1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 #include "raid-stripe-tree.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_head *href, 52 struct btrfs_delayed_ref_node *node, u64 parent, 53 u64 root_objectid, u64 owner_objectid, 54 u64 owner_offset, 55 struct btrfs_delayed_extent_op *extra_op); 56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 57 struct extent_buffer *leaf, 58 struct btrfs_extent_item *ei); 59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 60 u64 parent, u64 root_objectid, 61 u64 flags, u64 owner, u64 offset, 62 struct btrfs_key *ins, int ref_mod, u64 oref_root); 63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 64 struct btrfs_delayed_ref_node *node, 65 struct btrfs_delayed_extent_op *extent_op); 66 static int find_next_key(struct btrfs_path *path, int level, 67 struct btrfs_key *key); 68 69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 70 { 71 return (cache->flags & bits) == bits; 72 } 73 74 /* simple helper to search for an existing data extent at a given offset */ 75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 76 { 77 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 78 int ret; 79 struct btrfs_key key; 80 struct btrfs_path *path; 81 82 path = btrfs_alloc_path(); 83 if (!path) 84 return -ENOMEM; 85 86 key.objectid = start; 87 key.offset = len; 88 key.type = BTRFS_EXTENT_ITEM_KEY; 89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 90 btrfs_free_path(path); 91 return ret; 92 } 93 94 /* 95 * helper function to lookup reference count and flags of a tree block. 96 * 97 * the head node for delayed ref is used to store the sum of all the 98 * reference count modifications queued up in the rbtree. the head 99 * node may also store the extent flags to set. This way you can check 100 * to see what the reference count and extent flags would be if all of 101 * the delayed refs are not processed. 102 */ 103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 104 struct btrfs_fs_info *fs_info, u64 bytenr, 105 u64 offset, int metadata, u64 *refs, u64 *flags) 106 { 107 struct btrfs_root *extent_root; 108 struct btrfs_delayed_ref_head *head; 109 struct btrfs_delayed_ref_root *delayed_refs; 110 struct btrfs_path *path; 111 struct btrfs_extent_item *ei; 112 struct extent_buffer *leaf; 113 struct btrfs_key key; 114 u32 item_size; 115 u64 num_refs; 116 u64 extent_flags; 117 int ret; 118 119 /* 120 * If we don't have skinny metadata, don't bother doing anything 121 * different 122 */ 123 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 124 offset = fs_info->nodesize; 125 metadata = 0; 126 } 127 128 path = btrfs_alloc_path(); 129 if (!path) 130 return -ENOMEM; 131 132 if (!trans) { 133 path->skip_locking = 1; 134 path->search_commit_root = 1; 135 } 136 137 search_again: 138 key.objectid = bytenr; 139 key.offset = offset; 140 if (metadata) 141 key.type = BTRFS_METADATA_ITEM_KEY; 142 else 143 key.type = BTRFS_EXTENT_ITEM_KEY; 144 145 extent_root = btrfs_extent_root(fs_info, bytenr); 146 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 147 if (ret < 0) 148 goto out_free; 149 150 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 151 if (path->slots[0]) { 152 path->slots[0]--; 153 btrfs_item_key_to_cpu(path->nodes[0], &key, 154 path->slots[0]); 155 if (key.objectid == bytenr && 156 key.type == BTRFS_EXTENT_ITEM_KEY && 157 key.offset == fs_info->nodesize) 158 ret = 0; 159 } 160 } 161 162 if (ret == 0) { 163 leaf = path->nodes[0]; 164 item_size = btrfs_item_size(leaf, path->slots[0]); 165 if (item_size >= sizeof(*ei)) { 166 ei = btrfs_item_ptr(leaf, path->slots[0], 167 struct btrfs_extent_item); 168 num_refs = btrfs_extent_refs(leaf, ei); 169 extent_flags = btrfs_extent_flags(leaf, ei); 170 } else { 171 ret = -EUCLEAN; 172 btrfs_err(fs_info, 173 "unexpected extent item size, has %u expect >= %zu", 174 item_size, sizeof(*ei)); 175 if (trans) 176 btrfs_abort_transaction(trans, ret); 177 else 178 btrfs_handle_fs_error(fs_info, ret, NULL); 179 180 goto out_free; 181 } 182 183 BUG_ON(num_refs == 0); 184 } else { 185 num_refs = 0; 186 extent_flags = 0; 187 ret = 0; 188 } 189 190 if (!trans) 191 goto out; 192 193 delayed_refs = &trans->transaction->delayed_refs; 194 spin_lock(&delayed_refs->lock); 195 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 196 if (head) { 197 if (!mutex_trylock(&head->mutex)) { 198 refcount_inc(&head->refs); 199 spin_unlock(&delayed_refs->lock); 200 201 btrfs_release_path(path); 202 203 /* 204 * Mutex was contended, block until it's released and try 205 * again 206 */ 207 mutex_lock(&head->mutex); 208 mutex_unlock(&head->mutex); 209 btrfs_put_delayed_ref_head(head); 210 goto search_again; 211 } 212 spin_lock(&head->lock); 213 if (head->extent_op && head->extent_op->update_flags) 214 extent_flags |= head->extent_op->flags_to_set; 215 else 216 BUG_ON(num_refs == 0); 217 218 num_refs += head->ref_mod; 219 spin_unlock(&head->lock); 220 mutex_unlock(&head->mutex); 221 } 222 spin_unlock(&delayed_refs->lock); 223 out: 224 WARN_ON(num_refs == 0); 225 if (refs) 226 *refs = num_refs; 227 if (flags) 228 *flags = extent_flags; 229 out_free: 230 btrfs_free_path(path); 231 return ret; 232 } 233 234 /* 235 * Back reference rules. Back refs have three main goals: 236 * 237 * 1) differentiate between all holders of references to an extent so that 238 * when a reference is dropped we can make sure it was a valid reference 239 * before freeing the extent. 240 * 241 * 2) Provide enough information to quickly find the holders of an extent 242 * if we notice a given block is corrupted or bad. 243 * 244 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 245 * maintenance. This is actually the same as #2, but with a slightly 246 * different use case. 247 * 248 * There are two kinds of back refs. The implicit back refs is optimized 249 * for pointers in non-shared tree blocks. For a given pointer in a block, 250 * back refs of this kind provide information about the block's owner tree 251 * and the pointer's key. These information allow us to find the block by 252 * b-tree searching. The full back refs is for pointers in tree blocks not 253 * referenced by their owner trees. The location of tree block is recorded 254 * in the back refs. Actually the full back refs is generic, and can be 255 * used in all cases the implicit back refs is used. The major shortcoming 256 * of the full back refs is its overhead. Every time a tree block gets 257 * COWed, we have to update back refs entry for all pointers in it. 258 * 259 * For a newly allocated tree block, we use implicit back refs for 260 * pointers in it. This means most tree related operations only involve 261 * implicit back refs. For a tree block created in old transaction, the 262 * only way to drop a reference to it is COW it. So we can detect the 263 * event that tree block loses its owner tree's reference and do the 264 * back refs conversion. 265 * 266 * When a tree block is COWed through a tree, there are four cases: 267 * 268 * The reference count of the block is one and the tree is the block's 269 * owner tree. Nothing to do in this case. 270 * 271 * The reference count of the block is one and the tree is not the 272 * block's owner tree. In this case, full back refs is used for pointers 273 * in the block. Remove these full back refs, add implicit back refs for 274 * every pointers in the new block. 275 * 276 * The reference count of the block is greater than one and the tree is 277 * the block's owner tree. In this case, implicit back refs is used for 278 * pointers in the block. Add full back refs for every pointers in the 279 * block, increase lower level extents' reference counts. The original 280 * implicit back refs are entailed to the new block. 281 * 282 * The reference count of the block is greater than one and the tree is 283 * not the block's owner tree. Add implicit back refs for every pointer in 284 * the new block, increase lower level extents' reference count. 285 * 286 * Back Reference Key composing: 287 * 288 * The key objectid corresponds to the first byte in the extent, 289 * The key type is used to differentiate between types of back refs. 290 * There are different meanings of the key offset for different types 291 * of back refs. 292 * 293 * File extents can be referenced by: 294 * 295 * - multiple snapshots, subvolumes, or different generations in one subvol 296 * - different files inside a single subvolume 297 * - different offsets inside a file (bookend extents in file.c) 298 * 299 * The extent ref structure for the implicit back refs has fields for: 300 * 301 * - Objectid of the subvolume root 302 * - objectid of the file holding the reference 303 * - original offset in the file 304 * - how many bookend extents 305 * 306 * The key offset for the implicit back refs is hash of the first 307 * three fields. 308 * 309 * The extent ref structure for the full back refs has field for: 310 * 311 * - number of pointers in the tree leaf 312 * 313 * The key offset for the implicit back refs is the first byte of 314 * the tree leaf 315 * 316 * When a file extent is allocated, The implicit back refs is used. 317 * the fields are filled in: 318 * 319 * (root_key.objectid, inode objectid, offset in file, 1) 320 * 321 * When a file extent is removed file truncation, we find the 322 * corresponding implicit back refs and check the following fields: 323 * 324 * (btrfs_header_owner(leaf), inode objectid, offset in file) 325 * 326 * Btree extents can be referenced by: 327 * 328 * - Different subvolumes 329 * 330 * Both the implicit back refs and the full back refs for tree blocks 331 * only consist of key. The key offset for the implicit back refs is 332 * objectid of block's owner tree. The key offset for the full back refs 333 * is the first byte of parent block. 334 * 335 * When implicit back refs is used, information about the lowest key and 336 * level of the tree block are required. These information are stored in 337 * tree block info structure. 338 */ 339 340 /* 341 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 342 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 343 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 344 */ 345 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 346 struct btrfs_extent_inline_ref *iref, 347 enum btrfs_inline_ref_type is_data) 348 { 349 struct btrfs_fs_info *fs_info = eb->fs_info; 350 int type = btrfs_extent_inline_ref_type(eb, iref); 351 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 352 353 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 354 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 355 return type; 356 } 357 358 if (type == BTRFS_TREE_BLOCK_REF_KEY || 359 type == BTRFS_SHARED_BLOCK_REF_KEY || 360 type == BTRFS_SHARED_DATA_REF_KEY || 361 type == BTRFS_EXTENT_DATA_REF_KEY) { 362 if (is_data == BTRFS_REF_TYPE_BLOCK) { 363 if (type == BTRFS_TREE_BLOCK_REF_KEY) 364 return type; 365 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 366 ASSERT(fs_info); 367 /* 368 * Every shared one has parent tree block, 369 * which must be aligned to sector size. 370 */ 371 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 372 return type; 373 } 374 } else if (is_data == BTRFS_REF_TYPE_DATA) { 375 if (type == BTRFS_EXTENT_DATA_REF_KEY) 376 return type; 377 if (type == BTRFS_SHARED_DATA_REF_KEY) { 378 ASSERT(fs_info); 379 /* 380 * Every shared one has parent tree block, 381 * which must be aligned to sector size. 382 */ 383 if (offset && 384 IS_ALIGNED(offset, fs_info->sectorsize)) 385 return type; 386 } 387 } else { 388 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 389 return type; 390 } 391 } 392 393 WARN_ON(1); 394 btrfs_print_leaf(eb); 395 btrfs_err(fs_info, 396 "eb %llu iref 0x%lx invalid extent inline ref type %d", 397 eb->start, (unsigned long)iref, type); 398 399 return BTRFS_REF_TYPE_INVALID; 400 } 401 402 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 403 { 404 u32 high_crc = ~(u32)0; 405 u32 low_crc = ~(u32)0; 406 __le64 lenum; 407 408 lenum = cpu_to_le64(root_objectid); 409 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 410 lenum = cpu_to_le64(owner); 411 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 412 lenum = cpu_to_le64(offset); 413 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 414 415 return ((u64)high_crc << 31) ^ (u64)low_crc; 416 } 417 418 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 419 struct btrfs_extent_data_ref *ref) 420 { 421 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 422 btrfs_extent_data_ref_objectid(leaf, ref), 423 btrfs_extent_data_ref_offset(leaf, ref)); 424 } 425 426 static int match_extent_data_ref(struct extent_buffer *leaf, 427 struct btrfs_extent_data_ref *ref, 428 u64 root_objectid, u64 owner, u64 offset) 429 { 430 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 431 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 432 btrfs_extent_data_ref_offset(leaf, ref) != offset) 433 return 0; 434 return 1; 435 } 436 437 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 438 struct btrfs_path *path, 439 u64 bytenr, u64 parent, 440 u64 root_objectid, 441 u64 owner, u64 offset) 442 { 443 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 444 struct btrfs_key key; 445 struct btrfs_extent_data_ref *ref; 446 struct extent_buffer *leaf; 447 u32 nritems; 448 int ret; 449 int recow; 450 int err = -ENOENT; 451 452 key.objectid = bytenr; 453 if (parent) { 454 key.type = BTRFS_SHARED_DATA_REF_KEY; 455 key.offset = parent; 456 } else { 457 key.type = BTRFS_EXTENT_DATA_REF_KEY; 458 key.offset = hash_extent_data_ref(root_objectid, 459 owner, offset); 460 } 461 again: 462 recow = 0; 463 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 464 if (ret < 0) { 465 err = ret; 466 goto fail; 467 } 468 469 if (parent) { 470 if (!ret) 471 return 0; 472 goto fail; 473 } 474 475 leaf = path->nodes[0]; 476 nritems = btrfs_header_nritems(leaf); 477 while (1) { 478 if (path->slots[0] >= nritems) { 479 ret = btrfs_next_leaf(root, path); 480 if (ret < 0) 481 err = ret; 482 if (ret) 483 goto fail; 484 485 leaf = path->nodes[0]; 486 nritems = btrfs_header_nritems(leaf); 487 recow = 1; 488 } 489 490 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 491 if (key.objectid != bytenr || 492 key.type != BTRFS_EXTENT_DATA_REF_KEY) 493 goto fail; 494 495 ref = btrfs_item_ptr(leaf, path->slots[0], 496 struct btrfs_extent_data_ref); 497 498 if (match_extent_data_ref(leaf, ref, root_objectid, 499 owner, offset)) { 500 if (recow) { 501 btrfs_release_path(path); 502 goto again; 503 } 504 err = 0; 505 break; 506 } 507 path->slots[0]++; 508 } 509 fail: 510 return err; 511 } 512 513 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 514 struct btrfs_path *path, 515 u64 bytenr, u64 parent, 516 u64 root_objectid, u64 owner, 517 u64 offset, int refs_to_add) 518 { 519 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 520 struct btrfs_key key; 521 struct extent_buffer *leaf; 522 u32 size; 523 u32 num_refs; 524 int ret; 525 526 key.objectid = bytenr; 527 if (parent) { 528 key.type = BTRFS_SHARED_DATA_REF_KEY; 529 key.offset = parent; 530 size = sizeof(struct btrfs_shared_data_ref); 531 } else { 532 key.type = BTRFS_EXTENT_DATA_REF_KEY; 533 key.offset = hash_extent_data_ref(root_objectid, 534 owner, offset); 535 size = sizeof(struct btrfs_extent_data_ref); 536 } 537 538 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 539 if (ret && ret != -EEXIST) 540 goto fail; 541 542 leaf = path->nodes[0]; 543 if (parent) { 544 struct btrfs_shared_data_ref *ref; 545 ref = btrfs_item_ptr(leaf, path->slots[0], 546 struct btrfs_shared_data_ref); 547 if (ret == 0) { 548 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 549 } else { 550 num_refs = btrfs_shared_data_ref_count(leaf, ref); 551 num_refs += refs_to_add; 552 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 553 } 554 } else { 555 struct btrfs_extent_data_ref *ref; 556 while (ret == -EEXIST) { 557 ref = btrfs_item_ptr(leaf, path->slots[0], 558 struct btrfs_extent_data_ref); 559 if (match_extent_data_ref(leaf, ref, root_objectid, 560 owner, offset)) 561 break; 562 btrfs_release_path(path); 563 key.offset++; 564 ret = btrfs_insert_empty_item(trans, root, path, &key, 565 size); 566 if (ret && ret != -EEXIST) 567 goto fail; 568 569 leaf = path->nodes[0]; 570 } 571 ref = btrfs_item_ptr(leaf, path->slots[0], 572 struct btrfs_extent_data_ref); 573 if (ret == 0) { 574 btrfs_set_extent_data_ref_root(leaf, ref, 575 root_objectid); 576 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 577 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 578 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 579 } else { 580 num_refs = btrfs_extent_data_ref_count(leaf, ref); 581 num_refs += refs_to_add; 582 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 583 } 584 } 585 btrfs_mark_buffer_dirty(trans, leaf); 586 ret = 0; 587 fail: 588 btrfs_release_path(path); 589 return ret; 590 } 591 592 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 593 struct btrfs_root *root, 594 struct btrfs_path *path, 595 int refs_to_drop) 596 { 597 struct btrfs_key key; 598 struct btrfs_extent_data_ref *ref1 = NULL; 599 struct btrfs_shared_data_ref *ref2 = NULL; 600 struct extent_buffer *leaf; 601 u32 num_refs = 0; 602 int ret = 0; 603 604 leaf = path->nodes[0]; 605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 606 607 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 608 ref1 = btrfs_item_ptr(leaf, path->slots[0], 609 struct btrfs_extent_data_ref); 610 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 611 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 612 ref2 = btrfs_item_ptr(leaf, path->slots[0], 613 struct btrfs_shared_data_ref); 614 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 615 } else { 616 btrfs_err(trans->fs_info, 617 "unrecognized backref key (%llu %u %llu)", 618 key.objectid, key.type, key.offset); 619 btrfs_abort_transaction(trans, -EUCLEAN); 620 return -EUCLEAN; 621 } 622 623 BUG_ON(num_refs < refs_to_drop); 624 num_refs -= refs_to_drop; 625 626 if (num_refs == 0) { 627 ret = btrfs_del_item(trans, root, path); 628 } else { 629 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 630 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 631 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 632 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 633 btrfs_mark_buffer_dirty(trans, leaf); 634 } 635 return ret; 636 } 637 638 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 639 struct btrfs_extent_inline_ref *iref) 640 { 641 struct btrfs_key key; 642 struct extent_buffer *leaf; 643 struct btrfs_extent_data_ref *ref1; 644 struct btrfs_shared_data_ref *ref2; 645 u32 num_refs = 0; 646 int type; 647 648 leaf = path->nodes[0]; 649 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 650 651 if (iref) { 652 /* 653 * If type is invalid, we should have bailed out earlier than 654 * this call. 655 */ 656 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 657 ASSERT(type != BTRFS_REF_TYPE_INVALID); 658 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 659 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 660 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 661 } else { 662 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 663 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 664 } 665 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 666 ref1 = btrfs_item_ptr(leaf, path->slots[0], 667 struct btrfs_extent_data_ref); 668 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 669 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 670 ref2 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_shared_data_ref); 672 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 673 } else { 674 WARN_ON(1); 675 } 676 return num_refs; 677 } 678 679 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 680 struct btrfs_path *path, 681 u64 bytenr, u64 parent, 682 u64 root_objectid) 683 { 684 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 685 struct btrfs_key key; 686 int ret; 687 688 key.objectid = bytenr; 689 if (parent) { 690 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 691 key.offset = parent; 692 } else { 693 key.type = BTRFS_TREE_BLOCK_REF_KEY; 694 key.offset = root_objectid; 695 } 696 697 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 698 if (ret > 0) 699 ret = -ENOENT; 700 return ret; 701 } 702 703 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 704 struct btrfs_path *path, 705 u64 bytenr, u64 parent, 706 u64 root_objectid) 707 { 708 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 709 struct btrfs_key key; 710 int ret; 711 712 key.objectid = bytenr; 713 if (parent) { 714 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 715 key.offset = parent; 716 } else { 717 key.type = BTRFS_TREE_BLOCK_REF_KEY; 718 key.offset = root_objectid; 719 } 720 721 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 722 btrfs_release_path(path); 723 return ret; 724 } 725 726 static inline int extent_ref_type(u64 parent, u64 owner) 727 { 728 int type; 729 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 730 if (parent > 0) 731 type = BTRFS_SHARED_BLOCK_REF_KEY; 732 else 733 type = BTRFS_TREE_BLOCK_REF_KEY; 734 } else { 735 if (parent > 0) 736 type = BTRFS_SHARED_DATA_REF_KEY; 737 else 738 type = BTRFS_EXTENT_DATA_REF_KEY; 739 } 740 return type; 741 } 742 743 static int find_next_key(struct btrfs_path *path, int level, 744 struct btrfs_key *key) 745 746 { 747 for (; level < BTRFS_MAX_LEVEL; level++) { 748 if (!path->nodes[level]) 749 break; 750 if (path->slots[level] + 1 >= 751 btrfs_header_nritems(path->nodes[level])) 752 continue; 753 if (level == 0) 754 btrfs_item_key_to_cpu(path->nodes[level], key, 755 path->slots[level] + 1); 756 else 757 btrfs_node_key_to_cpu(path->nodes[level], key, 758 path->slots[level] + 1); 759 return 0; 760 } 761 return 1; 762 } 763 764 /* 765 * look for inline back ref. if back ref is found, *ref_ret is set 766 * to the address of inline back ref, and 0 is returned. 767 * 768 * if back ref isn't found, *ref_ret is set to the address where it 769 * should be inserted, and -ENOENT is returned. 770 * 771 * if insert is true and there are too many inline back refs, the path 772 * points to the extent item, and -EAGAIN is returned. 773 * 774 * NOTE: inline back refs are ordered in the same way that back ref 775 * items in the tree are ordered. 776 */ 777 static noinline_for_stack 778 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 779 struct btrfs_path *path, 780 struct btrfs_extent_inline_ref **ref_ret, 781 u64 bytenr, u64 num_bytes, 782 u64 parent, u64 root_objectid, 783 u64 owner, u64 offset, int insert) 784 { 785 struct btrfs_fs_info *fs_info = trans->fs_info; 786 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 787 struct btrfs_key key; 788 struct extent_buffer *leaf; 789 struct btrfs_extent_item *ei; 790 struct btrfs_extent_inline_ref *iref; 791 u64 flags; 792 u64 item_size; 793 unsigned long ptr; 794 unsigned long end; 795 int extra_size; 796 int type; 797 int want; 798 int ret; 799 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 800 int needed; 801 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = num_bytes; 805 806 want = extent_ref_type(parent, owner); 807 if (insert) { 808 extra_size = btrfs_extent_inline_ref_size(want); 809 path->search_for_extension = 1; 810 path->keep_locks = 1; 811 } else 812 extra_size = -1; 813 814 /* 815 * Owner is our level, so we can just add one to get the level for the 816 * block we are interested in. 817 */ 818 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 819 key.type = BTRFS_METADATA_ITEM_KEY; 820 key.offset = owner; 821 } 822 823 again: 824 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 825 if (ret < 0) 826 goto out; 827 828 /* 829 * We may be a newly converted file system which still has the old fat 830 * extent entries for metadata, so try and see if we have one of those. 