfs_extent_inline_ref **ref_ret,
1059 				 u64 bytenr, u64 num_bytes, u64 parent,
1060 				 u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	int ret;
1063 
1064 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1065 					   num_bytes, parent, root_objectid,
1066 					   owner, offset, 0);
1067 	if (ret != -ENOENT)
1068 		return ret;
1069 
1070 	btrfs_release_path(path);
1071 	*ref_ret = NULL;
1072 
1073 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1074 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1075 					    root_objectid);
1076 	} else {
1077 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1078 					     root_objectid, owner, offset);
1079 	}
1080 	return ret;
1081 }
1082 
1083 /*
1084  * helper to update/remove inline back ref
1085  */
1086 static noinline_for_stack int update_inline_extent_backref(
1087 				  struct btrfs_trans_handle *trans,
1088 				  struct btrfs_path *path,
1089 				  struct btrfs_extent_inline_ref *iref,
1090 				  int refs_to_mod,
1091 				  struct btrfs_delayed_extent_op *extent_op)
1092 {
1093 	struct extent_buffer *leaf = path->nodes[0];
1094 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1095 	struct btrfs_extent_item *ei;
1096 	struct btrfs_extent_data_ref *dref = NULL;
1097 	struct btrfs_shared_data_ref *sref = NULL;
1098 	unsigned long ptr;
1099 	unsigned long end;
1100 	u32 item_size;
1101 	int size;
1102 	int type;
1103 	u64 refs;
1104 
1105 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 	refs = btrfs_extent_refs(leaf, ei);
1107 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1108 		struct btrfs_key key;
1109 		u32 extent_size;
1110 
1111 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1113 			extent_size = fs_info->nodesize;
1114 		else
1115 			extent_size = key.offset;
1116 		btrfs_print_leaf(leaf);
1117 		btrfs_err(fs_info,
1118 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1119 			  key.objectid, extent_size, refs_to_mod, refs);
1120 		return -EUCLEAN;
1121 	}
1122 	refs += refs_to_mod;
1123 	btrfs_set_extent_refs(leaf, ei, refs);
1124 	if (extent_op)
1125 		__run_delayed_extent_op(extent_op, leaf, ei);
1126 
1127 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1128 	/*
1129 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1130 	 * error messages.
1131 	 */
1132 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1133 		return -EUCLEAN;
1134 
1135 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137 		refs = btrfs_extent_data_ref_count(leaf, dref);
1138 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140 		refs = btrfs_shared_data_ref_count(leaf, sref);
1141 	} else {
1142 		refs = 1;
1143 		/*
1144 		 * For tree blocks we can only drop one ref for it, and tree
1145 		 * blocks should not have refs > 1.
1146 		 *
1147 		 * Furthermore if we're inserting a new inline backref, we
1148 		 * won't reach this path either. That would be
1149 		 * setup_inline_extent_backref().
1150 		 */
1151 		if (unlikely(refs_to_mod != -1)) {
1152 			struct btrfs_key key;
1153 
1154 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1155 
1156 			btrfs_print_leaf(leaf);
1157 			btrfs_err(fs_info,
1158 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1159 				  key.objectid, refs_to_mod);
1160 			return -EUCLEAN;
1161 		}
1162 	}
1163 
1164 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1165 		struct btrfs_key key;
1166 		u32 extent_size;
1167 
1168 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1170 			extent_size = fs_info->nodesize;
1171 		else
1172 			extent_size = key.offset;
1173 		btrfs_print_leaf(leaf);
1174 		btrfs_err(fs_info,
1175 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1176 			  (unsigned long)iref, key.objectid, extent_size,
1177 			  refs_to_mod, refs);
1178 		return -EUCLEAN;
1179 	}
1180 	refs += refs_to_mod;
1181 
1182 	if (refs > 0) {
1183 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1185 		else
1186 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1187 	} else {
1188 		size =  btrfs_extent_inline_ref_size(type);
1189 		item_size = btrfs_item_size(leaf, path->slots[0]);
1190 		ptr = (unsigned long)iref;
1191 		end = (unsigned long)ei + item_size;
1192 		if (ptr + size < end)
1193 			memmove_extent_buffer(leaf, ptr, ptr + size,
1194 					      end - ptr - size);
1195 		item_size -= size;
1196 		btrfs_truncate_item(trans, path, item_size, 1);
1197 	}
1198 	btrfs_mark_buffer_dirty(trans, leaf);
1199 	return 0;
1200 }
1201 
1202 static noinline_for_stack
1203 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1204 				 struct btrfs_path *path,
1205 				 u64 bytenr, u64 num_bytes, u64 parent,
1206 				 u64 root_objectid, u64 owner,
1207 				 u64 offset, int refs_to_add,
1208 				 struct btrfs_delayed_extent_op *extent_op)
1209 {
1210 	struct btrfs_extent_inline_ref *iref;
1211 	int ret;
1212 
1213 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1214 					   num_bytes, parent, root_objectid,
1215 					   owner, offset, 1);
1216 	if (ret == 0) {
1217 		/*
1218 		 * We're adding refs to a tree block we already own, this
1219 		 * should not happen at all.
1220 		 */
1221 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1222 			btrfs_print_leaf(path->nodes[0]);
1223 			btrfs_crit(trans->fs_info,
1224 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1225 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1226 			return -EUCLEAN;
1227 		}
1228 		ret = update_inline_extent_backref(trans, path, iref,
1229 						   refs_to_add, extent_op);
1230 	} else if (ret == -ENOENT) {
1231 		setup_inline_extent_backref(trans, path, iref, parent,
1232 					    root_objectid, owner, offset,
1233 					    refs_to_add, extent_op);
1234 		ret = 0;
1235 	}
1236 	return ret;
1237 }
1238 
1239 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1240 				 struct btrfs_root *root,
1241 				 struct btrfs_path *path,
1242 				 struct btrfs_extent_inline_ref *iref,
1243 				 int refs_to_drop, int is_data)
1244 {
1245 	int ret = 0;
1246 
1247 	BUG_ON(!is_data && refs_to_drop != 1);
1248 	if (iref)
1249 		ret = update_inline_extent_backref(trans, path, iref,
1250 						   -refs_to_drop, NULL);
1251 	else if (is_data)
1252 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1253 	else
1254 		ret = btrfs_del_item(trans, root, path);
1255 	return ret;
1256 }
1257 
1258 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1259 			       u64 *discarded_bytes)
1260 {
1261 	int j, ret = 0;
1262 	u64 bytes_left, end;
1263 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1264 
1265 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1266 	if (start != aligned_start) {
1267 		len -= aligned_start - start;
1268 		len = round_down(len, 1 << SECTOR_SHIFT);
1269 		start = aligned_start;
1270 	}
1271 
1272 	*discarded_bytes = 0;
1273 
1274 	if (!len)
1275 		return 0;
1276 
1277 	end = start + len;
1278 	bytes_left = len;
1279 
1280 	/* Skip any superblocks on this device. */
1281 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1282 		u64 sb_start = btrfs_sb_offset(j);
1283 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1284 		u64 size = sb_start - start;
1285 
1286 		if (!in_range(sb_start, start, bytes_left) &&
1287 		    !in_range(sb_end, start, bytes_left) &&
1288 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1289 			continue;
1290 
1291 		/*
1292 		 * Superblock spans beginning of range.  Adjust start and
1293 		 * try again.
1294 		 */
1295 		if (sb_start <= start) {
1296 			start += sb_end - start;
1297 			if (start > end) {
1298 				bytes_left = 0;
1299 				break;
1300 			}
1301 			bytes_left = end - start;
1302 			continue;
1303 		}
1304 
1305 		if (size) {
1306 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307 						   size >> SECTOR_SHIFT,
1308 						   GFP_NOFS);
1309 			if (!ret)
1310 				*discarded_bytes += size;
1311 			else if (ret != -EOPNOTSUPP)
1312 				return ret;
1313 		}
1314 
1315 		start = sb_end;
1316 		if (start > end) {
1317 			bytes_left = 0;
1318 			break;
1319 		}
1320 		bytes_left = end - start;
1321 	}
1322 
1323 	while (bytes_left) {
1324 		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1325 
1326 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1327 					   bytes_to_discard >> SECTOR_SHIFT,
1328 					   GFP_NOFS);
1329 
1330 		if (ret) {
1331 			if (ret != -EOPNOTSUPP)
1332 				break;
1333 			continue;
1334 		}
1335 
1336 		start += bytes_to_discard;
1337 		bytes_left -= bytes_to_discard;
1338 		*discarded_bytes += bytes_to_discard;
1339 
1340 		if (btrfs_trim_interrupted()) {
1341 			ret = -ERESTARTSYS;
1342 			break;
1343 		}
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1350 {
1351 	struct btrfs_device *dev = stripe->dev;
1352 	struct btrfs_fs_info *fs_info = dev->fs_info;
1353 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1354 	u64 phys = stripe->physical;
1355 	u64 len = stripe->length;
1356 	u64 discarded = 0;
1357 	int ret = 0;
1358 
1359 	/* Zone reset on a zoned filesystem */
1360 	if (btrfs_can_zone_reset(dev, phys, len)) {
1361 		u64 src_disc;
1362 
1363 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1364 		if (ret)
1365 			goto out;
1366 
1367 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1368 		    dev != dev_replace->srcdev)
1369 			goto out;
1370 
1371 		src_disc = discarded;
1372 
1373 		/* Send to replace target as well */
1374 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1375 					      &discarded);
1376 		discarded += src_disc;
1377 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1378 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1379 	} else {
1380 		ret = 0;
1381 		*bytes = 0;
1382 	}
1383 
1384 out:
1385 	*bytes = discarded;
1386 	return ret;
1387 }
1388 
1389 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1390 			 u64 num_bytes, u64 *actual_bytes)
1391 {
1392 	int ret = 0;
1393 	u64 discarded_bytes = 0;
1394 	u64 end = bytenr + num_bytes;
1395 	u64 cur = bytenr;
1396 
1397 	/*
1398 	 * Avoid races with device replace and make sure the devices in the
1399 	 * stripes don't go away while we are discarding.
1400 	 */
1401 	btrfs_bio_counter_inc_blocked(fs_info);
1402 	while (cur < end) {
1403 		struct btrfs_discard_stripe *stripes;
1404 		unsigned int num_stripes;
1405 		int i;
1406 
1407 		num_bytes = end - cur;
1408 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1409 		if (IS_ERR(stripes)) {
1410 			ret = PTR_ERR(stripes);
1411 			if (ret == -EOPNOTSUPP)
1412 				ret = 0;
1413 			break;
1414 		}
1415 
1416 		for (i = 0; i < num_stripes; i++) {
1417 			struct btrfs_discard_stripe *stripe = stripes + i;
1418 			u64 bytes;
1419 
1420 			if (!stripe->dev->bdev) {
1421 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1422 				continue;
1423 			}
1424 
1425 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1426 					&stripe->dev->dev_state))
1427 				continue;
1428 
1429 			ret = do_discard_extent(stripe, &bytes);
1430 			if (ret) {
1431 				/*
1432 				 * Keep going if discard is not supported by the
1433 				 * device.
1434 				 */
1435 				if (ret != -EOPNOTSUPP)
1436 					break;
1437 				ret = 0;
1438 			} else {
1439 				discarded_bytes += bytes;
1440 			}
1441 		}
1442 		kfree(stripes);
1443 		if (ret)
1444 			break;
1445 		cur += num_bytes;
1446 	}
1447 	btrfs_bio_counter_dec(fs_info);
1448 	if (actual_bytes)
1449 		*actual_bytes = discarded_bytes;
1450 	return ret;
1451 }
1452 
1453 /* Can return -ENOMEM */
1454 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455 			 struct btrfs_ref *generic_ref)
1456 {
1457 	struct btrfs_fs_info *fs_info = trans->fs_info;
1458 	int ret;
1459 
1460 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1461 	       generic_ref->action);
1462 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1463 	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1464 
1465 	if (generic_ref->type == BTRFS_REF_METADATA)
1466 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1467 	else
1468 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1469 
1470 	btrfs_ref_tree_mod(fs_info, generic_ref);
1471 
1472 	return ret;
1473 }
1474 
1475 /*
1476  * Insert backreference for a given extent.
1477  *
1478  * The counterpart is in __btrfs_free_extent(), with examples and more details
1479  * how it works.
1480  *
1481  * @trans:	    Handle of transaction
1482  *
1483  * @node:	    The delayed ref node used to get the bytenr/length for
1484  *		    extent whose references are incremented.
1485  *
1486  * @extent_op       Pointer to a structure, holding information necessary when
1487  *                  updating a tree block's flags
1488  *
1489  */
1490 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1491 				  struct btrfs_delayed_ref_node *node,
1492 				  struct btrfs_delayed_extent_op *extent_op)
1493 {
1494 	struct btrfs_path *path;
1495 	struct extent_buffer *leaf;
1496 	struct btrfs_extent_item *item;
1497 	struct btrfs_key key;
1498 	u64 bytenr = node->bytenr;
1499 	u64 num_bytes = node->num_bytes;
1500 	u64 owner = btrfs_delayed_ref_owner(node);
1501 	u64 offset = btrfs_delayed_ref_offset(node);
1502 	u64 refs;
1503 	int refs_to_add = node->ref_mod;
1504 	int ret;
1505 
1506 	path = btrfs_alloc_path();
1507 	if (!path)
1508 		return -ENOMEM;
1509 
1510 	/* this will setup the path even if it fails to insert the back ref */
1511 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1512 					   node->parent, node->ref_root, owner,
1513 					   offset, refs_to_add, extent_op);
1514 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1515 		goto out;
1516 
1517 	/*
1518 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1519 	 * inline extent ref, so just update the reference count and add a
1520 	 * normal backref.
1521 	 */
1522 	leaf = path->nodes[0];
1523 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1524 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1525 	refs = btrfs_extent_refs(leaf, item);
1526 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1527 	if (extent_op)
1528 		__run_delayed_extent_op(extent_op, leaf, item);
1529 
1530 	btrfs_mark_buffer_dirty(trans, leaf);
1531 	btrfs_release_path(path);
1532 
1533 	/* now insert the actual backref */
1534 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1535 		ret = insert_tree_block_ref(trans, path, node, bytenr);
1536 	else
1537 		ret = insert_extent_data_ref(trans, path, node, bytenr);
1538 
1539 	if (ret)
1540 		btrfs_abort_transaction(trans, ret);
1541 out:
1542 	btrfs_free_path(path);
1543 	return ret;
1544 }
1545 
1546 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1547 				     struct btrfs_delayed_ref_head *href)
1548 {
1549 	u64 root = href->owning_root;
1550 
1551 	/*
1552 	 * Don't check must_insert_reserved, as this is called from contexts
1553 	 * where it has already been unset.
1554 	 */
1555 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1556 	    !href->is_data || !is_fstree(root))
1557 		return;
1558 
1559 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1560 				  BTRFS_QGROUP_RSV_DATA);
1561 }
1562 
1563 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1564 				struct btrfs_delayed_ref_head *href,
1565 				struct btrfs_delayed_ref_node *node,
1566 				struct btrfs_delayed_extent_op *extent_op,
1567 				bool insert_reserved)
1568 {
1569 	int ret = 0;
1570 	u64 parent = 0;
1571 	u64 flags = 0;
1572 
1573 	trace_run_delayed_data_ref(trans->fs_info, node);
1574 
1575 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1576 		parent = node->parent;
1577 
1578 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1579 		struct btrfs_key key;
1580 		struct btrfs_squota_delta delta = {
1581 			.root = href->owning_root,
1582 			.num_bytes = node->num_bytes,
1583 			.is_data = true,
1584 			.is_inc	= true,
1585 			.generation = trans->transid,
1586 		};
1587 		u64 owner = btrfs_delayed_ref_owner(node);
1588 		u64 offset = btrfs_delayed_ref_offset(node);
1589 
1590 		if (extent_op)
1591 			flags |= extent_op->flags_to_set;
1592 
1593 		key.objectid = node->bytenr;
1594 		key.type = BTRFS_EXTENT_ITEM_KEY;
1595 		key.offset = node->num_bytes;
1596 
1597 		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1598 						 flags, owner, offset, &key,
1599 						 node->ref_mod,
1600 						 href->owning_root);
1601 		free_head_ref_squota_rsv(trans->fs_info, href);
1602 		if (!ret)
1603 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1604 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1605 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1606 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1607 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1608 	} else {
1609 		BUG();
1610 	}
1611 	return ret;
1612 }
1613 
1614 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1615 				    struct extent_buffer *leaf,
1616 				    struct btrfs_extent_item *ei)
1617 {
1618 	u64 flags = btrfs_extent_flags(leaf, ei);
1619 	if (extent_op->update_flags) {
1620 		flags |= extent_op->flags_to_set;
1621 		btrfs_set_extent_flags(leaf, ei, flags);
1622 	}
1623 
1624 	if (extent_op->update_key) {
1625 		struct btrfs_tree_block_info *bi;
1626 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1627 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1628 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1629 	}
1630 }
1631 
1632 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1633 				 struct btrfs_delayed_ref_head *head,
1634 				 struct btrfs_delayed_extent_op *extent_op)
1635 {
1636 	struct btrfs_fs_info *fs_info = trans->fs_info;
1637 	struct btrfs_root *root;
1638 	struct btrfs_key key;
1639 	struct btrfs_path *path;
1640 	struct btrfs_extent_item *ei;
1641 	struct extent_buffer *leaf;
1642 	u32 item_size;
1643 	int ret;
1644 	int metadata = 1;
1645 
1646 	if (TRANS_ABORTED(trans))
1647 		return 0;
1648 
1649 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650 		metadata = 0;
1651 
1652 	path = btrfs_alloc_path();
1653 	if (!path)
1654 		return -ENOMEM;
1655 
1656 	key.objectid = head->bytenr;
1657 
1658 	if (metadata) {
1659 		key.type = BTRFS_METADATA_ITEM_KEY;
1660 		key.offset = head->level;
1661 	} else {
1662 		key.type = BTRFS_EXTENT_ITEM_KEY;
1663 		key.offset = head->num_bytes;
1664 	}
1665 
1666 	root = btrfs_extent_root(fs_info, key.objectid);
1667 again:
1668 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1669 	if (ret < 0) {
1670 		goto out;
1671 	} else if (ret > 0) {
1672 		if (metadata) {
1673 			if (path->slots[0] > 0) {
1674 				path->slots[0]--;
1675 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1676 						      path->slots[0]);
1677 				if (key.objectid == head->bytenr &&
1678 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1679 				    key.offset == head->num_bytes)
1680 					ret = 0;
1681 			}
1682 			if (ret > 0) {
1683 				btrfs_release_path(path);
1684 				metadata = 0;
1685 
1686 				key.objectid = head->bytenr;
1687 				key.offset = head->num_bytes;
1688 				key.type = BTRFS_EXTENT_ITEM_KEY;
1689 				goto again;
1690 			}
1691 		} else {
1692 			ret = -EUCLEAN;
1693 			btrfs_err(fs_info,
1694 		  "missing extent item for extent %llu num_bytes %llu level %d",
1695 				  head->bytenr, head->num_bytes, head->level);
1696 			goto out;
1697 		}
1698 	}
1699 
1700 	leaf = path->nodes[0];
1701 	item_size = btrfs_item_size(leaf, path->slots[0]);
1702 
1703 	if (unlikely(item_size < sizeof(*ei))) {
1704 		ret = -EUCLEAN;
1705 		btrfs_err(fs_info,
1706 			  "unexpected extent item size, has %u expect >= %zu",
1707 			  item_size, sizeof(*ei));
1708 		btrfs_abort_transaction(trans, ret);
1709 		goto out;
1710 	}
1711 
1712 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 	__run_delayed_extent_op(extent_op, leaf, ei);
1714 
1715 	btrfs_mark_buffer_dirty(trans, leaf);
1716 out:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
1721 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1722 				struct btrfs_delayed_ref_head *href,
1723 				struct btrfs_delayed_ref_node *node,
1724 				struct btrfs_delayed_extent_op *extent_op,
1725 				bool insert_reserved)
1726 {
1727 	int ret = 0;
1728 	struct btrfs_fs_info *fs_info = trans->fs_info;
1729 	u64 parent = 0;
1730 	u64 ref_root = 0;
1731 
1732 	trace_run_delayed_tree_ref(trans->fs_info, node);
1733 
1734 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1735 		parent = node->parent;
1736 	ref_root = node->ref_root;
1737 
1738 	if (unlikely(node->ref_mod != 1)) {
1739 		btrfs_err(trans->fs_info,
1740 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1741 			  node->bytenr, node->ref_mod, node->action, ref_root,
1742 			  parent);
1743 		return -EUCLEAN;
1744 	}
1745 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1746 		struct btrfs_squota_delta delta = {
1747 			.root = href->owning_root,
1748 			.num_bytes = fs_info->nodesize,
1749 			.is_data = false,
1750 			.is_inc = true,
1751 			.generation = trans->transid,
1752 		};
1753 
1754 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1755 		if (!ret)
1756 			btrfs_record_squota_delta(fs_info, &delta);
1757 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1758 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1759 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1760 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1761 	} else {
1762 		BUG();
1763 	}
1764 	return ret;
1765 }
1766 
1767 /* helper function to actually process a single delayed ref entry */
1768 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769 			       struct btrfs_delayed_ref_head *href,
1770 			       struct btrfs_delayed_ref_node *node,
1771 			       struct btrfs_delayed_extent_op *extent_op,
1772 			       bool insert_reserved)
1773 {
1774 	int ret = 0;
1775 
1776 	if (TRANS_ABORTED(trans)) {
1777 		if (insert_reserved) {
1778 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779 			free_head_ref_squota_rsv(trans->fs_info, href);
1780 		}
1781 		return 0;
1782 	}
1783 
1784 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1785 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1786 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1787 					   insert_reserved);
1788 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1789 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1790 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1791 					   insert_reserved);
1792 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1793 		ret = 0;
1794 	else
1795 		BUG();
1796 	if (ret && insert_reserved)
1797 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1798 	if (ret < 0)
1799 		btrfs_err(trans->fs_info,
1800 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1801 			  node->bytenr, node->num_bytes, node->type,
1802 			  node->action, node->ref_mod, ret);
1803 	return ret;
1804 }
1805 
1806 static inline struct btrfs_delayed_ref_node *
1807 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1808 {
1809 	struct btrfs_delayed_ref_node *ref;
1810 
1811 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1812 		return NULL;
1813 
1814 	/*
1815 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1816 	 * This is to prevent a ref count from going down to zero, which deletes
1817 	 * the extent item from the extent tree, when there still are references
1818 	 * to add, which would fail because they would not find the extent item.
