xref: /linux/fs/btrfs/extent-tree.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 
39 #undef SCRAMBLE_DELAYED_REFS
40 
41 /*
42  * control flags for do_chunk_alloc's force field
43  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44  * if we really need one.
45  *
46  * CHUNK_ALLOC_LIMITED means to only try and allocate one
47  * if we have very few chunks already allocated.  This is
48  * used as part of the clustering code to help make sure
49  * we have a good pool of storage to cluster in, without
50  * filling the FS with empty chunks
51  *
52  * CHUNK_ALLOC_FORCE means it must try to allocate one
53  *
54  */
55 enum {
56 	CHUNK_ALLOC_NO_FORCE = 0,
57 	CHUNK_ALLOC_LIMITED = 1,
58 	CHUNK_ALLOC_FORCE = 2,
59 };
60 
61 /*
62  * Control how reservations are dealt with.
63  *
64  * RESERVE_FREE - freeing a reservation.
65  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66  *   ENOSPC accounting
67  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68  *   bytes_may_use as the ENOSPC accounting is done elsewhere
69  */
70 enum {
71 	RESERVE_FREE = 0,
72 	RESERVE_ALLOC = 1,
73 	RESERVE_ALLOC_NO_ACCOUNT = 2,
74 };
75 
76 static int update_block_group(struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 			       u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 		     u64 bytenr, u64 num_bytes, int reserved);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED;
116 }
117 
118 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119 {
120 	return (cache->flags & bits) == bits;
121 }
122 
123 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 	atomic_inc(&cache->count);
126 }
127 
128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	if (atomic_dec_and_test(&cache->count)) {
131 		WARN_ON(cache->pinned > 0);
132 		WARN_ON(cache->reserved > 0);
133 		kfree(cache->free_space_ctl);
134 		kfree(cache);
135 	}
136 }
137 
138 /*
139  * this adds the block group to the fs_info rb tree for the block group
140  * cache
141  */
142 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
143 				struct btrfs_block_group_cache *block_group)
144 {
145 	struct rb_node **p;
146 	struct rb_node *parent = NULL;
147 	struct btrfs_block_group_cache *cache;
148 
149 	spin_lock(&info->block_group_cache_lock);
150 	p = &info->block_group_cache_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		cache = rb_entry(parent, struct btrfs_block_group_cache,
155 				 cache_node);
156 		if (block_group->key.objectid < cache->key.objectid) {
157 			p = &(*p)->rb_left;
158 		} else if (block_group->key.objectid > cache->key.objectid) {
159 			p = &(*p)->rb_right;
160 		} else {
161 			spin_unlock(&info->block_group_cache_lock);
162 			return -EEXIST;
163 		}
164 	}
165 
166 	rb_link_node(&block_group->cache_node, parent, p);
167 	rb_insert_color(&block_group->cache_node,
168 			&info->block_group_cache_tree);
169 
170 	if (info->first_logical_byte > block_group->key.objectid)
171 		info->first_logical_byte = block_group->key.objectid;
172 
173 	spin_unlock(&info->block_group_cache_lock);
174 
175 	return 0;
176 }
177 
178 /*
179  * This will return the block group at or after bytenr if contains is 0, else
180  * it will return the block group that contains the bytenr
181  */
182 static struct btrfs_block_group_cache *
183 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 			      int contains)
185 {
186 	struct btrfs_block_group_cache *cache, *ret = NULL;
187 	struct rb_node *n;
188 	u64 end, start;
189 
190 	spin_lock(&info->block_group_cache_lock);
191 	n = info->block_group_cache_tree.rb_node;
192 
193 	while (n) {
194 		cache = rb_entry(n, struct btrfs_block_group_cache,
195 				 cache_node);
196 		end = cache->key.objectid + cache->key.offset - 1;
197 		start = cache->key.objectid;
198 
199 		if (bytenr < start) {
200 			if (!contains && (!ret || start < ret->key.objectid))
201 				ret = cache;
202 			n = n->rb_left;
203 		} else if (bytenr > start) {
204 			if (contains && bytenr <= end) {
205 				ret = cache;
206 				break;
207 			}
208 			n = n->rb_right;
209 		} else {
210 			ret = cache;
211 			break;
212 		}
213 	}
214 	if (ret) {
215 		btrfs_get_block_group(ret);
216 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 			info->first_logical_byte = ret->key.objectid;
218 	}
219 	spin_unlock(&info->block_group_cache_lock);
220 
221 	return ret;
222 }
223 
224 static int add_excluded_extent(struct btrfs_root *root,
225 			       u64 start, u64 num_bytes)
226 {
227 	u64 end = start + num_bytes - 1;
228 	set_extent_bits(&root->fs_info->freed_extents[0],
229 			start, end, EXTENT_UPTODATE, GFP_NOFS);
230 	set_extent_bits(&root->fs_info->freed_extents[1],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	return 0;
233 }
234 
235 static void free_excluded_extents(struct btrfs_root *root,
236 				  struct btrfs_block_group_cache *cache)
237 {
238 	u64 start, end;
239 
240 	start = cache->key.objectid;
241 	end = start + cache->key.offset - 1;
242 
243 	clear_extent_bits(&root->fs_info->freed_extents[0],
244 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
245 	clear_extent_bits(&root->fs_info->freed_extents[1],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 }
248 
249 static int exclude_super_stripes(struct btrfs_root *root,
250 				 struct btrfs_block_group_cache *cache)
251 {
252 	u64 bytenr;
253 	u64 *logical;
254 	int stripe_len;
255 	int i, nr, ret;
256 
257 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 		cache->bytes_super += stripe_len;
260 		ret = add_excluded_extent(root, cache->key.objectid,
261 					  stripe_len);
262 		if (ret)
263 			return ret;
264 	}
265 
266 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 		bytenr = btrfs_sb_offset(i);
268 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
269 				       cache->key.objectid, bytenr,
270 				       0, &logical, &nr, &stripe_len);
271 		if (ret)
272 			return ret;
273 
274 		while (nr--) {
275 			u64 start, len;
276 
277 			if (logical[nr] > cache->key.objectid +
278 			    cache->key.offset)
279 				continue;
280 
281 			if (logical[nr] + stripe_len <= cache->key.objectid)
282 				continue;
283 
284 			start = logical[nr];
285 			if (start < cache->key.objectid) {
286 				start = cache->key.objectid;
287 				len = (logical[nr] + stripe_len) - start;
288 			} else {
289 				len = min_t(u64, stripe_len,
290 					    cache->key.objectid +
291 					    cache->key.offset - start);
292 			}
293 
294 			cache->bytes_super += len;
295 			ret = add_excluded_extent(root, start, len);
296 			if (ret) {
297 				kfree(logical);
298 				return ret;
299 			}
300 		}
301 
302 		kfree(logical);
303 	}
304 	return 0;
305 }
306 
307 static struct btrfs_caching_control *
308 get_caching_control(struct btrfs_block_group_cache *cache)
309 {
310 	struct btrfs_caching_control *ctl;
311 
312 	spin_lock(&cache->lock);
313 	if (cache->cached != BTRFS_CACHE_STARTED) {
314 		spin_unlock(&cache->lock);
315 		return NULL;
316 	}
317 
318 	/* We're loading it the fast way, so we don't have a caching_ctl. */
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = 0;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->extent_commit_sem);
421 
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched()) {
443 				caching_ctl->progress = last;
444 				btrfs_release_path(path);
445 				up_read(&fs_info->extent_commit_sem);
446 				mutex_unlock(&caching_ctl->mutex);
447 				cond_resched();
448 				goto again;
449 			}
450 
451 			ret = btrfs_next_leaf(extent_root, path);
452 			if (ret < 0)
453 				goto err;
454 			if (ret)
455 				break;
456 			leaf = path->nodes[0];
457 			nritems = btrfs_header_nritems(leaf);
458 			continue;
459 		}
460 
461 		if (key.objectid < block_group->key.objectid) {
462 			path->slots[0]++;
463 			continue;
464 		}
465 
466 		if (key.objectid >= block_group->key.objectid +
467 		    block_group->key.offset)
468 			break;
469 
470 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
471 		    key.type == BTRFS_METADATA_ITEM_KEY) {
472 			total_found += add_new_free_space(block_group,
473 							  fs_info, last,
474 							  key.objectid);
475 			if (key.type == BTRFS_METADATA_ITEM_KEY)
476 				last = key.objectid +
477 					fs_info->tree_root->leafsize;
478 			else
479 				last = key.objectid + key.offset;
480 
481 			if (total_found > (1024 * 1024 * 2)) {
482 				total_found = 0;
483 				wake_up(&caching_ctl->wait);
484 			}
485 		}
486 		path->slots[0]++;
487 	}
488 	ret = 0;
489 
490 	total_found += add_new_free_space(block_group, fs_info, last,
491 					  block_group->key.objectid +
492 					  block_group->key.offset);
493 	caching_ctl->progress = (u64)-1;
494 
495 	spin_lock(&block_group->lock);
496 	block_group->caching_ctl = NULL;
497 	block_group->cached = BTRFS_CACHE_FINISHED;
498 	spin_unlock(&block_group->lock);
499 
500 err:
501 	btrfs_free_path(path);
502 	up_read(&fs_info->extent_commit_sem);
503 
504 	free_excluded_extents(extent_root, block_group);
505 
506 	mutex_unlock(&caching_ctl->mutex);
507 out:
508 	wake_up(&caching_ctl->wait);
509 
510 	put_caching_control(caching_ctl);
511 	btrfs_put_block_group(block_group);
512 }
513 
514 static int cache_block_group(struct btrfs_block_group_cache *cache,
515 			     int load_cache_only)
516 {
517 	DEFINE_WAIT(wait);
518 	struct btrfs_fs_info *fs_info = cache->fs_info;
519 	struct btrfs_caching_control *caching_ctl;
520 	int ret = 0;
521 
522 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
523 	if (!caching_ctl)
524 		return -ENOMEM;
525 
526 	INIT_LIST_HEAD(&caching_ctl->list);
527 	mutex_init(&caching_ctl->mutex);
528 	init_waitqueue_head(&caching_ctl->wait);
529 	caching_ctl->block_group = cache;
530 	caching_ctl->progress = cache->key.objectid;
531 	atomic_set(&caching_ctl->count, 1);
532 	caching_ctl->work.func = caching_thread;
533 
534 	spin_lock(&cache->lock);
535 	/*
536 	 * This should be a rare occasion, but this could happen I think in the
537 	 * case where one thread starts to load the space cache info, and then
538 	 * some other thread starts a transaction commit which tries to do an
539 	 * allocation while the other thread is still loading the space cache
540 	 * info.  The previous loop should have kept us from choosing this block
541 	 * group, but if we've moved to the state where we will wait on caching
542 	 * block groups we need to first check if we're doing a fast load here,
543 	 * so we can wait for it to finish, otherwise we could end up allocating
544 	 * from a block group who's cache gets evicted for one reason or
545 	 * another.
546 	 */
547 	while (cache->cached == BTRFS_CACHE_FAST) {
548 		struct btrfs_caching_control *ctl;
549 
550 		ctl = cache->caching_ctl;
551 		atomic_inc(&ctl->count);
552 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
553 		spin_unlock(&cache->lock);
554 
555 		schedule();
556 
557 		finish_wait(&ctl->wait, &wait);
558 		put_caching_control(ctl);
559 		spin_lock(&cache->lock);
560 	}
561 
562 	if (cache->cached != BTRFS_CACHE_NO) {
563 		spin_unlock(&cache->lock);
564 		kfree(caching_ctl);
565 		return 0;
566 	}
567 	WARN_ON(cache->caching_ctl);
568 	cache->caching_ctl = caching_ctl;
569 	cache->cached = BTRFS_CACHE_FAST;
570 	spin_unlock(&cache->lock);
571 
572 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
573 		ret = load_free_space_cache(fs_info, cache);
574 
575 		spin_lock(&cache->lock);
576 		if (ret == 1) {
577 			cache->caching_ctl = NULL;
578 			cache->cached = BTRFS_CACHE_FINISHED;
579 			cache->last_byte_to_unpin = (u64)-1;
580 		} else {
581 			if (load_cache_only) {
582 				cache->caching_ctl = NULL;
583 				cache->cached = BTRFS_CACHE_NO;
584 			} else {
585 				cache->cached = BTRFS_CACHE_STARTED;
586 			}
587 		}
588 		spin_unlock(&cache->lock);
589 		wake_up(&caching_ctl->wait);
590 		if (ret == 1) {
591 			put_caching_control(caching_ctl);
592 			free_excluded_extents(fs_info->extent_root, cache);
593 			return 0;
594 		}
595 	} else {
596 		/*
597 		 * We are not going to do the fast caching, set cached to the
598 		 * appropriate value and wakeup any waiters.
599 		 */
600 		spin_lock(&cache->lock);
601 		if (load_cache_only) {
602 			cache->caching_ctl = NULL;
603 			cache->cached = BTRFS_CACHE_NO;
604 		} else {
605 			cache->cached = BTRFS_CACHE_STARTED;
606 		}
607 		spin_unlock(&cache->lock);
608 		wake_up(&caching_ctl->wait);
609 	}
610 
611 	if (load_cache_only) {
612 		put_caching_control(caching_ctl);
613 		return 0;
614 	}
615 
616 	down_write(&fs_info->extent_commit_sem);
617 	atomic_inc(&caching_ctl->count);
618 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
619 	up_write(&fs_info->extent_commit_sem);
620 
621 	btrfs_get_block_group(cache);
622 
623 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
624 
625 	return ret;
626 }
627 
628 /*
629  * return the block group that starts at or after bytenr
630  */
631 static struct btrfs_block_group_cache *
632 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
633 {
634 	struct btrfs_block_group_cache *cache;
635 
636 	cache = block_group_cache_tree_search(info, bytenr, 0);
637 
638 	return cache;
639 }
640 
641 /*
642  * return the block group that contains the given bytenr
643  */
644 struct btrfs_block_group_cache *btrfs_lookup_block_group(
645 						 struct btrfs_fs_info *info,
646 						 u64 bytenr)
647 {
648 	struct btrfs_block_group_cache *cache;
649 
650 	cache = block_group_cache_tree_search(info, bytenr, 1);
651 
652 	return cache;
653 }
654 
655 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
656 						  u64 flags)
657 {
658 	struct list_head *head = &info->space_info;
659 	struct btrfs_space_info *found;
660 
661 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
662 
663 	rcu_read_lock();
664 	list_for_each_entry_rcu(found, head, list) {
665 		if (found->flags & flags) {
666 			rcu_read_unlock();
667 			return found;
668 		}
669 	}
670 	rcu_read_unlock();
671 	return NULL;
672 }
673 
674 /*
675  * after adding space to the filesystem, we need to clear the full flags
676  * on all the space infos.
677  */
678 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
679 {
680 	struct list_head *head = &info->space_info;
681 	struct btrfs_space_info *found;
682 
683 	rcu_read_lock();
684 	list_for_each_entry_rcu(found, head, list)
685 		found->full = 0;
686 	rcu_read_unlock();
687 }
688 
689 /* simple helper to search for an existing extent at a given offset */
690 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
691 {
692 	int ret;
693 	struct btrfs_key key;
694 	struct btrfs_path *path;
695 
696 	path = btrfs_alloc_path();
697 	if (!path)
698 		return -ENOMEM;
699 
700 	key.objectid = start;
701 	key.offset = len;
702 	key.type = BTRFS_EXTENT_ITEM_KEY;
703 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
704 				0, 0);
705 	if (ret > 0) {
706 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
707 		if (key.objectid == start &&
708 		    key.type == BTRFS_METADATA_ITEM_KEY)
709 			ret = 0;
710 	}
711 	btrfs_free_path(path);
712 	return ret;
713 }
714 
715 /*
716  * helper function to lookup reference count and flags of a tree block.
717  *
718  * the head node for delayed ref is used to store the sum of all the
719  * reference count modifications queued up in the rbtree. the head
720  * node may also store the extent flags to set. This way you can check
721  * to see what the reference count and extent flags would be if all of
722  * the delayed refs are not processed.
723  */
724 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
725 			     struct btrfs_root *root, u64 bytenr,
726 			     u64 offset, int metadata, u64 *refs, u64 *flags)
727 {
728 	struct btrfs_delayed_ref_head *head;
729 	struct btrfs_delayed_ref_root *delayed_refs;
730 	struct btrfs_path *path;
731 	struct btrfs_extent_item *ei;
732 	struct extent_buffer *leaf;
733 	struct btrfs_key key;
734 	u32 item_size;
735 	u64 num_refs;
736 	u64 extent_flags;
737 	int ret;
738 
739 	/*
740 	 * If we don't have skinny metadata, don't bother doing anything
741 	 * different
742 	 */
743 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
744 		offset = root->leafsize;
745 		metadata = 0;
746 	}
747 
748 	path = btrfs_alloc_path();
749 	if (!path)
750 		return -ENOMEM;
751 
752 	if (metadata) {
753 		key.objectid = bytenr;
754 		key.type = BTRFS_METADATA_ITEM_KEY;
755 		key.offset = offset;
756 	} else {
757 		key.objectid = bytenr;
758 		key.type = BTRFS_EXTENT_ITEM_KEY;
759 		key.offset = offset;
760 	}
761 
762 	if (!trans) {
763 		path->skip_locking = 1;
764 		path->search_commit_root = 1;
765 	}
766 again:
767 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
768 				&key, path, 0, 0);
769 	if (ret < 0)
770 		goto out_free;
771 
772 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
773 		key.type = BTRFS_EXTENT_ITEM_KEY;
774 		key.offset = root->leafsize;
775 		btrfs_release_path(path);
776 		goto again;
777 	}
778 
779 	if (ret == 0) {
780 		leaf = path->nodes[0];
781 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
782 		if (item_size >= sizeof(*ei)) {
783 			ei = btrfs_item_ptr(leaf, path->slots[0],
784 					    struct btrfs_extent_item);
785 			num_refs = btrfs_extent_refs(leaf, ei);
786 			extent_flags = btrfs_extent_flags(leaf, ei);
787 		} else {
788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
789 			struct btrfs_extent_item_v0 *ei0;
790 			BUG_ON(item_size != sizeof(*ei0));
791 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
792 					     struct btrfs_extent_item_v0);
793 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
794 			/* FIXME: this isn't correct for data */
795 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
796 #else
797 			BUG();
798 #endif
799 		}
800 		BUG_ON(num_refs == 0);
801 	} else {
802 		num_refs = 0;
803 		extent_flags = 0;
804 		ret = 0;
805 	}
806 
807 	if (!trans)
808 		goto out;
809 
810 	delayed_refs = &trans->transaction->delayed_refs;
811 	spin_lock(&delayed_refs->lock);
812 	head = btrfs_find_delayed_ref_head(trans, bytenr);
813 	if (head) {
814 		if (!mutex_trylock(&head->mutex)) {
815 			atomic_inc(&head->node.refs);
816 			spin_unlock(&delayed_refs->lock);
817 
818 			btrfs_release_path(path);
819 
820 			/*
821 			 * Mutex was contended, block until it's released and try
822 			 * again
823 			 */
824 			mutex_lock(&head->mutex);
825 			mutex_unlock(&head->mutex);
826 			btrfs_put_delayed_ref(&head->node);
827 			goto again;
828 		}
829 		if (head->extent_op && head->extent_op->update_flags)
830 			extent_flags |= head->extent_op->flags_to_set;
831 		else
832 			BUG_ON(num_refs == 0);
833 
834 		num_refs += head->node.ref_mod;
835 		mutex_unlock(&head->mutex);
836 	}
837 	spin_unlock(&delayed_refs->lock);
838 out:
839 	WARN_ON(num_refs == 0);
840 	if (refs)
841 		*refs = num_refs;
842 	if (flags)
843 		*flags = extent_flags;
844 out_free:
845 	btrfs_free_path(path);
846 	return ret;
847 }
848 
849 /*
850  * Back reference rules.  Back refs have three main goals:
851  *
852  * 1) differentiate between all holders of references to an extent so that
853  *    when a reference is dropped we can make sure it was a valid reference
854  *    before freeing the extent.
855  *
856  * 2) Provide enough information to quickly find the holders of an extent
857  *    if we notice a given block is corrupted or bad.
858  *
859  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
860  *    maintenance.  This is actually the same as #2, but with a slightly
861  *    different use case.
862  *
863  * There are two kinds of back refs. The implicit back refs is optimized
864  * for pointers in non-shared tree blocks. For a given pointer in a block,
865  * back refs of this kind provide information about the block's owner tree
866  * and the pointer's key. These information allow us to find the block by
867  * b-tree searching. The full back refs is for pointers in tree blocks not
868  * referenced by their owner trees. The location of tree block is recorded
869  * in the back refs. Actually the full back refs is generic, and can be
870  * used in all cases the implicit back refs is used. The major shortcoming
871  * of the full back refs is its overhead. Every time a tree block gets
872  * COWed, we have to update back refs entry for all pointers in it.
873  *
874  * For a newly allocated tree block, we use implicit back refs for
875  * pointers in it. This means most tree related operations only involve
876  * implicit back refs. For a tree block created in old transaction, the
877  * only way to drop a reference to it is COW it. So we can detect the
878  * event that tree block loses its owner tree's reference and do the
879  * back refs conversion.
880  *
881  * When a tree block is COW'd through a tree, there are four cases:
882  *
883  * The reference count of the block is one and the tree is the block's
884  * owner tree. Nothing to do in this case.
885  *
886  * The reference count of the block is one and the tree is not the
887  * block's owner tree. In this case, full back refs is used for pointers
888  * in the block. Remove these full back refs, add implicit back refs for
889  * every pointers in the new block.
890  *
891  * The reference count of the block is greater than one and the tree is
892  * the block's owner tree. In this case, implicit back refs is used for
893  * pointers in the block. Add full back refs for every pointers in the
894  * block, increase lower level extents' reference counts. The original
895  * implicit back refs are entailed to the new block.
896  *
897  * The reference count of the block is greater than one and the tree is
898  * not the block's owner tree. Add implicit back refs for every pointer in
899  * the new block, increase lower level extents' reference count.
900  *
901  * Back Reference Key composing:
902  *
903  * The key objectid corresponds to the first byte in the extent,
904  * The key type is used to differentiate between types of back refs.
905  * There are different meanings of the key offset for different types
906  * of back refs.
907  *
908  * File extents can be referenced by:
909  *
910  * - multiple snapshots, subvolumes, or different generations in one subvol
911  * - different files inside a single subvolume
912  * - different offsets inside a file (bookend extents in file.c)
913  *
914  * The extent ref structure for the implicit back refs has fields for:
915  *
916  * - Objectid of the subvolume root
917  * - objectid of the file holding the reference
918  * - original offset in the file
919  * - how many bookend extents
920  *
921  * The key offset for the implicit back refs is hash of the first
922  * three fields.
923  *
924  * The extent ref structure for the full back refs has field for:
925  *
926  * - number of pointers in the tree leaf
927  *
928  * The key offset for the implicit back refs is the first byte of
929  * the tree leaf
930  *
931  * When a file extent is allocated, The implicit back refs is used.
932  * the fields are filled in:
933  *
934  *     (root_key.objectid, inode objectid, offset in file, 1)
935  *
936  * When a file extent is removed file truncation, we find the
937  * corresponding implicit back refs and check the following fields:
938  *
939  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
940  *
941  * Btree extents can be referenced by:
942  *
943  * - Different subvolumes
944  *
945  * Both the implicit back refs and the full back refs for tree blocks
946  * only consist of key. The key offset for the implicit back refs is
947  * objectid of block's owner tree. The key offset for the full back refs
948  * is the first byte of parent block.
949  *
950  * When implicit back refs is used, information about the lowest key and
951  * level of the tree block are required. These information are stored in
952  * tree block info structure.
953  */
954 
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
957 				  struct btrfs_root *root,
958 				  struct btrfs_path *path,
959 				  u64 owner, u32 extra_size)
960 {
961 	struct btrfs_extent_item *item;
962 	struct btrfs_extent_item_v0 *ei0;
963 	struct btrfs_extent_ref_v0 *ref0;
964 	struct btrfs_tree_block_info *bi;
965 	struct extent_buffer *leaf;
966 	struct btrfs_key key;
967 	struct btrfs_key found_key;
968 	u32 new_size = sizeof(*item);
969 	u64 refs;
970 	int ret;
971 
972 	leaf = path->nodes[0];
973 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
974 
975 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
976 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
977 			     struct btrfs_extent_item_v0);
978 	refs = btrfs_extent_refs_v0(leaf, ei0);
979 
980 	if (owner == (u64)-1) {
981 		while (1) {
982 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
983 				ret = btrfs_next_leaf(root, path);
984 				if (ret < 0)
985 					return ret;
986 				BUG_ON(ret > 0); /* Corruption */
987 				leaf = path->nodes[0];
988 			}
989 			btrfs_item_key_to_cpu(leaf, &found_key,
990 					      path->slots[0]);
991 			BUG_ON(key.objectid != found_key.objectid);
992 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
993 				path->slots[0]++;
994 				continue;
995 			}
996 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
997 					      struct btrfs_extent_ref_v0);
998 			owner = btrfs_ref_objectid_v0(leaf, ref0);
999 			break;
1000 		}
1001 	}
1002 	btrfs_release_path(path);
1003 
1004 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1005 		new_size += sizeof(*bi);
1006 
1007 	new_size -= sizeof(*ei0);
1008 	ret = btrfs_search_slot(trans, root, &key, path,
1009 				new_size + extra_size, 1);
1010 	if (ret < 0)
1011 		return ret;
1012 	BUG_ON(ret); /* Corruption */
1013 
1014 	btrfs_extend_item(root, path, new_size);
1015 
1016 	leaf = path->nodes[0];
1017 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 	btrfs_set_extent_refs(leaf, item, refs);
1019 	/* FIXME: get real generation */
1020 	btrfs_set_extent_generation(leaf, item, 0);
1021 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1022 		btrfs_set_extent_flags(leaf, item,
1023 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1024 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1025 		bi = (struct btrfs_tree_block_info *)(item + 1);
1026 		/* FIXME: get first key of the block */
1027 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1028 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1029 	} else {
1030 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1031 	}
1032 	btrfs_mark_buffer_dirty(leaf);
1033 	return 0;
1034 }
1035 #endif
1036 
1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1038 {
1039 	u32 high_crc = ~(u32)0;
1040 	u32 low_crc = ~(u32)0;
1041 	__le64 lenum;
1042 
1043 	lenum = cpu_to_le64(root_objectid);
1044 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1045 	lenum = cpu_to_le64(owner);
1046 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 	lenum = cpu_to_le64(offset);
1048 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1049 
1050 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 }
1052 
1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1054 				     struct btrfs_extent_data_ref *ref)
1055 {
1056 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1057 				    btrfs_extent_data_ref_objectid(leaf, ref),
1058 				    btrfs_extent_data_ref_offset(leaf, ref));
1059 }
1060 
1061 static int match_extent_data_ref(struct extent_buffer *leaf,
1062 				 struct btrfs_extent_data_ref *ref,
1063 				 u64 root_objectid, u64 owner, u64 offset)
1064 {
1065 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1066 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1067 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1068 		return 0;
1069 	return 1;
1070 }
1071 
1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1073 					   struct btrfs_root *root,
1074 					   struct btrfs_path *path,
1075 					   u64 bytenr, u64 parent,
1076 					   u64 root_objectid,
1077 					   u64 owner, u64 offset)
1078 {
1079 	struct btrfs_key key;
1080 	struct btrfs_extent_data_ref *ref;
1081 	struct extent_buffer *leaf;
1082 	u32 nritems;
1083 	int ret;
1084 	int recow;
1085 	int err = -ENOENT;
1086 
1087 	key.objectid = bytenr;
1088 	if (parent) {
1089 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1090 		key.offset = parent;
1091 	} else {
1092 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1093 		key.offset = hash_extent_data_ref(root_objectid,
1094 						  owner, offset);
1095 	}
1096 again:
1097 	recow = 0;
1098 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1099 	if (ret < 0) {
1100 		err = ret;
1101 		goto fail;
1102 	}
1103 
1104 	if (parent) {
1105 		if (!ret)
1106 			return 0;
1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1108 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1109 		btrfs_release_path(path);
1110 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 		if (ret < 0) {
1112 			err = ret;
1113 			goto fail;
1114 		}
1115 		if (!ret)
1116 			return 0;
1117 #endif
1118 		goto fail;
1119 	}
1120 
1121 	leaf = path->nodes[0];
1122 	nritems = btrfs_header_nritems(leaf);
1123 	while (1) {
1124 		if (path->slots[0] >= nritems) {
1125 			ret = btrfs_next_leaf(root, path);
1126 			if (ret < 0)
1127 				err = ret;
1128 			if (ret)
1129 				goto fail;
1130 
1131 			leaf = path->nodes[0];
1132 			nritems = btrfs_header_nritems(leaf);
1133 			recow = 1;
1134 		}
1135 
1136 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1137 		if (key.objectid != bytenr ||
1138 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 			goto fail;
1140 
1141 		ref = btrfs_item_ptr(leaf, path->slots[0],
1142 				     struct btrfs_extent_data_ref);
1143 
1144 		if (match_extent_data_ref(leaf, ref, root_objectid,
1145 					  owner, offset)) {
1146 			if (recow) {
1147 				btrfs_release_path(path);
1148 				goto again;
1149 			}
1150 			err = 0;
1151 			break;
1152 		}
1153 		path->slots[0]++;
1154 	}
1155 fail:
1156 	return err;
1157 }
1158 
1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1160 					   struct btrfs_root *root,
1161 					   struct btrfs_path *path,
1162 					   u64 bytenr, u64 parent,
1163 					   u64 root_objectid, u64 owner,
1164 					   u64 offset, int refs_to_add)
1165 {
1166 	struct btrfs_key key;
1167 	struct extent_buffer *leaf;
1168 	u32 size;
1169 	u32 num_refs;
1170 	int ret;
1171 
1172 	key.objectid = bytenr;
1173 	if (parent) {
1174 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1175 		key.offset = parent;
1176 		size = sizeof(struct btrfs_shared_data_ref);
1177 	} else {
1178 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179 		key.offset = hash_extent_data_ref(root_objectid,
1180 						  owner, offset);
1181 		size = sizeof(struct btrfs_extent_data_ref);
1182 	}
1183 
1184 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1185 	if (ret && ret != -EEXIST)
1186 		goto fail;
1187 
1188 	leaf = path->nodes[0];
1189 	if (parent) {
1190 		struct btrfs_shared_data_ref *ref;
1191 		ref = btrfs_item_ptr(leaf, path->slots[0],
1192 				     struct btrfs_shared_data_ref);
1193 		if (ret == 0) {
1194 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1195 		} else {
1196 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1197 			num_refs += refs_to_add;
1198 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 		}
1200 	} else {
1201 		struct btrfs_extent_data_ref *ref;
1202 		while (ret == -EEXIST) {
1203 			ref = btrfs_item_ptr(leaf, path->slots[0],
1204 					     struct btrfs_extent_data_ref);
1205 			if (match_extent_data_ref(leaf, ref, root_objectid,
1206 						  owner, offset))
1207 				break;
1208 			btrfs_release_path(path);
1209 			key.offset++;
1210 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1211 						      size);
1212 			if (ret && ret != -EEXIST)
1213 				goto fail;
1214 
1215 			leaf = path->nodes[0];
1216 		}
1217 		ref = btrfs_item_ptr(leaf, path->slots[0],
1218 				     struct btrfs_extent_data_ref);
1219 		if (ret == 0) {
1220 			btrfs_set_extent_data_ref_root(leaf, ref,
1221 						       root_objectid);
1222 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1223 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1224 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1225 		} else {
1226 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1227 			num_refs += refs_to_add;
1228 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 		}
1230 	}
1231 	btrfs_mark_buffer_dirty(leaf);
1232 	ret = 0;
1233 fail:
1234 	btrfs_release_path(path);
1235 	return ret;
1236 }
1237 
1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1239 					   struct btrfs_root *root,
1240 					   struct btrfs_path *path,
1241 					   int refs_to_drop)
1242 {
1243 	struct btrfs_key key;
1244 	struct btrfs_extent_data_ref *ref1 = NULL;
1245 	struct btrfs_shared_data_ref *ref2 = NULL;
1246 	struct extent_buffer *leaf;
1247 	u32 num_refs = 0;
1248 	int ret = 0;
1249 
1250 	leaf = path->nodes[0];
1251 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 
1253 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1254 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1255 				      struct btrfs_extent_data_ref);
1256 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1257 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1258 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1259 				      struct btrfs_shared_data_ref);
1260 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1262 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1263 		struct btrfs_extent_ref_v0 *ref0;
1264 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1265 				      struct btrfs_extent_ref_v0);
1266 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1267 #endif
1268 	} else {
1269 		BUG();
1270 	}
1271 
1272 	BUG_ON(num_refs < refs_to_drop);
1273 	num_refs -= refs_to_drop;
1274 
1275 	if (num_refs == 0) {
1276 		ret = btrfs_del_item(trans, root, path);
1277 	} else {
1278 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1279 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1280 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1281 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283 		else {
1284 			struct btrfs_extent_ref_v0 *ref0;
1285 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1286 					struct btrfs_extent_ref_v0);
1287 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 		}
1289 #endif
1290 		btrfs_mark_buffer_dirty(leaf);
1291 	}
1292 	return ret;
1293 }
1294 
1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1296 					  struct btrfs_path *path,
1297 					  struct btrfs_extent_inline_ref *iref)
1298 {
1299 	struct btrfs_key key;
1300 	struct extent_buffer *leaf;
1301 	struct btrfs_extent_data_ref *ref1;
1302 	struct btrfs_shared_data_ref *ref2;
1303 	u32 num_refs = 0;
1304 
1305 	leaf = path->nodes[0];
1306 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1307 	if (iref) {
1308 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1309 		    BTRFS_EXTENT_DATA_REF_KEY) {
1310 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1311 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1312 		} else {
1313 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1314 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1315 		}
1316 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1317 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1318 				      struct btrfs_extent_data_ref);
1319 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1320 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1321 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1322 				      struct btrfs_shared_data_ref);
1323 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1325 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1326 		struct btrfs_extent_ref_v0 *ref0;
1327 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1328 				      struct btrfs_extent_ref_v0);
1329 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1330 #endif
1331 	} else {
1332 		WARN_ON(1);
1333 	}
1334 	return num_refs;
1335 }
1336 
1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1338 					  struct btrfs_root *root,
1339 					  struct btrfs_path *path,
1340 					  u64 bytenr, u64 parent,
1341 					  u64 root_objectid)
1342 {
1343 	struct btrfs_key key;
1344 	int ret;
1345 
1346 	key.objectid = bytenr;
1347 	if (parent) {
1348 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1349 		key.offset = parent;
1350 	} else {
1351 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1352 		key.offset = root_objectid;
1353 	}
1354 
1355 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 	if (ret > 0)
1357 		ret = -ENOENT;
1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1359 	if (ret == -ENOENT && parent) {
1360 		btrfs_release_path(path);
1361 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1362 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1363 		if (ret > 0)
1364 			ret = -ENOENT;
1365 	}
1366 #endif
1367 	return ret;
1368 }
1369 
1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1389 	btrfs_release_path(path);
1390 	return ret;
1391 }
1392 
1393 static inline int extent_ref_type(u64 parent, u64 owner)
1394 {
1395 	int type;
1396 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1397 		if (parent > 0)
1398 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1399 		else
1400 			type = BTRFS_TREE_BLOCK_REF_KEY;
1401 	} else {
1402 		if (parent > 0)
1403 			type = BTRFS_SHARED_DATA_REF_KEY;
1404 		else
1405 			type = BTRFS_EXTENT_DATA_REF_KEY;
1406 	}
1407 	return type;
1408 }
1409 
1410 static int find_next_key(struct btrfs_path *path, int level,
1411 			 struct btrfs_key *key)
1412 
1413 {
1414 	for (; level < BTRFS_MAX_LEVEL; level++) {
1415 		if (!path->nodes[level])
1416 			break;
1417 		if (path->slots[level] + 1 >=
1418 		    btrfs_header_nritems(path->nodes[level]))
1419 			continue;
1420 		if (level == 0)
1421 			btrfs_item_key_to_cpu(path->nodes[level], key,
1422 					      path->slots[level] + 1);
1423 		else
1424 			btrfs_node_key_to_cpu(path->nodes[level], key,
1425 					      path->slots[level] + 1);
1426 		return 0;
1427 	}
1428 	return 1;
1429 }
1430 
1431 /*
1432  * look for inline back ref. if back ref is found, *ref_ret is set
1433  * to the address of inline back ref, and 0 is returned.
