xref: /linux/fs/btrfs/extent-tree.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include "compat.h"
26 #include "hash.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "print-tree.h"
30 #include "transaction.h"
31 #include "volumes.h"
32 #include "locking.h"
33 #include "free-space-cache.h"
34 
35 static int update_block_group(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      u64 bytenr, u64 num_bytes, int alloc,
38 			      int mark_free);
39 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
40 				   u64 num_bytes, int reserve);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 			  struct btrfs_root *extent_root, u64 alloc_bytes,
62 			  u64 flags, int force);
63 static int pin_down_bytes(struct btrfs_trans_handle *trans,
64 			  struct btrfs_root *root,
65 			  struct btrfs_path *path,
66 			  u64 bytenr, u64 num_bytes,
67 			  int is_data, int reserved,
68 			  struct extent_buffer **must_clean);
69 static int find_next_key(struct btrfs_path *path, int level,
70 			 struct btrfs_key *key);
71 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
72 			    int dump_block_groups);
73 
74 static noinline int
75 block_group_cache_done(struct btrfs_block_group_cache *cache)
76 {
77 	smp_mb();
78 	return cache->cached == BTRFS_CACHE_FINISHED;
79 }
80 
81 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
82 {
83 	return (cache->flags & bits) == bits;
84 }
85 
86 /*
87  * this adds the block group to the fs_info rb tree for the block group
88  * cache
89  */
90 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
91 				struct btrfs_block_group_cache *block_group)
92 {
93 	struct rb_node **p;
94 	struct rb_node *parent = NULL;
95 	struct btrfs_block_group_cache *cache;
96 
97 	spin_lock(&info->block_group_cache_lock);
98 	p = &info->block_group_cache_tree.rb_node;
99 
100 	while (*p) {
101 		parent = *p;
102 		cache = rb_entry(parent, struct btrfs_block_group_cache,
103 				 cache_node);
104 		if (block_group->key.objectid < cache->key.objectid) {
105 			p = &(*p)->rb_left;
106 		} else if (block_group->key.objectid > cache->key.objectid) {
107 			p = &(*p)->rb_right;
108 		} else {
109 			spin_unlock(&info->block_group_cache_lock);
110 			return -EEXIST;
111 		}
112 	}
113 
114 	rb_link_node(&block_group->cache_node, parent, p);
115 	rb_insert_color(&block_group->cache_node,
116 			&info->block_group_cache_tree);
117 	spin_unlock(&info->block_group_cache_lock);
118 
119 	return 0;
120 }
121 
122 /*
123  * This will return the block group at or after bytenr if contains is 0, else
124  * it will return the block group that contains the bytenr
125  */
126 static struct btrfs_block_group_cache *
127 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
128 			      int contains)
129 {
130 	struct btrfs_block_group_cache *cache, *ret = NULL;
131 	struct rb_node *n;
132 	u64 end, start;
133 
134 	spin_lock(&info->block_group_cache_lock);
135 	n = info->block_group_cache_tree.rb_node;
136 
137 	while (n) {
138 		cache = rb_entry(n, struct btrfs_block_group_cache,
139 				 cache_node);
140 		end = cache->key.objectid + cache->key.offset - 1;
141 		start = cache->key.objectid;
142 
143 		if (bytenr < start) {
144 			if (!contains && (!ret || start < ret->key.objectid))
145 				ret = cache;
146 			n = n->rb_left;
147 		} else if (bytenr > start) {
148 			if (contains && bytenr <= end) {
149 				ret = cache;
150 				break;
151 			}
152 			n = n->rb_right;
153 		} else {
154 			ret = cache;
155 			break;
156 		}
157 	}
158 	if (ret)
159 		atomic_inc(&ret->count);
160 	spin_unlock(&info->block_group_cache_lock);
161 
162 	return ret;
163 }
164 
165 static int add_excluded_extent(struct btrfs_root *root,
166 			       u64 start, u64 num_bytes)
167 {
168 	u64 end = start + num_bytes - 1;
169 	set_extent_bits(&root->fs_info->freed_extents[0],
170 			start, end, EXTENT_UPTODATE, GFP_NOFS);
171 	set_extent_bits(&root->fs_info->freed_extents[1],
172 			start, end, EXTENT_UPTODATE, GFP_NOFS);
173 	return 0;
174 }
175 
176 static void free_excluded_extents(struct btrfs_root *root,
177 				  struct btrfs_block_group_cache *cache)
178 {
179 	u64 start, end;
180 
181 	start = cache->key.objectid;
182 	end = start + cache->key.offset - 1;
183 
184 	clear_extent_bits(&root->fs_info->freed_extents[0],
185 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
186 	clear_extent_bits(&root->fs_info->freed_extents[1],
187 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
188 }
189 
190 static int exclude_super_stripes(struct btrfs_root *root,
191 				 struct btrfs_block_group_cache *cache)
192 {
193 	u64 bytenr;
194 	u64 *logical;
195 	int stripe_len;
196 	int i, nr, ret;
197 
198 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
199 		bytenr = btrfs_sb_offset(i);
200 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
201 				       cache->key.objectid, bytenr,
202 				       0, &logical, &nr, &stripe_len);
203 		BUG_ON(ret);
204 
205 		while (nr--) {
206 			cache->bytes_super += stripe_len;
207 			ret = add_excluded_extent(root, logical[nr],
208 						  stripe_len);
209 			BUG_ON(ret);
210 		}
211 
212 		kfree(logical);
213 	}
214 	return 0;
215 }
216 
217 static struct btrfs_caching_control *
218 get_caching_control(struct btrfs_block_group_cache *cache)
219 {
220 	struct btrfs_caching_control *ctl;
221 
222 	spin_lock(&cache->lock);
223 	if (cache->cached != BTRFS_CACHE_STARTED) {
224 		spin_unlock(&cache->lock);
225 		return NULL;
226 	}
227 
228 	ctl = cache->caching_ctl;
229 	atomic_inc(&ctl->count);
230 	spin_unlock(&cache->lock);
231 	return ctl;
232 }
233 
234 static void put_caching_control(struct btrfs_caching_control *ctl)
235 {
236 	if (atomic_dec_and_test(&ctl->count))
237 		kfree(ctl);
238 }
239 
240 /*
241  * this is only called by cache_block_group, since we could have freed extents
242  * we need to check the pinned_extents for any extents that can't be used yet
243  * since their free space will be released as soon as the transaction commits.
244  */
245 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
246 			      struct btrfs_fs_info *info, u64 start, u64 end)
247 {
248 	u64 extent_start, extent_end, size, total_added = 0;
249 	int ret;
250 
251 	while (start < end) {
252 		ret = find_first_extent_bit(info->pinned_extents, start,
253 					    &extent_start, &extent_end,
254 					    EXTENT_DIRTY | EXTENT_UPTODATE);
255 		if (ret)
256 			break;
257 
258 		if (extent_start == start) {
259 			start = extent_end + 1;
260 		} else if (extent_start > start && extent_start < end) {
261 			size = extent_start - start;
262 			total_added += size;
263 			ret = btrfs_add_free_space(block_group, start,
264 						   size);
265 			BUG_ON(ret);
266 			start = extent_end + 1;
267 		} else {
268 			break;
269 		}
270 	}
271 
272 	if (start < end) {
273 		size = end - start;
274 		total_added += size;
275 		ret = btrfs_add_free_space(block_group, start, size);
276 		BUG_ON(ret);
277 	}
278 
279 	return total_added;
280 }
281 
282 static int caching_kthread(void *data)
283 {
284 	struct btrfs_block_group_cache *block_group = data;
285 	struct btrfs_fs_info *fs_info = block_group->fs_info;
286 	struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
287 	struct btrfs_root *extent_root = fs_info->extent_root;
288 	struct btrfs_path *path;
289 	struct extent_buffer *leaf;
290 	struct btrfs_key key;
291 	u64 total_found = 0;
292 	u64 last = 0;
293 	u32 nritems;
294 	int ret = 0;
295 
296 	path = btrfs_alloc_path();
297 	if (!path)
298 		return -ENOMEM;
299 
300 	exclude_super_stripes(extent_root, block_group);
301 	spin_lock(&block_group->space_info->lock);
302 	block_group->space_info->bytes_super += block_group->bytes_super;
303 	spin_unlock(&block_group->space_info->lock);
304 
305 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
306 
307 	/*
308 	 * We don't want to deadlock with somebody trying to allocate a new
309 	 * extent for the extent root while also trying to search the extent
310 	 * root to add free space.  So we skip locking and search the commit
311 	 * root, since its read-only
312 	 */
313 	path->skip_locking = 1;
314 	path->search_commit_root = 1;
315 	path->reada = 2;
316 
317 	key.objectid = last;
318 	key.offset = 0;
319 	key.type = BTRFS_EXTENT_ITEM_KEY;
320 again:
321 	mutex_lock(&caching_ctl->mutex);
322 	/* need to make sure the commit_root doesn't disappear */
323 	down_read(&fs_info->extent_commit_sem);
324 
325 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
326 	if (ret < 0)
327 		goto err;
328 
329 	leaf = path->nodes[0];
330 	nritems = btrfs_header_nritems(leaf);
331 
332 	while (1) {
333 		smp_mb();
334 		if (fs_info->closing > 1) {
335 			last = (u64)-1;
336 			break;
337 		}
338 
339 		if (path->slots[0] < nritems) {
340 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
341 		} else {
342 			ret = find_next_key(path, 0, &key);
343 			if (ret)
344 				break;
345 
346 			caching_ctl->progress = last;
347 			btrfs_release_path(extent_root, path);
348 			up_read(&fs_info->extent_commit_sem);
349 			mutex_unlock(&caching_ctl->mutex);
350 			if (btrfs_transaction_in_commit(fs_info))
351 				schedule_timeout(1);
352 			else
353 				cond_resched();
354 			goto again;
355 		}
356 
357 		if (key.objectid < block_group->key.objectid) {
358 			path->slots[0]++;
359 			continue;
360 		}
361 
362 		if (key.objectid >= block_group->key.objectid +
363 		    block_group->key.offset)
364 			break;
365 
366 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
367 			total_found += add_new_free_space(block_group,
368 							  fs_info, last,
369 							  key.objectid);
370 			last = key.objectid + key.offset;
371 
372 			if (total_found > (1024 * 1024 * 2)) {
373 				total_found = 0;
374 				wake_up(&caching_ctl->wait);
375 			}
376 		}
377 		path->slots[0]++;
378 	}
379 	ret = 0;
380 
381 	total_found += add_new_free_space(block_group, fs_info, last,
382 					  block_group->key.objectid +
383 					  block_group->key.offset);
384 	caching_ctl->progress = (u64)-1;
385 
386 	spin_lock(&block_group->lock);
387 	block_group->caching_ctl = NULL;
388 	block_group->cached = BTRFS_CACHE_FINISHED;
389 	spin_unlock(&block_group->lock);
390 
391 err:
392 	btrfs_free_path(path);
393 	up_read(&fs_info->extent_commit_sem);
394 
395 	free_excluded_extents(extent_root, block_group);
396 
397 	mutex_unlock(&caching_ctl->mutex);
398 	wake_up(&caching_ctl->wait);
399 
400 	put_caching_control(caching_ctl);
401 	atomic_dec(&block_group->space_info->caching_threads);
402 	return 0;
403 }
404 
405 static int cache_block_group(struct btrfs_block_group_cache *cache)
406 {
407 	struct btrfs_fs_info *fs_info = cache->fs_info;
408 	struct btrfs_caching_control *caching_ctl;
409 	struct task_struct *tsk;
410 	int ret = 0;
411 
412 	smp_mb();
413 	if (cache->cached != BTRFS_CACHE_NO)
414 		return 0;
415 
416 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
417 	BUG_ON(!caching_ctl);
418 
419 	INIT_LIST_HEAD(&caching_ctl->list);
420 	mutex_init(&caching_ctl->mutex);
421 	init_waitqueue_head(&caching_ctl->wait);
422 	caching_ctl->block_group = cache;
423 	caching_ctl->progress = cache->key.objectid;
424 	/* one for caching kthread, one for caching block group list */
425 	atomic_set(&caching_ctl->count, 2);
426 
427 	spin_lock(&cache->lock);
428 	if (cache->cached != BTRFS_CACHE_NO) {
429 		spin_unlock(&cache->lock);
430 		kfree(caching_ctl);
431 		return 0;
432 	}
433 	cache->caching_ctl = caching_ctl;
434 	cache->cached = BTRFS_CACHE_STARTED;
435 	spin_unlock(&cache->lock);
436 
437 	down_write(&fs_info->extent_commit_sem);
438 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
439 	up_write(&fs_info->extent_commit_sem);
440 
441 	atomic_inc(&cache->space_info->caching_threads);
442 
443 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
444 			  cache->key.objectid);
445 	if (IS_ERR(tsk)) {
446 		ret = PTR_ERR(tsk);
447 		printk(KERN_ERR "error running thread %d\n", ret);
448 		BUG();
449 	}
450 
451 	return ret;
452 }
453 
454 /*
455  * return the block group that starts at or after bytenr
456  */
457 static struct btrfs_block_group_cache *
458 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
459 {
460 	struct btrfs_block_group_cache *cache;
461 
462 	cache = block_group_cache_tree_search(info, bytenr, 0);
463 
464 	return cache;
465 }
466 
467 /*
468  * return the block group that contains the given bytenr
469  */
470 struct btrfs_block_group_cache *btrfs_lookup_block_group(
471 						 struct btrfs_fs_info *info,
472 						 u64 bytenr)
473 {
474 	struct btrfs_block_group_cache *cache;
475 
476 	cache = block_group_cache_tree_search(info, bytenr, 1);
477 
478 	return cache;
479 }
480 
481 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
482 {
483 	if (atomic_dec_and_test(&cache->count))
484 		kfree(cache);
485 }
486 
487 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
488 						  u64 flags)
489 {
490 	struct list_head *head = &info->space_info;
491 	struct btrfs_space_info *found;
492 
493 	rcu_read_lock();
494 	list_for_each_entry_rcu(found, head, list) {
495 		if (found->flags == flags) {
496 			rcu_read_unlock();
497 			return found;
498 		}
499 	}
500 	rcu_read_unlock();
501 	return NULL;
502 }
503 
504 /*
505  * after adding space to the filesystem, we need to clear the full flags
506  * on all the space infos.
507  */
508 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
509 {
510 	struct list_head *head = &info->space_info;
511 	struct btrfs_space_info *found;
512 
513 	rcu_read_lock();
514 	list_for_each_entry_rcu(found, head, list)
515 		found->full = 0;
516 	rcu_read_unlock();
517 }
518 
519 static u64 div_factor(u64 num, int factor)
520 {
521 	if (factor == 10)
522 		return num;
523 	num *= factor;
524 	do_div(num, 10);
525 	return num;
526 }
527 
528 u64 btrfs_find_block_group(struct btrfs_root *root,
529 			   u64 search_start, u64 search_hint, int owner)
530 {
531 	struct btrfs_block_group_cache *cache;
532 	u64 used;
533 	u64 last = max(search_hint, search_start);
534 	u64 group_start = 0;
535 	int full_search = 0;
536 	int factor = 9;
537 	int wrapped = 0;
538 again:
539 	while (1) {
540 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
541 		if (!cache)
542 			break;
543 
544 		spin_lock(&cache->lock);
545 		last = cache->key.objectid + cache->key.offset;
546 		used = btrfs_block_group_used(&cache->item);
547 
548 		if ((full_search || !cache->ro) &&
549 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
550 			if (used + cache->pinned + cache->reserved <
551 			    div_factor(cache->key.offset, factor)) {
552 				group_start = cache->key.objectid;
553 				spin_unlock(&cache->lock);
554 				btrfs_put_block_group(cache);
555 				goto found;
556 			}
557 		}
558 		spin_unlock(&cache->lock);
559 		btrfs_put_block_group(cache);
560 		cond_resched();
561 	}
562 	if (!wrapped) {
563 		last = search_start;
564 		wrapped = 1;
565 		goto again;
566 	}
567 	if (!full_search && factor < 10) {
568 		last = search_start;
569 		full_search = 1;
570 		factor = 10;
571 		goto again;
572 	}
573 found:
574 	return group_start;
575 }
576 
577 /* simple helper to search for an existing extent at a given offset */
578 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
579 {
580 	int ret;
581 	struct btrfs_key key;
582 	struct btrfs_path *path;
583 
584 	path = btrfs_alloc_path();
585 	BUG_ON(!path);
586 	key.objectid = start;
587 	key.offset = len;
588 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
589 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
590 				0, 0);
591 	btrfs_free_path(path);
592 	return ret;
593 }
594 
595 /*
596  * Back reference rules.  Back refs have three main goals:
597  *
598  * 1) differentiate between all holders of references to an extent so that
599  *    when a reference is dropped we can make sure it was a valid reference
600  *    before freeing the extent.
601  *
602  * 2) Provide enough information to quickly find the holders of an extent
603  *    if we notice a given block is corrupted or bad.
604  *
605  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
606  *    maintenance.  This is actually the same as #2, but with a slightly
607  *    different use case.
608  *
609  * There are two kinds of back refs. The implicit back refs is optimized
610  * for pointers in non-shared tree blocks. For a given pointer in a block,
611  * back refs of this kind provide information about the block's owner tree
612  * and the pointer's key. These information allow us to find the block by
613  * b-tree searching. The full back refs is for pointers in tree blocks not
614  * referenced by their owner trees. The location of tree block is recorded
615  * in the back refs. Actually the full back refs is generic, and can be
616  * used in all cases the implicit back refs is used. The major shortcoming
617  * of the full back refs is its overhead. Every time a tree block gets
618  * COWed, we have to update back refs entry for all pointers in it.
619  *
620  * For a newly allocated tree block, we use implicit back refs for
621  * pointers in it. This means most tree related operations only involve
622  * implicit back refs. For a tree block created in old transaction, the
623  * only way to drop a reference to it is COW it. So we can detect the
624  * event that tree block loses its owner tree's reference and do the
625  * back refs conversion.
626  *
627  * When a tree block is COW'd through a tree, there are four cases:
628  *
629  * The reference count of the block is one and the tree is the block's
630  * owner tree. Nothing to do in this case.
631  *
632  * The reference count of the block is one and the tree is not the
633  * block's owner tree. In this case, full back refs is used for pointers
634  * in the block. Remove these full back refs, add implicit back refs for
635  * every pointers in the new block.
636  *
637  * The reference count of the block is greater than one and the tree is
638  * the block's owner tree. In this case, implicit back refs is used for
639  * pointers in the block. Add full back refs for every pointers in the
640  * block, increase lower level extents' reference counts. The original
641  * implicit back refs are entailed to the new block.
642  *
643  * The reference count of the block is greater than one and the tree is
644  * not the block's owner tree. Add implicit back refs for every pointer in
645  * the new block, increase lower level extents' reference count.
646  *
647  * Back Reference Key composing:
648  *
649  * The key objectid corresponds to the first byte in the extent,
650  * The key type is used to differentiate between types of back refs.
651  * There are different meanings of the key offset for different types
652  * of back refs.
653  *
654  * File extents can be referenced by:
655  *
656  * - multiple snapshots, subvolumes, or different generations in one subvol
657  * - different files inside a single subvolume
658  * - different offsets inside a file (bookend extents in file.c)
659  *
660  * The extent ref structure for the implicit back refs has fields for:
661  *
662  * - Objectid of the subvolume root
663  * - objectid of the file holding the reference
664  * - original offset in the file
665  * - how many bookend extents
666  *
667  * The key offset for the implicit back refs is hash of the first
668  * three fields.
669  *
670  * The extent ref structure for the full back refs has field for:
671  *
672  * - number of pointers in the tree leaf
673  *
674  * The key offset for the implicit back refs is the first byte of
675  * the tree leaf
676  *
677  * When a file extent is allocated, The implicit back refs is used.
678  * the fields are filled in:
679  *
680  *     (root_key.objectid, inode objectid, offset in file, 1)
681  *
682  * When a file extent is removed file truncation, we find the
683  * corresponding implicit back refs and check the following fields:
684  *
685  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
686  *
687  * Btree extents can be referenced by:
688  *
689  * - Different subvolumes
690  *
691  * Both the implicit back refs and the full back refs for tree blocks
692  * only consist of key. The key offset for the implicit back refs is
693  * objectid of block's owner tree. The key offset for the full back refs
694  * is the first byte of parent block.
695  *
696  * When implicit back refs is used, information about the lowest key and
697  * level of the tree block are required. These information are stored in
698  * tree block info structure.
699  */
700 
701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
702 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
703 				  struct btrfs_root *root,
704 				  struct btrfs_path *path,
705 				  u64 owner, u32 extra_size)
706 {
707 	struct btrfs_extent_item *item;
708 	struct btrfs_extent_item_v0 *ei0;
709 	struct btrfs_extent_ref_v0 *ref0;
710 	struct btrfs_tree_block_info *bi;
711 	struct extent_buffer *leaf;
712 	struct btrfs_key key;
713 	struct btrfs_key found_key;
714 	u32 new_size = sizeof(*item);
715 	u64 refs;
716 	int ret;
717 
718 	leaf = path->nodes[0];
719 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
720 
721 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
722 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
723 			     struct btrfs_extent_item_v0);
724 	refs = btrfs_extent_refs_v0(leaf, ei0);
725 
726 	if (owner == (u64)-1) {
727 		while (1) {
728 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
729 				ret = btrfs_next_leaf(root, path);
730 				if (ret < 0)
731 					return ret;
732 				BUG_ON(ret > 0);
733 				leaf = path->nodes[0];
734 			}
735 			btrfs_item_key_to_cpu(leaf, &found_key,
736 					      path->slots[0]);
737 			BUG_ON(key.objectid != found_key.objectid);
738 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
739 				path->slots[0]++;
740 				continue;
741 			}
742 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
743 					      struct btrfs_extent_ref_v0);
744 			owner = btrfs_ref_objectid_v0(leaf, ref0);
745 			break;
746 		}
747 	}
748 	btrfs_release_path(root, path);
749 
750 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
751 		new_size += sizeof(*bi);
752 
753 	new_size -= sizeof(*ei0);
754 	ret = btrfs_search_slot(trans, root, &key, path,
755 				new_size + extra_size, 1);
756 	if (ret < 0)
757 		return ret;
758 	BUG_ON(ret);
759 
760 	ret = btrfs_extend_item(trans, root, path, new_size);
761 	BUG_ON(ret);
762 
763 	leaf = path->nodes[0];
764 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
765 	btrfs_set_extent_refs(leaf, item, refs);
766 	/* FIXME: get real generation */
767 	btrfs_set_extent_generation(leaf, item, 0);
768 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
769 		btrfs_set_extent_flags(leaf, item,
770 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
771 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
772 		bi = (struct btrfs_tree_block_info *)(item + 1);
773 		/* FIXME: get first key of the block */
774 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
775 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
776 	} else {
777 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
778 	}
779 	btrfs_mark_buffer_dirty(leaf);
780 	return 0;
781 }
782 #endif
783 
784 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
785 {
786 	u32 high_crc = ~(u32)0;
787 	u32 low_crc = ~(u32)0;
788 	__le64 lenum;
789 
790 	lenum = cpu_to_le64(root_objectid);
791 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
792 	lenum = cpu_to_le64(owner);
793 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
794 	lenum = cpu_to_le64(offset);
795 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
796 
797 	return ((u64)high_crc << 31) ^ (u64)low_crc;
798 }
799 
800 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
801 				     struct btrfs_extent_data_ref *ref)
802 {
803 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
804 				    btrfs_extent_data_ref_objectid(leaf, ref),
805 				    btrfs_extent_data_ref_offset(leaf, ref));
806 }
807 
808 static int match_extent_data_ref(struct extent_buffer *leaf,
809 				 struct btrfs_extent_data_ref *ref,
810 				 u64 root_objectid, u64 owner, u64 offset)
811 {
812 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
813 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
814 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
815 		return 0;
816 	return 1;
817 }
818 
819 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
820 					   struct btrfs_root *root,
821 					   struct btrfs_path *path,
822 					   u64 bytenr, u64 parent,
823 					   u64 root_objectid,
824 					   u64 owner, u64 offset)
825 {
826 	struct btrfs_key key;
827 	struct btrfs_extent_data_ref *ref;
828 	struct extent_buffer *leaf;
829 	u32 nritems;
830 	int ret;
831 	int recow;
832 	int err = -ENOENT;
833 
834 	key.objectid = bytenr;
835 	if (parent) {
836 		key.type = BTRFS_SHARED_DATA_REF_KEY;
837 		key.offset = parent;
838 	} else {
839 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
840 		key.offset = hash_extent_data_ref(root_objectid,
841 						  owner, offset);
842 	}
843 again:
844 	recow = 0;
845 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
846 	if (ret < 0) {
847 		err = ret;
848 		goto fail;
849 	}
850 
851 	if (parent) {
852 		if (!ret)
853 			return 0;
854 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
855 		key.type = BTRFS_EXTENT_REF_V0_KEY;
856 		btrfs_release_path(root, path);
857 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
858 		if (ret < 0) {
859 			err = ret;
860 			goto fail;
861 		}
862 		if (!ret)
863 			return 0;
864 #endif
865 		goto fail;
866 	}
867 
868 	leaf = path->nodes[0];
869 	nritems = btrfs_header_nritems(leaf);
870 	while (1) {
871 		if (path->slots[0] >= nritems) {
872 			ret = btrfs_next_leaf(root, path);
873 			if (ret < 0)
874 				err = ret;
875 			if (ret)
876 				goto fail;
877 
878 			leaf = path->nodes[0];
879 			nritems = btrfs_header_nritems(leaf);
880 			recow = 1;
881 		}
882 
883 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
884 		if (key.objectid != bytenr ||
885 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
886 			goto fail;
887 
888 		ref = btrfs_item_ptr(leaf, path->slots[0],
889 				     struct btrfs_extent_data_ref);
890 
891 		if (match_extent_data_ref(leaf, ref, root_objectid,
892 					  owner, offset)) {
893 			if (recow) {
894 				btrfs_release_path(root, path);
895 				goto again;
896 			}
897 			err = 0;
898 			break;
899 		}
900 		path->slots[0]++;
901 	}
902 fail:
903 	return err;
904 }
905 
906 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
907 					   struct btrfs_root *root,
908 					   struct btrfs_path *path,
909 					   u64 bytenr, u64 parent,
910 					   u64 root_objectid, u64 owner,
911 					   u64 offset, int refs_to_add)
912 {
913 	struct btrfs_key key;
914 	struct extent_buffer *leaf;
915 	u32 size;
916 	u32 num_refs;
917 	int ret;
918 
919 	key.objectid = bytenr;
920 	if (parent) {
921 		key.type = BTRFS_SHARED_DATA_REF_KEY;
922 		key.offset = parent;
923 		size = sizeof(struct btrfs_shared_data_ref);
924 	} else {
925 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
926 		key.offset = hash_extent_data_ref(root_objectid,
927 						  owner, offset);
928 		size = sizeof(struct btrfs_extent_data_ref);
929 	}
930 
931 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
932 	if (ret && ret != -EEXIST)
933 		goto fail;
934 
935 	leaf = path->nodes[0];
936 	if (parent) {
937 		struct btrfs_shared_data_ref *ref;
938 		ref = btrfs_item_ptr(leaf, path->slots[0],
939 				     struct btrfs_shared_data_ref);
940 		if (ret == 0) {
941 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
942 		} else {
943 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
944 			num_refs += refs_to_add;
945 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
946 		}
947 	} else {
948 		struct btrfs_extent_data_ref *ref;
949 		while (ret == -EEXIST) {
950 			ref = btrfs_item_ptr(leaf, path->slots[0],
951 					     struct btrfs_extent_data_ref);
952 			if (match_extent_data_ref(leaf, ref, root_objectid,
953 						  owner, offset))
954 				break;
955 			btrfs_release_path(root, path);
956 			key.offset++;
957 			ret = btrfs_insert_empty_item(trans, root, path, &key,
958 						      size);
959 			if (ret && ret != -EEXIST)
960 				goto fail;
961 
962 			leaf = path->nodes[0];
963 		}
964 		ref = btrfs_item_ptr(leaf, path->slots[0],
965 				     struct btrfs_extent_data_ref);
966 		if (ret == 0) {
967 			btrfs_set_extent_data_ref_root(leaf, ref,
968 						       root_objectid);
969 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
970 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
971 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
972 		} else {
973 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
974 			num_refs += refs_to_add;
975 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
976 		}
977 	}
978 	btrfs_mark_buffer_dirty(leaf);
979 	ret = 0;
980 fail:
981 	btrfs_release_path(root, path);
982 	return ret;
983 }
984 
985 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
986 					   struct btrfs_root *root,
987 					   struct btrfs_path *path,
988 					   int refs_to_drop)
989 {
990 	struct btrfs_key key;
991 	struct btrfs_extent_data_ref *ref1 = NULL;
992 	struct btrfs_shared_data_ref *ref2 = NULL;
993 	struct extent_buffer *leaf;
994 	u32 num_refs = 0;
995 	int ret = 0;
996 
997 	leaf = path->nodes[0];
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 
1000 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1001 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1002 				      struct btrfs_extent_data_ref);
1003 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1004 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1005 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1006 				      struct btrfs_shared_data_ref);
1007 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1009 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1010 		struct btrfs_extent_ref_v0 *ref0;
1011 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1012 				      struct btrfs_extent_ref_v0);
1013 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1014 #endif
1015 	} else {
1016 		BUG();
1017 	}
1018 
1019 	BUG_ON(num_refs < refs_to_drop);
1020 	num_refs -= refs_to_drop;
1021 
1022 	if (num_refs == 0) {
1023 		ret = btrfs_del_item(trans, root, path);
1024 	} else {
1025 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1026 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1027 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1028 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1030 		else {
1031 			struct btrfs_extent_ref_v0 *ref0;
1032 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1033 					struct btrfs_extent_ref_v0);
1034 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1035 		}
1036 #endif
1037 		btrfs_mark_buffer_dirty(leaf);
1038 	}
1039 	return ret;
1040 }
1041 
1042 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1043 					  struct btrfs_path *path,
1044 					  struct btrfs_extent_inline_ref *iref)
1045 {
1046 	struct btrfs_key key;
1047 	struct extent_buffer *leaf;
1048 	struct btrfs_extent_data_ref *ref1;
1049 	struct btrfs_shared_data_ref *ref2;
1050 	u32 num_refs = 0;
1051 
1052 	leaf = path->nodes[0];
1053 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1054 	if (iref) {
1055 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1056 		    BTRFS_EXTENT_DATA_REF_KEY) {
1057 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1058 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1059 		} else {
1060 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1061 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1062 		}
1063 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1064 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1065 				      struct btrfs_extent_data_ref);
1066 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1067 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1068 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1069 				      struct btrfs_shared_data_ref);
1070 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1071 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1072 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1073 		struct btrfs_extent_ref_v0 *ref0;
1074 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1075 				      struct btrfs_extent_ref_v0);
1076 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1077 #endif
1078 	} else {
1079 		WARN_ON(1);
1080 	}
1081 	return num_refs;
1082 }
1083 
1084 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1085 					  struct btrfs_root *root,
1086 					  struct btrfs_path *path,
1087 					  u64 bytenr, u64 parent,
1088 					  u64 root_objectid)
1089 {
1090 	struct btrfs_key key;
1091 	int ret;
1092 
1093 	key.objectid = bytenr;
1094 	if (parent) {
1095 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1096 		key.offset = parent;
1097 	} else {
1098 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1099 		key.offset = root_objectid;
1100 	}
1101 
1102 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1103 	if (ret > 0)
1104 		ret = -ENOENT;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 	if (ret == -ENOENT && parent) {
1107 		btrfs_release_path(root, path);
1108 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 		if (ret > 0)
1111 			ret = -ENOENT;
1112 	}
1113 #endif
1114 	return ret;
1115 }
1116 
1117 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1118 					  struct btrfs_root *root,
1119 					  struct btrfs_path *path,
1120 					  u64 bytenr, u64 parent,
1121 					  u64 root_objectid)
1122 {
1123 	struct btrfs_key key;
1124 	int ret;
1125 
1126 	key.objectid = bytenr;
1127 	if (parent) {
1128 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1129 		key.offset = parent;
1130 	} else {
1131 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1132 		key.offset = root_objectid;
1133 	}
1134 
1135 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1136 	btrfs_release_path(root, path);
1137 	return ret;
1138 }
1139 
1140 static inline int extent_ref_type(u64 parent, u64 owner)
1141 {
1142 	int type;
1143 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1144 		if (parent > 0)
1145 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1146 		else
1147 			type = BTRFS_TREE_BLOCK_REF_KEY;
1148 	} else {
1149 		if (parent > 0)
1150 			type = BTRFS_SHARED_DATA_REF_KEY;
1151 		else
1152 			type = BTRFS_EXTENT_DATA_REF_KEY;
1153 	}
1154 	return type;
1155 }
1156 
1157 static int find_next_key(struct btrfs_path *path, int level,
1158 			 struct btrfs_key *key)
1159 
1160 {
1161 	for (; level < BTRFS_MAX_LEVEL; level++) {
1162 		if (!path->nodes[level])
1163 			break;
1164 		if (path->slots[level] + 1 >=
1165 		    btrfs_header_nritems(path->nodes[level]))
1166 			continue;
1167 		if (level == 0)
1168 			btrfs_item_key_to_cpu(path->nodes[level], key,
1169 					      path->slots[level] + 1);
1170 		else
1171 			btrfs_node_key_to_cpu(path->nodes[level], key,
1172 					      path->slots[level] + 1);
1173 		return 0;
1174 	}
1175 	return 1;
1176 }
1177 
1178 /*
1179  * look for inline back ref. if back ref is found, *ref_ret is set
1180  * to the address of inline back ref, and 0 is returned.