1819 	 */
1820 	if (!list_empty(&head->ref_add_list))
1821 		return list_first_entry(&head->ref_add_list,
1822 				struct btrfs_delayed_ref_node, add_list);
1823 
1824 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1825 		       struct btrfs_delayed_ref_node, ref_node);
1826 	ASSERT(list_empty(&ref->add_list));
1827 	return ref;
1828 }
1829 
1830 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831 				struct btrfs_delayed_ref_head *head)
1832 {
1833 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834 
1835 	if (!extent_op)
1836 		return NULL;
1837 
1838 	if (head->must_insert_reserved) {
1839 		head->extent_op = NULL;
1840 		btrfs_free_delayed_extent_op(extent_op);
1841 		return NULL;
1842 	}
1843 	return extent_op;
1844 }
1845 
1846 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847 				     struct btrfs_delayed_ref_head *head)
1848 {
1849 	struct btrfs_delayed_extent_op *extent_op;
1850 	int ret;
1851 
1852 	extent_op = cleanup_extent_op(head);
1853 	if (!extent_op)
1854 		return 0;
1855 	head->extent_op = NULL;
1856 	spin_unlock(&head->lock);
1857 	ret = run_delayed_extent_op(trans, head, extent_op);
1858 	btrfs_free_delayed_extent_op(extent_op);
1859 	return ret ? ret : 1;
1860 }
1861 
1862 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863 				  struct btrfs_delayed_ref_root *delayed_refs,
1864 				  struct btrfs_delayed_ref_head *head)
1865 {
1866 	u64 ret = 0;
1867 
1868 	/*
1869 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1870 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871 	 */
1872 	if (head->total_ref_mod < 0 && head->is_data) {
1873 		int nr_csums;
1874 
1875 		spin_lock(&delayed_refs->lock);
1876 		delayed_refs->pending_csums -= head->num_bytes;
1877 		spin_unlock(&delayed_refs->lock);
1878 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1879 
1880 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1881 
1882 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1883 	}
1884 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1885 	if (head->must_insert_reserved)
1886 		free_head_ref_squota_rsv(fs_info, head);
1887 
1888 	return ret;
1889 }
1890 
1891 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1892 			    struct btrfs_delayed_ref_head *head,
1893 			    u64 *bytes_released)
1894 {
1895 
1896 	struct btrfs_fs_info *fs_info = trans->fs_info;
1897 	struct btrfs_delayed_ref_root *delayed_refs;
1898 	int ret;
1899 
1900 	delayed_refs = &trans->transaction->delayed_refs;
1901 
1902 	ret = run_and_cleanup_extent_op(trans, head);
1903 	if (ret < 0) {
1904 		btrfs_unselect_ref_head(delayed_refs, head);
1905 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1906 		return ret;
1907 	} else if (ret) {
1908 		return ret;
1909 	}
1910 
1911 	/*
1912 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1913 	 * and then re-check to make sure nobody got added.
1914 	 */
1915 	spin_unlock(&head->lock);
1916 	spin_lock(&delayed_refs->lock);
1917 	spin_lock(&head->lock);
1918 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1919 		spin_unlock(&head->lock);
1920 		spin_unlock(&delayed_refs->lock);
1921 		return 1;
1922 	}
1923 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1924 	spin_unlock(&head->lock);
1925 	spin_unlock(&delayed_refs->lock);
1926 
1927 	if (head->must_insert_reserved) {
1928 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1929 		if (head->is_data) {
1930 			struct btrfs_root *csum_root;
1931 
1932 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1933 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1934 					      head->num_bytes);
1935 		}
1936 	}
1937 
1938 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1939 
1940 	trace_run_delayed_ref_head(fs_info, head, 0);
1941 	btrfs_delayed_ref_unlock(head);
1942 	btrfs_put_delayed_ref_head(head);
1943 	return ret;
1944 }
1945 
1946 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1947 					   struct btrfs_delayed_ref_head *locked_ref,
1948 					   u64 *bytes_released)
1949 {
1950 	struct btrfs_fs_info *fs_info = trans->fs_info;
1951 	struct btrfs_delayed_ref_root *delayed_refs;
1952 	struct btrfs_delayed_extent_op *extent_op;
1953 	struct btrfs_delayed_ref_node *ref;
1954 	bool must_insert_reserved;
1955 	int ret;
1956 
1957 	delayed_refs = &trans->transaction->delayed_refs;
1958 
1959 	lockdep_assert_held(&locked_ref->mutex);
1960 	lockdep_assert_held(&locked_ref->lock);
1961 
1962 	while ((ref = select_delayed_ref(locked_ref))) {
1963 		if (ref->seq &&
1964 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1965 			spin_unlock(&locked_ref->lock);
1966 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1967 			return -EAGAIN;
1968 		}
1969 
1970 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1971 		RB_CLEAR_NODE(&ref->ref_node);
1972 		if (!list_empty(&ref->add_list))
1973 			list_del(&ref->add_list);
1974 		/*
1975 		 * When we play the delayed ref, also correct the ref_mod on
1976 		 * head
1977 		 */
1978 		switch (ref->action) {
1979 		case BTRFS_ADD_DELAYED_REF:
1980 		case BTRFS_ADD_DELAYED_EXTENT:
1981 			locked_ref->ref_mod -= ref->ref_mod;
1982 			break;
1983 		case BTRFS_DROP_DELAYED_REF:
1984 			locked_ref->ref_mod += ref->ref_mod;
1985 			break;
1986 		default:
1987 			WARN_ON(1);
1988 		}
1989 
1990 		/*
1991 		 * Record the must_insert_reserved flag before we drop the
1992 		 * spin lock.
1993 		 */
1994 		must_insert_reserved = locked_ref->must_insert_reserved;
1995 		/*
1996 		 * Unsetting this on the head ref relinquishes ownership of
1997 		 * the rsv_bytes, so it is critical that every possible code
1998 		 * path from here forward frees all reserves including qgroup
1999 		 * reserve.
2000 		 */
2001 		locked_ref->must_insert_reserved = false;
2002 
2003 		extent_op = locked_ref->extent_op;
2004 		locked_ref->extent_op = NULL;
2005 		spin_unlock(&locked_ref->lock);
2006 
2007 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2008 					  must_insert_reserved);
2009 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2010 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2011 
2012 		btrfs_free_delayed_extent_op(extent_op);
2013 		if (ret) {
2014 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
2015 			btrfs_put_delayed_ref(ref);
2016 			return ret;
2017 		}
2018 
2019 		btrfs_put_delayed_ref(ref);
2020 		cond_resched();
2021 
2022 		spin_lock(&locked_ref->lock);
2023 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 /*
2030  * Returns 0 on success or if called with an already aborted transaction.
2031  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032  */
2033 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034 					     u64 min_bytes)
2035 {
2036 	struct btrfs_fs_info *fs_info = trans->fs_info;
2037 	struct btrfs_delayed_ref_root *delayed_refs;
2038 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2039 	int ret;
2040 	unsigned long count = 0;
2041 	unsigned long max_count = 0;
2042 	u64 bytes_processed = 0;
2043 
2044 	delayed_refs = &trans->transaction->delayed_refs;
2045 	if (min_bytes == 0) {
2046 		max_count = delayed_refs->num_heads_ready;
2047 		min_bytes = U64_MAX;
2048 	}
2049 
2050 	do {
2051 		if (!locked_ref) {
2052 			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2053 			if (IS_ERR_OR_NULL(locked_ref)) {
2054 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2055 					continue;
2056 				} else {
2057 					break;
2058 				}
2059 			}
2060 			count++;
2061 		}
2062 		/*
2063 		 * We need to try and merge add/drops of the same ref since we
2064 		 * can run into issues with relocate dropping the implicit ref
2065 		 * and then it being added back again before the drop can
2066 		 * finish.  If we merged anything we need to re-loop so we can
2067 		 * get a good ref.
2068 		 * Or we can get node references of the same type that weren't
2069 		 * merged when created due to bumps in the tree mod seq, and
2070 		 * we need to merge them to prevent adding an inline extent
2071 		 * backref before dropping it (triggering a BUG_ON at
2072 		 * insert_inline_extent_backref()).
2073 		 */
2074 		spin_lock(&locked_ref->lock);
2075 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2076 
2077 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2078 		if (ret < 0 && ret != -EAGAIN) {
2079 			/*
2080 			 * Error, btrfs_run_delayed_refs_for_head already
2081 			 * unlocked everything so just bail out
2082 			 */
2083 			return ret;
2084 		} else if (!ret) {
2085 			/*
2086 			 * Success, perform the usual cleanup of a processed
2087 			 * head
2088 			 */
2089 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2090 			if (ret > 0 ) {
2091 				/* We dropped our lock, we need to loop. */
2092 				ret = 0;
2093 				continue;
2094 			} else if (ret) {
2095 				return ret;
2096 			}
2097 		}
2098 
2099 		/*
2100 		 * Either success case or btrfs_run_delayed_refs_for_head
2101 		 * returned -EAGAIN, meaning we need to select another head
2102 		 */
2103 
2104 		locked_ref = NULL;
2105 		cond_resched();
2106 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2107 		 (max_count > 0 && count < max_count) ||
2108 		 locked_ref);
2109 
2110 	return 0;
2111 }
2112 
2113 #ifdef SCRAMBLE_DELAYED_REFS
2114 /*
2115  * Normally delayed refs get processed in ascending bytenr order. This
2116  * correlates in most cases to the order added. To expose dependencies on this
2117  * order, we start to process the tree in the middle instead of the beginning
2118  */
2119 static u64 find_middle(struct rb_root *root)
2120 {
2121 	struct rb_node *n = root->rb_node;
2122 	struct btrfs_delayed_ref_node *entry;
2123 	int alt = 1;
2124 	u64 middle;
2125 	u64 first = 0, last = 0;
2126 
2127 	n = rb_first(root);
2128 	if (n) {
2129 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2130 		first = entry->bytenr;
2131 	}
2132 	n = rb_last(root);
2133 	if (n) {
2134 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2135 		last = entry->bytenr;
2136 	}
2137 	n = root->rb_node;
2138 
2139 	while (n) {
2140 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141 		WARN_ON(!entry->in_tree);
2142 
2143 		middle = entry->bytenr;
2144 
2145 		if (alt)
2146 			n = n->rb_left;
2147 		else
2148 			n = n->rb_right;
2149 
2150 		alt = 1 - alt;
2151 	}
2152 	return middle;
2153 }
2154 #endif
2155 
2156 /*
2157  * Start processing the delayed reference count updates and extent insertions
2158  * we have queued up so far.
2159  *
2160  * @trans:	Transaction handle.
2161  * @min_bytes:	How many bytes of delayed references to process. After this
2162  *		many bytes we stop processing delayed references if there are
2163  *		any more. If 0 it means to run all existing delayed references,
2164  *		but not new ones added after running all existing ones.
2165  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2166  *		plus any new ones that are added.
2167  *
2168  * Returns 0 on success or if called with an aborted transaction
2169  * Returns <0 on error and aborts the transaction
2170  */
2171 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2172 {
2173 	struct btrfs_fs_info *fs_info = trans->fs_info;
2174 	struct btrfs_delayed_ref_root *delayed_refs;
2175 	int ret;
2176 
2177 	/* We'll clean this up in btrfs_cleanup_transaction */
2178 	if (TRANS_ABORTED(trans))
2179 		return 0;
2180 
2181 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2182 		return 0;
2183 
2184 	delayed_refs = &trans->transaction->delayed_refs;
2185 again:
2186 #ifdef SCRAMBLE_DELAYED_REFS
2187 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2188 #endif
2189 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2190 	if (ret < 0) {
2191 		btrfs_abort_transaction(trans, ret);
2192 		return ret;
2193 	}
2194 
2195 	if (min_bytes == U64_MAX) {
2196 		btrfs_create_pending_block_groups(trans);
2197 
2198 		spin_lock(&delayed_refs->lock);
2199 		if (xa_empty(&delayed_refs->head_refs)) {
2200 			spin_unlock(&delayed_refs->lock);
2201 			return 0;
2202 		}
2203 		spin_unlock(&delayed_refs->lock);
2204 
2205 		cond_resched();
2206 		goto again;
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2213 				struct extent_buffer *eb, u64 flags)
2214 {
2215 	struct btrfs_delayed_extent_op *extent_op;
2216 	int ret;
2217 
2218 	extent_op = btrfs_alloc_delayed_extent_op();
2219 	if (!extent_op)
2220 		return -ENOMEM;
2221 
2222 	extent_op->flags_to_set = flags;
2223 	extent_op->update_flags = true;
2224 	extent_op->update_key = false;
2225 
2226 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2227 					  btrfs_header_level(eb), extent_op);
2228 	if (ret)
2229 		btrfs_free_delayed_extent_op(extent_op);
2230 	return ret;
2231 }
2232 
2233 static noinline int check_delayed_ref(struct btrfs_root *root,
2234 				      struct btrfs_path *path,
2235 				      u64 objectid, u64 offset, u64 bytenr)
2236 {
2237 	struct btrfs_delayed_ref_head *head;
2238 	struct btrfs_delayed_ref_node *ref;
2239 	struct btrfs_delayed_ref_root *delayed_refs;
2240 	struct btrfs_transaction *cur_trans;
2241 	struct rb_node *node;
2242 	int ret = 0;
2243 
2244 	spin_lock(&root->fs_info->trans_lock);
2245 	cur_trans = root->fs_info->running_transaction;
2246 	if (cur_trans)
2247 		refcount_inc(&cur_trans->use_count);
2248 	spin_unlock(&root->fs_info->trans_lock);
2249 	if (!cur_trans)
2250 		return 0;
2251 
2252 	delayed_refs = &cur_trans->delayed_refs;
2253 	spin_lock(&delayed_refs->lock);
2254 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2255 	if (!head) {
2256 		spin_unlock(&delayed_refs->lock);
2257 		btrfs_put_transaction(cur_trans);
2258 		return 0;
2259 	}
2260 
2261 	if (!mutex_trylock(&head->mutex)) {
2262 		if (path->nowait) {
2263 			spin_unlock(&delayed_refs->lock);
2264 			btrfs_put_transaction(cur_trans);
2265 			return -EAGAIN;
2266 		}
2267 
2268 		refcount_inc(&head->refs);
2269 		spin_unlock(&delayed_refs->lock);
2270 
2271 		btrfs_release_path(path);
2272 
2273 		/*
2274 		 * Mutex was contended, block until it's released and let
2275 		 * caller try again
2276 		 */
2277 		mutex_lock(&head->mutex);
2278 		mutex_unlock(&head->mutex);
2279 		btrfs_put_delayed_ref_head(head);
2280 		btrfs_put_transaction(cur_trans);
2281 		return -EAGAIN;
2282 	}
2283 	spin_unlock(&delayed_refs->lock);
2284 
2285 	spin_lock(&head->lock);
2286 	/*
2287 	 * XXX: We should replace this with a proper search function in the
2288 	 * future.
2289 	 */
2290 	for (node = rb_first_cached(&head->ref_tree); node;
2291 	     node = rb_next(node)) {
2292 		u64 ref_owner;
2293 		u64 ref_offset;
2294 
2295 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 		/* If it's a shared ref we know a cross reference exists */
2297 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 			ret = 1;
2299 			break;
2300 		}
2301 
2302 		ref_owner = btrfs_delayed_ref_owner(ref);
2303 		ref_offset = btrfs_delayed_ref_offset(ref);
2304 
2305 		/*
2306 		 * If our ref doesn't match the one we're currently looking at
2307 		 * then we have a cross reference.
2308 		 */
2309 		if (ref->ref_root != btrfs_root_id(root) ||
2310 		    ref_owner != objectid || ref_offset != offset) {
2311 			ret = 1;
2312 			break;
2313 		}
2314 	}
2315 	spin_unlock(&head->lock);
2316 	mutex_unlock(&head->mutex);
2317 	btrfs_put_transaction(cur_trans);
2318 	return ret;
2319 }
2320 
2321 static noinline int check_committed_ref(struct btrfs_root *root,
2322 					struct btrfs_path *path,
2323 					u64 objectid, u64 offset, u64 bytenr,
2324 					bool strict)
2325 {
2326 	struct btrfs_fs_info *fs_info = root->fs_info;
2327 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2328 	struct extent_buffer *leaf;
2329 	struct btrfs_extent_data_ref *ref;
2330 	struct btrfs_extent_inline_ref *iref;
2331 	struct btrfs_extent_item *ei;
2332 	struct btrfs_key key;
2333 	u32 item_size;
2334 	u32 expected_size;
2335 	int type;
2336 	int ret;
2337 
2338 	key.objectid = bytenr;
2339 	key.offset = (u64)-1;
2340 	key.type = BTRFS_EXTENT_ITEM_KEY;
2341 
2342 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343 	if (ret < 0)
2344 		goto out;
2345 	if (ret == 0) {
2346 		/*
2347 		 * Key with offset -1 found, there would have to exist an extent
2348 		 * item with such offset, but this is out of the valid range.
2349 		 */
2350 		ret = -EUCLEAN;
2351 		goto out;
2352 	}
2353 
2354 	ret = -ENOENT;
2355 	if (path->slots[0] == 0)
2356 		goto out;
2357 
2358 	path->slots[0]--;
2359 	leaf = path->nodes[0];
2360 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2361 
2362 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2363 		goto out;
2364 
2365 	ret = 1;
2366 	item_size = btrfs_item_size(leaf, path->slots[0]);
2367 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2368 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2369 
2370 	/* No inline refs; we need to bail before checking for owner ref. */
2371 	if (item_size == sizeof(*ei))
2372 		goto out;
2373 
2374 	/* Check for an owner ref; skip over it to the real inline refs. */
2375 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2376 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2377 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2378 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2379 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2380 	}
2381 
2382 	/* If extent item has more than 1 inline ref then it's shared */
2383 	if (item_size != expected_size)
2384 		goto out;
2385 
2386 	/*
2387 	 * If extent created before last snapshot => it's shared unless the
2388 	 * snapshot has been deleted. Use the heuristic if strict is false.