1434  *
1435  * if back ref isn't found, *ref_ret is set to the address where it
1436  * should be inserted, and -ENOENT is returned.
1437  *
1438  * if insert is true and there are too many inline back refs, the path
1439  * points to the extent item, and -EAGAIN is returned.
1440  *
1441  * NOTE: inline back refs are ordered in the same way that back ref
1442  *	 items in the tree are ordered.
1443  */
1444 static noinline_for_stack
1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1446 				 struct btrfs_root *root,
1447 				 struct btrfs_path *path,
1448 				 struct btrfs_extent_inline_ref **ref_ret,
1449 				 u64 bytenr, u64 num_bytes,
1450 				 u64 parent, u64 root_objectid,
1451 				 u64 owner, u64 offset, int insert)
1452 {
1453 	struct btrfs_key key;
1454 	struct extent_buffer *leaf;
1455 	struct btrfs_extent_item *ei;
1456 	struct btrfs_extent_inline_ref *iref;
1457 	u64 flags;
1458 	u64 item_size;
1459 	unsigned long ptr;
1460 	unsigned long end;
1461 	int extra_size;
1462 	int type;
1463 	int want;
1464 	int ret;
1465 	int err = 0;
1466 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1467 						 SKINNY_METADATA);
1468 
1469 	key.objectid = bytenr;
1470 	key.type = BTRFS_EXTENT_ITEM_KEY;
1471 	key.offset = num_bytes;
1472 
1473 	want = extent_ref_type(parent, owner);
1474 	if (insert) {
1475 		extra_size = btrfs_extent_inline_ref_size(want);
1476 		path->keep_locks = 1;
1477 	} else
1478 		extra_size = -1;
1479 
1480 	/*
1481 	 * Owner is our parent level, so we can just add one to get the level
1482 	 * for the block we are interested in.
1483 	 */
1484 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 		key.type = BTRFS_METADATA_ITEM_KEY;
1486 		key.offset = owner;
1487 	}
1488 
1489 again:
1490 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1491 	if (ret < 0) {
1492 		err = ret;
1493 		goto out;
1494 	}
1495 
1496 	/*
1497 	 * We may be a newly converted file system which still has the old fat
1498 	 * extent entries for metadata, so try and see if we have one of those.
1499 	 */
1500 	if (ret > 0 && skinny_metadata) {
1501 		skinny_metadata = false;
1502 		if (path->slots[0]) {
1503 			path->slots[0]--;
1504 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1505 					      path->slots[0]);
1506 			if (key.objectid == bytenr &&
1507 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1508 			    key.offset == num_bytes)
1509 				ret = 0;
1510 		}
1511 		if (ret) {
1512 			key.type = BTRFS_EXTENT_ITEM_KEY;
1513 			key.offset = num_bytes;
1514 			btrfs_release_path(path);
1515 			goto again;
1516 		}
1517 	}
1518 
1519 	if (ret && !insert) {
1520 		err = -ENOENT;
1521 		goto out;
1522 	} else if (ret) {
1523 		err = -EIO;
1524 		WARN_ON(1);
1525 		goto out;
1526 	}
1527 
1528 	leaf = path->nodes[0];
1529 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1530 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1531 	if (item_size < sizeof(*ei)) {
1532 		if (!insert) {
1533 			err = -ENOENT;
1534 			goto out;
1535 		}
1536 		ret = convert_extent_item_v0(trans, root, path, owner,
1537 					     extra_size);
1538 		if (ret < 0) {
1539 			err = ret;
1540 			goto out;
1541 		}
1542 		leaf = path->nodes[0];
1543 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1544 	}
1545 #endif
1546 	BUG_ON(item_size < sizeof(*ei));
1547 
1548 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1549 	flags = btrfs_extent_flags(leaf, ei);
1550 
1551 	ptr = (unsigned long)(ei + 1);
1552 	end = (unsigned long)ei + item_size;
1553 
1554 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1555 		ptr += sizeof(struct btrfs_tree_block_info);
1556 		BUG_ON(ptr > end);
1557 	}
1558 
1559 	err = -ENOENT;
1560 	while (1) {
1561 		if (ptr >= end) {
1562 			WARN_ON(ptr > end);
1563 			break;
1564 		}
1565 		iref = (struct btrfs_extent_inline_ref *)ptr;
1566 		type = btrfs_extent_inline_ref_type(leaf, iref);
1567 		if (want < type)
1568 			break;
1569 		if (want > type) {
1570 			ptr += btrfs_extent_inline_ref_size(type);
1571 			continue;
1572 		}
1573 
1574 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1575 			struct btrfs_extent_data_ref *dref;
1576 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1577 			if (match_extent_data_ref(leaf, dref, root_objectid,
1578 						  owner, offset)) {
1579 				err = 0;
1580 				break;
1581 			}
1582 			if (hash_extent_data_ref_item(leaf, dref) <
1583 			    hash_extent_data_ref(root_objectid, owner, offset))
1584 				break;
1585 		} else {
1586 			u64 ref_offset;
1587 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1588 			if (parent > 0) {
1589 				if (parent == ref_offset) {
1590 					err = 0;
1591 					break;
1592 				}
1593 				if (ref_offset < parent)
1594 					break;
1595 			} else {
1596 				if (root_objectid == ref_offset) {
1597 					err = 0;
1598 					break;
1599 				}
1600 				if (ref_offset < root_objectid)
1601 					break;
1602 			}
1603 		}
1604 		ptr += btrfs_extent_inline_ref_size(type);
1605 	}
1606 	if (err == -ENOENT && insert) {
1607 		if (item_size + extra_size >=
1608 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1609 			err = -EAGAIN;
1610 			goto out;
1611 		}
1612 		/*
1613 		 * To add new inline back ref, we have to make sure
1614 		 * there is no corresponding back ref item.
1615 		 * For simplicity, we just do not add new inline back
1616 		 * ref if there is any kind of item for this block
1617 		 */
1618 		if (find_next_key(path, 0, &key) == 0 &&
1619 		    key.objectid == bytenr &&
1620 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1621 			err = -EAGAIN;
1622 			goto out;
1623 		}
1624 	}
1625 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1626 out:
1627 	if (insert) {
1628 		path->keep_locks = 0;
1629 		btrfs_unlock_up_safe(path, 1);
1630 	}
1631 	return err;
1632 }
1633 
1634 /*
1635  * helper to add new inline back ref
1636  */
1637 static noinline_for_stack
1638 void setup_inline_extent_backref(struct btrfs_root *root,
1639 				 struct btrfs_path *path,
1640 				 struct btrfs_extent_inline_ref *iref,
1641 				 u64 parent, u64 root_objectid,
1642 				 u64 owner, u64 offset, int refs_to_add,
1643 				 struct btrfs_delayed_extent_op *extent_op)
1644 {
1645 	struct extent_buffer *leaf;
1646 	struct btrfs_extent_item *ei;
1647 	unsigned long ptr;
1648 	unsigned long end;
1649 	unsigned long item_offset;
1650 	u64 refs;
1651 	int size;
1652 	int type;
1653 
1654 	leaf = path->nodes[0];
1655 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1656 	item_offset = (unsigned long)iref - (unsigned long)ei;
1657 
1658 	type = extent_ref_type(parent, owner);
1659 	size = btrfs_extent_inline_ref_size(type);
1660 
1661 	btrfs_extend_item(root, path, size);
1662 
1663 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1664 	refs = btrfs_extent_refs(leaf, ei);
1665 	refs += refs_to_add;
1666 	btrfs_set_extent_refs(leaf, ei, refs);
1667 	if (extent_op)
1668 		__run_delayed_extent_op(extent_op, leaf, ei);
1669 
1670 	ptr = (unsigned long)ei + item_offset;
1671 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1672 	if (ptr < end - size)
1673 		memmove_extent_buffer(leaf, ptr + size, ptr,
1674 				      end - size - ptr);
1675 
1676 	iref = (struct btrfs_extent_inline_ref *)ptr;
1677 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1678 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1679 		struct btrfs_extent_data_ref *dref;
1680 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1681 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1682 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1683 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1684 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1685 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1686 		struct btrfs_shared_data_ref *sref;
1687 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1688 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1689 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1690 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1691 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1692 	} else {
1693 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1694 	}
1695 	btrfs_mark_buffer_dirty(leaf);
1696 }
1697 
1698 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1699 				 struct btrfs_root *root,
1700 				 struct btrfs_path *path,
1701 				 struct btrfs_extent_inline_ref **ref_ret,
1702 				 u64 bytenr, u64 num_bytes, u64 parent,
1703 				 u64 root_objectid, u64 owner, u64 offset)
1704 {
1705 	int ret;
1706 
1707 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1708 					   bytenr, num_bytes, parent,
1709 					   root_objectid, owner, offset, 0);
1710 	if (ret != -ENOENT)
1711 		return ret;
1712 
1713 	btrfs_release_path(path);
1714 	*ref_ret = NULL;
1715 
1716 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1717 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1718 					    root_objectid);
1719 	} else {
1720 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1721 					     root_objectid, owner, offset);
1722 	}
1723 	return ret;
1724 }
1725 
1726 /*
1727  * helper to update/remove inline back ref
1728  */
1729 static noinline_for_stack
1730 void update_inline_extent_backref(struct btrfs_root *root,
1731 				  struct btrfs_path *path,
1732 				  struct btrfs_extent_inline_ref *iref,
1733 				  int refs_to_mod,
1734 				  struct btrfs_delayed_extent_op *extent_op)
1735 {
1736 	struct extent_buffer *leaf;
1737 	struct btrfs_extent_item *ei;
1738 	struct btrfs_extent_data_ref *dref = NULL;
1739 	struct btrfs_shared_data_ref *sref = NULL;
1740 	unsigned long ptr;
1741 	unsigned long end;
1742 	u32 item_size;
1743 	int size;
1744 	int type;
1745 	u64 refs;
1746 
1747 	leaf = path->nodes[0];
1748 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1749 	refs = btrfs_extent_refs(leaf, ei);
1750 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1751 	refs += refs_to_mod;
1752 	btrfs_set_extent_refs(leaf, ei, refs);
1753 	if (extent_op)
1754 		__run_delayed_extent_op(extent_op, leaf, ei);
1755 
1756 	type = btrfs_extent_inline_ref_type(leaf, iref);
1757 
1758 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1759 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 		refs = btrfs_extent_data_ref_count(leaf, dref);
1761 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1762 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1763 		refs = btrfs_shared_data_ref_count(leaf, sref);
1764 	} else {
1765 		refs = 1;
1766 		BUG_ON(refs_to_mod != -1);
1767 	}
1768 
1769 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1770 	refs += refs_to_mod;
1771 
1772 	if (refs > 0) {
1773 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1774 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1775 		else
1776 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1777 	} else {
1778 		size =  btrfs_extent_inline_ref_size(type);
1779 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1780 		ptr = (unsigned long)iref;
1781 		end = (unsigned long)ei + item_size;
1782 		if (ptr + size < end)
1783 			memmove_extent_buffer(leaf, ptr, ptr + size,
1784 					      end - ptr - size);
1785 		item_size -= size;
1786 		btrfs_truncate_item(root, path, item_size, 1);
1787 	}
1788 	btrfs_mark_buffer_dirty(leaf);
1789 }
1790 
1791 static noinline_for_stack
1792 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1793 				 struct btrfs_root *root,
1794 				 struct btrfs_path *path,
1795 				 u64 bytenr, u64 num_bytes, u64 parent,
1796 				 u64 root_objectid, u64 owner,
1797 				 u64 offset, int refs_to_add,
1798 				 struct btrfs_delayed_extent_op *extent_op)
1799 {
1800 	struct btrfs_extent_inline_ref *iref;
1801 	int ret;
1802 
1803 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1804 					   bytenr, num_bytes, parent,
1805 					   root_objectid, owner, offset, 1);
1806 	if (ret == 0) {
1807 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1808 		update_inline_extent_backref(root, path, iref,
1809 					     refs_to_add, extent_op);
1810 	} else if (ret == -ENOENT) {
1811 		setup_inline_extent_backref(root, path, iref, parent,
1812 					    root_objectid, owner, offset,
1813 					    refs_to_add, extent_op);
1814 		ret = 0;
1815 	}
1816 	return ret;
1817 }
1818 
1819 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 parent, u64 root_objectid,
1823 				 u64 owner, u64 offset, int refs_to_add)
1824 {
1825 	int ret;
1826 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1827 		BUG_ON(refs_to_add != 1);
1828 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1829 					    parent, root_objectid);
1830 	} else {
1831 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1832 					     parent, root_objectid,
1833 					     owner, offset, refs_to_add);
1834 	}
1835 	return ret;
1836 }
1837 
1838 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1839 				 struct btrfs_root *root,
1840 				 struct btrfs_path *path,
1841 				 struct btrfs_extent_inline_ref *iref,
1842 				 int refs_to_drop, int is_data)
1843 {
1844 	int ret = 0;
1845 
1846 	BUG_ON(!is_data && refs_to_drop != 1);
1847 	if (iref) {
1848 		update_inline_extent_backref(root, path, iref,
1849 					     -refs_to_drop, NULL);
1850 	} else if (is_data) {
1851 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1852 	} else {
1853 		ret = btrfs_del_item(trans, root, path);
1854 	}
1855 	return ret;
1856 }
1857 
1858 static int btrfs_issue_discard(struct block_device *bdev,
1859 				u64 start, u64 len)
1860 {
1861 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1862 }
1863 
1864 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1865 				u64 num_bytes, u64 *actual_bytes)
1866 {
1867 	int ret;
1868 	u64 discarded_bytes = 0;
1869 	struct btrfs_bio *bbio = NULL;
1870 
1871 
1872 	/* Tell the block device(s) that the sectors can be discarded */
1873 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1874 			      bytenr, &num_bytes, &bbio, 0);
1875 	/* Error condition is -ENOMEM */
1876 	if (!ret) {
1877 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1878 		int i;
1879 
1880 
1881 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1882 			if (!stripe->dev->can_discard)
1883 				continue;
1884 
1885 			ret = btrfs_issue_discard(stripe->dev->bdev,
1886 						  stripe->physical,
1887 						  stripe->length);
1888 			if (!ret)
1889 				discarded_bytes += stripe->length;
1890 			else if (ret != -EOPNOTSUPP)
1891 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1892 
1893 			/*
1894 			 * Just in case we get back EOPNOTSUPP for some reason,
1895 			 * just ignore the return value so we don't screw up
1896 			 * people calling discard_extent.
1897 			 */
1898 			ret = 0;
1899 		}
1900 		kfree(bbio);
1901 	}
1902 
1903 	if (actual_bytes)
1904 		*actual_bytes = discarded_bytes;
1905 
1906 
1907 	if (ret == -EOPNOTSUPP)
1908 		ret = 0;
1909 	return ret;
1910 }
1911 
1912 /* Can return -ENOMEM */
1913 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1914 			 struct btrfs_root *root,
1915 			 u64 bytenr, u64 num_bytes, u64 parent,
1916 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1917 {
1918 	int ret;
1919 	struct btrfs_fs_info *fs_info = root->fs_info;
1920 
1921 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1922 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1923 
1924 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1925 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1926 					num_bytes,
1927 					parent, root_objectid, (int)owner,
1928 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1929 	} else {
1930 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1931 					num_bytes,
1932 					parent, root_objectid, owner, offset,
1933 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1939 				  struct btrfs_root *root,
1940 				  u64 bytenr, u64 num_bytes,
1941 				  u64 parent, u64 root_objectid,
1942 				  u64 owner, u64 offset, int refs_to_add,
1943 				  struct btrfs_delayed_extent_op *extent_op)
1944 {
1945 	struct btrfs_path *path;
1946 	struct extent_buffer *leaf;
1947 	struct btrfs_extent_item *item;
1948 	u64 refs;
1949 	int ret;
1950 	int err = 0;
1951 
1952 	path = btrfs_alloc_path();
1953 	if (!path)
1954 		return -ENOMEM;
1955 
1956 	path->reada = 1;
1957 	path->leave_spinning = 1;
1958 	/* this will setup the path even if it fails to insert the back ref */
1959 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1960 					   path, bytenr, num_bytes, parent,
1961 					   root_objectid, owner, offset,
1962 					   refs_to_add, extent_op);
1963 	if (ret == 0)
1964 		goto out;
1965 
1966 	if (ret != -EAGAIN) {
1967 		err = ret;
1968 		goto out;
1969 	}
1970 
1971 	leaf = path->nodes[0];
1972 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1973 	refs = btrfs_extent_refs(leaf, item);
1974 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1975 	if (extent_op)
1976 		__run_delayed_extent_op(extent_op, leaf, item);
1977 
1978 	btrfs_mark_buffer_dirty(leaf);
1979 	btrfs_release_path(path);
1980 
1981 	path->reada = 1;
1982 	path->leave_spinning = 1;
1983 
1984 	/* now insert the actual backref */
1985 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1986 				    path, bytenr, parent, root_objectid,
1987 				    owner, offset, refs_to_add);
1988 	if (ret)
1989 		btrfs_abort_transaction(trans, root, ret);
1990 out:
1991 	btrfs_free_path(path);
1992 	return err;
1993 }
1994 
1995 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1996 				struct btrfs_root *root,
1997 				struct btrfs_delayed_ref_node *node,
1998 				struct btrfs_delayed_extent_op *extent_op,
1999 				int insert_reserved)
2000 {
2001 	int ret = 0;
2002 	struct btrfs_delayed_data_ref *ref;
2003 	struct btrfs_key ins;
2004 	u64 parent = 0;
2005 	u64 ref_root = 0;
2006 	u64 flags = 0;
2007 
2008 	ins.objectid = node->bytenr;
2009 	ins.offset = node->num_bytes;
2010 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2011 
2012 	ref = btrfs_delayed_node_to_data_ref(node);
2013 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2014 		parent = ref->parent;
2015 	else
2016 		ref_root = ref->root;
2017 
2018 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2019 		if (extent_op)
2020 			flags |= extent_op->flags_to_set;
2021 		ret = alloc_reserved_file_extent(trans, root,
2022 						 parent, ref_root, flags,
2023 						 ref->objectid, ref->offset,
2024 						 &ins, node->ref_mod);
2025 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2026 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2027 					     node->num_bytes, parent,
2028 					     ref_root, ref->objectid,
2029 					     ref->offset, node->ref_mod,
2030 					     extent_op);
2031 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2032 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2033 					  node->num_bytes, parent,
2034 					  ref_root, ref->objectid,
2035 					  ref->offset, node->ref_mod,
2036 					  extent_op);
2037 	} else {
2038 		BUG();
2039 	}
2040 	return ret;
2041 }
2042 
2043 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2044 				    struct extent_buffer *leaf,
2045 				    struct btrfs_extent_item *ei)
2046 {
2047 	u64 flags = btrfs_extent_flags(leaf, ei);
2048 	if (extent_op->update_flags) {
2049 		flags |= extent_op->flags_to_set;
2050 		btrfs_set_extent_flags(leaf, ei, flags);
2051 	}
2052 
2053 	if (extent_op->update_key) {
2054 		struct btrfs_tree_block_info *bi;
2055 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2056 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2057 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2058 	}
2059 }
2060 
2061 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2062 				 struct btrfs_root *root,
2063 				 struct btrfs_delayed_ref_node *node,
2064 				 struct btrfs_delayed_extent_op *extent_op)
2065 {
2066 	struct btrfs_key key;
2067 	struct btrfs_path *path;
2068 	struct btrfs_extent_item *ei;
2069 	struct extent_buffer *leaf;
2070 	u32 item_size;
2071 	int ret;
2072 	int err = 0;
2073 	int metadata = (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2074 			node->type == BTRFS_SHARED_BLOCK_REF_KEY);
2075 
2076 	if (trans->aborted)
2077 		return 0;
2078 
2079 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2080 		metadata = 0;
2081 
2082 	path = btrfs_alloc_path();
2083 	if (!path)
2084 		return -ENOMEM;
2085 
2086 	key.objectid = node->bytenr;
2087 
2088 	if (metadata) {
2089 		struct btrfs_delayed_tree_ref *tree_ref;
2090 
2091 		tree_ref = btrfs_delayed_node_to_tree_ref(node);
2092 		key.type = BTRFS_METADATA_ITEM_KEY;
2093 		key.offset = tree_ref->level;
2094 	} else {
2095 		key.type = BTRFS_EXTENT_ITEM_KEY;
2096 		key.offset = node->num_bytes;
2097 	}
2098 
2099 again:
2100 	path->reada = 1;
2101 	path->leave_spinning = 1;
2102 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2103 				path, 0, 1);
2104 	if (ret < 0) {
2105 		err = ret;
2106 		goto out;
2107 	}
2108 	if (ret > 0) {
2109 		if (metadata) {
2110 			btrfs_release_path(path);
2111 			metadata = 0;
2112 
2113 			key.offset = node->num_bytes;
2114 			key.type = BTRFS_EXTENT_ITEM_KEY;
2115 			goto again;
2116 		}
2117 		err = -EIO;
2118 		goto out;
2119 	}
2120 
2121 	leaf = path->nodes[0];
2122 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2123 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2124 	if (item_size < sizeof(*ei)) {
2125 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2126 					     path, (u64)-1, 0);
2127 		if (ret < 0) {
2128 			err = ret;
2129 			goto out;
2130 		}
2131 		leaf = path->nodes[0];
2132 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2133 	}
2134 #endif
2135 	BUG_ON(item_size < sizeof(*ei));
2136 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2137 	__run_delayed_extent_op(extent_op, leaf, ei);
2138 
2139 	btrfs_mark_buffer_dirty(leaf);
2140 out:
2141 	btrfs_free_path(path);
2142 	return err;
2143 }
2144 
2145 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2146 				struct btrfs_root *root,
2147 				struct btrfs_delayed_ref_node *node,
2148 				struct btrfs_delayed_extent_op *extent_op,
2149 				int insert_reserved)
2150 {
2151 	int ret = 0;
2152 	struct btrfs_delayed_tree_ref *ref;
2153 	struct btrfs_key ins;
2154 	u64 parent = 0;
2155 	u64 ref_root = 0;
2156 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2157 						 SKINNY_METADATA);
2158 
2159 	ref = btrfs_delayed_node_to_tree_ref(node);
2160 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2161 		parent = ref->parent;
2162 	else
2163 		ref_root = ref->root;
2164 
2165 	ins.objectid = node->bytenr;
2166 	if (skinny_metadata) {
2167 		ins.offset = ref->level;
2168 		ins.type = BTRFS_METADATA_ITEM_KEY;
2169 	} else {
2170 		ins.offset = node->num_bytes;
2171 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2172 	}
2173 
2174 	BUG_ON(node->ref_mod != 1);
2175 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2176 		BUG_ON(!extent_op || !extent_op->update_flags);
2177 		ret = alloc_reserved_tree_block(trans, root,
2178 						parent, ref_root,
2179 						extent_op->flags_to_set,
2180 						&extent_op->key,
2181 						ref->level, &ins);
2182 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2183 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2184 					     node->num_bytes, parent, ref_root,
2185 					     ref->level, 0, 1, extent_op);
2186 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2187 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2188 					  node->num_bytes, parent, ref_root,
2189 					  ref->level, 0, 1, extent_op);
2190 	} else {
2191 		BUG();
2192 	}
2193 	return ret;
2194 }
2195 
2196 /* helper function to actually process a single delayed ref entry */
2197 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2198 			       struct btrfs_root *root,
2199 			       struct btrfs_delayed_ref_node *node,
2200 			       struct btrfs_delayed_extent_op *extent_op,
2201 			       int insert_reserved)
2202 {
2203 	int ret = 0;
2204 
2205 	if (trans->aborted)
2206 		return 0;
2207 
2208 	if (btrfs_delayed_ref_is_head(node)) {
2209 		struct btrfs_delayed_ref_head *head;
2210 		/*
2211 		 * we've hit the end of the chain and we were supposed
2212 		 * to insert this extent into the tree.  But, it got
2213 		 * deleted before we ever needed to insert it, so all
2214 		 * we have to do is clean up the accounting
2215 		 */
2216 		BUG_ON(extent_op);
2217 		head = btrfs_delayed_node_to_head(node);
2218 		if (insert_reserved) {
2219 			btrfs_pin_extent(root, node->bytenr,
2220 					 node->num_bytes, 1);
2221 			if (head->is_data) {
2222 				ret = btrfs_del_csums(trans, root,
2223 						      node->bytenr,
2224 						      node->num_bytes);
2225 			}
2226 		}
2227 		return ret;
2228 	}
2229 
2230 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2231 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2232 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2233 					   insert_reserved);
2234 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2235 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2236 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2237 					   insert_reserved);
2238 	else
2239 		BUG();
2240 	return ret;
2241 }
2242 
2243 static noinline struct btrfs_delayed_ref_node *
2244 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2245 {
2246 	struct rb_node *node;
2247 	struct btrfs_delayed_ref_node *ref;
2248 	int action = BTRFS_ADD_DELAYED_REF;
2249 again:
2250 	/*
2251 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2252 	 * this prevents ref count from going down to zero when
2253 	 * there still are pending delayed ref.
2254 	 */
2255 	node = rb_prev(&head->node.rb_node);
2256 	while (1) {
2257 		if (!node)
2258 			break;
2259 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2260 				rb_node);
2261 		if (ref->bytenr != head->node.bytenr)
2262 			break;
2263 		if (ref->action == action)
2264 			return ref;
2265 		node = rb_prev(node);
2266 	}
2267 	if (action == BTRFS_ADD_DELAYED_REF) {
2268 		action = BTRFS_DROP_DELAYED_REF;
2269 		goto again;
2270 	}
2271 	return NULL;
2272 }
2273 
2274 /*
2275  * Returns 0 on success or if called with an already aborted transaction.
2276  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2277  */
2278 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2279 				       struct btrfs_root *root,
2280 				       struct list_head *cluster)
2281 {
2282 	struct btrfs_delayed_ref_root *delayed_refs;
2283 	struct btrfs_delayed_ref_node *ref;
2284 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2285 	struct btrfs_delayed_extent_op *extent_op;
2286 	struct btrfs_fs_info *fs_info = root->fs_info;
2287 	int ret;
2288 	int count = 0;
2289 	int must_insert_reserved = 0;
2290 
2291 	delayed_refs = &trans->transaction->delayed_refs;
2292 	while (1) {
2293 		if (!locked_ref) {
2294 			/* pick a new head ref from the cluster list */
2295 			if (list_empty(cluster))
2296 				break;
2297 
2298 			locked_ref = list_entry(cluster->next,
2299 				     struct btrfs_delayed_ref_head, cluster);
2300 
2301 			/* grab the lock that says we are going to process
2302 			 * all the refs for this head */
2303 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2304 
2305 			/*
2306 			 * we may have dropped the spin lock to get the head
2307 			 * mutex lock, and that might have given someone else
2308 			 * time to free the head.  If that's true, it has been
2309 			 * removed from our list and we can move on.
2310 			 */
2311 			if (ret == -EAGAIN) {
2312 				locked_ref = NULL;
2313 				count++;
2314 				continue;
2315 			}
2316 		}
2317 
2318 		/*
2319 		 * We need to try and merge add/drops of the same ref since we
2320 		 * can run into issues with relocate dropping the implicit ref
2321 		 * and then it being added back again before the drop can
2322 		 * finish.  If we merged anything we need to re-loop so we can
2323 		 * get a good ref.
2324 		 */
2325 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2326 					 locked_ref);
2327 
2328 		/*
2329 		 * locked_ref is the head node, so we have to go one
2330 		 * node back for any delayed ref updates
2331 		 */
2332 		ref = select_delayed_ref(locked_ref);
2333 
2334 		if (ref && ref->seq &&
2335 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2336 			/*
2337 			 * there are still refs with lower seq numbers in the
2338 			 * process of being added. Don't run this ref yet.
2339 			 */
2340 			list_del_init(&locked_ref->cluster);
2341 			btrfs_delayed_ref_unlock(locked_ref);
2342 			locked_ref = NULL;
2343 			delayed_refs->num_heads_ready++;
2344 			spin_unlock(&delayed_refs->lock);
2345 			cond_resched();
2346 			spin_lock(&delayed_refs->lock);
2347 			continue;
2348 		}
2349 
2350 		/*
2351 		 * record the must insert reserved flag before we
2352 		 * drop the spin lock.
2353 		 */
2354 		must_insert_reserved = locked_ref->must_insert_reserved;
2355 		locked_ref->must_insert_reserved = 0;
2356 
2357 		extent_op = locked_ref->extent_op;
2358 		locked_ref->extent_op = NULL;
2359 
2360 		if (!ref) {
2361 			/* All delayed refs have been processed, Go ahead
2362 			 * and send the head node to run_one_delayed_ref,
2363 			 * so that any accounting fixes can happen
2364 			 */
2365 			ref = &locked_ref->node;
2366 
2367 			if (extent_op && must_insert_reserved) {
2368 				btrfs_free_delayed_extent_op(extent_op);
2369 				extent_op = NULL;
2370 			}
2371 
2372 			if (extent_op) {
2373 				spin_unlock(&delayed_refs->lock);
2374 
2375 				ret = run_delayed_extent_op(trans, root,
2376 							    ref, extent_op);
2377 				btrfs_free_delayed_extent_op(extent_op);
2378 
2379 				if (ret) {
2380 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2381 					spin_lock(&delayed_refs->lock);
2382 					btrfs_delayed_ref_unlock(locked_ref);
2383 					return ret;
2384 				}
2385 
2386 				goto next;
2387 			}
2388 		}
2389 
2390 		ref->in_tree = 0;
2391 		rb_erase(&ref->rb_node, &delayed_refs->root);
2392 		delayed_refs->num_entries--;
2393 		if (!btrfs_delayed_ref_is_head(ref)) {
2394 			/*
2395 			 * when we play the delayed ref, also correct the
2396 			 * ref_mod on head
2397 			 */
2398 			switch (ref->action) {
2399 			case BTRFS_ADD_DELAYED_REF:
2400 			case BTRFS_ADD_DELAYED_EXTENT:
2401 				locked_ref->node.ref_mod -= ref->ref_mod;
2402 				break;
2403 			case BTRFS_DROP_DELAYED_REF:
2404 				locked_ref->node.ref_mod += ref->ref_mod;
2405 				break;
2406 			default:
2407 				WARN_ON(1);
2408 			}
2409 		}
2410 		spin_unlock(&delayed_refs->lock);
2411 
2412 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2413 					  must_insert_reserved);
2414 
2415 		btrfs_free_delayed_extent_op(extent_op);
2416 		if (ret) {
2417 			btrfs_delayed_ref_unlock(locked_ref);
2418 			btrfs_put_delayed_ref(ref);
2419 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2420 			spin_lock(&delayed_refs->lock);
2421 			return ret;
2422 		}
2423 
2424 		/*
2425 		 * If this node is a head, that means all the refs in this head
2426 		 * have been dealt with, and we will pick the next head to deal
2427 		 * with, so we must unlock the head and drop it from the cluster
2428 		 * list before we release it.