1181  *
1182  * if back ref isn't found, *ref_ret is set to the address where it
1183  * should be inserted, and -ENOENT is returned.
1184  *
1185  * if insert is true and there are too many inline back refs, the path
1186  * points to the extent item, and -EAGAIN is returned.
1187  *
1188  * NOTE: inline back refs are ordered in the same way that back ref
1189  *	 items in the tree are ordered.
1190  */
1191 static noinline_for_stack
1192 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1193 				 struct btrfs_root *root,
1194 				 struct btrfs_path *path,
1195 				 struct btrfs_extent_inline_ref **ref_ret,
1196 				 u64 bytenr, u64 num_bytes,
1197 				 u64 parent, u64 root_objectid,
1198 				 u64 owner, u64 offset, int insert)
1199 {
1200 	struct btrfs_key key;
1201 	struct extent_buffer *leaf;
1202 	struct btrfs_extent_item *ei;
1203 	struct btrfs_extent_inline_ref *iref;
1204 	u64 flags;
1205 	u64 item_size;
1206 	unsigned long ptr;
1207 	unsigned long end;
1208 	int extra_size;
1209 	int type;
1210 	int want;
1211 	int ret;
1212 	int err = 0;
1213 
1214 	key.objectid = bytenr;
1215 	key.type = BTRFS_EXTENT_ITEM_KEY;
1216 	key.offset = num_bytes;
1217 
1218 	want = extent_ref_type(parent, owner);
1219 	if (insert) {
1220 		extra_size = btrfs_extent_inline_ref_size(want);
1221 		path->keep_locks = 1;
1222 	} else
1223 		extra_size = -1;
1224 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1225 	if (ret < 0) {
1226 		err = ret;
1227 		goto out;
1228 	}
1229 	BUG_ON(ret);
1230 
1231 	leaf = path->nodes[0];
1232 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1233 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1234 	if (item_size < sizeof(*ei)) {
1235 		if (!insert) {
1236 			err = -ENOENT;
1237 			goto out;
1238 		}
1239 		ret = convert_extent_item_v0(trans, root, path, owner,
1240 					     extra_size);
1241 		if (ret < 0) {
1242 			err = ret;
1243 			goto out;
1244 		}
1245 		leaf = path->nodes[0];
1246 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1247 	}
1248 #endif
1249 	BUG_ON(item_size < sizeof(*ei));
1250 
1251 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1252 	flags = btrfs_extent_flags(leaf, ei);
1253 
1254 	ptr = (unsigned long)(ei + 1);
1255 	end = (unsigned long)ei + item_size;
1256 
1257 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1258 		ptr += sizeof(struct btrfs_tree_block_info);
1259 		BUG_ON(ptr > end);
1260 	} else {
1261 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1262 	}
1263 
1264 	err = -ENOENT;
1265 	while (1) {
1266 		if (ptr >= end) {
1267 			WARN_ON(ptr > end);
1268 			break;
1269 		}
1270 		iref = (struct btrfs_extent_inline_ref *)ptr;
1271 		type = btrfs_extent_inline_ref_type(leaf, iref);
1272 		if (want < type)
1273 			break;
1274 		if (want > type) {
1275 			ptr += btrfs_extent_inline_ref_size(type);
1276 			continue;
1277 		}
1278 
1279 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1280 			struct btrfs_extent_data_ref *dref;
1281 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1282 			if (match_extent_data_ref(leaf, dref, root_objectid,
1283 						  owner, offset)) {
1284 				err = 0;
1285 				break;
1286 			}
1287 			if (hash_extent_data_ref_item(leaf, dref) <
1288 			    hash_extent_data_ref(root_objectid, owner, offset))
1289 				break;
1290 		} else {
1291 			u64 ref_offset;
1292 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1293 			if (parent > 0) {
1294 				if (parent == ref_offset) {
1295 					err = 0;
1296 					break;
1297 				}
1298 				if (ref_offset < parent)
1299 					break;
1300 			} else {
1301 				if (root_objectid == ref_offset) {
1302 					err = 0;
1303 					break;
1304 				}
1305 				if (ref_offset < root_objectid)
1306 					break;
1307 			}
1308 		}
1309 		ptr += btrfs_extent_inline_ref_size(type);
1310 	}
1311 	if (err == -ENOENT && insert) {
1312 		if (item_size + extra_size >=
1313 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1314 			err = -EAGAIN;
1315 			goto out;
1316 		}
1317 		/*
1318 		 * To add new inline back ref, we have to make sure
1319 		 * there is no corresponding back ref item.
1320 		 * For simplicity, we just do not add new inline back
1321 		 * ref if there is any kind of item for this block
1322 		 */
1323 		if (find_next_key(path, 0, &key) == 0 &&
1324 		    key.objectid == bytenr &&
1325 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1326 			err = -EAGAIN;
1327 			goto out;
1328 		}
1329 	}
1330 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1331 out:
1332 	if (insert) {
1333 		path->keep_locks = 0;
1334 		btrfs_unlock_up_safe(path, 1);
1335 	}
1336 	return err;
1337 }
1338 
1339 /*
1340  * helper to add new inline back ref
1341  */
1342 static noinline_for_stack
1343 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1344 				struct btrfs_root *root,
1345 				struct btrfs_path *path,
1346 				struct btrfs_extent_inline_ref *iref,
1347 				u64 parent, u64 root_objectid,
1348 				u64 owner, u64 offset, int refs_to_add,
1349 				struct btrfs_delayed_extent_op *extent_op)
1350 {
1351 	struct extent_buffer *leaf;
1352 	struct btrfs_extent_item *ei;
1353 	unsigned long ptr;
1354 	unsigned long end;
1355 	unsigned long item_offset;
1356 	u64 refs;
1357 	int size;
1358 	int type;
1359 	int ret;
1360 
1361 	leaf = path->nodes[0];
1362 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1363 	item_offset = (unsigned long)iref - (unsigned long)ei;
1364 
1365 	type = extent_ref_type(parent, owner);
1366 	size = btrfs_extent_inline_ref_size(type);
1367 
1368 	ret = btrfs_extend_item(trans, root, path, size);
1369 	BUG_ON(ret);
1370 
1371 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1372 	refs = btrfs_extent_refs(leaf, ei);
1373 	refs += refs_to_add;
1374 	btrfs_set_extent_refs(leaf, ei, refs);
1375 	if (extent_op)
1376 		__run_delayed_extent_op(extent_op, leaf, ei);
1377 
1378 	ptr = (unsigned long)ei + item_offset;
1379 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1380 	if (ptr < end - size)
1381 		memmove_extent_buffer(leaf, ptr + size, ptr,
1382 				      end - size - ptr);
1383 
1384 	iref = (struct btrfs_extent_inline_ref *)ptr;
1385 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1386 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1387 		struct btrfs_extent_data_ref *dref;
1388 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1389 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1390 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1391 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1392 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1393 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1394 		struct btrfs_shared_data_ref *sref;
1395 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1396 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1397 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1398 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1399 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1400 	} else {
1401 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1402 	}
1403 	btrfs_mark_buffer_dirty(leaf);
1404 	return 0;
1405 }
1406 
1407 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1408 				 struct btrfs_root *root,
1409 				 struct btrfs_path *path,
1410 				 struct btrfs_extent_inline_ref **ref_ret,
1411 				 u64 bytenr, u64 num_bytes, u64 parent,
1412 				 u64 root_objectid, u64 owner, u64 offset)
1413 {
1414 	int ret;
1415 
1416 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1417 					   bytenr, num_bytes, parent,
1418 					   root_objectid, owner, offset, 0);
1419 	if (ret != -ENOENT)
1420 		return ret;
1421 
1422 	btrfs_release_path(root, path);
1423 	*ref_ret = NULL;
1424 
1425 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1426 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1427 					    root_objectid);
1428 	} else {
1429 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1430 					     root_objectid, owner, offset);
1431 	}
1432 	return ret;
1433 }
1434 
1435 /*
1436  * helper to update/remove inline back ref
1437  */
1438 static noinline_for_stack
1439 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1440 				 struct btrfs_root *root,
1441 				 struct btrfs_path *path,
1442 				 struct btrfs_extent_inline_ref *iref,
1443 				 int refs_to_mod,
1444 				 struct btrfs_delayed_extent_op *extent_op)
1445 {
1446 	struct extent_buffer *leaf;
1447 	struct btrfs_extent_item *ei;
1448 	struct btrfs_extent_data_ref *dref = NULL;
1449 	struct btrfs_shared_data_ref *sref = NULL;
1450 	unsigned long ptr;
1451 	unsigned long end;
1452 	u32 item_size;
1453 	int size;
1454 	int type;
1455 	int ret;
1456 	u64 refs;
1457 
1458 	leaf = path->nodes[0];
1459 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1460 	refs = btrfs_extent_refs(leaf, ei);
1461 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1462 	refs += refs_to_mod;
1463 	btrfs_set_extent_refs(leaf, ei, refs);
1464 	if (extent_op)
1465 		__run_delayed_extent_op(extent_op, leaf, ei);
1466 
1467 	type = btrfs_extent_inline_ref_type(leaf, iref);
1468 
1469 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1470 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1471 		refs = btrfs_extent_data_ref_count(leaf, dref);
1472 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1473 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1474 		refs = btrfs_shared_data_ref_count(leaf, sref);
1475 	} else {
1476 		refs = 1;
1477 		BUG_ON(refs_to_mod != -1);
1478 	}
1479 
1480 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1481 	refs += refs_to_mod;
1482 
1483 	if (refs > 0) {
1484 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1485 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1486 		else
1487 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1488 	} else {
1489 		size =  btrfs_extent_inline_ref_size(type);
1490 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1491 		ptr = (unsigned long)iref;
1492 		end = (unsigned long)ei + item_size;
1493 		if (ptr + size < end)
1494 			memmove_extent_buffer(leaf, ptr, ptr + size,
1495 					      end - ptr - size);
1496 		item_size -= size;
1497 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1498 		BUG_ON(ret);
1499 	}
1500 	btrfs_mark_buffer_dirty(leaf);
1501 	return 0;
1502 }
1503 
1504 static noinline_for_stack
1505 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1506 				 struct btrfs_root *root,
1507 				 struct btrfs_path *path,
1508 				 u64 bytenr, u64 num_bytes, u64 parent,
1509 				 u64 root_objectid, u64 owner,
1510 				 u64 offset, int refs_to_add,
1511 				 struct btrfs_delayed_extent_op *extent_op)
1512 {
1513 	struct btrfs_extent_inline_ref *iref;
1514 	int ret;
1515 
1516 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1517 					   bytenr, num_bytes, parent,
1518 					   root_objectid, owner, offset, 1);
1519 	if (ret == 0) {
1520 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1521 		ret = update_inline_extent_backref(trans, root, path, iref,
1522 						   refs_to_add, extent_op);
1523 	} else if (ret == -ENOENT) {
1524 		ret = setup_inline_extent_backref(trans, root, path, iref,
1525 						  parent, root_objectid,
1526 						  owner, offset, refs_to_add,
1527 						  extent_op);
1528 	}
1529 	return ret;
1530 }
1531 
1532 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1533 				 struct btrfs_root *root,
1534 				 struct btrfs_path *path,
1535 				 u64 bytenr, u64 parent, u64 root_objectid,
1536 				 u64 owner, u64 offset, int refs_to_add)
1537 {
1538 	int ret;
1539 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1540 		BUG_ON(refs_to_add != 1);
1541 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1542 					    parent, root_objectid);
1543 	} else {
1544 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1545 					     parent, root_objectid,
1546 					     owner, offset, refs_to_add);
1547 	}
1548 	return ret;
1549 }
1550 
1551 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1552 				 struct btrfs_root *root,
1553 				 struct btrfs_path *path,
1554 				 struct btrfs_extent_inline_ref *iref,
1555 				 int refs_to_drop, int is_data)
1556 {
1557 	int ret;
1558 
1559 	BUG_ON(!is_data && refs_to_drop != 1);
1560 	if (iref) {
1561 		ret = update_inline_extent_backref(trans, root, path, iref,
1562 						   -refs_to_drop, NULL);
1563 	} else if (is_data) {
1564 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1565 	} else {
1566 		ret = btrfs_del_item(trans, root, path);
1567 	}
1568 	return ret;
1569 }
1570 
1571 static void btrfs_issue_discard(struct block_device *bdev,
1572 				u64 start, u64 len)
1573 {
1574 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1575 			     DISCARD_FL_BARRIER);
1576 }
1577 
1578 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1579 				u64 num_bytes)
1580 {
1581 	int ret;
1582 	u64 map_length = num_bytes;
1583 	struct btrfs_multi_bio *multi = NULL;
1584 
1585 	if (!btrfs_test_opt(root, DISCARD))
1586 		return 0;
1587 
1588 	/* Tell the block device(s) that the sectors can be discarded */
1589 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1590 			      bytenr, &map_length, &multi, 0);
1591 	if (!ret) {
1592 		struct btrfs_bio_stripe *stripe = multi->stripes;
1593 		int i;
1594 
1595 		if (map_length > num_bytes)
1596 			map_length = num_bytes;
1597 
1598 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1599 			btrfs_issue_discard(stripe->dev->bdev,
1600 					    stripe->physical,
1601 					    map_length);
1602 		}
1603 		kfree(multi);
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1610 			 struct btrfs_root *root,
1611 			 u64 bytenr, u64 num_bytes, u64 parent,
1612 			 u64 root_objectid, u64 owner, u64 offset)
1613 {
1614 	int ret;
1615 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1616 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1617 
1618 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1619 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1620 					parent, root_objectid, (int)owner,
1621 					BTRFS_ADD_DELAYED_REF, NULL);
1622 	} else {
1623 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1624 					parent, root_objectid, owner, offset,
1625 					BTRFS_ADD_DELAYED_REF, NULL);
1626 	}
1627 	return ret;
1628 }
1629 
1630 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1631 				  struct btrfs_root *root,
1632 				  u64 bytenr, u64 num_bytes,
1633 				  u64 parent, u64 root_objectid,
1634 				  u64 owner, u64 offset, int refs_to_add,
1635 				  struct btrfs_delayed_extent_op *extent_op)
1636 {
1637 	struct btrfs_path *path;
1638 	struct extent_buffer *leaf;
1639 	struct btrfs_extent_item *item;
1640 	u64 refs;
1641 	int ret;
1642 	int err = 0;
1643 
1644 	path = btrfs_alloc_path();
1645 	if (!path)
1646 		return -ENOMEM;
1647 
1648 	path->reada = 1;
1649 	path->leave_spinning = 1;
1650 	/* this will setup the path even if it fails to insert the back ref */
1651 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1652 					   path, bytenr, num_bytes, parent,
1653 					   root_objectid, owner, offset,
1654 					   refs_to_add, extent_op);
1655 	if (ret == 0)
1656 		goto out;
1657 
1658 	if (ret != -EAGAIN) {
1659 		err = ret;
1660 		goto out;
1661 	}
1662 
1663 	leaf = path->nodes[0];
1664 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1665 	refs = btrfs_extent_refs(leaf, item);
1666 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1667 	if (extent_op)
1668 		__run_delayed_extent_op(extent_op, leaf, item);
1669 
1670 	btrfs_mark_buffer_dirty(leaf);
1671 	btrfs_release_path(root->fs_info->extent_root, path);
1672 
1673 	path->reada = 1;
1674 	path->leave_spinning = 1;
1675 
1676 	/* now insert the actual backref */
1677 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1678 				    path, bytenr, parent, root_objectid,
1679 				    owner, offset, refs_to_add);
1680 	BUG_ON(ret);
1681 out:
1682 	btrfs_free_path(path);
1683 	return err;
1684 }
1685 
1686 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1687 				struct btrfs_root *root,
1688 				struct btrfs_delayed_ref_node *node,
1689 				struct btrfs_delayed_extent_op *extent_op,
1690 				int insert_reserved)
1691 {
1692 	int ret = 0;
1693 	struct btrfs_delayed_data_ref *ref;
1694 	struct btrfs_key ins;
1695 	u64 parent = 0;
1696 	u64 ref_root = 0;
1697 	u64 flags = 0;
1698 
1699 	ins.objectid = node->bytenr;
1700 	ins.offset = node->num_bytes;
1701 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1702 
1703 	ref = btrfs_delayed_node_to_data_ref(node);
1704 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1705 		parent = ref->parent;
1706 	else
1707 		ref_root = ref->root;
1708 
1709 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1710 		if (extent_op) {
1711 			BUG_ON(extent_op->update_key);
1712 			flags |= extent_op->flags_to_set;
1713 		}
1714 		ret = alloc_reserved_file_extent(trans, root,
1715 						 parent, ref_root, flags,
1716 						 ref->objectid, ref->offset,
1717 						 &ins, node->ref_mod);
1718 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1719 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1720 					     node->num_bytes, parent,
1721 					     ref_root, ref->objectid,
1722 					     ref->offset, node->ref_mod,
1723 					     extent_op);
1724 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1725 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1726 					  node->num_bytes, parent,
1727 					  ref_root, ref->objectid,
1728 					  ref->offset, node->ref_mod,
1729 					  extent_op);
1730 	} else {
1731 		BUG();
1732 	}
1733 	return ret;
1734 }
1735 
1736 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1737 				    struct extent_buffer *leaf,
1738 				    struct btrfs_extent_item *ei)
1739 {
1740 	u64 flags = btrfs_extent_flags(leaf, ei);
1741 	if (extent_op->update_flags) {
1742 		flags |= extent_op->flags_to_set;
1743 		btrfs_set_extent_flags(leaf, ei, flags);
1744 	}
1745 
1746 	if (extent_op->update_key) {
1747 		struct btrfs_tree_block_info *bi;
1748 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1749 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1750 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1751 	}
1752 }
1753 
1754 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1755 				 struct btrfs_root *root,
1756 				 struct btrfs_delayed_ref_node *node,
1757 				 struct btrfs_delayed_extent_op *extent_op)
1758 {
1759 	struct btrfs_key key;
1760 	struct btrfs_path *path;
1761 	struct btrfs_extent_item *ei;
1762 	struct extent_buffer *leaf;
1763 	u32 item_size;
1764 	int ret;
1765 	int err = 0;
1766 
1767 	path = btrfs_alloc_path();
1768 	if (!path)
1769 		return -ENOMEM;
1770 
1771 	key.objectid = node->bytenr;
1772 	key.type = BTRFS_EXTENT_ITEM_KEY;
1773 	key.offset = node->num_bytes;
1774 
1775 	path->reada = 1;
1776 	path->leave_spinning = 1;
1777 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1778 				path, 0, 1);
1779 	if (ret < 0) {
1780 		err = ret;
1781 		goto out;
1782 	}
1783 	if (ret > 0) {
1784 		err = -EIO;
1785 		goto out;
1786 	}
1787 
1788 	leaf = path->nodes[0];
1789 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1790 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1791 	if (item_size < sizeof(*ei)) {
1792 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1793 					     path, (u64)-1, 0);
1794 		if (ret < 0) {
1795 			err = ret;
1796 			goto out;
1797 		}
1798 		leaf = path->nodes[0];
1799 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1800 	}
1801 #endif
1802 	BUG_ON(item_size < sizeof(*ei));
1803 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1804 	__run_delayed_extent_op(extent_op, leaf, ei);
1805 
1806 	btrfs_mark_buffer_dirty(leaf);
1807 out:
1808 	btrfs_free_path(path);
1809 	return err;
1810 }
1811 
1812 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1813 				struct btrfs_root *root,
1814 				struct btrfs_delayed_ref_node *node,
1815 				struct btrfs_delayed_extent_op *extent_op,
1816 				int insert_reserved)
1817 {
1818 	int ret = 0;
1819 	struct btrfs_delayed_tree_ref *ref;
1820 	struct btrfs_key ins;
1821 	u64 parent = 0;
1822 	u64 ref_root = 0;
1823 
1824 	ins.objectid = node->bytenr;
1825 	ins.offset = node->num_bytes;
1826 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1827 
1828 	ref = btrfs_delayed_node_to_tree_ref(node);
1829 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1830 		parent = ref->parent;
1831 	else
1832 		ref_root = ref->root;
1833 
1834 	BUG_ON(node->ref_mod != 1);
1835 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1836 		BUG_ON(!extent_op || !extent_op->update_flags ||
1837 		       !extent_op->update_key);
1838 		ret = alloc_reserved_tree_block(trans, root,
1839 						parent, ref_root,
1840 						extent_op->flags_to_set,
1841 						&extent_op->key,
1842 						ref->level, &ins);
1843 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1844 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1845 					     node->num_bytes, parent, ref_root,
1846 					     ref->level, 0, 1, extent_op);
1847 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1848 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1849 					  node->num_bytes, parent, ref_root,
1850 					  ref->level, 0, 1, extent_op);
1851 	} else {
1852 		BUG();
1853 	}
1854 	return ret;
1855 }
1856 
1857 
1858 /* helper function to actually process a single delayed ref entry */
1859 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1860 			       struct btrfs_root *root,
1861 			       struct btrfs_delayed_ref_node *node,
1862 			       struct btrfs_delayed_extent_op *extent_op,
1863 			       int insert_reserved)
1864 {
1865 	int ret;
1866 	if (btrfs_delayed_ref_is_head(node)) {
1867 		struct btrfs_delayed_ref_head *head;
1868 		/*
1869 		 * we've hit the end of the chain and we were supposed
1870 		 * to insert this extent into the tree.  But, it got
1871 		 * deleted before we ever needed to insert it, so all
1872 		 * we have to do is clean up the accounting
1873 		 */
1874 		BUG_ON(extent_op);
1875 		head = btrfs_delayed_node_to_head(node);
1876 		if (insert_reserved) {
1877 			int mark_free = 0;
1878 			struct extent_buffer *must_clean = NULL;
1879 
1880 			ret = pin_down_bytes(trans, root, NULL,
1881 					     node->bytenr, node->num_bytes,
1882 					     head->is_data, 1, &must_clean);
1883 			if (ret > 0)
1884 				mark_free = 1;
1885 
1886 			if (must_clean) {
1887 				clean_tree_block(NULL, root, must_clean);
1888 				btrfs_tree_unlock(must_clean);
1889 				free_extent_buffer(must_clean);
1890 			}
1891 			if (head->is_data) {
1892 				ret = btrfs_del_csums(trans, root,
1893 						      node->bytenr,
1894 						      node->num_bytes);
1895 				BUG_ON(ret);
1896 			}
1897 			if (mark_free) {
1898 				ret = btrfs_free_reserved_extent(root,
1899 							node->bytenr,
1900 							node->num_bytes);
1901 				BUG_ON(ret);
1902 			}
1903 		}
1904 		mutex_unlock(&head->mutex);
1905 		return 0;
1906 	}
1907 
1908 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1909 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1910 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
1911 					   insert_reserved);
1912 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1913 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1914 		ret = run_delayed_data_ref(trans, root, node, extent_op,
1915 					   insert_reserved);
1916 	else
1917 		BUG();
1918 	return ret;
1919 }
1920 
1921 static noinline struct btrfs_delayed_ref_node *
1922 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1923 {
1924 	struct rb_node *node;
1925 	struct btrfs_delayed_ref_node *ref;
1926 	int action = BTRFS_ADD_DELAYED_REF;
1927 again:
1928 	/*
1929 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1930 	 * this prevents ref count from going down to zero when
1931 	 * there still are pending delayed ref.
1932 	 */
1933 	node = rb_prev(&head->node.rb_node);
1934 	while (1) {
1935 		if (!node)
1936 			break;
1937 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
1938 				rb_node);
1939 		if (ref->bytenr != head->node.bytenr)
1940 			break;
1941 		if (ref->action == action)
1942 			return ref;
1943 		node = rb_prev(node);
1944 	}
1945 	if (action == BTRFS_ADD_DELAYED_REF) {
1946 		action = BTRFS_DROP_DELAYED_REF;
1947 		goto again;
1948 	}
1949 	return NULL;
1950 }
1951 
1952 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
1953 				       struct btrfs_root *root,
1954 				       struct list_head *cluster)
1955 {
1956 	struct btrfs_delayed_ref_root *delayed_refs;
1957 	struct btrfs_delayed_ref_node *ref;
1958 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1959 	struct btrfs_delayed_extent_op *extent_op;
1960 	int ret;
1961 	int count = 0;
1962 	int must_insert_reserved = 0;
1963 
1964 	delayed_refs = &trans->transaction->delayed_refs;
1965 	while (1) {
1966 		if (!locked_ref) {
1967 			/* pick a new head ref from the cluster list */
1968 			if (list_empty(cluster))
1969 				break;
1970 
1971 			locked_ref = list_entry(cluster->next,
1972 				     struct btrfs_delayed_ref_head, cluster);
1973 
1974 			/* grab the lock that says we are going to process
1975 			 * all the refs for this head */
1976 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
1977 
1978 			/*
1979 			 * we may have dropped the spin lock to get the head
1980 			 * mutex lock, and that might have given someone else
1981 			 * time to free the head.  If that's true, it has been
1982 			 * removed from our list and we can move on.
1983 			 */
1984 			if (ret == -EAGAIN) {
1985 				locked_ref = NULL;
1986 				count++;
1987 				continue;
1988 			}
1989 		}
1990 
1991 		/*
1992 		 * record the must insert reserved flag before we
1993 		 * drop the spin lock.
1994 		 */
1995 		must_insert_reserved = locked_ref->must_insert_reserved;
1996 		locked_ref->must_insert_reserved = 0;
1997 
1998 		extent_op = locked_ref->extent_op;
1999 		locked_ref->extent_op = NULL;
2000 
2001 		/*
2002 		 * locked_ref is the head node, so we have to go one
2003 		 * node back for any delayed ref updates
2004 		 */
2005 		ref = select_delayed_ref(locked_ref);
2006 		if (!ref) {
2007 			/* All delayed refs have been processed, Go ahead
2008 			 * and send the head node to run_one_delayed_ref,
2009 			 * so that any accounting fixes can happen
2010 			 */
2011 			ref = &locked_ref->node;
2012 
2013 			if (extent_op && must_insert_reserved) {
2014 				kfree(extent_op);
2015 				extent_op = NULL;
2016 			}
2017 
2018 			if (extent_op) {
2019 				spin_unlock(&delayed_refs->lock);
2020 
2021 				ret = run_delayed_extent_op(trans, root,
2022 							    ref, extent_op);
2023 				BUG_ON(ret);
2024 				kfree(extent_op);
2025 
2026 				cond_resched();
2027 				spin_lock(&delayed_refs->lock);
2028 				continue;
2029 			}
2030 
2031 			list_del_init(&locked_ref->cluster);
2032 			locked_ref = NULL;
2033 		}
2034 
2035 		ref->in_tree = 0;
2036 		rb_erase(&ref->rb_node, &delayed_refs->root);
2037 		delayed_refs->num_entries--;
2038 
2039 		spin_unlock(&delayed_refs->lock);
2040 
2041 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2042 					  must_insert_reserved);
2043 		BUG_ON(ret);
2044 
2045 		btrfs_put_delayed_ref(ref);
2046 		kfree(extent_op);
2047 		count++;
2048 
2049 		cond_resched();
2050 		spin_lock(&delayed_refs->lock);
2051 	}
2052 	return count;
2053 }
2054 
2055 /*
2056  * this starts processing the delayed reference count updates and
2057  * extent insertions we have queued up so far.  count can be
2058  * 0, which means to process everything in the tree at the start
2059  * of the run (but not newly added entries), or it can be some target
2060  * number you'd like to process.
