1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 struct btrfs_delayed_ref_node *node, u64 parent, 50 u64 root_objectid, u64 owner_objectid, 51 u64 owner_offset, 52 struct btrfs_delayed_extent_op *extra_op); 53 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 54 struct extent_buffer *leaf, 55 struct btrfs_extent_item *ei); 56 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 57 u64 parent, u64 root_objectid, 58 u64 flags, u64 owner, u64 offset, 59 struct btrfs_key *ins, int ref_mod, u64 oref_root); 60 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 61 struct btrfs_delayed_ref_node *node, 62 struct btrfs_delayed_extent_op *extent_op); 63 static int find_next_key(struct btrfs_path *path, int level, 64 struct btrfs_key *key); 65 66 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 67 { 68 return (cache->flags & bits) == bits; 69 } 70 71 /* simple helper to search for an existing data extent at a given offset */ 72 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 73 { 74 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 75 int ret; 76 struct btrfs_key key; 77 struct btrfs_path *path; 78 79 path = btrfs_alloc_path(); 80 if (!path) 81 return -ENOMEM; 82 83 key.objectid = start; 84 key.offset = len; 85 key.type = BTRFS_EXTENT_ITEM_KEY; 86 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 87 btrfs_free_path(path); 88 return ret; 89 } 90 91 /* 92 * helper function to lookup reference count and flags of a tree block. 93 * 94 * the head node for delayed ref is used to store the sum of all the 95 * reference count modifications queued up in the rbtree. the head 96 * node may also store the extent flags to set. This way you can check 97 * to see what the reference count and extent flags would be if all of 98 * the delayed refs are not processed. 99 */ 100 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 101 struct btrfs_fs_info *fs_info, u64 bytenr, 102 u64 offset, int metadata, u64 *refs, u64 *flags, 103 u64 *owning_root) 104 { 105 struct btrfs_root *extent_root; 106 struct btrfs_delayed_ref_head *head; 107 struct btrfs_delayed_ref_root *delayed_refs; 108 struct btrfs_path *path; 109 struct btrfs_extent_item *ei; 110 struct extent_buffer *leaf; 111 struct btrfs_key key; 112 u32 item_size; 113 u64 num_refs; 114 u64 extent_flags; 115 u64 owner = 0; 116 int ret; 117 118 /* 119 * If we don't have skinny metadata, don't bother doing anything 120 * different 121 */ 122 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 123 offset = fs_info->nodesize; 124 metadata = 0; 125 } 126 127 path = btrfs_alloc_path(); 128 if (!path) 129 return -ENOMEM; 130 131 if (!trans) { 132 path->skip_locking = 1; 133 path->search_commit_root = 1; 134 } 135 136 search_again: 137 key.objectid = bytenr; 138 key.offset = offset; 139 if (metadata) 140 key.type = BTRFS_METADATA_ITEM_KEY; 141 else 142 key.type = BTRFS_EXTENT_ITEM_KEY; 143 144 extent_root = btrfs_extent_root(fs_info, bytenr); 145 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 146 if (ret < 0) 147 goto out_free; 148 149 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 150 if (path->slots[0]) { 151 path->slots[0]--; 152 btrfs_item_key_to_cpu(path->nodes[0], &key, 153 path->slots[0]); 154 if (key.objectid == bytenr && 155 key.type == BTRFS_EXTENT_ITEM_KEY && 156 key.offset == fs_info->nodesize) 157 ret = 0; 158 } 159 } 160 161 if (ret == 0) { 162 leaf = path->nodes[0]; 163 item_size = btrfs_item_size(leaf, path->slots[0]); 164 if (item_size >= sizeof(*ei)) { 165 ei = btrfs_item_ptr(leaf, path->slots[0], 166 struct btrfs_extent_item); 167 num_refs = btrfs_extent_refs(leaf, ei); 168 extent_flags = btrfs_extent_flags(leaf, ei); 169 owner = btrfs_get_extent_owner_root(fs_info, leaf, 170 path->slots[0]); 171 } else { 172 ret = -EUCLEAN; 173 btrfs_err(fs_info, 174 "unexpected extent item size, has %u expect >= %zu", 175 item_size, sizeof(*ei)); 176 if (trans) 177 btrfs_abort_transaction(trans, ret); 178 else 179 btrfs_handle_fs_error(fs_info, ret, NULL); 180 181 goto out_free; 182 } 183 184 BUG_ON(num_refs == 0); 185 } else { 186 num_refs = 0; 187 extent_flags = 0; 188 ret = 0; 189 } 190 191 if (!trans) 192 goto out; 193 194 delayed_refs = &trans->transaction->delayed_refs; 195 spin_lock(&delayed_refs->lock); 196 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 197 if (head) { 198 if (!mutex_trylock(&head->mutex)) { 199 refcount_inc(&head->refs); 200 spin_unlock(&delayed_refs->lock); 201 202 btrfs_release_path(path); 203 204 /* 205 * Mutex was contended, block until it's released and try 206 * again 207 */ 208 mutex_lock(&head->mutex); 209 mutex_unlock(&head->mutex); 210 btrfs_put_delayed_ref_head(head); 211 goto search_again; 212 } 213 spin_lock(&head->lock); 214 if (head->extent_op && head->extent_op->update_flags) 215 extent_flags |= head->extent_op->flags_to_set; 216 else 217 BUG_ON(num_refs == 0); 218 219 num_refs += head->ref_mod; 220 spin_unlock(&head->lock); 221 mutex_unlock(&head->mutex); 222 } 223 spin_unlock(&delayed_refs->lock); 224 out: 225 WARN_ON(num_refs == 0); 226 if (refs) 227 *refs = num_refs; 228 if (flags) 229 *flags = extent_flags; 230 if (owning_root) 231 *owning_root = owner; 232 out_free: 233 btrfs_free_path(path); 234 return ret; 235 } 236 237 /* 238 * Back reference rules. Back refs have three main goals: 239 * 240 * 1) differentiate between all holders of references to an extent so that 241 * when a reference is dropped we can make sure it was a valid reference 242 * before freeing the extent. 243 * 244 * 2) Provide enough information to quickly find the holders of an extent 245 * if we notice a given block is corrupted or bad. 246 * 247 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 248 * maintenance. This is actually the same as #2, but with a slightly 249 * different use case. 250 * 251 * There are two kinds of back refs. The implicit back refs is optimized 252 * for pointers in non-shared tree blocks. For a given pointer in a block, 253 * back refs of this kind provide information about the block's owner tree 254 * and the pointer's key. These information allow us to find the block by 255 * b-tree searching. The full back refs is for pointers in tree blocks not 256 * referenced by their owner trees. The location of tree block is recorded 257 * in the back refs. Actually the full back refs is generic, and can be 258 * used in all cases the implicit back refs is used. The major shortcoming 259 * of the full back refs is its overhead. Every time a tree block gets 260 * COWed, we have to update back refs entry for all pointers in it. 261 * 262 * For a newly allocated tree block, we use implicit back refs for 263 * pointers in it. This means most tree related operations only involve 264 * implicit back refs. For a tree block created in old transaction, the 265 * only way to drop a reference to it is COW it. So we can detect the 266 * event that tree block loses its owner tree's reference and do the 267 * back refs conversion. 268 * 269 * When a tree block is COWed through a tree, there are four cases: 270 * 271 * The reference count of the block is one and the tree is the block's 272 * owner tree. Nothing to do in this case. 273 * 274 * The reference count of the block is one and the tree is not the 275 * block's owner tree. In this case, full back refs is used for pointers 276 * in the block. Remove these full back refs, add implicit back refs for 277 * every pointers in the new block. 278 * 279 * The reference count of the block is greater than one and the tree is 280 * the block's owner tree. In this case, implicit back refs is used for 281 * pointers in the block. Add full back refs for every pointers in the 282 * block, increase lower level extents' reference counts. The original 283 * implicit back refs are entailed to the new block. 284 * 285 * The reference count of the block is greater than one and the tree is 286 * not the block's owner tree. Add implicit back refs for every pointer in 287 * the new block, increase lower level extents' reference count. 288 * 289 * Back Reference Key composing: 290 * 291 * The key objectid corresponds to the first byte in the extent, 292 * The key type is used to differentiate between types of back refs. 293 * There are different meanings of the key offset for different types 294 * of back refs. 295 * 296 * File extents can be referenced by: 297 * 298 * - multiple snapshots, subvolumes, or different generations in one subvol 299 * - different files inside a single subvolume 300 * - different offsets inside a file (bookend extents in file.c) 301 * 302 * The extent ref structure for the implicit back refs has fields for: 303 * 304 * - Objectid of the subvolume root 305 * - objectid of the file holding the reference 306 * - original offset in the file 307 * - how many bookend extents 308 * 309 * The key offset for the implicit back refs is hash of the first 310 * three fields. 311 * 312 * The extent ref structure for the full back refs has field for: 313 * 314 * - number of pointers in the tree leaf 315 * 316 * The key offset for the implicit back refs is the first byte of 317 * the tree leaf 318 * 319 * When a file extent is allocated, The implicit back refs is used. 320 * the fields are filled in: 321 * 322 * (root_key.objectid, inode objectid, offset in file, 1) 323 * 324 * When a file extent is removed file truncation, we find the 325 * corresponding implicit back refs and check the following fields: 326 * 327 * (btrfs_header_owner(leaf), inode objectid, offset in file) 328 * 329 * Btree extents can be referenced by: 330 * 331 * - Different subvolumes 332 * 333 * Both the implicit back refs and the full back refs for tree blocks 334 * only consist of key. The key offset for the implicit back refs is 335 * objectid of block's owner tree. The key offset for the full back refs 336 * is the first byte of parent block. 337 * 338 * When implicit back refs is used, information about the lowest key and 339 * level of the tree block are required. These information are stored in 340 * tree block info structure. 341 */ 342 343 /* 344 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 345 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 346 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 347 */ 348 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 349 struct btrfs_extent_inline_ref *iref, 350 enum btrfs_inline_ref_type is_data) 351 { 352 struct btrfs_fs_info *fs_info = eb->fs_info; 353 int type = btrfs_extent_inline_ref_type(eb, iref); 354 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 355 356 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 357 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 358 return type; 359 } 360 361 if (type == BTRFS_TREE_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_BLOCK_REF_KEY || 363 type == BTRFS_SHARED_DATA_REF_KEY || 364 type == BTRFS_EXTENT_DATA_REF_KEY) { 365 if (is_data == BTRFS_REF_TYPE_BLOCK) { 366 if (type == BTRFS_TREE_BLOCK_REF_KEY) 367 return type; 368 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 369 ASSERT(fs_info); 370 /* 371 * Every shared one has parent tree block, 372 * which must be aligned to sector size. 373 */ 374 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 WARN_ON(1); 397 btrfs_print_leaf(eb); 398 btrfs_err(fs_info, 399 "eb %llu iref 0x%lx invalid extent inline ref type %d", 400 eb->start, (unsigned long)iref, type); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(trans, leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_root *root, 597 struct btrfs_path *path, 598 int refs_to_drop) 599 { 600 struct btrfs_key key; 601 struct btrfs_extent_data_ref *ref1 = NULL; 602 struct btrfs_shared_data_ref *ref2 = NULL; 603 struct extent_buffer *leaf; 604 u32 num_refs = 0; 605 int ret = 0; 606 607 leaf = path->nodes[0]; 608 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 609 610 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 611 ref1 = btrfs_item_ptr(leaf, path->slots[0], 612 struct btrfs_extent_data_ref); 613 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 614 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 615 ref2 = btrfs_item_ptr(leaf, path->slots[0], 616 struct btrfs_shared_data_ref); 617 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 618 } else { 619 btrfs_err(trans->fs_info, 620 "unrecognized backref key (%llu %u %llu)", 621 key.objectid, key.type, key.offset); 622 btrfs_abort_transaction(trans, -EUCLEAN); 623 return -EUCLEAN; 624 } 625 626 BUG_ON(num_refs < refs_to_drop); 627 num_refs -= refs_to_drop; 628 629 if (num_refs == 0) { 630 ret = btrfs_del_item(trans, root, path); 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(trans, leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 if (iref) { 655 /* 656 * If type is invalid, we should have bailed out earlier than 657 * this call. 658 */ 659 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 660 ASSERT(type != BTRFS_REF_TYPE_INVALID); 661 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 662 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 663 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 664 } else { 665 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 666 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 667 } 668 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 669 ref1 = btrfs_item_ptr(leaf, path->slots[0], 670 struct btrfs_extent_data_ref); 671 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 672 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 673 ref2 = btrfs_item_ptr(leaf, path->slots[0], 674 struct btrfs_shared_data_ref); 675 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 676 } else { 677 WARN_ON(1); 678 } 679 return num_refs; 680 } 681 682 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 683 struct btrfs_path *path, 684 u64 bytenr, u64 parent, 685 u64 root_objectid) 686 { 687 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 688 struct btrfs_key key; 689 int ret; 690 691 key.objectid = bytenr; 692 if (parent) { 693 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 694 key.offset = parent; 695 } else { 696 key.type = BTRFS_TREE_BLOCK_REF_KEY; 697 key.offset = root_objectid; 698 } 699 700 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 701 if (ret > 0) 702 ret = -ENOENT; 703 return ret; 704 } 705 706 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 707 struct btrfs_path *path, 708 u64 bytenr, u64 parent, 709 u64 root_objectid) 710 { 711 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 725 btrfs_release_path(path); 726 return ret; 727 } 728 729 static inline int extent_ref_type(u64 parent, u64 owner) 730 { 731 int type; 732 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 733 if (parent > 0) 734 type = BTRFS_SHARED_BLOCK_REF_KEY; 735 else 736 type = BTRFS_TREE_BLOCK_REF_KEY; 737 } else { 738 if (parent > 0) 739 type = BTRFS_SHARED_DATA_REF_KEY; 740 else 741 type = BTRFS_EXTENT_DATA_REF_KEY; 742 } 743 return type; 744 } 745 746 static int find_next_key(struct btrfs_path *path, int level, 747 struct btrfs_key *key) 748 749 { 750 for (; level < BTRFS_MAX_LEVEL; level++) { 751 if (!path->nodes[level]) 752 break; 753 if (path->slots[level] + 1 >= 754 btrfs_header_nritems(path->nodes[level])) 755 continue; 756 if (level == 0) 757 btrfs_item_key_to_cpu(path->nodes[level], key, 758 path->slots[level] + 1); 759 else 760 btrfs_node_key_to_cpu(path->nodes[level], key, 761 path->slots[level] + 1); 762 return 0; 763 } 764 return 1; 765 } 766 767 /* 768 * look for inline back ref. if back ref is found, *ref_ret is set 769 * to the address of inline back ref, and 0 is returned. 770 * 771 * if back ref isn't found, *ref_ret is set to the address where it 772 * should be inserted, and -ENOENT is returned. 773 * 774 * if insert is true and there are too many inline back refs, the path 775 * points to the extent item, and -EAGAIN is returned. 776 * 777 * NOTE: inline back refs are ordered in the same way that back ref 778 * items in the tree are ordered. 779 */ 780 static noinline_for_stack 781 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 782 struct btrfs_path *path, 783 struct btrfs_extent_inline_ref **ref_ret, 784 u64 bytenr, u64 num_bytes, 785 u64 parent, u64 root_objectid, 786 u64 owner, u64 offset, int insert) 787 { 788 struct btrfs_fs_info *fs_info = trans->fs_info; 789 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 790 struct btrfs_key key; 791 struct extent_buffer *leaf; 792 struct btrfs_extent_item *ei; 793 struct btrfs_extent_inline_ref *iref; 794 u64 flags; 795 u64 item_size; 796 unsigned long ptr; 797 unsigned long end; 798 int extra_size; 799 int type; 800 int want; 801 int ret; 802 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 803 int needed; 804 805 key.objectid = bytenr; 806 key.type = BTRFS_EXTENT_ITEM_KEY; 807 key.offset = num_bytes; 808 809 want = extent_ref_type(parent, owner); 810 if (insert) { 811 extra_size = btrfs_extent_inline_ref_size(want); 812 path->search_for_extension = 1; 813 path->keep_locks = 1; 814 } else 815 extra_size = -1; 816 817 /* 818 * Owner is our level, so we can just add one to get the level for the 819 * block we are interested in. 820 */ 821 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 822 key.type = BTRFS_METADATA_ITEM_KEY; 823 key.offset = owner; 824 } 825 826 again: 827 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 828 if (ret < 0) 829 goto out; 830 831 /* 832 * We may be a newly converted file system which still has the old fat 833 * extent entries for metadata, so try and see if we have one of those. 834 */ 835 if (ret > 0 && skinny_metadata) { 836 skinny_metadata = false; 837 if (path->slots[0]) { 838 path->slots[0]--; 839 btrfs_item_key_to_cpu(path->nodes[0], &key, 840 path->slots[0]); 841 if (key.objectid == bytenr && 842 key.type == BTRFS_EXTENT_ITEM_KEY && 843 key.offset == num_bytes) 844 ret = 0; 845 } 846 if (ret) { 847 key.objectid = bytenr; 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 key.offset = num_bytes; 850 btrfs_release_path(path); 851 goto again; 852 } 853 } 854 855 if (ret && !insert) { 856 ret = -ENOENT; 857 goto out; 858 } else if (WARN_ON(ret)) { 859 btrfs_print_leaf(path->nodes[0]); 860 btrfs_err(fs_info, 861 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 862 bytenr, num_bytes, parent, root_objectid, owner, 863 offset); 864 ret = -EUCLEAN; 865 goto out; 866 } 867 868 leaf = path->nodes[0]; 869 item_size = btrfs_item_size(leaf, path->slots[0]); 870 if (unlikely(item_size < sizeof(*ei))) { 871 ret = -EUCLEAN; 872 btrfs_err(fs_info, 873 "unexpected extent item size, has %llu expect >= %zu", 874 item_size, sizeof(*ei)); 875 btrfs_abort_transaction(trans, ret); 876 goto out; 877 } 878 879 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 880 flags = btrfs_extent_flags(leaf, ei); 881 882 ptr = (unsigned long)(ei + 1); 883 end = (unsigned long)ei + item_size; 884 885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 886 ptr += sizeof(struct btrfs_tree_block_info); 887 BUG_ON(ptr > end); 888 } 889 890 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 891 needed = BTRFS_REF_TYPE_DATA; 892 else 893 needed = BTRFS_REF_TYPE_BLOCK; 894 895 ret = -ENOENT; 896 while (ptr < end) { 897 iref = (struct btrfs_extent_inline_ref *)ptr; 898 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 899 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 900 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 901 ptr += btrfs_extent_inline_ref_size(type); 902 continue; 903 } 904 if (type == BTRFS_REF_TYPE_INVALID) { 905 ret = -EUCLEAN; 906 goto out; 907 } 908 909 if (want < type) 910 break; 911 if (want > type) { 912 ptr += btrfs_extent_inline_ref_size(type); 913 continue; 914 } 915 916 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 917 struct btrfs_extent_data_ref *dref; 918 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 919 if (match_extent_data_ref(leaf, dref, root_objectid, 920 owner, offset)) { 921 ret = 0; 922 break; 923 } 924 if (hash_extent_data_ref_item(leaf, dref) < 925 hash_extent_data_ref(root_objectid, owner, offset)) 926 break; 927 } else { 928 u64 ref_offset; 929 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 930 if (parent > 0) { 931 if (parent == ref_offset) { 932 ret = 0; 933 break; 934 } 935 if (ref_offset < parent) 936 break; 937 } else { 938 if (root_objectid == ref_offset) { 939 ret = 0; 940 break; 941 } 942 if (ref_offset < root_objectid) 943 break; 944 } 945 } 946 ptr += btrfs_extent_inline_ref_size(type); 947 } 948 949 if (unlikely(ptr > end)) { 950 ret = -EUCLEAN; 951 btrfs_print_leaf(path->nodes[0]); 952 btrfs_crit(fs_info, 953 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 954 path->slots[0], root_objectid, owner, offset, parent); 955 goto out; 956 } 957 958 if (ret == -ENOENT && insert) { 959 if (item_size + extra_size >= 960 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 961 ret = -EAGAIN; 962 goto out; 963 } 964 /* 965 * To add new inline back ref, we have to make sure 966 * there is no corresponding back ref item. 967 * For simplicity, we just do not add new inline back 968 * ref if there is any kind of item for this block 969 */ 970 if (find_next_key(path, 0, &key) == 0 && 971 key.objectid == bytenr && 972 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 973 ret = -EAGAIN; 974 goto out; 975 } 976 } 977 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 978 out: 979 if (insert) { 980 path->keep_locks = 0; 981 path->search_for_extension = 0; 982 btrfs_unlock_up_safe(path, 1); 983 } 984 return ret; 985 } 986 987 /* 988 * helper to add new inline back ref 989 */ 990 static noinline_for_stack 991 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 992 struct btrfs_path *path, 993 struct btrfs_extent_inline_ref *iref, 994 u64 parent, u64 root_objectid, 995 u64 owner, u64 offset, int refs_to_add, 996 struct btrfs_delayed_extent_op *extent_op) 997 { 998 struct extent_buffer *leaf; 999 struct btrfs_extent_item *ei; 1000 unsigned long ptr; 1001 unsigned long end; 1002 unsigned long item_offset; 1003 u64 refs; 1004 int size; 1005 int type; 1006 1007 leaf = path->nodes[0]; 1008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1009 item_offset = (unsigned long)iref - (unsigned long)ei; 1010 1011 type = extent_ref_type(parent, owner); 1012 size = btrfs_extent_inline_ref_size(type); 1013 1014 btrfs_extend_item(trans, path, size); 1015 1016 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1017 refs = btrfs_extent_refs(leaf, ei); 1018 refs += refs_to_add; 1019 btrfs_set_extent_refs(leaf, ei, refs); 1020 if (extent_op) 1021 __run_delayed_extent_op(extent_op, leaf, ei); 1022 1023 ptr = (unsigned long)ei + item_offset; 1024 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1025 if (ptr < end - size) 1026 memmove_extent_buffer(leaf, ptr + size, ptr, 1027 end - size - ptr); 1028 1029 iref = (struct btrfs_extent_inline_ref *)ptr; 1030 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1031 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1032 struct btrfs_extent_data_ref *dref; 1033 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1034 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1035 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1036 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1037 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1038 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1039 struct btrfs_shared_data_ref *sref; 1040 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1041 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1042 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1043 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1044 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1045 } else { 1046 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1047 } 1048 btrfs_mark_buffer_dirty(trans, leaf); 1049 } 1050 1051 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1052 struct btrfs_path *path, 1053 struct btrfs_extent_inline_ref **ref_ret, 1054 u64 bytenr, u64 num_bytes, u64 parent, 1055 u64 root_objectid, u64 owner, u64 offset) 1056 { 1057 int ret; 1058 1059 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1060 num_bytes, parent, root_objectid, 1061 owner, offset, 0); 1062 if (ret != -ENOENT) 1063 return ret; 1064 1065 btrfs_release_path(path); 1066 *ref_ret = NULL; 1067 1068 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1069 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1070 root_objectid); 1071 } else { 1072 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1073 root_objectid, owner, offset); 1074 } 1075 return ret; 1076 } 1077 1078 /* 1079 * helper to update/remove inline back ref 1080 */ 1081 static noinline_for_stack int update_inline_extent_backref( 1082 struct btrfs_trans_handle *trans, 1083 struct btrfs_path *path, 1084 struct btrfs_extent_inline_ref *iref, 1085 int refs_to_mod, 1086 struct btrfs_delayed_extent_op *extent_op) 1087 { 1088 struct extent_buffer *leaf = path->nodes[0]; 1089 struct btrfs_fs_info *fs_info = leaf->fs_info; 1090 struct btrfs_extent_item *ei; 1091 struct btrfs_extent_data_ref *dref = NULL; 1092 struct btrfs_shared_data_ref *sref = NULL; 1093 unsigned long ptr; 1094 unsigned long end; 1095 u32 item_size; 1096 int size; 1097 int type; 1098 u64 refs; 1099 1100 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1101 refs = btrfs_extent_refs(leaf, ei); 1102 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1103 struct btrfs_key key; 1104 u32 extent_size; 1105 1106 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1107 if (key.type == BTRFS_METADATA_ITEM_KEY) 1108 extent_size = fs_info->nodesize; 1109 else 1110 extent_size = key.offset; 1111 btrfs_print_leaf(leaf); 1112 btrfs_err(fs_info, 1113 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1114 key.objectid, extent_size, refs_to_mod, refs); 1115 return -EUCLEAN; 1116 } 1117 refs += refs_to_mod; 1118 btrfs_set_extent_refs(leaf, ei, refs); 1119 if (extent_op) 1120 __run_delayed_extent_op(extent_op, leaf, ei); 1121 1122 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1123 /* 1124 * Function btrfs_get_extent_inline_ref_type() has already printed 1125 * error messages. 