2429 		 */
2430 		if (btrfs_delayed_ref_is_head(ref)) {
2431 			list_del_init(&locked_ref->cluster);
2432 			btrfs_delayed_ref_unlock(locked_ref);
2433 			locked_ref = NULL;
2434 		}
2435 		btrfs_put_delayed_ref(ref);
2436 		count++;
2437 next:
2438 		cond_resched();
2439 		spin_lock(&delayed_refs->lock);
2440 	}
2441 	return count;
2442 }
2443 
2444 #ifdef SCRAMBLE_DELAYED_REFS
2445 /*
2446  * Normally delayed refs get processed in ascending bytenr order. This
2447  * correlates in most cases to the order added. To expose dependencies on this
2448  * order, we start to process the tree in the middle instead of the beginning
2449  */
2450 static u64 find_middle(struct rb_root *root)
2451 {
2452 	struct rb_node *n = root->rb_node;
2453 	struct btrfs_delayed_ref_node *entry;
2454 	int alt = 1;
2455 	u64 middle;
2456 	u64 first = 0, last = 0;
2457 
2458 	n = rb_first(root);
2459 	if (n) {
2460 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2461 		first = entry->bytenr;
2462 	}
2463 	n = rb_last(root);
2464 	if (n) {
2465 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2466 		last = entry->bytenr;
2467 	}
2468 	n = root->rb_node;
2469 
2470 	while (n) {
2471 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2472 		WARN_ON(!entry->in_tree);
2473 
2474 		middle = entry->bytenr;
2475 
2476 		if (alt)
2477 			n = n->rb_left;
2478 		else
2479 			n = n->rb_right;
2480 
2481 		alt = 1 - alt;
2482 	}
2483 	return middle;
2484 }
2485 #endif
2486 
2487 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2488 					 struct btrfs_fs_info *fs_info)
2489 {
2490 	struct qgroup_update *qgroup_update;
2491 	int ret = 0;
2492 
2493 	if (list_empty(&trans->qgroup_ref_list) !=
2494 	    !trans->delayed_ref_elem.seq) {
2495 		/* list without seq or seq without list */
2496 		btrfs_err(fs_info,
2497 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2498 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2499 			(u32)(trans->delayed_ref_elem.seq >> 32),
2500 			(u32)trans->delayed_ref_elem.seq);
2501 		BUG();
2502 	}
2503 
2504 	if (!trans->delayed_ref_elem.seq)
2505 		return 0;
2506 
2507 	while (!list_empty(&trans->qgroup_ref_list)) {
2508 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2509 						 struct qgroup_update, list);
2510 		list_del(&qgroup_update->list);
2511 		if (!ret)
2512 			ret = btrfs_qgroup_account_ref(
2513 					trans, fs_info, qgroup_update->node,
2514 					qgroup_update->extent_op);
2515 		kfree(qgroup_update);
2516 	}
2517 
2518 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2519 
2520 	return ret;
2521 }
2522 
2523 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2524 		      int count)
2525 {
2526 	int val = atomic_read(&delayed_refs->ref_seq);
2527 
2528 	if (val < seq || val >= seq + count)
2529 		return 1;
2530 	return 0;
2531 }
2532 
2533 /*
2534  * this starts processing the delayed reference count updates and
2535  * extent insertions we have queued up so far.  count can be
2536  * 0, which means to process everything in the tree at the start
2537  * of the run (but not newly added entries), or it can be some target
2538  * number you'd like to process.
2539  *
2540  * Returns 0 on success or if called with an aborted transaction
2541  * Returns <0 on error and aborts the transaction
2542  */
2543 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2544 			   struct btrfs_root *root, unsigned long count)
2545 {
2546 	struct rb_node *node;
2547 	struct btrfs_delayed_ref_root *delayed_refs;
2548 	struct btrfs_delayed_ref_node *ref;
2549 	struct list_head cluster;
2550 	int ret;
2551 	u64 delayed_start;
2552 	int run_all = count == (unsigned long)-1;
2553 	int run_most = 0;
2554 	int loops;
2555 
2556 	/* We'll clean this up in btrfs_cleanup_transaction */
2557 	if (trans->aborted)
2558 		return 0;
2559 
2560 	if (root == root->fs_info->extent_root)
2561 		root = root->fs_info->tree_root;
2562 
2563 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2564 
2565 	delayed_refs = &trans->transaction->delayed_refs;
2566 	INIT_LIST_HEAD(&cluster);
2567 	if (count == 0) {
2568 		count = delayed_refs->num_entries * 2;
2569 		run_most = 1;
2570 	}
2571 
2572 	if (!run_all && !run_most) {
2573 		int old;
2574 		int seq = atomic_read(&delayed_refs->ref_seq);
2575 
2576 progress:
2577 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2578 		if (old) {
2579 			DEFINE_WAIT(__wait);
2580 			if (delayed_refs->num_entries < 16348)
2581 				return 0;
2582 
2583 			prepare_to_wait(&delayed_refs->wait, &__wait,
2584 					TASK_UNINTERRUPTIBLE);
2585 
2586 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2587 			if (old) {
2588 				schedule();
2589 				finish_wait(&delayed_refs->wait, &__wait);
2590 
2591 				if (!refs_newer(delayed_refs, seq, 256))
2592 					goto progress;
2593 				else
2594 					return 0;
2595 			} else {
2596 				finish_wait(&delayed_refs->wait, &__wait);
2597 				goto again;
2598 			}
2599 		}
2600 
2601 	} else {
2602 		atomic_inc(&delayed_refs->procs_running_refs);
2603 	}
2604 
2605 again:
2606 	loops = 0;
2607 	spin_lock(&delayed_refs->lock);
2608 
2609 #ifdef SCRAMBLE_DELAYED_REFS
2610 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2611 #endif
2612 
2613 	while (1) {
2614 		if (!(run_all || run_most) &&
2615 		    delayed_refs->num_heads_ready < 64)
2616 			break;
2617 
2618 		/*
2619 		 * go find something we can process in the rbtree.  We start at
2620 		 * the beginning of the tree, and then build a cluster
2621 		 * of refs to process starting at the first one we are able to
2622 		 * lock
2623 		 */
2624 		delayed_start = delayed_refs->run_delayed_start;
2625 		ret = btrfs_find_ref_cluster(trans, &cluster,
2626 					     delayed_refs->run_delayed_start);
2627 		if (ret)
2628 			break;
2629 
2630 		ret = run_clustered_refs(trans, root, &cluster);
2631 		if (ret < 0) {
2632 			btrfs_release_ref_cluster(&cluster);
2633 			spin_unlock(&delayed_refs->lock);
2634 			btrfs_abort_transaction(trans, root, ret);
2635 			atomic_dec(&delayed_refs->procs_running_refs);
2636 			return ret;
2637 		}
2638 
2639 		atomic_add(ret, &delayed_refs->ref_seq);
2640 
2641 		count -= min_t(unsigned long, ret, count);
2642 
2643 		if (count == 0)
2644 			break;
2645 
2646 		if (delayed_start >= delayed_refs->run_delayed_start) {
2647 			if (loops == 0) {
2648 				/*
2649 				 * btrfs_find_ref_cluster looped. let's do one
2650 				 * more cycle. if we don't run any delayed ref
2651 				 * during that cycle (because we can't because
2652 				 * all of them are blocked), bail out.
2653 				 */
2654 				loops = 1;
2655 			} else {
2656 				/*
2657 				 * no runnable refs left, stop trying
2658 				 */
2659 				BUG_ON(run_all);
2660 				break;
2661 			}
2662 		}
2663 		if (ret) {
2664 			/* refs were run, let's reset staleness detection */
2665 			loops = 0;
2666 		}
2667 	}
2668 
2669 	if (run_all) {
2670 		if (!list_empty(&trans->new_bgs)) {
2671 			spin_unlock(&delayed_refs->lock);
2672 			btrfs_create_pending_block_groups(trans, root);
2673 			spin_lock(&delayed_refs->lock);
2674 		}
2675 
2676 		node = rb_first(&delayed_refs->root);
2677 		if (!node)
2678 			goto out;
2679 		count = (unsigned long)-1;
2680 
2681 		while (node) {
2682 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2683 				       rb_node);
2684 			if (btrfs_delayed_ref_is_head(ref)) {
2685 				struct btrfs_delayed_ref_head *head;
2686 
2687 				head = btrfs_delayed_node_to_head(ref);
2688 				atomic_inc(&ref->refs);
2689 
2690 				spin_unlock(&delayed_refs->lock);
2691 				/*
2692 				 * Mutex was contended, block until it's
2693 				 * released and try again
2694 				 */
2695 				mutex_lock(&head->mutex);
2696 				mutex_unlock(&head->mutex);
2697 
2698 				btrfs_put_delayed_ref(ref);
2699 				cond_resched();
2700 				goto again;
2701 			}
2702 			node = rb_next(node);
2703 		}
2704 		spin_unlock(&delayed_refs->lock);
2705 		schedule_timeout(1);
2706 		goto again;
2707 	}
2708 out:
2709 	atomic_dec(&delayed_refs->procs_running_refs);
2710 	smp_mb();
2711 	if (waitqueue_active(&delayed_refs->wait))
2712 		wake_up(&delayed_refs->wait);
2713 
2714 	spin_unlock(&delayed_refs->lock);
2715 	assert_qgroups_uptodate(trans);
2716 	return 0;
2717 }
2718 
2719 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2720 				struct btrfs_root *root,
2721 				u64 bytenr, u64 num_bytes, u64 flags,
2722 				int is_data)
2723 {
2724 	struct btrfs_delayed_extent_op *extent_op;
2725 	int ret;
2726 
2727 	extent_op = btrfs_alloc_delayed_extent_op();
2728 	if (!extent_op)
2729 		return -ENOMEM;
2730 
2731 	extent_op->flags_to_set = flags;
2732 	extent_op->update_flags = 1;
2733 	extent_op->update_key = 0;
2734 	extent_op->is_data = is_data ? 1 : 0;
2735 
2736 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2737 					  num_bytes, extent_op);
2738 	if (ret)
2739 		btrfs_free_delayed_extent_op(extent_op);
2740 	return ret;
2741 }
2742 
2743 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2744 				      struct btrfs_root *root,
2745 				      struct btrfs_path *path,
2746 				      u64 objectid, u64 offset, u64 bytenr)
2747 {
2748 	struct btrfs_delayed_ref_head *head;
2749 	struct btrfs_delayed_ref_node *ref;
2750 	struct btrfs_delayed_data_ref *data_ref;
2751 	struct btrfs_delayed_ref_root *delayed_refs;
2752 	struct rb_node *node;
2753 	int ret = 0;
2754 
2755 	ret = -ENOENT;
2756 	delayed_refs = &trans->transaction->delayed_refs;
2757 	spin_lock(&delayed_refs->lock);
2758 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2759 	if (!head)
2760 		goto out;
2761 
2762 	if (!mutex_trylock(&head->mutex)) {
2763 		atomic_inc(&head->node.refs);
2764 		spin_unlock(&delayed_refs->lock);
2765 
2766 		btrfs_release_path(path);
2767 
2768 		/*
2769 		 * Mutex was contended, block until it's released and let
2770 		 * caller try again
2771 		 */
2772 		mutex_lock(&head->mutex);
2773 		mutex_unlock(&head->mutex);
2774 		btrfs_put_delayed_ref(&head->node);
2775 		return -EAGAIN;
2776 	}
2777 
2778 	node = rb_prev(&head->node.rb_node);
2779 	if (!node)
2780 		goto out_unlock;
2781 
2782 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2783 
2784 	if (ref->bytenr != bytenr)
2785 		goto out_unlock;
2786 
2787 	ret = 1;
2788 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2789 		goto out_unlock;
2790 
2791 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2792 
2793 	node = rb_prev(node);
2794 	if (node) {
2795 		int seq = ref->seq;
2796 
2797 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2798 		if (ref->bytenr == bytenr && ref->seq == seq)
2799 			goto out_unlock;
2800 	}
2801 
2802 	if (data_ref->root != root->root_key.objectid ||
2803 	    data_ref->objectid != objectid || data_ref->offset != offset)
2804 		goto out_unlock;
2805 
2806 	ret = 0;
2807 out_unlock:
2808 	mutex_unlock(&head->mutex);
2809 out:
2810 	spin_unlock(&delayed_refs->lock);
2811 	return ret;
2812 }
2813 
2814 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2815 					struct btrfs_root *root,
2816 					struct btrfs_path *path,
2817 					u64 objectid, u64 offset, u64 bytenr)
2818 {
2819 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2820 	struct extent_buffer *leaf;
2821 	struct btrfs_extent_data_ref *ref;
2822 	struct btrfs_extent_inline_ref *iref;
2823 	struct btrfs_extent_item *ei;
2824 	struct btrfs_key key;
2825 	u32 item_size;
2826 	int ret;
2827 
2828 	key.objectid = bytenr;
2829 	key.offset = (u64)-1;
2830 	key.type = BTRFS_EXTENT_ITEM_KEY;
2831 
2832 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2833 	if (ret < 0)
2834 		goto out;
2835 	BUG_ON(ret == 0); /* Corruption */
2836 
2837 	ret = -ENOENT;
2838 	if (path->slots[0] == 0)
2839 		goto out;
2840 
2841 	path->slots[0]--;
2842 	leaf = path->nodes[0];
2843 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2844 
2845 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2846 		goto out;
2847 
2848 	ret = 1;
2849 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2850 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2851 	if (item_size < sizeof(*ei)) {
2852 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2853 		goto out;
2854 	}
2855 #endif
2856 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2857 
2858 	if (item_size != sizeof(*ei) +
2859 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2860 		goto out;
2861 
2862 	if (btrfs_extent_generation(leaf, ei) <=
2863 	    btrfs_root_last_snapshot(&root->root_item))
2864 		goto out;
2865 
2866 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2867 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2868 	    BTRFS_EXTENT_DATA_REF_KEY)
2869 		goto out;
2870 
2871 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2872 	if (btrfs_extent_refs(leaf, ei) !=
2873 	    btrfs_extent_data_ref_count(leaf, ref) ||
2874 	    btrfs_extent_data_ref_root(leaf, ref) !=
2875 	    root->root_key.objectid ||
2876 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2877 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2878 		goto out;
2879 
2880 	ret = 0;
2881 out:
2882 	return ret;
2883 }
2884 
2885 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2886 			  struct btrfs_root *root,
2887 			  u64 objectid, u64 offset, u64 bytenr)
2888 {
2889 	struct btrfs_path *path;
2890 	int ret;
2891 	int ret2;
2892 
2893 	path = btrfs_alloc_path();
2894 	if (!path)
2895 		return -ENOENT;
2896 
2897 	do {
2898 		ret = check_committed_ref(trans, root, path, objectid,
2899 					  offset, bytenr);
2900 		if (ret && ret != -ENOENT)
2901 			goto out;
2902 
2903 		ret2 = check_delayed_ref(trans, root, path, objectid,
2904 					 offset, bytenr);
2905 	} while (ret2 == -EAGAIN);
2906 
2907 	if (ret2 && ret2 != -ENOENT) {
2908 		ret = ret2;
2909 		goto out;
2910 	}
2911 
2912 	if (ret != -ENOENT || ret2 != -ENOENT)
2913 		ret = 0;
2914 out:
2915 	btrfs_free_path(path);
2916 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2917 		WARN_ON(ret > 0);
2918 	return ret;
2919 }
2920 
2921 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2922 			   struct btrfs_root *root,
2923 			   struct extent_buffer *buf,
2924 			   int full_backref, int inc, int for_cow)
2925 {
2926 	u64 bytenr;
2927 	u64 num_bytes;
2928 	u64 parent;
2929 	u64 ref_root;
2930 	u32 nritems;
2931 	struct btrfs_key key;
2932 	struct btrfs_file_extent_item *fi;
2933 	int i;
2934 	int level;
2935 	int ret = 0;
2936 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2937 			    u64, u64, u64, u64, u64, u64, int);
2938 
2939 	ref_root = btrfs_header_owner(buf);
2940 	nritems = btrfs_header_nritems(buf);
2941 	level = btrfs_header_level(buf);
2942 
2943 	if (!root->ref_cows && level == 0)
2944 		return 0;
2945 
2946 	if (inc)
2947 		process_func = btrfs_inc_extent_ref;
2948 	else
2949 		process_func = btrfs_free_extent;
2950 
2951 	if (full_backref)
2952 		parent = buf->start;
2953 	else
2954 		parent = 0;
2955 
2956 	for (i = 0; i < nritems; i++) {
2957 		if (level == 0) {
2958 			btrfs_item_key_to_cpu(buf, &key, i);
2959 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2960 				continue;
2961 			fi = btrfs_item_ptr(buf, i,
2962 					    struct btrfs_file_extent_item);
2963 			if (btrfs_file_extent_type(buf, fi) ==
2964 			    BTRFS_FILE_EXTENT_INLINE)
2965 				continue;
2966 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2967 			if (bytenr == 0)
2968 				continue;
2969 
2970 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2971 			key.offset -= btrfs_file_extent_offset(buf, fi);
2972 			ret = process_func(trans, root, bytenr, num_bytes,
2973 					   parent, ref_root, key.objectid,
2974 					   key.offset, for_cow);
2975 			if (ret)
2976 				goto fail;
2977 		} else {
2978 			bytenr = btrfs_node_blockptr(buf, i);
2979 			num_bytes = btrfs_level_size(root, level - 1);
2980 			ret = process_func(trans, root, bytenr, num_bytes,
2981 					   parent, ref_root, level - 1, 0,
2982 					   for_cow);
2983 			if (ret)
2984 				goto fail;
2985 		}
2986 	}
2987 	return 0;
2988 fail:
2989 	return ret;
2990 }
2991 
2992 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2993 		  struct extent_buffer *buf, int full_backref, int for_cow)
2994 {
2995 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2996 }
2997 
2998 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2999 		  struct extent_buffer *buf, int full_backref, int for_cow)
3000 {
3001 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3002 }
3003 
3004 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3005 				 struct btrfs_root *root,
3006 				 struct btrfs_path *path,
3007 				 struct btrfs_block_group_cache *cache)
3008 {
3009 	int ret;
3010 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3011 	unsigned long bi;
3012 	struct extent_buffer *leaf;
3013 
3014 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3015 	if (ret < 0)
3016 		goto fail;
3017 	BUG_ON(ret); /* Corruption */
3018 
3019 	leaf = path->nodes[0];
3020 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3021 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3022 	btrfs_mark_buffer_dirty(leaf);
3023 	btrfs_release_path(path);
3024 fail:
3025 	if (ret) {
3026 		btrfs_abort_transaction(trans, root, ret);
3027 		return ret;
3028 	}
3029 	return 0;
3030 
3031 }
3032 
3033 static struct btrfs_block_group_cache *
3034 next_block_group(struct btrfs_root *root,
3035 		 struct btrfs_block_group_cache *cache)
3036 {
3037 	struct rb_node *node;
3038 	spin_lock(&root->fs_info->block_group_cache_lock);
3039 	node = rb_next(&cache->cache_node);
3040 	btrfs_put_block_group(cache);
3041 	if (node) {
3042 		cache = rb_entry(node, struct btrfs_block_group_cache,
3043 				 cache_node);
3044 		btrfs_get_block_group(cache);
3045 	} else
3046 		cache = NULL;
3047 	spin_unlock(&root->fs_info->block_group_cache_lock);
3048 	return cache;
3049 }
3050 
3051 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3052 			    struct btrfs_trans_handle *trans,
3053 			    struct btrfs_path *path)
3054 {
3055 	struct btrfs_root *root = block_group->fs_info->tree_root;
3056 	struct inode *inode = NULL;
3057 	u64 alloc_hint = 0;
3058 	int dcs = BTRFS_DC_ERROR;
3059 	int num_pages = 0;
3060 	int retries = 0;
3061 	int ret = 0;
3062 
3063 	/*
3064 	 * If this block group is smaller than 100 megs don't bother caching the
3065 	 * block group.
3066 	 */
3067 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3068 		spin_lock(&block_group->lock);
3069 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3070 		spin_unlock(&block_group->lock);
3071 		return 0;
3072 	}
3073 
3074 again:
3075 	inode = lookup_free_space_inode(root, block_group, path);
3076 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3077 		ret = PTR_ERR(inode);
3078 		btrfs_release_path(path);
3079 		goto out;
3080 	}
3081 
3082 	if (IS_ERR(inode)) {
3083 		BUG_ON(retries);
3084 		retries++;
3085 
3086 		if (block_group->ro)
3087 			goto out_free;
3088 
3089 		ret = create_free_space_inode(root, trans, block_group, path);
3090 		if (ret)
3091 			goto out_free;
3092 		goto again;
3093 	}
3094 
3095 	/* We've already setup this transaction, go ahead and exit */
3096 	if (block_group->cache_generation == trans->transid &&
3097 	    i_size_read(inode)) {
3098 		dcs = BTRFS_DC_SETUP;
3099 		goto out_put;
3100 	}
3101 
3102 	/*
3103 	 * We want to set the generation to 0, that way if anything goes wrong
3104 	 * from here on out we know not to trust this cache when we load up next
3105 	 * time.
3106 	 */
3107 	BTRFS_I(inode)->generation = 0;
3108 	ret = btrfs_update_inode(trans, root, inode);
3109 	WARN_ON(ret);
3110 
3111 	if (i_size_read(inode) > 0) {
3112 		ret = btrfs_truncate_free_space_cache(root, trans, path,
3113 						      inode);
3114 		if (ret)
3115 			goto out_put;
3116 	}
3117 
3118 	spin_lock(&block_group->lock);
3119 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3120 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3121 		/*
3122 		 * don't bother trying to write stuff out _if_
3123 		 * a) we're not cached,
3124 		 * b) we're with nospace_cache mount option.
3125 		 */
3126 		dcs = BTRFS_DC_WRITTEN;
3127 		spin_unlock(&block_group->lock);
3128 		goto out_put;
3129 	}
3130 	spin_unlock(&block_group->lock);
3131 
3132 	/*
3133 	 * Try to preallocate enough space based on how big the block group is.
3134 	 * Keep in mind this has to include any pinned space which could end up
3135 	 * taking up quite a bit since it's not folded into the other space
3136 	 * cache.
3137 	 */
3138 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3139 	if (!num_pages)
3140 		num_pages = 1;
3141 
3142 	num_pages *= 16;
3143 	num_pages *= PAGE_CACHE_SIZE;
3144 
3145 	ret = btrfs_check_data_free_space(inode, num_pages);
3146 	if (ret)
3147 		goto out_put;
3148 
3149 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3150 					      num_pages, num_pages,
3151 					      &alloc_hint);
3152 	if (!ret)
3153 		dcs = BTRFS_DC_SETUP;
3154 	btrfs_free_reserved_data_space(inode, num_pages);
3155 
3156 out_put:
3157 	iput(inode);
3158 out_free:
3159 	btrfs_release_path(path);
3160 out:
3161 	spin_lock(&block_group->lock);
3162 	if (!ret && dcs == BTRFS_DC_SETUP)
3163 		block_group->cache_generation = trans->transid;
3164 	block_group->disk_cache_state = dcs;
3165 	spin_unlock(&block_group->lock);
3166 
3167 	return ret;
3168 }
3169 
3170 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3171 				   struct btrfs_root *root)
3172 {
3173 	struct btrfs_block_group_cache *cache;
3174 	int err = 0;
3175 	struct btrfs_path *path;
3176 	u64 last = 0;
3177 
3178 	path = btrfs_alloc_path();
3179 	if (!path)
3180 		return -ENOMEM;
3181 
3182 again:
3183 	while (1) {
3184 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3185 		while (cache) {
3186 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3187 				break;
3188 			cache = next_block_group(root, cache);
3189 		}
3190 		if (!cache) {
3191 			if (last == 0)
3192 				break;
3193 			last = 0;
3194 			continue;
3195 		}
3196 		err = cache_save_setup(cache, trans, path);
3197 		last = cache->key.objectid + cache->key.offset;
3198 		btrfs_put_block_group(cache);
3199 	}
3200 
3201 	while (1) {
3202 		if (last == 0) {
3203 			err = btrfs_run_delayed_refs(trans, root,
3204 						     (unsigned long)-1);
3205 			if (err) /* File system offline */
3206 				goto out;
3207 		}
3208 
3209 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3210 		while (cache) {
3211 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3212 				btrfs_put_block_group(cache);
3213 				goto again;
3214 			}
3215 
3216 			if (cache->dirty)
3217 				break;
3218 			cache = next_block_group(root, cache);
3219 		}
3220 		if (!cache) {
3221 			if (last == 0)
3222 				break;
3223 			last = 0;
3224 			continue;
3225 		}
3226 
3227 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3228 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3229 		cache->dirty = 0;
3230 		last = cache->key.objectid + cache->key.offset;
3231 
3232 		err = write_one_cache_group(trans, root, path, cache);
3233 		if (err) /* File system offline */
3234 			goto out;
3235 
3236 		btrfs_put_block_group(cache);
3237 	}
3238 
3239 	while (1) {
3240 		/*
3241 		 * I don't think this is needed since we're just marking our
3242 		 * preallocated extent as written, but just in case it can't
3243 		 * hurt.
3244 		 */
3245 		if (last == 0) {
3246 			err = btrfs_run_delayed_refs(trans, root,
3247 						     (unsigned long)-1);
3248 			if (err) /* File system offline */
3249 				goto out;
3250 		}
3251 
3252 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3253 		while (cache) {
3254 			/*
3255 			 * Really this shouldn't happen, but it could if we
3256 			 * couldn't write the entire preallocated extent and
3257 			 * splitting the extent resulted in a new block.
3258 			 */
3259 			if (cache->dirty) {
3260 				btrfs_put_block_group(cache);
3261 				goto again;
3262 			}
3263 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3264 				break;
3265 			cache = next_block_group(root, cache);
3266 		}
3267 		if (!cache) {
3268 			if (last == 0)
3269 				break;
3270 			last = 0;
3271 			continue;
3272 		}
3273 
3274 		err = btrfs_write_out_cache(root, trans, cache, path);
3275 
3276 		/*
3277 		 * If we didn't have an error then the cache state is still
3278 		 * NEED_WRITE, so we can set it to WRITTEN.
3279 		 */
3280 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3281 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3282 		last = cache->key.objectid + cache->key.offset;
3283 		btrfs_put_block_group(cache);
3284 	}
3285 out:
3286 
3287 	btrfs_free_path(path);
3288 	return err;
3289 }
3290 
3291 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3292 {
3293 	struct btrfs_block_group_cache *block_group;
3294 	int readonly = 0;
3295 
3296 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3297 	if (!block_group || block_group->ro)
3298 		readonly = 1;
3299 	if (block_group)
3300 		btrfs_put_block_group(block_group);
3301 	return readonly;
3302 }
3303 
3304 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3305 			     u64 total_bytes, u64 bytes_used,
3306 			     struct btrfs_space_info **space_info)
3307 {
3308 	struct btrfs_space_info *found;
3309 	int i;
3310 	int factor;
3311 
3312 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3313 		     BTRFS_BLOCK_GROUP_RAID10))
3314 		factor = 2;
3315 	else
3316 		factor = 1;
3317 
3318 	found = __find_space_info(info, flags);
3319 	if (found) {
3320 		spin_lock(&found->lock);
3321 		found->total_bytes += total_bytes;
3322 		found->disk_total += total_bytes * factor;
3323 		found->bytes_used += bytes_used;
3324 		found->disk_used += bytes_used * factor;
3325 		found->full = 0;
3326 		spin_unlock(&found->lock);
3327 		*space_info = found;
3328 		return 0;
3329 	}
3330 	found = kzalloc(sizeof(*found), GFP_NOFS);
3331 	if (!found)
3332 		return -ENOMEM;
3333 
3334 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3335 		INIT_LIST_HEAD(&found->block_groups[i]);
3336 	init_rwsem(&found->groups_sem);
3337 	spin_lock_init(&found->lock);
3338 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3339 	found->total_bytes = total_bytes;
3340 	found->disk_total = total_bytes * factor;
3341 	found->bytes_used = bytes_used;
3342 	found->disk_used = bytes_used * factor;
3343 	found->bytes_pinned = 0;
3344 	found->bytes_reserved = 0;
3345 	found->bytes_readonly = 0;
3346 	found->bytes_may_use = 0;
3347 	found->full = 0;
3348 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3349 	found->chunk_alloc = 0;
3350 	found->flush = 0;
3351 	init_waitqueue_head(&found->wait);
3352 	*space_info = found;
3353 	list_add_rcu(&found->list, &info->space_info);
3354 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3355 		info->data_sinfo = found;
3356 	return 0;
3357 }
3358 
3359 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3360 {
3361 	u64 extra_flags = chunk_to_extended(flags) &
3362 				BTRFS_EXTENDED_PROFILE_MASK;
3363 
3364 	write_seqlock(&fs_info->profiles_lock);
3365 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3366 		fs_info->avail_data_alloc_bits |= extra_flags;
3367 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3368 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3369 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3370 		fs_info->avail_system_alloc_bits |= extra_flags;
3371 	write_sequnlock(&fs_info->profiles_lock);
3372 }
3373 
3374 /*
3375  * returns target flags in extended format or 0 if restripe for this
3376  * chunk_type is not in progress
3377  *
3378  * should be called with either volume_mutex or balance_lock held
3379  */
3380 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3381 {
3382 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383 	u64 target = 0;
3384 
3385 	if (!bctl)
3386 		return 0;
3387 
3388 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3389 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3390 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3391 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3392 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3393 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3394 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3395 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3396 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3397 	}
3398 
3399 	return target;
3400 }
3401 
3402 /*
3403  * @flags: available profiles in extended format (see ctree.h)
3404  *
3405  * Returns reduced profile in chunk format.  If profile changing is in
3406  * progress (either running or paused) picks the target profile (if it's
3407  * already available), otherwise falls back to plain reducing.
3408  */
3409 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3410 {
3411 	/*
3412 	 * we add in the count of missing devices because we want
3413 	 * to make sure that any RAID levels on a degraded FS
3414 	 * continue to be honored.
3415 	 */
3416 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3417 		root->fs_info->fs_devices->missing_devices;
3418 	u64 target;
3419 	u64 tmp;
3420 
3421 	/*
3422 	 * see if restripe for this chunk_type is in progress, if so
3423 	 * try to reduce to the target profile
3424 	 */
3425 	spin_lock(&root->fs_info->balance_lock);
3426 	target = get_restripe_target(root->fs_info, flags);
3427 	if (target) {
3428 		/* pick target profile only if it's already available */
3429 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3430 			spin_unlock(&root->fs_info->balance_lock);
3431 			return extended_to_chunk(target);
3432 		}
3433 	}
3434 	spin_unlock(&root->fs_info->balance_lock);
3435 
3436 	/* First, mask out the RAID levels which aren't possible */
3437 	if (num_devices == 1)
3438 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3439 			   BTRFS_BLOCK_GROUP_RAID5);
3440 	if (num_devices < 3)
3441 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3442 	if (num_devices < 4)
3443 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3444 
3445 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3446 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3447 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3448 	flags &= ~tmp;
3449 
3450 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3451 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3452 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3453 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3454 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3455 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3456 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3457 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3458 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3459 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3460 
3461 	return extended_to_chunk(flags | tmp);
3462 }
3463 
3464 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3465 {
3466 	unsigned seq;
3467 
3468 	do {
3469 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3470 
3471 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3472 			flags |= root->fs_info->avail_data_alloc_bits;
3473 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3474 			flags |= root->fs_info->avail_system_alloc_bits;
3475 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3476 			flags |= root->fs_info->avail_metadata_alloc_bits;
3477 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3478 
3479 	return btrfs_reduce_alloc_profile(root, flags);
3480 }
3481 
3482 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3483 {
3484 	u64 flags;
3485 	u64 ret;
3486 
3487 	if (data)
3488 		flags = BTRFS_BLOCK_GROUP_DATA;
3489 	else if (root == root->fs_info->chunk_root)
3490 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3491 	else
3492 		flags = BTRFS_BLOCK_GROUP_METADATA;
3493 
3494 	ret = get_alloc_profile(root, flags);
3495 	return ret;
3496 }
3497 
3498 /*
3499  * This will check the space that the inode allocates from to make sure we have
3500  * enough space for bytes.
