xref: /linux/fs/btrfs/extent-tree.c (revision 67638e4043083cdc6f10386a75fef87ba46eecb3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include "compat.h"
26 #include "hash.h"
27 #include "ctree.h"
28 #include "disk-io.h"
29 #include "print-tree.h"
30 #include "transaction.h"
31 #include "volumes.h"
32 #include "locking.h"
33 #include "free-space-cache.h"
34 
35 static int update_reserved_extents(struct btrfs_root *root,
36 				   u64 bytenr, u64 num, int reserve);
37 static int update_block_group(struct btrfs_trans_handle *trans,
38 			      struct btrfs_root *root,
39 			      u64 bytenr, u64 num_bytes, int alloc,
40 			      int mark_free);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 				struct btrfs_root *root,
43 				u64 bytenr, u64 num_bytes, u64 parent,
44 				u64 root_objectid, u64 owner_objectid,
45 				u64 owner_offset, int refs_to_drop,
46 				struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 				    struct extent_buffer *leaf,
49 				    struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 				      struct btrfs_root *root,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_root *root,
57 				     u64 parent, u64 root_objectid,
58 				     u64 flags, struct btrfs_disk_key *key,
59 				     int level, struct btrfs_key *ins);
60 
61 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
62 			  struct btrfs_root *extent_root, u64 alloc_bytes,
63 			  u64 flags, int force);
64 
65 static noinline int
66 block_group_cache_done(struct btrfs_block_group_cache *cache)
67 {
68 	smp_mb();
69 	return cache->cached == BTRFS_CACHE_FINISHED;
70 }
71 
72 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
73 {
74 	return (cache->flags & bits) == bits;
75 }
76 
77 /*
78  * this adds the block group to the fs_info rb tree for the block group
79  * cache
80  */
81 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
82 				struct btrfs_block_group_cache *block_group)
83 {
84 	struct rb_node **p;
85 	struct rb_node *parent = NULL;
86 	struct btrfs_block_group_cache *cache;
87 
88 	spin_lock(&info->block_group_cache_lock);
89 	p = &info->block_group_cache_tree.rb_node;
90 
91 	while (*p) {
92 		parent = *p;
93 		cache = rb_entry(parent, struct btrfs_block_group_cache,
94 				 cache_node);
95 		if (block_group->key.objectid < cache->key.objectid) {
96 			p = &(*p)->rb_left;
97 		} else if (block_group->key.objectid > cache->key.objectid) {
98 			p = &(*p)->rb_right;
99 		} else {
100 			spin_unlock(&info->block_group_cache_lock);
101 			return -EEXIST;
102 		}
103 	}
104 
105 	rb_link_node(&block_group->cache_node, parent, p);
106 	rb_insert_color(&block_group->cache_node,
107 			&info->block_group_cache_tree);
108 	spin_unlock(&info->block_group_cache_lock);
109 
110 	return 0;
111 }
112 
113 /*
114  * This will return the block group at or after bytenr if contains is 0, else
115  * it will return the block group that contains the bytenr
116  */
117 static struct btrfs_block_group_cache *
118 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
119 			      int contains)
120 {
121 	struct btrfs_block_group_cache *cache, *ret = NULL;
122 	struct rb_node *n;
123 	u64 end, start;
124 
125 	spin_lock(&info->block_group_cache_lock);
126 	n = info->block_group_cache_tree.rb_node;
127 
128 	while (n) {
129 		cache = rb_entry(n, struct btrfs_block_group_cache,
130 				 cache_node);
131 		end = cache->key.objectid + cache->key.offset - 1;
132 		start = cache->key.objectid;
133 
134 		if (bytenr < start) {
135 			if (!contains && (!ret || start < ret->key.objectid))
136 				ret = cache;
137 			n = n->rb_left;
138 		} else if (bytenr > start) {
139 			if (contains && bytenr <= end) {
140 				ret = cache;
141 				break;
142 			}
143 			n = n->rb_right;
144 		} else {
145 			ret = cache;
146 			break;
147 		}
148 	}
149 	if (ret)
150 		atomic_inc(&ret->count);
151 	spin_unlock(&info->block_group_cache_lock);
152 
153 	return ret;
154 }
155 
156 /*
157  * We always set EXTENT_LOCKED for the super mirror extents so we don't
158  * overwrite them, so those bits need to be unset.  Also, if we are unmounting
159  * with pinned extents still sitting there because we had a block group caching,
160  * we need to clear those now, since we are done.
161  */
162 void btrfs_free_pinned_extents(struct btrfs_fs_info *info)
163 {
164 	u64 start, end, last = 0;
165 	int ret;
166 
167 	while (1) {
168 		ret = find_first_extent_bit(&info->pinned_extents, last,
169 					    &start, &end,
170 					    EXTENT_LOCKED|EXTENT_DIRTY);
171 		if (ret)
172 			break;
173 
174 		clear_extent_bits(&info->pinned_extents, start, end,
175 				  EXTENT_LOCKED|EXTENT_DIRTY, GFP_NOFS);
176 		last = end+1;
177 	}
178 }
179 
180 static int remove_sb_from_cache(struct btrfs_root *root,
181 				struct btrfs_block_group_cache *cache)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	u64 bytenr;
185 	u64 *logical;
186 	int stripe_len;
187 	int i, nr, ret;
188 
189 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
190 		bytenr = btrfs_sb_offset(i);
191 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
192 				       cache->key.objectid, bytenr,
193 				       0, &logical, &nr, &stripe_len);
194 		BUG_ON(ret);
195 		while (nr--) {
196 			try_lock_extent(&fs_info->pinned_extents,
197 					logical[nr],
198 					logical[nr] + stripe_len - 1, GFP_NOFS);
199 		}
200 		kfree(logical);
201 	}
202 
203 	return 0;
204 }
205 
206 /*
207  * this is only called by cache_block_group, since we could have freed extents
208  * we need to check the pinned_extents for any extents that can't be used yet
209  * since their free space will be released as soon as the transaction commits.
210  */
211 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
212 			      struct btrfs_fs_info *info, u64 start, u64 end)
213 {
214 	u64 extent_start, extent_end, size, total_added = 0;
215 	int ret;
216 
217 	while (start < end) {
218 		ret = find_first_extent_bit(&info->pinned_extents, start,
219 					    &extent_start, &extent_end,
220 					    EXTENT_DIRTY|EXTENT_LOCKED);
221 		if (ret)
222 			break;
223 
224 		if (extent_start == start) {
225 			start = extent_end + 1;
226 		} else if (extent_start > start && extent_start < end) {
227 			size = extent_start - start;
228 			total_added += size;
229 			ret = btrfs_add_free_space(block_group, start,
230 						   size);
231 			BUG_ON(ret);
232 			start = extent_end + 1;
233 		} else {
234 			break;
235 		}
236 	}
237 
238 	if (start < end) {
239 		size = end - start;
240 		total_added += size;
241 		ret = btrfs_add_free_space(block_group, start, size);
242 		BUG_ON(ret);
243 	}
244 
245 	return total_added;
246 }
247 
248 static int caching_kthread(void *data)
249 {
250 	struct btrfs_block_group_cache *block_group = data;
251 	struct btrfs_fs_info *fs_info = block_group->fs_info;
252 	u64 last = 0;
253 	struct btrfs_path *path;
254 	int ret = 0;
255 	struct btrfs_key key;
256 	struct extent_buffer *leaf;
257 	int slot;
258 	u64 total_found = 0;
259 
260 	BUG_ON(!fs_info);
261 
262 	path = btrfs_alloc_path();
263 	if (!path)
264 		return -ENOMEM;
265 
266 	atomic_inc(&block_group->space_info->caching_threads);
267 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
268 again:
269 	/* need to make sure the commit_root doesn't disappear */
270 	down_read(&fs_info->extent_commit_sem);
271 
272 	/*
273 	 * We don't want to deadlock with somebody trying to allocate a new
274 	 * extent for the extent root while also trying to search the extent
275 	 * root to add free space.  So we skip locking and search the commit
276 	 * root, since its read-only
277 	 */
278 	path->skip_locking = 1;
279 	path->search_commit_root = 1;
280 	path->reada = 2;
281 
282 	key.objectid = last;
283 	key.offset = 0;
284 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
285 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
286 	if (ret < 0)
287 		goto err;
288 
289 	while (1) {
290 		smp_mb();
291 		if (block_group->fs_info->closing > 1) {
292 			last = (u64)-1;
293 			break;
294 		}
295 
296 		leaf = path->nodes[0];
297 		slot = path->slots[0];
298 		if (slot >= btrfs_header_nritems(leaf)) {
299 			ret = btrfs_next_leaf(fs_info->extent_root, path);
300 			if (ret < 0)
301 				goto err;
302 			else if (ret)
303 				break;
304 
305 			if (need_resched() ||
306 			    btrfs_transaction_in_commit(fs_info)) {
307 				btrfs_release_path(fs_info->extent_root, path);
308 				up_read(&fs_info->extent_commit_sem);
309 				schedule_timeout(1);
310 				goto again;
311 			}
312 
313 			continue;
314 		}
315 		btrfs_item_key_to_cpu(leaf, &key, slot);
316 		if (key.objectid < block_group->key.objectid)
317 			goto next;
318 
319 		if (key.objectid >= block_group->key.objectid +
320 		    block_group->key.offset)
321 			break;
322 
323 		if (btrfs_key_type(&key) == BTRFS_EXTENT_ITEM_KEY) {
324 			total_found += add_new_free_space(block_group,
325 							  fs_info, last,
326 							  key.objectid);
327 			last = key.objectid + key.offset;
328 		}
329 
330 		if (total_found > (1024 * 1024 * 2)) {
331 			total_found = 0;
332 			wake_up(&block_group->caching_q);
333 		}
334 next:
335 		path->slots[0]++;
336 	}
337 	ret = 0;
338 
339 	total_found += add_new_free_space(block_group, fs_info, last,
340 					  block_group->key.objectid +
341 					  block_group->key.offset);
342 
343 	spin_lock(&block_group->lock);
344 	block_group->cached = BTRFS_CACHE_FINISHED;
345 	spin_unlock(&block_group->lock);
346 
347 err:
348 	btrfs_free_path(path);
349 	up_read(&fs_info->extent_commit_sem);
350 	atomic_dec(&block_group->space_info->caching_threads);
351 	wake_up(&block_group->caching_q);
352 
353 	return 0;
354 }
355 
356 static int cache_block_group(struct btrfs_block_group_cache *cache)
357 {
358 	struct task_struct *tsk;
359 	int ret = 0;
360 
361 	spin_lock(&cache->lock);
362 	if (cache->cached != BTRFS_CACHE_NO) {
363 		spin_unlock(&cache->lock);
364 		return ret;
365 	}
366 	cache->cached = BTRFS_CACHE_STARTED;
367 	spin_unlock(&cache->lock);
368 
369 	tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
370 			  cache->key.objectid);
371 	if (IS_ERR(tsk)) {
372 		ret = PTR_ERR(tsk);
373 		printk(KERN_ERR "error running thread %d\n", ret);
374 		BUG();
375 	}
376 
377 	return ret;
378 }
379 
380 /*
381  * return the block group that starts at or after bytenr
382  */
383 static struct btrfs_block_group_cache *
384 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
385 {
386 	struct btrfs_block_group_cache *cache;
387 
388 	cache = block_group_cache_tree_search(info, bytenr, 0);
389 
390 	return cache;
391 }
392 
393 /*
394  * return the block group that contains the given bytenr
395  */
396 struct btrfs_block_group_cache *btrfs_lookup_block_group(
397 						 struct btrfs_fs_info *info,
398 						 u64 bytenr)
399 {
400 	struct btrfs_block_group_cache *cache;
401 
402 	cache = block_group_cache_tree_search(info, bytenr, 1);
403 
404 	return cache;
405 }
406 
407 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
408 {
409 	if (atomic_dec_and_test(&cache->count))
410 		kfree(cache);
411 }
412 
413 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
414 						  u64 flags)
415 {
416 	struct list_head *head = &info->space_info;
417 	struct btrfs_space_info *found;
418 
419 	rcu_read_lock();
420 	list_for_each_entry_rcu(found, head, list) {
421 		if (found->flags == flags) {
422 			rcu_read_unlock();
423 			return found;
424 		}
425 	}
426 	rcu_read_unlock();
427 	return NULL;
428 }
429 
430 /*
431  * after adding space to the filesystem, we need to clear the full flags
432  * on all the space infos.
433  */
434 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
435 {
436 	struct list_head *head = &info->space_info;
437 	struct btrfs_space_info *found;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(found, head, list)
441 		found->full = 0;
442 	rcu_read_unlock();
443 }
444 
445 static u64 div_factor(u64 num, int factor)
446 {
447 	if (factor == 10)
448 		return num;
449 	num *= factor;
450 	do_div(num, 10);
451 	return num;
452 }
453 
454 u64 btrfs_find_block_group(struct btrfs_root *root,
455 			   u64 search_start, u64 search_hint, int owner)
456 {
457 	struct btrfs_block_group_cache *cache;
458 	u64 used;
459 	u64 last = max(search_hint, search_start);
460 	u64 group_start = 0;
461 	int full_search = 0;
462 	int factor = 9;
463 	int wrapped = 0;
464 again:
465 	while (1) {
466 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
467 		if (!cache)
468 			break;
469 
470 		spin_lock(&cache->lock);
471 		last = cache->key.objectid + cache->key.offset;
472 		used = btrfs_block_group_used(&cache->item);
473 
474 		if ((full_search || !cache->ro) &&
475 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
476 			if (used + cache->pinned + cache->reserved <
477 			    div_factor(cache->key.offset, factor)) {
478 				group_start = cache->key.objectid;
479 				spin_unlock(&cache->lock);
480 				btrfs_put_block_group(cache);
481 				goto found;
482 			}
483 		}
484 		spin_unlock(&cache->lock);
485 		btrfs_put_block_group(cache);
486 		cond_resched();
487 	}
488 	if (!wrapped) {
489 		last = search_start;
490 		wrapped = 1;
491 		goto again;
492 	}
493 	if (!full_search && factor < 10) {
494 		last = search_start;
495 		full_search = 1;
496 		factor = 10;
497 		goto again;
498 	}
499 found:
500 	return group_start;
501 }
502 
503 /* simple helper to search for an existing extent at a given offset */
504 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
505 {
506 	int ret;
507 	struct btrfs_key key;
508 	struct btrfs_path *path;
509 
510 	path = btrfs_alloc_path();
511 	BUG_ON(!path);
512 	key.objectid = start;
513 	key.offset = len;
514 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
515 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
516 				0, 0);
517 	btrfs_free_path(path);
518 	return ret;
519 }
520 
521 /*
522  * Back reference rules.  Back refs have three main goals:
523  *
524  * 1) differentiate between all holders of references to an extent so that
525  *    when a reference is dropped we can make sure it was a valid reference
526  *    before freeing the extent.
527  *
528  * 2) Provide enough information to quickly find the holders of an extent
529  *    if we notice a given block is corrupted or bad.
530  *
531  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
532  *    maintenance.  This is actually the same as #2, but with a slightly
533  *    different use case.
534  *
535  * There are two kinds of back refs. The implicit back refs is optimized
536  * for pointers in non-shared tree blocks. For a given pointer in a block,
537  * back refs of this kind provide information about the block's owner tree
538  * and the pointer's key. These information allow us to find the block by
539  * b-tree searching. The full back refs is for pointers in tree blocks not
540  * referenced by their owner trees. The location of tree block is recorded
541  * in the back refs. Actually the full back refs is generic, and can be
542  * used in all cases the implicit back refs is used. The major shortcoming
543  * of the full back refs is its overhead. Every time a tree block gets
544  * COWed, we have to update back refs entry for all pointers in it.
545  *
546  * For a newly allocated tree block, we use implicit back refs for
547  * pointers in it. This means most tree related operations only involve
548  * implicit back refs. For a tree block created in old transaction, the
549  * only way to drop a reference to it is COW it. So we can detect the
550  * event that tree block loses its owner tree's reference and do the
551  * back refs conversion.
552  *
553  * When a tree block is COW'd through a tree, there are four cases:
554  *
555  * The reference count of the block is one and the tree is the block's
556  * owner tree. Nothing to do in this case.
557  *
558  * The reference count of the block is one and the tree is not the
559  * block's owner tree. In this case, full back refs is used for pointers
560  * in the block. Remove these full back refs, add implicit back refs for
561  * every pointers in the new block.
562  *
563  * The reference count of the block is greater than one and the tree is
564  * the block's owner tree. In this case, implicit back refs is used for
565  * pointers in the block. Add full back refs for every pointers in the
566  * block, increase lower level extents' reference counts. The original
567  * implicit back refs are entailed to the new block.
568  *
569  * The reference count of the block is greater than one and the tree is
570  * not the block's owner tree. Add implicit back refs for every pointer in
571  * the new block, increase lower level extents' reference count.
572  *
573  * Back Reference Key composing:
574  *
575  * The key objectid corresponds to the first byte in the extent,
576  * The key type is used to differentiate between types of back refs.
577  * There are different meanings of the key offset for different types
578  * of back refs.
579  *
580  * File extents can be referenced by:
581  *
582  * - multiple snapshots, subvolumes, or different generations in one subvol
583  * - different files inside a single subvolume
584  * - different offsets inside a file (bookend extents in file.c)
585  *
586  * The extent ref structure for the implicit back refs has fields for:
587  *
588  * - Objectid of the subvolume root
589  * - objectid of the file holding the reference
590  * - original offset in the file
591  * - how many bookend extents
592  *
593  * The key offset for the implicit back refs is hash of the first
594  * three fields.
595  *
596  * The extent ref structure for the full back refs has field for:
597  *
598  * - number of pointers in the tree leaf
599  *
600  * The key offset for the implicit back refs is the first byte of
601  * the tree leaf
602  *
603  * When a file extent is allocated, The implicit back refs is used.
604  * the fields are filled in:
605  *
606  *     (root_key.objectid, inode objectid, offset in file, 1)
607  *
608  * When a file extent is removed file truncation, we find the
609  * corresponding implicit back refs and check the following fields:
610  *
611  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
612  *
613  * Btree extents can be referenced by:
614  *
615  * - Different subvolumes
616  *
617  * Both the implicit back refs and the full back refs for tree blocks
618  * only consist of key. The key offset for the implicit back refs is
619  * objectid of block's owner tree. The key offset for the full back refs
620  * is the first byte of parent block.
621  *
622  * When implicit back refs is used, information about the lowest key and
623  * level of the tree block are required. These information are stored in
624  * tree block info structure.
625  */
626 
627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
628 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
629 				  struct btrfs_root *root,
630 				  struct btrfs_path *path,
631 				  u64 owner, u32 extra_size)
632 {
633 	struct btrfs_extent_item *item;
634 	struct btrfs_extent_item_v0 *ei0;
635 	struct btrfs_extent_ref_v0 *ref0;
636 	struct btrfs_tree_block_info *bi;
637 	struct extent_buffer *leaf;
638 	struct btrfs_key key;
639 	struct btrfs_key found_key;
640 	u32 new_size = sizeof(*item);
641 	u64 refs;
642 	int ret;
643 
644 	leaf = path->nodes[0];
645 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
646 
647 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
648 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
649 			     struct btrfs_extent_item_v0);
650 	refs = btrfs_extent_refs_v0(leaf, ei0);
651 
652 	if (owner == (u64)-1) {
653 		while (1) {
654 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
655 				ret = btrfs_next_leaf(root, path);
656 				if (ret < 0)
657 					return ret;
658 				BUG_ON(ret > 0);
659 				leaf = path->nodes[0];
660 			}
661 			btrfs_item_key_to_cpu(leaf, &found_key,
662 					      path->slots[0]);
663 			BUG_ON(key.objectid != found_key.objectid);
664 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
665 				path->slots[0]++;
666 				continue;
667 			}
668 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
669 					      struct btrfs_extent_ref_v0);
670 			owner = btrfs_ref_objectid_v0(leaf, ref0);
671 			break;
672 		}
673 	}
674 	btrfs_release_path(root, path);
675 
676 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
677 		new_size += sizeof(*bi);
678 
679 	new_size -= sizeof(*ei0);
680 	ret = btrfs_search_slot(trans, root, &key, path,
681 				new_size + extra_size, 1);
682 	if (ret < 0)
683 		return ret;
684 	BUG_ON(ret);
685 
686 	ret = btrfs_extend_item(trans, root, path, new_size);
687 	BUG_ON(ret);
688 
689 	leaf = path->nodes[0];
690 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
691 	btrfs_set_extent_refs(leaf, item, refs);
692 	/* FIXME: get real generation */
693 	btrfs_set_extent_generation(leaf, item, 0);
694 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
695 		btrfs_set_extent_flags(leaf, item,
696 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
697 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
698 		bi = (struct btrfs_tree_block_info *)(item + 1);
699 		/* FIXME: get first key of the block */
700 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
701 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
702 	} else {
703 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
704 	}
705 	btrfs_mark_buffer_dirty(leaf);
706 	return 0;
707 }
708 #endif
709 
710 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
711 {
712 	u32 high_crc = ~(u32)0;
713 	u32 low_crc = ~(u32)0;
714 	__le64 lenum;
715 
716 	lenum = cpu_to_le64(root_objectid);
717 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
718 	lenum = cpu_to_le64(owner);
719 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
720 	lenum = cpu_to_le64(offset);
721 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
722 
723 	return ((u64)high_crc << 31) ^ (u64)low_crc;
724 }
725 
726 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
727 				     struct btrfs_extent_data_ref *ref)
728 {
729 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
730 				    btrfs_extent_data_ref_objectid(leaf, ref),
731 				    btrfs_extent_data_ref_offset(leaf, ref));
732 }
733 
734 static int match_extent_data_ref(struct extent_buffer *leaf,
735 				 struct btrfs_extent_data_ref *ref,
736 				 u64 root_objectid, u64 owner, u64 offset)
737 {
738 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
739 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
740 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
741 		return 0;
742 	return 1;
743 }
744 
745 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
746 					   struct btrfs_root *root,
747 					   struct btrfs_path *path,
748 					   u64 bytenr, u64 parent,
749 					   u64 root_objectid,
750 					   u64 owner, u64 offset)
751 {
752 	struct btrfs_key key;
753 	struct btrfs_extent_data_ref *ref;
754 	struct extent_buffer *leaf;
755 	u32 nritems;
756 	int ret;
757 	int recow;
758 	int err = -ENOENT;
759 
760 	key.objectid = bytenr;
761 	if (parent) {
762 		key.type = BTRFS_SHARED_DATA_REF_KEY;
763 		key.offset = parent;
764 	} else {
765 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
766 		key.offset = hash_extent_data_ref(root_objectid,
767 						  owner, offset);
768 	}
769 again:
770 	recow = 0;
771 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
772 	if (ret < 0) {
773 		err = ret;
774 		goto fail;
775 	}
776 
777 	if (parent) {
778 		if (!ret)
779 			return 0;
780 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
781 		key.type = BTRFS_EXTENT_REF_V0_KEY;
782 		btrfs_release_path(root, path);
783 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
784 		if (ret < 0) {
785 			err = ret;
786 			goto fail;
787 		}
788 		if (!ret)
789 			return 0;
790 #endif
791 		goto fail;
792 	}
793 
794 	leaf = path->nodes[0];
795 	nritems = btrfs_header_nritems(leaf);
796 	while (1) {
797 		if (path->slots[0] >= nritems) {
798 			ret = btrfs_next_leaf(root, path);
799 			if (ret < 0)
800 				err = ret;
801 			if (ret)
802 				goto fail;
803 
804 			leaf = path->nodes[0];
805 			nritems = btrfs_header_nritems(leaf);
806 			recow = 1;
807 		}
808 
809 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
810 		if (key.objectid != bytenr ||
811 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
812 			goto fail;
813 
814 		ref = btrfs_item_ptr(leaf, path->slots[0],
815 				     struct btrfs_extent_data_ref);
816 
817 		if (match_extent_data_ref(leaf, ref, root_objectid,
818 					  owner, offset)) {
819 			if (recow) {
820 				btrfs_release_path(root, path);
821 				goto again;
822 			}
823 			err = 0;
824 			break;
825 		}
826 		path->slots[0]++;
827 	}
828 fail:
829 	return err;
830 }
831 
832 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
833 					   struct btrfs_root *root,
834 					   struct btrfs_path *path,
835 					   u64 bytenr, u64 parent,
836 					   u64 root_objectid, u64 owner,
837 					   u64 offset, int refs_to_add)
838 {
839 	struct btrfs_key key;
840 	struct extent_buffer *leaf;
841 	u32 size;
842 	u32 num_refs;
843 	int ret;
844 
845 	key.objectid = bytenr;
846 	if (parent) {
847 		key.type = BTRFS_SHARED_DATA_REF_KEY;
848 		key.offset = parent;
849 		size = sizeof(struct btrfs_shared_data_ref);
850 	} else {
851 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
852 		key.offset = hash_extent_data_ref(root_objectid,
853 						  owner, offset);
854 		size = sizeof(struct btrfs_extent_data_ref);
855 	}
856 
857 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
858 	if (ret && ret != -EEXIST)
859 		goto fail;
860 
861 	leaf = path->nodes[0];
862 	if (parent) {
863 		struct btrfs_shared_data_ref *ref;
864 		ref = btrfs_item_ptr(leaf, path->slots[0],
865 				     struct btrfs_shared_data_ref);
866 		if (ret == 0) {
867 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
868 		} else {
869 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
870 			num_refs += refs_to_add;
871 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
872 		}
873 	} else {
874 		struct btrfs_extent_data_ref *ref;
875 		while (ret == -EEXIST) {
876 			ref = btrfs_item_ptr(leaf, path->slots[0],
877 					     struct btrfs_extent_data_ref);
878 			if (match_extent_data_ref(leaf, ref, root_objectid,
879 						  owner, offset))
880 				break;
881 			btrfs_release_path(root, path);
882 			key.offset++;
883 			ret = btrfs_insert_empty_item(trans, root, path, &key,
884 						      size);
885 			if (ret && ret != -EEXIST)
886 				goto fail;
887 
888 			leaf = path->nodes[0];
889 		}
890 		ref = btrfs_item_ptr(leaf, path->slots[0],
891 				     struct btrfs_extent_data_ref);
892 		if (ret == 0) {
893 			btrfs_set_extent_data_ref_root(leaf, ref,
894 						       root_objectid);
895 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
896 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
897 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
898 		} else {
899 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
900 			num_refs += refs_to_add;
901 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
902 		}
903 	}
904 	btrfs_mark_buffer_dirty(leaf);
905 	ret = 0;
906 fail:
907 	btrfs_release_path(root, path);
908 	return ret;
909 }
910 
911 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
912 					   struct btrfs_root *root,
913 					   struct btrfs_path *path,
914 					   int refs_to_drop)
915 {
916 	struct btrfs_key key;
917 	struct btrfs_extent_data_ref *ref1 = NULL;
918 	struct btrfs_shared_data_ref *ref2 = NULL;
919 	struct extent_buffer *leaf;
920 	u32 num_refs = 0;
921 	int ret = 0;
922 
923 	leaf = path->nodes[0];
924 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
925 
926 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
927 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
928 				      struct btrfs_extent_data_ref);
929 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
930 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
931 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
932 				      struct btrfs_shared_data_ref);
933 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
934 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
935 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
936 		struct btrfs_extent_ref_v0 *ref0;
937 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
938 				      struct btrfs_extent_ref_v0);
939 		num_refs = btrfs_ref_count_v0(leaf, ref0);
940 #endif
941 	} else {
942 		BUG();
943 	}
944 
945 	BUG_ON(num_refs < refs_to_drop);
946 	num_refs -= refs_to_drop;
947 
948 	if (num_refs == 0) {
949 		ret = btrfs_del_item(trans, root, path);
950 	} else {
951 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
952 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
953 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
954 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
956 		else {
957 			struct btrfs_extent_ref_v0 *ref0;
958 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
959 					struct btrfs_extent_ref_v0);
960 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
961 		}
962 #endif
963 		btrfs_mark_buffer_dirty(leaf);
964 	}
965 	return ret;
966 }
967 
968 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
969 					  struct btrfs_path *path,
970 					  struct btrfs_extent_inline_ref *iref)
971 {
972 	struct btrfs_key key;
973 	struct extent_buffer *leaf;
974 	struct btrfs_extent_data_ref *ref1;
975 	struct btrfs_shared_data_ref *ref2;
976 	u32 num_refs = 0;
977 
978 	leaf = path->nodes[0];
979 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
980 	if (iref) {
981 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
982 		    BTRFS_EXTENT_DATA_REF_KEY) {
983 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
984 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
985 		} else {
986 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
987 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
988 		}
989 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
990 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
991 				      struct btrfs_extent_data_ref);
992 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
993 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
994 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
995 				      struct btrfs_shared_data_ref);
996 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
997 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
998 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
999 		struct btrfs_extent_ref_v0 *ref0;
1000 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1001 				      struct btrfs_extent_ref_v0);
1002 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1003 #endif
1004 	} else {
1005 		WARN_ON(1);
1006 	}
1007 	return num_refs;
1008 }
1009 
1010 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1011 					  struct btrfs_root *root,
1012 					  struct btrfs_path *path,
1013 					  u64 bytenr, u64 parent,
1014 					  u64 root_objectid)
1015 {
1016 	struct btrfs_key key;
1017 	int ret;
1018 
1019 	key.objectid = bytenr;
1020 	if (parent) {
1021 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1022 		key.offset = parent;
1023 	} else {
1024 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1025 		key.offset = root_objectid;
1026 	}
1027 
1028 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1029 	if (ret > 0)
1030 		ret = -ENOENT;
1031 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1032 	if (ret == -ENOENT && parent) {
1033 		btrfs_release_path(root, path);
1034 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1035 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1036 		if (ret > 0)
1037 			ret = -ENOENT;
1038 	}
1039 #endif
1040 	return ret;
1041 }
1042 
1043 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1044 					  struct btrfs_root *root,
1045 					  struct btrfs_path *path,
1046 					  u64 bytenr, u64 parent,
1047 					  u64 root_objectid)
1048 {
1049 	struct btrfs_key key;
1050 	int ret;
1051 
1052 	key.objectid = bytenr;
1053 	if (parent) {
1054 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1055 		key.offset = parent;
1056 	} else {
1057 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1058 		key.offset = root_objectid;
1059 	}
1060 
1061 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1062 	btrfs_release_path(root, path);
1063 	return ret;
1064 }
1065 
1066 static inline int extent_ref_type(u64 parent, u64 owner)
1067 {
1068 	int type;
1069 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1070 		if (parent > 0)
1071 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1072 		else
1073 			type = BTRFS_TREE_BLOCK_REF_KEY;
1074 	} else {
1075 		if (parent > 0)
1076 			type = BTRFS_SHARED_DATA_REF_KEY;
1077 		else
1078 			type = BTRFS_EXTENT_DATA_REF_KEY;
1079 	}
1080 	return type;
1081 }
1082 
1083 static int find_next_key(struct btrfs_path *path, int level,
1084 			 struct btrfs_key *key)
1085 
1086 {
1087 	for (; level < BTRFS_MAX_LEVEL; level++) {
1088 		if (!path->nodes[level])
1089 			break;
1090 		if (path->slots[level] + 1 >=
1091 		    btrfs_header_nritems(path->nodes[level]))
1092 			continue;
1093 		if (level == 0)
1094 			btrfs_item_key_to_cpu(path->nodes[level], key,
1095 					      path->slots[level] + 1);
1096 		else
1097 			btrfs_node_key_to_cpu(path->nodes[level], key,
1098 					      path->slots[level] + 1);
1099 		return 0;
1100 	}
1101 	return 1;
1102 }
1103 
1104 /*
1105  * look for inline back ref. if back ref is found, *ref_ret is set
1106  * to the address of inline back ref, and 0 is returned.