831 */ 832 if (ret > 0 && skinny_metadata) { 833 skinny_metadata = false; 834 if (path->slots[0]) { 835 path->slots[0]--; 836 btrfs_item_key_to_cpu(path->nodes[0], &key, 837 path->slots[0]); 838 if (key.objectid == bytenr && 839 key.type == BTRFS_EXTENT_ITEM_KEY && 840 key.offset == num_bytes) 841 ret = 0; 842 } 843 if (ret) { 844 key.objectid = bytenr; 845 key.type = BTRFS_EXTENT_ITEM_KEY; 846 key.offset = num_bytes; 847 btrfs_release_path(path); 848 goto again; 849 } 850 } 851 852 if (ret && !insert) { 853 ret = -ENOENT; 854 goto out; 855 } else if (WARN_ON(ret)) { 856 btrfs_print_leaf(path->nodes[0]); 857 btrfs_err(fs_info, 858 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 859 bytenr, num_bytes, parent, root_objectid, owner, 860 offset); 861 ret = -EUCLEAN; 862 goto out; 863 } 864 865 leaf = path->nodes[0]; 866 item_size = btrfs_item_size(leaf, path->slots[0]); 867 if (unlikely(item_size < sizeof(*ei))) { 868 ret = -EUCLEAN; 869 btrfs_err(fs_info, 870 "unexpected extent item size, has %llu expect >= %zu", 871 item_size, sizeof(*ei)); 872 btrfs_abort_transaction(trans, ret); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 ret = -ENOENT; 893 while (ptr < end) { 894 iref = (struct btrfs_extent_inline_ref *)ptr; 895 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 896 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 897 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 898 ptr += btrfs_extent_inline_ref_size(type); 899 continue; 900 } 901 if (type == BTRFS_REF_TYPE_INVALID) { 902 ret = -EUCLEAN; 903 goto out; 904 } 905 906 if (want < type) 907 break; 908 if (want > type) { 909 ptr += btrfs_extent_inline_ref_size(type); 910 continue; 911 } 912 913 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 914 struct btrfs_extent_data_ref *dref; 915 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 916 if (match_extent_data_ref(leaf, dref, root_objectid, 917 owner, offset)) { 918 ret = 0; 919 break; 920 } 921 if (hash_extent_data_ref_item(leaf, dref) < 922 hash_extent_data_ref(root_objectid, owner, offset)) 923 break; 924 } else { 925 u64 ref_offset; 926 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 927 if (parent > 0) { 928 if (parent == ref_offset) { 929 ret = 0; 930 break; 931 } 932 if (ref_offset < parent) 933 break; 934 } else { 935 if (root_objectid == ref_offset) { 936 ret = 0; 937 break; 938 } 939 if (ref_offset < root_objectid) 940 break; 941 } 942 } 943 ptr += btrfs_extent_inline_ref_size(type); 944 } 945 946 if (unlikely(ptr > end)) { 947 ret = -EUCLEAN; 948 btrfs_print_leaf(path->nodes[0]); 949 btrfs_crit(fs_info, 950 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 951 path->slots[0], root_objectid, owner, offset, parent); 952 goto out; 953 } 954 955 if (ret == -ENOENT && insert) { 956 if (item_size + extra_size >= 957 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 958 ret = -EAGAIN; 959 goto out; 960 } 961 /* 962 * To add new inline back ref, we have to make sure 963 * there is no corresponding back ref item. 964 * For simplicity, we just do not add new inline back 965 * ref if there is any kind of item for this block 966 */ 967 if (find_next_key(path, 0, &key) == 0 && 968 key.objectid == bytenr && 969 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 970 ret = -EAGAIN; 971 goto out; 972 } 973 } 974 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 975 out: 976 if (insert) { 977 path->keep_locks = 0; 978 path->search_for_extension = 0; 979 btrfs_unlock_up_safe(path, 1); 980 } 981 return ret; 982 } 983 984 /* 985 * helper to add new inline back ref 986 */ 987 static noinline_for_stack 988 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 989 struct btrfs_path *path, 990 struct btrfs_extent_inline_ref *iref, 991 u64 parent, u64 root_objectid, 992 u64 owner, u64 offset, int refs_to_add, 993 struct btrfs_delayed_extent_op *extent_op) 994 { 995 struct extent_buffer *leaf; 996 struct btrfs_extent_item *ei; 997 unsigned long ptr; 998 unsigned long end; 999 unsigned long item_offset; 1000 u64 refs; 1001 int size; 1002 int type; 1003 1004 leaf = path->nodes[0]; 1005 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1006 item_offset = (unsigned long)iref - (unsigned long)ei; 1007 1008 type = extent_ref_type(parent, owner); 1009 size = btrfs_extent_inline_ref_size(type); 1010 1011 btrfs_extend_item(trans, path, size); 1012 1013 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1014 refs = btrfs_extent_refs(leaf, ei); 1015 refs += refs_to_add; 1016 btrfs_set_extent_refs(leaf, ei, refs); 1017 if (extent_op) 1018 __run_delayed_extent_op(extent_op, leaf, ei); 1019 1020 ptr = (unsigned long)ei + item_offset; 1021 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1022 if (ptr < end - size) 1023 memmove_extent_buffer(leaf, ptr + size, ptr, 1024 end - size - ptr); 1025 1026 iref = (struct btrfs_extent_inline_ref *)ptr; 1027 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1028 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1029 struct btrfs_extent_data_ref *dref; 1030 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1031 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1032 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1033 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1034 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1035 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1036 struct btrfs_shared_data_ref *sref; 1037 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1038 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1039 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1040 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1042 } else { 1043 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1044 } 1045 btrfs_mark_buffer_dirty(trans, leaf); 1046 } 1047 1048 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1049 struct btrfs_path *path, 1050 struct btrfs_extent_inline_ref **ref_ret, 1051 u64 bytenr, u64 num_bytes, u64 parent, 1052 u64 root_objectid, u64 owner, u64 offset) 1053 { 1054 int ret; 1055 1056 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1057 num_bytes, parent, root_objectid, 1058 owner, offset, 0); 1059 if (ret != -ENOENT) 1060 return ret; 1061 1062 btrfs_release_path(path); 1063 *ref_ret = NULL; 1064 1065 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1066 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1067 root_objectid); 1068 } else { 1069 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1070 root_objectid, owner, offset); 1071 } 1072 return ret; 1073 } 1074 1075 /* 1076 * helper to update/remove inline back ref 1077 */ 1078 static noinline_for_stack int update_inline_extent_backref( 1079 struct btrfs_trans_handle *trans, 1080 struct btrfs_path *path, 1081 struct btrfs_extent_inline_ref *iref, 1082 int refs_to_mod, 1083 struct btrfs_delayed_extent_op *extent_op) 1084 { 1085 struct extent_buffer *leaf = path->nodes[0]; 1086 struct btrfs_fs_info *fs_info = leaf->fs_info; 1087 struct btrfs_extent_item *ei; 1088 struct btrfs_extent_data_ref *dref = NULL; 1089 struct btrfs_shared_data_ref *sref = NULL; 1090 unsigned long ptr; 1091 unsigned long end; 1092 u32 item_size; 1093 int size; 1094 int type; 1095 u64 refs; 1096 1097 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1098 refs = btrfs_extent_refs(leaf, ei); 1099 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1100 struct btrfs_key key; 1101 u32 extent_size; 1102 1103 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1104 if (key.type == BTRFS_METADATA_ITEM_KEY) 1105 extent_size = fs_info->nodesize; 1106 else 1107 extent_size = key.offset; 1108 btrfs_print_leaf(leaf); 1109 btrfs_err(fs_info, 1110 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1111 key.objectid, extent_size, refs_to_mod, refs); 1112 return -EUCLEAN; 1113 } 1114 refs += refs_to_mod; 1115 btrfs_set_extent_refs(leaf, ei, refs); 1116 if (extent_op) 1117 __run_delayed_extent_op(extent_op, leaf, ei); 1118 1119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1120 /* 1121 * Function btrfs_get_extent_inline_ref_type() has already printed 1122 * error messages. 1123 */ 1124 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1125 return -EUCLEAN; 1126 1127 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1128 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1129 refs = btrfs_extent_data_ref_count(leaf, dref); 1130 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1131 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1132 refs = btrfs_shared_data_ref_count(leaf, sref); 1133 } else { 1134 refs = 1; 1135 /* 1136 * For tree blocks we can only drop one ref for it, and tree 1137 * blocks should not have refs > 1. 1138 * 1139 * Furthermore if we're inserting a new inline backref, we 1140 * won't reach this path either. That would be 1141 * setup_inline_extent_backref(). 1142 */ 1143 if (unlikely(refs_to_mod != -1)) { 1144 struct btrfs_key key; 1145 1146 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1147 1148 btrfs_print_leaf(leaf); 1149 btrfs_err(fs_info, 1150 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1151 key.objectid, refs_to_mod); 1152 return -EUCLEAN; 1153 } 1154 } 1155 1156 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1157 struct btrfs_key key; 1158 u32 extent_size; 1159 1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1161 if (key.type == BTRFS_METADATA_ITEM_KEY) 1162 extent_size = fs_info->nodesize; 1163 else 1164 extent_size = key.offset; 1165 btrfs_print_leaf(leaf); 1166 btrfs_err(fs_info, 1167 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1168 (unsigned long)iref, key.objectid, extent_size, 1169 refs_to_mod, refs); 1170 return -EUCLEAN; 1171 } 1172 refs += refs_to_mod; 1173 1174 if (refs > 0) { 1175 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1176 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1177 else 1178 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1179 } else { 1180 size = btrfs_extent_inline_ref_size(type); 1181 item_size = btrfs_item_size(leaf, path->slots[0]); 1182 ptr = (unsigned long)iref; 1183 end = (unsigned long)ei + item_size; 1184 if (ptr + size < end) 1185 memmove_extent_buffer(leaf, ptr, ptr + size, 1186 end - ptr - size); 1187 item_size -= size; 1188 btrfs_truncate_item(trans, path, item_size, 1); 1189 } 1190 btrfs_mark_buffer_dirty(trans, leaf); 1191 return 0; 1192 } 1193 1194 static noinline_for_stack 1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1196 struct btrfs_path *path, 1197 u64 bytenr, u64 num_bytes, u64 parent, 1198 u64 root_objectid, u64 owner, 1199 u64 offset, int refs_to_add, 1200 struct btrfs_delayed_extent_op *extent_op) 1201 { 1202 struct btrfs_extent_inline_ref *iref; 1203 int ret; 1204 1205 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1206 num_bytes, parent, root_objectid, 1207 owner, offset, 1); 1208 if (ret == 0) { 1209 /* 1210 * We're adding refs to a tree block we already own, this 1211 * should not happen at all. 1212 */ 1213 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1214 btrfs_print_leaf(path->nodes[0]); 1215 btrfs_crit(trans->fs_info, 1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1217 bytenr, num_bytes, root_objectid, path->slots[0]); 1218 return -EUCLEAN; 1219 } 1220 ret = update_inline_extent_backref(trans, path, iref, 1221 refs_to_add, extent_op); 1222 } else if (ret == -ENOENT) { 1223 setup_inline_extent_backref(trans, path, iref, parent, 1224 root_objectid, owner, offset, 1225 refs_to_add, extent_op); 1226 ret = 0; 1227 } 1228 return ret; 1229 } 1230 1231 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1232 struct btrfs_root *root, 1233 struct btrfs_path *path, 1234 struct btrfs_extent_inline_ref *iref, 1235 int refs_to_drop, int is_data) 1236 { 1237 int ret = 0; 1238 1239 BUG_ON(!is_data && refs_to_drop != 1); 1240 if (iref) 1241 ret = update_inline_extent_backref(trans, path, iref, 1242 -refs_to_drop, NULL); 1243 else if (is_data) 1244 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1245 else 1246 ret = btrfs_del_item(trans, root, path); 1247 return ret; 1248 } 1249 1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1251 u64 *discarded_bytes) 1252 { 1253 int j, ret = 0; 1254 u64 bytes_left, end; 1255 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1256 1257 if (WARN_ON(start != aligned_start)) { 1258 len -= aligned_start - start; 1259 len = round_down(len, 1 << SECTOR_SHIFT); 1260 start = aligned_start; 1261 } 1262 1263 *discarded_bytes = 0; 1264 1265 if (!len) 1266 return 0; 1267 1268 end = start + len; 1269 bytes_left = len; 1270 1271 /* Skip any superblocks on this device. */ 1272 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1273 u64 sb_start = btrfs_sb_offset(j); 1274 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1275 u64 size = sb_start - start; 1276 1277 if (!in_range(sb_start, start, bytes_left) && 1278 !in_range(sb_end, start, bytes_left) && 1279 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1280 continue; 1281 1282 /* 1283 * Superblock spans beginning of range. Adjust start and 1284 * try again. 1285 */ 1286 if (sb_start <= start) { 1287 start += sb_end - start; 1288 if (start > end) { 1289 bytes_left = 0; 1290 break; 1291 } 1292 bytes_left = end - start; 1293 continue; 1294 } 1295 1296 if (size) { 1297 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1298 size >> SECTOR_SHIFT, 1299 GFP_NOFS); 1300 if (!ret) 1301 *discarded_bytes += size; 1302 else if (ret != -EOPNOTSUPP) 1303 return ret; 1304 } 1305 1306 start = sb_end; 1307 if (start > end) { 1308 bytes_left = 0; 1309 break; 1310 } 1311 bytes_left = end - start; 1312 } 1313 1314 if (bytes_left) { 1315 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1316 bytes_left >> SECTOR_SHIFT, 1317 GFP_NOFS); 1318 if (!ret) 1319 *discarded_bytes += bytes_left; 1320 } 1321 return ret; 1322 } 1323 1324 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1325 { 1326 struct btrfs_device *dev = stripe->dev; 1327 struct btrfs_fs_info *fs_info = dev->fs_info; 1328 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1329 u64 phys = stripe->physical; 1330 u64 len = stripe->length; 1331 u64 discarded = 0; 1332 int ret = 0; 1333 1334 /* Zone reset on a zoned filesystem */ 1335 if (btrfs_can_zone_reset(dev, phys, len)) { 1336 u64 src_disc; 1337 1338 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1339 if (ret) 1340 goto out; 1341 1342 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1343 dev != dev_replace->srcdev) 1344 goto out; 1345 1346 src_disc = discarded; 1347 1348 /* Send to replace target as well */ 1349 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1350 &discarded); 1351 discarded += src_disc; 1352 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1353 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1354 } else { 1355 ret = 0; 1356 *bytes = 0; 1357 } 1358 1359 out: 1360 *bytes = discarded; 1361 return ret; 1362 } 1363 1364 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1365 u64 num_bytes, u64 *actual_bytes) 1366 { 1367 int ret = 0; 1368 u64 discarded_bytes = 0; 1369 u64 end = bytenr + num_bytes; 1370 u64 cur = bytenr; 1371 1372 /* 1373 * Avoid races with device replace and make sure the devices in the 1374 * stripes don't go away while we are discarding. 1375 */ 1376 btrfs_bio_counter_inc_blocked(fs_info); 1377 while (cur < end) { 1378 struct btrfs_discard_stripe *stripes; 1379 unsigned int num_stripes; 1380 int i; 1381 1382 num_bytes = end - cur; 1383 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1384 if (IS_ERR(stripes)) { 1385 ret = PTR_ERR(stripes); 1386 if (ret == -EOPNOTSUPP) 1387 ret = 0; 1388 break; 1389 } 1390 1391 for (i = 0; i < num_stripes; i++) { 1392 struct btrfs_discard_stripe *stripe = stripes + i; 1393 u64 bytes; 1394 1395 if (!stripe->dev->bdev) { 1396 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1397 continue; 1398 } 1399 1400 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1401 &stripe->dev->dev_state)) 1402 continue; 1403 1404 ret = do_discard_extent(stripe, &bytes); 1405 if (ret) { 1406 /* 1407 * Keep going if discard is not supported by the 1408 * device. 1409 */ 1410 if (ret != -EOPNOTSUPP) 1411 break; 1412 ret = 0; 1413 } else { 1414 discarded_bytes += bytes; 1415 } 1416 } 1417 kfree(stripes); 1418 if (ret) 1419 break; 1420 cur += num_bytes; 1421 } 1422 btrfs_bio_counter_dec(fs_info); 1423 if (actual_bytes) 1424 *actual_bytes = discarded_bytes; 1425 return ret; 1426 } 1427 1428 /* Can return -ENOMEM */ 1429 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1430 struct btrfs_ref *generic_ref) 1431 { 1432 struct btrfs_fs_info *fs_info = trans->fs_info; 1433 int ret; 1434 1435 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1436 generic_ref->action); 1437 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1438 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1439 1440 if (generic_ref->type == BTRFS_REF_METADATA) 1441 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1442 else 1443 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1444 1445 btrfs_ref_tree_mod(fs_info, generic_ref); 1446 1447 return ret; 1448 } 1449 1450 /* 1451 * Insert backreference for a given extent. 1452 * 1453 * The counterpart is in __btrfs_free_extent(), with examples and more details 1454 * how it works. 1455 * 1456 * @trans: Handle of transaction 1457 * 1458 * @node: The delayed ref node used to get the bytenr/length for 1459 * extent whose references are incremented. 1460 * 1461 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1462 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1463 * bytenr of the parent block. Since new extents are always 1464 * created with indirect references, this will only be the case 1465 * when relocating a shared extent. In that case, root_objectid 1466 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1467 * be 0 1468 * 1469 * @root_objectid: The id of the root where this modification has originated, 1470 * this can be either one of the well-known metadata trees or 1471 * the subvolume id which references this extent. 1472 * 1473 * @owner: For data extents it is the inode number of the owning file. 1474 * For metadata extents this parameter holds the level in the 1475 * tree of the extent. 1476 * 1477 * @offset: For metadata extents the offset is ignored and is currently 1478 * always passed as 0. For data extents it is the fileoffset 1479 * this extent belongs to. 1480 * 1481 * @extent_op Pointer to a structure, holding information necessary when 1482 * updating a tree block's flags 1483 * 1484 */ 1485 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1486 struct btrfs_delayed_ref_node *node, 1487 u64 parent, u64 root_objectid, 1488 u64 owner, u64 offset, 1489 struct btrfs_delayed_extent_op *extent_op) 1490 { 1491 struct btrfs_path *path; 1492 struct extent_buffer *leaf; 1493 struct btrfs_extent_item *item; 1494 struct btrfs_key key; 1495 u64 bytenr = node->bytenr; 1496 u64 num_bytes = node->num_bytes; 1497 u64 refs; 1498 int refs_to_add = node->ref_mod; 1499 int ret; 1500 1501 path = btrfs_alloc_path(); 1502 if (!path) 1503 return -ENOMEM; 1504 1505 /* this will setup the path even if it fails to insert the back ref */ 1506 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1507 parent, root_objectid, owner, 1508 offset, refs_to_add, extent_op); 1509 if ((ret < 0 && ret != -EAGAIN) || !ret) 1510 goto out; 1511 1512 /* 1513 * Ok we had -EAGAIN which means we didn't have space to insert and 1514 * inline extent ref, so just update the reference count and add a 1515 * normal backref. 1516 */ 1517 leaf = path->nodes[0]; 1518 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1519 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1520 refs = btrfs_extent_refs(leaf, item); 1521 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1522 if (extent_op) 1523 __run_delayed_extent_op(extent_op, leaf, item); 1524 1525 btrfs_mark_buffer_dirty(trans, leaf); 1526 btrfs_release_path(path); 1527 1528 /* now insert the actual backref */ 1529 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1530 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1531 root_objectid); 1532 else 1533 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1534 root_objectid, owner, offset, 1535 refs_to_add); 1536 1537 if (ret) 1538 btrfs_abort_transaction(trans, ret); 1539 out: 1540 btrfs_free_path(path); 1541 return ret; 1542 } 1543 1544 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1545 struct btrfs_delayed_ref_head *href, 1546 struct btrfs_delayed_ref_node *node, 1547 struct btrfs_delayed_extent_op *extent_op, 1548 bool insert_reserved) 1549 { 1550 int ret = 0; 1551 struct btrfs_delayed_data_ref *ref; 1552 u64 parent = 0; 1553 u64 flags = 0; 1554 1555 ref = btrfs_delayed_node_to_data_ref(node); 1556 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1557 1558 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1559 parent = ref->parent; 1560 1561 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1562 struct btrfs_key key; 1563 struct btrfs_squota_delta delta = { 1564 .root = href->owning_root, 1565 .num_bytes = node->num_bytes, 1566 .rsv_bytes = href->reserved_bytes, 1567 .is_data = true, 1568 .is_inc = true, 1569 .generation = trans->transid, 1570 }; 1571 1572 if (extent_op) 1573 flags |= extent_op->flags_to_set; 1574 1575 key.objectid = node->bytenr; 1576 key.type = BTRFS_EXTENT_ITEM_KEY; 1577 key.offset = node->num_bytes; 1578 1579 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1580 flags, ref->objectid, 1581 ref->offset, &key, 1582 node->ref_mod, href->owning_root); 1583 if (!ret) 1584 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1585 else 1586 btrfs_qgroup_free_refroot(trans->fs_info, delta.root, 1587 delta.rsv_bytes, BTRFS_QGROUP_RSV_DATA); 1588 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1589 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1590 ref->objectid, ref->offset, 1591 extent_op); 1592 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1593 ret = __btrfs_free_extent(trans, href, node, parent, 1594 ref->root, ref->objectid, 1595 ref->offset, extent_op); 1596 } else { 1597 BUG(); 1598 } 1599 return ret; 1600 } 1601 1602 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1603 struct extent_buffer *leaf, 1604 struct btrfs_extent_item *ei) 1605 { 1606 u64 flags = btrfs_extent_flags(leaf, ei); 1607 if (extent_op->update_flags) { 1608 flags |= extent_op->flags_to_set; 1609 btrfs_set_extent_flags(leaf, ei, flags); 1610 } 1611 1612 if (extent_op->update_key) { 1613 struct btrfs_tree_block_info *bi; 1614 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1615 bi = (struct btrfs_tree_block_info *)(ei + 1); 1616 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1617 } 1618 } 1619 1620 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1621 struct btrfs_delayed_ref_head *head, 1622 struct btrfs_delayed_extent_op *extent_op) 1623 { 1624 struct btrfs_fs_info *fs_info = trans->fs_info; 1625 struct btrfs_root *root; 1626 struct btrfs_key key; 1627 struct btrfs_path *path; 1628 struct btrfs_extent_item *ei; 1629 struct extent_buffer *leaf; 1630 u32 item_size; 1631 int ret; 1632 int metadata = 1; 1633 1634 if (TRANS_ABORTED(trans)) 1635 return 0; 1636 1637 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1638 