xref: /linux/fs/btrfs/extent-tree.c (revision 62a31d6e38bd0faef7c956b358d651f7bdc4ae0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
73 			      u64 start, u64 num_bytes)
74 {
75 	u64 end = start + num_bytes - 1;
76 	set_extent_bits(&fs_info->excluded_extents, start, end,
77 			EXTENT_UPTODATE);
78 	return 0;
79 }
80 
81 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
82 {
83 	struct btrfs_fs_info *fs_info = cache->fs_info;
84 	u64 start, end;
85 
86 	start = cache->start;
87 	end = start + cache->length - 1;
88 
89 	clear_extent_bits(&fs_info->excluded_extents, start, end,
90 			  EXTENT_UPTODATE);
91 }
92 
93 /* simple helper to search for an existing data extent at a given offset */
94 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
95 {
96 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
97 	int ret;
98 	struct btrfs_key key;
99 	struct btrfs_path *path;
100 
101 	path = btrfs_alloc_path();
102 	if (!path)
103 		return -ENOMEM;
104 
105 	key.objectid = start;
106 	key.offset = len;
107 	key.type = BTRFS_EXTENT_ITEM_KEY;
108 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109 	btrfs_free_path(path);
110 	return ret;
111 }
112 
113 /*
114  * helper function to lookup reference count and flags of a tree block.
115  *
116  * the head node for delayed ref is used to store the sum of all the
117  * reference count modifications queued up in the rbtree. the head
118  * node may also store the extent flags to set. This way you can check
119  * to see what the reference count and extent flags would be if all of
120  * the delayed refs are not processed.
121  */
122 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
123 			     struct btrfs_fs_info *fs_info, u64 bytenr,
124 			     u64 offset, int metadata, u64 *refs, u64 *flags)
125 {
126 	struct btrfs_root *extent_root;
127 	struct btrfs_delayed_ref_head *head;
128 	struct btrfs_delayed_ref_root *delayed_refs;
129 	struct btrfs_path *path;
130 	struct btrfs_extent_item *ei;
131 	struct extent_buffer *leaf;
132 	struct btrfs_key key;
133 	u32 item_size;
134 	u64 num_refs;
135 	u64 extent_flags;
136 	int ret;
137 
138 	/*
139 	 * If we don't have skinny metadata, don't bother doing anything
140 	 * different
141 	 */
142 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
143 		offset = fs_info->nodesize;
144 		metadata = 0;
145 	}
146 
147 	path = btrfs_alloc_path();
148 	if (!path)
149 		return -ENOMEM;
150 
151 	if (!trans) {
152 		path->skip_locking = 1;
153 		path->search_commit_root = 1;
154 	}
155 
156 search_again:
157 	key.objectid = bytenr;
158 	key.offset = offset;
159 	if (metadata)
160 		key.type = BTRFS_METADATA_ITEM_KEY;
161 	else
162 		key.type = BTRFS_EXTENT_ITEM_KEY;
163 
164 	extent_root = btrfs_extent_root(fs_info, bytenr);
165 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
166 	if (ret < 0)
167 		goto out_free;
168 
169 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
170 		if (path->slots[0]) {
171 			path->slots[0]--;
172 			btrfs_item_key_to_cpu(path->nodes[0], &key,
173 					      path->slots[0]);
174 			if (key.objectid == bytenr &&
175 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
176 			    key.offset == fs_info->nodesize)
177 				ret = 0;
178 		}
179 	}
180 
181 	if (ret == 0) {
182 		leaf = path->nodes[0];
183 		item_size = btrfs_item_size(leaf, path->slots[0]);
184 		if (item_size >= sizeof(*ei)) {
185 			ei = btrfs_item_ptr(leaf, path->slots[0],
186 					    struct btrfs_extent_item);
187 			num_refs = btrfs_extent_refs(leaf, ei);
188 			extent_flags = btrfs_extent_flags(leaf, ei);
189 		} else {
190 			ret = -EINVAL;
191 			btrfs_print_v0_err(fs_info);
192 			if (trans)
193 				btrfs_abort_transaction(trans, ret);
194 			else
195 				btrfs_handle_fs_error(fs_info, ret, NULL);
196 
197 			goto out_free;
198 		}
199 
200 		BUG_ON(num_refs == 0);
201 	} else {
202 		num_refs = 0;
203 		extent_flags = 0;
204 		ret = 0;
205 	}
206 
207 	if (!trans)
208 		goto out;
209 
210 	delayed_refs = &trans->transaction->delayed_refs;
211 	spin_lock(&delayed_refs->lock);
212 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
213 	if (head) {
214 		if (!mutex_trylock(&head->mutex)) {
215 			refcount_inc(&head->refs);
216 			spin_unlock(&delayed_refs->lock);
217 
218 			btrfs_release_path(path);
219 
220 			/*
221 			 * Mutex was contended, block until it's released and try
222 			 * again
223 			 */
224 			mutex_lock(&head->mutex);
225 			mutex_unlock(&head->mutex);
226 			btrfs_put_delayed_ref_head(head);
227 			goto search_again;
228 		}
229 		spin_lock(&head->lock);
230 		if (head->extent_op && head->extent_op->update_flags)
231 			extent_flags |= head->extent_op->flags_to_set;
232 		else
233 			BUG_ON(num_refs == 0);
234 
235 		num_refs += head->ref_mod;
236 		spin_unlock(&head->lock);
237 		mutex_unlock(&head->mutex);
238 	}
239 	spin_unlock(&delayed_refs->lock);
240 out:
241 	WARN_ON(num_refs == 0);
242 	if (refs)
243 		*refs = num_refs;
244 	if (flags)
245 		*flags = extent_flags;
246 out_free:
247 	btrfs_free_path(path);
248 	return ret;
249 }
250 
251 /*
252  * Back reference rules.  Back refs have three main goals:
253  *
254  * 1) differentiate between all holders of references to an extent so that
255  *    when a reference is dropped we can make sure it was a valid reference
256  *    before freeing the extent.
257  *
258  * 2) Provide enough information to quickly find the holders of an extent
259  *    if we notice a given block is corrupted or bad.
260  *
261  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
262  *    maintenance.  This is actually the same as #2, but with a slightly
263  *    different use case.
264  *
265  * There are two kinds of back refs. The implicit back refs is optimized
266  * for pointers in non-shared tree blocks. For a given pointer in a block,
267  * back refs of this kind provide information about the block's owner tree
268  * and the pointer's key. These information allow us to find the block by
269  * b-tree searching. The full back refs is for pointers in tree blocks not
270  * referenced by their owner trees. The location of tree block is recorded
271  * in the back refs. Actually the full back refs is generic, and can be
272  * used in all cases the implicit back refs is used. The major shortcoming
273  * of the full back refs is its overhead. Every time a tree block gets
274  * COWed, we have to update back refs entry for all pointers in it.
275  *
276  * For a newly allocated tree block, we use implicit back refs for
277  * pointers in it. This means most tree related operations only involve
278  * implicit back refs. For a tree block created in old transaction, the
279  * only way to drop a reference to it is COW it. So we can detect the
280  * event that tree block loses its owner tree's reference and do the
281  * back refs conversion.
282  *
283  * When a tree block is COWed through a tree, there are four cases:
284  *
285  * The reference count of the block is one and the tree is the block's
286  * owner tree. Nothing to do in this case.
287  *
288  * The reference count of the block is one and the tree is not the
289  * block's owner tree. In this case, full back refs is used for pointers
290  * in the block. Remove these full back refs, add implicit back refs for
291  * every pointers in the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * the block's owner tree. In this case, implicit back refs is used for
295  * pointers in the block. Add full back refs for every pointers in the
296  * block, increase lower level extents' reference counts. The original
297  * implicit back refs are entailed to the new block.
298  *
299  * The reference count of the block is greater than one and the tree is
300  * not the block's owner tree. Add implicit back refs for every pointer in
301  * the new block, increase lower level extents' reference count.
302  *
303  * Back Reference Key composing:
304  *
305  * The key objectid corresponds to the first byte in the extent,
306  * The key type is used to differentiate between types of back refs.
307  * There are different meanings of the key offset for different types
308  * of back refs.
309  *
310  * File extents can be referenced by:
311  *
312  * - multiple snapshots, subvolumes, or different generations in one subvol
313  * - different files inside a single subvolume
314  * - different offsets inside a file (bookend extents in file.c)
315  *
316  * The extent ref structure for the implicit back refs has fields for:
317  *
318  * - Objectid of the subvolume root
319  * - objectid of the file holding the reference
320  * - original offset in the file
321  * - how many bookend extents
322  *
323  * The key offset for the implicit back refs is hash of the first
324  * three fields.
325  *
326  * The extent ref structure for the full back refs has field for:
327  *
328  * - number of pointers in the tree leaf
329  *
330  * The key offset for the implicit back refs is the first byte of
331  * the tree leaf
332  *
333  * When a file extent is allocated, The implicit back refs is used.
334  * the fields are filled in:
335  *
336  *     (root_key.objectid, inode objectid, offset in file, 1)
337  *
338  * When a file extent is removed file truncation, we find the
339  * corresponding implicit back refs and check the following fields:
340  *
341  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
342  *
343  * Btree extents can be referenced by:
344  *
345  * - Different subvolumes
346  *
347  * Both the implicit back refs and the full back refs for tree blocks
348  * only consist of key. The key offset for the implicit back refs is
349  * objectid of block's owner tree. The key offset for the full back refs
350  * is the first byte of parent block.
351  *
352  * When implicit back refs is used, information about the lowest key and
353  * level of the tree block are required. These information are stored in
354  * tree block info structure.
355  */
356 
357 /*
358  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
359  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
360  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
361  */
362 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
363 				     struct btrfs_extent_inline_ref *iref,
364 				     enum btrfs_inline_ref_type is_data)
365 {
366 	int type = btrfs_extent_inline_ref_type(eb, iref);
367 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
368 
369 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
370 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
371 	    type == BTRFS_SHARED_DATA_REF_KEY ||
372 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
373 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
374 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
375 				return type;
376 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
377 				ASSERT(eb->fs_info);
378 				/*
379 				 * Every shared one has parent tree block,
380 				 * which must be aligned to sector size.
381 				 */
382 				if (offset &&
383 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
384 					return type;
385 			}
386 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
387 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
388 				return type;
389 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
390 				ASSERT(eb->fs_info);
391 				/*
392 				 * Every shared one has parent tree block,
393 				 * which must be aligned to sector size.
394 				 */
395 				if (offset &&
396 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
397 					return type;
398 			}
399 		} else {
400 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
401 			return type;
402 		}
403 	}
404 
405 	btrfs_print_leaf((struct extent_buffer *)eb);
406 	btrfs_err(eb->fs_info,
407 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
408 		  eb->start, (unsigned long)iref, type);
409 	WARN_ON(1);
410 
411 	return BTRFS_REF_TYPE_INVALID;
412 }
413 
414 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
415 {
416 	u32 high_crc = ~(u32)0;
417 	u32 low_crc = ~(u32)0;
418 	__le64 lenum;
419 
420 	lenum = cpu_to_le64(root_objectid);
421 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
422 	lenum = cpu_to_le64(owner);
423 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
424 	lenum = cpu_to_le64(offset);
425 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
426 
427 	return ((u64)high_crc << 31) ^ (u64)low_crc;
428 }
429 
430 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
431 				     struct btrfs_extent_data_ref *ref)
432 {
433 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
434 				    btrfs_extent_data_ref_objectid(leaf, ref),
435 				    btrfs_extent_data_ref_offset(leaf, ref));
436 }
437 
438 static int match_extent_data_ref(struct extent_buffer *leaf,
439 				 struct btrfs_extent_data_ref *ref,
440 				 u64 root_objectid, u64 owner, u64 offset)
441 {
442 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
443 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
444 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
445 		return 0;
446 	return 1;
447 }
448 
449 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
450 					   struct btrfs_path *path,
451 					   u64 bytenr, u64 parent,
452 					   u64 root_objectid,
453 					   u64 owner, u64 offset)
454 {
455 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
456 	struct btrfs_key key;
457 	struct btrfs_extent_data_ref *ref;
458 	struct extent_buffer *leaf;
459 	u32 nritems;
460 	int ret;
461 	int recow;
462 	int err = -ENOENT;
463 
464 	key.objectid = bytenr;
465 	if (parent) {
466 		key.type = BTRFS_SHARED_DATA_REF_KEY;
467 		key.offset = parent;
468 	} else {
469 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
470 		key.offset = hash_extent_data_ref(root_objectid,
471 						  owner, offset);
472 	}
473 again:
474 	recow = 0;
475 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
476 	if (ret < 0) {
477 		err = ret;
478 		goto fail;
479 	}
480 
481 	if (parent) {
482 		if (!ret)
483 			return 0;
484 		goto fail;
485 	}
486 
487 	leaf = path->nodes[0];
488 	nritems = btrfs_header_nritems(leaf);
489 	while (1) {
490 		if (path->slots[0] >= nritems) {
491 			ret = btrfs_next_leaf(root, path);
492 			if (ret < 0)
493 				err = ret;
494 			if (ret)
495 				goto fail;
496 
497 			leaf = path->nodes[0];
498 			nritems = btrfs_header_nritems(leaf);
499 			recow = 1;
500 		}
501 
502 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
503 		if (key.objectid != bytenr ||
504 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
505 			goto fail;
506 
507 		ref = btrfs_item_ptr(leaf, path->slots[0],
508 				     struct btrfs_extent_data_ref);
509 
510 		if (match_extent_data_ref(leaf, ref, root_objectid,
511 					  owner, offset)) {
512 			if (recow) {
513 				btrfs_release_path(path);
514 				goto again;
515 			}
516 			err = 0;
517 			break;
518 		}
519 		path->slots[0]++;
520 	}
521 fail:
522 	return err;
523 }
524 
525 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
526 					   struct btrfs_path *path,
527 					   u64 bytenr, u64 parent,
528 					   u64 root_objectid, u64 owner,
529 					   u64 offset, int refs_to_add)
530 {
531 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
532 	struct btrfs_key key;
533 	struct extent_buffer *leaf;
534 	u32 size;
535 	u32 num_refs;
536 	int ret;
537 
538 	key.objectid = bytenr;
539 	if (parent) {
540 		key.type = BTRFS_SHARED_DATA_REF_KEY;
541 		key.offset = parent;
542 		size = sizeof(struct btrfs_shared_data_ref);
543 	} else {
544 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
545 		key.offset = hash_extent_data_ref(root_objectid,
546 						  owner, offset);
547 		size = sizeof(struct btrfs_extent_data_ref);
548 	}
549 
550 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
551 	if (ret && ret != -EEXIST)
552 		goto fail;
553 
554 	leaf = path->nodes[0];
555 	if (parent) {
556 		struct btrfs_shared_data_ref *ref;
557 		ref = btrfs_item_ptr(leaf, path->slots[0],
558 				     struct btrfs_shared_data_ref);
559 		if (ret == 0) {
560 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
561 		} else {
562 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
563 			num_refs += refs_to_add;
564 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
565 		}
566 	} else {
567 		struct btrfs_extent_data_ref *ref;
568 		while (ret == -EEXIST) {
569 			ref = btrfs_item_ptr(leaf, path->slots[0],
570 					     struct btrfs_extent_data_ref);
571 			if (match_extent_data_ref(leaf, ref, root_objectid,
572 						  owner, offset))
573 				break;
574 			btrfs_release_path(path);
575 			key.offset++;
576 			ret = btrfs_insert_empty_item(trans, root, path, &key,
577 						      size);
578 			if (ret && ret != -EEXIST)
579 				goto fail;
580 
581 			leaf = path->nodes[0];
582 		}
583 		ref = btrfs_item_ptr(leaf, path->slots[0],
584 				     struct btrfs_extent_data_ref);
585 		if (ret == 0) {
586 			btrfs_set_extent_data_ref_root(leaf, ref,
587 						       root_objectid);
588 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
589 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
590 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
591 		} else {
592 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
593 			num_refs += refs_to_add;
594 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
595 		}
596 	}
597 	btrfs_mark_buffer_dirty(leaf);
598 	ret = 0;
599 fail:
600 	btrfs_release_path(path);
601 	return ret;
602 }
603 
604 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
605 					   struct btrfs_root *root,
606 					   struct btrfs_path *path,
607 					   int refs_to_drop)
608 {
609 	struct btrfs_key key;
610 	struct btrfs_extent_data_ref *ref1 = NULL;
611 	struct btrfs_shared_data_ref *ref2 = NULL;
612 	struct extent_buffer *leaf;
613 	u32 num_refs = 0;
614 	int ret = 0;
615 
616 	leaf = path->nodes[0];
617 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
618 
619 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
620 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
621 				      struct btrfs_extent_data_ref);
622 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
623 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
624 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
625 				      struct btrfs_shared_data_ref);
626 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
627 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
628 		btrfs_print_v0_err(trans->fs_info);
629 		btrfs_abort_transaction(trans, -EINVAL);
630 		return -EINVAL;
631 	} else {
632 		BUG();
633 	}
634 
635 	BUG_ON(num_refs < refs_to_drop);
636 	num_refs -= refs_to_drop;
637 
638 	if (num_refs == 0) {
639 		ret = btrfs_del_item(trans, root, path);
640 	} else {
641 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
642 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
643 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
644 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
645 		btrfs_mark_buffer_dirty(leaf);
646 	}
647 	return ret;
648 }
649 
650 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
651 					  struct btrfs_extent_inline_ref *iref)
652 {
653 	struct btrfs_key key;
654 	struct extent_buffer *leaf;
655 	struct btrfs_extent_data_ref *ref1;
656 	struct btrfs_shared_data_ref *ref2;
657 	u32 num_refs = 0;
658 	int type;
659 
660 	leaf = path->nodes[0];
661 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
662 
663 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
664 	if (iref) {
665 		/*
666 		 * If type is invalid, we should have bailed out earlier than
667 		 * this call.
668 		 */
669 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
670 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
671 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
672 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
673 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
674 		} else {
675 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
676 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 		}
678 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
679 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
680 				      struct btrfs_extent_data_ref);
681 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
682 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
683 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
684 				      struct btrfs_shared_data_ref);
685 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
686 	} else {
687 		WARN_ON(1);
688 	}
689 	return num_refs;
690 }
691 
692 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
693 					  struct btrfs_path *path,
694 					  u64 bytenr, u64 parent,
695 					  u64 root_objectid)
696 {
697 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
698 	struct btrfs_key key;
699 	int ret;
700 
701 	key.objectid = bytenr;
702 	if (parent) {
703 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
704 		key.offset = parent;
705 	} else {
706 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
707 		key.offset = root_objectid;
708 	}
709 
710 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
711 	if (ret > 0)
712 		ret = -ENOENT;
713 	return ret;
714 }
715 
716 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
735 	btrfs_release_path(path);
736 	return ret;
737 }
738 
739 static inline int extent_ref_type(u64 parent, u64 owner)
740 {
741 	int type;
742 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
743 		if (parent > 0)
744 			type = BTRFS_SHARED_BLOCK_REF_KEY;
745 		else
746 			type = BTRFS_TREE_BLOCK_REF_KEY;
747 	} else {
748 		if (parent > 0)
749 			type = BTRFS_SHARED_DATA_REF_KEY;
750 		else
751 			type = BTRFS_EXTENT_DATA_REF_KEY;
752 	}
753 	return type;
754 }
755 
756 static int find_next_key(struct btrfs_path *path, int level,
757 			 struct btrfs_key *key)
758 
759 {
760 	for (; level < BTRFS_MAX_LEVEL; level++) {
761 		if (!path->nodes[level])
762 			break;
763 		if (path->slots[level] + 1 >=
764 		    btrfs_header_nritems(path->nodes[level]))
765 			continue;
766 		if (level == 0)
767 			btrfs_item_key_to_cpu(path->nodes[level], key,
768 					      path->slots[level] + 1);
769 		else
770 			btrfs_node_key_to_cpu(path->nodes[level], key,
771 					      path->slots[level] + 1);
772 		return 0;
773 	}
774 	return 1;
775 }
776 
777 /*
778  * look for inline back ref. if back ref is found, *ref_ret is set
779  * to the address of inline back ref, and 0 is returned.
780  *
781  * if back ref isn't found, *ref_ret is set to the address where it
782  * should be inserted, and -ENOENT is returned.
783  *
784  * if insert is true and there are too many inline back refs, the path
785  * points to the extent item, and -EAGAIN is returned.
786  *
787  * NOTE: inline back refs are ordered in the same way that back ref
788  *	 items in the tree are ordered.
789  */
790 static noinline_for_stack
791 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
792 				 struct btrfs_path *path,
793 				 struct btrfs_extent_inline_ref **ref_ret,
794 				 u64 bytenr, u64 num_bytes,
795 				 u64 parent, u64 root_objectid,
796 				 u64 owner, u64 offset, int insert)
797 {
798 	struct btrfs_fs_info *fs_info = trans->fs_info;
799 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
800 	struct btrfs_key key;
801 	struct extent_buffer *leaf;
802 	struct btrfs_extent_item *ei;
803 	struct btrfs_extent_inline_ref *iref;
804 	u64 flags;
805 	u64 item_size;
806 	unsigned long ptr;
807 	unsigned long end;
808 	int extra_size;
809 	int type;
810 	int want;
811 	int ret;
812 	int err = 0;
813 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
814 	int needed;
815 
816 	key.objectid = bytenr;
817 	key.type = BTRFS_EXTENT_ITEM_KEY;
818 	key.offset = num_bytes;
819 
820 	want = extent_ref_type(parent, owner);
821 	if (insert) {
822 		extra_size = btrfs_extent_inline_ref_size(want);
823 		path->search_for_extension = 1;
824 		path->keep_locks = 1;
825 	} else
826 		extra_size = -1;
827 
828 	/*
829 	 * Owner is our level, so we can just add one to get the level for the
830 	 * block we are interested in.