1126 */ 1127 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1128 return -EUCLEAN; 1129 1130 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1131 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1132 refs = btrfs_extent_data_ref_count(leaf, dref); 1133 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1134 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1135 refs = btrfs_shared_data_ref_count(leaf, sref); 1136 } else { 1137 refs = 1; 1138 /* 1139 * For tree blocks we can only drop one ref for it, and tree 1140 * blocks should not have refs > 1. 1141 * 1142 * Furthermore if we're inserting a new inline backref, we 1143 * won't reach this path either. That would be 1144 * setup_inline_extent_backref(). 1145 */ 1146 if (unlikely(refs_to_mod != -1)) { 1147 struct btrfs_key key; 1148 1149 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1150 1151 btrfs_print_leaf(leaf); 1152 btrfs_err(fs_info, 1153 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1154 key.objectid, refs_to_mod); 1155 return -EUCLEAN; 1156 } 1157 } 1158 1159 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1160 struct btrfs_key key; 1161 u32 extent_size; 1162 1163 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1164 if (key.type == BTRFS_METADATA_ITEM_KEY) 1165 extent_size = fs_info->nodesize; 1166 else 1167 extent_size = key.offset; 1168 btrfs_print_leaf(leaf); 1169 btrfs_err(fs_info, 1170 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1171 (unsigned long)iref, key.objectid, extent_size, 1172 refs_to_mod, refs); 1173 return -EUCLEAN; 1174 } 1175 refs += refs_to_mod; 1176 1177 if (refs > 0) { 1178 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1179 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1180 else 1181 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1182 } else { 1183 size = btrfs_extent_inline_ref_size(type); 1184 item_size = btrfs_item_size(leaf, path->slots[0]); 1185 ptr = (unsigned long)iref; 1186 end = (unsigned long)ei + item_size; 1187 if (ptr + size < end) 1188 memmove_extent_buffer(leaf, ptr, ptr + size, 1189 end - ptr - size); 1190 item_size -= size; 1191 btrfs_truncate_item(trans, path, item_size, 1); 1192 } 1193 btrfs_mark_buffer_dirty(trans, leaf); 1194 return 0; 1195 } 1196 1197 static noinline_for_stack 1198 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1199 struct btrfs_path *path, 1200 u64 bytenr, u64 num_bytes, u64 parent, 1201 u64 root_objectid, u64 owner, 1202 u64 offset, int refs_to_add, 1203 struct btrfs_delayed_extent_op *extent_op) 1204 { 1205 struct btrfs_extent_inline_ref *iref; 1206 int ret; 1207 1208 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1209 num_bytes, parent, root_objectid, 1210 owner, offset, 1); 1211 if (ret == 0) { 1212 /* 1213 * We're adding refs to a tree block we already own, this 1214 * should not happen at all. 1215 */ 1216 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1217 btrfs_print_leaf(path->nodes[0]); 1218 btrfs_crit(trans->fs_info, 1219 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1220 bytenr, num_bytes, root_objectid, path->slots[0]); 1221 return -EUCLEAN; 1222 } 1223 ret = update_inline_extent_backref(trans, path, iref, 1224 refs_to_add, extent_op); 1225 } else if (ret == -ENOENT) { 1226 setup_inline_extent_backref(trans, path, iref, parent, 1227 root_objectid, owner, offset, 1228 refs_to_add, extent_op); 1229 ret = 0; 1230 } 1231 return ret; 1232 } 1233 1234 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1235 struct btrfs_root *root, 1236 struct btrfs_path *path, 1237 struct btrfs_extent_inline_ref *iref, 1238 int refs_to_drop, int is_data) 1239 { 1240 int ret = 0; 1241 1242 BUG_ON(!is_data && refs_to_drop != 1); 1243 if (iref) 1244 ret = update_inline_extent_backref(trans, path, iref, 1245 -refs_to_drop, NULL); 1246 else if (is_data) 1247 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1248 else 1249 ret = btrfs_del_item(trans, root, path); 1250 return ret; 1251 } 1252 1253 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1254 u64 *discarded_bytes) 1255 { 1256 int j, ret = 0; 1257 u64 bytes_left, end; 1258 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1259 1260 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1261 if (start != aligned_start) { 1262 len -= aligned_start - start; 1263 len = round_down(len, 1 << SECTOR_SHIFT); 1264 start = aligned_start; 1265 } 1266 1267 *discarded_bytes = 0; 1268 1269 if (!len) 1270 return 0; 1271 1272 end = start + len; 1273 bytes_left = len; 1274 1275 /* Skip any superblocks on this device. */ 1276 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1277 u64 sb_start = btrfs_sb_offset(j); 1278 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1279 u64 size = sb_start - start; 1280 1281 if (!in_range(sb_start, start, bytes_left) && 1282 !in_range(sb_end, start, bytes_left) && 1283 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1284 continue; 1285 1286 /* 1287 * Superblock spans beginning of range. Adjust start and 1288 * try again. 1289 */ 1290 if (sb_start <= start) { 1291 start += sb_end - start; 1292 if (start > end) { 1293 bytes_left = 0; 1294 break; 1295 } 1296 bytes_left = end - start; 1297 continue; 1298 } 1299 1300 if (size) { 1301 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1302 size >> SECTOR_SHIFT, 1303 GFP_NOFS); 1304 if (!ret) 1305 *discarded_bytes += size; 1306 else if (ret != -EOPNOTSUPP) 1307 return ret; 1308 } 1309 1310 start = sb_end; 1311 if (start > end) { 1312 bytes_left = 0; 1313 break; 1314 } 1315 bytes_left = end - start; 1316 } 1317 1318 if (bytes_left) { 1319 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1320 bytes_left >> SECTOR_SHIFT, 1321 GFP_NOFS); 1322 if (!ret) 1323 *discarded_bytes += bytes_left; 1324 } 1325 return ret; 1326 } 1327 1328 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1329 { 1330 struct btrfs_device *dev = stripe->dev; 1331 struct btrfs_fs_info *fs_info = dev->fs_info; 1332 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1333 u64 phys = stripe->physical; 1334 u64 len = stripe->length; 1335 u64 discarded = 0; 1336 int ret = 0; 1337 1338 /* Zone reset on a zoned filesystem */ 1339 if (btrfs_can_zone_reset(dev, phys, len)) { 1340 u64 src_disc; 1341 1342 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1343 if (ret) 1344 goto out; 1345 1346 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1347 dev != dev_replace->srcdev) 1348 goto out; 1349 1350 src_disc = discarded; 1351 1352 /* Send to replace target as well */ 1353 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1354 &discarded); 1355 discarded += src_disc; 1356 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1357 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1358 } else { 1359 ret = 0; 1360 *bytes = 0; 1361 } 1362 1363 out: 1364 *bytes = discarded; 1365 return ret; 1366 } 1367 1368 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1369 u64 num_bytes, u64 *actual_bytes) 1370 { 1371 int ret = 0; 1372 u64 discarded_bytes = 0; 1373 u64 end = bytenr + num_bytes; 1374 u64 cur = bytenr; 1375 1376 /* 1377 * Avoid races with device replace and make sure the devices in the 1378 * stripes don't go away while we are discarding. 1379 */ 1380 btrfs_bio_counter_inc_blocked(fs_info); 1381 while (cur < end) { 1382 struct btrfs_discard_stripe *stripes; 1383 unsigned int num_stripes; 1384 int i; 1385 1386 num_bytes = end - cur; 1387 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1388 if (IS_ERR(stripes)) { 1389 ret = PTR_ERR(stripes); 1390 if (ret == -EOPNOTSUPP) 1391 ret = 0; 1392 break; 1393 } 1394 1395 for (i = 0; i < num_stripes; i++) { 1396 struct btrfs_discard_stripe *stripe = stripes + i; 1397 u64 bytes; 1398 1399 if (!stripe->dev->bdev) { 1400 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1401 continue; 1402 } 1403 1404 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1405 &stripe->dev->dev_state)) 1406 continue; 1407 1408 ret = do_discard_extent(stripe, &bytes); 1409 if (ret) { 1410 /* 1411 * Keep going if discard is not supported by the 1412 * device. 1413 */ 1414 if (ret != -EOPNOTSUPP) 1415 break; 1416 ret = 0; 1417 } else { 1418 discarded_bytes += bytes; 1419 } 1420 } 1421 kfree(stripes); 1422 if (ret) 1423 break; 1424 cur += num_bytes; 1425 } 1426 btrfs_bio_counter_dec(fs_info); 1427 if (actual_bytes) 1428 *actual_bytes = discarded_bytes; 1429 return ret; 1430 } 1431 1432 /* Can return -ENOMEM */ 1433 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1434 struct btrfs_ref *generic_ref) 1435 { 1436 struct btrfs_fs_info *fs_info = trans->fs_info; 1437 int ret; 1438 1439 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1440 generic_ref->action); 1441 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1442 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1443 1444 if (generic_ref->type == BTRFS_REF_METADATA) 1445 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1446 else 1447 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1448 1449 btrfs_ref_tree_mod(fs_info, generic_ref); 1450 1451 return ret; 1452 } 1453 1454 /* 1455 * Insert backreference for a given extent. 1456 * 1457 * The counterpart is in __btrfs_free_extent(), with examples and more details 1458 * how it works. 1459 * 1460 * @trans: Handle of transaction 1461 * 1462 * @node: The delayed ref node used to get the bytenr/length for 1463 * extent whose references are incremented. 1464 * 1465 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1466 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1467 * bytenr of the parent block. Since new extents are always 1468 * created with indirect references, this will only be the case 1469 * when relocating a shared extent. In that case, root_objectid 1470 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1471 * be 0 1472 * 1473 * @root_objectid: The id of the root where this modification has originated, 1474 * this can be either one of the well-known metadata trees or 1475 * the subvolume id which references this extent. 1476 * 1477 * @owner: For data extents it is the inode number of the owning file. 1478 * For metadata extents this parameter holds the level in the 1479 * tree of the extent. 1480 * 1481 * @offset: For metadata extents the offset is ignored and is currently 1482 * always passed as 0. For data extents it is the fileoffset 1483 * this extent belongs to. 1484 * 1485 * @extent_op Pointer to a structure, holding information necessary when 1486 * updating a tree block's flags 1487 * 1488 */ 1489 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1490 struct btrfs_delayed_ref_node *node, 1491 u64 parent, u64 root_objectid, 1492 u64 owner, u64 offset, 1493 struct btrfs_delayed_extent_op *extent_op) 1494 { 1495 struct btrfs_path *path; 1496 struct extent_buffer *leaf; 1497 struct btrfs_extent_item *item; 1498 struct btrfs_key key; 1499 u64 bytenr = node->bytenr; 1500 u64 num_bytes = node->num_bytes; 1501 u64 refs; 1502 int refs_to_add = node->ref_mod; 1503 int ret; 1504 1505 path = btrfs_alloc_path(); 1506 if (!path) 1507 return -ENOMEM; 1508 1509 /* this will setup the path even if it fails to insert the back ref */ 1510 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1511 parent, root_objectid, owner, 1512 offset, refs_to_add, extent_op); 1513 if ((ret < 0 && ret != -EAGAIN) || !ret) 1514 goto out; 1515 1516 /* 1517 * Ok we had -EAGAIN which means we didn't have space to insert and 1518 * inline extent ref, so just update the reference count and add a 1519 * normal backref. 1520 */ 1521 leaf = path->nodes[0]; 1522 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1524 refs = btrfs_extent_refs(leaf, item); 1525 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1526 if (extent_op) 1527 __run_delayed_extent_op(extent_op, leaf, item); 1528 1529 btrfs_mark_buffer_dirty(trans, leaf); 1530 btrfs_release_path(path); 1531 1532 /* now insert the actual backref */ 1533 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1534 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1535 root_objectid); 1536 else 1537 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1538 root_objectid, owner, offset, 1539 refs_to_add); 1540 1541 if (ret) 1542 btrfs_abort_transaction(trans, ret); 1543 out: 1544 btrfs_free_path(path); 1545 return ret; 1546 } 1547 1548 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1549 struct btrfs_delayed_ref_head *href) 1550 { 1551 u64 root = href->owning_root; 1552 1553 /* 1554 * Don't check must_insert_reserved, as this is called from contexts 1555 * where it has already been unset. 1556 */ 1557 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1558 !href->is_data || !is_fstree(root)) 1559 return; 1560 1561 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1562 BTRFS_QGROUP_RSV_DATA); 1563 } 1564 1565 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1566 struct btrfs_delayed_ref_head *href, 1567 struct btrfs_delayed_ref_node *node, 1568 struct btrfs_delayed_extent_op *extent_op, 1569 bool insert_reserved) 1570 { 1571 int ret = 0; 1572 struct btrfs_delayed_data_ref *ref; 1573 u64 parent = 0; 1574 u64 flags = 0; 1575 1576 ref = btrfs_delayed_node_to_data_ref(node); 1577 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1578 1579 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1580 parent = ref->parent; 1581 1582 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1583 struct btrfs_key key; 1584 struct btrfs_squota_delta delta = { 1585 .root = href->owning_root, 1586 .num_bytes = node->num_bytes, 1587 .is_data = true, 1588 .is_inc = true, 1589 .generation = trans->transid, 1590 }; 1591 1592 if (extent_op) 1593 flags |= extent_op->flags_to_set; 1594 1595 key.objectid = node->bytenr; 1596 key.type = BTRFS_EXTENT_ITEM_KEY; 1597 key.offset = node->num_bytes; 1598 1599 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1600 flags, ref->objectid, 1601 ref->offset, &key, 1602 node->ref_mod, href->owning_root); 1603 free_head_ref_squota_rsv(trans->fs_info, href); 1604 if (!ret) 1605 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1606 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1607 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1608 ref->objectid, ref->offset, 1609 extent_op); 1610 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1611 ret = __btrfs_free_extent(trans, href, node, parent, 1612 ref->root, ref->objectid, 1613 ref->offset, extent_op); 1614 } else { 1615 BUG(); 1616 } 1617 return ret; 1618 } 1619 1620 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1621 struct extent_buffer *leaf, 1622 struct btrfs_extent_item *ei) 1623 { 1624 u64 flags = btrfs_extent_flags(leaf, ei); 1625 if (extent_op->update_flags) { 1626 flags |= extent_op->flags_to_set; 1627 btrfs_set_extent_flags(leaf, ei, flags); 1628 } 1629 1630 if (extent_op->update_key) { 1631 struct btrfs_tree_block_info *bi; 1632 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1633 bi = (struct btrfs_tree_block_info *)(ei + 1); 1634 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1635 } 1636 } 1637 1638 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1639 struct btrfs_delayed_ref_head *head, 1640 struct btrfs_delayed_extent_op *extent_op) 1641 { 1642 struct btrfs_fs_info *fs_info = trans->fs_info; 1643 struct btrfs_root *root; 1644 struct btrfs_key key; 1645 struct btrfs_path *path; 1646 struct btrfs_extent_item *ei; 1647 struct extent_buffer *leaf; 1648 u32 item_size; 1649 int ret; 1650 int metadata = 1; 1651 1652 if (TRANS_ABORTED(trans)) 1653 return 0; 1654 1655 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1656 metadata = 0; 1657 1658 path = btrfs_alloc_path(); 1659 if (!path) 1660 return -ENOMEM; 1661 1662 key.objectid = head->bytenr; 1663 1664 if (metadata) { 1665 key.type = BTRFS_METADATA_ITEM_KEY; 1666 key.offset = extent_op->level; 1667 } else { 1668 key.type = BTRFS_EXTENT_ITEM_KEY; 1669 key.offset = head->num_bytes; 1670 } 1671 1672 root = btrfs_extent_root(fs_info, key.objectid); 1673 again: 1674 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1675 if (ret < 0) { 1676 goto out; 1677 } else if (ret > 0) { 1678 if (metadata) { 1679 if (path->slots[0] > 0) { 1680 path->slots[0]--; 1681 btrfs_item_key_to_cpu(path->nodes[0], &key, 1682 path->slots[0]); 1683 if (key.objectid == head->bytenr && 1684 key.type == BTRFS_EXTENT_ITEM_KEY && 1685 key.offset == head->num_bytes) 1686 ret = 0; 1687 } 1688 if (ret > 0) { 1689 btrfs_release_path(path); 1690 metadata = 0; 1691 1692 key.objectid = head->bytenr; 1693 key.offset = head->num_bytes; 1694 key.type = BTRFS_EXTENT_ITEM_KEY; 1695 goto again; 1696 } 1697 } else { 1698 ret = -EUCLEAN; 1699 btrfs_err(fs_info, 1700 "missing extent item for extent %llu num_bytes %llu level %d", 1701 head->bytenr, head->num_bytes, extent_op->level); 1702 goto out; 1703 } 1704 } 1705 1706 leaf = path->nodes[0]; 1707 item_size = btrfs_item_size(leaf, path->slots[0]); 1708 1709 if (unlikely(item_size < sizeof(*ei))) { 1710 ret = -EUCLEAN; 1711 btrfs_err(fs_info, 1712 "unexpected extent item size, has %u expect >= %zu", 1713 item_size, sizeof(*ei)); 1714 btrfs_abort_transaction(trans, ret); 1715 goto out; 1716 } 1717 1718 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1719 __run_delayed_extent_op(extent_op, leaf, ei); 1720 1721 btrfs_mark_buffer_dirty(trans, leaf); 1722 out: 1723 btrfs_free_path(path); 1724 return ret; 1725 } 1726 1727 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1728 struct btrfs_delayed_ref_head *href, 1729 struct btrfs_delayed_ref_node *node, 1730 struct btrfs_delayed_extent_op *extent_op, 1731 bool insert_reserved) 1732 { 1733 int ret = 0; 1734 struct btrfs_fs_info *fs_info = trans->fs_info; 1735 struct btrfs_delayed_tree_ref *ref; 1736 u64 parent = 0; 1737 u64 ref_root = 0; 1738 1739 ref = btrfs_delayed_node_to_tree_ref(node); 1740 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1741 1742 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1743 parent = ref->parent; 1744 ref_root = ref->root; 1745 1746 if (unlikely(node->ref_mod != 1)) { 1747 btrfs_err(trans->fs_info, 1748 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1749 node->bytenr, node->ref_mod, node->action, ref_root, 1750 parent); 1751 return -EUCLEAN; 1752 } 1753 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1754 struct btrfs_squota_delta delta = { 1755 .root = href->owning_root, 1756 .num_bytes = fs_info->nodesize, 1757 .is_data = false, 1758 .is_inc = true, 1759 .generation = trans->transid, 1760 }; 1761 1762 BUG_ON(!extent_op || !extent_op->update_flags); 1763 ret = alloc_reserved_tree_block(trans, node, extent_op); 1764 if (!ret) 1765 btrfs_record_squota_delta(fs_info, &delta); 1766 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1767 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1768 ref->level, 0, extent_op); 1769 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1770 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1771 ref->level, 0, extent_op); 1772 } else { 1773 BUG(); 1774 } 1775 return ret; 1776 } 1777 1778 /* helper function to actually process a single delayed ref entry */ 1779 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1780 struct btrfs_delayed_ref_head *href, 1781 struct btrfs_delayed_ref_node *node, 1782 struct btrfs_delayed_extent_op *extent_op, 1783 bool insert_reserved) 1784 { 1785 int ret = 0; 1786 1787 if (TRANS_ABORTED(trans)) { 1788 if (insert_reserved) { 1789 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1790 free_head_ref_squota_rsv(trans->fs_info, href); 1791 } 1792 return 0; 1793 } 1794 1795 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1796 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1797 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1798 insert_reserved); 1799 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1800 node->type == BTRFS_SHARED_DATA_REF_KEY) 1801 ret = run_delayed_data_ref(trans, href, node, extent_op, 1802 insert_reserved); 1803 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1804 