3501  */
3502 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3503 {
3504 	struct btrfs_space_info *data_sinfo;
3505 	struct btrfs_root *root = BTRFS_I(inode)->root;
3506 	struct btrfs_fs_info *fs_info = root->fs_info;
3507 	u64 used;
3508 	int ret = 0, committed = 0, alloc_chunk = 1;
3509 
3510 	/* make sure bytes are sectorsize aligned */
3511 	bytes = ALIGN(bytes, root->sectorsize);
3512 
3513 	if (root == root->fs_info->tree_root ||
3514 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3515 		alloc_chunk = 0;
3516 		committed = 1;
3517 	}
3518 
3519 	data_sinfo = fs_info->data_sinfo;
3520 	if (!data_sinfo)
3521 		goto alloc;
3522 
3523 again:
3524 	/* make sure we have enough space to handle the data first */
3525 	spin_lock(&data_sinfo->lock);
3526 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3527 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3528 		data_sinfo->bytes_may_use;
3529 
3530 	if (used + bytes > data_sinfo->total_bytes) {
3531 		struct btrfs_trans_handle *trans;
3532 
3533 		/*
3534 		 * if we don't have enough free bytes in this space then we need
3535 		 * to alloc a new chunk.
3536 		 */
3537 		if (!data_sinfo->full && alloc_chunk) {
3538 			u64 alloc_target;
3539 
3540 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3541 			spin_unlock(&data_sinfo->lock);
3542 alloc:
3543 			alloc_target = btrfs_get_alloc_profile(root, 1);
3544 			trans = btrfs_join_transaction(root);
3545 			if (IS_ERR(trans))
3546 				return PTR_ERR(trans);
3547 
3548 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3549 					     alloc_target,
3550 					     CHUNK_ALLOC_NO_FORCE);
3551 			btrfs_end_transaction(trans, root);
3552 			if (ret < 0) {
3553 				if (ret != -ENOSPC)
3554 					return ret;
3555 				else
3556 					goto commit_trans;
3557 			}
3558 
3559 			if (!data_sinfo)
3560 				data_sinfo = fs_info->data_sinfo;
3561 
3562 			goto again;
3563 		}
3564 
3565 		/*
3566 		 * If we have less pinned bytes than we want to allocate then
3567 		 * don't bother committing the transaction, it won't help us.
3568 		 */
3569 		if (data_sinfo->bytes_pinned < bytes)
3570 			committed = 1;
3571 		spin_unlock(&data_sinfo->lock);
3572 
3573 		/* commit the current transaction and try again */
3574 commit_trans:
3575 		if (!committed &&
3576 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3577 			committed = 1;
3578 			trans = btrfs_join_transaction(root);
3579 			if (IS_ERR(trans))
3580 				return PTR_ERR(trans);
3581 			ret = btrfs_commit_transaction(trans, root);
3582 			if (ret)
3583 				return ret;
3584 			goto again;
3585 		}
3586 
3587 		return -ENOSPC;
3588 	}
3589 	data_sinfo->bytes_may_use += bytes;
3590 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3591 				      data_sinfo->flags, bytes, 1);
3592 	spin_unlock(&data_sinfo->lock);
3593 
3594 	return 0;
3595 }
3596 
3597 /*
3598  * Called if we need to clear a data reservation for this inode.
3599  */
3600 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3601 {
3602 	struct btrfs_root *root = BTRFS_I(inode)->root;
3603 	struct btrfs_space_info *data_sinfo;
3604 
3605 	/* make sure bytes are sectorsize aligned */
3606 	bytes = ALIGN(bytes, root->sectorsize);
3607 
3608 	data_sinfo = root->fs_info->data_sinfo;
3609 	spin_lock(&data_sinfo->lock);
3610 	data_sinfo->bytes_may_use -= bytes;
3611 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3612 				      data_sinfo->flags, bytes, 0);
3613 	spin_unlock(&data_sinfo->lock);
3614 }
3615 
3616 static void force_metadata_allocation(struct btrfs_fs_info *info)
3617 {
3618 	struct list_head *head = &info->space_info;
3619 	struct btrfs_space_info *found;
3620 
3621 	rcu_read_lock();
3622 	list_for_each_entry_rcu(found, head, list) {
3623 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3624 			found->force_alloc = CHUNK_ALLOC_FORCE;
3625 	}
3626 	rcu_read_unlock();
3627 }
3628 
3629 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3630 {
3631 	return (global->size << 1);
3632 }
3633 
3634 static int should_alloc_chunk(struct btrfs_root *root,
3635 			      struct btrfs_space_info *sinfo, int force)
3636 {
3637 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3638 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3639 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3640 	u64 thresh;
3641 
3642 	if (force == CHUNK_ALLOC_FORCE)
3643 		return 1;
3644 
3645 	/*
3646 	 * We need to take into account the global rsv because for all intents
3647 	 * and purposes it's used space.  Don't worry about locking the
3648 	 * global_rsv, it doesn't change except when the transaction commits.
3649 	 */
3650 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3651 		num_allocated += calc_global_rsv_need_space(global_rsv);
3652 
3653 	/*
3654 	 * in limited mode, we want to have some free space up to
3655 	 * about 1% of the FS size.
3656 	 */
3657 	if (force == CHUNK_ALLOC_LIMITED) {
3658 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3659 		thresh = max_t(u64, 64 * 1024 * 1024,
3660 			       div_factor_fine(thresh, 1));
3661 
3662 		if (num_bytes - num_allocated < thresh)
3663 			return 1;
3664 	}
3665 
3666 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3667 		return 0;
3668 	return 1;
3669 }
3670 
3671 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3672 {
3673 	u64 num_dev;
3674 
3675 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3676 		    BTRFS_BLOCK_GROUP_RAID0 |
3677 		    BTRFS_BLOCK_GROUP_RAID5 |
3678 		    BTRFS_BLOCK_GROUP_RAID6))
3679 		num_dev = root->fs_info->fs_devices->rw_devices;
3680 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3681 		num_dev = 2;
3682 	else
3683 		num_dev = 1;	/* DUP or single */
3684 
3685 	/* metadata for updaing devices and chunk tree */
3686 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3687 }
3688 
3689 static void check_system_chunk(struct btrfs_trans_handle *trans,
3690 			       struct btrfs_root *root, u64 type)
3691 {
3692 	struct btrfs_space_info *info;
3693 	u64 left;
3694 	u64 thresh;
3695 
3696 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3697 	spin_lock(&info->lock);
3698 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3699 		info->bytes_reserved - info->bytes_readonly;
3700 	spin_unlock(&info->lock);
3701 
3702 	thresh = get_system_chunk_thresh(root, type);
3703 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3704 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3705 			left, thresh, type);
3706 		dump_space_info(info, 0, 0);
3707 	}
3708 
3709 	if (left < thresh) {
3710 		u64 flags;
3711 
3712 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3713 		btrfs_alloc_chunk(trans, root, flags);
3714 	}
3715 }
3716 
3717 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3718 			  struct btrfs_root *extent_root, u64 flags, int force)
3719 {
3720 	struct btrfs_space_info *space_info;
3721 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3722 	int wait_for_alloc = 0;
3723 	int ret = 0;
3724 
3725 	/* Don't re-enter if we're already allocating a chunk */
3726 	if (trans->allocating_chunk)
3727 		return -ENOSPC;
3728 
3729 	space_info = __find_space_info(extent_root->fs_info, flags);
3730 	if (!space_info) {
3731 		ret = update_space_info(extent_root->fs_info, flags,
3732 					0, 0, &space_info);
3733 		BUG_ON(ret); /* -ENOMEM */
3734 	}
3735 	BUG_ON(!space_info); /* Logic error */
3736 
3737 again:
3738 	spin_lock(&space_info->lock);
3739 	if (force < space_info->force_alloc)
3740 		force = space_info->force_alloc;
3741 	if (space_info->full) {
3742 		spin_unlock(&space_info->lock);
3743 		return 0;
3744 	}
3745 
3746 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3747 		spin_unlock(&space_info->lock);
3748 		return 0;
3749 	} else if (space_info->chunk_alloc) {
3750 		wait_for_alloc = 1;
3751 	} else {
3752 		space_info->chunk_alloc = 1;
3753 	}
3754 
3755 	spin_unlock(&space_info->lock);
3756 
3757 	mutex_lock(&fs_info->chunk_mutex);
3758 
3759 	/*
3760 	 * The chunk_mutex is held throughout the entirety of a chunk
3761 	 * allocation, so once we've acquired the chunk_mutex we know that the
3762 	 * other guy is done and we need to recheck and see if we should
3763 	 * allocate.
3764 	 */
3765 	if (wait_for_alloc) {
3766 		mutex_unlock(&fs_info->chunk_mutex);
3767 		wait_for_alloc = 0;
3768 		goto again;
3769 	}
3770 
3771 	trans->allocating_chunk = true;
3772 
3773 	/*
3774 	 * If we have mixed data/metadata chunks we want to make sure we keep
3775 	 * allocating mixed chunks instead of individual chunks.
3776 	 */
3777 	if (btrfs_mixed_space_info(space_info))
3778 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3779 
3780 	/*
3781 	 * if we're doing a data chunk, go ahead and make sure that
3782 	 * we keep a reasonable number of metadata chunks allocated in the
3783 	 * FS as well.
3784 	 */
3785 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3786 		fs_info->data_chunk_allocations++;
3787 		if (!(fs_info->data_chunk_allocations %
3788 		      fs_info->metadata_ratio))
3789 			force_metadata_allocation(fs_info);
3790 	}
3791 
3792 	/*
3793 	 * Check if we have enough space in SYSTEM chunk because we may need
3794 	 * to update devices.
3795 	 */
3796 	check_system_chunk(trans, extent_root, flags);
3797 
3798 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3799 	trans->allocating_chunk = false;
3800 
3801 	spin_lock(&space_info->lock);
3802 	if (ret < 0 && ret != -ENOSPC)
3803 		goto out;
3804 	if (ret)
3805 		space_info->full = 1;
3806 	else
3807 		ret = 1;
3808 
3809 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3810 out:
3811 	space_info->chunk_alloc = 0;
3812 	spin_unlock(&space_info->lock);
3813 	mutex_unlock(&fs_info->chunk_mutex);
3814 	return ret;
3815 }
3816 
3817 static int can_overcommit(struct btrfs_root *root,
3818 			  struct btrfs_space_info *space_info, u64 bytes,
3819 			  enum btrfs_reserve_flush_enum flush)
3820 {
3821 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3822 	u64 profile = btrfs_get_alloc_profile(root, 0);
3823 	u64 space_size;
3824 	u64 avail;
3825 	u64 used;
3826 	u64 to_add;
3827 
3828 	used = space_info->bytes_used + space_info->bytes_reserved +
3829 		space_info->bytes_pinned + space_info->bytes_readonly;
3830 
3831 	/*
3832 	 * We only want to allow over committing if we have lots of actual space
3833 	 * free, but if we don't have enough space to handle the global reserve
3834 	 * space then we could end up having a real enospc problem when trying
3835 	 * to allocate a chunk or some other such important allocation.
3836 	 */
3837 	spin_lock(&global_rsv->lock);
3838 	space_size = calc_global_rsv_need_space(global_rsv);
3839 	spin_unlock(&global_rsv->lock);
3840 	if (used + space_size >= space_info->total_bytes)
3841 		return 0;
3842 
3843 	used += space_info->bytes_may_use;
3844 
3845 	spin_lock(&root->fs_info->free_chunk_lock);
3846 	avail = root->fs_info->free_chunk_space;
3847 	spin_unlock(&root->fs_info->free_chunk_lock);
3848 
3849 	/*
3850 	 * If we have dup, raid1 or raid10 then only half of the free
3851 	 * space is actually useable.  For raid56, the space info used
3852 	 * doesn't include the parity drive, so we don't have to
3853 	 * change the math
3854 	 */
3855 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3856 		       BTRFS_BLOCK_GROUP_RAID1 |
3857 		       BTRFS_BLOCK_GROUP_RAID10))
3858 		avail >>= 1;
3859 
3860 	to_add = space_info->total_bytes;
3861 
3862 	/*
3863 	 * If we aren't flushing all things, let us overcommit up to
3864 	 * 1/2th of the space. If we can flush, don't let us overcommit
3865 	 * too much, let it overcommit up to 1/8 of the space.
3866 	 */
3867 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3868 		to_add >>= 3;
3869 	else
3870 		to_add >>= 1;
3871 
3872 	/*
3873 	 * Limit the overcommit to the amount of free space we could possibly
3874 	 * allocate for chunks.
3875 	 */
3876 	to_add = min(avail, to_add);
3877 
3878 	if (used + bytes < space_info->total_bytes + to_add)
3879 		return 1;
3880 	return 0;
3881 }
3882 
3883 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3884 					 unsigned long nr_pages)
3885 {
3886 	struct super_block *sb = root->fs_info->sb;
3887 	int started;
3888 
3889 	/* If we can not start writeback, just sync all the delalloc file. */
3890 	started = try_to_writeback_inodes_sb_nr(sb, nr_pages,
3891 						      WB_REASON_FS_FREE_SPACE);
3892 	if (!started) {
3893 		/*
3894 		 * We needn't worry the filesystem going from r/w to r/o though
3895 		 * we don't acquire ->s_umount mutex, because the filesystem
3896 		 * should guarantee the delalloc inodes list be empty after
3897 		 * the filesystem is readonly(all dirty pages are written to
3898 		 * the disk).
3899 		 */
3900 		btrfs_start_delalloc_inodes(root, 0);
3901 		if (!current->journal_info)
3902 			btrfs_wait_ordered_extents(root, 0);
3903 	}
3904 }
3905 
3906 /*
3907  * shrink metadata reservation for delalloc
3908  */
3909 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3910 			    bool wait_ordered)
3911 {
3912 	struct btrfs_block_rsv *block_rsv;
3913 	struct btrfs_space_info *space_info;
3914 	struct btrfs_trans_handle *trans;
3915 	u64 delalloc_bytes;
3916 	u64 max_reclaim;
3917 	long time_left;
3918 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3919 	int loops = 0;
3920 	enum btrfs_reserve_flush_enum flush;
3921 
3922 	trans = (struct btrfs_trans_handle *)current->journal_info;
3923 	block_rsv = &root->fs_info->delalloc_block_rsv;
3924 	space_info = block_rsv->space_info;
3925 
3926 	smp_mb();
3927 	delalloc_bytes = percpu_counter_sum_positive(
3928 						&root->fs_info->delalloc_bytes);
3929 	if (delalloc_bytes == 0) {
3930 		if (trans)
3931 			return;
3932 		btrfs_wait_ordered_extents(root, 0);
3933 		return;
3934 	}
3935 
3936 	while (delalloc_bytes && loops < 3) {
3937 		max_reclaim = min(delalloc_bytes, to_reclaim);
3938 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3939 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
3940 		/*
3941 		 * We need to wait for the async pages to actually start before
3942 		 * we do anything.
3943 		 */
3944 		wait_event(root->fs_info->async_submit_wait,
3945 			   !atomic_read(&root->fs_info->async_delalloc_pages));
3946 
3947 		if (!trans)
3948 			flush = BTRFS_RESERVE_FLUSH_ALL;
3949 		else
3950 			flush = BTRFS_RESERVE_NO_FLUSH;
3951 		spin_lock(&space_info->lock);
3952 		if (can_overcommit(root, space_info, orig, flush)) {
3953 			spin_unlock(&space_info->lock);
3954 			break;
3955 		}
3956 		spin_unlock(&space_info->lock);
3957 
3958 		loops++;
3959 		if (wait_ordered && !trans) {
3960 			btrfs_wait_ordered_extents(root, 0);
3961 		} else {
3962 			time_left = schedule_timeout_killable(1);
3963 			if (time_left)
3964 				break;
3965 		}
3966 		smp_mb();
3967 		delalloc_bytes = percpu_counter_sum_positive(
3968 						&root->fs_info->delalloc_bytes);
3969 	}
3970 }
3971 
3972 /**
3973  * maybe_commit_transaction - possibly commit the transaction if its ok to
3974  * @root - the root we're allocating for
3975  * @bytes - the number of bytes we want to reserve
3976  * @force - force the commit
3977  *
3978  * This will check to make sure that committing the transaction will actually
3979  * get us somewhere and then commit the transaction if it does.  Otherwise it
3980  * will return -ENOSPC.
3981  */
3982 static int may_commit_transaction(struct btrfs_root *root,
3983 				  struct btrfs_space_info *space_info,
3984 				  u64 bytes, int force)
3985 {
3986 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3987 	struct btrfs_trans_handle *trans;
3988 
3989 	trans = (struct btrfs_trans_handle *)current->journal_info;
3990 	if (trans)
3991 		return -EAGAIN;
3992 
3993 	if (force)
3994 		goto commit;
3995 
3996 	/* See if there is enough pinned space to make this reservation */
3997 	spin_lock(&space_info->lock);
3998 	if (space_info->bytes_pinned >= bytes) {
3999 		spin_unlock(&space_info->lock);
4000 		goto commit;
4001 	}
4002 	spin_unlock(&space_info->lock);
4003 
4004 	/*
4005 	 * See if there is some space in the delayed insertion reservation for
4006 	 * this reservation.
4007 	 */
4008 	if (space_info != delayed_rsv->space_info)
4009 		return -ENOSPC;
4010 
4011 	spin_lock(&space_info->lock);
4012 	spin_lock(&delayed_rsv->lock);
4013 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
4014 		spin_unlock(&delayed_rsv->lock);
4015 		spin_unlock(&space_info->lock);
4016 		return -ENOSPC;
4017 	}
4018 	spin_unlock(&delayed_rsv->lock);
4019 	spin_unlock(&space_info->lock);
4020 
4021 commit:
4022 	trans = btrfs_join_transaction(root);
4023 	if (IS_ERR(trans))
4024 		return -ENOSPC;
4025 
4026 	return btrfs_commit_transaction(trans, root);
4027 }
4028 
4029 enum flush_state {
4030 	FLUSH_DELAYED_ITEMS_NR	=	1,
4031 	FLUSH_DELAYED_ITEMS	=	2,
4032 	FLUSH_DELALLOC		=	3,
4033 	FLUSH_DELALLOC_WAIT	=	4,
4034 	ALLOC_CHUNK		=	5,
4035 	COMMIT_TRANS		=	6,
4036 };
4037 
4038 static int flush_space(struct btrfs_root *root,
4039 		       struct btrfs_space_info *space_info, u64 num_bytes,
4040 		       u64 orig_bytes, int state)
4041 {
4042 	struct btrfs_trans_handle *trans;
4043 	int nr;
4044 	int ret = 0;
4045 
4046 	switch (state) {
4047 	case FLUSH_DELAYED_ITEMS_NR:
4048 	case FLUSH_DELAYED_ITEMS:
4049 		if (state == FLUSH_DELAYED_ITEMS_NR) {
4050 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4051 
4052 			nr = (int)div64_u64(num_bytes, bytes);
4053 			if (!nr)
4054 				nr = 1;
4055 			nr *= 2;
4056 		} else {
4057 			nr = -1;
4058 		}
4059 		trans = btrfs_join_transaction(root);
4060 		if (IS_ERR(trans)) {
4061 			ret = PTR_ERR(trans);
4062 			break;
4063 		}
4064 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4065 		btrfs_end_transaction(trans, root);
4066 		break;
4067 	case FLUSH_DELALLOC:
4068 	case FLUSH_DELALLOC_WAIT:
4069 		shrink_delalloc(root, num_bytes, orig_bytes,
4070 				state == FLUSH_DELALLOC_WAIT);
4071 		break;
4072 	case ALLOC_CHUNK:
4073 		trans = btrfs_join_transaction(root);
4074 		if (IS_ERR(trans)) {
4075 			ret = PTR_ERR(trans);
4076 			break;
4077 		}
4078 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4079 				     btrfs_get_alloc_profile(root, 0),
4080 				     CHUNK_ALLOC_NO_FORCE);
4081 		btrfs_end_transaction(trans, root);
4082 		if (ret == -ENOSPC)
4083 			ret = 0;
4084 		break;
4085 	case COMMIT_TRANS:
4086 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4087 		break;
4088 	default:
4089 		ret = -ENOSPC;
4090 		break;
4091 	}
4092 
4093 	return ret;
4094 }
4095 /**
4096  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4097  * @root - the root we're allocating for
4098  * @block_rsv - the block_rsv we're allocating for
4099  * @orig_bytes - the number of bytes we want
4100  * @flush - whether or not we can flush to make our reservation
4101  *
4102  * This will reserve orgi_bytes number of bytes from the space info associated
4103  * with the block_rsv.  If there is not enough space it will make an attempt to
4104  * flush out space to make room.  It will do this by flushing delalloc if
4105  * possible or committing the transaction.  If flush is 0 then no attempts to
4106  * regain reservations will be made and this will fail if there is not enough
4107  * space already.
4108  */
4109 static int reserve_metadata_bytes(struct btrfs_root *root,
4110 				  struct btrfs_block_rsv *block_rsv,
4111 				  u64 orig_bytes,
4112 				  enum btrfs_reserve_flush_enum flush)
4113 {
4114 	struct btrfs_space_info *space_info = block_rsv->space_info;
4115 	u64 used;
4116 	u64 num_bytes = orig_bytes;
4117 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4118 	int ret = 0;
4119 	bool flushing = false;
4120 
4121 again:
4122 	ret = 0;
4123 	spin_lock(&space_info->lock);
4124 	/*
4125 	 * We only want to wait if somebody other than us is flushing and we
4126 	 * are actually allowed to flush all things.
4127 	 */
4128 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4129 	       space_info->flush) {
4130 		spin_unlock(&space_info->lock);
4131 		/*
4132 		 * If we have a trans handle we can't wait because the flusher
4133 		 * may have to commit the transaction, which would mean we would
4134 		 * deadlock since we are waiting for the flusher to finish, but
4135 		 * hold the current transaction open.
4136 		 */
4137 		if (current->journal_info)
4138 			return -EAGAIN;
4139 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4140 		/* Must have been killed, return */
4141 		if (ret)
4142 			return -EINTR;
4143 
4144 		spin_lock(&space_info->lock);
4145 	}
4146 
4147 	ret = -ENOSPC;
4148 	used = space_info->bytes_used + space_info->bytes_reserved +
4149 		space_info->bytes_pinned + space_info->bytes_readonly +
4150 		space_info->bytes_may_use;
4151 
4152 	/*
4153 	 * The idea here is that we've not already over-reserved the block group
4154 	 * then we can go ahead and save our reservation first and then start
4155 	 * flushing if we need to.  Otherwise if we've already overcommitted
4156 	 * lets start flushing stuff first and then come back and try to make
4157 	 * our reservation.
4158 	 */
4159 	if (used <= space_info->total_bytes) {
4160 		if (used + orig_bytes <= space_info->total_bytes) {
4161 			space_info->bytes_may_use += orig_bytes;
4162 			trace_btrfs_space_reservation(root->fs_info,
4163 				"space_info", space_info->flags, orig_bytes, 1);
4164 			ret = 0;
4165 		} else {
4166 			/*
4167 			 * Ok set num_bytes to orig_bytes since we aren't
4168 			 * overocmmitted, this way we only try and reclaim what
4169 			 * we need.
4170 			 */
4171 			num_bytes = orig_bytes;
4172 		}
4173 	} else {
4174 		/*
4175 		 * Ok we're over committed, set num_bytes to the overcommitted
4176 		 * amount plus the amount of bytes that we need for this
4177 		 * reservation.
4178 		 */
4179 		num_bytes = used - space_info->total_bytes +
4180 			(orig_bytes * 2);
4181 	}
4182 
4183 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4184 		space_info->bytes_may_use += orig_bytes;
4185 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4186 					      space_info->flags, orig_bytes,
4187 					      1);
4188 		ret = 0;
4189 	}
4190 
4191 	/*
4192 	 * Couldn't make our reservation, save our place so while we're trying
4193 	 * to reclaim space we can actually use it instead of somebody else
4194 	 * stealing it from us.
4195 	 *
4196 	 * We make the other tasks wait for the flush only when we can flush
4197 	 * all things.
4198 	 */
4199 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4200 		flushing = true;
4201 		space_info->flush = 1;
4202 	}
4203 
4204 	spin_unlock(&space_info->lock);
4205 
4206 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4207 		goto out;
4208 
4209 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4210 			  flush_state);
4211 	flush_state++;
4212 
4213 	/*
4214 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4215 	 * would happen. So skip delalloc flush.
4216 	 */
4217 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4218 	    (flush_state == FLUSH_DELALLOC ||
4219 	     flush_state == FLUSH_DELALLOC_WAIT))
4220 		flush_state = ALLOC_CHUNK;
4221 
4222 	if (!ret)
4223 		goto again;
4224 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4225 		 flush_state < COMMIT_TRANS)
4226 		goto again;
4227 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4228 		 flush_state <= COMMIT_TRANS)
4229 		goto again;
4230 
4231 out:
4232 	if (ret == -ENOSPC &&
4233 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4234 		struct btrfs_block_rsv *global_rsv =
4235 			&root->fs_info->global_block_rsv;
4236 
4237 		if (block_rsv != global_rsv &&
4238 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4239 			ret = 0;
4240 	}
4241 	if (flushing) {
4242 		spin_lock(&space_info->lock);
4243 		space_info->flush = 0;
4244 		wake_up_all(&space_info->wait);
4245 		spin_unlock(&space_info->lock);
4246 	}
4247 	return ret;
4248 }
4249 
4250 static struct btrfs_block_rsv *get_block_rsv(
4251 					const struct btrfs_trans_handle *trans,
4252 					const struct btrfs_root *root)
4253 {
4254 	struct btrfs_block_rsv *block_rsv = NULL;
4255 
4256 	if (root->ref_cows)
4257 		block_rsv = trans->block_rsv;
4258 
4259 	if (root == root->fs_info->csum_root && trans->adding_csums)
4260 		block_rsv = trans->block_rsv;
4261 
4262 	if (!block_rsv)
4263 		block_rsv = root->block_rsv;
4264 
4265 	if (!block_rsv)
4266 		block_rsv = &root->fs_info->empty_block_rsv;
4267 
4268 	return block_rsv;
4269 }
4270 
4271 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4272 			       u64 num_bytes)
4273 {
4274 	int ret = -ENOSPC;
4275 	spin_lock(&block_rsv->lock);
4276 	if (block_rsv->reserved >= num_bytes) {
4277 		block_rsv->reserved -= num_bytes;
4278 		if (block_rsv->reserved < block_rsv->size)
4279 			block_rsv->full = 0;
4280 		ret = 0;
4281 	}
4282 	spin_unlock(&block_rsv->lock);
4283 	return ret;
4284 }
4285 
4286 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4287 				u64 num_bytes, int update_size)
4288 {
4289 	spin_lock(&block_rsv->lock);
4290 	block_rsv->reserved += num_bytes;
4291 	if (update_size)
4292 		block_rsv->size += num_bytes;
4293 	else if (block_rsv->reserved >= block_rsv->size)
4294 		block_rsv->full = 1;
4295 	spin_unlock(&block_rsv->lock);
4296 }
4297 
4298 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4299 				    struct btrfs_block_rsv *block_rsv,
4300 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4301 {
4302 	struct btrfs_space_info *space_info = block_rsv->space_info;
4303 
4304 	spin_lock(&block_rsv->lock);
4305 	if (num_bytes == (u64)-1)
4306 		num_bytes = block_rsv->size;
4307 	block_rsv->size -= num_bytes;
4308 	if (block_rsv->reserved >= block_rsv->size) {
4309 		num_bytes = block_rsv->reserved - block_rsv->size;
4310 		block_rsv->reserved = block_rsv->size;
4311 		block_rsv->full = 1;
4312 	} else {
4313 		num_bytes = 0;
4314 	}
4315 	spin_unlock(&block_rsv->lock);
4316 
4317 	if (num_bytes > 0) {
4318 		if (dest) {
4319 			spin_lock(&dest->lock);
4320 			if (!dest->full) {
4321 				u64 bytes_to_add;
4322 
4323 				bytes_to_add = dest->size - dest->reserved;
4324 				bytes_to_add = min(num_bytes, bytes_to_add);
4325 				dest->reserved += bytes_to_add;
4326 				if (dest->reserved >= dest->size)
4327 					dest->full = 1;
4328 				num_bytes -= bytes_to_add;
4329 			}
4330 			spin_unlock(&dest->lock);
4331 		}
4332 		if (num_bytes) {
4333 			spin_lock(&space_info->lock);
4334 			space_info->bytes_may_use -= num_bytes;
4335 			trace_btrfs_space_reservation(fs_info, "space_info",
4336 					space_info->flags, num_bytes, 0);
4337 			space_info->reservation_progress++;
4338 			spin_unlock(&space_info->lock);
4339 		}
4340 	}
4341 }
4342 
4343 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4344 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4345 {
4346 	int ret;
4347 
4348 	ret = block_rsv_use_bytes(src, num_bytes);
4349 	if (ret)
4350 		return ret;
4351 
4352 	block_rsv_add_bytes(dst, num_bytes, 1);
4353 	return 0;
4354 }
4355 
4356 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4357 {
4358 	memset(rsv, 0, sizeof(*rsv));
4359 	spin_lock_init(&rsv->lock);
4360 	rsv->type = type;
4361 }
4362 
4363 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4364 					      unsigned short type)
4365 {
4366 	struct btrfs_block_rsv *block_rsv;
4367 	struct btrfs_fs_info *fs_info = root->fs_info;
4368 
4369 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4370 	if (!block_rsv)
4371 		return NULL;
4372 
4373 	btrfs_init_block_rsv(block_rsv, type);
4374 	block_rsv->space_info = __find_space_info(fs_info,
4375 						  BTRFS_BLOCK_GROUP_METADATA);
4376 	return block_rsv;
4377 }
4378 
4379 void btrfs_free_block_rsv(struct btrfs_root *root,
4380 			  struct btrfs_block_rsv *rsv)
4381 {
4382 	if (!rsv)
4383 		return;
4384 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4385 	kfree(rsv);
4386 }
4387 
4388 int btrfs_block_rsv_add(struct btrfs_root *root,
4389 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4390 			enum btrfs_reserve_flush_enum flush)
4391 {
4392 	int ret;
4393 
4394 	if (num_bytes == 0)
4395 		return 0;
4396 
4397 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4398 	if (!ret) {
4399 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4400 		return 0;
4401 	}
4402 
4403 	return ret;
4404 }
4405 
4406 int btrfs_block_rsv_check(struct btrfs_root *root,
4407 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4408 {
4409 	u64 num_bytes = 0;
4410 	int ret = -ENOSPC;
4411 
4412 	if (!block_rsv)
4413 		return 0;
4414 
4415 	spin_lock(&block_rsv->lock);
4416 	num_bytes = div_factor(block_rsv->size, min_factor);
4417 	if (block_rsv->reserved >= num_bytes)
4418 		ret = 0;
4419 	spin_unlock(&block_rsv->lock);
4420 
4421 	return ret;
4422 }
4423 
4424 int btrfs_block_rsv_refill(struct btrfs_root *root,
4425 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4426 			   enum btrfs_reserve_flush_enum flush)
4427 {
4428 	u64 num_bytes = 0;
4429 	int ret = -ENOSPC;
4430 
4431 	if (!block_rsv)
4432 		return 0;
4433 
4434 	spin_lock(&block_rsv->lock);
4435 	num_bytes = min_reserved;
4436 	if (block_rsv->reserved >= num_bytes)
4437 		ret = 0;
4438 	else
4439 		num_bytes -= block_rsv->reserved;
4440 	spin_unlock(&block_rsv->lock);
4441 
4442 	if (!ret)
4443 		return 0;
4444 
4445 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4446 	if (!ret) {
4447 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4448 		return 0;
4449 	}
4450 
4451 	return ret;
4452 }
4453 
4454 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4455 			    struct btrfs_block_rsv *dst_rsv,
4456 			    u64 num_bytes)
4457 {
4458 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4459 }
4460 
4461 void btrfs_block_rsv_release(struct btrfs_root *root,
4462 			     struct btrfs_block_rsv *block_rsv,
4463 			     u64 num_bytes)
4464 {
4465 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4466 	if (global_rsv->full || global_rsv == block_rsv ||
4467 	    block_rsv->space_info != global_rsv->space_info)
4468 		global_rsv = NULL;
4469 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4470 				num_bytes);
4471 }
4472 
4473 /*
4474  * helper to calculate size of global block reservation.