1107  *
1108  * if back ref isn't found, *ref_ret is set to the address where it
1109  * should be inserted, and -ENOENT is returned.
1110  *
1111  * if insert is true and there are too many inline back refs, the path
1112  * points to the extent item, and -EAGAIN is returned.
1113  *
1114  * NOTE: inline back refs are ordered in the same way that back ref
1115  *	 items in the tree are ordered.
1116  */
1117 static noinline_for_stack
1118 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1119 				 struct btrfs_root *root,
1120 				 struct btrfs_path *path,
1121 				 struct btrfs_extent_inline_ref **ref_ret,
1122 				 u64 bytenr, u64 num_bytes,
1123 				 u64 parent, u64 root_objectid,
1124 				 u64 owner, u64 offset, int insert)
1125 {
1126 	struct btrfs_key key;
1127 	struct extent_buffer *leaf;
1128 	struct btrfs_extent_item *ei;
1129 	struct btrfs_extent_inline_ref *iref;
1130 	u64 flags;
1131 	u64 item_size;
1132 	unsigned long ptr;
1133 	unsigned long end;
1134 	int extra_size;
1135 	int type;
1136 	int want;
1137 	int ret;
1138 	int err = 0;
1139 
1140 	key.objectid = bytenr;
1141 	key.type = BTRFS_EXTENT_ITEM_KEY;
1142 	key.offset = num_bytes;
1143 
1144 	want = extent_ref_type(parent, owner);
1145 	if (insert) {
1146 		extra_size = btrfs_extent_inline_ref_size(want);
1147 		path->keep_locks = 1;
1148 	} else
1149 		extra_size = -1;
1150 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1151 	if (ret < 0) {
1152 		err = ret;
1153 		goto out;
1154 	}
1155 	BUG_ON(ret);
1156 
1157 	leaf = path->nodes[0];
1158 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1159 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1160 	if (item_size < sizeof(*ei)) {
1161 		if (!insert) {
1162 			err = -ENOENT;
1163 			goto out;
1164 		}
1165 		ret = convert_extent_item_v0(trans, root, path, owner,
1166 					     extra_size);
1167 		if (ret < 0) {
1168 			err = ret;
1169 			goto out;
1170 		}
1171 		leaf = path->nodes[0];
1172 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1173 	}
1174 #endif
1175 	BUG_ON(item_size < sizeof(*ei));
1176 
1177 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1178 	flags = btrfs_extent_flags(leaf, ei);
1179 
1180 	ptr = (unsigned long)(ei + 1);
1181 	end = (unsigned long)ei + item_size;
1182 
1183 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1184 		ptr += sizeof(struct btrfs_tree_block_info);
1185 		BUG_ON(ptr > end);
1186 	} else {
1187 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1188 	}
1189 
1190 	err = -ENOENT;
1191 	while (1) {
1192 		if (ptr >= end) {
1193 			WARN_ON(ptr > end);
1194 			break;
1195 		}
1196 		iref = (struct btrfs_extent_inline_ref *)ptr;
1197 		type = btrfs_extent_inline_ref_type(leaf, iref);
1198 		if (want < type)
1199 			break;
1200 		if (want > type) {
1201 			ptr += btrfs_extent_inline_ref_size(type);
1202 			continue;
1203 		}
1204 
1205 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1206 			struct btrfs_extent_data_ref *dref;
1207 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1208 			if (match_extent_data_ref(leaf, dref, root_objectid,
1209 						  owner, offset)) {
1210 				err = 0;
1211 				break;
1212 			}
1213 			if (hash_extent_data_ref_item(leaf, dref) <
1214 			    hash_extent_data_ref(root_objectid, owner, offset))
1215 				break;
1216 		} else {
1217 			u64 ref_offset;
1218 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1219 			if (parent > 0) {
1220 				if (parent == ref_offset) {
1221 					err = 0;
1222 					break;
1223 				}
1224 				if (ref_offset < parent)
1225 					break;
1226 			} else {
1227 				if (root_objectid == ref_offset) {
1228 					err = 0;
1229 					break;
1230 				}
1231 				if (ref_offset < root_objectid)
1232 					break;
1233 			}
1234 		}
1235 		ptr += btrfs_extent_inline_ref_size(type);
1236 	}
1237 	if (err == -ENOENT && insert) {
1238 		if (item_size + extra_size >=
1239 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1240 			err = -EAGAIN;
1241 			goto out;
1242 		}
1243 		/*
1244 		 * To add new inline back ref, we have to make sure
1245 		 * there is no corresponding back ref item.
1246 		 * For simplicity, we just do not add new inline back
1247 		 * ref if there is any kind of item for this block
1248 		 */
1249 		if (find_next_key(path, 0, &key) == 0 &&
1250 		    key.objectid == bytenr &&
1251 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1252 			err = -EAGAIN;
1253 			goto out;
1254 		}
1255 	}
1256 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1257 out:
1258 	if (insert) {
1259 		path->keep_locks = 0;
1260 		btrfs_unlock_up_safe(path, 1);
1261 	}
1262 	return err;
1263 }
1264 
1265 /*
1266  * helper to add new inline back ref
1267  */
1268 static noinline_for_stack
1269 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1270 				struct btrfs_root *root,
1271 				struct btrfs_path *path,
1272 				struct btrfs_extent_inline_ref *iref,
1273 				u64 parent, u64 root_objectid,
1274 				u64 owner, u64 offset, int refs_to_add,
1275 				struct btrfs_delayed_extent_op *extent_op)
1276 {
1277 	struct extent_buffer *leaf;
1278 	struct btrfs_extent_item *ei;
1279 	unsigned long ptr;
1280 	unsigned long end;
1281 	unsigned long item_offset;
1282 	u64 refs;
1283 	int size;
1284 	int type;
1285 	int ret;
1286 
1287 	leaf = path->nodes[0];
1288 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1289 	item_offset = (unsigned long)iref - (unsigned long)ei;
1290 
1291 	type = extent_ref_type(parent, owner);
1292 	size = btrfs_extent_inline_ref_size(type);
1293 
1294 	ret = btrfs_extend_item(trans, root, path, size);
1295 	BUG_ON(ret);
1296 
1297 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1298 	refs = btrfs_extent_refs(leaf, ei);
1299 	refs += refs_to_add;
1300 	btrfs_set_extent_refs(leaf, ei, refs);
1301 	if (extent_op)
1302 		__run_delayed_extent_op(extent_op, leaf, ei);
1303 
1304 	ptr = (unsigned long)ei + item_offset;
1305 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1306 	if (ptr < end - size)
1307 		memmove_extent_buffer(leaf, ptr + size, ptr,
1308 				      end - size - ptr);
1309 
1310 	iref = (struct btrfs_extent_inline_ref *)ptr;
1311 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1312 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1313 		struct btrfs_extent_data_ref *dref;
1314 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1315 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1316 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1317 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1318 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1319 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1320 		struct btrfs_shared_data_ref *sref;
1321 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1322 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1323 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1324 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1325 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1326 	} else {
1327 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1328 	}
1329 	btrfs_mark_buffer_dirty(leaf);
1330 	return 0;
1331 }
1332 
1333 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1334 				 struct btrfs_root *root,
1335 				 struct btrfs_path *path,
1336 				 struct btrfs_extent_inline_ref **ref_ret,
1337 				 u64 bytenr, u64 num_bytes, u64 parent,
1338 				 u64 root_objectid, u64 owner, u64 offset)
1339 {
1340 	int ret;
1341 
1342 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1343 					   bytenr, num_bytes, parent,
1344 					   root_objectid, owner, offset, 0);
1345 	if (ret != -ENOENT)
1346 		return ret;
1347 
1348 	btrfs_release_path(root, path);
1349 	*ref_ret = NULL;
1350 
1351 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1352 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1353 					    root_objectid);
1354 	} else {
1355 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1356 					     root_objectid, owner, offset);
1357 	}
1358 	return ret;
1359 }
1360 
1361 /*
1362  * helper to update/remove inline back ref
1363  */
1364 static noinline_for_stack
1365 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1366 				 struct btrfs_root *root,
1367 				 struct btrfs_path *path,
1368 				 struct btrfs_extent_inline_ref *iref,
1369 				 int refs_to_mod,
1370 				 struct btrfs_delayed_extent_op *extent_op)
1371 {
1372 	struct extent_buffer *leaf;
1373 	struct btrfs_extent_item *ei;
1374 	struct btrfs_extent_data_ref *dref = NULL;
1375 	struct btrfs_shared_data_ref *sref = NULL;
1376 	unsigned long ptr;
1377 	unsigned long end;
1378 	u32 item_size;
1379 	int size;
1380 	int type;
1381 	int ret;
1382 	u64 refs;
1383 
1384 	leaf = path->nodes[0];
1385 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1386 	refs = btrfs_extent_refs(leaf, ei);
1387 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1388 	refs += refs_to_mod;
1389 	btrfs_set_extent_refs(leaf, ei, refs);
1390 	if (extent_op)
1391 		__run_delayed_extent_op(extent_op, leaf, ei);
1392 
1393 	type = btrfs_extent_inline_ref_type(leaf, iref);
1394 
1395 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1396 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1397 		refs = btrfs_extent_data_ref_count(leaf, dref);
1398 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1399 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1400 		refs = btrfs_shared_data_ref_count(leaf, sref);
1401 	} else {
1402 		refs = 1;
1403 		BUG_ON(refs_to_mod != -1);
1404 	}
1405 
1406 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1407 	refs += refs_to_mod;
1408 
1409 	if (refs > 0) {
1410 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1411 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1412 		else
1413 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1414 	} else {
1415 		size =  btrfs_extent_inline_ref_size(type);
1416 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1417 		ptr = (unsigned long)iref;
1418 		end = (unsigned long)ei + item_size;
1419 		if (ptr + size < end)
1420 			memmove_extent_buffer(leaf, ptr, ptr + size,
1421 					      end - ptr - size);
1422 		item_size -= size;
1423 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1424 		BUG_ON(ret);
1425 	}
1426 	btrfs_mark_buffer_dirty(leaf);
1427 	return 0;
1428 }
1429 
1430 static noinline_for_stack
1431 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1432 				 struct btrfs_root *root,
1433 				 struct btrfs_path *path,
1434 				 u64 bytenr, u64 num_bytes, u64 parent,
1435 				 u64 root_objectid, u64 owner,
1436 				 u64 offset, int refs_to_add,
1437 				 struct btrfs_delayed_extent_op *extent_op)
1438 {
1439 	struct btrfs_extent_inline_ref *iref;
1440 	int ret;
1441 
1442 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1443 					   bytenr, num_bytes, parent,
1444 					   root_objectid, owner, offset, 1);
1445 	if (ret == 0) {
1446 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1447 		ret = update_inline_extent_backref(trans, root, path, iref,
1448 						   refs_to_add, extent_op);
1449 	} else if (ret == -ENOENT) {
1450 		ret = setup_inline_extent_backref(trans, root, path, iref,
1451 						  parent, root_objectid,
1452 						  owner, offset, refs_to_add,
1453 						  extent_op);
1454 	}
1455 	return ret;
1456 }
1457 
1458 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1459 				 struct btrfs_root *root,
1460 				 struct btrfs_path *path,
1461 				 u64 bytenr, u64 parent, u64 root_objectid,
1462 				 u64 owner, u64 offset, int refs_to_add)
1463 {
1464 	int ret;
1465 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1466 		BUG_ON(refs_to_add != 1);
1467 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1468 					    parent, root_objectid);
1469 	} else {
1470 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1471 					     parent, root_objectid,
1472 					     owner, offset, refs_to_add);
1473 	}
1474 	return ret;
1475 }
1476 
1477 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1478 				 struct btrfs_root *root,
1479 				 struct btrfs_path *path,
1480 				 struct btrfs_extent_inline_ref *iref,
1481 				 int refs_to_drop, int is_data)
1482 {
1483 	int ret;
1484 
1485 	BUG_ON(!is_data && refs_to_drop != 1);
1486 	if (iref) {
1487 		ret = update_inline_extent_backref(trans, root, path, iref,
1488 						   -refs_to_drop, NULL);
1489 	} else if (is_data) {
1490 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1491 	} else {
1492 		ret = btrfs_del_item(trans, root, path);
1493 	}
1494 	return ret;
1495 }
1496 
1497 #ifdef BIO_RW_DISCARD
1498 static void btrfs_issue_discard(struct block_device *bdev,
1499 				u64 start, u64 len)
1500 {
1501 	blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL);
1502 }
1503 #endif
1504 
1505 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1506 				u64 num_bytes)
1507 {
1508 #ifdef BIO_RW_DISCARD
1509 	int ret;
1510 	u64 map_length = num_bytes;
1511 	struct btrfs_multi_bio *multi = NULL;
1512 
1513 	/* Tell the block device(s) that the sectors can be discarded */
1514 	ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1515 			      bytenr, &map_length, &multi, 0);
1516 	if (!ret) {
1517 		struct btrfs_bio_stripe *stripe = multi->stripes;
1518 		int i;
1519 
1520 		if (map_length > num_bytes)
1521 			map_length = num_bytes;
1522 
1523 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1524 			btrfs_issue_discard(stripe->dev->bdev,
1525 					    stripe->physical,
1526 					    map_length);
1527 		}
1528 		kfree(multi);
1529 	}
1530 
1531 	return ret;
1532 #else
1533 	return 0;
1534 #endif
1535 }
1536 
1537 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1538 			 struct btrfs_root *root,
1539 			 u64 bytenr, u64 num_bytes, u64 parent,
1540 			 u64 root_objectid, u64 owner, u64 offset)
1541 {
1542 	int ret;
1543 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1544 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1545 
1546 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1547 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1548 					parent, root_objectid, (int)owner,
1549 					BTRFS_ADD_DELAYED_REF, NULL);
1550 	} else {
1551 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1552 					parent, root_objectid, owner, offset,
1553 					BTRFS_ADD_DELAYED_REF, NULL);
1554 	}
1555 	return ret;
1556 }
1557 
1558 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1559 				  struct btrfs_root *root,
1560 				  u64 bytenr, u64 num_bytes,
1561 				  u64 parent, u64 root_objectid,
1562 				  u64 owner, u64 offset, int refs_to_add,
1563 				  struct btrfs_delayed_extent_op *extent_op)
1564 {
1565 	struct btrfs_path *path;
1566 	struct extent_buffer *leaf;
1567 	struct btrfs_extent_item *item;
1568 	u64 refs;
1569 	int ret;
1570 	int err = 0;
1571 
1572 	path = btrfs_alloc_path();
1573 	if (!path)
1574 		return -ENOMEM;
1575 
1576 	path->reada = 1;
1577 	path->leave_spinning = 1;
1578 	/* this will setup the path even if it fails to insert the back ref */
1579 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1580 					   path, bytenr, num_bytes, parent,
1581 					   root_objectid, owner, offset,
1582 					   refs_to_add, extent_op);
1583 	if (ret == 0)
1584 		goto out;
1585 
1586 	if (ret != -EAGAIN) {
1587 		err = ret;
1588 		goto out;
1589 	}
1590 
1591 	leaf = path->nodes[0];
1592 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1593 	refs = btrfs_extent_refs(leaf, item);
1594 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1595 	if (extent_op)
1596 		__run_delayed_extent_op(extent_op, leaf, item);
1597 
1598 	btrfs_mark_buffer_dirty(leaf);
1599 	btrfs_release_path(root->fs_info->extent_root, path);
1600 
1601 	path->reada = 1;
1602 	path->leave_spinning = 1;
1603 
1604 	/* now insert the actual backref */
1605 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1606 				    path, bytenr, parent, root_objectid,
1607 				    owner, offset, refs_to_add);
1608 	BUG_ON(ret);
1609 out:
1610 	btrfs_free_path(path);
1611 	return err;
1612 }
1613 
1614 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1615 				struct btrfs_root *root,
1616 				struct btrfs_delayed_ref_node *node,
1617 				struct btrfs_delayed_extent_op *extent_op,
1618 				int insert_reserved)
1619 {
1620 	int ret = 0;
1621 	struct btrfs_delayed_data_ref *ref;
1622 	struct btrfs_key ins;
1623 	u64 parent = 0;
1624 	u64 ref_root = 0;
1625 	u64 flags = 0;
1626 
1627 	ins.objectid = node->bytenr;
1628 	ins.offset = node->num_bytes;
1629 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1630 
1631 	ref = btrfs_delayed_node_to_data_ref(node);
1632 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1633 		parent = ref->parent;
1634 	else
1635 		ref_root = ref->root;
1636 
1637 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1638 		if (extent_op) {
1639 			BUG_ON(extent_op->update_key);
1640 			flags |= extent_op->flags_to_set;
1641 		}
1642 		ret = alloc_reserved_file_extent(trans, root,
1643 						 parent, ref_root, flags,
1644 						 ref->objectid, ref->offset,
1645 						 &ins, node->ref_mod);
1646 		update_reserved_extents(root, ins.objectid, ins.offset, 0);
1647 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1648 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1649 					     node->num_bytes, parent,
1650 					     ref_root, ref->objectid,
1651 					     ref->offset, node->ref_mod,
1652 					     extent_op);
1653 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1654 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1655 					  node->num_bytes, parent,
1656 					  ref_root, ref->objectid,
1657 					  ref->offset, node->ref_mod,
1658 					  extent_op);
1659 	} else {
1660 		BUG();
1661 	}
1662 	return ret;
1663 }
1664 
1665 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1666 				    struct extent_buffer *leaf,
1667 				    struct btrfs_extent_item *ei)
1668 {
1669 	u64 flags = btrfs_extent_flags(leaf, ei);
1670 	if (extent_op->update_flags) {
1671 		flags |= extent_op->flags_to_set;
1672 		btrfs_set_extent_flags(leaf, ei, flags);
1673 	}
1674 
1675 	if (extent_op->update_key) {
1676 		struct btrfs_tree_block_info *bi;
1677 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1678 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1679 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1680 	}
1681 }
1682 
1683 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1684 				 struct btrfs_root *root,
1685 				 struct btrfs_delayed_ref_node *node,
1686 				 struct btrfs_delayed_extent_op *extent_op)
1687 {
1688 	struct btrfs_key key;
1689 	struct btrfs_path *path;
1690 	struct btrfs_extent_item *ei;
1691 	struct extent_buffer *leaf;
1692 	u32 item_size;
1693 	int ret;
1694 	int err = 0;
1695 
1696 	path = btrfs_alloc_path();
1697 	if (!path)
1698 		return -ENOMEM;
1699 
1700 	key.objectid = node->bytenr;
1701 	key.type = BTRFS_EXTENT_ITEM_KEY;
1702 	key.offset = node->num_bytes;
1703 
1704 	path->reada = 1;
1705 	path->leave_spinning = 1;
1706 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1707 				path, 0, 1);
1708 	if (ret < 0) {
1709 		err = ret;
1710 		goto out;
1711 	}
1712 	if (ret > 0) {
1713 		err = -EIO;
1714 		goto out;
1715 	}
1716 
1717 	leaf = path->nodes[0];
1718 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1719 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1720 	if (item_size < sizeof(*ei)) {
1721 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1722 					     path, (u64)-1, 0);
1723 		if (ret < 0) {
1724 			err = ret;
1725 			goto out;
1726 		}
1727 		leaf = path->nodes[0];
1728 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1729 	}
1730 #endif
1731 	BUG_ON(item_size < sizeof(*ei));
1732 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1733 	__run_delayed_extent_op(extent_op, leaf, ei);
1734 
1735 	btrfs_mark_buffer_dirty(leaf);
1736 out:
1737 	btrfs_free_path(path);
1738 	return err;
1739 }
1740 
1741 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1742 				struct btrfs_root *root,
1743 				struct btrfs_delayed_ref_node *node,
1744 				struct btrfs_delayed_extent_op *extent_op,
1745 				int insert_reserved)
1746 {
1747 	int ret = 0;
1748 	struct btrfs_delayed_tree_ref *ref;
1749 	struct btrfs_key ins;
1750 	u64 parent = 0;
1751 	u64 ref_root = 0;
1752 
1753 	ins.objectid = node->bytenr;
1754 	ins.offset = node->num_bytes;
1755 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1756 
1757 	ref = btrfs_delayed_node_to_tree_ref(node);
1758 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1759 		parent = ref->parent;
1760 	else
1761 		ref_root = ref->root;
1762 
1763 	BUG_ON(node->ref_mod != 1);
1764 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1765 		BUG_ON(!extent_op || !extent_op->update_flags ||
1766 		       !extent_op->update_key);
1767 		ret = alloc_reserved_tree_block(trans, root,
1768 						parent, ref_root,
1769 						extent_op->flags_to_set,
1770 						&extent_op->key,
1771 						ref->level, &ins);
1772 		update_reserved_extents(root, ins.objectid, ins.offset, 0);
1773 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1774 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1775 					     node->num_bytes, parent, ref_root,
1776 					     ref->level, 0, 1, extent_op);
1777 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1778 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1779 					  node->num_bytes, parent, ref_root,
1780 					  ref->level, 0, 1, extent_op);
1781 	} else {
1782 		BUG();
1783 	}
1784 	return ret;
1785 }
1786 
1787 
1788 /* helper function to actually process a single delayed ref entry */
1789 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1790 			       struct btrfs_root *root,
1791 			       struct btrfs_delayed_ref_node *node,
1792 			       struct btrfs_delayed_extent_op *extent_op,
1793 			       int insert_reserved)
1794 {
1795 	int ret;
1796 	if (btrfs_delayed_ref_is_head(node)) {
1797 		struct btrfs_delayed_ref_head *head;
1798 		/*
1799 		 * we've hit the end of the chain and we were supposed
1800 		 * to insert this extent into the tree.  But, it got
1801 		 * deleted before we ever needed to insert it, so all
1802 		 * we have to do is clean up the accounting
1803 		 */
1804 		BUG_ON(extent_op);
1805 		head = btrfs_delayed_node_to_head(node);
1806 		if (insert_reserved) {
1807 			if (head->is_data) {
1808 				ret = btrfs_del_csums(trans, root,
1809 						      node->bytenr,
1810 						      node->num_bytes);
1811 				BUG_ON(ret);
1812 			}
1813 			btrfs_update_pinned_extents(root, node->bytenr,
1814 						    node->num_bytes, 1);
1815 			update_reserved_extents(root, node->bytenr,
1816 						node->num_bytes, 0);
1817 		}
1818 		mutex_unlock(&head->mutex);
1819 		return 0;
1820 	}
1821 
1822 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1823 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1824 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
1825 					   insert_reserved);
1826 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1827 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1828 		ret = run_delayed_data_ref(trans, root, node, extent_op,
1829 					   insert_reserved);
1830 	else
1831 		BUG();
1832 	return ret;
1833 }
1834 
1835 static noinline struct btrfs_delayed_ref_node *
1836 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1837 {
1838 	struct rb_node *node;
1839 	struct btrfs_delayed_ref_node *ref;
1840 	int action = BTRFS_ADD_DELAYED_REF;
1841 again:
1842 	/*
1843 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
1844 	 * this prevents ref count from going down to zero when
1845 	 * there still are pending delayed ref.
1846 	 */
1847 	node = rb_prev(&head->node.rb_node);
1848 	while (1) {
1849 		if (!node)
1850 			break;
1851 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
1852 				rb_node);
1853 		if (ref->bytenr != head->node.bytenr)
1854 			break;
1855 		if (ref->action == action)
1856 			return ref;
1857 		node = rb_prev(node);
1858 	}
1859 	if (action == BTRFS_ADD_DELAYED_REF) {
1860 		action = BTRFS_DROP_DELAYED_REF;
1861 		goto again;
1862 	}
1863 	return NULL;
1864 }
1865 
1866 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
1867 				       struct btrfs_root *root,
1868 				       struct list_head *cluster)
1869 {
1870 	struct btrfs_delayed_ref_root *delayed_refs;
1871 	struct btrfs_delayed_ref_node *ref;
1872 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1873 	struct btrfs_delayed_extent_op *extent_op;
1874 	int ret;
1875 	int count = 0;
1876 	int must_insert_reserved = 0;
1877 
1878 	delayed_refs = &trans->transaction->delayed_refs;
1879 	while (1) {
1880 		if (!locked_ref) {
1881 			/* pick a new head ref from the cluster list */
1882 			if (list_empty(cluster))
1883 				break;
1884 
1885 			locked_ref = list_entry(cluster->next,
1886 				     struct btrfs_delayed_ref_head, cluster);
1887 
1888 			/* grab the lock that says we are going to process
1889 			 * all the refs for this head */
1890 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
1891 
1892 			/*
1893 			 * we may have dropped the spin lock to get the head
1894 			 * mutex lock, and that might have given someone else
1895 			 * time to free the head.  If that's true, it has been
1896 			 * removed from our list and we can move on.
1897 			 */
1898 			if (ret == -EAGAIN) {
1899 				locked_ref = NULL;
1900 				count++;
1901 				continue;
1902 			}
1903 		}
1904 
1905 		/*
1906 		 * record the must insert reserved flag before we
1907 		 * drop the spin lock.
1908 		 */
1909 		must_insert_reserved = locked_ref->must_insert_reserved;
1910 		locked_ref->must_insert_reserved = 0;
1911 
1912 		extent_op = locked_ref->extent_op;
1913 		locked_ref->extent_op = NULL;
1914 
1915 		/*
1916 		 * locked_ref is the head node, so we have to go one
1917 		 * node back for any delayed ref updates
1918 		 */
1919 		ref = select_delayed_ref(locked_ref);
1920 		if (!ref) {
1921 			/* All delayed refs have been processed, Go ahead
1922 			 * and send the head node to run_one_delayed_ref,
1923 			 * so that any accounting fixes can happen
1924 			 */
1925 			ref = &locked_ref->node;
1926 
1927 			if (extent_op && must_insert_reserved) {
1928 				kfree(extent_op);
1929 				extent_op = NULL;
1930 			}
1931 
1932 			if (extent_op) {
1933 				spin_unlock(&delayed_refs->lock);
1934 
1935 				ret = run_delayed_extent_op(trans, root,
1936 							    ref, extent_op);
1937 				BUG_ON(ret);
1938 				kfree(extent_op);
1939 
1940 				cond_resched();
1941 				spin_lock(&delayed_refs->lock);
1942 				continue;
1943 			}
1944 
1945 			list_del_init(&locked_ref->cluster);
1946 			locked_ref = NULL;
1947 		}
1948 
1949 		ref->in_tree = 0;
1950 		rb_erase(&ref->rb_node, &delayed_refs->root);
1951 		delayed_refs->num_entries--;
1952 
1953 		spin_unlock(&delayed_refs->lock);
1954 
1955 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
1956 					  must_insert_reserved);
1957 		BUG_ON(ret);
1958 
1959 		btrfs_put_delayed_ref(ref);
1960 		kfree(extent_op);
1961 		count++;
1962 
1963 		cond_resched();
1964 		spin_lock(&delayed_refs->lock);
1965 	}
1966 	return count;
1967 }
1968 
1969 /*
1970  * this starts processing the delayed reference count updates and
1971  * extent insertions we have queued up so far.  count can be
1972  * 0, which means to process everything in the tree at the start
1973  * of the run (but not newly added entries), or it can be some target
1974  * number you'd like to process.