ret = 0; 1805 else 1806 BUG(); 1807 if (ret && insert_reserved) 1808 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1809 if (ret < 0) 1810 btrfs_err(trans->fs_info, 1811 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1812 node->bytenr, node->num_bytes, node->type, 1813 node->action, node->ref_mod, ret); 1814 return ret; 1815 } 1816 1817 static inline struct btrfs_delayed_ref_node * 1818 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1819 { 1820 struct btrfs_delayed_ref_node *ref; 1821 1822 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1823 return NULL; 1824 1825 /* 1826 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1827 * This is to prevent a ref count from going down to zero, which deletes 1828 * the extent item from the extent tree, when there still are references 1829 * to add, which would fail because they would not find the extent item. 1830 */ 1831 if (!list_empty(&head->ref_add_list)) 1832 return list_first_entry(&head->ref_add_list, 1833 struct btrfs_delayed_ref_node, add_list); 1834 1835 ref = rb_entry(rb_first_cached(&head->ref_tree), 1836 struct btrfs_delayed_ref_node, ref_node); 1837 ASSERT(list_empty(&ref->add_list)); 1838 return ref; 1839 } 1840 1841 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1842 struct btrfs_delayed_ref_head *head) 1843 { 1844 spin_lock(&delayed_refs->lock); 1845 head->processing = false; 1846 delayed_refs->num_heads_ready++; 1847 spin_unlock(&delayed_refs->lock); 1848 btrfs_delayed_ref_unlock(head); 1849 } 1850 1851 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1852 struct btrfs_delayed_ref_head *head) 1853 { 1854 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1855 1856 if (!extent_op) 1857 return NULL; 1858 1859 if (head->must_insert_reserved) { 1860 head->extent_op = NULL; 1861 btrfs_free_delayed_extent_op(extent_op); 1862 return NULL; 1863 } 1864 return extent_op; 1865 } 1866 1867 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1868 struct btrfs_delayed_ref_head *head) 1869 { 1870 struct btrfs_delayed_extent_op *extent_op; 1871 int ret; 1872 1873 extent_op = cleanup_extent_op(head); 1874 if (!extent_op) 1875 return 0; 1876 head->extent_op = NULL; 1877 spin_unlock(&head->lock); 1878 ret = run_delayed_extent_op(trans, head, extent_op); 1879 btrfs_free_delayed_extent_op(extent_op); 1880 return ret ? ret : 1; 1881 } 1882 1883 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1884 struct btrfs_delayed_ref_root *delayed_refs, 1885 struct btrfs_delayed_ref_head *head) 1886 { 1887 u64 ret = 0; 1888 1889 /* 1890 * We had csum deletions accounted for in our delayed refs rsv, we need 1891 * to drop the csum leaves for this update from our delayed_refs_rsv. 1892 */ 1893 if (head->total_ref_mod < 0 && head->is_data) { 1894 int nr_csums; 1895 1896 spin_lock(&delayed_refs->lock); 1897 delayed_refs->pending_csums -= head->num_bytes; 1898 spin_unlock(&delayed_refs->lock); 1899 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1900 1901 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1902 1903 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1904 } 1905 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1906 if (head->must_insert_reserved) 1907 free_head_ref_squota_rsv(fs_info, head); 1908 1909 return ret; 1910 } 1911 1912 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1913 struct btrfs_delayed_ref_head *head, 1914 u64 *bytes_released) 1915 { 1916 1917 struct btrfs_fs_info *fs_info = trans->fs_info; 1918 struct btrfs_delayed_ref_root *delayed_refs; 1919 int ret; 1920 1921 delayed_refs = &trans->transaction->delayed_refs; 1922 1923 ret = run_and_cleanup_extent_op(trans, head); 1924 if (ret < 0) { 1925 unselect_delayed_ref_head(delayed_refs, head); 1926 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1927 return ret; 1928 } else if (ret) { 1929 return ret; 1930 } 1931 1932 /* 1933 * Need to drop our head ref lock and re-acquire the delayed ref lock 1934 * and then re-check to make sure nobody got added. 1935 */ 1936 spin_unlock(&head->lock); 1937 spin_lock(&delayed_refs->lock); 1938 spin_lock(&head->lock); 1939 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1940 spin_unlock(&head->lock); 1941 spin_unlock(&delayed_refs->lock); 1942 return 1; 1943 } 1944 btrfs_delete_ref_head(delayed_refs, head); 1945 spin_unlock(&head->lock); 1946 spin_unlock(&delayed_refs->lock); 1947 1948 if (head->must_insert_reserved) { 1949 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1950 if (head->is_data) { 1951 struct btrfs_root *csum_root; 1952 1953 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1954 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1955 head->num_bytes); 1956 } 1957 } 1958 1959 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1960 1961 trace_run_delayed_ref_head(fs_info, head, 0); 1962 btrfs_delayed_ref_unlock(head); 1963 btrfs_put_delayed_ref_head(head); 1964 return ret; 1965 } 1966 1967 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1968 struct btrfs_trans_handle *trans) 1969 { 1970 struct btrfs_delayed_ref_root *delayed_refs = 1971 &trans->transaction->delayed_refs; 1972 struct btrfs_delayed_ref_head *head = NULL; 1973 int ret; 1974 1975 spin_lock(&delayed_refs->lock); 1976 head = btrfs_select_ref_head(delayed_refs); 1977 if (!head) { 1978 spin_unlock(&delayed_refs->lock); 1979 return head; 1980 } 1981 1982 /* 1983 * Grab the lock that says we are going to process all the refs for 1984 * this head 1985 */ 1986 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1987 spin_unlock(&delayed_refs->lock); 1988 1989 /* 1990 * We may have dropped the spin lock to get the head mutex lock, and 1991 * that might have given someone else time to free the head. If that's 1992 * true, it has been removed from our list and we can move on. 1993 */ 1994 if (ret == -EAGAIN) 1995 head = ERR_PTR(-EAGAIN); 1996 1997 return head; 1998 } 1999 2000 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 2001 struct btrfs_delayed_ref_head *locked_ref, 2002 u64 *bytes_released) 2003 { 2004 struct btrfs_fs_info *fs_info = trans->fs_info; 2005 struct btrfs_delayed_ref_root *delayed_refs; 2006 struct btrfs_delayed_extent_op *extent_op; 2007 struct btrfs_delayed_ref_node *ref; 2008 bool must_insert_reserved; 2009 int ret; 2010 2011 delayed_refs = &trans->transaction->delayed_refs; 2012 2013 lockdep_assert_held(&locked_ref->mutex); 2014 lockdep_assert_held(&locked_ref->lock); 2015 2016 while ((ref = select_delayed_ref(locked_ref))) { 2017 if (ref->seq && 2018 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2019 spin_unlock(&locked_ref->lock); 2020 unselect_delayed_ref_head(delayed_refs, locked_ref); 2021 return -EAGAIN; 2022 } 2023 2024 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2025 RB_CLEAR_NODE(&ref->ref_node); 2026 if (!list_empty(&ref->add_list)) 2027 list_del(&ref->add_list); 2028 /* 2029 * When we play the delayed ref, also correct the ref_mod on 2030 * head 2031 */ 2032 switch (ref->action) { 2033 case BTRFS_ADD_DELAYED_REF: 2034 case BTRFS_ADD_DELAYED_EXTENT: 2035 locked_ref->ref_mod -= ref->ref_mod; 2036 break; 2037 case BTRFS_DROP_DELAYED_REF: 2038 locked_ref->ref_mod += ref->ref_mod; 2039 break; 2040 default: 2041 WARN_ON(1); 2042 } 2043 atomic_dec(&delayed_refs->num_entries); 2044 2045 /* 2046 * Record the must_insert_reserved flag before we drop the 2047 * spin lock. 2048 */ 2049 must_insert_reserved = locked_ref->must_insert_reserved; 2050 /* 2051 * Unsetting this on the head ref relinquishes ownership of 2052 * the rsv_bytes, so it is critical that every possible code 2053 * path from here forward frees all reserves including qgroup 2054 * reserve. 2055 */ 2056 locked_ref->must_insert_reserved = false; 2057 2058 extent_op = locked_ref->extent_op; 2059 locked_ref->extent_op = NULL; 2060 spin_unlock(&locked_ref->lock); 2061 2062 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2063 must_insert_reserved); 2064 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2065 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2066 2067 btrfs_free_delayed_extent_op(extent_op); 2068 if (ret) { 2069 unselect_delayed_ref_head(delayed_refs, locked_ref); 2070 btrfs_put_delayed_ref(ref); 2071 return ret; 2072 } 2073 2074 btrfs_put_delayed_ref(ref); 2075 cond_resched(); 2076 2077 spin_lock(&locked_ref->lock); 2078 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2079 } 2080 2081 return 0; 2082 } 2083 2084 /* 2085 * Returns 0 on success or if called with an already aborted transaction. 2086 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2087 */ 2088 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2089 u64 min_bytes) 2090 { 2091 struct btrfs_fs_info *fs_info = trans->fs_info; 2092 struct btrfs_delayed_ref_root *delayed_refs; 2093 struct btrfs_delayed_ref_head *locked_ref = NULL; 2094 int ret; 2095 unsigned long count = 0; 2096 unsigned long max_count = 0; 2097 u64 bytes_processed = 0; 2098 2099 delayed_refs = &trans->transaction->delayed_refs; 2100 if (min_bytes == 0) { 2101 max_count = delayed_refs->num_heads_ready; 2102 min_bytes = U64_MAX; 2103 } 2104 2105 do { 2106 if (!locked_ref) { 2107 locked_ref = btrfs_obtain_ref_head(trans); 2108 if (IS_ERR_OR_NULL(locked_ref)) { 2109 if (PTR_ERR(locked_ref) == -EAGAIN) { 2110 continue; 2111 } else { 2112 break; 2113 } 2114 } 2115 count++; 2116 } 2117 /* 2118 * We need to try and merge add/drops of the same ref since we 2119 * can run into issues with relocate dropping the implicit ref 2120 * and then it being added back again before the drop can 2121 * finish. If we merged anything we need to re-loop so we can 2122 * get a good ref. 2123 * Or we can get node references of the same type that weren't 2124 * merged when created due to bumps in the tree mod seq, and 2125 * we need to merge them to prevent adding an inline extent 2126 * backref before dropping it (triggering a BUG_ON at 2127 * insert_inline_extent_backref()). 2128 */ 2129 spin_lock(&locked_ref->lock); 2130 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2131 2132 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2133 if (ret < 0 && ret != -EAGAIN) { 2134 /* 2135 * Error, btrfs_run_delayed_refs_for_head already 2136 * unlocked everything so just bail out 2137 */ 2138 return ret; 2139 } else if (!ret) { 2140 /* 2141 * Success, perform the usual cleanup of a processed 2142 * head 2143 */ 2144 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2145 if (ret > 0 ) { 2146 /* We dropped our lock, we need to loop. */ 2147 ret = 0; 2148 continue; 2149 } else if (ret) { 2150 return ret; 2151 } 2152 } 2153 2154 /* 2155 * Either success case or btrfs_run_delayed_refs_for_head 2156 * returned -EAGAIN, meaning we need to select another head 2157 */ 2158 2159 locked_ref = NULL; 2160 cond_resched(); 2161 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2162 (max_count > 0 && count < max_count) || 2163 locked_ref); 2164 2165 return 0; 2166 } 2167 2168 #ifdef SCRAMBLE_DELAYED_REFS 2169 /* 2170 * Normally delayed refs get processed in ascending bytenr order. This 2171 * correlates in most cases to the order added. To expose dependencies on this 2172 * order, we start to process the tree in the middle instead of the beginning 2173 */ 2174 static u64 find_middle(struct rb_root *root) 2175 { 2176 struct rb_node *n = root->rb_node; 2177 struct btrfs_delayed_ref_node *entry; 2178 int alt = 1; 2179 u64 middle; 2180 u64 first = 0, last = 0; 2181 2182 n = rb_first(root); 2183 if (n) { 2184 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2185 first = entry->bytenr; 2186 } 2187 n = rb_last(root); 2188 if (n) { 2189 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2190 last = entry->bytenr; 2191 } 2192 n = root->rb_node; 2193 2194 while (n) { 2195 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2196 WARN_ON(!entry->in_tree); 2197 2198 middle = entry->bytenr; 2199 2200 if (alt) 2201 n = n->rb_left; 2202 else 2203 n = n->rb_right; 2204 2205 alt = 1 - alt; 2206 } 2207 return middle; 2208 } 2209 #endif 2210 2211 /* 2212 * Start processing the delayed reference count updates and extent insertions 2213 * we have queued up so far. 2214 * 2215 * @trans: Transaction handle. 2216 * @min_bytes: How many bytes of delayed references to process. After this 2217 * many bytes we stop processing delayed references if there are 2218 * any more. If 0 it means to run all existing delayed references, 2219 * but not new ones added after running all existing ones. 2220 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2221 * plus any new ones that are added. 2222 * 2223 * Returns 0 on success or if called with an aborted transaction 2224 * Returns <0 on error and aborts the transaction 2225 */ 2226 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2227 { 2228 struct btrfs_fs_info *fs_info = trans->fs_info; 2229 struct btrfs_delayed_ref_root *delayed_refs; 2230 int ret; 2231 2232 /* We'll clean this up in btrfs_cleanup_transaction */ 2233 if (TRANS_ABORTED(trans)) 2234 return 0; 2235 2236 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2237 return 0; 2238 2239 delayed_refs = &trans->transaction->delayed_refs; 2240 again: 2241 #ifdef SCRAMBLE_DELAYED_REFS 2242 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2243 #endif 2244 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2245 if (ret < 0) { 2246 btrfs_abort_transaction(trans, ret); 2247 return ret; 2248 } 2249 2250 if (min_bytes == U64_MAX) { 2251 btrfs_create_pending_block_groups(trans); 2252 2253 spin_lock(&delayed_refs->lock); 2254 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2255 spin_unlock(&delayed_refs->lock); 2256 return 0; 2257 } 2258 spin_unlock(&delayed_refs->lock); 2259 2260 cond_resched(); 2261 goto again; 2262 } 2263 2264 return 0; 2265 } 2266 2267 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2268 struct extent_buffer *eb, u64 flags) 2269 { 2270 struct btrfs_delayed_extent_op *extent_op; 2271 int level = btrfs_header_level(eb); 2272 int ret; 2273 2274 extent_op = btrfs_alloc_delayed_extent_op(); 2275 if (!extent_op) 2276 return -ENOMEM; 2277 2278 extent_op->flags_to_set = flags; 2279 extent_op->update_flags = true; 2280 extent_op->update_key = false; 2281 extent_op->level = level; 2282 2283 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2284 if (ret) 2285 btrfs_free_delayed_extent_op(extent_op); 2286 return ret; 2287 } 2288 2289 static noinline int check_delayed_ref(struct btrfs_root *root, 2290 struct btrfs_path *path, 2291 u64 objectid, u64 offset, u64 bytenr) 2292 { 2293 struct btrfs_delayed_ref_head *head; 2294 struct btrfs_delayed_ref_node *ref; 2295 struct btrfs_delayed_data_ref *data_ref; 2296 struct btrfs_delayed_ref_root *delayed_refs; 2297 struct btrfs_transaction *cur_trans; 2298 struct rb_node *node; 2299 int ret = 0; 2300 2301 spin_lock(&root->fs_info->trans_lock); 2302 cur_trans = root->fs_info->running_transaction; 2303 if (cur_trans) 2304 refcount_inc(&cur_trans->use_count); 2305 spin_unlock(&root->fs_info->trans_lock); 2306 if (!cur_trans) 2307 return 0; 2308 2309 delayed_refs = &cur_trans->delayed_refs; 2310 spin_lock(&delayed_refs->lock); 2311 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2312 if (!head) { 2313 spin_unlock(&delayed_refs->lock); 2314 btrfs_put_transaction(cur_trans); 2315 return 0; 2316 } 2317 2318 if (!mutex_trylock(&head->mutex)) { 2319 if (path->nowait) { 2320 spin_unlock(&delayed_refs->lock); 2321 btrfs_put_transaction(cur_trans); 2322 return -EAGAIN; 2323 } 2324 2325 refcount_inc(&head->refs); 2326 spin_unlock(&delayed_refs->lock); 2327 2328 btrfs_release_path(path); 2329 2330 /* 2331 * Mutex was contended, block until it's released and let 2332 * caller try again 2333 */ 2334 mutex_lock(&head->mutex); 2335 mutex_unlock(&head->mutex); 2336 btrfs_put_delayed_ref_head(head); 2337 btrfs_put_transaction(cur_trans); 2338 return -EAGAIN; 2339 } 2340 spin_unlock(&delayed_refs->lock); 2341 2342 spin_lock(&head->lock); 2343 /* 2344 * XXX: We should replace this with a proper search function in the 2345 * future. 2346 */ 2347 for (node = rb_first_cached(&head->ref_tree); node; 2348 node = rb_next(node)) { 2349 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2350 /* If it's a shared ref we know a cross reference exists */ 2351 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2352 ret = 1; 2353 break; 2354 } 2355 2356 data_ref = btrfs_delayed_node_to_data_ref(ref); 2357 2358 /* 2359 * If our ref doesn't match the one we're currently looking at 2360 * then we have a cross reference. 2361 */ 2362 if (data_ref->root != root->root_key.objectid || 2363 data_ref->objectid != objectid || 2364 data_ref->offset != offset) { 2365 ret = 1; 2366 break; 2367 } 2368 } 2369 spin_unlock(&head->lock); 2370 mutex_unlock(&head->mutex); 2371 btrfs_put_transaction(cur_trans); 2372 return ret; 2373 } 2374 2375 static noinline int check_committed_ref(struct btrfs_root *root, 2376 struct btrfs_path *path, 2377 u64 objectid, u64 offset, u64 bytenr, 2378 bool strict) 2379 { 2380 struct btrfs_fs_info *fs_info = root->fs_info; 2381 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2382 struct extent_buffer *leaf; 2383 struct btrfs_extent_data_ref *ref; 2384 struct btrfs_extent_inline_ref *iref; 2385 struct btrfs_extent_item *ei; 2386 struct btrfs_key key; 2387 u32 item_size; 2388 u32 expected_size; 2389 int type; 2390 int ret; 2391 2392 key.objectid = bytenr; 2393 key.offset = (u64)-1; 2394 key.type = BTRFS_EXTENT_ITEM_KEY; 2395 2396 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2397 if (ret < 0) 2398 goto out; 2399 if (ret == 0) { 2400 /* 2401 * Key with offset -1 found, there would have to exist an extent 2402 * item with such offset, but this is out of the valid range. 2403 */ 2404 ret = -EUCLEAN; 2405 goto out; 2406 } 2407 2408 ret = -ENOENT; 2409 if (path->slots[0] == 0) 2410 goto out; 2411 2412 path->slots[0]--; 2413 leaf = path->nodes[0]; 2414 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2415 2416 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2417 goto out; 2418 2419 ret = 1; 2420 item_size = btrfs_item_size(leaf, path->slots[0]); 2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2422 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2423 2424 /* No inline refs; we need to bail before checking for owner ref. */ 2425 if (item_size == sizeof(*ei)) 2426 goto out; 2427 2428 /* Check for an owner ref; skip over it to the real inline refs. */ 2429 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2430 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2431 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2432 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2433 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2434 } 2435 2436 /* If extent item has more than 1 inline ref then it's shared */ 2437 if (item_size != expected_size) 2438 goto out; 2439 2440 /* 2441 * If extent created before last snapshot => it's shared unless the 2442 * snapshot has been deleted. Use the heuristic if strict is false. 2443 */ 2444 if (!strict && 2445 (btrfs_extent_generation(leaf, ei) <= 2446 btrfs_root_last_snapshot(&root->root_item))) 2447 goto out; 2448 2449 /* If this extent has SHARED_DATA_REF then it's shared */ 2450 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2451 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2452 goto out; 2453 2454 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2455 if (btrfs_extent_refs(leaf, ei) != 2456 btrfs_extent_data_ref_count(leaf, ref) || 2457 btrfs_extent_data_ref_root(leaf, ref) != 2458 root->root_key.objectid || 2459 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2460 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2461 goto out; 2462 2463 ret = 0; 2464 out: 2465 return ret; 2466 } 2467 2468 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2469 u64 bytenr, bool strict, struct btrfs_path *path) 2470 { 2471 int ret; 2472 2473 do { 2474 ret = check_committed_ref(root, path, objectid, 2475 offset, bytenr, strict); 2476 if (ret && ret != -ENOENT) 2477 goto out; 2478 2479 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2480 } while (ret == -EAGAIN); 2481 2482 out: 2483 btrfs_release_path(path); 2484 if (btrfs_is_data_reloc_root(root)) 2485 WARN_ON(ret > 0); 2486 return ret; 2487 } 2488 2489 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2490 struct btrfs_root *root, 2491 struct extent_buffer *buf, 2492 int full_backref, int inc) 2493 { 2494 struct btrfs_fs_info *fs_info = root->fs_info; 2495 u64 bytenr; 2496 u64 num_bytes; 2497 u64 parent; 2498 u64 ref_root; 2499 u32 nritems; 2500 struct btrfs_key key; 2501 struct btrfs_file_extent_item *fi; 2502 struct btrfs_ref generic_ref = { 0 }; 2503 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2504 int i; 2505 int action; 2506 int level; 2507 int ret = 0; 2508 2509 if (btrfs_is_testing(fs_info)) 2510 return 0; 2511 2512 ref_root = btrfs_header_owner(buf); 2513 nritems = btrfs_header_nritems(buf); 2514 level = btrfs_header_level(buf); 2515 2516 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2517 return 0; 2518 2519 if (full_backref) 2520 parent = buf->start; 2521 else 2522 parent = 0; 2523 if (inc) 2524 action = BTRFS_ADD_DELAYED_REF; 2525 else 2526 action = BTRFS_DROP_DELAYED_REF; 2527 2528 for (i = 0; i < nritems; i++) { 2529 if (level == 0) { 2530 btrfs_item_key_to_cpu(buf, &key, i); 2531 if (key.type != BTRFS_EXTENT_DATA_KEY) 2532 continue; 2533 fi = btrfs_item_ptr(buf, i, 2534 struct btrfs_file_extent_item); 2535 if (btrfs_file_extent_type(buf, fi) == 2536 BTRFS_FILE_EXTENT_INLINE) 2537 continue; 2538 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2539 if (bytenr == 0) 2540 continue; 2541 2542 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2543 key.offset -= btrfs_file_extent_offset(buf, fi); 2544 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2545 num_bytes, parent, ref_root); 2546 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2547 key.offset, root->root_key.objectid, 2548 for_reloc); 2549 if (inc) 2550 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2551 else 2552 ret = btrfs_free_extent(trans, &generic_ref); 2553 if (ret) 2554 goto fail; 2555 } else { 2556 bytenr = btrfs_node_blockptr(buf, i); 2557 num_bytes = fs_info->nodesize; 2558 /* We don't know the owning_root, use 0. */ 2559 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2560 num_bytes, parent, 0); 2561 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2562 root->root_key.objectid, for_reloc); 2563 if (inc) 2564 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2565 else 2566 ret = btrfs_free_extent(trans, &generic_ref); 2567 if (ret) 2568 goto fail; 2569 } 2570 } 2571 return 0; 2572 fail: 2573 return ret; 2574 } 2575 2576 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2577 struct extent_buffer *buf, int full_backref) 2578 { 2579 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2580 } 2581 2582 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2583 struct extent_buffer *buf, int full_backref) 2584 { 2585 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2586 } 2587 2588 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2589 { 2590 struct btrfs_fs_info *fs_info = root->fs_info; 2591 u64 flags; 2592 u64 ret; 2593 2594 if (data) 2595 flags = BTRFS_BLOCK_GROUP_DATA; 2596 else if (root == fs_info->chunk_root) 2597 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2598 else 2599 flags = BTRFS_BLOCK_GROUP_METADATA; 2600 2601 ret = btrfs_get_alloc_profile(fs_info, flags); 2602 return ret; 2603 } 2604 2605 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2606 { 2607 struct rb_node *leftmost; 2608 u64 bytenr = 0; 2609 2610 read_lock(&fs_info->block_group_cache_lock); 2611 /* Get the block group with the lowest logical start address. */ 2612 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2613 if (leftmost) { 2614 struct btrfs_block_group *bg; 2615 2616 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2617 bytenr = bg->start; 2618 } 2619 read_unlock(&fs_info->block_group_cache_lock); 2620 2621 return bytenr; 2622 } 2623 2624 static int pin_down_extent(struct btrfs_trans_handle *trans, 2625 struct btrfs_block_group *cache, 2626 u64 bytenr, u64 num_bytes, int reserved) 2627 { 2628 struct btrfs_fs_info *fs_info = cache->fs_info; 2629 2630 spin_lock(&cache->space_info->lock); 2631 spin_lock(&cache->lock); 2632 cache->pinned += num_bytes; 2633 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2634 num_bytes); 2635 if (reserved) { 2636 cache->reserved -= num_bytes; 2637 cache->space_info->bytes_reserved -= num_bytes; 2638 } 2639 spin_unlock(&cache->lock); 2640 spin_unlock(&cache->space_info->lock); 2641 2642 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2643 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2644 return 0; 2645 } 2646 2647 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2648 u64 bytenr, u64 num_bytes, int reserved) 2649 { 2650 struct btrfs_block_group *cache; 2651 2652 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2653 BUG_ON(!cache); /* Logic error */ 2654 2655 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2656 2657 btrfs_put_block_group(cache); 2658 return 0; 2659 } 2660 2661 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2662 const struct extent_buffer *eb) 2663 { 2664 struct btrfs_block_group *cache; 2665 int ret; 2666 2667 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2668 if (!cache) 2669 return -EINVAL; 2670 2671 /* 2672 * Fully cache the free space first so that our pin removes the free space 2673 * from the cache. 