metadata = 0; 1639 1640 path = btrfs_alloc_path(); 1641 if (!path) 1642 return -ENOMEM; 1643 1644 key.objectid = head->bytenr; 1645 1646 if (metadata) { 1647 key.type = BTRFS_METADATA_ITEM_KEY; 1648 key.offset = extent_op->level; 1649 } else { 1650 key.type = BTRFS_EXTENT_ITEM_KEY; 1651 key.offset = head->num_bytes; 1652 } 1653 1654 root = btrfs_extent_root(fs_info, key.objectid); 1655 again: 1656 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1657 if (ret < 0) { 1658 goto out; 1659 } else if (ret > 0) { 1660 if (metadata) { 1661 if (path->slots[0] > 0) { 1662 path->slots[0]--; 1663 btrfs_item_key_to_cpu(path->nodes[0], &key, 1664 path->slots[0]); 1665 if (key.objectid == head->bytenr && 1666 key.type == BTRFS_EXTENT_ITEM_KEY && 1667 key.offset == head->num_bytes) 1668 ret = 0; 1669 } 1670 if (ret > 0) { 1671 btrfs_release_path(path); 1672 metadata = 0; 1673 1674 key.objectid = head->bytenr; 1675 key.offset = head->num_bytes; 1676 key.type = BTRFS_EXTENT_ITEM_KEY; 1677 goto again; 1678 } 1679 } else { 1680 ret = -EUCLEAN; 1681 btrfs_err(fs_info, 1682 "missing extent item for extent %llu num_bytes %llu level %d", 1683 head->bytenr, head->num_bytes, extent_op->level); 1684 goto out; 1685 } 1686 } 1687 1688 leaf = path->nodes[0]; 1689 item_size = btrfs_item_size(leaf, path->slots[0]); 1690 1691 if (unlikely(item_size < sizeof(*ei))) { 1692 ret = -EUCLEAN; 1693 btrfs_err(fs_info, 1694 "unexpected extent item size, has %u expect >= %zu", 1695 item_size, sizeof(*ei)); 1696 btrfs_abort_transaction(trans, ret); 1697 goto out; 1698 } 1699 1700 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1701 __run_delayed_extent_op(extent_op, leaf, ei); 1702 1703 btrfs_mark_buffer_dirty(trans, leaf); 1704 out: 1705 btrfs_free_path(path); 1706 return ret; 1707 } 1708 1709 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1710 struct btrfs_delayed_ref_head *href, 1711 struct btrfs_delayed_ref_node *node, 1712 struct btrfs_delayed_extent_op *extent_op, 1713 bool insert_reserved) 1714 { 1715 int ret = 0; 1716 struct btrfs_fs_info *fs_info = trans->fs_info; 1717 struct btrfs_delayed_tree_ref *ref; 1718 u64 parent = 0; 1719 u64 ref_root = 0; 1720 1721 ref = btrfs_delayed_node_to_tree_ref(node); 1722 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1723 1724 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1725 parent = ref->parent; 1726 ref_root = ref->root; 1727 1728 if (unlikely(node->ref_mod != 1)) { 1729 btrfs_err(trans->fs_info, 1730 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1731 node->bytenr, node->ref_mod, node->action, ref_root, 1732 parent); 1733 return -EUCLEAN; 1734 } 1735 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1736 struct btrfs_squota_delta delta = { 1737 .root = href->owning_root, 1738 .num_bytes = fs_info->nodesize, 1739 .rsv_bytes = 0, 1740 .is_data = false, 1741 .is_inc = true, 1742 .generation = trans->transid, 1743 }; 1744 1745 BUG_ON(!extent_op || !extent_op->update_flags); 1746 ret = alloc_reserved_tree_block(trans, node, extent_op); 1747 if (!ret) 1748 btrfs_record_squota_delta(fs_info, &delta); 1749 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1750 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1751 ref->level, 0, extent_op); 1752 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1753 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1754 ref->level, 0, extent_op); 1755 } else { 1756 BUG(); 1757 } 1758 return ret; 1759 } 1760 1761 /* helper function to actually process a single delayed ref entry */ 1762 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1763 struct btrfs_delayed_ref_head *href, 1764 struct btrfs_delayed_ref_node *node, 1765 struct btrfs_delayed_extent_op *extent_op, 1766 bool insert_reserved) 1767 { 1768 int ret = 0; 1769 1770 if (TRANS_ABORTED(trans)) { 1771 if (insert_reserved) 1772 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1773 return 0; 1774 } 1775 1776 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1777 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1778 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1779 insert_reserved); 1780 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1781 node->type == BTRFS_SHARED_DATA_REF_KEY) 1782 ret = run_delayed_data_ref(trans, href, node, extent_op, 1783 insert_reserved); 1784 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1785 ret = 0; 1786 else 1787 BUG(); 1788 if (ret && insert_reserved) 1789 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1790 if (ret < 0) 1791 btrfs_err(trans->fs_info, 1792 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1793 node->bytenr, node->num_bytes, node->type, 1794 node->action, node->ref_mod, ret); 1795 return ret; 1796 } 1797 1798 static inline struct btrfs_delayed_ref_node * 1799 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1800 { 1801 struct btrfs_delayed_ref_node *ref; 1802 1803 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1804 return NULL; 1805 1806 /* 1807 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1808 * This is to prevent a ref count from going down to zero, which deletes 1809 * the extent item from the extent tree, when there still are references 1810 * to add, which would fail because they would not find the extent item. 1811 */ 1812 if (!list_empty(&head->ref_add_list)) 1813 return list_first_entry(&head->ref_add_list, 1814 struct btrfs_delayed_ref_node, add_list); 1815 1816 ref = rb_entry(rb_first_cached(&head->ref_tree), 1817 struct btrfs_delayed_ref_node, ref_node); 1818 ASSERT(list_empty(&ref->add_list)); 1819 return ref; 1820 } 1821 1822 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1823 struct btrfs_delayed_ref_head *head) 1824 { 1825 spin_lock(&delayed_refs->lock); 1826 head->processing = false; 1827 delayed_refs->num_heads_ready++; 1828 spin_unlock(&delayed_refs->lock); 1829 btrfs_delayed_ref_unlock(head); 1830 } 1831 1832 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1833 struct btrfs_delayed_ref_head *head) 1834 { 1835 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1836 1837 if (!extent_op) 1838 return NULL; 1839 1840 if (head->must_insert_reserved) { 1841 head->extent_op = NULL; 1842 btrfs_free_delayed_extent_op(extent_op); 1843 return NULL; 1844 } 1845 return extent_op; 1846 } 1847 1848 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1849 struct btrfs_delayed_ref_head *head) 1850 { 1851 struct btrfs_delayed_extent_op *extent_op; 1852 int ret; 1853 1854 extent_op = cleanup_extent_op(head); 1855 if (!extent_op) 1856 return 0; 1857 head->extent_op = NULL; 1858 spin_unlock(&head->lock); 1859 ret = run_delayed_extent_op(trans, head, extent_op); 1860 btrfs_free_delayed_extent_op(extent_op); 1861 return ret ? ret : 1; 1862 } 1863 1864 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1865 struct btrfs_delayed_ref_root *delayed_refs, 1866 struct btrfs_delayed_ref_head *head) 1867 { 1868 /* 1869 * We had csum deletions accounted for in our delayed refs rsv, we need 1870 * to drop the csum leaves for this update from our delayed_refs_rsv. 1871 */ 1872 if (head->total_ref_mod < 0 && head->is_data) { 1873 int nr_csums; 1874 1875 spin_lock(&delayed_refs->lock); 1876 delayed_refs->pending_csums -= head->num_bytes; 1877 spin_unlock(&delayed_refs->lock); 1878 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1879 1880 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1881 1882 return btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1883 } 1884 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE && 1885 head->must_insert_reserved && head->is_data) 1886 btrfs_qgroup_free_refroot(fs_info, head->owning_root, 1887 head->reserved_bytes, BTRFS_QGROUP_RSV_DATA); 1888 1889 return 0; 1890 } 1891 1892 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1893 struct btrfs_delayed_ref_head *head, 1894 u64 *bytes_released) 1895 { 1896 1897 struct btrfs_fs_info *fs_info = trans->fs_info; 1898 struct btrfs_delayed_ref_root *delayed_refs; 1899 int ret; 1900 1901 delayed_refs = &trans->transaction->delayed_refs; 1902 1903 ret = run_and_cleanup_extent_op(trans, head); 1904 if (ret < 0) { 1905 unselect_delayed_ref_head(delayed_refs, head); 1906 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1907 return ret; 1908 } else if (ret) { 1909 return ret; 1910 } 1911 1912 /* 1913 * Need to drop our head ref lock and re-acquire the delayed ref lock 1914 * and then re-check to make sure nobody got added. 1915 */ 1916 spin_unlock(&head->lock); 1917 spin_lock(&delayed_refs->lock); 1918 spin_lock(&head->lock); 1919 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1920 spin_unlock(&head->lock); 1921 spin_unlock(&delayed_refs->lock); 1922 return 1; 1923 } 1924 btrfs_delete_ref_head(delayed_refs, head); 1925 spin_unlock(&head->lock); 1926 spin_unlock(&delayed_refs->lock); 1927 1928 if (head->must_insert_reserved) { 1929 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1930 if (head->is_data) { 1931 struct btrfs_root *csum_root; 1932 1933 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1934 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1935 head->num_bytes); 1936 } 1937 } 1938 1939 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1940 1941 trace_run_delayed_ref_head(fs_info, head, 0); 1942 btrfs_delayed_ref_unlock(head); 1943 btrfs_put_delayed_ref_head(head); 1944 return ret; 1945 } 1946 1947 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1948 struct btrfs_trans_handle *trans) 1949 { 1950 struct btrfs_delayed_ref_root *delayed_refs = 1951 &trans->transaction->delayed_refs; 1952 struct btrfs_delayed_ref_head *head = NULL; 1953 int ret; 1954 1955 spin_lock(&delayed_refs->lock); 1956 head = btrfs_select_ref_head(delayed_refs); 1957 if (!head) { 1958 spin_unlock(&delayed_refs->lock); 1959 return head; 1960 } 1961 1962 /* 1963 * Grab the lock that says we are going to process all the refs for 1964 * this head 1965 */ 1966 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1967 spin_unlock(&delayed_refs->lock); 1968 1969 /* 1970 * We may have dropped the spin lock to get the head mutex lock, and 1971 * that might have given someone else time to free the head. If that's 1972 * true, it has been removed from our list and we can move on. 1973 */ 1974 if (ret == -EAGAIN) 1975 head = ERR_PTR(-EAGAIN); 1976 1977 return head; 1978 } 1979 1980 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1981 struct btrfs_delayed_ref_head *locked_ref, 1982 u64 *bytes_released) 1983 { 1984 struct btrfs_fs_info *fs_info = trans->fs_info; 1985 struct btrfs_delayed_ref_root *delayed_refs; 1986 struct btrfs_delayed_extent_op *extent_op; 1987 struct btrfs_delayed_ref_node *ref; 1988 bool must_insert_reserved; 1989 int ret; 1990 1991 delayed_refs = &trans->transaction->delayed_refs; 1992 1993 lockdep_assert_held(&locked_ref->mutex); 1994 lockdep_assert_held(&locked_ref->lock); 1995 1996 while ((ref = select_delayed_ref(locked_ref))) { 1997 if (ref->seq && 1998 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1999 spin_unlock(&locked_ref->lock); 2000 unselect_delayed_ref_head(delayed_refs, locked_ref); 2001 return -EAGAIN; 2002 } 2003 2004 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2005 RB_CLEAR_NODE(&ref->ref_node); 2006 if (!list_empty(&ref->add_list)) 2007 list_del(&ref->add_list); 2008 /* 2009 * When we play the delayed ref, also correct the ref_mod on 2010 * head 2011 */ 2012 switch (ref->action) { 2013 case BTRFS_ADD_DELAYED_REF: 2014 case BTRFS_ADD_DELAYED_EXTENT: 2015 locked_ref->ref_mod -= ref->ref_mod; 2016 break; 2017 case BTRFS_DROP_DELAYED_REF: 2018 locked_ref->ref_mod += ref->ref_mod; 2019 break; 2020 default: 2021 WARN_ON(1); 2022 } 2023 atomic_dec(&delayed_refs->num_entries); 2024 2025 /* 2026 * Record the must_insert_reserved flag before we drop the 2027 * spin lock. 2028 */ 2029 must_insert_reserved = locked_ref->must_insert_reserved; 2030 locked_ref->must_insert_reserved = false; 2031 2032 extent_op = locked_ref->extent_op; 2033 locked_ref->extent_op = NULL; 2034 spin_unlock(&locked_ref->lock); 2035 2036 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2037 must_insert_reserved); 2038 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2039 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2040 2041 btrfs_free_delayed_extent_op(extent_op); 2042 if (ret) { 2043 unselect_delayed_ref_head(delayed_refs, locked_ref); 2044 btrfs_put_delayed_ref(ref); 2045 return ret; 2046 } 2047 2048 btrfs_put_delayed_ref(ref); 2049 cond_resched(); 2050 2051 spin_lock(&locked_ref->lock); 2052 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2053 } 2054 2055 return 0; 2056 } 2057 2058 /* 2059 * Returns 0 on success or if called with an already aborted transaction. 2060 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2061 */ 2062 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2063 u64 min_bytes) 2064 { 2065 struct btrfs_fs_info *fs_info = trans->fs_info; 2066 struct btrfs_delayed_ref_root *delayed_refs; 2067 struct btrfs_delayed_ref_head *locked_ref = NULL; 2068 int ret; 2069 unsigned long count = 0; 2070 unsigned long max_count = 0; 2071 u64 bytes_processed = 0; 2072 2073 delayed_refs = &trans->transaction->delayed_refs; 2074 if (min_bytes == 0) { 2075 max_count = delayed_refs->num_heads_ready; 2076 min_bytes = U64_MAX; 2077 } 2078 2079 do { 2080 if (!locked_ref) { 2081 locked_ref = btrfs_obtain_ref_head(trans); 2082 if (IS_ERR_OR_NULL(locked_ref)) { 2083 if (PTR_ERR(locked_ref) == -EAGAIN) { 2084 continue; 2085 } else { 2086 break; 2087 } 2088 } 2089 count++; 2090 } 2091 /* 2092 * We need to try and merge add/drops of the same ref since we 2093 * can run into issues with relocate dropping the implicit ref 2094 * and then it being added back again before the drop can 2095 * finish. If we merged anything we need to re-loop so we can 2096 * get a good ref. 2097 * Or we can get node references of the same type that weren't 2098 * merged when created due to bumps in the tree mod seq, and 2099 * we need to merge them to prevent adding an inline extent 2100 * backref before dropping it (triggering a BUG_ON at 2101 * insert_inline_extent_backref()). 2102 */ 2103 spin_lock(&locked_ref->lock); 2104 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2105 2106 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2107 if (ret < 0 && ret != -EAGAIN) { 2108 /* 2109 * Error, btrfs_run_delayed_refs_for_head already 2110 * unlocked everything so just bail out 2111 */ 2112 return ret; 2113 } else if (!ret) { 2114 /* 2115 * Success, perform the usual cleanup of a processed 2116 * head 2117 */ 2118 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2119 if (ret > 0 ) { 2120 /* We dropped our lock, we need to loop. */ 2121 ret = 0; 2122 continue; 2123 } else if (ret) { 2124 return ret; 2125 } 2126 } 2127 2128 /* 2129 * Either success case or btrfs_run_delayed_refs_for_head 2130 * returned -EAGAIN, meaning we need to select another head 2131 */ 2132 2133 locked_ref = NULL; 2134 cond_resched(); 2135 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2136 (max_count > 0 && count < max_count) || 2137 locked_ref); 2138 2139 return 0; 2140 } 2141 2142 #ifdef SCRAMBLE_DELAYED_REFS 2143 /* 2144 * Normally delayed refs get processed in ascending bytenr order. This 2145 * correlates in most cases to the order added. To expose dependencies on this 2146 * order, we start to process the tree in the middle instead of the beginning 2147 */ 2148 static u64 find_middle(struct rb_root *root) 2149 { 2150 struct rb_node *n = root->rb_node; 2151 struct btrfs_delayed_ref_node *entry; 2152 int alt = 1; 2153 u64 middle; 2154 u64 first = 0, last = 0; 2155 2156 n = rb_first(root); 2157 if (n) { 2158 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2159 first = entry->bytenr; 2160 } 2161 n = rb_last(root); 2162 if (n) { 2163 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2164 last = entry->bytenr; 2165 } 2166 n = root->rb_node; 2167 2168 while (n) { 2169 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2170 WARN_ON(!entry->in_tree); 2171 2172 middle = entry->bytenr; 2173 2174 if (alt) 2175 n = n->rb_left; 2176 else 2177 n = n->rb_right; 2178 2179 alt = 1 - alt; 2180 } 2181 return middle; 2182 } 2183 #endif 2184 2185 /* 2186 * Start processing the delayed reference count updates and extent insertions 2187 * we have queued up so far. 2188 * 2189 * @trans: Transaction handle. 2190 * @min_bytes: How many bytes of delayed references to process. After this 2191 * many bytes we stop processing delayed references if there are 2192 * any more. If 0 it means to run all existing delayed references, 2193 * but not new ones added after running all existing ones. 2194 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2195 * plus any new ones that are added. 2196 * 2197 * Returns 0 on success or if called with an aborted transaction 2198 * Returns <0 on error and aborts the transaction 2199 */ 2200 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2201 { 2202 struct btrfs_fs_info *fs_info = trans->fs_info; 2203 struct btrfs_delayed_ref_root *delayed_refs; 2204 int ret; 2205 2206 /* We'll clean this up in btrfs_cleanup_transaction */ 2207 if (TRANS_ABORTED(trans)) 2208 return 0; 2209 2210 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2211 return 0; 2212 2213 delayed_refs = &trans->transaction->delayed_refs; 2214 again: 2215 #ifdef SCRAMBLE_DELAYED_REFS 2216 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2217 #endif 2218 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2219 if (ret < 0) { 2220 btrfs_abort_transaction(trans, ret); 2221 return ret; 2222 } 2223 2224 if (min_bytes == U64_MAX) { 2225 btrfs_create_pending_block_groups(trans); 2226 2227 spin_lock(&delayed_refs->lock); 2228 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2229 spin_unlock(&delayed_refs->lock); 2230 return 0; 2231 } 2232 spin_unlock(&delayed_refs->lock); 2233 2234 cond_resched(); 2235 goto again; 2236 } 2237 2238 return 0; 2239 } 2240 2241 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2242 struct extent_buffer *eb, u64 flags) 2243 { 2244 struct btrfs_delayed_extent_op *extent_op; 2245 int level = btrfs_header_level(eb); 2246 int ret; 2247 2248 extent_op = btrfs_alloc_delayed_extent_op(); 2249 if (!extent_op) 2250 return -ENOMEM; 2251 2252 extent_op->flags_to_set = flags; 2253 extent_op->update_flags = true; 2254 extent_op->update_key = false; 2255 extent_op->level = level; 2256 2257 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2258 if (ret) 2259 btrfs_free_delayed_extent_op(extent_op); 2260 return ret; 2261 } 2262 2263 static noinline int check_delayed_ref(struct btrfs_root *root, 2264 struct btrfs_path *path, 2265 u64 objectid, u64 offset, u64 bytenr) 2266 { 2267 struct btrfs_delayed_ref_head *head; 2268 struct btrfs_delayed_ref_node *ref; 2269 struct btrfs_delayed_data_ref *data_ref; 2270 struct btrfs_delayed_ref_root *delayed_refs; 2271 struct btrfs_transaction *cur_trans; 2272 struct rb_node *node; 2273 int ret = 0; 2274 2275 spin_lock(&root->fs_info->trans_lock); 2276 cur_trans = root->fs_info->running_transaction; 2277 if (cur_trans) 2278 refcount_inc(&cur_trans->use_count); 2279 spin_unlock(&root->fs_info->trans_lock); 2280 if (!cur_trans) 2281 return 0; 2282 2283 delayed_refs = &cur_trans->delayed_refs; 2284 spin_lock(&delayed_refs->lock); 2285 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2286 if (!head) { 2287 spin_unlock(&delayed_refs->lock); 2288 btrfs_put_transaction(cur_trans); 2289 return 0; 2290 } 2291 2292 if (!mutex_trylock(&head->mutex)) { 2293 if (path->nowait) { 2294 spin_unlock(&delayed_refs->lock); 2295 btrfs_put_transaction(cur_trans); 2296 return -EAGAIN; 2297 } 2298 2299 refcount_inc(&head->refs); 2300 spin_unlock(&delayed_refs->lock); 2301 2302 btrfs_release_path(path); 2303 2304 /* 2305 * Mutex was contended, block until it's released and let 2306 * caller try again 2307 */ 2308 mutex_lock(&head->mutex); 2309 mutex_unlock(&head->mutex); 2310 btrfs_put_delayed_ref_head(head); 2311 btrfs_put_transaction(cur_trans); 2312 return -EAGAIN; 2313 } 2314 spin_unlock(&delayed_refs->lock); 2315 2316 spin_lock(&head->lock); 2317 /* 2318 * XXX: We should replace this with a proper search function in the 2319 * future. 2320 */ 2321 for (node = rb_first_cached(&head->ref_tree); node; 2322 node = rb_next(node)) { 2323 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2324 /* If it's a shared ref we know a cross reference exists */ 2325 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2326 ret = 1; 2327 break; 2328 } 2329 2330 data_ref = btrfs_delayed_node_to_data_ref(ref); 2331 2332 /* 2333 * If our ref doesn't match the one we're currently looking at 2334 * then we have a cross reference. 2335 */ 2336 if (data_ref->root != root->root_key.objectid || 2337 data_ref->objectid != objectid || 2338 data_ref->offset != offset) { 2339 ret = 1; 2340 break; 2341 } 2342 } 2343 spin_unlock(&head->lock); 2344 mutex_unlock(&head->mutex); 2345 btrfs_put_transaction(cur_trans); 2346 return ret; 2347 } 2348 2349 static noinline int check_committed_ref(struct btrfs_root *root, 2350 struct btrfs_path *path, 2351 u64 objectid, u64 offset, u64 bytenr, 2352 bool strict) 2353 { 2354 struct btrfs_fs_info *fs_info = root->fs_info; 2355 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2356 struct extent_buffer *leaf; 2357 struct btrfs_extent_data_ref *ref; 2358 struct btrfs_extent_inline_ref *iref; 2359 struct btrfs_extent_item *ei; 2360 struct btrfs_key key; 2361 u32 item_size; 2362 u32 expected_size; 2363 int type; 2364 int ret; 2365 2366 key.objectid = bytenr; 2367 key.offset = (u64)-1; 2368 key.type = BTRFS_EXTENT_ITEM_KEY; 2369 2370 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2371 if (ret < 0) 2372 goto out; 2373 BUG_ON(ret == 0); /* Corruption */ 2374 2375 ret = -ENOENT; 2376 if (path->slots[0] == 0) 2377 goto out; 2378 2379 path->slots[0]--; 2380 leaf = path->nodes[0]; 2381 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2382 2383 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2384 goto out; 2385 2386 ret = 1; 2387 item_size = btrfs_item_size(leaf, path->slots[0]); 2388 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2389 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2390 2391 /* No inline refs; we need to bail before checking for owner ref. */ 2392 if (item_size == sizeof(*ei)) 2393 goto out; 2394 2395 /* Check for an owner ref; skip over it to the real inline refs. */ 2396 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2397 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2398 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2399 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2400 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2401 } 2402 2403 /* If extent item has more than 1 inline ref then it's shared */ 2404 if (item_size != expected_size) 2405 goto out; 2406 2407 /* 2408 * If extent created before last snapshot => it's shared unless the 2409 * snapshot has been deleted. Use the heuristic if strict is false. 