4475  * the desired value is sum of space used by extent tree,
4476  * checksum tree and root tree
4477  */
4478 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4479 {
4480 	struct btrfs_space_info *sinfo;
4481 	u64 num_bytes;
4482 	u64 meta_used;
4483 	u64 data_used;
4484 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4485 
4486 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4487 	spin_lock(&sinfo->lock);
4488 	data_used = sinfo->bytes_used;
4489 	spin_unlock(&sinfo->lock);
4490 
4491 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4492 	spin_lock(&sinfo->lock);
4493 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4494 		data_used = 0;
4495 	meta_used = sinfo->bytes_used;
4496 	spin_unlock(&sinfo->lock);
4497 
4498 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4499 		    csum_size * 2;
4500 	num_bytes += div64_u64(data_used + meta_used, 50);
4501 
4502 	if (num_bytes * 3 > meta_used)
4503 		num_bytes = div64_u64(meta_used, 3);
4504 
4505 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4506 }
4507 
4508 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4509 {
4510 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4511 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4512 	u64 num_bytes;
4513 
4514 	num_bytes = calc_global_metadata_size(fs_info);
4515 
4516 	spin_lock(&sinfo->lock);
4517 	spin_lock(&block_rsv->lock);
4518 
4519 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4520 
4521 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4522 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4523 		    sinfo->bytes_may_use;
4524 
4525 	if (sinfo->total_bytes > num_bytes) {
4526 		num_bytes = sinfo->total_bytes - num_bytes;
4527 		block_rsv->reserved += num_bytes;
4528 		sinfo->bytes_may_use += num_bytes;
4529 		trace_btrfs_space_reservation(fs_info, "space_info",
4530 				      sinfo->flags, num_bytes, 1);
4531 	}
4532 
4533 	if (block_rsv->reserved >= block_rsv->size) {
4534 		num_bytes = block_rsv->reserved - block_rsv->size;
4535 		sinfo->bytes_may_use -= num_bytes;
4536 		trace_btrfs_space_reservation(fs_info, "space_info",
4537 				      sinfo->flags, num_bytes, 0);
4538 		sinfo->reservation_progress++;
4539 		block_rsv->reserved = block_rsv->size;
4540 		block_rsv->full = 1;
4541 	}
4542 
4543 	spin_unlock(&block_rsv->lock);
4544 	spin_unlock(&sinfo->lock);
4545 }
4546 
4547 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4548 {
4549 	struct btrfs_space_info *space_info;
4550 
4551 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4552 	fs_info->chunk_block_rsv.space_info = space_info;
4553 
4554 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4555 	fs_info->global_block_rsv.space_info = space_info;
4556 	fs_info->delalloc_block_rsv.space_info = space_info;
4557 	fs_info->trans_block_rsv.space_info = space_info;
4558 	fs_info->empty_block_rsv.space_info = space_info;
4559 	fs_info->delayed_block_rsv.space_info = space_info;
4560 
4561 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4562 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4563 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4564 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4565 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4566 
4567 	update_global_block_rsv(fs_info);
4568 }
4569 
4570 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4571 {
4572 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4573 				(u64)-1);
4574 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4575 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4576 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4577 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4578 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4579 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4580 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4581 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4582 }
4583 
4584 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4585 				  struct btrfs_root *root)
4586 {
4587 	if (!trans->block_rsv)
4588 		return;
4589 
4590 	if (!trans->bytes_reserved)
4591 		return;
4592 
4593 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4594 				      trans->transid, trans->bytes_reserved, 0);
4595 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4596 	trans->bytes_reserved = 0;
4597 }
4598 
4599 /* Can only return 0 or -ENOSPC */
4600 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4601 				  struct inode *inode)
4602 {
4603 	struct btrfs_root *root = BTRFS_I(inode)->root;
4604 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4605 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4606 
4607 	/*
4608 	 * We need to hold space in order to delete our orphan item once we've
4609 	 * added it, so this takes the reservation so we can release it later
4610 	 * when we are truly done with the orphan item.
4611 	 */
4612 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4613 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4614 				      btrfs_ino(inode), num_bytes, 1);
4615 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4616 }
4617 
4618 void btrfs_orphan_release_metadata(struct inode *inode)
4619 {
4620 	struct btrfs_root *root = BTRFS_I(inode)->root;
4621 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4622 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4623 				      btrfs_ino(inode), num_bytes, 0);
4624 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4625 }
4626 
4627 /*
4628  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4629  * root: the root of the parent directory
4630  * rsv: block reservation
4631  * items: the number of items that we need do reservation
4632  * qgroup_reserved: used to return the reserved size in qgroup
4633  *
4634  * This function is used to reserve the space for snapshot/subvolume
4635  * creation and deletion. Those operations are different with the
4636  * common file/directory operations, they change two fs/file trees
4637  * and root tree, the number of items that the qgroup reserves is
4638  * different with the free space reservation. So we can not use
4639  * the space reseravtion mechanism in start_transaction().
4640  */
4641 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4642 				     struct btrfs_block_rsv *rsv,
4643 				     int items,
4644 				     u64 *qgroup_reserved)
4645 {
4646 	u64 num_bytes;
4647 	int ret;
4648 
4649 	if (root->fs_info->quota_enabled) {
4650 		/* One for parent inode, two for dir entries */
4651 		num_bytes = 3 * root->leafsize;
4652 		ret = btrfs_qgroup_reserve(root, num_bytes);
4653 		if (ret)
4654 			return ret;
4655 	} else {
4656 		num_bytes = 0;
4657 	}
4658 
4659 	*qgroup_reserved = num_bytes;
4660 
4661 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4662 	rsv->space_info = __find_space_info(root->fs_info,
4663 					    BTRFS_BLOCK_GROUP_METADATA);
4664 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4665 				  BTRFS_RESERVE_FLUSH_ALL);
4666 	if (ret) {
4667 		if (*qgroup_reserved)
4668 			btrfs_qgroup_free(root, *qgroup_reserved);
4669 	}
4670 
4671 	return ret;
4672 }
4673 
4674 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4675 				      struct btrfs_block_rsv *rsv,
4676 				      u64 qgroup_reserved)
4677 {
4678 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4679 	if (qgroup_reserved)
4680 		btrfs_qgroup_free(root, qgroup_reserved);
4681 }
4682 
4683 /**
4684  * drop_outstanding_extent - drop an outstanding extent
4685  * @inode: the inode we're dropping the extent for
4686  *
4687  * This is called when we are freeing up an outstanding extent, either called
4688  * after an error or after an extent is written.  This will return the number of
4689  * reserved extents that need to be freed.  This must be called with
4690  * BTRFS_I(inode)->lock held.
4691  */
4692 static unsigned drop_outstanding_extent(struct inode *inode)
4693 {
4694 	unsigned drop_inode_space = 0;
4695 	unsigned dropped_extents = 0;
4696 
4697 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4698 	BTRFS_I(inode)->outstanding_extents--;
4699 
4700 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4701 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4702 			       &BTRFS_I(inode)->runtime_flags))
4703 		drop_inode_space = 1;
4704 
4705 	/*
4706 	 * If we have more or the same amount of outsanding extents than we have
4707 	 * reserved then we need to leave the reserved extents count alone.
4708 	 */
4709 	if (BTRFS_I(inode)->outstanding_extents >=
4710 	    BTRFS_I(inode)->reserved_extents)
4711 		return drop_inode_space;
4712 
4713 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4714 		BTRFS_I(inode)->outstanding_extents;
4715 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4716 	return dropped_extents + drop_inode_space;
4717 }
4718 
4719 /**
4720  * calc_csum_metadata_size - return the amount of metada space that must be
4721  *	reserved/free'd for the given bytes.
4722  * @inode: the inode we're manipulating
4723  * @num_bytes: the number of bytes in question
4724  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4725  *
4726  * This adjusts the number of csum_bytes in the inode and then returns the
4727  * correct amount of metadata that must either be reserved or freed.  We
4728  * calculate how many checksums we can fit into one leaf and then divide the
4729  * number of bytes that will need to be checksumed by this value to figure out
4730  * how many checksums will be required.  If we are adding bytes then the number
4731  * may go up and we will return the number of additional bytes that must be
4732  * reserved.  If it is going down we will return the number of bytes that must
4733  * be freed.
4734  *
4735  * This must be called with BTRFS_I(inode)->lock held.
4736  */
4737 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4738 				   int reserve)
4739 {
4740 	struct btrfs_root *root = BTRFS_I(inode)->root;
4741 	u64 csum_size;
4742 	int num_csums_per_leaf;
4743 	int num_csums;
4744 	int old_csums;
4745 
4746 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4747 	    BTRFS_I(inode)->csum_bytes == 0)
4748 		return 0;
4749 
4750 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4751 	if (reserve)
4752 		BTRFS_I(inode)->csum_bytes += num_bytes;
4753 	else
4754 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4755 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4756 	num_csums_per_leaf = (int)div64_u64(csum_size,
4757 					    sizeof(struct btrfs_csum_item) +
4758 					    sizeof(struct btrfs_disk_key));
4759 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4760 	num_csums = num_csums + num_csums_per_leaf - 1;
4761 	num_csums = num_csums / num_csums_per_leaf;
4762 
4763 	old_csums = old_csums + num_csums_per_leaf - 1;
4764 	old_csums = old_csums / num_csums_per_leaf;
4765 
4766 	/* No change, no need to reserve more */
4767 	if (old_csums == num_csums)
4768 		return 0;
4769 
4770 	if (reserve)
4771 		return btrfs_calc_trans_metadata_size(root,
4772 						      num_csums - old_csums);
4773 
4774 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4775 }
4776 
4777 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4778 {
4779 	struct btrfs_root *root = BTRFS_I(inode)->root;
4780 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4781 	u64 to_reserve = 0;
4782 	u64 csum_bytes;
4783 	unsigned nr_extents = 0;
4784 	int extra_reserve = 0;
4785 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4786 	int ret = 0;
4787 	bool delalloc_lock = true;
4788 	u64 to_free = 0;
4789 	unsigned dropped;
4790 
4791 	/* If we are a free space inode we need to not flush since we will be in
4792 	 * the middle of a transaction commit.  We also don't need the delalloc
4793 	 * mutex since we won't race with anybody.  We need this mostly to make
4794 	 * lockdep shut its filthy mouth.
4795 	 */
4796 	if (btrfs_is_free_space_inode(inode)) {
4797 		flush = BTRFS_RESERVE_NO_FLUSH;
4798 		delalloc_lock = false;
4799 	}
4800 
4801 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4802 	    btrfs_transaction_in_commit(root->fs_info))
4803 		schedule_timeout(1);
4804 
4805 	if (delalloc_lock)
4806 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4807 
4808 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4809 
4810 	spin_lock(&BTRFS_I(inode)->lock);
4811 	BTRFS_I(inode)->outstanding_extents++;
4812 
4813 	if (BTRFS_I(inode)->outstanding_extents >
4814 	    BTRFS_I(inode)->reserved_extents)
4815 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4816 			BTRFS_I(inode)->reserved_extents;
4817 
4818 	/*
4819 	 * Add an item to reserve for updating the inode when we complete the
4820 	 * delalloc io.
4821 	 */
4822 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4823 		      &BTRFS_I(inode)->runtime_flags)) {
4824 		nr_extents++;
4825 		extra_reserve = 1;
4826 	}
4827 
4828 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4829 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4830 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4831 	spin_unlock(&BTRFS_I(inode)->lock);
4832 
4833 	if (root->fs_info->quota_enabled) {
4834 		ret = btrfs_qgroup_reserve(root, num_bytes +
4835 					   nr_extents * root->leafsize);
4836 		if (ret)
4837 			goto out_fail;
4838 	}
4839 
4840 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4841 	if (unlikely(ret)) {
4842 		if (root->fs_info->quota_enabled)
4843 			btrfs_qgroup_free(root, num_bytes +
4844 						nr_extents * root->leafsize);
4845 		goto out_fail;
4846 	}
4847 
4848 	spin_lock(&BTRFS_I(inode)->lock);
4849 	if (extra_reserve) {
4850 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4851 			&BTRFS_I(inode)->runtime_flags);
4852 		nr_extents--;
4853 	}
4854 	BTRFS_I(inode)->reserved_extents += nr_extents;
4855 	spin_unlock(&BTRFS_I(inode)->lock);
4856 
4857 	if (delalloc_lock)
4858 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4859 
4860 	if (to_reserve)
4861 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4862 					      btrfs_ino(inode), to_reserve, 1);
4863 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4864 
4865 	return 0;
4866 
4867 out_fail:
4868 	spin_lock(&BTRFS_I(inode)->lock);
4869 	dropped = drop_outstanding_extent(inode);
4870 	/*
4871 	 * If the inodes csum_bytes is the same as the original
4872 	 * csum_bytes then we know we haven't raced with any free()ers
4873 	 * so we can just reduce our inodes csum bytes and carry on.
4874 	 */
4875 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
4876 		calc_csum_metadata_size(inode, num_bytes, 0);
4877 	} else {
4878 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
4879 		u64 bytes;
4880 
4881 		/*
4882 		 * This is tricky, but first we need to figure out how much we
4883 		 * free'd from any free-ers that occured during this
4884 		 * reservation, so we reset ->csum_bytes to the csum_bytes
4885 		 * before we dropped our lock, and then call the free for the
4886 		 * number of bytes that were freed while we were trying our
4887 		 * reservation.
4888 		 */
4889 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
4890 		BTRFS_I(inode)->csum_bytes = csum_bytes;
4891 		to_free = calc_csum_metadata_size(inode, bytes, 0);
4892 
4893 
4894 		/*
4895 		 * Now we need to see how much we would have freed had we not
4896 		 * been making this reservation and our ->csum_bytes were not
4897 		 * artificially inflated.
4898 		 */
4899 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
4900 		bytes = csum_bytes - orig_csum_bytes;
4901 		bytes = calc_csum_metadata_size(inode, bytes, 0);
4902 
4903 		/*
4904 		 * Now reset ->csum_bytes to what it should be.  If bytes is
4905 		 * more than to_free then we would have free'd more space had we
4906 		 * not had an artificially high ->csum_bytes, so we need to free
4907 		 * the remainder.  If bytes is the same or less then we don't
4908 		 * need to do anything, the other free-ers did the correct
4909 		 * thing.
4910 		 */
4911 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
4912 		if (bytes > to_free)
4913 			to_free = bytes - to_free;
4914 		else
4915 			to_free = 0;
4916 	}
4917 	spin_unlock(&BTRFS_I(inode)->lock);
4918 	if (dropped)
4919 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4920 
4921 	if (to_free) {
4922 		btrfs_block_rsv_release(root, block_rsv, to_free);
4923 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
4924 					      btrfs_ino(inode), to_free, 0);
4925 	}
4926 	if (delalloc_lock)
4927 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4928 	return ret;
4929 }
4930 
4931 /**
4932  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4933  * @inode: the inode to release the reservation for
4934  * @num_bytes: the number of bytes we're releasing
4935  *
4936  * This will release the metadata reservation for an inode.  This can be called
4937  * once we complete IO for a given set of bytes to release their metadata
4938  * reservations.
4939  */
4940 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4941 {
4942 	struct btrfs_root *root = BTRFS_I(inode)->root;
4943 	u64 to_free = 0;
4944 	unsigned dropped;
4945 
4946 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4947 	spin_lock(&BTRFS_I(inode)->lock);
4948 	dropped = drop_outstanding_extent(inode);
4949 
4950 	if (num_bytes)
4951 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4952 	spin_unlock(&BTRFS_I(inode)->lock);
4953 	if (dropped > 0)
4954 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4955 
4956 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4957 				      btrfs_ino(inode), to_free, 0);
4958 	if (root->fs_info->quota_enabled) {
4959 		btrfs_qgroup_free(root, num_bytes +
4960 					dropped * root->leafsize);
4961 	}
4962 
4963 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4964 				to_free);
4965 }
4966 
4967 /**
4968  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4969  * @inode: inode we're writing to
4970  * @num_bytes: the number of bytes we want to allocate
4971  *
4972  * This will do the following things
4973  *
4974  * o reserve space in the data space info for num_bytes
4975  * o reserve space in the metadata space info based on number of outstanding
4976  *   extents and how much csums will be needed
4977  * o add to the inodes ->delalloc_bytes
4978  * o add it to the fs_info's delalloc inodes list.
4979  *
4980  * This will return 0 for success and -ENOSPC if there is no space left.
4981  */
4982 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4983 {
4984 	int ret;
4985 
4986 	ret = btrfs_check_data_free_space(inode, num_bytes);
4987 	if (ret)
4988 		return ret;
4989 
4990 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4991 	if (ret) {
4992 		btrfs_free_reserved_data_space(inode, num_bytes);
4993 		return ret;
4994 	}
4995 
4996 	return 0;
4997 }
4998 
4999 /**
5000  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5001  * @inode: inode we're releasing space for
5002  * @num_bytes: the number of bytes we want to free up
5003  *
5004  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5005  * called in the case that we don't need the metadata AND data reservations
5006  * anymore.  So if there is an error or we insert an inline extent.
5007  *
5008  * This function will release the metadata space that was not used and will
5009  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5010  * list if there are no delalloc bytes left.
5011  */
5012 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5013 {
5014 	btrfs_delalloc_release_metadata(inode, num_bytes);
5015 	btrfs_free_reserved_data_space(inode, num_bytes);
5016 }
5017 
5018 static int update_block_group(struct btrfs_root *root,
5019 			      u64 bytenr, u64 num_bytes, int alloc)
5020 {
5021 	struct btrfs_block_group_cache *cache = NULL;
5022 	struct btrfs_fs_info *info = root->fs_info;
5023 	u64 total = num_bytes;
5024 	u64 old_val;
5025 	u64 byte_in_group;
5026 	int factor;
5027 
5028 	/* block accounting for super block */
5029 	spin_lock(&info->delalloc_lock);
5030 	old_val = btrfs_super_bytes_used(info->super_copy);
5031 	if (alloc)
5032 		old_val += num_bytes;
5033 	else
5034 		old_val -= num_bytes;
5035 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5036 	spin_unlock(&info->delalloc_lock);
5037 
5038 	while (total) {
5039 		cache = btrfs_lookup_block_group(info, bytenr);
5040 		if (!cache)
5041 			return -ENOENT;
5042 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5043 				    BTRFS_BLOCK_GROUP_RAID1 |
5044 				    BTRFS_BLOCK_GROUP_RAID10))
5045 			factor = 2;
5046 		else
5047 			factor = 1;
5048 		/*
5049 		 * If this block group has free space cache written out, we
5050 		 * need to make sure to load it if we are removing space.  This
5051 		 * is because we need the unpinning stage to actually add the
5052 		 * space back to the block group, otherwise we will leak space.
5053 		 */
5054 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5055 			cache_block_group(cache, 1);
5056 
5057 		byte_in_group = bytenr - cache->key.objectid;
5058 		WARN_ON(byte_in_group > cache->key.offset);
5059 
5060 		spin_lock(&cache->space_info->lock);
5061 		spin_lock(&cache->lock);
5062 
5063 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5064 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5065 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5066 
5067 		cache->dirty = 1;
5068 		old_val = btrfs_block_group_used(&cache->item);
5069 		num_bytes = min(total, cache->key.offset - byte_in_group);
5070 		if (alloc) {
5071 			old_val += num_bytes;
5072 			btrfs_set_block_group_used(&cache->item, old_val);
5073 			cache->reserved -= num_bytes;
5074 			cache->space_info->bytes_reserved -= num_bytes;
5075 			cache->space_info->bytes_used += num_bytes;
5076 			cache->space_info->disk_used += num_bytes * factor;
5077 			spin_unlock(&cache->lock);
5078 			spin_unlock(&cache->space_info->lock);
5079 		} else {
5080 			old_val -= num_bytes;
5081 			btrfs_set_block_group_used(&cache->item, old_val);
5082 			cache->pinned += num_bytes;
5083 			cache->space_info->bytes_pinned += num_bytes;
5084 			cache->space_info->bytes_used -= num_bytes;
5085 			cache->space_info->disk_used -= num_bytes * factor;
5086 			spin_unlock(&cache->lock);
5087 			spin_unlock(&cache->space_info->lock);
5088 
5089 			set_extent_dirty(info->pinned_extents,
5090 					 bytenr, bytenr + num_bytes - 1,
5091 					 GFP_NOFS | __GFP_NOFAIL);
5092 		}
5093 		btrfs_put_block_group(cache);
5094 		total -= num_bytes;
5095 		bytenr += num_bytes;
5096 	}
5097 	return 0;
5098 }
5099 
5100 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5101 {
5102 	struct btrfs_block_group_cache *cache;
5103 	u64 bytenr;
5104 
5105 	spin_lock(&root->fs_info->block_group_cache_lock);
5106 	bytenr = root->fs_info->first_logical_byte;
5107 	spin_unlock(&root->fs_info->block_group_cache_lock);
5108 
5109 	if (bytenr < (u64)-1)
5110 		return bytenr;
5111 
5112 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5113 	if (!cache)
5114 		return 0;
5115 
5116 	bytenr = cache->key.objectid;
5117 	btrfs_put_block_group(cache);
5118 
5119 	return bytenr;
5120 }
5121 
5122 static int pin_down_extent(struct btrfs_root *root,
5123 			   struct btrfs_block_group_cache *cache,
5124 			   u64 bytenr, u64 num_bytes, int reserved)
5125 {
5126 	spin_lock(&cache->space_info->lock);
5127 	spin_lock(&cache->lock);
5128 	cache->pinned += num_bytes;
5129 	cache->space_info->bytes_pinned += num_bytes;
5130 	if (reserved) {
5131 		cache->reserved -= num_bytes;
5132 		cache->space_info->bytes_reserved -= num_bytes;
5133 	}
5134 	spin_unlock(&cache->lock);
5135 	spin_unlock(&cache->space_info->lock);
5136 
5137 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5138 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5139 	return 0;
5140 }
5141 
5142 /*
5143  * this function must be called within transaction
5144  */
5145 int btrfs_pin_extent(struct btrfs_root *root,
5146 		     u64 bytenr, u64 num_bytes, int reserved)
5147 {
5148 	struct btrfs_block_group_cache *cache;
5149 
5150 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5151 	BUG_ON(!cache); /* Logic error */
5152 
5153 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5154 
5155 	btrfs_put_block_group(cache);
5156 	return 0;
5157 }
5158 
5159 /*
5160  * this function must be called within transaction
5161  */
5162 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5163 				    u64 bytenr, u64 num_bytes)
5164 {
5165 	struct btrfs_block_group_cache *cache;
5166 	int ret;
5167 
5168 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5169 	if (!cache)
5170 		return -EINVAL;
5171 
5172 	/*
5173 	 * pull in the free space cache (if any) so that our pin
5174 	 * removes the free space from the cache.  We have load_only set
5175 	 * to one because the slow code to read in the free extents does check
5176 	 * the pinned extents.
5177 	 */
5178 	cache_block_group(cache, 1);
5179 
5180 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5181 
5182 	/* remove us from the free space cache (if we're there at all) */
5183 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5184 	btrfs_put_block_group(cache);
5185 	return ret;
5186 }
5187 
5188 /**
5189  * btrfs_update_reserved_bytes - update the block_group and space info counters
5190  * @cache:	The cache we are manipulating
5191  * @num_bytes:	The number of bytes in question
5192  * @reserve:	One of the reservation enums
5193  *
5194  * This is called by the allocator when it reserves space, or by somebody who is
5195  * freeing space that was never actually used on disk.  For example if you
5196  * reserve some space for a new leaf in transaction A and before transaction A
5197  * commits you free that leaf, you call this with reserve set to 0 in order to
5198  * clear the reservation.
5199  *
5200  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5201  * ENOSPC accounting.  For data we handle the reservation through clearing the
5202  * delalloc bits in the io_tree.  We have to do this since we could end up
5203  * allocating less disk space for the amount of data we have reserved in the
5204  * case of compression.
5205  *
5206  * If this is a reservation and the block group has become read only we cannot
5207  * make the reservation and return -EAGAIN, otherwise this function always
5208  * succeeds.
5209  */
5210 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5211 				       u64 num_bytes, int reserve)
5212 {
5213 	struct btrfs_space_info *space_info = cache->space_info;
5214 	int ret = 0;
5215 
5216 	spin_lock(&space_info->lock);
5217 	spin_lock(&cache->lock);
5218 	if (reserve != RESERVE_FREE) {
5219 		if (cache->ro) {
5220 			ret = -EAGAIN;
5221 		} else {
5222 			cache->reserved += num_bytes;
5223 			space_info->bytes_reserved += num_bytes;
5224 			if (reserve == RESERVE_ALLOC) {
5225 				trace_btrfs_space_reservation(cache->fs_info,
5226 						"space_info", space_info->flags,
5227 						num_bytes, 0);
5228 				space_info->bytes_may_use -= num_bytes;
5229 			}
5230 		}
5231 	} else {
5232 		if (cache->ro)
5233 			space_info->bytes_readonly += num_bytes;
5234 		cache->reserved -= num_bytes;
5235 		space_info->bytes_reserved -= num_bytes;
5236 		space_info->reservation_progress++;
5237 	}
5238 	spin_unlock(&cache->lock);
5239 	spin_unlock(&space_info->lock);
5240 	return ret;
5241 }
5242 
5243 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5244 				struct btrfs_root *root)
5245 {
5246 	struct btrfs_fs_info *fs_info = root->fs_info;
5247 	struct btrfs_caching_control *next;
5248 	struct btrfs_caching_control *caching_ctl;
5249 	struct btrfs_block_group_cache *cache;
5250 
5251 	down_write(&fs_info->extent_commit_sem);
5252 
5253 	list_for_each_entry_safe(caching_ctl, next,
5254 				 &fs_info->caching_block_groups, list) {
5255 		cache = caching_ctl->block_group;
5256 		if (block_group_cache_done(cache)) {
5257 			cache->last_byte_to_unpin = (u64)-1;
5258 			list_del_init(&caching_ctl->list);
5259 			put_caching_control(caching_ctl);
5260 		} else {
5261 			cache->last_byte_to_unpin = caching_ctl->progress;
5262 		}
5263 	}
5264 
5265 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5266 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5267 	else
5268 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5269 
5270 	up_write(&fs_info->extent_commit_sem);
5271 
5272 	update_global_block_rsv(fs_info);
5273 }
5274 
5275 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5276 {
5277 	struct btrfs_fs_info *fs_info = root->fs_info;
5278 	struct btrfs_block_group_cache *cache = NULL;
5279 	struct btrfs_space_info *space_info;
5280 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5281 	u64 len;
5282 	bool readonly;
5283 
5284 	while (start <= end) {
5285 		readonly = false;
5286 		if (!cache ||
5287 		    start >= cache->key.objectid + cache->key.offset) {
5288 			if (cache)
5289 				btrfs_put_block_group(cache);
5290 			cache = btrfs_lookup_block_group(fs_info, start);
5291 			BUG_ON(!cache); /* Logic error */
5292 		}
5293 
5294 		len = cache->key.objectid + cache->key.offset - start;
5295 		len = min(len, end + 1 - start);
5296 
5297 		if (start < cache->last_byte_to_unpin) {
5298 			len = min(len, cache->last_byte_to_unpin - start);
5299 			btrfs_add_free_space(cache, start, len);
5300 		}
5301 
5302 		start += len;
5303 		space_info = cache->space_info;
5304 
5305 		spin_lock(&space_info->lock);
5306 		spin_lock(&cache->lock);
5307 		cache->pinned -= len;
5308 		space_info->bytes_pinned -= len;
5309 		if (cache->ro) {
5310 			space_info->bytes_readonly += len;
5311 			readonly = true;
5312 		}
5313 		spin_unlock(&cache->lock);
5314 		if (!readonly && global_rsv->space_info == space_info) {
5315 			spin_lock(&global_rsv->lock);
5316 			if (!global_rsv->full) {
5317 				len = min(len, global_rsv->size -
5318 					  global_rsv->reserved);
5319 				global_rsv->reserved += len;
5320 				space_info->bytes_may_use += len;
5321 				if (global_rsv->reserved >= global_rsv->size)
5322 					global_rsv->full = 1;
5323 			}
5324 			spin_unlock(&global_rsv->lock);
5325 		}
5326 		spin_unlock(&space_info->lock);
5327 	}
5328 
5329 	if (cache)
5330 		btrfs_put_block_group(cache);
5331 	return 0;
5332 }
5333 
5334 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5335 			       struct btrfs_root *root)
5336 {
5337 	struct btrfs_fs_info *fs_info = root->fs_info;
5338 	struct extent_io_tree *unpin;
5339 	u64 start;
5340 	u64 end;
5341 	int ret;
5342 
5343 	if (trans->aborted)
5344 		return 0;
5345 
5346 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5347 		unpin = &fs_info->freed_extents[1];
5348 	else
5349 		unpin = &fs_info->freed_extents[0];
5350 
5351 	while (1) {
5352 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5353 					    EXTENT_DIRTY, NULL);
5354 		if (ret)
5355 			break;
5356 
5357 		if (btrfs_test_opt(root, DISCARD))
5358 			ret = btrfs_discard_extent(root, start,
5359 						   end + 1 - start, NULL);
5360 
5361 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5362 		unpin_extent_range(root, start, end);
5363 		cond_resched();
5364 	}
5365 
5366 	return 0;
5367 }
5368 
5369 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5370 				struct btrfs_root *root,
5371 				u64 bytenr, u64 num_bytes, u64 parent,
5372 				u64 root_objectid, u64 owner_objectid,
5373 				u64 owner_offset, int refs_to_drop,
5374 				struct btrfs_delayed_extent_op *extent_op)
5375 {
5376 	struct btrfs_key key;
5377 	struct btrfs_path *path;
5378 	struct btrfs_fs_info *info = root->fs_info;
5379 	struct btrfs_root *extent_root = info->extent_root;
5380 	struct extent_buffer *leaf;
5381 	struct btrfs_extent_item *ei;
5382 	struct btrfs_extent_inline_ref *iref;
5383 	int ret;
5384 	int is_data;
5385 	int extent_slot = 0;
5386 	int found_extent = 0;
5387 	int num_to_del = 1;
5388 	u32 item_size;
5389 	u64 refs;
5390 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5391 						 SKINNY_METADATA);
5392 
5393 	path = btrfs_alloc_path();
5394 	if (!path)
5395 		return -ENOMEM;
5396 
5397 	path->reada = 1;
5398 	path->leave_spinning = 1;
5399 
5400 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5401 	BUG_ON(!is_data && refs_to_drop != 1);
5402 
5403 	if (is_data)
5404 		skinny_metadata = 0;
5405 
5406 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5407 				    bytenr, num_bytes, parent,
5408 				    root_objectid, owner_objectid,
5409 				    owner_offset);
5410 	if (ret == 0) {
5411 		extent_slot = path->slots[0];
5412 		while (extent_slot >= 0) {
5413 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5414 					      extent_slot);
5415 			if (key.objectid != bytenr)
5416 				break;
5417 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5418 			    key.offset == num_bytes) {
5419 				found_extent = 1;
5420 				break;
5421 			}
5422 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5423 			    key.offset == owner_objectid) {
5424 				found_extent = 1;
5425 				break;
5426 			}
5427 			if (path->slots[0] - extent_slot > 5)
5428 				break;
5429 			extent_slot--;
5430 		}
5431 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5432 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5433 		if (found_extent && item_size < sizeof(*ei))
5434 			found_extent = 0;
5435 #endif
5436 		if (!found_extent) {
5437 			BUG_ON(iref);
5438 			ret = remove_extent_backref(trans, extent_root, path,
5439 						    NULL, refs_to_drop,
5440 						    is_data);
5441 			if (ret) {
5442 				btrfs_abort_transaction(trans, extent_root, ret);
5443 				goto out;
5444 			}
5445 			btrfs_release_path(path);
5446 			path->leave_spinning = 1;
5447 
5448 			key.objectid = bytenr;
5449 			key.type = BTRFS_EXTENT_ITEM_KEY;
5450 			key.offset = num_bytes;
5451 
5452 			if (!is_data && skinny_metadata) {
5453 				key.type = BTRFS_METADATA_ITEM_KEY;
5454 				key.offset = owner_objectid;
5455 			}
5456 
5457 			ret = btrfs_search_slot(trans, extent_root,
5458 						&key, path, -1, 1);
5459 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5460 				/*
5461 				 * Couldn't find our skinny metadata item,
5462 				 * see if we have ye olde extent item.