1975  */
1976 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1977 			   struct btrfs_root *root, unsigned long count)
1978 {
1979 	struct rb_node *node;
1980 	struct btrfs_delayed_ref_root *delayed_refs;
1981 	struct btrfs_delayed_ref_node *ref;
1982 	struct list_head cluster;
1983 	int ret;
1984 	int run_all = count == (unsigned long)-1;
1985 	int run_most = 0;
1986 
1987 	if (root == root->fs_info->extent_root)
1988 		root = root->fs_info->tree_root;
1989 
1990 	delayed_refs = &trans->transaction->delayed_refs;
1991 	INIT_LIST_HEAD(&cluster);
1992 again:
1993 	spin_lock(&delayed_refs->lock);
1994 	if (count == 0) {
1995 		count = delayed_refs->num_entries * 2;
1996 		run_most = 1;
1997 	}
1998 	while (1) {
1999 		if (!(run_all || run_most) &&
2000 		    delayed_refs->num_heads_ready < 64)
2001 			break;
2002 
2003 		/*
2004 		 * go find something we can process in the rbtree.  We start at
2005 		 * the beginning of the tree, and then build a cluster
2006 		 * of refs to process starting at the first one we are able to
2007 		 * lock
2008 		 */
2009 		ret = btrfs_find_ref_cluster(trans, &cluster,
2010 					     delayed_refs->run_delayed_start);
2011 		if (ret)
2012 			break;
2013 
2014 		ret = run_clustered_refs(trans, root, &cluster);
2015 		BUG_ON(ret < 0);
2016 
2017 		count -= min_t(unsigned long, ret, count);
2018 
2019 		if (count == 0)
2020 			break;
2021 	}
2022 
2023 	if (run_all) {
2024 		node = rb_first(&delayed_refs->root);
2025 		if (!node)
2026 			goto out;
2027 		count = (unsigned long)-1;
2028 
2029 		while (node) {
2030 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2031 				       rb_node);
2032 			if (btrfs_delayed_ref_is_head(ref)) {
2033 				struct btrfs_delayed_ref_head *head;
2034 
2035 				head = btrfs_delayed_node_to_head(ref);
2036 				atomic_inc(&ref->refs);
2037 
2038 				spin_unlock(&delayed_refs->lock);
2039 				mutex_lock(&head->mutex);
2040 				mutex_unlock(&head->mutex);
2041 
2042 				btrfs_put_delayed_ref(ref);
2043 				cond_resched();
2044 				goto again;
2045 			}
2046 			node = rb_next(node);
2047 		}
2048 		spin_unlock(&delayed_refs->lock);
2049 		schedule_timeout(1);
2050 		goto again;
2051 	}
2052 out:
2053 	spin_unlock(&delayed_refs->lock);
2054 	return 0;
2055 }
2056 
2057 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2058 				struct btrfs_root *root,
2059 				u64 bytenr, u64 num_bytes, u64 flags,
2060 				int is_data)
2061 {
2062 	struct btrfs_delayed_extent_op *extent_op;
2063 	int ret;
2064 
2065 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2066 	if (!extent_op)
2067 		return -ENOMEM;
2068 
2069 	extent_op->flags_to_set = flags;
2070 	extent_op->update_flags = 1;
2071 	extent_op->update_key = 0;
2072 	extent_op->is_data = is_data ? 1 : 0;
2073 
2074 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2075 	if (ret)
2076 		kfree(extent_op);
2077 	return ret;
2078 }
2079 
2080 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2081 				      struct btrfs_root *root,
2082 				      struct btrfs_path *path,
2083 				      u64 objectid, u64 offset, u64 bytenr)
2084 {
2085 	struct btrfs_delayed_ref_head *head;
2086 	struct btrfs_delayed_ref_node *ref;
2087 	struct btrfs_delayed_data_ref *data_ref;
2088 	struct btrfs_delayed_ref_root *delayed_refs;
2089 	struct rb_node *node;
2090 	int ret = 0;
2091 
2092 	ret = -ENOENT;
2093 	delayed_refs = &trans->transaction->delayed_refs;
2094 	spin_lock(&delayed_refs->lock);
2095 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2096 	if (!head)
2097 		goto out;
2098 
2099 	if (!mutex_trylock(&head->mutex)) {
2100 		atomic_inc(&head->node.refs);
2101 		spin_unlock(&delayed_refs->lock);
2102 
2103 		btrfs_release_path(root->fs_info->extent_root, path);
2104 
2105 		mutex_lock(&head->mutex);
2106 		mutex_unlock(&head->mutex);
2107 		btrfs_put_delayed_ref(&head->node);
2108 		return -EAGAIN;
2109 	}
2110 
2111 	node = rb_prev(&head->node.rb_node);
2112 	if (!node)
2113 		goto out_unlock;
2114 
2115 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2116 
2117 	if (ref->bytenr != bytenr)
2118 		goto out_unlock;
2119 
2120 	ret = 1;
2121 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2122 		goto out_unlock;
2123 
2124 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2125 
2126 	node = rb_prev(node);
2127 	if (node) {
2128 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2129 		if (ref->bytenr == bytenr)
2130 			goto out_unlock;
2131 	}
2132 
2133 	if (data_ref->root != root->root_key.objectid ||
2134 	    data_ref->objectid != objectid || data_ref->offset != offset)
2135 		goto out_unlock;
2136 
2137 	ret = 0;
2138 out_unlock:
2139 	mutex_unlock(&head->mutex);
2140 out:
2141 	spin_unlock(&delayed_refs->lock);
2142 	return ret;
2143 }
2144 
2145 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2146 					struct btrfs_root *root,
2147 					struct btrfs_path *path,
2148 					u64 objectid, u64 offset, u64 bytenr)
2149 {
2150 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2151 	struct extent_buffer *leaf;
2152 	struct btrfs_extent_data_ref *ref;
2153 	struct btrfs_extent_inline_ref *iref;
2154 	struct btrfs_extent_item *ei;
2155 	struct btrfs_key key;
2156 	u32 item_size;
2157 	int ret;
2158 
2159 	key.objectid = bytenr;
2160 	key.offset = (u64)-1;
2161 	key.type = BTRFS_EXTENT_ITEM_KEY;
2162 
2163 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2164 	if (ret < 0)
2165 		goto out;
2166 	BUG_ON(ret == 0);
2167 
2168 	ret = -ENOENT;
2169 	if (path->slots[0] == 0)
2170 		goto out;
2171 
2172 	path->slots[0]--;
2173 	leaf = path->nodes[0];
2174 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2175 
2176 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2177 		goto out;
2178 
2179 	ret = 1;
2180 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2181 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2182 	if (item_size < sizeof(*ei)) {
2183 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2184 		goto out;
2185 	}
2186 #endif
2187 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2188 
2189 	if (item_size != sizeof(*ei) +
2190 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2191 		goto out;
2192 
2193 	if (btrfs_extent_generation(leaf, ei) <=
2194 	    btrfs_root_last_snapshot(&root->root_item))
2195 		goto out;
2196 
2197 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2198 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2199 	    BTRFS_EXTENT_DATA_REF_KEY)
2200 		goto out;
2201 
2202 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2203 	if (btrfs_extent_refs(leaf, ei) !=
2204 	    btrfs_extent_data_ref_count(leaf, ref) ||
2205 	    btrfs_extent_data_ref_root(leaf, ref) !=
2206 	    root->root_key.objectid ||
2207 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2208 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2209 		goto out;
2210 
2211 	ret = 0;
2212 out:
2213 	return ret;
2214 }
2215 
2216 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2217 			  struct btrfs_root *root,
2218 			  u64 objectid, u64 offset, u64 bytenr)
2219 {
2220 	struct btrfs_path *path;
2221 	int ret;
2222 	int ret2;
2223 
2224 	path = btrfs_alloc_path();
2225 	if (!path)
2226 		return -ENOENT;
2227 
2228 	do {
2229 		ret = check_committed_ref(trans, root, path, objectid,
2230 					  offset, bytenr);
2231 		if (ret && ret != -ENOENT)
2232 			goto out;
2233 
2234 		ret2 = check_delayed_ref(trans, root, path, objectid,
2235 					 offset, bytenr);
2236 	} while (ret2 == -EAGAIN);
2237 
2238 	if (ret2 && ret2 != -ENOENT) {
2239 		ret = ret2;
2240 		goto out;
2241 	}
2242 
2243 	if (ret != -ENOENT || ret2 != -ENOENT)
2244 		ret = 0;
2245 out:
2246 	btrfs_free_path(path);
2247 	return ret;
2248 }
2249 
2250 #if 0
2251 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2252 		    struct extent_buffer *buf, u32 nr_extents)
2253 {
2254 	struct btrfs_key key;
2255 	struct btrfs_file_extent_item *fi;
2256 	u64 root_gen;
2257 	u32 nritems;
2258 	int i;
2259 	int level;
2260 	int ret = 0;
2261 	int shared = 0;
2262 
2263 	if (!root->ref_cows)
2264 		return 0;
2265 
2266 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2267 		shared = 0;
2268 		root_gen = root->root_key.offset;
2269 	} else {
2270 		shared = 1;
2271 		root_gen = trans->transid - 1;
2272 	}
2273 
2274 	level = btrfs_header_level(buf);
2275 	nritems = btrfs_header_nritems(buf);
2276 
2277 	if (level == 0) {
2278 		struct btrfs_leaf_ref *ref;
2279 		struct btrfs_extent_info *info;
2280 
2281 		ref = btrfs_alloc_leaf_ref(root, nr_extents);
2282 		if (!ref) {
2283 			ret = -ENOMEM;
2284 			goto out;
2285 		}
2286 
2287 		ref->root_gen = root_gen;
2288 		ref->bytenr = buf->start;
2289 		ref->owner = btrfs_header_owner(buf);
2290 		ref->generation = btrfs_header_generation(buf);
2291 		ref->nritems = nr_extents;
2292 		info = ref->extents;
2293 
2294 		for (i = 0; nr_extents > 0 && i < nritems; i++) {
2295 			u64 disk_bytenr;
2296 			btrfs_item_key_to_cpu(buf, &key, i);
2297 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2298 				continue;
2299 			fi = btrfs_item_ptr(buf, i,
2300 					    struct btrfs_file_extent_item);
2301 			if (btrfs_file_extent_type(buf, fi) ==
2302 			    BTRFS_FILE_EXTENT_INLINE)
2303 				continue;
2304 			disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2305 			if (disk_bytenr == 0)
2306 				continue;
2307 
2308 			info->bytenr = disk_bytenr;
2309 			info->num_bytes =
2310 				btrfs_file_extent_disk_num_bytes(buf, fi);
2311 			info->objectid = key.objectid;
2312 			info->offset = key.offset;
2313 			info++;
2314 		}
2315 
2316 		ret = btrfs_add_leaf_ref(root, ref, shared);
2317 		if (ret == -EEXIST && shared) {
2318 			struct btrfs_leaf_ref *old;
2319 			old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2320 			BUG_ON(!old);
2321 			btrfs_remove_leaf_ref(root, old);
2322 			btrfs_free_leaf_ref(root, old);
2323 			ret = btrfs_add_leaf_ref(root, ref, shared);
2324 		}
2325 		WARN_ON(ret);
2326 		btrfs_free_leaf_ref(root, ref);
2327 	}
2328 out:
2329 	return ret;
2330 }
2331 
2332 /* when a block goes through cow, we update the reference counts of
2333  * everything that block points to.  The internal pointers of the block
2334  * can be in just about any order, and it is likely to have clusters of
2335  * things that are close together and clusters of things that are not.
2336  *
2337  * To help reduce the seeks that come with updating all of these reference
2338  * counts, sort them by byte number before actual updates are done.
2339  *
2340  * struct refsort is used to match byte number to slot in the btree block.
2341  * we sort based on the byte number and then use the slot to actually
2342  * find the item.
2343  *
2344  * struct refsort is smaller than strcut btrfs_item and smaller than
2345  * struct btrfs_key_ptr.  Since we're currently limited to the page size
2346  * for a btree block, there's no way for a kmalloc of refsorts for a
2347  * single node to be bigger than a page.
2348  */
2349 struct refsort {
2350 	u64 bytenr;
2351 	u32 slot;
2352 };
2353 
2354 /*
2355  * for passing into sort()
2356  */
2357 static int refsort_cmp(const void *a_void, const void *b_void)
2358 {
2359 	const struct refsort *a = a_void;
2360 	const struct refsort *b = b_void;
2361 
2362 	if (a->bytenr < b->bytenr)
2363 		return -1;
2364 	if (a->bytenr > b->bytenr)
2365 		return 1;
2366 	return 0;
2367 }
2368 #endif
2369 
2370 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2371 			   struct btrfs_root *root,
2372 			   struct extent_buffer *buf,
2373 			   int full_backref, int inc)
2374 {
2375 	u64 bytenr;
2376 	u64 num_bytes;
2377 	u64 parent;
2378 	u64 ref_root;
2379 	u32 nritems;
2380 	struct btrfs_key key;
2381 	struct btrfs_file_extent_item *fi;
2382 	int i;
2383 	int level;
2384 	int ret = 0;
2385 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2386 			    u64, u64, u64, u64, u64, u64);
2387 
2388 	ref_root = btrfs_header_owner(buf);
2389 	nritems = btrfs_header_nritems(buf);
2390 	level = btrfs_header_level(buf);
2391 
2392 	if (!root->ref_cows && level == 0)
2393 		return 0;
2394 
2395 	if (inc)
2396 		process_func = btrfs_inc_extent_ref;
2397 	else
2398 		process_func = btrfs_free_extent;
2399 
2400 	if (full_backref)
2401 		parent = buf->start;
2402 	else
2403 		parent = 0;
2404 
2405 	for (i = 0; i < nritems; i++) {
2406 		if (level == 0) {
2407 			btrfs_item_key_to_cpu(buf, &key, i);
2408 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2409 				continue;
2410 			fi = btrfs_item_ptr(buf, i,
2411 					    struct btrfs_file_extent_item);
2412 			if (btrfs_file_extent_type(buf, fi) ==
2413 			    BTRFS_FILE_EXTENT_INLINE)
2414 				continue;
2415 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2416 			if (bytenr == 0)
2417 				continue;
2418 
2419 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2420 			key.offset -= btrfs_file_extent_offset(buf, fi);
2421 			ret = process_func(trans, root, bytenr, num_bytes,
2422 					   parent, ref_root, key.objectid,
2423 					   key.offset);
2424 			if (ret)
2425 				goto fail;
2426 		} else {
2427 			bytenr = btrfs_node_blockptr(buf, i);
2428 			num_bytes = btrfs_level_size(root, level - 1);
2429 			ret = process_func(trans, root, bytenr, num_bytes,
2430 					   parent, ref_root, level - 1, 0);
2431 			if (ret)
2432 				goto fail;
2433 		}
2434 	}
2435 	return 0;
2436 fail:
2437 	BUG();
2438 	return ret;
2439 }
2440 
2441 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2442 		  struct extent_buffer *buf, int full_backref)
2443 {
2444 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2445 }
2446 
2447 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2448 		  struct extent_buffer *buf, int full_backref)
2449 {
2450 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2451 }
2452 
2453 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2454 				 struct btrfs_root *root,
2455 				 struct btrfs_path *path,
2456 				 struct btrfs_block_group_cache *cache)
2457 {
2458 	int ret;
2459 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2460 	unsigned long bi;
2461 	struct extent_buffer *leaf;
2462 
2463 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2464 	if (ret < 0)
2465 		goto fail;
2466 	BUG_ON(ret);
2467 
2468 	leaf = path->nodes[0];
2469 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2470 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2471 	btrfs_mark_buffer_dirty(leaf);
2472 	btrfs_release_path(extent_root, path);
2473 fail:
2474 	if (ret)
2475 		return ret;
2476 	return 0;
2477 
2478 }
2479 
2480 static struct btrfs_block_group_cache *
2481 next_block_group(struct btrfs_root *root,
2482 		 struct btrfs_block_group_cache *cache)
2483 {
2484 	struct rb_node *node;
2485 	spin_lock(&root->fs_info->block_group_cache_lock);
2486 	node = rb_next(&cache->cache_node);
2487 	btrfs_put_block_group(cache);
2488 	if (node) {
2489 		cache = rb_entry(node, struct btrfs_block_group_cache,
2490 				 cache_node);
2491 		atomic_inc(&cache->count);
2492 	} else
2493 		cache = NULL;
2494 	spin_unlock(&root->fs_info->block_group_cache_lock);
2495 	return cache;
2496 }
2497 
2498 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2499 				   struct btrfs_root *root)
2500 {
2501 	struct btrfs_block_group_cache *cache;
2502 	int err = 0;
2503 	struct btrfs_path *path;
2504 	u64 last = 0;
2505 
2506 	path = btrfs_alloc_path();
2507 	if (!path)
2508 		return -ENOMEM;
2509 
2510 	while (1) {
2511 		if (last == 0) {
2512 			err = btrfs_run_delayed_refs(trans, root,
2513 						     (unsigned long)-1);
2514 			BUG_ON(err);
2515 		}
2516 
2517 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2518 		while (cache) {
2519 			if (cache->dirty)
2520 				break;
2521 			cache = next_block_group(root, cache);
2522 		}
2523 		if (!cache) {
2524 			if (last == 0)
2525 				break;
2526 			last = 0;
2527 			continue;
2528 		}
2529 
2530 		cache->dirty = 0;
2531 		last = cache->key.objectid + cache->key.offset;
2532 
2533 		err = write_one_cache_group(trans, root, path, cache);
2534 		BUG_ON(err);
2535 		btrfs_put_block_group(cache);
2536 	}
2537 
2538 	btrfs_free_path(path);
2539 	return 0;
2540 }
2541 
2542 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2543 {
2544 	struct btrfs_block_group_cache *block_group;
2545 	int readonly = 0;
2546 
2547 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2548 	if (!block_group || block_group->ro)
2549 		readonly = 1;
2550 	if (block_group)
2551 		btrfs_put_block_group(block_group);
2552 	return readonly;
2553 }
2554 
2555 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2556 			     u64 total_bytes, u64 bytes_used,
2557 			     struct btrfs_space_info **space_info)
2558 {
2559 	struct btrfs_space_info *found;
2560 
2561 	found = __find_space_info(info, flags);
2562 	if (found) {
2563 		spin_lock(&found->lock);
2564 		found->total_bytes += total_bytes;
2565 		found->bytes_used += bytes_used;
2566 		found->full = 0;
2567 		spin_unlock(&found->lock);
2568 		*space_info = found;
2569 		return 0;
2570 	}
2571 	found = kzalloc(sizeof(*found), GFP_NOFS);
2572 	if (!found)
2573 		return -ENOMEM;
2574 
2575 	INIT_LIST_HEAD(&found->block_groups);
2576 	init_rwsem(&found->groups_sem);
2577 	spin_lock_init(&found->lock);
2578 	found->flags = flags;
2579 	found->total_bytes = total_bytes;
2580 	found->bytes_used = bytes_used;
2581 	found->bytes_pinned = 0;
2582 	found->bytes_reserved = 0;
2583 	found->bytes_readonly = 0;
2584 	found->bytes_delalloc = 0;
2585 	found->full = 0;
2586 	found->force_alloc = 0;
2587 	*space_info = found;
2588 	list_add_rcu(&found->list, &info->space_info);
2589 	atomic_set(&found->caching_threads, 0);
2590 	return 0;
2591 }
2592 
2593 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2594 {
2595 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2596 				   BTRFS_BLOCK_GROUP_RAID1 |
2597 				   BTRFS_BLOCK_GROUP_RAID10 |
2598 				   BTRFS_BLOCK_GROUP_DUP);
2599 	if (extra_flags) {
2600 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2601 			fs_info->avail_data_alloc_bits |= extra_flags;
2602 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
2603 			fs_info->avail_metadata_alloc_bits |= extra_flags;
2604 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2605 			fs_info->avail_system_alloc_bits |= extra_flags;
2606 	}
2607 }
2608 
2609 static void set_block_group_readonly(struct btrfs_block_group_cache *cache)
2610 {
2611 	spin_lock(&cache->space_info->lock);
2612 	spin_lock(&cache->lock);
2613 	if (!cache->ro) {
2614 		cache->space_info->bytes_readonly += cache->key.offset -
2615 					btrfs_block_group_used(&cache->item);
2616 		cache->ro = 1;
2617 	}
2618 	spin_unlock(&cache->lock);
2619 	spin_unlock(&cache->space_info->lock);
2620 }
2621 
2622 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2623 {
2624 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
2625 
2626 	if (num_devices == 1)
2627 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2628 	if (num_devices < 4)
2629 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2630 
2631 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2632 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2633 		      BTRFS_BLOCK_GROUP_RAID10))) {
2634 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
2635 	}
2636 
2637 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2638 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2639 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2640 	}
2641 
2642 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2643 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2644 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
2645 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
2646 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2647 	return flags;
2648 }
2649 
2650 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, u64 data)
2651 {
2652 	struct btrfs_fs_info *info = root->fs_info;
2653 	u64 alloc_profile;
2654 
2655 	if (data) {
2656 		alloc_profile = info->avail_data_alloc_bits &
2657 			info->data_alloc_profile;
2658 		data = BTRFS_BLOCK_GROUP_DATA | alloc_profile;
2659 	} else if (root == root->fs_info->chunk_root) {
2660 		alloc_profile = info->avail_system_alloc_bits &
2661 			info->system_alloc_profile;
2662 		data = BTRFS_BLOCK_GROUP_SYSTEM | alloc_profile;
2663 	} else {
2664 		alloc_profile = info->avail_metadata_alloc_bits &
2665 			info->metadata_alloc_profile;
2666 		data = BTRFS_BLOCK_GROUP_METADATA | alloc_profile;
2667 	}
2668 
2669 	return btrfs_reduce_alloc_profile(root, data);
2670 }
2671 
2672 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2673 {
2674 	u64 alloc_target;
2675 
2676 	alloc_target = btrfs_get_alloc_profile(root, 1);
2677 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2678 						       alloc_target);
2679 }
2680 
2681 /*
2682  * for now this just makes sure we have at least 5% of our metadata space free
2683  * for use.
2684  */
2685 int btrfs_check_metadata_free_space(struct btrfs_root *root)
2686 {
2687 	struct btrfs_fs_info *info = root->fs_info;
2688 	struct btrfs_space_info *meta_sinfo;
2689 	u64 alloc_target, thresh;
2690 	int committed = 0, ret;
2691 
2692 	/* get the space info for where the metadata will live */
2693 	alloc_target = btrfs_get_alloc_profile(root, 0);
2694 	meta_sinfo = __find_space_info(info, alloc_target);
2695 
2696 again:
2697 	spin_lock(&meta_sinfo->lock);
2698 	if (!meta_sinfo->full)
2699 		thresh = meta_sinfo->total_bytes * 80;
2700 	else
2701 		thresh = meta_sinfo->total_bytes * 95;
2702 
2703 	do_div(thresh, 100);
2704 
2705 	if (meta_sinfo->bytes_used + meta_sinfo->bytes_reserved +
2706 	    meta_sinfo->bytes_pinned + meta_sinfo->bytes_readonly > thresh) {
2707 		struct btrfs_trans_handle *trans;
2708 		if (!meta_sinfo->full) {
2709 			meta_sinfo->force_alloc = 1;
2710 			spin_unlock(&meta_sinfo->lock);
2711 
2712 			trans = btrfs_start_transaction(root, 1);
2713 			if (!trans)
2714 				return -ENOMEM;
2715 
2716 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2717 					     2 * 1024 * 1024, alloc_target, 0);
2718 			btrfs_end_transaction(trans, root);
2719 			goto again;
2720 		}
2721 		spin_unlock(&meta_sinfo->lock);
2722 
2723 		if (!committed) {
2724 			committed = 1;
2725 			trans = btrfs_join_transaction(root, 1);
2726 			if (!trans)
2727 				return -ENOMEM;
2728 			ret = btrfs_commit_transaction(trans, root);
2729 			if (ret)
2730 				return ret;
2731 			goto again;
2732 		}
2733 		return -ENOSPC;
2734 	}
2735 	spin_unlock(&meta_sinfo->lock);
2736 
2737 	return 0;
2738 }
2739 
2740 /*
2741  * This will check the space that the inode allocates from to make sure we have
2742  * enough space for bytes.
2743  */
2744 int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode,
2745 				u64 bytes)
2746 {
2747 	struct btrfs_space_info *data_sinfo;
2748 	int ret = 0, committed = 0;
2749 
2750 	/* make sure bytes are sectorsize aligned */
2751 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2752 
2753 	data_sinfo = BTRFS_I(inode)->space_info;
2754 again:
2755 	/* make sure we have enough space to handle the data first */
2756 	spin_lock(&data_sinfo->lock);
2757 	if (data_sinfo->total_bytes - data_sinfo->bytes_used -
2758 	    data_sinfo->bytes_delalloc - data_sinfo->bytes_reserved -
2759 	    data_sinfo->bytes_pinned - data_sinfo->bytes_readonly -
2760 	    data_sinfo->bytes_may_use < bytes) {
2761 		struct btrfs_trans_handle *trans;
2762 
2763 		/*
2764 		 * if we don't have enough free bytes in this space then we need
2765 		 * to alloc a new chunk.
2766 		 */
2767 		if (!data_sinfo->full) {
2768 			u64 alloc_target;
2769 
2770 			data_sinfo->force_alloc = 1;
2771 			spin_unlock(&data_sinfo->lock);
2772 
2773 			alloc_target = btrfs_get_alloc_profile(root, 1);
2774 			trans = btrfs_start_transaction(root, 1);
2775 			if (!trans)
2776 				return -ENOMEM;
2777 
2778 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2779 					     bytes + 2 * 1024 * 1024,
2780 					     alloc_target, 0);
2781 			btrfs_end_transaction(trans, root);
2782 			if (ret)
2783 				return ret;
2784 			goto again;
2785 		}
2786 		spin_unlock(&data_sinfo->lock);
2787 
2788 		/* commit the current transaction and try again */
2789 		if (!committed) {
2790 			committed = 1;
2791 			trans = btrfs_join_transaction(root, 1);
2792 			if (!trans)
2793 				return -ENOMEM;
2794 			ret = btrfs_commit_transaction(trans, root);
2795 			if (ret)
2796 				return ret;
2797 			goto again;
2798 		}
2799 
2800 		printk(KERN_ERR "no space left, need %llu, %llu delalloc bytes"
2801 		       ", %llu bytes_used, %llu bytes_reserved, "
2802 		       "%llu bytes_pinned, %llu bytes_readonly, %llu may use "
2803 		       "%llu total\n", (unsigned long long)bytes,
2804 		       (unsigned long long)data_sinfo->bytes_delalloc,
2805 		       (unsigned long long)data_sinfo->bytes_used,
2806 		       (unsigned long long)data_sinfo->bytes_reserved,
2807 		       (unsigned long long)data_sinfo->bytes_pinned,
2808 		       (unsigned long long)data_sinfo->bytes_readonly,
2809 		       (unsigned long long)data_sinfo->bytes_may_use,
2810 		       (unsigned long long)data_sinfo->total_bytes);
2811 		return -ENOSPC;
2812 	}
2813 	data_sinfo->bytes_may_use += bytes;
2814 	BTRFS_I(inode)->reserved_bytes += bytes;
2815 	spin_unlock(&data_sinfo->lock);
2816 
2817 	return btrfs_check_metadata_free_space(root);
2818 }
2819 
2820 /*
2821  * if there was an error for whatever reason after calling
2822  * btrfs_check_data_free_space, call this so we can cleanup the counters.
2823  */
2824 void btrfs_free_reserved_data_space(struct btrfs_root *root,
2825 				    struct inode *inode, u64 bytes)
2826 {
2827 	struct btrfs_space_info *data_sinfo;
2828 
2829 	/* make sure bytes are sectorsize aligned */
2830 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2831 
2832 	data_sinfo = BTRFS_I(inode)->space_info;
2833 	spin_lock(&data_sinfo->lock);
2834 	data_sinfo->bytes_may_use -= bytes;
2835 	BTRFS_I(inode)->reserved_bytes -= bytes;
2836 	spin_unlock(&data_sinfo->lock);
2837 }
2838 
2839 /* called when we are adding a delalloc extent to the inode's io_tree */
2840 void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode,
2841 				  u64 bytes)
2842 {
2843 	struct btrfs_space_info *data_sinfo;
2844 
2845 	/* get the space info for where this inode will be storing its data */
2846 	data_sinfo = BTRFS_I(inode)->space_info;
2847 
2848 	/* make sure we have enough space to handle the data first */
2849 	spin_lock(&data_sinfo->lock);
2850 	data_sinfo->bytes_delalloc += bytes;
2851 
2852 	/*
2853 	 * we are adding a delalloc extent without calling
2854 	 * btrfs_check_data_free_space first.  This happens on a weird
2855 	 * writepage condition, but shouldn't hurt our accounting
2856 	 */
2857 	if (unlikely(bytes > BTRFS_I(inode)->reserved_bytes)) {
2858 		data_sinfo->bytes_may_use -= BTRFS_I(inode)->reserved_bytes;
2859 		BTRFS_I(inode)->reserved_bytes = 0;
2860 	} else {
2861 		data_sinfo->bytes_may_use -= bytes;
2862 		BTRFS_I(inode)->reserved_bytes -= bytes;
2863 	}
2864 
2865 	spin_unlock(&data_sinfo->lock);
2866 }
2867 
2868 /* called when we are clearing an delalloc extent from the inode's io_tree */
2869 void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode,
2870 			      u64 bytes)
2871 {
2872 	struct btrfs_space_info *info;
2873 
2874 	info = BTRFS_I(inode)->space_info;
2875 
2876 	spin_lock(&info->lock);
2877 	info->bytes_delalloc -= bytes;
2878 	spin_unlock(&info->lock);
2879 }
2880 
2881 static void force_metadata_allocation(struct btrfs_fs_info *info)
2882 {
2883 	struct list_head *head = &info->space_info;
2884 	struct btrfs_space_info *found;
2885 
2886 	rcu_read_lock();
2887 	list_for_each_entry_rcu(found, head, list) {
2888 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2889 			found->force_alloc = 1;
2890 	}
2891 	rcu_read_unlock();
2892 }
2893 
2894 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2895 			  struct btrfs_root *extent_root, u64 alloc_bytes,
2896 			  u64 flags, int force)
2897 {
2898 	struct btrfs_space_info *space_info;
2899 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
2900 	u64 thresh;
2901 	int ret = 0;
2902 
2903 	mutex_lock(&fs_info->chunk_mutex);
2904 
2905 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
2906 
2907 	space_info = __find_space_info(extent_root->fs_info, flags);
2908 	if (!space_info) {
2909 		ret = update_space_info(extent_root->fs_info, flags,
2910 					0, 0, &space_info);
2911 		BUG_ON(ret);
2912 	}
2913 	BUG_ON(!space_info);
2914 
2915 	spin_lock(&space_info->lock);
2916 	if (space_info->force_alloc) {
2917 		force = 1;
2918 		space_info->force_alloc = 0;
2919 	}
2920 	if (space_info->full) {
2921 		spin_unlock(&space_info->lock);
2922 		goto out;
2923 	}
2924 
2925 	thresh = space_info->total_bytes - space_info->bytes_readonly;
2926 	thresh = div_factor(thresh, 6);
2927 	if (!force &&
2928 	   (space_info->bytes_used + space_info->bytes_pinned +
2929 	    space_info->bytes_reserved + alloc_bytes) < thresh) {
2930 		spin_unlock(&space_info->lock);
2931 		goto out;
2932 	}
2933 	spin_unlock(&space_info->lock);
2934 
2935 	/*
2936 	 * if we're doing a data chunk, go ahead and make sure that
2937 	 * we keep a reasonable number of metadata chunks allocated in the
2938 	 * FS as well.