831 	 */
832 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
833 		key.type = BTRFS_METADATA_ITEM_KEY;
834 		key.offset = owner;
835 	}
836 
837 again:
838 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
839 	if (ret < 0) {
840 		err = ret;
841 		goto out;
842 	}
843 
844 	/*
845 	 * We may be a newly converted file system which still has the old fat
846 	 * extent entries for metadata, so try and see if we have one of those.
847 	 */
848 	if (ret > 0 && skinny_metadata) {
849 		skinny_metadata = false;
850 		if (path->slots[0]) {
851 			path->slots[0]--;
852 			btrfs_item_key_to_cpu(path->nodes[0], &key,
853 					      path->slots[0]);
854 			if (key.objectid == bytenr &&
855 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
856 			    key.offset == num_bytes)
857 				ret = 0;
858 		}
859 		if (ret) {
860 			key.objectid = bytenr;
861 			key.type = BTRFS_EXTENT_ITEM_KEY;
862 			key.offset = num_bytes;
863 			btrfs_release_path(path);
864 			goto again;
865 		}
866 	}
867 
868 	if (ret && !insert) {
869 		err = -ENOENT;
870 		goto out;
871 	} else if (WARN_ON(ret)) {
872 		err = -EIO;
873 		goto out;
874 	}
875 
876 	leaf = path->nodes[0];
877 	item_size = btrfs_item_size(leaf, path->slots[0]);
878 	if (unlikely(item_size < sizeof(*ei))) {
879 		err = -EINVAL;
880 		btrfs_print_v0_err(fs_info);
881 		btrfs_abort_transaction(trans, err);
882 		goto out;
883 	}
884 
885 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
886 	flags = btrfs_extent_flags(leaf, ei);
887 
888 	ptr = (unsigned long)(ei + 1);
889 	end = (unsigned long)ei + item_size;
890 
891 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
892 		ptr += sizeof(struct btrfs_tree_block_info);
893 		BUG_ON(ptr > end);
894 	}
895 
896 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
897 		needed = BTRFS_REF_TYPE_DATA;
898 	else
899 		needed = BTRFS_REF_TYPE_BLOCK;
900 
901 	err = -ENOENT;
902 	while (1) {
903 		if (ptr >= end) {
904 			if (ptr > end) {
905 				err = -EUCLEAN;
906 				btrfs_print_leaf(path->nodes[0]);
907 				btrfs_crit(fs_info,
908 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
909 					path->slots[0], root_objectid, owner, offset, parent);
910 			}
911 			break;
912 		}
913 		iref = (struct btrfs_extent_inline_ref *)ptr;
914 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
915 		if (type == BTRFS_REF_TYPE_INVALID) {
916 			err = -EUCLEAN;
917 			goto out;
918 		}
919 
920 		if (want < type)
921 			break;
922 		if (want > type) {
923 			ptr += btrfs_extent_inline_ref_size(type);
924 			continue;
925 		}
926 
927 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
928 			struct btrfs_extent_data_ref *dref;
929 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
930 			if (match_extent_data_ref(leaf, dref, root_objectid,
931 						  owner, offset)) {
932 				err = 0;
933 				break;
934 			}
935 			if (hash_extent_data_ref_item(leaf, dref) <
936 			    hash_extent_data_ref(root_objectid, owner, offset))
937 				break;
938 		} else {
939 			u64 ref_offset;
940 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
941 			if (parent > 0) {
942 				if (parent == ref_offset) {
943 					err = 0;
944 					break;
945 				}
946 				if (ref_offset < parent)
947 					break;
948 			} else {
949 				if (root_objectid == ref_offset) {
950 					err = 0;
951 					break;
952 				}
953 				if (ref_offset < root_objectid)
954 					break;
955 			}
956 		}
957 		ptr += btrfs_extent_inline_ref_size(type);
958 	}
959 	if (err == -ENOENT && insert) {
960 		if (item_size + extra_size >=
961 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
962 			err = -EAGAIN;
963 			goto out;
964 		}
965 		/*
966 		 * To add new inline back ref, we have to make sure
967 		 * there is no corresponding back ref item.
968 		 * For simplicity, we just do not add new inline back
969 		 * ref if there is any kind of item for this block
970 		 */
971 		if (find_next_key(path, 0, &key) == 0 &&
972 		    key.objectid == bytenr &&
973 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
974 			err = -EAGAIN;
975 			goto out;
976 		}
977 	}
978 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
979 out:
980 	if (insert) {
981 		path->keep_locks = 0;
982 		path->search_for_extension = 0;
983 		btrfs_unlock_up_safe(path, 1);
984 	}
985 	return err;
986 }
987 
988 /*
989  * helper to add new inline back ref
990  */
991 static noinline_for_stack
992 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
993 				 struct btrfs_path *path,
994 				 struct btrfs_extent_inline_ref *iref,
995 				 u64 parent, u64 root_objectid,
996 				 u64 owner, u64 offset, int refs_to_add,
997 				 struct btrfs_delayed_extent_op *extent_op)
998 {
999 	struct extent_buffer *leaf;
1000 	struct btrfs_extent_item *ei;
1001 	unsigned long ptr;
1002 	unsigned long end;
1003 	unsigned long item_offset;
1004 	u64 refs;
1005 	int size;
1006 	int type;
1007 
1008 	leaf = path->nodes[0];
1009 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1010 	item_offset = (unsigned long)iref - (unsigned long)ei;
1011 
1012 	type = extent_ref_type(parent, owner);
1013 	size = btrfs_extent_inline_ref_size(type);
1014 
1015 	btrfs_extend_item(path, size);
1016 
1017 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 	refs = btrfs_extent_refs(leaf, ei);
1019 	refs += refs_to_add;
1020 	btrfs_set_extent_refs(leaf, ei, refs);
1021 	if (extent_op)
1022 		__run_delayed_extent_op(extent_op, leaf, ei);
1023 
1024 	ptr = (unsigned long)ei + item_offset;
1025 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1026 	if (ptr < end - size)
1027 		memmove_extent_buffer(leaf, ptr + size, ptr,
1028 				      end - size - ptr);
1029 
1030 	iref = (struct btrfs_extent_inline_ref *)ptr;
1031 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1032 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1033 		struct btrfs_extent_data_ref *dref;
1034 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1035 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1036 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1037 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1038 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1039 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1040 		struct btrfs_shared_data_ref *sref;
1041 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1042 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1048 	}
1049 	btrfs_mark_buffer_dirty(leaf);
1050 }
1051 
1052 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1053 				 struct btrfs_path *path,
1054 				 struct btrfs_extent_inline_ref **ref_ret,
1055 				 u64 bytenr, u64 num_bytes, u64 parent,
1056 				 u64 root_objectid, u64 owner, u64 offset)
1057 {
1058 	int ret;
1059 
1060 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1061 					   num_bytes, parent, root_objectid,
1062 					   owner, offset, 0);
1063 	if (ret != -ENOENT)
1064 		return ret;
1065 
1066 	btrfs_release_path(path);
1067 	*ref_ret = NULL;
1068 
1069 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1070 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1071 					    root_objectid);
1072 	} else {
1073 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1074 					     root_objectid, owner, offset);
1075 	}
1076 	return ret;
1077 }
1078 
1079 /*
1080  * helper to update/remove inline back ref
1081  */
1082 static noinline_for_stack
1083 void update_inline_extent_backref(struct btrfs_path *path,
1084 				  struct btrfs_extent_inline_ref *iref,
1085 				  int refs_to_mod,
1086 				  struct btrfs_delayed_extent_op *extent_op)
1087 {
1088 	struct extent_buffer *leaf = path->nodes[0];
1089 	struct btrfs_extent_item *ei;
1090 	struct btrfs_extent_data_ref *dref = NULL;
1091 	struct btrfs_shared_data_ref *sref = NULL;
1092 	unsigned long ptr;
1093 	unsigned long end;
1094 	u32 item_size;
1095 	int size;
1096 	int type;
1097 	u64 refs;
1098 
1099 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 	refs = btrfs_extent_refs(leaf, ei);
1101 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1102 	refs += refs_to_mod;
1103 	btrfs_set_extent_refs(leaf, ei, refs);
1104 	if (extent_op)
1105 		__run_delayed_extent_op(extent_op, leaf, ei);
1106 
1107 	/*
1108 	 * If type is invalid, we should have bailed out after
1109 	 * lookup_inline_extent_backref().
1110 	 */
1111 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1112 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1113 
1114 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1115 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1116 		refs = btrfs_extent_data_ref_count(leaf, dref);
1117 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1118 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1119 		refs = btrfs_shared_data_ref_count(leaf, sref);
1120 	} else {
1121 		refs = 1;
1122 		BUG_ON(refs_to_mod != -1);
1123 	}
1124 
1125 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1126 	refs += refs_to_mod;
1127 
1128 	if (refs > 0) {
1129 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1130 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1131 		else
1132 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1133 	} else {
1134 		size =  btrfs_extent_inline_ref_size(type);
1135 		item_size = btrfs_item_size(leaf, path->slots[0]);
1136 		ptr = (unsigned long)iref;
1137 		end = (unsigned long)ei + item_size;
1138 		if (ptr + size < end)
1139 			memmove_extent_buffer(leaf, ptr, ptr + size,
1140 					      end - ptr - size);
1141 		item_size -= size;
1142 		btrfs_truncate_item(path, item_size, 1);
1143 	}
1144 	btrfs_mark_buffer_dirty(leaf);
1145 }
1146 
1147 static noinline_for_stack
1148 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1149 				 struct btrfs_path *path,
1150 				 u64 bytenr, u64 num_bytes, u64 parent,
1151 				 u64 root_objectid, u64 owner,
1152 				 u64 offset, int refs_to_add,
1153 				 struct btrfs_delayed_extent_op *extent_op)
1154 {
1155 	struct btrfs_extent_inline_ref *iref;
1156 	int ret;
1157 
1158 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1159 					   num_bytes, parent, root_objectid,
1160 					   owner, offset, 1);
1161 	if (ret == 0) {
1162 		/*
1163 		 * We're adding refs to a tree block we already own, this
1164 		 * should not happen at all.
1165 		 */
1166 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1167 			btrfs_crit(trans->fs_info,
1168 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1169 				   bytenr, num_bytes, root_objectid);
1170 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1171 				WARN_ON(1);
1172 				btrfs_crit(trans->fs_info,
1173 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1174 				btrfs_print_leaf(path->nodes[0]);
1175 			}
1176 			return -EUCLEAN;
1177 		}
1178 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1179 	} else if (ret == -ENOENT) {
1180 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1181 					    root_objectid, owner, offset,
1182 					    refs_to_add, extent_op);
1183 		ret = 0;
1184 	}
1185 	return ret;
1186 }
1187 
1188 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1189 				 struct btrfs_root *root,
1190 				 struct btrfs_path *path,
1191 				 struct btrfs_extent_inline_ref *iref,
1192 				 int refs_to_drop, int is_data)
1193 {
1194 	int ret = 0;
1195 
1196 	BUG_ON(!is_data && refs_to_drop != 1);
1197 	if (iref)
1198 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1199 	else if (is_data)
1200 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1201 	else
1202 		ret = btrfs_del_item(trans, root, path);
1203 	return ret;
1204 }
1205 
1206 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1207 			       u64 *discarded_bytes)
1208 {
1209 	int j, ret = 0;
1210 	u64 bytes_left, end;
1211 	u64 aligned_start = ALIGN(start, 1 << 9);
1212 
1213 	if (WARN_ON(start != aligned_start)) {
1214 		len -= aligned_start - start;
1215 		len = round_down(len, 1 << 9);
1216 		start = aligned_start;
1217 	}
1218 
1219 	*discarded_bytes = 0;
1220 
1221 	if (!len)
1222 		return 0;
1223 
1224 	end = start + len;
1225 	bytes_left = len;
1226 
1227 	/* Skip any superblocks on this device. */
1228 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1229 		u64 sb_start = btrfs_sb_offset(j);
1230 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1231 		u64 size = sb_start - start;
1232 
1233 		if (!in_range(sb_start, start, bytes_left) &&
1234 		    !in_range(sb_end, start, bytes_left) &&
1235 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1236 			continue;
1237 
1238 		/*
1239 		 * Superblock spans beginning of range.  Adjust start and
1240 		 * try again.
1241 		 */
1242 		if (sb_start <= start) {
1243 			start += sb_end - start;
1244 			if (start > end) {
1245 				bytes_left = 0;
1246 				break;
1247 			}
1248 			bytes_left = end - start;
1249 			continue;
1250 		}
1251 
1252 		if (size) {
1253 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1254 						   GFP_NOFS);
1255 			if (!ret)
1256 				*discarded_bytes += size;
1257 			else if (ret != -EOPNOTSUPP)
1258 				return ret;
1259 		}
1260 
1261 		start = sb_end;
1262 		if (start > end) {
1263 			bytes_left = 0;
1264 			break;
1265 		}
1266 		bytes_left = end - start;
1267 	}
1268 
1269 	if (bytes_left) {
1270 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1271 					   GFP_NOFS);
1272 		if (!ret)
1273 			*discarded_bytes += bytes_left;
1274 	}
1275 	return ret;
1276 }
1277 
1278 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1279 {
1280 	struct btrfs_device *dev = stripe->dev;
1281 	struct btrfs_fs_info *fs_info = dev->fs_info;
1282 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 	u64 phys = stripe->physical;
1284 	u64 len = stripe->length;
1285 	u64 discarded = 0;
1286 	int ret = 0;
1287 
1288 	/* Zone reset on a zoned filesystem */
1289 	if (btrfs_can_zone_reset(dev, phys, len)) {
1290 		u64 src_disc;
1291 
1292 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1297 		    dev != dev_replace->srcdev)
1298 			goto out;
1299 
1300 		src_disc = discarded;
1301 
1302 		/* Send to replace target as well */
1303 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1304 					      &discarded);
1305 		discarded += src_disc;
1306 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1307 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1308 	} else {
1309 		ret = 0;
1310 		*bytes = 0;
1311 	}
1312 
1313 out:
1314 	*bytes = discarded;
1315 	return ret;
1316 }
1317 
1318 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1319 			 u64 num_bytes, u64 *actual_bytes)
1320 {
1321 	int ret = 0;
1322 	u64 discarded_bytes = 0;
1323 	u64 end = bytenr + num_bytes;
1324 	u64 cur = bytenr;
1325 
1326 	/*
1327 	 * Avoid races with device replace and make sure the devices in the
1328 	 * stripes don't go away while we are discarding.
1329 	 */
1330 	btrfs_bio_counter_inc_blocked(fs_info);
1331 	while (cur < end) {
1332 		struct btrfs_discard_stripe *stripes;
1333 		unsigned int num_stripes;
1334 		int i;
1335 
1336 		num_bytes = end - cur;
1337 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1338 		if (IS_ERR(stripes)) {
1339 			ret = PTR_ERR(stripes);
1340 			if (ret == -EOPNOTSUPP)
1341 				ret = 0;
1342 			break;
1343 		}
1344 
1345 		for (i = 0; i < num_stripes; i++) {
1346 			struct btrfs_discard_stripe *stripe = stripes + i;
1347 			u64 bytes;
1348 
1349 			if (!stripe->dev->bdev) {
1350 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1351 				continue;
1352 			}
1353 
1354 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1355 					&stripe->dev->dev_state))
1356 				continue;
1357 
1358 			ret = do_discard_extent(stripe, &bytes);
1359 			if (ret) {
1360 				/*
1361 				 * Keep going if discard is not supported by the
1362 				 * device.
1363 				 */
1364 				if (ret != -EOPNOTSUPP)
1365 					break;
1366 				ret = 0;
1367 			} else {
1368 				discarded_bytes += bytes;
1369 			}
1370 		}
1371 		kfree(stripes);
1372 		if (ret)
1373 			break;
1374 		cur += num_bytes;
1375 	}
1376 	btrfs_bio_counter_dec(fs_info);
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 	return ret;
1380 }
1381 
1382 /* Can return -ENOMEM */
1383 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1384 			 struct btrfs_ref *generic_ref)
1385 {
1386 	struct btrfs_fs_info *fs_info = trans->fs_info;
1387 	int ret;
1388 
1389 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1390 	       generic_ref->action);
1391 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1392 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1393 
1394 	if (generic_ref->type == BTRFS_REF_METADATA)
1395 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1396 	else
1397 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1398 
1399 	btrfs_ref_tree_mod(fs_info, generic_ref);
1400 
1401 	return ret;
1402 }
1403 
1404 /*
1405  * __btrfs_inc_extent_ref - insert backreference for a given extent
1406  *
1407  * The counterpart is in __btrfs_free_extent(), with examples and more details
1408  * how it works.
1409  *
1410  * @trans:	    Handle of transaction
1411  *
1412  * @node:	    The delayed ref node used to get the bytenr/length for
1413  *		    extent whose references are incremented.
1414  *
1415  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1416  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1417  *		    bytenr of the parent block. Since new extents are always
1418  *		    created with indirect references, this will only be the case
1419  *		    when relocating a shared extent. In that case, root_objectid
1420  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1421  *		    be 0
1422  *
1423  * @root_objectid:  The id of the root where this modification has originated,
1424  *		    this can be either one of the well-known metadata trees or
1425  *		    the subvolume id which references this extent.
1426  *
1427  * @owner:	    For data extents it is the inode number of the owning file.
1428  *		    For metadata extents this parameter holds the level in the
1429  *		    tree of the extent.
1430  *
1431  * @offset:	    For metadata extents the offset is ignored and is currently
1432  *		    always passed as 0. For data extents it is the fileoffset
1433  *		    this extent belongs to.
1434  *
1435  * @refs_to_add     Number of references to add
1436  *
1437  * @extent_op       Pointer to a structure, holding information necessary when
1438  *                  updating a tree block's flags
1439  *
1440  */
1441 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1442 				  struct btrfs_delayed_ref_node *node,
1443 				  u64 parent, u64 root_objectid,
1444 				  u64 owner, u64 offset, int refs_to_add,
1445 				  struct btrfs_delayed_extent_op *extent_op)
1446 {
1447 	struct btrfs_path *path;
1448 	struct extent_buffer *leaf;
1449 	struct btrfs_extent_item *item;
1450 	struct btrfs_key key;
1451 	u64 bytenr = node->bytenr;
1452 	u64 num_bytes = node->num_bytes;
1453 	u64 refs;
1454 	int ret;
1455 
1456 	path = btrfs_alloc_path();
1457 	if (!path)
1458 		return -ENOMEM;
1459 
1460 	/* this will setup the path even if it fails to insert the back ref */
1461 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1462 					   parent, root_objectid, owner,
1463 					   offset, refs_to_add, extent_op);
1464 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1465 		goto out;
1466 
1467 	/*
1468 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1469 	 * inline extent ref, so just update the reference count and add a
1470 	 * normal backref.