2061  */
2062 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2063 			   struct btrfs_root *root, unsigned long count)
2064 {
2065 	struct rb_node *node;
2066 	struct btrfs_delayed_ref_root *delayed_refs;
2067 	struct btrfs_delayed_ref_node *ref;
2068 	struct list_head cluster;
2069 	int ret;
2070 	int run_all = count == (unsigned long)-1;
2071 	int run_most = 0;
2072 
2073 	if (root == root->fs_info->extent_root)
2074 		root = root->fs_info->tree_root;
2075 
2076 	delayed_refs = &trans->transaction->delayed_refs;
2077 	INIT_LIST_HEAD(&cluster);
2078 again:
2079 	spin_lock(&delayed_refs->lock);
2080 	if (count == 0) {
2081 		count = delayed_refs->num_entries * 2;
2082 		run_most = 1;
2083 	}
2084 	while (1) {
2085 		if (!(run_all || run_most) &&
2086 		    delayed_refs->num_heads_ready < 64)
2087 			break;
2088 
2089 		/*
2090 		 * go find something we can process in the rbtree.  We start at
2091 		 * the beginning of the tree, and then build a cluster
2092 		 * of refs to process starting at the first one we are able to
2093 		 * lock
2094 		 */
2095 		ret = btrfs_find_ref_cluster(trans, &cluster,
2096 					     delayed_refs->run_delayed_start);
2097 		if (ret)
2098 			break;
2099 
2100 		ret = run_clustered_refs(trans, root, &cluster);
2101 		BUG_ON(ret < 0);
2102 
2103 		count -= min_t(unsigned long, ret, count);
2104 
2105 		if (count == 0)
2106 			break;
2107 	}
2108 
2109 	if (run_all) {
2110 		node = rb_first(&delayed_refs->root);
2111 		if (!node)
2112 			goto out;
2113 		count = (unsigned long)-1;
2114 
2115 		while (node) {
2116 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2117 				       rb_node);
2118 			if (btrfs_delayed_ref_is_head(ref)) {
2119 				struct btrfs_delayed_ref_head *head;
2120 
2121 				head = btrfs_delayed_node_to_head(ref);
2122 				atomic_inc(&ref->refs);
2123 
2124 				spin_unlock(&delayed_refs->lock);
2125 				mutex_lock(&head->mutex);
2126 				mutex_unlock(&head->mutex);
2127 
2128 				btrfs_put_delayed_ref(ref);
2129 				cond_resched();
2130 				goto again;
2131 			}
2132 			node = rb_next(node);
2133 		}
2134 		spin_unlock(&delayed_refs->lock);
2135 		schedule_timeout(1);
2136 		goto again;
2137 	}
2138 out:
2139 	spin_unlock(&delayed_refs->lock);
2140 	return 0;
2141 }
2142 
2143 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2144 				struct btrfs_root *root,
2145 				u64 bytenr, u64 num_bytes, u64 flags,
2146 				int is_data)
2147 {
2148 	struct btrfs_delayed_extent_op *extent_op;
2149 	int ret;
2150 
2151 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2152 	if (!extent_op)
2153 		return -ENOMEM;
2154 
2155 	extent_op->flags_to_set = flags;
2156 	extent_op->update_flags = 1;
2157 	extent_op->update_key = 0;
2158 	extent_op->is_data = is_data ? 1 : 0;
2159 
2160 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2161 	if (ret)
2162 		kfree(extent_op);
2163 	return ret;
2164 }
2165 
2166 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2167 				      struct btrfs_root *root,
2168 				      struct btrfs_path *path,
2169 				      u64 objectid, u64 offset, u64 bytenr)
2170 {
2171 	struct btrfs_delayed_ref_head *head;
2172 	struct btrfs_delayed_ref_node *ref;
2173 	struct btrfs_delayed_data_ref *data_ref;
2174 	struct btrfs_delayed_ref_root *delayed_refs;
2175 	struct rb_node *node;
2176 	int ret = 0;
2177 
2178 	ret = -ENOENT;
2179 	delayed_refs = &trans->transaction->delayed_refs;
2180 	spin_lock(&delayed_refs->lock);
2181 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2182 	if (!head)
2183 		goto out;
2184 
2185 	if (!mutex_trylock(&head->mutex)) {
2186 		atomic_inc(&head->node.refs);
2187 		spin_unlock(&delayed_refs->lock);
2188 
2189 		btrfs_release_path(root->fs_info->extent_root, path);
2190 
2191 		mutex_lock(&head->mutex);
2192 		mutex_unlock(&head->mutex);
2193 		btrfs_put_delayed_ref(&head->node);
2194 		return -EAGAIN;
2195 	}
2196 
2197 	node = rb_prev(&head->node.rb_node);
2198 	if (!node)
2199 		goto out_unlock;
2200 
2201 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2202 
2203 	if (ref->bytenr != bytenr)
2204 		goto out_unlock;
2205 
2206 	ret = 1;
2207 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2208 		goto out_unlock;
2209 
2210 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2211 
2212 	node = rb_prev(node);
2213 	if (node) {
2214 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2215 		if (ref->bytenr == bytenr)
2216 			goto out_unlock;
2217 	}
2218 
2219 	if (data_ref->root != root->root_key.objectid ||
2220 	    data_ref->objectid != objectid || data_ref->offset != offset)
2221 		goto out_unlock;
2222 
2223 	ret = 0;
2224 out_unlock:
2225 	mutex_unlock(&head->mutex);
2226 out:
2227 	spin_unlock(&delayed_refs->lock);
2228 	return ret;
2229 }
2230 
2231 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2232 					struct btrfs_root *root,
2233 					struct btrfs_path *path,
2234 					u64 objectid, u64 offset, u64 bytenr)
2235 {
2236 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2237 	struct extent_buffer *leaf;
2238 	struct btrfs_extent_data_ref *ref;
2239 	struct btrfs_extent_inline_ref *iref;
2240 	struct btrfs_extent_item *ei;
2241 	struct btrfs_key key;
2242 	u32 item_size;
2243 	int ret;
2244 
2245 	key.objectid = bytenr;
2246 	key.offset = (u64)-1;
2247 	key.type = BTRFS_EXTENT_ITEM_KEY;
2248 
2249 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2250 	if (ret < 0)
2251 		goto out;
2252 	BUG_ON(ret == 0);
2253 
2254 	ret = -ENOENT;
2255 	if (path->slots[0] == 0)
2256 		goto out;
2257 
2258 	path->slots[0]--;
2259 	leaf = path->nodes[0];
2260 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2261 
2262 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2263 		goto out;
2264 
2265 	ret = 1;
2266 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2268 	if (item_size < sizeof(*ei)) {
2269 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2270 		goto out;
2271 	}
2272 #endif
2273 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2274 
2275 	if (item_size != sizeof(*ei) +
2276 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2277 		goto out;
2278 
2279 	if (btrfs_extent_generation(leaf, ei) <=
2280 	    btrfs_root_last_snapshot(&root->root_item))
2281 		goto out;
2282 
2283 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2284 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2285 	    BTRFS_EXTENT_DATA_REF_KEY)
2286 		goto out;
2287 
2288 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2289 	if (btrfs_extent_refs(leaf, ei) !=
2290 	    btrfs_extent_data_ref_count(leaf, ref) ||
2291 	    btrfs_extent_data_ref_root(leaf, ref) !=
2292 	    root->root_key.objectid ||
2293 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2294 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2295 		goto out;
2296 
2297 	ret = 0;
2298 out:
2299 	return ret;
2300 }
2301 
2302 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2303 			  struct btrfs_root *root,
2304 			  u64 objectid, u64 offset, u64 bytenr)
2305 {
2306 	struct btrfs_path *path;
2307 	int ret;
2308 	int ret2;
2309 
2310 	path = btrfs_alloc_path();
2311 	if (!path)
2312 		return -ENOENT;
2313 
2314 	do {
2315 		ret = check_committed_ref(trans, root, path, objectid,
2316 					  offset, bytenr);
2317 		if (ret && ret != -ENOENT)
2318 			goto out;
2319 
2320 		ret2 = check_delayed_ref(trans, root, path, objectid,
2321 					 offset, bytenr);
2322 	} while (ret2 == -EAGAIN);
2323 
2324 	if (ret2 && ret2 != -ENOENT) {
2325 		ret = ret2;
2326 		goto out;
2327 	}
2328 
2329 	if (ret != -ENOENT || ret2 != -ENOENT)
2330 		ret = 0;
2331 out:
2332 	btrfs_free_path(path);
2333 	return ret;
2334 }
2335 
2336 #if 0
2337 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2338 		    struct extent_buffer *buf, u32 nr_extents)
2339 {
2340 	struct btrfs_key key;
2341 	struct btrfs_file_extent_item *fi;
2342 	u64 root_gen;
2343 	u32 nritems;
2344 	int i;
2345 	int level;
2346 	int ret = 0;
2347 	int shared = 0;
2348 
2349 	if (!root->ref_cows)
2350 		return 0;
2351 
2352 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2353 		shared = 0;
2354 		root_gen = root->root_key.offset;
2355 	} else {
2356 		shared = 1;
2357 		root_gen = trans->transid - 1;
2358 	}
2359 
2360 	level = btrfs_header_level(buf);
2361 	nritems = btrfs_header_nritems(buf);
2362 
2363 	if (level == 0) {
2364 		struct btrfs_leaf_ref *ref;
2365 		struct btrfs_extent_info *info;
2366 
2367 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2368 		if (!ref) {
2369 			ret = -ENOMEM;
2370 			goto out;
2371 		}
2372 
2373 		ref->root_gen = root_gen;
2374 		ref->bytenr = buf->start;
2375 		ref->owner = btrfs_header_owner(buf);
2376 		ref->generation = btrfs_header_generation(buf);
2377 		ref->nritems = nr_extents;
2378 		info = ref->extents;
2379 
2380 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2381 			u64 disk_bytenr;
2382 			btrfs_item_key_to_cpu(buf, &key, i);
2383 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2384 				continue;
2385 			fi = btrfs_item_ptr(buf, i,
2386 					    struct btrfs_file_extent_item);
2387 			if (btrfs_file_extent_type(buf, fi) ==
2388 			    BTRFS_FILE_EXTENT_INLINE)
2389 				continue;
2390 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2391 			if (disk_bytenr == 0)
2392 				continue;
2393 
2394 			info->bytenr = disk_bytenr;
2395 			info->num_bytes =
2396 				btrfs_file_extent_disk_num_bytes(buf, fi);
2397 			info->objectid = key.objectid;
2398 			info->offset = key.offset;
2399 			info++;
2400 		}
2401 
2402 		ret = btrfs_add_leaf_ref(root, ref, shared);
2403 		if (ret == -EEXIST && shared) {
2404 			struct btrfs_leaf_ref *old;
2405 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2406 			BUG_ON(!old);
2407 			btrfs_remove_leaf_ref(root, old);
2408 			btrfs_free_leaf_ref(root, old);
2409 			ret = btrfs_add_leaf_ref(root, ref, shared);
2410 		}
2411 		WARN_ON(ret);
2412 		btrfs_free_leaf_ref(root, ref);
2413 	}
2414 out:
2415 	return ret;
2416 }
2417 
2418 /* when a block goes through cow, we update the reference counts of
2419  * everything that block points to.  The internal pointers of the block
2420  * can be in just about any order, and it is likely to have clusters of
2421  * things that are close together and clusters of things that are not.
2422  *
2423  * To help reduce the seeks that come with updating all of these reference
2424  * counts, sort them by byte number before actual updates are done.
2425  *
2426  * struct refsort is used to match byte number to slot in the btree block.
2427  * we sort based on the byte number and then use the slot to actually
2428  * find the item.
2429  *
2430  * struct refsort is smaller than strcut btrfs_item and smaller than
2431  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2432  * for a btree block, there's no way for a kmalloc of refsorts for a
2433  * single node to be bigger than a page.
2434  */
2435 struct refsort {
2436 	u64 bytenr;
2437 	u32 slot;
2438 };
2439 
2440 /*
2441  * for passing into sort()
2442  */
2443 static int refsort_cmp(const void *a_void, const void *b_void)
2444 {
2445 	const struct refsort *a = a_void;
2446 	const struct refsort *b = b_void;
2447 
2448 	if (a->bytenr < b->bytenr)
2449 		return -1;
2450 	if (a->bytenr > b->bytenr)
2451 		return 1;
2452 	return 0;
2453 }
2454 #endif
2455 
2456 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2457 			   struct btrfs_root *root,
2458 			   struct extent_buffer *buf,
2459 			   int full_backref, int inc)
2460 {
2461 	u64 bytenr;
2462 	u64 num_bytes;
2463 	u64 parent;
2464 	u64 ref_root;
2465 	u32 nritems;
2466 	struct btrfs_key key;
2467 	struct btrfs_file_extent_item *fi;
2468 	int i;
2469 	int level;
2470 	int ret = 0;
2471 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2472 			    u64, u64, u64, u64, u64, u64);
2473 
2474 	ref_root = btrfs_header_owner(buf);
2475 	nritems = btrfs_header_nritems(buf);
2476 	level = btrfs_header_level(buf);
2477 
2478 	if (!root->ref_cows && level == 0)
2479 		return 0;
2480 
2481 	if (inc)
2482 		process_func = btrfs_inc_extent_ref;
2483 	else
2484 		process_func = btrfs_free_extent;
2485 
2486 	if (full_backref)
2487 		parent = buf->start;
2488 	else
2489 		parent = 0;
2490 
2491 	for (i = 0; i < nritems; i++) {
2492 		if (level == 0) {
2493 			btrfs_item_key_to_cpu(buf, &key, i);
2494 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2495 				continue;
2496 			fi = btrfs_item_ptr(buf, i,
2497 					    struct btrfs_file_extent_item);
2498 			if (btrfs_file_extent_type(buf, fi) ==
2499 			    BTRFS_FILE_EXTENT_INLINE)
2500 				continue;
2501 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2502 			if (bytenr == 0)
2503 				continue;
2504 
2505 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2506 			key.offset -= btrfs_file_extent_offset(buf, fi);
2507 			ret = process_func(trans, root, bytenr, num_bytes,
2508 					   parent, ref_root, key.objectid,
2509 					   key.offset);
2510 			if (ret)
2511 				goto fail;
2512 		} else {
2513 			bytenr = btrfs_node_blockptr(buf, i);
2514 			num_bytes = btrfs_level_size(root, level - 1);
2515 			ret = process_func(trans, root, bytenr, num_bytes,
2516 					   parent, ref_root, level - 1, 0);
2517 			if (ret)
2518 				goto fail;
2519 		}
2520 	}
2521 	return 0;
2522 fail:
2523 	BUG();
2524 	return ret;
2525 }
2526 
2527 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2528 		  struct extent_buffer *buf, int full_backref)
2529 {
2530 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2531 }
2532 
2533 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2534 		  struct extent_buffer *buf, int full_backref)
2535 {
2536 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2537 }
2538 
2539 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2540 				 struct btrfs_root *root,
2541 				 struct btrfs_path *path,
2542 				 struct btrfs_block_group_cache *cache)
2543 {
2544 	int ret;
2545 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2546 	unsigned long bi;
2547 	struct extent_buffer *leaf;
2548 
2549 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2550 	if (ret < 0)
2551 		goto fail;
2552 	BUG_ON(ret);
2553 
2554 	leaf = path->nodes[0];
2555 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2556 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2557 	btrfs_mark_buffer_dirty(leaf);
2558 	btrfs_release_path(extent_root, path);
2559 fail:
2560 	if (ret)
2561 		return ret;
2562 	return 0;
2563 
2564 }
2565 
2566 static struct btrfs_block_group_cache *
2567 next_block_group(struct btrfs_root *root,
2568 		 struct btrfs_block_group_cache *cache)
2569 {
2570 	struct rb_node *node;
2571 	spin_lock(&root->fs_info->block_group_cache_lock);
2572 	node = rb_next(&cache->cache_node);
2573 	btrfs_put_block_group(cache);
2574 	if (node) {
2575 		cache = rb_entry(node, struct btrfs_block_group_cache,
2576 				 cache_node);
2577 		atomic_inc(&cache->count);
2578 	} else
2579 		cache = NULL;
2580 	spin_unlock(&root->fs_info->block_group_cache_lock);
2581 	return cache;
2582 }
2583 
2584 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2585 				   struct btrfs_root *root)
2586 {
2587 	struct btrfs_block_group_cache *cache;
2588 	int err = 0;
2589 	struct btrfs_path *path;
2590 	u64 last = 0;
2591 
2592 	path = btrfs_alloc_path();
2593 	if (!path)
2594 		return -ENOMEM;
2595 
2596 	while (1) {
2597 		if (last == 0) {
2598 			err = btrfs_run_delayed_refs(trans, root,
2599 						     (unsigned long)-1);
2600 			BUG_ON(err);
2601 		}
2602 
2603 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2604 		while (cache) {
2605 			if (cache->dirty)
2606 				break;
2607 			cache = next_block_group(root, cache);
2608 		}
2609 		if (!cache) {
2610 			if (last == 0)
2611 				break;
2612 			last = 0;
2613 			continue;
2614 		}
2615 
2616 		cache->dirty = 0;
2617 		last = cache->key.objectid + cache->key.offset;
2618 
2619 		err = write_one_cache_group(trans, root, path, cache);
2620 		BUG_ON(err);
2621 		btrfs_put_block_group(cache);
2622 	}
2623 
2624 	btrfs_free_path(path);
2625 	return 0;
2626 }
2627 
2628 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2629 {
2630 	struct btrfs_block_group_cache *block_group;
2631 	int readonly = 0;
2632 
2633 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2634 	if (!block_group || block_group->ro)
2635 		readonly = 1;
2636 	if (block_group)
2637 		btrfs_put_block_group(block_group);
2638 	return readonly;
2639 }
2640 
2641 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2642 			     u64 total_bytes, u64 bytes_used,
2643 			     struct btrfs_space_info **space_info)
2644 {
2645 	struct btrfs_space_info *found;
2646 
2647 	found = __find_space_info(info, flags);
2648 	if (found) {
2649 		spin_lock(&found->lock);
2650 		found->total_bytes += total_bytes;
2651 		found->bytes_used += bytes_used;
2652 		found->full = 0;
2653 		spin_unlock(&found->lock);
2654 		*space_info = found;
2655 		return 0;
2656 	}
2657 	found = kzalloc(sizeof(*found), GFP_NOFS);
2658 	if (!found)
2659 		return -ENOMEM;
2660 
2661 	INIT_LIST_HEAD(&found->block_groups);
2662 	init_rwsem(&found->groups_sem);
2663 	spin_lock_init(&found->lock);
2664 	found->flags = flags;
2665 	found->total_bytes = total_bytes;
2666 	found->bytes_used = bytes_used;
2667 	found->bytes_pinned = 0;
2668 	found->bytes_reserved = 0;
2669 	found->bytes_readonly = 0;
2670 	found->bytes_delalloc = 0;
2671 	found->full = 0;
2672 	found->force_alloc = 0;
2673 	*space_info = found;
2674 	list_add_rcu(&found->list, &info->space_info);
2675 	atomic_set(&found->caching_threads, 0);
2676 	return 0;
2677 }
2678 
2679 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2680 {
2681 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2682 				   BTRFS_BLOCK_GROUP_RAID1 |
2683 				   BTRFS_BLOCK_GROUP_RAID10 |
2684 				   BTRFS_BLOCK_GROUP_DUP);
2685 	if (extra_flags) {
2686 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2687 			fs_info->avail_data_alloc_bits |= extra_flags;
2688 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
2689 			fs_info->avail_metadata_alloc_bits |= extra_flags;
2690 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2691 			fs_info->avail_system_alloc_bits |= extra_flags;
2692 	}
2693 }
2694 
2695 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
2696 {
2697 	spin_lock(&cache->space_info->lock);
2698 	spin_lock(&cache->lock);
2699 	if (!cache->ro) {
2700 		cache->space_info->bytes_readonly += cache->key.offset -
2701 					btrfs_block_group_used(&cache->item);
2702 		cache->ro = 1;
2703 	}
2704 	spin_unlock(&cache->lock);
2705 	spin_unlock(&cache->space_info->lock);
2706 }
2707 
2708 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2709 {
2710 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
2711 
2712 	if (num_devices == 1)
2713 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2714 	if (num_devices < 4)
2715 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2716 
2717 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2718 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2719 		      BTRFS_BLOCK_GROUP_RAID10))) {
2720 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
2721 	}
2722 
2723 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2724 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2725 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2726 	}
2727 
2728 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2729 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2730 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
2731 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
2732 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2733 	return flags;
2734 }
2735 
2736 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
2737 {
2738 	struct btrfs_fs_info *info = root->fs_info;
2739 	u64 alloc_profile;
2740 
2741 	if (data) {
2742 		alloc_profile = info->avail_data_alloc_bits &
2743 			info->data_alloc_profile;
2744 		data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
2745 	} else if (root == root->fs_info->chunk_root) {
2746 		alloc_profile = info->avail_system_alloc_bits &
2747 			info->system_alloc_profile;
2748 		data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
2749 	} else {
2750 		alloc_profile = info->avail_metadata_alloc_bits &
2751 			info->metadata_alloc_profile;
2752 		data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
2753 	}
2754 
2755 	return btrfs_reduce_alloc_profile(root, data);
2756 }
2757 
2758 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2759 {
2760 	u64 alloc_target;
2761 
2762 	alloc_target = btrfs_get_alloc_profile(root, 1);
2763 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2764 						       alloc_target);
2765 }
2766 
2767 static u64 calculate_bytes_needed(struct btrfs_root *root, int num_items)
2768 {
2769 	u64 num_bytes;
2770 	int level;
2771 
2772 	level = BTRFS_MAX_LEVEL - 2;
2773 	/*
2774 	 * NOTE: these calculations are absolutely the worst possible case.
2775 	 * This assumes that _every_ item we insert will require a new leaf, and
2776 	 * that the tree has grown to its maximum level size.
2777 	 */
2778 
2779 	/*
2780 	 * for every item we insert we could insert both an extent item and a
2781 	 * extent ref item.  Then for ever item we insert, we will need to cow
2782 	 * both the original leaf, plus the leaf to the left and right of it.
2783 	 *
2784 	 * Unless we are talking about the extent root, then we just want the
2785 	 * number of items * 2, since we just need the extent item plus its ref.
2786 	 */
2787 	if (root == root->fs_info->extent_root)
2788 		num_bytes = num_items * 2;
2789 	else
2790 		num_bytes = (num_items + (2 * num_items)) * 3;
2791 
2792 	/*
2793 	 * num_bytes is total number of leaves we could need times the leaf
2794 	 * size, and then for every leaf we could end up cow'ing 2 nodes per
2795 	 * level, down to the leaf level.
2796 	 */
2797 	num_bytes = (num_bytes * root->leafsize) +
2798 		(num_bytes * (level * 2)) * root->nodesize;
2799 
2800 	return num_bytes;
2801 }
2802 
2803 /*
2804  * Unreserve metadata space for delalloc.  If we have less reserved credits than
2805  * we have extents, this function does nothing.
2806  */
2807 int btrfs_unreserve_metadata_for_delalloc(struct btrfs_root *root,
2808 					  struct inode *inode, int num_items)
2809 {
2810 	struct btrfs_fs_info *info = root->fs_info;
2811 	struct btrfs_space_info *meta_sinfo;
2812 	u64 num_bytes;
2813 	u64 alloc_target;
2814 	bool bug = false;
2815 
2816 	/* get the space info for where the metadata will live */
2817 	alloc_target = btrfs_get_alloc_profile(root, 0);
2818 	meta_sinfo = __find_space_info(info, alloc_target);
2819 
2820 	num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
2821 					   num_items);
2822 
2823 	spin_lock(&meta_sinfo->lock);
2824 	spin_lock(&BTRFS_I(inode)->accounting_lock);
2825 	if (BTRFS_I(inode)->reserved_extents <=
2826 	    BTRFS_I(inode)->outstanding_extents) {
2827 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
2828 		spin_unlock(&meta_sinfo->lock);
2829 		return 0;
2830 	}
2831 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
2832 
2833 	BTRFS_I(inode)->reserved_extents--;
2834 	BUG_ON(BTRFS_I(inode)->reserved_extents < 0);
2835 
2836 	if (meta_sinfo->bytes_delalloc < num_bytes) {
2837 		bug = true;
2838 		meta_sinfo->bytes_delalloc = 0;
2839 	} else {
2840 		meta_sinfo->bytes_delalloc -= num_bytes;
2841 	}
2842 	spin_unlock(&meta_sinfo->lock);
2843 
2844 	BUG_ON(bug);
2845 
2846 	return 0;
2847 }
2848 
2849 static void check_force_delalloc(struct btrfs_space_info *meta_sinfo)
2850 {
2851 	u64 thresh;
2852 
2853 	thresh = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2854 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
2855 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
2856 		meta_sinfo->bytes_may_use;
2857 
2858 	thresh = meta_sinfo->total_bytes - thresh;
2859 	thresh *= 80;
2860 	do_div(thresh, 100);
2861 	if (thresh <= meta_sinfo->bytes_delalloc)
2862 		meta_sinfo->force_delalloc = 1;
2863 	else
2864 		meta_sinfo->force_delalloc = 0;
2865 }
2866 
2867 struct async_flush {
2868 	struct btrfs_root *root;
2869 	struct btrfs_space_info *info;
2870 	struct btrfs_work work;
2871 };
2872 
2873 static noinline void flush_delalloc_async(struct btrfs_work *work)
2874 {
2875 	struct async_flush *async;
2876 	struct btrfs_root *root;
2877 	struct btrfs_space_info *info;
2878 
2879 	async = container_of(work, struct async_flush, work);
2880 	root = async->root;
2881 	info = async->info;
2882 
2883 	btrfs_start_delalloc_inodes(root);
2884 	wake_up(&info->flush_wait);
2885 	btrfs_wait_ordered_extents(root, 0);
2886 
2887 	spin_lock(&info->lock);
2888 	info->flushing = 0;
2889 	spin_unlock(&info->lock);
2890 	wake_up(&info->flush_wait);
2891 
2892 	kfree(async);
2893 }
2894 
2895 static void wait_on_flush(struct btrfs_space_info *info)
2896 {
2897 	DEFINE_WAIT(wait);
2898 	u64 used;
2899 
2900 	while (1) {
2901 		prepare_to_wait(&info->flush_wait, &wait,
2902 				TASK_UNINTERRUPTIBLE);
2903 		spin_lock(&info->lock);
2904 		if (!info->flushing) {
2905 			spin_unlock(&info->lock);
2906 			break;
2907 		}
2908 
2909 		used = info->bytes_used + info->bytes_reserved +
2910 			info->bytes_pinned + info->bytes_readonly +
2911 			info->bytes_super + info->bytes_root +
2912 			info->bytes_may_use + info->bytes_delalloc;
2913 		if (used < info->total_bytes) {
2914 			spin_unlock(&info->lock);
2915 			break;
2916 		}
2917 		spin_unlock(&info->lock);
2918 		schedule();
2919 	}
2920 	finish_wait(&info->flush_wait, &wait);
2921 }
2922 
2923 static void flush_delalloc(struct btrfs_root *root,
2924 				 struct btrfs_space_info *info)
2925 {
2926 	struct async_flush *async;
2927 	bool wait = false;
2928 
2929 	spin_lock(&info->lock);
2930 
2931 	if (!info->flushing) {
2932 		info->flushing = 1;
2933 		init_waitqueue_head(&info->flush_wait);
2934 	} else {
2935 		wait = true;
2936 	}
2937 
2938 	spin_unlock(&info->lock);
2939 
2940 	if (wait) {
2941 		wait_on_flush(info);
2942 		return;
2943 	}
2944 
2945 	async = kzalloc(sizeof(*async), GFP_NOFS);
2946 	if (!async)
2947 		goto flush;
2948 
2949 	async->root = root;
2950 	async->info = info;
2951 	async->work.func = flush_delalloc_async;
2952 
2953 	btrfs_queue_worker(&root->fs_info->enospc_workers,
2954 			   &async->work);
2955 	wait_on_flush(info);
2956 	return;
2957 
2958 flush:
2959 	btrfs_start_delalloc_inodes(root);
2960 	btrfs_wait_ordered_extents(root, 0);
2961 
2962 	spin_lock(&info->lock);
2963 	info->flushing = 0;
2964 	spin_unlock(&info->lock);
2965 	wake_up(&info->flush_wait);
2966 }
2967 
2968 static int maybe_allocate_chunk(struct btrfs_root *root,
2969 				 struct btrfs_space_info *info)
2970 {
2971 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
2972 	struct btrfs_trans_handle *trans;
2973 	bool wait = false;
2974 	int ret = 0;
2975 	u64 min_metadata;
2976 	u64 free_space;
2977 
2978 	free_space = btrfs_super_total_bytes(disk_super);
2979 	/*
2980 	 * we allow the metadata to grow to a max of either 10gb or 5% of the
2981 	 * space in the volume.
2982 	 */
2983 	min_metadata = min((u64)10 * 1024 * 1024 * 1024,
2984 			     div64_u64(free_space * 5, 100));
2985 	if (info->total_bytes >= min_metadata) {
2986 		spin_unlock(&info->lock);
2987 		return 0;
2988 	}
2989 
2990 	if (info->full) {
2991 		spin_unlock(&info->lock);
2992 		return 0;
2993 	}
2994 
2995 	if (!info->allocating_chunk) {
2996 		info->force_alloc = 1;
2997 		info->allocating_chunk = 1;
2998 		init_waitqueue_head(&info->allocate_wait);
2999 	} else {
3000 		wait = true;
3001 	}
3002 
3003 	spin_unlock(&info->lock);
3004 
3005 	if (wait) {
3006 		wait_event(info->allocate_wait,
3007 			   !info->allocating_chunk);
3008 		return 1;
3009 	}
3010 
3011 	trans = btrfs_start_transaction(root, 1);
3012 	if (!trans) {
3013 		ret = -ENOMEM;
3014 		goto out;
3015 	}
3016 
3017 	ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3018 			     4096 + 2 * 1024 * 1024,
3019 			     info->flags, 0);
3020 	btrfs_end_transaction(trans, root);
3021 	if (ret)
3022 		goto out;
3023 out:
3024 	spin_lock(&info->lock);
3025 	info->allocating_chunk = 0;
3026 	spin_unlock(&info->lock);
3027 	wake_up(&info->allocate_wait);
3028 
3029 	if (ret)
3030 		return 0;
3031 	return 1;
3032 }
3033 
3034 /*
3035  * Reserve metadata space for delalloc.