2674 */ 2675 ret = btrfs_cache_block_group(cache, true); 2676 if (ret) 2677 goto out; 2678 2679 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2680 2681 /* remove us from the free space cache (if we're there at all) */ 2682 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2683 out: 2684 btrfs_put_block_group(cache); 2685 return ret; 2686 } 2687 2688 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2689 u64 start, u64 num_bytes) 2690 { 2691 int ret; 2692 struct btrfs_block_group *block_group; 2693 2694 block_group = btrfs_lookup_block_group(fs_info, start); 2695 if (!block_group) 2696 return -EINVAL; 2697 2698 ret = btrfs_cache_block_group(block_group, true); 2699 if (ret) 2700 goto out; 2701 2702 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2703 out: 2704 btrfs_put_block_group(block_group); 2705 return ret; 2706 } 2707 2708 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2709 { 2710 struct btrfs_fs_info *fs_info = eb->fs_info; 2711 struct btrfs_file_extent_item *item; 2712 struct btrfs_key key; 2713 int found_type; 2714 int i; 2715 int ret = 0; 2716 2717 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2718 return 0; 2719 2720 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2721 btrfs_item_key_to_cpu(eb, &key, i); 2722 if (key.type != BTRFS_EXTENT_DATA_KEY) 2723 continue; 2724 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2725 found_type = btrfs_file_extent_type(eb, item); 2726 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2727 continue; 2728 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2729 continue; 2730 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2731 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2732 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2733 if (ret) 2734 break; 2735 } 2736 2737 return ret; 2738 } 2739 2740 static void 2741 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2742 { 2743 atomic_inc(&bg->reservations); 2744 } 2745 2746 /* 2747 * Returns the free cluster for the given space info and sets empty_cluster to 2748 * what it should be based on the mount options. 2749 */ 2750 static struct btrfs_free_cluster * 2751 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2752 struct btrfs_space_info *space_info, u64 *empty_cluster) 2753 { 2754 struct btrfs_free_cluster *ret = NULL; 2755 2756 *empty_cluster = 0; 2757 if (btrfs_mixed_space_info(space_info)) 2758 return ret; 2759 2760 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2761 ret = &fs_info->meta_alloc_cluster; 2762 if (btrfs_test_opt(fs_info, SSD)) 2763 *empty_cluster = SZ_2M; 2764 else 2765 *empty_cluster = SZ_64K; 2766 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2767 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2768 *empty_cluster = SZ_2M; 2769 ret = &fs_info->data_alloc_cluster; 2770 } 2771 2772 return ret; 2773 } 2774 2775 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2776 u64 start, u64 end, 2777 const bool return_free_space) 2778 { 2779 struct btrfs_block_group *cache = NULL; 2780 struct btrfs_space_info *space_info; 2781 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2782 struct btrfs_free_cluster *cluster = NULL; 2783 u64 len; 2784 u64 total_unpinned = 0; 2785 u64 empty_cluster = 0; 2786 bool readonly; 2787 int ret = 0; 2788 2789 while (start <= end) { 2790 readonly = false; 2791 if (!cache || 2792 start >= cache->start + cache->length) { 2793 if (cache) 2794 btrfs_put_block_group(cache); 2795 total_unpinned = 0; 2796 cache = btrfs_lookup_block_group(fs_info, start); 2797 if (cache == NULL) { 2798 /* Logic error, something removed the block group. */ 2799 ret = -EUCLEAN; 2800 goto out; 2801 } 2802 2803 cluster = fetch_cluster_info(fs_info, 2804 cache->space_info, 2805 &empty_cluster); 2806 empty_cluster <<= 1; 2807 } 2808 2809 len = cache->start + cache->length - start; 2810 len = min(len, end + 1 - start); 2811 2812 if (return_free_space) 2813 btrfs_add_free_space(cache, start, len); 2814 2815 start += len; 2816 total_unpinned += len; 2817 space_info = cache->space_info; 2818 2819 /* 2820 * If this space cluster has been marked as fragmented and we've 2821 * unpinned enough in this block group to potentially allow a 2822 * cluster to be created inside of it go ahead and clear the 2823 * fragmented check. 2824 */ 2825 if (cluster && cluster->fragmented && 2826 total_unpinned > empty_cluster) { 2827 spin_lock(&cluster->lock); 2828 cluster->fragmented = 0; 2829 spin_unlock(&cluster->lock); 2830 } 2831 2832 spin_lock(&space_info->lock); 2833 spin_lock(&cache->lock); 2834 cache->pinned -= len; 2835 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2836 space_info->max_extent_size = 0; 2837 if (cache->ro) { 2838 space_info->bytes_readonly += len; 2839 readonly = true; 2840 } else if (btrfs_is_zoned(fs_info)) { 2841 /* Need reset before reusing in a zoned block group */ 2842 space_info->bytes_zone_unusable += len; 2843 readonly = true; 2844 } 2845 spin_unlock(&cache->lock); 2846 if (!readonly && return_free_space && 2847 global_rsv->space_info == space_info) { 2848 spin_lock(&global_rsv->lock); 2849 if (!global_rsv->full) { 2850 u64 to_add = min(len, global_rsv->size - 2851 global_rsv->reserved); 2852 2853 global_rsv->reserved += to_add; 2854 btrfs_space_info_update_bytes_may_use(fs_info, 2855 space_info, to_add); 2856 if (global_rsv->reserved >= global_rsv->size) 2857 global_rsv->full = 1; 2858 len -= to_add; 2859 } 2860 spin_unlock(&global_rsv->lock); 2861 } 2862 /* Add to any tickets we may have */ 2863 if (!readonly && return_free_space && len) 2864 btrfs_try_granting_tickets(fs_info, space_info); 2865 spin_unlock(&space_info->lock); 2866 } 2867 2868 if (cache) 2869 btrfs_put_block_group(cache); 2870 out: 2871 return ret; 2872 } 2873 2874 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2875 { 2876 struct btrfs_fs_info *fs_info = trans->fs_info; 2877 struct btrfs_block_group *block_group, *tmp; 2878 struct list_head *deleted_bgs; 2879 struct extent_io_tree *unpin; 2880 u64 start; 2881 u64 end; 2882 int ret; 2883 2884 unpin = &trans->transaction->pinned_extents; 2885 2886 while (!TRANS_ABORTED(trans)) { 2887 struct extent_state *cached_state = NULL; 2888 2889 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2890 if (!find_first_extent_bit(unpin, 0, &start, &end, 2891 EXTENT_DIRTY, &cached_state)) { 2892 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2893 break; 2894 } 2895 2896 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2897 ret = btrfs_discard_extent(fs_info, start, 2898 end + 1 - start, NULL); 2899 2900 clear_extent_dirty(unpin, start, end, &cached_state); 2901 ret = unpin_extent_range(fs_info, start, end, true); 2902 BUG_ON(ret); 2903 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2904 free_extent_state(cached_state); 2905 cond_resched(); 2906 } 2907 2908 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2909 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2910 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2911 } 2912 2913 /* 2914 * Transaction is finished. We don't need the lock anymore. We 2915 * do need to clean up the block groups in case of a transaction 2916 * abort. 2917 */ 2918 deleted_bgs = &trans->transaction->deleted_bgs; 2919 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2920 u64 trimmed = 0; 2921 2922 ret = -EROFS; 2923 if (!TRANS_ABORTED(trans)) 2924 ret = btrfs_discard_extent(fs_info, 2925 block_group->start, 2926 block_group->length, 2927 &trimmed); 2928 2929 list_del_init(&block_group->bg_list); 2930 btrfs_unfreeze_block_group(block_group); 2931 btrfs_put_block_group(block_group); 2932 2933 if (ret) { 2934 const char *errstr = btrfs_decode_error(ret); 2935 btrfs_warn(fs_info, 2936 "discard failed while removing blockgroup: errno=%d %s", 2937 ret, errstr); 2938 } 2939 } 2940 2941 return 0; 2942 } 2943 2944 /* 2945 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2946 * 2947 * @fs_info: the btrfs_fs_info for this mount 2948 * @leaf: a leaf in the extent tree containing the extent item 2949 * @slot: the slot in the leaf where the extent item is found 2950 * 2951 * Returns the objectid of the root that originally allocated the extent item 2952 * if the inline owner ref is expected and present, otherwise 0. 2953 * 2954 * If an extent item has an owner ref item, it will be the first inline ref 2955 * item. Therefore the logic is to check whether there are any inline ref 2956 * items, then check the type of the first one. 2957 */ 2958 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2959 struct extent_buffer *leaf, int slot) 2960 { 2961 struct btrfs_extent_item *ei; 2962 struct btrfs_extent_inline_ref *iref; 2963 struct btrfs_extent_owner_ref *oref; 2964 unsigned long ptr; 2965 unsigned long end; 2966 int type; 2967 2968 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2969 return 0; 2970 2971 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2972 ptr = (unsigned long)(ei + 1); 2973 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2974 2975 /* No inline ref items of any kind, can't check type. */ 2976 if (ptr == end) 2977 return 0; 2978 2979 iref = (struct btrfs_extent_inline_ref *)ptr; 2980 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2981 2982 /* We found an owner ref, get the root out of it. */ 2983 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2984 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2985 return btrfs_extent_owner_ref_root_id(leaf, oref); 2986 } 2987 2988 /* We have inline refs, but not an owner ref. */ 2989 return 0; 2990 } 2991 2992 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2993 u64 bytenr, struct btrfs_squota_delta *delta) 2994 { 2995 int ret; 2996 u64 num_bytes = delta->num_bytes; 2997 2998 if (delta->is_data) { 2999 struct btrfs_root *csum_root; 3000 3001 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 3002 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 3003 if (ret) { 3004 btrfs_abort_transaction(trans, ret); 3005 return ret; 3006 } 3007 3008 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 3009 if (ret) { 3010 btrfs_abort_transaction(trans, ret); 3011 return ret; 3012 } 3013 } 3014 3015 ret = btrfs_record_squota_delta(trans->fs_info, delta); 3016 if (ret) { 3017 btrfs_abort_transaction(trans, ret); 3018 return ret; 3019 } 3020 3021 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3022 if (ret) { 3023 btrfs_abort_transaction(trans, ret); 3024 return ret; 3025 } 3026 3027 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3028 if (ret) 3029 btrfs_abort_transaction(trans, ret); 3030 3031 return ret; 3032 } 3033 3034 #define abort_and_dump(trans, path, fmt, args...) \ 3035 ({ \ 3036 btrfs_abort_transaction(trans, -EUCLEAN); \ 3037 btrfs_print_leaf(path->nodes[0]); \ 3038 btrfs_crit(trans->fs_info, fmt, ##args); \ 3039 }) 3040 3041 /* 3042 * Drop one or more refs of @node. 3043 * 3044 * 1. Locate the extent refs. 3045 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3046 * Locate it, then reduce the refs number or remove the ref line completely. 3047 * 3048 * 2. Update the refs count in EXTENT/METADATA_ITEM 3049 * 3050 * Inline backref case: 3051 * 3052 * in extent tree we have: 3053 * 3054 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3055 * refs 2 gen 6 flags DATA 3056 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3057 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3058 * 3059 * This function gets called with: 3060 * 3061 * node->bytenr = 13631488 3062 * node->num_bytes = 1048576 3063 * root_objectid = FS_TREE 3064 * owner_objectid = 257 3065 * owner_offset = 0 3066 * refs_to_drop = 1 3067 * 3068 * Then we should get some like: 3069 * 3070 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3071 * refs 1 gen 6 flags DATA 3072 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3073 * 3074 * Keyed backref case: 3075 * 3076 * in extent tree we have: 3077 * 3078 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3079 * refs 754 gen 6 flags DATA 3080 * [...] 3081 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3082 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3083 * 3084 * This function get called with: 3085 * 3086 * node->bytenr = 13631488 3087 * node->num_bytes = 1048576 3088 * root_objectid = FS_TREE 3089 * owner_objectid = 866 3090 * owner_offset = 0 3091 * refs_to_drop = 1 3092 * 3093 * Then we should get some like: 3094 * 3095 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3096 * refs 753 gen 6 flags DATA 3097 * 3098 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3099 */ 3100 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3101 struct btrfs_delayed_ref_head *href, 3102 struct btrfs_delayed_ref_node *node, u64 parent, 3103 u64 root_objectid, u64 owner_objectid, 3104 u64 owner_offset, 3105 struct btrfs_delayed_extent_op *extent_op) 3106 { 3107 struct btrfs_fs_info *info = trans->fs_info; 3108 struct btrfs_key key; 3109 struct btrfs_path *path; 3110 struct btrfs_root *extent_root; 3111 struct extent_buffer *leaf; 3112 struct btrfs_extent_item *ei; 3113 struct btrfs_extent_inline_ref *iref; 3114 int ret; 3115 int is_data; 3116 int extent_slot = 0; 3117 int found_extent = 0; 3118 int num_to_del = 1; 3119 int refs_to_drop = node->ref_mod; 3120 u32 item_size; 3121 u64 refs; 3122 u64 bytenr = node->bytenr; 3123 u64 num_bytes = node->num_bytes; 3124 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3125 u64 delayed_ref_root = href->owning_root; 3126 3127 extent_root = btrfs_extent_root(info, bytenr); 3128 ASSERT(extent_root); 3129 3130 path = btrfs_alloc_path(); 3131 if (!path) 3132 return -ENOMEM; 3133 3134 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3135 3136 if (!is_data && refs_to_drop != 1) { 3137 btrfs_crit(info, 3138 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3139 node->bytenr, refs_to_drop); 3140 ret = -EINVAL; 3141 btrfs_abort_transaction(trans, ret); 3142 goto out; 3143 } 3144 3145 if (is_data) 3146 skinny_metadata = false; 3147 3148 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3149 parent, root_objectid, owner_objectid, 3150 owner_offset); 3151 if (ret == 0) { 3152 /* 3153 * Either the inline backref or the SHARED_DATA_REF/ 3154 * SHARED_BLOCK_REF is found 3155 * 3156 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3157 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3158 */ 3159 extent_slot = path->slots[0]; 3160 while (extent_slot >= 0) { 3161 btrfs_item_key_to_cpu(path->nodes[0], &key, 3162 extent_slot); 3163 if (key.objectid != bytenr) 3164 break; 3165 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3166 key.offset == num_bytes) { 3167 found_extent = 1; 3168 break; 3169 } 3170 if (key.type == BTRFS_METADATA_ITEM_KEY && 3171 key.offset == owner_objectid) { 3172 found_extent = 1; 3173 break; 3174 } 3175 3176 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3177 if (path->slots[0] - extent_slot > 5) 3178 break; 3179 extent_slot--; 3180 } 3181 3182 if (!found_extent) { 3183 if (iref) { 3184 abort_and_dump(trans, path, 3185 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3186 path->slots[0]); 3187 ret = -EUCLEAN; 3188 goto out; 3189 } 3190 /* Must be SHARED_* item, remove the backref first */ 3191 ret = remove_extent_backref(trans, extent_root, path, 3192 NULL, refs_to_drop, is_data); 3193 if (ret) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 btrfs_release_path(path); 3198 3199 /* Slow path to locate EXTENT/METADATA_ITEM */ 3200 key.objectid = bytenr; 3201 key.type = BTRFS_EXTENT_ITEM_KEY; 3202 key.offset = num_bytes; 3203 3204 if (!is_data && skinny_metadata) { 3205 key.type = BTRFS_METADATA_ITEM_KEY; 3206 key.offset = owner_objectid; 3207 } 3208 3209 ret = btrfs_search_slot(trans, extent_root, 3210 &key, path, -1, 1); 3211 if (ret > 0 && skinny_metadata && path->slots[0]) { 3212 /* 3213 * Couldn't find our skinny metadata item, 3214 * see if we have ye olde extent item. 3215 */ 3216 path->slots[0]--; 3217 btrfs_item_key_to_cpu(path->nodes[0], &key, 3218 path->slots[0]); 3219 if (key.objectid == bytenr && 3220 key.type == BTRFS_EXTENT_ITEM_KEY && 3221 key.offset == num_bytes) 3222 ret = 0; 3223 } 3224 3225 if (ret > 0 && skinny_metadata) { 3226 skinny_metadata = false; 3227 key.objectid = bytenr; 3228 key.type = BTRFS_EXTENT_ITEM_KEY; 3229 key.offset = num_bytes; 3230 btrfs_release_path(path); 3231 ret = btrfs_search_slot(trans, extent_root, 3232 &key, path, -1, 1); 3233 } 3234 3235 if (ret) { 3236 if (ret > 0) 3237 btrfs_print_leaf(path->nodes[0]); 3238 btrfs_err(info, 3239 "umm, got %d back from search, was looking for %llu, slot %d", 3240 ret, bytenr, path->slots[0]); 3241 } 3242 if (ret < 0) { 3243 btrfs_abort_transaction(trans, ret); 3244 goto out; 3245 } 3246 extent_slot = path->slots[0]; 3247 } 3248 } else if (WARN_ON(ret == -ENOENT)) { 3249 abort_and_dump(trans, path, 3250 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3251 bytenr, parent, root_objectid, owner_objectid, 3252 owner_offset, path->slots[0]); 3253 goto out; 3254 } else { 3255 btrfs_abort_transaction(trans, ret); 3256 goto out; 3257 } 3258 3259 leaf = path->nodes[0]; 3260 item_size = btrfs_item_size(leaf, extent_slot); 3261 if (unlikely(item_size < sizeof(*ei))) { 3262 ret = -EUCLEAN; 3263 btrfs_err(trans->fs_info, 3264 "unexpected extent item size, has %u expect >= %zu", 3265 item_size, sizeof(*ei)); 3266 btrfs_abort_transaction(trans, ret); 3267 goto out; 3268 } 3269 ei = btrfs_item_ptr(leaf, extent_slot, 3270 struct btrfs_extent_item); 3271 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3272 key.type == BTRFS_EXTENT_ITEM_KEY) { 3273 struct btrfs_tree_block_info *bi; 3274 3275 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3276 abort_and_dump(trans, path, 3277 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3278 key.objectid, key.type, key.offset, 3279 path->slots[0], owner_objectid, item_size, 3280 sizeof(*ei) + sizeof(*bi)); 3281 ret = -EUCLEAN; 3282 goto out; 3283 } 3284 bi = (struct btrfs_tree_block_info *)(ei + 1); 3285 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3286 } 3287 3288 refs = btrfs_extent_refs(leaf, ei); 3289 if (refs < refs_to_drop) { 3290 abort_and_dump(trans, path, 3291 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3292 refs_to_drop, refs, bytenr, path->slots[0]); 3293 ret = -EUCLEAN; 3294 goto out; 3295 } 3296 refs -= refs_to_drop; 3297 3298 if (refs > 0) { 3299 if (extent_op) 3300 __run_delayed_extent_op(extent_op, leaf, ei); 3301 /* 3302 * In the case of inline back ref, reference count will 3303 * be updated by remove_extent_backref 3304 */ 3305 if (iref) { 3306 if (!found_extent) { 3307 abort_and_dump(trans, path, 3308 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3309 path->slots[0]); 3310 ret = -EUCLEAN; 3311 goto out; 3312 } 3313 } else { 3314 btrfs_set_extent_refs(leaf, ei, refs); 3315 btrfs_mark_buffer_dirty(trans, leaf); 3316 } 3317 if (found_extent) { 3318 ret = remove_extent_backref(trans, extent_root, path, 3319 iref, refs_to_drop, is_data); 3320 if (ret) { 3321 btrfs_abort_transaction(trans, ret); 3322 goto out; 3323 } 3324 } 3325 } else { 3326 struct btrfs_squota_delta delta = { 3327 .root = delayed_ref_root, 3328 .num_bytes = num_bytes, 3329 .is_data = is_data, 3330 .is_inc = false, 3331 .generation = btrfs_extent_generation(leaf, ei), 3332 }; 3333 3334 /* In this branch refs == 1 */ 3335 if (found_extent) { 3336 if (is_data && refs_to_drop != 3337 extent_data_ref_count(path, iref)) { 3338 abort_and_dump(trans, path, 3339 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3340 extent_data_ref_count(path, iref), 3341 refs_to_drop, path->slots[0]); 3342 ret = -EUCLEAN; 3343 goto out; 3344 } 3345 if (iref) { 3346 if (path->slots[0] != extent_slot) { 3347 abort_and_dump(trans, path, 3348 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3349 key.objectid, key.type, 3350 key.offset, path->slots[0]); 3351 ret = -EUCLEAN; 3352 goto out; 3353 } 3354 } else { 3355 /* 3356 * No inline ref, we must be at SHARED_* item, 3357 * And it's single ref, it must be: 3358 * | extent_slot ||extent_slot + 1| 3359 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3360 */ 3361 if (path->slots[0] != extent_slot + 1) { 3362 abort_and_dump(trans, path, 3363 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3364 path->slots[0]); 3365 ret = -EUCLEAN; 3366 goto out; 3367 } 3368 path->slots[0] = extent_slot; 3369 num_to_del = 2; 3370 } 3371 } 3372 /* 3373 * We can't infer the data owner from the delayed ref, so we need 3374 * to try to get it from the owning ref item. 3375 * 3376 * If it is not present, then that extent was not written under 3377 * simple quotas mode, so we don't need to account for its deletion. 