1471 	 */
1472 	leaf = path->nodes[0];
1473 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1474 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1475 	refs = btrfs_extent_refs(leaf, item);
1476 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1477 	if (extent_op)
1478 		__run_delayed_extent_op(extent_op, leaf, item);
1479 
1480 	btrfs_mark_buffer_dirty(leaf);
1481 	btrfs_release_path(path);
1482 
1483 	/* now insert the actual backref */
1484 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 		BUG_ON(refs_to_add != 1);
1486 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1487 					    root_objectid);
1488 	} else {
1489 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1490 					     root_objectid, owner, offset,
1491 					     refs_to_add);
1492 	}
1493 	if (ret)
1494 		btrfs_abort_transaction(trans, ret);
1495 out:
1496 	btrfs_free_path(path);
1497 	return ret;
1498 }
1499 
1500 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1501 				struct btrfs_delayed_ref_node *node,
1502 				struct btrfs_delayed_extent_op *extent_op,
1503 				int insert_reserved)
1504 {
1505 	int ret = 0;
1506 	struct btrfs_delayed_data_ref *ref;
1507 	struct btrfs_key ins;
1508 	u64 parent = 0;
1509 	u64 ref_root = 0;
1510 	u64 flags = 0;
1511 
1512 	ins.objectid = node->bytenr;
1513 	ins.offset = node->num_bytes;
1514 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1515 
1516 	ref = btrfs_delayed_node_to_data_ref(node);
1517 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1518 
1519 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1520 		parent = ref->parent;
1521 	ref_root = ref->root;
1522 
1523 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1524 		if (extent_op)
1525 			flags |= extent_op->flags_to_set;
1526 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1527 						 flags, ref->objectid,
1528 						 ref->offset, &ins,
1529 						 node->ref_mod);
1530 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1531 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1532 					     ref->objectid, ref->offset,
1533 					     node->ref_mod, extent_op);
1534 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1535 		ret = __btrfs_free_extent(trans, node, parent,
1536 					  ref_root, ref->objectid,
1537 					  ref->offset, node->ref_mod,
1538 					  extent_op);
1539 	} else {
1540 		BUG();
1541 	}
1542 	return ret;
1543 }
1544 
1545 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1546 				    struct extent_buffer *leaf,
1547 				    struct btrfs_extent_item *ei)
1548 {
1549 	u64 flags = btrfs_extent_flags(leaf, ei);
1550 	if (extent_op->update_flags) {
1551 		flags |= extent_op->flags_to_set;
1552 		btrfs_set_extent_flags(leaf, ei, flags);
1553 	}
1554 
1555 	if (extent_op->update_key) {
1556 		struct btrfs_tree_block_info *bi;
1557 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1558 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1559 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1560 	}
1561 }
1562 
1563 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1564 				 struct btrfs_delayed_ref_head *head,
1565 				 struct btrfs_delayed_extent_op *extent_op)
1566 {
1567 	struct btrfs_fs_info *fs_info = trans->fs_info;
1568 	struct btrfs_root *root;
1569 	struct btrfs_key key;
1570 	struct btrfs_path *path;
1571 	struct btrfs_extent_item *ei;
1572 	struct extent_buffer *leaf;
1573 	u32 item_size;
1574 	int ret;
1575 	int err = 0;
1576 	int metadata = 1;
1577 
1578 	if (TRANS_ABORTED(trans))
1579 		return 0;
1580 
1581 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1582 		metadata = 0;
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	key.objectid = head->bytenr;
1589 
1590 	if (metadata) {
1591 		key.type = BTRFS_METADATA_ITEM_KEY;
1592 		key.offset = extent_op->level;
1593 	} else {
1594 		key.type = BTRFS_EXTENT_ITEM_KEY;
1595 		key.offset = head->num_bytes;
1596 	}
1597 
1598 	root = btrfs_extent_root(fs_info, key.objectid);
1599 again:
1600 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1601 	if (ret < 0) {
1602 		err = ret;
1603 		goto out;
1604 	}
1605 	if (ret > 0) {
1606 		if (metadata) {
1607 			if (path->slots[0] > 0) {
1608 				path->slots[0]--;
1609 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1610 						      path->slots[0]);
1611 				if (key.objectid == head->bytenr &&
1612 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1613 				    key.offset == head->num_bytes)
1614 					ret = 0;
1615 			}
1616 			if (ret > 0) {
1617 				btrfs_release_path(path);
1618 				metadata = 0;
1619 
1620 				key.objectid = head->bytenr;
1621 				key.offset = head->num_bytes;
1622 				key.type = BTRFS_EXTENT_ITEM_KEY;
1623 				goto again;
1624 			}
1625 		} else {
1626 			err = -EIO;
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	leaf = path->nodes[0];
1632 	item_size = btrfs_item_size(leaf, path->slots[0]);
1633 
1634 	if (unlikely(item_size < sizeof(*ei))) {
1635 		err = -EINVAL;
1636 		btrfs_print_v0_err(fs_info);
1637 		btrfs_abort_transaction(trans, err);
1638 		goto out;
1639 	}
1640 
1641 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1642 	__run_delayed_extent_op(extent_op, leaf, ei);
1643 
1644 	btrfs_mark_buffer_dirty(leaf);
1645 out:
1646 	btrfs_free_path(path);
1647 	return err;
1648 }
1649 
1650 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1651 				struct btrfs_delayed_ref_node *node,
1652 				struct btrfs_delayed_extent_op *extent_op,
1653 				int insert_reserved)
1654 {
1655 	int ret = 0;
1656 	struct btrfs_delayed_tree_ref *ref;
1657 	u64 parent = 0;
1658 	u64 ref_root = 0;
1659 
1660 	ref = btrfs_delayed_node_to_tree_ref(node);
1661 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1662 
1663 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1664 		parent = ref->parent;
1665 	ref_root = ref->root;
1666 
1667 	if (node->ref_mod != 1) {
1668 		btrfs_err(trans->fs_info,
1669 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1670 			  node->bytenr, node->ref_mod, node->action, ref_root,
1671 			  parent);
1672 		return -EIO;
1673 	}
1674 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1675 		BUG_ON(!extent_op || !extent_op->update_flags);
1676 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1677 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1678 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1679 					     ref->level, 0, 1, extent_op);
1680 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1681 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1682 					  ref->level, 0, 1, extent_op);
1683 	} else {
1684 		BUG();
1685 	}
1686 	return ret;
1687 }
1688 
1689 /* helper function to actually process a single delayed ref entry */
1690 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1691 			       struct btrfs_delayed_ref_node *node,
1692 			       struct btrfs_delayed_extent_op *extent_op,
1693 			       int insert_reserved)
1694 {
1695 	int ret = 0;
1696 
1697 	if (TRANS_ABORTED(trans)) {
1698 		if (insert_reserved)
1699 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1700 		return 0;
1701 	}
1702 
1703 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1704 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1705 		ret = run_delayed_tree_ref(trans, node, extent_op,
1706 					   insert_reserved);
1707 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1708 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1709 		ret = run_delayed_data_ref(trans, node, extent_op,
1710 					   insert_reserved);
1711 	else
1712 		BUG();
1713 	if (ret && insert_reserved)
1714 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1715 	if (ret < 0)
1716 		btrfs_err(trans->fs_info,
1717 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1718 			  node->bytenr, node->num_bytes, node->type,
1719 			  node->action, node->ref_mod, ret);
1720 	return ret;
1721 }
1722 
1723 static inline struct btrfs_delayed_ref_node *
1724 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1725 {
1726 	struct btrfs_delayed_ref_node *ref;
1727 
1728 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 		return NULL;
1730 
1731 	/*
1732 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1733 	 * This is to prevent a ref count from going down to zero, which deletes
1734 	 * the extent item from the extent tree, when there still are references
1735 	 * to add, which would fail because they would not find the extent item.
1736 	 */
1737 	if (!list_empty(&head->ref_add_list))
1738 		return list_first_entry(&head->ref_add_list,
1739 				struct btrfs_delayed_ref_node, add_list);
1740 
1741 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1742 		       struct btrfs_delayed_ref_node, ref_node);
1743 	ASSERT(list_empty(&ref->add_list));
1744 	return ref;
1745 }
1746 
1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1748 				      struct btrfs_delayed_ref_head *head)
1749 {
1750 	spin_lock(&delayed_refs->lock);
1751 	head->processing = 0;
1752 	delayed_refs->num_heads_ready++;
1753 	spin_unlock(&delayed_refs->lock);
1754 	btrfs_delayed_ref_unlock(head);
1755 }
1756 
1757 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1758 				struct btrfs_delayed_ref_head *head)
1759 {
1760 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761 
1762 	if (!extent_op)
1763 		return NULL;
1764 
1765 	if (head->must_insert_reserved) {
1766 		head->extent_op = NULL;
1767 		btrfs_free_delayed_extent_op(extent_op);
1768 		return NULL;
1769 	}
1770 	return extent_op;
1771 }
1772 
1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1774 				     struct btrfs_delayed_ref_head *head)
1775 {
1776 	struct btrfs_delayed_extent_op *extent_op;
1777 	int ret;
1778 
1779 	extent_op = cleanup_extent_op(head);
1780 	if (!extent_op)
1781 		return 0;
1782 	head->extent_op = NULL;
1783 	spin_unlock(&head->lock);
1784 	ret = run_delayed_extent_op(trans, head, extent_op);
1785 	btrfs_free_delayed_extent_op(extent_op);
1786 	return ret ? ret : 1;
1787 }
1788 
1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1790 				  struct btrfs_delayed_ref_root *delayed_refs,
1791 				  struct btrfs_delayed_ref_head *head)
1792 {
1793 	int nr_items = 1;	/* Dropping this ref head update. */
1794 
1795 	/*
1796 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1797 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1798 	 */
1799 	if (head->total_ref_mod < 0 && head->is_data) {
1800 		spin_lock(&delayed_refs->lock);
1801 		delayed_refs->pending_csums -= head->num_bytes;
1802 		spin_unlock(&delayed_refs->lock);
1803 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1804 	}
1805 
1806 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1807 }
1808 
1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_delayed_ref_head *head)
1811 {
1812 
1813 	struct btrfs_fs_info *fs_info = trans->fs_info;
1814 	struct btrfs_delayed_ref_root *delayed_refs;
1815 	int ret;
1816 
1817 	delayed_refs = &trans->transaction->delayed_refs;
1818 
1819 	ret = run_and_cleanup_extent_op(trans, head);
1820 	if (ret < 0) {
1821 		unselect_delayed_ref_head(delayed_refs, head);
1822 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1823 		return ret;
1824 	} else if (ret) {
1825 		return ret;
1826 	}
1827 
1828 	/*
1829 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1830 	 * and then re-check to make sure nobody got added.
1831 	 */
1832 	spin_unlock(&head->lock);
1833 	spin_lock(&delayed_refs->lock);
1834 	spin_lock(&head->lock);
1835 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1836 		spin_unlock(&head->lock);
1837 		spin_unlock(&delayed_refs->lock);
1838 		return 1;
1839 	}
1840 	btrfs_delete_ref_head(delayed_refs, head);
1841 	spin_unlock(&head->lock);
1842 	spin_unlock(&delayed_refs->lock);
1843 
1844 	if (head->must_insert_reserved) {
1845 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1846 		if (head->is_data) {
1847 			struct btrfs_root *csum_root;
1848 
1849 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1850 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1851 					      head->num_bytes);
1852 		}
1853 	}
1854 
1855 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1856 
1857 	trace_run_delayed_ref_head(fs_info, head, 0);
1858 	btrfs_delayed_ref_unlock(head);
1859 	btrfs_put_delayed_ref_head(head);
1860 	return ret;
1861 }
1862 
1863 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1864 					struct btrfs_trans_handle *trans)
1865 {
1866 	struct btrfs_delayed_ref_root *delayed_refs =
1867 		&trans->transaction->delayed_refs;
1868 	struct btrfs_delayed_ref_head *head = NULL;
1869 	int ret;
1870 
1871 	spin_lock(&delayed_refs->lock);
1872 	head = btrfs_select_ref_head(delayed_refs);
1873 	if (!head) {
1874 		spin_unlock(&delayed_refs->lock);
1875 		return head;
1876 	}
1877 
1878 	/*
1879 	 * Grab the lock that says we are going to process all the refs for
1880 	 * this head
1881 	 */
1882 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1883 	spin_unlock(&delayed_refs->lock);
1884 
1885 	/*
1886 	 * We may have dropped the spin lock to get the head mutex lock, and
1887 	 * that might have given someone else time to free the head.  If that's
1888 	 * true, it has been removed from our list and we can move on.
1889 	 */
1890 	if (ret == -EAGAIN)
1891 		head = ERR_PTR(-EAGAIN);
1892 
1893 	return head;
1894 }
1895 
1896 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1897 				    struct btrfs_delayed_ref_head *locked_ref,
1898 				    unsigned long *run_refs)
1899 {
1900 	struct btrfs_fs_info *fs_info = trans->fs_info;
1901 	struct btrfs_delayed_ref_root *delayed_refs;
1902 	struct btrfs_delayed_extent_op *extent_op;
1903 	struct btrfs_delayed_ref_node *ref;
1904 	int must_insert_reserved = 0;
1905 	int ret;
1906 
1907 	delayed_refs = &trans->transaction->delayed_refs;
1908 
1909 	lockdep_assert_held(&locked_ref->mutex);
1910 	lockdep_assert_held(&locked_ref->lock);
1911 
1912 	while ((ref = select_delayed_ref(locked_ref))) {
1913 		if (ref->seq &&
1914 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1915 			spin_unlock(&locked_ref->lock);
1916 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1917 			return -EAGAIN;
1918 		}
1919 
1920 		(*run_refs)++;
1921 		ref->in_tree = 0;
1922 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1923 		RB_CLEAR_NODE(&ref->ref_node);
1924 		if (!list_empty(&ref->add_list))
1925 			list_del(&ref->add_list);
1926 		/*
1927 		 * When we play the delayed ref, also correct the ref_mod on
1928 		 * head
1929 		 */
1930 		switch (ref->action) {
1931 		case BTRFS_ADD_DELAYED_REF:
1932 		case BTRFS_ADD_DELAYED_EXTENT:
1933 			locked_ref->ref_mod -= ref->ref_mod;
1934 			break;
1935 		case BTRFS_DROP_DELAYED_REF:
1936 			locked_ref->ref_mod += ref->ref_mod;
1937 			break;
1938 		default:
1939 			WARN_ON(1);
1940 		}
1941 		atomic_dec(&delayed_refs->num_entries);
1942 
1943 		/*
1944 		 * Record the must_insert_reserved flag before we drop the
1945 		 * spin lock.
1946 		 */
1947 		must_insert_reserved = locked_ref->must_insert_reserved;
1948 		locked_ref->must_insert_reserved = 0;
1949 
1950 		extent_op = locked_ref->extent_op;
1951 		locked_ref->extent_op = NULL;
1952 		spin_unlock(&locked_ref->lock);
1953 
1954 		ret = run_one_delayed_ref(trans, ref, extent_op,
1955 					  must_insert_reserved);
1956 
1957 		btrfs_free_delayed_extent_op(extent_op);
1958 		if (ret) {
1959 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1960 			btrfs_put_delayed_ref(ref);
1961 			return ret;
1962 		}
1963 
1964 		btrfs_put_delayed_ref(ref);
1965 		cond_resched();
1966 
1967 		spin_lock(&locked_ref->lock);
1968 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 /*
1975  * Returns 0 on success or if called with an already aborted transaction.
1976  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1977  */
1978 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1979 					     unsigned long nr)
1980 {
1981 	struct btrfs_fs_info *fs_info = trans->fs_info;
1982 	struct btrfs_delayed_ref_root *delayed_refs;
1983 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1984 	ktime_t start = ktime_get();
1985 	int ret;
1986 	unsigned long count = 0;
1987 	unsigned long actual_count = 0;
1988 
1989 	delayed_refs = &trans->transaction->delayed_refs;
1990 	do {
1991 		if (!locked_ref) {
1992 			locked_ref = btrfs_obtain_ref_head(trans);
1993 			if (IS_ERR_OR_NULL(locked_ref)) {
1994 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1995 					continue;
1996 				} else {
1997 					break;
1998 				}
1999 			}
2000 			count++;
2001 		}
2002 		/*
2003 		 * We need to try and merge add/drops of the same ref since we
2004 		 * can run into issues with relocate dropping the implicit ref
2005 		 * and then it being added back again before the drop can
2006 		 * finish.  If we merged anything we need to re-loop so we can
2007 		 * get a good ref.
2008 		 * Or we can get node references of the same type that weren't
2009 		 * merged when created due to bumps in the tree mod seq, and
2010 		 * we need to merge them to prevent adding an inline extent
2011 		 * backref before dropping it (triggering a BUG_ON at
2012 		 * insert_inline_extent_backref()).
2013 		 */
2014 		spin_lock(&locked_ref->lock);
2015 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2016 
2017 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2018 						      &actual_count);
2019 		if (ret < 0 && ret != -EAGAIN) {
2020 			/*
2021 			 * Error, btrfs_run_delayed_refs_for_head already
2022 			 * unlocked everything so just bail out
2023 			 */
2024 			return ret;
2025 		} else if (!ret) {
2026 			/*
2027 			 * Success, perform the usual cleanup of a processed
2028 			 * head
2029 			 */
2030 			ret = cleanup_ref_head(trans, locked_ref);
2031 			if (ret > 0 ) {
2032 				/* We dropped our lock, we need to loop. */
2033 				ret = 0;
2034 				continue;
2035 			} else if (ret) {
2036 				return ret;
2037 			}
2038 		}
2039 
2040 		/*
2041 		 * Either success case or btrfs_run_delayed_refs_for_head
2042 		 * returned -EAGAIN, meaning we need to select another head
2043 		 */
2044 
2045 		locked_ref = NULL;
2046 		cond_resched();
2047 	} while ((nr != -1 && count < nr) || locked_ref);
2048 
2049 	/*
2050 	 * We don't want to include ref heads since we can have empty ref heads
2051 	 * and those will drastically skew our runtime down since we just do
2052 	 * accounting, no actual extent tree updates.
2053 	 */
2054 	if (actual_count > 0) {
2055 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2056 		u64 avg;
2057 
2058 		/*
2059 		 * We weigh the current average higher than our current runtime
2060 		 * to avoid large swings in the average.
2061 		 */
2062 		spin_lock(&delayed_refs->lock);
2063 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2064 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2065 		spin_unlock(&delayed_refs->lock);
2066 	}
2067 	return 0;
2068 }
2069 
2070 #ifdef SCRAMBLE_DELAYED_REFS
2071 /*
2072  * Normally delayed refs get processed in ascending bytenr order. This
2073  * correlates in most cases to the order added. To expose dependencies on this
2074  * order, we start to process the tree in the middle instead of the beginning
2075  */
2076 static u64 find_middle(struct rb_root *root)
2077 {
2078 	struct rb_node *n = root->rb_node;
2079 	struct btrfs_delayed_ref_node *entry;
2080 	int alt = 1;
2081 	u64 middle;
2082 	u64 first = 0, last = 0;
2083 
2084 	n = rb_first(root);
2085 	if (n) {
2086 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2087 		first = entry->bytenr;
2088 	}
2089 	n = rb_last(root);
2090 	if (n) {
2091 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2092 		last = entry->bytenr;
2093 	}
2094 	n = root->rb_node;
2095 
2096 	while (n) {
2097 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 		WARN_ON(!entry->in_tree);
2099 
2100 		middle = entry->bytenr;
2101 
2102 		if (alt)
2103 			n = n->rb_left;
2104 		else
2105 			n = n->rb_right;
2106 
2107 		alt = 1 - alt;
2108 	}
2109 	return middle;
2110 }
2111 #endif
2112 
2113 /*
2114  * this starts processing the delayed reference count updates and
2115  * extent insertions we have queued up so far.  count can be
2116  * 0, which means to process everything in the tree at the start
2117  * of the run (but not newly added entries), or it can be some target
2118  * number you'd like to process.
2119  *
2120  * Returns 0 on success or if called with an aborted transaction
2121  * Returns <0 on error and aborts the transaction
2122  */
2123 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2124 			   unsigned long count)
2125 {
2126 	struct btrfs_fs_info *fs_info = trans->fs_info;
2127 	struct rb_node *node;
2128 	struct btrfs_delayed_ref_root *delayed_refs;
2129 	struct btrfs_delayed_ref_head *head;
2130 	int ret;
2131 	int run_all = count == (unsigned long)-1;
2132 
2133 	/* We'll clean this up in btrfs_cleanup_transaction */
2134 	if (TRANS_ABORTED(trans))
2135 		return 0;
2136 
2137 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2138 		return 0;
2139 
2140 	delayed_refs = &trans->transaction->delayed_refs;
2141 	if (count == 0)
2142 		count = delayed_refs->num_heads_ready;
2143 
2144 again:
2145 #ifdef SCRAMBLE_DELAYED_REFS
2146 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2147 #endif
2148 	ret = __btrfs_run_delayed_refs(trans, count);
2149 	if (ret < 0) {
2150 		btrfs_abort_transaction(trans, ret);
2151 		return ret;
2152 	}
2153 
2154 	if (run_all) {
2155 		btrfs_create_pending_block_groups(trans);
2156 
2157 		spin_lock(&delayed_refs->lock);
2158 		node = rb_first_cached(&delayed_refs->href_root);
2159 		if (!node) {
2160 			spin_unlock(&delayed_refs->lock);
2161 			goto out;
2162 		}
2163 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2164 				href_node);
2165 		refcount_inc(&head->refs);
2166 		spin_unlock(&delayed_refs->lock);
2167 
2168 		/* Mutex was contended, block until it's released and retry. */
2169 		mutex_lock(&head->mutex);
2170 		mutex_unlock(&head->mutex);
2171 
2172 		btrfs_put_delayed_ref_head(head);
2173 		cond_resched();
2174 		goto again;
2175 	}
2176 out:
2177 	return 0;
2178 }
2179 
2180 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2181 				struct extent_buffer *eb, u64 flags,
2182 				int level)
2183 {
2184 	struct btrfs_delayed_extent_op *extent_op;
2185 	int ret;
2186 
2187 	extent_op = btrfs_alloc_delayed_extent_op();
2188 	if (!extent_op)
2189 		return -ENOMEM;
2190 
2191 	extent_op->flags_to_set = flags;
2192 	extent_op->update_flags = true;
2193 	extent_op->update_key = false;
2194 	extent_op->level = level;
2195 
2196 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2197 	if (ret)
2198 		btrfs_free_delayed_extent_op(extent_op);
2199 	return ret;
2200 }
2201 
2202 static noinline int check_delayed_ref(struct btrfs_root *root,
2203 				      struct btrfs_path *path,
2204 				      u64 objectid, u64 offset, u64 bytenr)
2205 {
2206 	struct btrfs_delayed_ref_head *head;
2207 	struct btrfs_delayed_ref_node *ref;
2208 	struct btrfs_delayed_data_ref *data_ref;
2209 	struct btrfs_delayed_ref_root *delayed_refs;
2210 	struct btrfs_transaction *cur_trans;
2211 	struct rb_node *node;
2212 	int ret = 0;
2213 
2214 	spin_lock(&root->fs_info->trans_lock);
2215 	cur_trans = root->fs_info->running_transaction;
2216 	if (cur_trans)
2217 		refcount_inc(&cur_trans->use_count);
2218 	spin_unlock(&root->fs_info->trans_lock);
2219 	if (!cur_trans)
2220 		return 0;
2221 
2222 	delayed_refs = &cur_trans->delayed_refs;
2223 	spin_lock(&delayed_refs->lock);
2224 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2225 	if (!head) {
2226 		spin_unlock(&delayed_refs->lock);
2227 		btrfs_put_transaction(cur_trans);
2228 		return 0;
2229 	}
2230 
2231 	if (!mutex_trylock(&head->mutex)) {
2232 		if (path->nowait) {
2233 			spin_unlock(&delayed_refs->lock);
2234 			btrfs_put_transaction(cur_trans);
2235 			return -EAGAIN;
2236 		}
2237 
2238 		refcount_inc(&head->refs);
2239 		spin_unlock(&delayed_refs->lock);
2240 
2241 		btrfs_release_path(path);
2242 
2243 		/*
2244 		 * Mutex was contended, block until it's released and let
2245 		 * caller try again
2246 		 */
2247 		mutex_lock(&head->mutex);
2248 		mutex_unlock(&head->mutex);
2249 		btrfs_put_delayed_ref_head(head);
2250 		btrfs_put_transaction(cur_trans);
2251 		return -EAGAIN;
2252 	}
2253 	spin_unlock(&delayed_refs->lock);
2254 
2255 	spin_lock(&head->lock);
2256 	/*
2257 	 * XXX: We should replace this with a proper search function in the
2258 	 * future.