2939 	 */
2940 	if (flags & BTRFS_BLOCK_GROUP_DATA) {
2941 		fs_info->data_chunk_allocations++;
2942 		if (!(fs_info->data_chunk_allocations %
2943 		      fs_info->metadata_ratio))
2944 			force_metadata_allocation(fs_info);
2945 	}
2946 
2947 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
2948 	if (ret)
2949 		space_info->full = 1;
2950 out:
2951 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
2952 	return ret;
2953 }
2954 
2955 static int update_block_group(struct btrfs_trans_handle *trans,
2956 			      struct btrfs_root *root,
2957 			      u64 bytenr, u64 num_bytes, int alloc,
2958 			      int mark_free)
2959 {
2960 	struct btrfs_block_group_cache *cache;
2961 	struct btrfs_fs_info *info = root->fs_info;
2962 	u64 total = num_bytes;
2963 	u64 old_val;
2964 	u64 byte_in_group;
2965 
2966 	/* block accounting for super block */
2967 	spin_lock(&info->delalloc_lock);
2968 	old_val = btrfs_super_bytes_used(&info->super_copy);
2969 	if (alloc)
2970 		old_val += num_bytes;
2971 	else
2972 		old_val -= num_bytes;
2973 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
2974 
2975 	/* block accounting for root item */
2976 	old_val = btrfs_root_used(&root->root_item);
2977 	if (alloc)
2978 		old_val += num_bytes;
2979 	else
2980 		old_val -= num_bytes;
2981 	btrfs_set_root_used(&root->root_item, old_val);
2982 	spin_unlock(&info->delalloc_lock);
2983 
2984 	while (total) {
2985 		cache = btrfs_lookup_block_group(info, bytenr);
2986 		if (!cache)
2987 			return -1;
2988 		byte_in_group = bytenr - cache->key.objectid;
2989 		WARN_ON(byte_in_group > cache->key.offset);
2990 
2991 		spin_lock(&cache->space_info->lock);
2992 		spin_lock(&cache->lock);
2993 		cache->dirty = 1;
2994 		old_val = btrfs_block_group_used(&cache->item);
2995 		num_bytes = min(total, cache->key.offset - byte_in_group);
2996 		if (alloc) {
2997 			old_val += num_bytes;
2998 			cache->space_info->bytes_used += num_bytes;
2999 			if (cache->ro)
3000 				cache->space_info->bytes_readonly -= num_bytes;
3001 			btrfs_set_block_group_used(&cache->item, old_val);
3002 			spin_unlock(&cache->lock);
3003 			spin_unlock(&cache->space_info->lock);
3004 		} else {
3005 			old_val -= num_bytes;
3006 			cache->space_info->bytes_used -= num_bytes;
3007 			if (cache->ro)
3008 				cache->space_info->bytes_readonly += num_bytes;
3009 			btrfs_set_block_group_used(&cache->item, old_val);
3010 			spin_unlock(&cache->lock);
3011 			spin_unlock(&cache->space_info->lock);
3012 			if (mark_free) {
3013 				int ret;
3014 
3015 				ret = btrfs_discard_extent(root, bytenr,
3016 							   num_bytes);
3017 				WARN_ON(ret);
3018 
3019 				ret = btrfs_add_free_space(cache, bytenr,
3020 							   num_bytes);
3021 				WARN_ON(ret);
3022 			}
3023 		}
3024 		btrfs_put_block_group(cache);
3025 		total -= num_bytes;
3026 		bytenr += num_bytes;
3027 	}
3028 	return 0;
3029 }
3030 
3031 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3032 {
3033 	struct btrfs_block_group_cache *cache;
3034 	u64 bytenr;
3035 
3036 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3037 	if (!cache)
3038 		return 0;
3039 
3040 	bytenr = cache->key.objectid;
3041 	btrfs_put_block_group(cache);
3042 
3043 	return bytenr;
3044 }
3045 
3046 int btrfs_update_pinned_extents(struct btrfs_root *root,
3047 				u64 bytenr, u64 num, int pin)
3048 {
3049 	u64 len;
3050 	struct btrfs_block_group_cache *cache;
3051 	struct btrfs_fs_info *fs_info = root->fs_info;
3052 
3053 	if (pin)
3054 		set_extent_dirty(&fs_info->pinned_extents,
3055 				bytenr, bytenr + num - 1, GFP_NOFS);
3056 
3057 	while (num > 0) {
3058 		cache = btrfs_lookup_block_group(fs_info, bytenr);
3059 		BUG_ON(!cache);
3060 		len = min(num, cache->key.offset -
3061 			  (bytenr - cache->key.objectid));
3062 		if (pin) {
3063 			spin_lock(&cache->space_info->lock);
3064 			spin_lock(&cache->lock);
3065 			cache->pinned += len;
3066 			cache->space_info->bytes_pinned += len;
3067 			spin_unlock(&cache->lock);
3068 			spin_unlock(&cache->space_info->lock);
3069 			fs_info->total_pinned += len;
3070 		} else {
3071 			int unpin = 0;
3072 
3073 			/*
3074 			 * in order to not race with the block group caching, we
3075 			 * only want to unpin the extent if we are cached.  If
3076 			 * we aren't cached, we want to start async caching this
3077 			 * block group so we can free the extent the next time
3078 			 * around.
3079 			 */
3080 			spin_lock(&cache->space_info->lock);
3081 			spin_lock(&cache->lock);
3082 			unpin = (cache->cached == BTRFS_CACHE_FINISHED);
3083 			if (likely(unpin)) {
3084 				cache->pinned -= len;
3085 				cache->space_info->bytes_pinned -= len;
3086 				fs_info->total_pinned -= len;
3087 			}
3088 			spin_unlock(&cache->lock);
3089 			spin_unlock(&cache->space_info->lock);
3090 
3091 			if (likely(unpin))
3092 				clear_extent_dirty(&fs_info->pinned_extents,
3093 						   bytenr, bytenr + len -1,
3094 						   GFP_NOFS);
3095 			else
3096 				cache_block_group(cache);
3097 
3098 			if (unpin)
3099 				btrfs_add_free_space(cache, bytenr, len);
3100 		}
3101 		btrfs_put_block_group(cache);
3102 		bytenr += len;
3103 		num -= len;
3104 	}
3105 	return 0;
3106 }
3107 
3108 static int update_reserved_extents(struct btrfs_root *root,
3109 				   u64 bytenr, u64 num, int reserve)
3110 {
3111 	u64 len;
3112 	struct btrfs_block_group_cache *cache;
3113 	struct btrfs_fs_info *fs_info = root->fs_info;
3114 
3115 	while (num > 0) {
3116 		cache = btrfs_lookup_block_group(fs_info, bytenr);
3117 		BUG_ON(!cache);
3118 		len = min(num, cache->key.offset -
3119 			  (bytenr - cache->key.objectid));
3120 
3121 		spin_lock(&cache->space_info->lock);
3122 		spin_lock(&cache->lock);
3123 		if (reserve) {
3124 			cache->reserved += len;
3125 			cache->space_info->bytes_reserved += len;
3126 		} else {
3127 			cache->reserved -= len;
3128 			cache->space_info->bytes_reserved -= len;
3129 		}
3130 		spin_unlock(&cache->lock);
3131 		spin_unlock(&cache->space_info->lock);
3132 		btrfs_put_block_group(cache);
3133 		bytenr += len;
3134 		num -= len;
3135 	}
3136 	return 0;
3137 }
3138 
3139 int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy)
3140 {
3141 	u64 last = 0;
3142 	u64 start;
3143 	u64 end;
3144 	struct extent_io_tree *pinned_extents = &root->fs_info->pinned_extents;
3145 	int ret;
3146 
3147 	while (1) {
3148 		ret = find_first_extent_bit(pinned_extents, last,
3149 					    &start, &end, EXTENT_DIRTY);
3150 		if (ret)
3151 			break;
3152 
3153 		set_extent_dirty(copy, start, end, GFP_NOFS);
3154 		last = end + 1;
3155 	}
3156 	return 0;
3157 }
3158 
3159 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3160 			       struct btrfs_root *root,
3161 			       struct extent_io_tree *unpin)
3162 {
3163 	u64 start;
3164 	u64 end;
3165 	int ret;
3166 
3167 	while (1) {
3168 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3169 					    EXTENT_DIRTY);
3170 		if (ret)
3171 			break;
3172 
3173 		ret = btrfs_discard_extent(root, start, end + 1 - start);
3174 
3175 		/* unlocks the pinned mutex */
3176 		btrfs_update_pinned_extents(root, start, end + 1 - start, 0);
3177 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3178 
3179 		cond_resched();
3180 	}
3181 
3182 	return ret;
3183 }
3184 
3185 static int pin_down_bytes(struct btrfs_trans_handle *trans,
3186 			  struct btrfs_root *root,
3187 			  struct btrfs_path *path,
3188 			  u64 bytenr, u64 num_bytes, int is_data,
3189 			  struct extent_buffer **must_clean)
3190 {
3191 	int err = 0;
3192 	struct extent_buffer *buf;
3193 
3194 	if (is_data)
3195 		goto pinit;
3196 
3197 	buf = btrfs_find_tree_block(root, bytenr, num_bytes);
3198 	if (!buf)
3199 		goto pinit;
3200 
3201 	/* we can reuse a block if it hasn't been written
3202 	 * and it is from this transaction.  We can't
3203 	 * reuse anything from the tree log root because
3204 	 * it has tiny sub-transactions.
3205 	 */
3206 	if (btrfs_buffer_uptodate(buf, 0) &&
3207 	    btrfs_try_tree_lock(buf)) {
3208 		u64 header_owner = btrfs_header_owner(buf);
3209 		u64 header_transid = btrfs_header_generation(buf);
3210 		if (header_owner != BTRFS_TREE_LOG_OBJECTID &&
3211 		    header_transid == trans->transid &&
3212 		    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3213 			*must_clean = buf;
3214 			return 1;
3215 		}
3216 		btrfs_tree_unlock(buf);
3217 	}
3218 	free_extent_buffer(buf);
3219 pinit:
3220 	btrfs_set_path_blocking(path);
3221 	/* unlocks the pinned mutex */
3222 	btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
3223 
3224 	BUG_ON(err < 0);
3225 	return 0;
3226 }
3227 
3228 
3229 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3230 				struct btrfs_root *root,
3231 				u64 bytenr, u64 num_bytes, u64 parent,
3232 				u64 root_objectid, u64 owner_objectid,
3233 				u64 owner_offset, int refs_to_drop,
3234 				struct btrfs_delayed_extent_op *extent_op)
3235 {
3236 	struct btrfs_key key;
3237 	struct btrfs_path *path;
3238 	struct btrfs_fs_info *info = root->fs_info;
3239 	struct btrfs_root *extent_root = info->extent_root;
3240 	struct extent_buffer *leaf;
3241 	struct btrfs_extent_item *ei;
3242 	struct btrfs_extent_inline_ref *iref;
3243 	int ret;
3244 	int is_data;
3245 	int extent_slot = 0;
3246 	int found_extent = 0;
3247 	int num_to_del = 1;
3248 	u32 item_size;
3249 	u64 refs;
3250 
3251 	path = btrfs_alloc_path();
3252 	if (!path)
3253 		return -ENOMEM;
3254 
3255 	path->reada = 1;
3256 	path->leave_spinning = 1;
3257 
3258 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3259 	BUG_ON(!is_data && refs_to_drop != 1);
3260 
3261 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
3262 				    bytenr, num_bytes, parent,
3263 				    root_objectid, owner_objectid,
3264 				    owner_offset);
3265 	if (ret == 0) {
3266 		extent_slot = path->slots[0];
3267 		while (extent_slot >= 0) {
3268 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3269 					      extent_slot);
3270 			if (key.objectid != bytenr)
3271 				break;
3272 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3273 			    key.offset == num_bytes) {
3274 				found_extent = 1;
3275 				break;
3276 			}
3277 			if (path->slots[0] - extent_slot > 5)
3278 				break;
3279 			extent_slot--;
3280 		}
3281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3282 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
3283 		if (found_extent && item_size < sizeof(*ei))
3284 			found_extent = 0;
3285 #endif
3286 		if (!found_extent) {
3287 			BUG_ON(iref);
3288 			ret = remove_extent_backref(trans, extent_root, path,
3289 						    NULL, refs_to_drop,
3290 						    is_data);
3291 			BUG_ON(ret);
3292 			btrfs_release_path(extent_root, path);
3293 			path->leave_spinning = 1;
3294 
3295 			key.objectid = bytenr;
3296 			key.type = BTRFS_EXTENT_ITEM_KEY;
3297 			key.offset = num_bytes;
3298 
3299 			ret = btrfs_search_slot(trans, extent_root,
3300 						&key, path, -1, 1);
3301 			if (ret) {
3302 				printk(KERN_ERR "umm, got %d back from search"
3303 				       ", was looking for %llu\n", ret,
3304 				       (unsigned long long)bytenr);
3305 				btrfs_print_leaf(extent_root, path->nodes[0]);
3306 			}
3307 			BUG_ON(ret);
3308 			extent_slot = path->slots[0];
3309 		}
3310 	} else {
3311 		btrfs_print_leaf(extent_root, path->nodes[0]);
3312 		WARN_ON(1);
3313 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
3314 		       "parent %llu root %llu  owner %llu offset %llu\n",
3315 		       (unsigned long long)bytenr,
3316 		       (unsigned long long)parent,
3317 		       (unsigned long long)root_objectid,
3318 		       (unsigned long long)owner_objectid,
3319 		       (unsigned long long)owner_offset);
3320 	}
3321 
3322 	leaf = path->nodes[0];
3323 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3325 	if (item_size < sizeof(*ei)) {
3326 		BUG_ON(found_extent || extent_slot != path->slots[0]);
3327 		ret = convert_extent_item_v0(trans, extent_root, path,
3328 					     owner_objectid, 0);
3329 		BUG_ON(ret < 0);
3330 
3331 		btrfs_release_path(extent_root, path);
3332 		path->leave_spinning = 1;
3333 
3334 		key.objectid = bytenr;
3335 		key.type = BTRFS_EXTENT_ITEM_KEY;
3336 		key.offset = num_bytes;
3337 
3338 		ret = btrfs_search_slot(trans, extent_root, &key, path,
3339 					-1, 1);
3340 		if (ret) {
3341 			printk(KERN_ERR "umm, got %d back from search"
3342 			       ", was looking for %llu\n", ret,
3343 			       (unsigned long long)bytenr);
3344 			btrfs_print_leaf(extent_root, path->nodes[0]);
3345 		}
3346 		BUG_ON(ret);
3347 		extent_slot = path->slots[0];
3348 		leaf = path->nodes[0];
3349 		item_size = btrfs_item_size_nr(leaf, extent_slot);
3350 	}
3351 #endif
3352 	BUG_ON(item_size < sizeof(*ei));
3353 	ei = btrfs_item_ptr(leaf, extent_slot,
3354 			    struct btrfs_extent_item);
3355 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
3356 		struct btrfs_tree_block_info *bi;
3357 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3358 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3359 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3360 	}
3361 
3362 	refs = btrfs_extent_refs(leaf, ei);
3363 	BUG_ON(refs < refs_to_drop);
3364 	refs -= refs_to_drop;
3365 
3366 	if (refs > 0) {
3367 		if (extent_op)
3368 			__run_delayed_extent_op(extent_op, leaf, ei);
3369 		/*
3370 		 * In the case of inline back ref, reference count will
3371 		 * be updated by remove_extent_backref
3372 		 */
3373 		if (iref) {
3374 			BUG_ON(!found_extent);
3375 		} else {
3376 			btrfs_set_extent_refs(leaf, ei, refs);
3377 			btrfs_mark_buffer_dirty(leaf);
3378 		}
3379 		if (found_extent) {
3380 			ret = remove_extent_backref(trans, extent_root, path,
3381 						    iref, refs_to_drop,
3382 						    is_data);
3383 			BUG_ON(ret);
3384 		}
3385 	} else {
3386 		int mark_free = 0;
3387 		struct extent_buffer *must_clean = NULL;
3388 
3389 		if (found_extent) {
3390 			BUG_ON(is_data && refs_to_drop !=
3391 			       extent_data_ref_count(root, path, iref));
3392 			if (iref) {
3393 				BUG_ON(path->slots[0] != extent_slot);
3394 			} else {
3395 				BUG_ON(path->slots[0] != extent_slot + 1);
3396 				path->slots[0] = extent_slot;
3397 				num_to_del = 2;
3398 			}
3399 		}
3400 
3401 		ret = pin_down_bytes(trans, root, path, bytenr,
3402 				     num_bytes, is_data, &must_clean);
3403 		if (ret > 0)
3404 			mark_free = 1;
3405 		BUG_ON(ret < 0);
3406 		/*
3407 		 * it is going to be very rare for someone to be waiting
3408 		 * on the block we're freeing.  del_items might need to
3409 		 * schedule, so rather than get fancy, just force it
3410 		 * to blocking here
3411 		 */
3412 		if (must_clean)
3413 			btrfs_set_lock_blocking(must_clean);
3414 
3415 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3416 				      num_to_del);
3417 		BUG_ON(ret);
3418 		btrfs_release_path(extent_root, path);
3419 
3420 		if (must_clean) {
3421 			clean_tree_block(NULL, root, must_clean);
3422 			btrfs_tree_unlock(must_clean);
3423 			free_extent_buffer(must_clean);
3424 		}
3425 
3426 		if (is_data) {
3427 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
3428 			BUG_ON(ret);
3429 		} else {
3430 			invalidate_mapping_pages(info->btree_inode->i_mapping,
3431 			     bytenr >> PAGE_CACHE_SHIFT,
3432 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
3433 		}
3434 
3435 		ret = update_block_group(trans, root, bytenr, num_bytes, 0,
3436 					 mark_free);
3437 		BUG_ON(ret);
3438 	}
3439 	btrfs_free_path(path);
3440 	return ret;
3441 }
3442 
3443 /*
3444  * when we free an extent, it is possible (and likely) that we free the last
3445  * delayed ref for that extent as well.  This searches the delayed ref tree for
3446  * a given extent, and if there are no other delayed refs to be processed, it
3447  * removes it from the tree.
3448  */
3449 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3450 				      struct btrfs_root *root, u64 bytenr)
3451 {
3452 	struct btrfs_delayed_ref_head *head;
3453 	struct btrfs_delayed_ref_root *delayed_refs;
3454 	struct btrfs_delayed_ref_node *ref;
3455 	struct rb_node *node;
3456 	int ret;
3457 
3458 	delayed_refs = &trans->transaction->delayed_refs;
3459 	spin_lock(&delayed_refs->lock);
3460 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3461 	if (!head)
3462 		goto out;
3463 
3464 	node = rb_prev(&head->node.rb_node);
3465 	if (!node)
3466 		goto out;
3467 
3468 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3469 
3470 	/* there are still entries for this ref, we can't drop it */
3471 	if (ref->bytenr == bytenr)
3472 		goto out;
3473 
3474 	if (head->extent_op) {
3475 		if (!head->must_insert_reserved)
3476 			goto out;
3477 		kfree(head->extent_op);
3478 		head->extent_op = NULL;
3479 	}
3480 
3481 	/*
3482 	 * waiting for the lock here would deadlock.  If someone else has it
3483 	 * locked they are already in the process of dropping it anyway
3484 	 */
3485 	if (!mutex_trylock(&head->mutex))
3486 		goto out;
3487 
3488 	/*
3489 	 * at this point we have a head with no other entries.  Go
3490 	 * ahead and process it.
3491 	 */
3492 	head->node.in_tree = 0;
3493 	rb_erase(&head->node.rb_node, &delayed_refs->root);
3494 
3495 	delayed_refs->num_entries--;
3496 
3497 	/*
3498 	 * we don't take a ref on the node because we're removing it from the
3499 	 * tree, so we just steal the ref the tree was holding.
3500 	 */
3501 	delayed_refs->num_heads--;
3502 	if (list_empty(&head->cluster))
3503 		delayed_refs->num_heads_ready--;
3504 
3505 	list_del_init(&head->cluster);
3506 	spin_unlock(&delayed_refs->lock);
3507 
3508 	ret = run_one_delayed_ref(trans, root->fs_info->tree_root,
3509 				  &head->node, head->extent_op,
3510 				  head->must_insert_reserved);
3511 	BUG_ON(ret);
3512 	btrfs_put_delayed_ref(&head->node);
3513 	return 0;
3514 out:
3515 	spin_unlock(&delayed_refs->lock);
3516 	return 0;
3517 }
3518 
3519 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3520 		      struct btrfs_root *root,
3521 		      u64 bytenr, u64 num_bytes, u64 parent,
3522 		      u64 root_objectid, u64 owner, u64 offset)
3523 {
3524 	int ret;
3525 
3526 	/*
3527 	 * tree log blocks never actually go into the extent allocation
3528 	 * tree, just update pinning info and exit early.
3529 	 */
3530 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
3531 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
3532 		/* unlocks the pinned mutex */
3533 		btrfs_update_pinned_extents(root, bytenr, num_bytes, 1);
3534 		update_reserved_extents(root, bytenr, num_bytes, 0);
3535 		ret = 0;
3536 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
3537 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
3538 					parent, root_objectid, (int)owner,
3539 					BTRFS_DROP_DELAYED_REF, NULL);
3540 		BUG_ON(ret);
3541 		ret = check_ref_cleanup(trans, root, bytenr);
3542 		BUG_ON(ret);
3543 	} else {
3544 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
3545 					parent, root_objectid, owner,
3546 					offset, BTRFS_DROP_DELAYED_REF, NULL);
3547 		BUG_ON(ret);
3548 	}
3549 	return ret;
3550 }
3551 
3552 static u64 stripe_align(struct btrfs_root *root, u64 val)
3553 {
3554 	u64 mask = ((u64)root->stripesize - 1);
3555 	u64 ret = (val + mask) & ~mask;
3556 	return ret;
3557 }
3558 
3559 /*
3560  * when we wait for progress in the block group caching, its because
3561  * our allocation attempt failed at least once.  So, we must sleep
3562  * and let some progress happen before we try again.
3563  *
3564  * This function will sleep at least once waiting for new free space to
3565  * show up, and then it will check the block group free space numbers
3566  * for our min num_bytes.  Another option is to have it go ahead
3567  * and look in the rbtree for a free extent of a given size, but this
3568  * is a good start.
3569  */
3570 static noinline int
3571 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
3572 				u64 num_bytes)
3573 {
3574 	DEFINE_WAIT(wait);
3575 
3576 	prepare_to_wait(&cache->caching_q, &wait, TASK_UNINTERRUPTIBLE);
3577 
3578 	if (block_group_cache_done(cache)) {
3579 		finish_wait(&cache->caching_q, &wait);
3580 		return 0;
3581 	}
3582 	schedule();
3583 	finish_wait(&cache->caching_q, &wait);
3584 
3585 	wait_event(cache->caching_q, block_group_cache_done(cache) ||
3586 		   (cache->free_space >= num_bytes));
3587 	return 0;
3588 }
3589 
3590 enum btrfs_loop_type {
3591 	LOOP_CACHED_ONLY = 0,
3592 	LOOP_CACHING_NOWAIT = 1,
3593 	LOOP_CACHING_WAIT = 2,
3594 	LOOP_ALLOC_CHUNK = 3,
3595 	LOOP_NO_EMPTY_SIZE = 4,
3596 };
3597 
3598 /*
3599  * walks the btree of allocated extents and find a hole of a given size.
3600  * The key ins is changed to record the hole:
3601  * ins->objectid == block start
3602  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3603  * ins->offset == number of blocks
3604  * Any available blocks before search_start are skipped.
3605  */
3606 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
3607 				     struct btrfs_root *orig_root,
3608 				     u64 num_bytes, u64 empty_size,
3609 				     u64 search_start, u64 search_end,
3610 				     u64 hint_byte, struct btrfs_key *ins,
3611 				     u64 exclude_start, u64 exclude_nr,
3612 				     int data)
3613 {
3614 	int ret = 0;
3615 	struct btrfs_root *root = orig_root->fs_info->extent_root;
3616 	struct btrfs_free_cluster *last_ptr = NULL;
3617 	struct btrfs_block_group_cache *block_group = NULL;
3618 	int empty_cluster = 2 * 1024 * 1024;
3619 	int allowed_chunk_alloc = 0;
3620 	struct btrfs_space_info *space_info;
3621 	int last_ptr_loop = 0;
3622 	int loop = 0;
3623 	bool found_uncached_bg = false;
3624 
3625 	WARN_ON(num_bytes < root->sectorsize);
3626 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
3627 	ins->objectid = 0;
3628 	ins->offset = 0;
3629 
3630 	space_info = __find_space_info(root->fs_info, data);
3631 
3632 	if (orig_root->ref_cows || empty_size)
3633 		allowed_chunk_alloc = 1;
3634 
3635 	if (data & BTRFS_BLOCK_GROUP_METADATA) {
3636 		last_ptr = &root->fs_info->meta_alloc_cluster;
3637 		if (!btrfs_test_opt(root, SSD))
3638 			empty_cluster = 64 * 1024;
3639 	}
3640 
3641 	if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
3642 		last_ptr = &root->fs_info->data_alloc_cluster;
3643 	}
3644 
3645 	if (last_ptr) {
3646 		spin_lock(&last_ptr->lock);
3647 		if (last_ptr->block_group)
3648 			hint_byte = last_ptr->window_start;
3649 		spin_unlock(&last_ptr->lock);
3650 	}
3651 
3652 	search_start = max(search_start, first_logical_byte(root, 0));
3653 	search_start = max(search_start, hint_byte);
3654 
3655 	if (!last_ptr)
3656 		empty_cluster = 0;
3657 
3658 	if (search_start == hint_byte) {
3659 		block_group = btrfs_lookup_block_group(root->fs_info,
3660 						       search_start);
3661 		/*
3662 		 * we don't want to use the block group if it doesn't match our
3663 		 * allocation bits, or if its not cached.
3664 		 */
3665 		if (block_group && block_group_bits(block_group, data) &&
3666 		    block_group_cache_done(block_group)) {
3667 			down_read(&space_info->groups_sem);
3668 			if (list_empty(&block_group->list) ||
3669 			    block_group->ro) {
3670 				/*
3671 				 * someone is removing this block group,
3672 				 * we can't jump into the have_block_group
3673 				 * target because our list pointers are not
3674 				 * valid
3675 				 */
3676 				btrfs_put_block_group(block_group);
3677 				up_read(&space_info->groups_sem);
3678 			} else
3679 				goto have_block_group;
3680 		} else if (block_group) {
3681 			btrfs_put_block_group(block_group);
3682 		}
3683 	}
3684 
3685 search:
3686 	down_read(&space_info->groups_sem);
3687 	list_for_each_entry(block_group, &space_info->block_groups, list) {
3688 		u64 offset;
3689 		int cached;
3690 
3691 		atomic_inc(&block_group->count);
3692 		search_start = block_group->key.objectid;
3693 
3694 have_block_group:
3695 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
3696 			/*
3697 			 * we want to start caching kthreads, but not too many
3698 			 * right off the bat so we don't overwhelm the system,
3699 			 * so only start them if there are less than 2 and we're
3700 			 * in the initial allocation phase.