3378 */ 3379 if (is_data) 3380 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3381 leaf, extent_slot); 3382 3383 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3384 num_to_del); 3385 if (ret) { 3386 btrfs_abort_transaction(trans, ret); 3387 goto out; 3388 } 3389 btrfs_release_path(path); 3390 3391 ret = do_free_extent_accounting(trans, bytenr, &delta); 3392 } 3393 btrfs_release_path(path); 3394 3395 out: 3396 btrfs_free_path(path); 3397 return ret; 3398 } 3399 3400 /* 3401 * when we free an block, it is possible (and likely) that we free the last 3402 * delayed ref for that extent as well. This searches the delayed ref tree for 3403 * a given extent, and if there are no other delayed refs to be processed, it 3404 * removes it from the tree. 3405 */ 3406 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3407 u64 bytenr) 3408 { 3409 struct btrfs_delayed_ref_head *head; 3410 struct btrfs_delayed_ref_root *delayed_refs; 3411 int ret = 0; 3412 3413 delayed_refs = &trans->transaction->delayed_refs; 3414 spin_lock(&delayed_refs->lock); 3415 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3416 if (!head) 3417 goto out_delayed_unlock; 3418 3419 spin_lock(&head->lock); 3420 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3421 goto out; 3422 3423 if (cleanup_extent_op(head) != NULL) 3424 goto out; 3425 3426 /* 3427 * waiting for the lock here would deadlock. If someone else has it 3428 * locked they are already in the process of dropping it anyway 3429 */ 3430 if (!mutex_trylock(&head->mutex)) 3431 goto out; 3432 3433 btrfs_delete_ref_head(delayed_refs, head); 3434 head->processing = false; 3435 3436 spin_unlock(&head->lock); 3437 spin_unlock(&delayed_refs->lock); 3438 3439 BUG_ON(head->extent_op); 3440 if (head->must_insert_reserved) 3441 ret = 1; 3442 3443 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3444 mutex_unlock(&head->mutex); 3445 btrfs_put_delayed_ref_head(head); 3446 return ret; 3447 out: 3448 spin_unlock(&head->lock); 3449 3450 out_delayed_unlock: 3451 spin_unlock(&delayed_refs->lock); 3452 return 0; 3453 } 3454 3455 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3456 u64 root_id, 3457 struct extent_buffer *buf, 3458 u64 parent, int last_ref) 3459 { 3460 struct btrfs_fs_info *fs_info = trans->fs_info; 3461 struct btrfs_block_group *bg; 3462 int ret; 3463 3464 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3465 struct btrfs_ref generic_ref = { 0 }; 3466 3467 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3468 buf->start, buf->len, parent, 3469 btrfs_header_owner(buf)); 3470 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3471 root_id, 0, false); 3472 btrfs_ref_tree_mod(fs_info, &generic_ref); 3473 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3474 BUG_ON(ret); /* -ENOMEM */ 3475 } 3476 3477 if (!last_ref) 3478 return; 3479 3480 if (btrfs_header_generation(buf) != trans->transid) 3481 goto out; 3482 3483 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3484 ret = check_ref_cleanup(trans, buf->start); 3485 if (!ret) 3486 goto out; 3487 } 3488 3489 bg = btrfs_lookup_block_group(fs_info, buf->start); 3490 3491 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3492 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3493 btrfs_put_block_group(bg); 3494 goto out; 3495 } 3496 3497 /* 3498 * If there are tree mod log users we may have recorded mod log 3499 * operations for this node. If we re-allocate this node we 3500 * could replay operations on this node that happened when it 3501 * existed in a completely different root. For example if it 3502 * was part of root A, then was reallocated to root B, and we 3503 * are doing a btrfs_old_search_slot(root b), we could replay 3504 * operations that happened when the block was part of root A, 3505 * giving us an inconsistent view of the btree. 3506 * 3507 * We are safe from races here because at this point no other 3508 * node or root points to this extent buffer, so if after this 3509 * check a new tree mod log user joins we will not have an 3510 * existing log of operations on this node that we have to 3511 * contend with. 3512 */ 3513 3514 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3515 || btrfs_is_zoned(fs_info)) { 3516 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3517 btrfs_put_block_group(bg); 3518 goto out; 3519 } 3520 3521 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3522 3523 btrfs_add_free_space(bg, buf->start, buf->len); 3524 btrfs_free_reserved_bytes(bg, buf->len, 0); 3525 btrfs_put_block_group(bg); 3526 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3527 3528 out: 3529 3530 /* 3531 * Deleting the buffer, clear the corrupt flag since it doesn't 3532 * matter anymore. 3533 */ 3534 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3535 } 3536 3537 /* Can return -ENOMEM */ 3538 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3539 { 3540 struct btrfs_fs_info *fs_info = trans->fs_info; 3541 int ret; 3542 3543 if (btrfs_is_testing(fs_info)) 3544 return 0; 3545 3546 /* 3547 * tree log blocks never actually go into the extent allocation 3548 * tree, just update pinning info and exit early. 3549 */ 3550 if ((ref->type == BTRFS_REF_METADATA && 3551 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3552 (ref->type == BTRFS_REF_DATA && 3553 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3554 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3555 ret = 0; 3556 } else if (ref->type == BTRFS_REF_METADATA) { 3557 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3558 } else { 3559 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3560 } 3561 3562 if (!((ref->type == BTRFS_REF_METADATA && 3563 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3564 (ref->type == BTRFS_REF_DATA && 3565 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3566 btrfs_ref_tree_mod(fs_info, ref); 3567 3568 return ret; 3569 } 3570 3571 enum btrfs_loop_type { 3572 /* 3573 * Start caching block groups but do not wait for progress or for them 3574 * to be done. 3575 */ 3576 LOOP_CACHING_NOWAIT, 3577 3578 /* 3579 * Wait for the block group free_space >= the space we're waiting for if 3580 * the block group isn't cached. 3581 */ 3582 LOOP_CACHING_WAIT, 3583 3584 /* 3585 * Allow allocations to happen from block groups that do not yet have a 3586 * size classification. 3587 */ 3588 LOOP_UNSET_SIZE_CLASS, 3589 3590 /* 3591 * Allocate a chunk and then retry the allocation. 3592 */ 3593 LOOP_ALLOC_CHUNK, 3594 3595 /* 3596 * Ignore the size class restrictions for this allocation. 3597 */ 3598 LOOP_WRONG_SIZE_CLASS, 3599 3600 /* 3601 * Ignore the empty size, only try to allocate the number of bytes 3602 * needed for this allocation. 3603 */ 3604 LOOP_NO_EMPTY_SIZE, 3605 }; 3606 3607 static inline void 3608 btrfs_lock_block_group(struct btrfs_block_group *cache, 3609 int delalloc) 3610 { 3611 if (delalloc) 3612 down_read(&cache->data_rwsem); 3613 } 3614 3615 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3616 int delalloc) 3617 { 3618 btrfs_get_block_group(cache); 3619 if (delalloc) 3620 down_read(&cache->data_rwsem); 3621 } 3622 3623 static struct btrfs_block_group *btrfs_lock_cluster( 3624 struct btrfs_block_group *block_group, 3625 struct btrfs_free_cluster *cluster, 3626 int delalloc) 3627 __acquires(&cluster->refill_lock) 3628 { 3629 struct btrfs_block_group *used_bg = NULL; 3630 3631 spin_lock(&cluster->refill_lock); 3632 while (1) { 3633 used_bg = cluster->block_group; 3634 if (!used_bg) 3635 return NULL; 3636 3637 if (used_bg == block_group) 3638 return used_bg; 3639 3640 btrfs_get_block_group(used_bg); 3641 3642 if (!delalloc) 3643 return used_bg; 3644 3645 if (down_read_trylock(&used_bg->data_rwsem)) 3646 return used_bg; 3647 3648 spin_unlock(&cluster->refill_lock); 3649 3650 /* We should only have one-level nested. */ 3651 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3652 3653 spin_lock(&cluster->refill_lock); 3654 if (used_bg == cluster->block_group) 3655 return used_bg; 3656 3657 up_read(&used_bg->data_rwsem); 3658 btrfs_put_block_group(used_bg); 3659 } 3660 } 3661 3662 static inline void 3663 btrfs_release_block_group(struct btrfs_block_group *cache, 3664 int delalloc) 3665 { 3666 if (delalloc) 3667 up_read(&cache->data_rwsem); 3668 btrfs_put_block_group(cache); 3669 } 3670 3671 /* 3672 * Helper function for find_free_extent(). 3673 * 3674 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3675 * Return >0 to inform caller that we find nothing 3676 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3677 */ 3678 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3679 struct find_free_extent_ctl *ffe_ctl, 3680 struct btrfs_block_group **cluster_bg_ret) 3681 { 3682 struct btrfs_block_group *cluster_bg; 3683 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3684 u64 aligned_cluster; 3685 u64 offset; 3686 int ret; 3687 3688 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3689 if (!cluster_bg) 3690 goto refill_cluster; 3691 if (cluster_bg != bg && (cluster_bg->ro || 3692 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3693 goto release_cluster; 3694 3695 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3696 ffe_ctl->num_bytes, cluster_bg->start, 3697 &ffe_ctl->max_extent_size); 3698 if (offset) { 3699 /* We have a block, we're done */ 3700 spin_unlock(&last_ptr->refill_lock); 3701 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3702 *cluster_bg_ret = cluster_bg; 3703 ffe_ctl->found_offset = offset; 3704 return 0; 3705 } 3706 WARN_ON(last_ptr->block_group != cluster_bg); 3707 3708 release_cluster: 3709 /* 3710 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3711 * lets just skip it and let the allocator find whatever block it can 3712 * find. If we reach this point, we will have tried the cluster 3713 * allocator plenty of times and not have found anything, so we are 3714 * likely way too fragmented for the clustering stuff to find anything. 3715 * 3716 * However, if the cluster is taken from the current block group, 3717 * release the cluster first, so that we stand a better chance of 3718 * succeeding in the unclustered allocation. 3719 */ 3720 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3721 spin_unlock(&last_ptr->refill_lock); 3722 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3723 return -ENOENT; 3724 } 3725 3726 /* This cluster didn't work out, free it and start over */ 3727 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3728 3729 if (cluster_bg != bg) 3730 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3731 3732 refill_cluster: 3733 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3734 spin_unlock(&last_ptr->refill_lock); 3735 return -ENOENT; 3736 } 3737 3738 aligned_cluster = max_t(u64, 3739 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3740 bg->full_stripe_len); 3741 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3742 ffe_ctl->num_bytes, aligned_cluster); 3743 if (ret == 0) { 3744 /* Now pull our allocation out of this cluster */ 3745 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3746 ffe_ctl->num_bytes, ffe_ctl->search_start, 3747 &ffe_ctl->max_extent_size); 3748 if (offset) { 3749 /* We found one, proceed */ 3750 spin_unlock(&last_ptr->refill_lock); 3751 ffe_ctl->found_offset = offset; 3752 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3753 return 0; 3754 } 3755 } 3756 /* 3757 * At this point we either didn't find a cluster or we weren't able to 3758 * allocate a block from our cluster. Free the cluster we've been 3759 * trying to use, and go to the next block group. 3760 */ 3761 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3762 spin_unlock(&last_ptr->refill_lock); 3763 return 1; 3764 } 3765 3766 /* 3767 * Return >0 to inform caller that we find nothing 3768 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3769 */ 3770 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3771 struct find_free_extent_ctl *ffe_ctl) 3772 { 3773 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3774 u64 offset; 3775 3776 /* 3777 * We are doing an unclustered allocation, set the fragmented flag so 3778 * we don't bother trying to setup a cluster again until we get more 3779 * space. 3780 */ 3781 if (unlikely(last_ptr)) { 3782 spin_lock(&last_ptr->lock); 3783 last_ptr->fragmented = 1; 3784 spin_unlock(&last_ptr->lock); 3785 } 3786 if (ffe_ctl->cached) { 3787 struct btrfs_free_space_ctl *free_space_ctl; 3788 3789 free_space_ctl = bg->free_space_ctl; 3790 spin_lock(&free_space_ctl->tree_lock); 3791 if (free_space_ctl->free_space < 3792 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3793 ffe_ctl->empty_size) { 3794 ffe_ctl->total_free_space = max_t(u64, 3795 ffe_ctl->total_free_space, 3796 free_space_ctl->free_space); 3797 spin_unlock(&free_space_ctl->tree_lock); 3798 return 1; 3799 } 3800 spin_unlock(&free_space_ctl->tree_lock); 3801 } 3802 3803 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3804 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3805 &ffe_ctl->max_extent_size); 3806 if (!offset) 3807 return 1; 3808 ffe_ctl->found_offset = offset; 3809 return 0; 3810 } 3811 3812 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3813 struct find_free_extent_ctl *ffe_ctl, 3814 struct btrfs_block_group **bg_ret) 3815 { 3816 int ret; 3817 3818 /* We want to try and use the cluster allocator, so lets look there */ 3819 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3820 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3821 if (ret >= 0) 3822 return ret; 3823 /* ret == -ENOENT case falls through */ 3824 } 3825 3826 return find_free_extent_unclustered(block_group, ffe_ctl); 3827 } 3828 3829 /* 3830 * Tree-log block group locking 3831 * ============================ 3832 * 3833 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3834 * indicates the starting address of a block group, which is reserved only 3835 * for tree-log metadata. 3836 * 3837 * Lock nesting 3838 * ============ 3839 * 3840 * space_info::lock 3841 * block_group::lock 3842 * fs_info::treelog_bg_lock 3843 */ 3844 3845 /* 3846 * Simple allocator for sequential-only block group. It only allows sequential 3847 * allocation. No need to play with trees. This function also reserves the 3848 * bytes as in btrfs_add_reserved_bytes. 3849 */ 3850 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3851 struct find_free_extent_ctl *ffe_ctl, 3852 struct btrfs_block_group **bg_ret) 3853 { 3854 struct btrfs_fs_info *fs_info = block_group->fs_info; 3855 struct btrfs_space_info *space_info = block_group->space_info; 3856 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3857 u64 start = block_group->start; 3858 u64 num_bytes = ffe_ctl->num_bytes; 3859 u64 avail; 3860 u64 bytenr = block_group->start; 3861 u64 log_bytenr; 3862 u64 data_reloc_bytenr; 3863 int ret = 0; 3864 bool skip = false; 3865 3866 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3867 3868 /* 3869 * Do not allow non-tree-log blocks in the dedicated tree-log block 3870 * group, and vice versa. 3871 */ 3872 spin_lock(&fs_info->treelog_bg_lock); 3873 log_bytenr = fs_info->treelog_bg; 3874 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3875 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3876 skip = true; 3877 spin_unlock(&fs_info->treelog_bg_lock); 3878 if (skip) 3879 return 1; 3880 3881 /* 3882 * Do not allow non-relocation blocks in the dedicated relocation block 3883 * group, and vice versa. 3884 */ 3885 spin_lock(&fs_info->relocation_bg_lock); 3886 data_reloc_bytenr = fs_info->data_reloc_bg; 3887 if (data_reloc_bytenr && 3888 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3889 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3890 skip = true; 3891 spin_unlock(&fs_info->relocation_bg_lock); 3892 if (skip) 3893 return 1; 3894 3895 /* Check RO and no space case before trying to activate it */ 3896 spin_lock(&block_group->lock); 3897 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3898 ret = 1; 3899 /* 3900 * May need to clear fs_info->{treelog,data_reloc}_bg. 3901 * Return the error after taking the locks. 3902 */ 3903 } 3904 spin_unlock(&block_group->lock); 3905 3906 /* Metadata block group is activated at write time. */ 3907 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3908 !btrfs_zone_activate(block_group)) { 3909 ret = 1; 3910 /* 3911 * May need to clear fs_info->{treelog,data_reloc}_bg. 3912 * Return the error after taking the locks. 3913 */ 3914 } 3915 3916 spin_lock(&space_info->lock); 3917 spin_lock(&block_group->lock); 3918 spin_lock(&fs_info->treelog_bg_lock); 3919 spin_lock(&fs_info->relocation_bg_lock); 3920 3921 if (ret) 3922 goto out; 3923 3924 ASSERT(!ffe_ctl->for_treelog || 3925 block_group->start == fs_info->treelog_bg || 3926 fs_info->treelog_bg == 0); 3927 ASSERT(!ffe_ctl->for_data_reloc || 3928 block_group->start == fs_info->data_reloc_bg || 3929 fs_info->data_reloc_bg == 0); 3930 3931 if (block_group->ro || 3932 (!ffe_ctl->for_data_reloc && 3933 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3934 ret = 1; 3935 goto out; 3936 } 3937 3938 /* 3939 * Do not allow currently using block group to be tree-log dedicated 3940 * block group. 3941 */ 3942 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3943 (block_group->used || block_group->reserved)) { 3944 ret = 1; 3945 goto out; 3946 } 3947 3948 /* 3949 * Do not allow currently used block group to be the data relocation 3950 * dedicated block group. 3951 */ 3952 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3953 (block_group->used || block_group->reserved)) { 3954 ret = 1; 3955 goto out; 3956 } 3957 3958 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3959 avail = block_group->zone_capacity - block_group->alloc_offset; 3960 if (avail < num_bytes) { 3961 if (ffe_ctl->max_extent_size < avail) { 3962 /* 3963 * With sequential allocator, free space is always 3964 * contiguous 3965 */ 3966 ffe_ctl->max_extent_size = avail; 3967 ffe_ctl->total_free_space = avail; 3968 } 3969 ret = 1; 3970 goto out; 3971 } 3972 3973 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3974 fs_info->treelog_bg = block_group->start; 3975 3976 if (ffe_ctl->for_data_reloc) { 3977 if (!fs_info->data_reloc_bg) 3978 fs_info->data_reloc_bg = block_group->start; 3979 /* 3980 * Do not allow allocations from this block group, unless it is 3981 * for data relocation. Compared to increasing the ->ro, setting 3982 * the ->zoned_data_reloc_ongoing flag still allows nocow 3983 * writers to come in. See btrfs_inc_nocow_writers(). 3984 * 3985 * We need to disable an allocation to avoid an allocation of 3986 * regular (non-relocation data) extent. With mix of relocation 3987 * extents and regular extents, we can dispatch WRITE commands 3988 * (for relocation extents) and ZONE APPEND commands (for 3989 * regular extents) at the same time to the same zone, which 3990 * easily break the write pointer. 3991 * 3992 * Also, this flag avoids this block group to be zone finished. 3993 */ 3994 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3995 } 3996 3997 ffe_ctl->found_offset = start + block_group->alloc_offset; 3998 block_group->alloc_offset += num_bytes; 3999 spin_lock(&ctl->tree_lock); 4000 ctl->free_space -= num_bytes; 4001 spin_unlock(&ctl->tree_lock); 4002 4003 /* 4004 * We do not check if found_offset is aligned to stripesize. The 4005 * address is anyway rewritten when using zone append writing. 4006 */ 4007 4008 ffe_ctl->search_start = ffe_ctl->found_offset; 4009 4010 out: 4011 if (ret && ffe_ctl->for_treelog) 4012 fs_info->treelog_bg = 0; 4013 if (ret && ffe_ctl->for_data_reloc) 4014 fs_info->data_reloc_bg = 0; 4015 spin_unlock(&fs_info->relocation_bg_lock); 4016 spin_unlock(&fs_info->treelog_bg_lock); 4017 spin_unlock(&block_group->lock); 4018 spin_unlock(&space_info->lock); 4019 return ret; 4020 } 4021 4022 static int do_allocation(struct btrfs_block_group *block_group, 4023 struct find_free_extent_ctl *ffe_ctl, 4024 struct btrfs_block_group **bg_ret) 4025 { 4026 switch (ffe_ctl->policy) { 4027 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4028 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4029 case BTRFS_EXTENT_ALLOC_ZONED: 4030 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4031 default: 4032 BUG(); 4033 } 4034 } 4035 4036 static void release_block_group(struct btrfs_block_group *block_group, 4037 struct find_free_extent_ctl *ffe_ctl, 4038 int delalloc) 4039 { 4040 switch (ffe_ctl->policy) { 4041 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4042 ffe_ctl->retry_uncached = false; 4043 break; 4044 case BTRFS_EXTENT_ALLOC_ZONED: 4045 /* Nothing to do */ 4046 break; 4047 default: 4048 BUG(); 4049 } 4050 4051 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4052 ffe_ctl->index); 4053 btrfs_release_block_group(block_group, delalloc); 4054 } 4055 4056 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4057 struct btrfs_key *ins) 4058 { 4059 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4060 4061 if (!ffe_ctl->use_cluster && last_ptr) { 4062 spin_lock(&last_ptr->lock); 4063 last_ptr->window_start = ins->objectid; 4064 spin_unlock(&last_ptr->lock); 4065 } 4066 } 4067 4068 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4069 struct btrfs_key *ins) 4070 { 4071 switch (ffe_ctl->policy) { 4072 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4073 found_extent_clustered(ffe_ctl, ins); 4074 break; 4075 case BTRFS_EXTENT_ALLOC_ZONED: 4076 /* Nothing to do */ 4077 break; 4078 default: 4079 BUG(); 4080 } 4081 } 4082 4083 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4084 struct find_free_extent_ctl *ffe_ctl) 4085 { 4086 /* Block group's activeness is not a requirement for METADATA block groups. */ 4087 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4088 return 0; 4089 4090 /* If we can activate new zone, just allocate a chunk and use it */ 4091 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4092 return 0; 4093 4094 /* 4095 * We already reached the max active zones. Try to finish one block 4096 * group to make a room for a new block group. This is only possible 4097 * for a data block group because btrfs_zone_finish() may need to wait 4098 * for a running transaction which can cause a deadlock for metadata 4099 * allocation. 4100 */ 4101 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4102 int ret = btrfs_zone_finish_one_bg(fs_info); 4103 4104 if (ret == 1) 4105 return 0; 4106 else if (ret < 0) 4107 return ret; 4108 } 4109 4110 /* 4111 * If we have enough free space left in an already active block group 4112 * and we can't activate any other zone now, do not allow allocating a 4113 * new chunk and let find_free_extent() retry with a smaller size. 4114 */ 4115 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4116 return -ENOSPC; 4117 4118 /* 4119 * Even min_alloc_size is not left in any block groups. Since we cannot 4120 * activate a new block group, allocating it may not help. Let's tell a 4121 * caller to try again and hope it progress something by writing some 4122 * parts of the region. That is only possible for data block groups, 4123 * where a part of the region can be written. 