2259 	 */
2260 	for (node = rb_first_cached(&head->ref_tree); node;
2261 	     node = rb_next(node)) {
2262 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2263 		/* If it's a shared ref we know a cross reference exists */
2264 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2265 			ret = 1;
2266 			break;
2267 		}
2268 
2269 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2270 
2271 		/*
2272 		 * If our ref doesn't match the one we're currently looking at
2273 		 * then we have a cross reference.
2274 		 */
2275 		if (data_ref->root != root->root_key.objectid ||
2276 		    data_ref->objectid != objectid ||
2277 		    data_ref->offset != offset) {
2278 			ret = 1;
2279 			break;
2280 		}
2281 	}
2282 	spin_unlock(&head->lock);
2283 	mutex_unlock(&head->mutex);
2284 	btrfs_put_transaction(cur_trans);
2285 	return ret;
2286 }
2287 
2288 static noinline int check_committed_ref(struct btrfs_root *root,
2289 					struct btrfs_path *path,
2290 					u64 objectid, u64 offset, u64 bytenr,
2291 					bool strict)
2292 {
2293 	struct btrfs_fs_info *fs_info = root->fs_info;
2294 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2295 	struct extent_buffer *leaf;
2296 	struct btrfs_extent_data_ref *ref;
2297 	struct btrfs_extent_inline_ref *iref;
2298 	struct btrfs_extent_item *ei;
2299 	struct btrfs_key key;
2300 	u32 item_size;
2301 	int type;
2302 	int ret;
2303 
2304 	key.objectid = bytenr;
2305 	key.offset = (u64)-1;
2306 	key.type = BTRFS_EXTENT_ITEM_KEY;
2307 
2308 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2309 	if (ret < 0)
2310 		goto out;
2311 	BUG_ON(ret == 0); /* Corruption */
2312 
2313 	ret = -ENOENT;
2314 	if (path->slots[0] == 0)
2315 		goto out;
2316 
2317 	path->slots[0]--;
2318 	leaf = path->nodes[0];
2319 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2320 
2321 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2322 		goto out;
2323 
2324 	ret = 1;
2325 	item_size = btrfs_item_size(leaf, path->slots[0]);
2326 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2327 
2328 	/* If extent item has more than 1 inline ref then it's shared */
2329 	if (item_size != sizeof(*ei) +
2330 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2331 		goto out;
2332 
2333 	/*
2334 	 * If extent created before last snapshot => it's shared unless the
2335 	 * snapshot has been deleted. Use the heuristic if strict is false.
2336 	 */
2337 	if (!strict &&
2338 	    (btrfs_extent_generation(leaf, ei) <=
2339 	     btrfs_root_last_snapshot(&root->root_item)))
2340 		goto out;
2341 
2342 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2343 
2344 	/* If this extent has SHARED_DATA_REF then it's shared */
2345 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2346 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2347 		goto out;
2348 
2349 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2350 	if (btrfs_extent_refs(leaf, ei) !=
2351 	    btrfs_extent_data_ref_count(leaf, ref) ||
2352 	    btrfs_extent_data_ref_root(leaf, ref) !=
2353 	    root->root_key.objectid ||
2354 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2355 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2356 		goto out;
2357 
2358 	ret = 0;
2359 out:
2360 	return ret;
2361 }
2362 
2363 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2364 			  u64 bytenr, bool strict, struct btrfs_path *path)
2365 {
2366 	int ret;
2367 
2368 	do {
2369 		ret = check_committed_ref(root, path, objectid,
2370 					  offset, bytenr, strict);
2371 		if (ret && ret != -ENOENT)
2372 			goto out;
2373 
2374 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2375 	} while (ret == -EAGAIN);
2376 
2377 out:
2378 	btrfs_release_path(path);
2379 	if (btrfs_is_data_reloc_root(root))
2380 		WARN_ON(ret > 0);
2381 	return ret;
2382 }
2383 
2384 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2385 			   struct btrfs_root *root,
2386 			   struct extent_buffer *buf,
2387 			   int full_backref, int inc)
2388 {
2389 	struct btrfs_fs_info *fs_info = root->fs_info;
2390 	u64 bytenr;
2391 	u64 num_bytes;
2392 	u64 parent;
2393 	u64 ref_root;
2394 	u32 nritems;
2395 	struct btrfs_key key;
2396 	struct btrfs_file_extent_item *fi;
2397 	struct btrfs_ref generic_ref = { 0 };
2398 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2399 	int i;
2400 	int action;
2401 	int level;
2402 	int ret = 0;
2403 
2404 	if (btrfs_is_testing(fs_info))
2405 		return 0;
2406 
2407 	ref_root = btrfs_header_owner(buf);
2408 	nritems = btrfs_header_nritems(buf);
2409 	level = btrfs_header_level(buf);
2410 
2411 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2412 		return 0;
2413 
2414 	if (full_backref)
2415 		parent = buf->start;
2416 	else
2417 		parent = 0;
2418 	if (inc)
2419 		action = BTRFS_ADD_DELAYED_REF;
2420 	else
2421 		action = BTRFS_DROP_DELAYED_REF;
2422 
2423 	for (i = 0; i < nritems; i++) {
2424 		if (level == 0) {
2425 			btrfs_item_key_to_cpu(buf, &key, i);
2426 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2427 				continue;
2428 			fi = btrfs_item_ptr(buf, i,
2429 					    struct btrfs_file_extent_item);
2430 			if (btrfs_file_extent_type(buf, fi) ==
2431 			    BTRFS_FILE_EXTENT_INLINE)
2432 				continue;
2433 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2434 			if (bytenr == 0)
2435 				continue;
2436 
2437 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2438 			key.offset -= btrfs_file_extent_offset(buf, fi);
2439 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2440 					       num_bytes, parent);
2441 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2442 					    key.offset, root->root_key.objectid,
2443 					    for_reloc);
2444 			if (inc)
2445 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2446 			else
2447 				ret = btrfs_free_extent(trans, &generic_ref);
2448 			if (ret)
2449 				goto fail;
2450 		} else {
2451 			bytenr = btrfs_node_blockptr(buf, i);
2452 			num_bytes = fs_info->nodesize;
2453 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2454 					       num_bytes, parent);
2455 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2456 					    root->root_key.objectid, for_reloc);
2457 			if (inc)
2458 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2459 			else
2460 				ret = btrfs_free_extent(trans, &generic_ref);
2461 			if (ret)
2462 				goto fail;
2463 		}
2464 	}
2465 	return 0;
2466 fail:
2467 	return ret;
2468 }
2469 
2470 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2471 		  struct extent_buffer *buf, int full_backref)
2472 {
2473 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2474 }
2475 
2476 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2477 		  struct extent_buffer *buf, int full_backref)
2478 {
2479 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2480 }
2481 
2482 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2483 {
2484 	struct btrfs_fs_info *fs_info = root->fs_info;
2485 	u64 flags;
2486 	u64 ret;
2487 
2488 	if (data)
2489 		flags = BTRFS_BLOCK_GROUP_DATA;
2490 	else if (root == fs_info->chunk_root)
2491 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2492 	else
2493 		flags = BTRFS_BLOCK_GROUP_METADATA;
2494 
2495 	ret = btrfs_get_alloc_profile(fs_info, flags);
2496 	return ret;
2497 }
2498 
2499 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2500 {
2501 	struct rb_node *leftmost;
2502 	u64 bytenr = 0;
2503 
2504 	read_lock(&fs_info->block_group_cache_lock);
2505 	/* Get the block group with the lowest logical start address. */
2506 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2507 	if (leftmost) {
2508 		struct btrfs_block_group *bg;
2509 
2510 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2511 		bytenr = bg->start;
2512 	}
2513 	read_unlock(&fs_info->block_group_cache_lock);
2514 
2515 	return bytenr;
2516 }
2517 
2518 static int pin_down_extent(struct btrfs_trans_handle *trans,
2519 			   struct btrfs_block_group *cache,
2520 			   u64 bytenr, u64 num_bytes, int reserved)
2521 {
2522 	struct btrfs_fs_info *fs_info = cache->fs_info;
2523 
2524 	spin_lock(&cache->space_info->lock);
2525 	spin_lock(&cache->lock);
2526 	cache->pinned += num_bytes;
2527 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2528 					     num_bytes);
2529 	if (reserved) {
2530 		cache->reserved -= num_bytes;
2531 		cache->space_info->bytes_reserved -= num_bytes;
2532 	}
2533 	spin_unlock(&cache->lock);
2534 	spin_unlock(&cache->space_info->lock);
2535 
2536 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2537 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2538 	return 0;
2539 }
2540 
2541 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2542 		     u64 bytenr, u64 num_bytes, int reserved)
2543 {
2544 	struct btrfs_block_group *cache;
2545 
2546 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2547 	BUG_ON(!cache); /* Logic error */
2548 
2549 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2550 
2551 	btrfs_put_block_group(cache);
2552 	return 0;
2553 }
2554 
2555 /*
2556  * this function must be called within transaction
2557  */
2558 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2559 				    u64 bytenr, u64 num_bytes)
2560 {
2561 	struct btrfs_block_group *cache;
2562 	int ret;
2563 
2564 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565 	if (!cache)
2566 		return -EINVAL;
2567 
2568 	/*
2569 	 * Fully cache the free space first so that our pin removes the free space
2570 	 * from the cache.
2571 	 */
2572 	ret = btrfs_cache_block_group(cache, true);
2573 	if (ret)
2574 		goto out;
2575 
2576 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2577 
2578 	/* remove us from the free space cache (if we're there at all) */
2579 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2580 out:
2581 	btrfs_put_block_group(cache);
2582 	return ret;
2583 }
2584 
2585 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2586 				   u64 start, u64 num_bytes)
2587 {
2588 	int ret;
2589 	struct btrfs_block_group *block_group;
2590 
2591 	block_group = btrfs_lookup_block_group(fs_info, start);
2592 	if (!block_group)
2593 		return -EINVAL;
2594 
2595 	ret = btrfs_cache_block_group(block_group, true);
2596 	if (ret)
2597 		goto out;
2598 
2599 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2600 out:
2601 	btrfs_put_block_group(block_group);
2602 	return ret;
2603 }
2604 
2605 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2606 {
2607 	struct btrfs_fs_info *fs_info = eb->fs_info;
2608 	struct btrfs_file_extent_item *item;
2609 	struct btrfs_key key;
2610 	int found_type;
2611 	int i;
2612 	int ret = 0;
2613 
2614 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2615 		return 0;
2616 
2617 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2618 		btrfs_item_key_to_cpu(eb, &key, i);
2619 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2620 			continue;
2621 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2622 		found_type = btrfs_file_extent_type(eb, item);
2623 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2624 			continue;
2625 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2626 			continue;
2627 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2628 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2629 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2630 		if (ret)
2631 			break;
2632 	}
2633 
2634 	return ret;
2635 }
2636 
2637 static void
2638 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2639 {
2640 	atomic_inc(&bg->reservations);
2641 }
2642 
2643 /*
2644  * Returns the free cluster for the given space info and sets empty_cluster to
2645  * what it should be based on the mount options.
2646  */
2647 static struct btrfs_free_cluster *
2648 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2649 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2650 {
2651 	struct btrfs_free_cluster *ret = NULL;
2652 
2653 	*empty_cluster = 0;
2654 	if (btrfs_mixed_space_info(space_info))
2655 		return ret;
2656 
2657 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2658 		ret = &fs_info->meta_alloc_cluster;
2659 		if (btrfs_test_opt(fs_info, SSD))
2660 			*empty_cluster = SZ_2M;
2661 		else
2662 			*empty_cluster = SZ_64K;
2663 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2664 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2665 		*empty_cluster = SZ_2M;
2666 		ret = &fs_info->data_alloc_cluster;
2667 	}
2668 
2669 	return ret;
2670 }
2671 
2672 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2673 			      u64 start, u64 end,
2674 			      const bool return_free_space)
2675 {
2676 	struct btrfs_block_group *cache = NULL;
2677 	struct btrfs_space_info *space_info;
2678 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2679 	struct btrfs_free_cluster *cluster = NULL;
2680 	u64 len;
2681 	u64 total_unpinned = 0;
2682 	u64 empty_cluster = 0;
2683 	bool readonly;
2684 
2685 	while (start <= end) {
2686 		readonly = false;
2687 		if (!cache ||
2688 		    start >= cache->start + cache->length) {
2689 			if (cache)
2690 				btrfs_put_block_group(cache);
2691 			total_unpinned = 0;
2692 			cache = btrfs_lookup_block_group(fs_info, start);
2693 			BUG_ON(!cache); /* Logic error */
2694 
2695 			cluster = fetch_cluster_info(fs_info,
2696 						     cache->space_info,
2697 						     &empty_cluster);
2698 			empty_cluster <<= 1;
2699 		}
2700 
2701 		len = cache->start + cache->length - start;
2702 		len = min(len, end + 1 - start);
2703 
2704 		if (return_free_space)
2705 			btrfs_add_free_space(cache, start, len);
2706 
2707 		start += len;
2708 		total_unpinned += len;
2709 		space_info = cache->space_info;
2710 
2711 		/*
2712 		 * If this space cluster has been marked as fragmented and we've
2713 		 * unpinned enough in this block group to potentially allow a
2714 		 * cluster to be created inside of it go ahead and clear the
2715 		 * fragmented check.
2716 		 */
2717 		if (cluster && cluster->fragmented &&
2718 		    total_unpinned > empty_cluster) {
2719 			spin_lock(&cluster->lock);
2720 			cluster->fragmented = 0;
2721 			spin_unlock(&cluster->lock);
2722 		}
2723 
2724 		spin_lock(&space_info->lock);
2725 		spin_lock(&cache->lock);
2726 		cache->pinned -= len;
2727 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2728 		space_info->max_extent_size = 0;
2729 		if (cache->ro) {
2730 			space_info->bytes_readonly += len;
2731 			readonly = true;
2732 		} else if (btrfs_is_zoned(fs_info)) {
2733 			/* Need reset before reusing in a zoned block group */
2734 			space_info->bytes_zone_unusable += len;
2735 			readonly = true;
2736 		}
2737 		spin_unlock(&cache->lock);
2738 		if (!readonly && return_free_space &&
2739 		    global_rsv->space_info == space_info) {
2740 			spin_lock(&global_rsv->lock);
2741 			if (!global_rsv->full) {
2742 				u64 to_add = min(len, global_rsv->size -
2743 						      global_rsv->reserved);
2744 
2745 				global_rsv->reserved += to_add;
2746 				btrfs_space_info_update_bytes_may_use(fs_info,
2747 						space_info, to_add);
2748 				if (global_rsv->reserved >= global_rsv->size)
2749 					global_rsv->full = 1;
2750 				len -= to_add;
2751 			}
2752 			spin_unlock(&global_rsv->lock);
2753 		}
2754 		/* Add to any tickets we may have */
2755 		if (!readonly && return_free_space && len)
2756 			btrfs_try_granting_tickets(fs_info, space_info);
2757 		spin_unlock(&space_info->lock);
2758 	}
2759 
2760 	if (cache)
2761 		btrfs_put_block_group(cache);
2762 	return 0;
2763 }
2764 
2765 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2766 {
2767 	struct btrfs_fs_info *fs_info = trans->fs_info;
2768 	struct btrfs_block_group *block_group, *tmp;
2769 	struct list_head *deleted_bgs;
2770 	struct extent_io_tree *unpin;
2771 	u64 start;
2772 	u64 end;
2773 	int ret;
2774 
2775 	unpin = &trans->transaction->pinned_extents;
2776 
2777 	while (!TRANS_ABORTED(trans)) {
2778 		struct extent_state *cached_state = NULL;
2779 
2780 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2781 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2782 					    EXTENT_DIRTY, &cached_state);
2783 		if (ret) {
2784 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2785 			break;
2786 		}
2787 
2788 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2789 			ret = btrfs_discard_extent(fs_info, start,
2790 						   end + 1 - start, NULL);
2791 
2792 		clear_extent_dirty(unpin, start, end, &cached_state);
2793 		unpin_extent_range(fs_info, start, end, true);
2794 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2795 		free_extent_state(cached_state);
2796 		cond_resched();
2797 	}
2798 
2799 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2800 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2801 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2802 	}
2803 
2804 	/*
2805 	 * Transaction is finished.  We don't need the lock anymore.  We
2806 	 * do need to clean up the block groups in case of a transaction
2807 	 * abort.
2808 	 */
2809 	deleted_bgs = &trans->transaction->deleted_bgs;
2810 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2811 		u64 trimmed = 0;
2812 
2813 		ret = -EROFS;
2814 		if (!TRANS_ABORTED(trans))
2815 			ret = btrfs_discard_extent(fs_info,
2816 						   block_group->start,
2817 						   block_group->length,
2818 						   &trimmed);
2819 
2820 		list_del_init(&block_group->bg_list);
2821 		btrfs_unfreeze_block_group(block_group);
2822 		btrfs_put_block_group(block_group);
2823 
2824 		if (ret) {
2825 			const char *errstr = btrfs_decode_error(ret);
2826 			btrfs_warn(fs_info,
2827 			   "discard failed while removing blockgroup: errno=%d %s",
2828 				   ret, errstr);
2829 		}
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2836 				     u64 bytenr, u64 num_bytes, bool is_data)
2837 {
2838 	int ret;
2839 
2840 	if (is_data) {
2841 		struct btrfs_root *csum_root;
2842 
2843 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2844 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2845 		if (ret) {
2846 			btrfs_abort_transaction(trans, ret);
2847 			return ret;
2848 		}
2849 	}
2850 
2851 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2852 	if (ret) {
2853 		btrfs_abort_transaction(trans, ret);
2854 		return ret;
2855 	}
2856 
2857 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2858 	if (ret)
2859 		btrfs_abort_transaction(trans, ret);
2860 
2861 	return ret;
2862 }
2863 
2864 /*
2865  * Drop one or more refs of @node.
2866  *
2867  * 1. Locate the extent refs.
2868  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2869  *    Locate it, then reduce the refs number or remove the ref line completely.
2870  *
2871  * 2. Update the refs count in EXTENT/METADATA_ITEM
2872  *
2873  * Inline backref case:
2874  *
2875  * in extent tree we have:
2876  *
2877  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2878  *		refs 2 gen 6 flags DATA
2879  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2880  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2881  *
2882  * This function gets called with:
2883  *
2884  *    node->bytenr = 13631488
2885  *    node->num_bytes = 1048576
2886  *    root_objectid = FS_TREE
2887  *    owner_objectid = 257
2888  *    owner_offset = 0
2889  *    refs_to_drop = 1
2890  *
2891  * Then we should get some like:
2892  *
2893  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2894  *		refs 1 gen 6 flags DATA
2895  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2896  *
2897  * Keyed backref case:
2898  *
2899  * in extent tree we have:
2900  *
2901  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2902  *		refs 754 gen 6 flags DATA
2903  *	[...]
2904  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2905  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2906  *
2907  * This function get called with:
2908  *
2909  *    node->bytenr = 13631488
2910  *    node->num_bytes = 1048576
2911  *    root_objectid = FS_TREE
2912  *    owner_objectid = 866
2913  *    owner_offset = 0
2914  *    refs_to_drop = 1
2915  *
2916  * Then we should get some like:
2917  *
2918  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2919  *		refs 753 gen 6 flags DATA
2920  *
2921  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2922  */
2923 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2924 			       struct btrfs_delayed_ref_node *node, u64 parent,
2925 			       u64 root_objectid, u64 owner_objectid,
2926 			       u64 owner_offset, int refs_to_drop,
2927 			       struct btrfs_delayed_extent_op *extent_op)
2928 {
2929 	struct btrfs_fs_info *info = trans->fs_info;
2930 	struct btrfs_key key;
2931 	struct btrfs_path *path;
2932 	struct btrfs_root *extent_root;
2933 	struct extent_buffer *leaf;
2934 	struct btrfs_extent_item *ei;
2935 	struct btrfs_extent_inline_ref *iref;
2936 	int ret;
2937 	int is_data;
2938 	int extent_slot = 0;
2939 	int found_extent = 0;
2940 	int num_to_del = 1;
2941 	u32 item_size;
2942 	u64 refs;
2943 	u64 bytenr = node->bytenr;
2944 	u64 num_bytes = node->num_bytes;
2945 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2946 
2947 	extent_root = btrfs_extent_root(info, bytenr);
2948 	ASSERT(extent_root);
2949 
2950 	path = btrfs_alloc_path();
2951 	if (!path)
2952 		return -ENOMEM;
2953 
2954 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2955 
2956 	if (!is_data && refs_to_drop != 1) {
2957 		btrfs_crit(info,
2958 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2959 			   node->bytenr, refs_to_drop);
2960 		ret = -EINVAL;
2961 		btrfs_abort_transaction(trans, ret);
2962 		goto out;
2963 	}
2964 
2965 	if (is_data)
2966 		skinny_metadata = false;
2967 
2968 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2969 				    parent, root_objectid, owner_objectid,
2970 				    owner_offset);
2971 	if (ret == 0) {
2972 		/*
2973 		 * Either the inline backref or the SHARED_DATA_REF/
2974 		 * SHARED_BLOCK_REF is found
2975 		 *
2976 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2977 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2978 		 */
2979 		extent_slot = path->slots[0];
2980 		while (extent_slot >= 0) {
2981 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2982 					      extent_slot);
2983 			if (key.objectid != bytenr)
2984 				break;
2985 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2986 			    key.offset == num_bytes) {
2987 				found_extent = 1;
2988 				break;
2989 			}
2990 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2991 			    key.offset == owner_objectid) {
2992 				found_extent = 1;
2993 				break;
2994 			}
2995 
2996 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2997 			if (path->slots[0] - extent_slot > 5)
2998 				break;
2999 			extent_slot--;
3000 		}
3001 
3002 		if (!found_extent) {
3003 			if (iref) {
3004 				btrfs_crit(info,
3005 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3006 				btrfs_abort_transaction(trans, -EUCLEAN);
3007 				goto err_dump;
3008 			}
3009 			/* Must be SHARED_* item, remove the backref first */
3010 			ret = remove_extent_backref(trans, extent_root, path,
3011 						    NULL, refs_to_drop, is_data);
3012 			if (ret) {
3013 				btrfs_abort_transaction(trans, ret);
3014 				goto out;
3015 			}
3016 			btrfs_release_path(path);
3017 
3018 			/* Slow path to locate EXTENT/METADATA_ITEM */
3019 			key.objectid = bytenr;
3020 			key.type = BTRFS_EXTENT_ITEM_KEY;
3021 			key.offset = num_bytes;
3022 
3023 			if (!is_data && skinny_metadata) {
3024 				key.type = BTRFS_METADATA_ITEM_KEY;
3025 				key.offset = owner_objectid;
3026 			}
3027 
3028 			ret = btrfs_search_slot(trans, extent_root,
3029 						&key, path, -1, 1);
3030 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3031 				/*
3032 				 * Couldn't find our skinny metadata item,
3033 				 * see if we have ye olde extent item.