2389 	 */
2390 	if (!strict &&
2391 	    (btrfs_extent_generation(leaf, ei) <=
2392 	     btrfs_root_last_snapshot(&root->root_item)))
2393 		goto out;
2394 
2395 	/* If this extent has SHARED_DATA_REF then it's shared */
2396 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2397 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398 		goto out;
2399 
2400 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401 	if (btrfs_extent_refs(leaf, ei) !=
2402 	    btrfs_extent_data_ref_count(leaf, ref) ||
2403 	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2404 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 		goto out;
2407 
2408 	ret = 0;
2409 out:
2410 	return ret;
2411 }
2412 
2413 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414 			  u64 bytenr, bool strict, struct btrfs_path *path)
2415 {
2416 	int ret;
2417 
2418 	do {
2419 		ret = check_committed_ref(root, path, objectid,
2420 					  offset, bytenr, strict);
2421 		if (ret && ret != -ENOENT)
2422 			goto out;
2423 
2424 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2425 	} while (ret == -EAGAIN && !path->nowait);
2426 
2427 out:
2428 	btrfs_release_path(path);
2429 	if (btrfs_is_data_reloc_root(root))
2430 		WARN_ON(ret > 0);
2431 	return ret;
2432 }
2433 
2434 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2435 			   struct btrfs_root *root,
2436 			   struct extent_buffer *buf,
2437 			   int full_backref, int inc)
2438 {
2439 	struct btrfs_fs_info *fs_info = root->fs_info;
2440 	u64 parent;
2441 	u64 ref_root;
2442 	u32 nritems;
2443 	struct btrfs_key key;
2444 	struct btrfs_file_extent_item *fi;
2445 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2446 	int i;
2447 	int action;
2448 	int level;
2449 	int ret = 0;
2450 
2451 	if (btrfs_is_testing(fs_info))
2452 		return 0;
2453 
2454 	ref_root = btrfs_header_owner(buf);
2455 	nritems = btrfs_header_nritems(buf);
2456 	level = btrfs_header_level(buf);
2457 
2458 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2459 		return 0;
2460 
2461 	if (full_backref)
2462 		parent = buf->start;
2463 	else
2464 		parent = 0;
2465 	if (inc)
2466 		action = BTRFS_ADD_DELAYED_REF;
2467 	else
2468 		action = BTRFS_DROP_DELAYED_REF;
2469 
2470 	for (i = 0; i < nritems; i++) {
2471 		struct btrfs_ref ref = {
2472 			.action = action,
2473 			.parent = parent,
2474 			.ref_root = ref_root,
2475 		};
2476 
2477 		if (level == 0) {
2478 			btrfs_item_key_to_cpu(buf, &key, i);
2479 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2480 				continue;
2481 			fi = btrfs_item_ptr(buf, i,
2482 					    struct btrfs_file_extent_item);
2483 			if (btrfs_file_extent_type(buf, fi) ==
2484 			    BTRFS_FILE_EXTENT_INLINE)
2485 				continue;
2486 			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2487 			if (ref.bytenr == 0)
2488 				continue;
2489 
2490 			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2491 			ref.owning_root = ref_root;
2492 
2493 			key.offset -= btrfs_file_extent_offset(buf, fi);
2494 			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2495 					    btrfs_root_id(root), for_reloc);
2496 			if (inc)
2497 				ret = btrfs_inc_extent_ref(trans, &ref);
2498 			else
2499 				ret = btrfs_free_extent(trans, &ref);
2500 			if (ret)
2501 				goto fail;
2502 		} else {
2503 			/* We don't know the owning_root, leave as 0. */
2504 			ref.bytenr = btrfs_node_blockptr(buf, i);
2505 			ref.num_bytes = fs_info->nodesize;
2506 
2507 			btrfs_init_tree_ref(&ref, level - 1,
2508 					    btrfs_root_id(root), for_reloc);
2509 			if (inc)
2510 				ret = btrfs_inc_extent_ref(trans, &ref);
2511 			else
2512 				ret = btrfs_free_extent(trans, &ref);
2513 			if (ret)
2514 				goto fail;
2515 		}
2516 	}
2517 	return 0;
2518 fail:
2519 	return ret;
2520 }
2521 
2522 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2523 		  struct extent_buffer *buf, int full_backref)
2524 {
2525 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2526 }
2527 
2528 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529 		  struct extent_buffer *buf, int full_backref)
2530 {
2531 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2532 }
2533 
2534 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2535 {
2536 	struct btrfs_fs_info *fs_info = root->fs_info;
2537 	u64 flags;
2538 	u64 ret;
2539 
2540 	if (data)
2541 		flags = BTRFS_BLOCK_GROUP_DATA;
2542 	else if (root == fs_info->chunk_root)
2543 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2544 	else
2545 		flags = BTRFS_BLOCK_GROUP_METADATA;
2546 
2547 	ret = btrfs_get_alloc_profile(fs_info, flags);
2548 	return ret;
2549 }
2550 
2551 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2552 {
2553 	struct rb_node *leftmost;
2554 	u64 bytenr = 0;
2555 
2556 	read_lock(&fs_info->block_group_cache_lock);
2557 	/* Get the block group with the lowest logical start address. */
2558 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2559 	if (leftmost) {
2560 		struct btrfs_block_group *bg;
2561 
2562 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2563 		bytenr = bg->start;
2564 	}
2565 	read_unlock(&fs_info->block_group_cache_lock);
2566 
2567 	return bytenr;
2568 }
2569 
2570 static int pin_down_extent(struct btrfs_trans_handle *trans,
2571 			   struct btrfs_block_group *cache,
2572 			   u64 bytenr, u64 num_bytes, int reserved)
2573 {
2574 	struct btrfs_fs_info *fs_info = cache->fs_info;
2575 
2576 	spin_lock(&cache->space_info->lock);
2577 	spin_lock(&cache->lock);
2578 	cache->pinned += num_bytes;
2579 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580 					     num_bytes);
2581 	if (reserved) {
2582 		cache->reserved -= num_bytes;
2583 		cache->space_info->bytes_reserved -= num_bytes;
2584 	}
2585 	spin_unlock(&cache->lock);
2586 	spin_unlock(&cache->space_info->lock);
2587 
2588 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2589 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2590 	return 0;
2591 }
2592 
2593 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2594 		     u64 bytenr, u64 num_bytes, int reserved)
2595 {
2596 	struct btrfs_block_group *cache;
2597 
2598 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599 	BUG_ON(!cache); /* Logic error */
2600 
2601 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2602 
2603 	btrfs_put_block_group(cache);
2604 	return 0;
2605 }
2606 
2607 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608 				    const struct extent_buffer *eb)
2609 {
2610 	struct btrfs_block_group *cache;
2611 	int ret;
2612 
2613 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2614 	if (!cache)
2615 		return -EINVAL;
2616 
2617 	/*
2618 	 * Fully cache the free space first so that our pin removes the free space
2619 	 * from the cache.
2620 	 */
2621 	ret = btrfs_cache_block_group(cache, true);
2622 	if (ret)
2623 		goto out;
2624 
2625 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2626 
2627 	/* remove us from the free space cache (if we're there at all) */
2628 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2629 out:
2630 	btrfs_put_block_group(cache);
2631 	return ret;
2632 }
2633 
2634 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635 				   u64 start, u64 num_bytes)
2636 {
2637 	int ret;
2638 	struct btrfs_block_group *block_group;
2639 
2640 	block_group = btrfs_lookup_block_group(fs_info, start);
2641 	if (!block_group)
2642 		return -EINVAL;
2643 
2644 	ret = btrfs_cache_block_group(block_group, true);
2645 	if (ret)
2646 		goto out;
2647 
2648 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649 out:
2650 	btrfs_put_block_group(block_group);
2651 	return ret;
2652 }
2653 
2654 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655 {
2656 	struct btrfs_fs_info *fs_info = eb->fs_info;
2657 	struct btrfs_file_extent_item *item;
2658 	struct btrfs_key key;
2659 	int found_type;
2660 	int i;
2661 	int ret = 0;
2662 
2663 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664 		return 0;
2665 
2666 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667 		btrfs_item_key_to_cpu(eb, &key, i);
2668 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2669 			continue;
2670 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671 		found_type = btrfs_file_extent_type(eb, item);
2672 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673 			continue;
2674 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675 			continue;
2676 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679 		if (ret)
2680 			break;
2681 	}
2682 
2683 	return ret;
2684 }
2685 
2686 static void
2687 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688 {
2689 	atomic_inc(&bg->reservations);
2690 }
2691 
2692 /*
2693  * Returns the free cluster for the given space info and sets empty_cluster to
2694  * what it should be based on the mount options.
2695  */
2696 static struct btrfs_free_cluster *
2697 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2699 {
2700 	struct btrfs_free_cluster *ret = NULL;
2701 
2702 	*empty_cluster = 0;
2703 	if (btrfs_mixed_space_info(space_info))
2704 		return ret;
2705 
2706 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707 		ret = &fs_info->meta_alloc_cluster;
2708 		if (btrfs_test_opt(fs_info, SSD))
2709 			*empty_cluster = SZ_2M;
2710 		else
2711 			*empty_cluster = SZ_64K;
2712 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714 		*empty_cluster = SZ_2M;
2715 		ret = &fs_info->data_alloc_cluster;
2716 	}
2717 
2718 	return ret;
2719 }
2720 
2721 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722 			      u64 start, u64 end,
2723 			      const bool return_free_space)
2724 {
2725 	struct btrfs_block_group *cache = NULL;
2726 	struct btrfs_space_info *space_info;
2727 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728 	struct btrfs_free_cluster *cluster = NULL;
2729 	u64 len;
2730 	u64 total_unpinned = 0;
2731 	u64 empty_cluster = 0;
2732 	bool readonly;
2733 	int ret = 0;
2734 
2735 	while (start <= end) {
2736 		readonly = false;
2737 		if (!cache ||
2738 		    start >= cache->start + cache->length) {
2739 			if (cache)
2740 				btrfs_put_block_group(cache);
2741 			total_unpinned = 0;
2742 			cache = btrfs_lookup_block_group(fs_info, start);
2743 			if (cache == NULL) {
2744 				/* Logic error, something removed the block group. */
2745 				ret = -EUCLEAN;
2746 				goto out;
2747 			}
2748 
2749 			cluster = fetch_cluster_info(fs_info,
2750 						     cache->space_info,
2751 						     &empty_cluster);
2752 			empty_cluster <<= 1;
2753 		}
2754 
2755 		len = cache->start + cache->length - start;
2756 		len = min(len, end + 1 - start);
2757 
2758 		if (return_free_space)
2759 			btrfs_add_free_space(cache, start, len);
2760 
2761 		start += len;
2762 		total_unpinned += len;
2763 		space_info = cache->space_info;
2764 
2765 		/*
2766 		 * If this space cluster has been marked as fragmented and we've
2767 		 * unpinned enough in this block group to potentially allow a
2768 		 * cluster to be created inside of it go ahead and clear the
2769 		 * fragmented check.
2770 		 */
2771 		if (cluster && cluster->fragmented &&
2772 		    total_unpinned > empty_cluster) {
2773 			spin_lock(&cluster->lock);
2774 			cluster->fragmented = 0;
2775 			spin_unlock(&cluster->lock);
2776 		}
2777 
2778 		spin_lock(&space_info->lock);
2779 		spin_lock(&cache->lock);
2780 		cache->pinned -= len;
2781 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2782 		space_info->max_extent_size = 0;
2783 		if (cache->ro) {
2784 			space_info->bytes_readonly += len;
2785 			readonly = true;
2786 		} else if (btrfs_is_zoned(fs_info)) {
2787 			/* Need reset before reusing in a zoned block group */
2788 			btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2789 								    len);
2790 			readonly = true;
2791 		}
2792 		spin_unlock(&cache->lock);
2793 		if (!readonly && return_free_space &&
2794 		    global_rsv->space_info == space_info) {
2795 			spin_lock(&global_rsv->lock);
2796 			if (!global_rsv->full) {
2797 				u64 to_add = min(len, global_rsv->size -
2798 						      global_rsv->reserved);
2799 
2800 				global_rsv->reserved += to_add;
2801 				btrfs_space_info_update_bytes_may_use(fs_info,
2802 						space_info, to_add);
2803 				if (global_rsv->reserved >= global_rsv->size)
2804 					global_rsv->full = 1;
2805 				len -= to_add;
2806 			}
2807 			spin_unlock(&global_rsv->lock);
2808 		}
2809 		/* Add to any tickets we may have */
2810 		if (!readonly && return_free_space && len)
2811 			btrfs_try_granting_tickets(fs_info, space_info);
2812 		spin_unlock(&space_info->lock);
2813 	}
2814 
2815 	if (cache)
2816 		btrfs_put_block_group(cache);
2817 out:
2818 	return ret;
2819 }
2820 
2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822 {
2823 	struct btrfs_fs_info *fs_info = trans->fs_info;
2824 	struct btrfs_block_group *block_group, *tmp;
2825 	struct list_head *deleted_bgs;
2826 	struct extent_io_tree *unpin;
2827 	u64 start;
2828 	u64 end;
2829 	int ret;
2830 
2831 	unpin = &trans->transaction->pinned_extents;
2832 
2833 	while (!TRANS_ABORTED(trans)) {
2834 		struct extent_state *cached_state = NULL;
2835 
2836 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2838 					   EXTENT_DIRTY, &cached_state)) {
2839 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840 			break;
2841 		}
2842 
2843 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2844 			ret = btrfs_discard_extent(fs_info, start,
2845 						   end + 1 - start, NULL);
2846 
2847 		clear_extent_dirty(unpin, start, end, &cached_state);
2848 		ret = unpin_extent_range(fs_info, start, end, true);
2849 		BUG_ON(ret);
2850 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2851 		free_extent_state(cached_state);
2852 		cond_resched();
2853 	}
2854 
2855 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2856 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2857 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2858 	}
2859 
2860 	/*
2861 	 * Transaction is finished.  We don't need the lock anymore.  We
2862 	 * do need to clean up the block groups in case of a transaction
2863 	 * abort.
2864 	 */
2865 	deleted_bgs = &trans->transaction->deleted_bgs;
2866 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2867 		u64 trimmed = 0;
2868 
2869 		ret = -EROFS;
2870 		if (!TRANS_ABORTED(trans))
2871 			ret = btrfs_discard_extent(fs_info,
2872 						   block_group->start,
2873 						   block_group->length,
2874 						   &trimmed);
2875 
2876 		list_del_init(&block_group->bg_list);
2877 		btrfs_unfreeze_block_group(block_group);
2878 		btrfs_put_block_group(block_group);
2879 
2880 		if (ret) {
2881 			const char *errstr = btrfs_decode_error(ret);
2882 			btrfs_warn(fs_info,
2883 			   "discard failed while removing blockgroup: errno=%d %s",
2884 				   ret, errstr);
2885 		}
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 /*
2892  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2893  *
2894  * @fs_info:	the btrfs_fs_info for this mount
2895  * @leaf:	a leaf in the extent tree containing the extent item
2896  * @slot:	the slot in the leaf where the extent item is found
2897  *
2898  * Returns the objectid of the root that originally allocated the extent item
2899  * if the inline owner ref is expected and present, otherwise 0.
2900  *
2901  * If an extent item has an owner ref item, it will be the first inline ref
2902  * item. Therefore the logic is to check whether there are any inline ref
2903  * items, then check the type of the first one.
2904  */
2905 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2906 				struct extent_buffer *leaf, int slot)
2907 {
2908 	struct btrfs_extent_item *ei;
2909 	struct btrfs_extent_inline_ref *iref;
2910 	struct btrfs_extent_owner_ref *oref;
2911 	unsigned long ptr;
2912 	unsigned long end;
2913 	int type;
2914 
2915 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2916 		return 0;
2917 
2918 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2919 	ptr = (unsigned long)(ei + 1);
2920 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2921 
2922 	/* No inline ref items of any kind, can't check type. */
2923 	if (ptr == end)
2924 		return 0;
2925 
2926 	iref = (struct btrfs_extent_inline_ref *)ptr;
2927 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2928 
2929 	/* We found an owner ref, get the root out of it. */
2930 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2931 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2932 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2933 	}
2934 
2935 	/* We have inline refs, but not an owner ref. */
2936 	return 0;
2937 }
2938 
2939 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2940 				     u64 bytenr, struct btrfs_squota_delta *delta)
2941 {
2942 	int ret;
2943 	u64 num_bytes = delta->num_bytes;
2944 
2945 	if (delta->is_data) {
2946 		struct btrfs_root *csum_root;
2947 
2948 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2949 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2950 		if (ret) {
2951 			btrfs_abort_transaction(trans, ret);
2952 			return ret;
2953 		}
2954 
2955 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2956 		if (ret) {
2957 			btrfs_abort_transaction(trans, ret);
2958 			return ret;
2959 		}
2960 	}
2961 
2962 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2963 	if (ret) {
2964 		btrfs_abort_transaction(trans, ret);
2965 		return ret;
2966 	}
2967 
2968 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2969 	if (ret) {
2970 		btrfs_abort_transaction(trans, ret);
2971 		return ret;
2972 	}
2973 
2974 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2975 	if (ret)
2976 		btrfs_abort_transaction(trans, ret);
2977 
2978 	return ret;
2979 }
2980 
2981 #define abort_and_dump(trans, path, fmt, args...)	\
2982 ({							\
2983 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2984 	btrfs_print_leaf(path->nodes[0]);		\
2985 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2986 })
2987 
2988 /*
2989  * Drop one or more refs of @node.
2990  *
2991  * 1. Locate the extent refs.
2992  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2993  *    Locate it, then reduce the refs number or remove the ref line completely.
2994  *
2995  * 2. Update the refs count in EXTENT/METADATA_ITEM
2996  *
2997  * Inline backref case:
2998  *
2999  * in extent tree we have:
3000  *
3001  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3002  *		refs 2 gen 6 flags DATA
3003  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3004  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3005  *
3006  * This function gets called with:
3007  *
3008  *    node->bytenr = 13631488
3009  *    node->num_bytes = 1048576
3010  *    root_objectid = FS_TREE
3011  *    owner_objectid = 257
3012  *    owner_offset = 0
3013  *    refs_to_drop = 1
3014  *
3015  * Then we should get some like:
3016  *
3017  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3018  *		refs 1 gen 6 flags DATA
3019  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3020  *
3021  * Keyed backref case:
3022  *
3023  * in extent tree we have:
3024  *
3025  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3026  *		refs 754 gen 6 flags DATA
3027  *	[...]
3028  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3029  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3030  *
3031  * This function get called with:
3032  *
3033  *    node->bytenr = 13631488
3034  *    node->num_bytes = 1048576
3035  *    root_objectid = FS_TREE
3036  *    owner_objectid = 866
3037  *    owner_offset = 0
3038  *    refs_to_drop = 1
3039  *
3040  * Then we should get some like:
3041  *
3042  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3043  *		refs 753 gen 6 flags DATA
3044  *
3045  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3046  */
3047 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3048 			       struct btrfs_delayed_ref_head *href,
3049 			       struct btrfs_delayed_ref_node *node,
3050 			       struct btrfs_delayed_extent_op *extent_op)
3051 {
3052 	struct btrfs_fs_info *info = trans->fs_info;
3053 	struct btrfs_key key;
3054 	struct btrfs_path *path;
3055 	struct btrfs_root *extent_root;
3056 	struct extent_buffer *leaf;
3057 	struct btrfs_extent_item *ei;
3058 	struct btrfs_extent_inline_ref *iref;
3059 	int ret;
3060 	int is_data;
3061 	int extent_slot = 0;
3062 	int found_extent = 0;
3063 	int num_to_del = 1;
3064 	int refs_to_drop = node->ref_mod;
3065 	u32 item_size;
3066 	u64 refs;
3067 	u64 bytenr = node->bytenr;
3068 	u64 num_bytes = node->num_bytes;
3069 	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3070 	u64 owner_offset = btrfs_delayed_ref_offset(node);
3071 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3072 	u64 delayed_ref_root = href->owning_root;
3073 
3074 	extent_root = btrfs_extent_root(info, bytenr);
3075 	ASSERT(extent_root);
3076 
3077 	path = btrfs_alloc_path();
3078 	if (!path)
3079 		return -ENOMEM;
3080 
3081 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3082 
3083 	if (!is_data && refs_to_drop != 1) {
3084 		btrfs_crit(info,
3085 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3086 			   node->bytenr, refs_to_drop);
3087 		ret = -EINVAL;
3088 		btrfs_abort_transaction(trans, ret);
3089 		goto out;
3090 	}
3091 
3092 	if (is_data)
3093 		skinny_metadata = false;
3094 
3095 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3096 				    node->parent, node->ref_root, owner_objectid,
3097 				    owner_offset);
3098 	if (ret == 0) {
3099 		/*
3100 		 * Either the inline backref or the SHARED_DATA_REF/
3101 		 * SHARED_BLOCK_REF is found
3102 		 *
3103 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3104 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3105 		 */
3106 		extent_slot = path->slots[0];
3107 		while (extent_slot >= 0) {
3108 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3109 					      extent_slot);
3110 			if (key.objectid != bytenr)
3111 				break;
3112 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3113 			    key.offset == num_bytes) {
3114 				found_extent = 1;
3115 				break;
3116 			}
3117 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3118 			    key.offset == owner_objectid) {
3119 				found_extent = 1;
3120 				break;
3121 			}
3122 
3123 			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3124 			if (path->slots[0] - extent_slot > 5)
3125 				break;
3126 			extent_slot--;
3127 		}
3128 
3129 		if (!found_extent) {
3130 			if (iref) {
3131 				abort_and_dump(trans, path,
3132 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3133 					   path->slots[0]);
3134 				ret = -EUCLEAN;
3135 				goto out;
3136 			}
3137 			/* Must be SHARED_* item, remove the backref first */
3138 			ret = remove_extent_backref(trans, extent_root, path,
3139 						    NULL, refs_to_drop, is_data);
3140 			if (ret) {
3141 				btrfs_abort_transaction(trans, ret);
3142 				goto out;
3143 			}
3144 			btrfs_release_path(path);
3145 
3146 			/* Slow path to locate EXTENT/METADATA_ITEM */
3147 			key.objectid = bytenr;
3148 			key.type = BTRFS_EXTENT_ITEM_KEY;
3149 			key.offset = num_bytes;
3150 
3151 			if (!is_data && skinny_metadata) {
3152 				key.type = BTRFS_METADATA_ITEM_KEY;
3153 				key.offset = owner_objectid;
3154 			}
3155 
3156 			ret = btrfs_search_slot(trans, extent_root,
3157 						&key, path, -1, 1);
3158 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3159 				/*
3160 				 * Couldn't find our skinny metadata item,
3161 				 * see if we have ye olde extent item.