3036  */
3037 int btrfs_reserve_metadata_for_delalloc(struct btrfs_root *root,
3038 					struct inode *inode, int num_items)
3039 {
3040 	struct btrfs_fs_info *info = root->fs_info;
3041 	struct btrfs_space_info *meta_sinfo;
3042 	u64 num_bytes;
3043 	u64 used;
3044 	u64 alloc_target;
3045 	int flushed = 0;
3046 	int force_delalloc;
3047 
3048 	/* get the space info for where the metadata will live */
3049 	alloc_target = btrfs_get_alloc_profile(root, 0);
3050 	meta_sinfo = __find_space_info(info, alloc_target);
3051 
3052 	num_bytes = calculate_bytes_needed(root->fs_info->extent_root,
3053 					   num_items);
3054 again:
3055 	spin_lock(&meta_sinfo->lock);
3056 
3057 	force_delalloc = meta_sinfo->force_delalloc;
3058 
3059 	if (unlikely(!meta_sinfo->bytes_root))
3060 		meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3061 
3062 	if (!flushed)
3063 		meta_sinfo->bytes_delalloc += num_bytes;
3064 
3065 	used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3066 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3067 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3068 		meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3069 
3070 	if (used > meta_sinfo->total_bytes) {
3071 		flushed++;
3072 
3073 		if (flushed == 1) {
3074 			if (maybe_allocate_chunk(root, meta_sinfo))
3075 				goto again;
3076 			flushed++;
3077 		} else {
3078 			spin_unlock(&meta_sinfo->lock);
3079 		}
3080 
3081 		if (flushed == 2) {
3082 			filemap_flush(inode->i_mapping);
3083 			goto again;
3084 		} else if (flushed == 3) {
3085 			flush_delalloc(root, meta_sinfo);
3086 			goto again;
3087 		}
3088 		spin_lock(&meta_sinfo->lock);
3089 		meta_sinfo->bytes_delalloc -= num_bytes;
3090 		spin_unlock(&meta_sinfo->lock);
3091 		printk(KERN_ERR "enospc, has %d, reserved %d\n",
3092 		       BTRFS_I(inode)->outstanding_extents,
3093 		       BTRFS_I(inode)->reserved_extents);
3094 		dump_space_info(meta_sinfo, 0, 0);
3095 		return -ENOSPC;
3096 	}
3097 
3098 	BTRFS_I(inode)->reserved_extents++;
3099 	check_force_delalloc(meta_sinfo);
3100 	spin_unlock(&meta_sinfo->lock);
3101 
3102 	if (!flushed && force_delalloc)
3103 		filemap_flush(inode->i_mapping);
3104 
3105 	return 0;
3106 }
3107 
3108 /*
3109  * unreserve num_items number of items worth of metadata space.  This needs to
3110  * be paired with btrfs_reserve_metadata_space.
3111  *
3112  * NOTE: if you have the option, run this _AFTER_ you do a
3113  * btrfs_end_transaction, since btrfs_end_transaction will run delayed ref
3114  * oprations which will result in more used metadata, so we want to make sure we
3115  * can do that without issue.
3116  */
3117 int btrfs_unreserve_metadata_space(struct btrfs_root *root, int num_items)
3118 {
3119 	struct btrfs_fs_info *info = root->fs_info;
3120 	struct btrfs_space_info *meta_sinfo;
3121 	u64 num_bytes;
3122 	u64 alloc_target;
3123 	bool bug = false;
3124 
3125 	/* get the space info for where the metadata will live */
3126 	alloc_target = btrfs_get_alloc_profile(root, 0);
3127 	meta_sinfo = __find_space_info(info, alloc_target);
3128 
3129 	num_bytes = calculate_bytes_needed(root, num_items);
3130 
3131 	spin_lock(&meta_sinfo->lock);
3132 	if (meta_sinfo->bytes_may_use < num_bytes) {
3133 		bug = true;
3134 		meta_sinfo->bytes_may_use = 0;
3135 	} else {
3136 		meta_sinfo->bytes_may_use -= num_bytes;
3137 	}
3138 	spin_unlock(&meta_sinfo->lock);
3139 
3140 	BUG_ON(bug);
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * Reserve some metadata space for use.  We'll calculate the worste case number
3147  * of bytes that would be needed to modify num_items number of items.  If we
3148  * have space, fantastic, if not, you get -ENOSPC.  Please call
3149  * btrfs_unreserve_metadata_space when you are done for the _SAME_ number of
3150  * items you reserved, since whatever metadata you needed should have already
3151  * been allocated.
3152  *
3153  * This will commit the transaction to make more space if we don't have enough
3154  * metadata space.  THe only time we don't do this is if we're reserving space
3155  * inside of a transaction, then we will just return -ENOSPC and it is the
3156  * callers responsibility to handle it properly.
3157  */
3158 int btrfs_reserve_metadata_space(struct btrfs_root *root, int num_items)
3159 {
3160 	struct btrfs_fs_info *info = root->fs_info;
3161 	struct btrfs_space_info *meta_sinfo;
3162 	u64 num_bytes;
3163 	u64 used;
3164 	u64 alloc_target;
3165 	int retries = 0;
3166 
3167 	/* get the space info for where the metadata will live */
3168 	alloc_target = btrfs_get_alloc_profile(root, 0);
3169 	meta_sinfo = __find_space_info(info, alloc_target);
3170 
3171 	num_bytes = calculate_bytes_needed(root, num_items);
3172 again:
3173 	spin_lock(&meta_sinfo->lock);
3174 
3175 	if (unlikely(!meta_sinfo->bytes_root))
3176 		meta_sinfo->bytes_root = calculate_bytes_needed(root, 6);
3177 
3178 	if (!retries)
3179 		meta_sinfo->bytes_may_use += num_bytes;
3180 
3181 	used = meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
3182 		meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly +
3183 		meta_sinfo->bytes_super + meta_sinfo->bytes_root +
3184 		meta_sinfo->bytes_may_use + meta_sinfo->bytes_delalloc;
3185 
3186 	if (used > meta_sinfo->total_bytes) {
3187 		retries++;
3188 		if (retries == 1) {
3189 			if (maybe_allocate_chunk(root, meta_sinfo))
3190 				goto again;
3191 			retries++;
3192 		} else {
3193 			spin_unlock(&meta_sinfo->lock);
3194 		}
3195 
3196 		if (retries == 2) {
3197 			flush_delalloc(root, meta_sinfo);
3198 			goto again;
3199 		}
3200 		spin_lock(&meta_sinfo->lock);
3201 		meta_sinfo->bytes_may_use -= num_bytes;
3202 		spin_unlock(&meta_sinfo->lock);
3203 
3204 		dump_space_info(meta_sinfo, 0, 0);
3205 		return -ENOSPC;
3206 	}
3207 
3208 	check_force_delalloc(meta_sinfo);
3209 	spin_unlock(&meta_sinfo->lock);
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * This will check the space that the inode allocates from to make sure we have
3216  * enough space for bytes.
3217  */
3218 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
3219 				u64 bytes)
3220 {
3221 	struct btrfs_space_info *data_sinfo;
3222 	int ret = 0, committed = 0;
3223 
3224 	/* make sure bytes are sectorsize aligned */
3225 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3226 
3227 	data_sinfo = BTRFS_I(inode)->space_info;
3228 	if (!data_sinfo)
3229 		goto alloc;
3230 
3231 again:
3232 	/* make sure we have enough space to handle the data first */
3233 	spin_lock(&data_sinfo->lock);
3234 	if (data_sinfo->total_bytes - data_sinfo->bytes_used -
3235 	    data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
3236 	    data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
3237 	    data_sinfo->bytes_may_use - data_sinfo->bytes_super < bytes) {
3238 		struct btrfs_trans_handle *trans;
3239 
3240 		/*
3241 		 * if we don't have enough free bytes in this space then we need
3242 		 * to alloc a new chunk.
3243 		 */
3244 		if (!data_sinfo->full) {
3245 			u64 alloc_target;
3246 
3247 			data_sinfo->force_alloc = 1;
3248 			spin_unlock(&data_sinfo->lock);
3249 alloc:
3250 			alloc_target = btrfs_get_alloc_profile(root, 1);
3251 			trans = btrfs_start_transaction(root, 1);
3252 			if (!trans)
3253 				return -ENOMEM;
3254 
3255 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3256 					     bytes + 2 * 1024 * 1024,
3257 					     alloc_target, 0);
3258 			btrfs_end_transaction(trans, root);
3259 			if (ret)
3260 				return ret;
3261 
3262 			if (!data_sinfo) {
3263 				btrfs_set_inode_space_info(root, inode);
3264 				data_sinfo = BTRFS_I(inode)->space_info;
3265 			}
3266 			goto again;
3267 		}
3268 		spin_unlock(&data_sinfo->lock);
3269 
3270 		/* commit the current transaction and try again */
3271 		if (!committed && !root->fs_info->open_ioctl_trans) {
3272 			committed = 1;
3273 			trans = btrfs_join_transaction(root, 1);
3274 			if (!trans)
3275 				return -ENOMEM;
3276 			ret = btrfs_commit_transaction(trans, root);
3277 			if (ret)
3278 				return ret;
3279 			goto again;
3280 		}
3281 
3282 		printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
3283 		       ", %llu bytes_used, %llu bytes_reserved, "
3284 		       "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
3285 		       "%llu total\n", (unsigned long long)bytes,
3286 		       (unsigned long long)data_sinfo->bytes_delalloc,
3287 		       (unsigned long long)data_sinfo->bytes_used,
3288 		       (unsigned long long)data_sinfo->bytes_reserved,
3289 		       (unsigned long long)data_sinfo->bytes_pinned,
3290 		       (unsigned long long)data_sinfo->bytes_readonly,
3291 		       (unsigned long long)data_sinfo->bytes_may_use,
3292 		       (unsigned long long)data_sinfo->total_bytes);
3293 		return -ENOSPC;
3294 	}
3295 	data_sinfo->bytes_may_use += bytes;
3296 	BTRFS_I(inode)->reserved_bytes += bytes;
3297 	spin_unlock(&data_sinfo->lock);
3298 
3299 	return 0;
3300 }
3301 
3302 /*
3303  * if there was an error for whatever reason after calling
3304  * btrfs_check_data_free_space, call this so we can cleanup the counters.
3305  */
3306 void btrfs_free_reserved_data_space(struct btrfs_root *root,
3307 				    struct inode *inode, u64 bytes)
3308 {
3309 	struct btrfs_space_info *data_sinfo;
3310 
3311 	/* make sure bytes are sectorsize aligned */
3312 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3313 
3314 	data_sinfo = BTRFS_I(inode)->space_info;
3315 	spin_lock(&data_sinfo->lock);
3316 	data_sinfo->bytes_may_use -= bytes;
3317 	BTRFS_I(inode)->reserved_bytes -= bytes;
3318 	spin_unlock(&data_sinfo->lock);
3319 }
3320 
3321 /* called when we are adding a delalloc extent to the inode's io_tree */
3322 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
3323 				  u64 bytes)
3324 {
3325 	struct btrfs_space_info *data_sinfo;
3326 
3327 	/* get the space info for where this inode will be storing its data */
3328 	data_sinfo = BTRFS_I(inode)->space_info;
3329 
3330 	/* make sure we have enough space to handle the data first */
3331 	spin_lock(&data_sinfo->lock);
3332 	data_sinfo->bytes_delalloc += bytes;
3333 
3334 	/*
3335 	 * we are adding a delalloc extent without calling
3336 	 * btrfs_check_data_free_space first.  This happens on a weird
3337 	 * writepage condition, but shouldn't hurt our accounting
3338 	 */
3339 	if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
3340 		data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
3341 		BTRFS_I(inode)->reserved_bytes = 0;
3342 	} else {
3343 		data_sinfo->bytes_may_use -= bytes;
3344 		BTRFS_I(inode)->reserved_bytes -= bytes;
3345 	}
3346 
3347 	spin_unlock(&data_sinfo->lock);
3348 }
3349 
3350 /* called when we are clearing an delalloc extent from the inode's io_tree */
3351 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
3352 			      u64 bytes)
3353 {
3354 	struct btrfs_space_info *info;
3355 
3356 	info = BTRFS_I(inode)->space_info;
3357 
3358 	spin_lock(&info->lock);
3359 	info->bytes_delalloc -= bytes;
3360 	spin_unlock(&info->lock);
3361 }
3362 
3363 static void force_metadata_allocation(struct btrfs_fs_info *info)
3364 {
3365 	struct list_head *head = &info->space_info;
3366 	struct btrfs_space_info *found;
3367 
3368 	rcu_read_lock();
3369 	list_for_each_entry_rcu(found, head, list) {
3370 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3371 			found->force_alloc = 1;
3372 	}
3373 	rcu_read_unlock();
3374 }
3375 
3376 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3377 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3378 			  u64 flags, int force)
3379 {
3380 	struct btrfs_space_info *space_info;
3381 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3382 	u64 thresh;
3383 	int ret = 0;
3384 
3385 	mutex_lock(&fs_info->chunk_mutex);
3386 
3387 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3388 
3389 	space_info = __find_space_info(extent_root->fs_info, flags);
3390 	if (!space_info) {
3391 		ret = update_space_info(extent_root->fs_info, flags,
3392 					0, 0, &space_info);
3393 		BUG_ON(ret);
3394 	}
3395 	BUG_ON(!space_info);
3396 
3397 	spin_lock(&space_info->lock);
3398 	if (space_info->force_alloc)
3399 		force = 1;
3400 	if (space_info->full) {
3401 		spin_unlock(&space_info->lock);
3402 		goto out;
3403 	}
3404 
3405 	thresh = space_info->total_bytes - space_info->bytes_readonly;
3406 	thresh = div_factor(thresh, 8);
3407 	if (!force &&
3408 	   (space_info->bytes_used + space_info->bytes_pinned +
3409 	    space_info->bytes_reserved + alloc_bytes) < thresh) {
3410 		spin_unlock(&space_info->lock);
3411 		goto out;
3412 	}
3413 	spin_unlock(&space_info->lock);
3414 
3415 	/*
3416 	 * if we're doing a data chunk, go ahead and make sure that
3417 	 * we keep a reasonable number of metadata chunks allocated in the
3418 	 * FS as well.
3419 	 */
3420 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3421 		fs_info->data_chunk_allocations++;
3422 		if (!(fs_info->data_chunk_allocations %
3423 		      fs_info->metadata_ratio))
3424 			force_metadata_allocation(fs_info);
3425 	}
3426 
3427 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3428 	spin_lock(&space_info->lock);
3429 	if (ret)
3430 		space_info->full = 1;
3431 	space_info->force_alloc = 0;
3432 	spin_unlock(&space_info->lock);
3433 out:
3434 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3435 	return ret;
3436 }
3437 
3438 static int update_block_group(struct btrfs_trans_handle *trans,
3439 			      struct btrfs_root *root,
3440 			      u64 bytenr, u64 num_bytes, int alloc,
3441 			      int mark_free)
3442 {
3443 	struct btrfs_block_group_cache *cache;
3444 	struct btrfs_fs_info *info = root->fs_info;
3445 	u64 total = num_bytes;
3446 	u64 old_val;
3447 	u64 byte_in_group;
3448 
3449 	/* block accounting for super block */
3450 	spin_lock(&info->delalloc_lock);
3451 	old_val = btrfs_super_bytes_used(&info->super_copy);
3452 	if (alloc)
3453 		old_val += num_bytes;
3454 	else
3455 		old_val -= num_bytes;
3456 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
3457 
3458 	/* block accounting for root item */
3459 	old_val = btrfs_root_used(&root->root_item);
3460 	if (alloc)
3461 		old_val += num_bytes;
3462 	else
3463 		old_val -= num_bytes;
3464 	btrfs_set_root_used(&root->root_item, old_val);
3465 	spin_unlock(&info->delalloc_lock);
3466 
3467 	while (total) {
3468 		cache = btrfs_lookup_block_group(info, bytenr);
3469 		if (!cache)
3470 			return -1;
3471 		byte_in_group = bytenr - cache->key.objectid;
3472 		WARN_ON(byte_in_group > cache->key.offset);
3473 
3474 		spin_lock(&cache->space_info->lock);
3475 		spin_lock(&cache->lock);
3476 		cache->dirty = 1;
3477 		old_val = btrfs_block_group_used(&cache->item);
3478 		num_bytes = min(total, cache->key.offset - byte_in_group);
3479 		if (alloc) {
3480 			old_val += num_bytes;
3481 			btrfs_set_block_group_used(&cache->item, old_val);
3482 			cache->reserved -= num_bytes;
3483 			cache->space_info->bytes_used += num_bytes;
3484 			cache->space_info->bytes_reserved -= num_bytes;
3485 			if (cache->ro)
3486 				cache->space_info->bytes_readonly -= num_bytes;
3487 			spin_unlock(&cache->lock);
3488 			spin_unlock(&cache->space_info->lock);
3489 		} else {
3490 			old_val -= num_bytes;
3491 			cache->space_info->bytes_used -= num_bytes;
3492 			if (cache->ro)
3493 				cache->space_info->bytes_readonly += num_bytes;
3494 			btrfs_set_block_group_used(&cache->item, old_val);
3495 			spin_unlock(&cache->lock);
3496 			spin_unlock(&cache->space_info->lock);
3497 			if (mark_free) {
3498 				int ret;
3499 
3500 				ret = btrfs_discard_extent(root, bytenr,
3501 							   num_bytes);
3502 				WARN_ON(ret);
3503 
3504 				ret = btrfs_add_free_space(cache, bytenr,
3505 							   num_bytes);
3506 				WARN_ON(ret);
3507 			}
3508 		}
3509 		btrfs_put_block_group(cache);
3510 		total -= num_bytes;
3511 		bytenr += num_bytes;
3512 	}
3513 	return 0;
3514 }
3515 
3516 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3517 {
3518 	struct btrfs_block_group_cache *cache;
3519 	u64 bytenr;
3520 
3521 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3522 	if (!cache)
3523 		return 0;
3524 
3525 	bytenr = cache->key.objectid;
3526 	btrfs_put_block_group(cache);
3527 
3528 	return bytenr;
3529 }
3530 
3531 /*
3532  * this function must be called within transaction
3533  */
3534 int btrfs_pin_extent(struct btrfs_root *root,
3535 		     u64 bytenr, u64 num_bytes, int reserved)
3536 {
3537 	struct btrfs_fs_info *fs_info = root->fs_info;
3538 	struct btrfs_block_group_cache *cache;
3539 
3540 	cache = btrfs_lookup_block_group(fs_info, bytenr);
3541 	BUG_ON(!cache);
3542 
3543 	spin_lock(&cache->space_info->lock);
3544 	spin_lock(&cache->lock);
3545 	cache->pinned += num_bytes;
3546 	cache->space_info->bytes_pinned += num_bytes;
3547 	if (reserved) {
3548 		cache->reserved -= num_bytes;
3549 		cache->space_info->bytes_reserved -= num_bytes;
3550 	}
3551 	spin_unlock(&cache->lock);
3552 	spin_unlock(&cache->space_info->lock);
3553 
3554 	btrfs_put_block_group(cache);
3555 
3556 	set_extent_dirty(fs_info->pinned_extents,
3557 			 bytenr, bytenr + num_bytes - 1, GFP_NOFS);
3558 	return 0;
3559 }
3560 
3561 static int update_reserved_extents(struct btrfs_block_group_cache *cache,
3562 				   u64 num_bytes, int reserve)
3563 {
3564 	spin_lock(&cache->space_info->lock);
3565 	spin_lock(&cache->lock);
3566 	if (reserve) {
3567 		cache->reserved += num_bytes;
3568 		cache->space_info->bytes_reserved += num_bytes;
3569 	} else {
3570 		cache->reserved -= num_bytes;
3571 		cache->space_info->bytes_reserved -= num_bytes;
3572 	}
3573 	spin_unlock(&cache->lock);
3574 	spin_unlock(&cache->space_info->lock);
3575 	return 0;
3576 }
3577 
3578 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3579 				struct btrfs_root *root)
3580 {
3581 	struct btrfs_fs_info *fs_info = root->fs_info;
3582 	struct btrfs_caching_control *next;
3583 	struct btrfs_caching_control *caching_ctl;
3584 	struct btrfs_block_group_cache *cache;
3585 
3586 	down_write(&fs_info->extent_commit_sem);
3587 
3588 	list_for_each_entry_safe(caching_ctl, next,
3589 				 &fs_info->caching_block_groups, list) {
3590 		cache = caching_ctl->block_group;
3591 		if (block_group_cache_done(cache)) {
3592 			cache->last_byte_to_unpin = (u64)-1;
3593 			list_del_init(&caching_ctl->list);
3594 			put_caching_control(caching_ctl);
3595 		} else {
3596 			cache->last_byte_to_unpin = caching_ctl->progress;
3597 		}
3598 	}
3599 
3600 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3601 		fs_info->pinned_extents = &fs_info->freed_extents[1];
3602 	else
3603 		fs_info->pinned_extents = &fs_info->freed_extents[0];
3604 
3605 	up_write(&fs_info->extent_commit_sem);
3606 	return 0;
3607 }
3608 
3609 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3610 {
3611 	struct btrfs_fs_info *fs_info = root->fs_info;
3612 	struct btrfs_block_group_cache *cache = NULL;
3613 	u64 len;
3614 
3615 	while (start <= end) {
3616 		if (!cache ||
3617 		    start >= cache->key.objectid + cache->key.offset) {
3618 			if (cache)
3619 				btrfs_put_block_group(cache);
3620 			cache = btrfs_lookup_block_group(fs_info, start);
3621 			BUG_ON(!cache);
3622 		}
3623 
3624 		len = cache->key.objectid + cache->key.offset - start;
3625 		len = min(len, end + 1 - start);
3626 
3627 		if (start < cache->last_byte_to_unpin) {
3628 			len = min(len, cache->last_byte_to_unpin - start);
3629 			btrfs_add_free_space(cache, start, len);
3630 		}
3631 
3632 		spin_lock(&cache->space_info->lock);
3633 		spin_lock(&cache->lock);
3634 		cache->pinned -= len;
3635 		cache->space_info->bytes_pinned -= len;
3636 		spin_unlock(&cache->lock);
3637 		spin_unlock(&cache->space_info->lock);
3638 
3639 		start += len;
3640 	}
3641 
3642 	if (cache)
3643 		btrfs_put_block_group(cache);
3644 	return 0;
3645 }
3646 
3647 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3648 			       struct btrfs_root *root)
3649 {
3650 	struct btrfs_fs_info *fs_info = root->fs_info;
3651 	struct extent_io_tree *unpin;
3652 	u64 start;
3653 	u64 end;
3654 	int ret;
3655 
3656 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3657 		unpin = &fs_info->freed_extents[1];
3658 	else
3659 		unpin = &fs_info->freed_extents[0];
3660 
3661 	while (1) {
3662 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3663 					    EXTENT_DIRTY);
3664 		if (ret)
3665 			break;
3666 
3667 		ret = btrfs_discard_extent(root, start, end + 1 - start);
3668 
3669 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3670 		unpin_extent_range(root, start, end);
3671 		cond_resched();
3672 	}
3673 
3674 	return ret;
3675 }
3676 
3677 static int pin_down_bytes(struct btrfs_trans_handle *trans,
3678 			  struct btrfs_root *root,
3679 			  struct btrfs_path *path,
3680 			  u64 bytenr, u64 num_bytes,
3681 			  int is_data, int reserved,
3682 			  struct extent_buffer **must_clean)
3683 {
3684 	int err = 0;
3685 	struct extent_buffer *buf;
3686 
3687 	if (is_data)
3688 		goto pinit;
3689 
3690 	/*
3691 	 * discard is sloooow, and so triggering discards on
3692 	 * individual btree blocks isn't a good plan.  Just
3693 	 * pin everything in discard mode.
3694 	 */
3695 	if (btrfs_test_opt(root, DISCARD))
3696 		goto pinit;
3697 
3698 	buf = btrfs_find_tree_block(root, bytenr, num_bytes);
3699 	if (!buf)
3700 		goto pinit;
3701 
3702 	/* we can reuse a block if it hasn't been written
3703 	 * and it is from this transaction.  We can't
3704 	 * reuse anything from the tree log root because
3705 	 * it has tiny sub-transactions.
3706 	 */
3707 	if (btrfs_buffer_uptodate(buf, 0) &&
3708 	    btrfs_try_tree_lock(buf)) {
3709 		u64 header_owner = btrfs_header_owner(buf);
3710 		u64 header_transid = btrfs_header_generation(buf);
3711 		if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
3712 		    header_transid == trans->transid &&
3713 		    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3714 			*must_clean = buf;
3715 			return 1;
3716 		}
3717 		btrfs_tree_unlock(buf);
3718 	}
3719 	free_extent_buffer(buf);
3720 pinit:
3721 	if (path)
3722 		btrfs_set_path_blocking(path);
3723 	/* unlocks the pinned mutex */
3724 	btrfs_pin_extent(root, bytenr, num_bytes, reserved);
3725 
3726 	BUG_ON(err < 0);
3727 	return 0;
3728 }
3729 
3730 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3731 				struct btrfs_root *root,
3732 				u64 bytenr, u64 num_bytes, u64 parent,
3733 				u64 root_objectid, u64 owner_objectid,
3734 				u64 owner_offset, int refs_to_drop,
3735 				struct btrfs_delayed_extent_op *extent_op)
3736 {
3737 	struct btrfs_key key;
3738 	struct btrfs_path *path;
3739 	struct btrfs_fs_info *info = root->fs_info;
3740 	struct btrfs_root *extent_root = info->extent_root;
3741 	struct extent_buffer *leaf;
3742 	struct btrfs_extent_item *ei;
3743 	struct btrfs_extent_inline_ref *iref;
3744 	int ret;
3745 	int is_data;
3746 	int extent_slot = 0;
3747 	int found_extent = 0;
3748 	int num_to_del = 1;
3749 	u32 item_size;
3750 	u64 refs;
3751 
3752 	path = btrfs_alloc_path();
3753 	if (!path)
3754 		return -ENOMEM;
3755 
3756 	path->reada = 1;
3757 	path->leave_spinning = 1;
3758 
3759 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3760 	BUG_ON(!is_data && refs_to_drop != 1);
3761 
3762 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
3763 				    bytenr, num_bytes, parent,
3764 				    root_objectid, owner_objectid,
3765 				    owner_offset);
3766 	if (ret == 0) {
3767 		extent_slot = path->slots[0];
3768 		while (extent_slot >= 0) {
3769 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3770 					      extent_slot);
3771 			if (key.objectid != bytenr)
3772 				break;
3773 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3774 			    key.offset == num_bytes) {
3775 				found_extent = 1;
3776 				break;
3777 			}
3778 			if (path->slots[0] - extent_slot > 5)
3779 				break;
3780 			extent_slot--;
3781 		}
3782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3783 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
3784 		if (found_extent && item_size < sizeof(*ei))
3785 			found_extent = 0;
3786 #endif
3787 		if (!found_extent) {
3788 			BUG_ON(iref);
3789 			ret = remove_extent_backref(trans, extent_root, path,
3790 						    NULL, refs_to_drop,
3791 						    is_data);
3792 			BUG_ON(ret);
3793 			btrfs_release_path(extent_root, path);
3794 			path->leave_spinning = 1;
3795 
3796 			key.objectid = bytenr;
3797 			key.type = BTRFS_EXTENT_ITEM_KEY;
3798 			key.offset = num_bytes;
3799 
3800 			ret = btrfs_search_slot(trans, extent_root,
3801 						&key, path, -1, 1);
3802 			if (ret) {
3803 				printk(KERN_ERR "umm, got %d back from search"
3804 				       ", was looking for %llu\n", ret,
3805 				       (unsigned long long)bytenr);
3806 				btrfs_print_leaf(extent_root, path->nodes[0]);
3807 			}
3808 			BUG_ON(ret);
3809 			extent_slot = path->slots[0];
3810 		}
3811 	} else {
3812 		btrfs_print_leaf(extent_root, path->nodes[0]);
3813 		WARN_ON(1);
3814 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
3815 		       "parent %llu root %llu  owner %llu offset %llu\n",
3816 		       (unsigned long long)bytenr,
3817 		       (unsigned long long)parent,
3818 		       (unsigned long long)root_objectid,
3819 		       (unsigned long long)owner_objectid,
3820 		       (unsigned long long)owner_offset);
3821 	}
3822 
3823 	leaf = path->nodes[0];
3824 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3826 	if (item_size < sizeof(*ei)) {
3827 		BUG_ON(found_extent || extent_slot != path->slots[0]);
3828 		ret = convert_extent_item_v0(trans, extent_root, path,
3829 					     owner_objectid, 0);
3830 		BUG_ON(ret < 0);
3831 
3832 		btrfs_release_path(extent_root, path);
3833 		path->leave_spinning = 1;
3834 
3835 		key.objectid = bytenr;
3836 		key.type = BTRFS_EXTENT_ITEM_KEY;
3837 		key.offset = num_bytes;
3838 
3839 		ret = btrfs_search_slot(trans, extent_root, &key, path,
3840 					-1, 1);
3841 		if (ret) {
3842 			printk(KERN_ERR "umm, got %d back from search"
3843 			       ", was looking for %llu\n", ret,
3844 			       (unsigned long long)bytenr);
3845 			btrfs_print_leaf(extent_root, path->nodes[0]);
3846 		}
3847 		BUG_ON(ret);
3848 		extent_slot = path->slots[0];
3849 		leaf = path->nodes[0];
3850 		item_size = btrfs_item_size_nr(leaf, extent_slot);
3851 	}
3852 #endif
3853 	BUG_ON(item_size < sizeof(*ei));
3854 	ei = btrfs_item_ptr(leaf, extent_slot,
3855 			    struct btrfs_extent_item);
3856 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3857 		struct btrfs_tree_block_info *bi;
3858 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3859 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3860 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3861 	}
3862 
3863 	refs = btrfs_extent_refs(leaf, ei);
3864 	BUG_ON(refs < refs_to_drop);
3865 	refs -= refs_to_drop;
3866 
3867 	if (refs > 0) {
3868 		if (extent_op)
3869 			__run_delayed_extent_op(extent_op, leaf, ei);
3870 		/*
3871 		 * In the case of inline back ref, reference count will
3872 		 * be updated by remove_extent_backref
3873 		 */
3874 		if (iref) {
3875 			BUG_ON(!found_extent);
3876 		} else {
3877 			btrfs_set_extent_refs(leaf, ei, refs);
3878 			btrfs_mark_buffer_dirty(leaf);
3879 		}
3880 		if (found_extent) {
3881 			ret = remove_extent_backref(trans, extent_root, path,
3882 						    iref, refs_to_drop,
3883 						    is_data);
3884 			BUG_ON(ret);
3885 		}
3886 	} else {
3887 		int mark_free = 0;
3888 		struct extent_buffer *must_clean = NULL;
3889 
3890 		if (found_extent) {
3891 			BUG_ON(is_data && refs_to_drop !=
3892 			       extent_data_ref_count(root, path, iref));
3893 			if (iref) {
3894 				BUG_ON(path->slots[0] != extent_slot);
3895 			} else {
3896 				BUG_ON(path->slots[0] != extent_slot + 1);
3897 				path->slots[0] = extent_slot;
3898 				num_to_del = 2;
3899 			}
3900 		}
3901 
3902 		ret = pin_down_bytes(trans, root, path, bytenr,
3903 				     num_bytes, is_data, 0, &must_clean);
3904 		if (ret > 0)
3905 			mark_free = 1;
3906 		BUG_ON(ret < 0);
3907 		/*
3908 		 * it is going to be very rare for someone to be waiting
3909 		 * on the block we're freeing.  del_items might need to
3910 		 * schedule, so rather than get fancy, just force it
3911 		 * to blocking here
3912 		 */
3913 		if (must_clean)
3914 			btrfs_set_lock_blocking(must_clean);
3915 
3916 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3917 				      num_to_del);
3918 		BUG_ON(ret);
3919 		btrfs_release_path(extent_root, path);
3920 
3921 		if (must_clean) {
3922 			clean_tree_block(NULL, root, must_clean);
3923 			btrfs_tree_unlock(must_clean);
3924 			free_extent_buffer(must_clean);
3925 		}
3926 
3927 		if (is_data) {
3928 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
3929 			BUG_ON(ret);
3930 		} else {
3931 			invalidate_mapping_pages(info->btree_inode->i_mapping,
3932 			     bytenr >> PAGE_CACHE_SHIFT,
3933 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
3934 		}
3935 
3936 		ret = update_block_group(trans, root, bytenr, num_bytes, 0,
3937 					 mark_free);
3938 		BUG_ON(ret);
3939 	}
3940 	btrfs_free_path(path);
3941 	return ret;
3942 }
3943 
3944 /*
3945  * when we free an extent, it is possible (and likely) that we free the last
3946  * delayed ref for that extent as well.  This searches the delayed ref tree for
3947  * a given extent, and if there are no other delayed refs to be processed, it
3948  * removes it from the tree.