3034 				 */
3035 				path->slots[0]--;
3036 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3037 						      path->slots[0]);
3038 				if (key.objectid == bytenr &&
3039 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3040 				    key.offset == num_bytes)
3041 					ret = 0;
3042 			}
3043 
3044 			if (ret > 0 && skinny_metadata) {
3045 				skinny_metadata = false;
3046 				key.objectid = bytenr;
3047 				key.type = BTRFS_EXTENT_ITEM_KEY;
3048 				key.offset = num_bytes;
3049 				btrfs_release_path(path);
3050 				ret = btrfs_search_slot(trans, extent_root,
3051 							&key, path, -1, 1);
3052 			}
3053 
3054 			if (ret) {
3055 				btrfs_err(info,
3056 					  "umm, got %d back from search, was looking for %llu",
3057 					  ret, bytenr);
3058 				if (ret > 0)
3059 					btrfs_print_leaf(path->nodes[0]);
3060 			}
3061 			if (ret < 0) {
3062 				btrfs_abort_transaction(trans, ret);
3063 				goto out;
3064 			}
3065 			extent_slot = path->slots[0];
3066 		}
3067 	} else if (WARN_ON(ret == -ENOENT)) {
3068 		btrfs_print_leaf(path->nodes[0]);
3069 		btrfs_err(info,
3070 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3071 			bytenr, parent, root_objectid, owner_objectid,
3072 			owner_offset);
3073 		btrfs_abort_transaction(trans, ret);
3074 		goto out;
3075 	} else {
3076 		btrfs_abort_transaction(trans, ret);
3077 		goto out;
3078 	}
3079 
3080 	leaf = path->nodes[0];
3081 	item_size = btrfs_item_size(leaf, extent_slot);
3082 	if (unlikely(item_size < sizeof(*ei))) {
3083 		ret = -EINVAL;
3084 		btrfs_print_v0_err(info);
3085 		btrfs_abort_transaction(trans, ret);
3086 		goto out;
3087 	}
3088 	ei = btrfs_item_ptr(leaf, extent_slot,
3089 			    struct btrfs_extent_item);
3090 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3091 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3092 		struct btrfs_tree_block_info *bi;
3093 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3094 			btrfs_crit(info,
3095 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3096 				   key.objectid, key.type, key.offset,
3097 				   owner_objectid, item_size,
3098 				   sizeof(*ei) + sizeof(*bi));
3099 			btrfs_abort_transaction(trans, -EUCLEAN);
3100 			goto err_dump;
3101 		}
3102 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3103 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3104 	}
3105 
3106 	refs = btrfs_extent_refs(leaf, ei);
3107 	if (refs < refs_to_drop) {
3108 		btrfs_crit(info,
3109 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3110 			  refs_to_drop, refs, bytenr);
3111 		btrfs_abort_transaction(trans, -EUCLEAN);
3112 		goto err_dump;
3113 	}
3114 	refs -= refs_to_drop;
3115 
3116 	if (refs > 0) {
3117 		if (extent_op)
3118 			__run_delayed_extent_op(extent_op, leaf, ei);
3119 		/*
3120 		 * In the case of inline back ref, reference count will
3121 		 * be updated by remove_extent_backref
3122 		 */
3123 		if (iref) {
3124 			if (!found_extent) {
3125 				btrfs_crit(info,
3126 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3127 				btrfs_abort_transaction(trans, -EUCLEAN);
3128 				goto err_dump;
3129 			}
3130 		} else {
3131 			btrfs_set_extent_refs(leaf, ei, refs);
3132 			btrfs_mark_buffer_dirty(leaf);
3133 		}
3134 		if (found_extent) {
3135 			ret = remove_extent_backref(trans, extent_root, path,
3136 						    iref, refs_to_drop, is_data);
3137 			if (ret) {
3138 				btrfs_abort_transaction(trans, ret);
3139 				goto out;
3140 			}
3141 		}
3142 	} else {
3143 		/* In this branch refs == 1 */
3144 		if (found_extent) {
3145 			if (is_data && refs_to_drop !=
3146 			    extent_data_ref_count(path, iref)) {
3147 				btrfs_crit(info,
3148 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3149 					   extent_data_ref_count(path, iref),
3150 					   refs_to_drop);
3151 				btrfs_abort_transaction(trans, -EUCLEAN);
3152 				goto err_dump;
3153 			}
3154 			if (iref) {
3155 				if (path->slots[0] != extent_slot) {
3156 					btrfs_crit(info,
3157 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3158 						   key.objectid, key.type,
3159 						   key.offset);
3160 					btrfs_abort_transaction(trans, -EUCLEAN);
3161 					goto err_dump;
3162 				}
3163 			} else {
3164 				/*
3165 				 * No inline ref, we must be at SHARED_* item,
3166 				 * And it's single ref, it must be:
3167 				 * |	extent_slot	  ||extent_slot + 1|
3168 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3169 				 */
3170 				if (path->slots[0] != extent_slot + 1) {
3171 					btrfs_crit(info,
3172 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3173 					btrfs_abort_transaction(trans, -EUCLEAN);
3174 					goto err_dump;
3175 				}
3176 				path->slots[0] = extent_slot;
3177 				num_to_del = 2;
3178 			}
3179 		}
3180 
3181 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3182 				      num_to_del);
3183 		if (ret) {
3184 			btrfs_abort_transaction(trans, ret);
3185 			goto out;
3186 		}
3187 		btrfs_release_path(path);
3188 
3189 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3190 	}
3191 	btrfs_release_path(path);
3192 
3193 out:
3194 	btrfs_free_path(path);
3195 	return ret;
3196 err_dump:
3197 	/*
3198 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3199 	 * dump for debug build.
3200 	 */
3201 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3202 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3203 			   path->slots[0], extent_slot);
3204 		btrfs_print_leaf(path->nodes[0]);
3205 	}
3206 
3207 	btrfs_free_path(path);
3208 	return -EUCLEAN;
3209 }
3210 
3211 /*
3212  * when we free an block, it is possible (and likely) that we free the last
3213  * delayed ref for that extent as well.  This searches the delayed ref tree for
3214  * a given extent, and if there are no other delayed refs to be processed, it
3215  * removes it from the tree.
3216  */
3217 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3218 				      u64 bytenr)
3219 {
3220 	struct btrfs_delayed_ref_head *head;
3221 	struct btrfs_delayed_ref_root *delayed_refs;
3222 	int ret = 0;
3223 
3224 	delayed_refs = &trans->transaction->delayed_refs;
3225 	spin_lock(&delayed_refs->lock);
3226 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3227 	if (!head)
3228 		goto out_delayed_unlock;
3229 
3230 	spin_lock(&head->lock);
3231 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3232 		goto out;
3233 
3234 	if (cleanup_extent_op(head) != NULL)
3235 		goto out;
3236 
3237 	/*
3238 	 * waiting for the lock here would deadlock.  If someone else has it
3239 	 * locked they are already in the process of dropping it anyway
3240 	 */
3241 	if (!mutex_trylock(&head->mutex))
3242 		goto out;
3243 
3244 	btrfs_delete_ref_head(delayed_refs, head);
3245 	head->processing = 0;
3246 
3247 	spin_unlock(&head->lock);
3248 	spin_unlock(&delayed_refs->lock);
3249 
3250 	BUG_ON(head->extent_op);
3251 	if (head->must_insert_reserved)
3252 		ret = 1;
3253 
3254 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3255 	mutex_unlock(&head->mutex);
3256 	btrfs_put_delayed_ref_head(head);
3257 	return ret;
3258 out:
3259 	spin_unlock(&head->lock);
3260 
3261 out_delayed_unlock:
3262 	spin_unlock(&delayed_refs->lock);
3263 	return 0;
3264 }
3265 
3266 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3267 			   u64 root_id,
3268 			   struct extent_buffer *buf,
3269 			   u64 parent, int last_ref)
3270 {
3271 	struct btrfs_fs_info *fs_info = trans->fs_info;
3272 	struct btrfs_ref generic_ref = { 0 };
3273 	int ret;
3274 
3275 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3276 			       buf->start, buf->len, parent);
3277 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3278 			    root_id, 0, false);
3279 
3280 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3281 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3282 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3283 		BUG_ON(ret); /* -ENOMEM */
3284 	}
3285 
3286 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3287 		struct btrfs_block_group *cache;
3288 		bool must_pin = false;
3289 
3290 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3291 			ret = check_ref_cleanup(trans, buf->start);
3292 			if (!ret) {
3293 				btrfs_redirty_list_add(trans->transaction, buf);
3294 				goto out;
3295 			}
3296 		}
3297 
3298 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3299 
3300 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3301 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3302 			btrfs_put_block_group(cache);
3303 			goto out;
3304 		}
3305 
3306 		/*
3307 		 * If there are tree mod log users we may have recorded mod log
3308 		 * operations for this node.  If we re-allocate this node we
3309 		 * could replay operations on this node that happened when it
3310 		 * existed in a completely different root.  For example if it
3311 		 * was part of root A, then was reallocated to root B, and we
3312 		 * are doing a btrfs_old_search_slot(root b), we could replay
3313 		 * operations that happened when the block was part of root A,
3314 		 * giving us an inconsistent view of the btree.
3315 		 *
3316 		 * We are safe from races here because at this point no other
3317 		 * node or root points to this extent buffer, so if after this
3318 		 * check a new tree mod log user joins we will not have an
3319 		 * existing log of operations on this node that we have to
3320 		 * contend with.
3321 		 */
3322 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3323 			must_pin = true;
3324 
3325 		if (must_pin || btrfs_is_zoned(fs_info)) {
3326 			btrfs_redirty_list_add(trans->transaction, buf);
3327 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3328 			btrfs_put_block_group(cache);
3329 			goto out;
3330 		}
3331 
3332 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3333 
3334 		btrfs_add_free_space(cache, buf->start, buf->len);
3335 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3336 		btrfs_put_block_group(cache);
3337 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3338 	}
3339 out:
3340 	if (last_ref) {
3341 		/*
3342 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3343 		 * matter anymore.
3344 		 */
3345 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3346 	}
3347 }
3348 
3349 /* Can return -ENOMEM */
3350 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3351 {
3352 	struct btrfs_fs_info *fs_info = trans->fs_info;
3353 	int ret;
3354 
3355 	if (btrfs_is_testing(fs_info))
3356 		return 0;
3357 
3358 	/*
3359 	 * tree log blocks never actually go into the extent allocation
3360 	 * tree, just update pinning info and exit early.
3361 	 */
3362 	if ((ref->type == BTRFS_REF_METADATA &&
3363 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3364 	    (ref->type == BTRFS_REF_DATA &&
3365 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3366 		/* unlocks the pinned mutex */
3367 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3368 		ret = 0;
3369 	} else if (ref->type == BTRFS_REF_METADATA) {
3370 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3371 	} else {
3372 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3373 	}
3374 
3375 	if (!((ref->type == BTRFS_REF_METADATA &&
3376 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3377 	      (ref->type == BTRFS_REF_DATA &&
3378 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3379 		btrfs_ref_tree_mod(fs_info, ref);
3380 
3381 	return ret;
3382 }
3383 
3384 enum btrfs_loop_type {
3385 	LOOP_CACHING_NOWAIT,
3386 	LOOP_CACHING_WAIT,
3387 	LOOP_UNSET_SIZE_CLASS,
3388 	LOOP_ALLOC_CHUNK,
3389 	LOOP_WRONG_SIZE_CLASS,
3390 	LOOP_NO_EMPTY_SIZE,
3391 };
3392 
3393 static inline void
3394 btrfs_lock_block_group(struct btrfs_block_group *cache,
3395 		       int delalloc)
3396 {
3397 	if (delalloc)
3398 		down_read(&cache->data_rwsem);
3399 }
3400 
3401 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3402 		       int delalloc)
3403 {
3404 	btrfs_get_block_group(cache);
3405 	if (delalloc)
3406 		down_read(&cache->data_rwsem);
3407 }
3408 
3409 static struct btrfs_block_group *btrfs_lock_cluster(
3410 		   struct btrfs_block_group *block_group,
3411 		   struct btrfs_free_cluster *cluster,
3412 		   int delalloc)
3413 	__acquires(&cluster->refill_lock)
3414 {
3415 	struct btrfs_block_group *used_bg = NULL;
3416 
3417 	spin_lock(&cluster->refill_lock);
3418 	while (1) {
3419 		used_bg = cluster->block_group;
3420 		if (!used_bg)
3421 			return NULL;
3422 
3423 		if (used_bg == block_group)
3424 			return used_bg;
3425 
3426 		btrfs_get_block_group(used_bg);
3427 
3428 		if (!delalloc)
3429 			return used_bg;
3430 
3431 		if (down_read_trylock(&used_bg->data_rwsem))
3432 			return used_bg;
3433 
3434 		spin_unlock(&cluster->refill_lock);
3435 
3436 		/* We should only have one-level nested. */
3437 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3438 
3439 		spin_lock(&cluster->refill_lock);
3440 		if (used_bg == cluster->block_group)
3441 			return used_bg;
3442 
3443 		up_read(&used_bg->data_rwsem);
3444 		btrfs_put_block_group(used_bg);
3445 	}
3446 }
3447 
3448 static inline void
3449 btrfs_release_block_group(struct btrfs_block_group *cache,
3450 			 int delalloc)
3451 {
3452 	if (delalloc)
3453 		up_read(&cache->data_rwsem);
3454 	btrfs_put_block_group(cache);
3455 }
3456 
3457 /*
3458  * Helper function for find_free_extent().
3459  *
3460  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3461  * Return -EAGAIN to inform caller that we need to re-search this block group
3462  * Return >0 to inform caller that we find nothing
3463  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3464  */
3465 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3466 				      struct find_free_extent_ctl *ffe_ctl,
3467 				      struct btrfs_block_group **cluster_bg_ret)
3468 {
3469 	struct btrfs_block_group *cluster_bg;
3470 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3471 	u64 aligned_cluster;
3472 	u64 offset;
3473 	int ret;
3474 
3475 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3476 	if (!cluster_bg)
3477 		goto refill_cluster;
3478 	if (cluster_bg != bg && (cluster_bg->ro ||
3479 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3480 		goto release_cluster;
3481 
3482 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3483 			ffe_ctl->num_bytes, cluster_bg->start,
3484 			&ffe_ctl->max_extent_size);
3485 	if (offset) {
3486 		/* We have a block, we're done */
3487 		spin_unlock(&last_ptr->refill_lock);
3488 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3489 		*cluster_bg_ret = cluster_bg;
3490 		ffe_ctl->found_offset = offset;
3491 		return 0;
3492 	}
3493 	WARN_ON(last_ptr->block_group != cluster_bg);
3494 
3495 release_cluster:
3496 	/*
3497 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3498 	 * lets just skip it and let the allocator find whatever block it can
3499 	 * find. If we reach this point, we will have tried the cluster
3500 	 * allocator plenty of times and not have found anything, so we are
3501 	 * likely way too fragmented for the clustering stuff to find anything.
3502 	 *
3503 	 * However, if the cluster is taken from the current block group,
3504 	 * release the cluster first, so that we stand a better chance of
3505 	 * succeeding in the unclustered allocation.
3506 	 */
3507 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3508 		spin_unlock(&last_ptr->refill_lock);
3509 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3510 		return -ENOENT;
3511 	}
3512 
3513 	/* This cluster didn't work out, free it and start over */
3514 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3515 
3516 	if (cluster_bg != bg)
3517 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3518 
3519 refill_cluster:
3520 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3521 		spin_unlock(&last_ptr->refill_lock);
3522 		return -ENOENT;
3523 	}
3524 
3525 	aligned_cluster = max_t(u64,
3526 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3527 			bg->full_stripe_len);
3528 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3529 			ffe_ctl->num_bytes, aligned_cluster);
3530 	if (ret == 0) {
3531 		/* Now pull our allocation out of this cluster */
3532 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3533 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3534 				&ffe_ctl->max_extent_size);
3535 		if (offset) {
3536 			/* We found one, proceed */
3537 			spin_unlock(&last_ptr->refill_lock);
3538 			ffe_ctl->found_offset = offset;
3539 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3540 			return 0;
3541 		}
3542 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3543 		   !ffe_ctl->retry_clustered) {
3544 		spin_unlock(&last_ptr->refill_lock);
3545 
3546 		ffe_ctl->retry_clustered = true;
3547 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3548 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3549 		return -EAGAIN;
3550 	}
3551 	/*
3552 	 * At this point we either didn't find a cluster or we weren't able to
3553 	 * allocate a block from our cluster.  Free the cluster we've been
3554 	 * trying to use, and go to the next block group.
3555 	 */
3556 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3557 	spin_unlock(&last_ptr->refill_lock);
3558 	return 1;
3559 }
3560 
3561 /*
3562  * Return >0 to inform caller that we find nothing
3563  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3564  * Return -EAGAIN to inform caller that we need to re-search this block group
3565  */
3566 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3567 					struct find_free_extent_ctl *ffe_ctl)
3568 {
3569 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3570 	u64 offset;
3571 
3572 	/*
3573 	 * We are doing an unclustered allocation, set the fragmented flag so
3574 	 * we don't bother trying to setup a cluster again until we get more
3575 	 * space.
3576 	 */
3577 	if (unlikely(last_ptr)) {
3578 		spin_lock(&last_ptr->lock);
3579 		last_ptr->fragmented = 1;
3580 		spin_unlock(&last_ptr->lock);
3581 	}
3582 	if (ffe_ctl->cached) {
3583 		struct btrfs_free_space_ctl *free_space_ctl;
3584 
3585 		free_space_ctl = bg->free_space_ctl;
3586 		spin_lock(&free_space_ctl->tree_lock);
3587 		if (free_space_ctl->free_space <
3588 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3589 		    ffe_ctl->empty_size) {
3590 			ffe_ctl->total_free_space = max_t(u64,
3591 					ffe_ctl->total_free_space,
3592 					free_space_ctl->free_space);
3593 			spin_unlock(&free_space_ctl->tree_lock);
3594 			return 1;
3595 		}
3596 		spin_unlock(&free_space_ctl->tree_lock);
3597 	}
3598 
3599 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3600 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3601 			&ffe_ctl->max_extent_size);
3602 
3603 	/*
3604 	 * If we didn't find a chunk, and we haven't failed on this block group
3605 	 * before, and this block group is in the middle of caching and we are
3606 	 * ok with waiting, then go ahead and wait for progress to be made, and
3607 	 * set @retry_unclustered to true.
3608 	 *
3609 	 * If @retry_unclustered is true then we've already waited on this
3610 	 * block group once and should move on to the next block group.
3611 	 */
3612 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3613 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3614 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3615 						      ffe_ctl->empty_size);
3616 		ffe_ctl->retry_unclustered = true;
3617 		return -EAGAIN;
3618 	} else if (!offset) {
3619 		return 1;
3620 	}
3621 	ffe_ctl->found_offset = offset;
3622 	return 0;
3623 }
3624 
3625 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3626 				   struct find_free_extent_ctl *ffe_ctl,
3627 				   struct btrfs_block_group **bg_ret)
3628 {
3629 	int ret;
3630 
3631 	/* We want to try and use the cluster allocator, so lets look there */
3632 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3633 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3634 		if (ret >= 0 || ret == -EAGAIN)
3635 			return ret;
3636 		/* ret == -ENOENT case falls through */
3637 	}
3638 
3639 	return find_free_extent_unclustered(block_group, ffe_ctl);
3640 }
3641 
3642 /*
3643  * Tree-log block group locking
3644  * ============================
3645  *
3646  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3647  * indicates the starting address of a block group, which is reserved only
3648  * for tree-log metadata.
3649  *
3650  * Lock nesting
3651  * ============
3652  *
3653  * space_info::lock
3654  *   block_group::lock
3655  *     fs_info::treelog_bg_lock
3656  */
3657 
3658 /*
3659  * Simple allocator for sequential-only block group. It only allows sequential
3660  * allocation. No need to play with trees. This function also reserves the
3661  * bytes as in btrfs_add_reserved_bytes.
3662  */
3663 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3664 			       struct find_free_extent_ctl *ffe_ctl,
3665 			       struct btrfs_block_group **bg_ret)
3666 {
3667 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3668 	struct btrfs_space_info *space_info = block_group->space_info;
3669 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3670 	u64 start = block_group->start;
3671 	u64 num_bytes = ffe_ctl->num_bytes;
3672 	u64 avail;
3673 	u64 bytenr = block_group->start;
3674 	u64 log_bytenr;
3675 	u64 data_reloc_bytenr;
3676 	int ret = 0;
3677 	bool skip = false;
3678 
3679 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3680 
3681 	/*
3682 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3683 	 * group, and vice versa.
3684 	 */
3685 	spin_lock(&fs_info->treelog_bg_lock);
3686 	log_bytenr = fs_info->treelog_bg;
3687 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3688 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3689 		skip = true;
3690 	spin_unlock(&fs_info->treelog_bg_lock);
3691 	if (skip)
3692 		return 1;
3693 
3694 	/*
3695 	 * Do not allow non-relocation blocks in the dedicated relocation block
3696 	 * group, and vice versa.