3162 				 */
3163 				path->slots[0]--;
3164 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3165 						      path->slots[0]);
3166 				if (key.objectid == bytenr &&
3167 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3168 				    key.offset == num_bytes)
3169 					ret = 0;
3170 			}
3171 
3172 			if (ret > 0 && skinny_metadata) {
3173 				skinny_metadata = false;
3174 				key.objectid = bytenr;
3175 				key.type = BTRFS_EXTENT_ITEM_KEY;
3176 				key.offset = num_bytes;
3177 				btrfs_release_path(path);
3178 				ret = btrfs_search_slot(trans, extent_root,
3179 							&key, path, -1, 1);
3180 			}
3181 
3182 			if (ret) {
3183 				if (ret > 0)
3184 					btrfs_print_leaf(path->nodes[0]);
3185 				btrfs_err(info,
3186 			"umm, got %d back from search, was looking for %llu, slot %d",
3187 					  ret, bytenr, path->slots[0]);
3188 			}
3189 			if (ret < 0) {
3190 				btrfs_abort_transaction(trans, ret);
3191 				goto out;
3192 			}
3193 			extent_slot = path->slots[0];
3194 		}
3195 	} else if (WARN_ON(ret == -ENOENT)) {
3196 		abort_and_dump(trans, path,
3197 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3198 			       bytenr, node->parent, node->ref_root, owner_objectid,
3199 			       owner_offset, path->slots[0]);
3200 		goto out;
3201 	} else {
3202 		btrfs_abort_transaction(trans, ret);
3203 		goto out;
3204 	}
3205 
3206 	leaf = path->nodes[0];
3207 	item_size = btrfs_item_size(leaf, extent_slot);
3208 	if (unlikely(item_size < sizeof(*ei))) {
3209 		ret = -EUCLEAN;
3210 		btrfs_err(trans->fs_info,
3211 			  "unexpected extent item size, has %u expect >= %zu",
3212 			  item_size, sizeof(*ei));
3213 		btrfs_abort_transaction(trans, ret);
3214 		goto out;
3215 	}
3216 	ei = btrfs_item_ptr(leaf, extent_slot,
3217 			    struct btrfs_extent_item);
3218 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3219 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3220 		struct btrfs_tree_block_info *bi;
3221 
3222 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3223 			abort_and_dump(trans, path,
3224 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3225 				       key.objectid, key.type, key.offset,
3226 				       path->slots[0], owner_objectid, item_size,
3227 				       sizeof(*ei) + sizeof(*bi));
3228 			ret = -EUCLEAN;
3229 			goto out;
3230 		}
3231 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3232 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3233 	}
3234 
3235 	refs = btrfs_extent_refs(leaf, ei);
3236 	if (refs < refs_to_drop) {
3237 		abort_and_dump(trans, path,
3238 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3239 			       refs_to_drop, refs, bytenr, path->slots[0]);
3240 		ret = -EUCLEAN;
3241 		goto out;
3242 	}
3243 	refs -= refs_to_drop;
3244 
3245 	if (refs > 0) {
3246 		if (extent_op)
3247 			__run_delayed_extent_op(extent_op, leaf, ei);
3248 		/*
3249 		 * In the case of inline back ref, reference count will
3250 		 * be updated by remove_extent_backref
3251 		 */
3252 		if (iref) {
3253 			if (!found_extent) {
3254 				abort_and_dump(trans, path,
3255 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3256 					       path->slots[0]);
3257 				ret = -EUCLEAN;
3258 				goto out;
3259 			}
3260 		} else {
3261 			btrfs_set_extent_refs(leaf, ei, refs);
3262 			btrfs_mark_buffer_dirty(trans, leaf);
3263 		}
3264 		if (found_extent) {
3265 			ret = remove_extent_backref(trans, extent_root, path,
3266 						    iref, refs_to_drop, is_data);
3267 			if (ret) {
3268 				btrfs_abort_transaction(trans, ret);
3269 				goto out;
3270 			}
3271 		}
3272 	} else {
3273 		struct btrfs_squota_delta delta = {
3274 			.root = delayed_ref_root,
3275 			.num_bytes = num_bytes,
3276 			.is_data = is_data,
3277 			.is_inc = false,
3278 			.generation = btrfs_extent_generation(leaf, ei),
3279 		};
3280 
3281 		/* In this branch refs == 1 */
3282 		if (found_extent) {
3283 			if (is_data && refs_to_drop !=
3284 			    extent_data_ref_count(path, iref)) {
3285 				abort_and_dump(trans, path,
3286 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287 					       extent_data_ref_count(path, iref),
3288 					       refs_to_drop, path->slots[0]);
3289 				ret = -EUCLEAN;
3290 				goto out;
3291 			}
3292 			if (iref) {
3293 				if (path->slots[0] != extent_slot) {
3294 					abort_and_dump(trans, path,
3295 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296 						       key.objectid, key.type,
3297 						       key.offset, path->slots[0]);
3298 					ret = -EUCLEAN;
3299 					goto out;
3300 				}
3301 			} else {
3302 				/*
3303 				 * No inline ref, we must be at SHARED_* item,
3304 				 * And it's single ref, it must be:
3305 				 * |	extent_slot	  ||extent_slot + 1|
3306 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307 				 */
3308 				if (path->slots[0] != extent_slot + 1) {
3309 					abort_and_dump(trans, path,
3310 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311 						       path->slots[0]);
3312 					ret = -EUCLEAN;
3313 					goto out;
3314 				}
3315 				path->slots[0] = extent_slot;
3316 				num_to_del = 2;
3317 			}
3318 		}
3319 		/*
3320 		 * We can't infer the data owner from the delayed ref, so we need
3321 		 * to try to get it from the owning ref item.
3322 		 *
3323 		 * If it is not present, then that extent was not written under
3324 		 * simple quotas mode, so we don't need to account for its deletion.
3325 		 */
3326 		if (is_data)
3327 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328 								 leaf, extent_slot);
3329 
3330 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331 				      num_to_del);
3332 		if (ret) {
3333 			btrfs_abort_transaction(trans, ret);
3334 			goto out;
3335 		}
3336 		btrfs_release_path(path);
3337 
3338 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3339 	}
3340 	btrfs_release_path(path);
3341 
3342 out:
3343 	btrfs_free_path(path);
3344 	return ret;
3345 }
3346 
3347 /*
3348  * when we free an block, it is possible (and likely) that we free the last
3349  * delayed ref for that extent as well.  This searches the delayed ref tree for
3350  * a given extent, and if there are no other delayed refs to be processed, it
3351  * removes it from the tree.
3352  */
3353 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354 				      u64 bytenr)
3355 {
3356 	struct btrfs_fs_info *fs_info = trans->fs_info;
3357 	struct btrfs_delayed_ref_head *head;
3358 	struct btrfs_delayed_ref_root *delayed_refs;
3359 	int ret = 0;
3360 
3361 	delayed_refs = &trans->transaction->delayed_refs;
3362 	spin_lock(&delayed_refs->lock);
3363 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364 	if (!head)
3365 		goto out_delayed_unlock;
3366 
3367 	spin_lock(&head->lock);
3368 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369 		goto out;
3370 
3371 	if (cleanup_extent_op(head) != NULL)
3372 		goto out;
3373 
3374 	/*
3375 	 * waiting for the lock here would deadlock.  If someone else has it
3376 	 * locked they are already in the process of dropping it anyway
3377 	 */
3378 	if (!mutex_trylock(&head->mutex))
3379 		goto out;
3380 
3381 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382 	head->processing = false;
3383 
3384 	spin_unlock(&head->lock);
3385 	spin_unlock(&delayed_refs->lock);
3386 
3387 	BUG_ON(head->extent_op);
3388 	if (head->must_insert_reserved)
3389 		ret = 1;
3390 
3391 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392 	mutex_unlock(&head->mutex);
3393 	btrfs_put_delayed_ref_head(head);
3394 	return ret;
3395 out:
3396 	spin_unlock(&head->lock);
3397 
3398 out_delayed_unlock:
3399 	spin_unlock(&delayed_refs->lock);
3400 	return 0;
3401 }
3402 
3403 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404 			  u64 root_id,
3405 			  struct extent_buffer *buf,
3406 			  u64 parent, int last_ref)
3407 {
3408 	struct btrfs_fs_info *fs_info = trans->fs_info;
3409 	struct btrfs_block_group *bg;
3410 	int ret;
3411 
3412 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413 		struct btrfs_ref generic_ref = {
3414 			.action = BTRFS_DROP_DELAYED_REF,
3415 			.bytenr = buf->start,
3416 			.num_bytes = buf->len,
3417 			.parent = parent,
3418 			.owning_root = btrfs_header_owner(buf),
3419 			.ref_root = root_id,
3420 		};
3421 
3422 		/*
3423 		 * Assert that the extent buffer is not cleared due to
3424 		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425 		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426 		 * detail.
3427 		 */
3428 		ASSERT(btrfs_header_bytenr(buf) != 0);
3429 
3430 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3432 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433 		if (ret < 0)
3434 			return ret;
3435 	}
3436 
3437 	if (!last_ref)
3438 		return 0;
3439 
3440 	if (btrfs_header_generation(buf) != trans->transid)
3441 		goto out;
3442 
3443 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444 		ret = check_ref_cleanup(trans, buf->start);
3445 		if (!ret)
3446 			goto out;
3447 	}
3448 
3449 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3450 
3451 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453 		btrfs_put_block_group(bg);
3454 		goto out;
3455 	}
3456 
3457 	/*
3458 	 * If there are tree mod log users we may have recorded mod log
3459 	 * operations for this node.  If we re-allocate this node we
3460 	 * could replay operations on this node that happened when it
3461 	 * existed in a completely different root.  For example if it
3462 	 * was part of root A, then was reallocated to root B, and we
3463 	 * are doing a btrfs_old_search_slot(root b), we could replay
3464 	 * operations that happened when the block was part of root A,
3465 	 * giving us an inconsistent view of the btree.
3466 	 *
3467 	 * We are safe from races here because at this point no other
3468 	 * node or root points to this extent buffer, so if after this
3469 	 * check a new tree mod log user joins we will not have an
3470 	 * existing log of operations on this node that we have to
3471 	 * contend with.
3472 	 */
3473 
3474 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475 		     || btrfs_is_zoned(fs_info)) {
3476 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477 		btrfs_put_block_group(bg);
3478 		goto out;
3479 	}
3480 
3481 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482 
3483 	btrfs_add_free_space(bg, buf->start, buf->len);
3484 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3485 	btrfs_put_block_group(bg);
3486 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487 
3488 out:
3489 
3490 	/*
3491 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3492 	 * matter anymore.
3493 	 */
3494 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495 	return 0;
3496 }
3497 
3498 /* Can return -ENOMEM */
3499 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3500 {
3501 	struct btrfs_fs_info *fs_info = trans->fs_info;
3502 	int ret;
3503 
3504 	if (btrfs_is_testing(fs_info))
3505 		return 0;
3506 
3507 	/*
3508 	 * tree log blocks never actually go into the extent allocation
3509 	 * tree, just update pinning info and exit early.
3510 	 */
3511 	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512 		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3513 		ret = 0;
3514 	} else if (ref->type == BTRFS_REF_METADATA) {
3515 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3516 	} else {
3517 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3518 	}
3519 
3520 	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3521 		btrfs_ref_tree_mod(fs_info, ref);
3522 
3523 	return ret;
3524 }
3525 
3526 enum btrfs_loop_type {
3527 	/*
3528 	 * Start caching block groups but do not wait for progress or for them
3529 	 * to be done.
3530 	 */
3531 	LOOP_CACHING_NOWAIT,
3532 
3533 	/*
3534 	 * Wait for the block group free_space >= the space we're waiting for if
3535 	 * the block group isn't cached.
3536 	 */
3537 	LOOP_CACHING_WAIT,
3538 
3539 	/*
3540 	 * Allow allocations to happen from block groups that do not yet have a
3541 	 * size classification.
3542 	 */
3543 	LOOP_UNSET_SIZE_CLASS,
3544 
3545 	/*
3546 	 * Allocate a chunk and then retry the allocation.
3547 	 */
3548 	LOOP_ALLOC_CHUNK,
3549 
3550 	/*
3551 	 * Ignore the size class restrictions for this allocation.
3552 	 */
3553 	LOOP_WRONG_SIZE_CLASS,
3554 
3555 	/*
3556 	 * Ignore the empty size, only try to allocate the number of bytes
3557 	 * needed for this allocation.
3558 	 */
3559 	LOOP_NO_EMPTY_SIZE,
3560 };
3561 
3562 static inline void
3563 btrfs_lock_block_group(struct btrfs_block_group *cache,
3564 		       int delalloc)
3565 {
3566 	if (delalloc)
3567 		down_read(&cache->data_rwsem);
3568 }
3569 
3570 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3571 		       int delalloc)
3572 {
3573 	btrfs_get_block_group(cache);
3574 	if (delalloc)
3575 		down_read(&cache->data_rwsem);
3576 }
3577 
3578 static struct btrfs_block_group *btrfs_lock_cluster(
3579 		   struct btrfs_block_group *block_group,
3580 		   struct btrfs_free_cluster *cluster,
3581 		   int delalloc)
3582 	__acquires(&cluster->refill_lock)
3583 {
3584 	struct btrfs_block_group *used_bg = NULL;
3585 
3586 	spin_lock(&cluster->refill_lock);
3587 	while (1) {
3588 		used_bg = cluster->block_group;
3589 		if (!used_bg)
3590 			return NULL;
3591 
3592 		if (used_bg == block_group)
3593 			return used_bg;
3594 
3595 		btrfs_get_block_group(used_bg);
3596 
3597 		if (!delalloc)
3598 			return used_bg;
3599 
3600 		if (down_read_trylock(&used_bg->data_rwsem))
3601 			return used_bg;
3602 
3603 		spin_unlock(&cluster->refill_lock);
3604 
3605 		/* We should only have one-level nested. */
3606 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607 
3608 		spin_lock(&cluster->refill_lock);
3609 		if (used_bg == cluster->block_group)
3610 			return used_bg;
3611 
3612 		up_read(&used_bg->data_rwsem);
3613 		btrfs_put_block_group(used_bg);
3614 	}
3615 }
3616 
3617 static inline void
3618 btrfs_release_block_group(struct btrfs_block_group *cache,
3619 			 int delalloc)
3620 {
3621 	if (delalloc)
3622 		up_read(&cache->data_rwsem);
3623 	btrfs_put_block_group(cache);
3624 }
3625 
3626 /*
3627  * Helper function for find_free_extent().
3628  *
3629  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3630  * Return >0 to inform caller that we find nothing
3631  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632  */
3633 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634 				      struct find_free_extent_ctl *ffe_ctl,
3635 				      struct btrfs_block_group **cluster_bg_ret)
3636 {
3637 	struct btrfs_block_group *cluster_bg;
3638 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639 	u64 aligned_cluster;
3640 	u64 offset;
3641 	int ret;
3642 
3643 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644 	if (!cluster_bg)
3645 		goto refill_cluster;
3646 	if (cluster_bg != bg && (cluster_bg->ro ||
3647 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648 		goto release_cluster;
3649 
3650 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651 			ffe_ctl->num_bytes, cluster_bg->start,
3652 			&ffe_ctl->max_extent_size);
3653 	if (offset) {
3654 		/* We have a block, we're done */
3655 		spin_unlock(&last_ptr->refill_lock);
3656 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3657 		*cluster_bg_ret = cluster_bg;
3658 		ffe_ctl->found_offset = offset;
3659 		return 0;
3660 	}
3661 	WARN_ON(last_ptr->block_group != cluster_bg);
3662 
3663 release_cluster:
3664 	/*
3665 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666 	 * lets just skip it and let the allocator find whatever block it can
3667 	 * find. If we reach this point, we will have tried the cluster
3668 	 * allocator plenty of times and not have found anything, so we are
3669 	 * likely way too fragmented for the clustering stuff to find anything.
3670 	 *
3671 	 * However, if the cluster is taken from the current block group,
3672 	 * release the cluster first, so that we stand a better chance of
3673 	 * succeeding in the unclustered allocation.
3674 	 */
3675 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676 		spin_unlock(&last_ptr->refill_lock);
3677 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678 		return -ENOENT;
3679 	}
3680 
3681 	/* This cluster didn't work out, free it and start over */
3682 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683 
3684 	if (cluster_bg != bg)
3685 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686 
3687 refill_cluster:
3688 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689 		spin_unlock(&last_ptr->refill_lock);
3690 		return -ENOENT;
3691 	}
3692 
3693 	aligned_cluster = max_t(u64,
3694 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695 			bg->full_stripe_len);
3696 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697 			ffe_ctl->num_bytes, aligned_cluster);
3698 	if (ret == 0) {
3699 		/* Now pull our allocation out of this cluster */
3700 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3702 				&ffe_ctl->max_extent_size);
3703 		if (offset) {
3704 			/* We found one, proceed */
3705 			spin_unlock(&last_ptr->refill_lock);
3706 			ffe_ctl->found_offset = offset;
3707 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708 			return 0;
3709 		}
3710 	}
3711 	/*
3712 	 * At this point we either didn't find a cluster or we weren't able to
3713 	 * allocate a block from our cluster.  Free the cluster we've been
3714 	 * trying to use, and go to the next block group.
3715 	 */
3716 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717 	spin_unlock(&last_ptr->refill_lock);
3718 	return 1;
3719 }
3720 
3721 /*
3722  * Return >0 to inform caller that we find nothing
3723  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3724  */
3725 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726 					struct find_free_extent_ctl *ffe_ctl)
3727 {
3728 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729 	u64 offset;
3730 
3731 	/*
3732 	 * We are doing an unclustered allocation, set the fragmented flag so
3733 	 * we don't bother trying to setup a cluster again until we get more
3734 	 * space.
3735 	 */
3736 	if (unlikely(last_ptr)) {
3737 		spin_lock(&last_ptr->lock);
3738 		last_ptr->fragmented = 1;
3739 		spin_unlock(&last_ptr->lock);
3740 	}
3741 	if (ffe_ctl->cached) {
3742 		struct btrfs_free_space_ctl *free_space_ctl;
3743 
3744 		free_space_ctl = bg->free_space_ctl;
3745 		spin_lock(&free_space_ctl->tree_lock);
3746 		if (free_space_ctl->free_space <
3747 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748 		    ffe_ctl->empty_size) {
3749 			ffe_ctl->total_free_space = max_t(u64,
3750 					ffe_ctl->total_free_space,
3751 					free_space_ctl->free_space);
3752 			spin_unlock(&free_space_ctl->tree_lock);
3753 			return 1;
3754 		}
3755 		spin_unlock(&free_space_ctl->tree_lock);
3756 	}
3757 
3758 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760 			&ffe_ctl->max_extent_size);
3761 	if (!offset)
3762 		return 1;
3763 	ffe_ctl->found_offset = offset;
3764 	return 0;
3765 }
3766 
3767 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768 				   struct find_free_extent_ctl *ffe_ctl,
3769 				   struct btrfs_block_group **bg_ret)
3770 {
3771 	int ret;
3772 
3773 	/* We want to try and use the cluster allocator, so lets look there */
3774 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776 		if (ret >= 0)
3777 			return ret;
3778 		/* ret == -ENOENT case falls through */
3779 	}
3780 
3781 	return find_free_extent_unclustered(block_group, ffe_ctl);
3782 }
3783 
3784 /*
3785  * Tree-log block group locking
3786  * ============================
3787  *
3788  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789  * indicates the starting address of a block group, which is reserved only
3790  * for tree-log metadata.
3791  *
3792  * Lock nesting
3793  * ============
3794  *
3795  * space_info::lock
3796  *   block_group::lock
3797  *     fs_info::treelog_bg_lock
3798  */
3799 
3800 /*
3801  * Simple allocator for sequential-only block group. It only allows sequential
3802  * allocation. No need to play with trees. This function also reserves the
3803  * bytes as in btrfs_add_reserved_bytes.
3804  */
3805 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806 			       struct find_free_extent_ctl *ffe_ctl,
3807 			       struct btrfs_block_group **bg_ret)
3808 {
3809 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3810 	struct btrfs_space_info *space_info = block_group->space_info;
3811 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812 	u64 start = block_group->start;
3813 	u64 num_bytes = ffe_ctl->num_bytes;
3814 	u64 avail;
3815 	u64 bytenr = block_group->start;
3816 	u64 log_bytenr;
3817 	u64 data_reloc_bytenr;
3818 	int ret = 0;
3819 	bool skip = false;
3820 
3821 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3822 
3823 	/*
3824 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825 	 * group, and vice versa.
3826 	 */
3827 	spin_lock(&fs_info->treelog_bg_lock);
3828 	log_bytenr = fs_info->treelog_bg;
3829 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831 		skip = true;
3832 	spin_unlock(&fs_info->treelog_bg_lock);
3833 	if (skip)
3834 		return 1;
3835 
3836 	/*
3837 	 * Do not allow non-relocation blocks in the dedicated relocation block
3838 	 * group, and vice versa.
3839 	 */
3840 	spin_lock(&fs_info->relocation_bg_lock);
3841 	data_reloc_bytenr = fs_info->data_reloc_bg;
3842 	if (data_reloc_bytenr &&
3843 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845 		skip = true;
3846 	spin_unlock(&fs_info->relocation_bg_lock);
3847 	if (skip)
3848 		return 1;
3849 
3850 	/* Check RO and no space case before trying to activate it */
3851 	spin_lock(&block_group->lock);
3852 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853 		ret = 1;
3854 		/*
3855 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856 		 * Return the error after taking the locks.
3857 		 */
3858 	}
3859 	spin_unlock(&block_group->lock);
3860 
3861 	/* Metadata block group is activated at write time. */
3862 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863 	    !btrfs_zone_activate(block_group)) {
3864 		ret = 1;
3865 		/*
3866 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867 		 * Return the error after taking the locks.