2410 */ 2411 if (!strict && 2412 (btrfs_extent_generation(leaf, ei) <= 2413 btrfs_root_last_snapshot(&root->root_item))) 2414 goto out; 2415 2416 /* If this extent has SHARED_DATA_REF then it's shared */ 2417 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2418 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2419 goto out; 2420 2421 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2422 if (btrfs_extent_refs(leaf, ei) != 2423 btrfs_extent_data_ref_count(leaf, ref) || 2424 btrfs_extent_data_ref_root(leaf, ref) != 2425 root->root_key.objectid || 2426 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2427 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2428 goto out; 2429 2430 ret = 0; 2431 out: 2432 return ret; 2433 } 2434 2435 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2436 u64 bytenr, bool strict, struct btrfs_path *path) 2437 { 2438 int ret; 2439 2440 do { 2441 ret = check_committed_ref(root, path, objectid, 2442 offset, bytenr, strict); 2443 if (ret && ret != -ENOENT) 2444 goto out; 2445 2446 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2447 } while (ret == -EAGAIN); 2448 2449 out: 2450 btrfs_release_path(path); 2451 if (btrfs_is_data_reloc_root(root)) 2452 WARN_ON(ret > 0); 2453 return ret; 2454 } 2455 2456 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2457 struct btrfs_root *root, 2458 struct extent_buffer *buf, 2459 int full_backref, int inc) 2460 { 2461 struct btrfs_fs_info *fs_info = root->fs_info; 2462 u64 bytenr; 2463 u64 num_bytes; 2464 u64 parent; 2465 u64 ref_root; 2466 u32 nritems; 2467 struct btrfs_key key; 2468 struct btrfs_file_extent_item *fi; 2469 struct btrfs_ref generic_ref = { 0 }; 2470 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2471 int i; 2472 int action; 2473 int level; 2474 int ret = 0; 2475 2476 if (btrfs_is_testing(fs_info)) 2477 return 0; 2478 2479 ref_root = btrfs_header_owner(buf); 2480 nritems = btrfs_header_nritems(buf); 2481 level = btrfs_header_level(buf); 2482 2483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2484 return 0; 2485 2486 if (full_backref) 2487 parent = buf->start; 2488 else 2489 parent = 0; 2490 if (inc) 2491 action = BTRFS_ADD_DELAYED_REF; 2492 else 2493 action = BTRFS_DROP_DELAYED_REF; 2494 2495 for (i = 0; i < nritems; i++) { 2496 if (level == 0) { 2497 btrfs_item_key_to_cpu(buf, &key, i); 2498 if (key.type != BTRFS_EXTENT_DATA_KEY) 2499 continue; 2500 fi = btrfs_item_ptr(buf, i, 2501 struct btrfs_file_extent_item); 2502 if (btrfs_file_extent_type(buf, fi) == 2503 BTRFS_FILE_EXTENT_INLINE) 2504 continue; 2505 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2506 if (bytenr == 0) 2507 continue; 2508 2509 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2510 key.offset -= btrfs_file_extent_offset(buf, fi); 2511 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2512 num_bytes, parent, ref_root); 2513 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2514 key.offset, root->root_key.objectid, 2515 for_reloc); 2516 if (inc) 2517 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2518 else 2519 ret = btrfs_free_extent(trans, &generic_ref); 2520 if (ret) 2521 goto fail; 2522 } else { 2523 bytenr = btrfs_node_blockptr(buf, i); 2524 num_bytes = fs_info->nodesize; 2525 /* We don't know the owning_root, use 0. */ 2526 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2527 num_bytes, parent, 0); 2528 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2529 root->root_key.objectid, for_reloc); 2530 if (inc) 2531 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2532 else 2533 ret = btrfs_free_extent(trans, &generic_ref); 2534 if (ret) 2535 goto fail; 2536 } 2537 } 2538 return 0; 2539 fail: 2540 return ret; 2541 } 2542 2543 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2544 struct extent_buffer *buf, int full_backref) 2545 { 2546 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2547 } 2548 2549 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2550 struct extent_buffer *buf, int full_backref) 2551 { 2552 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2553 } 2554 2555 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2556 { 2557 struct btrfs_fs_info *fs_info = root->fs_info; 2558 u64 flags; 2559 u64 ret; 2560 2561 if (data) 2562 flags = BTRFS_BLOCK_GROUP_DATA; 2563 else if (root == fs_info->chunk_root) 2564 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2565 else 2566 flags = BTRFS_BLOCK_GROUP_METADATA; 2567 2568 ret = btrfs_get_alloc_profile(fs_info, flags); 2569 return ret; 2570 } 2571 2572 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2573 { 2574 struct rb_node *leftmost; 2575 u64 bytenr = 0; 2576 2577 read_lock(&fs_info->block_group_cache_lock); 2578 /* Get the block group with the lowest logical start address. */ 2579 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2580 if (leftmost) { 2581 struct btrfs_block_group *bg; 2582 2583 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2584 bytenr = bg->start; 2585 } 2586 read_unlock(&fs_info->block_group_cache_lock); 2587 2588 return bytenr; 2589 } 2590 2591 static int pin_down_extent(struct btrfs_trans_handle *trans, 2592 struct btrfs_block_group *cache, 2593 u64 bytenr, u64 num_bytes, int reserved) 2594 { 2595 struct btrfs_fs_info *fs_info = cache->fs_info; 2596 2597 spin_lock(&cache->space_info->lock); 2598 spin_lock(&cache->lock); 2599 cache->pinned += num_bytes; 2600 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2601 num_bytes); 2602 if (reserved) { 2603 cache->reserved -= num_bytes; 2604 cache->space_info->bytes_reserved -= num_bytes; 2605 } 2606 spin_unlock(&cache->lock); 2607 spin_unlock(&cache->space_info->lock); 2608 2609 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2610 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2611 return 0; 2612 } 2613 2614 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2615 u64 bytenr, u64 num_bytes, int reserved) 2616 { 2617 struct btrfs_block_group *cache; 2618 2619 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2620 BUG_ON(!cache); /* Logic error */ 2621 2622 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2623 2624 btrfs_put_block_group(cache); 2625 return 0; 2626 } 2627 2628 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2629 const struct extent_buffer *eb) 2630 { 2631 struct btrfs_block_group *cache; 2632 int ret; 2633 2634 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2635 if (!cache) 2636 return -EINVAL; 2637 2638 /* 2639 * Fully cache the free space first so that our pin removes the free space 2640 * from the cache. 2641 */ 2642 ret = btrfs_cache_block_group(cache, true); 2643 if (ret) 2644 goto out; 2645 2646 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2647 2648 /* remove us from the free space cache (if we're there at all) */ 2649 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2650 out: 2651 btrfs_put_block_group(cache); 2652 return ret; 2653 } 2654 2655 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2656 u64 start, u64 num_bytes) 2657 { 2658 int ret; 2659 struct btrfs_block_group *block_group; 2660 2661 block_group = btrfs_lookup_block_group(fs_info, start); 2662 if (!block_group) 2663 return -EINVAL; 2664 2665 ret = btrfs_cache_block_group(block_group, true); 2666 if (ret) 2667 goto out; 2668 2669 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2670 out: 2671 btrfs_put_block_group(block_group); 2672 return ret; 2673 } 2674 2675 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2676 { 2677 struct btrfs_fs_info *fs_info = eb->fs_info; 2678 struct btrfs_file_extent_item *item; 2679 struct btrfs_key key; 2680 int found_type; 2681 int i; 2682 int ret = 0; 2683 2684 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2685 return 0; 2686 2687 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2688 btrfs_item_key_to_cpu(eb, &key, i); 2689 if (key.type != BTRFS_EXTENT_DATA_KEY) 2690 continue; 2691 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2692 found_type = btrfs_file_extent_type(eb, item); 2693 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2694 continue; 2695 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2696 continue; 2697 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2698 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2699 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2700 if (ret) 2701 break; 2702 } 2703 2704 return ret; 2705 } 2706 2707 static void 2708 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2709 { 2710 atomic_inc(&bg->reservations); 2711 } 2712 2713 /* 2714 * Returns the free cluster for the given space info and sets empty_cluster to 2715 * what it should be based on the mount options. 2716 */ 2717 static struct btrfs_free_cluster * 2718 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2719 struct btrfs_space_info *space_info, u64 *empty_cluster) 2720 { 2721 struct btrfs_free_cluster *ret = NULL; 2722 2723 *empty_cluster = 0; 2724 if (btrfs_mixed_space_info(space_info)) 2725 return ret; 2726 2727 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2728 ret = &fs_info->meta_alloc_cluster; 2729 if (btrfs_test_opt(fs_info, SSD)) 2730 *empty_cluster = SZ_2M; 2731 else 2732 *empty_cluster = SZ_64K; 2733 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2734 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2735 *empty_cluster = SZ_2M; 2736 ret = &fs_info->data_alloc_cluster; 2737 } 2738 2739 return ret; 2740 } 2741 2742 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2743 u64 start, u64 end, 2744 const bool return_free_space) 2745 { 2746 struct btrfs_block_group *cache = NULL; 2747 struct btrfs_space_info *space_info; 2748 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2749 struct btrfs_free_cluster *cluster = NULL; 2750 u64 len; 2751 u64 total_unpinned = 0; 2752 u64 empty_cluster = 0; 2753 bool readonly; 2754 2755 while (start <= end) { 2756 readonly = false; 2757 if (!cache || 2758 start >= cache->start + cache->length) { 2759 if (cache) 2760 btrfs_put_block_group(cache); 2761 total_unpinned = 0; 2762 cache = btrfs_lookup_block_group(fs_info, start); 2763 BUG_ON(!cache); /* Logic error */ 2764 2765 cluster = fetch_cluster_info(fs_info, 2766 cache->space_info, 2767 &empty_cluster); 2768 empty_cluster <<= 1; 2769 } 2770 2771 len = cache->start + cache->length - start; 2772 len = min(len, end + 1 - start); 2773 2774 if (return_free_space) 2775 btrfs_add_free_space(cache, start, len); 2776 2777 start += len; 2778 total_unpinned += len; 2779 space_info = cache->space_info; 2780 2781 /* 2782 * If this space cluster has been marked as fragmented and we've 2783 * unpinned enough in this block group to potentially allow a 2784 * cluster to be created inside of it go ahead and clear the 2785 * fragmented check. 2786 */ 2787 if (cluster && cluster->fragmented && 2788 total_unpinned > empty_cluster) { 2789 spin_lock(&cluster->lock); 2790 cluster->fragmented = 0; 2791 spin_unlock(&cluster->lock); 2792 } 2793 2794 spin_lock(&space_info->lock); 2795 spin_lock(&cache->lock); 2796 cache->pinned -= len; 2797 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2798 space_info->max_extent_size = 0; 2799 if (cache->ro) { 2800 space_info->bytes_readonly += len; 2801 readonly = true; 2802 } else if (btrfs_is_zoned(fs_info)) { 2803 /* Need reset before reusing in a zoned block group */ 2804 space_info->bytes_zone_unusable += len; 2805 readonly = true; 2806 } 2807 spin_unlock(&cache->lock); 2808 if (!readonly && return_free_space && 2809 global_rsv->space_info == space_info) { 2810 spin_lock(&global_rsv->lock); 2811 if (!global_rsv->full) { 2812 u64 to_add = min(len, global_rsv->size - 2813 global_rsv->reserved); 2814 2815 global_rsv->reserved += to_add; 2816 btrfs_space_info_update_bytes_may_use(fs_info, 2817 space_info, to_add); 2818 if (global_rsv->reserved >= global_rsv->size) 2819 global_rsv->full = 1; 2820 len -= to_add; 2821 } 2822 spin_unlock(&global_rsv->lock); 2823 } 2824 /* Add to any tickets we may have */ 2825 if (!readonly && return_free_space && len) 2826 btrfs_try_granting_tickets(fs_info, space_info); 2827 spin_unlock(&space_info->lock); 2828 } 2829 2830 if (cache) 2831 btrfs_put_block_group(cache); 2832 return 0; 2833 } 2834 2835 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2836 { 2837 struct btrfs_fs_info *fs_info = trans->fs_info; 2838 struct btrfs_block_group *block_group, *tmp; 2839 struct list_head *deleted_bgs; 2840 struct extent_io_tree *unpin; 2841 u64 start; 2842 u64 end; 2843 int ret; 2844 2845 unpin = &trans->transaction->pinned_extents; 2846 2847 while (!TRANS_ABORTED(trans)) { 2848 struct extent_state *cached_state = NULL; 2849 2850 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2851 if (!find_first_extent_bit(unpin, 0, &start, &end, 2852 EXTENT_DIRTY, &cached_state)) { 2853 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2854 break; 2855 } 2856 2857 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2858 ret = btrfs_discard_extent(fs_info, start, 2859 end + 1 - start, NULL); 2860 2861 clear_extent_dirty(unpin, start, end, &cached_state); 2862 unpin_extent_range(fs_info, start, end, true); 2863 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2864 free_extent_state(cached_state); 2865 cond_resched(); 2866 } 2867 2868 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2869 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2870 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2871 } 2872 2873 /* 2874 * Transaction is finished. We don't need the lock anymore. We 2875 * do need to clean up the block groups in case of a transaction 2876 * abort. 2877 */ 2878 deleted_bgs = &trans->transaction->deleted_bgs; 2879 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2880 u64 trimmed = 0; 2881 2882 ret = -EROFS; 2883 if (!TRANS_ABORTED(trans)) 2884 ret = btrfs_discard_extent(fs_info, 2885 block_group->start, 2886 block_group->length, 2887 &trimmed); 2888 2889 list_del_init(&block_group->bg_list); 2890 btrfs_unfreeze_block_group(block_group); 2891 btrfs_put_block_group(block_group); 2892 2893 if (ret) { 2894 const char *errstr = btrfs_decode_error(ret); 2895 btrfs_warn(fs_info, 2896 "discard failed while removing blockgroup: errno=%d %s", 2897 ret, errstr); 2898 } 2899 } 2900 2901 return 0; 2902 } 2903 2904 /* 2905 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2906 * 2907 * @fs_info: the btrfs_fs_info for this mount 2908 * @leaf: a leaf in the extent tree containing the extent item 2909 * @slot: the slot in the leaf where the extent item is found 2910 * 2911 * Returns the objectid of the root that originally allocated the extent item 2912 * if the inline owner ref is expected and present, otherwise 0. 2913 * 2914 * If an extent item has an owner ref item, it will be the first inline ref 2915 * item. Therefore the logic is to check whether there are any inline ref 2916 * items, then check the type of the first one. 2917 */ 2918 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2919 struct extent_buffer *leaf, int slot) 2920 { 2921 struct btrfs_extent_item *ei; 2922 struct btrfs_extent_inline_ref *iref; 2923 struct btrfs_extent_owner_ref *oref; 2924 unsigned long ptr; 2925 unsigned long end; 2926 int type; 2927 2928 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2929 return 0; 2930 2931 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2932 ptr = (unsigned long)(ei + 1); 2933 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2934 2935 /* No inline ref items of any kind, can't check type. */ 2936 if (ptr == end) 2937 return 0; 2938 2939 iref = (struct btrfs_extent_inline_ref *)ptr; 2940 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2941 2942 /* We found an owner ref, get the root out of it. */ 2943 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2944 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2945 return btrfs_extent_owner_ref_root_id(leaf, oref); 2946 } 2947 2948 /* We have inline refs, but not an owner ref. */ 2949 return 0; 2950 } 2951 2952 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2953 u64 bytenr, struct btrfs_squota_delta *delta) 2954 { 2955 int ret; 2956 u64 num_bytes = delta->num_bytes; 2957 2958 if (delta->is_data) { 2959 struct btrfs_root *csum_root; 2960 2961 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2962 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2963 if (ret) { 2964 btrfs_abort_transaction(trans, ret); 2965 return ret; 2966 } 2967 2968 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2969 if (ret) { 2970 btrfs_abort_transaction(trans, ret); 2971 return ret; 2972 } 2973 } 2974 2975 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2976 if (ret) { 2977 btrfs_abort_transaction(trans, ret); 2978 return ret; 2979 } 2980 2981 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2982 if (ret) { 2983 btrfs_abort_transaction(trans, ret); 2984 return ret; 2985 } 2986 2987 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2988 if (ret) 2989 btrfs_abort_transaction(trans, ret); 2990 2991 return ret; 2992 } 2993 2994 #define abort_and_dump(trans, path, fmt, args...) \ 2995 ({ \ 2996 btrfs_abort_transaction(trans, -EUCLEAN); \ 2997 btrfs_print_leaf(path->nodes[0]); \ 2998 btrfs_crit(trans->fs_info, fmt, ##args); \ 2999 }) 3000 3001 /* 3002 * Drop one or more refs of @node. 3003 * 3004 * 1. Locate the extent refs. 3005 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3006 * Locate it, then reduce the refs number or remove the ref line completely. 3007 * 3008 * 2. Update the refs count in EXTENT/METADATA_ITEM 3009 * 3010 * Inline backref case: 3011 * 3012 * in extent tree we have: 3013 * 3014 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3015 * refs 2 gen 6 flags DATA 3016 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3017 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3018 * 3019 * This function gets called with: 3020 * 3021 * node->bytenr = 13631488 3022 * node->num_bytes = 1048576 3023 * root_objectid = FS_TREE 3024 * owner_objectid = 257 3025 * owner_offset = 0 3026 * refs_to_drop = 1 3027 * 3028 * Then we should get some like: 3029 * 3030 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3031 * refs 1 gen 6 flags DATA 3032 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3033 * 3034 * Keyed backref case: 3035 * 3036 * in extent tree we have: 3037 * 3038 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3039 * refs 754 gen 6 flags DATA 3040 * [...] 3041 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3042 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3043 * 3044 * This function get called with: 3045 * 3046 * node->bytenr = 13631488 3047 * node->num_bytes = 1048576 3048 * root_objectid = FS_TREE 3049 * owner_objectid = 866 3050 * owner_offset = 0 3051 * refs_to_drop = 1 3052 * 3053 * Then we should get some like: 3054 * 3055 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3056 * refs 753 gen 6 flags DATA 3057 * 3058 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3059 */ 3060 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3061 struct btrfs_delayed_ref_head *href, 3062 struct btrfs_delayed_ref_node *node, u64 parent, 3063 u64 root_objectid, u64 owner_objectid, 3064 u64 owner_offset, 3065 struct btrfs_delayed_extent_op *extent_op) 3066 { 3067 struct btrfs_fs_info *info = trans->fs_info; 3068 struct btrfs_key key; 3069 struct btrfs_path *path; 3070 struct btrfs_root *extent_root; 3071 struct extent_buffer *leaf; 3072 struct btrfs_extent_item *ei; 3073 struct btrfs_extent_inline_ref *iref; 3074 int ret; 3075 int is_data; 3076 int extent_slot = 0; 3077 int found_extent = 0; 3078 int num_to_del = 1; 3079 int refs_to_drop = node->ref_mod; 3080 u32 item_size; 3081 u64 refs; 3082 u64 bytenr = node->bytenr; 3083 u64 num_bytes = node->num_bytes; 3084 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3085 u64 delayed_ref_root = href->owning_root; 3086 3087 extent_root = btrfs_extent_root(info, bytenr); 3088 ASSERT(extent_root); 3089 3090 path = btrfs_alloc_path(); 3091 if (!path) 3092 return -ENOMEM; 3093 3094 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3095 3096 if (!is_data && refs_to_drop != 1) { 3097 btrfs_crit(info, 3098 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3099 node->bytenr, refs_to_drop); 3100 ret = -EINVAL; 3101 btrfs_abort_transaction(trans, ret); 3102 goto out; 3103 } 3104 3105 if (is_data) 3106 skinny_metadata = false; 3107 3108 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3109 parent, root_objectid, owner_objectid, 3110 owner_offset); 3111 if (ret == 0) { 3112 /* 3113 * Either the inline backref or the SHARED_DATA_REF/ 3114 * SHARED_BLOCK_REF is found 3115 * 3116 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3117 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3118 */ 3119 extent_slot = path->slots[0]; 3120 while (extent_slot >= 0) { 3121 btrfs_item_key_to_cpu(path->nodes[0], &key, 3122 extent_slot); 3123 if (key.objectid != bytenr) 3124 break; 3125 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3126 key.offset == num_bytes) { 3127 found_extent = 1; 3128 break; 3129 } 3130 if (key.type == BTRFS_METADATA_ITEM_KEY && 3131 key.offset == owner_objectid) { 3132 found_extent = 1; 3133 break; 3134 } 3135 3136 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3137 if (path->slots[0] - extent_slot > 5) 3138 break; 3139 extent_slot--; 3140 } 3141 3142 if (!found_extent) { 3143 if (iref) { 3144 abort_and_dump(trans, path, 3145 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3146 path->slots[0]); 3147 ret = -EUCLEAN; 3148 goto out; 3149 } 3150 /* Must be SHARED_* item, remove the backref first */ 3151 ret = remove_extent_backref(trans, extent_root, path, 3152 NULL, refs_to_drop, is_data); 3153 if (ret) { 3154 btrfs_abort_transaction(trans, ret); 3155 goto out; 3156 } 3157 btrfs_release_path(path); 3158 3159 /* Slow path to locate EXTENT/METADATA_ITEM */ 3160 key.objectid = bytenr; 3161 key.type = BTRFS_EXTENT_ITEM_KEY; 3162 key.offset = num_bytes; 3163 3164 if (!is_data && skinny_metadata) { 3165 key.type = BTRFS_METADATA_ITEM_KEY; 3166 key.offset = owner_objectid; 3167 } 3168 3169 ret = btrfs_search_slot(trans, extent_root, 3170 &key, path, -1, 1); 3171 if (ret > 0 && skinny_metadata && path->slots[0]) { 3172 /* 3173 * Couldn't find our skinny metadata item, 3174 * see if we have ye olde extent item. 3175 */ 3176 path->slots[0]--; 3177 btrfs_item_key_to_cpu(path->nodes[0], &key, 3178 path->slots[0]); 3179 if (key.objectid == bytenr && 3180 key.type == BTRFS_EXTENT_ITEM_KEY && 3181 key.offset == num_bytes) 3182 ret = 0; 3183 } 3184 3185 if (ret > 0 && skinny_metadata) { 3186 skinny_metadata = false; 3187 key.objectid = bytenr; 3188 key.type = BTRFS_EXTENT_ITEM_KEY; 3189 key.offset = num_bytes; 3190 btrfs_release_path(path); 3191 ret = btrfs_search_slot(trans, extent_root, 3192 &key, path, -1, 1); 3193 } 3194 3195 if (ret) { 3196 if (ret > 0) 3197 btrfs_print_leaf(path->nodes[0]); 3198 btrfs_err(info, 3199 "umm, got %d back from search, was looking for %llu, slot %d", 3200 ret, bytenr, path->slots[0]); 3201 } 3202 if (ret < 0) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 extent_slot = path->slots[0]; 3207 } 3208 } else if (WARN_ON(ret == -ENOENT)) { 3209 abort_and_dump(trans, path, 3210 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3211 bytenr, parent, root_objectid, owner_objectid, 3212 owner_offset, path->slots[0]); 3213 goto out; 3214 } else { 3215 btrfs_abort_transaction(trans, ret); 3216 goto out; 3217 } 3218 3219 leaf = path->nodes[0]; 3220 item_size = btrfs_item_size(leaf, extent_slot); 3221 if (unlikely(item_size < sizeof(*ei))) { 3222 ret = -EUCLEAN; 3223 btrfs_err(trans->fs_info, 3224 "unexpected extent item size, has %u expect >= %zu", 3225 item_size, sizeof(*ei)); 3226 btrfs_abort_transaction(trans, ret); 3227 goto out; 3228 } 3229 ei = btrfs_item_ptr(leaf, extent_slot, 3230 struct btrfs_extent_item); 3231 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3232 key.type == BTRFS_EXTENT_ITEM_KEY) { 3233 struct btrfs_tree_block_info *bi; 3234 3235 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3236 abort_and_dump(trans, path, 3237 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3238 key.objectid, key.type, key.offset, 3239 path->slots[0], owner_objectid, item_size, 3240 sizeof(*ei) + sizeof(*bi)); 3241 ret = -EUCLEAN; 3242 goto out; 3243 } 3244 bi = (struct btrfs_tree_block_info *)(ei + 1); 3245 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3246 } 3247 3248 refs = btrfs_extent_refs(leaf, ei); 3249 if (refs < refs_to_drop) { 3250 abort_and_dump(trans, path, 3251 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3252 refs_to_drop, refs, bytenr, path->slots[0]); 3253 ret = -EUCLEAN; 3254 goto out; 3255 } 3256 refs -= refs_to_drop; 3257 3258 if (refs > 0) { 3259 if (extent_op) 3260 __run_delayed_extent_op(extent_op, leaf, ei); 3261 /* 3262 * In the case of inline back ref, reference count will 3263 * be updated by remove_extent_backref 3264 */ 3265 if (iref) { 3266 if (!found_extent) { 3267 abort_and_dump(trans, path, 3268 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3269 path->slots[0]); 3270 ret = -EUCLEAN; 3271 goto out; 3272 } 3273 } else { 3274 btrfs_set_extent_refs(leaf, ei, refs); 3275 btrfs_mark_buffer_dirty(trans, leaf); 3276 } 3277 if (found_extent) { 3278 ret = remove_extent_backref(trans, extent_root, path, 3279 iref, refs_to_drop, is_data); 3280 if (ret) { 3281 btrfs_abort_transaction(trans, ret); 3282 goto out; 3283 } 3284 } 3285 } else { 3286 struct btrfs_squota_delta delta = { 3287 .root = delayed_ref_root, 3288 .num_bytes = num_bytes, 3289 .rsv_bytes = 0, 3290 .is_data = is_data, 3291 .is_inc = false, 3292 .generation = btrfs_extent_generation(leaf, ei), 3293 }; 3294 3295 /* In this branch refs == 1 */ 3296 if (found_extent) { 3297 if (is_data && refs_to_drop != 3298 extent_data_ref_count(path, iref)) { 3299 abort_and_dump(trans, path, 3300 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3301 extent_data_ref_count(path, iref), 3302 refs_to_drop, path->slots[0]); 3303 ret = -EUCLEAN; 3304 goto out; 3305 } 3306 if (iref) { 3307 if (path->slots[0] != extent_slot) { 3308 abort_and_dump(trans, path, 3309 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3310 key.objectid, key.type, 3311 key.offset, path->slots[0]); 3312 ret = -EUCLEAN; 3313 goto out; 3314 } 3315 } else { 3316 /* 3317 * No inline ref, we must be at SHARED_* item, 3318 * And it's single ref, it must be: 3319 * | extent_slot ||extent_slot + 1| 3320 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3321 */ 3322 if (path->slots[0] != extent_slot + 1) { 3323 abort_and_dump(trans, path, 3324 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3325 path->slots[0]); 3326 ret = -EUCLEAN; 3327 goto out; 3328 } 3329 path->slots[0] = extent_slot; 3330 num_to_del = 2; 3331 } 3332 } 3333 /* 3334 * We can't infer the data owner from the delayed ref, so we need 3335 * to try to get it from the owning ref item. 3336 * 3337 * If it is not present, then that extent was not written under 3338 * simple quotas mode, so we don't need to account for its deletion. 