3701 			 */
3702 			if (loop > LOOP_CACHING_NOWAIT ||
3703 			    atomic_read(&space_info->caching_threads) < 2) {
3704 				ret = cache_block_group(block_group);
3705 				BUG_ON(ret);
3706 			}
3707 		}
3708 
3709 		cached = block_group_cache_done(block_group);
3710 		if (unlikely(!cached)) {
3711 			found_uncached_bg = true;
3712 
3713 			/* if we only want cached bgs, loop */
3714 			if (loop == LOOP_CACHED_ONLY)
3715 				goto loop;
3716 		}
3717 
3718 		if (unlikely(block_group->ro))
3719 			goto loop;
3720 
3721 		if (last_ptr) {
3722 			/*
3723 			 * the refill lock keeps out other
3724 			 * people trying to start a new cluster
3725 			 */
3726 			spin_lock(&last_ptr->refill_lock);
3727 			if (last_ptr->block_group &&
3728 			    (last_ptr->block_group->ro ||
3729 			    !block_group_bits(last_ptr->block_group, data))) {
3730 				offset = 0;
3731 				goto refill_cluster;
3732 			}
3733 
3734 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
3735 						 num_bytes, search_start);
3736 			if (offset) {
3737 				/* we have a block, we're done */
3738 				spin_unlock(&last_ptr->refill_lock);
3739 				goto checks;
3740 			}
3741 
3742 			spin_lock(&last_ptr->lock);
3743 			/*
3744 			 * whoops, this cluster doesn't actually point to
3745 			 * this block group.  Get a ref on the block
3746 			 * group is does point to and try again
3747 			 */
3748 			if (!last_ptr_loop && last_ptr->block_group &&
3749 			    last_ptr->block_group != block_group) {
3750 
3751 				btrfs_put_block_group(block_group);
3752 				block_group = last_ptr->block_group;
3753 				atomic_inc(&block_group->count);
3754 				spin_unlock(&last_ptr->lock);
3755 				spin_unlock(&last_ptr->refill_lock);
3756 
3757 				last_ptr_loop = 1;
3758 				search_start = block_group->key.objectid;
3759 				/*
3760 				 * we know this block group is properly
3761 				 * in the list because
3762 				 * btrfs_remove_block_group, drops the
3763 				 * cluster before it removes the block
3764 				 * group from the list
3765 				 */
3766 				goto have_block_group;
3767 			}
3768 			spin_unlock(&last_ptr->lock);
3769 refill_cluster:
3770 			/*
3771 			 * this cluster didn't work out, free it and
3772 			 * start over
3773 			 */
3774 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
3775 
3776 			last_ptr_loop = 0;
3777 
3778 			/* allocate a cluster in this block group */
3779 			ret = btrfs_find_space_cluster(trans, root,
3780 					       block_group, last_ptr,
3781 					       offset, num_bytes,
3782 					       empty_cluster + empty_size);
3783 			if (ret == 0) {
3784 				/*
3785 				 * now pull our allocation out of this
3786 				 * cluster
3787 				 */
3788 				offset = btrfs_alloc_from_cluster(block_group,
3789 						  last_ptr, num_bytes,
3790 						  search_start);
3791 				if (offset) {
3792 					/* we found one, proceed */
3793 					spin_unlock(&last_ptr->refill_lock);
3794 					goto checks;
3795 				}
3796 			} else if (!cached && loop > LOOP_CACHING_NOWAIT) {
3797 				spin_unlock(&last_ptr->refill_lock);
3798 
3799 				wait_block_group_cache_progress(block_group,
3800 				       num_bytes + empty_cluster + empty_size);
3801 				goto have_block_group;
3802 			}
3803 
3804 			/*
3805 			 * at this point we either didn't find a cluster
3806 			 * or we weren't able to allocate a block from our
3807 			 * cluster.  Free the cluster we've been trying
3808 			 * to use, and go to the next block group
3809 			 */
3810 			if (loop < LOOP_NO_EMPTY_SIZE) {
3811 				btrfs_return_cluster_to_free_space(NULL,
3812 								   last_ptr);
3813 				spin_unlock(&last_ptr->refill_lock);
3814 				goto loop;
3815 			}
3816 			spin_unlock(&last_ptr->refill_lock);
3817 		}
3818 
3819 		offset = btrfs_find_space_for_alloc(block_group, search_start,
3820 						    num_bytes, empty_size);
3821 		if (!offset && (cached || (!cached &&
3822 					   loop == LOOP_CACHING_NOWAIT))) {
3823 			goto loop;
3824 		} else if (!offset && (!cached &&
3825 				       loop > LOOP_CACHING_NOWAIT)) {
3826 			wait_block_group_cache_progress(block_group,
3827 					num_bytes + empty_size);
3828 			goto have_block_group;
3829 		}
3830 checks:
3831 		search_start = stripe_align(root, offset);
3832 		/* move on to the next group */
3833 		if (search_start + num_bytes >= search_end) {
3834 			btrfs_add_free_space(block_group, offset, num_bytes);
3835 			goto loop;
3836 		}
3837 
3838 		/* move on to the next group */
3839 		if (search_start + num_bytes >
3840 		    block_group->key.objectid + block_group->key.offset) {
3841 			btrfs_add_free_space(block_group, offset, num_bytes);
3842 			goto loop;
3843 		}
3844 
3845 		if (exclude_nr > 0 &&
3846 		    (search_start + num_bytes > exclude_start &&
3847 		     search_start < exclude_start + exclude_nr)) {
3848 			search_start = exclude_start + exclude_nr;
3849 
3850 			btrfs_add_free_space(block_group, offset, num_bytes);
3851 			/*
3852 			 * if search_start is still in this block group
3853 			 * then we just re-search this block group
3854 			 */
3855 			if (search_start >= block_group->key.objectid &&
3856 			    search_start < (block_group->key.objectid +
3857 					    block_group->key.offset))
3858 				goto have_block_group;
3859 			goto loop;
3860 		}
3861 
3862 		ins->objectid = search_start;
3863 		ins->offset = num_bytes;
3864 
3865 		if (offset < search_start)
3866 			btrfs_add_free_space(block_group, offset,
3867 					     search_start - offset);
3868 		BUG_ON(offset > search_start);
3869 
3870 		/* we are all good, lets return */
3871 		break;
3872 loop:
3873 		btrfs_put_block_group(block_group);
3874 	}
3875 	up_read(&space_info->groups_sem);
3876 
3877 	/* LOOP_CACHED_ONLY, only search fully cached block groups
3878 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, but
3879 	 *			dont wait foR them to finish caching
3880 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3881 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3882 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3883 	 *			again
3884 	 */
3885 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
3886 	    (found_uncached_bg || empty_size || empty_cluster ||
3887 	     allowed_chunk_alloc)) {
3888 		if (found_uncached_bg) {
3889 			found_uncached_bg = false;
3890 			if (loop < LOOP_CACHING_WAIT) {
3891 				loop++;
3892 				goto search;
3893 			}
3894 		}
3895 
3896 		if (loop == LOOP_ALLOC_CHUNK) {
3897 			empty_size = 0;
3898 			empty_cluster = 0;
3899 		}
3900 
3901 		if (allowed_chunk_alloc) {
3902 			ret = do_chunk_alloc(trans, root, num_bytes +
3903 					     2 * 1024 * 1024, data, 1);
3904 			allowed_chunk_alloc = 0;
3905 		} else {
3906 			space_info->force_alloc = 1;
3907 		}
3908 
3909 		if (loop < LOOP_NO_EMPTY_SIZE) {
3910 			loop++;
3911 			goto search;
3912 		}
3913 		ret = -ENOSPC;
3914 	} else if (!ins->objectid) {
3915 		ret = -ENOSPC;
3916 	}
3917 
3918 	/* we found what we needed */
3919 	if (ins->objectid) {
3920 		if (!(data & BTRFS_BLOCK_GROUP_DATA))
3921 			trans->block_group = block_group->key.objectid;
3922 
3923 		btrfs_put_block_group(block_group);
3924 		ret = 0;
3925 	}
3926 
3927 	return ret;
3928 }
3929 
3930 static void dump_space_info(struct btrfs_space_info *info, u64 bytes)
3931 {
3932 	struct btrfs_block_group_cache *cache;
3933 
3934 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
3935 	       (unsigned long long)(info->total_bytes - info->bytes_used -
3936 				    info->bytes_pinned - info->bytes_reserved),
3937 	       (info->full) ? "" : "not ");
3938 	printk(KERN_INFO "space_info total=%llu, pinned=%llu, delalloc=%llu,"
3939 	       " may_use=%llu, used=%llu\n",
3940 	       (unsigned long long)info->total_bytes,
3941 	       (unsigned long long)info->bytes_pinned,
3942 	       (unsigned long long)info->bytes_delalloc,
3943 	       (unsigned long long)info->bytes_may_use,
3944 	       (unsigned long long)info->bytes_used);
3945 
3946 	down_read(&info->groups_sem);
3947 	list_for_each_entry(cache, &info->block_groups, list) {
3948 		spin_lock(&cache->lock);
3949 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
3950 		       "%llu pinned %llu reserved\n",
3951 		       (unsigned long long)cache->key.objectid,
3952 		       (unsigned long long)cache->key.offset,
3953 		       (unsigned long long)btrfs_block_group_used(&cache->item),
3954 		       (unsigned long long)cache->pinned,
3955 		       (unsigned long long)cache->reserved);
3956 		btrfs_dump_free_space(cache, bytes);
3957 		spin_unlock(&cache->lock);
3958 	}
3959 	up_read(&info->groups_sem);
3960 }
3961 
3962 static int __btrfs_reserve_extent(struct btrfs_trans_handle *trans,
3963 				  struct btrfs_root *root,
3964 				  u64 num_bytes, u64 min_alloc_size,
3965 				  u64 empty_size, u64 hint_byte,
3966 				  u64 search_end, struct btrfs_key *ins,
3967 				  u64 data)
3968 {
3969 	int ret;
3970 	u64 search_start = 0;
3971 	struct btrfs_fs_info *info = root->fs_info;
3972 
3973 	data = btrfs_get_alloc_profile(root, data);
3974 again:
3975 	/*
3976 	 * the only place that sets empty_size is btrfs_realloc_node, which
3977 	 * is not called recursively on allocations
3978 	 */
3979 	if (empty_size || root->ref_cows) {
3980 		if (!(data & BTRFS_BLOCK_GROUP_METADATA)) {
3981 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3982 				     2 * 1024 * 1024,
3983 				     BTRFS_BLOCK_GROUP_METADATA |
3984 				     (info->metadata_alloc_profile &
3985 				      info->avail_metadata_alloc_bits), 0);
3986 		}
3987 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3988 				     num_bytes + 2 * 1024 * 1024, data, 0);
3989 	}
3990 
3991 	WARN_ON(num_bytes < root->sectorsize);
3992 	ret = find_free_extent(trans, root, num_bytes, empty_size,
3993 			       search_start, search_end, hint_byte, ins,
3994 			       trans->alloc_exclude_start,
3995 			       trans->alloc_exclude_nr, data);
3996 
3997 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
3998 		num_bytes = num_bytes >> 1;
3999 		num_bytes = num_bytes & ~(root->sectorsize - 1);
4000 		num_bytes = max(num_bytes, min_alloc_size);
4001 		do_chunk_alloc(trans, root->fs_info->extent_root,
4002 			       num_bytes, data, 1);
4003 		goto again;
4004 	}
4005 	if (ret == -ENOSPC) {
4006 		struct btrfs_space_info *sinfo;
4007 
4008 		sinfo = __find_space_info(root->fs_info, data);
4009 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
4010 		       "wanted %llu\n", (unsigned long long)data,
4011 		       (unsigned long long)num_bytes);
4012 		dump_space_info(sinfo, num_bytes);
4013 	}
4014 
4015 	return ret;
4016 }
4017 
4018 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
4019 {
4020 	struct btrfs_block_group_cache *cache;
4021 	int ret = 0;
4022 
4023 	cache = btrfs_lookup_block_group(root->fs_info, start);
4024 	if (!cache) {
4025 		printk(KERN_ERR "Unable to find block group for %llu\n",
4026 		       (unsigned long long)start);
4027 		return -ENOSPC;
4028 	}
4029 
4030 	ret = btrfs_discard_extent(root, start, len);
4031 
4032 	btrfs_add_free_space(cache, start, len);
4033 	btrfs_put_block_group(cache);
4034 	update_reserved_extents(root, start, len, 0);
4035 
4036 	return ret;
4037 }
4038 
4039 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4040 				  struct btrfs_root *root,
4041 				  u64 num_bytes, u64 min_alloc_size,
4042 				  u64 empty_size, u64 hint_byte,
4043 				  u64 search_end, struct btrfs_key *ins,
4044 				  u64 data)
4045 {
4046 	int ret;
4047 	ret = __btrfs_reserve_extent(trans, root, num_bytes, min_alloc_size,
4048 				     empty_size, hint_byte, search_end, ins,
4049 				     data);
4050 	if (!ret)
4051 		update_reserved_extents(root, ins->objectid, ins->offset, 1);
4052 
4053 	return ret;
4054 }
4055 
4056 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4057 				      struct btrfs_root *root,
4058 				      u64 parent, u64 root_objectid,
4059 				      u64 flags, u64 owner, u64 offset,
4060 				      struct btrfs_key *ins, int ref_mod)
4061 {
4062 	int ret;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	struct btrfs_extent_item *extent_item;
4065 	struct btrfs_extent_inline_ref *iref;
4066 	struct btrfs_path *path;
4067 	struct extent_buffer *leaf;
4068 	int type;
4069 	u32 size;
4070 
4071 	if (parent > 0)
4072 		type = BTRFS_SHARED_DATA_REF_KEY;
4073 	else
4074 		type = BTRFS_EXTENT_DATA_REF_KEY;
4075 
4076 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4077 
4078 	path = btrfs_alloc_path();
4079 	BUG_ON(!path);
4080 
4081 	path->leave_spinning = 1;
4082 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4083 				      ins, size);
4084 	BUG_ON(ret);
4085 
4086 	leaf = path->nodes[0];
4087 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4088 				     struct btrfs_extent_item);
4089 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4090 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4091 	btrfs_set_extent_flags(leaf, extent_item,
4092 			       flags | BTRFS_EXTENT_FLAG_DATA);
4093 
4094 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4095 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4096 	if (parent > 0) {
4097 		struct btrfs_shared_data_ref *ref;
4098 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4099 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4100 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4101 	} else {
4102 		struct btrfs_extent_data_ref *ref;
4103 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4104 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4105 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4106 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4107 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4108 	}
4109 
4110 	btrfs_mark_buffer_dirty(path->nodes[0]);
4111 	btrfs_free_path(path);
4112 
4113 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4114 				 1, 0);
4115 	if (ret) {
4116 		printk(KERN_ERR "btrfs update block group failed for %llu "
4117 		       "%llu\n", (unsigned long long)ins->objectid,
4118 		       (unsigned long long)ins->offset);
4119 		BUG();
4120 	}
4121 	return ret;
4122 }
4123 
4124 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4125 				     struct btrfs_root *root,
4126 				     u64 parent, u64 root_objectid,
4127 				     u64 flags, struct btrfs_disk_key *key,
4128 				     int level, struct btrfs_key *ins)
4129 {
4130 	int ret;
4131 	struct btrfs_fs_info *fs_info = root->fs_info;
4132 	struct btrfs_extent_item *extent_item;
4133 	struct btrfs_tree_block_info *block_info;
4134 	struct btrfs_extent_inline_ref *iref;
4135 	struct btrfs_path *path;
4136 	struct extent_buffer *leaf;
4137 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
4138 
4139 	path = btrfs_alloc_path();
4140 	BUG_ON(!path);
4141 
4142 	path->leave_spinning = 1;
4143 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4144 				      ins, size);
4145 	BUG_ON(ret);
4146 
4147 	leaf = path->nodes[0];
4148 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4149 				     struct btrfs_extent_item);
4150 	btrfs_set_extent_refs(leaf, extent_item, 1);
4151 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4152 	btrfs_set_extent_flags(leaf, extent_item,
4153 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4154 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4155 
4156 	btrfs_set_tree_block_key(leaf, block_info, key);
4157 	btrfs_set_tree_block_level(leaf, block_info, level);
4158 
4159 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4160 	if (parent > 0) {
4161 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4162 		btrfs_set_extent_inline_ref_type(leaf, iref,
4163 						 BTRFS_SHARED_BLOCK_REF_KEY);
4164 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4165 	} else {
4166 		btrfs_set_extent_inline_ref_type(leaf, iref,
4167 						 BTRFS_TREE_BLOCK_REF_KEY);
4168 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
4169 	}
4170 
4171 	btrfs_mark_buffer_dirty(leaf);
4172 	btrfs_free_path(path);
4173 
4174 	ret = update_block_group(trans, root, ins->objectid, ins->offset,
4175 				 1, 0);
4176 	if (ret) {
4177 		printk(KERN_ERR "btrfs update block group failed for %llu "
4178 		       "%llu\n", (unsigned long long)ins->objectid,
4179 		       (unsigned long long)ins->offset);
4180 		BUG();
4181 	}
4182 	return ret;
4183 }
4184 
4185 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4186 				     struct btrfs_root *root,
4187 				     u64 root_objectid, u64 owner,
4188 				     u64 offset, struct btrfs_key *ins)
4189 {
4190 	int ret;
4191 
4192 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4193 
4194 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
4195 					 0, root_objectid, owner, offset,
4196 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
4197 	return ret;
4198 }
4199 
4200 /*
4201  * this is used by the tree logging recovery code.  It records that
4202  * an extent has been allocated and makes sure to clear the free
4203  * space cache bits as well
4204  */
4205 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4206 				   struct btrfs_root *root,
4207 				   u64 root_objectid, u64 owner, u64 offset,
4208 				   struct btrfs_key *ins)
4209 {
4210 	int ret;
4211 	struct btrfs_block_group_cache *block_group;
4212 
4213 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
4214 	cache_block_group(block_group);
4215 	wait_event(block_group->caching_q,
4216 		   block_group_cache_done(block_group));
4217 
4218 	ret = btrfs_remove_free_space(block_group, ins->objectid,
4219 				      ins->offset);
4220 	BUG_ON(ret);
4221 	btrfs_put_block_group(block_group);
4222 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
4223 					 0, owner, offset, ins, 1);
4224 	return ret;
4225 }
4226 
4227 /*
4228  * finds a free extent and does all the dirty work required for allocation
4229  * returns the key for the extent through ins, and a tree buffer for
4230  * the first block of the extent through buf.
4231  *
4232  * returns 0 if everything worked, non-zero otherwise.
4233  */
4234 static int alloc_tree_block(struct btrfs_trans_handle *trans,
4235 			    struct btrfs_root *root,
4236 			    u64 num_bytes, u64 parent, u64 root_objectid,
4237 			    struct btrfs_disk_key *key, int level,
4238 			    u64 empty_size, u64 hint_byte, u64 search_end,
4239 			    struct btrfs_key *ins)
4240 {
4241 	int ret;
4242 	u64 flags = 0;
4243 
4244 	ret = __btrfs_reserve_extent(trans, root, num_bytes, num_bytes,
4245 				     empty_size, hint_byte, search_end,
4246 				     ins, 0);
4247 	if (ret)
4248 		return ret;
4249 
4250 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4251 		if (parent == 0)
4252 			parent = ins->objectid;
4253 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4254 	} else
4255 		BUG_ON(parent > 0);
4256 
4257 	update_reserved_extents(root, ins->objectid, ins->offset, 1);
4258 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4259 		struct btrfs_delayed_extent_op *extent_op;
4260 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
4261 		BUG_ON(!extent_op);
4262 		if (key)
4263 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4264 		else
4265 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4266 		extent_op->flags_to_set = flags;
4267 		extent_op->update_key = 1;
4268 		extent_op->update_flags = 1;
4269 		extent_op->is_data = 0;
4270 
4271 		ret = btrfs_add_delayed_tree_ref(trans, ins->objectid,
4272 					ins->offset, parent, root_objectid,
4273 					level, BTRFS_ADD_DELAYED_EXTENT,
4274 					extent_op);
4275 		BUG_ON(ret);
4276 	}
4277 	return ret;
4278 }
4279 
4280 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
4281 					    struct btrfs_root *root,
4282 					    u64 bytenr, u32 blocksize,
4283 					    int level)
4284 {
4285 	struct extent_buffer *buf;
4286 
4287 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
4288 	if (!buf)
4289 		return ERR_PTR(-ENOMEM);
4290 	btrfs_set_header_generation(buf, trans->transid);
4291 	btrfs_set_buffer_lockdep_class(buf, level);
4292 	btrfs_tree_lock(buf);
4293 	clean_tree_block(trans, root, buf);
4294 
4295 	btrfs_set_lock_blocking(buf);
4296 	btrfs_set_buffer_uptodate(buf);
4297 
4298 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4299 		set_extent_dirty(&root->dirty_log_pages, buf->start,
4300 			 buf->start + buf->len - 1, GFP_NOFS);
4301 	} else {
4302 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4303 			 buf->start + buf->len - 1, GFP_NOFS);
4304 	}
4305 	trans->blocks_used++;
4306 	/* this returns a buffer locked for blocking */
4307 	return buf;
4308 }
4309 
4310 /*
4311  * helper function to allocate a block for a given tree
4312  * returns the tree buffer or NULL.
4313  */
4314 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
4315 					struct btrfs_root *root, u32 blocksize,
4316 					u64 parent, u64 root_objectid,
4317 					struct btrfs_disk_key *key, int level,
4318 					u64 hint, u64 empty_size)
4319 {
4320 	struct btrfs_key ins;
4321 	int ret;
4322 	struct extent_buffer *buf;
4323 
4324 	ret = alloc_tree_block(trans, root, blocksize, parent, root_objectid,
4325 			       key, level, empty_size, hint, (u64)-1, &ins);
4326 	if (ret) {
4327 		BUG_ON(ret > 0);
4328 		return ERR_PTR(ret);
4329 	}
4330 
4331 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
4332 				    blocksize, level);
4333 	return buf;
4334 }
4335 
4336 #if 0
4337 int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans,
4338 			struct btrfs_root *root, struct extent_buffer *leaf)
4339 {
4340 	u64 disk_bytenr;
4341 	u64 num_bytes;
4342 	struct btrfs_key key;
4343 	struct btrfs_file_extent_item *fi;
4344 	u32 nritems;
4345 	int i;
4346 	int ret;
4347 
4348 	BUG_ON(!btrfs_is_leaf(leaf));
4349 	nritems = btrfs_header_nritems(leaf);
4350 
4351 	for (i = 0; i < nritems; i++) {
4352 		cond_resched();
4353 		btrfs_item_key_to_cpu(leaf, &key, i);
4354 
4355 		/* only extents have references, skip everything else */
4356 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
4357 			continue;
4358 
4359 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
4360 
4361 		/* inline extents live in the btree, they don't have refs */
4362 		if (btrfs_file_extent_type(leaf, fi) ==
4363 		    BTRFS_FILE_EXTENT_INLINE)
4364 			continue;
4365 
4366 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
4367 
4368 		/* holes don't have refs */
4369 		if (disk_bytenr == 0)
4370 			continue;
4371 
4372 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
4373 		ret = btrfs_free_extent(trans, root, disk_bytenr, num_bytes,
4374 					leaf->start, 0, key.objectid, 0);
4375 		BUG_ON(ret);
4376 	}
4377 	return 0;
4378 }
4379 
4380 static noinline int cache_drop_leaf_ref(struct btrfs_trans_handle *trans,
4381 					struct btrfs_root *root,
4382 					struct btrfs_leaf_ref *ref)
4383 {
4384 	int i;
4385 	int ret;
4386 	struct btrfs_extent_info *info;
4387 	struct refsort *sorted;
4388 
4389 	if (ref->nritems == 0)
4390 		return 0;
4391 
4392 	sorted = kmalloc(sizeof(*sorted) * ref->nritems, GFP_NOFS);
4393 	for (i = 0; i < ref->nritems; i++) {
4394 		sorted[i].bytenr = ref->extents[i].bytenr;
4395 		sorted[i].slot = i;
4396 	}
4397 	sort(sorted, ref->nritems, sizeof(struct refsort), refsort_cmp, NULL);
4398 
4399 	/*
4400 	 * the items in the ref were sorted when the ref was inserted
4401 	 * into the ref cache, so this is already in order
4402 	 */
4403 	for (i = 0; i < ref->nritems; i++) {
4404 		info = ref->extents + sorted[i].slot;
4405 		ret = btrfs_free_extent(trans, root, info->bytenr,
4406 					  info->num_bytes, ref->bytenr,
4407 					  ref->owner, ref->generation,
4408 					  info->objectid, 0);
4409 
4410 		atomic_inc(&root->fs_info->throttle_gen);
4411 		wake_up(&root->fs_info->transaction_throttle);
4412 		cond_resched();
4413 
4414 		BUG_ON(ret);
4415 		info++;
4416 	}
4417 
4418 	kfree(sorted);
4419 	return 0;
4420 }
4421 
4422 
4423 static int drop_snap_lookup_refcount(struct btrfs_trans_handle *trans,
4424 				     struct btrfs_root *root, u64 start,
4425 				     u64 len, u32 *refs)
4426 {
4427 	int ret;
4428 
4429 	ret = btrfs_lookup_extent_refs(trans, root, start, len, refs);
4430 	BUG_ON(ret);
4431 
4432 #if 0 /* some debugging code in case we see problems here */
4433 	/* if the refs count is one, it won't get increased again.  But
4434 	 * if the ref count is > 1, someone may be decreasing it at
4435 	 * the same time we are.
4436 	 */
4437 	if (*refs != 1) {
4438 		struct extent_buffer *eb = NULL;
4439 		eb = btrfs_find_create_tree_block(root, start, len);
4440 		if (eb)
4441 			btrfs_tree_lock(eb);
4442 
4443 		mutex_lock(&root->fs_info->alloc_mutex);
4444 		ret = lookup_extent_ref(NULL, root, start, len, refs);
4445 		BUG_ON(ret);
4446 		mutex_unlock(&root->fs_info->alloc_mutex);
4447 
4448 		if (eb) {
4449 			btrfs_tree_unlock(eb);
4450 			free_extent_buffer(eb);
4451 		}
4452 		if (*refs == 1) {
4453 			printk(KERN_ERR "btrfs block %llu went down to one "
4454 			       "during drop_snap\n", (unsigned long long)start);
4455 		}
4456 
4457 	}
4458 #endif
4459 
4460 	cond_resched();
4461 	return ret;
4462 }
4463 
4464 
4465 /*
4466  * this is used while deleting old snapshots, and it drops the refs
4467  * on a whole subtree starting from a level 1 node.
4468  *
4469  * The idea is to sort all the leaf pointers, and then drop the
4470  * ref on all the leaves in order.  Most of the time the leaves
4471  * will have ref cache entries, so no leaf IOs will be required to
4472  * find the extents they have references on.
4473  *
4474  * For each leaf, any references it has are also dropped in order
4475  *
4476  * This ends up dropping the references in something close to optimal
4477  * order for reading and modifying the extent allocation tree.
4478  */
4479 static noinline int drop_level_one_refs(struct btrfs_trans_handle *trans,
4480 					struct btrfs_root *root,
4481 					struct btrfs_path *path)
4482 {
4483 	u64 bytenr;
4484 	u64 root_owner;
4485 	u64 root_gen;
4486 	struct extent_buffer *eb = path->nodes[1];
4487 	struct extent_buffer *leaf;
4488 	struct btrfs_leaf_ref *ref;
4489 	struct refsort *sorted = NULL;
4490 	int nritems = btrfs_header_nritems(eb);
4491 	int ret;
4492 	int i;
4493 	int refi = 0;
4494 	int slot = path->slots[1];
4495 	u32 blocksize = btrfs_level_size(root, 0);
4496 	u32 refs;
4497 
4498 	if (nritems == 0)
4499 		goto out;
4500 
4501 	root_owner = btrfs_header_owner(eb);
4502 	root_gen = btrfs_header_generation(eb);
4503 	sorted = kmalloc(sizeof(*sorted) * nritems, GFP_NOFS);
4504 
4505 	/*
4506 	 * step one, sort all the leaf pointers so we don't scribble
4507 	 * randomly into the extent allocation tree
4508 	 */
4509 	for (i = slot; i < nritems; i++) {
4510 		sorted[refi].bytenr = btrfs_node_blockptr(eb, i);
4511 		sorted[refi].slot = i;
4512 		refi++;
4513 	}
4514 
4515 	/*
4516 	 * nritems won't be zero, but if we're picking up drop_snapshot
4517 	 * after a crash, slot might be > 0, so double check things
4518 	 * just in case.
4519 	 */
4520 	if (refi == 0)
4521 		goto out;
4522 
4523 	sort(sorted, refi, sizeof(struct refsort), refsort_cmp, NULL);
4524 
4525 	/*
4526 	 * the first loop frees everything the leaves point to
4527 	 */
4528 	for (i = 0; i < refi; i++) {
4529 		u64 ptr_gen;
4530 
4531 		bytenr = sorted[i].bytenr;
4532 
4533 		/*
4534 		 * check the reference count on this leaf.  If it is > 1
4535 		 * we just decrement it below and don't update any
4536 		 * of the refs the leaf points to.
4537 		 */
4538 		ret = drop_snap_lookup_refcount(trans, root, bytenr,
4539 						blocksize, &refs);
4540 		BUG_ON(ret);
4541 		if (refs != 1)
4542 			continue;
4543 
4544 		ptr_gen = btrfs_node_ptr_generation(eb, sorted[i].slot);
4545 
4546 		/*
4547 		 * the leaf only had one reference, which means the
4548 		 * only thing pointing to this leaf is the snapshot
4549 		 * we're deleting.  It isn't possible for the reference
4550 		 * count to increase again later
4551 		 *
4552 		 * The reference cache is checked for the leaf,
4553 		 * and if found we'll be able to drop any refs held by
4554 		 * the leaf without needing to read it in.
4555 		 */
4556 		ref = btrfs_lookup_leaf_ref(root, bytenr);
4557 		if (ref && ref->generation != ptr_gen) {
4558 			btrfs_free_leaf_ref(root, ref);
4559 			ref = NULL;
4560 		}
4561 		if (ref) {
4562 			ret = cache_drop_leaf_ref(trans, root, ref);
4563 			BUG_ON(ret);
4564 			btrfs_remove_leaf_ref(root, ref);
4565 			btrfs_free_leaf_ref(root, ref);
4566 		} else {
4567 			/*
4568 			 * the leaf wasn't in the reference cache, so
4569 			 * we have to read it.
4570 			 */
4571 			leaf = read_tree_block(root, bytenr, blocksize,
4572 					       ptr_gen);
4573 			ret = btrfs_drop_leaf_ref(trans, root, leaf);
4574 			BUG_ON(ret);
4575 			free_extent_buffer(leaf);
4576 		}
4577 		atomic_inc(&root->fs_info->throttle_gen);
4578 		wake_up(&root->fs_info->transaction_throttle);
4579 		cond_resched();
4580 	}
4581 
4582 	/*
4583 	 * run through the loop again to free the refs on the leaves.
4584 	 * This is faster than doing it in the loop above because
4585 	 * the leaves are likely to be clustered together.  We end up
4586 	 * working in nice chunks on the extent allocation tree.
4587 	 */
4588 	for (i = 0; i < refi; i++) {
4589 		bytenr = sorted[i].bytenr;
4590 		ret = btrfs_free_extent(trans, root, bytenr,
4591 					blocksize, eb->start,
4592 					root_owner, root_gen, 0, 1);
4593 		BUG_ON(ret);
4594 
4595 		atomic_inc(&root->fs_info->throttle_gen);
4596 		wake_up(&root->fs_info->transaction_throttle);
4597 		cond_resched();
4598 	}
4599 out:
4600 	kfree(sorted);
4601 
4602 	/*
4603 	 * update the path to show we've processed the entire level 1
4604 	 * node.  This will get saved into the root's drop_snapshot_progress
4605 	 * field so these drops are not repeated again if this transaction
4606 	 * commits.
4607 	 */
4608 	path->slots[1] = nritems;
4609 	return 0;
4610 }
4611 
4612 /*
4613  * helper function for drop_snapshot, this walks down the tree dropping ref
4614  * counts as it goes.
4615  */
4616 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
4617 				   struct btrfs_root *root,
4618 				   struct btrfs_path *path, int *level)
4619 {
4620 	u64 root_owner;
4621 	u64 root_gen;
4622 	u64 bytenr;
4623 	u64 ptr_gen;
4624 	struct extent_buffer *next;
4625 	struct extent_buffer *cur;
4626 	struct extent_buffer *parent;
4627 	u32 blocksize;
4628 	int ret;
4629 	u32 refs;
4630 
4631 	WARN_ON(*level < 0);
4632 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
4633 	ret = drop_snap_lookup_refcount(trans, root, path->nodes[*level]->start,
4634 				path->nodes[*level]->len, &refs);
4635 	BUG_ON(ret);
4636 	if (refs > 1)
4637 		goto out;
4638 
4639 	/*
4640 	 * walk down to the last node level and free all the leaves
4641 	 */
4642 	while (*level >= 0) {
4643 		WARN_ON(*level < 0);
4644 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
4645 		cur = path->nodes[*level];
4646 
4647 		if (btrfs_header_level(cur) != *level)
4648 			WARN_ON(1);
4649 
4650 		if (path->slots[*level] >=
4651 		    btrfs_header_nritems(cur))
4652 			break;
4653 
4654 		/* the new code goes down to level 1 and does all the
4655 		 * leaves pointed to that node in bulk.  So, this check
4656 		 * for level 0 will always be false.
4657 		 *
4658 		 * But, the disk format allows the drop_snapshot_progress
4659 		 * field in the root to leave things in a state where
4660 		 * a leaf will need cleaning up here.  If someone crashes
4661 		 * with the old code and then boots with the new code,
4662 		 * we might find a leaf here.
4663 		 */
4664 		if (*level == 0) {
4665 			ret = btrfs_drop_leaf_ref(trans, root, cur);
4666 			BUG_ON(ret);
4667 			break;
4668 		}
4669 
4670 		/*
4671 		 * once we get to level one, process the whole node
4672 		 * at once, including everything below it.
4673 		 */
4674 		if (*level == 1) {
4675 			ret = drop_level_one_refs(trans, root, path);
4676 			BUG_ON(ret);
4677 			break;
4678 		}
4679 
4680 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
4681 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
4682 		blocksize = btrfs_level_size(root, *level - 1);
4683 
4684 		ret = drop_snap_lookup_refcount(trans, root, bytenr,
4685 						blocksize, &refs);
4686 		BUG_ON(ret);
4687 
4688 		/*
4689 		 * if there is more than one reference, we don't need
4690 		 * to read that node to drop any references it has.  We
4691 		 * just drop the ref we hold on that node and move on to the
4692 		 * next slot in this level.
4693 		 */
4694 		if (refs != 1) {
4695 			parent = path->nodes[*level];
4696 			root_owner = btrfs_header_owner(parent);
4697 			root_gen = btrfs_header_generation(parent);
4698 			path->slots[*level]++;
4699 
4700 			ret = btrfs_free_extent(trans, root, bytenr,
4701 						blocksize, parent->start,
4702 						root_owner, root_gen,
4703 						*level - 1, 1);
4704 			BUG_ON(ret);
4705 
4706 			atomic_inc(&root->fs_info->throttle_gen);
4707 			wake_up(&root->fs_info->transaction_throttle);
4708 			cond_resched();
4709 
4710 			continue;
4711 		}
4712 
4713 		/*
4714 		 * we need to keep freeing things in the next level down.