3868 		 */
3869 	}
3870 
3871 	spin_lock(&space_info->lock);
3872 	spin_lock(&block_group->lock);
3873 	spin_lock(&fs_info->treelog_bg_lock);
3874 	spin_lock(&fs_info->relocation_bg_lock);
3875 
3876 	if (ret)
3877 		goto out;
3878 
3879 	ASSERT(!ffe_ctl->for_treelog ||
3880 	       block_group->start == fs_info->treelog_bg ||
3881 	       fs_info->treelog_bg == 0);
3882 	ASSERT(!ffe_ctl->for_data_reloc ||
3883 	       block_group->start == fs_info->data_reloc_bg ||
3884 	       fs_info->data_reloc_bg == 0);
3885 
3886 	if (block_group->ro ||
3887 	    (!ffe_ctl->for_data_reloc &&
3888 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889 		ret = 1;
3890 		goto out;
3891 	}
3892 
3893 	/*
3894 	 * Do not allow currently using block group to be tree-log dedicated
3895 	 * block group.
3896 	 */
3897 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898 	    (block_group->used || block_group->reserved)) {
3899 		ret = 1;
3900 		goto out;
3901 	}
3902 
3903 	/*
3904 	 * Do not allow currently used block group to be the data relocation
3905 	 * dedicated block group.
3906 	 */
3907 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908 	    (block_group->used || block_group->reserved)) {
3909 		ret = 1;
3910 		goto out;
3911 	}
3912 
3913 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914 	avail = block_group->zone_capacity - block_group->alloc_offset;
3915 	if (avail < num_bytes) {
3916 		if (ffe_ctl->max_extent_size < avail) {
3917 			/*
3918 			 * With sequential allocator, free space is always
3919 			 * contiguous
3920 			 */
3921 			ffe_ctl->max_extent_size = avail;
3922 			ffe_ctl->total_free_space = avail;
3923 		}
3924 		ret = 1;
3925 		goto out;
3926 	}
3927 
3928 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929 		fs_info->treelog_bg = block_group->start;
3930 
3931 	if (ffe_ctl->for_data_reloc) {
3932 		if (!fs_info->data_reloc_bg)
3933 			fs_info->data_reloc_bg = block_group->start;
3934 		/*
3935 		 * Do not allow allocations from this block group, unless it is
3936 		 * for data relocation. Compared to increasing the ->ro, setting
3937 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938 		 * writers to come in. See btrfs_inc_nocow_writers().
3939 		 *
3940 		 * We need to disable an allocation to avoid an allocation of
3941 		 * regular (non-relocation data) extent. With mix of relocation
3942 		 * extents and regular extents, we can dispatch WRITE commands
3943 		 * (for relocation extents) and ZONE APPEND commands (for
3944 		 * regular extents) at the same time to the same zone, which
3945 		 * easily break the write pointer.
3946 		 *
3947 		 * Also, this flag avoids this block group to be zone finished.
3948 		 */
3949 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950 	}
3951 
3952 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3953 	block_group->alloc_offset += num_bytes;
3954 	spin_lock(&ctl->tree_lock);
3955 	ctl->free_space -= num_bytes;
3956 	spin_unlock(&ctl->tree_lock);
3957 
3958 	/*
3959 	 * We do not check if found_offset is aligned to stripesize. The
3960 	 * address is anyway rewritten when using zone append writing.
3961 	 */
3962 
3963 	ffe_ctl->search_start = ffe_ctl->found_offset;
3964 
3965 out:
3966 	if (ret && ffe_ctl->for_treelog)
3967 		fs_info->treelog_bg = 0;
3968 	if (ret && ffe_ctl->for_data_reloc)
3969 		fs_info->data_reloc_bg = 0;
3970 	spin_unlock(&fs_info->relocation_bg_lock);
3971 	spin_unlock(&fs_info->treelog_bg_lock);
3972 	spin_unlock(&block_group->lock);
3973 	spin_unlock(&space_info->lock);
3974 	return ret;
3975 }
3976 
3977 static int do_allocation(struct btrfs_block_group *block_group,
3978 			 struct find_free_extent_ctl *ffe_ctl,
3979 			 struct btrfs_block_group **bg_ret)
3980 {
3981 	switch (ffe_ctl->policy) {
3982 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984 	case BTRFS_EXTENT_ALLOC_ZONED:
3985 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986 	default:
3987 		BUG();
3988 	}
3989 }
3990 
3991 static void release_block_group(struct btrfs_block_group *block_group,
3992 				struct find_free_extent_ctl *ffe_ctl,
3993 				int delalloc)
3994 {
3995 	switch (ffe_ctl->policy) {
3996 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997 		ffe_ctl->retry_uncached = false;
3998 		break;
3999 	case BTRFS_EXTENT_ALLOC_ZONED:
4000 		/* Nothing to do */
4001 		break;
4002 	default:
4003 		BUG();
4004 	}
4005 
4006 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007 	       ffe_ctl->index);
4008 	btrfs_release_block_group(block_group, delalloc);
4009 }
4010 
4011 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012 				   struct btrfs_key *ins)
4013 {
4014 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015 
4016 	if (!ffe_ctl->use_cluster && last_ptr) {
4017 		spin_lock(&last_ptr->lock);
4018 		last_ptr->window_start = ins->objectid;
4019 		spin_unlock(&last_ptr->lock);
4020 	}
4021 }
4022 
4023 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024 			 struct btrfs_key *ins)
4025 {
4026 	switch (ffe_ctl->policy) {
4027 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028 		found_extent_clustered(ffe_ctl, ins);
4029 		break;
4030 	case BTRFS_EXTENT_ALLOC_ZONED:
4031 		/* Nothing to do */
4032 		break;
4033 	default:
4034 		BUG();
4035 	}
4036 }
4037 
4038 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039 				    struct find_free_extent_ctl *ffe_ctl)
4040 {
4041 	/* Block group's activeness is not a requirement for METADATA block groups. */
4042 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043 		return 0;
4044 
4045 	/* If we can activate new zone, just allocate a chunk and use it */
4046 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047 		return 0;
4048 
4049 	/*
4050 	 * We already reached the max active zones. Try to finish one block
4051 	 * group to make a room for a new block group. This is only possible
4052 	 * for a data block group because btrfs_zone_finish() may need to wait
4053 	 * for a running transaction which can cause a deadlock for metadata
4054 	 * allocation.
4055 	 */
4056 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057 		int ret = btrfs_zone_finish_one_bg(fs_info);
4058 
4059 		if (ret == 1)
4060 			return 0;
4061 		else if (ret < 0)
4062 			return ret;
4063 	}
4064 
4065 	/*
4066 	 * If we have enough free space left in an already active block group
4067 	 * and we can't activate any other zone now, do not allow allocating a
4068 	 * new chunk and let find_free_extent() retry with a smaller size.
4069 	 */
4070 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071 		return -ENOSPC;
4072 
4073 	/*
4074 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4075 	 * activate a new block group, allocating it may not help. Let's tell a
4076 	 * caller to try again and hope it progress something by writing some
4077 	 * parts of the region. That is only possible for data block groups,
4078 	 * where a part of the region can be written.
4079 	 */
4080 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081 		return -EAGAIN;
4082 
4083 	/*
4084 	 * We cannot activate a new block group and no enough space left in any
4085 	 * block groups. So, allocating a new block group may not help. But,
4086 	 * there is nothing to do anyway, so let's go with it.
4087 	 */
4088 	return 0;
4089 }
4090 
4091 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092 			      struct find_free_extent_ctl *ffe_ctl)
4093 {
4094 	switch (ffe_ctl->policy) {
4095 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096 		return 0;
4097 	case BTRFS_EXTENT_ALLOC_ZONED:
4098 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099 	default:
4100 		BUG();
4101 	}
4102 }
4103 
4104 /*
4105  * Return >0 means caller needs to re-search for free extent
4106  * Return 0 means we have the needed free extent.
4107  * Return <0 means we failed to locate any free extent.
4108  */
4109 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4110 					struct btrfs_key *ins,
4111 					struct find_free_extent_ctl *ffe_ctl,
4112 					bool full_search)
4113 {
4114 	struct btrfs_root *root = fs_info->chunk_root;
4115 	int ret;
4116 
4117 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119 		ffe_ctl->orig_have_caching_bg = true;
4120 
4121 	if (ins->objectid) {
4122 		found_extent(ffe_ctl, ins);
4123 		return 0;
4124 	}
4125 
4126 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127 		return 1;
4128 
4129 	ffe_ctl->index++;
4130 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131 		return 1;
4132 
4133 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4134 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135 		ffe_ctl->index = 0;
4136 		/*
4137 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138 		 * any uncached bgs and we've already done a full search
4139 		 * through.
4140 		 */
4141 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4143 			ffe_ctl->loop++;
4144 		ffe_ctl->loop++;
4145 
4146 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147 			struct btrfs_trans_handle *trans;
4148 			int exist = 0;
4149 
4150 			/* Check if allocation policy allows to create a new chunk */
4151 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4152 			if (ret)
4153 				return ret;
4154 
4155 			trans = current->journal_info;
4156 			if (trans)
4157 				exist = 1;
4158 			else
4159 				trans = btrfs_join_transaction(root);
4160 
4161 			if (IS_ERR(trans)) {
4162 				ret = PTR_ERR(trans);
4163 				return ret;
4164 			}
4165 
4166 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4168 
4169 			/* Do not bail out on ENOSPC since we can do more. */
4170 			if (ret == -ENOSPC) {
4171 				ret = 0;
4172 				ffe_ctl->loop++;
4173 			}
4174 			else if (ret < 0)
4175 				btrfs_abort_transaction(trans, ret);
4176 			else
4177 				ret = 0;
4178 			if (!exist)
4179 				btrfs_end_transaction(trans);
4180 			if (ret)
4181 				return ret;
4182 		}
4183 
4184 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186 				return -ENOSPC;
4187 
4188 			/*
4189 			 * Don't loop again if we already have no empty_size and
4190 			 * no empty_cluster.
4191 			 */
4192 			if (ffe_ctl->empty_size == 0 &&
4193 			    ffe_ctl->empty_cluster == 0)
4194 				return -ENOSPC;
4195 			ffe_ctl->empty_size = 0;
4196 			ffe_ctl->empty_cluster = 0;
4197 		}
4198 		return 1;
4199 	}
4200 	return -ENOSPC;
4201 }
4202 
4203 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204 					      struct btrfs_block_group *bg)
4205 {
4206 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207 		return true;
4208 	if (!btrfs_block_group_should_use_size_class(bg))
4209 		return true;
4210 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211 		return true;
4212 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213 	    bg->size_class == BTRFS_BG_SZ_NONE)
4214 		return true;
4215 	return ffe_ctl->size_class == bg->size_class;
4216 }
4217 
4218 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219 					struct find_free_extent_ctl *ffe_ctl,
4220 					struct btrfs_space_info *space_info,
4221 					struct btrfs_key *ins)
4222 {
4223 	/*
4224 	 * If our free space is heavily fragmented we may not be able to make
4225 	 * big contiguous allocations, so instead of doing the expensive search
4226 	 * for free space, simply return ENOSPC with our max_extent_size so we
4227 	 * can go ahead and search for a more manageable chunk.
4228 	 *
4229 	 * If our max_extent_size is large enough for our allocation simply
4230 	 * disable clustering since we will likely not be able to find enough
4231 	 * space to create a cluster and induce latency trying.
4232 	 */
4233 	if (space_info->max_extent_size) {
4234 		spin_lock(&space_info->lock);
4235 		if (space_info->max_extent_size &&
4236 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4237 			ins->offset = space_info->max_extent_size;
4238 			spin_unlock(&space_info->lock);
4239 			return -ENOSPC;
4240 		} else if (space_info->max_extent_size) {
4241 			ffe_ctl->use_cluster = false;
4242 		}
4243 		spin_unlock(&space_info->lock);
4244 	}
4245 
4246 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247 					       &ffe_ctl->empty_cluster);
4248 	if (ffe_ctl->last_ptr) {
4249 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250 
4251 		spin_lock(&last_ptr->lock);
4252 		if (last_ptr->block_group)
4253 			ffe_ctl->hint_byte = last_ptr->window_start;
4254 		if (last_ptr->fragmented) {
4255 			/*
4256 			 * We still set window_start so we can keep track of the
4257 			 * last place we found an allocation to try and save
4258 			 * some time.
4259 			 */
4260 			ffe_ctl->hint_byte = last_ptr->window_start;
4261 			ffe_ctl->use_cluster = false;
4262 		}
4263 		spin_unlock(&last_ptr->lock);
4264 	}
4265 
4266 	return 0;
4267 }
4268 
4269 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270 				    struct find_free_extent_ctl *ffe_ctl)
4271 {
4272 	if (ffe_ctl->for_treelog) {
4273 		spin_lock(&fs_info->treelog_bg_lock);
4274 		if (fs_info->treelog_bg)
4275 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4276 		spin_unlock(&fs_info->treelog_bg_lock);
4277 	} else if (ffe_ctl->for_data_reloc) {
4278 		spin_lock(&fs_info->relocation_bg_lock);
4279 		if (fs_info->data_reloc_bg)
4280 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281 		spin_unlock(&fs_info->relocation_bg_lock);
4282 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283 		struct btrfs_block_group *block_group;
4284 
4285 		spin_lock(&fs_info->zone_active_bgs_lock);
4286 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287 			/*
4288 			 * No lock is OK here because avail is monotinically
4289 			 * decreasing, and this is just a hint.
4290 			 */
4291 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292 
4293 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4294 			    avail >= ffe_ctl->num_bytes) {
4295 				ffe_ctl->hint_byte = block_group->start;
4296 				break;
4297 			}
4298 		}
4299 		spin_unlock(&fs_info->zone_active_bgs_lock);
4300 	}
4301 
4302 	return 0;
4303 }
4304 
4305 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306 			      struct find_free_extent_ctl *ffe_ctl,
4307 			      struct btrfs_space_info *space_info,
4308 			      struct btrfs_key *ins)
4309 {
4310 	switch (ffe_ctl->policy) {
4311 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4313 						    space_info, ins);
4314 	case BTRFS_EXTENT_ALLOC_ZONED:
4315 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4316 	default:
4317 		BUG();
4318 	}
4319 }
4320 
4321 /*
4322  * walks the btree of allocated extents and find a hole of a given size.
4323  * The key ins is changed to record the hole:
4324  * ins->objectid == start position
4325  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326  * ins->offset == the size of the hole.
4327  * Any available blocks before search_start are skipped.
4328  *
4329  * If there is no suitable free space, we will record the max size of
4330  * the free space extent currently.
4331  *
4332  * The overall logic and call chain:
4333  *
4334  * find_free_extent()
4335  * |- Iterate through all block groups
4336  * |  |- Get a valid block group
4337  * |  |- Try to do clustered allocation in that block group
4338  * |  |- Try to do unclustered allocation in that block group
4339  * |  |- Check if the result is valid
4340  * |  |  |- If valid, then exit
4341  * |  |- Jump to next block group
4342  * |
4343  * |- Push harder to find free extents
4344  *    |- If not found, re-iterate all block groups
4345  */
4346 static noinline int find_free_extent(struct btrfs_root *root,
4347 				     struct btrfs_key *ins,
4348 				     struct find_free_extent_ctl *ffe_ctl)
4349 {
4350 	struct btrfs_fs_info *fs_info = root->fs_info;
4351 	int ret = 0;
4352 	int cache_block_group_error = 0;
4353 	struct btrfs_block_group *block_group = NULL;
4354 	struct btrfs_space_info *space_info;
4355 	bool full_search = false;
4356 
4357 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358 
4359 	ffe_ctl->search_start = 0;
4360 	/* For clustered allocation */
4361 	ffe_ctl->empty_cluster = 0;
4362 	ffe_ctl->last_ptr = NULL;
4363 	ffe_ctl->use_cluster = true;
4364 	ffe_ctl->have_caching_bg = false;
4365 	ffe_ctl->orig_have_caching_bg = false;
4366 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367 	ffe_ctl->loop = 0;
4368 	ffe_ctl->retry_uncached = false;
4369 	ffe_ctl->cached = 0;
4370 	ffe_ctl->max_extent_size = 0;
4371 	ffe_ctl->total_free_space = 0;
4372 	ffe_ctl->found_offset = 0;
4373 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375 
4376 	if (btrfs_is_zoned(fs_info))
4377 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378 
4379 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4380 	ins->objectid = 0;
4381 	ins->offset = 0;
4382 
4383 	trace_find_free_extent(root, ffe_ctl);
4384 
4385 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386 	if (!space_info) {
4387 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388 		return -ENOSPC;
4389 	}
4390 
4391 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392 	if (ret < 0)
4393 		return ret;
4394 
4395 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4396 				    first_logical_byte(fs_info));
4397 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399 		block_group = btrfs_lookup_block_group(fs_info,
4400 						       ffe_ctl->search_start);
4401 		/*
4402 		 * we don't want to use the block group if it doesn't match our
4403 		 * allocation bits, or if its not cached.
4404 		 *
4405 		 * However if we are re-searching with an ideal block group
4406 		 * picked out then we don't care that the block group is cached.
4407 		 */
4408 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409 		    block_group->cached != BTRFS_CACHE_NO) {
4410 			down_read(&space_info->groups_sem);
4411 			if (list_empty(&block_group->list) ||
4412 			    block_group->ro) {
4413 				/*
4414 				 * someone is removing this block group,
4415 				 * we can't jump into the have_block_group
4416 				 * target because our list pointers are not
4417 				 * valid
4418 				 */
4419 				btrfs_put_block_group(block_group);
4420 				up_read(&space_info->groups_sem);
4421 			} else {
4422 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423 							block_group->flags);
4424 				btrfs_lock_block_group(block_group,
4425 						       ffe_ctl->delalloc);
4426 				ffe_ctl->hinted = true;
4427 				goto have_block_group;
4428 			}
4429 		} else if (block_group) {
4430 			btrfs_put_block_group(block_group);
4431 		}
4432 	}
4433 search:
4434 	trace_find_free_extent_search_loop(root, ffe_ctl);
4435 	ffe_ctl->have_caching_bg = false;
4436 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437 	    ffe_ctl->index == 0)
4438 		full_search = true;
4439 	down_read(&space_info->groups_sem);
4440 	list_for_each_entry(block_group,
4441 			    &space_info->block_groups[ffe_ctl->index], list) {
4442 		struct btrfs_block_group *bg_ret;
4443 
4444 		ffe_ctl->hinted = false;
4445 		/* If the block group is read-only, we can skip it entirely. */
4446 		if (unlikely(block_group->ro)) {
4447 			if (ffe_ctl->for_treelog)
4448 				btrfs_clear_treelog_bg(block_group);
4449 			if (ffe_ctl->for_data_reloc)
4450 				btrfs_clear_data_reloc_bg(block_group);
4451 			continue;
4452 		}
4453 
4454 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455 		ffe_ctl->search_start = block_group->start;
4456 
4457 		/*
4458 		 * this can happen if we end up cycling through all the
4459 		 * raid types, but we want to make sure we only allocate
4460 		 * for the proper type.
4461 		 */
4462 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4465 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4466 				BTRFS_BLOCK_GROUP_RAID10;
4467 
4468 			/*
4469 			 * if they asked for extra copies and this block group
4470 			 * doesn't provide them, bail.  This does allow us to
4471 			 * fill raid0 from raid1.
4472 			 */
4473 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474 				goto loop;
4475 
4476 			/*
4477 			 * This block group has different flags than we want.
4478 			 * It's possible that we have MIXED_GROUP flag but no
4479 			 * block group is mixed.  Just skip such block group.
4480 			 */
4481 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482 			continue;
4483 		}
4484 
4485 have_block_group:
4486 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4488 		if (unlikely(!ffe_ctl->cached)) {
4489 			ffe_ctl->have_caching_bg = true;
4490 			ret = btrfs_cache_block_group(block_group, false);
4491 
4492 			/*
4493 			 * If we get ENOMEM here or something else we want to
4494 			 * try other block groups, because it may not be fatal.
4495 			 * However if we can't find anything else we need to
4496 			 * save our return here so that we return the actual
4497 			 * error that caused problems, not ENOSPC.
4498 			 */
4499 			if (ret < 0) {
4500 				if (!cache_block_group_error)
4501 					cache_block_group_error = ret;
4502 				ret = 0;
4503 				goto loop;
4504 			}
4505 			ret = 0;
4506 		}
4507 
4508 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509 			if (!cache_block_group_error)
4510 				cache_block_group_error = -EIO;
4511 			goto loop;
4512 		}
4513 
4514 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4515 			goto loop;
4516 
4517 		bg_ret = NULL;
4518 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519 		if (ret > 0)
4520 			goto loop;
4521 
4522 		if (bg_ret && bg_ret != block_group) {
4523 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524 			block_group = bg_ret;
4525 		}
4526 
4527 		/* Checks */
4528 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529 						 fs_info->stripesize);
4530 
4531 		/* move on to the next group */
4532 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533 		    block_group->start + block_group->length) {
4534 			btrfs_add_free_space_unused(block_group,
4535 					    ffe_ctl->found_offset,
4536 					    ffe_ctl->num_bytes);
4537 			goto loop;
4538 		}
4539 
4540 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541 			btrfs_add_free_space_unused(block_group,
4542 					ffe_ctl->found_offset,
4543 					ffe_ctl->search_start - ffe_ctl->found_offset);
4544 
4545 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546 					       ffe_ctl->num_bytes,
4547 					       ffe_ctl->delalloc,
4548 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549 		if (ret == -EAGAIN) {
4550 			btrfs_add_free_space_unused(block_group,
4551 					ffe_ctl->found_offset,
4552 					ffe_ctl->num_bytes);
4553 			goto loop;
4554 		}
4555 		btrfs_inc_block_group_reservations(block_group);
4556 
4557 		/* we are all good, lets return */
4558 		ins->objectid = ffe_ctl->search_start;
4559 		ins->offset = ffe_ctl->num_bytes;
4560 
4561 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4563 		break;
4564 loop:
4565 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566 		    !ffe_ctl->retry_uncached) {
4567 			ffe_ctl->retry_uncached = true;
4568 			btrfs_wait_block_group_cache_progress(block_group,
4569 						ffe_ctl->num_bytes +
4570 						ffe_ctl->empty_cluster +
4571 						ffe_ctl->empty_size);
4572 			goto have_block_group;
4573 		}
4574 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575 		cond_resched();
4576 	}
4577 	up_read(&space_info->groups_sem);
4578 
4579 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4580 	if (ret > 0)
4581 		goto search;
4582 
4583 	if (ret == -ENOSPC && !cache_block_group_error) {
4584 		/*
4585 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4586 		 * any contiguous hole.