3949  */
3950 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3951 				      struct btrfs_root *root, u64 bytenr)
3952 {
3953 	struct btrfs_delayed_ref_head *head;
3954 	struct btrfs_delayed_ref_root *delayed_refs;
3955 	struct btrfs_delayed_ref_node *ref;
3956 	struct rb_node *node;
3957 	int ret;
3958 
3959 	delayed_refs = &trans->transaction->delayed_refs;
3960 	spin_lock(&delayed_refs->lock);
3961 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3962 	if (!head)
3963 		goto out;
3964 
3965 	node = rb_prev(&head->node.rb_node);
3966 	if (!node)
3967 		goto out;
3968 
3969 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3970 
3971 	/* there are still entries for this ref, we can't drop it */
3972 	if (ref->bytenr == bytenr)
3973 		goto out;
3974 
3975 	if (head->extent_op) {
3976 		if (!head->must_insert_reserved)
3977 			goto out;
3978 		kfree(head->extent_op);
3979 		head->extent_op = NULL;
3980 	}
3981 
3982 	/*
3983 	 * waiting for the lock here would deadlock.  If someone else has it
3984 	 * locked they are already in the process of dropping it anyway
3985 	 */
3986 	if (!mutex_trylock(&head->mutex))
3987 		goto out;
3988 
3989 	/*
3990 	 * at this point we have a head with no other entries.  Go
3991 	 * ahead and process it.
3992 	 */
3993 	head->node.in_tree = 0;
3994 	rb_erase(&head->node.rb_node, &delayed_refs->root);
3995 
3996 	delayed_refs->num_entries--;
3997 
3998 	/*
3999 	 * we don't take a ref on the node because we're removing it from the
4000 	 * tree, so we just steal the ref the tree was holding.
4001 	 */
4002 	delayed_refs->num_heads--;
4003 	if (list_empty(&head->cluster))
4004 		delayed_refs->num_heads_ready--;
4005 
4006 	list_del_init(&head->cluster);
4007 	spin_unlock(&delayed_refs->lock);
4008 
4009 	ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
4010 				  &head->node, head->extent_op,
4011 				  head->must_insert_reserved);
4012 	BUG_ON(ret);
4013 	btrfs_put_delayed_ref(&head->node);
4014 	return 0;
4015 out:
4016 	spin_unlock(&delayed_refs->lock);
4017 	return 0;
4018 }
4019 
4020 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4021 		      struct btrfs_root *root,
4022 		      u64 bytenr, u64 num_bytes, u64 parent,
4023 		      u64 root_objectid, u64 owner, u64 offset)
4024 {
4025 	int ret;
4026 
4027 	/*
4028 	 * tree log blocks never actually go into the extent allocation
4029 	 * tree, just update pinning info and exit early.
4030 	 */
4031 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4032 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4033 		/* unlocks the pinned mutex */
4034 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4035 		ret = 0;
4036 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4037 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4038 					parent, root_objectid, (int)owner,
4039 					BTRFS_DROP_DELAYED_REF, NULL);
4040 		BUG_ON(ret);
4041 		ret = check_ref_cleanup(trans, root, bytenr);
4042 		BUG_ON(ret);
4043 	} else {
4044 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4045 					parent, root_objectid, owner,
4046 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4047 		BUG_ON(ret);
4048 	}
4049 	return ret;
4050 }
4051 
4052 static u64 stripe_align(struct btrfs_root *root, u64 val)
4053 {
4054 	u64 mask = ((u64)root->stripesize - 1);
4055 	u64 ret = (val + mask) & ~mask;
4056 	return ret;
4057 }
4058 
4059 /*
4060  * when we wait for progress in the block group caching, its because
4061  * our allocation attempt failed at least once.  So, we must sleep
4062  * and let some progress happen before we try again.
4063  *
4064  * This function will sleep at least once waiting for new free space to
4065  * show up, and then it will check the block group free space numbers
4066  * for our min num_bytes.  Another option is to have it go ahead
4067  * and look in the rbtree for a free extent of a given size, but this
4068  * is a good start.
4069  */
4070 static noinline int
4071 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4072 				u64 num_bytes)
4073 {
4074 	struct btrfs_caching_control *caching_ctl;
4075 	DEFINE_WAIT(wait);
4076 
4077 	caching_ctl = get_caching_control(cache);
4078 	if (!caching_ctl)
4079 		return 0;
4080 
4081 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4082 		   (cache->free_space >= num_bytes));
4083 
4084 	put_caching_control(caching_ctl);
4085 	return 0;
4086 }
4087 
4088 static noinline int
4089 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4090 {
4091 	struct btrfs_caching_control *caching_ctl;
4092 	DEFINE_WAIT(wait);
4093 
4094 	caching_ctl = get_caching_control(cache);
4095 	if (!caching_ctl)
4096 		return 0;
4097 
4098 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4099 
4100 	put_caching_control(caching_ctl);
4101 	return 0;
4102 }
4103 
4104 enum btrfs_loop_type {
4105 	LOOP_FIND_IDEAL = 0,
4106 	LOOP_CACHING_NOWAIT = 1,
4107 	LOOP_CACHING_WAIT = 2,
4108 	LOOP_ALLOC_CHUNK = 3,
4109 	LOOP_NO_EMPTY_SIZE = 4,
4110 };
4111 
4112 /*
4113  * walks the btree of allocated extents and find a hole of a given size.
4114  * The key ins is changed to record the hole:
4115  * ins->objectid == block start
4116  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4117  * ins->offset == number of blocks
4118  * Any available blocks before search_start are skipped.
4119  */
4120 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4121 				     struct btrfs_root *orig_root,
4122 				     u64 num_bytes, u64 empty_size,
4123 				     u64 search_start, u64 search_end,
4124 				     u64 hint_byte, struct btrfs_key *ins,
4125 				     u64 exclude_start, u64 exclude_nr,
4126 				     int data)
4127 {
4128 	int ret = 0;
4129 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4130 	struct btrfs_free_cluster *last_ptr = NULL;
4131 	struct btrfs_block_group_cache *block_group = NULL;
4132 	int empty_cluster = 2 * 1024 * 1024;
4133 	int allowed_chunk_alloc = 0;
4134 	int done_chunk_alloc = 0;
4135 	struct btrfs_space_info *space_info;
4136 	int last_ptr_loop = 0;
4137 	int loop = 0;
4138 	bool found_uncached_bg = false;
4139 	bool failed_cluster_refill = false;
4140 	bool failed_alloc = false;
4141 	u64 ideal_cache_percent = 0;
4142 	u64 ideal_cache_offset = 0;
4143 
4144 	WARN_ON(num_bytes < root->sectorsize);
4145 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4146 	ins->objectid = 0;
4147 	ins->offset = 0;
4148 
4149 	space_info = __find_space_info(root->fs_info, data);
4150 
4151 	if (orig_root->ref_cows || empty_size)
4152 		allowed_chunk_alloc = 1;
4153 
4154 	if (data & BTRFS_BLOCK_GROUP_METADATA) {
4155 		last_ptr = &root->fs_info->meta_alloc_cluster;
4156 		if (!btrfs_test_opt(root, SSD))
4157 			empty_cluster = 64 * 1024;
4158 	}
4159 
4160 	if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4161 		last_ptr = &root->fs_info->data_alloc_cluster;
4162 	}
4163 
4164 	if (last_ptr) {
4165 		spin_lock(&last_ptr->lock);
4166 		if (last_ptr->block_group)
4167 			hint_byte = last_ptr->window_start;
4168 		spin_unlock(&last_ptr->lock);
4169 	}
4170 
4171 	search_start = max(search_start, first_logical_byte(root, 0));
4172 	search_start = max(search_start, hint_byte);
4173 
4174 	if (!last_ptr)
4175 		empty_cluster = 0;
4176 
4177 	if (search_start == hint_byte) {
4178 ideal_cache:
4179 		block_group = btrfs_lookup_block_group(root->fs_info,
4180 						       search_start);
4181 		/*
4182 		 * we don't want to use the block group if it doesn't match our
4183 		 * allocation bits, or if its not cached.
4184 		 *
4185 		 * However if we are re-searching with an ideal block group
4186 		 * picked out then we don't care that the block group is cached.
4187 		 */
4188 		if (block_group && block_group_bits(block_group, data) &&
4189 		    (block_group->cached != BTRFS_CACHE_NO ||
4190 		     search_start == ideal_cache_offset)) {
4191 			down_read(&space_info->groups_sem);
4192 			if (list_empty(&block_group->list) ||
4193 			    block_group->ro) {
4194 				/*
4195 				 * someone is removing this block group,
4196 				 * we can't jump into the have_block_group
4197 				 * target because our list pointers are not
4198 				 * valid
4199 				 */
4200 				btrfs_put_block_group(block_group);
4201 				up_read(&space_info->groups_sem);
4202 			} else {
4203 				goto have_block_group;
4204 			}
4205 		} else if (block_group) {
4206 			btrfs_put_block_group(block_group);
4207 		}
4208 	}
4209 search:
4210 	down_read(&space_info->groups_sem);
4211 	list_for_each_entry(block_group, &space_info->block_groups, list) {
4212 		u64 offset;
4213 		int cached;
4214 
4215 		atomic_inc(&block_group->count);
4216 		search_start = block_group->key.objectid;
4217 
4218 have_block_group:
4219 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4220 			u64 free_percent;
4221 
4222 			free_percent = btrfs_block_group_used(&block_group->item);
4223 			free_percent *= 100;
4224 			free_percent = div64_u64(free_percent,
4225 						 block_group->key.offset);
4226 			free_percent = 100 - free_percent;
4227 			if (free_percent > ideal_cache_percent &&
4228 			    likely(!block_group->ro)) {
4229 				ideal_cache_offset = block_group->key.objectid;
4230 				ideal_cache_percent = free_percent;
4231 			}
4232 
4233 			/*
4234 			 * We only want to start kthread caching if we are at
4235 			 * the point where we will wait for caching to make
4236 			 * progress, or if our ideal search is over and we've
4237 			 * found somebody to start caching.
4238 			 */
4239 			if (loop > LOOP_CACHING_NOWAIT ||
4240 			    (loop > LOOP_FIND_IDEAL &&
4241 			     atomic_read(&space_info->caching_threads) < 2)) {
4242 				ret = cache_block_group(block_group);
4243 				BUG_ON(ret);
4244 			}
4245 			found_uncached_bg = true;
4246 
4247 			/*
4248 			 * If loop is set for cached only, try the next block
4249 			 * group.
4250 			 */
4251 			if (loop == LOOP_FIND_IDEAL)
4252 				goto loop;
4253 		}
4254 
4255 		cached = block_group_cache_done(block_group);
4256 		if (unlikely(!cached))
4257 			found_uncached_bg = true;
4258 
4259 		if (unlikely(block_group->ro))
4260 			goto loop;
4261 
4262 		/*
4263 		 * Ok we want to try and use the cluster allocator, so lets look
4264 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4265 		 * have tried the cluster allocator plenty of times at this
4266 		 * point and not have found anything, so we are likely way too
4267 		 * fragmented for the clustering stuff to find anything, so lets
4268 		 * just skip it and let the allocator find whatever block it can
4269 		 * find
4270 		 */
4271 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4272 			/*
4273 			 * the refill lock keeps out other
4274 			 * people trying to start a new cluster
4275 			 */
4276 			spin_lock(&last_ptr->refill_lock);
4277 			if (last_ptr->block_group &&
4278 			    (last_ptr->block_group->ro ||
4279 			    !block_group_bits(last_ptr->block_group, data))) {
4280 				offset = 0;
4281 				goto refill_cluster;
4282 			}
4283 
4284 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4285 						 num_bytes, search_start);
4286 			if (offset) {
4287 				/* we have a block, we're done */
4288 				spin_unlock(&last_ptr->refill_lock);
4289 				goto checks;
4290 			}
4291 
4292 			spin_lock(&last_ptr->lock);
4293 			/*
4294 			 * whoops, this cluster doesn't actually point to
4295 			 * this block group.  Get a ref on the block
4296 			 * group is does point to and try again
4297 			 */
4298 			if (!last_ptr_loop && last_ptr->block_group &&
4299 			    last_ptr->block_group != block_group) {
4300 
4301 				btrfs_put_block_group(block_group);
4302 				block_group = last_ptr->block_group;
4303 				atomic_inc(&block_group->count);
4304 				spin_unlock(&last_ptr->lock);
4305 				spin_unlock(&last_ptr->refill_lock);
4306 
4307 				last_ptr_loop = 1;
4308 				search_start = block_group->key.objectid;
4309 				/*
4310 				 * we know this block group is properly
4311 				 * in the list because
4312 				 * btrfs_remove_block_group, drops the
4313 				 * cluster before it removes the block
4314 				 * group from the list
4315 				 */
4316 				goto have_block_group;
4317 			}
4318 			spin_unlock(&last_ptr->lock);
4319 refill_cluster:
4320 			/*
4321 			 * this cluster didn't work out, free it and
4322 			 * start over
4323 			 */
4324 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
4325 
4326 			last_ptr_loop = 0;
4327 
4328 			/* allocate a cluster in this block group */
4329 			ret = btrfs_find_space_cluster(trans, root,
4330 					       block_group, last_ptr,
4331 					       offset, num_bytes,
4332 					       empty_cluster + empty_size);
4333 			if (ret == 0) {
4334 				/*
4335 				 * now pull our allocation out of this
4336 				 * cluster
4337 				 */
4338 				offset = btrfs_alloc_from_cluster(block_group,
4339 						  last_ptr, num_bytes,
4340 						  search_start);
4341 				if (offset) {
4342 					/* we found one, proceed */
4343 					spin_unlock(&last_ptr->refill_lock);
4344 					goto checks;
4345 				}
4346 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
4347 				   && !failed_cluster_refill) {
4348 				spin_unlock(&last_ptr->refill_lock);
4349 
4350 				failed_cluster_refill = true;
4351 				wait_block_group_cache_progress(block_group,
4352 				       num_bytes + empty_cluster + empty_size);
4353 				goto have_block_group;
4354 			}
4355 
4356 			/*
4357 			 * at this point we either didn't find a cluster
4358 			 * or we weren't able to allocate a block from our
4359 			 * cluster.  Free the cluster we've been trying
4360 			 * to use, and go to the next block group
4361 			 */
4362 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
4363 			spin_unlock(&last_ptr->refill_lock);
4364 			goto loop;
4365 		}
4366 
4367 		offset = btrfs_find_space_for_alloc(block_group, search_start,
4368 						    num_bytes, empty_size);
4369 		/*
4370 		 * If we didn't find a chunk, and we haven't failed on this
4371 		 * block group before, and this block group is in the middle of
4372 		 * caching and we are ok with waiting, then go ahead and wait
4373 		 * for progress to be made, and set failed_alloc to true.
4374 		 *
4375 		 * If failed_alloc is true then we've already waited on this
4376 		 * block group once and should move on to the next block group.
4377 		 */
4378 		if (!offset && !failed_alloc && !cached &&
4379 		    loop > LOOP_CACHING_NOWAIT) {
4380 			wait_block_group_cache_progress(block_group,
4381 						num_bytes + empty_size);
4382 			failed_alloc = true;
4383 			goto have_block_group;
4384 		} else if (!offset) {
4385 			goto loop;
4386 		}
4387 checks:
4388 		search_start = stripe_align(root, offset);
4389 		/* move on to the next group */
4390 		if (search_start + num_bytes >= search_end) {
4391 			btrfs_add_free_space(block_group, offset, num_bytes);
4392 			goto loop;
4393 		}
4394 
4395 		/* move on to the next group */
4396 		if (search_start + num_bytes >
4397 		    block_group->key.objectid + block_group->key.offset) {
4398 			btrfs_add_free_space(block_group, offset, num_bytes);
4399 			goto loop;
4400 		}
4401 
4402 		if (exclude_nr > 0 &&
4403 		    (search_start + num_bytes > exclude_start &&
4404 		     search_start < exclude_start + exclude_nr)) {
4405 			search_start = exclude_start + exclude_nr;
4406 
4407 			btrfs_add_free_space(block_group, offset, num_bytes);
4408 			/*
4409 			 * if search_start is still in this block group
4410 			 * then we just re-search this block group
4411 			 */
4412 			if (search_start >= block_group->key.objectid &&
4413 			    search_start < (block_group->key.objectid +
4414 					    block_group->key.offset))
4415 				goto have_block_group;
4416 			goto loop;
4417 		}
4418 
4419 		ins->objectid = search_start;
4420 		ins->offset = num_bytes;
4421 
4422 		if (offset < search_start)
4423 			btrfs_add_free_space(block_group, offset,
4424 					     search_start - offset);
4425 		BUG_ON(offset > search_start);
4426 
4427 		update_reserved_extents(block_group, num_bytes, 1);
4428 
4429 		/* we are all good, lets return */
4430 		break;
4431 loop:
4432 		failed_cluster_refill = false;
4433 		failed_alloc = false;
4434 		btrfs_put_block_group(block_group);
4435 	}
4436 	up_read(&space_info->groups_sem);
4437 
4438 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4439 	 *			for them to make caching progress.  Also
4440 	 *			determine the best possible bg to cache
4441 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4442 	 *			caching kthreads as we move along
4443 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4444 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4445 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4446 	 *			again
4447 	 */
4448 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4449 	    (found_uncached_bg || empty_size || empty_cluster ||
4450 	     allowed_chunk_alloc)) {
4451 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4452 			found_uncached_bg = false;
4453 			loop++;
4454 			if (!ideal_cache_percent &&
4455 			    atomic_read(&space_info->caching_threads))
4456 				goto search;
4457 
4458 			/*
4459 			 * 1 of the following 2 things have happened so far
4460 			 *
4461 			 * 1) We found an ideal block group for caching that
4462 			 * is mostly full and will cache quickly, so we might
4463 			 * as well wait for it.
4464 			 *
4465 			 * 2) We searched for cached only and we didn't find
4466 			 * anything, and we didn't start any caching kthreads
4467 			 * either, so chances are we will loop through and
4468 			 * start a couple caching kthreads, and then come back
4469 			 * around and just wait for them.  This will be slower
4470 			 * because we will have 2 caching kthreads reading at
4471 			 * the same time when we could have just started one
4472 			 * and waited for it to get far enough to give us an
4473 			 * allocation, so go ahead and go to the wait caching
4474 			 * loop.
4475 			 */
4476 			loop = LOOP_CACHING_WAIT;
4477 			search_start = ideal_cache_offset;
4478 			ideal_cache_percent = 0;
4479 			goto ideal_cache;
4480 		} else if (loop == LOOP_FIND_IDEAL) {
4481 			/*
4482 			 * Didn't find a uncached bg, wait on anything we find
4483 			 * next.
4484 			 */
4485 			loop = LOOP_CACHING_WAIT;
4486 			goto search;
4487 		}
4488 
4489 		if (loop < LOOP_CACHING_WAIT) {
4490 			loop++;
4491 			goto search;
4492 		}
4493 
4494 		if (loop == LOOP_ALLOC_CHUNK) {
4495 			empty_size = 0;
4496 			empty_cluster = 0;
4497 		}
4498 
4499 		if (allowed_chunk_alloc) {
4500 			ret = do_chunk_alloc(trans, root, num_bytes +
4501 					     2 * 1024 * 1024, data, 1);
4502 			allowed_chunk_alloc = 0;
4503 			done_chunk_alloc = 1;
4504 		} else if (!done_chunk_alloc) {
4505 			space_info->force_alloc = 1;
4506 		}
4507 
4508 		if (loop < LOOP_NO_EMPTY_SIZE) {
4509 			loop++;
4510 			goto search;
4511 		}
4512 		ret = -ENOSPC;
4513 	} else if (!ins->objectid) {
4514 		ret = -ENOSPC;
4515 	}
4516 
4517 	/* we found what we needed */
4518 	if (ins->objectid) {
4519 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
4520 			trans->block_group = block_group->key.objectid;
4521 
4522 		btrfs_put_block_group(block_group);
4523 		ret = 0;
4524 	}
4525 
4526 	return ret;
4527 }
4528 
4529 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4530 			    int dump_block_groups)
4531 {
4532 	struct btrfs_block_group_cache *cache;
4533 
4534 	spin_lock(&info->lock);
4535 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4536 	       (unsigned long long)(info->total_bytes - info->bytes_used -
4537 				    info->bytes_pinned - info->bytes_reserved -
4538 				    info->bytes_super),
4539 	       (info->full) ? "" : "not ");
4540 	printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
4541 	       " may_use=%llu, used=%llu, root=%llu, super=%llu, reserved=%llu"
4542 	       "\n",
4543 	       (unsigned long long)info->total_bytes,
4544 	       (unsigned long long)info->bytes_pinned,
4545 	       (unsigned long long)info->bytes_delalloc,
4546 	       (unsigned long long)info->bytes_may_use,
4547 	       (unsigned long long)info->bytes_used,
4548 	       (unsigned long long)info->bytes_root,
4549 	       (unsigned long long)info->bytes_super,
4550 	       (unsigned long long)info->bytes_reserved);
4551 	spin_unlock(&info->lock);
4552 
4553 	if (!dump_block_groups)
4554 		return;
4555 
4556 	down_read(&info->groups_sem);
4557 	list_for_each_entry(cache, &info->block_groups, list) {
4558 		spin_lock(&cache->lock);
4559 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4560 		       "%llu pinned %llu reserved\n",
4561 		       (unsigned long long)cache->key.objectid,
4562 		       (unsigned long long)cache->key.offset,
4563 		       (unsigned long long)btrfs_block_group_used(&cache->item),
4564 		       (unsigned long long)cache->pinned,
4565 		       (unsigned long long)cache->reserved);
4566 		btrfs_dump_free_space(cache, bytes);
4567 		spin_unlock(&cache->lock);
4568 	}
4569 	up_read(&info->groups_sem);
4570 }
4571 
4572 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4573 			 struct btrfs_root *root,
4574 			 u64 num_bytes, u64 min_alloc_size,
4575 			 u64 empty_size, u64 hint_byte,
4576 			 u64 search_end, struct btrfs_key *ins,
4577 			 u64 data)
4578 {
4579 	int ret;
4580 	u64 search_start = 0;
4581 	struct btrfs_fs_info *info = root->fs_info;
4582 
4583 	data = btrfs_get_alloc_profile(root, data);
4584 again:
4585 	/*
4586 	 * the only place that sets empty_size is btrfs_realloc_node, which
4587 	 * is not called recursively on allocations
4588 	 */
4589 	if (empty_size || root->ref_cows) {
4590 		if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
4591 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4592 				     2 * 1024 * 1024,
4593 				     BTRFS_BLOCK_GROUP_METADATA |
4594 				     (info->metadata_alloc_profile &
4595 				      info->avail_metadata_alloc_bits), 0);
4596 		}
4597 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4598 				     num_bytes + 2 * 1024 * 1024, data, 0);
4599 	}
4600 
4601 	WARN_ON(num_bytes < root->sectorsize);
4602 	ret = find_free_extent(trans, root, num_bytes, empty_size,
4603 			       search_start, search_end, hint_byte, ins,
4604 			       trans->alloc_exclude_start,
4605 			       trans->alloc_exclude_nr, data);
4606 
4607 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
4608 		num_bytes = num_bytes >> 1;
4609 		num_bytes = num_bytes & ~(root->sectorsize - 1);
4610 		num_bytes = max(num_bytes, min_alloc_size);
4611 		do_chunk_alloc(trans, root->fs_info->extent_root,
4612 			       num_bytes, data, 1);
4613 		goto again;
4614 	}
4615 	if (ret == -ENOSPC) {
4616 		struct btrfs_space_info *sinfo;
4617 
4618 		sinfo = __find_space_info(root->fs_info, data);
4619 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
4620 		       "wanted %llu\n", (unsigned long long)data,
4621 		       (unsigned long long)num_bytes);
4622 		dump_space_info(sinfo, num_bytes, 1);
4623 	}
4624 
4625 	return ret;
4626 }
4627 
4628 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
4629 {
4630 	struct btrfs_block_group_cache *cache;
4631 	int ret = 0;
4632 
4633 	cache = btrfs_lookup_block_group(root->fs_info, start);
4634 	if (!cache) {
4635 		printk(KERN_ERR "Unable to find block group for %llu\n",
4636 		       (unsigned long long)start);
4637 		return -ENOSPC;
4638 	}
4639 
4640 	ret = btrfs_discard_extent(root, start, len);
4641 
4642 	btrfs_add_free_space(cache, start, len);
4643 	update_reserved_extents(cache, len, 0);
4644 	btrfs_put_block_group(cache);
4645 
4646 	return ret;
4647 }
4648 
4649 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4650 				      struct btrfs_root *root,
4651 				      u64 parent, u64 root_objectid,
4652 				      u64 flags, u64 owner, u64 offset,
4653 				      struct btrfs_key *ins, int ref_mod)
4654 {
4655 	int ret;
4656 	struct btrfs_fs_info *fs_info = root->fs_info;
4657 	struct btrfs_extent_item *extent_item;
4658 	struct btrfs_extent_inline_ref *iref;
4659 	struct btrfs_path *path;
4660 	struct extent_buffer *leaf;
4661 	int type;
4662 	u32 size;
4663 
4664 	if (parent > 0)
4665 		type = BTRFS_SHARED_DATA_REF_KEY;
4666 	else
4667 		type = BTRFS_EXTENT_DATA_REF_KEY;
4668 
4669 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4670 
4671 	path = btrfs_alloc_path();
4672 	BUG_ON(!path);
4673 
4674 	path->leave_spinning = 1;
4675 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4676 				      ins, size);
4677 	BUG_ON(ret);
4678 
4679 	leaf = path->nodes[0];
4680 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4681 				     struct btrfs_extent_item);
4682 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4683 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4684 	btrfs_set_extent_flags(leaf, extent_item,
4685 			       flags | BTRFS_EXTENT_FLAG_DATA);
4686 
4687 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4688 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4689 	if (parent > 0) {
4690 		struct btrfs_shared_data_ref *ref;
4691 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4692 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4693 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4694 	} else {
4695 		struct btrfs_extent_data_ref *ref;
4696 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4697 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4698 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4699 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4700 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4701 	}
4702 
4703 	btrfs_mark_buffer_dirty(path->nodes[0]);
4704 	btrfs_free_path(path);
4705 
4706 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4707 				 1, 0);
4708 	if (ret) {
4709 		printk(KERN_ERR "btrfs update block group failed for %llu "
4710 		       "%llu\n", (unsigned long long)ins->objectid,
4711 		       (unsigned long long)ins->offset);
4712 		BUG();
4713 	}
4714 	return ret;
4715 }
4716 
4717 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4718 				     struct btrfs_root *root,
4719 				     u64 parent, u64 root_objectid,
4720 				     u64 flags, struct btrfs_disk_key *key,
4721 				     int level, struct btrfs_key *ins)
4722 {
4723 	int ret;
4724 	struct btrfs_fs_info *fs_info = root->fs_info;
4725 	struct btrfs_extent_item *extent_item;
4726 	struct btrfs_tree_block_info *block_info;
4727 	struct btrfs_extent_inline_ref *iref;
4728 	struct btrfs_path *path;
4729 	struct extent_buffer *leaf;
4730 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
4731 
4732 	path = btrfs_alloc_path();
4733 	BUG_ON(!path);
4734 
4735 	path->leave_spinning = 1;
4736 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4737 				      ins, size);
4738 	BUG_ON(ret);
4739 
4740 	leaf = path->nodes[0];
4741 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4742 				     struct btrfs_extent_item);
4743 	btrfs_set_extent_refs(leaf, extent_item, 1);
4744 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4745 	btrfs_set_extent_flags(leaf, extent_item,
4746 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4747 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4748 
4749 	btrfs_set_tree_block_key(leaf, block_info, key);
4750 	btrfs_set_tree_block_level(leaf, block_info, level);
4751 
4752 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4753 	if (parent > 0) {
4754 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4755 		btrfs_set_extent_inline_ref_type(leaf, iref,
4756 						 BTRFS_SHARED_BLOCK_REF_KEY);
4757 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4758 	} else {
4759 		btrfs_set_extent_inline_ref_type(leaf, iref,
4760 						 BTRFS_TREE_BLOCK_REF_KEY);
4761 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
4762 	}
4763 
4764 	btrfs_mark_buffer_dirty(leaf);
4765 	btrfs_free_path(path);
4766 
4767 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4768 				 1, 0);
4769 	if (ret) {
4770 		printk(KERN_ERR "btrfs update block group failed for %llu "
4771 		       "%llu\n", (unsigned long long)ins->objectid,
4772 		       (unsigned long long)ins->offset);
4773 		BUG();
4774 	}
4775 	return ret;
4776 }
4777 
4778 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4779 				     struct btrfs_root *root,
4780 				     u64 root_objectid, u64 owner,
4781 				     u64 offset, struct btrfs_key *ins)
4782 {
4783 	int ret;
4784 
4785 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4786 
4787 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
4788 					 0, root_objectid, owner, offset,
4789 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
4790 	return ret;
4791 }
4792 
4793 /*
4794  * this is used by the tree logging recovery code.  It records that
4795  * an extent has been allocated and makes sure to clear the free
4796  * space cache bits as well
4797  */
4798 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4799 				   struct btrfs_root *root,
4800 				   u64 root_objectid, u64 owner, u64 offset,
4801 				   struct btrfs_key *ins)
4802 {
4803 	int ret;
4804 	struct btrfs_block_group_cache *block_group;
4805 	struct btrfs_caching_control *caching_ctl;
4806 	u64 start = ins->objectid;
4807 	u64 num_bytes = ins->offset;
4808 
4809 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
4810 	cache_block_group(block_group);
4811 	caching_ctl = get_caching_control(block_group);
4812 
4813 	if (!caching_ctl) {
4814 		BUG_ON(!block_group_cache_done(block_group));
4815 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
4816 		BUG_ON(ret);
4817 	} else {
4818 		mutex_lock(&caching_ctl->mutex);
4819 
4820 		if (start >= caching_ctl->progress) {
4821 			ret = add_excluded_extent(root, start, num_bytes);
4822 			BUG_ON(ret);
4823 		} else if (start + num_bytes <= caching_ctl->progress) {
4824 			ret = btrfs_remove_free_space(block_group,
4825 						      start, num_bytes);
4826 			BUG_ON(ret);
4827 		} else {
4828 			num_bytes = caching_ctl->progress - start;
4829 			ret = btrfs_remove_free_space(block_group,
4830 						      start, num_bytes);
4831 			BUG_ON(ret);
4832 
4833 			start = caching_ctl->progress;
4834 			num_bytes = ins->objectid + ins->offset -
4835 				    caching_ctl->progress;
4836 			ret = add_excluded_extent(root, start, num_bytes);
4837 			BUG_ON(ret);
4838 		}
4839 
4840 		mutex_unlock(&caching_ctl->mutex);
4841 		put_caching_control(caching_ctl);
4842 	}
4843 
4844 	update_reserved_extents(block_group, ins->offset, 1);
4845 	btrfs_put_block_group(block_group);
4846 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
4847 					 0, owner, offset, ins, 1);
4848 	return ret;
4849 }
4850 
4851 /*
4852  * finds a free extent and does all the dirty work required for allocation
4853  * returns the key for the extent through ins, and a tree buffer for
4854  * the first block of the extent through buf.