4715 		 * read the block and loop around to process it
4716 		 */
4717 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
4718 		WARN_ON(*level <= 0);
4719 		if (path->nodes[*level-1])
4720 			free_extent_buffer(path->nodes[*level-1]);
4721 		path->nodes[*level-1] = next;
4722 		*level = btrfs_header_level(next);
4723 		path->slots[*level] = 0;
4724 		cond_resched();
4725 	}
4726 out:
4727 	WARN_ON(*level < 0);
4728 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
4729 
4730 	if (path->nodes[*level] == root->node) {
4731 		parent = path->nodes[*level];
4732 		bytenr = path->nodes[*level]->start;
4733 	} else {
4734 		parent = path->nodes[*level + 1];
4735 		bytenr = btrfs_node_blockptr(parent, path->slots[*level + 1]);
4736 	}
4737 
4738 	blocksize = btrfs_level_size(root, *level);
4739 	root_owner = btrfs_header_owner(parent);
4740 	root_gen = btrfs_header_generation(parent);
4741 
4742 	/*
4743 	 * cleanup and free the reference on the last node
4744 	 * we processed
4745 	 */
4746 	ret = btrfs_free_extent(trans, root, bytenr, blocksize,
4747 				  parent->start, root_owner, root_gen,
4748 				  *level, 1);
4749 	free_extent_buffer(path->nodes[*level]);
4750 	path->nodes[*level] = NULL;
4751 
4752 	*level += 1;
4753 	BUG_ON(ret);
4754 
4755 	cond_resched();
4756 	return 0;
4757 }
4758 #endif
4759 
4760 struct walk_control {
4761 	u64 refs[BTRFS_MAX_LEVEL];
4762 	u64 flags[BTRFS_MAX_LEVEL];
4763 	struct btrfs_key update_progress;
4764 	int stage;
4765 	int level;
4766 	int shared_level;
4767 	int update_ref;
4768 	int keep_locks;
4769 };
4770 
4771 #define DROP_REFERENCE	1
4772 #define UPDATE_BACKREF	2
4773 
4774 /*
4775  * hepler to process tree block while walking down the tree.
4776  *
4777  * when wc->stage == DROP_REFERENCE, this function checks
4778  * reference count of the block. if the block is shared and
4779  * we need update back refs for the subtree rooted at the
4780  * block, this function changes wc->stage to UPDATE_BACKREF
4781  *
4782  * when wc->stage == UPDATE_BACKREF, this function updates
4783  * back refs for pointers in the block.
4784  *
4785  * NOTE: return value 1 means we should stop walking down.
4786  */
4787 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4788 				   struct btrfs_root *root,
4789 				   struct btrfs_path *path,
4790 				   struct walk_control *wc)
4791 {
4792 	int level = wc->level;
4793 	struct extent_buffer *eb = path->nodes[level];
4794 	struct btrfs_key key;
4795 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4796 	int ret;
4797 
4798 	if (wc->stage == UPDATE_BACKREF &&
4799 	    btrfs_header_owner(eb) != root->root_key.objectid)
4800 		return 1;
4801 
4802 	/*
4803 	 * when reference count of tree block is 1, it won't increase
4804 	 * again. once full backref flag is set, we never clear it.
4805 	 */
4806 	if ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4807 	    (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag))) {
4808 		BUG_ON(!path->locks[level]);
4809 		ret = btrfs_lookup_extent_info(trans, root,
4810 					       eb->start, eb->len,
4811 					       &wc->refs[level],
4812 					       &wc->flags[level]);
4813 		BUG_ON(ret);
4814 		BUG_ON(wc->refs[level] == 0);
4815 	}
4816 
4817 	if (wc->stage == DROP_REFERENCE &&
4818 	    wc->update_ref && wc->refs[level] > 1) {
4819 		BUG_ON(eb == root->node);
4820 		BUG_ON(path->slots[level] > 0);
4821 		if (level == 0)
4822 			btrfs_item_key_to_cpu(eb, &key, path->slots[level]);
4823 		else
4824 			btrfs_node_key_to_cpu(eb, &key, path->slots[level]);
4825 		if (btrfs_header_owner(eb) == root->root_key.objectid &&
4826 		    btrfs_comp_cpu_keys(&key, &wc->update_progress) >= 0) {
4827 			wc->stage = UPDATE_BACKREF;
4828 			wc->shared_level = level;
4829 		}
4830 	}
4831 
4832 	if (wc->stage == DROP_REFERENCE) {
4833 		if (wc->refs[level] > 1)
4834 			return 1;
4835 
4836 		if (path->locks[level] && !wc->keep_locks) {
4837 			btrfs_tree_unlock(eb);
4838 			path->locks[level] = 0;
4839 		}
4840 		return 0;
4841 	}
4842 
4843 	/* wc->stage == UPDATE_BACKREF */
4844 	if (!(wc->flags[level] & flag)) {
4845 		BUG_ON(!path->locks[level]);
4846 		ret = btrfs_inc_ref(trans, root, eb, 1);
4847 		BUG_ON(ret);
4848 		ret = btrfs_dec_ref(trans, root, eb, 0);
4849 		BUG_ON(ret);
4850 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
4851 						  eb->len, flag, 0);
4852 		BUG_ON(ret);
4853 		wc->flags[level] |= flag;
4854 	}
4855 
4856 	/*
4857 	 * the block is shared by multiple trees, so it's not good to
4858 	 * keep the tree lock
4859 	 */
4860 	if (path->locks[level] && level > 0) {
4861 		btrfs_tree_unlock(eb);
4862 		path->locks[level] = 0;
4863 	}
4864 	return 0;
4865 }
4866 
4867 /*
4868  * hepler to process tree block while walking up the tree.
4869  *
4870  * when wc->stage == DROP_REFERENCE, this function drops
4871  * reference count on the block.
4872  *
4873  * when wc->stage == UPDATE_BACKREF, this function changes
4874  * wc->stage back to DROP_REFERENCE if we changed wc->stage
4875  * to UPDATE_BACKREF previously while processing the block.
4876  *
4877  * NOTE: return value 1 means we should stop walking up.
4878  */
4879 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4880 				 struct btrfs_root *root,
4881 				 struct btrfs_path *path,
4882 				 struct walk_control *wc)
4883 {
4884 	int ret = 0;
4885 	int level = wc->level;
4886 	struct extent_buffer *eb = path->nodes[level];
4887 	u64 parent = 0;
4888 
4889 	if (wc->stage == UPDATE_BACKREF) {
4890 		BUG_ON(wc->shared_level < level);
4891 		if (level < wc->shared_level)
4892 			goto out;
4893 
4894 		BUG_ON(wc->refs[level] <= 1);
4895 		ret = find_next_key(path, level + 1, &wc->update_progress);
4896 		if (ret > 0)
4897 			wc->update_ref = 0;
4898 
4899 		wc->stage = DROP_REFERENCE;
4900 		wc->shared_level = -1;
4901 		path->slots[level] = 0;
4902 
4903 		/*
4904 		 * check reference count again if the block isn't locked.
4905 		 * we should start walking down the tree again if reference
4906 		 * count is one.
4907 		 */
4908 		if (!path->locks[level]) {
4909 			BUG_ON(level == 0);
4910 			btrfs_tree_lock(eb);
4911 			btrfs_set_lock_blocking(eb);
4912 			path->locks[level] = 1;
4913 
4914 			ret = btrfs_lookup_extent_info(trans, root,
4915 						       eb->start, eb->len,
4916 						       &wc->refs[level],
4917 						       &wc->flags[level]);
4918 			BUG_ON(ret);
4919 			BUG_ON(wc->refs[level] == 0);
4920 			if (wc->refs[level] == 1) {
4921 				btrfs_tree_unlock(eb);
4922 				path->locks[level] = 0;
4923 				return 1;
4924 			}
4925 		} else {
4926 			BUG_ON(level != 0);
4927 		}
4928 	}
4929 
4930 	/* wc->stage == DROP_REFERENCE */
4931 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
4932 
4933 	if (wc->refs[level] == 1) {
4934 		if (level == 0) {
4935 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4936 				ret = btrfs_dec_ref(trans, root, eb, 1);
4937 			else
4938 				ret = btrfs_dec_ref(trans, root, eb, 0);
4939 			BUG_ON(ret);
4940 		}
4941 		/* make block locked assertion in clean_tree_block happy */
4942 		if (!path->locks[level] &&
4943 		    btrfs_header_generation(eb) == trans->transid) {
4944 			btrfs_tree_lock(eb);
4945 			btrfs_set_lock_blocking(eb);
4946 			path->locks[level] = 1;
4947 		}
4948 		clean_tree_block(trans, root, eb);
4949 	}
4950 
4951 	if (eb == root->node) {
4952 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4953 			parent = eb->start;
4954 		else
4955 			BUG_ON(root->root_key.objectid !=
4956 			       btrfs_header_owner(eb));
4957 	} else {
4958 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
4959 			parent = path->nodes[level + 1]->start;
4960 		else
4961 			BUG_ON(root->root_key.objectid !=
4962 			       btrfs_header_owner(path->nodes[level + 1]));
4963 	}
4964 
4965 	ret = btrfs_free_extent(trans, root, eb->start, eb->len, parent,
4966 				root->root_key.objectid, level, 0);
4967 	BUG_ON(ret);
4968 out:
4969 	wc->refs[level] = 0;
4970 	wc->flags[level] = 0;
4971 	return ret;
4972 }
4973 
4974 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
4975 				   struct btrfs_root *root,
4976 				   struct btrfs_path *path,
4977 				   struct walk_control *wc)
4978 {
4979 	struct extent_buffer *next;
4980 	struct extent_buffer *cur;
4981 	u64 bytenr;
4982 	u64 ptr_gen;
4983 	u32 blocksize;
4984 	int level = wc->level;
4985 	int ret;
4986 
4987 	while (level >= 0) {
4988 		cur = path->nodes[level];
4989 		BUG_ON(path->slots[level] >= btrfs_header_nritems(cur));
4990 
4991 		ret = walk_down_proc(trans, root, path, wc);
4992 		if (ret > 0)
4993 			break;
4994 
4995 		if (level == 0)
4996 			break;
4997 
4998 		bytenr = btrfs_node_blockptr(cur, path->slots[level]);
4999 		blocksize = btrfs_level_size(root, level - 1);
5000 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[level]);
5001 
5002 		next = read_tree_block(root, bytenr, blocksize, ptr_gen);
5003 		btrfs_tree_lock(next);
5004 		btrfs_set_lock_blocking(next);
5005 
5006 		level--;
5007 		BUG_ON(level != btrfs_header_level(next));
5008 		path->nodes[level] = next;
5009 		path->slots[level] = 0;
5010 		path->locks[level] = 1;
5011 		wc->level = level;
5012 	}
5013 	return 0;
5014 }
5015 
5016 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5017 				 struct btrfs_root *root,
5018 				 struct btrfs_path *path,
5019 				 struct walk_control *wc, int max_level)
5020 {
5021 	int level = wc->level;
5022 	int ret;
5023 
5024 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5025 	while (level < max_level && path->nodes[level]) {
5026 		wc->level = level;
5027 		if (path->slots[level] + 1 <
5028 		    btrfs_header_nritems(path->nodes[level])) {
5029 			path->slots[level]++;
5030 			return 0;
5031 		} else {
5032 			ret = walk_up_proc(trans, root, path, wc);
5033 			if (ret > 0)
5034 				return 0;
5035 
5036 			if (path->locks[level]) {
5037 				btrfs_tree_unlock(path->nodes[level]);
5038 				path->locks[level] = 0;
5039 			}
5040 			free_extent_buffer(path->nodes[level]);
5041 			path->nodes[level] = NULL;
5042 			level++;
5043 		}
5044 	}
5045 	return 1;
5046 }
5047 
5048 /*
5049  * drop a subvolume tree.
5050  *
5051  * this function traverses the tree freeing any blocks that only
5052  * referenced by the tree.
5053  *
5054  * when a shared tree block is found. this function decreases its
5055  * reference count by one. if update_ref is true, this function
5056  * also make sure backrefs for the shared block and all lower level
5057  * blocks are properly updated.
5058  */
5059 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref)
5060 {
5061 	struct btrfs_path *path;
5062 	struct btrfs_trans_handle *trans;
5063 	struct btrfs_root *tree_root = root->fs_info->tree_root;
5064 	struct btrfs_root_item *root_item = &root->root_item;
5065 	struct walk_control *wc;
5066 	struct btrfs_key key;
5067 	int err = 0;
5068 	int ret;
5069 	int level;
5070 
5071 	path = btrfs_alloc_path();
5072 	BUG_ON(!path);
5073 
5074 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5075 	BUG_ON(!wc);
5076 
5077 	trans = btrfs_start_transaction(tree_root, 1);
5078 
5079 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5080 		level = btrfs_header_level(root->node);
5081 		path->nodes[level] = btrfs_lock_root_node(root);
5082 		btrfs_set_lock_blocking(path->nodes[level]);
5083 		path->slots[level] = 0;
5084 		path->locks[level] = 1;
5085 		memset(&wc->update_progress, 0,
5086 		       sizeof(wc->update_progress));
5087 	} else {
5088 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5089 		memcpy(&wc->update_progress, &key,
5090 		       sizeof(wc->update_progress));
5091 
5092 		level = root_item->drop_level;
5093 		BUG_ON(level == 0);
5094 		path->lowest_level = level;
5095 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5096 		path->lowest_level = 0;
5097 		if (ret < 0) {
5098 			err = ret;
5099 			goto out;
5100 		}
5101 		btrfs_node_key_to_cpu(path->nodes[level], &key,
5102 				      path->slots[level]);
5103 		WARN_ON(memcmp(&key, &wc->update_progress, sizeof(key)));
5104 
5105 		/*
5106 		 * unlock our path, this is safe because only this
5107 		 * function is allowed to delete this snapshot
5108 		 */
5109 		btrfs_unlock_up_safe(path, 0);
5110 
5111 		level = btrfs_header_level(root->node);
5112 		while (1) {
5113 			btrfs_tree_lock(path->nodes[level]);
5114 			btrfs_set_lock_blocking(path->nodes[level]);
5115 
5116 			ret = btrfs_lookup_extent_info(trans, root,
5117 						path->nodes[level]->start,
5118 						path->nodes[level]->len,
5119 						&wc->refs[level],
5120 						&wc->flags[level]);
5121 			BUG_ON(ret);
5122 			BUG_ON(wc->refs[level] == 0);
5123 
5124 			if (level == root_item->drop_level)
5125 				break;
5126 
5127 			btrfs_tree_unlock(path->nodes[level]);
5128 			WARN_ON(wc->refs[level] != 1);
5129 			level--;
5130 		}
5131 	}
5132 
5133 	wc->level = level;
5134 	wc->shared_level = -1;
5135 	wc->stage = DROP_REFERENCE;
5136 	wc->update_ref = update_ref;
5137 	wc->keep_locks = 0;
5138 
5139 	while (1) {
5140 		ret = walk_down_tree(trans, root, path, wc);
5141 		if (ret < 0) {
5142 			err = ret;
5143 			break;
5144 		}
5145 
5146 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5147 		if (ret < 0) {
5148 			err = ret;
5149 			break;
5150 		}
5151 
5152 		if (ret > 0) {
5153 			BUG_ON(wc->stage != DROP_REFERENCE);
5154 			break;
5155 		}
5156 
5157 		if (wc->stage == DROP_REFERENCE) {
5158 			level = wc->level;
5159 			btrfs_node_key(path->nodes[level],
5160 				       &root_item->drop_progress,
5161 				       path->slots[level]);
5162 			root_item->drop_level = level;
5163 		}
5164 
5165 		BUG_ON(wc->level == 0);
5166 		if (trans->transaction->in_commit ||
5167 		    trans->transaction->delayed_refs.flushing) {
5168 			ret = btrfs_update_root(trans, tree_root,
5169 						&root->root_key,
5170 						root_item);
5171 			BUG_ON(ret);
5172 
5173 			btrfs_end_transaction(trans, tree_root);
5174 			trans = btrfs_start_transaction(tree_root, 1);
5175 		} else {
5176 			unsigned long update;
5177 			update = trans->delayed_ref_updates;
5178 			trans->delayed_ref_updates = 0;
5179 			if (update)
5180 				btrfs_run_delayed_refs(trans, tree_root,
5181 						       update);
5182 		}
5183 	}
5184 	btrfs_release_path(root, path);
5185 	BUG_ON(err);
5186 
5187 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
5188 	BUG_ON(ret);
5189 
5190 	free_extent_buffer(root->node);
5191 	free_extent_buffer(root->commit_root);
5192 	kfree(root);
5193 out:
5194 	btrfs_end_transaction(trans, tree_root);
5195 	kfree(wc);
5196 	btrfs_free_path(path);
5197 	return err;
5198 }
5199 
5200 /*
5201  * drop subtree rooted at tree block 'node'.
5202  *
5203  * NOTE: this function will unlock and release tree block 'node'
5204  */
5205 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5206 			struct btrfs_root *root,
5207 			struct extent_buffer *node,
5208 			struct extent_buffer *parent)
5209 {
5210 	struct btrfs_path *path;
5211 	struct walk_control *wc;
5212 	int level;
5213 	int parent_level;
5214 	int ret = 0;
5215 	int wret;
5216 
5217 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5218 
5219 	path = btrfs_alloc_path();
5220 	BUG_ON(!path);
5221 
5222 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5223 	BUG_ON(!wc);
5224 
5225 	btrfs_assert_tree_locked(parent);
5226 	parent_level = btrfs_header_level(parent);
5227 	extent_buffer_get(parent);
5228 	path->nodes[parent_level] = parent;
5229 	path->slots[parent_level] = btrfs_header_nritems(parent);
5230 
5231 	btrfs_assert_tree_locked(node);
5232 	level = btrfs_header_level(node);
5233 	path->nodes[level] = node;
5234 	path->slots[level] = 0;
5235 	path->locks[level] = 1;
5236 
5237 	wc->refs[parent_level] = 1;
5238 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5239 	wc->level = level;
5240 	wc->shared_level = -1;
5241 	wc->stage = DROP_REFERENCE;
5242 	wc->update_ref = 0;
5243 	wc->keep_locks = 1;
5244 
5245 	while (1) {
5246 		wret = walk_down_tree(trans, root, path, wc);
5247 		if (wret < 0) {
5248 			ret = wret;
5249 			break;
5250 		}
5251 
5252 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5253 		if (wret < 0)
5254 			ret = wret;
5255 		if (wret != 0)
5256 			break;
5257 	}
5258 
5259 	kfree(wc);
5260 	btrfs_free_path(path);
5261 	return ret;
5262 }
5263 
5264 #if 0
5265 static unsigned long calc_ra(unsigned long start, unsigned long last,
5266 			     unsigned long nr)
5267 {
5268 	return min(last, start + nr - 1);
5269 }
5270 
5271 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
5272 					 u64 len)
5273 {
5274 	u64 page_start;
5275 	u64 page_end;
5276 	unsigned long first_index;
5277 	unsigned long last_index;
5278 	unsigned long i;
5279 	struct page *page;
5280 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5281 	struct file_ra_state *ra;
5282 	struct btrfs_ordered_extent *ordered;
5283 	unsigned int total_read = 0;
5284 	unsigned int total_dirty = 0;
5285 	int ret = 0;
5286 
5287 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
5288 
5289 	mutex_lock(&inode->i_mutex);
5290 	first_index = start >> PAGE_CACHE_SHIFT;
5291 	last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
5292 
5293 	/* make sure the dirty trick played by the caller work */
5294 	ret = invalidate_inode_pages2_range(inode->i_mapping,
5295 					    first_index, last_index);
5296 	if (ret)
5297 		goto out_unlock;
5298 
5299 	file_ra_state_init(ra, inode->i_mapping);
5300 
5301 	for (i = first_index ; i <= last_index; i++) {
5302 		if (total_read % ra->ra_pages == 0) {
5303 			btrfs_force_ra(inode->i_mapping, ra, NULL, i,
5304 				       calc_ra(i, last_index, ra->ra_pages));
5305 		}
5306 		total_read++;
5307 again:
5308 		if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
5309 			BUG_ON(1);
5310 		page = grab_cache_page(inode->i_mapping, i);
5311 		if (!page) {
5312 			ret = -ENOMEM;
5313 			goto out_unlock;
5314 		}
5315 		if (!PageUptodate(page)) {
5316 			btrfs_readpage(NULL, page);
5317 			lock_page(page);
5318 			if (!PageUptodate(page)) {
5319 				unlock_page(page);
5320 				page_cache_release(page);
5321 				ret = -EIO;
5322 				goto out_unlock;
5323 			}
5324 		}
5325 		wait_on_page_writeback(page);
5326 
5327 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
5328 		page_end = page_start + PAGE_CACHE_SIZE - 1;
5329 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5330 
5331 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
5332 		if (ordered) {
5333 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5334 			unlock_page(page);
5335 			page_cache_release(page);
5336 			btrfs_start_ordered_extent(inode, ordered, 1);
5337 			btrfs_put_ordered_extent(ordered);
5338 			goto again;
5339 		}
5340 		set_page_extent_mapped(page);
5341 
5342 		if (i == first_index)
5343 			set_extent_bits(io_tree, page_start, page_end,
5344 					EXTENT_BOUNDARY, GFP_NOFS);
5345 		btrfs_set_extent_delalloc(inode, page_start, page_end);
5346 
5347 		set_page_dirty(page);
5348 		total_dirty++;
5349 
5350 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5351 		unlock_page(page);
5352 		page_cache_release(page);
5353 	}
5354 
5355 out_unlock:
5356 	kfree(ra);
5357 	mutex_unlock(&inode->i_mutex);
5358 	balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
5359 	return ret;
5360 }
5361 
5362 static noinline int relocate_data_extent(struct inode *reloc_inode,
5363 					 struct btrfs_key *extent_key,
5364 					 u64 offset)
5365 {
5366 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5367 	struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
5368 	struct extent_map *em;
5369 	u64 start = extent_key->objectid - offset;
5370 	u64 end = start + extent_key->offset - 1;
5371 
5372 	em = alloc_extent_map(GFP_NOFS);
5373 	BUG_ON(!em || IS_ERR(em));
5374 
5375 	em->start = start;
5376 	em->len = extent_key->offset;
5377 	em->block_len = extent_key->offset;
5378 	em->block_start = extent_key->objectid;
5379 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5380 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5381 
5382 	/* setup extent map to cheat btrfs_readpage */
5383 	lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5384 	while (1) {
5385 		int ret;
5386 		spin_lock(&em_tree->lock);
5387 		ret = add_extent_mapping(em_tree, em);
5388 		spin_unlock(&em_tree->lock);
5389 		if (ret != -EEXIST) {
5390 			free_extent_map(em);
5391 			break;
5392 		}
5393 		btrfs_drop_extent_cache(reloc_inode, start, end, 0);
5394 	}
5395 	unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
5396 
5397 	return relocate_inode_pages(reloc_inode, start, extent_key->offset);
5398 }
5399 
5400 struct btrfs_ref_path {
5401 	u64 extent_start;
5402 	u64 nodes[BTRFS_MAX_LEVEL];
5403 	u64 root_objectid;
5404 	u64 root_generation;
5405 	u64 owner_objectid;
5406 	u32 num_refs;
5407 	int lowest_level;
5408 	int current_level;
5409 	int shared_level;
5410 
5411 	struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
5412 	u64 new_nodes[BTRFS_MAX_LEVEL];
5413 };
5414 
5415 struct disk_extent {
5416 	u64 ram_bytes;
5417 	u64 disk_bytenr;
5418 	u64 disk_num_bytes;
5419 	u64 offset;
5420 	u64 num_bytes;
5421 	u8 compression;
5422 	u8 encryption;
5423 	u16 other_encoding;
5424 };
5425 
5426 static int is_cowonly_root(u64 root_objectid)
5427 {
5428 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
5429 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
5430 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
5431 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
5432 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
5433 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
5434 		return 1;
5435 	return 0;
5436 }
5437 
5438 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
5439 				    struct btrfs_root *extent_root,
5440 				    struct btrfs_ref_path *ref_path,
5441 				    int first_time)
5442 {
5443 	struct extent_buffer *leaf;
5444 	struct btrfs_path *path;
5445 	struct btrfs_extent_ref *ref;
5446 	struct btrfs_key key;
5447 	struct btrfs_key found_key;
5448 	u64 bytenr;
5449 	u32 nritems;
5450 	int level;
5451 	int ret = 1;
5452 
5453 	path = btrfs_alloc_path();
5454 	if (!path)
5455 		return -ENOMEM;
5456 
5457 	if (first_time) {
5458 		ref_path->lowest_level = -1;
5459 		ref_path->current_level = -1;
5460 		ref_path->shared_level = -1;
5461 		goto walk_up;
5462 	}
5463 walk_down:
5464 	level = ref_path->current_level - 1;
5465 	while (level >= -1) {
5466 		u64 parent;
5467 		if (level < ref_path->lowest_level)
5468 			break;
5469 
5470 		if (level >= 0)
5471 			bytenr = ref_path->nodes[level];
5472 		else
5473 			bytenr = ref_path->extent_start;
5474 		BUG_ON(bytenr == 0);
5475 
5476 		parent = ref_path->nodes[level + 1];
5477 		ref_path->nodes[level + 1] = 0;
5478 		ref_path->current_level = level;
5479 		BUG_ON(parent == 0);
5480 
5481 		key.objectid = bytenr;
5482 		key.offset = parent + 1;
5483 		key.type = BTRFS_EXTENT_REF_KEY;
5484 
5485 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5486 		if (ret < 0)
5487 			goto out;
5488 		BUG_ON(ret == 0);
5489 
5490 		leaf = path->nodes[0];
5491 		nritems = btrfs_header_nritems(leaf);
5492 		if (path->slots[0] >= nritems) {
5493 			ret = btrfs_next_leaf(extent_root, path);
5494 			if (ret < 0)
5495 				goto out;
5496 			if (ret > 0)
5497 				goto next;
5498 			leaf = path->nodes[0];
5499 		}
5500 
5501 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5502 		if (found_key.objectid == bytenr &&
5503 		    found_key.type == BTRFS_EXTENT_REF_KEY) {
5504 			if (level < ref_path->shared_level)
5505 				ref_path->shared_level = level;
5506 			goto found;
5507 		}
5508 next:
5509 		level--;
5510 		btrfs_release_path(extent_root, path);
5511 		cond_resched();
5512 	}
5513 	/* reached lowest level */
5514 	ret = 1;
5515 	goto out;
5516 walk_up:
5517 	level = ref_path->current_level;
5518 	while (level < BTRFS_MAX_LEVEL - 1) {
5519 		u64 ref_objectid;
5520 
5521 		if (level >= 0)
5522 			bytenr = ref_path->nodes[level];
5523 		else
5524 			bytenr = ref_path->extent_start;
5525 
5526 		BUG_ON(bytenr == 0);
5527 
5528 		key.objectid = bytenr;
5529 		key.offset = 0;
5530 		key.type = BTRFS_EXTENT_REF_KEY;
5531 
5532 		ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
5533 		if (ret < 0)
5534 			goto out;
5535 
5536 		leaf = path->nodes[0];
5537 		nritems = btrfs_header_nritems(leaf);
5538 		if (path->slots[0] >= nritems) {
5539 			ret = btrfs_next_leaf(extent_root, path);
5540 			if (ret < 0)
5541 				goto out;
5542 			if (ret > 0) {
5543 				/* the extent was freed by someone */
5544 				if (ref_path->lowest_level == level)
5545 					goto out;
5546 				btrfs_release_path(extent_root, path);
5547 				goto walk_down;
5548 			}
5549 			leaf = path->nodes[0];
5550 		}
5551 
5552 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5553 		if (found_key.objectid != bytenr ||
5554 				found_key.type != BTRFS_EXTENT_REF_KEY) {
5555 			/* the extent was freed by someone */
5556 			if (ref_path->lowest_level == level) {
5557 				ret = 1;
5558 				goto out;
5559 			}
5560 			btrfs_release_path(extent_root, path);
5561 			goto walk_down;
5562 		}
5563 found:
5564 		ref = btrfs_item_ptr(leaf, path->slots[0],
5565 				struct btrfs_extent_ref);
5566 		ref_objectid = btrfs_ref_objectid(leaf, ref);
5567 		if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5568 			if (first_time) {
5569 				level = (int)ref_objectid;
5570 				BUG_ON(level >= BTRFS_MAX_LEVEL);
5571 				ref_path->lowest_level = level;
5572 				ref_path->current_level = level;
5573 				ref_path->nodes[level] = bytenr;
5574 			} else {
5575 				WARN_ON(ref_objectid != level);
5576 			}
5577 		} else {
5578 			WARN_ON(level != -1);
5579 		}
5580 		first_time = 0;
5581 
5582 		if (ref_path->lowest_level == level) {
5583 			ref_path->owner_objectid = ref_objectid;
5584 			ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
5585 		}
5586 
5587 		/*
5588 		 * the block is tree root or the block isn't in reference
5589 		 * counted tree.
5590 		 */
5591 		if (found_key.objectid == found_key.offset ||
5592 		    is_cowonly_root(btrfs_ref_root(leaf, ref))) {
5593 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
5594 			ref_path->root_generation =
5595 				btrfs_ref_generation(leaf, ref);
5596 			if (level < 0) {
5597 				/* special reference from the tree log */
5598 				ref_path->nodes[0] = found_key.offset;
5599 				ref_path->current_level = 0;
5600 			}
5601 			ret = 0;
5602 			goto out;
5603 		}
5604 
5605 		level++;
5606 		BUG_ON(ref_path->nodes[level] != 0);
5607 		ref_path->nodes[level] = found_key.offset;
5608 		ref_path->current_level = level;
5609 
5610 		/*
5611 		 * the reference was created in the running transaction,
5612 		 * no need to continue walking up.