3339 */ 3340 if (is_data) 3341 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3342 leaf, extent_slot); 3343 3344 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3345 num_to_del); 3346 if (ret) { 3347 btrfs_abort_transaction(trans, ret); 3348 goto out; 3349 } 3350 btrfs_release_path(path); 3351 3352 ret = do_free_extent_accounting(trans, bytenr, &delta); 3353 } 3354 btrfs_release_path(path); 3355 3356 out: 3357 btrfs_free_path(path); 3358 return ret; 3359 } 3360 3361 /* 3362 * when we free an block, it is possible (and likely) that we free the last 3363 * delayed ref for that extent as well. This searches the delayed ref tree for 3364 * a given extent, and if there are no other delayed refs to be processed, it 3365 * removes it from the tree. 3366 */ 3367 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3368 u64 bytenr) 3369 { 3370 struct btrfs_delayed_ref_head *head; 3371 struct btrfs_delayed_ref_root *delayed_refs; 3372 int ret = 0; 3373 3374 delayed_refs = &trans->transaction->delayed_refs; 3375 spin_lock(&delayed_refs->lock); 3376 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3377 if (!head) 3378 goto out_delayed_unlock; 3379 3380 spin_lock(&head->lock); 3381 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3382 goto out; 3383 3384 if (cleanup_extent_op(head) != NULL) 3385 goto out; 3386 3387 /* 3388 * waiting for the lock here would deadlock. If someone else has it 3389 * locked they are already in the process of dropping it anyway 3390 */ 3391 if (!mutex_trylock(&head->mutex)) 3392 goto out; 3393 3394 btrfs_delete_ref_head(delayed_refs, head); 3395 head->processing = false; 3396 3397 spin_unlock(&head->lock); 3398 spin_unlock(&delayed_refs->lock); 3399 3400 BUG_ON(head->extent_op); 3401 if (head->must_insert_reserved) 3402 ret = 1; 3403 3404 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3405 mutex_unlock(&head->mutex); 3406 btrfs_put_delayed_ref_head(head); 3407 return ret; 3408 out: 3409 spin_unlock(&head->lock); 3410 3411 out_delayed_unlock: 3412 spin_unlock(&delayed_refs->lock); 3413 return 0; 3414 } 3415 3416 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3417 u64 root_id, 3418 struct extent_buffer *buf, 3419 u64 parent, int last_ref) 3420 { 3421 struct btrfs_fs_info *fs_info = trans->fs_info; 3422 struct btrfs_ref generic_ref = { 0 }; 3423 int ret; 3424 3425 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3426 buf->start, buf->len, parent, btrfs_header_owner(buf)); 3427 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3428 root_id, 0, false); 3429 3430 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3431 btrfs_ref_tree_mod(fs_info, &generic_ref); 3432 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3433 BUG_ON(ret); /* -ENOMEM */ 3434 } 3435 3436 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3437 struct btrfs_block_group *cache; 3438 bool must_pin = false; 3439 3440 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3441 ret = check_ref_cleanup(trans, buf->start); 3442 if (!ret) { 3443 btrfs_redirty_list_add(trans->transaction, buf); 3444 goto out; 3445 } 3446 } 3447 3448 cache = btrfs_lookup_block_group(fs_info, buf->start); 3449 3450 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3451 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3452 btrfs_put_block_group(cache); 3453 goto out; 3454 } 3455 3456 /* 3457 * If there are tree mod log users we may have recorded mod log 3458 * operations for this node. If we re-allocate this node we 3459 * could replay operations on this node that happened when it 3460 * existed in a completely different root. For example if it 3461 * was part of root A, then was reallocated to root B, and we 3462 * are doing a btrfs_old_search_slot(root b), we could replay 3463 * operations that happened when the block was part of root A, 3464 * giving us an inconsistent view of the btree. 3465 * 3466 * We are safe from races here because at this point no other 3467 * node or root points to this extent buffer, so if after this 3468 * check a new tree mod log user joins we will not have an 3469 * existing log of operations on this node that we have to 3470 * contend with. 3471 */ 3472 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3473 must_pin = true; 3474 3475 if (must_pin || btrfs_is_zoned(fs_info)) { 3476 btrfs_redirty_list_add(trans->transaction, buf); 3477 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3478 btrfs_put_block_group(cache); 3479 goto out; 3480 } 3481 3482 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3483 3484 btrfs_add_free_space(cache, buf->start, buf->len); 3485 btrfs_free_reserved_bytes(cache, buf->len, 0); 3486 btrfs_put_block_group(cache); 3487 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3488 } 3489 out: 3490 if (last_ref) { 3491 /* 3492 * Deleting the buffer, clear the corrupt flag since it doesn't 3493 * matter anymore. 3494 */ 3495 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3496 } 3497 } 3498 3499 /* Can return -ENOMEM */ 3500 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3501 { 3502 struct btrfs_fs_info *fs_info = trans->fs_info; 3503 int ret; 3504 3505 if (btrfs_is_testing(fs_info)) 3506 return 0; 3507 3508 /* 3509 * tree log blocks never actually go into the extent allocation 3510 * tree, just update pinning info and exit early. 3511 */ 3512 if ((ref->type == BTRFS_REF_METADATA && 3513 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3514 (ref->type == BTRFS_REF_DATA && 3515 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3516 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3517 ret = 0; 3518 } else if (ref->type == BTRFS_REF_METADATA) { 3519 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3520 } else { 3521 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3522 } 3523 3524 if (!((ref->type == BTRFS_REF_METADATA && 3525 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3526 (ref->type == BTRFS_REF_DATA && 3527 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3528 btrfs_ref_tree_mod(fs_info, ref); 3529 3530 return ret; 3531 } 3532 3533 enum btrfs_loop_type { 3534 /* 3535 * Start caching block groups but do not wait for progress or for them 3536 * to be done. 3537 */ 3538 LOOP_CACHING_NOWAIT, 3539 3540 /* 3541 * Wait for the block group free_space >= the space we're waiting for if 3542 * the block group isn't cached. 3543 */ 3544 LOOP_CACHING_WAIT, 3545 3546 /* 3547 * Allow allocations to happen from block groups that do not yet have a 3548 * size classification. 3549 */ 3550 LOOP_UNSET_SIZE_CLASS, 3551 3552 /* 3553 * Allocate a chunk and then retry the allocation. 3554 */ 3555 LOOP_ALLOC_CHUNK, 3556 3557 /* 3558 * Ignore the size class restrictions for this allocation. 3559 */ 3560 LOOP_WRONG_SIZE_CLASS, 3561 3562 /* 3563 * Ignore the empty size, only try to allocate the number of bytes 3564 * needed for this allocation. 3565 */ 3566 LOOP_NO_EMPTY_SIZE, 3567 }; 3568 3569 static inline void 3570 btrfs_lock_block_group(struct btrfs_block_group *cache, 3571 int delalloc) 3572 { 3573 if (delalloc) 3574 down_read(&cache->data_rwsem); 3575 } 3576 3577 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3578 int delalloc) 3579 { 3580 btrfs_get_block_group(cache); 3581 if (delalloc) 3582 down_read(&cache->data_rwsem); 3583 } 3584 3585 static struct btrfs_block_group *btrfs_lock_cluster( 3586 struct btrfs_block_group *block_group, 3587 struct btrfs_free_cluster *cluster, 3588 int delalloc) 3589 __acquires(&cluster->refill_lock) 3590 { 3591 struct btrfs_block_group *used_bg = NULL; 3592 3593 spin_lock(&cluster->refill_lock); 3594 while (1) { 3595 used_bg = cluster->block_group; 3596 if (!used_bg) 3597 return NULL; 3598 3599 if (used_bg == block_group) 3600 return used_bg; 3601 3602 btrfs_get_block_group(used_bg); 3603 3604 if (!delalloc) 3605 return used_bg; 3606 3607 if (down_read_trylock(&used_bg->data_rwsem)) 3608 return used_bg; 3609 3610 spin_unlock(&cluster->refill_lock); 3611 3612 /* We should only have one-level nested. */ 3613 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3614 3615 spin_lock(&cluster->refill_lock); 3616 if (used_bg == cluster->block_group) 3617 return used_bg; 3618 3619 up_read(&used_bg->data_rwsem); 3620 btrfs_put_block_group(used_bg); 3621 } 3622 } 3623 3624 static inline void 3625 btrfs_release_block_group(struct btrfs_block_group *cache, 3626 int delalloc) 3627 { 3628 if (delalloc) 3629 up_read(&cache->data_rwsem); 3630 btrfs_put_block_group(cache); 3631 } 3632 3633 /* 3634 * Helper function for find_free_extent(). 3635 * 3636 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3637 * Return >0 to inform caller that we find nothing 3638 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3639 */ 3640 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3641 struct find_free_extent_ctl *ffe_ctl, 3642 struct btrfs_block_group **cluster_bg_ret) 3643 { 3644 struct btrfs_block_group *cluster_bg; 3645 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3646 u64 aligned_cluster; 3647 u64 offset; 3648 int ret; 3649 3650 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3651 if (!cluster_bg) 3652 goto refill_cluster; 3653 if (cluster_bg != bg && (cluster_bg->ro || 3654 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3655 goto release_cluster; 3656 3657 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3658 ffe_ctl->num_bytes, cluster_bg->start, 3659 &ffe_ctl->max_extent_size); 3660 if (offset) { 3661 /* We have a block, we're done */ 3662 spin_unlock(&last_ptr->refill_lock); 3663 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3664 *cluster_bg_ret = cluster_bg; 3665 ffe_ctl->found_offset = offset; 3666 return 0; 3667 } 3668 WARN_ON(last_ptr->block_group != cluster_bg); 3669 3670 release_cluster: 3671 /* 3672 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3673 * lets just skip it and let the allocator find whatever block it can 3674 * find. If we reach this point, we will have tried the cluster 3675 * allocator plenty of times and not have found anything, so we are 3676 * likely way too fragmented for the clustering stuff to find anything. 3677 * 3678 * However, if the cluster is taken from the current block group, 3679 * release the cluster first, so that we stand a better chance of 3680 * succeeding in the unclustered allocation. 3681 */ 3682 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3683 spin_unlock(&last_ptr->refill_lock); 3684 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3685 return -ENOENT; 3686 } 3687 3688 /* This cluster didn't work out, free it and start over */ 3689 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3690 3691 if (cluster_bg != bg) 3692 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3693 3694 refill_cluster: 3695 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3696 spin_unlock(&last_ptr->refill_lock); 3697 return -ENOENT; 3698 } 3699 3700 aligned_cluster = max_t(u64, 3701 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3702 bg->full_stripe_len); 3703 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3704 ffe_ctl->num_bytes, aligned_cluster); 3705 if (ret == 0) { 3706 /* Now pull our allocation out of this cluster */ 3707 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3708 ffe_ctl->num_bytes, ffe_ctl->search_start, 3709 &ffe_ctl->max_extent_size); 3710 if (offset) { 3711 /* We found one, proceed */ 3712 spin_unlock(&last_ptr->refill_lock); 3713 ffe_ctl->found_offset = offset; 3714 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3715 return 0; 3716 } 3717 } 3718 /* 3719 * At this point we either didn't find a cluster or we weren't able to 3720 * allocate a block from our cluster. Free the cluster we've been 3721 * trying to use, and go to the next block group. 3722 */ 3723 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3724 spin_unlock(&last_ptr->refill_lock); 3725 return 1; 3726 } 3727 3728 /* 3729 * Return >0 to inform caller that we find nothing 3730 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3731 */ 3732 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3733 struct find_free_extent_ctl *ffe_ctl) 3734 { 3735 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3736 u64 offset; 3737 3738 /* 3739 * We are doing an unclustered allocation, set the fragmented flag so 3740 * we don't bother trying to setup a cluster again until we get more 3741 * space. 3742 */ 3743 if (unlikely(last_ptr)) { 3744 spin_lock(&last_ptr->lock); 3745 last_ptr->fragmented = 1; 3746 spin_unlock(&last_ptr->lock); 3747 } 3748 if (ffe_ctl->cached) { 3749 struct btrfs_free_space_ctl *free_space_ctl; 3750 3751 free_space_ctl = bg->free_space_ctl; 3752 spin_lock(&free_space_ctl->tree_lock); 3753 if (free_space_ctl->free_space < 3754 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3755 ffe_ctl->empty_size) { 3756 ffe_ctl->total_free_space = max_t(u64, 3757 ffe_ctl->total_free_space, 3758 free_space_ctl->free_space); 3759 spin_unlock(&free_space_ctl->tree_lock); 3760 return 1; 3761 } 3762 spin_unlock(&free_space_ctl->tree_lock); 3763 } 3764 3765 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3766 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3767 &ffe_ctl->max_extent_size); 3768 if (!offset) 3769 return 1; 3770 ffe_ctl->found_offset = offset; 3771 return 0; 3772 } 3773 3774 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3775 struct find_free_extent_ctl *ffe_ctl, 3776 struct btrfs_block_group **bg_ret) 3777 { 3778 int ret; 3779 3780 /* We want to try and use the cluster allocator, so lets look there */ 3781 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3782 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3783 if (ret >= 0) 3784 return ret; 3785 /* ret == -ENOENT case falls through */ 3786 } 3787 3788 return find_free_extent_unclustered(block_group, ffe_ctl); 3789 } 3790 3791 /* 3792 * Tree-log block group locking 3793 * ============================ 3794 * 3795 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3796 * indicates the starting address of a block group, which is reserved only 3797 * for tree-log metadata. 3798 * 3799 * Lock nesting 3800 * ============ 3801 * 3802 * space_info::lock 3803 * block_group::lock 3804 * fs_info::treelog_bg_lock 3805 */ 3806 3807 /* 3808 * Simple allocator for sequential-only block group. It only allows sequential 3809 * allocation. No need to play with trees. This function also reserves the 3810 * bytes as in btrfs_add_reserved_bytes. 3811 */ 3812 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3813 struct find_free_extent_ctl *ffe_ctl, 3814 struct btrfs_block_group **bg_ret) 3815 { 3816 struct btrfs_fs_info *fs_info = block_group->fs_info; 3817 struct btrfs_space_info *space_info = block_group->space_info; 3818 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3819 u64 start = block_group->start; 3820 u64 num_bytes = ffe_ctl->num_bytes; 3821 u64 avail; 3822 u64 bytenr = block_group->start; 3823 u64 log_bytenr; 3824 u64 data_reloc_bytenr; 3825 int ret = 0; 3826 bool skip = false; 3827 3828 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3829 3830 /* 3831 * Do not allow non-tree-log blocks in the dedicated tree-log block 3832 * group, and vice versa. 3833 */ 3834 spin_lock(&fs_info->treelog_bg_lock); 3835 log_bytenr = fs_info->treelog_bg; 3836 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3837 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3838 skip = true; 3839 spin_unlock(&fs_info->treelog_bg_lock); 3840 if (skip) 3841 return 1; 3842 3843 /* 3844 * Do not allow non-relocation blocks in the dedicated relocation block 3845 * group, and vice versa. 3846 */ 3847 spin_lock(&fs_info->relocation_bg_lock); 3848 data_reloc_bytenr = fs_info->data_reloc_bg; 3849 if (data_reloc_bytenr && 3850 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3851 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3852 skip = true; 3853 spin_unlock(&fs_info->relocation_bg_lock); 3854 if (skip) 3855 return 1; 3856 3857 /* Check RO and no space case before trying to activate it */ 3858 spin_lock(&block_group->lock); 3859 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3860 ret = 1; 3861 /* 3862 * May need to clear fs_info->{treelog,data_reloc}_bg. 3863 * Return the error after taking the locks. 3864 */ 3865 } 3866 spin_unlock(&block_group->lock); 3867 3868 /* Metadata block group is activated at write time. */ 3869 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3870 !btrfs_zone_activate(block_group)) { 3871 ret = 1; 3872 /* 3873 * May need to clear fs_info->{treelog,data_reloc}_bg. 3874 * Return the error after taking the locks. 3875 */ 3876 } 3877 3878 spin_lock(&space_info->lock); 3879 spin_lock(&block_group->lock); 3880 spin_lock(&fs_info->treelog_bg_lock); 3881 spin_lock(&fs_info->relocation_bg_lock); 3882 3883 if (ret) 3884 goto out; 3885 3886 ASSERT(!ffe_ctl->for_treelog || 3887 block_group->start == fs_info->treelog_bg || 3888 fs_info->treelog_bg == 0); 3889 ASSERT(!ffe_ctl->for_data_reloc || 3890 block_group->start == fs_info->data_reloc_bg || 3891 fs_info->data_reloc_bg == 0); 3892 3893 if (block_group->ro || 3894 (!ffe_ctl->for_data_reloc && 3895 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3896 ret = 1; 3897 goto out; 3898 } 3899 3900 /* 3901 * Do not allow currently using block group to be tree-log dedicated 3902 * block group. 3903 */ 3904 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3905 (block_group->used || block_group->reserved)) { 3906 ret = 1; 3907 goto out; 3908 } 3909 3910 /* 3911 * Do not allow currently used block group to be the data relocation 3912 * dedicated block group. 3913 */ 3914 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3915 (block_group->used || block_group->reserved)) { 3916 ret = 1; 3917 goto out; 3918 } 3919 3920 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3921 avail = block_group->zone_capacity - block_group->alloc_offset; 3922 if (avail < num_bytes) { 3923 if (ffe_ctl->max_extent_size < avail) { 3924 /* 3925 * With sequential allocator, free space is always 3926 * contiguous 3927 */ 3928 ffe_ctl->max_extent_size = avail; 3929 ffe_ctl->total_free_space = avail; 3930 } 3931 ret = 1; 3932 goto out; 3933 } 3934 3935 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3936 fs_info->treelog_bg = block_group->start; 3937 3938 if (ffe_ctl->for_data_reloc) { 3939 if (!fs_info->data_reloc_bg) 3940 fs_info->data_reloc_bg = block_group->start; 3941 /* 3942 * Do not allow allocations from this block group, unless it is 3943 * for data relocation. Compared to increasing the ->ro, setting 3944 * the ->zoned_data_reloc_ongoing flag still allows nocow 3945 * writers to come in. See btrfs_inc_nocow_writers(). 3946 * 3947 * We need to disable an allocation to avoid an allocation of 3948 * regular (non-relocation data) extent. With mix of relocation 3949 * extents and regular extents, we can dispatch WRITE commands 3950 * (for relocation extents) and ZONE APPEND commands (for 3951 * regular extents) at the same time to the same zone, which 3952 * easily break the write pointer. 3953 * 3954 * Also, this flag avoids this block group to be zone finished. 3955 */ 3956 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3957 } 3958 3959 ffe_ctl->found_offset = start + block_group->alloc_offset; 3960 block_group->alloc_offset += num_bytes; 3961 spin_lock(&ctl->tree_lock); 3962 ctl->free_space -= num_bytes; 3963 spin_unlock(&ctl->tree_lock); 3964 3965 /* 3966 * We do not check if found_offset is aligned to stripesize. The 3967 * address is anyway rewritten when using zone append writing. 