4124 */ 4125 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4126 return -EAGAIN; 4127 4128 /* 4129 * We cannot activate a new block group and no enough space left in any 4130 * block groups. So, allocating a new block group may not help. But, 4131 * there is nothing to do anyway, so let's go with it. 4132 */ 4133 return 0; 4134 } 4135 4136 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4137 struct find_free_extent_ctl *ffe_ctl) 4138 { 4139 switch (ffe_ctl->policy) { 4140 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4141 return 0; 4142 case BTRFS_EXTENT_ALLOC_ZONED: 4143 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4144 default: 4145 BUG(); 4146 } 4147 } 4148 4149 /* 4150 * Return >0 means caller needs to re-search for free extent 4151 * Return 0 means we have the needed free extent. 4152 * Return <0 means we failed to locate any free extent. 4153 */ 4154 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4155 struct btrfs_key *ins, 4156 struct find_free_extent_ctl *ffe_ctl, 4157 bool full_search) 4158 { 4159 struct btrfs_root *root = fs_info->chunk_root; 4160 int ret; 4161 4162 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4163 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4164 ffe_ctl->orig_have_caching_bg = true; 4165 4166 if (ins->objectid) { 4167 found_extent(ffe_ctl, ins); 4168 return 0; 4169 } 4170 4171 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4172 return 1; 4173 4174 ffe_ctl->index++; 4175 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4176 return 1; 4177 4178 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4179 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4180 ffe_ctl->index = 0; 4181 /* 4182 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4183 * any uncached bgs and we've already done a full search 4184 * through. 4185 */ 4186 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4187 (!ffe_ctl->orig_have_caching_bg && full_search)) 4188 ffe_ctl->loop++; 4189 ffe_ctl->loop++; 4190 4191 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4192 struct btrfs_trans_handle *trans; 4193 int exist = 0; 4194 4195 /* Check if allocation policy allows to create a new chunk */ 4196 ret = can_allocate_chunk(fs_info, ffe_ctl); 4197 if (ret) 4198 return ret; 4199 4200 trans = current->journal_info; 4201 if (trans) 4202 exist = 1; 4203 else 4204 trans = btrfs_join_transaction(root); 4205 4206 if (IS_ERR(trans)) { 4207 ret = PTR_ERR(trans); 4208 return ret; 4209 } 4210 4211 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4212 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4213 4214 /* Do not bail out on ENOSPC since we can do more. */ 4215 if (ret == -ENOSPC) { 4216 ret = 0; 4217 ffe_ctl->loop++; 4218 } 4219 else if (ret < 0) 4220 btrfs_abort_transaction(trans, ret); 4221 else 4222 ret = 0; 4223 if (!exist) 4224 btrfs_end_transaction(trans); 4225 if (ret) 4226 return ret; 4227 } 4228 4229 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4230 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4231 return -ENOSPC; 4232 4233 /* 4234 * Don't loop again if we already have no empty_size and 4235 * no empty_cluster. 4236 */ 4237 if (ffe_ctl->empty_size == 0 && 4238 ffe_ctl->empty_cluster == 0) 4239 return -ENOSPC; 4240 ffe_ctl->empty_size = 0; 4241 ffe_ctl->empty_cluster = 0; 4242 } 4243 return 1; 4244 } 4245 return -ENOSPC; 4246 } 4247 4248 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4249 struct btrfs_block_group *bg) 4250 { 4251 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4252 return true; 4253 if (!btrfs_block_group_should_use_size_class(bg)) 4254 return true; 4255 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4256 return true; 4257 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4258 bg->size_class == BTRFS_BG_SZ_NONE) 4259 return true; 4260 return ffe_ctl->size_class == bg->size_class; 4261 } 4262 4263 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4264 struct find_free_extent_ctl *ffe_ctl, 4265 struct btrfs_space_info *space_info, 4266 struct btrfs_key *ins) 4267 { 4268 /* 4269 * If our free space is heavily fragmented we may not be able to make 4270 * big contiguous allocations, so instead of doing the expensive search 4271 * for free space, simply return ENOSPC with our max_extent_size so we 4272 * can go ahead and search for a more manageable chunk. 4273 * 4274 * If our max_extent_size is large enough for our allocation simply 4275 * disable clustering since we will likely not be able to find enough 4276 * space to create a cluster and induce latency trying. 4277 */ 4278 if (space_info->max_extent_size) { 4279 spin_lock(&space_info->lock); 4280 if (space_info->max_extent_size && 4281 ffe_ctl->num_bytes > space_info->max_extent_size) { 4282 ins->offset = space_info->max_extent_size; 4283 spin_unlock(&space_info->lock); 4284 return -ENOSPC; 4285 } else if (space_info->max_extent_size) { 4286 ffe_ctl->use_cluster = false; 4287 } 4288 spin_unlock(&space_info->lock); 4289 } 4290 4291 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4292 &ffe_ctl->empty_cluster); 4293 if (ffe_ctl->last_ptr) { 4294 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4295 4296 spin_lock(&last_ptr->lock); 4297 if (last_ptr->block_group) 4298 ffe_ctl->hint_byte = last_ptr->window_start; 4299 if (last_ptr->fragmented) { 4300 /* 4301 * We still set window_start so we can keep track of the 4302 * last place we found an allocation to try and save 4303 * some time. 4304 */ 4305 ffe_ctl->hint_byte = last_ptr->window_start; 4306 ffe_ctl->use_cluster = false; 4307 } 4308 spin_unlock(&last_ptr->lock); 4309 } 4310 4311 return 0; 4312 } 4313 4314 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4315 struct find_free_extent_ctl *ffe_ctl) 4316 { 4317 if (ffe_ctl->for_treelog) { 4318 spin_lock(&fs_info->treelog_bg_lock); 4319 if (fs_info->treelog_bg) 4320 ffe_ctl->hint_byte = fs_info->treelog_bg; 4321 spin_unlock(&fs_info->treelog_bg_lock); 4322 } else if (ffe_ctl->for_data_reloc) { 4323 spin_lock(&fs_info->relocation_bg_lock); 4324 if (fs_info->data_reloc_bg) 4325 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4326 spin_unlock(&fs_info->relocation_bg_lock); 4327 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4328 struct btrfs_block_group *block_group; 4329 4330 spin_lock(&fs_info->zone_active_bgs_lock); 4331 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4332 /* 4333 * No lock is OK here because avail is monotinically 4334 * decreasing, and this is just a hint. 4335 */ 4336 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4337 4338 if (block_group_bits(block_group, ffe_ctl->flags) && 4339 avail >= ffe_ctl->num_bytes) { 4340 ffe_ctl->hint_byte = block_group->start; 4341 break; 4342 } 4343 } 4344 spin_unlock(&fs_info->zone_active_bgs_lock); 4345 } 4346 4347 return 0; 4348 } 4349 4350 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4351 struct find_free_extent_ctl *ffe_ctl, 4352 struct btrfs_space_info *space_info, 4353 struct btrfs_key *ins) 4354 { 4355 switch (ffe_ctl->policy) { 4356 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4357 return prepare_allocation_clustered(fs_info, ffe_ctl, 4358 space_info, ins); 4359 case BTRFS_EXTENT_ALLOC_ZONED: 4360 return prepare_allocation_zoned(fs_info, ffe_ctl); 4361 default: 4362 BUG(); 4363 } 4364 } 4365 4366 /* 4367 * walks the btree of allocated extents and find a hole of a given size. 4368 * The key ins is changed to record the hole: 4369 * ins->objectid == start position 4370 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4371 * ins->offset == the size of the hole. 4372 * Any available blocks before search_start are skipped. 4373 * 4374 * If there is no suitable free space, we will record the max size of 4375 * the free space extent currently. 4376 * 4377 * The overall logic and call chain: 4378 * 4379 * find_free_extent() 4380 * |- Iterate through all block groups 4381 * | |- Get a valid block group 4382 * | |- Try to do clustered allocation in that block group 4383 * | |- Try to do unclustered allocation in that block group 4384 * | |- Check if the result is valid 4385 * | | |- If valid, then exit 4386 * | |- Jump to next block group 4387 * | 4388 * |- Push harder to find free extents 4389 * |- If not found, re-iterate all block groups 4390 */ 4391 static noinline int find_free_extent(struct btrfs_root *root, 4392 struct btrfs_key *ins, 4393 struct find_free_extent_ctl *ffe_ctl) 4394 { 4395 struct btrfs_fs_info *fs_info = root->fs_info; 4396 int ret = 0; 4397 int cache_block_group_error = 0; 4398 struct btrfs_block_group *block_group = NULL; 4399 struct btrfs_space_info *space_info; 4400 bool full_search = false; 4401 4402 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4403 4404 ffe_ctl->search_start = 0; 4405 /* For clustered allocation */ 4406 ffe_ctl->empty_cluster = 0; 4407 ffe_ctl->last_ptr = NULL; 4408 ffe_ctl->use_cluster = true; 4409 ffe_ctl->have_caching_bg = false; 4410 ffe_ctl->orig_have_caching_bg = false; 4411 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4412 ffe_ctl->loop = 0; 4413 ffe_ctl->retry_uncached = false; 4414 ffe_ctl->cached = 0; 4415 ffe_ctl->max_extent_size = 0; 4416 ffe_ctl->total_free_space = 0; 4417 ffe_ctl->found_offset = 0; 4418 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4419 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4420 4421 if (btrfs_is_zoned(fs_info)) 4422 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4423 4424 ins->type = BTRFS_EXTENT_ITEM_KEY; 4425 ins->objectid = 0; 4426 ins->offset = 0; 4427 4428 trace_find_free_extent(root, ffe_ctl); 4429 4430 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4431 if (!space_info) { 4432 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4433 return -ENOSPC; 4434 } 4435 4436 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4437 if (ret < 0) 4438 return ret; 4439 4440 ffe_ctl->search_start = max(ffe_ctl->search_start, 4441 first_logical_byte(fs_info)); 4442 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4443 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4444 block_group = btrfs_lookup_block_group(fs_info, 4445 ffe_ctl->search_start); 4446 /* 4447 * we don't want to use the block group if it doesn't match our 4448 * allocation bits, or if its not cached. 4449 * 4450 * However if we are re-searching with an ideal block group 4451 * picked out then we don't care that the block group is cached. 4452 */ 4453 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4454 block_group->cached != BTRFS_CACHE_NO) { 4455 down_read(&space_info->groups_sem); 4456 if (list_empty(&block_group->list) || 4457 block_group->ro) { 4458 /* 4459 * someone is removing this block group, 4460 * we can't jump into the have_block_group 4461 * target because our list pointers are not 4462 * valid 4463 */ 4464 btrfs_put_block_group(block_group); 4465 up_read(&space_info->groups_sem); 4466 } else { 4467 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4468 block_group->flags); 4469 btrfs_lock_block_group(block_group, 4470 ffe_ctl->delalloc); 4471 ffe_ctl->hinted = true; 4472 goto have_block_group; 4473 } 4474 } else if (block_group) { 4475 btrfs_put_block_group(block_group); 4476 } 4477 } 4478 search: 4479 trace_find_free_extent_search_loop(root, ffe_ctl); 4480 ffe_ctl->have_caching_bg = false; 4481 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4482 ffe_ctl->index == 0) 4483 full_search = true; 4484 down_read(&space_info->groups_sem); 4485 list_for_each_entry(block_group, 4486 &space_info->block_groups[ffe_ctl->index], list) { 4487 struct btrfs_block_group *bg_ret; 4488 4489 ffe_ctl->hinted = false; 4490 /* If the block group is read-only, we can skip it entirely. */ 4491 if (unlikely(block_group->ro)) { 4492 if (ffe_ctl->for_treelog) 4493 btrfs_clear_treelog_bg(block_group); 4494 if (ffe_ctl->for_data_reloc) 4495 btrfs_clear_data_reloc_bg(block_group); 4496 continue; 4497 } 4498 4499 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4500 ffe_ctl->search_start = block_group->start; 4501 4502 /* 4503 * this can happen if we end up cycling through all the 4504 * raid types, but we want to make sure we only allocate 4505 * for the proper type. 4506 */ 4507 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4508 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4509 BTRFS_BLOCK_GROUP_RAID1_MASK | 4510 BTRFS_BLOCK_GROUP_RAID56_MASK | 4511 BTRFS_BLOCK_GROUP_RAID10; 4512 4513 /* 4514 * if they asked for extra copies and this block group 4515 * doesn't provide them, bail. This does allow us to 4516 * fill raid0 from raid1. 4517 */ 4518 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4519 goto loop; 4520 4521 /* 4522 * This block group has different flags than we want. 4523 * It's possible that we have MIXED_GROUP flag but no 4524 * block group is mixed. Just skip such block group. 4525 */ 4526 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4527 continue; 4528 } 4529 4530 have_block_group: 4531 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4532 ffe_ctl->cached = btrfs_block_group_done(block_group); 4533 if (unlikely(!ffe_ctl->cached)) { 4534 ffe_ctl->have_caching_bg = true; 4535 ret = btrfs_cache_block_group(block_group, false); 4536 4537 /* 4538 * If we get ENOMEM here or something else we want to 4539 * try other block groups, because it may not be fatal. 4540 * However if we can't find anything else we need to 4541 * save our return here so that we return the actual 4542 * error that caused problems, not ENOSPC. 4543 */ 4544 if (ret < 0) { 4545 if (!cache_block_group_error) 4546 cache_block_group_error = ret; 4547 ret = 0; 4548 goto loop; 4549 } 4550 ret = 0; 4551 } 4552 4553 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4554 if (!cache_block_group_error) 4555 cache_block_group_error = -EIO; 4556 goto loop; 4557 } 4558 4559 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4560 goto loop; 4561 4562 bg_ret = NULL; 4563 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4564 if (ret > 0) 4565 goto loop; 4566 4567 if (bg_ret && bg_ret != block_group) { 4568 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4569 block_group = bg_ret; 4570 } 4571 4572 /* Checks */ 4573 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4574 fs_info->stripesize); 4575 4576 /* move on to the next group */ 4577 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4578 block_group->start + block_group->length) { 4579 btrfs_add_free_space_unused(block_group, 4580 ffe_ctl->found_offset, 4581 ffe_ctl->num_bytes); 4582 goto loop; 4583 } 4584 4585 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4586 btrfs_add_free_space_unused(block_group, 4587 ffe_ctl->found_offset, 4588 ffe_ctl->search_start - ffe_ctl->found_offset); 4589 4590 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4591 ffe_ctl->num_bytes, 4592 ffe_ctl->delalloc, 4593 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4594 if (ret == -EAGAIN) { 4595 btrfs_add_free_space_unused(block_group, 4596 ffe_ctl->found_offset, 4597 ffe_ctl->num_bytes); 4598 goto loop; 4599 } 4600 btrfs_inc_block_group_reservations(block_group); 4601 4602 /* we are all good, lets return */ 4603 ins->objectid = ffe_ctl->search_start; 4604 ins->offset = ffe_ctl->num_bytes; 4605 4606 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4607 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4608 break; 4609 loop: 4610 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4611 !ffe_ctl->retry_uncached) { 4612 ffe_ctl->retry_uncached = true; 4613 btrfs_wait_block_group_cache_progress(block_group, 4614 ffe_ctl->num_bytes + 4615 ffe_ctl->empty_cluster + 4616 ffe_ctl->empty_size); 4617 goto have_block_group; 4618 } 4619 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4620 cond_resched(); 4621 } 4622 up_read(&space_info->groups_sem); 4623 4624 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4625 if (ret > 0) 4626 goto search; 4627 4628 if (ret == -ENOSPC && !cache_block_group_error) { 4629 /* 4630 * Use ffe_ctl->total_free_space as fallback if we can't find 4631 * any contiguous hole. 4632 */ 4633 if (!ffe_ctl->max_extent_size) 4634 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4635 spin_lock(&space_info->lock); 4636 space_info->max_extent_size = ffe_ctl->max_extent_size; 4637 spin_unlock(&space_info->lock); 4638 ins->offset = ffe_ctl->max_extent_size; 4639 } else if (ret == -ENOSPC) { 4640 ret = cache_block_group_error; 4641 } 4642 return ret; 4643 } 4644 4645 /* 4646 * Entry point to the extent allocator. Tries to find a hole that is at least 4647 * as big as @num_bytes. 4648 * 4649 * @root - The root that will contain this extent 4650 * 4651 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4652 * is used for accounting purposes. This value differs 4653 * from @num_bytes only in the case of compressed extents. 4654 * 4655 * @num_bytes - Number of bytes to allocate on-disk. 4656 * 4657 * @min_alloc_size - Indicates the minimum amount of space that the 4658 * allocator should try to satisfy. In some cases 4659 * @num_bytes may be larger than what is required and if 4660 * the filesystem is fragmented then allocation fails. 4661 * However, the presence of @min_alloc_size gives a 4662 * chance to try and satisfy the smaller allocation. 4663 * 4664 * @empty_size - A hint that you plan on doing more COW. This is the 4665 * size in bytes the allocator should try to find free 4666 * next to the block it returns. This is just a hint and 4667 * may be ignored by the allocator. 4668 * 4669 * @hint_byte - Hint to the allocator to start searching above the byte 4670 * address passed. It might be ignored. 4671 * 4672 * @ins - This key is modified to record the found hole. It will 4673 * have the following values: 4674 * ins->objectid == start position 4675 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4676 * ins->offset == the size of the hole. 4677 * 4678 * @is_data - Boolean flag indicating whether an extent is 4679 * allocated for data (true) or metadata (false) 4680 * 4681 * @delalloc - Boolean flag indicating whether this allocation is for 4682 * delalloc or not. If 'true' data_rwsem of block groups 4683 * is going to be acquired. 4684 * 4685 * 4686 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4687 * case -ENOSPC is returned then @ins->offset will contain the size of the 4688 * largest available hole the allocator managed to find. 4689 */ 4690 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4691 u64 num_bytes, u64 min_alloc_size, 4692 u64 empty_size, u64 hint_byte, 4693 struct btrfs_key *ins, int is_data, int delalloc) 4694 { 4695 struct btrfs_fs_info *fs_info = root->fs_info; 4696 struct find_free_extent_ctl ffe_ctl = {}; 4697 bool final_tried = num_bytes == min_alloc_size; 4698 u64 flags; 4699 int ret; 4700 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4701 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4702 4703 flags = get_alloc_profile_by_root(root, is_data); 4704 again: 4705 WARN_ON(num_bytes < fs_info->sectorsize); 4706 4707 ffe_ctl.ram_bytes = ram_bytes; 4708 ffe_ctl.num_bytes = num_bytes; 4709 ffe_ctl.min_alloc_size = min_alloc_size; 4710 ffe_ctl.empty_size = empty_size; 4711 ffe_ctl.flags = flags; 4712 ffe_ctl.delalloc = delalloc; 4713 ffe_ctl.hint_byte = hint_byte; 4714 ffe_ctl.for_treelog = for_treelog; 4715 ffe_ctl.for_data_reloc = for_data_reloc; 4716 4717 ret = find_free_extent(root, ins, &ffe_ctl); 4718 if (!ret && !is_data) { 4719 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4720 } else if (ret == -ENOSPC) { 4721 if (!final_tried && ins->offset) { 4722 num_bytes = min(num_bytes >> 1, ins->offset); 4723 num_bytes = round_down(num_bytes, 4724 fs_info->sectorsize); 4725 num_bytes = max(num_bytes, min_alloc_size); 4726 ram_bytes = num_bytes; 4727 if (num_bytes == min_alloc_size) 4728 final_tried = true; 4729 goto again; 4730 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4731 struct btrfs_space_info *sinfo; 4732 4733 sinfo = btrfs_find_space_info(fs_info, flags); 4734 btrfs_err(fs_info, 4735 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4736 flags, num_bytes, for_treelog, for_data_reloc); 4737 if (sinfo) 4738 btrfs_dump_space_info(fs_info, sinfo, 4739 num_bytes, 1); 4740 } 4741 } 4742 4743 return ret; 4744 } 4745 4746 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4747 u64 start, u64 len, int delalloc) 4748 { 4749 struct btrfs_block_group *cache; 4750 4751 cache = btrfs_lookup_block_group(fs_info, start); 4752 if (!cache) { 4753 btrfs_err(fs_info, "Unable to find block group for %llu", 4754 start); 4755 return -ENOSPC; 4756 } 4757 4758 btrfs_add_free_space(cache, start, len); 4759 btrfs_free_reserved_bytes(cache, len, delalloc); 4760 trace_btrfs_reserved_extent_free(fs_info, start, len); 4761 4762 btrfs_put_block_group(cache); 4763 return 0; 4764 } 4765 4766 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4767 const struct extent_buffer *eb) 4768 { 4769 struct btrfs_block_group *cache; 4770 int ret = 0; 4771 4772 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4773 if (!cache) { 4774 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4775 eb->start); 4776 return -ENOSPC; 4777 } 4778 4779 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4780 btrfs_put_block_group(cache); 4781 return ret; 4782 } 4783 4784 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4785 u64 num_bytes) 4786 { 4787 struct btrfs_fs_info *fs_info = trans->fs_info; 4788 int ret; 4789 4790 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4791 if (ret) 4792 return ret; 4793 4794 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4795 if (ret) { 4796 ASSERT(!ret); 4797 btrfs_err(fs_info, "update block group failed for %llu %llu", 4798 bytenr, num_bytes); 4799 return ret; 4800 } 4801 4802 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4803 return 0; 4804 } 4805 4806 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4807 u64 parent, u64 root_objectid, 4808 u64 flags, u64 owner, u64 offset, 4809 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4810 { 4811 struct btrfs_fs_info *fs_info = trans->fs_info; 4812 struct btrfs_root *extent_root; 4813 int ret; 4814 struct btrfs_extent_item *extent_item; 4815 struct btrfs_extent_owner_ref *oref; 4816 struct btrfs_extent_inline_ref *iref; 4817 struct btrfs_path *path; 4818 struct extent_buffer *leaf; 4819 int type; 4820 u32 size; 4821 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4822 4823 if (parent > 0) 4824 type = BTRFS_SHARED_DATA_REF_KEY; 4825 else 4826 type = BTRFS_EXTENT_DATA_REF_KEY; 4827 4828 size = sizeof(*extent_item); 4829 if (simple_quota) 4830 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4831 size += btrfs_extent_inline_ref_size(type); 4832 4833 path = btrfs_alloc_path(); 4834 if (!path) 4835 return -ENOMEM; 4836 4837 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4838 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4839 if (ret) { 4840 btrfs_free_path(path); 4841 return ret; 4842 } 4843 4844 leaf = path->nodes[0]; 4845 