5463 				 */
5464 				path->slots[0]--;
5465 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5466 						      path->slots[0]);
5467 				if (key.objectid == bytenr &&
5468 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5469 				    key.offset == num_bytes)
5470 					ret = 0;
5471 			}
5472 
5473 			if (ret > 0 && skinny_metadata) {
5474 				skinny_metadata = false;
5475 				key.type = BTRFS_EXTENT_ITEM_KEY;
5476 				key.offset = num_bytes;
5477 				btrfs_release_path(path);
5478 				ret = btrfs_search_slot(trans, extent_root,
5479 							&key, path, -1, 1);
5480 			}
5481 
5482 			if (ret) {
5483 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5484 					ret, (unsigned long long)bytenr);
5485 				if (ret > 0)
5486 					btrfs_print_leaf(extent_root,
5487 							 path->nodes[0]);
5488 			}
5489 			if (ret < 0) {
5490 				btrfs_abort_transaction(trans, extent_root, ret);
5491 				goto out;
5492 			}
5493 			extent_slot = path->slots[0];
5494 		}
5495 	} else if (ret == -ENOENT) {
5496 		btrfs_print_leaf(extent_root, path->nodes[0]);
5497 		WARN_ON(1);
5498 		btrfs_err(info,
5499 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5500 			(unsigned long long)bytenr,
5501 			(unsigned long long)parent,
5502 			(unsigned long long)root_objectid,
5503 			(unsigned long long)owner_objectid,
5504 			(unsigned long long)owner_offset);
5505 	} else {
5506 		btrfs_abort_transaction(trans, extent_root, ret);
5507 		goto out;
5508 	}
5509 
5510 	leaf = path->nodes[0];
5511 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5512 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5513 	if (item_size < sizeof(*ei)) {
5514 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5515 		ret = convert_extent_item_v0(trans, extent_root, path,
5516 					     owner_objectid, 0);
5517 		if (ret < 0) {
5518 			btrfs_abort_transaction(trans, extent_root, ret);
5519 			goto out;
5520 		}
5521 
5522 		btrfs_release_path(path);
5523 		path->leave_spinning = 1;
5524 
5525 		key.objectid = bytenr;
5526 		key.type = BTRFS_EXTENT_ITEM_KEY;
5527 		key.offset = num_bytes;
5528 
5529 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5530 					-1, 1);
5531 		if (ret) {
5532 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5533 				ret, (unsigned long long)bytenr);
5534 			btrfs_print_leaf(extent_root, path->nodes[0]);
5535 		}
5536 		if (ret < 0) {
5537 			btrfs_abort_transaction(trans, extent_root, ret);
5538 			goto out;
5539 		}
5540 
5541 		extent_slot = path->slots[0];
5542 		leaf = path->nodes[0];
5543 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5544 	}
5545 #endif
5546 	BUG_ON(item_size < sizeof(*ei));
5547 	ei = btrfs_item_ptr(leaf, extent_slot,
5548 			    struct btrfs_extent_item);
5549 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5550 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5551 		struct btrfs_tree_block_info *bi;
5552 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5553 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5554 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5555 	}
5556 
5557 	refs = btrfs_extent_refs(leaf, ei);
5558 	if (refs < refs_to_drop) {
5559 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5560 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5561 		ret = -EINVAL;
5562 		btrfs_abort_transaction(trans, extent_root, ret);
5563 		goto out;
5564 	}
5565 	refs -= refs_to_drop;
5566 
5567 	if (refs > 0) {
5568 		if (extent_op)
5569 			__run_delayed_extent_op(extent_op, leaf, ei);
5570 		/*
5571 		 * In the case of inline back ref, reference count will
5572 		 * be updated by remove_extent_backref
5573 		 */
5574 		if (iref) {
5575 			BUG_ON(!found_extent);
5576 		} else {
5577 			btrfs_set_extent_refs(leaf, ei, refs);
5578 			btrfs_mark_buffer_dirty(leaf);
5579 		}
5580 		if (found_extent) {
5581 			ret = remove_extent_backref(trans, extent_root, path,
5582 						    iref, refs_to_drop,
5583 						    is_data);
5584 			if (ret) {
5585 				btrfs_abort_transaction(trans, extent_root, ret);
5586 				goto out;
5587 			}
5588 		}
5589 	} else {
5590 		if (found_extent) {
5591 			BUG_ON(is_data && refs_to_drop !=
5592 			       extent_data_ref_count(root, path, iref));
5593 			if (iref) {
5594 				BUG_ON(path->slots[0] != extent_slot);
5595 			} else {
5596 				BUG_ON(path->slots[0] != extent_slot + 1);
5597 				path->slots[0] = extent_slot;
5598 				num_to_del = 2;
5599 			}
5600 		}
5601 
5602 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5603 				      num_to_del);
5604 		if (ret) {
5605 			btrfs_abort_transaction(trans, extent_root, ret);
5606 			goto out;
5607 		}
5608 		btrfs_release_path(path);
5609 
5610 		if (is_data) {
5611 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5612 			if (ret) {
5613 				btrfs_abort_transaction(trans, extent_root, ret);
5614 				goto out;
5615 			}
5616 		}
5617 
5618 		ret = update_block_group(root, bytenr, num_bytes, 0);
5619 		if (ret) {
5620 			btrfs_abort_transaction(trans, extent_root, ret);
5621 			goto out;
5622 		}
5623 	}
5624 out:
5625 	btrfs_free_path(path);
5626 	return ret;
5627 }
5628 
5629 /*
5630  * when we free an block, it is possible (and likely) that we free the last
5631  * delayed ref for that extent as well.  This searches the delayed ref tree for
5632  * a given extent, and if there are no other delayed refs to be processed, it
5633  * removes it from the tree.
5634  */
5635 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5636 				      struct btrfs_root *root, u64 bytenr)
5637 {
5638 	struct btrfs_delayed_ref_head *head;
5639 	struct btrfs_delayed_ref_root *delayed_refs;
5640 	struct btrfs_delayed_ref_node *ref;
5641 	struct rb_node *node;
5642 	int ret = 0;
5643 
5644 	delayed_refs = &trans->transaction->delayed_refs;
5645 	spin_lock(&delayed_refs->lock);
5646 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5647 	if (!head)
5648 		goto out;
5649 
5650 	node = rb_prev(&head->node.rb_node);
5651 	if (!node)
5652 		goto out;
5653 
5654 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5655 
5656 	/* there are still entries for this ref, we can't drop it */
5657 	if (ref->bytenr == bytenr)
5658 		goto out;
5659 
5660 	if (head->extent_op) {
5661 		if (!head->must_insert_reserved)
5662 			goto out;
5663 		btrfs_free_delayed_extent_op(head->extent_op);
5664 		head->extent_op = NULL;
5665 	}
5666 
5667 	/*
5668 	 * waiting for the lock here would deadlock.  If someone else has it
5669 	 * locked they are already in the process of dropping it anyway
5670 	 */
5671 	if (!mutex_trylock(&head->mutex))
5672 		goto out;
5673 
5674 	/*
5675 	 * at this point we have a head with no other entries.  Go
5676 	 * ahead and process it.
5677 	 */
5678 	head->node.in_tree = 0;
5679 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5680 
5681 	delayed_refs->num_entries--;
5682 
5683 	/*
5684 	 * we don't take a ref on the node because we're removing it from the
5685 	 * tree, so we just steal the ref the tree was holding.
5686 	 */
5687 	delayed_refs->num_heads--;
5688 	if (list_empty(&head->cluster))
5689 		delayed_refs->num_heads_ready--;
5690 
5691 	list_del_init(&head->cluster);
5692 	spin_unlock(&delayed_refs->lock);
5693 
5694 	BUG_ON(head->extent_op);
5695 	if (head->must_insert_reserved)
5696 		ret = 1;
5697 
5698 	mutex_unlock(&head->mutex);
5699 	btrfs_put_delayed_ref(&head->node);
5700 	return ret;
5701 out:
5702 	spin_unlock(&delayed_refs->lock);
5703 	return 0;
5704 }
5705 
5706 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5707 			   struct btrfs_root *root,
5708 			   struct extent_buffer *buf,
5709 			   u64 parent, int last_ref)
5710 {
5711 	struct btrfs_block_group_cache *cache = NULL;
5712 	int ret;
5713 
5714 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5715 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5716 					buf->start, buf->len,
5717 					parent, root->root_key.objectid,
5718 					btrfs_header_level(buf),
5719 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5720 		BUG_ON(ret); /* -ENOMEM */
5721 	}
5722 
5723 	if (!last_ref)
5724 		return;
5725 
5726 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5727 
5728 	if (btrfs_header_generation(buf) == trans->transid) {
5729 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5730 			ret = check_ref_cleanup(trans, root, buf->start);
5731 			if (!ret)
5732 				goto out;
5733 		}
5734 
5735 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5736 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5737 			goto out;
5738 		}
5739 
5740 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5741 
5742 		btrfs_add_free_space(cache, buf->start, buf->len);
5743 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5744 	}
5745 out:
5746 	/*
5747 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5748 	 * anymore.
5749 	 */
5750 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5751 	btrfs_put_block_group(cache);
5752 }
5753 
5754 /* Can return -ENOMEM */
5755 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5756 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5757 		      u64 owner, u64 offset, int for_cow)
5758 {
5759 	int ret;
5760 	struct btrfs_fs_info *fs_info = root->fs_info;
5761 
5762 	/*
5763 	 * tree log blocks never actually go into the extent allocation
5764 	 * tree, just update pinning info and exit early.
5765 	 */
5766 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5767 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5768 		/* unlocks the pinned mutex */
5769 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5770 		ret = 0;
5771 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5772 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5773 					num_bytes,
5774 					parent, root_objectid, (int)owner,
5775 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5776 	} else {
5777 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5778 						num_bytes,
5779 						parent, root_objectid, owner,
5780 						offset, BTRFS_DROP_DELAYED_REF,
5781 						NULL, for_cow);
5782 	}
5783 	return ret;
5784 }
5785 
5786 static u64 stripe_align(struct btrfs_root *root,
5787 			struct btrfs_block_group_cache *cache,
5788 			u64 val, u64 num_bytes)
5789 {
5790 	u64 ret = ALIGN(val, root->stripesize);
5791 	return ret;
5792 }
5793 
5794 /*
5795  * when we wait for progress in the block group caching, its because
5796  * our allocation attempt failed at least once.  So, we must sleep
5797  * and let some progress happen before we try again.
5798  *
5799  * This function will sleep at least once waiting for new free space to
5800  * show up, and then it will check the block group free space numbers
5801  * for our min num_bytes.  Another option is to have it go ahead
5802  * and look in the rbtree for a free extent of a given size, but this
5803  * is a good start.
5804  */
5805 static noinline int
5806 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5807 				u64 num_bytes)
5808 {
5809 	struct btrfs_caching_control *caching_ctl;
5810 
5811 	caching_ctl = get_caching_control(cache);
5812 	if (!caching_ctl)
5813 		return 0;
5814 
5815 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5816 		   (cache->free_space_ctl->free_space >= num_bytes));
5817 
5818 	put_caching_control(caching_ctl);
5819 	return 0;
5820 }
5821 
5822 static noinline int
5823 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5824 {
5825 	struct btrfs_caching_control *caching_ctl;
5826 
5827 	caching_ctl = get_caching_control(cache);
5828 	if (!caching_ctl)
5829 		return 0;
5830 
5831 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5832 
5833 	put_caching_control(caching_ctl);
5834 	return 0;
5835 }
5836 
5837 int __get_raid_index(u64 flags)
5838 {
5839 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5840 		return BTRFS_RAID_RAID10;
5841 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5842 		return BTRFS_RAID_RAID1;
5843 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5844 		return BTRFS_RAID_DUP;
5845 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5846 		return BTRFS_RAID_RAID0;
5847 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
5848 		return BTRFS_RAID_RAID5;
5849 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
5850 		return BTRFS_RAID_RAID6;
5851 
5852 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
5853 }
5854 
5855 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5856 {
5857 	return __get_raid_index(cache->flags);
5858 }
5859 
5860 enum btrfs_loop_type {
5861 	LOOP_CACHING_NOWAIT = 0,
5862 	LOOP_CACHING_WAIT = 1,
5863 	LOOP_ALLOC_CHUNK = 2,
5864 	LOOP_NO_EMPTY_SIZE = 3,
5865 };
5866 
5867 /*
5868  * walks the btree of allocated extents and find a hole of a given size.
5869  * The key ins is changed to record the hole:
5870  * ins->objectid == block start
5871  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5872  * ins->offset == number of blocks
5873  * Any available blocks before search_start are skipped.
5874  */
5875 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5876 				     struct btrfs_root *orig_root,
5877 				     u64 num_bytes, u64 empty_size,
5878 				     u64 hint_byte, struct btrfs_key *ins,
5879 				     u64 flags)
5880 {
5881 	int ret = 0;
5882 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5883 	struct btrfs_free_cluster *last_ptr = NULL;
5884 	struct btrfs_block_group_cache *block_group = NULL;
5885 	struct btrfs_block_group_cache *used_block_group;
5886 	u64 search_start = 0;
5887 	int empty_cluster = 2 * 1024 * 1024;
5888 	struct btrfs_space_info *space_info;
5889 	int loop = 0;
5890 	int index = __get_raid_index(flags);
5891 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
5892 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5893 	bool found_uncached_bg = false;
5894 	bool failed_cluster_refill = false;
5895 	bool failed_alloc = false;
5896 	bool use_cluster = true;
5897 	bool have_caching_bg = false;
5898 
5899 	WARN_ON(num_bytes < root->sectorsize);
5900 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5901 	ins->objectid = 0;
5902 	ins->offset = 0;
5903 
5904 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
5905 
5906 	space_info = __find_space_info(root->fs_info, flags);
5907 	if (!space_info) {
5908 		btrfs_err(root->fs_info, "No space info for %llu", flags);
5909 		return -ENOSPC;
5910 	}
5911 
5912 	/*
5913 	 * If the space info is for both data and metadata it means we have a
5914 	 * small filesystem and we can't use the clustering stuff.
5915 	 */
5916 	if (btrfs_mixed_space_info(space_info))
5917 		use_cluster = false;
5918 
5919 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5920 		last_ptr = &root->fs_info->meta_alloc_cluster;
5921 		if (!btrfs_test_opt(root, SSD))
5922 			empty_cluster = 64 * 1024;
5923 	}
5924 
5925 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5926 	    btrfs_test_opt(root, SSD)) {
5927 		last_ptr = &root->fs_info->data_alloc_cluster;
5928 	}
5929 
5930 	if (last_ptr) {
5931 		spin_lock(&last_ptr->lock);
5932 		if (last_ptr->block_group)
5933 			hint_byte = last_ptr->window_start;
5934 		spin_unlock(&last_ptr->lock);
5935 	}
5936 
5937 	search_start = max(search_start, first_logical_byte(root, 0));
5938 	search_start = max(search_start, hint_byte);
5939 
5940 	if (!last_ptr)
5941 		empty_cluster = 0;
5942 
5943 	if (search_start == hint_byte) {
5944 		block_group = btrfs_lookup_block_group(root->fs_info,
5945 						       search_start);
5946 		used_block_group = block_group;
5947 		/*
5948 		 * we don't want to use the block group if it doesn't match our
5949 		 * allocation bits, or if its not cached.
5950 		 *
5951 		 * However if we are re-searching with an ideal block group
5952 		 * picked out then we don't care that the block group is cached.
5953 		 */
5954 		if (block_group && block_group_bits(block_group, flags) &&
5955 		    block_group->cached != BTRFS_CACHE_NO) {
5956 			down_read(&space_info->groups_sem);
5957 			if (list_empty(&block_group->list) ||
5958 			    block_group->ro) {
5959 				/*
5960 				 * someone is removing this block group,
5961 				 * we can't jump into the have_block_group
5962 				 * target because our list pointers are not
5963 				 * valid
5964 				 */
5965 				btrfs_put_block_group(block_group);
5966 				up_read(&space_info->groups_sem);
5967 			} else {
5968 				index = get_block_group_index(block_group);
5969 				goto have_block_group;
5970 			}
5971 		} else if (block_group) {
5972 			btrfs_put_block_group(block_group);
5973 		}
5974 	}
5975 search:
5976 	have_caching_bg = false;
5977 	down_read(&space_info->groups_sem);
5978 	list_for_each_entry(block_group, &space_info->block_groups[index],
5979 			    list) {
5980 		u64 offset;
5981 		int cached;
5982 
5983 		used_block_group = block_group;
5984 		btrfs_get_block_group(block_group);
5985 		search_start = block_group->key.objectid;
5986 
5987 		/*
5988 		 * this can happen if we end up cycling through all the
5989 		 * raid types, but we want to make sure we only allocate
5990 		 * for the proper type.
5991 		 */
5992 		if (!block_group_bits(block_group, flags)) {
5993 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5994 				BTRFS_BLOCK_GROUP_RAID1 |
5995 				BTRFS_BLOCK_GROUP_RAID5 |
5996 				BTRFS_BLOCK_GROUP_RAID6 |
5997 				BTRFS_BLOCK_GROUP_RAID10;
5998 
5999 			/*
6000 			 * if they asked for extra copies and this block group
6001 			 * doesn't provide them, bail.  This does allow us to
6002 			 * fill raid0 from raid1.
6003 			 */
6004 			if ((flags & extra) && !(block_group->flags & extra))
6005 				goto loop;
6006 		}
6007 
6008 have_block_group:
6009 		cached = block_group_cache_done(block_group);
6010 		if (unlikely(!cached)) {
6011 			found_uncached_bg = true;
6012 			ret = cache_block_group(block_group, 0);
6013 			BUG_ON(ret < 0);
6014 			ret = 0;
6015 		}
6016 
6017 		if (unlikely(block_group->ro))
6018 			goto loop;
6019 
6020 		/*
6021 		 * Ok we want to try and use the cluster allocator, so
6022 		 * lets look there
6023 		 */
6024 		if (last_ptr) {
6025 			unsigned long aligned_cluster;
6026 			/*
6027 			 * the refill lock keeps out other
6028 			 * people trying to start a new cluster
6029 			 */
6030 			spin_lock(&last_ptr->refill_lock);
6031 			used_block_group = last_ptr->block_group;
6032 			if (used_block_group != block_group &&
6033 			    (!used_block_group ||
6034 			     used_block_group->ro ||
6035 			     !block_group_bits(used_block_group, flags))) {
6036 				used_block_group = block_group;
6037 				goto refill_cluster;
6038 			}
6039 
6040 			if (used_block_group != block_group)
6041 				btrfs_get_block_group(used_block_group);
6042 
6043 			offset = btrfs_alloc_from_cluster(used_block_group,
6044 			  last_ptr, num_bytes, used_block_group->key.objectid);
6045 			if (offset) {
6046 				/* we have a block, we're done */
6047 				spin_unlock(&last_ptr->refill_lock);
6048 				trace_btrfs_reserve_extent_cluster(root,
6049 					block_group, search_start, num_bytes);
6050 				goto checks;
6051 			}
6052 
6053 			WARN_ON(last_ptr->block_group != used_block_group);
6054 			if (used_block_group != block_group) {
6055 				btrfs_put_block_group(used_block_group);
6056 				used_block_group = block_group;
6057 			}
6058 refill_cluster:
6059 			BUG_ON(used_block_group != block_group);
6060 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6061 			 * set up a new clusters, so lets just skip it
6062 			 * and let the allocator find whatever block
6063 			 * it can find.  If we reach this point, we
6064 			 * will have tried the cluster allocator
6065 			 * plenty of times and not have found
6066 			 * anything, so we are likely way too
6067 			 * fragmented for the clustering stuff to find
6068 			 * anything.
6069 			 *
6070 			 * However, if the cluster is taken from the
6071 			 * current block group, release the cluster
6072 			 * first, so that we stand a better chance of
6073 			 * succeeding in the unclustered
6074 			 * allocation.  */
6075 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6076 			    last_ptr->block_group != block_group) {
6077 				spin_unlock(&last_ptr->refill_lock);
6078 				goto unclustered_alloc;
6079 			}
6080 
6081 			/*
6082 			 * this cluster didn't work out, free it and
6083 			 * start over
6084 			 */
6085 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6086 
6087 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6088 				spin_unlock(&last_ptr->refill_lock);
6089 				goto unclustered_alloc;
6090 			}
6091 
6092 			aligned_cluster = max_t(unsigned long,
6093 						empty_cluster + empty_size,
6094 					      block_group->full_stripe_len);
6095 
6096 			/* allocate a cluster in this block group */
6097 			ret = btrfs_find_space_cluster(trans, root,
6098 					       block_group, last_ptr,
6099 					       search_start, num_bytes,
6100 					       aligned_cluster);
6101 			if (ret == 0) {
6102 				/*
6103 				 * now pull our allocation out of this
6104 				 * cluster
6105 				 */
6106 				offset = btrfs_alloc_from_cluster(block_group,
6107 						  last_ptr, num_bytes,
6108 						  search_start);
6109 				if (offset) {
6110 					/* we found one, proceed */
6111 					spin_unlock(&last_ptr->refill_lock);
6112 					trace_btrfs_reserve_extent_cluster(root,
6113 						block_group, search_start,
6114 						num_bytes);
6115 					goto checks;
6116 				}
6117 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6118 				   && !failed_cluster_refill) {
6119 				spin_unlock(&last_ptr->refill_lock);
6120 
6121 				failed_cluster_refill = true;
6122 				wait_block_group_cache_progress(block_group,
6123 				       num_bytes + empty_cluster + empty_size);
6124 				goto have_block_group;
6125 			}
6126 
6127 			/*
6128 			 * at this point we either didn't find a cluster
6129 			 * or we weren't able to allocate a block from our
6130 			 * cluster.  Free the cluster we've been trying
6131 			 * to use, and go to the next block group
6132 			 */
6133 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6134 			spin_unlock(&last_ptr->refill_lock);
6135 			goto loop;
6136 		}
6137 
6138 unclustered_alloc:
6139 		spin_lock(&block_group->free_space_ctl->tree_lock);
6140 		if (cached &&
6141 		    block_group->free_space_ctl->free_space <
6142 		    num_bytes + empty_cluster + empty_size) {
6143 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6144 			goto loop;
6145 		}
6146 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6147 
6148 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6149 						    num_bytes, empty_size);
6150 		/*
6151 		 * If we didn't find a chunk, and we haven't failed on this
6152 		 * block group before, and this block group is in the middle of
6153 		 * caching and we are ok with waiting, then go ahead and wait
6154 		 * for progress to be made, and set failed_alloc to true.
6155 		 *
6156 		 * If failed_alloc is true then we've already waited on this
6157 		 * block group once and should move on to the next block group.
6158 		 */
6159 		if (!offset && !failed_alloc && !cached &&
6160 		    loop > LOOP_CACHING_NOWAIT) {
6161 			wait_block_group_cache_progress(block_group,
6162 						num_bytes + empty_size);
6163 			failed_alloc = true;
6164 			goto have_block_group;
6165 		} else if (!offset) {
6166 			if (!cached)
6167 				have_caching_bg = true;
6168 			goto loop;
6169 		}
6170 checks:
6171 		search_start = stripe_align(root, used_block_group,
6172 					    offset, num_bytes);
6173 
6174 		/* move on to the next group */
6175 		if (search_start + num_bytes >
6176 		    used_block_group->key.objectid + used_block_group->key.offset) {
6177 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6178 			goto loop;
6179 		}
6180 
6181 		if (offset < search_start)
6182 			btrfs_add_free_space(used_block_group, offset,
6183 					     search_start - offset);
6184 		BUG_ON(offset > search_start);
6185 
6186 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6187 						  alloc_type);
6188 		if (ret == -EAGAIN) {
6189 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6190 			goto loop;
6191 		}
6192 
6193 		/* we are all good, lets return */
6194 		ins->objectid = search_start;
6195 		ins->offset = num_bytes;
6196 
6197 		trace_btrfs_reserve_extent(orig_root, block_group,
6198 					   search_start, num_bytes);
6199 		if (used_block_group != block_group)
6200 			btrfs_put_block_group(used_block_group);
6201 		btrfs_put_block_group(block_group);
6202 		break;
6203 loop:
6204 		failed_cluster_refill = false;
6205 		failed_alloc = false;
6206 		BUG_ON(index != get_block_group_index(block_group));
6207 		if (used_block_group != block_group)
6208 			btrfs_put_block_group(used_block_group);
6209 		btrfs_put_block_group(block_group);
6210 	}
6211 	up_read(&space_info->groups_sem);
6212 
6213 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6214 		goto search;
6215 
6216 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6217 		goto search;
6218 
6219 	/*
6220 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6221 	 *			caching kthreads as we move along
6222 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6223 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6224 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6225 	 *			again
6226 	 */
6227 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6228 		index = 0;
6229 		loop++;
6230 		if (loop == LOOP_ALLOC_CHUNK) {
6231 			ret = do_chunk_alloc(trans, root, flags,
6232 					     CHUNK_ALLOC_FORCE);
6233 			/*
6234 			 * Do not bail out on ENOSPC since we
6235 			 * can do more things.
6236 			 */
6237 			if (ret < 0 && ret != -ENOSPC) {
6238 				btrfs_abort_transaction(trans,
6239 							root, ret);
6240 				goto out;
6241 			}
6242 		}
6243 
6244 		if (loop == LOOP_NO_EMPTY_SIZE) {
6245 			empty_size = 0;
6246 			empty_cluster = 0;
6247 		}
6248 
6249 		goto search;
6250 	} else if (!ins->objectid) {
6251 		ret = -ENOSPC;
6252 	} else if (ins->objectid) {
6253 		ret = 0;
6254 	}
6255 out:
6256 
6257 	return ret;
6258 }
6259 
6260 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6261 			    int dump_block_groups)
6262 {
6263 	struct btrfs_block_group_cache *cache;
6264 	int index = 0;
6265 
6266 	spin_lock(&info->lock);
6267 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6268 	       (unsigned long long)info->flags,
6269 	       (unsigned long long)(info->total_bytes - info->bytes_used -
6270 				    info->bytes_pinned - info->bytes_reserved -
6271 				    info->bytes_readonly),
6272 	       (info->full) ? "" : "not ");
6273 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6274 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6275 	       (unsigned long long)info->total_bytes,
6276 	       (unsigned long long)info->bytes_used,
6277 	       (unsigned long long)info->bytes_pinned,
6278 	       (unsigned long long)info->bytes_reserved,
6279 	       (unsigned long long)info->bytes_may_use,
6280 	       (unsigned long long)info->bytes_readonly);
6281 	spin_unlock(&info->lock);
6282 
6283 	if (!dump_block_groups)
6284 		return;
6285 
6286 	down_read(&info->groups_sem);
6287 again:
6288 	list_for_each_entry(cache, &info->block_groups[index], list) {
6289 		spin_lock(&cache->lock);
6290 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6291 		       (unsigned long long)cache->key.objectid,
6292 		       (unsigned long long)cache->key.offset,
6293 		       (unsigned long long)btrfs_block_group_used(&cache->item),
6294 		       (unsigned long long)cache->pinned,
6295 		       (unsigned long long)cache->reserved,
6296 		       cache->ro ? "[readonly]" : "");
6297 		btrfs_dump_free_space(cache, bytes);
6298 		spin_unlock(&cache->lock);
6299 	}
6300 	if (++index < BTRFS_NR_RAID_TYPES)
6301 		goto again;
6302 	up_read(&info->groups_sem);
6303 }
6304 
6305 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6306 			 struct btrfs_root *root,
6307 			 u64 num_bytes, u64 min_alloc_size,
6308 			 u64 empty_size, u64 hint_byte,
6309 			 struct btrfs_key *ins, int is_data)
6310 {
6311 	bool final_tried = false;
6312 	u64 flags;
6313 	int ret;
6314 
6315 	flags = btrfs_get_alloc_profile(root, is_data);
6316 again:
6317 	WARN_ON(num_bytes < root->sectorsize);
6318 	ret = find_free_extent(trans, root, num_bytes, empty_size,
6319 			       hint_byte, ins, flags);
6320 
6321 	if (ret == -ENOSPC) {
6322 		if (!final_tried) {
6323 			num_bytes = num_bytes >> 1;
6324 			num_bytes = round_down(num_bytes, root->sectorsize);
6325 			num_bytes = max(num_bytes, min_alloc_size);
6326 			if (num_bytes == min_alloc_size)
6327 				final_tried = true;
6328 			goto again;
6329 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6330 			struct btrfs_space_info *sinfo;
6331 
6332 			sinfo = __find_space_info(root->fs_info, flags);
6333 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6334 				(unsigned long long)flags,
6335 				(unsigned long long)num_bytes);
6336 			if (sinfo)
6337 				dump_space_info(sinfo, num_bytes, 1);
6338 		}
6339 	}
6340 
6341 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6342 
6343 	return ret;
6344 }
6345 
6346 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6347 					u64 start, u64 len, int pin)
6348 {
6349 	struct btrfs_block_group_cache *cache;
6350 	int ret = 0;
6351 
6352 	cache = btrfs_lookup_block_group(root->fs_info, start);
6353 	if (!cache) {
6354 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6355 			(unsigned long long)start);
6356 		return -ENOSPC;
6357 	}
6358 
6359 	if (btrfs_test_opt(root, DISCARD))
6360 		ret = btrfs_discard_extent(root, start, len, NULL);
6361 
6362 	if (pin)
6363 		pin_down_extent(root, cache, start, len, 1);
6364 	else {
6365 		btrfs_add_free_space(cache, start, len);
6366 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6367 	}
6368 	btrfs_put_block_group(cache);
6369 
6370 	trace_btrfs_reserved_extent_free(root, start, len);
6371 
6372 	return ret;
6373 }
6374 
6375 int btrfs_free_reserved_extent(struct btrfs_root *root,
6376 					u64 start, u64 len)
6377 {
6378 	return __btrfs_free_reserved_extent(root, start, len, 0);
6379 }
6380 
6381 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6382 				       u64 start, u64 len)
6383 {
6384 	return __btrfs_free_reserved_extent(root, start, len, 1);
6385 }
6386 
6387 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6388 				      struct btrfs_root *root,
6389 				      u64 parent, u64 root_objectid,
6390 				      u64 flags, u64 owner, u64 offset,
6391 				      struct btrfs_key *ins, int ref_mod)
6392 {
6393 	int ret;
6394 	struct btrfs_fs_info *fs_info = root->fs_info;
6395 	struct btrfs_extent_item *extent_item;
6396 	struct btrfs_extent_inline_ref *iref;
6397 	struct btrfs_path *path;
6398 	struct extent_buffer *leaf;
6399 	int type;
6400 	u32 size;
6401 
6402 	if (parent > 0)
6403 		type = BTRFS_SHARED_DATA_REF_KEY;
6404 	else
6405 		type = BTRFS_EXTENT_DATA_REF_KEY;
6406 
6407 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6408 
6409 	path = btrfs_alloc_path();
6410 	if (!path)
6411 		return -ENOMEM;
6412 
6413 	path->leave_spinning = 1;
6414 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6415 				      ins, size);
6416 	if (ret) {
6417 		btrfs_free_path(path);
6418 		return ret;
6419 	}
6420 
6421 	leaf = path->nodes[0];
6422 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6423 				     struct btrfs_extent_item);
6424 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6425 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6426 	btrfs_set_extent_flags(leaf, extent_item,
6427 			       flags | BTRFS_EXTENT_FLAG_DATA);
6428 
6429 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6430 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6431 	if (parent > 0) {
6432 		struct btrfs_shared_data_ref *ref;
6433 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6434 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6435 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6436 	} else {
6437 		struct btrfs_extent_data_ref *ref;
6438 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6439 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6440 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6441 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6442 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6443 	}
6444 
6445 	btrfs_mark_buffer_dirty(path->nodes[0]);
6446 	btrfs_free_path(path);
6447 
6448 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6449 	if (ret) { /* -ENOENT, logic error */
6450 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6451 			(unsigned long long)ins->objectid,
6452 			(unsigned long long)ins->offset);
6453 		BUG();
6454 	}
6455 	return ret;
6456 }
6457 
6458 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6459 				     struct btrfs_root *root,
6460 				     u64 parent, u64 root_objectid,
6461 				     u64 flags, struct btrfs_disk_key *key,
6462 				     int level, struct btrfs_key *ins)
6463 {
6464 	int ret;
6465 	struct btrfs_fs_info *fs_info = root->fs_info;
6466 	struct btrfs_extent_item *extent_item;
6467 	struct btrfs_tree_block_info *block_info;
6468 	struct btrfs_extent_inline_ref *iref;
6469 	struct btrfs_path *path;
6470 	struct extent_buffer *leaf;
6471 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6472 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6473 						 SKINNY_METADATA);
6474 
6475 	if (!skinny_metadata)
6476 		size += sizeof(*block_info);
6477 
6478 	path = btrfs_alloc_path();
6479 	if (!path)
6480 		return -ENOMEM;
6481 
6482 	path->leave_spinning = 1;
6483 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6484 				      ins, size);
6485 	if (ret) {
6486 		btrfs_free_path(path);
6487 		return ret;
6488 	}
6489 
6490 	leaf = path->nodes[0];
6491 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6492 				     struct btrfs_extent_item);
6493 	btrfs_set_extent_refs(leaf, extent_item, 1);
6494 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6495 	btrfs_set_extent_flags(leaf, extent_item,
6496 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6497 
6498 	if (skinny_metadata) {
6499 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6500 	} else {
6501 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6502 		btrfs_set_tree_block_key(leaf, block_info, key);
6503 		btrfs_set_tree_block_level(leaf, block_info, level);
6504 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6505 	}
6506 
6507 	if (parent > 0) {
6508 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6509 		btrfs_set_extent_inline_ref_type(leaf, iref,
6510 						 BTRFS_SHARED_BLOCK_REF_KEY);
6511 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6512 	} else {
6513 		btrfs_set_extent_inline_ref_type(leaf, iref,
6514 						 BTRFS_TREE_BLOCK_REF_KEY);
6515 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6516 	}
6517 
6518 	btrfs_mark_buffer_dirty(leaf);
6519 	btrfs_free_path(path);
6520 
6521 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6522 	if (ret) { /* -ENOENT, logic error */
6523 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6524 			(unsigned long long)ins->objectid,
6525 			(unsigned long long)ins->offset);
6526 		BUG();
6527 	}
6528 	return ret;
6529 }
6530 
6531 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6532 				     struct btrfs_root *root,
6533 				     u64 root_objectid, u64 owner,
6534 				     u64 offset, struct btrfs_key *ins)
6535 {
6536 	int ret;
6537 
6538 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6539 
6540 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6541 					 ins->offset, 0,
6542 					 root_objectid, owner, offset,
6543 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6544 	return ret;
6545 }
6546 
6547 /*
6548  * this is used by the tree logging recovery code.  It records that
6549  * an extent has been allocated and makes sure to clear the free
6550  * space cache bits as well
6551  */
6552 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6553 				   struct btrfs_root *root,
6554 				   u64 root_objectid, u64 owner, u64 offset,
6555 				   struct btrfs_key *ins)
6556 {
6557 	int ret;
6558 	struct btrfs_block_group_cache *block_group;
6559 	struct btrfs_caching_control *caching_ctl;
6560 	u64 start = ins->objectid;
6561 	u64 num_bytes = ins->offset;
6562 
6563 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6564 	cache_block_group(block_group, 0);
6565 	caching_ctl = get_caching_control(block_group);
6566 
6567 	if (!caching_ctl) {
6568 		BUG_ON(!block_group_cache_done(block_group));
6569 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6570 		if (ret)
6571 			goto out;
6572 	} else {
6573 		mutex_lock(&caching_ctl->mutex);
6574 
6575 		if (start >= caching_ctl->progress) {
6576 			ret = add_excluded_extent(root, start, num_bytes);
6577 		} else if (start + num_bytes <= caching_ctl->progress) {
6578 			ret = btrfs_remove_free_space(block_group,
6579 						      start, num_bytes);
6580 		} else {
6581 			num_bytes = caching_ctl->progress - start;
6582 			ret = btrfs_remove_free_space(block_group,
6583 						      start, num_bytes);
6584 			if (ret)
6585 				goto out_lock;
6586 
6587 			start = caching_ctl->progress;
6588 			num_bytes = ins->objectid + ins->offset -
6589 				    caching_ctl->progress;
6590 			ret = add_excluded_extent(root, start, num_bytes);
6591 		}
6592 out_lock:
6593 		mutex_unlock(&caching_ctl->mutex);
6594 		put_caching_control(caching_ctl);
6595 		if (ret)
6596 			goto out;
6597 	}
6598 
6599 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6600 					  RESERVE_ALLOC_NO_ACCOUNT);
6601 	BUG_ON(ret); /* logic error */
6602 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6603 					 0, owner, offset, ins, 1);
6604 out:
6605 	btrfs_put_block_group(block_group);
6606 	return ret;
6607 }
6608 
6609 static struct extent_buffer *
6610 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6611 		      u64 bytenr, u32 blocksize, int level)
6612 {
6613 	struct extent_buffer *buf;
6614 
6615 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6616 	if (!buf)
6617 		return ERR_PTR(-ENOMEM);
6618 	btrfs_set_header_generation(buf, trans->transid);
6619 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6620 	btrfs_tree_lock(buf);
6621 	clean_tree_block(trans, root, buf);
6622 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6623 
6624 	btrfs_set_lock_blocking(buf);
6625 	btrfs_set_buffer_uptodate(buf);
6626 
6627 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6628 		/*
6629 		 * we allow two log transactions at a time, use different
6630 		 * EXENT bit to differentiate dirty pages.