4587 		 */
4588 		if (!ffe_ctl->max_extent_size)
4589 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4590 		spin_lock(&space_info->lock);
4591 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4592 		spin_unlock(&space_info->lock);
4593 		ins->offset = ffe_ctl->max_extent_size;
4594 	} else if (ret == -ENOSPC) {
4595 		ret = cache_block_group_error;
4596 	}
4597 	return ret;
4598 }
4599 
4600 /*
4601  * Entry point to the extent allocator. Tries to find a hole that is at least
4602  * as big as @num_bytes.
4603  *
4604  * @root           -	The root that will contain this extent
4605  *
4606  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4607  *			is used for accounting purposes. This value differs
4608  *			from @num_bytes only in the case of compressed extents.
4609  *
4610  * @num_bytes      -	Number of bytes to allocate on-disk.
4611  *
4612  * @min_alloc_size -	Indicates the minimum amount of space that the
4613  *			allocator should try to satisfy. In some cases
4614  *			@num_bytes may be larger than what is required and if
4615  *			the filesystem is fragmented then allocation fails.
4616  *			However, the presence of @min_alloc_size gives a
4617  *			chance to try and satisfy the smaller allocation.
4618  *
4619  * @empty_size     -	A hint that you plan on doing more COW. This is the
4620  *			size in bytes the allocator should try to find free
4621  *			next to the block it returns.  This is just a hint and
4622  *			may be ignored by the allocator.
4623  *
4624  * @hint_byte      -	Hint to the allocator to start searching above the byte
4625  *			address passed. It might be ignored.
4626  *
4627  * @ins            -	This key is modified to record the found hole. It will
4628  *			have the following values:
4629  *			ins->objectid == start position
4630  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4631  *			ins->offset == the size of the hole.
4632  *
4633  * @is_data        -	Boolean flag indicating whether an extent is
4634  *			allocated for data (true) or metadata (false)
4635  *
4636  * @delalloc       -	Boolean flag indicating whether this allocation is for
4637  *			delalloc or not. If 'true' data_rwsem of block groups
4638  *			is going to be acquired.
4639  *
4640  *
4641  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642  * case -ENOSPC is returned then @ins->offset will contain the size of the
4643  * largest available hole the allocator managed to find.
4644  */
4645 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646 			 u64 num_bytes, u64 min_alloc_size,
4647 			 u64 empty_size, u64 hint_byte,
4648 			 struct btrfs_key *ins, int is_data, int delalloc)
4649 {
4650 	struct btrfs_fs_info *fs_info = root->fs_info;
4651 	struct find_free_extent_ctl ffe_ctl = {};
4652 	bool final_tried = num_bytes == min_alloc_size;
4653 	u64 flags;
4654 	int ret;
4655 	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657 
4658 	flags = get_alloc_profile_by_root(root, is_data);
4659 again:
4660 	WARN_ON(num_bytes < fs_info->sectorsize);
4661 
4662 	ffe_ctl.ram_bytes = ram_bytes;
4663 	ffe_ctl.num_bytes = num_bytes;
4664 	ffe_ctl.min_alloc_size = min_alloc_size;
4665 	ffe_ctl.empty_size = empty_size;
4666 	ffe_ctl.flags = flags;
4667 	ffe_ctl.delalloc = delalloc;
4668 	ffe_ctl.hint_byte = hint_byte;
4669 	ffe_ctl.for_treelog = for_treelog;
4670 	ffe_ctl.for_data_reloc = for_data_reloc;
4671 
4672 	ret = find_free_extent(root, ins, &ffe_ctl);
4673 	if (!ret && !is_data) {
4674 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675 	} else if (ret == -ENOSPC) {
4676 		if (!final_tried && ins->offset) {
4677 			num_bytes = min(num_bytes >> 1, ins->offset);
4678 			num_bytes = round_down(num_bytes,
4679 					       fs_info->sectorsize);
4680 			num_bytes = max(num_bytes, min_alloc_size);
4681 			ram_bytes = num_bytes;
4682 			if (num_bytes == min_alloc_size)
4683 				final_tried = true;
4684 			goto again;
4685 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686 			struct btrfs_space_info *sinfo;
4687 
4688 			sinfo = btrfs_find_space_info(fs_info, flags);
4689 			btrfs_err(fs_info,
4690 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691 				  flags, num_bytes, for_treelog, for_data_reloc);
4692 			if (sinfo)
4693 				btrfs_dump_space_info(fs_info, sinfo,
4694 						      num_bytes, 1);
4695 		}
4696 	}
4697 
4698 	return ret;
4699 }
4700 
4701 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702 			       u64 start, u64 len, int delalloc)
4703 {
4704 	struct btrfs_block_group *cache;
4705 
4706 	cache = btrfs_lookup_block_group(fs_info, start);
4707 	if (!cache) {
4708 		btrfs_err(fs_info, "Unable to find block group for %llu",
4709 			  start);
4710 		return -ENOSPC;
4711 	}
4712 
4713 	btrfs_add_free_space(cache, start, len);
4714 	btrfs_free_reserved_bytes(cache, len, delalloc);
4715 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4716 
4717 	btrfs_put_block_group(cache);
4718 	return 0;
4719 }
4720 
4721 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722 			      const struct extent_buffer *eb)
4723 {
4724 	struct btrfs_block_group *cache;
4725 	int ret = 0;
4726 
4727 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728 	if (!cache) {
4729 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730 			  eb->start);
4731 		return -ENOSPC;
4732 	}
4733 
4734 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735 	btrfs_put_block_group(cache);
4736 	return ret;
4737 }
4738 
4739 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740 				 u64 num_bytes)
4741 {
4742 	struct btrfs_fs_info *fs_info = trans->fs_info;
4743 	int ret;
4744 
4745 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746 	if (ret)
4747 		return ret;
4748 
4749 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750 	if (ret) {
4751 		ASSERT(!ret);
4752 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4753 			  bytenr, num_bytes);
4754 		return ret;
4755 	}
4756 
4757 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758 	return 0;
4759 }
4760 
4761 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4762 				      u64 parent, u64 root_objectid,
4763 				      u64 flags, u64 owner, u64 offset,
4764 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765 {
4766 	struct btrfs_fs_info *fs_info = trans->fs_info;
4767 	struct btrfs_root *extent_root;
4768 	int ret;
4769 	struct btrfs_extent_item *extent_item;
4770 	struct btrfs_extent_owner_ref *oref;
4771 	struct btrfs_extent_inline_ref *iref;
4772 	struct btrfs_path *path;
4773 	struct extent_buffer *leaf;
4774 	int type;
4775 	u32 size;
4776 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777 
4778 	if (parent > 0)
4779 		type = BTRFS_SHARED_DATA_REF_KEY;
4780 	else
4781 		type = BTRFS_EXTENT_DATA_REF_KEY;
4782 
4783 	size = sizeof(*extent_item);
4784 	if (simple_quota)
4785 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786 	size += btrfs_extent_inline_ref_size(type);
4787 
4788 	path = btrfs_alloc_path();
4789 	if (!path)
4790 		return -ENOMEM;
4791 
4792 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4794 	if (ret) {
4795 		btrfs_free_path(path);
4796 		return ret;
4797 	}
4798 
4799 	leaf = path->nodes[0];
4800 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801 				     struct btrfs_extent_item);
4802 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804 	btrfs_set_extent_flags(leaf, extent_item,
4805 			       flags | BTRFS_EXTENT_FLAG_DATA);
4806 
4807 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808 	if (simple_quota) {
4809 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813 	}
4814 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815 
4816 	if (parent > 0) {
4817 		struct btrfs_shared_data_ref *ref;
4818 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821 	} else {
4822 		struct btrfs_extent_data_ref *ref;
4823 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828 	}
4829 
4830 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4831 	btrfs_free_path(path);
4832 
4833 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4834 }
4835 
4836 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4837 				     struct btrfs_delayed_ref_node *node,
4838 				     struct btrfs_delayed_extent_op *extent_op)
4839 {
4840 	struct btrfs_fs_info *fs_info = trans->fs_info;
4841 	struct btrfs_root *extent_root;
4842 	int ret;
4843 	struct btrfs_extent_item *extent_item;
4844 	struct btrfs_key extent_key;
4845 	struct btrfs_tree_block_info *block_info;
4846 	struct btrfs_extent_inline_ref *iref;
4847 	struct btrfs_path *path;
4848 	struct extent_buffer *leaf;
4849 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4850 	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4851 	/* The owner of a tree block is the level. */
4852 	int level = btrfs_delayed_ref_owner(node);
4853 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4854 
4855 	extent_key.objectid = node->bytenr;
4856 	if (skinny_metadata) {
4857 		/* The owner of a tree block is the level. */
4858 		extent_key.offset = level;
4859 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4860 	} else {
4861 		extent_key.offset = node->num_bytes;
4862 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4863 		size += sizeof(*block_info);
4864 	}
4865 
4866 	path = btrfs_alloc_path();
4867 	if (!path)
4868 		return -ENOMEM;
4869 
4870 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4871 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4872 				      size);
4873 	if (ret) {
4874 		btrfs_free_path(path);
4875 		return ret;
4876 	}
4877 
4878 	leaf = path->nodes[0];
4879 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4880 				     struct btrfs_extent_item);
4881 	btrfs_set_extent_refs(leaf, extent_item, 1);
4882 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4883 	btrfs_set_extent_flags(leaf, extent_item,
4884 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4885 
4886 	if (skinny_metadata) {
4887 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4888 	} else {
4889 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4890 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4891 		btrfs_set_tree_block_level(leaf, block_info, level);
4892 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4893 	}
4894 
4895 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4896 		btrfs_set_extent_inline_ref_type(leaf, iref,
4897 						 BTRFS_SHARED_BLOCK_REF_KEY);
4898 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4899 	} else {
4900 		btrfs_set_extent_inline_ref_type(leaf, iref,
4901 						 BTRFS_TREE_BLOCK_REF_KEY);
4902 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4903 	}
4904 
4905 	btrfs_mark_buffer_dirty(trans, leaf);
4906 	btrfs_free_path(path);
4907 
4908 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4909 }
4910 
4911 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912 				     struct btrfs_root *root, u64 owner,
4913 				     u64 offset, u64 ram_bytes,
4914 				     struct btrfs_key *ins)
4915 {
4916 	struct btrfs_ref generic_ref = {
4917 		.action = BTRFS_ADD_DELAYED_EXTENT,
4918 		.bytenr = ins->objectid,
4919 		.num_bytes = ins->offset,
4920 		.owning_root = btrfs_root_id(root),
4921 		.ref_root = btrfs_root_id(root),
4922 	};
4923 
4924 	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925 
4926 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927 		generic_ref.owning_root = root->relocation_src_root;
4928 
4929 	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931 
4932 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933 }
4934 
4935 /*
4936  * this is used by the tree logging recovery code.  It records that
4937  * an extent has been allocated and makes sure to clear the free
4938  * space cache bits as well
4939  */
4940 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941 				   u64 root_objectid, u64 owner, u64 offset,
4942 				   struct btrfs_key *ins)
4943 {
4944 	struct btrfs_fs_info *fs_info = trans->fs_info;
4945 	int ret;
4946 	struct btrfs_block_group *block_group;
4947 	struct btrfs_space_info *space_info;
4948 	struct btrfs_squota_delta delta = {
4949 		.root = root_objectid,
4950 		.num_bytes = ins->offset,
4951 		.generation = trans->transid,
4952 		.is_data = true,
4953 		.is_inc = true,
4954 	};
4955 
4956 	/*
4957 	 * Mixed block groups will exclude before processing the log so we only
4958 	 * need to do the exclude dance if this fs isn't mixed.
4959 	 */
4960 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4962 					      ins->offset);
4963 		if (ret)
4964 			return ret;
4965 	}
4966 
4967 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968 	if (!block_group)
4969 		return -EINVAL;
4970 
4971 	space_info = block_group->space_info;
4972 	spin_lock(&space_info->lock);
4973 	spin_lock(&block_group->lock);
4974 	space_info->bytes_reserved += ins->offset;
4975 	block_group->reserved += ins->offset;
4976 	spin_unlock(&block_group->lock);
4977 	spin_unlock(&space_info->lock);
4978 
4979 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980 					 offset, ins, 1, root_objectid);
4981 	if (ret)
4982 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983 	ret = btrfs_record_squota_delta(fs_info, &delta);
4984 	btrfs_put_block_group(block_group);
4985 	return ret;
4986 }
4987 
4988 #ifdef CONFIG_BTRFS_DEBUG
4989 /*
4990  * Extra safety check in case the extent tree is corrupted and extent allocator
4991  * chooses to use a tree block which is already used and locked.
4992  */
4993 static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994 {
4995 	if (eb->lock_owner == current->pid) {
4996 		btrfs_err_rl(eb->fs_info,
4997 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998 			     eb->start, btrfs_header_owner(eb), current->pid);
4999 		return true;
5000 	}
5001 	return false;
5002 }
5003 #else
5004 static bool check_eb_lock_owner(struct extent_buffer *eb)
5005 {
5006 	return false;
5007 }
5008 #endif
5009 
5010 static struct extent_buffer *
5011 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012 		      u64 bytenr, int level, u64 owner,
5013 		      enum btrfs_lock_nesting nest)
5014 {
5015 	struct btrfs_fs_info *fs_info = root->fs_info;
5016 	struct extent_buffer *buf;
5017 	u64 lockdep_owner = owner;
5018 
5019 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020 	if (IS_ERR(buf))
5021 		return buf;
5022 
5023 	if (check_eb_lock_owner(buf)) {
5024 		free_extent_buffer(buf);
5025 		return ERR_PTR(-EUCLEAN);
5026 	}
5027 
5028 	/*
5029 	 * The reloc trees are just snapshots, so we need them to appear to be
5030 	 * just like any other fs tree WRT lockdep.
5031 	 *
5032 	 * The exception however is in replace_path() in relocation, where we
5033 	 * hold the lock on the original fs root and then search for the reloc
5034 	 * root.  At that point we need to make sure any reloc root buffers are
5035 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036 	 * lockdep happy.
5037 	 */
5038 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041 
5042 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5043 	btrfs_set_header_generation(buf, trans->transid);
5044 
5045 	/*
5046 	 * This needs to stay, because we could allocate a freed block from an
5047 	 * old tree into a new tree, so we need to make sure this new block is
5048 	 * set to the appropriate level and owner.
5049 	 */
5050 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051 
5052 	btrfs_tree_lock_nested(buf, nest);
5053 	btrfs_clear_buffer_dirty(trans, buf);
5054 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056 
5057 	set_extent_buffer_uptodate(buf);
5058 
5059 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060 	btrfs_set_header_level(buf, level);
5061 	btrfs_set_header_bytenr(buf, buf->start);
5062 	btrfs_set_header_generation(buf, trans->transid);
5063 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064 	btrfs_set_header_owner(buf, owner);
5065 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067 	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068 		buf->log_index = root->log_transid % 2;
5069 		/*
5070 		 * we allow two log transactions at a time, use different
5071 		 * EXTENT bit to differentiate dirty pages.
5072 		 */
5073 		if (buf->log_index == 0)
5074 			set_extent_bit(&root->dirty_log_pages, buf->start,
5075 				       buf->start + buf->len - 1,
5076 				       EXTENT_DIRTY, NULL);
5077 		else
5078 			set_extent_bit(&root->dirty_log_pages, buf->start,
5079 				       buf->start + buf->len - 1,
5080 				       EXTENT_NEW, NULL);
5081 	} else {
5082 		buf->log_index = -1;
5083 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085 	}
5086 	/* this returns a buffer locked for blocking */
5087 	return buf;
5088 }
5089 
5090 /*
5091  * finds a free extent and does all the dirty work required for allocation
5092  * returns the tree buffer or an ERR_PTR on error.
5093  */
5094 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095 					     struct btrfs_root *root,
5096 					     u64 parent, u64 root_objectid,
5097 					     const struct btrfs_disk_key *key,
5098 					     int level, u64 hint,
5099 					     u64 empty_size,
5100 					     u64 reloc_src_root,
5101 					     enum btrfs_lock_nesting nest)
5102 {
5103 	struct btrfs_fs_info *fs_info = root->fs_info;
5104 	struct btrfs_key ins;
5105 	struct btrfs_block_rsv *block_rsv;
5106 	struct extent_buffer *buf;
5107 	u64 flags = 0;
5108 	int ret;
5109 	u32 blocksize = fs_info->nodesize;
5110 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111 	u64 owning_root;
5112 
5113 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 	if (btrfs_is_testing(fs_info)) {
5115 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116 					    level, root_objectid, nest);
5117 		if (!IS_ERR(buf))
5118 			root->alloc_bytenr += blocksize;
5119 		return buf;
5120 	}
5121 #endif
5122 
5123 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124 	if (IS_ERR(block_rsv))
5125 		return ERR_CAST(block_rsv);
5126 
5127 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128 				   empty_size, hint, &ins, 0, 0);
5129 	if (ret)
5130 		goto out_unuse;
5131 
5132 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133 				    root_objectid, nest);
5134 	if (IS_ERR(buf)) {
5135 		ret = PTR_ERR(buf);
5136 		goto out_free_reserved;
5137 	}
5138 	owning_root = btrfs_header_owner(buf);
5139 
5140 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141 		if (parent == 0)
5142 			parent = ins.objectid;
5143 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144 		owning_root = reloc_src_root;
5145 	} else
5146 		BUG_ON(parent > 0);
5147 
5148 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149 		struct btrfs_delayed_extent_op *extent_op;
5150 		struct btrfs_ref generic_ref = {
5151 			.action = BTRFS_ADD_DELAYED_EXTENT,
5152 			.bytenr = ins.objectid,
5153 			.num_bytes = ins.offset,
5154 			.parent = parent,
5155 			.owning_root = owning_root,
5156 			.ref_root = root_objectid,
5157 		};
5158 
5159 		if (!skinny_metadata || flags != 0) {
5160 			extent_op = btrfs_alloc_delayed_extent_op();
5161 			if (!extent_op) {
5162 				ret = -ENOMEM;
5163 				goto out_free_buf;
5164 			}
5165 			if (key)
5166 				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167 			else
5168 				memset(&extent_op->key, 0, sizeof(extent_op->key));
5169 			extent_op->flags_to_set = flags;
5170 			extent_op->update_key = (skinny_metadata ? false : true);
5171 			extent_op->update_flags = (flags != 0);
5172 		} else {
5173 			extent_op = NULL;
5174 		}
5175 
5176 		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5178 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179 		if (ret) {
5180 			btrfs_free_delayed_extent_op(extent_op);
5181 			goto out_free_buf;
5182 		}
5183 	}
5184 	return buf;
5185 
5186 out_free_buf:
5187 	btrfs_tree_unlock(buf);
5188 	free_extent_buffer(buf);
5189 out_free_reserved:
5190 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191 out_unuse:
5192 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193 	return ERR_PTR(ret);
5194 }
5195 
5196 struct walk_control {
5197 	u64 refs[BTRFS_MAX_LEVEL];
5198 	u64 flags[BTRFS_MAX_LEVEL];
5199 	struct btrfs_key update_progress;
5200 	struct btrfs_key drop_progress;
5201 	int drop_level;
5202 	int stage;
5203 	int level;
5204 	int shared_level;
5205 	int update_ref;
5206 	int keep_locks;
5207 	int reada_slot;
5208 	int reada_count;
5209 	int restarted;
5210 	/* Indicate that extent info needs to be looked up when walking the tree. */
5211 	int lookup_info;
5212 };
5213 
5214 /*
5215  * This is our normal stage.  We are traversing blocks the current snapshot owns
5216  * and we are dropping any of our references to any children we are able to, and
5217  * then freeing the block once we've processed all of the children.
5218  */
5219 #define DROP_REFERENCE	1
5220 
5221 /*
5222  * We enter this stage when we have to walk into a child block (meaning we can't
5223  * simply drop our reference to it from our current parent node) and there are
5224  * more than one reference on it.  If we are the owner of any of the children
5225  * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226  * on them in order to drop our normal ref and add the shared ref.
5227  */
5228 #define UPDATE_BACKREF	2
5229 
5230 /*
5231  * Decide if we need to walk down into this node to adjust the references.