4855  *
4856  * returns 0 if everything worked, non-zero otherwise.
4857  */
4858 static int alloc_tree_block(struct btrfs_trans_handle *trans,
4859 			    struct btrfs_root *root,
4860 			    u64 num_bytes, u64 parent, u64 root_objectid,
4861 			    struct btrfs_disk_key *key, int level,
4862 			    u64 empty_size, u64 hint_byte, u64 search_end,
4863 			    struct btrfs_key *ins)
4864 {
4865 	int ret;
4866 	u64 flags = 0;
4867 
4868 	ret = btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
4869 				   empty_size, hint_byte, search_end,
4870 				   ins, 0);
4871 	if (ret)
4872 		return ret;
4873 
4874 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4875 		if (parent == 0)
4876 			parent = ins->objectid;
4877 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4878 	} else
4879 		BUG_ON(parent > 0);
4880 
4881 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4882 		struct btrfs_delayed_extent_op *extent_op;
4883 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
4884 		BUG_ON(!extent_op);
4885 		if (key)
4886 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4887 		else
4888 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4889 		extent_op->flags_to_set = flags;
4890 		extent_op->update_key = 1;
4891 		extent_op->update_flags = 1;
4892 		extent_op->is_data = 0;
4893 
4894 		ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
4895 					ins->offset, parent, root_objectid,
4896 					level, BTRFS_ADD_DELAYED_EXTENT,
4897 					extent_op);
4898 		BUG_ON(ret);
4899 	}
4900 	return ret;
4901 }
4902 
4903 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
4904 					    struct btrfs_root *root,
4905 					    u64 bytenr, u32 blocksize,
4906 					    int level)
4907 {
4908 	struct extent_buffer *buf;
4909 
4910 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
4911 	if (!buf)
4912 		return ERR_PTR(-ENOMEM);
4913 	btrfs_set_header_generation(buf, trans->transid);
4914 	btrfs_set_buffer_lockdep_class(buf, level);
4915 	btrfs_tree_lock(buf);
4916 	clean_tree_block(trans, root, buf);
4917 
4918 	btrfs_set_lock_blocking(buf);
4919 	btrfs_set_buffer_uptodate(buf);
4920 
4921 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4922 		set_extent_dirty(&root->dirty_log_pages, buf->start,
4923 			 buf->start + buf->len - 1, GFP_NOFS);
4924 	} else {
4925 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4926 			 buf->start + buf->len - 1, GFP_NOFS);
4927 	}
4928 	trans->blocks_used++;
4929 	/* this returns a buffer locked for blocking */
4930 	return buf;
4931 }
4932 
4933 /*
4934  * helper function to allocate a block for a given tree
4935  * returns the tree buffer or NULL.
4936  */
4937 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
4938 					struct btrfs_root *root, u32 blocksize,
4939 					u64 parent, u64 root_objectid,
4940 					struct btrfs_disk_key *key, int level,
4941 					u64 hint, u64 empty_size)
4942 {
4943 	struct btrfs_key ins;
4944 	int ret;
4945 	struct extent_buffer *buf;
4946 
4947 	ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
4948 			       key, level, empty_size, hint, (u64)-1, &ins);
4949 	if (ret) {
4950 		BUG_ON(ret > 0);
4951 		return ERR_PTR(ret);
4952 	}
4953 
4954 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
4955 				    blocksize, level);
4956 	return buf;
4957 }
4958 
4959 struct walk_control {
4960 	u64 refs[BTRFS_MAX_LEVEL];
4961 	u64 flags[BTRFS_MAX_LEVEL];
4962 	struct btrfs_key update_progress;
4963 	int stage;
4964 	int level;
4965 	int shared_level;
4966 	int update_ref;
4967 	int keep_locks;
4968 	int reada_slot;
4969 	int reada_count;
4970 };
4971 
4972 #define DROP_REFERENCE	1
4973 #define UPDATE_BACKREF	2
4974 
4975 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4976 				     struct btrfs_root *root,
4977 				     struct walk_control *wc,
4978 				     struct btrfs_path *path)
4979 {
4980 	u64 bytenr;
4981 	u64 generation;
4982 	u64 refs;
4983 	u64 flags;
4984 	u64 last = 0;
4985 	u32 nritems;
4986 	u32 blocksize;
4987 	struct btrfs_key key;
4988 	struct extent_buffer *eb;
4989 	int ret;
4990 	int slot;
4991 	int nread = 0;
4992 
4993 	if (path->slots[wc->level] < wc->reada_slot) {
4994 		wc->reada_count = wc->reada_count * 2 / 3;
4995 		wc->reada_count = max(wc->reada_count, 2);
4996 	} else {
4997 		wc->reada_count = wc->reada_count * 3 / 2;
4998 		wc->reada_count = min_t(int, wc->reada_count,
4999 					BTRFS_NODEPTRS_PER_BLOCK(root));
5000 	}
5001 
5002 	eb = path->nodes[wc->level];
5003 	nritems = btrfs_header_nritems(eb);
5004 	blocksize = btrfs_level_size(root, wc->level - 1);
5005 
5006 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5007 		if (nread >= wc->reada_count)
5008 			break;
5009 
5010 		cond_resched();
5011 		bytenr = btrfs_node_blockptr(eb, slot);
5012 		generation = btrfs_node_ptr_generation(eb, slot);
5013 
5014 		if (slot == path->slots[wc->level])
5015 			goto reada;
5016 
5017 		if (wc->stage == UPDATE_BACKREF &&
5018 		    generation <= root->root_key.offset)
5019 			continue;
5020 
5021 		/* We don't lock the tree block, it's OK to be racy here */
5022 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5023 					       &refs, &flags);
5024 		BUG_ON(ret);
5025 		BUG_ON(refs == 0);
5026 
5027 		if (wc->stage == DROP_REFERENCE) {
5028 			if (refs == 1)
5029 				goto reada;
5030 
5031 			if (wc->level == 1 &&
5032 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5033 				continue;
5034 			if (!wc->update_ref ||
5035 			    generation <= root->root_key.offset)
5036 				continue;
5037 			btrfs_node_key_to_cpu(eb, &key, slot);
5038 			ret = btrfs_comp_cpu_keys(&key,
5039 						  &wc->update_progress);
5040 			if (ret < 0)
5041 				continue;
5042 		} else {
5043 			if (wc->level == 1 &&
5044 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5045 				continue;
5046 		}
5047 reada:
5048 		ret = readahead_tree_block(root, bytenr, blocksize,
5049 					   generation);
5050 		if (ret)
5051 			break;
5052 		last = bytenr + blocksize;
5053 		nread++;
5054 	}
5055 	wc->reada_slot = slot;
5056 }
5057 
5058 /*
5059  * hepler to process tree block while walking down the tree.
5060  *
5061  * when wc->stage == UPDATE_BACKREF, this function updates
5062  * back refs for pointers in the block.
5063  *
5064  * NOTE: return value 1 means we should stop walking down.
5065  */
5066 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5067 				   struct btrfs_root *root,
5068 				   struct btrfs_path *path,
5069 				   struct walk_control *wc, int lookup_info)
5070 {
5071 	int level = wc->level;
5072 	struct extent_buffer *eb = path->nodes[level];
5073 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5074 	int ret;
5075 
5076 	if (wc->stage == UPDATE_BACKREF &&
5077 	    btrfs_header_owner(eb) != root->root_key.objectid)
5078 		return 1;
5079 
5080 	/*
5081 	 * when reference count of tree block is 1, it won't increase
5082 	 * again. once full backref flag is set, we never clear it.
5083 	 */
5084 	if (lookup_info &&
5085 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5086 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5087 		BUG_ON(!path->locks[level]);
5088 		ret = btrfs_lookup_extent_info(trans, root,
5089 					       eb->start, eb->len,
5090 					       &wc->refs[level],
5091 					       &wc->flags[level]);
5092 		BUG_ON(ret);
5093 		BUG_ON(wc->refs[level] == 0);
5094 	}
5095 
5096 	if (wc->stage == DROP_REFERENCE) {
5097 		if (wc->refs[level] > 1)
5098 			return 1;
5099 
5100 		if (path->locks[level] && !wc->keep_locks) {
5101 			btrfs_tree_unlock(eb);
5102 			path->locks[level] = 0;
5103 		}
5104 		return 0;
5105 	}
5106 
5107 	/* wc->stage == UPDATE_BACKREF */
5108 	if (!(wc->flags[level] & flag)) {
5109 		BUG_ON(!path->locks[level]);
5110 		ret = btrfs_inc_ref(trans, root, eb, 1);
5111 		BUG_ON(ret);
5112 		ret = btrfs_dec_ref(trans, root, eb, 0);
5113 		BUG_ON(ret);
5114 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5115 						  eb->len, flag, 0);
5116 		BUG_ON(ret);
5117 		wc->flags[level] |= flag;
5118 	}
5119 
5120 	/*
5121 	 * the block is shared by multiple trees, so it's not good to
5122 	 * keep the tree lock
5123 	 */
5124 	if (path->locks[level] && level > 0) {
5125 		btrfs_tree_unlock(eb);
5126 		path->locks[level] = 0;
5127 	}
5128 	return 0;
5129 }
5130 
5131 /*
5132  * hepler to process tree block pointer.
5133  *
5134  * when wc->stage == DROP_REFERENCE, this function checks
5135  * reference count of the block pointed to. if the block
5136  * is shared and we need update back refs for the subtree
5137  * rooted at the block, this function changes wc->stage to
5138  * UPDATE_BACKREF. if the block is shared and there is no
5139  * need to update back, this function drops the reference
5140  * to the block.
5141  *
5142  * NOTE: return value 1 means we should stop walking down.
5143  */
5144 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5145 				 struct btrfs_root *root,
5146 				 struct btrfs_path *path,
5147 				 struct walk_control *wc, int *lookup_info)
5148 {
5149 	u64 bytenr;
5150 	u64 generation;
5151 	u64 parent;
5152 	u32 blocksize;
5153 	struct btrfs_key key;
5154 	struct extent_buffer *next;
5155 	int level = wc->level;
5156 	int reada = 0;
5157 	int ret = 0;
5158 
5159 	generation = btrfs_node_ptr_generation(path->nodes[level],
5160 					       path->slots[level]);
5161 	/*
5162 	 * if the lower level block was created before the snapshot
5163 	 * was created, we know there is no need to update back refs
5164 	 * for the subtree
5165 	 */
5166 	if (wc->stage == UPDATE_BACKREF &&
5167 	    generation <= root->root_key.offset) {
5168 		*lookup_info = 1;
5169 		return 1;
5170 	}
5171 
5172 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5173 	blocksize = btrfs_level_size(root, level - 1);
5174 
5175 	next = btrfs_find_tree_block(root, bytenr, blocksize);
5176 	if (!next) {
5177 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5178 		reada = 1;
5179 	}
5180 	btrfs_tree_lock(next);
5181 	btrfs_set_lock_blocking(next);
5182 
5183 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5184 				       &wc->refs[level - 1],
5185 				       &wc->flags[level - 1]);
5186 	BUG_ON(ret);
5187 	BUG_ON(wc->refs[level - 1] == 0);
5188 	*lookup_info = 0;
5189 
5190 	if (wc->stage == DROP_REFERENCE) {
5191 		if (wc->refs[level - 1] > 1) {
5192 			if (level == 1 &&
5193 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5194 				goto skip;
5195 
5196 			if (!wc->update_ref ||
5197 			    generation <= root->root_key.offset)
5198 				goto skip;
5199 
5200 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5201 					      path->slots[level]);
5202 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5203 			if (ret < 0)
5204 				goto skip;
5205 
5206 			wc->stage = UPDATE_BACKREF;
5207 			wc->shared_level = level - 1;
5208 		}
5209 	} else {
5210 		if (level == 1 &&
5211 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5212 			goto skip;
5213 	}
5214 
5215 	if (!btrfs_buffer_uptodate(next, generation)) {
5216 		btrfs_tree_unlock(next);
5217 		free_extent_buffer(next);
5218 		next = NULL;
5219 		*lookup_info = 1;
5220 	}
5221 
5222 	if (!next) {
5223 		if (reada && level == 1)
5224 			reada_walk_down(trans, root, wc, path);
5225 		next = read_tree_block(root, bytenr, blocksize, generation);
5226 		btrfs_tree_lock(next);
5227 		btrfs_set_lock_blocking(next);
5228 	}
5229 
5230 	level--;
5231 	BUG_ON(level != btrfs_header_level(next));
5232 	path->nodes[level] = next;
5233 	path->slots[level] = 0;
5234 	path->locks[level] = 1;
5235 	wc->level = level;
5236 	if (wc->level == 1)
5237 		wc->reada_slot = 0;
5238 	return 0;
5239 skip:
5240 	wc->refs[level - 1] = 0;
5241 	wc->flags[level - 1] = 0;
5242 	if (wc->stage == DROP_REFERENCE) {
5243 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5244 			parent = path->nodes[level]->start;
5245 		} else {
5246 			BUG_ON(root->root_key.objectid !=
5247 			       btrfs_header_owner(path->nodes[level]));
5248 			parent = 0;
5249 		}
5250 
5251 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5252 					root->root_key.objectid, level - 1, 0);
5253 		BUG_ON(ret);
5254 	}
5255 	btrfs_tree_unlock(next);
5256 	free_extent_buffer(next);
5257 	*lookup_info = 1;
5258 	return 1;
5259 }
5260 
5261 /*
5262  * hepler to process tree block while walking up the tree.
5263  *
5264  * when wc->stage == DROP_REFERENCE, this function drops
5265  * reference count on the block.
5266  *
5267  * when wc->stage == UPDATE_BACKREF, this function changes
5268  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5269  * to UPDATE_BACKREF previously while processing the block.
5270  *
5271  * NOTE: return value 1 means we should stop walking up.
5272  */
5273 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5274 				 struct btrfs_root *root,
5275 				 struct btrfs_path *path,
5276 				 struct walk_control *wc)
5277 {
5278 	int ret = 0;
5279 	int level = wc->level;
5280 	struct extent_buffer *eb = path->nodes[level];
5281 	u64 parent = 0;
5282 
5283 	if (wc->stage == UPDATE_BACKREF) {
5284 		BUG_ON(wc->shared_level < level);
5285 		if (level < wc->shared_level)
5286 			goto out;
5287 
5288 		ret = find_next_key(path, level + 1, &wc->update_progress);
5289 		if (ret > 0)
5290 			wc->update_ref = 0;
5291 
5292 		wc->stage = DROP_REFERENCE;
5293 		wc->shared_level = -1;
5294 		path->slots[level] = 0;
5295 
5296 		/*
5297 		 * check reference count again if the block isn't locked.
5298 		 * we should start walking down the tree again if reference
5299 		 * count is one.
5300 		 */
5301 		if (!path->locks[level]) {
5302 			BUG_ON(level == 0);
5303 			btrfs_tree_lock(eb);
5304 			btrfs_set_lock_blocking(eb);
5305 			path->locks[level] = 1;
5306 
5307 			ret = btrfs_lookup_extent_info(trans, root,
5308 						       eb->start, eb->len,
5309 						       &wc->refs[level],
5310 						       &wc->flags[level]);
5311 			BUG_ON(ret);
5312 			BUG_ON(wc->refs[level] == 0);
5313 			if (wc->refs[level] == 1) {
5314 				btrfs_tree_unlock(eb);
5315 				path->locks[level] = 0;
5316 				return 1;
5317 			}
5318 		}
5319 	}
5320 
5321 	/* wc->stage == DROP_REFERENCE */
5322 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5323 
5324 	if (wc->refs[level] == 1) {
5325 		if (level == 0) {
5326 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5327 				ret = btrfs_dec_ref(trans, root, eb, 1);
5328 			else
5329 				ret = btrfs_dec_ref(trans, root, eb, 0);
5330 			BUG_ON(ret);
5331 		}
5332 		/* make block locked assertion in clean_tree_block happy */
5333 		if (!path->locks[level] &&
5334 		    btrfs_header_generation(eb) == trans->transid) {
5335 			btrfs_tree_lock(eb);
5336 			btrfs_set_lock_blocking(eb);
5337 			path->locks[level] = 1;
5338 		}
5339 		clean_tree_block(trans, root, eb);
5340 	}
5341 
5342 	if (eb == root->node) {
5343 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5344 			parent = eb->start;
5345 		else
5346 			BUG_ON(root->root_key.objectid !=
5347 			       btrfs_header_owner(eb));
5348 	} else {
5349 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5350 			parent = path->nodes[level + 1]->start;
5351 		else
5352 			BUG_ON(root->root_key.objectid !=
5353 			       btrfs_header_owner(path->nodes[level + 1]));
5354 	}
5355 
5356 	ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
5357 				root->root_key.objectid, level, 0);
5358 	BUG_ON(ret);
5359 out:
5360 	wc->refs[level] = 0;
5361 	wc->flags[level] = 0;
5362 	return ret;
5363 }
5364 
5365 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5366 				   struct btrfs_root *root,
5367 				   struct btrfs_path *path,
5368 				   struct walk_control *wc)
5369 {
5370 	int level = wc->level;
5371 	int lookup_info = 1;
5372 	int ret;
5373 
5374 	while (level >= 0) {
5375 		if (path->slots[level] >=
5376 		    btrfs_header_nritems(path->nodes[level]))
5377 			break;
5378 
5379 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5380 		if (ret > 0)
5381 			break;
5382 
5383 		if (level == 0)
5384 			break;
5385 
5386 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5387 		if (ret > 0) {
5388 			path->slots[level]++;
5389 			continue;
5390 		}
5391 		level = wc->level;
5392 	}
5393 	return 0;
5394 }
5395 
5396 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5397 				 struct btrfs_root *root,
5398 				 struct btrfs_path *path,
5399 				 struct walk_control *wc, int max_level)
5400 {
5401 	int level = wc->level;
5402 	int ret;
5403 
5404 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5405 	while (level < max_level && path->nodes[level]) {
5406 		wc->level = level;
5407 		if (path->slots[level] + 1 <
5408 		    btrfs_header_nritems(path->nodes[level])) {
5409 			path->slots[level]++;
5410 			return 0;
5411 		} else {
5412 			ret = walk_up_proc(trans, root, path, wc);
5413 			if (ret > 0)
5414 				return 0;
5415 
5416 			if (path->locks[level]) {
5417 				btrfs_tree_unlock(path->nodes[level]);
5418 				path->locks[level] = 0;
5419 			}
5420 			free_extent_buffer(path->nodes[level]);
5421 			path->nodes[level] = NULL;
5422 			level++;
5423 		}
5424 	}
5425 	return 1;
5426 }
5427 
5428 /*
5429  * drop a subvolume tree.
5430  *
5431  * this function traverses the tree freeing any blocks that only
5432  * referenced by the tree.
5433  *
5434  * when a shared tree block is found. this function decreases its
5435  * reference count by one. if update_ref is true, this function
5436  * also make sure backrefs for the shared block and all lower level
5437  * blocks are properly updated.
5438  */
5439 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
5440 {
5441 	struct btrfs_path *path;
5442 	struct btrfs_trans_handle *trans;
5443 	struct btrfs_root *tree_root = root->fs_info->tree_root;
5444 	struct btrfs_root_item *root_item = &root->root_item;
5445 	struct walk_control *wc;
5446 	struct btrfs_key key;
5447 	int err = 0;
5448 	int ret;
5449 	int level;
5450 
5451 	path = btrfs_alloc_path();
5452 	BUG_ON(!path);
5453 
5454 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5455 	BUG_ON(!wc);
5456 
5457 	trans = btrfs_start_transaction(tree_root, 1);
5458 
5459 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5460 		level = btrfs_header_level(root->node);
5461 		path->nodes[level] = btrfs_lock_root_node(root);
5462 		btrfs_set_lock_blocking(path->nodes[level]);
5463 		path->slots[level] = 0;
5464 		path->locks[level] = 1;
5465 		memset(&wc->update_progress, 0,
5466 		       sizeof(wc->update_progress));
5467 	} else {
5468 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5469 		memcpy(&wc->update_progress, &key,
5470 		       sizeof(wc->update_progress));
5471 
5472 		level = root_item->drop_level;
5473 		BUG_ON(level == 0);
5474 		path->lowest_level = level;
5475 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5476 		path->lowest_level = 0;
5477 		if (ret < 0) {
5478 			err = ret;
5479 			goto out;
5480 		}
5481 		WARN_ON(ret > 0);
5482 
5483 		/*
5484 		 * unlock our path, this is safe because only this
5485 		 * function is allowed to delete this snapshot
5486 		 */
5487 		btrfs_unlock_up_safe(path, 0);
5488 
5489 		level = btrfs_header_level(root->node);
5490 		while (1) {
5491 			btrfs_tree_lock(path->nodes[level]);
5492 			btrfs_set_lock_blocking(path->nodes[level]);
5493 
5494 			ret = btrfs_lookup_extent_info(trans, root,
5495 						path->nodes[level]->start,
5496 						path->nodes[level]->len,
5497 						&wc->refs[level],
5498 						&wc->flags[level]);
5499 			BUG_ON(ret);
5500 			BUG_ON(wc->refs[level] == 0);
5501 
5502 			if (level == root_item->drop_level)
5503 				break;
5504 
5505 			btrfs_tree_unlock(path->nodes[level]);
5506 			WARN_ON(wc->refs[level] != 1);
5507 			level--;
5508 		}
5509 	}
5510 
5511 	wc->level = level;
5512 	wc->shared_level = -1;
5513 	wc->stage = DROP_REFERENCE;
5514 	wc->update_ref = update_ref;
5515 	wc->keep_locks = 0;
5516 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5517 
5518 	while (1) {
5519 		ret = walk_down_tree(trans, root, path, wc);
5520 		if (ret < 0) {
5521 			err = ret;
5522 			break;
5523 		}
5524 
5525 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5526 		if (ret < 0) {
5527 			err = ret;
5528 			break;
5529 		}
5530 
5531 		if (ret > 0) {
5532 			BUG_ON(wc->stage != DROP_REFERENCE);
5533 			break;
5534 		}
5535 
5536 		if (wc->stage == DROP_REFERENCE) {
5537 			level = wc->level;
5538 			btrfs_node_key(path->nodes[level],
5539 				       &root_item->drop_progress,
5540 				       path->slots[level]);
5541 			root_item->drop_level = level;
5542 		}
5543 
5544 		BUG_ON(wc->level == 0);
5545 		if (trans->transaction->in_commit ||
5546 		    trans->transaction->delayed_refs.flushing) {
5547 			ret = btrfs_update_root(trans, tree_root,
5548 						&root->root_key,
5549 						root_item);
5550 			BUG_ON(ret);
5551 
5552 			btrfs_end_transaction(trans, tree_root);
5553 			trans = btrfs_start_transaction(tree_root, 1);
5554 		} else {
5555 			unsigned long update;
5556 			update = trans->delayed_ref_updates;
5557 			trans->delayed_ref_updates = 0;
5558 			if (update)
5559 				btrfs_run_delayed_refs(trans, tree_root,
5560 						       update);
5561 		}
5562 	}
5563 	btrfs_release_path(root, path);
5564 	BUG_ON(err);
5565 
5566 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
5567 	BUG_ON(ret);
5568 
5569 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5570 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
5571 					   NULL, NULL);
5572 		BUG_ON(ret < 0);
5573 		if (ret > 0) {
5574 			ret = btrfs_del_orphan_item(trans, tree_root,
5575 						    root->root_key.objectid);
5576 			BUG_ON(ret);
5577 		}
5578 	}
5579 
5580 	if (root->in_radix) {
5581 		btrfs_free_fs_root(tree_root->fs_info, root);
5582 	} else {
5583 		free_extent_buffer(root->node);
5584 		free_extent_buffer(root->commit_root);
5585 		kfree(root);
5586 	}
5587 out:
5588 	btrfs_end_transaction(trans, tree_root);
5589 	kfree(wc);
5590 	btrfs_free_path(path);
5591 	return err;
5592 }
5593 
5594 /*
5595  * drop subtree rooted at tree block 'node'.