3968 */ 3969 3970 ffe_ctl->search_start = ffe_ctl->found_offset; 3971 3972 out: 3973 if (ret && ffe_ctl->for_treelog) 3974 fs_info->treelog_bg = 0; 3975 if (ret && ffe_ctl->for_data_reloc) 3976 fs_info->data_reloc_bg = 0; 3977 spin_unlock(&fs_info->relocation_bg_lock); 3978 spin_unlock(&fs_info->treelog_bg_lock); 3979 spin_unlock(&block_group->lock); 3980 spin_unlock(&space_info->lock); 3981 return ret; 3982 } 3983 3984 static int do_allocation(struct btrfs_block_group *block_group, 3985 struct find_free_extent_ctl *ffe_ctl, 3986 struct btrfs_block_group **bg_ret) 3987 { 3988 switch (ffe_ctl->policy) { 3989 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3990 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3991 case BTRFS_EXTENT_ALLOC_ZONED: 3992 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3993 default: 3994 BUG(); 3995 } 3996 } 3997 3998 static void release_block_group(struct btrfs_block_group *block_group, 3999 struct find_free_extent_ctl *ffe_ctl, 4000 int delalloc) 4001 { 4002 switch (ffe_ctl->policy) { 4003 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4004 ffe_ctl->retry_uncached = false; 4005 break; 4006 case BTRFS_EXTENT_ALLOC_ZONED: 4007 /* Nothing to do */ 4008 break; 4009 default: 4010 BUG(); 4011 } 4012 4013 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4014 ffe_ctl->index); 4015 btrfs_release_block_group(block_group, delalloc); 4016 } 4017 4018 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4019 struct btrfs_key *ins) 4020 { 4021 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4022 4023 if (!ffe_ctl->use_cluster && last_ptr) { 4024 spin_lock(&last_ptr->lock); 4025 last_ptr->window_start = ins->objectid; 4026 spin_unlock(&last_ptr->lock); 4027 } 4028 } 4029 4030 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4031 struct btrfs_key *ins) 4032 { 4033 switch (ffe_ctl->policy) { 4034 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4035 found_extent_clustered(ffe_ctl, ins); 4036 break; 4037 case BTRFS_EXTENT_ALLOC_ZONED: 4038 /* Nothing to do */ 4039 break; 4040 default: 4041 BUG(); 4042 } 4043 } 4044 4045 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4046 struct find_free_extent_ctl *ffe_ctl) 4047 { 4048 /* Block group's activeness is not a requirement for METADATA block groups. */ 4049 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4050 return 0; 4051 4052 /* If we can activate new zone, just allocate a chunk and use it */ 4053 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4054 return 0; 4055 4056 /* 4057 * We already reached the max active zones. Try to finish one block 4058 * group to make a room for a new block group. This is only possible 4059 * for a data block group because btrfs_zone_finish() may need to wait 4060 * for a running transaction which can cause a deadlock for metadata 4061 * allocation. 4062 */ 4063 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4064 int ret = btrfs_zone_finish_one_bg(fs_info); 4065 4066 if (ret == 1) 4067 return 0; 4068 else if (ret < 0) 4069 return ret; 4070 } 4071 4072 /* 4073 * If we have enough free space left in an already active block group 4074 * and we can't activate any other zone now, do not allow allocating a 4075 * new chunk and let find_free_extent() retry with a smaller size. 4076 */ 4077 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4078 return -ENOSPC; 4079 4080 /* 4081 * Even min_alloc_size is not left in any block groups. Since we cannot 4082 * activate a new block group, allocating it may not help. Let's tell a 4083 * caller to try again and hope it progress something by writing some 4084 * parts of the region. That is only possible for data block groups, 4085 * where a part of the region can be written. 4086 */ 4087 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4088 return -EAGAIN; 4089 4090 /* 4091 * We cannot activate a new block group and no enough space left in any 4092 * block groups. So, allocating a new block group may not help. But, 4093 * there is nothing to do anyway, so let's go with it. 4094 */ 4095 return 0; 4096 } 4097 4098 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4099 struct find_free_extent_ctl *ffe_ctl) 4100 { 4101 switch (ffe_ctl->policy) { 4102 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4103 return 0; 4104 case BTRFS_EXTENT_ALLOC_ZONED: 4105 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4106 default: 4107 BUG(); 4108 } 4109 } 4110 4111 /* 4112 * Return >0 means caller needs to re-search for free extent 4113 * Return 0 means we have the needed free extent. 4114 * Return <0 means we failed to locate any free extent. 4115 */ 4116 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4117 struct btrfs_key *ins, 4118 struct find_free_extent_ctl *ffe_ctl, 4119 bool full_search) 4120 { 4121 struct btrfs_root *root = fs_info->chunk_root; 4122 int ret; 4123 4124 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4125 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4126 ffe_ctl->orig_have_caching_bg = true; 4127 4128 if (ins->objectid) { 4129 found_extent(ffe_ctl, ins); 4130 return 0; 4131 } 4132 4133 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4134 return 1; 4135 4136 ffe_ctl->index++; 4137 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4138 return 1; 4139 4140 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4141 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4142 ffe_ctl->index = 0; 4143 /* 4144 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4145 * any uncached bgs and we've already done a full search 4146 * through. 4147 */ 4148 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4149 (!ffe_ctl->orig_have_caching_bg && full_search)) 4150 ffe_ctl->loop++; 4151 ffe_ctl->loop++; 4152 4153 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4154 struct btrfs_trans_handle *trans; 4155 int exist = 0; 4156 4157 /* Check if allocation policy allows to create a new chunk */ 4158 ret = can_allocate_chunk(fs_info, ffe_ctl); 4159 if (ret) 4160 return ret; 4161 4162 trans = current->journal_info; 4163 if (trans) 4164 exist = 1; 4165 else 4166 trans = btrfs_join_transaction(root); 4167 4168 if (IS_ERR(trans)) { 4169 ret = PTR_ERR(trans); 4170 return ret; 4171 } 4172 4173 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4174 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4175 4176 /* Do not bail out on ENOSPC since we can do more. */ 4177 if (ret == -ENOSPC) { 4178 ret = 0; 4179 ffe_ctl->loop++; 4180 } 4181 else if (ret < 0) 4182 btrfs_abort_transaction(trans, ret); 4183 else 4184 ret = 0; 4185 if (!exist) 4186 btrfs_end_transaction(trans); 4187 if (ret) 4188 return ret; 4189 } 4190 4191 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4192 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4193 return -ENOSPC; 4194 4195 /* 4196 * Don't loop again if we already have no empty_size and 4197 * no empty_cluster. 4198 */ 4199 if (ffe_ctl->empty_size == 0 && 4200 ffe_ctl->empty_cluster == 0) 4201 return -ENOSPC; 4202 ffe_ctl->empty_size = 0; 4203 ffe_ctl->empty_cluster = 0; 4204 } 4205 return 1; 4206 } 4207 return -ENOSPC; 4208 } 4209 4210 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4211 struct btrfs_block_group *bg) 4212 { 4213 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4214 return true; 4215 if (!btrfs_block_group_should_use_size_class(bg)) 4216 return true; 4217 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4218 return true; 4219 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4220 bg->size_class == BTRFS_BG_SZ_NONE) 4221 return true; 4222 return ffe_ctl->size_class == bg->size_class; 4223 } 4224 4225 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4226 struct find_free_extent_ctl *ffe_ctl, 4227 struct btrfs_space_info *space_info, 4228 struct btrfs_key *ins) 4229 { 4230 /* 4231 * If our free space is heavily fragmented we may not be able to make 4232 * big contiguous allocations, so instead of doing the expensive search 4233 * for free space, simply return ENOSPC with our max_extent_size so we 4234 * can go ahead and search for a more manageable chunk. 4235 * 4236 * If our max_extent_size is large enough for our allocation simply 4237 * disable clustering since we will likely not be able to find enough 4238 * space to create a cluster and induce latency trying. 4239 */ 4240 if (space_info->max_extent_size) { 4241 spin_lock(&space_info->lock); 4242 if (space_info->max_extent_size && 4243 ffe_ctl->num_bytes > space_info->max_extent_size) { 4244 ins->offset = space_info->max_extent_size; 4245 spin_unlock(&space_info->lock); 4246 return -ENOSPC; 4247 } else if (space_info->max_extent_size) { 4248 ffe_ctl->use_cluster = false; 4249 } 4250 spin_unlock(&space_info->lock); 4251 } 4252 4253 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4254 &ffe_ctl->empty_cluster); 4255 if (ffe_ctl->last_ptr) { 4256 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4257 4258 spin_lock(&last_ptr->lock); 4259 if (last_ptr->block_group) 4260 ffe_ctl->hint_byte = last_ptr->window_start; 4261 if (last_ptr->fragmented) { 4262 /* 4263 * We still set window_start so we can keep track of the 4264 * last place we found an allocation to try and save 4265 * some time. 4266 */ 4267 ffe_ctl->hint_byte = last_ptr->window_start; 4268 ffe_ctl->use_cluster = false; 4269 } 4270 spin_unlock(&last_ptr->lock); 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4277 struct find_free_extent_ctl *ffe_ctl, 4278 struct btrfs_space_info *space_info, 4279 struct btrfs_key *ins) 4280 { 4281 switch (ffe_ctl->policy) { 4282 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4283 return prepare_allocation_clustered(fs_info, ffe_ctl, 4284 space_info, ins); 4285 case BTRFS_EXTENT_ALLOC_ZONED: 4286 if (ffe_ctl->for_treelog) { 4287 spin_lock(&fs_info->treelog_bg_lock); 4288 if (fs_info->treelog_bg) 4289 ffe_ctl->hint_byte = fs_info->treelog_bg; 4290 spin_unlock(&fs_info->treelog_bg_lock); 4291 } 4292 if (ffe_ctl->for_data_reloc) { 4293 spin_lock(&fs_info->relocation_bg_lock); 4294 if (fs_info->data_reloc_bg) 4295 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4296 spin_unlock(&fs_info->relocation_bg_lock); 4297 } 4298 return 0; 4299 default: 4300 BUG(); 4301 } 4302 } 4303 4304 /* 4305 * walks the btree of allocated extents and find a hole of a given size. 4306 * The key ins is changed to record the hole: 4307 * ins->objectid == start position 4308 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4309 * ins->offset == the size of the hole. 4310 * Any available blocks before search_start are skipped. 4311 * 4312 * If there is no suitable free space, we will record the max size of 4313 * the free space extent currently. 4314 * 4315 * The overall logic and call chain: 4316 * 4317 * find_free_extent() 4318 * |- Iterate through all block groups 4319 * | |- Get a valid block group 4320 * | |- Try to do clustered allocation in that block group 4321 * | |- Try to do unclustered allocation in that block group 4322 * | |- Check if the result is valid 4323 * | | |- If valid, then exit 4324 * | |- Jump to next block group 4325 * | 4326 * |- Push harder to find free extents 4327 * |- If not found, re-iterate all block groups 4328 */ 4329 static noinline int find_free_extent(struct btrfs_root *root, 4330 struct btrfs_key *ins, 4331 struct find_free_extent_ctl *ffe_ctl) 4332 { 4333 struct btrfs_fs_info *fs_info = root->fs_info; 4334 int ret = 0; 4335 int cache_block_group_error = 0; 4336 struct btrfs_block_group *block_group = NULL; 4337 struct btrfs_space_info *space_info; 4338 bool full_search = false; 4339 4340 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4341 4342 ffe_ctl->search_start = 0; 4343 /* For clustered allocation */ 4344 ffe_ctl->empty_cluster = 0; 4345 ffe_ctl->last_ptr = NULL; 4346 ffe_ctl->use_cluster = true; 4347 ffe_ctl->have_caching_bg = false; 4348 ffe_ctl->orig_have_caching_bg = false; 4349 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4350 ffe_ctl->loop = 0; 4351 ffe_ctl->retry_uncached = false; 4352 ffe_ctl->cached = 0; 4353 ffe_ctl->max_extent_size = 0; 4354 ffe_ctl->total_free_space = 0; 4355 ffe_ctl->found_offset = 0; 4356 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4357 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4358 4359 if (btrfs_is_zoned(fs_info)) 4360 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4361 4362 ins->type = BTRFS_EXTENT_ITEM_KEY; 4363 ins->objectid = 0; 4364 ins->offset = 0; 4365 4366 trace_find_free_extent(root, ffe_ctl); 4367 4368 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4369 if (!space_info) { 4370 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4371 return -ENOSPC; 4372 } 4373 4374 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4375 if (ret < 0) 4376 return ret; 4377 4378 ffe_ctl->search_start = max(ffe_ctl->search_start, 4379 first_logical_byte(fs_info)); 4380 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4381 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4382 block_group = btrfs_lookup_block_group(fs_info, 4383 ffe_ctl->search_start); 4384 /* 4385 * we don't want to use the block group if it doesn't match our 4386 * allocation bits, or if its not cached. 4387 * 4388 * However if we are re-searching with an ideal block group 4389 * picked out then we don't care that the block group is cached. 4390 */ 4391 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4392 block_group->cached != BTRFS_CACHE_NO) { 4393 down_read(&space_info->groups_sem); 4394 if (list_empty(&block_group->list) || 4395 block_group->ro) { 4396 /* 4397 * someone is removing this block group, 4398 * we can't jump into the have_block_group 4399 * target because our list pointers are not 4400 * valid 4401 */ 4402 btrfs_put_block_group(block_group); 4403 up_read(&space_info->groups_sem); 4404 } else { 4405 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4406 block_group->flags); 4407 btrfs_lock_block_group(block_group, 4408 ffe_ctl->delalloc); 4409 ffe_ctl->hinted = true; 4410 goto have_block_group; 4411 } 4412 } else if (block_group) { 4413 btrfs_put_block_group(block_group); 4414 } 4415 } 4416 search: 4417 trace_find_free_extent_search_loop(root, ffe_ctl); 4418 ffe_ctl->have_caching_bg = false; 4419 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4420 ffe_ctl->index == 0) 4421 full_search = true; 4422 down_read(&space_info->groups_sem); 4423 list_for_each_entry(block_group, 4424 &space_info->block_groups[ffe_ctl->index], list) { 4425 struct btrfs_block_group *bg_ret; 4426 4427 ffe_ctl->hinted = false; 4428 /* If the block group is read-only, we can skip it entirely. */ 4429 if (unlikely(block_group->ro)) { 4430 if (ffe_ctl->for_treelog) 4431 btrfs_clear_treelog_bg(block_group); 4432 if (ffe_ctl->for_data_reloc) 4433 btrfs_clear_data_reloc_bg(block_group); 4434 continue; 4435 } 4436 4437 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4438 ffe_ctl->search_start = block_group->start; 4439 4440 /* 4441 * this can happen if we end up cycling through all the 4442 * raid types, but we want to make sure we only allocate 4443 * for the proper type. 4444 */ 4445 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4446 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4447 BTRFS_BLOCK_GROUP_RAID1_MASK | 4448 BTRFS_BLOCK_GROUP_RAID56_MASK | 4449 BTRFS_BLOCK_GROUP_RAID10; 4450 4451 /* 4452 * if they asked for extra copies and this block group 4453 * doesn't provide them, bail. This does allow us to 4454 * fill raid0 from raid1. 4455 */ 4456 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4457 goto loop; 4458 4459 /* 4460 * This block group has different flags than we want. 4461 * It's possible that we have MIXED_GROUP flag but no 4462 * block group is mixed. Just skip such block group. 4463 */ 4464 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4465 continue; 4466 } 4467 4468 have_block_group: 4469 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4470 ffe_ctl->cached = btrfs_block_group_done(block_group); 4471 if (unlikely(!ffe_ctl->cached)) { 4472 ffe_ctl->have_caching_bg = true; 4473 ret = btrfs_cache_block_group(block_group, false); 4474 4475 /* 4476 * If we get ENOMEM here or something else we want to 4477 * try other block groups, because it may not be fatal. 4478 * However if we can't find anything else we need to 4479 * save our return here so that we return the actual 4480 * error that caused problems, not ENOSPC. 4481 */ 4482 if (ret < 0) { 4483 if (!cache_block_group_error) 4484 cache_block_group_error = ret; 4485 ret = 0; 4486 goto loop; 4487 } 4488 ret = 0; 4489 } 4490 4491 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4492 if (!cache_block_group_error) 4493 cache_block_group_error = -EIO; 4494 goto loop; 4495 } 4496 4497 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4498 goto loop; 4499 4500 bg_ret = NULL; 4501 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4502 if (ret > 0) 4503 goto loop; 4504 4505 if (bg_ret && bg_ret != block_group) { 4506 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4507 block_group = bg_ret; 4508 } 4509 4510 /* Checks */ 4511 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4512 fs_info->stripesize); 4513 4514 /* move on to the next group */ 4515 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4516 block_group->start + block_group->length) { 4517 btrfs_add_free_space_unused(block_group, 4518 ffe_ctl->found_offset, 4519 ffe_ctl->num_bytes); 4520 goto loop; 4521 } 4522 4523 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4524 btrfs_add_free_space_unused(block_group, 4525 ffe_ctl->found_offset, 4526 ffe_ctl->search_start - ffe_ctl->found_offset); 4527 4528 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4529 ffe_ctl->num_bytes, 4530 ffe_ctl->delalloc, 4531 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4532 if (ret == -EAGAIN) { 4533 btrfs_add_free_space_unused(block_group, 4534 ffe_ctl->found_offset, 4535 ffe_ctl->num_bytes); 4536 goto loop; 4537 } 4538 btrfs_inc_block_group_reservations(block_group); 4539 4540 /* we are all good, lets return */ 4541 ins->objectid = ffe_ctl->search_start; 4542 ins->offset = ffe_ctl->num_bytes; 4543 4544 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4545 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4546 break; 4547 loop: 4548 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4549 !ffe_ctl->retry_uncached) { 4550 ffe_ctl->retry_uncached = true; 4551 btrfs_wait_block_group_cache_progress(block_group, 4552 ffe_ctl->num_bytes + 4553 ffe_ctl->empty_cluster + 4554 ffe_ctl->empty_size); 4555 goto have_block_group; 4556 } 4557 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4558 cond_resched(); 4559 } 4560 up_read(&space_info->groups_sem); 4561 4562 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4563 if (ret > 0) 4564 goto search; 4565 4566 if (ret == -ENOSPC && !cache_block_group_error) { 4567 /* 4568 * Use ffe_ctl->total_free_space as fallback if we can't find 4569 * any contiguous hole. 4570 */ 4571 if (!ffe_ctl->max_extent_size) 4572 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4573 spin_lock(&space_info->lock); 4574 space_info->max_extent_size = ffe_ctl->max_extent_size; 4575 spin_unlock(&space_info->lock); 4576 ins->offset = ffe_ctl->max_extent_size; 4577 } else if (ret == -ENOSPC) { 4578 ret = cache_block_group_error; 4579 } 4580 return ret; 4581 } 4582 4583 /* 4584 * Entry point to the extent allocator. Tries to find a hole that is at least 4585 * as big as @num_bytes. 4586 * 4587 * @root - The root that will contain this extent 4588 * 4589 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4590 * is used for accounting purposes. This value differs 4591 * from @num_bytes only in the case of compressed extents. 4592 * 4593 * @num_bytes - Number of bytes to allocate on-disk. 4594 * 4595 * @min_alloc_size - Indicates the minimum amount of space that the 4596 * allocator should try to satisfy. In some cases 4597 * @num_bytes may be larger than what is required and if 4598 * the filesystem is fragmented then allocation fails. 4599 * However, the presence of @min_alloc_size gives a 4600 * chance to try and satisfy the smaller allocation. 4601 * 4602 * @empty_size - A hint that you plan on doing more COW. This is the 4603 * size in bytes the allocator should try to find free 4604 * next to the block it returns. This is just a hint and 4605 * may be ignored by the allocator. 4606 * 4607 * @hint_byte - Hint to the allocator to start searching above the byte 4608 * address passed. It might be ignored. 4609 * 4610 * @ins - This key is modified to record the found hole. It will 4611 * have the following values: 4612 * ins->objectid == start position 4613 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4614 * ins->offset == the size of the hole. 4615 * 4616 * @is_data - Boolean flag indicating whether an extent is 4617 * allocated for data (true) or metadata (false) 4618 * 4619 * @delalloc - Boolean flag indicating whether this allocation is for 4620 * delalloc or not. If 'true' data_rwsem of block groups 4621 * is going to be acquired. 4622 * 4623 * 4624 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4625 * case -ENOSPC is returned then @ins->offset will contain the size of the 4626 * largest available hole the allocator managed to find. 4627 */ 4628 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4629 u64 num_bytes, u64 min_alloc_size, 4630 u64 empty_size, u64 hint_byte, 4631 struct btrfs_key *ins, int is_data, int delalloc) 4632 { 4633 struct btrfs_fs_info *fs_info = root->fs_info; 4634 struct find_free_extent_ctl ffe_ctl = {}; 4635 bool final_tried = num_bytes == min_alloc_size; 4636 u64 flags; 4637 int ret; 4638 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4639 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4640 4641 flags = get_alloc_profile_by_root(root, is_data); 4642 again: 4643 WARN_ON(num_bytes < fs_info->sectorsize); 4644 4645 ffe_ctl.ram_bytes = ram_bytes; 4646 ffe_ctl.num_bytes = num_bytes; 4647 ffe_ctl.min_alloc_size = min_alloc_size; 4648 ffe_ctl.empty_size = empty_size; 4649 ffe_ctl.flags = flags; 4650 ffe_ctl.delalloc = delalloc; 4651 ffe_ctl.hint_byte = hint_byte; 4652 ffe_ctl.for_treelog = for_treelog; 4653 ffe_ctl.for_data_reloc = for_data_reloc; 4654 4655 ret = find_free_extent(root, ins, &ffe_ctl); 4656 if (!ret && !is_data) { 4657 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4658 } else if (ret == -ENOSPC) { 4659 if (!final_tried && ins->offset) { 4660 num_bytes = min(num_bytes >> 1, ins->offset); 4661 num_bytes = round_down(num_bytes, 4662 fs_info->sectorsize); 4663 num_bytes = max(num_bytes, min_alloc_size); 4664 ram_bytes = num_bytes; 4665 if (num_bytes == min_alloc_size) 4666 final_tried = true; 4667 goto again; 4668 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4669 struct btrfs_space_info *sinfo; 4670 4671 sinfo = btrfs_find_space_info(fs_info, flags); 4672 btrfs_err(fs_info, 4673 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4674 flags, num_bytes, for_treelog, for_data_reloc); 4675 if (sinfo) 4676 btrfs_dump_space_info(fs_info, sinfo, 4677 num_bytes, 1); 4678 } 4679 } 4680 4681 return ret; 4682 } 4683 4684 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4685 u64 start, u64 len, int delalloc) 4686 { 4687 struct btrfs_block_group *cache; 4688 4689 cache = btrfs_lookup_block_group(fs_info, start); 4690 if (!cache) { 4691 btrfs_err(fs_info, "Unable to find block group for %llu", 4692 start); 4693 return -ENOSPC; 4694 } 4695 4696 btrfs_add_free_space(cache, start, len); 4697 btrfs_free_reserved_bytes(cache, len, delalloc); 4698 trace_btrfs_reserved_extent_free(fs_info, start, len); 4699 4700 btrfs_put_block_group(cache); 4701 return 0; 4702 } 4703 4704 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4705 const struct extent_buffer *eb) 4706 { 4707 struct btrfs_block_group *cache; 4708 int ret = 0; 4709 4710 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4711 if (!cache) { 4712 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4713 eb->start); 4714 return -ENOSPC; 4715 } 4716 4717 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4718 btrfs_put_block_group(cache); 4719 return ret; 4720 } 4721 4722 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4723 u64 num_bytes) 4724 { 4725 struct btrfs_fs_info *fs_info = trans->fs_info; 4726 int ret; 4727 4728 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4729 if (ret) 4730 return ret; 4731 4732 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4733 if (ret) { 4734 ASSERT(!ret); 4735 btrfs_err(fs_info, "update block group failed for %llu %llu", 4736 bytenr, num_bytes); 4737 return ret; 4738 } 4739 4740 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4741 return 0; 4742 } 