5232  *
5233  * @root:	the root we are currently deleting
5234  * @wc:		the walk control for this deletion
5235  * @eb:		the parent eb that we're currently visiting
5236  * @refs:	the number of refs for wc->level - 1
5237  * @flags:	the flags for wc->level - 1
5238  * @slot:	the slot in the eb that we're currently checking
5239  *
5240  * This is meant to be called when we're evaluating if a node we point to at
5241  * wc->level should be read and walked into, or if we can simply delete our
5242  * reference to it.  We return true if we should walk into the node, false if we
5243  * can skip it.
5244  *
5245  * We have assertions in here to make sure this is called correctly.  We assume
5246  * that sanity checking on the blocks read to this point has been done, so any
5247  * corrupted file systems must have been caught before calling this function.
5248  */
5249 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250 				  struct extent_buffer *eb, u64 flags, int slot)
5251 {
5252 	struct btrfs_key key;
5253 	u64 generation;
5254 	int level = wc->level;
5255 
5256 	ASSERT(level > 0);
5257 	ASSERT(wc->refs[level - 1] > 0);
5258 
5259 	/*
5260 	 * The update backref stage we only want to skip if we already have
5261 	 * FULL_BACKREF set, otherwise we need to read.
5262 	 */
5263 	if (wc->stage == UPDATE_BACKREF) {
5264 		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265 			return false;
5266 		return true;
5267 	}
5268 
5269 	/*
5270 	 * We're the last ref on this block, we must walk into it and process
5271 	 * any refs it's pointing at.
5272 	 */
5273 	if (wc->refs[level - 1] == 1)
5274 		return true;
5275 
5276 	/*
5277 	 * If we're already FULL_BACKREF then we know we can just drop our
5278 	 * current reference.
5279 	 */
5280 	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 		return false;
5282 
5283 	/*
5284 	 * This block is older than our creation generation, we can drop our
5285 	 * reference to it.
5286 	 */
5287 	generation = btrfs_node_ptr_generation(eb, slot);
5288 	if (!wc->update_ref || generation <= root->root_key.offset)
5289 		return false;
5290 
5291 	/*
5292 	 * This block was processed from a previous snapshot deletion run, we
5293 	 * can skip it.
5294 	 */
5295 	btrfs_node_key_to_cpu(eb, &key, slot);
5296 	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297 		return false;
5298 
5299 	/* All other cases we need to wander into the node. */
5300 	return true;
5301 }
5302 
5303 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304 				     struct btrfs_root *root,
5305 				     struct walk_control *wc,
5306 				     struct btrfs_path *path)
5307 {
5308 	struct btrfs_fs_info *fs_info = root->fs_info;
5309 	u64 bytenr;
5310 	u64 generation;
5311 	u64 refs;
5312 	u64 flags;
5313 	u32 nritems;
5314 	struct extent_buffer *eb;
5315 	int ret;
5316 	int slot;
5317 	int nread = 0;
5318 
5319 	if (path->slots[wc->level] < wc->reada_slot) {
5320 		wc->reada_count = wc->reada_count * 2 / 3;
5321 		wc->reada_count = max(wc->reada_count, 2);
5322 	} else {
5323 		wc->reada_count = wc->reada_count * 3 / 2;
5324 		wc->reada_count = min_t(int, wc->reada_count,
5325 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326 	}
5327 
5328 	eb = path->nodes[wc->level];
5329 	nritems = btrfs_header_nritems(eb);
5330 
5331 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332 		if (nread >= wc->reada_count)
5333 			break;
5334 
5335 		cond_resched();
5336 		bytenr = btrfs_node_blockptr(eb, slot);
5337 		generation = btrfs_node_ptr_generation(eb, slot);
5338 
5339 		if (slot == path->slots[wc->level])
5340 			goto reada;
5341 
5342 		if (wc->stage == UPDATE_BACKREF &&
5343 		    generation <= root->root_key.offset)
5344 			continue;
5345 
5346 		/* We don't lock the tree block, it's OK to be racy here */
5347 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348 					       wc->level - 1, 1, &refs,
5349 					       &flags, NULL);
5350 		/* We don't care about errors in readahead. */
5351 		if (ret < 0)
5352 			continue;
5353 
5354 		/*
5355 		 * This could be racey, it's conceivable that we raced and end
5356 		 * up with a bogus refs count, if that's the case just skip, if
5357 		 * we are actually corrupt we will notice when we look up
5358 		 * everything again with our locks.
5359 		 */
5360 		if (refs == 0)
5361 			continue;
5362 
5363 		/* If we don't need to visit this node don't reada. */
5364 		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365 			continue;
5366 reada:
5367 		btrfs_readahead_node_child(eb, slot);
5368 		nread++;
5369 	}
5370 	wc->reada_slot = slot;
5371 }
5372 
5373 /*
5374  * helper to process tree block while walking down the tree.
5375  *
5376  * when wc->stage == UPDATE_BACKREF, this function updates
5377  * back refs for pointers in the block.
5378  *
5379  * NOTE: return value 1 means we should stop walking down.
5380  */
5381 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382 				   struct btrfs_root *root,
5383 				   struct btrfs_path *path,
5384 				   struct walk_control *wc)
5385 {
5386 	struct btrfs_fs_info *fs_info = root->fs_info;
5387 	int level = wc->level;
5388 	struct extent_buffer *eb = path->nodes[level];
5389 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390 	int ret;
5391 
5392 	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5393 		return 1;
5394 
5395 	/*
5396 	 * when reference count of tree block is 1, it won't increase
5397 	 * again. once full backref flag is set, we never clear it.
5398 	 */
5399 	if (wc->lookup_info &&
5400 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402 		ASSERT(path->locks[level]);
5403 		ret = btrfs_lookup_extent_info(trans, fs_info,
5404 					       eb->start, level, 1,
5405 					       &wc->refs[level],
5406 					       &wc->flags[level],
5407 					       NULL);
5408 		if (ret)
5409 			return ret;
5410 		if (unlikely(wc->refs[level] == 0)) {
5411 			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412 				  eb->start);
5413 			return -EUCLEAN;
5414 		}
5415 	}
5416 
5417 	if (wc->stage == DROP_REFERENCE) {
5418 		if (wc->refs[level] > 1)
5419 			return 1;
5420 
5421 		if (path->locks[level] && !wc->keep_locks) {
5422 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 			path->locks[level] = 0;
5424 		}
5425 		return 0;
5426 	}
5427 
5428 	/* wc->stage == UPDATE_BACKREF */
5429 	if (!(wc->flags[level] & flag)) {
5430 		ASSERT(path->locks[level]);
5431 		ret = btrfs_inc_ref(trans, root, eb, 1);
5432 		if (ret) {
5433 			btrfs_abort_transaction(trans, ret);
5434 			return ret;
5435 		}
5436 		ret = btrfs_dec_ref(trans, root, eb, 0);
5437 		if (ret) {
5438 			btrfs_abort_transaction(trans, ret);
5439 			return ret;
5440 		}
5441 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442 		if (ret) {
5443 			btrfs_abort_transaction(trans, ret);
5444 			return ret;
5445 		}
5446 		wc->flags[level] |= flag;
5447 	}
5448 
5449 	/*
5450 	 * the block is shared by multiple trees, so it's not good to
5451 	 * keep the tree lock
5452 	 */
5453 	if (path->locks[level] && level > 0) {
5454 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 		path->locks[level] = 0;
5456 	}
5457 	return 0;
5458 }
5459 
5460 /*
5461  * This is used to verify a ref exists for this root to deal with a bug where we
5462  * would have a drop_progress key that hadn't been updated properly.
5463  */
5464 static int check_ref_exists(struct btrfs_trans_handle *trans,
5465 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5466 			    int level)
5467 {
5468 	struct btrfs_delayed_ref_root *delayed_refs;
5469 	struct btrfs_delayed_ref_head *head;
5470 	struct btrfs_path *path;
5471 	struct btrfs_extent_inline_ref *iref;
5472 	int ret;
5473 	bool exists = false;
5474 
5475 	path = btrfs_alloc_path();
5476 	if (!path)
5477 		return -ENOMEM;
5478 again:
5479 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480 				    root->fs_info->nodesize, parent,
5481 				    btrfs_root_id(root), level, 0);
5482 	if (ret != -ENOENT) {
5483 		/*
5484 		 * If we get 0 then we found our reference, return 1, else
5485 		 * return the error if it's not -ENOENT;
5486 		 */
5487 		btrfs_free_path(path);
5488 		return (ret < 0 ) ? ret : 1;
5489 	}
5490 
5491 	/*
5492 	 * We could have a delayed ref with this reference, so look it up while
5493 	 * we're holding the path open to make sure we don't race with the
5494 	 * delayed ref running.
5495 	 */
5496 	delayed_refs = &trans->transaction->delayed_refs;
5497 	spin_lock(&delayed_refs->lock);
5498 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5499 	if (!head)
5500 		goto out;
5501 	if (!mutex_trylock(&head->mutex)) {
5502 		/*
5503 		 * We're contended, means that the delayed ref is running, get a
5504 		 * reference and wait for the ref head to be complete and then
5505 		 * try again.
5506 		 */
5507 		refcount_inc(&head->refs);
5508 		spin_unlock(&delayed_refs->lock);
5509 
5510 		btrfs_release_path(path);
5511 
5512 		mutex_lock(&head->mutex);
5513 		mutex_unlock(&head->mutex);
5514 		btrfs_put_delayed_ref_head(head);
5515 		goto again;
5516 	}
5517 
5518 	exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5519 	mutex_unlock(&head->mutex);
5520 out:
5521 	spin_unlock(&delayed_refs->lock);
5522 	btrfs_free_path(path);
5523 	return exists ? 1 : 0;
5524 }
5525 
5526 /*
5527  * We may not have an uptodate block, so if we are going to walk down into this
5528  * block we need to drop the lock, read it off of the disk, re-lock it and
5529  * return to continue dropping the snapshot.
5530  */
5531 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5532 				     struct btrfs_root *root,
5533 				     struct btrfs_path *path,
5534 				     struct walk_control *wc,
5535 				     struct extent_buffer *next)
5536 {
5537 	struct btrfs_tree_parent_check check = { 0 };
5538 	u64 generation;
5539 	int level = wc->level;
5540 	int ret;
5541 
5542 	btrfs_assert_tree_write_locked(next);
5543 
5544 	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5545 
5546 	if (btrfs_buffer_uptodate(next, generation, 0))
5547 		return 0;
5548 
5549 	check.level = level - 1;
5550 	check.transid = generation;
5551 	check.owner_root = btrfs_root_id(root);
5552 	check.has_first_key = true;
5553 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5554 
5555 	btrfs_tree_unlock(next);
5556 	if (level == 1)
5557 		reada_walk_down(trans, root, wc, path);
5558 	ret = btrfs_read_extent_buffer(next, &check);
5559 	if (ret) {
5560 		free_extent_buffer(next);
5561 		return ret;
5562 	}
5563 	btrfs_tree_lock(next);
5564 	wc->lookup_info = 1;
5565 	return 0;
5566 }
5567 
5568 /*
5569  * If we determine that we don't have to visit wc->level - 1 then we need to
5570  * determine if we can drop our reference.
5571  *
5572  * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5573  *
5574  * If we are DROP_REFERENCE this will figure out if we need to drop our current
5575  * reference, skipping it if we dropped it from a previous incompleted drop, or
5576  * dropping it if we still have a reference to it.
5577  */
5578 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5579 				struct btrfs_path *path, struct walk_control *wc,
5580 				struct extent_buffer *next, u64 owner_root)
5581 {
5582 	struct btrfs_ref ref = {
5583 		.action = BTRFS_DROP_DELAYED_REF,
5584 		.bytenr = next->start,
5585 		.num_bytes = root->fs_info->nodesize,
5586 		.owning_root = owner_root,
5587 		.ref_root = btrfs_root_id(root),
5588 	};
5589 	int level = wc->level;
5590 	int ret;
5591 
5592 	/* We are UPDATE_BACKREF, we're not dropping anything. */
5593 	if (wc->stage == UPDATE_BACKREF)
5594 		return 0;
5595 
5596 	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5597 		ref.parent = path->nodes[level]->start;
5598 	} else {
5599 		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5600 		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5601 			btrfs_err(root->fs_info, "mismatched block owner");
5602 			return -EIO;
5603 		}
5604 	}
5605 
5606 	/*
5607 	 * If we had a drop_progress we need to verify the refs are set as
5608 	 * expected.  If we find our ref then we know that from here on out
5609 	 * everything should be correct, and we can clear the
5610 	 * ->restarted flag.
5611 	 */
5612 	if (wc->restarted) {
5613 		ret = check_ref_exists(trans, root, next->start, ref.parent,
5614 				       level - 1);
5615 		if (ret <= 0)
5616 			return ret;
5617 		ret = 0;
5618 		wc->restarted = 0;
5619 	}
5620 
5621 	/*
5622 	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5623 	 * accounted them at merge time (replace_path), thus we could skip
5624 	 * expensive subtree trace here.
5625 	 */
5626 	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5627 	    wc->refs[level - 1] > 1) {
5628 		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5629 							   path->slots[level]);
5630 
5631 		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5632 		if (ret) {
5633 			btrfs_err_rl(root->fs_info,
5634 "error %d accounting shared subtree, quota is out of sync, rescan required",
5635 				     ret);
5636 		}
5637 	}
5638 
5639 	/*
5640 	 * We need to update the next key in our walk control so we can update
5641 	 * the drop_progress key accordingly.  We don't care if find_next_key
5642 	 * doesn't find a key because that means we're at the end and are going
5643 	 * to clean up now.
5644 	 */
5645 	wc->drop_level = level;
5646 	find_next_key(path, level, &wc->drop_progress);
5647 
5648 	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5649 	return btrfs_free_extent(trans, &ref);
5650 }
5651 
5652 /*
5653  * helper to process tree block pointer.
5654  *
5655  * when wc->stage == DROP_REFERENCE, this function checks
5656  * reference count of the block pointed to. if the block
5657  * is shared and we need update back refs for the subtree
5658  * rooted at the block, this function changes wc->stage to
5659  * UPDATE_BACKREF. if the block is shared and there is no
5660  * need to update back, this function drops the reference
5661  * to the block.
5662  *
5663  * NOTE: return value 1 means we should stop walking down.
5664  */
5665 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5666 				 struct btrfs_root *root,
5667 				 struct btrfs_path *path,
5668 				 struct walk_control *wc)
5669 {
5670 	struct btrfs_fs_info *fs_info = root->fs_info;
5671 	u64 bytenr;
5672 	u64 generation;
5673 	u64 owner_root = 0;
5674 	struct extent_buffer *next;
5675 	int level = wc->level;
5676 	int ret = 0;
5677 
5678 	generation = btrfs_node_ptr_generation(path->nodes[level],
5679 					       path->slots[level]);
5680 	/*
5681 	 * if the lower level block was created before the snapshot
5682 	 * was created, we know there is no need to update back refs
5683 	 * for the subtree
5684 	 */
5685 	if (wc->stage == UPDATE_BACKREF &&
5686 	    generation <= root->root_key.offset) {
5687 		wc->lookup_info = 1;
5688 		return 1;
5689 	}
5690 
5691 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5692 
5693 	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5694 					    level - 1);
5695 	if (IS_ERR(next))
5696 		return PTR_ERR(next);
5697 
5698 	btrfs_tree_lock(next);
5699 
5700 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5701 				       &wc->refs[level - 1],
5702 				       &wc->flags[level - 1],
5703 				       &owner_root);
5704 	if (ret < 0)
5705 		goto out_unlock;
5706 
5707 	if (unlikely(wc->refs[level - 1] == 0)) {
5708 		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5709 			  bytenr);
5710 		ret = -EUCLEAN;
5711 		goto out_unlock;
5712 	}
5713 	wc->lookup_info = 0;
5714 
5715 	/* If we don't have to walk into this node skip it. */
5716 	if (!visit_node_for_delete(root, wc, path->nodes[level],
5717 				   wc->flags[level - 1], path->slots[level]))
5718 		goto skip;
5719 
5720 	/*
5721 	 * We have to walk down into this node, and if we're currently at the
5722 	 * DROP_REFERNCE stage and this block is shared then we need to switch
5723 	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5724 	 */
5725 	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5726 		wc->stage = UPDATE_BACKREF;
5727 		wc->shared_level = level - 1;
5728 	}
5729 
5730 	ret = check_next_block_uptodate(trans, root, path, wc, next);
5731 	if (ret)
5732 		return ret;
5733 
5734 	level--;
5735 	ASSERT(level == btrfs_header_level(next));
5736 	if (level != btrfs_header_level(next)) {
5737 		btrfs_err(root->fs_info, "mismatched level");
5738 		ret = -EIO;
5739 		goto out_unlock;
5740 	}
5741 	path->nodes[level] = next;
5742 	path->slots[level] = 0;
5743 	path->locks[level] = BTRFS_WRITE_LOCK;
5744 	wc->level = level;
5745 	if (wc->level == 1)
5746 		wc->reada_slot = 0;
5747 	return 0;
5748 skip:
5749 	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5750 	if (ret)
5751 		goto out_unlock;
5752 	wc->refs[level - 1] = 0;
5753 	wc->flags[level - 1] = 0;
5754 	wc->lookup_info = 1;
5755 	ret = 1;
5756 
5757 out_unlock:
5758 	btrfs_tree_unlock(next);
5759 	free_extent_buffer(next);
5760 
5761 	return ret;
5762 }
5763 
5764 /*
5765  * helper to process tree block while walking up the tree.
5766  *
5767  * when wc->stage == DROP_REFERENCE, this function drops
5768  * reference count on the block.
5769  *
5770  * when wc->stage == UPDATE_BACKREF, this function changes
5771  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5772  * to UPDATE_BACKREF previously while processing the block.
5773  *
5774  * NOTE: return value 1 means we should stop walking up.
5775  */
5776 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5777 				 struct btrfs_root *root,
5778 				 struct btrfs_path *path,
5779 				 struct walk_control *wc)
5780 {
5781 	struct btrfs_fs_info *fs_info = root->fs_info;
5782 	int ret = 0;
5783 	int level = wc->level;
5784 	struct extent_buffer *eb = path->nodes[level];
5785 	u64 parent = 0;
5786 
5787 	if (wc->stage == UPDATE_BACKREF) {
5788 		ASSERT(wc->shared_level >= level);
5789 		if (level < wc->shared_level)
5790 			goto out;
5791 
5792 		ret = find_next_key(path, level + 1, &wc->update_progress);
5793 		if (ret > 0)
5794 			wc->update_ref = 0;
5795 
5796 		wc->stage = DROP_REFERENCE;
5797 		wc->shared_level = -1;
5798 		path->slots[level] = 0;
5799 
5800 		/*
5801 		 * check reference count again if the block isn't locked.
5802 		 * we should start walking down the tree again if reference
5803 		 * count is one.
5804 		 */
5805 		if (!path->locks[level]) {
5806 			ASSERT(level > 0);
5807 			btrfs_tree_lock(eb);
5808 			path->locks[level] = BTRFS_WRITE_LOCK;
5809 
5810 			ret = btrfs_lookup_extent_info(trans, fs_info,
5811 						       eb->start, level, 1,
5812 						       &wc->refs[level],
5813 						       &wc->flags[level],
5814 						       NULL);
5815 			if (ret < 0) {
5816 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5817 				path->locks[level] = 0;
5818 				return ret;
5819 			}
5820 			if (unlikely(wc->refs[level] == 0)) {
5821 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5822 				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5823 					  eb->start);
5824 				return -EUCLEAN;
5825 			}
5826 			if (wc->refs[level] == 1) {
5827 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5828 				path->locks[level] = 0;
5829 				return 1;
5830 			}
5831 		}
5832 	}
5833 
5834 	/* wc->stage == DROP_REFERENCE */
5835 	ASSERT(path->locks[level] || wc->refs[level] == 1);
5836 
5837 	if (wc->refs[level] == 1) {
5838 		if (level == 0) {
5839 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5840 				ret = btrfs_dec_ref(trans, root, eb, 1);
5841 			else
5842 				ret = btrfs_dec_ref(trans, root, eb, 0);
5843 			if (ret) {
5844 				btrfs_abort_transaction(trans, ret);
5845 				return ret;
5846 			}
5847 			if (is_fstree(btrfs_root_id(root))) {
5848 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5849 				if (ret) {
5850 					btrfs_err_rl(fs_info,
5851 	"error %d accounting leaf items, quota is out of sync, rescan required",
5852 					     ret);
5853 				}
5854 			}
5855 		}
5856 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5857 		if (!path->locks[level]) {
5858 			btrfs_tree_lock(eb);
5859 			path->locks[level] = BTRFS_WRITE_LOCK;
5860 		}
5861 		btrfs_clear_buffer_dirty(trans, eb);
5862 	}
5863 
5864 	if (eb == root->node) {
5865 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5866 			parent = eb->start;
5867 		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5868 			goto owner_mismatch;
5869 	} else {
5870 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5871 			parent = path->nodes[level + 1]->start;
5872 		else if (btrfs_root_id(root) !=
5873 			 btrfs_header_owner(path->nodes[level + 1]))
5874 			goto owner_mismatch;
5875 	}
5876 
5877 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5878 				    wc->refs[level] == 1);
5879 	if (ret < 0)
5880 		btrfs_abort_transaction(trans, ret);
5881 out:
5882 	wc->refs[level] = 0;
5883 	wc->flags[level] = 0;
5884 	return ret;
5885 
5886 owner_mismatch:
5887 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5888 		     btrfs_header_owner(eb), btrfs_root_id(root));
5889 	return -EUCLEAN;
5890 }
5891 
5892 /*
5893  * walk_down_tree consists of two steps.