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4846 struct btrfs_extent_item); 4847 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4848 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4849 btrfs_set_extent_flags(leaf, extent_item, 4850 flags | BTRFS_EXTENT_FLAG_DATA); 4851 4852 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4853 if (simple_quota) { 4854 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4855 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4856 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4857 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4858 } 4859 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4860 4861 if (parent > 0) { 4862 struct btrfs_shared_data_ref *ref; 4863 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4864 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4865 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4866 } else { 4867 struct btrfs_extent_data_ref *ref; 4868 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4869 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4870 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4871 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4872 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4873 } 4874 4875 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4876 btrfs_free_path(path); 4877 4878 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4879 } 4880 4881 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4882 struct btrfs_delayed_ref_node *node, 4883 struct btrfs_delayed_extent_op *extent_op) 4884 { 4885 struct btrfs_fs_info *fs_info = trans->fs_info; 4886 struct btrfs_root *extent_root; 4887 int ret; 4888 struct btrfs_extent_item *extent_item; 4889 struct btrfs_key extent_key; 4890 struct btrfs_tree_block_info *block_info; 4891 struct btrfs_extent_inline_ref *iref; 4892 struct btrfs_path *path; 4893 struct extent_buffer *leaf; 4894 struct btrfs_delayed_tree_ref *ref; 4895 u32 size = sizeof(*extent_item) + sizeof(*iref); 4896 u64 flags = extent_op->flags_to_set; 4897 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4898 4899 ref = btrfs_delayed_node_to_tree_ref(node); 4900 4901 extent_key.objectid = node->bytenr; 4902 if (skinny_metadata) { 4903 extent_key.offset = ref->level; 4904 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4905 } else { 4906 extent_key.offset = node->num_bytes; 4907 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4908 size += sizeof(*block_info); 4909 } 4910 4911 path = btrfs_alloc_path(); 4912 if (!path) 4913 return -ENOMEM; 4914 4915 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4916 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4917 size); 4918 if (ret) { 4919 btrfs_free_path(path); 4920 return ret; 4921 } 4922 4923 leaf = path->nodes[0]; 4924 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4925 struct btrfs_extent_item); 4926 btrfs_set_extent_refs(leaf, extent_item, 1); 4927 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4928 btrfs_set_extent_flags(leaf, extent_item, 4929 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4930 4931 if (skinny_metadata) { 4932 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4933 } else { 4934 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4935 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4936 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4937 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4938 } 4939 4940 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4941 btrfs_set_extent_inline_ref_type(leaf, iref, 4942 BTRFS_SHARED_BLOCK_REF_KEY); 4943 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4944 } else { 4945 btrfs_set_extent_inline_ref_type(leaf, iref, 4946 BTRFS_TREE_BLOCK_REF_KEY); 4947 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4948 } 4949 4950 btrfs_mark_buffer_dirty(trans, leaf); 4951 btrfs_free_path(path); 4952 4953 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4954 } 4955 4956 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4957 struct btrfs_root *root, u64 owner, 4958 u64 offset, u64 ram_bytes, 4959 struct btrfs_key *ins) 4960 { 4961 struct btrfs_ref generic_ref = { 0 }; 4962 u64 root_objectid = root->root_key.objectid; 4963 u64 owning_root = root_objectid; 4964 4965 ASSERT(root_objectid != BTRFS_TREE_LOG_OBJECTID); 4966 4967 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4968 owning_root = root->relocation_src_root; 4969 4970 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4971 ins->objectid, ins->offset, 0, owning_root); 4972 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4973 offset, 0, false); 4974 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4975 4976 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4977 } 4978 4979 /* 4980 * this is used by the tree logging recovery code. It records that 4981 * an extent has been allocated and makes sure to clear the free 4982 * space cache bits as well 4983 */ 4984 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4985 u64 root_objectid, u64 owner, u64 offset, 4986 struct btrfs_key *ins) 4987 { 4988 struct btrfs_fs_info *fs_info = trans->fs_info; 4989 int ret; 4990 struct btrfs_block_group *block_group; 4991 struct btrfs_space_info *space_info; 4992 struct btrfs_squota_delta delta = { 4993 .root = root_objectid, 4994 .num_bytes = ins->offset, 4995 .generation = trans->transid, 4996 .is_data = true, 4997 .is_inc = true, 4998 }; 4999 5000 /* 5001 * Mixed block groups will exclude before processing the log so we only 5002 * need to do the exclude dance if this fs isn't mixed. 5003 */ 5004 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 5005 ret = __exclude_logged_extent(fs_info, ins->objectid, 5006 ins->offset); 5007 if (ret) 5008 return ret; 5009 } 5010 5011 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 5012 if (!block_group) 5013 return -EINVAL; 5014 5015 space_info = block_group->space_info; 5016 spin_lock(&space_info->lock); 5017 spin_lock(&block_group->lock); 5018 space_info->bytes_reserved += ins->offset; 5019 block_group->reserved += ins->offset; 5020 spin_unlock(&block_group->lock); 5021 spin_unlock(&space_info->lock); 5022 5023 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 5024 offset, ins, 1, root_objectid); 5025 if (ret) 5026 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 5027 ret = btrfs_record_squota_delta(fs_info, &delta); 5028 btrfs_put_block_group(block_group); 5029 return ret; 5030 } 5031 5032 #ifdef CONFIG_BTRFS_DEBUG 5033 /* 5034 * Extra safety check in case the extent tree is corrupted and extent allocator 5035 * chooses to use a tree block which is already used and locked. 5036 */ 5037 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5038 { 5039 if (eb->lock_owner == current->pid) { 5040 btrfs_err_rl(eb->fs_info, 5041 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5042 eb->start, btrfs_header_owner(eb), current->pid); 5043 return true; 5044 } 5045 return false; 5046 } 5047 #else 5048 static bool check_eb_lock_owner(struct extent_buffer *eb) 5049 { 5050 return false; 5051 } 5052 #endif 5053 5054 static struct extent_buffer * 5055 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5056 u64 bytenr, int level, u64 owner, 5057 enum btrfs_lock_nesting nest) 5058 { 5059 struct btrfs_fs_info *fs_info = root->fs_info; 5060 struct extent_buffer *buf; 5061 u64 lockdep_owner = owner; 5062 5063 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5064 if (IS_ERR(buf)) 5065 return buf; 5066 5067 if (check_eb_lock_owner(buf)) { 5068 free_extent_buffer(buf); 5069 return ERR_PTR(-EUCLEAN); 5070 } 5071 5072 /* 5073 * The reloc trees are just snapshots, so we need them to appear to be 5074 * just like any other fs tree WRT lockdep. 5075 * 5076 * The exception however is in replace_path() in relocation, where we 5077 * hold the lock on the original fs root and then search for the reloc 5078 * root. At that point we need to make sure any reloc root buffers are 5079 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5080 * lockdep happy. 5081 */ 5082 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5083 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5084 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5085 5086 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5087 btrfs_set_header_generation(buf, trans->transid); 5088 5089 /* 5090 * This needs to stay, because we could allocate a freed block from an 5091 * old tree into a new tree, so we need to make sure this new block is 5092 * set to the appropriate level and owner. 5093 */ 5094 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5095 5096 __btrfs_tree_lock(buf, nest); 5097 btrfs_clear_buffer_dirty(trans, buf); 5098 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5099 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5100 5101 set_extent_buffer_uptodate(buf); 5102 5103 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5104 btrfs_set_header_level(buf, level); 5105 btrfs_set_header_bytenr(buf, buf->start); 5106 btrfs_set_header_generation(buf, trans->transid); 5107 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5108 btrfs_set_header_owner(buf, owner); 5109 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5110 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5111 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5112 buf->log_index = root->log_transid % 2; 5113 /* 5114 * we allow two log transactions at a time, use different 5115 * EXTENT bit to differentiate dirty pages. 5116 */ 5117 if (buf->log_index == 0) 5118 set_extent_bit(&root->dirty_log_pages, buf->start, 5119 buf->start + buf->len - 1, 5120 EXTENT_DIRTY, NULL); 5121 else 5122 set_extent_bit(&root->dirty_log_pages, buf->start, 5123 buf->start + buf->len - 1, 5124 EXTENT_NEW, NULL); 5125 } else { 5126 buf->log_index = -1; 5127 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5128 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5129 } 5130 /* this returns a buffer locked for blocking */ 5131 return buf; 5132 } 5133 5134 /* 5135 * finds a free extent and does all the dirty work required for allocation 5136 * returns the tree buffer or an ERR_PTR on error. 5137 */ 5138 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5139 struct btrfs_root *root, 5140 u64 parent, u64 root_objectid, 5141 const struct btrfs_disk_key *key, 5142 int level, u64 hint, 5143 u64 empty_size, 5144 u64 reloc_src_root, 5145 enum btrfs_lock_nesting nest) 5146 { 5147 struct btrfs_fs_info *fs_info = root->fs_info; 5148 struct btrfs_key ins; 5149 struct btrfs_block_rsv *block_rsv; 5150 struct extent_buffer *buf; 5151 struct btrfs_delayed_extent_op *extent_op; 5152 struct btrfs_ref generic_ref = { 0 }; 5153 u64 flags = 0; 5154 int ret; 5155 u32 blocksize = fs_info->nodesize; 5156 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5157 u64 owning_root; 5158 5159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5160 if (btrfs_is_testing(fs_info)) { 5161 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5162 level, root_objectid, nest); 5163 if (!IS_ERR(buf)) 5164 root->alloc_bytenr += blocksize; 5165 return buf; 5166 } 5167 #endif 5168 5169 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5170 if (IS_ERR(block_rsv)) 5171 return ERR_CAST(block_rsv); 5172 5173 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5174 empty_size, hint, &ins, 0, 0); 5175 if (ret) 5176 goto out_unuse; 5177 5178 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5179 root_objectid, nest); 5180 if (IS_ERR(buf)) { 5181 ret = PTR_ERR(buf); 5182 goto out_free_reserved; 5183 } 5184 owning_root = btrfs_header_owner(buf); 5185 5186 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5187 if (parent == 0) 5188 parent = ins.objectid; 5189 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5190 owning_root = reloc_src_root; 5191 } else 5192 BUG_ON(parent > 0); 5193 5194 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5195 extent_op = btrfs_alloc_delayed_extent_op(); 5196 if (!extent_op) { 5197 ret = -ENOMEM; 5198 goto out_free_buf; 5199 } 5200 if (key) 5201 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5202 else 5203 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5204 extent_op->flags_to_set = flags; 5205 extent_op->update_key = skinny_metadata ? false : true; 5206 extent_op->update_flags = true; 5207 extent_op->level = level; 5208 5209 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5210 ins.objectid, ins.offset, parent, owning_root); 5211 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5212 root->root_key.objectid, false); 5213 btrfs_ref_tree_mod(fs_info, &generic_ref); 5214 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5215 if (ret) 5216 goto out_free_delayed; 5217 } 5218 return buf; 5219 5220 out_free_delayed: 5221 btrfs_free_delayed_extent_op(extent_op); 5222 out_free_buf: 5223 btrfs_tree_unlock(buf); 5224 free_extent_buffer(buf); 5225 out_free_reserved: 5226 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5227 out_unuse: 5228 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5229 return ERR_PTR(ret); 5230 } 5231 5232 struct walk_control { 5233 u64 refs[BTRFS_MAX_LEVEL]; 5234 u64 flags[BTRFS_MAX_LEVEL]; 5235 struct btrfs_key update_progress; 5236 struct btrfs_key drop_progress; 5237 int drop_level; 5238 int stage; 5239 int level; 5240 int shared_level; 5241 int update_ref; 5242 int keep_locks; 5243 int reada_slot; 5244 int reada_count; 5245 int restarted; 5246 }; 5247 5248 #define DROP_REFERENCE 1 5249 #define UPDATE_BACKREF 2 5250 5251 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5252 struct btrfs_root *root, 5253 struct walk_control *wc, 5254 struct btrfs_path *path) 5255 { 5256 struct btrfs_fs_info *fs_info = root->fs_info; 5257 u64 bytenr; 5258 u64 generation; 5259 u64 refs; 5260 u64 flags; 5261 u32 nritems; 5262 struct btrfs_key key; 5263 struct extent_buffer *eb; 5264 int ret; 5265 int slot; 5266 int nread = 0; 5267 5268 if (path->slots[wc->level] < wc->reada_slot) { 5269 wc->reada_count = wc->reada_count * 2 / 3; 5270 wc->reada_count = max(wc->reada_count, 2); 5271 } else { 5272 wc->reada_count = wc->reada_count * 3 / 2; 5273 wc->reada_count = min_t(int, wc->reada_count, 5274 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5275 } 5276 5277 eb = path->nodes[wc->level]; 5278 nritems = btrfs_header_nritems(eb); 5279 5280 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5281 if (nread >= wc->reada_count) 5282 break; 5283 5284 cond_resched(); 5285 bytenr = btrfs_node_blockptr(eb, slot); 5286 generation = btrfs_node_ptr_generation(eb, slot); 5287 5288 if (slot == path->slots[wc->level]) 5289 goto reada; 5290 5291 if (wc->stage == UPDATE_BACKREF && 5292 generation <= root->root_key.offset) 5293 continue; 5294 5295 /* We don't lock the tree block, it's OK to be racy here */ 5296 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5297 wc->level - 1, 1, &refs, 5298 &flags, NULL); 5299 /* We don't care about errors in readahead. */ 5300 if (ret < 0) 5301 continue; 5302 BUG_ON(refs == 0); 5303 5304 if (wc->stage == DROP_REFERENCE) { 5305 if (refs == 1) 5306 goto reada; 5307 5308 if (wc->level == 1 && 5309 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5310 continue; 5311 if (!wc->update_ref || 5312 generation <= root->root_key.offset) 5313 continue; 5314 btrfs_node_key_to_cpu(eb, &key, slot); 5315 ret = btrfs_comp_cpu_keys(&key, 5316 &wc->update_progress); 5317 if (ret < 0) 5318 continue; 5319 } else { 5320 if (wc->level == 1 && 5321 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5322 continue; 5323 } 5324 reada: 5325 btrfs_readahead_node_child(eb, slot); 5326 nread++; 5327 } 5328 wc->reada_slot = slot; 5329 } 5330 5331 /* 5332 * helper to process tree block while walking down the tree. 5333 * 5334 * when wc->stage == UPDATE_BACKREF, this function updates 5335 * back refs for pointers in the block. 5336 * 5337 * NOTE: return value 1 means we should stop walking down. 5338 */ 5339 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5340 struct btrfs_root *root, 5341 struct btrfs_path *path, 5342 struct walk_control *wc, int lookup_info) 5343 { 5344 struct btrfs_fs_info *fs_info = root->fs_info; 5345 int level = wc->level; 5346 struct extent_buffer *eb = path->nodes[level]; 5347 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5348 int ret; 5349 5350 if (wc->stage == UPDATE_BACKREF && 5351 btrfs_header_owner(eb) != root->root_key.objectid) 5352 return 1; 5353 5354 /* 5355 * when reference count of tree block is 1, it won't increase 5356 * again. once full backref flag is set, we never clear it. 5357 */ 5358 if (lookup_info && 5359 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5360 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5361 BUG_ON(!path->locks[level]); 5362 ret = btrfs_lookup_extent_info(trans, fs_info, 5363 eb->start, level, 1, 5364 &wc->refs[level], 5365 &wc->flags[level], 5366 NULL); 5367 BUG_ON(ret == -ENOMEM); 5368 if (ret) 5369 return ret; 5370 BUG_ON(wc->refs[level] == 0); 5371 } 5372 5373 if (wc->stage == DROP_REFERENCE) { 5374 if (wc->refs[level] > 1) 5375 return 1; 5376 5377 if (path->locks[level] && !wc->keep_locks) { 5378 btrfs_tree_unlock_rw(eb, path->locks[level]); 5379 path->locks[level] = 0; 5380 } 5381 return 0; 5382 } 5383 5384 /* wc->stage == UPDATE_BACKREF */ 5385 if (!(wc->flags[level] & flag)) { 5386 BUG_ON(!path->locks[level]); 5387 ret = btrfs_inc_ref(trans, root, eb, 1); 5388 BUG_ON(ret); /* -ENOMEM */ 5389 ret = btrfs_dec_ref(trans, root, eb, 0); 5390 BUG_ON(ret); /* -ENOMEM */ 5391 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5392 BUG_ON(ret); /* -ENOMEM */ 5393 wc->flags[level] |= flag; 5394 } 5395 5396 /* 5397 * the block is shared by multiple trees, so it's not good to 5398 * keep the tree lock 5399 */ 5400 if (path->locks[level] && level > 0) { 5401 btrfs_tree_unlock_rw(eb, path->locks[level]); 5402 path->locks[level] = 0; 5403 } 5404 return 0; 5405 } 5406 5407 /* 5408 * This is used to verify a ref exists for this root to deal with a bug where we 5409 * would have a drop_progress key that hadn't been updated properly. 5410 */ 5411 static int check_ref_exists(struct btrfs_trans_handle *trans, 5412 struct btrfs_root *root, u64 bytenr, u64 parent, 5413 int level) 5414 { 5415 struct btrfs_path *path; 5416 struct btrfs_extent_inline_ref *iref; 5417 int ret; 5418 5419 path = btrfs_alloc_path(); 5420 if (!path) 5421 return -ENOMEM; 5422 5423 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5424 root->fs_info->nodesize, parent, 5425 root->root_key.objectid, level, 0); 5426 btrfs_free_path(path); 5427 if (ret == -ENOENT) 5428 return 0; 5429 if (ret < 0) 5430 return ret; 5431 return 1; 5432 } 5433 5434 /* 5435 * helper to process tree block pointer. 5436 * 5437 * when wc->stage == DROP_REFERENCE, this function checks 5438 * reference count of the block pointed to. if the block 5439 * is shared and we need update back refs for the subtree 5440 * rooted at the block, this function changes wc->stage to 5441 * UPDATE_BACKREF. if the block is shared and there is no 5442 * need to update back, this function drops the reference 5443 * to the block. 5444 * 5445 * NOTE: return value 1 means we should stop walking down. 5446 */ 5447 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5448 struct btrfs_root *root, 5449 struct btrfs_path *path, 5450 struct walk_control *wc, int *lookup_info) 5451 { 5452 struct btrfs_fs_info *fs_info = root->fs_info; 5453 u64 bytenr; 5454 u64 generation; 5455 u64 parent; 5456 u64 owner_root = 0; 5457 struct btrfs_tree_parent_check check = { 0 }; 5458 struct btrfs_key key; 5459 struct btrfs_ref ref = { 0 }; 5460 struct extent_buffer *next; 5461 int level = wc->level; 5462 int reada = 0; 5463 int ret = 0; 5464 bool need_account = false; 5465 5466 generation = btrfs_node_ptr_generation(path->nodes[level], 5467 path->slots[level]); 5468 /* 5469 * if the lower level block was created before the snapshot 5470 * was created, we know there is no need to update back refs 5471 * for the subtree 5472 */ 5473 if (wc->stage == UPDATE_BACKREF && 5474 generation <= root->root_key.offset) { 5475 *lookup_info = 1; 5476 return 1; 5477 } 5478 5479 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5480 5481 check.level = level - 1; 5482 check.transid = generation; 5483 check.owner_root = root->root_key.objectid; 5484 check.has_first_key = true; 5485 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5486 path->slots[level]); 5487 5488 next = find_extent_buffer(fs_info, bytenr); 5489 if (!next) { 5490 next = btrfs_find_create_tree_block(fs_info, bytenr, 5491 root->root_key.objectid, level - 1); 5492 if (IS_ERR(next)) 5493 return PTR_ERR(next); 5494 reada = 1; 5495 } 5496 btrfs_tree_lock(next); 5497 5498 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5499 &wc->refs[level - 1], 5500 &wc->flags[level - 1], 5501 &owner_root); 5502 if (ret < 0) 5503 goto out_unlock; 5504 5505 if (unlikely(wc->refs[level - 1] == 0)) { 5506 btrfs_err(fs_info, "Missing references."); 5507 ret = -EIO; 5508 goto out_unlock; 5509 } 5510 *lookup_info = 0; 5511 5512 if (wc->stage == DROP_REFERENCE) { 5513 if (wc->refs[level - 1] > 1) { 5514 need_account = true; 5515 if (level == 1 && 5516 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5517 goto skip; 5518 5519 if (!wc->update_ref || 5520 generation <= root->root_key.offset) 5521 goto skip; 5522 5523 btrfs_node_key_to_cpu(path->nodes[level], &key, 5524 path->slots[level]); 5525 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5526 if (ret < 0) 5527 goto skip; 5528 5529 wc->stage = UPDATE_BACKREF; 5530 wc->shared_level = level - 1; 5531 } 5532 } else { 5533 if (level == 1 && 5534 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5535 goto skip; 5536 } 5537 5538 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5539 btrfs_tree_unlock(next); 5540 free_extent_buffer(next); 5541 next = NULL; 5542 *lookup_info = 1; 5543 } 5544 5545 if (!next) { 5546 if (reada && level == 1) 5547 reada_walk_down(trans, root, wc, path); 5548 next = read_tree_block(fs_info, bytenr, &check); 5549 if (IS_ERR(next)) { 5550 return PTR_ERR(next); 5551 } else if (!extent_buffer_uptodate(next)) { 5552 free_extent_buffer(next); 5553 return -EIO; 5554 } 5555 btrfs_tree_lock(next); 5556 } 5557 5558 level--; 5559 ASSERT(level == btrfs_header_level(next)); 5560 if (level != btrfs_header_level(next)) { 5561 btrfs_err(root->fs_info, "mismatched level"); 5562 ret = -EIO; 5563 goto out_unlock; 5564 } 5565 path->nodes[level] = next; 5566 path->slots[level] = 0; 5567 path->locks[level] = BTRFS_WRITE_LOCK; 5568 wc->level = level; 5569 if (wc->level == 1) 5570 wc->reada_slot = 0; 5571 return 0; 5572 skip: 5573 wc->refs[level - 1] = 0; 5574 wc->flags[level - 1] = 0; 5575 if (wc->stage == DROP_REFERENCE) { 5576 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5577 parent = path->nodes[level]->start; 5578 } else { 5579 ASSERT(root->root_key.objectid == 5580 btrfs_header_owner(path->nodes[level])); 5581 if (root->root_key.objectid != 5582 btrfs_header_owner(path->nodes[level])) { 5583 btrfs_err(root->fs_info, 5584 "mismatched block owner"); 5585 ret = -EIO; 5586 goto out_unlock; 5587 } 5588 parent = 0; 5589 } 5590 5591 /* 5592 * If we had a drop_progress we need to verify the refs are set 5593 * as expected. If we find our ref then we know that from here 5594 * on out everything should be correct, and we can clear the 5595 * ->restarted flag. 5596 */ 5597 if (wc->restarted) { 5598 ret = check_ref_exists(trans, root, bytenr, parent, 5599 level - 1); 5600 if (ret < 0) 5601 goto out_unlock; 5602 if (ret == 0) 5603 goto no_delete; 5604 ret = 0; 5605 wc->restarted = 0; 5606 } 5607 5608 /* 5609 * Reloc tree doesn't contribute to qgroup numbers, and we have 5610 * already accounted them at merge time (replace_path), 5611 * thus we could skip expensive subtree trace here. 5612 */ 5613 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5614 need_account) { 5615 ret = btrfs_qgroup_trace_subtree(trans, next, 5616 generation, level - 1); 5617 if (ret) { 5618 btrfs_err_rl(fs_info, 5619 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5620 ret); 5621 } 5622 } 5623 5624 /* 5625 * We need to update the next key in our walk control so we can 5626 * update the drop_progress key accordingly. We don't care if 5627 * find_next_key doesn't find a key because that means we're at 5628 * the end and are going to clean up now. 5629 */ 5630 wc->drop_level = level; 5631 find_next_key(path, level, &wc->drop_progress); 5632 5633 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5634 fs_info->nodesize, parent, owner_root); 5635 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5636 0, false); 5637 ret = btrfs_free_extent(trans, &ref); 5638 if (ret) 5639 goto out_unlock; 5640 } 5641 no_delete: 5642 *lookup_info = 1; 5643 ret = 1; 5644 5645 out_unlock: 5646 btrfs_tree_unlock(next); 5647 free_extent_buffer(next); 5648 5649 return ret; 5650 } 5651 5652 /* 5653 * helper to process tree block while walking up the tree. 5654 * 5655 * when wc->stage == DROP_REFERENCE, this function drops 5656 * reference count on the block. 