4743 4744 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4745 u64 parent, u64 root_objectid, 4746 u64 flags, u64 owner, u64 offset, 4747 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4748 { 4749 struct btrfs_fs_info *fs_info = trans->fs_info; 4750 struct btrfs_root *extent_root; 4751 int ret; 4752 struct btrfs_extent_item *extent_item; 4753 struct btrfs_extent_owner_ref *oref; 4754 struct btrfs_extent_inline_ref *iref; 4755 struct btrfs_path *path; 4756 struct extent_buffer *leaf; 4757 int type; 4758 u32 size; 4759 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4760 4761 if (parent > 0) 4762 type = BTRFS_SHARED_DATA_REF_KEY; 4763 else 4764 type = BTRFS_EXTENT_DATA_REF_KEY; 4765 4766 size = sizeof(*extent_item); 4767 if (simple_quota) 4768 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4769 size += btrfs_extent_inline_ref_size(type); 4770 4771 path = btrfs_alloc_path(); 4772 if (!path) 4773 return -ENOMEM; 4774 4775 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4776 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4777 if (ret) { 4778 btrfs_free_path(path); 4779 return ret; 4780 } 4781 4782 leaf = path->nodes[0]; 4783 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4784 struct btrfs_extent_item); 4785 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4786 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4787 btrfs_set_extent_flags(leaf, extent_item, 4788 flags | BTRFS_EXTENT_FLAG_DATA); 4789 4790 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4791 if (simple_quota) { 4792 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4793 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4794 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4795 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4796 } 4797 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4798 4799 if (parent > 0) { 4800 struct btrfs_shared_data_ref *ref; 4801 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4802 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4803 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4804 } else { 4805 struct btrfs_extent_data_ref *ref; 4806 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4807 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4808 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4809 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4810 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4811 } 4812 4813 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4814 btrfs_free_path(path); 4815 4816 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4817 } 4818 4819 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4820 struct btrfs_delayed_ref_node *node, 4821 struct btrfs_delayed_extent_op *extent_op) 4822 { 4823 struct btrfs_fs_info *fs_info = trans->fs_info; 4824 struct btrfs_root *extent_root; 4825 int ret; 4826 struct btrfs_extent_item *extent_item; 4827 struct btrfs_key extent_key; 4828 struct btrfs_tree_block_info *block_info; 4829 struct btrfs_extent_inline_ref *iref; 4830 struct btrfs_path *path; 4831 struct extent_buffer *leaf; 4832 struct btrfs_delayed_tree_ref *ref; 4833 u32 size = sizeof(*extent_item) + sizeof(*iref); 4834 u64 flags = extent_op->flags_to_set; 4835 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4836 4837 ref = btrfs_delayed_node_to_tree_ref(node); 4838 4839 extent_key.objectid = node->bytenr; 4840 if (skinny_metadata) { 4841 extent_key.offset = ref->level; 4842 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4843 } else { 4844 extent_key.offset = node->num_bytes; 4845 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4846 size += sizeof(*block_info); 4847 } 4848 4849 path = btrfs_alloc_path(); 4850 if (!path) 4851 return -ENOMEM; 4852 4853 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4854 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4855 size); 4856 if (ret) { 4857 btrfs_free_path(path); 4858 return ret; 4859 } 4860 4861 leaf = path->nodes[0]; 4862 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4863 struct btrfs_extent_item); 4864 btrfs_set_extent_refs(leaf, extent_item, 1); 4865 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4866 btrfs_set_extent_flags(leaf, extent_item, 4867 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4868 4869 if (skinny_metadata) { 4870 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4871 } else { 4872 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4873 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4874 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4875 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4876 } 4877 4878 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4879 btrfs_set_extent_inline_ref_type(leaf, iref, 4880 BTRFS_SHARED_BLOCK_REF_KEY); 4881 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4882 } else { 4883 btrfs_set_extent_inline_ref_type(leaf, iref, 4884 BTRFS_TREE_BLOCK_REF_KEY); 4885 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4886 } 4887 4888 btrfs_mark_buffer_dirty(trans, leaf); 4889 btrfs_free_path(path); 4890 4891 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4892 } 4893 4894 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4895 struct btrfs_root *root, u64 owner, 4896 u64 offset, u64 ram_bytes, 4897 struct btrfs_key *ins) 4898 { 4899 struct btrfs_ref generic_ref = { 0 }; 4900 u64 root_objectid = root->root_key.objectid; 4901 u64 owning_root = root_objectid; 4902 4903 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 4904 4905 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4906 owning_root = root->relocation_src_root; 4907 4908 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4909 ins->objectid, ins->offset, 0, owning_root); 4910 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4911 offset, 0, false); 4912 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4913 4914 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4915 } 4916 4917 /* 4918 * this is used by the tree logging recovery code. It records that 4919 * an extent has been allocated and makes sure to clear the free 4920 * space cache bits as well 4921 */ 4922 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4923 u64 root_objectid, u64 owner, u64 offset, 4924 struct btrfs_key *ins) 4925 { 4926 struct btrfs_fs_info *fs_info = trans->fs_info; 4927 int ret; 4928 struct btrfs_block_group *block_group; 4929 struct btrfs_space_info *space_info; 4930 struct btrfs_squota_delta delta = { 4931 .root = root_objectid, 4932 .num_bytes = ins->offset, 4933 .generation = trans->transid, 4934 .rsv_bytes = 0, 4935 .is_data = true, 4936 .is_inc = true, 4937 }; 4938 4939 /* 4940 * Mixed block groups will exclude before processing the log so we only 4941 * need to do the exclude dance if this fs isn't mixed. 4942 */ 4943 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4944 ret = __exclude_logged_extent(fs_info, ins->objectid, 4945 ins->offset); 4946 if (ret) 4947 return ret; 4948 } 4949 4950 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4951 if (!block_group) 4952 return -EINVAL; 4953 4954 space_info = block_group->space_info; 4955 spin_lock(&space_info->lock); 4956 spin_lock(&block_group->lock); 4957 space_info->bytes_reserved += ins->offset; 4958 block_group->reserved += ins->offset; 4959 spin_unlock(&block_group->lock); 4960 spin_unlock(&space_info->lock); 4961 4962 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4963 offset, ins, 1, root_objectid); 4964 if (ret) 4965 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4966 ret = btrfs_record_squota_delta(fs_info, &delta); 4967 btrfs_put_block_group(block_group); 4968 return ret; 4969 } 4970 4971 #ifdef CONFIG_BTRFS_DEBUG 4972 /* 4973 * Extra safety check in case the extent tree is corrupted and extent allocator 4974 * chooses to use a tree block which is already used and locked. 4975 */ 4976 static bool check_eb_lock_owner(const struct extent_buffer *eb) 4977 { 4978 if (eb->lock_owner == current->pid) { 4979 btrfs_err_rl(eb->fs_info, 4980 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4981 eb->start, btrfs_header_owner(eb), current->pid); 4982 return true; 4983 } 4984 return false; 4985 } 4986 #else 4987 static bool check_eb_lock_owner(struct extent_buffer *eb) 4988 { 4989 return false; 4990 } 4991 #endif 4992 4993 static struct extent_buffer * 4994 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4995 u64 bytenr, int level, u64 owner, 4996 enum btrfs_lock_nesting nest) 4997 { 4998 struct btrfs_fs_info *fs_info = root->fs_info; 4999 struct extent_buffer *buf; 5000 u64 lockdep_owner = owner; 5001 5002 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5003 if (IS_ERR(buf)) 5004 return buf; 5005 5006 if (check_eb_lock_owner(buf)) { 5007 free_extent_buffer(buf); 5008 return ERR_PTR(-EUCLEAN); 5009 } 5010 5011 /* 5012 * The reloc trees are just snapshots, so we need them to appear to be 5013 * just like any other fs tree WRT lockdep. 5014 * 5015 * The exception however is in replace_path() in relocation, where we 5016 * hold the lock on the original fs root and then search for the reloc 5017 * root. At that point we need to make sure any reloc root buffers are 5018 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5019 * lockdep happy. 5020 */ 5021 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5022 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5023 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5024 5025 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5026 btrfs_set_header_generation(buf, trans->transid); 5027 5028 /* 5029 * This needs to stay, because we could allocate a freed block from an 5030 * old tree into a new tree, so we need to make sure this new block is 5031 * set to the appropriate level and owner. 5032 */ 5033 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5034 5035 __btrfs_tree_lock(buf, nest); 5036 btrfs_clear_buffer_dirty(trans, buf); 5037 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5038 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 5039 5040 set_extent_buffer_uptodate(buf); 5041 5042 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5043 btrfs_set_header_level(buf, level); 5044 btrfs_set_header_bytenr(buf, buf->start); 5045 btrfs_set_header_generation(buf, trans->transid); 5046 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5047 btrfs_set_header_owner(buf, owner); 5048 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5049 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5050 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5051 buf->log_index = root->log_transid % 2; 5052 /* 5053 * we allow two log transactions at a time, use different 5054 * EXTENT bit to differentiate dirty pages. 5055 */ 5056 if (buf->log_index == 0) 5057 set_extent_bit(&root->dirty_log_pages, buf->start, 5058 buf->start + buf->len - 1, 5059 EXTENT_DIRTY, NULL); 5060 else 5061 set_extent_bit(&root->dirty_log_pages, buf->start, 5062 buf->start + buf->len - 1, 5063 EXTENT_NEW, NULL); 5064 } else { 5065 buf->log_index = -1; 5066 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5067 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5068 } 5069 /* this returns a buffer locked for blocking */ 5070 return buf; 5071 } 5072 5073 /* 5074 * finds a free extent and does all the dirty work required for allocation 5075 * returns the tree buffer or an ERR_PTR on error. 5076 */ 5077 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5078 struct btrfs_root *root, 5079 u64 parent, u64 root_objectid, 5080 const struct btrfs_disk_key *key, 5081 int level, u64 hint, 5082 u64 empty_size, 5083 u64 reloc_src_root, 5084 enum btrfs_lock_nesting nest) 5085 { 5086 struct btrfs_fs_info *fs_info = root->fs_info; 5087 struct btrfs_key ins; 5088 struct btrfs_block_rsv *block_rsv; 5089 struct extent_buffer *buf; 5090 struct btrfs_delayed_extent_op *extent_op; 5091 struct btrfs_ref generic_ref = { 0 }; 5092 u64 flags = 0; 5093 int ret; 5094 u32 blocksize = fs_info->nodesize; 5095 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5096 u64 owning_root; 5097 5098 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5099 if (btrfs_is_testing(fs_info)) { 5100 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5101 level, root_objectid, nest); 5102 if (!IS_ERR(buf)) 5103 root->alloc_bytenr += blocksize; 5104 return buf; 5105 } 5106 #endif 5107 5108 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5109 if (IS_ERR(block_rsv)) 5110 return ERR_CAST(block_rsv); 5111 5112 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5113 empty_size, hint, &ins, 0, 0); 5114 if (ret) 5115 goto out_unuse; 5116 5117 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5118 root_objectid, nest); 5119 if (IS_ERR(buf)) { 5120 ret = PTR_ERR(buf); 5121 goto out_free_reserved; 5122 } 5123 owning_root = btrfs_header_owner(buf); 5124 5125 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5126 if (parent == 0) 5127 parent = ins.objectid; 5128 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5129 owning_root = reloc_src_root; 5130 } else 5131 BUG_ON(parent > 0); 5132 5133 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5134 extent_op = btrfs_alloc_delayed_extent_op(); 5135 if (!extent_op) { 5136 ret = -ENOMEM; 5137 goto out_free_buf; 5138 } 5139 if (key) 5140 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5141 else 5142 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5143 extent_op->flags_to_set = flags; 5144 extent_op->update_key = skinny_metadata ? false : true; 5145 extent_op->update_flags = true; 5146 extent_op->level = level; 5147 5148 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5149 ins.objectid, ins.offset, parent, owning_root); 5150 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5151 root->root_key.objectid, false); 5152 btrfs_ref_tree_mod(fs_info, &generic_ref); 5153 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5154 if (ret) 5155 goto out_free_delayed; 5156 } 5157 return buf; 5158 5159 out_free_delayed: 5160 btrfs_free_delayed_extent_op(extent_op); 5161 out_free_buf: 5162 btrfs_tree_unlock(buf); 5163 free_extent_buffer(buf); 5164 out_free_reserved: 5165 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5166 out_unuse: 5167 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5168 return ERR_PTR(ret); 5169 } 5170 5171 struct walk_control { 5172 u64 refs[BTRFS_MAX_LEVEL]; 5173 u64 flags[BTRFS_MAX_LEVEL]; 5174 struct btrfs_key update_progress; 5175 struct btrfs_key drop_progress; 5176 int drop_level; 5177 int stage; 5178 int level; 5179 int shared_level; 5180 int update_ref; 5181 int keep_locks; 5182 int reada_slot; 5183 int reada_count; 5184 int restarted; 5185 }; 5186 5187 #define DROP_REFERENCE 1 5188 #define UPDATE_BACKREF 2 5189 5190 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5191 struct btrfs_root *root, 5192 struct walk_control *wc, 5193 struct btrfs_path *path) 5194 { 5195 struct btrfs_fs_info *fs_info = root->fs_info; 5196 u64 bytenr; 5197 u64 generation; 5198 u64 refs; 5199 u64 flags; 5200 u32 nritems; 5201 struct btrfs_key key; 5202 struct extent_buffer *eb; 5203 int ret; 5204 int slot; 5205 int nread = 0; 5206 5207 if (path->slots[wc->level] < wc->reada_slot) { 5208 wc->reada_count = wc->reada_count * 2 / 3; 5209 wc->reada_count = max(wc->reada_count, 2); 5210 } else { 5211 wc->reada_count = wc->reada_count * 3 / 2; 5212 wc->reada_count = min_t(int, wc->reada_count, 5213 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5214 } 5215 5216 eb = path->nodes[wc->level]; 5217 nritems = btrfs_header_nritems(eb); 5218 5219 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5220 if (nread >= wc->reada_count) 5221 break; 5222 5223 cond_resched(); 5224 bytenr = btrfs_node_blockptr(eb, slot); 5225 generation = btrfs_node_ptr_generation(eb, slot); 5226 5227 if (slot == path->slots[wc->level]) 5228 goto reada; 5229 5230 if (wc->stage == UPDATE_BACKREF && 5231 generation <= root->root_key.offset) 5232 continue; 5233 5234 /* We don't lock the tree block, it's OK to be racy here */ 5235 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5236 wc->level - 1, 1, &refs, 5237 &flags); 5238 /* We don't care about errors in readahead. */ 5239 if (ret < 0) 5240 continue; 5241 BUG_ON(refs == 0); 5242 5243 if (wc->stage == DROP_REFERENCE) { 5244 if (refs == 1) 5245 goto reada; 5246 5247 if (wc->level == 1 && 5248 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5249 continue; 5250 if (!wc->update_ref || 5251 generation <= root->root_key.offset) 5252 continue; 5253 btrfs_node_key_to_cpu(eb, &key, slot); 5254 ret = btrfs_comp_cpu_keys(&key, 5255 &wc->update_progress); 5256 if (ret < 0) 5257 continue; 5258 } else { 5259 if (wc->level == 1 && 5260 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5261 continue; 5262 } 5263 reada: 5264 btrfs_readahead_node_child(eb, slot); 5265 nread++; 5266 } 5267 wc->reada_slot = slot; 5268 } 5269 5270 /* 5271 * helper to process tree block while walking down the tree. 5272 * 5273 * when wc->stage == UPDATE_BACKREF, this function updates 5274 * back refs for pointers in the block. 5275 * 5276 * NOTE: return value 1 means we should stop walking down. 5277 */ 5278 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5279 struct btrfs_root *root, 5280 struct btrfs_path *path, 5281 struct walk_control *wc, int lookup_info) 5282 { 5283 struct btrfs_fs_info *fs_info = root->fs_info; 5284 int level = wc->level; 5285 struct extent_buffer *eb = path->nodes[level]; 5286 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5287 int ret; 5288 5289 if (wc->stage == UPDATE_BACKREF && 5290 btrfs_header_owner(eb) != root->root_key.objectid) 5291 return 1; 5292 5293 /* 5294 * when reference count of tree block is 1, it won't increase 5295 * again. once full backref flag is set, we never clear it. 5296 */ 5297 if (lookup_info && 5298 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5299 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5300 BUG_ON(!path->locks[level]); 5301 ret = btrfs_lookup_extent_info(trans, fs_info, 5302 eb->start, level, 1, 5303 &wc->refs[level], 5304 &wc->flags[level]); 5305 BUG_ON(ret == -ENOMEM); 5306 if (ret) 5307 return ret; 5308 BUG_ON(wc->refs[level] == 0); 5309 } 5310 5311 if (wc->stage == DROP_REFERENCE) { 5312 if (wc->refs[level] > 1) 5313 return 1; 5314 5315 if (path->locks[level] && !wc->keep_locks) { 5316 btrfs_tree_unlock_rw(eb, path->locks[level]); 5317 path->locks[level] = 0; 5318 } 5319 return 0; 5320 } 5321 5322 /* wc->stage == UPDATE_BACKREF */ 5323 if (!(wc->flags[level] & flag)) { 5324 BUG_ON(!path->locks[level]); 5325 ret = btrfs_inc_ref(trans, root, eb, 1); 5326 BUG_ON(ret); /* -ENOMEM */ 5327 ret = btrfs_dec_ref(trans, root, eb, 0); 5328 BUG_ON(ret); /* -ENOMEM */ 5329 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5330 BUG_ON(ret); /* -ENOMEM */ 5331 wc->flags[level] |= flag; 5332 } 5333 5334 /* 5335 * the block is shared by multiple trees, so it's not good to 5336 * keep the tree lock 5337 */ 5338 if (path->locks[level] && level > 0) { 5339 btrfs_tree_unlock_rw(eb, path->locks[level]); 5340 path->locks[level] = 0; 5341 } 5342 return 0; 5343 } 5344 5345 /* 5346 * This is used to verify a ref exists for this root to deal with a bug where we 5347 * would have a drop_progress key that hadn't been updated properly. 5348 */ 5349 static int check_ref_exists(struct btrfs_trans_handle *trans, 5350 struct btrfs_root *root, u64 bytenr, u64 parent, 5351 int level) 5352 { 5353 struct btrfs_path *path; 5354 struct btrfs_extent_inline_ref *iref; 5355 int ret; 5356 5357 path = btrfs_alloc_path(); 5358 if (!path) 5359 return -ENOMEM; 5360 5361 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5362 root->fs_info->nodesize, parent, 5363 root->root_key.objectid, level, 0); 5364 btrfs_free_path(path); 5365 if (ret == -ENOENT) 5366 return 0; 5367 if (ret < 0) 5368 return ret; 5369 return 1; 5370 } 5371 5372 /* 5373 * helper to process tree block pointer. 5374 * 5375 * when wc->stage == DROP_REFERENCE, this function checks 5376 * reference count of the block pointed to. if the block 5377 * is shared and we need update back refs for the subtree 5378 * rooted at the block, this function changes wc->stage to 5379 * UPDATE_BACKREF. if the block is shared and there is no 5380 * need to update back, this function drops the reference 5381 * to the block. 5382 * 5383 * NOTE: return value 1 means we should stop walking down. 5384 */ 5385 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5386 struct btrfs_root *root, 5387 struct btrfs_path *path, 5388 struct walk_control *wc, int *lookup_info) 5389 { 5390 struct btrfs_fs_info *fs_info = root->fs_info; 5391 u64 bytenr; 5392 u64 generation; 5393 u64 parent; 5394 struct btrfs_tree_parent_check check = { 0 }; 5395 struct btrfs_key key; 5396 struct btrfs_ref ref = { 0 }; 5397 struct extent_buffer *next; 5398 int level = wc->level; 5399 int reada = 0; 5400 int ret = 0; 5401 bool need_account = false; 5402 5403 generation = btrfs_node_ptr_generation(path->nodes[level], 5404 path->slots[level]); 5405 /* 5406 * if the lower level block was created before the snapshot 5407 * was created, we know there is no need to update back refs 5408 * for the subtree 5409 */ 5410 if (wc->stage == UPDATE_BACKREF && 5411 generation <= root->root_key.offset) { 5412 *lookup_info = 1; 5413 return 1; 5414 } 5415 5416 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5417 5418 check.level = level - 1; 5419 check.transid = generation; 5420 check.owner_root = root->root_key.objectid; 5421 check.has_first_key = true; 5422 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5423 path->slots[level]); 5424 5425 next = find_extent_buffer(fs_info, bytenr); 5426 if (!next) { 5427 next = btrfs_find_create_tree_block(fs_info, bytenr, 5428 root->root_key.objectid, level - 1); 5429 if (IS_ERR(next)) 5430 return PTR_ERR(next); 5431 reada = 1; 5432 } 5433 btrfs_tree_lock(next); 5434 5435 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5436 &wc->refs[level - 1], 5437 &wc->flags[level - 1]); 5438 if (ret < 0) 5439 goto out_unlock; 5440 5441 if (unlikely(wc->refs[level - 1] == 0)) { 5442 btrfs_err(fs_info, "Missing references."); 5443 ret = -EIO; 5444 goto out_unlock; 5445 } 5446 *lookup_info = 0; 5447 5448 if (wc->stage == DROP_REFERENCE) { 5449 if (wc->refs[level - 1] > 1) { 5450 need_account = true; 5451 if (level == 1 && 5452 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5453 goto skip; 5454 5455 if (!wc->update_ref || 5456 generation <= root->root_key.offset) 5457 goto skip; 5458 5459 btrfs_node_key_to_cpu(path->nodes[level], &key, 5460 path->slots[level]); 5461 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5462 if (ret < 0) 5463 goto skip; 5464 5465 wc->stage = UPDATE_BACKREF; 5466 wc->shared_level = level - 1; 5467 } 5468 } else { 5469 if (level == 1 && 5470 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5471 goto skip; 5472 } 5473 5474 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5475 btrfs_tree_unlock(next); 5476 free_extent_buffer(next); 5477 next = NULL; 5478 *lookup_info = 1; 5479 } 5480 5481 if (!next) { 5482 if (reada && level == 1) 5483 reada_walk_down(trans, root, wc, path); 5484 next = read_tree_block(fs_info, bytenr, &check); 5485 if (IS_ERR(next)) { 5486 return PTR_ERR(next); 5487 } else if (!extent_buffer_uptodate(next)) { 5488 free_extent_buffer(next); 5489 return -EIO; 5490 } 5491 btrfs_tree_lock(next); 5492 } 5493 5494 level--; 5495 ASSERT(level == btrfs_header_level(next)); 5496 if (level != btrfs_header_level(next)) { 5497 btrfs_err(root->fs_info, "mismatched level"); 5498 ret = -EIO; 5499 goto out_unlock; 5500 } 5501 path->nodes[level] = next; 5502 path->slots[level] = 0; 5503 path->locks[level] = BTRFS_WRITE_LOCK; 5504 wc->level = level; 5505 if (wc->level == 1) 5506 wc->reada_slot = 0; 5507 return 0; 5508 skip: 5509 wc->refs[level - 1] = 0; 5510 wc->flags[level - 1] = 0; 5511 if (wc->stage == DROP_REFERENCE) { 5512 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5513 parent = path->nodes[level]->start; 5514 } else { 5515 ASSERT(root->root_key.objectid == 5516 btrfs_header_owner(path->nodes[level])); 5517 if (root->root_key.objectid != 5518 btrfs_header_owner(path->nodes[level])) { 5519 btrfs_err(root->fs_info, 5520 "mismatched block owner"); 5521 ret = -EIO; 5522 goto out_unlock; 5523 } 5524 parent = 0; 5525 } 5526 5527 /* 5528 * If we had a drop_progress we need to verify the refs are set 5529 * as expected. If we find our ref then we know that from here 5530 * on out everything should be correct, and we can clear the 5531 * ->restarted flag. 5532 */ 5533 if (wc->restarted) { 5534 ret = check_ref_exists(trans, root, bytenr, parent, 5535 level - 1); 5536 if (ret < 0) 5537 goto out_unlock; 5538 if (ret == 0) 5539 goto no_delete; 5540 ret = 0; 5541 wc->restarted = 0; 5542 } 5543 5544 /* 5545 * Reloc tree doesn't contribute to qgroup numbers, and we have 5546 * already accounted them at merge time (replace_path), 5547 * thus we could skip expensive subtree trace here. 5548 */ 5549 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5550 need_account) { 5551 ret = btrfs_qgroup_trace_subtree(trans, next, 5552 generation, level - 1); 5553 if (ret) { 5554 btrfs_err_rl(fs_info, 5555 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5556 ret); 5557 } 5558 } 5559 5560 /* 5561 * We need to update the next key in our walk control so we can 5562 * update the drop_progress key accordingly. We don't care if 5563 * find_next_key doesn't find a key because that means we're at 5564 * the end and are going to clean up now. 5565 */ 5566 wc->drop_level = level; 5567 find_next_key(path, level, &wc->drop_progress); 5568 5569 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5570 fs_info->nodesize, parent, 5571 btrfs_header_owner(next)); 5572 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5573 0, false); 5574 ret = btrfs_free_extent(trans, &ref); 5575 if (ret) 5576 goto out_unlock; 5577 } 5578 no_delete: 5579 *lookup_info = 1; 5580 ret = 1; 5581 5582 out_unlock: 5583 btrfs_tree_unlock(next); 5584 free_extent_buffer(next); 5585 5586 return ret; 5587 } 5588 5589 /* 5590 * helper to process tree block while walking up the tree. 5591 * 5592 * when wc->stage == DROP_REFERENCE, this function drops 5593 * reference count on the block. 