5613 		 */
5614 		if (btrfs_ref_generation(leaf, ref) == trans->transid) {
5615 			ref_path->root_objectid = btrfs_ref_root(leaf, ref);
5616 			ref_path->root_generation =
5617 				btrfs_ref_generation(leaf, ref);
5618 			ret = 0;
5619 			goto out;
5620 		}
5621 
5622 		btrfs_release_path(extent_root, path);
5623 		cond_resched();
5624 	}
5625 	/* reached max tree level, but no tree root found. */
5626 	BUG();
5627 out:
5628 	btrfs_free_path(path);
5629 	return ret;
5630 }
5631 
5632 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
5633 				struct btrfs_root *extent_root,
5634 				struct btrfs_ref_path *ref_path,
5635 				u64 extent_start)
5636 {
5637 	memset(ref_path, 0, sizeof(*ref_path));
5638 	ref_path->extent_start = extent_start;
5639 
5640 	return __next_ref_path(trans, extent_root, ref_path, 1);
5641 }
5642 
5643 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
5644 			       struct btrfs_root *extent_root,
5645 			       struct btrfs_ref_path *ref_path)
5646 {
5647 	return __next_ref_path(trans, extent_root, ref_path, 0);
5648 }
5649 
5650 static noinline int get_new_locations(struct inode *reloc_inode,
5651 				      struct btrfs_key *extent_key,
5652 				      u64 offset, int no_fragment,
5653 				      struct disk_extent **extents,
5654 				      int *nr_extents)
5655 {
5656 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
5657 	struct btrfs_path *path;
5658 	struct btrfs_file_extent_item *fi;
5659 	struct extent_buffer *leaf;
5660 	struct disk_extent *exts = *extents;
5661 	struct btrfs_key found_key;
5662 	u64 cur_pos;
5663 	u64 last_byte;
5664 	u32 nritems;
5665 	int nr = 0;
5666 	int max = *nr_extents;
5667 	int ret;
5668 
5669 	WARN_ON(!no_fragment && *extents);
5670 	if (!exts) {
5671 		max = 1;
5672 		exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
5673 		if (!exts)
5674 			return -ENOMEM;
5675 	}
5676 
5677 	path = btrfs_alloc_path();
5678 	BUG_ON(!path);
5679 
5680 	cur_pos = extent_key->objectid - offset;
5681 	last_byte = extent_key->objectid + extent_key->offset;
5682 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
5683 				       cur_pos, 0);
5684 	if (ret < 0)
5685 		goto out;
5686 	if (ret > 0) {
5687 		ret = -ENOENT;
5688 		goto out;
5689 	}
5690 
5691 	while (1) {
5692 		leaf = path->nodes[0];
5693 		nritems = btrfs_header_nritems(leaf);
5694 		if (path->slots[0] >= nritems) {
5695 			ret = btrfs_next_leaf(root, path);
5696 			if (ret < 0)
5697 				goto out;
5698 			if (ret > 0)
5699 				break;
5700 			leaf = path->nodes[0];
5701 		}
5702 
5703 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5704 		if (found_key.offset != cur_pos ||
5705 		    found_key.type != BTRFS_EXTENT_DATA_KEY ||
5706 		    found_key.objectid != reloc_inode->i_ino)
5707 			break;
5708 
5709 		fi = btrfs_item_ptr(leaf, path->slots[0],
5710 				    struct btrfs_file_extent_item);
5711 		if (btrfs_file_extent_type(leaf, fi) !=
5712 		    BTRFS_FILE_EXTENT_REG ||
5713 		    btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
5714 			break;
5715 
5716 		if (nr == max) {
5717 			struct disk_extent *old = exts;
5718 			max *= 2;
5719 			exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
5720 			memcpy(exts, old, sizeof(*exts) * nr);
5721 			if (old != *extents)
5722 				kfree(old);
5723 		}
5724 
5725 		exts[nr].disk_bytenr =
5726 			btrfs_file_extent_disk_bytenr(leaf, fi);
5727 		exts[nr].disk_num_bytes =
5728 			btrfs_file_extent_disk_num_bytes(leaf, fi);
5729 		exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
5730 		exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
5731 		exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
5732 		exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
5733 		exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
5734 		exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
5735 									   fi);
5736 		BUG_ON(exts[nr].offset > 0);
5737 		BUG_ON(exts[nr].compression || exts[nr].encryption);
5738 		BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
5739 
5740 		cur_pos += exts[nr].num_bytes;
5741 		nr++;
5742 
5743 		if (cur_pos + offset >= last_byte)
5744 			break;
5745 
5746 		if (no_fragment) {
5747 			ret = 1;
5748 			goto out;
5749 		}
5750 		path->slots[0]++;
5751 	}
5752 
5753 	BUG_ON(cur_pos + offset > last_byte);
5754 	if (cur_pos + offset < last_byte) {
5755 		ret = -ENOENT;
5756 		goto out;
5757 	}
5758 	ret = 0;
5759 out:
5760 	btrfs_free_path(path);
5761 	if (ret) {
5762 		if (exts != *extents)
5763 			kfree(exts);
5764 	} else {
5765 		*extents = exts;
5766 		*nr_extents = nr;
5767 	}
5768 	return ret;
5769 }
5770 
5771 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
5772 					struct btrfs_root *root,
5773 					struct btrfs_path *path,
5774 					struct btrfs_key *extent_key,
5775 					struct btrfs_key *leaf_key,
5776 					struct btrfs_ref_path *ref_path,
5777 					struct disk_extent *new_extents,
5778 					int nr_extents)
5779 {
5780 	struct extent_buffer *leaf;
5781 	struct btrfs_file_extent_item *fi;
5782 	struct inode *inode = NULL;
5783 	struct btrfs_key key;
5784 	u64 lock_start = 0;
5785 	u64 lock_end = 0;
5786 	u64 num_bytes;
5787 	u64 ext_offset;
5788 	u64 search_end = (u64)-1;
5789 	u32 nritems;
5790 	int nr_scaned = 0;
5791 	int extent_locked = 0;
5792 	int extent_type;
5793 	int ret;
5794 
5795 	memcpy(&key, leaf_key, sizeof(key));
5796 	if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
5797 		if (key.objectid < ref_path->owner_objectid ||
5798 		    (key.objectid == ref_path->owner_objectid &&
5799 		     key.type < BTRFS_EXTENT_DATA_KEY)) {
5800 			key.objectid = ref_path->owner_objectid;
5801 			key.type = BTRFS_EXTENT_DATA_KEY;
5802 			key.offset = 0;
5803 		}
5804 	}
5805 
5806 	while (1) {
5807 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
5808 		if (ret < 0)
5809 			goto out;
5810 
5811 		leaf = path->nodes[0];
5812 		nritems = btrfs_header_nritems(leaf);
5813 next:
5814 		if (extent_locked && ret > 0) {
5815 			/*
5816 			 * the file extent item was modified by someone
5817 			 * before the extent got locked.
5818 			 */
5819 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5820 				      lock_end, GFP_NOFS);
5821 			extent_locked = 0;
5822 		}
5823 
5824 		if (path->slots[0] >= nritems) {
5825 			if (++nr_scaned > 2)
5826 				break;
5827 
5828 			BUG_ON(extent_locked);
5829 			ret = btrfs_next_leaf(root, path);
5830 			if (ret < 0)
5831 				goto out;
5832 			if (ret > 0)
5833 				break;
5834 			leaf = path->nodes[0];
5835 			nritems = btrfs_header_nritems(leaf);
5836 		}
5837 
5838 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5839 
5840 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
5841 			if ((key.objectid > ref_path->owner_objectid) ||
5842 			    (key.objectid == ref_path->owner_objectid &&
5843 			     key.type > BTRFS_EXTENT_DATA_KEY) ||
5844 			    key.offset >= search_end)
5845 				break;
5846 		}
5847 
5848 		if (inode && key.objectid != inode->i_ino) {
5849 			BUG_ON(extent_locked);
5850 			btrfs_release_path(root, path);
5851 			mutex_unlock(&inode->i_mutex);
5852 			iput(inode);
5853 			inode = NULL;
5854 			continue;
5855 		}
5856 
5857 		if (key.type != BTRFS_EXTENT_DATA_KEY) {
5858 			path->slots[0]++;
5859 			ret = 1;
5860 			goto next;
5861 		}
5862 		fi = btrfs_item_ptr(leaf, path->slots[0],
5863 				    struct btrfs_file_extent_item);
5864 		extent_type = btrfs_file_extent_type(leaf, fi);
5865 		if ((extent_type != BTRFS_FILE_EXTENT_REG &&
5866 		     extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
5867 		    (btrfs_file_extent_disk_bytenr(leaf, fi) !=
5868 		     extent_key->objectid)) {
5869 			path->slots[0]++;
5870 			ret = 1;
5871 			goto next;
5872 		}
5873 
5874 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
5875 		ext_offset = btrfs_file_extent_offset(leaf, fi);
5876 
5877 		if (search_end == (u64)-1) {
5878 			search_end = key.offset - ext_offset +
5879 				btrfs_file_extent_ram_bytes(leaf, fi);
5880 		}
5881 
5882 		if (!extent_locked) {
5883 			lock_start = key.offset;
5884 			lock_end = lock_start + num_bytes - 1;
5885 		} else {
5886 			if (lock_start > key.offset ||
5887 			    lock_end + 1 < key.offset + num_bytes) {
5888 				unlock_extent(&BTRFS_I(inode)->io_tree,
5889 					      lock_start, lock_end, GFP_NOFS);
5890 				extent_locked = 0;
5891 			}
5892 		}
5893 
5894 		if (!inode) {
5895 			btrfs_release_path(root, path);
5896 
5897 			inode = btrfs_iget_locked(root->fs_info->sb,
5898 						  key.objectid, root);
5899 			if (inode->i_state & I_NEW) {
5900 				BTRFS_I(inode)->root = root;
5901 				BTRFS_I(inode)->location.objectid =
5902 					key.objectid;
5903 				BTRFS_I(inode)->location.type =
5904 					BTRFS_INODE_ITEM_KEY;
5905 				BTRFS_I(inode)->location.offset = 0;
5906 				btrfs_read_locked_inode(inode);
5907 				unlock_new_inode(inode);
5908 			}
5909 			/*
5910 			 * some code call btrfs_commit_transaction while
5911 			 * holding the i_mutex, so we can't use mutex_lock
5912 			 * here.
5913 			 */
5914 			if (is_bad_inode(inode) ||
5915 			    !mutex_trylock(&inode->i_mutex)) {
5916 				iput(inode);
5917 				inode = NULL;
5918 				key.offset = (u64)-1;
5919 				goto skip;
5920 			}
5921 		}
5922 
5923 		if (!extent_locked) {
5924 			struct btrfs_ordered_extent *ordered;
5925 
5926 			btrfs_release_path(root, path);
5927 
5928 			lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
5929 				    lock_end, GFP_NOFS);
5930 			ordered = btrfs_lookup_first_ordered_extent(inode,
5931 								    lock_end);
5932 			if (ordered &&
5933 			    ordered->file_offset <= lock_end &&
5934 			    ordered->file_offset + ordered->len > lock_start) {
5935 				unlock_extent(&BTRFS_I(inode)->io_tree,
5936 					      lock_start, lock_end, GFP_NOFS);
5937 				btrfs_start_ordered_extent(inode, ordered, 1);
5938 				btrfs_put_ordered_extent(ordered);
5939 				key.offset += num_bytes;
5940 				goto skip;
5941 			}
5942 			if (ordered)
5943 				btrfs_put_ordered_extent(ordered);
5944 
5945 			extent_locked = 1;
5946 			continue;
5947 		}
5948 
5949 		if (nr_extents == 1) {
5950 			/* update extent pointer in place */
5951 			btrfs_set_file_extent_disk_bytenr(leaf, fi,
5952 						new_extents[0].disk_bytenr);
5953 			btrfs_set_file_extent_disk_num_bytes(leaf, fi,
5954 						new_extents[0].disk_num_bytes);
5955 			btrfs_mark_buffer_dirty(leaf);
5956 
5957 			btrfs_drop_extent_cache(inode, key.offset,
5958 						key.offset + num_bytes - 1, 0);
5959 
5960 			ret = btrfs_inc_extent_ref(trans, root,
5961 						new_extents[0].disk_bytenr,
5962 						new_extents[0].disk_num_bytes,
5963 						leaf->start,
5964 						root->root_key.objectid,
5965 						trans->transid,
5966 						key.objectid);
5967 			BUG_ON(ret);
5968 
5969 			ret = btrfs_free_extent(trans, root,
5970 						extent_key->objectid,
5971 						extent_key->offset,
5972 						leaf->start,
5973 						btrfs_header_owner(leaf),
5974 						btrfs_header_generation(leaf),
5975 						key.objectid, 0);
5976 			BUG_ON(ret);
5977 
5978 			btrfs_release_path(root, path);
5979 			key.offset += num_bytes;
5980 		} else {
5981 			BUG_ON(1);
5982 #if 0
5983 			u64 alloc_hint;
5984 			u64 extent_len;
5985 			int i;
5986 			/*
5987 			 * drop old extent pointer at first, then insert the
5988 			 * new pointers one bye one
5989 			 */
5990 			btrfs_release_path(root, path);
5991 			ret = btrfs_drop_extents(trans, root, inode, key.offset,
5992 						 key.offset + num_bytes,
5993 						 key.offset, &alloc_hint);
5994 			BUG_ON(ret);
5995 
5996 			for (i = 0; i < nr_extents; i++) {
5997 				if (ext_offset >= new_extents[i].num_bytes) {
5998 					ext_offset -= new_extents[i].num_bytes;
5999 					continue;
6000 				}
6001 				extent_len = min(new_extents[i].num_bytes -
6002 						 ext_offset, num_bytes);
6003 
6004 				ret = btrfs_insert_empty_item(trans, root,
6005 							      path, &key,
6006 							      sizeof(*fi));
6007 				BUG_ON(ret);
6008 
6009 				leaf = path->nodes[0];
6010 				fi = btrfs_item_ptr(leaf, path->slots[0],
6011 						struct btrfs_file_extent_item);
6012 				btrfs_set_file_extent_generation(leaf, fi,
6013 							trans->transid);
6014 				btrfs_set_file_extent_type(leaf, fi,
6015 							BTRFS_FILE_EXTENT_REG);
6016 				btrfs_set_file_extent_disk_bytenr(leaf, fi,
6017 						new_extents[i].disk_bytenr);
6018 				btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6019 						new_extents[i].disk_num_bytes);
6020 				btrfs_set_file_extent_ram_bytes(leaf, fi,
6021 						new_extents[i].ram_bytes);
6022 
6023 				btrfs_set_file_extent_compression(leaf, fi,
6024 						new_extents[i].compression);
6025 				btrfs_set_file_extent_encryption(leaf, fi,
6026 						new_extents[i].encryption);
6027 				btrfs_set_file_extent_other_encoding(leaf, fi,
6028 						new_extents[i].other_encoding);
6029 
6030 				btrfs_set_file_extent_num_bytes(leaf, fi,
6031 							extent_len);
6032 				ext_offset += new_extents[i].offset;
6033 				btrfs_set_file_extent_offset(leaf, fi,
6034 							ext_offset);
6035 				btrfs_mark_buffer_dirty(leaf);
6036 
6037 				btrfs_drop_extent_cache(inode, key.offset,
6038 						key.offset + extent_len - 1, 0);
6039 
6040 				ret = btrfs_inc_extent_ref(trans, root,
6041 						new_extents[i].disk_bytenr,
6042 						new_extents[i].disk_num_bytes,
6043 						leaf->start,
6044 						root->root_key.objectid,
6045 						trans->transid, key.objectid);
6046 				BUG_ON(ret);
6047 				btrfs_release_path(root, path);
6048 
6049 				inode_add_bytes(inode, extent_len);
6050 
6051 				ext_offset = 0;
6052 				num_bytes -= extent_len;
6053 				key.offset += extent_len;
6054 
6055 				if (num_bytes == 0)
6056 					break;
6057 			}
6058 			BUG_ON(i >= nr_extents);
6059 #endif
6060 		}
6061 
6062 		if (extent_locked) {
6063 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6064 				      lock_end, GFP_NOFS);
6065 			extent_locked = 0;
6066 		}
6067 skip:
6068 		if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6069 		    key.offset >= search_end)
6070 			break;
6071 
6072 		cond_resched();
6073 	}
6074 	ret = 0;
6075 out:
6076 	btrfs_release_path(root, path);
6077 	if (inode) {
6078 		mutex_unlock(&inode->i_mutex);
6079 		if (extent_locked) {
6080 			unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6081 				      lock_end, GFP_NOFS);
6082 		}
6083 		iput(inode);
6084 	}
6085 	return ret;
6086 }
6087 
6088 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6089 			       struct btrfs_root *root,
6090 			       struct extent_buffer *buf, u64 orig_start)
6091 {
6092 	int level;
6093 	int ret;
6094 
6095 	BUG_ON(btrfs_header_generation(buf) != trans->transid);
6096 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6097 
6098 	level = btrfs_header_level(buf);
6099 	if (level == 0) {
6100 		struct btrfs_leaf_ref *ref;
6101 		struct btrfs_leaf_ref *orig_ref;
6102 
6103 		orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6104 		if (!orig_ref)
6105 			return -ENOENT;
6106 
6107 		ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6108 		if (!ref) {
6109 			btrfs_free_leaf_ref(root, orig_ref);
6110 			return -ENOMEM;
6111 		}
6112 
6113 		ref->nritems = orig_ref->nritems;
6114 		memcpy(ref->extents, orig_ref->extents,
6115 			sizeof(ref->extents[0]) * ref->nritems);
6116 
6117 		btrfs_free_leaf_ref(root, orig_ref);
6118 
6119 		ref->root_gen = trans->transid;
6120 		ref->bytenr = buf->start;
6121 		ref->owner = btrfs_header_owner(buf);
6122 		ref->generation = btrfs_header_generation(buf);
6123 
6124 		ret = btrfs_add_leaf_ref(root, ref, 0);
6125 		WARN_ON(ret);
6126 		btrfs_free_leaf_ref(root, ref);
6127 	}
6128 	return 0;
6129 }
6130 
6131 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6132 					struct extent_buffer *leaf,
6133 					struct btrfs_block_group_cache *group,
6134 					struct btrfs_root *target_root)
6135 {
6136 	struct btrfs_key key;
6137 	struct inode *inode = NULL;
6138 	struct btrfs_file_extent_item *fi;
6139 	u64 num_bytes;
6140 	u64 skip_objectid = 0;
6141 	u32 nritems;
6142 	u32 i;
6143 
6144 	nritems = btrfs_header_nritems(leaf);
6145 	for (i = 0; i < nritems; i++) {
6146 		btrfs_item_key_to_cpu(leaf, &key, i);
6147 		if (key.objectid == skip_objectid ||
6148 		    key.type != BTRFS_EXTENT_DATA_KEY)
6149 			continue;
6150 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6151 		if (btrfs_file_extent_type(leaf, fi) ==
6152 		    BTRFS_FILE_EXTENT_INLINE)
6153 			continue;
6154 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6155 			continue;
6156 		if (!inode || inode->i_ino != key.objectid) {
6157 			iput(inode);
6158 			inode = btrfs_ilookup(target_root->fs_info->sb,
6159 					      key.objectid, target_root, 1);
6160 		}
6161 		if (!inode) {
6162 			skip_objectid = key.objectid;
6163 			continue;
6164 		}
6165 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6166 
6167 		lock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6168 			    key.offset + num_bytes - 1, GFP_NOFS);
6169 		btrfs_drop_extent_cache(inode, key.offset,
6170 					key.offset + num_bytes - 1, 1);
6171 		unlock_extent(&BTRFS_I(inode)->io_tree, key.offset,
6172 			      key.offset + num_bytes - 1, GFP_NOFS);
6173 		cond_resched();
6174 	}
6175 	iput(inode);
6176 	return 0;
6177 }
6178 
6179 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
6180 					struct btrfs_root *root,
6181 					struct extent_buffer *leaf,
6182 					struct btrfs_block_group_cache *group,
6183 					struct inode *reloc_inode)
6184 {
6185 	struct btrfs_key key;
6186 	struct btrfs_key extent_key;
6187 	struct btrfs_file_extent_item *fi;
6188 	struct btrfs_leaf_ref *ref;
6189 	struct disk_extent *new_extent;
6190 	u64 bytenr;
6191 	u64 num_bytes;
6192 	u32 nritems;
6193 	u32 i;
6194 	int ext_index;
6195 	int nr_extent;
6196 	int ret;
6197 
6198 	new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
6199 	BUG_ON(!new_extent);
6200 
6201 	ref = btrfs_lookup_leaf_ref(root, leaf->start);
6202 	BUG_ON(!ref);
6203 
6204 	ext_index = -1;
6205 	nritems = btrfs_header_nritems(leaf);
6206 	for (i = 0; i < nritems; i++) {
6207 		btrfs_item_key_to_cpu(leaf, &key, i);
6208 		if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
6209 			continue;
6210 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6211 		if (btrfs_file_extent_type(leaf, fi) ==
6212 		    BTRFS_FILE_EXTENT_INLINE)
6213 			continue;
6214 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6215 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
6216 		if (bytenr == 0)
6217 			continue;
6218 
6219 		ext_index++;
6220 		if (bytenr >= group->key.objectid + group->key.offset ||
6221 		    bytenr + num_bytes <= group->key.objectid)
6222 			continue;
6223 
6224 		extent_key.objectid = bytenr;
6225 		extent_key.offset = num_bytes;
6226 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
6227 		nr_extent = 1;
6228 		ret = get_new_locations(reloc_inode, &extent_key,
6229 					group->key.objectid, 1,
6230 					&new_extent, &nr_extent);
6231 		if (ret > 0)
6232 			continue;
6233 		BUG_ON(ret < 0);
6234 
6235 		BUG_ON(ref->extents[ext_index].bytenr != bytenr);
6236 		BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
6237 		ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
6238 		ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
6239 
6240 		btrfs_set_file_extent_disk_bytenr(leaf, fi,
6241 						new_extent->disk_bytenr);
6242 		btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6243 						new_extent->disk_num_bytes);
6244 		btrfs_mark_buffer_dirty(leaf);
6245 
6246 		ret = btrfs_inc_extent_ref(trans, root,
6247 					new_extent->disk_bytenr,
6248 					new_extent->disk_num_bytes,
6249 					leaf->start,
6250 					root->root_key.objectid,
6251 					trans->transid, key.objectid);
6252 		BUG_ON(ret);
6253 
6254 		ret = btrfs_free_extent(trans, root,
6255 					bytenr, num_bytes, leaf->start,
6256 					btrfs_header_owner(leaf),
6257 					btrfs_header_generation(leaf),
6258 					key.objectid, 0);
6259 		BUG_ON(ret);
6260 		cond_resched();
6261 	}
6262 	kfree(new_extent);
6263 	BUG_ON(ext_index + 1 != ref->nritems);
6264 	btrfs_free_leaf_ref(root, ref);
6265 	return 0;
6266 }
6267 
6268 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
6269 			  struct btrfs_root *root)
6270 {
6271 	struct btrfs_root *reloc_root;
6272 	int ret;
6273 
6274 	if (root->reloc_root) {
6275 		reloc_root = root->reloc_root;
6276 		root->reloc_root = NULL;
6277 		list_add(&reloc_root->dead_list,
6278 			 &root->fs_info->dead_reloc_roots);
6279 
6280 		btrfs_set_root_bytenr(&reloc_root->root_item,
6281 				      reloc_root->node->start);
6282 		btrfs_set_root_level(&root->root_item,
6283 				     btrfs_header_level(reloc_root->node));
6284 		memset(&reloc_root->root_item.drop_progress, 0,
6285 			sizeof(struct btrfs_disk_key));
6286 		reloc_root->root_item.drop_level = 0;
6287 
6288 		ret = btrfs_update_root(trans, root->fs_info->tree_root,
6289 					&reloc_root->root_key,
6290 					&reloc_root->root_item);
6291 		BUG_ON(ret);
6292 	}
6293 	return 0;
6294 }
6295 
6296 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
6297 {
6298 	struct btrfs_trans_handle *trans;
6299 	struct btrfs_root *reloc_root;
6300 	struct btrfs_root *prev_root = NULL;
6301 	struct list_head dead_roots;
6302 	int ret;
6303 	unsigned long nr;
6304 
6305 	INIT_LIST_HEAD(&dead_roots);
6306 	list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
6307 
6308 	while (!list_empty(&dead_roots)) {
6309 		reloc_root = list_entry(dead_roots.prev,
6310 					struct btrfs_root, dead_list);
6311 		list_del_init(&reloc_root->dead_list);
6312 
6313 		BUG_ON(reloc_root->commit_root != NULL);
6314 		while (1) {
6315 			trans = btrfs_join_transaction(root, 1);
6316 			BUG_ON(!trans);
6317 
6318 			mutex_lock(&root->fs_info->drop_mutex);
6319 			ret = btrfs_drop_snapshot(trans, reloc_root);
6320 			if (ret != -EAGAIN)
6321 				break;
6322 			mutex_unlock(&root->fs_info->drop_mutex);
6323 
6324 			nr = trans->blocks_used;
6325 			ret = btrfs_end_transaction(trans, root);
6326 			BUG_ON(ret);
6327 			btrfs_btree_balance_dirty(root, nr);
6328 		}
6329 
6330 		free_extent_buffer(reloc_root->node);
6331 
6332 		ret = btrfs_del_root(trans, root->fs_info->tree_root,
6333 				     &reloc_root->root_key);
6334 		BUG_ON(ret);
6335 		mutex_unlock(&root->fs_info->drop_mutex);
6336 
6337 		nr = trans->blocks_used;
6338 		ret = btrfs_end_transaction(trans, root);
6339 		BUG_ON(ret);
6340 		btrfs_btree_balance_dirty(root, nr);
6341 
6342 		kfree(prev_root);
6343 		prev_root = reloc_root;
6344 	}
6345 	if (prev_root) {
6346 		btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
6347 		kfree(prev_root);
6348 	}
6349 	return 0;
6350 }
6351 
6352 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
6353 {
6354 	list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
6355 	return 0;
6356 }
6357 
6358 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
6359 {
6360 	struct btrfs_root *reloc_root;
6361 	struct btrfs_trans_handle *trans;
6362 	struct btrfs_key location;
6363 	int found;
6364 	int ret;
6365 
6366 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6367 	ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
6368 	BUG_ON(ret);
6369 	found = !list_empty(&root->fs_info->dead_reloc_roots);
6370 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6371 
6372 	if (found) {
6373 		trans = btrfs_start_transaction(root, 1);
6374 		BUG_ON(!trans);
6375 		ret = btrfs_commit_transaction(trans, root);
6376 		BUG_ON(ret);
6377 	}
6378 
6379 	location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6380 	location.offset = (u64)-1;
6381 	location.type = BTRFS_ROOT_ITEM_KEY;
6382 
6383 	reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
6384 	BUG_ON(!reloc_root);
6385 	btrfs_orphan_cleanup(reloc_root);
6386 	return 0;
6387 }
6388 
6389 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
6390 				    struct btrfs_root *root)
6391 {
6392 	struct btrfs_root *reloc_root;
6393 	struct extent_buffer *eb;
6394 	struct btrfs_root_item *root_item;
6395 	struct btrfs_key root_key;
6396 	int ret;
6397 
6398 	BUG_ON(!root->ref_cows);
6399 	if (root->reloc_root)
6400 		return 0;
6401 
6402 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
6403 	BUG_ON(!root_item);
6404 
6405 	ret = btrfs_copy_root(trans, root, root->commit_root,
6406 			      &eb, BTRFS_TREE_RELOC_OBJECTID);
6407 	BUG_ON(ret);
6408 
6409 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
6410 	root_key.offset = root->root_key.objectid;
6411 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6412 
6413 	memcpy(root_item, &root->root_item, sizeof(root_item));
6414 	btrfs_set_root_refs(root_item, 0);
6415 	btrfs_set_root_bytenr(root_item, eb->start);
6416 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
6417 	btrfs_set_root_generation(root_item, trans->transid);
6418 
6419 	btrfs_tree_unlock(eb);
6420 	free_extent_buffer(eb);
6421 
6422 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
6423 				&root_key, root_item);
6424 	BUG_ON(ret);
6425 	kfree(root_item);
6426 
6427 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
6428 						 &root_key);
6429 	BUG_ON(!reloc_root);
6430 	reloc_root->last_trans = trans->transid;
6431 	reloc_root->commit_root = NULL;
6432 	reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
6433 
6434 	root->reloc_root = reloc_root;
6435 	return 0;
6436 }
6437 
6438 /*
6439  * Core function of space balance.
6440  *
6441  * The idea is using reloc trees to relocate tree blocks in reference
6442  * counted roots. There is one reloc tree for each subvol, and all
6443  * reloc trees share same root key objectid. Reloc trees are snapshots
6444  * of the latest committed roots of subvols (root->commit_root).
6445  *
6446  * To relocate a tree block referenced by a subvol, there are two steps.
6447  * COW the block through subvol's reloc tree, then update block pointer
6448  * in the subvol to point to the new block. Since all reloc trees share
6449  * same root key objectid, doing special handing for tree blocks owned
6450  * by them is easy. Once a tree block has been COWed in one reloc tree,
6451  * we can use the resulting new block directly when the same block is
6452  * required to COW again through other reloc trees. By this way, relocated
6453  * tree blocks are shared between reloc trees, so they are also shared
6454  * between subvols.
6455  */
6456 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
6457 				      struct btrfs_root *root,
6458 				      struct btrfs_path *path,
6459 				      struct btrfs_key *first_key,
6460 				      struct btrfs_ref_path *ref_path,
6461 				      struct btrfs_block_group_cache *group,
6462 				      struct inode *reloc_inode)
6463 {
6464 	struct btrfs_root *reloc_root;
6465 	struct extent_buffer *eb = NULL;
6466 	struct btrfs_key *keys;
6467 	u64 *nodes;
6468 	int level;
6469 	int shared_level;
6470 	int lowest_level = 0;
6471 	int ret;
6472 
6473 	if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
6474 		lowest_level = ref_path->owner_objectid;
6475 
6476 	if (!root->ref_cows) {
6477 		path->lowest_level = lowest_level;
6478 		ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
6479 		BUG_ON(ret < 0);
6480 		path->lowest_level = 0;
6481 		btrfs_release_path(root, path);
6482 		return 0;
6483 	}
6484 
6485 	mutex_lock(&root->fs_info->tree_reloc_mutex);
6486 	ret = init_reloc_tree(trans, root);
6487 	BUG_ON(ret);
6488 	reloc_root = root->reloc_root;
6489 
6490 	shared_level = ref_path->shared_level;
6491 	ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
6492 
6493 	keys = ref_path->node_keys;
6494 	nodes = ref_path->new_nodes;
6495 	memset(&keys[shared_level + 1], 0,
6496 	       sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
6497 	memset(&nodes[shared_level + 1], 0,
6498 	       sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
6499 
6500 	if (nodes[lowest_level] == 0) {
6501 		path->lowest_level = lowest_level;
6502 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6503 					0, 1);
6504 		BUG_ON(ret);
6505 		for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
6506 			eb = path->nodes[level];
6507 			if (!eb || eb == reloc_root->node)
6508 				break;
6509 			nodes[level] = eb->start;
6510 			if (level == 0)
6511 				btrfs_item_key_to_cpu(eb, &keys[level], 0);
6512 			else
6513 				btrfs_node_key_to_cpu(eb, &keys[level], 0);
6514 		}
6515 		if (nodes[0] &&
6516 		    ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6517 			eb = path->nodes[0];
6518 			ret = replace_extents_in_leaf(trans, reloc_root, eb,
6519 						      group, reloc_inode);
6520 			BUG_ON(ret);
6521 		}
6522 		btrfs_release_path(reloc_root, path);
6523 	} else {
6524 		ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
6525 				       lowest_level);
6526 		BUG_ON(ret);
6527 	}
6528 
6529 	/*
6530 	 * replace tree blocks in the fs tree with tree blocks in
6531 	 * the reloc tree.