6631 		 */
6632 		if (root->log_transid % 2 == 0)
6633 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6634 					buf->start + buf->len - 1, GFP_NOFS);
6635 		else
6636 			set_extent_new(&root->dirty_log_pages, buf->start,
6637 					buf->start + buf->len - 1, GFP_NOFS);
6638 	} else {
6639 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6640 			 buf->start + buf->len - 1, GFP_NOFS);
6641 	}
6642 	trans->blocks_used++;
6643 	/* this returns a buffer locked for blocking */
6644 	return buf;
6645 }
6646 
6647 static struct btrfs_block_rsv *
6648 use_block_rsv(struct btrfs_trans_handle *trans,
6649 	      struct btrfs_root *root, u32 blocksize)
6650 {
6651 	struct btrfs_block_rsv *block_rsv;
6652 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6653 	int ret;
6654 
6655 	block_rsv = get_block_rsv(trans, root);
6656 
6657 	if (block_rsv->size == 0) {
6658 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6659 					     BTRFS_RESERVE_NO_FLUSH);
6660 		/*
6661 		 * If we couldn't reserve metadata bytes try and use some from
6662 		 * the global reserve.
6663 		 */
6664 		if (ret && block_rsv != global_rsv) {
6665 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6666 			if (!ret)
6667 				return global_rsv;
6668 			return ERR_PTR(ret);
6669 		} else if (ret) {
6670 			return ERR_PTR(ret);
6671 		}
6672 		return block_rsv;
6673 	}
6674 
6675 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6676 	if (!ret)
6677 		return block_rsv;
6678 	if (ret && !block_rsv->failfast) {
6679 		if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6680 			static DEFINE_RATELIMIT_STATE(_rs,
6681 					DEFAULT_RATELIMIT_INTERVAL * 10,
6682 					/*DEFAULT_RATELIMIT_BURST*/ 1);
6683 			if (__ratelimit(&_rs))
6684 				WARN(1, KERN_DEBUG
6685 					"btrfs: block rsv returned %d\n", ret);
6686 		}
6687 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6688 					     BTRFS_RESERVE_NO_FLUSH);
6689 		if (!ret) {
6690 			return block_rsv;
6691 		} else if (ret && block_rsv != global_rsv) {
6692 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6693 			if (!ret)
6694 				return global_rsv;
6695 		}
6696 	}
6697 
6698 	return ERR_PTR(-ENOSPC);
6699 }
6700 
6701 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6702 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6703 {
6704 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6705 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6706 }
6707 
6708 /*
6709  * finds a free extent and does all the dirty work required for allocation
6710  * returns the key for the extent through ins, and a tree buffer for
6711  * the first block of the extent through buf.
6712  *
6713  * returns the tree buffer or NULL.
6714  */
6715 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6716 					struct btrfs_root *root, u32 blocksize,
6717 					u64 parent, u64 root_objectid,
6718 					struct btrfs_disk_key *key, int level,
6719 					u64 hint, u64 empty_size)
6720 {
6721 	struct btrfs_key ins;
6722 	struct btrfs_block_rsv *block_rsv;
6723 	struct extent_buffer *buf;
6724 	u64 flags = 0;
6725 	int ret;
6726 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6727 						 SKINNY_METADATA);
6728 
6729 	block_rsv = use_block_rsv(trans, root, blocksize);
6730 	if (IS_ERR(block_rsv))
6731 		return ERR_CAST(block_rsv);
6732 
6733 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6734 				   empty_size, hint, &ins, 0);
6735 	if (ret) {
6736 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6737 		return ERR_PTR(ret);
6738 	}
6739 
6740 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6741 				    blocksize, level);
6742 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6743 
6744 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6745 		if (parent == 0)
6746 			parent = ins.objectid;
6747 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6748 	} else
6749 		BUG_ON(parent > 0);
6750 
6751 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6752 		struct btrfs_delayed_extent_op *extent_op;
6753 		extent_op = btrfs_alloc_delayed_extent_op();
6754 		BUG_ON(!extent_op); /* -ENOMEM */
6755 		if (key)
6756 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6757 		else
6758 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6759 		extent_op->flags_to_set = flags;
6760 		if (skinny_metadata)
6761 			extent_op->update_key = 0;
6762 		else
6763 			extent_op->update_key = 1;
6764 		extent_op->update_flags = 1;
6765 		extent_op->is_data = 0;
6766 
6767 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6768 					ins.objectid,
6769 					ins.offset, parent, root_objectid,
6770 					level, BTRFS_ADD_DELAYED_EXTENT,
6771 					extent_op, 0);
6772 		BUG_ON(ret); /* -ENOMEM */
6773 	}
6774 	return buf;
6775 }
6776 
6777 struct walk_control {
6778 	u64 refs[BTRFS_MAX_LEVEL];
6779 	u64 flags[BTRFS_MAX_LEVEL];
6780 	struct btrfs_key update_progress;
6781 	int stage;
6782 	int level;
6783 	int shared_level;
6784 	int update_ref;
6785 	int keep_locks;
6786 	int reada_slot;
6787 	int reada_count;
6788 	int for_reloc;
6789 };
6790 
6791 #define DROP_REFERENCE	1
6792 #define UPDATE_BACKREF	2
6793 
6794 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6795 				     struct btrfs_root *root,
6796 				     struct walk_control *wc,
6797 				     struct btrfs_path *path)
6798 {
6799 	u64 bytenr;
6800 	u64 generation;
6801 	u64 refs;
6802 	u64 flags;
6803 	u32 nritems;
6804 	u32 blocksize;
6805 	struct btrfs_key key;
6806 	struct extent_buffer *eb;
6807 	int ret;
6808 	int slot;
6809 	int nread = 0;
6810 
6811 	if (path->slots[wc->level] < wc->reada_slot) {
6812 		wc->reada_count = wc->reada_count * 2 / 3;
6813 		wc->reada_count = max(wc->reada_count, 2);
6814 	} else {
6815 		wc->reada_count = wc->reada_count * 3 / 2;
6816 		wc->reada_count = min_t(int, wc->reada_count,
6817 					BTRFS_NODEPTRS_PER_BLOCK(root));
6818 	}
6819 
6820 	eb = path->nodes[wc->level];
6821 	nritems = btrfs_header_nritems(eb);
6822 	blocksize = btrfs_level_size(root, wc->level - 1);
6823 
6824 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6825 		if (nread >= wc->reada_count)
6826 			break;
6827 
6828 		cond_resched();
6829 		bytenr = btrfs_node_blockptr(eb, slot);
6830 		generation = btrfs_node_ptr_generation(eb, slot);
6831 
6832 		if (slot == path->slots[wc->level])
6833 			goto reada;
6834 
6835 		if (wc->stage == UPDATE_BACKREF &&
6836 		    generation <= root->root_key.offset)
6837 			continue;
6838 
6839 		/* We don't lock the tree block, it's OK to be racy here */
6840 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
6841 					       wc->level - 1, 1, &refs,
6842 					       &flags);
6843 		/* We don't care about errors in readahead. */
6844 		if (ret < 0)
6845 			continue;
6846 		BUG_ON(refs == 0);
6847 
6848 		if (wc->stage == DROP_REFERENCE) {
6849 			if (refs == 1)
6850 				goto reada;
6851 
6852 			if (wc->level == 1 &&
6853 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6854 				continue;
6855 			if (!wc->update_ref ||
6856 			    generation <= root->root_key.offset)
6857 				continue;
6858 			btrfs_node_key_to_cpu(eb, &key, slot);
6859 			ret = btrfs_comp_cpu_keys(&key,
6860 						  &wc->update_progress);
6861 			if (ret < 0)
6862 				continue;
6863 		} else {
6864 			if (wc->level == 1 &&
6865 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6866 				continue;
6867 		}
6868 reada:
6869 		ret = readahead_tree_block(root, bytenr, blocksize,
6870 					   generation);
6871 		if (ret)
6872 			break;
6873 		nread++;
6874 	}
6875 	wc->reada_slot = slot;
6876 }
6877 
6878 /*
6879  * helper to process tree block while walking down the tree.
6880  *
6881  * when wc->stage == UPDATE_BACKREF, this function updates
6882  * back refs for pointers in the block.
6883  *
6884  * NOTE: return value 1 means we should stop walking down.
6885  */
6886 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6887 				   struct btrfs_root *root,
6888 				   struct btrfs_path *path,
6889 				   struct walk_control *wc, int lookup_info)
6890 {
6891 	int level = wc->level;
6892 	struct extent_buffer *eb = path->nodes[level];
6893 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6894 	int ret;
6895 
6896 	if (wc->stage == UPDATE_BACKREF &&
6897 	    btrfs_header_owner(eb) != root->root_key.objectid)
6898 		return 1;
6899 
6900 	/*
6901 	 * when reference count of tree block is 1, it won't increase
6902 	 * again. once full backref flag is set, we never clear it.
6903 	 */
6904 	if (lookup_info &&
6905 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6906 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6907 		BUG_ON(!path->locks[level]);
6908 		ret = btrfs_lookup_extent_info(trans, root,
6909 					       eb->start, level, 1,
6910 					       &wc->refs[level],
6911 					       &wc->flags[level]);
6912 		BUG_ON(ret == -ENOMEM);
6913 		if (ret)
6914 			return ret;
6915 		BUG_ON(wc->refs[level] == 0);
6916 	}
6917 
6918 	if (wc->stage == DROP_REFERENCE) {
6919 		if (wc->refs[level] > 1)
6920 			return 1;
6921 
6922 		if (path->locks[level] && !wc->keep_locks) {
6923 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6924 			path->locks[level] = 0;
6925 		}
6926 		return 0;
6927 	}
6928 
6929 	/* wc->stage == UPDATE_BACKREF */
6930 	if (!(wc->flags[level] & flag)) {
6931 		BUG_ON(!path->locks[level]);
6932 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6933 		BUG_ON(ret); /* -ENOMEM */
6934 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6935 		BUG_ON(ret); /* -ENOMEM */
6936 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6937 						  eb->len, flag, 0);
6938 		BUG_ON(ret); /* -ENOMEM */
6939 		wc->flags[level] |= flag;
6940 	}
6941 
6942 	/*
6943 	 * the block is shared by multiple trees, so it's not good to
6944 	 * keep the tree lock
6945 	 */
6946 	if (path->locks[level] && level > 0) {
6947 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6948 		path->locks[level] = 0;
6949 	}
6950 	return 0;
6951 }
6952 
6953 /*
6954  * helper to process tree block pointer.
6955  *
6956  * when wc->stage == DROP_REFERENCE, this function checks
6957  * reference count of the block pointed to. if the block
6958  * is shared and we need update back refs for the subtree
6959  * rooted at the block, this function changes wc->stage to
6960  * UPDATE_BACKREF. if the block is shared and there is no
6961  * need to update back, this function drops the reference
6962  * to the block.
6963  *
6964  * NOTE: return value 1 means we should stop walking down.
6965  */
6966 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6967 				 struct btrfs_root *root,
6968 				 struct btrfs_path *path,
6969 				 struct walk_control *wc, int *lookup_info)
6970 {
6971 	u64 bytenr;
6972 	u64 generation;
6973 	u64 parent;
6974 	u32 blocksize;
6975 	struct btrfs_key key;
6976 	struct extent_buffer *next;
6977 	int level = wc->level;
6978 	int reada = 0;
6979 	int ret = 0;
6980 
6981 	generation = btrfs_node_ptr_generation(path->nodes[level],
6982 					       path->slots[level]);
6983 	/*
6984 	 * if the lower level block was created before the snapshot
6985 	 * was created, we know there is no need to update back refs
6986 	 * for the subtree
6987 	 */
6988 	if (wc->stage == UPDATE_BACKREF &&
6989 	    generation <= root->root_key.offset) {
6990 		*lookup_info = 1;
6991 		return 1;
6992 	}
6993 
6994 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6995 	blocksize = btrfs_level_size(root, level - 1);
6996 
6997 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6998 	if (!next) {
6999 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7000 		if (!next)
7001 			return -ENOMEM;
7002 		reada = 1;
7003 	}
7004 	btrfs_tree_lock(next);
7005 	btrfs_set_lock_blocking(next);
7006 
7007 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7008 				       &wc->refs[level - 1],
7009 				       &wc->flags[level - 1]);
7010 	if (ret < 0) {
7011 		btrfs_tree_unlock(next);
7012 		return ret;
7013 	}
7014 
7015 	if (unlikely(wc->refs[level - 1] == 0)) {
7016 		btrfs_err(root->fs_info, "Missing references.");
7017 		BUG();
7018 	}
7019 	*lookup_info = 0;
7020 
7021 	if (wc->stage == DROP_REFERENCE) {
7022 		if (wc->refs[level - 1] > 1) {
7023 			if (level == 1 &&
7024 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7025 				goto skip;
7026 
7027 			if (!wc->update_ref ||
7028 			    generation <= root->root_key.offset)
7029 				goto skip;
7030 
7031 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7032 					      path->slots[level]);
7033 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7034 			if (ret < 0)
7035 				goto skip;
7036 
7037 			wc->stage = UPDATE_BACKREF;
7038 			wc->shared_level = level - 1;
7039 		}
7040 	} else {
7041 		if (level == 1 &&
7042 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7043 			goto skip;
7044 	}
7045 
7046 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7047 		btrfs_tree_unlock(next);
7048 		free_extent_buffer(next);
7049 		next = NULL;
7050 		*lookup_info = 1;
7051 	}
7052 
7053 	if (!next) {
7054 		if (reada && level == 1)
7055 			reada_walk_down(trans, root, wc, path);
7056 		next = read_tree_block(root, bytenr, blocksize, generation);
7057 		if (!next || !extent_buffer_uptodate(next)) {
7058 			free_extent_buffer(next);
7059 			return -EIO;
7060 		}
7061 		btrfs_tree_lock(next);
7062 		btrfs_set_lock_blocking(next);
7063 	}
7064 
7065 	level--;
7066 	BUG_ON(level != btrfs_header_level(next));
7067 	path->nodes[level] = next;
7068 	path->slots[level] = 0;
7069 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7070 	wc->level = level;
7071 	if (wc->level == 1)
7072 		wc->reada_slot = 0;
7073 	return 0;
7074 skip:
7075 	wc->refs[level - 1] = 0;
7076 	wc->flags[level - 1] = 0;
7077 	if (wc->stage == DROP_REFERENCE) {
7078 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7079 			parent = path->nodes[level]->start;
7080 		} else {
7081 			BUG_ON(root->root_key.objectid !=
7082 			       btrfs_header_owner(path->nodes[level]));
7083 			parent = 0;
7084 		}
7085 
7086 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7087 				root->root_key.objectid, level - 1, 0, 0);
7088 		BUG_ON(ret); /* -ENOMEM */
7089 	}
7090 	btrfs_tree_unlock(next);
7091 	free_extent_buffer(next);
7092 	*lookup_info = 1;
7093 	return 1;
7094 }
7095 
7096 /*
7097  * helper to process tree block while walking up the tree.
7098  *
7099  * when wc->stage == DROP_REFERENCE, this function drops
7100  * reference count on the block.
7101  *
7102  * when wc->stage == UPDATE_BACKREF, this function changes
7103  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7104  * to UPDATE_BACKREF previously while processing the block.
7105  *
7106  * NOTE: return value 1 means we should stop walking up.
7107  */
7108 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7109 				 struct btrfs_root *root,
7110 				 struct btrfs_path *path,
7111 				 struct walk_control *wc)
7112 {
7113 	int ret;
7114 	int level = wc->level;
7115 	struct extent_buffer *eb = path->nodes[level];
7116 	u64 parent = 0;
7117 
7118 	if (wc->stage == UPDATE_BACKREF) {
7119 		BUG_ON(wc->shared_level < level);
7120 		if (level < wc->shared_level)
7121 			goto out;
7122 
7123 		ret = find_next_key(path, level + 1, &wc->update_progress);
7124 		if (ret > 0)
7125 			wc->update_ref = 0;
7126 
7127 		wc->stage = DROP_REFERENCE;
7128 		wc->shared_level = -1;
7129 		path->slots[level] = 0;
7130 
7131 		/*
7132 		 * check reference count again if the block isn't locked.
7133 		 * we should start walking down the tree again if reference
7134 		 * count is one.
7135 		 */
7136 		if (!path->locks[level]) {
7137 			BUG_ON(level == 0);
7138 			btrfs_tree_lock(eb);
7139 			btrfs_set_lock_blocking(eb);
7140 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7141 
7142 			ret = btrfs_lookup_extent_info(trans, root,
7143 						       eb->start, level, 1,
7144 						       &wc->refs[level],
7145 						       &wc->flags[level]);
7146 			if (ret < 0) {
7147 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7148 				path->locks[level] = 0;
7149 				return ret;
7150 			}
7151 			BUG_ON(wc->refs[level] == 0);
7152 			if (wc->refs[level] == 1) {
7153 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7154 				path->locks[level] = 0;
7155 				return 1;
7156 			}
7157 		}
7158 	}
7159 
7160 	/* wc->stage == DROP_REFERENCE */
7161 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7162 
7163 	if (wc->refs[level] == 1) {
7164 		if (level == 0) {
7165 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7166 				ret = btrfs_dec_ref(trans, root, eb, 1,
7167 						    wc->for_reloc);
7168 			else
7169 				ret = btrfs_dec_ref(trans, root, eb, 0,
7170 						    wc->for_reloc);
7171 			BUG_ON(ret); /* -ENOMEM */
7172 		}
7173 		/* make block locked assertion in clean_tree_block happy */
7174 		if (!path->locks[level] &&
7175 		    btrfs_header_generation(eb) == trans->transid) {
7176 			btrfs_tree_lock(eb);
7177 			btrfs_set_lock_blocking(eb);
7178 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7179 		}
7180 		clean_tree_block(trans, root, eb);
7181 	}
7182 
7183 	if (eb == root->node) {
7184 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7185 			parent = eb->start;
7186 		else
7187 			BUG_ON(root->root_key.objectid !=
7188 			       btrfs_header_owner(eb));
7189 	} else {
7190 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7191 			parent = path->nodes[level + 1]->start;
7192 		else
7193 			BUG_ON(root->root_key.objectid !=
7194 			       btrfs_header_owner(path->nodes[level + 1]));
7195 	}
7196 
7197 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7198 out:
7199 	wc->refs[level] = 0;
7200 	wc->flags[level] = 0;
7201 	return 0;
7202 }
7203 
7204 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7205 				   struct btrfs_root *root,
7206 				   struct btrfs_path *path,
7207 				   struct walk_control *wc)
7208 {
7209 	int level = wc->level;
7210 	int lookup_info = 1;
7211 	int ret;
7212 
7213 	while (level >= 0) {
7214 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7215 		if (ret > 0)
7216 			break;
7217 
7218 		if (level == 0)
7219 			break;
7220 
7221 		if (path->slots[level] >=
7222 		    btrfs_header_nritems(path->nodes[level]))
7223 			break;
7224 
7225 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7226 		if (ret > 0) {
7227 			path->slots[level]++;
7228 			continue;
7229 		} else if (ret < 0)
7230 			return ret;
7231 		level = wc->level;
7232 	}
7233 	return 0;
7234 }
7235 
7236 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7237 				 struct btrfs_root *root,
7238 				 struct btrfs_path *path,
7239 				 struct walk_control *wc, int max_level)
7240 {
7241 	int level = wc->level;
7242 	int ret;
7243 
7244 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7245 	while (level < max_level && path->nodes[level]) {
7246 		wc->level = level;
7247 		if (path->slots[level] + 1 <
7248 		    btrfs_header_nritems(path->nodes[level])) {
7249 			path->slots[level]++;
7250 			return 0;
7251 		} else {
7252 			ret = walk_up_proc(trans, root, path, wc);
7253 			if (ret > 0)
7254 				return 0;
7255 
7256 			if (path->locks[level]) {
7257 				btrfs_tree_unlock_rw(path->nodes[level],
7258 						     path->locks[level]);
7259 				path->locks[level] = 0;
7260 			}
7261 			free_extent_buffer(path->nodes[level]);
7262 			path->nodes[level] = NULL;
7263 			level++;
7264 		}
7265 	}
7266 	return 1;
7267 }
7268 
7269 /*
7270  * drop a subvolume tree.
7271  *
7272  * this function traverses the tree freeing any blocks that only
7273  * referenced by the tree.
7274  *
7275  * when a shared tree block is found. this function decreases its
7276  * reference count by one. if update_ref is true, this function
7277  * also make sure backrefs for the shared block and all lower level
7278  * blocks are properly updated.
7279  *
7280  * If called with for_reloc == 0, may exit early with -EAGAIN
7281  */
7282 int btrfs_drop_snapshot(struct btrfs_root *root,
7283 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7284 			 int for_reloc)
7285 {
7286 	struct btrfs_path *path;
7287 	struct btrfs_trans_handle *trans;
7288 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7289 	struct btrfs_root_item *root_item = &root->root_item;
7290 	struct walk_control *wc;
7291 	struct btrfs_key key;
7292 	int err = 0;
7293 	int ret;
7294 	int level;
7295 
7296 	path = btrfs_alloc_path();
7297 	if (!path) {
7298 		err = -ENOMEM;
7299 		goto out;
7300 	}
7301 
7302 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7303 	if (!wc) {
7304 		btrfs_free_path(path);
7305 		err = -ENOMEM;
7306 		goto out;
7307 	}
7308 
7309 	trans = btrfs_start_transaction(tree_root, 0);
7310 	if (IS_ERR(trans)) {
7311 		err = PTR_ERR(trans);
7312 		goto out_free;
7313 	}
7314 
7315 	if (block_rsv)
7316 		trans->block_rsv = block_rsv;
7317 
7318 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7319 		level = btrfs_header_level(root->node);
7320 		path->nodes[level] = btrfs_lock_root_node(root);
7321 		btrfs_set_lock_blocking(path->nodes[level]);
7322 		path->slots[level] = 0;
7323 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7324 		memset(&wc->update_progress, 0,
7325 		       sizeof(wc->update_progress));
7326 	} else {
7327 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7328 		memcpy(&wc->update_progress, &key,
7329 		       sizeof(wc->update_progress));
7330 
7331 		level = root_item->drop_level;
7332 		BUG_ON(level == 0);
7333 		path->lowest_level = level;
7334 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7335 		path->lowest_level = 0;
7336 		if (ret < 0) {
7337 			err = ret;
7338 			goto out_end_trans;
7339 		}
7340 		WARN_ON(ret > 0);
7341 
7342 		/*
7343 		 * unlock our path, this is safe because only this
7344 		 * function is allowed to delete this snapshot
7345 		 */
7346 		btrfs_unlock_up_safe(path, 0);
7347 
7348 		level = btrfs_header_level(root->node);
7349 		while (1) {
7350 			btrfs_tree_lock(path->nodes[level]);
7351 			btrfs_set_lock_blocking(path->nodes[level]);
7352 
7353 			ret = btrfs_lookup_extent_info(trans, root,
7354 						path->nodes[level]->start,
7355 						level, 1, &wc->refs[level],
7356 						&wc->flags[level]);
7357 			if (ret < 0) {
7358 				err = ret;
7359 				goto out_end_trans;
7360 			}
7361 			BUG_ON(wc->refs[level] == 0);
7362 
7363 			if (level == root_item->drop_level)
7364 				break;
7365 
7366 			btrfs_tree_unlock(path->nodes[level]);
7367 			WARN_ON(wc->refs[level] != 1);
7368 			level--;
7369 		}
7370 	}
7371 
7372 	wc->level = level;
7373 	wc->shared_level = -1;
7374 	wc->stage = DROP_REFERENCE;
7375 	wc->update_ref = update_ref;
7376 	wc->keep_locks = 0;
7377 	wc->for_reloc = for_reloc;
7378 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7379 
7380 	while (1) {
7381 		if (!for_reloc && btrfs_fs_closing(root->fs_info)) {
7382 			pr_debug("btrfs: drop snapshot early exit\n");
7383 			err = -EAGAIN;
7384 			goto out_end_trans;
7385 		}
7386 
7387 		ret = walk_down_tree(trans, root, path, wc);
7388 		if (ret < 0) {
7389 			err = ret;
7390 			break;
7391 		}
7392 
7393 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7394 		if (ret < 0) {
7395 			err = ret;
7396 			break;
7397 		}
7398 
7399 		if (ret > 0) {
7400 			BUG_ON(wc->stage != DROP_REFERENCE);
7401 			break;
7402 		}
7403 
7404 		if (wc->stage == DROP_REFERENCE) {
7405 			level = wc->level;
7406 			btrfs_node_key(path->nodes[level],
7407 				       &root_item->drop_progress,
7408 				       path->slots[level]);
7409 			root_item->drop_level = level;
7410 		}
7411 
7412 		BUG_ON(wc->level == 0);
7413 		if (btrfs_should_end_transaction(trans, tree_root)) {
7414 			ret = btrfs_update_root(trans, tree_root,
7415 						&root->root_key,
7416 						root_item);
7417 			if (ret) {
7418 				btrfs_abort_transaction(trans, tree_root, ret);
7419 				err = ret;
7420 				goto out_end_trans;
7421 			}
7422 
7423 			btrfs_end_transaction_throttle(trans, tree_root);
7424 			trans = btrfs_start_transaction(tree_root, 0);
7425 			if (IS_ERR(trans)) {
7426 				err = PTR_ERR(trans);
7427 				goto out_free;
7428 			}
7429 			if (block_rsv)
7430 				trans->block_rsv = block_rsv;
7431 		}
7432 	}
7433 	btrfs_release_path(path);
7434 	if (err)
7435 		goto out_end_trans;
7436 
7437 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7438 	if (ret) {
7439 		btrfs_abort_transaction(trans, tree_root, ret);
7440 		goto out_end_trans;
7441 	}
7442 
7443 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7444 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7445 					   NULL, NULL);
7446 		if (ret < 0) {
7447 			btrfs_abort_transaction(trans, tree_root, ret);
7448 			err = ret;
7449 			goto out_end_trans;
7450 		} else if (ret > 0) {
7451 			/* if we fail to delete the orphan item this time
7452 			 * around, it'll get picked up the next time.
7453 			 *
7454 			 * The most common failure here is just -ENOENT.
7455 			 */
7456 			btrfs_del_orphan_item(trans, tree_root,
7457 					      root->root_key.objectid);
7458 		}
7459 	}
7460 
7461 	if (root->in_radix) {
7462 		btrfs_free_fs_root(tree_root->fs_info, root);
7463 	} else {
7464 		free_extent_buffer(root->node);
7465 		free_extent_buffer(root->commit_root);
7466 		kfree(root);
7467 	}
7468 out_end_trans:
7469 	btrfs_end_transaction_throttle(trans, tree_root);
7470 out_free:
7471 	kfree(wc);
7472 	btrfs_free_path(path);
7473 out:
7474 	if (err)
7475 		btrfs_std_error(root->fs_info, err);
7476 	return err;
7477 }
7478 
7479 /*
7480  * drop subtree rooted at tree block 'node'.
7481  *
7482  * NOTE: this function will unlock and release tree block 'node'
7483  * only used by relocation code
7484  */
7485 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7486 			struct btrfs_root *root,
7487 			struct extent_buffer *node,
7488 			struct extent_buffer *parent)
7489 {
7490 	struct btrfs_path *path;
7491 	struct walk_control *wc;
7492 	int level;
7493 	int parent_level;
7494 	int ret = 0;
7495 	int wret;
7496 
7497 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7498 
7499 	path = btrfs_alloc_path();
7500 	if (!path)
7501 		return -ENOMEM;
7502 
7503 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7504 	if (!wc) {
7505 		btrfs_free_path(path);
7506 		return -ENOMEM;
7507 	}
7508 
7509 	btrfs_assert_tree_locked(parent);
7510 	parent_level = btrfs_header_level(parent);
7511 	extent_buffer_get(parent);
7512 	path->nodes[parent_level] = parent;
7513 	path->slots[parent_level] = btrfs_header_nritems(parent);
7514 
7515 	btrfs_assert_tree_locked(node);
7516 	level = btrfs_header_level(node);
7517 	path->nodes[level] = node;
7518 	path->slots[level] = 0;
7519 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7520 
7521 	wc->refs[parent_level] = 1;
7522 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7523 	wc->level = level;
7524 	wc->shared_level = -1;
7525 	wc->stage = DROP_REFERENCE;
7526 	wc->update_ref = 0;
7527 	wc->keep_locks = 1;
7528 	wc->for_reloc = 1;
7529 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7530 
7531 	while (1) {
7532 		wret = walk_down_tree(trans, root, path, wc);
7533 		if (wret < 0) {
7534 			ret = wret;
7535 			break;
7536 		}
7537 
7538 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7539 		if (wret < 0)
7540 			ret = wret;
7541 		if (wret != 0)
7542 			break;
7543 	}
7544 
7545 	kfree(wc);
7546 	btrfs_free_path(path);
7547 	return ret;
7548 }
7549 
7550 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7551 {
7552 	u64 num_devices;
7553 	u64 stripped;
7554 
7555 	/*
7556 	 * if restripe for this chunk_type is on pick target profile and
7557 	 * return, otherwise do the usual balance
7558 	 */
7559 	stripped = get_restripe_target(root->fs_info, flags);
7560 	if (stripped)
7561 		return extended_to_chunk(stripped);
7562 
7563 	/*
7564 	 * we add in the count of missing devices because we want
7565 	 * to make sure that any RAID levels on a degraded FS
7566 	 * continue to be honored.