5596  *
5597  * NOTE: this function will unlock and release tree block 'node'
5598  */
5599 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5600 			struct btrfs_root *root,
5601 			struct extent_buffer *node,
5602 			struct extent_buffer *parent)
5603 {
5604 	struct btrfs_path *path;
5605 	struct walk_control *wc;
5606 	int level;
5607 	int parent_level;
5608 	int ret = 0;
5609 	int wret;
5610 
5611 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5612 
5613 	path = btrfs_alloc_path();
5614 	BUG_ON(!path);
5615 
5616 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5617 	BUG_ON(!wc);
5618 
5619 	btrfs_assert_tree_locked(parent);
5620 	parent_level = btrfs_header_level(parent);
5621 	extent_buffer_get(parent);
5622 	path->nodes[parent_level] = parent;
5623 	path->slots[parent_level] = btrfs_header_nritems(parent);
5624 
5625 	btrfs_assert_tree_locked(node);
5626 	level = btrfs_header_level(node);
5627 	path->nodes[level] = node;
5628 	path->slots[level] = 0;
5629 	path->locks[level] = 1;
5630 
5631 	wc->refs[parent_level] = 1;
5632 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5633 	wc->level = level;
5634 	wc->shared_level = -1;
5635 	wc->stage = DROP_REFERENCE;
5636 	wc->update_ref = 0;
5637 	wc->keep_locks = 1;
5638 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5639 
5640 	while (1) {
5641 		wret = walk_down_tree(trans, root, path, wc);
5642 		if (wret < 0) {
5643 			ret = wret;
5644 			break;
5645 		}
5646 
5647 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5648 		if (wret < 0)
5649 			ret = wret;
5650 		if (wret != 0)
5651 			break;
5652 	}
5653 
5654 	kfree(wc);
5655 	btrfs_free_path(path);
5656 	return ret;
5657 }
5658 
5659 #if 0
5660 static unsigned long calc_ra(unsigned long start, unsigned long last,
5661 			     unsigned long nr)
5662 {
5663 	return min(last, start + nr - 1);
5664 }
5665 
5666 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
5667 					 u64 len)
5668 {
5669 	u64 page_start;
5670 	u64 page_end;
5671 	unsigned long first_index;
5672 	unsigned long last_index;
5673 	unsigned long i;
5674 	struct page *page;
5675 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5676 	struct file_ra_state *ra;
5677 	struct btrfs_ordered_extent *ordered;
5678 	unsigned int total_read = 0;
5679 	unsigned int total_dirty = 0;
5680 	int ret = 0;
5681 
5682 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
5683 
5684 	mutex_lock(&inode->i_mutex);
5685 	first_index = start >> PAGE_CACHE_SHIFT;
5686 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
5687 
5688 	/* make sure the dirty trick played by the caller work */
5689 	ret = invalidate_inode_pages2_range(inode->i_mapping,
5690 					    first_index, last_index);
5691 	if (ret)
5692 		goto out_unlock;
5693 
5694 	file_ra_state_init(ra, inode->i_mapping);
5695 
5696 	for (i = first_index ; i <= last_index; i++) {
5697 		if (total_read % ra->ra_pages == 0) {
5698 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
5699 				       calc_ra(i, last_index, ra->ra_pages));
5700 		}
5701 		total_read++;
5702 again:
5703 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
5704 			BUG_ON(1);
5705 		page = grab_cache_page(inode->i_mapping, i);
5706 		if (!page) {
5707 			ret = -ENOMEM;
5708 			goto out_unlock;
5709 		}
5710 		if (!PageUptodate(page)) {
5711 			btrfs_readpage(NULL, page);
5712 			lock_page(page);
5713 			if (!PageUptodate(page)) {
5714 				unlock_page(page);
5715 				page_cache_release(page);
5716 				ret = -EIO;
5717 				goto out_unlock;
5718 			}
5719 		}
5720 		wait_on_page_writeback(page);
5721 
5722 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
5723 		page_end = page_start + PAGE_CACHE_SIZE - 1;
5724 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5725 
5726 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
5727 		if (ordered) {
5728 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5729 			unlock_page(page);
5730 			page_cache_release(page);
5731 			btrfs_start_ordered_extent(inode, ordered, 1);
5732 			btrfs_put_ordered_extent(ordered);
5733 			goto again;
5734 		}
5735 		set_page_extent_mapped(page);
5736 
5737 		if (i == first_index)
5738 			set_extent_bits(io_tree, page_start, page_end,
5739 					EXTENT_BOUNDARY, GFP_NOFS);
5740 		btrfs_set_extent_delalloc(inode, page_start, page_end);
5741 
5742 		set_page_dirty(page);
5743 		total_dirty++;
5744 
5745 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5746 		unlock_page(page);
5747 		page_cache_release(page);
5748 	}
5749 
5750 out_unlock:
5751 	kfree(ra);
5752 	mutex_unlock(&inode->i_mutex);
5753 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
5754 	return ret;
5755 }
5756 
5757 static noinline int relocate_data_extent(struct inode *reloc_inode,
5758 					 struct btrfs_key *extent_key,
5759 					 u64 offset)
5760 {
5761 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5762 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
5763 	struct extent_map *em;
5764 	u64 start = extent_key->objectid - offset;
5765 	u64 end = start + extent_key->offset - 1;
5766 
5767 	em = alloc_extent_map(GFP_NOFS);
5768 	BUG_ON(!em || IS_ERR(em));
5769 
5770 	em->start = start;
5771 	em->len = extent_key->offset;
5772 	em->block_len = extent_key->offset;
5773 	em->block_start = extent_key->objectid;
5774 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5775 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5776 
5777 	/* setup extent map to cheat btrfs_readpage */
5778 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5779 	while (1) {
5780 		int ret;
5781 		write_lock(&em_tree->lock);
5782 		ret = add_extent_mapping(em_tree, em);
5783 		write_unlock(&em_tree->lock);
5784 		if (ret != -EEXIST) {
5785 			free_extent_map(em);
5786 			break;
5787 		}
5788 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
5789 	}
5790 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5791 
5792 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
5793 }
5794 
5795 struct btrfs_ref_path {
5796 	u64 extent_start;
5797 	u64 nodes[BTRFS_MAX_LEVEL];
5798 	u64 root_objectid;
5799 	u64 root_generation;
5800 	u64 owner_objectid;
5801 	u32 num_refs;
5802 	int lowest_level;
5803 	int current_level;
5804 	int shared_level;
5805 
5806 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
5807 	u64 new_nodes[BTRFS_MAX_LEVEL];
5808 };
5809 
5810 struct disk_extent {
5811 	u64 ram_bytes;
5812 	u64 disk_bytenr;
5813 	u64 disk_num_bytes;
5814 	u64 offset;
5815 	u64 num_bytes;
5816 	u8 compression;
5817 	u8 encryption;
5818 	u16 other_encoding;
5819 };
5820 
5821 static int is_cowonly_root(u64 root_objectid)
5822 {
5823 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
5824 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
5825 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
5826 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
5827 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5828 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
5829 		return 1;
5830 	return 0;
5831 }
5832 
5833 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
5834 				    struct btrfs_root *extent_root,
5835 				    struct btrfs_ref_path *ref_path,
5836 				    int first_time)
5837 {
5838 	struct extent_buffer *leaf;
5839 	struct btrfs_path *path;
5840 	struct btrfs_extent_ref *ref;
5841 	struct btrfs_key key;
5842 	struct btrfs_key found_key;
5843 	u64 bytenr;
5844 	u32 nritems;
5845 	int level;
5846 	int ret = 1;
5847 
5848 	path = btrfs_alloc_path();
5849 	if (!path)
5850 		return -ENOMEM;
5851 
5852 	if (first_time) {
5853 		ref_path->lowest_level = -1;
5854 		ref_path->current_level = -1;
5855 		ref_path->shared_level = -1;
5856 		goto walk_up;
5857 	}
5858 walk_down:
5859 	level = ref_path->current_level - 1;
5860 	while (level >= -1) {
5861 		u64 parent;
5862 		if (level < ref_path->lowest_level)
5863 			break;
5864 
5865 		if (level >= 0)
5866 			bytenr = ref_path->nodes[level];
5867 		else
5868 			bytenr = ref_path->extent_start;
5869 		BUG_ON(bytenr == 0);
5870 
5871 		parent = ref_path->nodes[level + 1];
5872 		ref_path->nodes[level + 1] = 0;
5873 		ref_path->current_level = level;
5874 		BUG_ON(parent == 0);
5875 
5876 		key.objectid = bytenr;
5877 		key.offset = parent + 1;
5878 		key.type = BTRFS_EXTENT_REF_KEY;
5879 
5880 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5881 		if (ret < 0)
5882 			goto out;
5883 		BUG_ON(ret == 0);
5884 
5885 		leaf = path->nodes[0];
5886 		nritems = btrfs_header_nritems(leaf);
5887 		if (path->slots[0] >= nritems) {
5888 			ret = btrfs_next_leaf(extent_root, path);
5889 			if (ret < 0)
5890 				goto out;
5891 			if (ret > 0)
5892 				goto next;
5893 			leaf = path->nodes[0];
5894 		}
5895 
5896 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5897 		if (found_key.objectid == bytenr &&
5898 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
5899 			if (level < ref_path->shared_level)
5900 				ref_path->shared_level = level;
5901 			goto found;
5902 		}
5903 next:
5904 		level--;
5905 		btrfs_release_path(extent_root, path);
5906 		cond_resched();
5907 	}
5908 	/* reached lowest level */
5909 	ret = 1;
5910 	goto out;
5911 walk_up:
5912 	level = ref_path->current_level;
5913 	while (level < BTRFS_MAX_LEVEL - 1) {
5914 		u64 ref_objectid;
5915 
5916 		if (level >= 0)
5917 			bytenr = ref_path->nodes[level];
5918 		else
5919 			bytenr = ref_path->extent_start;
5920 
5921 		BUG_ON(bytenr == 0);
5922 
5923 		key.objectid = bytenr;
5924 		key.offset = 0;
5925 		key.type = BTRFS_EXTENT_REF_KEY;
5926 
5927 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5928 		if (ret < 0)
5929 			goto out;
5930 
5931 		leaf = path->nodes[0];
5932 		nritems = btrfs_header_nritems(leaf);
5933 		if (path->slots[0] >= nritems) {
5934 			ret = btrfs_next_leaf(extent_root, path);
5935 			if (ret < 0)
5936 				goto out;
5937 			if (ret > 0) {
5938 				/* the extent was freed by someone */
5939 				if (ref_path->lowest_level == level)
5940 					goto out;
5941 				btrfs_release_path(extent_root, path);
5942 				goto walk_down;
5943 			}
5944 			leaf = path->nodes[0];
5945 		}
5946 
5947 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5948 		if (found_key.objectid != bytenr ||
5949 				found_key.type != BTRFS_EXTENT_REF_KEY) {
5950 			/* the extent was freed by someone */
5951 			if (ref_path->lowest_level == level) {
5952 				ret = 1;
5953 				goto out;
5954 			}
5955 			btrfs_release_path(extent_root, path);
5956 			goto walk_down;
5957 		}
5958 found:
5959 		ref = btrfs_item_ptr(leaf, path->slots[0],
5960 				struct btrfs_extent_ref);
5961 		ref_objectid = btrfs_ref_objectid(leaf, ref);
5962 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5963 			if (first_time) {
5964 				level = (int)ref_objectid;
5965 				BUG_ON(level >= BTRFS_MAX_LEVEL);
5966 				ref_path->lowest_level = level;
5967 				ref_path->current_level = level;
5968 				ref_path->nodes[level] = bytenr;
5969 			} else {
5970 				WARN_ON(ref_objectid != level);
5971 			}
5972 		} else {
5973 			WARN_ON(level != -1);
5974 		}
5975 		first_time = 0;
5976 
5977 		if (ref_path->lowest_level == level) {
5978 			ref_path->owner_objectid = ref_objectid;
5979 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
5980 		}
5981 
5982 		/*
5983 		 * the block is tree root or the block isn't in reference
5984 		 * counted tree.
5985 		 */
5986 		if (found_key.objectid == found_key.offset ||
5987 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
5988 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
5989 			ref_path->root_generation =
5990 				btrfs_ref_generation(leaf, ref);
5991 			if (level < 0) {
5992 				/* special reference from the tree log */
5993 				ref_path->nodes[0] = found_key.offset;
5994 				ref_path->current_level = 0;
5995 			}
5996 			ret = 0;
5997 			goto out;
5998 		}
5999 
6000 		level++;
6001 		BUG_ON(ref_path->nodes[level] != 0);
6002 		ref_path->nodes[level] = found_key.offset;
6003 		ref_path->current_level = level;
6004 
6005 		/*
6006 		 * the reference was created in the running transaction,
6007 		 * no need to continue walking up.
6008 		 */
6009 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6010 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6011 			ref_path->root_generation =
6012 				btrfs_ref_generation(leaf, ref);
6013 			ret = 0;
6014 			goto out;
6015 		}
6016 
6017 		btrfs_release_path(extent_root, path);
6018 		cond_resched();
6019 	}
6020 	/* reached max tree level, but no tree root found. */
6021 	BUG();
6022 out:
6023 	btrfs_free_path(path);
6024 	return ret;
6025 }
6026 
6027 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6028 				struct btrfs_root *extent_root,
6029 				struct btrfs_ref_path *ref_path,
6030 				u64 extent_start)
6031 {
6032 	memset(ref_path, 0, sizeof(*ref_path));
6033 	ref_path->extent_start = extent_start;
6034 
6035 	return __next_ref_path(trans, extent_root, ref_path, 1);
6036 }
6037 
6038 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6039 			       struct btrfs_root *extent_root,
6040 			       struct btrfs_ref_path *ref_path)
6041 {
6042 	return __next_ref_path(trans, extent_root, ref_path, 0);
6043 }
6044 
6045 static noinline int get_new_locations(struct inode *reloc_inode,
6046 				      struct btrfs_key *extent_key,
6047 				      u64 offset, int no_fragment,
6048 				      struct disk_extent **extents,
6049 				      int *nr_extents)
6050 {
6051 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6052 	struct btrfs_path *path;
6053 	struct btrfs_file_extent_item *fi;
6054 	struct extent_buffer *leaf;
6055 	struct disk_extent *exts = *extents;
6056 	struct btrfs_key found_key;
6057 	u64 cur_pos;
6058 	u64 last_byte;
6059 	u32 nritems;
6060 	int nr = 0;
6061 	int max = *nr_extents;
6062 	int ret;
6063 
6064 	WARN_ON(!no_fragment && *extents);
6065 	if (!exts) {
6066 		max = 1;
6067 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6068 		if (!exts)
6069 			return -ENOMEM;
6070 	}
6071 
6072 	path = btrfs_alloc_path();
6073 	BUG_ON(!path);
6074 
6075 	cur_pos = extent_key->objectid - offset;
6076 	last_byte = extent_key->objectid + extent_key->offset;
6077 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6078 				       cur_pos, 0);
6079 	if (ret < 0)
6080 		goto out;
6081 	if (ret > 0) {
6082 		ret = -ENOENT;
6083 		goto out;
6084 	}
6085 
6086 	while (1) {
6087 		leaf = path->nodes[0];
6088 		nritems = btrfs_header_nritems(leaf);
6089 		if (path->slots[0] >= nritems) {
6090 			ret = btrfs_next_leaf(root, path);
6091 			if (ret < 0)
6092 				goto out;
6093 			if (ret > 0)
6094 				break;
6095 			leaf = path->nodes[0];
6096 		}
6097 
6098 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6099 		if (found_key.offset != cur_pos ||
6100 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
6101 		    found_key.objectid != reloc_inode->i_ino)
6102 			break;
6103 
6104 		fi = btrfs_item_ptr(leaf, path->slots[0],
6105 				    struct btrfs_file_extent_item);
6106 		if (btrfs_file_extent_type(leaf, fi) !=
6107 		    BTRFS_FILE_EXTENT_REG ||
6108 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6109 			break;
6110 
6111 		if (nr == max) {
6112 			struct disk_extent *old = exts;
6113 			max *= 2;
6114 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6115 			memcpy(exts, old, sizeof(*exts) * nr);
6116 			if (old != *extents)
6117 				kfree(old);
6118 		}
6119 
6120 		exts[nr].disk_bytenr =
6121 			btrfs_file_extent_disk_bytenr(leaf, fi);
6122 		exts[nr].disk_num_bytes =
6123 			btrfs_file_extent_disk_num_bytes(leaf, fi);
6124 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6125 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6126 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6127 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6128 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6129 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6130 									   fi);
6131 		BUG_ON(exts[nr].offset > 0);
6132 		BUG_ON(exts[nr].compression || exts[nr].encryption);
6133 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6134 
6135 		cur_pos += exts[nr].num_bytes;
6136 		nr++;
6137 
6138 		if (cur_pos + offset >= last_byte)
6139 			break;
6140 
6141 		if (no_fragment) {
6142 			ret = 1;
6143 			goto out;
6144 		}
6145 		path->slots[0]++;
6146 	}
6147 
6148 	BUG_ON(cur_pos + offset > last_byte);
6149 	if (cur_pos + offset < last_byte) {
6150 		ret = -ENOENT;
6151 		goto out;
6152 	}
6153 	ret = 0;
6154 out:
6155 	btrfs_free_path(path);
6156 	if (ret) {
6157 		if (exts != *extents)
6158 			kfree(exts);
6159 	} else {
6160 		*extents = exts;
6161 		*nr_extents = nr;
6162 	}
6163 	return ret;
6164 }
6165 
6166 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6167 					struct btrfs_root *root,
6168 					struct btrfs_path *path,
6169 					struct btrfs_key *extent_key,
6170 					struct btrfs_key *leaf_key,
6171 					struct btrfs_ref_path *ref_path,
6172 					struct disk_extent *new_extents,
6173 					int nr_extents)
6174 {
6175 	struct extent_buffer *leaf;
6176 	struct btrfs_file_extent_item *fi;
6177 	struct inode *inode = NULL;
6178 	struct btrfs_key key;
6179 	u64 lock_start = 0;
6180 	u64 lock_end = 0;
6181 	u64 num_bytes;
6182 	u64 ext_offset;
6183 	u64 search_end = (u64)-1;
6184 	u32 nritems;
6185 	int nr_scaned = 0;
6186 	int extent_locked = 0;
6187 	int extent_type;
6188 	int ret;
6189 
6190 	memcpy(&key, leaf_key, sizeof(key));
6191 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6192 		if (key.objectid < ref_path->owner_objectid ||
6193 		    (key.objectid == ref_path->owner_objectid &&
6194 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
6195 			key.objectid = ref_path->owner_objectid;
6196 			key.type = BTRFS_EXTENT_DATA_KEY;
6197 			key.offset = 0;
6198 		}
6199 	}
6200 
6201 	while (1) {
6202 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6203 		if (ret < 0)
6204 			goto out;
6205 
6206 		leaf = path->nodes[0];
6207 		nritems = btrfs_header_nritems(leaf);
6208 next:
6209 		if (extent_locked && ret > 0) {
6210 			/*
6211 			 * the file extent item was modified by someone
6212 			 * before the extent got locked.
6213 			 */
6214 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6215 				      lock_end, GFP_NOFS);
6216 			extent_locked = 0;
6217 		}
6218 
6219 		if (path->slots[0] >= nritems) {
6220 			if (++nr_scaned > 2)
6221 				break;
6222 
6223 			BUG_ON(extent_locked);
6224 			ret = btrfs_next_leaf(root, path);
6225 			if (ret < 0)
6226 				goto out;
6227 			if (ret > 0)
6228 				break;
6229 			leaf = path->nodes[0];
6230 			nritems = btrfs_header_nritems(leaf);
6231 		}
6232 
6233 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6234 
6235 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6236 			if ((key.objectid > ref_path->owner_objectid) ||
6237 			    (key.objectid == ref_path->owner_objectid &&
6238 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
6239 			    key.offset >= search_end)
6240 				break;
6241 		}
6242 
6243 		if (inode && key.objectid != inode->i_ino) {
6244 			BUG_ON(extent_locked);
6245 			btrfs_release_path(root, path);
6246 			mutex_unlock(&inode->i_mutex);
6247 			iput(inode);
6248 			inode = NULL;
6249 			continue;
6250 		}
6251 
6252 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
6253 			path->slots[0]++;
6254 			ret = 1;
6255 			goto next;
6256 		}
6257 		fi = btrfs_item_ptr(leaf, path->slots[0],
6258 				    struct btrfs_file_extent_item);
6259 		extent_type = btrfs_file_extent_type(leaf, fi);
6260 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6261 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6262 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6263 		     extent_key->objectid)) {
6264 			path->slots[0]++;
6265 			ret = 1;
6266 			goto next;
6267 		}
6268 
6269 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6270 		ext_offset = btrfs_file_extent_offset(leaf, fi);
6271 
6272 		if (search_end == (u64)-1) {
6273 			search_end = key.offset - ext_offset +
6274 				btrfs_file_extent_ram_bytes(leaf, fi);
6275 		}
6276 
6277 		if (!extent_locked) {
6278 			lock_start = key.offset;
6279 			lock_end = lock_start + num_bytes - 1;
6280 		} else {
6281 			if (lock_start > key.offset ||
6282 			    lock_end + 1 < key.offset + num_bytes) {
6283 				unlock_extent(&BTRFS_I(inode)->io_tree,
6284 					      lock_start, lock_end, GFP_NOFS);
6285 				extent_locked = 0;
6286 			}
6287 		}
6288 
6289 		if (!inode) {
6290 			btrfs_release_path(root, path);
6291 
6292 			inode = btrfs_iget_locked(root->fs_info->sb,
6293 						  key.objectid, root);
6294 			if (inode->i_state & I_NEW) {
6295 				BTRFS_I(inode)->root = root;
6296 				BTRFS_I(inode)->location.objectid =
6297 					key.objectid;
6298 				BTRFS_I(inode)->location.type =
6299 					BTRFS_INODE_ITEM_KEY;
6300 				BTRFS_I(inode)->location.offset = 0;
6301 				btrfs_read_locked_inode(inode);
6302 				unlock_new_inode(inode);
6303 			}
6304 			/*
6305 			 * some code call btrfs_commit_transaction while
6306 			 * holding the i_mutex, so we can't use mutex_lock
6307 			 * here.
6308 			 */
6309 			if (is_bad_inode(inode) ||
6310 			    !mutex_trylock(&inode->i_mutex)) {
6311 				iput(inode);
6312 				inode = NULL;
6313 				key.offset = (u64)-1;
6314 				goto skip;
6315 			}
6316 		}
6317 
6318 		if (!extent_locked) {
6319 			struct btrfs_ordered_extent *ordered;
6320 
6321 			btrfs_release_path(root, path);
6322 
6323 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6324 				    lock_end, GFP_NOFS);
6325 			ordered = btrfs_lookup_first_ordered_extent(inode,
6326 								    lock_end);
6327 			if (ordered &&
6328 			    ordered->file_offset <= lock_end &&
6329 			    ordered->file_offset + ordered->len > lock_start) {
6330 				unlock_extent(&BTRFS_I(inode)->io_tree,
6331 					      lock_start, lock_end, GFP_NOFS);
6332 				btrfs_start_ordered_extent(inode, ordered, 1);
6333 				btrfs_put_ordered_extent(ordered);
6334 				key.offset += num_bytes;
6335 				goto skip;
6336 			}
6337 			if (ordered)
6338 				btrfs_put_ordered_extent(ordered);
6339 
6340 			extent_locked = 1;
6341 			continue;
6342 		}
6343 
6344 		if (nr_extents == 1) {
6345 			/* update extent pointer in place */
6346 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
6347 						new_extents[0].disk_bytenr);
6348 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6349 						new_extents[0].disk_num_bytes);
6350 			btrfs_mark_buffer_dirty(leaf);
6351 
6352 			btrfs_drop_extent_cache(inode, key.offset,
6353 						key.offset + num_bytes - 1, 0);
6354 
6355 			ret = btrfs_inc_extent_ref(trans, root,
6356 						new_extents[0].disk_bytenr,
6357 						new_extents[0].disk_num_bytes,
6358 						leaf->start,
6359 						root->root_key.objectid,
6360 						trans->transid,
6361 						key.objectid);
6362 			BUG_ON(ret);
6363 
6364 			ret = btrfs_free_extent(trans, root,
6365 						extent_key->objectid,
6366 						extent_key->offset,
6367 						leaf->start,
6368 						btrfs_header_owner(leaf),
6369 						btrfs_header_generation(leaf),
6370 						key.objectid, 0);
6371 			BUG_ON(ret);
6372 
6373 			btrfs_release_path(root, path);
6374 			key.offset += num_bytes;
6375 		} else {
6376 			BUG_ON(1);
6377 #if 0
6378 			u64 alloc_hint;
6379 			u64 extent_len;
6380 			int i;
6381 			/*
6382 			 * drop old extent pointer at first, then insert the
6383 			 * new pointers one bye one
6384 			 */
6385 			btrfs_release_path(root, path);
6386 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
6387 						 key.offset + num_bytes,
6388 						 key.offset, &alloc_hint);
6389 			BUG_ON(ret);
6390 
6391 			for (i = 0; i < nr_extents; i++) {
6392 				if (ext_offset >= new_extents[i].num_bytes) {
6393 					ext_offset -= new_extents[i].num_bytes;
6394 					continue;
6395 				}
6396 				extent_len = min(new_extents[i].num_bytes -
6397 						 ext_offset, num_bytes);
6398 
6399 				ret = btrfs_insert_empty_item(trans, root,
6400 							      path, &key,
6401 							      sizeof(*fi));
6402 				BUG_ON(ret);
6403 
6404 				leaf = path->nodes[0];
6405 				fi = btrfs_item_ptr(leaf, path->slots[0],
6406 						struct btrfs_file_extent_item);
6407 				btrfs_set_file_extent_generation(leaf, fi,
6408 							trans->transid);
6409 				btrfs_set_file_extent_type(leaf, fi,
6410 							BTRFS_FILE_EXTENT_REG);
6411 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
6412 						new_extents[i].disk_bytenr);
6413 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6414 						new_extents[i].disk_num_bytes);
6415 				btrfs_set_file_extent_ram_bytes(leaf, fi,
6416 						new_extents[i].ram_bytes);
6417 
6418 				btrfs_set_file_extent_compression(leaf, fi,
6419 						new_extents[i].compression);
6420 				btrfs_set_file_extent_encryption(leaf, fi,
6421 						new_extents[i].encryption);
6422 				btrfs_set_file_extent_other_encoding(leaf, fi,
6423 						new_extents[i].other_encoding);
6424 
6425 				btrfs_set_file_extent_num_bytes(leaf, fi,
6426 							extent_len);
6427 				ext_offset += new_extents[i].offset;
6428 				btrfs_set_file_extent_offset(leaf, fi,
6429 							ext_offset);
6430 				btrfs_mark_buffer_dirty(leaf);
6431 
6432 				btrfs_drop_extent_cache(inode, key.offset,
6433 						key.offset + extent_len - 1, 0);
6434 
6435 				ret = btrfs_inc_extent_ref(trans, root,
6436 						new_extents[i].disk_bytenr,
6437 						new_extents[i].disk_num_bytes,
6438 						leaf->start,
6439 						root->root_key.objectid,
6440 						trans->transid, key.objectid);
6441 				BUG_ON(ret);
6442 				btrfs_release_path(root, path);
6443 
6444 				inode_add_bytes(inode, extent_len);
6445 
6446 				ext_offset = 0;
6447 				num_bytes -= extent_len;
6448 				key.offset += extent_len;
6449 
6450 				if (num_bytes == 0)
6451 					break;
6452 			}
6453 			BUG_ON(i >= nr_extents);
6454 #endif
6455 		}
6456 
6457 		if (extent_locked) {
6458 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6459 				      lock_end, GFP_NOFS);
6460 			extent_locked = 0;
6461 		}
6462 skip:
6463 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6464 		    key.offset >= search_end)
6465 			break;
6466 
6467 		cond_resched();
6468 	}
6469 	ret = 0;
6470 out:
6471 	btrfs_release_path(root, path);
6472 	if (inode) {
6473 		mutex_unlock(&inode->i_mutex);
6474 		if (extent_locked) {
6475 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6476 				      lock_end, GFP_NOFS);
6477 		}
6478 		iput(inode);
6479 	}
6480 	return ret;
6481 }
6482 
6483 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6484 			       struct btrfs_root *root,
6485 			       struct extent_buffer *buf, u64 orig_start)
6486 {
6487 	int level;
6488 	int ret;
6489 
6490 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
6491 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6492 
6493 	level = btrfs_header_level(buf);
6494 	if (level == 0) {
6495 		struct btrfs_leaf_ref *ref;
6496 		struct btrfs_leaf_ref *orig_ref;
6497 
6498 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6499 		if (!orig_ref)
6500 			return -ENOENT;
6501 
6502 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6503 		if (!ref) {
6504 			btrfs_free_leaf_ref(root, orig_ref);
6505 			return -ENOMEM;
6506 		}
6507 
6508 		ref->nritems = orig_ref->nritems;
6509 		memcpy(ref->extents, orig_ref->extents,
6510 			sizeof(ref->extents[0]) * ref->nritems);
6511 
6512 		btrfs_free_leaf_ref(root, orig_ref);
6513 
6514 		ref->root_gen = trans->transid;
6515 		ref->bytenr = buf->start;
6516 		ref->owner = btrfs_header_owner(buf);
6517 		ref->generation = btrfs_header_generation(buf);
6518 
6519 		ret = btrfs_add_leaf_ref(root, ref, 0);
6520 		WARN_ON(ret);
6521 		btrfs_free_leaf_ref(root, ref);
6522 	}
6523 	return 0;
6524 }
6525 
6526 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6527 					struct extent_buffer *leaf,
6528 					struct btrfs_block_group_cache *group,
6529 					struct btrfs_root *target_root)
6530 {
6531 	struct btrfs_key key;
6532 	struct inode *inode = NULL;
6533 	struct btrfs_file_extent_item *fi;
6534 	u64 num_bytes;
6535 	u64 skip_objectid = 0;
6536 	u32 nritems;
6537 	u32 i;
6538 
6539 	nritems = btrfs_header_nritems(leaf);
6540 	for (i = 0; i < nritems; i++) {
6541 		btrfs_item_key_to_cpu(leaf, &key, i);
6542 		if (key.objectid == skip_objectid ||
6543 		    key.type != BTRFS_EXTENT_DATA_KEY)
6544 			continue;
6545 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6546 		if (btrfs_file_extent_type(leaf, fi) ==
6547 		    BTRFS_FILE_EXTENT_INLINE)
6548 			continue;
6549 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6550 			continue;
6551 		if (!inode || inode->i_ino != key.objectid) {
6552 			iput(inode);
6553 			inode = btrfs_ilookup(target_root->fs_info->sb,
6554 					      key.objectid, target_root, 1);
6555 		}
6556 		if (!inode) {
6557 			skip_objectid = key.objectid;
6558 			continue;
6559 		}
6560 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6561 
6562 		lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6563 			    key.offset + num_bytes - 1, GFP_NOFS);
6564 		btrfs_drop_extent_cache(inode, key.offset,
6565 					key.offset + num_bytes - 1, 1);
6566 		unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6567 			      key.offset + num_bytes - 1, GFP_NOFS);
6568 		cond_resched();
6569 	}
6570 	iput(inode);
6571 	return 0;
6572 }
6573 
6574 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
6575 					struct btrfs_root *root,
6576 					struct extent_buffer *leaf,
6577 					struct btrfs_block_group_cache *group,
6578 					struct inode *reloc_inode)
6579 {
6580 	struct btrfs_key key;
6581 	struct btrfs_key extent_key;
6582 	struct btrfs_file_extent_item *fi;
6583 	struct btrfs_leaf_ref *ref;
6584 	struct disk_extent *new_extent;
6585 	u64 bytenr;
6586 	u64 num_bytes;
6587 	u32 nritems;
6588 	u32 i;
6589 	int ext_index;
6590 	int nr_extent;
6591 	int ret;
6592 
6593 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
6594 	BUG_ON(!new_extent);
6595 
6596 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
6597 	BUG_ON(!ref);
6598 
6599 	ext_index = -1;
6600 	nritems = btrfs_header_nritems(leaf);
6601 	for (i = 0; i < nritems; i++) {
6602 		btrfs_item_key_to_cpu(leaf, &key, i);
6603 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
6604 			continue;
6605 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6606 		if (btrfs_file_extent_type(leaf, fi) ==
6607 		    BTRFS_FILE_EXTENT_INLINE)
6608 			continue;
6609 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6610 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
6611 		if (bytenr == 0)
6612 			continue;
6613 
6614 		ext_index++;
6615 		if (bytenr >= group->key.objectid + group->key.offset ||
6616 		    bytenr + num_bytes <= group->key.objectid)
6617 			continue;
6618 
6619 		extent_key.objectid = bytenr;
6620 		extent_key.offset = num_bytes;
6621 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6622 		nr_extent = 1;
6623 		ret = get_new_locations(reloc_inode, &extent_key,
6624 					group->key.objectid, 1,
6625 					&new_extent, &nr_extent);
6626 		if (ret > 0)
6627 			continue;
6628 		BUG_ON(ret < 0);
6629 
6630 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
6631 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
6632 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
6633 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
6634 
6635 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
6636 						new_extent->disk_bytenr);
6637 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6638 						new_extent->disk_num_bytes);
6639 		btrfs_mark_buffer_dirty(leaf);
6640 
6641 		ret = btrfs_inc_extent_ref(trans, root,
6642 					new_extent->disk_bytenr,
6643 					new_extent->disk_num_bytes,
6644 					leaf->start,
6645 					root->root_key.objectid,
6646 					trans->transid, key.objectid);
6647 		BUG_ON(ret);
6648 
6649 		ret = btrfs_free_extent(trans, root,
6650 					bytenr, num_bytes, leaf->start,
6651 					btrfs_header_owner(leaf),
6652 					btrfs_header_generation(leaf),
6653 					key.objectid, 0);
6654 		BUG_ON(ret);
6655 		cond_resched();
6656 	}
6657 	kfree(new_extent);
6658 	BUG_ON(ext_index + 1 != ref->nritems);
6659 	btrfs_free_leaf_ref(root, ref);
6660 	return 0;
6661 }
6662 
6663 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
6664 			  struct btrfs_root *root)
6665 {
6666 	struct btrfs_root *reloc_root;
6667 	int ret;
6668 
6669 	if (root->reloc_root) {
6670 		reloc_root = root->reloc_root;
6671 		root->reloc_root = NULL;
6672 		list_add(&reloc_root->dead_list,
6673 			 &root->fs_info->dead_reloc_roots);
6674 
6675 		btrfs_set_root_bytenr(&reloc_root->root_item,
6676 				      reloc_root->node->start);
6677 		btrfs_set_root_level(&root->root_item,
6678 				     btrfs_header_level(reloc_root->node));
6679 		memset(&reloc_root->root_item.drop_progress, 0,
6680 			sizeof(struct btrfs_disk_key));
6681 		reloc_root->root_item.drop_level = 0;
6682 
6683 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
6684 					&reloc_root->root_key,
6685 					&reloc_root->root_item);
6686 		BUG_ON(ret);
6687 	}
6688 	return 0;
6689 }
6690 
6691 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
6692 {
6693 	struct btrfs_trans_handle *trans;
6694 	struct btrfs_root *reloc_root;
6695 	struct btrfs_root *prev_root = NULL;
6696 	struct list_head dead_roots;
6697 	int ret;
6698 	unsigned long nr;
6699 
6700 	INIT_LIST_HEAD(&dead_roots);
6701 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
6702 
6703 	while (!list_empty(&dead_roots)) {
6704 		reloc_root = list_entry(dead_roots.prev,
6705 					struct btrfs_root, dead_list);
6706 		list_del_init(&reloc_root->dead_list);
6707 
6708 		BUG_ON(reloc_root->commit_root != NULL);
6709 		while (1) {
6710 			trans = btrfs_join_transaction(root, 1);
6711 			BUG_ON(!trans);
6712 
6713 			mutex_lock(&root->fs_info->drop_mutex);
6714 			ret = btrfs_drop_snapshot(trans, reloc_root);
6715 			if (ret != -EAGAIN)
6716 				break;
6717 			mutex_unlock(&root->fs_info->drop_mutex);
6718 
6719 			nr = trans->blocks_used;
6720 			ret = btrfs_end_transaction(trans, root);
6721 			BUG_ON(ret);
6722 			btrfs_btree_balance_dirty(root, nr);
6723 		}
6724 
6725 		free_extent_buffer(reloc_root->node);
6726 
6727 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
6728 				     &reloc_root->root_key);
6729 		BUG_ON(ret);
6730 		mutex_unlock(&root->fs_info->drop_mutex);
6731 
6732 		nr = trans->blocks_used;
6733 		ret = btrfs_end_transaction(trans, root);
6734 		BUG_ON(ret);
6735 		btrfs_btree_balance_dirty(root, nr);
6736 
6737 		kfree(prev_root);
6738 		prev_root = reloc_root;
6739 	}
6740 	if (prev_root) {
6741 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
6742 		kfree(prev_root);
6743 	}
6744 	return 0;
6745 }
6746 
6747 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
6748 {
6749 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
6750 	return 0;
6751 }
6752 
6753 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
6754 {
6755 	struct btrfs_root *reloc_root;
6756 	struct btrfs_trans_handle *trans;
6757 	struct btrfs_key location;
6758 	int found;
6759 	int ret;
6760 
6761 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6762 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
6763 	BUG_ON(ret);
6764 	found = !list_empty(&root->fs_info->dead_reloc_roots);
6765 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6766 
6767 	if (found) {
6768 		trans = btrfs_start_transaction(root, 1);
6769 		BUG_ON(!trans);
6770 		ret = btrfs_commit_transaction(trans, root);
6771 		BUG_ON(ret);
6772 	}
6773 
6774 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6775 	location.offset = (u64)-1;
6776 	location.type = BTRFS_ROOT_ITEM_KEY;
6777 
6778 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
6779 	BUG_ON(!reloc_root);
6780 	btrfs_orphan_cleanup(reloc_root);
6781 	return 0;
6782 }
6783 
6784 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
6785 				    struct btrfs_root *root)
6786 {
6787 	struct btrfs_root *reloc_root;
6788 	struct extent_buffer *eb;
6789 	struct btrfs_root_item *root_item;
6790 	struct btrfs_key root_key;
6791 	int ret;
6792 
6793 	BUG_ON(!root->ref_cows);
6794 	if (root->reloc_root)
6795 		return 0;
6796 
6797 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
6798 	BUG_ON(!root_item);
6799 
6800 	ret = btrfs_copy_root(trans, root, root->commit_root,
6801 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
6802 	BUG_ON(ret);
6803 
6804 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
6805 	root_key.offset = root->root_key.objectid;
6806 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6807 
6808 	memcpy(root_item, &root->root_item, sizeof(root_item));
6809 	btrfs_set_root_refs(root_item, 0);
6810 	btrfs_set_root_bytenr(root_item, eb->start);
6811 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
6812 	btrfs_set_root_generation(root_item, trans->transid);
6813 
6814 	btrfs_tree_unlock(eb);
6815 	free_extent_buffer(eb);
6816 
6817 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
6818 				&root_key, root_item);
6819 	BUG_ON(ret);
6820 	kfree(root_item);
6821 
6822 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
6823 						 &root_key);
6824 	BUG_ON(!reloc_root);
6825 	reloc_root->last_trans = trans->transid;
6826 	reloc_root->commit_root = NULL;
6827 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
6828 
6829 	root->reloc_root = reloc_root;
6830 	return 0;
6831 }
6832 
6833 /*
6834  * Core function of space balance.