3697 	 */
3698 	spin_lock(&fs_info->relocation_bg_lock);
3699 	data_reloc_bytenr = fs_info->data_reloc_bg;
3700 	if (data_reloc_bytenr &&
3701 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3702 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3703 		skip = true;
3704 	spin_unlock(&fs_info->relocation_bg_lock);
3705 	if (skip)
3706 		return 1;
3707 
3708 	/* Check RO and no space case before trying to activate it */
3709 	spin_lock(&block_group->lock);
3710 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3711 		ret = 1;
3712 		/*
3713 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3714 		 * Return the error after taking the locks.
3715 		 */
3716 	}
3717 	spin_unlock(&block_group->lock);
3718 
3719 	if (!ret && !btrfs_zone_activate(block_group)) {
3720 		ret = 1;
3721 		/*
3722 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3723 		 * Return the error after taking the locks.
3724 		 */
3725 	}
3726 
3727 	spin_lock(&space_info->lock);
3728 	spin_lock(&block_group->lock);
3729 	spin_lock(&fs_info->treelog_bg_lock);
3730 	spin_lock(&fs_info->relocation_bg_lock);
3731 
3732 	if (ret)
3733 		goto out;
3734 
3735 	ASSERT(!ffe_ctl->for_treelog ||
3736 	       block_group->start == fs_info->treelog_bg ||
3737 	       fs_info->treelog_bg == 0);
3738 	ASSERT(!ffe_ctl->for_data_reloc ||
3739 	       block_group->start == fs_info->data_reloc_bg ||
3740 	       fs_info->data_reloc_bg == 0);
3741 
3742 	if (block_group->ro ||
3743 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3744 		ret = 1;
3745 		goto out;
3746 	}
3747 
3748 	/*
3749 	 * Do not allow currently using block group to be tree-log dedicated
3750 	 * block group.
3751 	 */
3752 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3753 	    (block_group->used || block_group->reserved)) {
3754 		ret = 1;
3755 		goto out;
3756 	}
3757 
3758 	/*
3759 	 * Do not allow currently used block group to be the data relocation
3760 	 * dedicated block group.
3761 	 */
3762 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3763 	    (block_group->used || block_group->reserved)) {
3764 		ret = 1;
3765 		goto out;
3766 	}
3767 
3768 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3769 	avail = block_group->zone_capacity - block_group->alloc_offset;
3770 	if (avail < num_bytes) {
3771 		if (ffe_ctl->max_extent_size < avail) {
3772 			/*
3773 			 * With sequential allocator, free space is always
3774 			 * contiguous
3775 			 */
3776 			ffe_ctl->max_extent_size = avail;
3777 			ffe_ctl->total_free_space = avail;
3778 		}
3779 		ret = 1;
3780 		goto out;
3781 	}
3782 
3783 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3784 		fs_info->treelog_bg = block_group->start;
3785 
3786 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3787 		fs_info->data_reloc_bg = block_group->start;
3788 
3789 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3790 	block_group->alloc_offset += num_bytes;
3791 	spin_lock(&ctl->tree_lock);
3792 	ctl->free_space -= num_bytes;
3793 	spin_unlock(&ctl->tree_lock);
3794 
3795 	/*
3796 	 * We do not check if found_offset is aligned to stripesize. The
3797 	 * address is anyway rewritten when using zone append writing.
3798 	 */
3799 
3800 	ffe_ctl->search_start = ffe_ctl->found_offset;
3801 
3802 out:
3803 	if (ret && ffe_ctl->for_treelog)
3804 		fs_info->treelog_bg = 0;
3805 	if (ret && ffe_ctl->for_data_reloc &&
3806 	    fs_info->data_reloc_bg == block_group->start) {
3807 		/*
3808 		 * Do not allow further allocations from this block group.
3809 		 * Compared to increasing the ->ro, setting the
3810 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3811 		 *  writers to come in. See btrfs_inc_nocow_writers().
3812 		 *
3813 		 * We need to disable an allocation to avoid an allocation of
3814 		 * regular (non-relocation data) extent. With mix of relocation
3815 		 * extents and regular extents, we can dispatch WRITE commands
3816 		 * (for relocation extents) and ZONE APPEND commands (for
3817 		 * regular extents) at the same time to the same zone, which
3818 		 * easily break the write pointer.
3819 		 */
3820 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3821 		fs_info->data_reloc_bg = 0;
3822 	}
3823 	spin_unlock(&fs_info->relocation_bg_lock);
3824 	spin_unlock(&fs_info->treelog_bg_lock);
3825 	spin_unlock(&block_group->lock);
3826 	spin_unlock(&space_info->lock);
3827 	return ret;
3828 }
3829 
3830 static int do_allocation(struct btrfs_block_group *block_group,
3831 			 struct find_free_extent_ctl *ffe_ctl,
3832 			 struct btrfs_block_group **bg_ret)
3833 {
3834 	switch (ffe_ctl->policy) {
3835 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3836 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3837 	case BTRFS_EXTENT_ALLOC_ZONED:
3838 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3839 	default:
3840 		BUG();
3841 	}
3842 }
3843 
3844 static void release_block_group(struct btrfs_block_group *block_group,
3845 				struct find_free_extent_ctl *ffe_ctl,
3846 				int delalloc)
3847 {
3848 	switch (ffe_ctl->policy) {
3849 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3850 		ffe_ctl->retry_clustered = false;
3851 		ffe_ctl->retry_unclustered = false;
3852 		break;
3853 	case BTRFS_EXTENT_ALLOC_ZONED:
3854 		/* Nothing to do */
3855 		break;
3856 	default:
3857 		BUG();
3858 	}
3859 
3860 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3861 	       ffe_ctl->index);
3862 	btrfs_release_block_group(block_group, delalloc);
3863 }
3864 
3865 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3866 				   struct btrfs_key *ins)
3867 {
3868 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3869 
3870 	if (!ffe_ctl->use_cluster && last_ptr) {
3871 		spin_lock(&last_ptr->lock);
3872 		last_ptr->window_start = ins->objectid;
3873 		spin_unlock(&last_ptr->lock);
3874 	}
3875 }
3876 
3877 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3878 			 struct btrfs_key *ins)
3879 {
3880 	switch (ffe_ctl->policy) {
3881 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3882 		found_extent_clustered(ffe_ctl, ins);
3883 		break;
3884 	case BTRFS_EXTENT_ALLOC_ZONED:
3885 		/* Nothing to do */
3886 		break;
3887 	default:
3888 		BUG();
3889 	}
3890 }
3891 
3892 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3893 				    struct find_free_extent_ctl *ffe_ctl)
3894 {
3895 	/* If we can activate new zone, just allocate a chunk and use it */
3896 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3897 		return 0;
3898 
3899 	/*
3900 	 * We already reached the max active zones. Try to finish one block
3901 	 * group to make a room for a new block group. This is only possible
3902 	 * for a data block group because btrfs_zone_finish() may need to wait
3903 	 * for a running transaction which can cause a deadlock for metadata
3904 	 * allocation.
3905 	 */
3906 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3907 		int ret = btrfs_zone_finish_one_bg(fs_info);
3908 
3909 		if (ret == 1)
3910 			return 0;
3911 		else if (ret < 0)
3912 			return ret;
3913 	}
3914 
3915 	/*
3916 	 * If we have enough free space left in an already active block group
3917 	 * and we can't activate any other zone now, do not allow allocating a
3918 	 * new chunk and let find_free_extent() retry with a smaller size.
3919 	 */
3920 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3921 		return -ENOSPC;
3922 
3923 	/*
3924 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3925 	 * activate a new block group, allocating it may not help. Let's tell a
3926 	 * caller to try again and hope it progress something by writing some
3927 	 * parts of the region. That is only possible for data block groups,
3928 	 * where a part of the region can be written.
3929 	 */
3930 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3931 		return -EAGAIN;
3932 
3933 	/*
3934 	 * We cannot activate a new block group and no enough space left in any
3935 	 * block groups. So, allocating a new block group may not help. But,
3936 	 * there is nothing to do anyway, so let's go with it.
3937 	 */
3938 	return 0;
3939 }
3940 
3941 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3942 			      struct find_free_extent_ctl *ffe_ctl)
3943 {
3944 	switch (ffe_ctl->policy) {
3945 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3946 		return 0;
3947 	case BTRFS_EXTENT_ALLOC_ZONED:
3948 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3949 	default:
3950 		BUG();
3951 	}
3952 }
3953 
3954 /*
3955  * Return >0 means caller needs to re-search for free extent
3956  * Return 0 means we have the needed free extent.
3957  * Return <0 means we failed to locate any free extent.
3958  */
3959 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3960 					struct btrfs_key *ins,
3961 					struct find_free_extent_ctl *ffe_ctl,
3962 					bool full_search)
3963 {
3964 	struct btrfs_root *root = fs_info->chunk_root;
3965 	int ret;
3966 
3967 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3968 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3969 		ffe_ctl->orig_have_caching_bg = true;
3970 
3971 	if (ins->objectid) {
3972 		found_extent(ffe_ctl, ins);
3973 		return 0;
3974 	}
3975 
3976 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3977 		return 1;
3978 
3979 	ffe_ctl->index++;
3980 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3981 		return 1;
3982 
3983 	/*
3984 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3985 	 *			caching kthreads as we move along
3986 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3987 	 * LOOP_UNSET_SIZE_CLASS, allow unset size class
3988 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3989 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3990 	 *		       again
3991 	 */
3992 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3993 		ffe_ctl->index = 0;
3994 		/*
3995 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
3996 		 * any uncached bgs and we've already done a full search
3997 		 * through.
3998 		 */
3999 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4000 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4001 			ffe_ctl->loop++;
4002 		ffe_ctl->loop++;
4003 
4004 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4005 			struct btrfs_trans_handle *trans;
4006 			int exist = 0;
4007 
4008 			/* Check if allocation policy allows to create a new chunk */
4009 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4010 			if (ret)
4011 				return ret;
4012 
4013 			trans = current->journal_info;
4014 			if (trans)
4015 				exist = 1;
4016 			else
4017 				trans = btrfs_join_transaction(root);
4018 
4019 			if (IS_ERR(trans)) {
4020 				ret = PTR_ERR(trans);
4021 				return ret;
4022 			}
4023 
4024 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4025 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4026 
4027 			/* Do not bail out on ENOSPC since we can do more. */
4028 			if (ret == -ENOSPC) {
4029 				ret = 0;
4030 				ffe_ctl->loop++;
4031 			}
4032 			else if (ret < 0)
4033 				btrfs_abort_transaction(trans, ret);
4034 			else
4035 				ret = 0;
4036 			if (!exist)
4037 				btrfs_end_transaction(trans);
4038 			if (ret)
4039 				return ret;
4040 		}
4041 
4042 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4043 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4044 				return -ENOSPC;
4045 
4046 			/*
4047 			 * Don't loop again if we already have no empty_size and
4048 			 * no empty_cluster.
4049 			 */
4050 			if (ffe_ctl->empty_size == 0 &&
4051 			    ffe_ctl->empty_cluster == 0)
4052 				return -ENOSPC;
4053 			ffe_ctl->empty_size = 0;
4054 			ffe_ctl->empty_cluster = 0;
4055 		}
4056 		return 1;
4057 	}
4058 	return -ENOSPC;
4059 }
4060 
4061 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4062 					      struct btrfs_block_group *bg)
4063 {
4064 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4065 		return true;
4066 	if (!btrfs_block_group_should_use_size_class(bg))
4067 		return true;
4068 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4069 		return true;
4070 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4071 	    bg->size_class == BTRFS_BG_SZ_NONE)
4072 		return true;
4073 	return ffe_ctl->size_class == bg->size_class;
4074 }
4075 
4076 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4077 					struct find_free_extent_ctl *ffe_ctl,
4078 					struct btrfs_space_info *space_info,
4079 					struct btrfs_key *ins)
4080 {
4081 	/*
4082 	 * If our free space is heavily fragmented we may not be able to make
4083 	 * big contiguous allocations, so instead of doing the expensive search
4084 	 * for free space, simply return ENOSPC with our max_extent_size so we
4085 	 * can go ahead and search for a more manageable chunk.
4086 	 *
4087 	 * If our max_extent_size is large enough for our allocation simply
4088 	 * disable clustering since we will likely not be able to find enough
4089 	 * space to create a cluster and induce latency trying.
4090 	 */
4091 	if (space_info->max_extent_size) {
4092 		spin_lock(&space_info->lock);
4093 		if (space_info->max_extent_size &&
4094 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4095 			ins->offset = space_info->max_extent_size;
4096 			spin_unlock(&space_info->lock);
4097 			return -ENOSPC;
4098 		} else if (space_info->max_extent_size) {
4099 			ffe_ctl->use_cluster = false;
4100 		}
4101 		spin_unlock(&space_info->lock);
4102 	}
4103 
4104 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4105 					       &ffe_ctl->empty_cluster);
4106 	if (ffe_ctl->last_ptr) {
4107 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4108 
4109 		spin_lock(&last_ptr->lock);
4110 		if (last_ptr->block_group)
4111 			ffe_ctl->hint_byte = last_ptr->window_start;
4112 		if (last_ptr->fragmented) {
4113 			/*
4114 			 * We still set window_start so we can keep track of the
4115 			 * last place we found an allocation to try and save
4116 			 * some time.
4117 			 */
4118 			ffe_ctl->hint_byte = last_ptr->window_start;
4119 			ffe_ctl->use_cluster = false;
4120 		}
4121 		spin_unlock(&last_ptr->lock);
4122 	}
4123 
4124 	return 0;
4125 }
4126 
4127 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4128 			      struct find_free_extent_ctl *ffe_ctl,
4129 			      struct btrfs_space_info *space_info,
4130 			      struct btrfs_key *ins)
4131 {
4132 	switch (ffe_ctl->policy) {
4133 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4134 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4135 						    space_info, ins);
4136 	case BTRFS_EXTENT_ALLOC_ZONED:
4137 		if (ffe_ctl->for_treelog) {
4138 			spin_lock(&fs_info->treelog_bg_lock);
4139 			if (fs_info->treelog_bg)
4140 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4141 			spin_unlock(&fs_info->treelog_bg_lock);
4142 		}
4143 		if (ffe_ctl->for_data_reloc) {
4144 			spin_lock(&fs_info->relocation_bg_lock);
4145 			if (fs_info->data_reloc_bg)
4146 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4147 			spin_unlock(&fs_info->relocation_bg_lock);
4148 		}
4149 		return 0;
4150 	default:
4151 		BUG();
4152 	}
4153 }
4154 
4155 /*
4156  * walks the btree of allocated extents and find a hole of a given size.
4157  * The key ins is changed to record the hole:
4158  * ins->objectid == start position
4159  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4160  * ins->offset == the size of the hole.
4161  * Any available blocks before search_start are skipped.
4162  *
4163  * If there is no suitable free space, we will record the max size of
4164  * the free space extent currently.
4165  *
4166  * The overall logic and call chain:
4167  *
4168  * find_free_extent()
4169  * |- Iterate through all block groups
4170  * |  |- Get a valid block group
4171  * |  |- Try to do clustered allocation in that block group
4172  * |  |- Try to do unclustered allocation in that block group
4173  * |  |- Check if the result is valid
4174  * |  |  |- If valid, then exit
4175  * |  |- Jump to next block group
4176  * |
4177  * |- Push harder to find free extents
4178  *    |- If not found, re-iterate all block groups
4179  */
4180 static noinline int find_free_extent(struct btrfs_root *root,
4181 				     struct btrfs_key *ins,
4182 				     struct find_free_extent_ctl *ffe_ctl)
4183 {
4184 	struct btrfs_fs_info *fs_info = root->fs_info;
4185 	int ret = 0;
4186 	int cache_block_group_error = 0;
4187 	struct btrfs_block_group *block_group = NULL;
4188 	struct btrfs_space_info *space_info;
4189 	bool full_search = false;
4190 
4191 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4192 
4193 	ffe_ctl->search_start = 0;
4194 	/* For clustered allocation */
4195 	ffe_ctl->empty_cluster = 0;
4196 	ffe_ctl->last_ptr = NULL;
4197 	ffe_ctl->use_cluster = true;
4198 	ffe_ctl->have_caching_bg = false;
4199 	ffe_ctl->orig_have_caching_bg = false;
4200 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4201 	ffe_ctl->loop = 0;
4202 	/* For clustered allocation */
4203 	ffe_ctl->retry_clustered = false;
4204 	ffe_ctl->retry_unclustered = false;
4205 	ffe_ctl->cached = 0;
4206 	ffe_ctl->max_extent_size = 0;
4207 	ffe_ctl->total_free_space = 0;
4208 	ffe_ctl->found_offset = 0;
4209 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4210 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4211 
4212 	if (btrfs_is_zoned(fs_info))
4213 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4214 
4215 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4216 	ins->objectid = 0;
4217 	ins->offset = 0;
4218 
4219 	trace_find_free_extent(root, ffe_ctl);
4220 
4221 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4222 	if (!space_info) {
4223 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4224 		return -ENOSPC;
4225 	}
4226 
4227 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4228 	if (ret < 0)
4229 		return ret;
4230 
4231 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4232 				    first_logical_byte(fs_info));
4233 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4234 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4235 		block_group = btrfs_lookup_block_group(fs_info,
4236 						       ffe_ctl->search_start);
4237 		/*
4238 		 * we don't want to use the block group if it doesn't match our
4239 		 * allocation bits, or if its not cached.
4240 		 *
4241 		 * However if we are re-searching with an ideal block group
4242 		 * picked out then we don't care that the block group is cached.
4243 		 */
4244 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4245 		    block_group->cached != BTRFS_CACHE_NO) {
4246 			down_read(&space_info->groups_sem);
4247 			if (list_empty(&block_group->list) ||
4248 			    block_group->ro) {
4249 				/*
4250 				 * someone is removing this block group,
4251 				 * we can't jump into the have_block_group
4252 				 * target because our list pointers are not
4253 				 * valid
4254 				 */
4255 				btrfs_put_block_group(block_group);
4256 				up_read(&space_info->groups_sem);
4257 			} else {
4258 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4259 							block_group->flags);
4260 				btrfs_lock_block_group(block_group,
4261 						       ffe_ctl->delalloc);
4262 				ffe_ctl->hinted = true;
4263 				goto have_block_group;
4264 			}
4265 		} else if (block_group) {
4266 			btrfs_put_block_group(block_group);
4267 		}
4268 	}
4269 search:
4270 	trace_find_free_extent_search_loop(root, ffe_ctl);
4271 	ffe_ctl->have_caching_bg = false;
4272 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4273 	    ffe_ctl->index == 0)
4274 		full_search = true;
4275 	down_read(&space_info->groups_sem);
4276 	list_for_each_entry(block_group,
4277 			    &space_info->block_groups[ffe_ctl->index], list) {
4278 		struct btrfs_block_group *bg_ret;
4279 
4280 		ffe_ctl->hinted = false;
4281 		/* If the block group is read-only, we can skip it entirely. */
4282 		if (unlikely(block_group->ro)) {
4283 			if (ffe_ctl->for_treelog)
4284 				btrfs_clear_treelog_bg(block_group);
4285 			if (ffe_ctl->for_data_reloc)
4286 				btrfs_clear_data_reloc_bg(block_group);
4287 			continue;
4288 		}
4289 
4290 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4291 		ffe_ctl->search_start = block_group->start;
4292 
4293 		/*
4294 		 * this can happen if we end up cycling through all the
4295 		 * raid types, but we want to make sure we only allocate
4296 		 * for the proper type.
4297 		 */
4298 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4299 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4300 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4301 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4302 				BTRFS_BLOCK_GROUP_RAID10;
4303 
4304 			/*
4305 			 * if they asked for extra copies and this block group
4306 			 * doesn't provide them, bail.  This does allow us to
4307 			 * fill raid0 from raid1.
4308 			 */
4309 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4310 				goto loop;
4311 
4312 			/*
4313 			 * This block group has different flags than we want.
4314 			 * It's possible that we have MIXED_GROUP flag but no
4315 			 * block group is mixed.  Just skip such block group.
4316 			 */
4317 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4318 			continue;
4319 		}
4320 
4321 have_block_group:
4322 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4323 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4324 		if (unlikely(!ffe_ctl->cached)) {
4325 			ffe_ctl->have_caching_bg = true;
4326 			ret = btrfs_cache_block_group(block_group, false);
4327 
4328 			/*
4329 			 * If we get ENOMEM here or something else we want to
4330 			 * try other block groups, because it may not be fatal.
4331 			 * However if we can't find anything else we need to
4332 			 * save our return here so that we return the actual
4333 			 * error that caused problems, not ENOSPC.
4334 			 */
4335 			if (ret < 0) {
4336 				if (!cache_block_group_error)
4337 					cache_block_group_error = ret;
4338 				ret = 0;
4339 				goto loop;
4340 			}
4341 			ret = 0;
4342 		}
4343 
4344 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4345 			goto loop;
4346 
4347 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4348 			goto loop;
4349 
4350 		bg_ret = NULL;
4351 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4352 		if (ret == 0) {
4353 			if (bg_ret && bg_ret != block_group) {
4354 				btrfs_release_block_group(block_group,
4355 							  ffe_ctl->delalloc);
4356 				block_group = bg_ret;
4357 			}
4358 		} else if (ret == -EAGAIN) {
4359 			goto have_block_group;
4360 		} else if (ret > 0) {
4361 			goto loop;
4362 		}
4363 
4364 		/* Checks */
4365 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4366 						 fs_info->stripesize);
4367 
4368 		/* move on to the next group */
4369 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4370 		    block_group->start + block_group->length) {
4371 			btrfs_add_free_space_unused(block_group,
4372 					    ffe_ctl->found_offset,
4373 					    ffe_ctl->num_bytes);
4374 			goto loop;
4375 		}
4376 
4377 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4378 			btrfs_add_free_space_unused(block_group,
4379 					ffe_ctl->found_offset,
4380 					ffe_ctl->search_start - ffe_ctl->found_offset);
4381 
4382 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4383 					       ffe_ctl->num_bytes,
4384 					       ffe_ctl->delalloc,
4385 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4386 		if (ret == -EAGAIN) {
4387 			btrfs_add_free_space_unused(block_group,
4388 					ffe_ctl->found_offset,
4389 					ffe_ctl->num_bytes);
4390 			goto loop;
4391 		}
4392 		btrfs_inc_block_group_reservations(block_group);
4393 
4394 		/* we are all good, lets return */
4395 		ins->objectid = ffe_ctl->search_start;
4396 		ins->offset = ffe_ctl->num_bytes;
4397 
4398 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4399 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4400 		break;
4401 loop:
4402 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4403 		cond_resched();
4404 	}
4405 	up_read(&space_info->groups_sem);
4406 
4407 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4408 	if (ret > 0)
4409 		goto search;
4410 
4411 	if (ret == -ENOSPC && !cache_block_group_error) {
4412 		/*
4413 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4414 		 * any contiguous hole.