5594 * 5595 * when wc->stage == UPDATE_BACKREF, this function changes 5596 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5597 * to UPDATE_BACKREF previously while processing the block. 5598 * 5599 * NOTE: return value 1 means we should stop walking up. 5600 */ 5601 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5602 struct btrfs_root *root, 5603 struct btrfs_path *path, 5604 struct walk_control *wc) 5605 { 5606 struct btrfs_fs_info *fs_info = root->fs_info; 5607 int ret; 5608 int level = wc->level; 5609 struct extent_buffer *eb = path->nodes[level]; 5610 u64 parent = 0; 5611 5612 if (wc->stage == UPDATE_BACKREF) { 5613 BUG_ON(wc->shared_level < level); 5614 if (level < wc->shared_level) 5615 goto out; 5616 5617 ret = find_next_key(path, level + 1, &wc->update_progress); 5618 if (ret > 0) 5619 wc->update_ref = 0; 5620 5621 wc->stage = DROP_REFERENCE; 5622 wc->shared_level = -1; 5623 path->slots[level] = 0; 5624 5625 /* 5626 * check reference count again if the block isn't locked. 5627 * we should start walking down the tree again if reference 5628 * count is one. 5629 */ 5630 if (!path->locks[level]) { 5631 BUG_ON(level == 0); 5632 btrfs_tree_lock(eb); 5633 path->locks[level] = BTRFS_WRITE_LOCK; 5634 5635 ret = btrfs_lookup_extent_info(trans, fs_info, 5636 eb->start, level, 1, 5637 &wc->refs[level], 5638 &wc->flags[level]); 5639 if (ret < 0) { 5640 btrfs_tree_unlock_rw(eb, path->locks[level]); 5641 path->locks[level] = 0; 5642 return ret; 5643 } 5644 BUG_ON(wc->refs[level] == 0); 5645 if (wc->refs[level] == 1) { 5646 btrfs_tree_unlock_rw(eb, path->locks[level]); 5647 path->locks[level] = 0; 5648 return 1; 5649 } 5650 } 5651 } 5652 5653 /* wc->stage == DROP_REFERENCE */ 5654 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5655 5656 if (wc->refs[level] == 1) { 5657 if (level == 0) { 5658 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5659 ret = btrfs_dec_ref(trans, root, eb, 1); 5660 else 5661 ret = btrfs_dec_ref(trans, root, eb, 0); 5662 BUG_ON(ret); /* -ENOMEM */ 5663 if (is_fstree(root->root_key.objectid)) { 5664 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5665 if (ret) { 5666 btrfs_err_rl(fs_info, 5667 "error %d accounting leaf items, quota is out of sync, rescan required", 5668 ret); 5669 } 5670 } 5671 } 5672 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5673 if (!path->locks[level]) { 5674 btrfs_tree_lock(eb); 5675 path->locks[level] = BTRFS_WRITE_LOCK; 5676 } 5677 btrfs_clear_buffer_dirty(trans, eb); 5678 } 5679 5680 if (eb == root->node) { 5681 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5682 parent = eb->start; 5683 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5684 goto owner_mismatch; 5685 } else { 5686 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5687 parent = path->nodes[level + 1]->start; 5688 else if (root->root_key.objectid != 5689 btrfs_header_owner(path->nodes[level + 1])) 5690 goto owner_mismatch; 5691 } 5692 5693 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5694 wc->refs[level] == 1); 5695 out: 5696 wc->refs[level] = 0; 5697 wc->flags[level] = 0; 5698 return 0; 5699 5700 owner_mismatch: 5701 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5702 btrfs_header_owner(eb), root->root_key.objectid); 5703 return -EUCLEAN; 5704 } 5705 5706 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5707 struct btrfs_root *root, 5708 struct btrfs_path *path, 5709 struct walk_control *wc) 5710 { 5711 int level = wc->level; 5712 int lookup_info = 1; 5713 int ret = 0; 5714 5715 while (level >= 0) { 5716 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5717 if (ret) 5718 break; 5719 5720 if (level == 0) 5721 break; 5722 5723 if (path->slots[level] >= 5724 btrfs_header_nritems(path->nodes[level])) 5725 break; 5726 5727 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5728 if (ret > 0) { 5729 path->slots[level]++; 5730 continue; 5731 } else if (ret < 0) 5732 break; 5733 level = wc->level; 5734 } 5735 return (ret == 1) ? 0 : ret; 5736 } 5737 5738 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5739 struct btrfs_root *root, 5740 struct btrfs_path *path, 5741 struct walk_control *wc, int max_level) 5742 { 5743 int level = wc->level; 5744 int ret; 5745 5746 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5747 while (level < max_level && path->nodes[level]) { 5748 wc->level = level; 5749 if (path->slots[level] + 1 < 5750 btrfs_header_nritems(path->nodes[level])) { 5751 path->slots[level]++; 5752 return 0; 5753 } else { 5754 ret = walk_up_proc(trans, root, path, wc); 5755 if (ret > 0) 5756 return 0; 5757 if (ret < 0) 5758 return ret; 5759 5760 if (path->locks[level]) { 5761 btrfs_tree_unlock_rw(path->nodes[level], 5762 path->locks[level]); 5763 path->locks[level] = 0; 5764 } 5765 free_extent_buffer(path->nodes[level]); 5766 path->nodes[level] = NULL; 5767 level++; 5768 } 5769 } 5770 return 1; 5771 } 5772 5773 /* 5774 * drop a subvolume tree. 5775 * 5776 * this function traverses the tree freeing any blocks that only 5777 * referenced by the tree. 5778 * 5779 * when a shared tree block is found. this function decreases its 5780 * reference count by one. if update_ref is true, this function 5781 * also make sure backrefs for the shared block and all lower level 5782 * blocks are properly updated. 5783 * 5784 * If called with for_reloc == 0, may exit early with -EAGAIN 5785 */ 5786 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5787 { 5788 const bool is_reloc_root = (root->root_key.objectid == 5789 BTRFS_TREE_RELOC_OBJECTID); 5790 struct btrfs_fs_info *fs_info = root->fs_info; 5791 struct btrfs_path *path; 5792 struct btrfs_trans_handle *trans; 5793 struct btrfs_root *tree_root = fs_info->tree_root; 5794 struct btrfs_root_item *root_item = &root->root_item; 5795 struct walk_control *wc; 5796 struct btrfs_key key; 5797 int err = 0; 5798 int ret; 5799 int level; 5800 bool root_dropped = false; 5801 bool unfinished_drop = false; 5802 5803 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5804 5805 path = btrfs_alloc_path(); 5806 if (!path) { 5807 err = -ENOMEM; 5808 goto out; 5809 } 5810 5811 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5812 if (!wc) { 5813 btrfs_free_path(path); 5814 err = -ENOMEM; 5815 goto out; 5816 } 5817 5818 /* 5819 * Use join to avoid potential EINTR from transaction start. See 5820 * wait_reserve_ticket and the whole reservation callchain. 5821 */ 5822 if (for_reloc) 5823 trans = btrfs_join_transaction(tree_root); 5824 else 5825 trans = btrfs_start_transaction(tree_root, 0); 5826 if (IS_ERR(trans)) { 5827 err = PTR_ERR(trans); 5828 goto out_free; 5829 } 5830 5831 err = btrfs_run_delayed_items(trans); 5832 if (err) 5833 goto out_end_trans; 5834 5835 /* 5836 * This will help us catch people modifying the fs tree while we're 5837 * dropping it. It is unsafe to mess with the fs tree while it's being 5838 * dropped as we unlock the root node and parent nodes as we walk down 5839 * the tree, assuming nothing will change. If something does change 5840 * then we'll have stale information and drop references to blocks we've 5841 * already dropped. 5842 */ 5843 set_bit(BTRFS_ROOT_DELETING, &root->state); 5844 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5845 5846 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5847 level = btrfs_header_level(root->node); 5848 path->nodes[level] = btrfs_lock_root_node(root); 5849 path->slots[level] = 0; 5850 path->locks[level] = BTRFS_WRITE_LOCK; 5851 memset(&wc->update_progress, 0, 5852 sizeof(wc->update_progress)); 5853 } else { 5854 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5855 memcpy(&wc->update_progress, &key, 5856 sizeof(wc->update_progress)); 5857 5858 level = btrfs_root_drop_level(root_item); 5859 BUG_ON(level == 0); 5860 path->lowest_level = level; 5861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5862 path->lowest_level = 0; 5863 if (ret < 0) { 5864 err = ret; 5865 goto out_end_trans; 5866 } 5867 WARN_ON(ret > 0); 5868 5869 /* 5870 * unlock our path, this is safe because only this 5871 * function is allowed to delete this snapshot 5872 */ 5873 btrfs_unlock_up_safe(path, 0); 5874 5875 level = btrfs_header_level(root->node); 5876 while (1) { 5877 btrfs_tree_lock(path->nodes[level]); 5878 path->locks[level] = BTRFS_WRITE_LOCK; 5879 5880 ret = btrfs_lookup_extent_info(trans, fs_info, 5881 path->nodes[level]->start, 5882 level, 1, &wc->refs[level], 5883 &wc->flags[level]); 5884 if (ret < 0) { 5885 err = ret; 5886 goto out_end_trans; 5887 } 5888 BUG_ON(wc->refs[level] == 0); 5889 5890 if (level == btrfs_root_drop_level(root_item)) 5891 break; 5892 5893 btrfs_tree_unlock(path->nodes[level]); 5894 path->locks[level] = 0; 5895 WARN_ON(wc->refs[level] != 1); 5896 level--; 5897 } 5898 } 5899 5900 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5901 wc->level = level; 5902 wc->shared_level = -1; 5903 wc->stage = DROP_REFERENCE; 5904 wc->update_ref = update_ref; 5905 wc->keep_locks = 0; 5906 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5907 5908 while (1) { 5909 5910 ret = walk_down_tree(trans, root, path, wc); 5911 if (ret < 0) { 5912 btrfs_abort_transaction(trans, ret); 5913 err = ret; 5914 break; 5915 } 5916 5917 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5918 if (ret < 0) { 5919 btrfs_abort_transaction(trans, ret); 5920 err = ret; 5921 break; 5922 } 5923 5924 if (ret > 0) { 5925 BUG_ON(wc->stage != DROP_REFERENCE); 5926 break; 5927 } 5928 5929 if (wc->stage == DROP_REFERENCE) { 5930 wc->drop_level = wc->level; 5931 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5932 &wc->drop_progress, 5933 path->slots[wc->drop_level]); 5934 } 5935 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5936 &wc->drop_progress); 5937 btrfs_set_root_drop_level(root_item, wc->drop_level); 5938 5939 BUG_ON(wc->level == 0); 5940 if (btrfs_should_end_transaction(trans) || 5941 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5942 ret = btrfs_update_root(trans, tree_root, 5943 &root->root_key, 5944 root_item); 5945 if (ret) { 5946 btrfs_abort_transaction(trans, ret); 5947 err = ret; 5948 goto out_end_trans; 5949 } 5950 5951 if (!is_reloc_root) 5952 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5953 5954 btrfs_end_transaction_throttle(trans); 5955 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5956 btrfs_debug(fs_info, 5957 "drop snapshot early exit"); 5958 err = -EAGAIN; 5959 goto out_free; 5960 } 5961 5962 /* 5963 * Use join to avoid potential EINTR from transaction 5964 * start. See wait_reserve_ticket and the whole 5965 * reservation callchain. 5966 */ 5967 if (for_reloc) 5968 trans = btrfs_join_transaction(tree_root); 5969 else 5970 trans = btrfs_start_transaction(tree_root, 0); 5971 if (IS_ERR(trans)) { 5972 err = PTR_ERR(trans); 5973 goto out_free; 5974 } 5975 } 5976 } 5977 btrfs_release_path(path); 5978 if (err) 5979 goto out_end_trans; 5980 5981 ret = btrfs_del_root(trans, &root->root_key); 5982 if (ret) { 5983 btrfs_abort_transaction(trans, ret); 5984 err = ret; 5985 goto out_end_trans; 5986 } 5987 5988 if (!is_reloc_root) { 5989 ret = btrfs_find_root(tree_root, &root->root_key, path, 5990 NULL, NULL); 5991 if (ret < 0) { 5992 btrfs_abort_transaction(trans, ret); 5993 err = ret; 5994 goto out_end_trans; 5995 } else if (ret > 0) { 5996 /* if we fail to delete the orphan item this time 5997 * around, it'll get picked up the next time. 5998 * 5999 * The most common failure here is just -ENOENT. 6000 */ 6001 btrfs_del_orphan_item(trans, tree_root, 6002 root->root_key.objectid); 6003 } 6004 } 6005 6006 /* 6007 * This subvolume is going to be completely dropped, and won't be 6008 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6009 * commit transaction time. So free it here manually. 6010 */ 6011 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6012 btrfs_qgroup_free_meta_all_pertrans(root); 6013 6014 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6015 btrfs_add_dropped_root(trans, root); 6016 else 6017 btrfs_put_root(root); 6018 root_dropped = true; 6019 out_end_trans: 6020 if (!is_reloc_root) 6021 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6022 6023 btrfs_end_transaction_throttle(trans); 6024 out_free: 6025 kfree(wc); 6026 btrfs_free_path(path); 6027 out: 6028 /* 6029 * We were an unfinished drop root, check to see if there are any 6030 * pending, and if not clear and wake up any waiters. 6031 */ 6032 if (!err && unfinished_drop) 6033 btrfs_maybe_wake_unfinished_drop(fs_info); 6034 6035 /* 6036 * So if we need to stop dropping the snapshot for whatever reason we 6037 * need to make sure to add it back to the dead root list so that we 6038 * keep trying to do the work later. This also cleans up roots if we 6039 * don't have it in the radix (like when we recover after a power fail 6040 * or unmount) so we don't leak memory. 6041 */ 6042 if (!for_reloc && !root_dropped) 6043 btrfs_add_dead_root(root); 6044 return err; 6045 } 6046 6047 /* 6048 * drop subtree rooted at tree block 'node'. 6049 * 6050 * NOTE: this function will unlock and release tree block 'node' 6051 * only used by relocation code 6052 */ 6053 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6054 struct btrfs_root *root, 6055 struct extent_buffer *node, 6056 struct extent_buffer *parent) 6057 { 6058 struct btrfs_fs_info *fs_info = root->fs_info; 6059 struct btrfs_path *path; 6060 struct walk_control *wc; 6061 int level; 6062 int parent_level; 6063 int ret = 0; 6064 int wret; 6065 6066 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6067 6068 path = btrfs_alloc_path(); 6069 if (!path) 6070 return -ENOMEM; 6071 6072 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6073 if (!wc) { 6074 btrfs_free_path(path); 6075 return -ENOMEM; 6076 } 6077 6078 btrfs_assert_tree_write_locked(parent); 6079 parent_level = btrfs_header_level(parent); 6080 atomic_inc(&parent->refs); 6081 path->nodes[parent_level] = parent; 6082 path->slots[parent_level] = btrfs_header_nritems(parent); 6083 6084 btrfs_assert_tree_write_locked(node); 6085 level = btrfs_header_level(node); 6086 path->nodes[level] = node; 6087 path->slots[level] = 0; 6088 path->locks[level] = BTRFS_WRITE_LOCK; 6089 6090 wc->refs[parent_level] = 1; 6091 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6092 wc->level = level; 6093 wc->shared_level = -1; 6094 wc->stage = DROP_REFERENCE; 6095 wc->update_ref = 0; 6096 wc->keep_locks = 1; 6097 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6098 6099 while (1) { 6100 wret = walk_down_tree(trans, root, path, wc); 6101 if (wret < 0) { 6102 ret = wret; 6103 break; 6104 } 6105 6106 wret = walk_up_tree(trans, root, path, wc, parent_level); 6107 if (wret < 0) 6108 ret = wret; 6109 if (wret != 0) 6110 break; 6111 } 6112 6113 kfree(wc); 6114 btrfs_free_path(path); 6115 return ret; 6116 } 6117 6118 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6119 u64 start, u64 end) 6120 { 6121 return unpin_extent_range(fs_info, start, end, false); 6122 } 6123 6124 /* 6125 * It used to be that old block groups would be left around forever. 6126 * Iterating over them would be enough to trim unused space. Since we 6127 * now automatically remove them, we also need to iterate over unallocated 6128 * space. 6129 * 6130 * We don't want a transaction for this since the discard may take a 6131 * substantial amount of time. We don't require that a transaction be 6132 * running, but we do need to take a running transaction into account 6133 * to ensure that we're not discarding chunks that were released or 6134 * allocated in the current transaction. 6135 * 6136 * Holding the chunks lock will prevent other threads from allocating 6137 * or releasing chunks, but it won't prevent a running transaction 6138 * from committing and releasing the memory that the pending chunks 6139 * list head uses. For that, we need to take a reference to the 6140 * transaction and hold the commit root sem. We only need to hold 6141 * it while performing the free space search since we have already 6142 * held back allocations. 6143 */ 6144 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6145 { 6146 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6147 int ret; 6148 6149 *trimmed = 0; 6150 6151 /* Discard not supported = nothing to do. */ 6152 if (!bdev_max_discard_sectors(device->bdev)) 6153 return 0; 6154 6155 /* Not writable = nothing to do. */ 6156 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6157 return 0; 6158 6159 /* No free space = nothing to do. */ 6160 if (device->total_bytes <= device->bytes_used) 6161 return 0; 6162 6163 ret = 0; 6164 6165 while (1) { 6166 struct btrfs_fs_info *fs_info = device->fs_info; 6167 u64 bytes; 6168 6169 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6170 if (ret) 6171 break; 6172 6173 find_first_clear_extent_bit(&device->alloc_state, start, 6174 &start, &end, 6175 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6176 6177 /* Check if there are any CHUNK_* bits left */ 6178 if (start > device->total_bytes) { 6179 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6180 btrfs_warn_in_rcu(fs_info, 6181 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6182 start, end - start + 1, 6183 btrfs_dev_name(device), 6184 device->total_bytes); 6185 mutex_unlock(&fs_info->chunk_mutex); 6186 ret = 0; 6187 break; 6188 } 6189 6190 /* Ensure we skip the reserved space on each device. */ 6191 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6192 6193 /* 6194 * If find_first_clear_extent_bit find a range that spans the 6195 * end of the device it will set end to -1, in this case it's up 6196 * to the caller to trim the value to the size of the device. 6197 */ 6198 end = min(end, device->total_bytes - 1); 6199 6200 len = end - start + 1; 6201 6202 /* We didn't find any extents */ 6203 if (!len) { 6204 mutex_unlock(&fs_info->chunk_mutex); 6205 ret = 0; 6206 break; 6207 } 6208 6209 ret = btrfs_issue_discard(device->bdev, start, len, 6210 &bytes); 6211 if (!ret) 6212 set_extent_bit(&device->alloc_state, start, 6213 start + bytes - 1, CHUNK_TRIMMED, NULL); 6214 mutex_unlock(&fs_info->chunk_mutex); 6215 6216 if (ret) 6217 break; 6218 6219 start += len; 6220 *trimmed += bytes; 6221 6222 if (fatal_signal_pending(current)) { 6223 ret = -ERESTARTSYS; 6224 break; 6225 } 6226 6227 cond_resched(); 6228 } 6229 6230 return ret; 6231 } 6232 6233 /* 6234 * Trim the whole filesystem by: 6235 * 1) trimming the free space in each block group 6236 * 2) trimming the unallocated space on each device 6237 * 6238 * This will also continue trimming even if a block group or device encounters 6239 * an error. The return value will be the last error, or 0 if nothing bad 6240 * happens. 6241 */ 6242 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6243 { 6244 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6245 struct btrfs_block_group *cache = NULL; 6246 struct btrfs_device *device; 6247 u64 group_trimmed; 6248 u64 range_end = U64_MAX; 6249 u64 start; 6250 u64 end; 6251 u64 trimmed = 0; 6252 u64 bg_failed = 0; 6253 u64 dev_failed = 0; 6254 int bg_ret = 0; 6255 int dev_ret = 0; 6256 int ret = 0; 6257 6258 if (range->start == U64_MAX) 6259 return -EINVAL; 6260 6261 /* 6262 * Check range overflow if range->len is set. 6263 * The default range->len is U64_MAX. 6264 */ 6265 if (range->len != U64_MAX && 6266 check_add_overflow(range->start, range->len, &range_end)) 6267 return -EINVAL; 6268 6269 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6270 for (; cache; cache = btrfs_next_block_group(cache)) { 6271 if (cache->start >= range_end) { 6272 btrfs_put_block_group(cache); 6273 break; 6274 } 6275 6276 start = max(range->start, cache->start); 6277 end = min(range_end, cache->start + cache->length); 6278 6279 if (end - start >= range->minlen) { 6280 if (!btrfs_block_group_done(cache)) { 6281 ret = btrfs_cache_block_group(cache, true); 6282 if (ret) { 6283 bg_failed++; 6284 bg_ret = ret; 6285 continue; 6286 } 6287 } 6288 ret = btrfs_trim_block_group(cache, 6289 &group_trimmed, 6290 start, 6291 end, 6292 range->minlen); 6293 6294 trimmed += group_trimmed; 6295 if (ret) { 6296 bg_failed++; 6297 bg_ret = ret; 6298 continue; 6299 } 6300 } 6301 } 6302 6303 if (bg_failed) 6304 btrfs_warn(fs_info, 6305 "failed to trim %llu block group(s), last error %d", 6306 bg_failed, bg_ret); 6307 6308 mutex_lock(&fs_devices->device_list_mutex); 6309 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6310 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6311 continue; 6312 6313 ret = btrfs_trim_free_extents(device, &group_trimmed); 6314 if (ret) { 6315 dev_failed++; 6316 dev_ret = ret; 6317 break; 6318 } 6319 6320 trimmed += group_trimmed; 6321 } 6322 mutex_unlock(&fs_devices->device_list_mutex); 6323 6324 if (dev_failed) 6325 btrfs_warn(fs_info, 6326 "failed to trim %llu device(s), last error %d", 6327 dev_failed, dev_ret); 6328 range->len = trimmed; 6329 if (bg_ret) 6330 return bg_ret; 6331 return dev_ret; 6332 } 6333