7567 	 */
7568 	num_devices = root->fs_info->fs_devices->rw_devices +
7569 		root->fs_info->fs_devices->missing_devices;
7570 
7571 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7572 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7573 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7574 
7575 	if (num_devices == 1) {
7576 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7577 		stripped = flags & ~stripped;
7578 
7579 		/* turn raid0 into single device chunks */
7580 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7581 			return stripped;
7582 
7583 		/* turn mirroring into duplication */
7584 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7585 			     BTRFS_BLOCK_GROUP_RAID10))
7586 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7587 	} else {
7588 		/* they already had raid on here, just return */
7589 		if (flags & stripped)
7590 			return flags;
7591 
7592 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7593 		stripped = flags & ~stripped;
7594 
7595 		/* switch duplicated blocks with raid1 */
7596 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7597 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7598 
7599 		/* this is drive concat, leave it alone */
7600 	}
7601 
7602 	return flags;
7603 }
7604 
7605 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7606 {
7607 	struct btrfs_space_info *sinfo = cache->space_info;
7608 	u64 num_bytes;
7609 	u64 min_allocable_bytes;
7610 	int ret = -ENOSPC;
7611 
7612 
7613 	/*
7614 	 * We need some metadata space and system metadata space for
7615 	 * allocating chunks in some corner cases until we force to set
7616 	 * it to be readonly.
7617 	 */
7618 	if ((sinfo->flags &
7619 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7620 	    !force)
7621 		min_allocable_bytes = 1 * 1024 * 1024;
7622 	else
7623 		min_allocable_bytes = 0;
7624 
7625 	spin_lock(&sinfo->lock);
7626 	spin_lock(&cache->lock);
7627 
7628 	if (cache->ro) {
7629 		ret = 0;
7630 		goto out;
7631 	}
7632 
7633 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7634 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7635 
7636 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7637 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7638 	    min_allocable_bytes <= sinfo->total_bytes) {
7639 		sinfo->bytes_readonly += num_bytes;
7640 		cache->ro = 1;
7641 		ret = 0;
7642 	}
7643 out:
7644 	spin_unlock(&cache->lock);
7645 	spin_unlock(&sinfo->lock);
7646 	return ret;
7647 }
7648 
7649 int btrfs_set_block_group_ro(struct btrfs_root *root,
7650 			     struct btrfs_block_group_cache *cache)
7651 
7652 {
7653 	struct btrfs_trans_handle *trans;
7654 	u64 alloc_flags;
7655 	int ret;
7656 
7657 	BUG_ON(cache->ro);
7658 
7659 	trans = btrfs_join_transaction(root);
7660 	if (IS_ERR(trans))
7661 		return PTR_ERR(trans);
7662 
7663 	alloc_flags = update_block_group_flags(root, cache->flags);
7664 	if (alloc_flags != cache->flags) {
7665 		ret = do_chunk_alloc(trans, root, alloc_flags,
7666 				     CHUNK_ALLOC_FORCE);
7667 		if (ret < 0)
7668 			goto out;
7669 	}
7670 
7671 	ret = set_block_group_ro(cache, 0);
7672 	if (!ret)
7673 		goto out;
7674 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7675 	ret = do_chunk_alloc(trans, root, alloc_flags,
7676 			     CHUNK_ALLOC_FORCE);
7677 	if (ret < 0)
7678 		goto out;
7679 	ret = set_block_group_ro(cache, 0);
7680 out:
7681 	btrfs_end_transaction(trans, root);
7682 	return ret;
7683 }
7684 
7685 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7686 			    struct btrfs_root *root, u64 type)
7687 {
7688 	u64 alloc_flags = get_alloc_profile(root, type);
7689 	return do_chunk_alloc(trans, root, alloc_flags,
7690 			      CHUNK_ALLOC_FORCE);
7691 }
7692 
7693 /*
7694  * helper to account the unused space of all the readonly block group in the
7695  * list. takes mirrors into account.
7696  */
7697 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7698 {
7699 	struct btrfs_block_group_cache *block_group;
7700 	u64 free_bytes = 0;
7701 	int factor;
7702 
7703 	list_for_each_entry(block_group, groups_list, list) {
7704 		spin_lock(&block_group->lock);
7705 
7706 		if (!block_group->ro) {
7707 			spin_unlock(&block_group->lock);
7708 			continue;
7709 		}
7710 
7711 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7712 					  BTRFS_BLOCK_GROUP_RAID10 |
7713 					  BTRFS_BLOCK_GROUP_DUP))
7714 			factor = 2;
7715 		else
7716 			factor = 1;
7717 
7718 		free_bytes += (block_group->key.offset -
7719 			       btrfs_block_group_used(&block_group->item)) *
7720 			       factor;
7721 
7722 		spin_unlock(&block_group->lock);
7723 	}
7724 
7725 	return free_bytes;
7726 }
7727 
7728 /*
7729  * helper to account the unused space of all the readonly block group in the
7730  * space_info. takes mirrors into account.
7731  */
7732 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7733 {
7734 	int i;
7735 	u64 free_bytes = 0;
7736 
7737 	spin_lock(&sinfo->lock);
7738 
7739 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7740 		if (!list_empty(&sinfo->block_groups[i]))
7741 			free_bytes += __btrfs_get_ro_block_group_free_space(
7742 						&sinfo->block_groups[i]);
7743 
7744 	spin_unlock(&sinfo->lock);
7745 
7746 	return free_bytes;
7747 }
7748 
7749 void btrfs_set_block_group_rw(struct btrfs_root *root,
7750 			      struct btrfs_block_group_cache *cache)
7751 {
7752 	struct btrfs_space_info *sinfo = cache->space_info;
7753 	u64 num_bytes;
7754 
7755 	BUG_ON(!cache->ro);
7756 
7757 	spin_lock(&sinfo->lock);
7758 	spin_lock(&cache->lock);
7759 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7760 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7761 	sinfo->bytes_readonly -= num_bytes;
7762 	cache->ro = 0;
7763 	spin_unlock(&cache->lock);
7764 	spin_unlock(&sinfo->lock);
7765 }
7766 
7767 /*
7768  * checks to see if its even possible to relocate this block group.
7769  *
7770  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7771  * ok to go ahead and try.
7772  */
7773 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7774 {
7775 	struct btrfs_block_group_cache *block_group;
7776 	struct btrfs_space_info *space_info;
7777 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7778 	struct btrfs_device *device;
7779 	u64 min_free;
7780 	u64 dev_min = 1;
7781 	u64 dev_nr = 0;
7782 	u64 target;
7783 	int index;
7784 	int full = 0;
7785 	int ret = 0;
7786 
7787 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7788 
7789 	/* odd, couldn't find the block group, leave it alone */
7790 	if (!block_group)
7791 		return -1;
7792 
7793 	min_free = btrfs_block_group_used(&block_group->item);
7794 
7795 	/* no bytes used, we're good */
7796 	if (!min_free)
7797 		goto out;
7798 
7799 	space_info = block_group->space_info;
7800 	spin_lock(&space_info->lock);
7801 
7802 	full = space_info->full;
7803 
7804 	/*
7805 	 * if this is the last block group we have in this space, we can't
7806 	 * relocate it unless we're able to allocate a new chunk below.
7807 	 *
7808 	 * Otherwise, we need to make sure we have room in the space to handle
7809 	 * all of the extents from this block group.  If we can, we're good
7810 	 */
7811 	if ((space_info->total_bytes != block_group->key.offset) &&
7812 	    (space_info->bytes_used + space_info->bytes_reserved +
7813 	     space_info->bytes_pinned + space_info->bytes_readonly +
7814 	     min_free < space_info->total_bytes)) {
7815 		spin_unlock(&space_info->lock);
7816 		goto out;
7817 	}
7818 	spin_unlock(&space_info->lock);
7819 
7820 	/*
7821 	 * ok we don't have enough space, but maybe we have free space on our
7822 	 * devices to allocate new chunks for relocation, so loop through our
7823 	 * alloc devices and guess if we have enough space.  if this block
7824 	 * group is going to be restriped, run checks against the target
7825 	 * profile instead of the current one.
7826 	 */
7827 	ret = -1;
7828 
7829 	/*
7830 	 * index:
7831 	 *      0: raid10
7832 	 *      1: raid1
7833 	 *      2: dup
7834 	 *      3: raid0
7835 	 *      4: single
7836 	 */
7837 	target = get_restripe_target(root->fs_info, block_group->flags);
7838 	if (target) {
7839 		index = __get_raid_index(extended_to_chunk(target));
7840 	} else {
7841 		/*
7842 		 * this is just a balance, so if we were marked as full
7843 		 * we know there is no space for a new chunk
7844 		 */
7845 		if (full)
7846 			goto out;
7847 
7848 		index = get_block_group_index(block_group);
7849 	}
7850 
7851 	if (index == BTRFS_RAID_RAID10) {
7852 		dev_min = 4;
7853 		/* Divide by 2 */
7854 		min_free >>= 1;
7855 	} else if (index == BTRFS_RAID_RAID1) {
7856 		dev_min = 2;
7857 	} else if (index == BTRFS_RAID_DUP) {
7858 		/* Multiply by 2 */
7859 		min_free <<= 1;
7860 	} else if (index == BTRFS_RAID_RAID0) {
7861 		dev_min = fs_devices->rw_devices;
7862 		do_div(min_free, dev_min);
7863 	}
7864 
7865 	mutex_lock(&root->fs_info->chunk_mutex);
7866 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7867 		u64 dev_offset;
7868 
7869 		/*
7870 		 * check to make sure we can actually find a chunk with enough
7871 		 * space to fit our block group in.
7872 		 */
7873 		if (device->total_bytes > device->bytes_used + min_free &&
7874 		    !device->is_tgtdev_for_dev_replace) {
7875 			ret = find_free_dev_extent(device, min_free,
7876 						   &dev_offset, NULL);
7877 			if (!ret)
7878 				dev_nr++;
7879 
7880 			if (dev_nr >= dev_min)
7881 				break;
7882 
7883 			ret = -1;
7884 		}
7885 	}
7886 	mutex_unlock(&root->fs_info->chunk_mutex);
7887 out:
7888 	btrfs_put_block_group(block_group);
7889 	return ret;
7890 }
7891 
7892 static int find_first_block_group(struct btrfs_root *root,
7893 		struct btrfs_path *path, struct btrfs_key *key)
7894 {
7895 	int ret = 0;
7896 	struct btrfs_key found_key;
7897 	struct extent_buffer *leaf;
7898 	int slot;
7899 
7900 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7901 	if (ret < 0)
7902 		goto out;
7903 
7904 	while (1) {
7905 		slot = path->slots[0];
7906 		leaf = path->nodes[0];
7907 		if (slot >= btrfs_header_nritems(leaf)) {
7908 			ret = btrfs_next_leaf(root, path);
7909 			if (ret == 0)
7910 				continue;
7911 			if (ret < 0)
7912 				goto out;
7913 			break;
7914 		}
7915 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7916 
7917 		if (found_key.objectid >= key->objectid &&
7918 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7919 			ret = 0;
7920 			goto out;
7921 		}
7922 		path->slots[0]++;
7923 	}
7924 out:
7925 	return ret;
7926 }
7927 
7928 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7929 {
7930 	struct btrfs_block_group_cache *block_group;
7931 	u64 last = 0;
7932 
7933 	while (1) {
7934 		struct inode *inode;
7935 
7936 		block_group = btrfs_lookup_first_block_group(info, last);
7937 		while (block_group) {
7938 			spin_lock(&block_group->lock);
7939 			if (block_group->iref)
7940 				break;
7941 			spin_unlock(&block_group->lock);
7942 			block_group = next_block_group(info->tree_root,
7943 						       block_group);
7944 		}
7945 		if (!block_group) {
7946 			if (last == 0)
7947 				break;
7948 			last = 0;
7949 			continue;
7950 		}
7951 
7952 		inode = block_group->inode;
7953 		block_group->iref = 0;
7954 		block_group->inode = NULL;
7955 		spin_unlock(&block_group->lock);
7956 		iput(inode);
7957 		last = block_group->key.objectid + block_group->key.offset;
7958 		btrfs_put_block_group(block_group);
7959 	}
7960 }
7961 
7962 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7963 {
7964 	struct btrfs_block_group_cache *block_group;
7965 	struct btrfs_space_info *space_info;
7966 	struct btrfs_caching_control *caching_ctl;
7967 	struct rb_node *n;
7968 
7969 	down_write(&info->extent_commit_sem);
7970 	while (!list_empty(&info->caching_block_groups)) {
7971 		caching_ctl = list_entry(info->caching_block_groups.next,
7972 					 struct btrfs_caching_control, list);
7973 		list_del(&caching_ctl->list);
7974 		put_caching_control(caching_ctl);
7975 	}
7976 	up_write(&info->extent_commit_sem);
7977 
7978 	spin_lock(&info->block_group_cache_lock);
7979 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7980 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7981 				       cache_node);
7982 		rb_erase(&block_group->cache_node,
7983 			 &info->block_group_cache_tree);
7984 		spin_unlock(&info->block_group_cache_lock);
7985 
7986 		down_write(&block_group->space_info->groups_sem);
7987 		list_del(&block_group->list);
7988 		up_write(&block_group->space_info->groups_sem);
7989 
7990 		if (block_group->cached == BTRFS_CACHE_STARTED)
7991 			wait_block_group_cache_done(block_group);
7992 
7993 		/*
7994 		 * We haven't cached this block group, which means we could
7995 		 * possibly have excluded extents on this block group.
7996 		 */
7997 		if (block_group->cached == BTRFS_CACHE_NO)
7998 			free_excluded_extents(info->extent_root, block_group);
7999 
8000 		btrfs_remove_free_space_cache(block_group);
8001 		btrfs_put_block_group(block_group);
8002 
8003 		spin_lock(&info->block_group_cache_lock);
8004 	}
8005 	spin_unlock(&info->block_group_cache_lock);
8006 
8007 	/* now that all the block groups are freed, go through and
8008 	 * free all the space_info structs.  This is only called during
8009 	 * the final stages of unmount, and so we know nobody is
8010 	 * using them.  We call synchronize_rcu() once before we start,
8011 	 * just to be on the safe side.
8012 	 */
8013 	synchronize_rcu();
8014 
8015 	release_global_block_rsv(info);
8016 
8017 	while(!list_empty(&info->space_info)) {
8018 		space_info = list_entry(info->space_info.next,
8019 					struct btrfs_space_info,
8020 					list);
8021 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8022 			if (space_info->bytes_pinned > 0 ||
8023 			    space_info->bytes_reserved > 0 ||
8024 			    space_info->bytes_may_use > 0) {
8025 				WARN_ON(1);
8026 				dump_space_info(space_info, 0, 0);
8027 			}
8028 		}
8029 		list_del(&space_info->list);
8030 		kfree(space_info);
8031 	}
8032 	return 0;
8033 }
8034 
8035 static void __link_block_group(struct btrfs_space_info *space_info,
8036 			       struct btrfs_block_group_cache *cache)
8037 {
8038 	int index = get_block_group_index(cache);
8039 
8040 	down_write(&space_info->groups_sem);
8041 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8042 	up_write(&space_info->groups_sem);
8043 }
8044 
8045 int btrfs_read_block_groups(struct btrfs_root *root)
8046 {
8047 	struct btrfs_path *path;
8048 	int ret;
8049 	struct btrfs_block_group_cache *cache;
8050 	struct btrfs_fs_info *info = root->fs_info;
8051 	struct btrfs_space_info *space_info;
8052 	struct btrfs_key key;
8053 	struct btrfs_key found_key;
8054 	struct extent_buffer *leaf;
8055 	int need_clear = 0;
8056 	u64 cache_gen;
8057 
8058 	root = info->extent_root;
8059 	key.objectid = 0;
8060 	key.offset = 0;
8061 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8062 	path = btrfs_alloc_path();
8063 	if (!path)
8064 		return -ENOMEM;
8065 	path->reada = 1;
8066 
8067 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8068 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8069 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8070 		need_clear = 1;
8071 	if (btrfs_test_opt(root, CLEAR_CACHE))
8072 		need_clear = 1;
8073 
8074 	while (1) {
8075 		ret = find_first_block_group(root, path, &key);
8076 		if (ret > 0)
8077 			break;
8078 		if (ret != 0)
8079 			goto error;
8080 		leaf = path->nodes[0];
8081 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8082 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8083 		if (!cache) {
8084 			ret = -ENOMEM;
8085 			goto error;
8086 		}
8087 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8088 						GFP_NOFS);
8089 		if (!cache->free_space_ctl) {
8090 			kfree(cache);
8091 			ret = -ENOMEM;
8092 			goto error;
8093 		}
8094 
8095 		atomic_set(&cache->count, 1);
8096 		spin_lock_init(&cache->lock);
8097 		cache->fs_info = info;
8098 		INIT_LIST_HEAD(&cache->list);
8099 		INIT_LIST_HEAD(&cache->cluster_list);
8100 
8101 		if (need_clear) {
8102 			/*
8103 			 * When we mount with old space cache, we need to
8104 			 * set BTRFS_DC_CLEAR and set dirty flag.
8105 			 *
8106 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8107 			 *    truncate the old free space cache inode and
8108 			 *    setup a new one.
8109 			 * b) Setting 'dirty flag' makes sure that we flush
8110 			 *    the new space cache info onto disk.
8111 			 */
8112 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8113 			if (btrfs_test_opt(root, SPACE_CACHE))
8114 				cache->dirty = 1;
8115 		}
8116 
8117 		read_extent_buffer(leaf, &cache->item,
8118 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8119 				   sizeof(cache->item));
8120 		memcpy(&cache->key, &found_key, sizeof(found_key));
8121 
8122 		key.objectid = found_key.objectid + found_key.offset;
8123 		btrfs_release_path(path);
8124 		cache->flags = btrfs_block_group_flags(&cache->item);
8125 		cache->sectorsize = root->sectorsize;
8126 		cache->full_stripe_len = btrfs_full_stripe_len(root,
8127 					       &root->fs_info->mapping_tree,
8128 					       found_key.objectid);
8129 		btrfs_init_free_space_ctl(cache);
8130 
8131 		/*
8132 		 * We need to exclude the super stripes now so that the space
8133 		 * info has super bytes accounted for, otherwise we'll think
8134 		 * we have more space than we actually do.
8135 		 */
8136 		ret = exclude_super_stripes(root, cache);
8137 		if (ret) {
8138 			/*
8139 			 * We may have excluded something, so call this just in
8140 			 * case.
8141 			 */
8142 			free_excluded_extents(root, cache);
8143 			kfree(cache->free_space_ctl);
8144 			kfree(cache);
8145 			goto error;
8146 		}
8147 
8148 		/*
8149 		 * check for two cases, either we are full, and therefore
8150 		 * don't need to bother with the caching work since we won't
8151 		 * find any space, or we are empty, and we can just add all
8152 		 * the space in and be done with it.  This saves us _alot_ of
8153 		 * time, particularly in the full case.
8154 		 */
8155 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8156 			cache->last_byte_to_unpin = (u64)-1;
8157 			cache->cached = BTRFS_CACHE_FINISHED;
8158 			free_excluded_extents(root, cache);
8159 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8160 			cache->last_byte_to_unpin = (u64)-1;
8161 			cache->cached = BTRFS_CACHE_FINISHED;
8162 			add_new_free_space(cache, root->fs_info,
8163 					   found_key.objectid,
8164 					   found_key.objectid +
8165 					   found_key.offset);
8166 			free_excluded_extents(root, cache);
8167 		}
8168 
8169 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8170 		if (ret) {
8171 			btrfs_remove_free_space_cache(cache);
8172 			btrfs_put_block_group(cache);
8173 			goto error;
8174 		}
8175 
8176 		ret = update_space_info(info, cache->flags, found_key.offset,
8177 					btrfs_block_group_used(&cache->item),
8178 					&space_info);
8179 		if (ret) {
8180 			btrfs_remove_free_space_cache(cache);
8181 			spin_lock(&info->block_group_cache_lock);
8182 			rb_erase(&cache->cache_node,
8183 				 &info->block_group_cache_tree);
8184 			spin_unlock(&info->block_group_cache_lock);
8185 			btrfs_put_block_group(cache);
8186 			goto error;
8187 		}
8188 
8189 		cache->space_info = space_info;
8190 		spin_lock(&cache->space_info->lock);
8191 		cache->space_info->bytes_readonly += cache->bytes_super;
8192 		spin_unlock(&cache->space_info->lock);
8193 
8194 		__link_block_group(space_info, cache);
8195 
8196 		set_avail_alloc_bits(root->fs_info, cache->flags);
8197 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8198 			set_block_group_ro(cache, 1);
8199 	}
8200 
8201 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8202 		if (!(get_alloc_profile(root, space_info->flags) &
8203 		      (BTRFS_BLOCK_GROUP_RAID10 |
8204 		       BTRFS_BLOCK_GROUP_RAID1 |
8205 		       BTRFS_BLOCK_GROUP_RAID5 |
8206 		       BTRFS_BLOCK_GROUP_RAID6 |
8207 		       BTRFS_BLOCK_GROUP_DUP)))
8208 			continue;
8209 		/*
8210 		 * avoid allocating from un-mirrored block group if there are
8211 		 * mirrored block groups.
8212 		 */
8213 		list_for_each_entry(cache, &space_info->block_groups[3], list)
8214 			set_block_group_ro(cache, 1);
8215 		list_for_each_entry(cache, &space_info->block_groups[4], list)
8216 			set_block_group_ro(cache, 1);
8217 	}
8218 
8219 	init_global_block_rsv(info);
8220 	ret = 0;
8221 error:
8222 	btrfs_free_path(path);
8223 	return ret;
8224 }
8225 
8226 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8227 				       struct btrfs_root *root)
8228 {
8229 	struct btrfs_block_group_cache *block_group, *tmp;
8230 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8231 	struct btrfs_block_group_item item;
8232 	struct btrfs_key key;
8233 	int ret = 0;
8234 
8235 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8236 				 new_bg_list) {
8237 		list_del_init(&block_group->new_bg_list);
8238 
8239 		if (ret)
8240 			continue;
8241 
8242 		spin_lock(&block_group->lock);
8243 		memcpy(&item, &block_group->item, sizeof(item));
8244 		memcpy(&key, &block_group->key, sizeof(key));
8245 		spin_unlock(&block_group->lock);
8246 
8247 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8248 					sizeof(item));
8249 		if (ret)
8250 			btrfs_abort_transaction(trans, extent_root, ret);
8251 	}
8252 }
8253 
8254 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8255 			   struct btrfs_root *root, u64 bytes_used,
8256 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8257 			   u64 size)
8258 {
8259 	int ret;
8260 	struct btrfs_root *extent_root;
8261 	struct btrfs_block_group_cache *cache;
8262 
8263 	extent_root = root->fs_info->extent_root;
8264 
8265 	root->fs_info->last_trans_log_full_commit = trans->transid;
8266 
8267 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8268 	if (!cache)
8269 		return -ENOMEM;
8270 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8271 					GFP_NOFS);
8272 	if (!cache->free_space_ctl) {
8273 		kfree(cache);
8274 		return -ENOMEM;
8275 	}
8276 
8277 	cache->key.objectid = chunk_offset;
8278 	cache->key.offset = size;
8279 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8280 	cache->sectorsize = root->sectorsize;
8281 	cache->fs_info = root->fs_info;
8282 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8283 					       &root->fs_info->mapping_tree,
8284 					       chunk_offset);
8285 
8286 	atomic_set(&cache->count, 1);
8287 	spin_lock_init(&cache->lock);
8288 	INIT_LIST_HEAD(&cache->list);
8289 	INIT_LIST_HEAD(&cache->cluster_list);
8290 	INIT_LIST_HEAD(&cache->new_bg_list);
8291 
8292 	btrfs_init_free_space_ctl(cache);
8293 
8294 	btrfs_set_block_group_used(&cache->item, bytes_used);
8295 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8296 	cache->flags = type;
8297 	btrfs_set_block_group_flags(&cache->item, type);
8298 
8299 	cache->last_byte_to_unpin = (u64)-1;
8300 	cache->cached = BTRFS_CACHE_FINISHED;
8301 	ret = exclude_super_stripes(root, cache);
8302 	if (ret) {
8303 		/*
8304 		 * We may have excluded something, so call this just in
8305 		 * case.
8306 		 */
8307 		free_excluded_extents(root, cache);
8308 		kfree(cache->free_space_ctl);
8309 		kfree(cache);
8310 		return ret;
8311 	}
8312 
8313 	add_new_free_space(cache, root->fs_info, chunk_offset,
8314 			   chunk_offset + size);
8315 
8316 	free_excluded_extents(root, cache);
8317 
8318 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8319 	if (ret) {
8320 		btrfs_remove_free_space_cache(cache);
8321 		btrfs_put_block_group(cache);
8322 		return ret;
8323 	}
8324 
8325 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8326 				&cache->space_info);
8327 	if (ret) {
8328 		btrfs_remove_free_space_cache(cache);
8329 		spin_lock(&root->fs_info->block_group_cache_lock);
8330 		rb_erase(&cache->cache_node,
8331 			 &root->fs_info->block_group_cache_tree);
8332 		spin_unlock(&root->fs_info->block_group_cache_lock);
8333 		btrfs_put_block_group(cache);
8334 		return ret;
8335 	}
8336 	update_global_block_rsv(root->fs_info);
8337 
8338 	spin_lock(&cache->space_info->lock);
8339 	cache->space_info->bytes_readonly += cache->bytes_super;
8340 	spin_unlock(&cache->space_info->lock);
8341 
8342 	__link_block_group(cache->space_info, cache);
8343 
8344 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8345 
8346 	set_avail_alloc_bits(extent_root->fs_info, type);
8347 
8348 	return 0;
8349 }
8350 
8351 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8352 {
8353 	u64 extra_flags = chunk_to_extended(flags) &
8354 				BTRFS_EXTENDED_PROFILE_MASK;
8355 
8356 	write_seqlock(&fs_info->profiles_lock);
8357 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8358 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8359 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8360 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8361 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8362 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8363 	write_sequnlock(&fs_info->profiles_lock);
8364 }
8365 
8366 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8367 			     struct btrfs_root *root, u64 group_start)
8368 {
8369 	struct btrfs_path *path;
8370 	struct btrfs_block_group_cache *block_group;
8371 	struct btrfs_free_cluster *cluster;
8372 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8373 	struct btrfs_key key;
8374 	struct inode *inode;
8375 	int ret;
8376 	int index;
8377 	int factor;
8378 
8379 	root = root->fs_info->extent_root;
8380 
8381 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8382 	BUG_ON(!block_group);
8383 	BUG_ON(!block_group->ro);
8384 
8385 	/*
8386 	 * Free the reserved super bytes from this block group before
8387 	 * remove it.
8388 	 */
8389 	free_excluded_extents(root, block_group);
8390 
8391 	memcpy(&key, &block_group->key, sizeof(key));
8392 	index = get_block_group_index(block_group);
8393 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8394 				  BTRFS_BLOCK_GROUP_RAID1 |
8395 				  BTRFS_BLOCK_GROUP_RAID10))
8396 		factor = 2;
8397 	else
8398 		factor = 1;
8399 
8400 	/* make sure this block group isn't part of an allocation cluster */
8401 	cluster = &root->fs_info->data_alloc_cluster;
8402 	spin_lock(&cluster->refill_lock);
8403 	btrfs_return_cluster_to_free_space(block_group, cluster);
8404 	spin_unlock(&cluster->refill_lock);
8405 
8406 	/*
8407 	 * make sure this block group isn't part of a metadata
8408 	 * allocation cluster
8409 	 */
8410 	cluster = &root->fs_info->meta_alloc_cluster;
8411 	spin_lock(&cluster->refill_lock);
8412 	btrfs_return_cluster_to_free_space(block_group, cluster);
8413 	spin_unlock(&cluster->refill_lock);
8414 
8415 	path = btrfs_alloc_path();
8416 	if (!path) {
8417 		ret = -ENOMEM;
8418 		goto out;
8419 	}
8420 
8421 	inode = lookup_free_space_inode(tree_root, block_group, path);
8422 	if (!IS_ERR(inode)) {
8423 		ret = btrfs_orphan_add(trans, inode);
8424 		if (ret) {
8425 			btrfs_add_delayed_iput(inode);
8426 			goto out;
8427 		}
8428 		clear_nlink(inode);
8429 		/* One for the block groups ref */
8430 		spin_lock(&block_group->lock);
8431 		if (block_group->iref) {
8432 			block_group->iref = 0;
8433 			block_group->inode = NULL;
8434 			spin_unlock(&block_group->lock);
8435 			iput(inode);
8436 		} else {
8437 			spin_unlock(&block_group->lock);
8438 		}
8439 		/* One for our lookup ref */
8440 		btrfs_add_delayed_iput(inode);
8441 	}
8442 
8443 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8444 	key.offset = block_group->key.objectid;
8445 	key.type = 0;
8446 
8447 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8448 	if (ret < 0)
8449 		goto out;
8450 	if (ret > 0)
8451 		btrfs_release_path(path);
8452 	if (ret == 0) {
8453 		ret = btrfs_del_item(trans, tree_root, path);
8454 		if (ret)
8455 			goto out;
8456 		btrfs_release_path(path);
8457 	}
8458 
8459 	spin_lock(&root->fs_info->block_group_cache_lock);
8460 	rb_erase(&block_group->cache_node,
8461 		 &root->fs_info->block_group_cache_tree);
8462 
8463 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8464 		root->fs_info->first_logical_byte = (u64)-1;
8465 	spin_unlock(&root->fs_info->block_group_cache_lock);
8466 
8467 	down_write(&block_group->space_info->groups_sem);
8468 	/*
8469 	 * we must use list_del_init so people can check to see if they
8470 	 * are still on the list after taking the semaphore
8471 	 */
8472 	list_del_init(&block_group->list);
8473 	if (list_empty(&block_group->space_info->block_groups[index]))
8474 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8475 	up_write(&block_group->space_info->groups_sem);
8476 
8477 	if (block_group->cached == BTRFS_CACHE_STARTED)
8478 		wait_block_group_cache_done(block_group);
8479 
8480 	btrfs_remove_free_space_cache(block_group);
8481 
8482 	spin_lock(&block_group->space_info->lock);
8483 	block_group->space_info->total_bytes -= block_group->key.offset;
8484 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8485 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8486 	spin_unlock(&block_group->space_info->lock);
8487 
8488 	memcpy(&key, &block_group->key, sizeof(key));
8489 
8490 	btrfs_clear_space_info_full(root->fs_info);
8491 
8492 	btrfs_put_block_group(block_group);
8493 	btrfs_put_block_group(block_group);
8494 
8495 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8496 	if (ret > 0)
8497 		ret = -EIO;
8498 	if (ret < 0)
8499 		goto out;
8500 
8501 	ret = btrfs_del_item(trans, root, path);
8502 out:
8503 	btrfs_free_path(path);
8504 	return ret;
8505 }
8506 
8507 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8508 {
8509 	struct btrfs_space_info *space_info;
8510 	struct btrfs_super_block *disk_super;
8511 	u64 features;
8512 	u64 flags;
8513 	int mixed = 0;
8514 	int ret;
8515 
8516 	disk_super = fs_info->super_copy;
8517 	if (!btrfs_super_root(disk_super))
8518 		return 1;
8519 
8520 	features = btrfs_super_incompat_flags(disk_super);
8521 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8522 		mixed = 1;
8523 
8524 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8525 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8526 	if (ret)
8527 		goto out;
8528 
8529 	if (mixed) {
8530 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8531 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8532 	} else {
8533 		flags = BTRFS_BLOCK_GROUP_METADATA;
8534 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8535 		if (ret)
8536 			goto out;
8537 
8538 		flags = BTRFS_BLOCK_GROUP_DATA;
8539 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8540 	}
8541 out:
8542 	return ret;
8543 }
8544 
8545 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8546 {
8547 	return unpin_extent_range(root, start, end);
8548 }
8549 
8550 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8551 			       u64 num_bytes, u64 *actual_bytes)
8552 {
8553 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8554 }
8555 
8556 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8557 {
8558 	struct btrfs_fs_info *fs_info = root->fs_info;
8559 	struct btrfs_block_group_cache *cache = NULL;
8560 	u64 group_trimmed;
8561 	u64 start;
8562 	u64 end;
8563 	u64 trimmed = 0;
8564 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8565 	int ret = 0;
8566 
8567 	/*
8568 	 * try to trim all FS space, our block group may start from non-zero.
8569 	 */
8570 	if (range->len == total_bytes)
8571 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8572 	else
8573 		cache = btrfs_lookup_block_group(fs_info, range->start);
8574 
8575 	while (cache) {
8576 		if (cache->key.objectid >= (range->start + range->len)) {
8577 			btrfs_put_block_group(cache);
8578 			break;
8579 		}
8580 
8581 		start = max(range->start, cache->key.objectid);
8582 		end = min(range->start + range->len,
8583 				cache->key.objectid + cache->key.offset);
8584 
8585 		if (end - start >= range->minlen) {
8586 			if (!block_group_cache_done(cache)) {
8587 				ret = cache_block_group(cache, 0);
8588 				if (!ret)
8589 					wait_block_group_cache_done(cache);
8590 			}
8591 			ret = btrfs_trim_block_group(cache,
8592 						     &group_trimmed,
8593 						     start,
8594 						     end,
8595 						     range->minlen);
8596 
8597 			trimmed += group_trimmed;
8598 			if (ret) {
8599 				btrfs_put_block_group(cache);
8600 				break;
8601 			}
8602 		}
8603 
8604 		cache = next_block_group(fs_info->tree_root, cache);
8605 	}
8606 
8607 	range->len = trimmed;
8608 	return ret;
8609 }
8610