4415 		 */
4416 		if (!ffe_ctl->max_extent_size)
4417 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4418 		spin_lock(&space_info->lock);
4419 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4420 		spin_unlock(&space_info->lock);
4421 		ins->offset = ffe_ctl->max_extent_size;
4422 	} else if (ret == -ENOSPC) {
4423 		ret = cache_block_group_error;
4424 	}
4425 	return ret;
4426 }
4427 
4428 /*
4429  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4430  *			  hole that is at least as big as @num_bytes.
4431  *
4432  * @root           -	The root that will contain this extent
4433  *
4434  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4435  *			is used for accounting purposes. This value differs
4436  *			from @num_bytes only in the case of compressed extents.
4437  *
4438  * @num_bytes      -	Number of bytes to allocate on-disk.
4439  *
4440  * @min_alloc_size -	Indicates the minimum amount of space that the
4441  *			allocator should try to satisfy. In some cases
4442  *			@num_bytes may be larger than what is required and if
4443  *			the filesystem is fragmented then allocation fails.
4444  *			However, the presence of @min_alloc_size gives a
4445  *			chance to try and satisfy the smaller allocation.
4446  *
4447  * @empty_size     -	A hint that you plan on doing more COW. This is the
4448  *			size in bytes the allocator should try to find free
4449  *			next to the block it returns.  This is just a hint and
4450  *			may be ignored by the allocator.
4451  *
4452  * @hint_byte      -	Hint to the allocator to start searching above the byte
4453  *			address passed. It might be ignored.
4454  *
4455  * @ins            -	This key is modified to record the found hole. It will
4456  *			have the following values:
4457  *			ins->objectid == start position
4458  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4459  *			ins->offset == the size of the hole.
4460  *
4461  * @is_data        -	Boolean flag indicating whether an extent is
4462  *			allocated for data (true) or metadata (false)
4463  *
4464  * @delalloc       -	Boolean flag indicating whether this allocation is for
4465  *			delalloc or not. If 'true' data_rwsem of block groups
4466  *			is going to be acquired.
4467  *
4468  *
4469  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4470  * case -ENOSPC is returned then @ins->offset will contain the size of the
4471  * largest available hole the allocator managed to find.
4472  */
4473 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4474 			 u64 num_bytes, u64 min_alloc_size,
4475 			 u64 empty_size, u64 hint_byte,
4476 			 struct btrfs_key *ins, int is_data, int delalloc)
4477 {
4478 	struct btrfs_fs_info *fs_info = root->fs_info;
4479 	struct find_free_extent_ctl ffe_ctl = {};
4480 	bool final_tried = num_bytes == min_alloc_size;
4481 	u64 flags;
4482 	int ret;
4483 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4484 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4485 
4486 	flags = get_alloc_profile_by_root(root, is_data);
4487 again:
4488 	WARN_ON(num_bytes < fs_info->sectorsize);
4489 
4490 	ffe_ctl.ram_bytes = ram_bytes;
4491 	ffe_ctl.num_bytes = num_bytes;
4492 	ffe_ctl.min_alloc_size = min_alloc_size;
4493 	ffe_ctl.empty_size = empty_size;
4494 	ffe_ctl.flags = flags;
4495 	ffe_ctl.delalloc = delalloc;
4496 	ffe_ctl.hint_byte = hint_byte;
4497 	ffe_ctl.for_treelog = for_treelog;
4498 	ffe_ctl.for_data_reloc = for_data_reloc;
4499 
4500 	ret = find_free_extent(root, ins, &ffe_ctl);
4501 	if (!ret && !is_data) {
4502 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4503 	} else if (ret == -ENOSPC) {
4504 		if (!final_tried && ins->offset) {
4505 			num_bytes = min(num_bytes >> 1, ins->offset);
4506 			num_bytes = round_down(num_bytes,
4507 					       fs_info->sectorsize);
4508 			num_bytes = max(num_bytes, min_alloc_size);
4509 			ram_bytes = num_bytes;
4510 			if (num_bytes == min_alloc_size)
4511 				final_tried = true;
4512 			goto again;
4513 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4514 			struct btrfs_space_info *sinfo;
4515 
4516 			sinfo = btrfs_find_space_info(fs_info, flags);
4517 			btrfs_err(fs_info,
4518 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4519 				  flags, num_bytes, for_treelog, for_data_reloc);
4520 			if (sinfo)
4521 				btrfs_dump_space_info(fs_info, sinfo,
4522 						      num_bytes, 1);
4523 		}
4524 	}
4525 
4526 	return ret;
4527 }
4528 
4529 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4530 			       u64 start, u64 len, int delalloc)
4531 {
4532 	struct btrfs_block_group *cache;
4533 
4534 	cache = btrfs_lookup_block_group(fs_info, start);
4535 	if (!cache) {
4536 		btrfs_err(fs_info, "Unable to find block group for %llu",
4537 			  start);
4538 		return -ENOSPC;
4539 	}
4540 
4541 	btrfs_add_free_space(cache, start, len);
4542 	btrfs_free_reserved_bytes(cache, len, delalloc);
4543 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4544 
4545 	btrfs_put_block_group(cache);
4546 	return 0;
4547 }
4548 
4549 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4550 			      u64 len)
4551 {
4552 	struct btrfs_block_group *cache;
4553 	int ret = 0;
4554 
4555 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4556 	if (!cache) {
4557 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4558 			  start);
4559 		return -ENOSPC;
4560 	}
4561 
4562 	ret = pin_down_extent(trans, cache, start, len, 1);
4563 	btrfs_put_block_group(cache);
4564 	return ret;
4565 }
4566 
4567 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4568 				 u64 num_bytes)
4569 {
4570 	struct btrfs_fs_info *fs_info = trans->fs_info;
4571 	int ret;
4572 
4573 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4574 	if (ret)
4575 		return ret;
4576 
4577 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4578 	if (ret) {
4579 		ASSERT(!ret);
4580 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4581 			  bytenr, num_bytes);
4582 		return ret;
4583 	}
4584 
4585 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4586 	return 0;
4587 }
4588 
4589 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4590 				      u64 parent, u64 root_objectid,
4591 				      u64 flags, u64 owner, u64 offset,
4592 				      struct btrfs_key *ins, int ref_mod)
4593 {
4594 	struct btrfs_fs_info *fs_info = trans->fs_info;
4595 	struct btrfs_root *extent_root;
4596 	int ret;
4597 	struct btrfs_extent_item *extent_item;
4598 	struct btrfs_extent_inline_ref *iref;
4599 	struct btrfs_path *path;
4600 	struct extent_buffer *leaf;
4601 	int type;
4602 	u32 size;
4603 
4604 	if (parent > 0)
4605 		type = BTRFS_SHARED_DATA_REF_KEY;
4606 	else
4607 		type = BTRFS_EXTENT_DATA_REF_KEY;
4608 
4609 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4610 
4611 	path = btrfs_alloc_path();
4612 	if (!path)
4613 		return -ENOMEM;
4614 
4615 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4616 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4617 	if (ret) {
4618 		btrfs_free_path(path);
4619 		return ret;
4620 	}
4621 
4622 	leaf = path->nodes[0];
4623 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4624 				     struct btrfs_extent_item);
4625 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4626 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4627 	btrfs_set_extent_flags(leaf, extent_item,
4628 			       flags | BTRFS_EXTENT_FLAG_DATA);
4629 
4630 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4631 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4632 	if (parent > 0) {
4633 		struct btrfs_shared_data_ref *ref;
4634 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4635 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4636 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4637 	} else {
4638 		struct btrfs_extent_data_ref *ref;
4639 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4640 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4641 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4642 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4643 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4644 	}
4645 
4646 	btrfs_mark_buffer_dirty(path->nodes[0]);
4647 	btrfs_free_path(path);
4648 
4649 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4650 }
4651 
4652 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4653 				     struct btrfs_delayed_ref_node *node,
4654 				     struct btrfs_delayed_extent_op *extent_op)
4655 {
4656 	struct btrfs_fs_info *fs_info = trans->fs_info;
4657 	struct btrfs_root *extent_root;
4658 	int ret;
4659 	struct btrfs_extent_item *extent_item;
4660 	struct btrfs_key extent_key;
4661 	struct btrfs_tree_block_info *block_info;
4662 	struct btrfs_extent_inline_ref *iref;
4663 	struct btrfs_path *path;
4664 	struct extent_buffer *leaf;
4665 	struct btrfs_delayed_tree_ref *ref;
4666 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4667 	u64 flags = extent_op->flags_to_set;
4668 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4669 
4670 	ref = btrfs_delayed_node_to_tree_ref(node);
4671 
4672 	extent_key.objectid = node->bytenr;
4673 	if (skinny_metadata) {
4674 		extent_key.offset = ref->level;
4675 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4676 	} else {
4677 		extent_key.offset = node->num_bytes;
4678 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4679 		size += sizeof(*block_info);
4680 	}
4681 
4682 	path = btrfs_alloc_path();
4683 	if (!path)
4684 		return -ENOMEM;
4685 
4686 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4687 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4688 				      size);
4689 	if (ret) {
4690 		btrfs_free_path(path);
4691 		return ret;
4692 	}
4693 
4694 	leaf = path->nodes[0];
4695 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4696 				     struct btrfs_extent_item);
4697 	btrfs_set_extent_refs(leaf, extent_item, 1);
4698 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4699 	btrfs_set_extent_flags(leaf, extent_item,
4700 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4701 
4702 	if (skinny_metadata) {
4703 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4704 	} else {
4705 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4706 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4707 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4708 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4709 	}
4710 
4711 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4712 		btrfs_set_extent_inline_ref_type(leaf, iref,
4713 						 BTRFS_SHARED_BLOCK_REF_KEY);
4714 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4715 	} else {
4716 		btrfs_set_extent_inline_ref_type(leaf, iref,
4717 						 BTRFS_TREE_BLOCK_REF_KEY);
4718 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4719 	}
4720 
4721 	btrfs_mark_buffer_dirty(leaf);
4722 	btrfs_free_path(path);
4723 
4724 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4725 }
4726 
4727 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4728 				     struct btrfs_root *root, u64 owner,
4729 				     u64 offset, u64 ram_bytes,
4730 				     struct btrfs_key *ins)
4731 {
4732 	struct btrfs_ref generic_ref = { 0 };
4733 
4734 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4735 
4736 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4737 			       ins->objectid, ins->offset, 0);
4738 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4739 			    offset, 0, false);
4740 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4741 
4742 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4743 }
4744 
4745 /*
4746  * this is used by the tree logging recovery code.  It records that
4747  * an extent has been allocated and makes sure to clear the free
4748  * space cache bits as well
4749  */
4750 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4751 				   u64 root_objectid, u64 owner, u64 offset,
4752 				   struct btrfs_key *ins)
4753 {
4754 	struct btrfs_fs_info *fs_info = trans->fs_info;
4755 	int ret;
4756 	struct btrfs_block_group *block_group;
4757 	struct btrfs_space_info *space_info;
4758 
4759 	/*
4760 	 * Mixed block groups will exclude before processing the log so we only
4761 	 * need to do the exclude dance if this fs isn't mixed.
4762 	 */
4763 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4764 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4765 					      ins->offset);
4766 		if (ret)
4767 			return ret;
4768 	}
4769 
4770 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4771 	if (!block_group)
4772 		return -EINVAL;
4773 
4774 	space_info = block_group->space_info;
4775 	spin_lock(&space_info->lock);
4776 	spin_lock(&block_group->lock);
4777 	space_info->bytes_reserved += ins->offset;
4778 	block_group->reserved += ins->offset;
4779 	spin_unlock(&block_group->lock);
4780 	spin_unlock(&space_info->lock);
4781 
4782 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4783 					 offset, ins, 1);
4784 	if (ret)
4785 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4786 	btrfs_put_block_group(block_group);
4787 	return ret;
4788 }
4789 
4790 static struct extent_buffer *
4791 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4792 		      u64 bytenr, int level, u64 owner,
4793 		      enum btrfs_lock_nesting nest)
4794 {
4795 	struct btrfs_fs_info *fs_info = root->fs_info;
4796 	struct extent_buffer *buf;
4797 	u64 lockdep_owner = owner;
4798 
4799 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4800 	if (IS_ERR(buf))
4801 		return buf;
4802 
4803 	/*
4804 	 * Extra safety check in case the extent tree is corrupted and extent
4805 	 * allocator chooses to use a tree block which is already used and
4806 	 * locked.
4807 	 */
4808 	if (buf->lock_owner == current->pid) {
4809 		btrfs_err_rl(fs_info,
4810 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4811 			buf->start, btrfs_header_owner(buf), current->pid);
4812 		free_extent_buffer(buf);
4813 		return ERR_PTR(-EUCLEAN);
4814 	}
4815 
4816 	/*
4817 	 * The reloc trees are just snapshots, so we need them to appear to be
4818 	 * just like any other fs tree WRT lockdep.
4819 	 *
4820 	 * The exception however is in replace_path() in relocation, where we
4821 	 * hold the lock on the original fs root and then search for the reloc
4822 	 * root.  At that point we need to make sure any reloc root buffers are
4823 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4824 	 * lockdep happy.
4825 	 */
4826 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4827 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4828 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4829 
4830 	/* btrfs_clean_tree_block() accesses generation field. */
4831 	btrfs_set_header_generation(buf, trans->transid);
4832 
4833 	/*
4834 	 * This needs to stay, because we could allocate a freed block from an
4835 	 * old tree into a new tree, so we need to make sure this new block is
4836 	 * set to the appropriate level and owner.
4837 	 */
4838 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4839 
4840 	__btrfs_tree_lock(buf, nest);
4841 	btrfs_clear_buffer_dirty(trans, buf);
4842 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4843 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4844 
4845 	set_extent_buffer_uptodate(buf);
4846 
4847 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4848 	btrfs_set_header_level(buf, level);
4849 	btrfs_set_header_bytenr(buf, buf->start);
4850 	btrfs_set_header_generation(buf, trans->transid);
4851 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4852 	btrfs_set_header_owner(buf, owner);
4853 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4854 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4855 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4856 		buf->log_index = root->log_transid % 2;
4857 		/*
4858 		 * we allow two log transactions at a time, use different
4859 		 * EXTENT bit to differentiate dirty pages.
4860 		 */
4861 		if (buf->log_index == 0)
4862 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4863 					buf->start + buf->len - 1, GFP_NOFS);
4864 		else
4865 			set_extent_new(&root->dirty_log_pages, buf->start,
4866 					buf->start + buf->len - 1);
4867 	} else {
4868 		buf->log_index = -1;
4869 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4870 			 buf->start + buf->len - 1, GFP_NOFS);
4871 	}
4872 	/* this returns a buffer locked for blocking */
4873 	return buf;
4874 }
4875 
4876 /*
4877  * finds a free extent and does all the dirty work required for allocation
4878  * returns the tree buffer or an ERR_PTR on error.
4879  */
4880 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4881 					     struct btrfs_root *root,
4882 					     u64 parent, u64 root_objectid,
4883 					     const struct btrfs_disk_key *key,
4884 					     int level, u64 hint,
4885 					     u64 empty_size,
4886 					     enum btrfs_lock_nesting nest)
4887 {
4888 	struct btrfs_fs_info *fs_info = root->fs_info;
4889 	struct btrfs_key ins;
4890 	struct btrfs_block_rsv *block_rsv;
4891 	struct extent_buffer *buf;
4892 	struct btrfs_delayed_extent_op *extent_op;
4893 	struct btrfs_ref generic_ref = { 0 };
4894 	u64 flags = 0;
4895 	int ret;
4896 	u32 blocksize = fs_info->nodesize;
4897 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4898 
4899 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4900 	if (btrfs_is_testing(fs_info)) {
4901 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4902 					    level, root_objectid, nest);
4903 		if (!IS_ERR(buf))
4904 			root->alloc_bytenr += blocksize;
4905 		return buf;
4906 	}
4907 #endif
4908 
4909 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4910 	if (IS_ERR(block_rsv))
4911 		return ERR_CAST(block_rsv);
4912 
4913 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4914 				   empty_size, hint, &ins, 0, 0);
4915 	if (ret)
4916 		goto out_unuse;
4917 
4918 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4919 				    root_objectid, nest);
4920 	if (IS_ERR(buf)) {
4921 		ret = PTR_ERR(buf);
4922 		goto out_free_reserved;
4923 	}
4924 
4925 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4926 		if (parent == 0)
4927 			parent = ins.objectid;
4928 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4929 	} else
4930 		BUG_ON(parent > 0);
4931 
4932 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4933 		extent_op = btrfs_alloc_delayed_extent_op();
4934 		if (!extent_op) {
4935 			ret = -ENOMEM;
4936 			goto out_free_buf;
4937 		}
4938 		if (key)
4939 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4940 		else
4941 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4942 		extent_op->flags_to_set = flags;
4943 		extent_op->update_key = skinny_metadata ? false : true;
4944 		extent_op->update_flags = true;
4945 		extent_op->level = level;
4946 
4947 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4948 				       ins.objectid, ins.offset, parent);
4949 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4950 				    root->root_key.objectid, false);
4951 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4952 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4953 		if (ret)
4954 			goto out_free_delayed;
4955 	}
4956 	return buf;
4957 
4958 out_free_delayed:
4959 	btrfs_free_delayed_extent_op(extent_op);
4960 out_free_buf:
4961 	btrfs_tree_unlock(buf);
4962 	free_extent_buffer(buf);
4963 out_free_reserved:
4964 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4965 out_unuse:
4966 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4967 	return ERR_PTR(ret);
4968 }
4969 
4970 struct walk_control {
4971 	u64 refs[BTRFS_MAX_LEVEL];
4972 	u64 flags[BTRFS_MAX_LEVEL];
4973 	struct btrfs_key update_progress;
4974 	struct btrfs_key drop_progress;
4975 	int drop_level;
4976 	int stage;
4977 	int level;
4978 	int shared_level;
4979 	int update_ref;
4980 	int keep_locks;
4981 	int reada_slot;
4982 	int reada_count;
4983 	int restarted;
4984 };
4985 
4986 #define DROP_REFERENCE	1
4987 #define UPDATE_BACKREF	2
4988 
4989 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4990 				     struct btrfs_root *root,
4991 				     struct walk_control *wc,
4992 				     struct btrfs_path *path)
4993 {
4994 	struct btrfs_fs_info *fs_info = root->fs_info;
4995 	u64 bytenr;
4996 	u64 generation;
4997 	u64 refs;
4998 	u64 flags;
4999 	u32 nritems;
5000 	struct btrfs_key key;
5001 	struct extent_buffer *eb;
5002 	int ret;
5003 	int slot;
5004 	int nread = 0;
5005 
5006 	if (path->slots[wc->level] < wc->reada_slot) {
5007 		wc->reada_count = wc->reada_count * 2 / 3;
5008 		wc->reada_count = max(wc->reada_count, 2);
5009 	} else {
5010 		wc->reada_count = wc->reada_count * 3 / 2;
5011 		wc->reada_count = min_t(int, wc->reada_count,
5012 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5013 	}
5014 
5015 	eb = path->nodes[wc->level];
5016 	nritems = btrfs_header_nritems(eb);
5017 
5018 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5019 		if (nread >= wc->reada_count)
5020 			break;
5021 
5022 		cond_resched();
5023 		bytenr = btrfs_node_blockptr(eb, slot);
5024 		generation = btrfs_node_ptr_generation(eb, slot);
5025 
5026 		if (slot == path->slots[wc->level])
5027 			goto reada;
5028 
5029 		if (wc->stage == UPDATE_BACKREF &&
5030 		    generation <= root->root_key.offset)
5031 			continue;
5032 
5033 		/* We don't lock the tree block, it's OK to be racy here */
5034 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5035 					       wc->level - 1, 1, &refs,
5036 					       &flags);
5037 		/* We don't care about errors in readahead. */
5038 		if (ret < 0)
5039 			continue;
5040 		BUG_ON(refs == 0);
5041 
5042 		if (wc->stage == DROP_REFERENCE) {
5043 			if (refs == 1)
5044 				goto reada;
5045 
5046 			if (wc->level == 1 &&
5047 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5048 				continue;
5049 			if (!wc->update_ref ||
5050 			    generation <= root->root_key.offset)
5051 				continue;
5052 			btrfs_node_key_to_cpu(eb, &key, slot);
5053 			ret = btrfs_comp_cpu_keys(&key,
5054 						  &wc->update_progress);
5055 			if (ret < 0)
5056 				continue;
5057 		} else {
5058 			if (wc->level == 1 &&
5059 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5060 				continue;
5061 		}
5062 reada:
5063 		btrfs_readahead_node_child(eb, slot);
5064 		nread++;
5065 	}
5066 	wc->reada_slot = slot;
5067 }
5068 
5069 /*
5070  * helper to process tree block while walking down the tree.