6835  *
6836  * The idea is using reloc trees to relocate tree blocks in reference
6837  * counted roots. There is one reloc tree for each subvol, and all
6838  * reloc trees share same root key objectid. Reloc trees are snapshots
6839  * of the latest committed roots of subvols (root->commit_root).
6840  *
6841  * To relocate a tree block referenced by a subvol, there are two steps.
6842  * COW the block through subvol's reloc tree, then update block pointer
6843  * in the subvol to point to the new block. Since all reloc trees share
6844  * same root key objectid, doing special handing for tree blocks owned
6845  * by them is easy. Once a tree block has been COWed in one reloc tree,
6846  * we can use the resulting new block directly when the same block is
6847  * required to COW again through other reloc trees. By this way, relocated
6848  * tree blocks are shared between reloc trees, so they are also shared
6849  * between subvols.
6850  */
6851 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
6852 				      struct btrfs_root *root,
6853 				      struct btrfs_path *path,
6854 				      struct btrfs_key *first_key,
6855 				      struct btrfs_ref_path *ref_path,
6856 				      struct btrfs_block_group_cache *group,
6857 				      struct inode *reloc_inode)
6858 {
6859 	struct btrfs_root *reloc_root;
6860 	struct extent_buffer *eb = NULL;
6861 	struct btrfs_key *keys;
6862 	u64 *nodes;
6863 	int level;
6864 	int shared_level;
6865 	int lowest_level = 0;
6866 	int ret;
6867 
6868 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
6869 		lowest_level = ref_path->owner_objectid;
6870 
6871 	if (!root->ref_cows) {
6872 		path->lowest_level = lowest_level;
6873 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
6874 		BUG_ON(ret < 0);
6875 		path->lowest_level = 0;
6876 		btrfs_release_path(root, path);
6877 		return 0;
6878 	}
6879 
6880 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6881 	ret = init_reloc_tree(trans, root);
6882 	BUG_ON(ret);
6883 	reloc_root = root->reloc_root;
6884 
6885 	shared_level = ref_path->shared_level;
6886 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
6887 
6888 	keys = ref_path->node_keys;
6889 	nodes = ref_path->new_nodes;
6890 	memset(&keys[shared_level + 1], 0,
6891 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
6892 	memset(&nodes[shared_level + 1], 0,
6893 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
6894 
6895 	if (nodes[lowest_level] == 0) {
6896 		path->lowest_level = lowest_level;
6897 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6898 					0, 1);
6899 		BUG_ON(ret);
6900 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
6901 			eb = path->nodes[level];
6902 			if (!eb || eb == reloc_root->node)
6903 				break;
6904 			nodes[level] = eb->start;
6905 			if (level == 0)
6906 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
6907 			else
6908 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
6909 		}
6910 		if (nodes[0] &&
6911 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6912 			eb = path->nodes[0];
6913 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
6914 						      group, reloc_inode);
6915 			BUG_ON(ret);
6916 		}
6917 		btrfs_release_path(reloc_root, path);
6918 	} else {
6919 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
6920 				       lowest_level);
6921 		BUG_ON(ret);
6922 	}
6923 
6924 	/*
6925 	 * replace tree blocks in the fs tree with tree blocks in
6926 	 * the reloc tree.
6927 	 */
6928 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
6929 	BUG_ON(ret < 0);
6930 
6931 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6932 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6933 					0, 0);
6934 		BUG_ON(ret);
6935 		extent_buffer_get(path->nodes[0]);
6936 		eb = path->nodes[0];
6937 		btrfs_release_path(reloc_root, path);
6938 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
6939 		BUG_ON(ret);
6940 		free_extent_buffer(eb);
6941 	}
6942 
6943 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6944 	path->lowest_level = 0;
6945 	return 0;
6946 }
6947 
6948 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
6949 					struct btrfs_root *root,
6950 					struct btrfs_path *path,
6951 					struct btrfs_key *first_key,
6952 					struct btrfs_ref_path *ref_path)
6953 {
6954 	int ret;
6955 
6956 	ret = relocate_one_path(trans, root, path, first_key,
6957 				ref_path, NULL, NULL);
6958 	BUG_ON(ret);
6959 
6960 	return 0;
6961 }
6962 
6963 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
6964 				    struct btrfs_root *extent_root,
6965 				    struct btrfs_path *path,
6966 				    struct btrfs_key *extent_key)
6967 {
6968 	int ret;
6969 
6970 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
6971 	if (ret)
6972 		goto out;
6973 	ret = btrfs_del_item(trans, extent_root, path);
6974 out:
6975 	btrfs_release_path(extent_root, path);
6976 	return ret;
6977 }
6978 
6979 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
6980 						struct btrfs_ref_path *ref_path)
6981 {
6982 	struct btrfs_key root_key;
6983 
6984 	root_key.objectid = ref_path->root_objectid;
6985 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6986 	if (is_cowonly_root(ref_path->root_objectid))
6987 		root_key.offset = 0;
6988 	else
6989 		root_key.offset = (u64)-1;
6990 
6991 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
6992 }
6993 
6994 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
6995 					struct btrfs_path *path,
6996 					struct btrfs_key *extent_key,
6997 					struct btrfs_block_group_cache *group,
6998 					struct inode *reloc_inode, int pass)
6999 {
7000 	struct btrfs_trans_handle *trans;
7001 	struct btrfs_root *found_root;
7002 	struct btrfs_ref_path *ref_path = NULL;
7003 	struct disk_extent *new_extents = NULL;
7004 	int nr_extents = 0;
7005 	int loops;
7006 	int ret;
7007 	int level;
7008 	struct btrfs_key first_key;
7009 	u64 prev_block = 0;
7010 
7011 
7012 	trans = btrfs_start_transaction(extent_root, 1);
7013 	BUG_ON(!trans);
7014 
7015 	if (extent_key->objectid == 0) {
7016 		ret = del_extent_zero(trans, extent_root, path, extent_key);
7017 		goto out;
7018 	}
7019 
7020 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7021 	if (!ref_path) {
7022 		ret = -ENOMEM;
7023 		goto out;
7024 	}
7025 
7026 	for (loops = 0; ; loops++) {
7027 		if (loops == 0) {
7028 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7029 						   extent_key->objectid);
7030 		} else {
7031 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7032 		}
7033 		if (ret < 0)
7034 			goto out;
7035 		if (ret > 0)
7036 			break;
7037 
7038 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7039 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7040 			continue;
7041 
7042 		found_root = read_ref_root(extent_root->fs_info, ref_path);
7043 		BUG_ON(!found_root);
7044 		/*
7045 		 * for reference counted tree, only process reference paths
7046 		 * rooted at the latest committed root.
7047 		 */
7048 		if (found_root->ref_cows &&
7049 		    ref_path->root_generation != found_root->root_key.offset)
7050 			continue;
7051 
7052 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7053 			if (pass == 0) {
7054 				/*
7055 				 * copy data extents to new locations
7056 				 */
7057 				u64 group_start = group->key.objectid;
7058 				ret = relocate_data_extent(reloc_inode,
7059 							   extent_key,
7060 							   group_start);
7061 				if (ret < 0)
7062 					goto out;
7063 				break;
7064 			}
7065 			level = 0;
7066 		} else {
7067 			level = ref_path->owner_objectid;
7068 		}
7069 
7070 		if (prev_block != ref_path->nodes[level]) {
7071 			struct extent_buffer *eb;
7072 			u64 block_start = ref_path->nodes[level];
7073 			u64 block_size = btrfs_level_size(found_root, level);
7074 
7075 			eb = read_tree_block(found_root, block_start,
7076 					     block_size, 0);
7077 			btrfs_tree_lock(eb);
7078 			BUG_ON(level != btrfs_header_level(eb));
7079 
7080 			if (level == 0)
7081 				btrfs_item_key_to_cpu(eb, &first_key, 0);
7082 			else
7083 				btrfs_node_key_to_cpu(eb, &first_key, 0);
7084 
7085 			btrfs_tree_unlock(eb);
7086 			free_extent_buffer(eb);
7087 			prev_block = block_start;
7088 		}
7089 
7090 		mutex_lock(&extent_root->fs_info->trans_mutex);
7091 		btrfs_record_root_in_trans(found_root);
7092 		mutex_unlock(&extent_root->fs_info->trans_mutex);
7093 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7094 			/*
7095 			 * try to update data extent references while
7096 			 * keeping metadata shared between snapshots.
7097 			 */
7098 			if (pass == 1) {
7099 				ret = relocate_one_path(trans, found_root,
7100 						path, &first_key, ref_path,
7101 						group, reloc_inode);
7102 				if (ret < 0)
7103 					goto out;
7104 				continue;
7105 			}
7106 			/*
7107 			 * use fallback method to process the remaining
7108 			 * references.
7109 			 */
7110 			if (!new_extents) {
7111 				u64 group_start = group->key.objectid;
7112 				new_extents = kmalloc(sizeof(*new_extents),
7113 						      GFP_NOFS);
7114 				nr_extents = 1;
7115 				ret = get_new_locations(reloc_inode,
7116 							extent_key,
7117 							group_start, 1,
7118 							&new_extents,
7119 							&nr_extents);
7120 				if (ret)
7121 					goto out;
7122 			}
7123 			ret = replace_one_extent(trans, found_root,
7124 						path, extent_key,
7125 						&first_key, ref_path,
7126 						new_extents, nr_extents);
7127 		} else {
7128 			ret = relocate_tree_block(trans, found_root, path,
7129 						  &first_key, ref_path);
7130 		}
7131 		if (ret < 0)
7132 			goto out;
7133 	}
7134 	ret = 0;
7135 out:
7136 	btrfs_end_transaction(trans, extent_root);
7137 	kfree(new_extents);
7138 	kfree(ref_path);
7139 	return ret;
7140 }
7141 #endif
7142 
7143 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7144 {
7145 	u64 num_devices;
7146 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7147 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7148 
7149 	num_devices = root->fs_info->fs_devices->rw_devices;
7150 	if (num_devices == 1) {
7151 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7152 		stripped = flags & ~stripped;
7153 
7154 		/* turn raid0 into single device chunks */
7155 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7156 			return stripped;
7157 
7158 		/* turn mirroring into duplication */
7159 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7160 			     BTRFS_BLOCK_GROUP_RAID10))
7161 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7162 		return flags;
7163 	} else {
7164 		/* they already had raid on here, just return */
7165 		if (flags & stripped)
7166 			return flags;
7167 
7168 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7169 		stripped = flags & ~stripped;
7170 
7171 		/* switch duplicated blocks with raid1 */
7172 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7173 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7174 
7175 		/* turn single device chunks into raid0 */
7176 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7177 	}
7178 	return flags;
7179 }
7180 
7181 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
7182 		     struct btrfs_block_group_cache *shrink_block_group,
7183 		     int force)
7184 {
7185 	struct btrfs_trans_handle *trans;
7186 	u64 new_alloc_flags;
7187 	u64 calc;
7188 
7189 	spin_lock(&shrink_block_group->lock);
7190 	if (btrfs_block_group_used(&shrink_block_group->item) +
7191 	    shrink_block_group->reserved > 0) {
7192 		spin_unlock(&shrink_block_group->lock);
7193 
7194 		trans = btrfs_start_transaction(root, 1);
7195 		spin_lock(&shrink_block_group->lock);
7196 
7197 		new_alloc_flags = update_block_group_flags(root,
7198 						   shrink_block_group->flags);
7199 		if (new_alloc_flags != shrink_block_group->flags) {
7200 			calc =
7201 			     btrfs_block_group_used(&shrink_block_group->item);
7202 		} else {
7203 			calc = shrink_block_group->key.offset;
7204 		}
7205 		spin_unlock(&shrink_block_group->lock);
7206 
7207 		do_chunk_alloc(trans, root->fs_info->extent_root,
7208 			       calc + 2 * 1024 * 1024, new_alloc_flags, force);
7209 
7210 		btrfs_end_transaction(trans, root);
7211 	} else
7212 		spin_unlock(&shrink_block_group->lock);
7213 	return 0;
7214 }
7215 
7216 
7217 int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
7218 					 struct btrfs_block_group_cache *group)
7219 
7220 {
7221 	__alloc_chunk_for_shrink(root, group, 1);
7222 	set_block_group_readonly(group);
7223 	return 0;
7224 }
7225 
7226 /*
7227  * checks to see if its even possible to relocate this block group.
7228  *
7229  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7230  * ok to go ahead and try.
7231  */
7232 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7233 {
7234 	struct btrfs_block_group_cache *block_group;
7235 	struct btrfs_space_info *space_info;
7236 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7237 	struct btrfs_device *device;
7238 	int full = 0;
7239 	int ret = 0;
7240 
7241 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7242 
7243 	/* odd, couldn't find the block group, leave it alone */
7244 	if (!block_group)
7245 		return -1;
7246 
7247 	/* no bytes used, we're good */
7248 	if (!btrfs_block_group_used(&block_group->item))
7249 		goto out;
7250 
7251 	space_info = block_group->space_info;
7252 	spin_lock(&space_info->lock);
7253 
7254 	full = space_info->full;
7255 
7256 	/*
7257 	 * if this is the last block group we have in this space, we can't
7258 	 * relocate it unless we're able to allocate a new chunk below.
7259 	 *
7260 	 * Otherwise, we need to make sure we have room in the space to handle
7261 	 * all of the extents from this block group.  If we can, we're good
7262 	 */
7263 	if ((space_info->total_bytes != block_group->key.offset) &&
7264 	   (space_info->bytes_used + space_info->bytes_reserved +
7265 	    space_info->bytes_pinned + space_info->bytes_readonly +
7266 	    btrfs_block_group_used(&block_group->item) <
7267 	    space_info->total_bytes)) {
7268 		spin_unlock(&space_info->lock);
7269 		goto out;
7270 	}
7271 	spin_unlock(&space_info->lock);
7272 
7273 	/*
7274 	 * ok we don't have enough space, but maybe we have free space on our
7275 	 * devices to allocate new chunks for relocation, so loop through our
7276 	 * alloc devices and guess if we have enough space.  However, if we
7277 	 * were marked as full, then we know there aren't enough chunks, and we
7278 	 * can just return.
7279 	 */
7280 	ret = -1;
7281 	if (full)
7282 		goto out;
7283 
7284 	mutex_lock(&root->fs_info->chunk_mutex);
7285 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7286 		u64 min_free = btrfs_block_group_used(&block_group->item);
7287 		u64 dev_offset, max_avail;
7288 
7289 		/*
7290 		 * check to make sure we can actually find a chunk with enough
7291 		 * space to fit our block group in.
7292 		 */
7293 		if (device->total_bytes > device->bytes_used + min_free) {
7294 			ret = find_free_dev_extent(NULL, device, min_free,
7295 						   &dev_offset, &max_avail);
7296 			if (!ret)
7297 				break;
7298 			ret = -1;
7299 		}
7300 	}
7301 	mutex_unlock(&root->fs_info->chunk_mutex);
7302 out:
7303 	btrfs_put_block_group(block_group);
7304 	return ret;
7305 }
7306 
7307 static int find_first_block_group(struct btrfs_root *root,
7308 		struct btrfs_path *path, struct btrfs_key *key)
7309 {
7310 	int ret = 0;
7311 	struct btrfs_key found_key;
7312 	struct extent_buffer *leaf;
7313 	int slot;
7314 
7315 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7316 	if (ret < 0)
7317 		goto out;
7318 
7319 	while (1) {
7320 		slot = path->slots[0];
7321 		leaf = path->nodes[0];
7322 		if (slot >= btrfs_header_nritems(leaf)) {
7323 			ret = btrfs_next_leaf(root, path);
7324 			if (ret == 0)
7325 				continue;
7326 			if (ret < 0)
7327 				goto out;
7328 			break;
7329 		}
7330 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7331 
7332 		if (found_key.objectid >= key->objectid &&
7333 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7334 			ret = 0;
7335 			goto out;
7336 		}
7337 		path->slots[0]++;
7338 	}
7339 	ret = -ENOENT;
7340 out:
7341 	return ret;
7342 }
7343 
7344 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7345 {
7346 	struct btrfs_block_group_cache *block_group;
7347 	struct btrfs_space_info *space_info;
7348 	struct btrfs_caching_control *caching_ctl;
7349 	struct rb_node *n;
7350 
7351 	down_write(&info->extent_commit_sem);
7352 	while (!list_empty(&info->caching_block_groups)) {
7353 		caching_ctl = list_entry(info->caching_block_groups.next,
7354 					 struct btrfs_caching_control, list);
7355 		list_del(&caching_ctl->list);
7356 		put_caching_control(caching_ctl);
7357 	}
7358 	up_write(&info->extent_commit_sem);
7359 
7360 	spin_lock(&info->block_group_cache_lock);
7361 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7362 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7363 				       cache_node);
7364 		rb_erase(&block_group->cache_node,
7365 			 &info->block_group_cache_tree);
7366 		spin_unlock(&info->block_group_cache_lock);
7367 
7368 		down_write(&block_group->space_info->groups_sem);
7369 		list_del(&block_group->list);
7370 		up_write(&block_group->space_info->groups_sem);
7371 
7372 		if (block_group->cached == BTRFS_CACHE_STARTED)
7373 			wait_block_group_cache_done(block_group);
7374 
7375 		btrfs_remove_free_space_cache(block_group);
7376 
7377 		WARN_ON(atomic_read(&block_group->count) != 1);
7378 		kfree(block_group);
7379 
7380 		spin_lock(&info->block_group_cache_lock);
7381 	}
7382 	spin_unlock(&info->block_group_cache_lock);
7383 
7384 	/* now that all the block groups are freed, go through and
7385 	 * free all the space_info structs.  This is only called during
7386 	 * the final stages of unmount, and so we know nobody is
7387 	 * using them.  We call synchronize_rcu() once before we start,
7388 	 * just to be on the safe side.
7389 	 */
7390 	synchronize_rcu();
7391 
7392 	while(!list_empty(&info->space_info)) {
7393 		space_info = list_entry(info->space_info.next,
7394 					struct btrfs_space_info,
7395 					list);
7396 
7397 		list_del(&space_info->list);
7398 		kfree(space_info);
7399 	}
7400 	return 0;
7401 }
7402 
7403 int btrfs_read_block_groups(struct btrfs_root *root)
7404 {
7405 	struct btrfs_path *path;
7406 	int ret;
7407 	struct btrfs_block_group_cache *cache;
7408 	struct btrfs_fs_info *info = root->fs_info;
7409 	struct btrfs_space_info *space_info;
7410 	struct btrfs_key key;
7411 	struct btrfs_key found_key;
7412 	struct extent_buffer *leaf;
7413 
7414 	root = info->extent_root;
7415 	key.objectid = 0;
7416 	key.offset = 0;
7417 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7418 	path = btrfs_alloc_path();
7419 	if (!path)
7420 		return -ENOMEM;
7421 
7422 	while (1) {
7423 		ret = find_first_block_group(root, path, &key);
7424 		if (ret > 0) {
7425 			ret = 0;
7426 			goto error;
7427 		}
7428 		if (ret != 0)
7429 			goto error;
7430 
7431 		leaf = path->nodes[0];
7432 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7433 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7434 		if (!cache) {
7435 			ret = -ENOMEM;
7436 			break;
7437 		}
7438 
7439 		atomic_set(&cache->count, 1);
7440 		spin_lock_init(&cache->lock);
7441 		spin_lock_init(&cache->tree_lock);
7442 		cache->fs_info = info;
7443 		INIT_LIST_HEAD(&cache->list);
7444 		INIT_LIST_HEAD(&cache->cluster_list);
7445 
7446 		/*
7447 		 * we only want to have 32k of ram per block group for keeping
7448 		 * track of free space, and if we pass 1/2 of that we want to
7449 		 * start converting things over to using bitmaps
7450 		 */
7451 		cache->extents_thresh = ((1024 * 32) / 2) /
7452 			sizeof(struct btrfs_free_space);
7453 
7454 		read_extent_buffer(leaf, &cache->item,
7455 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7456 				   sizeof(cache->item));
7457 		memcpy(&cache->key, &found_key, sizeof(found_key));
7458 
7459 		key.objectid = found_key.objectid + found_key.offset;
7460 		btrfs_release_path(root, path);
7461 		cache->flags = btrfs_block_group_flags(&cache->item);
7462 		cache->sectorsize = root->sectorsize;
7463 
7464 		/*
7465 		 * check for two cases, either we are full, and therefore
7466 		 * don't need to bother with the caching work since we won't
7467 		 * find any space, or we are empty, and we can just add all
7468 		 * the space in and be done with it.  This saves us _alot_ of
7469 		 * time, particularly in the full case.
7470 		 */
7471 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7472 			exclude_super_stripes(root, cache);
7473 			cache->last_byte_to_unpin = (u64)-1;
7474 			cache->cached = BTRFS_CACHE_FINISHED;
7475 			free_excluded_extents(root, cache);
7476 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7477 			exclude_super_stripes(root, cache);
7478 			cache->last_byte_to_unpin = (u64)-1;
7479 			cache->cached = BTRFS_CACHE_FINISHED;
7480 			add_new_free_space(cache, root->fs_info,
7481 					   found_key.objectid,
7482 					   found_key.objectid +
7483 					   found_key.offset);
7484 			free_excluded_extents(root, cache);
7485 		}
7486 
7487 		ret = update_space_info(info, cache->flags, found_key.offset,
7488 					btrfs_block_group_used(&cache->item),
7489 					&space_info);
7490 		BUG_ON(ret);
7491 		cache->space_info = space_info;
7492 		spin_lock(&cache->space_info->lock);
7493 		cache->space_info->bytes_super += cache->bytes_super;
7494 		spin_unlock(&cache->space_info->lock);
7495 
7496 		down_write(&space_info->groups_sem);
7497 		list_add_tail(&cache->list, &space_info->block_groups);
7498 		up_write(&space_info->groups_sem);
7499 
7500 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7501 		BUG_ON(ret);
7502 
7503 		set_avail_alloc_bits(root->fs_info, cache->flags);
7504 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7505 			set_block_group_readonly(cache);
7506 	}
7507 	ret = 0;
7508 error:
7509 	btrfs_free_path(path);
7510 	return ret;
7511 }
7512 
7513 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7514 			   struct btrfs_root *root, u64 bytes_used,
7515 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7516 			   u64 size)
7517 {
7518 	int ret;
7519 	struct btrfs_root *extent_root;
7520 	struct btrfs_block_group_cache *cache;
7521 
7522 	extent_root = root->fs_info->extent_root;
7523 
7524 	root->fs_info->last_trans_log_full_commit = trans->transid;
7525 
7526 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7527 	if (!cache)
7528 		return -ENOMEM;
7529 
7530 	cache->key.objectid = chunk_offset;
7531 	cache->key.offset = size;
7532 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7533 	cache->sectorsize = root->sectorsize;
7534 
7535 	/*
7536 	 * we only want to have 32k of ram per block group for keeping track
7537 	 * of free space, and if we pass 1/2 of that we want to start
7538 	 * converting things over to using bitmaps
7539 	 */
7540 	cache->extents_thresh = ((1024 * 32) / 2) /
7541 		sizeof(struct btrfs_free_space);
7542 	atomic_set(&cache->count, 1);
7543 	spin_lock_init(&cache->lock);
7544 	spin_lock_init(&cache->tree_lock);
7545 	INIT_LIST_HEAD(&cache->list);
7546 	INIT_LIST_HEAD(&cache->cluster_list);
7547 
7548 	btrfs_set_block_group_used(&cache->item, bytes_used);
7549 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7550 	cache->flags = type;
7551 	btrfs_set_block_group_flags(&cache->item, type);
7552 
7553 	cache->last_byte_to_unpin = (u64)-1;
7554 	cache->cached = BTRFS_CACHE_FINISHED;
7555 	exclude_super_stripes(root, cache);
7556 
7557 	add_new_free_space(cache, root->fs_info, chunk_offset,
7558 			   chunk_offset + size);
7559 
7560 	free_excluded_extents(root, cache);
7561 
7562 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7563 				&cache->space_info);
7564 	BUG_ON(ret);
7565 
7566 	spin_lock(&cache->space_info->lock);
7567 	cache->space_info->bytes_super += cache->bytes_super;
7568 	spin_unlock(&cache->space_info->lock);
7569 
7570 	down_write(&cache->space_info->groups_sem);
7571 	list_add_tail(&cache->list, &cache->space_info->block_groups);
7572 	up_write(&cache->space_info->groups_sem);
7573 
7574 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7575 	BUG_ON(ret);
7576 
7577 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7578 				sizeof(cache->item));
7579 	BUG_ON(ret);
7580 
7581 	set_avail_alloc_bits(extent_root->fs_info, type);
7582 
7583 	return 0;
7584 }
7585 
7586 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7587 			     struct btrfs_root *root, u64 group_start)
7588 {
7589 	struct btrfs_path *path;
7590 	struct btrfs_block_group_cache *block_group;
7591 	struct btrfs_free_cluster *cluster;
7592 	struct btrfs_key key;
7593 	int ret;
7594 
7595 	root = root->fs_info->extent_root;
7596 
7597 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7598 	BUG_ON(!block_group);
7599 	BUG_ON(!block_group->ro);
7600 
7601 	memcpy(&key, &block_group->key, sizeof(key));
7602 
7603 	/* make sure this block group isn't part of an allocation cluster */
7604 	cluster = &root->fs_info->data_alloc_cluster;
7605 	spin_lock(&cluster->refill_lock);
7606 	btrfs_return_cluster_to_free_space(block_group, cluster);
7607 	spin_unlock(&cluster->refill_lock);
7608 
7609 	/*
7610 	 * make sure this block group isn't part of a metadata
7611 	 * allocation cluster
7612 	 */
7613 	cluster = &root->fs_info->meta_alloc_cluster;
7614 	spin_lock(&cluster->refill_lock);
7615 	btrfs_return_cluster_to_free_space(block_group, cluster);
7616 	spin_unlock(&cluster->refill_lock);
7617 
7618 	path = btrfs_alloc_path();
7619 	BUG_ON(!path);
7620 
7621 	spin_lock(&root->fs_info->block_group_cache_lock);
7622 	rb_erase(&block_group->cache_node,
7623 		 &root->fs_info->block_group_cache_tree);
7624 	spin_unlock(&root->fs_info->block_group_cache_lock);
7625 
7626 	down_write(&block_group->space_info->groups_sem);
7627 	/*
7628 	 * we must use list_del_init so people can check to see if they
7629 	 * are still on the list after taking the semaphore
7630 	 */
7631 	list_del_init(&block_group->list);
7632 	up_write(&block_group->space_info->groups_sem);
7633 
7634 	if (block_group->cached == BTRFS_CACHE_STARTED)
7635 		wait_block_group_cache_done(block_group);
7636 
7637 	btrfs_remove_free_space_cache(block_group);
7638 
7639 	spin_lock(&block_group->space_info->lock);
7640 	block_group->space_info->total_bytes -= block_group->key.offset;
7641 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7642 	spin_unlock(&block_group->space_info->lock);
7643 
7644 	btrfs_clear_space_info_full(root->fs_info);
7645 
7646 	btrfs_put_block_group(block_group);
7647 	btrfs_put_block_group(block_group);
7648 
7649 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7650 	if (ret > 0)
7651 		ret = -EIO;
7652 	if (ret < 0)
7653 		goto out;
7654 
7655 	ret = btrfs_del_item(trans, root, path);
7656 out:
7657 	btrfs_free_path(path);
7658 	return ret;
7659 }
7660