5894  *
5895  * walk_down_proc().  Look up the reference count and reference of our current
5896  * wc->level.  At this point path->nodes[wc->level] should be populated and
5897  * uptodate, and in most cases should already be locked.  If we are in
5898  * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5899  * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5900  * FULL_BACKREF on this node if it's not already set, and then do the
5901  * FULL_BACKREF conversion dance, which is to drop the root reference and add
5902  * the shared reference to all of this nodes children.
5903  *
5904  * do_walk_down().  This is where we actually start iterating on the children of
5905  * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5906  * our reference to the children that return false from visit_node_for_delete(),
5907  * which has various conditions where we know we can just drop our reference
5908  * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5909  * visit_node_for_delete() returns false for, only walking down when necessary.
5910  * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5911  * snapshot deletion.
5912  */
5913 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5914 				   struct btrfs_root *root,
5915 				   struct btrfs_path *path,
5916 				   struct walk_control *wc)
5917 {
5918 	int level = wc->level;
5919 	int ret = 0;
5920 
5921 	wc->lookup_info = 1;
5922 	while (level >= 0) {
5923 		ret = walk_down_proc(trans, root, path, wc);
5924 		if (ret)
5925 			break;
5926 
5927 		if (level == 0)
5928 			break;
5929 
5930 		if (path->slots[level] >=
5931 		    btrfs_header_nritems(path->nodes[level]))
5932 			break;
5933 
5934 		ret = do_walk_down(trans, root, path, wc);
5935 		if (ret > 0) {
5936 			path->slots[level]++;
5937 			continue;
5938 		} else if (ret < 0)
5939 			break;
5940 		level = wc->level;
5941 	}
5942 	return (ret == 1) ? 0 : ret;
5943 }
5944 
5945 /*
5946  * walk_up_tree() is responsible for making sure we visit every slot on our
5947  * current node, and if we're at the end of that node then we call
5948  * walk_up_proc() on our current node which will do one of a few things based on
5949  * our stage.
5950  *
5951  * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5952  * then we need to walk back up the tree, and then going back down into the
5953  * other slots via walk_down_tree to update any other children from our original
5954  * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5955  * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5956  *
5957  * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5958  * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5959  * in our current leaf.  After that we call btrfs_free_tree_block() on the
5960  * current node and walk up to the next node to walk down the next slot.
5961  */
5962 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5963 				 struct btrfs_root *root,
5964 				 struct btrfs_path *path,
5965 				 struct walk_control *wc, int max_level)
5966 {
5967 	int level = wc->level;
5968 	int ret;
5969 
5970 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5971 	while (level < max_level && path->nodes[level]) {
5972 		wc->level = level;
5973 		if (path->slots[level] + 1 <
5974 		    btrfs_header_nritems(path->nodes[level])) {
5975 			path->slots[level]++;
5976 			return 0;
5977 		} else {
5978 			ret = walk_up_proc(trans, root, path, wc);
5979 			if (ret > 0)
5980 				return 0;
5981 			if (ret < 0)
5982 				return ret;
5983 
5984 			if (path->locks[level]) {
5985 				btrfs_tree_unlock_rw(path->nodes[level],
5986 						     path->locks[level]);
5987 				path->locks[level] = 0;
5988 			}
5989 			free_extent_buffer(path->nodes[level]);
5990 			path->nodes[level] = NULL;
5991 			level++;
5992 		}
5993 	}
5994 	return 1;
5995 }
5996 
5997 /*
5998  * drop a subvolume tree.
5999  *
6000  * this function traverses the tree freeing any blocks that only
6001  * referenced by the tree.
6002  *
6003  * when a shared tree block is found. this function decreases its
6004  * reference count by one. if update_ref is true, this function
6005  * also make sure backrefs for the shared block and all lower level
6006  * blocks are properly updated.
6007  *
6008  * If called with for_reloc == 0, may exit early with -EAGAIN
6009  */
6010 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6011 {
6012 	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6013 	struct btrfs_fs_info *fs_info = root->fs_info;
6014 	struct btrfs_path *path;
6015 	struct btrfs_trans_handle *trans;
6016 	struct btrfs_root *tree_root = fs_info->tree_root;
6017 	struct btrfs_root_item *root_item = &root->root_item;
6018 	struct walk_control *wc;
6019 	struct btrfs_key key;
6020 	const u64 rootid = btrfs_root_id(root);
6021 	int ret = 0;
6022 	int level;
6023 	bool root_dropped = false;
6024 	bool unfinished_drop = false;
6025 
6026 	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6027 
6028 	path = btrfs_alloc_path();
6029 	if (!path) {
6030 		ret = -ENOMEM;
6031 		goto out;
6032 	}
6033 
6034 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6035 	if (!wc) {
6036 		btrfs_free_path(path);
6037 		ret = -ENOMEM;
6038 		goto out;
6039 	}
6040 
6041 	/*
6042 	 * Use join to avoid potential EINTR from transaction start. See
6043 	 * wait_reserve_ticket and the whole reservation callchain.
6044 	 */
6045 	if (for_reloc)
6046 		trans = btrfs_join_transaction(tree_root);
6047 	else
6048 		trans = btrfs_start_transaction(tree_root, 0);
6049 	if (IS_ERR(trans)) {
6050 		ret = PTR_ERR(trans);
6051 		goto out_free;
6052 	}
6053 
6054 	ret = btrfs_run_delayed_items(trans);
6055 	if (ret)
6056 		goto out_end_trans;
6057 
6058 	/*
6059 	 * This will help us catch people modifying the fs tree while we're
6060 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6061 	 * dropped as we unlock the root node and parent nodes as we walk down
6062 	 * the tree, assuming nothing will change.  If something does change
6063 	 * then we'll have stale information and drop references to blocks we've
6064 	 * already dropped.
6065 	 */
6066 	set_bit(BTRFS_ROOT_DELETING, &root->state);
6067 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6068 
6069 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6070 		level = btrfs_header_level(root->node);
6071 		path->nodes[level] = btrfs_lock_root_node(root);
6072 		path->slots[level] = 0;
6073 		path->locks[level] = BTRFS_WRITE_LOCK;
6074 		memset(&wc->update_progress, 0,
6075 		       sizeof(wc->update_progress));
6076 	} else {
6077 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6078 		memcpy(&wc->update_progress, &key,
6079 		       sizeof(wc->update_progress));
6080 
6081 		level = btrfs_root_drop_level(root_item);
6082 		BUG_ON(level == 0);
6083 		path->lowest_level = level;
6084 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6085 		path->lowest_level = 0;
6086 		if (ret < 0)
6087 			goto out_end_trans;
6088 
6089 		WARN_ON(ret > 0);
6090 		ret = 0;
6091 
6092 		/*
6093 		 * unlock our path, this is safe because only this
6094 		 * function is allowed to delete this snapshot
6095 		 */
6096 		btrfs_unlock_up_safe(path, 0);
6097 
6098 		level = btrfs_header_level(root->node);
6099 		while (1) {
6100 			btrfs_tree_lock(path->nodes[level]);
6101 			path->locks[level] = BTRFS_WRITE_LOCK;
6102 
6103 			/*
6104 			 * btrfs_lookup_extent_info() returns 0 for success,
6105 			 * or < 0 for error.
6106 			 */
6107 			ret = btrfs_lookup_extent_info(trans, fs_info,
6108 						path->nodes[level]->start,
6109 						level, 1, &wc->refs[level],
6110 						&wc->flags[level], NULL);
6111 			if (ret < 0)
6112 				goto out_end_trans;
6113 
6114 			BUG_ON(wc->refs[level] == 0);
6115 
6116 			if (level == btrfs_root_drop_level(root_item))
6117 				break;
6118 
6119 			btrfs_tree_unlock(path->nodes[level]);
6120 			path->locks[level] = 0;
6121 			WARN_ON(wc->refs[level] != 1);
6122 			level--;
6123 		}
6124 	}
6125 
6126 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6127 	wc->level = level;
6128 	wc->shared_level = -1;
6129 	wc->stage = DROP_REFERENCE;
6130 	wc->update_ref = update_ref;
6131 	wc->keep_locks = 0;
6132 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6133 
6134 	while (1) {
6135 
6136 		ret = walk_down_tree(trans, root, path, wc);
6137 		if (ret < 0) {
6138 			btrfs_abort_transaction(trans, ret);
6139 			break;
6140 		}
6141 
6142 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6143 		if (ret < 0) {
6144 			btrfs_abort_transaction(trans, ret);
6145 			break;
6146 		}
6147 
6148 		if (ret > 0) {
6149 			BUG_ON(wc->stage != DROP_REFERENCE);
6150 			ret = 0;
6151 			break;
6152 		}
6153 
6154 		if (wc->stage == DROP_REFERENCE) {
6155 			wc->drop_level = wc->level;
6156 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6157 					      &wc->drop_progress,
6158 					      path->slots[wc->drop_level]);
6159 		}
6160 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6161 				      &wc->drop_progress);
6162 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6163 
6164 		BUG_ON(wc->level == 0);
6165 		if (btrfs_should_end_transaction(trans) ||
6166 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6167 			ret = btrfs_update_root(trans, tree_root,
6168 						&root->root_key,
6169 						root_item);
6170 			if (ret) {
6171 				btrfs_abort_transaction(trans, ret);
6172 				goto out_end_trans;
6173 			}
6174 
6175 			if (!is_reloc_root)
6176 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6177 
6178 			btrfs_end_transaction_throttle(trans);
6179 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6180 				btrfs_debug(fs_info,
6181 					    "drop snapshot early exit");
6182 				ret = -EAGAIN;
6183 				goto out_free;
6184 			}
6185 
6186 		       /*
6187 			* Use join to avoid potential EINTR from transaction
6188 			* start. See wait_reserve_ticket and the whole
6189 			* reservation callchain.
6190 			*/
6191 			if (for_reloc)
6192 				trans = btrfs_join_transaction(tree_root);
6193 			else
6194 				trans = btrfs_start_transaction(tree_root, 0);
6195 			if (IS_ERR(trans)) {
6196 				ret = PTR_ERR(trans);
6197 				goto out_free;
6198 			}
6199 		}
6200 	}
6201 	btrfs_release_path(path);
6202 	if (ret)
6203 		goto out_end_trans;
6204 
6205 	ret = btrfs_del_root(trans, &root->root_key);
6206 	if (ret) {
6207 		btrfs_abort_transaction(trans, ret);
6208 		goto out_end_trans;
6209 	}
6210 
6211 	if (!is_reloc_root) {
6212 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6213 				      NULL, NULL);
6214 		if (ret < 0) {
6215 			btrfs_abort_transaction(trans, ret);
6216 			goto out_end_trans;
6217 		} else if (ret > 0) {
6218 			ret = 0;
6219 			/*
6220 			 * If we fail to delete the orphan item this time
6221 			 * around, it'll get picked up the next time.
6222 			 *
6223 			 * The most common failure here is just -ENOENT.
6224 			 */
6225 			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6226 		}
6227 	}
6228 
6229 	/*
6230 	 * This subvolume is going to be completely dropped, and won't be
6231 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6232 	 * commit transaction time.  So free it here manually.
6233 	 */
6234 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6235 	btrfs_qgroup_free_meta_all_pertrans(root);
6236 
6237 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6238 		btrfs_add_dropped_root(trans, root);
6239 	else
6240 		btrfs_put_root(root);
6241 	root_dropped = true;
6242 out_end_trans:
6243 	if (!is_reloc_root)
6244 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6245 
6246 	btrfs_end_transaction_throttle(trans);
6247 out_free:
6248 	kfree(wc);
6249 	btrfs_free_path(path);
6250 out:
6251 	if (!ret && root_dropped) {
6252 		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6253 		if (ret < 0)
6254 			btrfs_warn_rl(fs_info,
6255 				      "failed to cleanup qgroup 0/%llu: %d",
6256 				      rootid, ret);
6257 		ret = 0;
6258 	}
6259 	/*
6260 	 * We were an unfinished drop root, check to see if there are any
6261 	 * pending, and if not clear and wake up any waiters.
6262 	 */
6263 	if (!ret && unfinished_drop)
6264 		btrfs_maybe_wake_unfinished_drop(fs_info);
6265 
6266 	/*
6267 	 * So if we need to stop dropping the snapshot for whatever reason we
6268 	 * need to make sure to add it back to the dead root list so that we
6269 	 * keep trying to do the work later.  This also cleans up roots if we
6270 	 * don't have it in the radix (like when we recover after a power fail
6271 	 * or unmount) so we don't leak memory.
6272 	 */
6273 	if (!for_reloc && !root_dropped)
6274 		btrfs_add_dead_root(root);
6275 	return ret;
6276 }
6277 
6278 /*
6279  * drop subtree rooted at tree block 'node'.
6280  *
6281  * NOTE: this function will unlock and release tree block 'node'
6282  * only used by relocation code
6283  */
6284 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6285 			struct btrfs_root *root,
6286 			struct extent_buffer *node,
6287 			struct extent_buffer *parent)
6288 {
6289 	struct btrfs_fs_info *fs_info = root->fs_info;
6290 	struct btrfs_path *path;
6291 	struct walk_control *wc;
6292 	int level;
6293 	int parent_level;
6294 	int ret = 0;
6295 
6296 	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6297 
6298 	path = btrfs_alloc_path();
6299 	if (!path)
6300 		return -ENOMEM;
6301 
6302 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6303 	if (!wc) {
6304 		btrfs_free_path(path);
6305 		return -ENOMEM;
6306 	}
6307 
6308 	btrfs_assert_tree_write_locked(parent);
6309 	parent_level = btrfs_header_level(parent);
6310 	atomic_inc(&parent->refs);
6311 	path->nodes[parent_level] = parent;
6312 	path->slots[parent_level] = btrfs_header_nritems(parent);
6313 
6314 	btrfs_assert_tree_write_locked(node);
6315 	level = btrfs_header_level(node);
6316 	path->nodes[level] = node;
6317 	path->slots[level] = 0;
6318 	path->locks[level] = BTRFS_WRITE_LOCK;
6319 
6320 	wc->refs[parent_level] = 1;
6321 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6322 	wc->level = level;
6323 	wc->shared_level = -1;
6324 	wc->stage = DROP_REFERENCE;
6325 	wc->update_ref = 0;
6326 	wc->keep_locks = 1;
6327 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6328 
6329 	while (1) {
6330 		ret = walk_down_tree(trans, root, path, wc);
6331 		if (ret < 0)
6332 			break;
6333 
6334 		ret = walk_up_tree(trans, root, path, wc, parent_level);
6335 		if (ret) {
6336 			if (ret > 0)
6337 				ret = 0;
6338 			break;
6339 		}
6340 	}
6341 
6342 	kfree(wc);
6343 	btrfs_free_path(path);
6344 	return ret;
6345 }
6346 
6347 /*
6348  * Unpin the extent range in an error context and don't add the space back.
6349  * Errors are not propagated further.
6350  */
6351 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6352 {
6353 	unpin_extent_range(fs_info, start, end, false);
6354 }
6355 
6356 /*
6357  * It used to be that old block groups would be left around forever.
6358  * Iterating over them would be enough to trim unused space.  Since we
6359  * now automatically remove them, we also need to iterate over unallocated
6360  * space.
6361  *
6362  * We don't want a transaction for this since the discard may take a
6363  * substantial amount of time.  We don't require that a transaction be
6364  * running, but we do need to take a running transaction into account
6365  * to ensure that we're not discarding chunks that were released or
6366  * allocated in the current transaction.
6367  *
6368  * Holding the chunks lock will prevent other threads from allocating
6369  * or releasing chunks, but it won't prevent a running transaction
6370  * from committing and releasing the memory that the pending chunks
6371  * list head uses.  For that, we need to take a reference to the
6372  * transaction and hold the commit root sem.  We only need to hold
6373  * it while performing the free space search since we have already
6374  * held back allocations.
6375  */
6376 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6377 {
6378 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6379 	int ret;
6380 
6381 	*trimmed = 0;
6382 
6383 	/* Discard not supported = nothing to do. */
6384 	if (!bdev_max_discard_sectors(device->bdev))
6385 		return 0;
6386 
6387 	/* Not writable = nothing to do. */
6388 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6389 		return 0;
6390 
6391 	/* No free space = nothing to do. */
6392 	if (device->total_bytes <= device->bytes_used)
6393 		return 0;
6394 
6395 	ret = 0;
6396 
6397 	while (1) {
6398 		struct btrfs_fs_info *fs_info = device->fs_info;
6399 		u64 bytes;
6400 
6401 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6402 		if (ret)
6403 			break;
6404 
6405 		find_first_clear_extent_bit(&device->alloc_state, start,
6406 					    &start, &end,
6407 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6408 
6409 		/* Check if there are any CHUNK_* bits left */
6410 		if (start > device->total_bytes) {
6411 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6412 			btrfs_warn_in_rcu(fs_info,
6413 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6414 					  start, end - start + 1,
6415 					  btrfs_dev_name(device),
6416 					  device->total_bytes);
6417 			mutex_unlock(&fs_info->chunk_mutex);
6418 			ret = 0;
6419 			break;
6420 		}
6421 
6422 		/* Ensure we skip the reserved space on each device. */
6423 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6424 
6425 		/*
6426 		 * If find_first_clear_extent_bit find a range that spans the
6427 		 * end of the device it will set end to -1, in this case it's up
6428 		 * to the caller to trim the value to the size of the device.
6429 		 */
6430 		end = min(end, device->total_bytes - 1);
6431 
6432 		len = end - start + 1;
6433 
6434 		/* We didn't find any extents */
6435 		if (!len) {
6436 			mutex_unlock(&fs_info->chunk_mutex);
6437 			ret = 0;
6438 			break;
6439 		}
6440 
6441 		ret = btrfs_issue_discard(device->bdev, start, len,
6442 					  &bytes);
6443 		if (!ret)
6444 			set_extent_bit(&device->alloc_state, start,
6445 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6446 		mutex_unlock(&fs_info->chunk_mutex);
6447 
6448 		if (ret)
6449 			break;
6450 
6451 		start += len;
6452 		*trimmed += bytes;
6453 
6454 		if (btrfs_trim_interrupted()) {
6455 			ret = -ERESTARTSYS;
6456 			break;
6457 		}
6458 
6459 		cond_resched();
6460 	}
6461 
6462 	return ret;
6463 }
6464 
6465 /*
6466  * Trim the whole filesystem by:
6467  * 1) trimming the free space in each block group
6468  * 2) trimming the unallocated space on each device
6469  *
6470  * This will also continue trimming even if a block group or device encounters
6471  * an error.  The return value will be the last error, or 0 if nothing bad
6472  * happens.
6473  */
6474 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6475 {
6476 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6477 	struct btrfs_block_group *cache = NULL;
6478 	struct btrfs_device *device;
6479 	u64 group_trimmed;
6480 	u64 range_end = U64_MAX;
6481 	u64 start;
6482 	u64 end;
6483 	u64 trimmed = 0;
6484 	u64 bg_failed = 0;
6485 	u64 dev_failed = 0;
6486 	int bg_ret = 0;
6487 	int dev_ret = 0;
6488 	int ret = 0;
6489 
6490 	if (range->start == U64_MAX)
6491 		return -EINVAL;
6492 
6493 	/*
6494 	 * Check range overflow if range->len is set.
6495 	 * The default range->len is U64_MAX.
6496 	 */
6497 	if (range->len != U64_MAX &&
6498 	    check_add_overflow(range->start, range->len, &range_end))
6499 		return -EINVAL;
6500 
6501 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6502 	for (; cache; cache = btrfs_next_block_group(cache)) {
6503 		if (cache->start >= range_end) {
6504 			btrfs_put_block_group(cache);
6505 			break;
6506 		}
6507 
6508 		start = max(range->start, cache->start);
6509 		end = min(range_end, cache->start + cache->length);
6510 
6511 		if (end - start >= range->minlen) {
6512 			if (!btrfs_block_group_done(cache)) {
6513 				ret = btrfs_cache_block_group(cache, true);
6514 				if (ret) {
6515 					bg_failed++;
6516 					bg_ret = ret;
6517 					continue;
6518 				}
6519 			}
6520 			ret = btrfs_trim_block_group(cache,
6521 						     &group_trimmed,
6522 						     start,
6523 						     end,
6524 						     range->minlen);
6525 
6526 			trimmed += group_trimmed;
6527 			if (ret) {
6528 				bg_failed++;
6529 				bg_ret = ret;
6530 				continue;
6531 			}
6532 		}
6533 	}
6534 
6535 	if (bg_failed)
6536 		btrfs_warn(fs_info,
6537 			"failed to trim %llu block group(s), last error %d",
6538 			bg_failed, bg_ret);
6539 
6540 	mutex_lock(&fs_devices->device_list_mutex);
6541 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6542 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6543 			continue;
6544 
6545 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6546 
6547 		trimmed += group_trimmed;
6548 		if (ret) {
6549 			dev_failed++;
6550 			dev_ret = ret;
6551 			break;
6552 		}
6553 	}
6554 	mutex_unlock(&fs_devices->device_list_mutex);
6555 
6556 	if (dev_failed)
6557 		btrfs_warn(fs_info,
6558 			"failed to trim %llu device(s), last error %d",
6559 			dev_failed, dev_ret);
6560 	range->len = trimmed;
6561 	if (bg_ret)
6562 		return bg_ret;
6563 	return dev_ret;
6564 }
6565