5657 * 5658 * when wc->stage == UPDATE_BACKREF, this function changes 5659 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5660 * to UPDATE_BACKREF previously while processing the block. 5661 * 5662 * NOTE: return value 1 means we should stop walking up. 5663 */ 5664 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5665 struct btrfs_root *root, 5666 struct btrfs_path *path, 5667 struct walk_control *wc) 5668 { 5669 struct btrfs_fs_info *fs_info = root->fs_info; 5670 int ret; 5671 int level = wc->level; 5672 struct extent_buffer *eb = path->nodes[level]; 5673 u64 parent = 0; 5674 5675 if (wc->stage == UPDATE_BACKREF) { 5676 BUG_ON(wc->shared_level < level); 5677 if (level < wc->shared_level) 5678 goto out; 5679 5680 ret = find_next_key(path, level + 1, &wc->update_progress); 5681 if (ret > 0) 5682 wc->update_ref = 0; 5683 5684 wc->stage = DROP_REFERENCE; 5685 wc->shared_level = -1; 5686 path->slots[level] = 0; 5687 5688 /* 5689 * check reference count again if the block isn't locked. 5690 * we should start walking down the tree again if reference 5691 * count is one. 5692 */ 5693 if (!path->locks[level]) { 5694 BUG_ON(level == 0); 5695 btrfs_tree_lock(eb); 5696 path->locks[level] = BTRFS_WRITE_LOCK; 5697 5698 ret = btrfs_lookup_extent_info(trans, fs_info, 5699 eb->start, level, 1, 5700 &wc->refs[level], 5701 &wc->flags[level], 5702 NULL); 5703 if (ret < 0) { 5704 btrfs_tree_unlock_rw(eb, path->locks[level]); 5705 path->locks[level] = 0; 5706 return ret; 5707 } 5708 BUG_ON(wc->refs[level] == 0); 5709 if (wc->refs[level] == 1) { 5710 btrfs_tree_unlock_rw(eb, path->locks[level]); 5711 path->locks[level] = 0; 5712 return 1; 5713 } 5714 } 5715 } 5716 5717 /* wc->stage == DROP_REFERENCE */ 5718 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5719 5720 if (wc->refs[level] == 1) { 5721 if (level == 0) { 5722 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5723 ret = btrfs_dec_ref(trans, root, eb, 1); 5724 else 5725 ret = btrfs_dec_ref(trans, root, eb, 0); 5726 BUG_ON(ret); /* -ENOMEM */ 5727 if (is_fstree(root->root_key.objectid)) { 5728 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5729 if (ret) { 5730 btrfs_err_rl(fs_info, 5731 "error %d accounting leaf items, quota is out of sync, rescan required", 5732 ret); 5733 } 5734 } 5735 } 5736 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5737 if (!path->locks[level]) { 5738 btrfs_tree_lock(eb); 5739 path->locks[level] = BTRFS_WRITE_LOCK; 5740 } 5741 btrfs_clear_buffer_dirty(trans, eb); 5742 } 5743 5744 if (eb == root->node) { 5745 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5746 parent = eb->start; 5747 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5748 goto owner_mismatch; 5749 } else { 5750 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5751 parent = path->nodes[level + 1]->start; 5752 else if (root->root_key.objectid != 5753 btrfs_header_owner(path->nodes[level + 1])) 5754 goto owner_mismatch; 5755 } 5756 5757 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5758 wc->refs[level] == 1); 5759 out: 5760 wc->refs[level] = 0; 5761 wc->flags[level] = 0; 5762 return 0; 5763 5764 owner_mismatch: 5765 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5766 btrfs_header_owner(eb), root->root_key.objectid); 5767 return -EUCLEAN; 5768 } 5769 5770 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5771 struct btrfs_root *root, 5772 struct btrfs_path *path, 5773 struct walk_control *wc) 5774 { 5775 int level = wc->level; 5776 int lookup_info = 1; 5777 int ret = 0; 5778 5779 while (level >= 0) { 5780 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5781 if (ret) 5782 break; 5783 5784 if (level == 0) 5785 break; 5786 5787 if (path->slots[level] >= 5788 btrfs_header_nritems(path->nodes[level])) 5789 break; 5790 5791 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5792 if (ret > 0) { 5793 path->slots[level]++; 5794 continue; 5795 } else if (ret < 0) 5796 break; 5797 level = wc->level; 5798 } 5799 return (ret == 1) ? 0 : ret; 5800 } 5801 5802 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5803 struct btrfs_root *root, 5804 struct btrfs_path *path, 5805 struct walk_control *wc, int max_level) 5806 { 5807 int level = wc->level; 5808 int ret; 5809 5810 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5811 while (level < max_level && path->nodes[level]) { 5812 wc->level = level; 5813 if (path->slots[level] + 1 < 5814 btrfs_header_nritems(path->nodes[level])) { 5815 path->slots[level]++; 5816 return 0; 5817 } else { 5818 ret = walk_up_proc(trans, root, path, wc); 5819 if (ret > 0) 5820 return 0; 5821 if (ret < 0) 5822 return ret; 5823 5824 if (path->locks[level]) { 5825 btrfs_tree_unlock_rw(path->nodes[level], 5826 path->locks[level]); 5827 path->locks[level] = 0; 5828 } 5829 free_extent_buffer(path->nodes[level]); 5830 path->nodes[level] = NULL; 5831 level++; 5832 } 5833 } 5834 return 1; 5835 } 5836 5837 /* 5838 * drop a subvolume tree. 5839 * 5840 * this function traverses the tree freeing any blocks that only 5841 * referenced by the tree. 5842 * 5843 * when a shared tree block is found. this function decreases its 5844 * reference count by one. if update_ref is true, this function 5845 * also make sure backrefs for the shared block and all lower level 5846 * blocks are properly updated. 5847 * 5848 * If called with for_reloc == 0, may exit early with -EAGAIN 5849 */ 5850 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5851 { 5852 const bool is_reloc_root = (root->root_key.objectid == 5853 BTRFS_TREE_RELOC_OBJECTID); 5854 struct btrfs_fs_info *fs_info = root->fs_info; 5855 struct btrfs_path *path; 5856 struct btrfs_trans_handle *trans; 5857 struct btrfs_root *tree_root = fs_info->tree_root; 5858 struct btrfs_root_item *root_item = &root->root_item; 5859 struct walk_control *wc; 5860 struct btrfs_key key; 5861 int err = 0; 5862 int ret; 5863 int level; 5864 bool root_dropped = false; 5865 bool unfinished_drop = false; 5866 5867 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5868 5869 path = btrfs_alloc_path(); 5870 if (!path) { 5871 err = -ENOMEM; 5872 goto out; 5873 } 5874 5875 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5876 if (!wc) { 5877 btrfs_free_path(path); 5878 err = -ENOMEM; 5879 goto out; 5880 } 5881 5882 /* 5883 * Use join to avoid potential EINTR from transaction start. See 5884 * wait_reserve_ticket and the whole reservation callchain. 5885 */ 5886 if (for_reloc) 5887 trans = btrfs_join_transaction(tree_root); 5888 else 5889 trans = btrfs_start_transaction(tree_root, 0); 5890 if (IS_ERR(trans)) { 5891 err = PTR_ERR(trans); 5892 goto out_free; 5893 } 5894 5895 err = btrfs_run_delayed_items(trans); 5896 if (err) 5897 goto out_end_trans; 5898 5899 /* 5900 * This will help us catch people modifying the fs tree while we're 5901 * dropping it. It is unsafe to mess with the fs tree while it's being 5902 * dropped as we unlock the root node and parent nodes as we walk down 5903 * the tree, assuming nothing will change. If something does change 5904 * then we'll have stale information and drop references to blocks we've 5905 * already dropped. 5906 */ 5907 set_bit(BTRFS_ROOT_DELETING, &root->state); 5908 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5909 5910 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5911 level = btrfs_header_level(root->node); 5912 path->nodes[level] = btrfs_lock_root_node(root); 5913 path->slots[level] = 0; 5914 path->locks[level] = BTRFS_WRITE_LOCK; 5915 memset(&wc->update_progress, 0, 5916 sizeof(wc->update_progress)); 5917 } else { 5918 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5919 memcpy(&wc->update_progress, &key, 5920 sizeof(wc->update_progress)); 5921 5922 level = btrfs_root_drop_level(root_item); 5923 BUG_ON(level == 0); 5924 path->lowest_level = level; 5925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5926 path->lowest_level = 0; 5927 if (ret < 0) { 5928 err = ret; 5929 goto out_end_trans; 5930 } 5931 WARN_ON(ret > 0); 5932 5933 /* 5934 * unlock our path, this is safe because only this 5935 * function is allowed to delete this snapshot 5936 */ 5937 btrfs_unlock_up_safe(path, 0); 5938 5939 level = btrfs_header_level(root->node); 5940 while (1) { 5941 btrfs_tree_lock(path->nodes[level]); 5942 path->locks[level] = BTRFS_WRITE_LOCK; 5943 5944 ret = btrfs_lookup_extent_info(trans, fs_info, 5945 path->nodes[level]->start, 5946 level, 1, &wc->refs[level], 5947 &wc->flags[level], NULL); 5948 if (ret < 0) { 5949 err = ret; 5950 goto out_end_trans; 5951 } 5952 BUG_ON(wc->refs[level] == 0); 5953 5954 if (level == btrfs_root_drop_level(root_item)) 5955 break; 5956 5957 btrfs_tree_unlock(path->nodes[level]); 5958 path->locks[level] = 0; 5959 WARN_ON(wc->refs[level] != 1); 5960 level--; 5961 } 5962 } 5963 5964 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5965 wc->level = level; 5966 wc->shared_level = -1; 5967 wc->stage = DROP_REFERENCE; 5968 wc->update_ref = update_ref; 5969 wc->keep_locks = 0; 5970 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5971 5972 while (1) { 5973 5974 ret = walk_down_tree(trans, root, path, wc); 5975 if (ret < 0) { 5976 btrfs_abort_transaction(trans, ret); 5977 err = ret; 5978 break; 5979 } 5980 5981 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5982 if (ret < 0) { 5983 btrfs_abort_transaction(trans, ret); 5984 err = ret; 5985 break; 5986 } 5987 5988 if (ret > 0) { 5989 BUG_ON(wc->stage != DROP_REFERENCE); 5990 break; 5991 } 5992 5993 if (wc->stage == DROP_REFERENCE) { 5994 wc->drop_level = wc->level; 5995 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5996 &wc->drop_progress, 5997 path->slots[wc->drop_level]); 5998 } 5999 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6000 &wc->drop_progress); 6001 btrfs_set_root_drop_level(root_item, wc->drop_level); 6002 6003 BUG_ON(wc->level == 0); 6004 if (btrfs_should_end_transaction(trans) || 6005 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6006 ret = btrfs_update_root(trans, tree_root, 6007 &root->root_key, 6008 root_item); 6009 if (ret) { 6010 btrfs_abort_transaction(trans, ret); 6011 err = ret; 6012 goto out_end_trans; 6013 } 6014 6015 if (!is_reloc_root) 6016 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6017 6018 btrfs_end_transaction_throttle(trans); 6019 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6020 btrfs_debug(fs_info, 6021 "drop snapshot early exit"); 6022 err = -EAGAIN; 6023 goto out_free; 6024 } 6025 6026 /* 6027 * Use join to avoid potential EINTR from transaction 6028 * start. See wait_reserve_ticket and the whole 6029 * reservation callchain. 6030 */ 6031 if (for_reloc) 6032 trans = btrfs_join_transaction(tree_root); 6033 else 6034 trans = btrfs_start_transaction(tree_root, 0); 6035 if (IS_ERR(trans)) { 6036 err = PTR_ERR(trans); 6037 goto out_free; 6038 } 6039 } 6040 } 6041 btrfs_release_path(path); 6042 if (err) 6043 goto out_end_trans; 6044 6045 ret = btrfs_del_root(trans, &root->root_key); 6046 if (ret) { 6047 btrfs_abort_transaction(trans, ret); 6048 err = ret; 6049 goto out_end_trans; 6050 } 6051 6052 if (!is_reloc_root) { 6053 ret = btrfs_find_root(tree_root, &root->root_key, path, 6054 NULL, NULL); 6055 if (ret < 0) { 6056 btrfs_abort_transaction(trans, ret); 6057 err = ret; 6058 goto out_end_trans; 6059 } else if (ret > 0) { 6060 /* if we fail to delete the orphan item this time 6061 * around, it'll get picked up the next time. 6062 * 6063 * The most common failure here is just -ENOENT. 6064 */ 6065 btrfs_del_orphan_item(trans, tree_root, 6066 root->root_key.objectid); 6067 } 6068 } 6069 6070 /* 6071 * This subvolume is going to be completely dropped, and won't be 6072 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6073 * commit transaction time. So free it here manually. 6074 */ 6075 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6076 btrfs_qgroup_free_meta_all_pertrans(root); 6077 6078 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6079 btrfs_add_dropped_root(trans, root); 6080 else 6081 btrfs_put_root(root); 6082 root_dropped = true; 6083 out_end_trans: 6084 if (!is_reloc_root) 6085 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6086 6087 btrfs_end_transaction_throttle(trans); 6088 out_free: 6089 kfree(wc); 6090 btrfs_free_path(path); 6091 out: 6092 /* 6093 * We were an unfinished drop root, check to see if there are any 6094 * pending, and if not clear and wake up any waiters. 6095 */ 6096 if (!err && unfinished_drop) 6097 btrfs_maybe_wake_unfinished_drop(fs_info); 6098 6099 /* 6100 * So if we need to stop dropping the snapshot for whatever reason we 6101 * need to make sure to add it back to the dead root list so that we 6102 * keep trying to do the work later. This also cleans up roots if we 6103 * don't have it in the radix (like when we recover after a power fail 6104 * or unmount) so we don't leak memory. 6105 */ 6106 if (!for_reloc && !root_dropped) 6107 btrfs_add_dead_root(root); 6108 return err; 6109 } 6110 6111 /* 6112 * drop subtree rooted at tree block 'node'. 6113 * 6114 * NOTE: this function will unlock and release tree block 'node' 6115 * only used by relocation code 6116 */ 6117 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6118 struct btrfs_root *root, 6119 struct extent_buffer *node, 6120 struct extent_buffer *parent) 6121 { 6122 struct btrfs_fs_info *fs_info = root->fs_info; 6123 struct btrfs_path *path; 6124 struct walk_control *wc; 6125 int level; 6126 int parent_level; 6127 int ret = 0; 6128 int wret; 6129 6130 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6131 6132 path = btrfs_alloc_path(); 6133 if (!path) 6134 return -ENOMEM; 6135 6136 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6137 if (!wc) { 6138 btrfs_free_path(path); 6139 return -ENOMEM; 6140 } 6141 6142 btrfs_assert_tree_write_locked(parent); 6143 parent_level = btrfs_header_level(parent); 6144 atomic_inc(&parent->refs); 6145 path->nodes[parent_level] = parent; 6146 path->slots[parent_level] = btrfs_header_nritems(parent); 6147 6148 btrfs_assert_tree_write_locked(node); 6149 level = btrfs_header_level(node); 6150 path->nodes[level] = node; 6151 path->slots[level] = 0; 6152 path->locks[level] = BTRFS_WRITE_LOCK; 6153 6154 wc->refs[parent_level] = 1; 6155 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6156 wc->level = level; 6157 wc->shared_level = -1; 6158 wc->stage = DROP_REFERENCE; 6159 wc->update_ref = 0; 6160 wc->keep_locks = 1; 6161 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6162 6163 while (1) { 6164 wret = walk_down_tree(trans, root, path, wc); 6165 if (wret < 0) { 6166 ret = wret; 6167 break; 6168 } 6169 6170 wret = walk_up_tree(trans, root, path, wc, parent_level); 6171 if (wret < 0) 6172 ret = wret; 6173 if (wret != 0) 6174 break; 6175 } 6176 6177 kfree(wc); 6178 btrfs_free_path(path); 6179 return ret; 6180 } 6181 6182 /* 6183 * Unpin the extent range in an error context and don't add the space back. 6184 * Errors are not propagated further. 6185 */ 6186 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6187 { 6188 unpin_extent_range(fs_info, start, end, false); 6189 } 6190 6191 /* 6192 * It used to be that old block groups would be left around forever. 6193 * Iterating over them would be enough to trim unused space. Since we 6194 * now automatically remove them, we also need to iterate over unallocated 6195 * space. 6196 * 6197 * We don't want a transaction for this since the discard may take a 6198 * substantial amount of time. We don't require that a transaction be 6199 * running, but we do need to take a running transaction into account 6200 * to ensure that we're not discarding chunks that were released or 6201 * allocated in the current transaction. 6202 * 6203 * Holding the chunks lock will prevent other threads from allocating 6204 * or releasing chunks, but it won't prevent a running transaction 6205 * from committing and releasing the memory that the pending chunks 6206 * list head uses. For that, we need to take a reference to the 6207 * transaction and hold the commit root sem. We only need to hold 6208 * it while performing the free space search since we have already 6209 * held back allocations. 6210 */ 6211 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6212 { 6213 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6214 int ret; 6215 6216 *trimmed = 0; 6217 6218 /* Discard not supported = nothing to do. */ 6219 if (!bdev_max_discard_sectors(device->bdev)) 6220 return 0; 6221 6222 /* Not writable = nothing to do. */ 6223 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6224 return 0; 6225 6226 /* No free space = nothing to do. */ 6227 if (device->total_bytes <= device->bytes_used) 6228 return 0; 6229 6230 ret = 0; 6231 6232 while (1) { 6233 struct btrfs_fs_info *fs_info = device->fs_info; 6234 u64 bytes; 6235 6236 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6237 if (ret) 6238 break; 6239 6240 find_first_clear_extent_bit(&device->alloc_state, start, 6241 &start, &end, 6242 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6243 6244 /* Check if there are any CHUNK_* bits left */ 6245 if (start > device->total_bytes) { 6246 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6247 btrfs_warn_in_rcu(fs_info, 6248 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6249 start, end - start + 1, 6250 btrfs_dev_name(device), 6251 device->total_bytes); 6252 mutex_unlock(&fs_info->chunk_mutex); 6253 ret = 0; 6254 break; 6255 } 6256 6257 /* Ensure we skip the reserved space on each device. */ 6258 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6259 6260 /* 6261 * If find_first_clear_extent_bit find a range that spans the 6262 * end of the device it will set end to -1, in this case it's up 6263 * to the caller to trim the value to the size of the device. 6264 */ 6265 end = min(end, device->total_bytes - 1); 6266 6267 len = end - start + 1; 6268 6269 /* We didn't find any extents */ 6270 if (!len) { 6271 mutex_unlock(&fs_info->chunk_mutex); 6272 ret = 0; 6273 break; 6274 } 6275 6276 ret = btrfs_issue_discard(device->bdev, start, len, 6277 &bytes); 6278 if (!ret) 6279 set_extent_bit(&device->alloc_state, start, 6280 start + bytes - 1, CHUNK_TRIMMED, NULL); 6281 mutex_unlock(&fs_info->chunk_mutex); 6282 6283 if (ret) 6284 break; 6285 6286 start += len; 6287 *trimmed += bytes; 6288 6289 if (fatal_signal_pending(current)) { 6290 ret = -ERESTARTSYS; 6291 break; 6292 } 6293 6294 cond_resched(); 6295 } 6296 6297 return ret; 6298 } 6299 6300 /* 6301 * Trim the whole filesystem by: 6302 * 1) trimming the free space in each block group 6303 * 2) trimming the unallocated space on each device 6304 * 6305 * This will also continue trimming even if a block group or device encounters 6306 * an error. The return value will be the last error, or 0 if nothing bad 6307 * happens. 6308 */ 6309 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6310 { 6311 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6312 struct btrfs_block_group *cache = NULL; 6313 struct btrfs_device *device; 6314 u64 group_trimmed; 6315 u64 range_end = U64_MAX; 6316 u64 start; 6317 u64 end; 6318 u64 trimmed = 0; 6319 u64 bg_failed = 0; 6320 u64 dev_failed = 0; 6321 int bg_ret = 0; 6322 int dev_ret = 0; 6323 int ret = 0; 6324 6325 if (range->start == U64_MAX) 6326 return -EINVAL; 6327 6328 /* 6329 * Check range overflow if range->len is set. 6330 * The default range->len is U64_MAX. 6331 */ 6332 if (range->len != U64_MAX && 6333 check_add_overflow(range->start, range->len, &range_end)) 6334 return -EINVAL; 6335 6336 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6337 for (; cache; cache = btrfs_next_block_group(cache)) { 6338 if (cache->start >= range_end) { 6339 btrfs_put_block_group(cache); 6340 break; 6341 } 6342 6343 start = max(range->start, cache->start); 6344 end = min(range_end, cache->start + cache->length); 6345 6346 if (end - start >= range->minlen) { 6347 if (!btrfs_block_group_done(cache)) { 6348 ret = btrfs_cache_block_group(cache, true); 6349 if (ret) { 6350 bg_failed++; 6351 bg_ret = ret; 6352 continue; 6353 } 6354 } 6355 ret = btrfs_trim_block_group(cache, 6356 &group_trimmed, 6357 start, 6358 end, 6359 range->minlen); 6360 6361 trimmed += group_trimmed; 6362 if (ret) { 6363 bg_failed++; 6364 bg_ret = ret; 6365 continue; 6366 } 6367 } 6368 } 6369 6370 if (bg_failed) 6371 btrfs_warn(fs_info, 6372 "failed to trim %llu block group(s), last error %d", 6373 bg_failed, bg_ret); 6374 6375 mutex_lock(&fs_devices->device_list_mutex); 6376 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6377 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6378 continue; 6379 6380 ret = btrfs_trim_free_extents(device, &group_trimmed); 6381 if (ret) { 6382 dev_failed++; 6383 dev_ret = ret; 6384 break; 6385 } 6386 6387 trimmed += group_trimmed; 6388 } 6389 mutex_unlock(&fs_devices->device_list_mutex); 6390 6391 if (dev_failed) 6392 btrfs_warn(fs_info, 6393 "failed to trim %llu device(s), last error %d", 6394 dev_failed, dev_ret); 6395 range->len = trimmed; 6396 if (bg_ret) 6397 return bg_ret; 6398 return dev_ret; 6399 } 6400