6532 	 */
6533 	ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
6534 	BUG_ON(ret < 0);
6535 
6536 	if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6537 		ret = btrfs_search_slot(trans, reloc_root, first_key, path,
6538 					0, 0);
6539 		BUG_ON(ret);
6540 		extent_buffer_get(path->nodes[0]);
6541 		eb = path->nodes[0];
6542 		btrfs_release_path(reloc_root, path);
6543 		ret = invalidate_extent_cache(reloc_root, eb, group, root);
6544 		BUG_ON(ret);
6545 		free_extent_buffer(eb);
6546 	}
6547 
6548 	mutex_unlock(&root->fs_info->tree_reloc_mutex);
6549 	path->lowest_level = 0;
6550 	return 0;
6551 }
6552 
6553 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
6554 					struct btrfs_root *root,
6555 					struct btrfs_path *path,
6556 					struct btrfs_key *first_key,
6557 					struct btrfs_ref_path *ref_path)
6558 {
6559 	int ret;
6560 
6561 	ret = relocate_one_path(trans, root, path, first_key,
6562 				ref_path, NULL, NULL);
6563 	BUG_ON(ret);
6564 
6565 	return 0;
6566 }
6567 
6568 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
6569 				    struct btrfs_root *extent_root,
6570 				    struct btrfs_path *path,
6571 				    struct btrfs_key *extent_key)
6572 {
6573 	int ret;
6574 
6575 	ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
6576 	if (ret)
6577 		goto out;
6578 	ret = btrfs_del_item(trans, extent_root, path);
6579 out:
6580 	btrfs_release_path(extent_root, path);
6581 	return ret;
6582 }
6583 
6584 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
6585 						struct btrfs_ref_path *ref_path)
6586 {
6587 	struct btrfs_key root_key;
6588 
6589 	root_key.objectid = ref_path->root_objectid;
6590 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6591 	if (is_cowonly_root(ref_path->root_objectid))
6592 		root_key.offset = 0;
6593 	else
6594 		root_key.offset = (u64)-1;
6595 
6596 	return btrfs_read_fs_root_no_name(fs_info, &root_key);
6597 }
6598 
6599 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
6600 					struct btrfs_path *path,
6601 					struct btrfs_key *extent_key,
6602 					struct btrfs_block_group_cache *group,
6603 					struct inode *reloc_inode, int pass)
6604 {
6605 	struct btrfs_trans_handle *trans;
6606 	struct btrfs_root *found_root;
6607 	struct btrfs_ref_path *ref_path = NULL;
6608 	struct disk_extent *new_extents = NULL;
6609 	int nr_extents = 0;
6610 	int loops;
6611 	int ret;
6612 	int level;
6613 	struct btrfs_key first_key;
6614 	u64 prev_block = 0;
6615 
6616 
6617 	trans = btrfs_start_transaction(extent_root, 1);
6618 	BUG_ON(!trans);
6619 
6620 	if (extent_key->objectid == 0) {
6621 		ret = del_extent_zero(trans, extent_root, path, extent_key);
6622 		goto out;
6623 	}
6624 
6625 	ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
6626 	if (!ref_path) {
6627 		ret = -ENOMEM;
6628 		goto out;
6629 	}
6630 
6631 	for (loops = 0; ; loops++) {
6632 		if (loops == 0) {
6633 			ret = btrfs_first_ref_path(trans, extent_root, ref_path,
6634 						   extent_key->objectid);
6635 		} else {
6636 			ret = btrfs_next_ref_path(trans, extent_root, ref_path);
6637 		}
6638 		if (ret < 0)
6639 			goto out;
6640 		if (ret > 0)
6641 			break;
6642 
6643 		if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6644 		    ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
6645 			continue;
6646 
6647 		found_root = read_ref_root(extent_root->fs_info, ref_path);
6648 		BUG_ON(!found_root);
6649 		/*
6650 		 * for reference counted tree, only process reference paths
6651 		 * rooted at the latest committed root.
6652 		 */
6653 		if (found_root->ref_cows &&
6654 		    ref_path->root_generation != found_root->root_key.offset)
6655 			continue;
6656 
6657 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6658 			if (pass == 0) {
6659 				/*
6660 				 * copy data extents to new locations
6661 				 */
6662 				u64 group_start = group->key.objectid;
6663 				ret = relocate_data_extent(reloc_inode,
6664 							   extent_key,
6665 							   group_start);
6666 				if (ret < 0)
6667 					goto out;
6668 				break;
6669 			}
6670 			level = 0;
6671 		} else {
6672 			level = ref_path->owner_objectid;
6673 		}
6674 
6675 		if (prev_block != ref_path->nodes[level]) {
6676 			struct extent_buffer *eb;
6677 			u64 block_start = ref_path->nodes[level];
6678 			u64 block_size = btrfs_level_size(found_root, level);
6679 
6680 			eb = read_tree_block(found_root, block_start,
6681 					     block_size, 0);
6682 			btrfs_tree_lock(eb);
6683 			BUG_ON(level != btrfs_header_level(eb));
6684 
6685 			if (level == 0)
6686 				btrfs_item_key_to_cpu(eb, &first_key, 0);
6687 			else
6688 				btrfs_node_key_to_cpu(eb, &first_key, 0);
6689 
6690 			btrfs_tree_unlock(eb);
6691 			free_extent_buffer(eb);
6692 			prev_block = block_start;
6693 		}
6694 
6695 		mutex_lock(&extent_root->fs_info->trans_mutex);
6696 		btrfs_record_root_in_trans(found_root);
6697 		mutex_unlock(&extent_root->fs_info->trans_mutex);
6698 		if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
6699 			/*
6700 			 * try to update data extent references while
6701 			 * keeping metadata shared between snapshots.
6702 			 */
6703 			if (pass == 1) {
6704 				ret = relocate_one_path(trans, found_root,
6705 						path, &first_key, ref_path,
6706 						group, reloc_inode);
6707 				if (ret < 0)
6708 					goto out;
6709 				continue;
6710 			}
6711 			/*
6712 			 * use fallback method to process the remaining
6713 			 * references.
6714 			 */
6715 			if (!new_extents) {
6716 				u64 group_start = group->key.objectid;
6717 				new_extents = kmalloc(sizeof(*new_extents),
6718 						      GFP_NOFS);
6719 				nr_extents = 1;
6720 				ret = get_new_locations(reloc_inode,
6721 							extent_key,
6722 							group_start, 1,
6723 							&new_extents,
6724 							&nr_extents);
6725 				if (ret)
6726 					goto out;
6727 			}
6728 			ret = replace_one_extent(trans, found_root,
6729 						path, extent_key,
6730 						&first_key, ref_path,
6731 						new_extents, nr_extents);
6732 		} else {
6733 			ret = relocate_tree_block(trans, found_root, path,
6734 						  &first_key, ref_path);
6735 		}
6736 		if (ret < 0)
6737 			goto out;
6738 	}
6739 	ret = 0;
6740 out:
6741 	btrfs_end_transaction(trans, extent_root);
6742 	kfree(new_extents);
6743 	kfree(ref_path);
6744 	return ret;
6745 }
6746 #endif
6747 
6748 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6749 {
6750 	u64 num_devices;
6751 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6752 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6753 
6754 	num_devices = root->fs_info->fs_devices->rw_devices;
6755 	if (num_devices == 1) {
6756 		stripped |= BTRFS_BLOCK_GROUP_DUP;
6757 		stripped = flags & ~stripped;
6758 
6759 		/* turn raid0 into single device chunks */
6760 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
6761 			return stripped;
6762 
6763 		/* turn mirroring into duplication */
6764 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6765 			     BTRFS_BLOCK_GROUP_RAID10))
6766 			return stripped | BTRFS_BLOCK_GROUP_DUP;
6767 		return flags;
6768 	} else {
6769 		/* they already had raid on here, just return */
6770 		if (flags & stripped)
6771 			return flags;
6772 
6773 		stripped |= BTRFS_BLOCK_GROUP_DUP;
6774 		stripped = flags & ~stripped;
6775 
6776 		/* switch duplicated blocks with raid1 */
6777 		if (flags & BTRFS_BLOCK_GROUP_DUP)
6778 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
6779 
6780 		/* turn single device chunks into raid0 */
6781 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
6782 	}
6783 	return flags;
6784 }
6785 
6786 static int __alloc_chunk_for_shrink(struct btrfs_root *root,
6787 		     struct btrfs_block_group_cache *shrink_block_group,
6788 		     int force)
6789 {
6790 	struct btrfs_trans_handle *trans;
6791 	u64 new_alloc_flags;
6792 	u64 calc;
6793 
6794 	spin_lock(&shrink_block_group->lock);
6795 	if (btrfs_block_group_used(&shrink_block_group->item) +
6796 	    shrink_block_group->reserved > 0) {
6797 		spin_unlock(&shrink_block_group->lock);
6798 
6799 		trans = btrfs_start_transaction(root, 1);
6800 		spin_lock(&shrink_block_group->lock);
6801 
6802 		new_alloc_flags = update_block_group_flags(root,
6803 						   shrink_block_group->flags);
6804 		if (new_alloc_flags != shrink_block_group->flags) {
6805 			calc =
6806 			     btrfs_block_group_used(&shrink_block_group->item);
6807 		} else {
6808 			calc = shrink_block_group->key.offset;
6809 		}
6810 		spin_unlock(&shrink_block_group->lock);
6811 
6812 		do_chunk_alloc(trans, root->fs_info->extent_root,
6813 			       calc + 2 * 1024 * 1024, new_alloc_flags, force);
6814 
6815 		btrfs_end_transaction(trans, root);
6816 	} else
6817 		spin_unlock(&shrink_block_group->lock);
6818 	return 0;
6819 }
6820 
6821 
6822 int btrfs_prepare_block_group_relocation(struct btrfs_root *root,
6823 					 struct btrfs_block_group_cache *group)
6824 
6825 {
6826 	__alloc_chunk_for_shrink(root, group, 1);
6827 	set_block_group_readonly(group);
6828 	return 0;
6829 }
6830 
6831 #if 0
6832 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
6833 				 struct btrfs_root *root,
6834 				 u64 objectid, u64 size)
6835 {
6836 	struct btrfs_path *path;
6837 	struct btrfs_inode_item *item;
6838 	struct extent_buffer *leaf;
6839 	int ret;
6840 
6841 	path = btrfs_alloc_path();
6842 	if (!path)
6843 		return -ENOMEM;
6844 
6845 	path->leave_spinning = 1;
6846 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
6847 	if (ret)
6848 		goto out;
6849 
6850 	leaf = path->nodes[0];
6851 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
6852 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
6853 	btrfs_set_inode_generation(leaf, item, 1);
6854 	btrfs_set_inode_size(leaf, item, size);
6855 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
6856 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS);
6857 	btrfs_mark_buffer_dirty(leaf);
6858 	btrfs_release_path(root, path);
6859 out:
6860 	btrfs_free_path(path);
6861 	return ret;
6862 }
6863 
6864 static noinline struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
6865 					struct btrfs_block_group_cache *group)
6866 {
6867 	struct inode *inode = NULL;
6868 	struct btrfs_trans_handle *trans;
6869 	struct btrfs_root *root;
6870 	struct btrfs_key root_key;
6871 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
6872 	int err = 0;
6873 
6874 	root_key.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
6875 	root_key.type = BTRFS_ROOT_ITEM_KEY;
6876 	root_key.offset = (u64)-1;
6877 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
6878 	if (IS_ERR(root))
6879 		return ERR_CAST(root);
6880 
6881 	trans = btrfs_start_transaction(root, 1);
6882 	BUG_ON(!trans);
6883 
6884 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
6885 	if (err)
6886 		goto out;
6887 
6888 	err = __insert_orphan_inode(trans, root, objectid, group->key.offset);
6889 	BUG_ON(err);
6890 
6891 	err = btrfs_insert_file_extent(trans, root, objectid, 0, 0, 0,
6892 				       group->key.offset, 0, group->key.offset,
6893 				       0, 0, 0);
6894 	BUG_ON(err);
6895 
6896 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
6897 	if (inode->i_state & I_NEW) {
6898 		BTRFS_I(inode)->root = root;
6899 		BTRFS_I(inode)->location.objectid = objectid;
6900 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
6901 		BTRFS_I(inode)->location.offset = 0;
6902 		btrfs_read_locked_inode(inode);
6903 		unlock_new_inode(inode);
6904 		BUG_ON(is_bad_inode(inode));
6905 	} else {
6906 		BUG_ON(1);
6907 	}
6908 	BTRFS_I(inode)->index_cnt = group->key.objectid;
6909 
6910 	err = btrfs_orphan_add(trans, inode);
6911 out:
6912 	btrfs_end_transaction(trans, root);
6913 	if (err) {
6914 		if (inode)
6915 			iput(inode);
6916 		inode = ERR_PTR(err);
6917 	}
6918 	return inode;
6919 }
6920 
6921 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
6922 {
6923 
6924 	struct btrfs_ordered_sum *sums;
6925 	struct btrfs_sector_sum *sector_sum;
6926 	struct btrfs_ordered_extent *ordered;
6927 	struct btrfs_root *root = BTRFS_I(inode)->root;
6928 	struct list_head list;
6929 	size_t offset;
6930 	int ret;
6931 	u64 disk_bytenr;
6932 
6933 	INIT_LIST_HEAD(&list);
6934 
6935 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
6936 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
6937 
6938 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
6939 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
6940 				       disk_bytenr + len - 1, &list);
6941 
6942 	while (!list_empty(&list)) {
6943 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
6944 		list_del_init(&sums->list);
6945 
6946 		sector_sum = sums->sums;
6947 		sums->bytenr = ordered->start;
6948 
6949 		offset = 0;
6950 		while (offset < sums->len) {
6951 			sector_sum->bytenr += ordered->start - disk_bytenr;
6952 			sector_sum++;
6953 			offset += root->sectorsize;
6954 		}
6955 
6956 		btrfs_add_ordered_sum(inode, ordered, sums);
6957 	}
6958 	btrfs_put_ordered_extent(ordered);
6959 	return 0;
6960 }
6961 
6962 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start)
6963 {
6964 	struct btrfs_trans_handle *trans;
6965 	struct btrfs_path *path;
6966 	struct btrfs_fs_info *info = root->fs_info;
6967 	struct extent_buffer *leaf;
6968 	struct inode *reloc_inode;
6969 	struct btrfs_block_group_cache *block_group;
6970 	struct btrfs_key key;
6971 	u64 skipped;
6972 	u64 cur_byte;
6973 	u64 total_found;
6974 	u32 nritems;
6975 	int ret;
6976 	int progress;
6977 	int pass = 0;
6978 
6979 	root = root->fs_info->extent_root;
6980 
6981 	block_group = btrfs_lookup_block_group(info, group_start);
6982 	BUG_ON(!block_group);
6983 
6984 	printk(KERN_INFO "btrfs relocating block group %llu flags %llu\n",
6985 	       (unsigned long long)block_group->key.objectid,
6986 	       (unsigned long long)block_group->flags);
6987 
6988 	path = btrfs_alloc_path();
6989 	BUG_ON(!path);
6990 
6991 	reloc_inode = create_reloc_inode(info, block_group);
6992 	BUG_ON(IS_ERR(reloc_inode));
6993 
6994 	__alloc_chunk_for_shrink(root, block_group, 1);
6995 	set_block_group_readonly(block_group);
6996 
6997 	btrfs_start_delalloc_inodes(info->tree_root);
6998 	btrfs_wait_ordered_extents(info->tree_root, 0);
6999 again:
7000 	skipped = 0;
7001 	total_found = 0;
7002 	progress = 0;
7003 	key.objectid = block_group->key.objectid;
7004 	key.offset = 0;
7005 	key.type = 0;
7006 	cur_byte = key.objectid;
7007 
7008 	trans = btrfs_start_transaction(info->tree_root, 1);
7009 	btrfs_commit_transaction(trans, info->tree_root);
7010 
7011 	mutex_lock(&root->fs_info->cleaner_mutex);
7012 	btrfs_clean_old_snapshots(info->tree_root);
7013 	btrfs_remove_leaf_refs(info->tree_root, (u64)-1, 1);
7014 	mutex_unlock(&root->fs_info->cleaner_mutex);
7015 
7016 	trans = btrfs_start_transaction(info->tree_root, 1);
7017 	btrfs_commit_transaction(trans, info->tree_root);
7018 
7019 	while (1) {
7020 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7021 		if (ret < 0)
7022 			goto out;
7023 next:
7024 		leaf = path->nodes[0];
7025 		nritems = btrfs_header_nritems(leaf);
7026 		if (path->slots[0] >= nritems) {
7027 			ret = btrfs_next_leaf(root, path);
7028 			if (ret < 0)
7029 				goto out;
7030 			if (ret == 1) {
7031 				ret = 0;
7032 				break;
7033 			}
7034 			leaf = path->nodes[0];
7035 			nritems = btrfs_header_nritems(leaf);
7036 		}
7037 
7038 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7039 
7040 		if (key.objectid >= block_group->key.objectid +
7041 		    block_group->key.offset)
7042 			break;
7043 
7044 		if (progress && need_resched()) {
7045 			btrfs_release_path(root, path);
7046 			cond_resched();
7047 			progress = 0;
7048 			continue;
7049 		}
7050 		progress = 1;
7051 
7052 		if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY ||
7053 		    key.objectid + key.offset <= cur_byte) {
7054 			path->slots[0]++;
7055 			goto next;
7056 		}
7057 
7058 		total_found++;
7059 		cur_byte = key.objectid + key.offset;
7060 		btrfs_release_path(root, path);
7061 
7062 		__alloc_chunk_for_shrink(root, block_group, 0);
7063 		ret = relocate_one_extent(root, path, &key, block_group,
7064 					  reloc_inode, pass);
7065 		BUG_ON(ret < 0);
7066 		if (ret > 0)
7067 			skipped++;
7068 
7069 		key.objectid = cur_byte;
7070 		key.type = 0;
7071 		key.offset = 0;
7072 	}
7073 
7074 	btrfs_release_path(root, path);
7075 
7076 	if (pass == 0) {
7077 		btrfs_wait_ordered_range(reloc_inode, 0, (u64)-1);
7078 		invalidate_mapping_pages(reloc_inode->i_mapping, 0, -1);
7079 	}
7080 
7081 	if (total_found > 0) {
7082 		printk(KERN_INFO "btrfs found %llu extents in pass %d\n",
7083 		       (unsigned long long)total_found, pass);
7084 		pass++;
7085 		if (total_found == skipped && pass > 2) {
7086 			iput(reloc_inode);
7087 			reloc_inode = create_reloc_inode(info, block_group);
7088 			pass = 0;
7089 		}
7090 		goto again;
7091 	}
7092 
7093 	/* delete reloc_inode */
7094 	iput(reloc_inode);
7095 
7096 	/* unpin extents in this range */
7097 	trans = btrfs_start_transaction(info->tree_root, 1);
7098 	btrfs_commit_transaction(trans, info->tree_root);
7099 
7100 	spin_lock(&block_group->lock);
7101 	WARN_ON(block_group->pinned > 0);
7102 	WARN_ON(block_group->reserved > 0);
7103 	WARN_ON(btrfs_block_group_used(&block_group->item) > 0);
7104 	spin_unlock(&block_group->lock);
7105 	btrfs_put_block_group(block_group);
7106 	ret = 0;
7107 out:
7108 	btrfs_free_path(path);
7109 	return ret;
7110 }
7111 #endif
7112 
7113 static int find_first_block_group(struct btrfs_root *root,
7114 		struct btrfs_path *path, struct btrfs_key *key)
7115 {
7116 	int ret = 0;
7117 	struct btrfs_key found_key;
7118 	struct extent_buffer *leaf;
7119 	int slot;
7120 
7121 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7122 	if (ret < 0)
7123 		goto out;
7124 
7125 	while (1) {
7126 		slot = path->slots[0];
7127 		leaf = path->nodes[0];
7128 		if (slot >= btrfs_header_nritems(leaf)) {
7129 			ret = btrfs_next_leaf(root, path);
7130 			if (ret == 0)
7131 				continue;
7132 			if (ret < 0)
7133 				goto out;
7134 			break;
7135 		}
7136 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7137 
7138 		if (found_key.objectid >= key->objectid &&
7139 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7140 			ret = 0;
7141 			goto out;
7142 		}
7143 		path->slots[0]++;
7144 	}
7145 	ret = -ENOENT;
7146 out:
7147 	return ret;
7148 }
7149 
7150 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7151 {
7152 	struct btrfs_block_group_cache *block_group;
7153 	struct btrfs_space_info *space_info;
7154 	struct rb_node *n;
7155 
7156 	spin_lock(&info->block_group_cache_lock);
7157 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7158 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7159 				       cache_node);
7160 		rb_erase(&block_group->cache_node,
7161 			 &info->block_group_cache_tree);
7162 		spin_unlock(&info->block_group_cache_lock);
7163 
7164 		down_write(&block_group->space_info->groups_sem);
7165 		list_del(&block_group->list);
7166 		up_write(&block_group->space_info->groups_sem);
7167 
7168 		if (block_group->cached == BTRFS_CACHE_STARTED)
7169 			wait_event(block_group->caching_q,
7170 				   block_group_cache_done(block_group));
7171 
7172 		btrfs_remove_free_space_cache(block_group);
7173 
7174 		WARN_ON(atomic_read(&block_group->count) != 1);
7175 		kfree(block_group);
7176 
7177 		spin_lock(&info->block_group_cache_lock);
7178 	}
7179 	spin_unlock(&info->block_group_cache_lock);
7180 
7181 	/* now that all the block groups are freed, go through and
7182 	 * free all the space_info structs.  This is only called during
7183 	 * the final stages of unmount, and so we know nobody is
7184 	 * using them.  We call synchronize_rcu() once before we start,
7185 	 * just to be on the safe side.
7186 	 */
7187 	synchronize_rcu();
7188 
7189 	while(!list_empty(&info->space_info)) {
7190 		space_info = list_entry(info->space_info.next,
7191 					struct btrfs_space_info,
7192 					list);
7193 
7194 		list_del(&space_info->list);
7195 		kfree(space_info);
7196 	}
7197 	return 0;
7198 }
7199 
7200 int btrfs_read_block_groups(struct btrfs_root *root)
7201 {
7202 	struct btrfs_path *path;
7203 	int ret;
7204 	struct btrfs_block_group_cache *cache;
7205 	struct btrfs_fs_info *info = root->fs_info;
7206 	struct btrfs_space_info *space_info;
7207 	struct btrfs_key key;
7208 	struct btrfs_key found_key;
7209 	struct extent_buffer *leaf;
7210 
7211 	root = info->extent_root;
7212 	key.objectid = 0;
7213 	key.offset = 0;
7214 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7215 	path = btrfs_alloc_path();
7216 	if (!path)
7217 		return -ENOMEM;
7218 
7219 	while (1) {
7220 		ret = find_first_block_group(root, path, &key);
7221 		if (ret > 0) {
7222 			ret = 0;
7223 			goto error;
7224 		}
7225 		if (ret != 0)
7226 			goto error;
7227 
7228 		leaf = path->nodes[0];
7229 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7230 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7231 		if (!cache) {
7232 			ret = -ENOMEM;
7233 			break;
7234 		}
7235 
7236 		atomic_set(&cache->count, 1);
7237 		spin_lock_init(&cache->lock);
7238 		spin_lock_init(&cache->tree_lock);
7239 		cache->fs_info = info;
7240 		init_waitqueue_head(&cache->caching_q);
7241 		INIT_LIST_HEAD(&cache->list);
7242 		INIT_LIST_HEAD(&cache->cluster_list);
7243 
7244 		/*
7245 		 * we only want to have 32k of ram per block group for keeping
7246 		 * track of free space, and if we pass 1/2 of that we want to
7247 		 * start converting things over to using bitmaps
7248 		 */
7249 		cache->extents_thresh = ((1024 * 32) / 2) /
7250 			sizeof(struct btrfs_free_space);
7251 
7252 		read_extent_buffer(leaf, &cache->item,
7253 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7254 				   sizeof(cache->item));
7255 		memcpy(&cache->key, &found_key, sizeof(found_key));
7256 
7257 		key.objectid = found_key.objectid + found_key.offset;
7258 		btrfs_release_path(root, path);
7259 		cache->flags = btrfs_block_group_flags(&cache->item);
7260 		cache->sectorsize = root->sectorsize;
7261 
7262 		remove_sb_from_cache(root, cache);
7263 
7264 		/*
7265 		 * check for two cases, either we are full, and therefore
7266 		 * don't need to bother with the caching work since we won't
7267 		 * find any space, or we are empty, and we can just add all
7268 		 * the space in and be done with it.  This saves us _alot_ of
7269 		 * time, particularly in the full case.
7270 		 */
7271 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7272 			cache->cached = BTRFS_CACHE_FINISHED;
7273 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7274 			cache->cached = BTRFS_CACHE_FINISHED;
7275 			add_new_free_space(cache, root->fs_info,
7276 					   found_key.objectid,
7277 					   found_key.objectid +
7278 					   found_key.offset);
7279 		}
7280 
7281 		ret = update_space_info(info, cache->flags, found_key.offset,
7282 					btrfs_block_group_used(&cache->item),
7283 					&space_info);
7284 		BUG_ON(ret);
7285 		cache->space_info = space_info;
7286 		down_write(&space_info->groups_sem);
7287 		list_add_tail(&cache->list, &space_info->block_groups);
7288 		up_write(&space_info->groups_sem);
7289 
7290 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7291 		BUG_ON(ret);
7292 
7293 		set_avail_alloc_bits(root->fs_info, cache->flags);
7294 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7295 			set_block_group_readonly(cache);
7296 	}
7297 	ret = 0;
7298 error:
7299 	btrfs_free_path(path);
7300 	return ret;
7301 }
7302 
7303 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7304 			   struct btrfs_root *root, u64 bytes_used,
7305 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7306 			   u64 size)
7307 {
7308 	int ret;
7309 	struct btrfs_root *extent_root;
7310 	struct btrfs_block_group_cache *cache;
7311 
7312 	extent_root = root->fs_info->extent_root;
7313 
7314 	root->fs_info->last_trans_log_full_commit = trans->transid;
7315 
7316 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7317 	if (!cache)
7318 		return -ENOMEM;
7319 
7320 	cache->key.objectid = chunk_offset;
7321 	cache->key.offset = size;
7322 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7323 	cache->sectorsize = root->sectorsize;
7324 
7325 	/*
7326 	 * we only want to have 32k of ram per block group for keeping track
7327 	 * of free space, and if we pass 1/2 of that we want to start
7328 	 * converting things over to using bitmaps
7329 	 */
7330 	cache->extents_thresh = ((1024 * 32) / 2) /
7331 		sizeof(struct btrfs_free_space);
7332 	atomic_set(&cache->count, 1);
7333 	spin_lock_init(&cache->lock);
7334 	spin_lock_init(&cache->tree_lock);
7335 	init_waitqueue_head(&cache->caching_q);
7336 	INIT_LIST_HEAD(&cache->list);
7337 	INIT_LIST_HEAD(&cache->cluster_list);
7338 
7339 	btrfs_set_block_group_used(&cache->item, bytes_used);
7340 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7341 	cache->flags = type;
7342 	btrfs_set_block_group_flags(&cache->item, type);
7343 
7344 	cache->cached = BTRFS_CACHE_FINISHED;
7345 	remove_sb_from_cache(root, cache);
7346 
7347 	add_new_free_space(cache, root->fs_info, chunk_offset,
7348 			   chunk_offset + size);
7349 
7350 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7351 				&cache->space_info);
7352 	BUG_ON(ret);
7353 	down_write(&cache->space_info->groups_sem);
7354 	list_add_tail(&cache->list, &cache->space_info->block_groups);
7355 	up_write(&cache->space_info->groups_sem);
7356 
7357 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7358 	BUG_ON(ret);
7359 
7360 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7361 				sizeof(cache->item));
7362 	BUG_ON(ret);
7363 
7364 	set_avail_alloc_bits(extent_root->fs_info, type);
7365 
7366 	return 0;
7367 }
7368 
7369 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7370 			     struct btrfs_root *root, u64 group_start)
7371 {
7372 	struct btrfs_path *path;
7373 	struct btrfs_block_group_cache *block_group;
7374 	struct btrfs_free_cluster *cluster;
7375 	struct btrfs_key key;
7376 	int ret;
7377 
7378 	root = root->fs_info->extent_root;
7379 
7380 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7381 	BUG_ON(!block_group);
7382 	BUG_ON(!block_group->ro);
7383 
7384 	memcpy(&key, &block_group->key, sizeof(key));
7385 
7386 	/* make sure this block group isn't part of an allocation cluster */
7387 	cluster = &root->fs_info->data_alloc_cluster;
7388 	spin_lock(&cluster->refill_lock);
7389 	btrfs_return_cluster_to_free_space(block_group, cluster);
7390 	spin_unlock(&cluster->refill_lock);
7391 
7392 	/*
7393 	 * make sure this block group isn't part of a metadata
7394 	 * allocation cluster
7395 	 */
7396 	cluster = &root->fs_info->meta_alloc_cluster;
7397 	spin_lock(&cluster->refill_lock);
7398 	btrfs_return_cluster_to_free_space(block_group, cluster);
7399 	spin_unlock(&cluster->refill_lock);
7400 
7401 	path = btrfs_alloc_path();
7402 	BUG_ON(!path);
7403 
7404 	spin_lock(&root->fs_info->block_group_cache_lock);
7405 	rb_erase(&block_group->cache_node,
7406 		 &root->fs_info->block_group_cache_tree);
7407 	spin_unlock(&root->fs_info->block_group_cache_lock);
7408 
7409 	down_write(&block_group->space_info->groups_sem);
7410 	/*
7411 	 * we must use list_del_init so people can check to see if they
7412 	 * are still on the list after taking the semaphore
7413 	 */
7414 	list_del_init(&block_group->list);
7415 	up_write(&block_group->space_info->groups_sem);
7416 
7417 	if (block_group->cached == BTRFS_CACHE_STARTED)
7418 		wait_event(block_group->caching_q,
7419 			   block_group_cache_done(block_group));
7420 
7421 	btrfs_remove_free_space_cache(block_group);
7422 
7423 	spin_lock(&block_group->space_info->lock);
7424 	block_group->space_info->total_bytes -= block_group->key.offset;
7425 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7426 	spin_unlock(&block_group->space_info->lock);
7427 
7428 	btrfs_clear_space_info_full(root->fs_info);
7429 
7430 	btrfs_put_block_group(block_group);
7431 	btrfs_put_block_group(block_group);
7432 
7433 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7434 	if (ret > 0)
7435 		ret = -EIO;
7436 	if (ret < 0)
7437 		goto out;
7438 
7439 	ret = btrfs_del_item(trans, root, path);
7440 out:
7441 	btrfs_free_path(path);
7442 	return ret;
7443 }
7444