5071  *
5072  * when wc->stage == UPDATE_BACKREF, this function updates
5073  * back refs for pointers in the block.
5074  *
5075  * NOTE: return value 1 means we should stop walking down.
5076  */
5077 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5078 				   struct btrfs_root *root,
5079 				   struct btrfs_path *path,
5080 				   struct walk_control *wc, int lookup_info)
5081 {
5082 	struct btrfs_fs_info *fs_info = root->fs_info;
5083 	int level = wc->level;
5084 	struct extent_buffer *eb = path->nodes[level];
5085 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5086 	int ret;
5087 
5088 	if (wc->stage == UPDATE_BACKREF &&
5089 	    btrfs_header_owner(eb) != root->root_key.objectid)
5090 		return 1;
5091 
5092 	/*
5093 	 * when reference count of tree block is 1, it won't increase
5094 	 * again. once full backref flag is set, we never clear it.
5095 	 */
5096 	if (lookup_info &&
5097 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5098 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5099 		BUG_ON(!path->locks[level]);
5100 		ret = btrfs_lookup_extent_info(trans, fs_info,
5101 					       eb->start, level, 1,
5102 					       &wc->refs[level],
5103 					       &wc->flags[level]);
5104 		BUG_ON(ret == -ENOMEM);
5105 		if (ret)
5106 			return ret;
5107 		BUG_ON(wc->refs[level] == 0);
5108 	}
5109 
5110 	if (wc->stage == DROP_REFERENCE) {
5111 		if (wc->refs[level] > 1)
5112 			return 1;
5113 
5114 		if (path->locks[level] && !wc->keep_locks) {
5115 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5116 			path->locks[level] = 0;
5117 		}
5118 		return 0;
5119 	}
5120 
5121 	/* wc->stage == UPDATE_BACKREF */
5122 	if (!(wc->flags[level] & flag)) {
5123 		BUG_ON(!path->locks[level]);
5124 		ret = btrfs_inc_ref(trans, root, eb, 1);
5125 		BUG_ON(ret); /* -ENOMEM */
5126 		ret = btrfs_dec_ref(trans, root, eb, 0);
5127 		BUG_ON(ret); /* -ENOMEM */
5128 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5129 						  btrfs_header_level(eb));
5130 		BUG_ON(ret); /* -ENOMEM */
5131 		wc->flags[level] |= flag;
5132 	}
5133 
5134 	/*
5135 	 * the block is shared by multiple trees, so it's not good to
5136 	 * keep the tree lock
5137 	 */
5138 	if (path->locks[level] && level > 0) {
5139 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5140 		path->locks[level] = 0;
5141 	}
5142 	return 0;
5143 }
5144 
5145 /*
5146  * This is used to verify a ref exists for this root to deal with a bug where we
5147  * would have a drop_progress key that hadn't been updated properly.
5148  */
5149 static int check_ref_exists(struct btrfs_trans_handle *trans,
5150 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5151 			    int level)
5152 {
5153 	struct btrfs_path *path;
5154 	struct btrfs_extent_inline_ref *iref;
5155 	int ret;
5156 
5157 	path = btrfs_alloc_path();
5158 	if (!path)
5159 		return -ENOMEM;
5160 
5161 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5162 				    root->fs_info->nodesize, parent,
5163 				    root->root_key.objectid, level, 0);
5164 	btrfs_free_path(path);
5165 	if (ret == -ENOENT)
5166 		return 0;
5167 	if (ret < 0)
5168 		return ret;
5169 	return 1;
5170 }
5171 
5172 /*
5173  * helper to process tree block pointer.
5174  *
5175  * when wc->stage == DROP_REFERENCE, this function checks
5176  * reference count of the block pointed to. if the block
5177  * is shared and we need update back refs for the subtree
5178  * rooted at the block, this function changes wc->stage to
5179  * UPDATE_BACKREF. if the block is shared and there is no
5180  * need to update back, this function drops the reference
5181  * to the block.
5182  *
5183  * NOTE: return value 1 means we should stop walking down.
5184  */
5185 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5186 				 struct btrfs_root *root,
5187 				 struct btrfs_path *path,
5188 				 struct walk_control *wc, int *lookup_info)
5189 {
5190 	struct btrfs_fs_info *fs_info = root->fs_info;
5191 	u64 bytenr;
5192 	u64 generation;
5193 	u64 parent;
5194 	struct btrfs_tree_parent_check check = { 0 };
5195 	struct btrfs_key key;
5196 	struct btrfs_ref ref = { 0 };
5197 	struct extent_buffer *next;
5198 	int level = wc->level;
5199 	int reada = 0;
5200 	int ret = 0;
5201 	bool need_account = false;
5202 
5203 	generation = btrfs_node_ptr_generation(path->nodes[level],
5204 					       path->slots[level]);
5205 	/*
5206 	 * if the lower level block was created before the snapshot
5207 	 * was created, we know there is no need to update back refs
5208 	 * for the subtree
5209 	 */
5210 	if (wc->stage == UPDATE_BACKREF &&
5211 	    generation <= root->root_key.offset) {
5212 		*lookup_info = 1;
5213 		return 1;
5214 	}
5215 
5216 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5217 
5218 	check.level = level - 1;
5219 	check.transid = generation;
5220 	check.owner_root = root->root_key.objectid;
5221 	check.has_first_key = true;
5222 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5223 			      path->slots[level]);
5224 
5225 	next = find_extent_buffer(fs_info, bytenr);
5226 	if (!next) {
5227 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5228 				root->root_key.objectid, level - 1);
5229 		if (IS_ERR(next))
5230 			return PTR_ERR(next);
5231 		reada = 1;
5232 	}
5233 	btrfs_tree_lock(next);
5234 
5235 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5236 				       &wc->refs[level - 1],
5237 				       &wc->flags[level - 1]);
5238 	if (ret < 0)
5239 		goto out_unlock;
5240 
5241 	if (unlikely(wc->refs[level - 1] == 0)) {
5242 		btrfs_err(fs_info, "Missing references.");
5243 		ret = -EIO;
5244 		goto out_unlock;
5245 	}
5246 	*lookup_info = 0;
5247 
5248 	if (wc->stage == DROP_REFERENCE) {
5249 		if (wc->refs[level - 1] > 1) {
5250 			need_account = true;
5251 			if (level == 1 &&
5252 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5253 				goto skip;
5254 
5255 			if (!wc->update_ref ||
5256 			    generation <= root->root_key.offset)
5257 				goto skip;
5258 
5259 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5260 					      path->slots[level]);
5261 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5262 			if (ret < 0)
5263 				goto skip;
5264 
5265 			wc->stage = UPDATE_BACKREF;
5266 			wc->shared_level = level - 1;
5267 		}
5268 	} else {
5269 		if (level == 1 &&
5270 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5271 			goto skip;
5272 	}
5273 
5274 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5275 		btrfs_tree_unlock(next);
5276 		free_extent_buffer(next);
5277 		next = NULL;
5278 		*lookup_info = 1;
5279 	}
5280 
5281 	if (!next) {
5282 		if (reada && level == 1)
5283 			reada_walk_down(trans, root, wc, path);
5284 		next = read_tree_block(fs_info, bytenr, &check);
5285 		if (IS_ERR(next)) {
5286 			return PTR_ERR(next);
5287 		} else if (!extent_buffer_uptodate(next)) {
5288 			free_extent_buffer(next);
5289 			return -EIO;
5290 		}
5291 		btrfs_tree_lock(next);
5292 	}
5293 
5294 	level--;
5295 	ASSERT(level == btrfs_header_level(next));
5296 	if (level != btrfs_header_level(next)) {
5297 		btrfs_err(root->fs_info, "mismatched level");
5298 		ret = -EIO;
5299 		goto out_unlock;
5300 	}
5301 	path->nodes[level] = next;
5302 	path->slots[level] = 0;
5303 	path->locks[level] = BTRFS_WRITE_LOCK;
5304 	wc->level = level;
5305 	if (wc->level == 1)
5306 		wc->reada_slot = 0;
5307 	return 0;
5308 skip:
5309 	wc->refs[level - 1] = 0;
5310 	wc->flags[level - 1] = 0;
5311 	if (wc->stage == DROP_REFERENCE) {
5312 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5313 			parent = path->nodes[level]->start;
5314 		} else {
5315 			ASSERT(root->root_key.objectid ==
5316 			       btrfs_header_owner(path->nodes[level]));
5317 			if (root->root_key.objectid !=
5318 			    btrfs_header_owner(path->nodes[level])) {
5319 				btrfs_err(root->fs_info,
5320 						"mismatched block owner");
5321 				ret = -EIO;
5322 				goto out_unlock;
5323 			}
5324 			parent = 0;
5325 		}
5326 
5327 		/*
5328 		 * If we had a drop_progress we need to verify the refs are set
5329 		 * as expected.  If we find our ref then we know that from here
5330 		 * on out everything should be correct, and we can clear the
5331 		 * ->restarted flag.
5332 		 */
5333 		if (wc->restarted) {
5334 			ret = check_ref_exists(trans, root, bytenr, parent,
5335 					       level - 1);
5336 			if (ret < 0)
5337 				goto out_unlock;
5338 			if (ret == 0)
5339 				goto no_delete;
5340 			ret = 0;
5341 			wc->restarted = 0;
5342 		}
5343 
5344 		/*
5345 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5346 		 * already accounted them at merge time (replace_path),
5347 		 * thus we could skip expensive subtree trace here.
5348 		 */
5349 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5350 		    need_account) {
5351 			ret = btrfs_qgroup_trace_subtree(trans, next,
5352 							 generation, level - 1);
5353 			if (ret) {
5354 				btrfs_err_rl(fs_info,
5355 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5356 					     ret);
5357 			}
5358 		}
5359 
5360 		/*
5361 		 * We need to update the next key in our walk control so we can
5362 		 * update the drop_progress key accordingly.  We don't care if
5363 		 * find_next_key doesn't find a key because that means we're at
5364 		 * the end and are going to clean up now.
5365 		 */
5366 		wc->drop_level = level;
5367 		find_next_key(path, level, &wc->drop_progress);
5368 
5369 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5370 				       fs_info->nodesize, parent);
5371 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5372 				    0, false);
5373 		ret = btrfs_free_extent(trans, &ref);
5374 		if (ret)
5375 			goto out_unlock;
5376 	}
5377 no_delete:
5378 	*lookup_info = 1;
5379 	ret = 1;
5380 
5381 out_unlock:
5382 	btrfs_tree_unlock(next);
5383 	free_extent_buffer(next);
5384 
5385 	return ret;
5386 }
5387 
5388 /*
5389  * helper to process tree block while walking up the tree.
5390  *
5391  * when wc->stage == DROP_REFERENCE, this function drops
5392  * reference count on the block.
5393  *
5394  * when wc->stage == UPDATE_BACKREF, this function changes
5395  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5396  * to UPDATE_BACKREF previously while processing the block.
5397  *
5398  * NOTE: return value 1 means we should stop walking up.
5399  */
5400 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5401 				 struct btrfs_root *root,
5402 				 struct btrfs_path *path,
5403 				 struct walk_control *wc)
5404 {
5405 	struct btrfs_fs_info *fs_info = root->fs_info;
5406 	int ret;
5407 	int level = wc->level;
5408 	struct extent_buffer *eb = path->nodes[level];
5409 	u64 parent = 0;
5410 
5411 	if (wc->stage == UPDATE_BACKREF) {
5412 		BUG_ON(wc->shared_level < level);
5413 		if (level < wc->shared_level)
5414 			goto out;
5415 
5416 		ret = find_next_key(path, level + 1, &wc->update_progress);
5417 		if (ret > 0)
5418 			wc->update_ref = 0;
5419 
5420 		wc->stage = DROP_REFERENCE;
5421 		wc->shared_level = -1;
5422 		path->slots[level] = 0;
5423 
5424 		/*
5425 		 * check reference count again if the block isn't locked.
5426 		 * we should start walking down the tree again if reference
5427 		 * count is one.
5428 		 */
5429 		if (!path->locks[level]) {
5430 			BUG_ON(level == 0);
5431 			btrfs_tree_lock(eb);
5432 			path->locks[level] = BTRFS_WRITE_LOCK;
5433 
5434 			ret = btrfs_lookup_extent_info(trans, fs_info,
5435 						       eb->start, level, 1,
5436 						       &wc->refs[level],
5437 						       &wc->flags[level]);
5438 			if (ret < 0) {
5439 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5440 				path->locks[level] = 0;
5441 				return ret;
5442 			}
5443 			BUG_ON(wc->refs[level] == 0);
5444 			if (wc->refs[level] == 1) {
5445 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5446 				path->locks[level] = 0;
5447 				return 1;
5448 			}
5449 		}
5450 	}
5451 
5452 	/* wc->stage == DROP_REFERENCE */
5453 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5454 
5455 	if (wc->refs[level] == 1) {
5456 		if (level == 0) {
5457 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5458 				ret = btrfs_dec_ref(trans, root, eb, 1);
5459 			else
5460 				ret = btrfs_dec_ref(trans, root, eb, 0);
5461 			BUG_ON(ret); /* -ENOMEM */
5462 			if (is_fstree(root->root_key.objectid)) {
5463 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5464 				if (ret) {
5465 					btrfs_err_rl(fs_info,
5466 	"error %d accounting leaf items, quota is out of sync, rescan required",
5467 					     ret);
5468 				}
5469 			}
5470 		}
5471 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5472 		if (!path->locks[level]) {
5473 			btrfs_tree_lock(eb);
5474 			path->locks[level] = BTRFS_WRITE_LOCK;
5475 		}
5476 		btrfs_clear_buffer_dirty(trans, eb);
5477 	}
5478 
5479 	if (eb == root->node) {
5480 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5481 			parent = eb->start;
5482 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5483 			goto owner_mismatch;
5484 	} else {
5485 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5486 			parent = path->nodes[level + 1]->start;
5487 		else if (root->root_key.objectid !=
5488 			 btrfs_header_owner(path->nodes[level + 1]))
5489 			goto owner_mismatch;
5490 	}
5491 
5492 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5493 			      wc->refs[level] == 1);
5494 out:
5495 	wc->refs[level] = 0;
5496 	wc->flags[level] = 0;
5497 	return 0;
5498 
5499 owner_mismatch:
5500 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5501 		     btrfs_header_owner(eb), root->root_key.objectid);
5502 	return -EUCLEAN;
5503 }
5504 
5505 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5506 				   struct btrfs_root *root,
5507 				   struct btrfs_path *path,
5508 				   struct walk_control *wc)
5509 {
5510 	int level = wc->level;
5511 	int lookup_info = 1;
5512 	int ret;
5513 
5514 	while (level >= 0) {
5515 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5516 		if (ret > 0)
5517 			break;
5518 
5519 		if (level == 0)
5520 			break;
5521 
5522 		if (path->slots[level] >=
5523 		    btrfs_header_nritems(path->nodes[level]))
5524 			break;
5525 
5526 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5527 		if (ret > 0) {
5528 			path->slots[level]++;
5529 			continue;
5530 		} else if (ret < 0)
5531 			return ret;
5532 		level = wc->level;
5533 	}
5534 	return 0;
5535 }
5536 
5537 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5538 				 struct btrfs_root *root,
5539 				 struct btrfs_path *path,
5540 				 struct walk_control *wc, int max_level)
5541 {
5542 	int level = wc->level;
5543 	int ret;
5544 
5545 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5546 	while (level < max_level && path->nodes[level]) {
5547 		wc->level = level;
5548 		if (path->slots[level] + 1 <
5549 		    btrfs_header_nritems(path->nodes[level])) {
5550 			path->slots[level]++;
5551 			return 0;
5552 		} else {
5553 			ret = walk_up_proc(trans, root, path, wc);
5554 			if (ret > 0)
5555 				return 0;
5556 			if (ret < 0)
5557 				return ret;
5558 
5559 			if (path->locks[level]) {
5560 				btrfs_tree_unlock_rw(path->nodes[level],
5561 						     path->locks[level]);
5562 				path->locks[level] = 0;
5563 			}
5564 			free_extent_buffer(path->nodes[level]);
5565 			path->nodes[level] = NULL;
5566 			level++;
5567 		}
5568 	}
5569 	return 1;
5570 }
5571 
5572 /*
5573  * drop a subvolume tree.
5574  *
5575  * this function traverses the tree freeing any blocks that only
5576  * referenced by the tree.
5577  *
5578  * when a shared tree block is found. this function decreases its
5579  * reference count by one. if update_ref is true, this function
5580  * also make sure backrefs for the shared block and all lower level
5581  * blocks are properly updated.
5582  *
5583  * If called with for_reloc == 0, may exit early with -EAGAIN
5584  */
5585 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5586 {
5587 	const bool is_reloc_root = (root->root_key.objectid ==
5588 				    BTRFS_TREE_RELOC_OBJECTID);
5589 	struct btrfs_fs_info *fs_info = root->fs_info;
5590 	struct btrfs_path *path;
5591 	struct btrfs_trans_handle *trans;
5592 	struct btrfs_root *tree_root = fs_info->tree_root;
5593 	struct btrfs_root_item *root_item = &root->root_item;
5594 	struct walk_control *wc;
5595 	struct btrfs_key key;
5596 	int err = 0;
5597 	int ret;
5598 	int level;
5599 	bool root_dropped = false;
5600 	bool unfinished_drop = false;
5601 
5602 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5603 
5604 	path = btrfs_alloc_path();
5605 	if (!path) {
5606 		err = -ENOMEM;
5607 		goto out;
5608 	}
5609 
5610 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5611 	if (!wc) {
5612 		btrfs_free_path(path);
5613 		err = -ENOMEM;
5614 		goto out;
5615 	}
5616 
5617 	/*
5618 	 * Use join to avoid potential EINTR from transaction start. See
5619 	 * wait_reserve_ticket and the whole reservation callchain.
5620 	 */
5621 	if (for_reloc)
5622 		trans = btrfs_join_transaction(tree_root);
5623 	else
5624 		trans = btrfs_start_transaction(tree_root, 0);
5625 	if (IS_ERR(trans)) {
5626 		err = PTR_ERR(trans);
5627 		goto out_free;
5628 	}
5629 
5630 	err = btrfs_run_delayed_items(trans);
5631 	if (err)
5632 		goto out_end_trans;
5633 
5634 	/*
5635 	 * This will help us catch people modifying the fs tree while we're
5636 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5637 	 * dropped as we unlock the root node and parent nodes as we walk down
5638 	 * the tree, assuming nothing will change.  If something does change
5639 	 * then we'll have stale information and drop references to blocks we've
5640 	 * already dropped.
5641 	 */
5642 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5643 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5644 
5645 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5646 		level = btrfs_header_level(root->node);
5647 		path->nodes[level] = btrfs_lock_root_node(root);
5648 		path->slots[level] = 0;
5649 		path->locks[level] = BTRFS_WRITE_LOCK;
5650 		memset(&wc->update_progress, 0,
5651 		       sizeof(wc->update_progress));
5652 	} else {
5653 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5654 		memcpy(&wc->update_progress, &key,
5655 		       sizeof(wc->update_progress));
5656 
5657 		level = btrfs_root_drop_level(root_item);
5658 		BUG_ON(level == 0);
5659 		path->lowest_level = level;
5660 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5661 		path->lowest_level = 0;
5662 		if (ret < 0) {
5663 			err = ret;
5664 			goto out_end_trans;
5665 		}
5666 		WARN_ON(ret > 0);
5667 
5668 		/*
5669 		 * unlock our path, this is safe because only this
5670 		 * function is allowed to delete this snapshot
5671 		 */
5672 		btrfs_unlock_up_safe(path, 0);
5673 
5674 		level = btrfs_header_level(root->node);
5675 		while (1) {
5676 			btrfs_tree_lock(path->nodes[level]);
5677 			path->locks[level] = BTRFS_WRITE_LOCK;
5678 
5679 			ret = btrfs_lookup_extent_info(trans, fs_info,
5680 						path->nodes[level]->start,
5681 						level, 1, &wc->refs[level],
5682 						&wc->flags[level]);
5683 			if (ret < 0) {
5684 				err = ret;
5685 				goto out_end_trans;
5686 			}
5687 			BUG_ON(wc->refs[level] == 0);
5688 
5689 			if (level == btrfs_root_drop_level(root_item))
5690 				break;
5691 
5692 			btrfs_tree_unlock(path->nodes[level]);
5693 			path->locks[level] = 0;
5694 			WARN_ON(wc->refs[level] != 1);
5695 			level--;
5696 		}
5697 	}
5698 
5699 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5700 	wc->level = level;
5701 	wc->shared_level = -1;
5702 	wc->stage = DROP_REFERENCE;
5703 	wc->update_ref = update_ref;
5704 	wc->keep_locks = 0;
5705 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5706 
5707 	while (1) {
5708 
5709 		ret = walk_down_tree(trans, root, path, wc);
5710 		if (ret < 0) {
5711 			err = ret;
5712 			break;
5713 		}
5714 
5715 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5716 		if (ret < 0) {
5717 			err = ret;
5718 			break;
5719 		}
5720 
5721 		if (ret > 0) {
5722 			BUG_ON(wc->stage != DROP_REFERENCE);
5723 			break;
5724 		}
5725 
5726 		if (wc->stage == DROP_REFERENCE) {
5727 			wc->drop_level = wc->level;
5728 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5729 					      &wc->drop_progress,
5730 					      path->slots[wc->drop_level]);
5731 		}
5732 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5733 				      &wc->drop_progress);
5734 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5735 
5736 		BUG_ON(wc->level == 0);
5737 		if (btrfs_should_end_transaction(trans) ||
5738 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5739 			ret = btrfs_update_root(trans, tree_root,
5740 						&root->root_key,
5741 						root_item);
5742 			if (ret) {
5743 				btrfs_abort_transaction(trans, ret);
5744 				err = ret;
5745 				goto out_end_trans;
5746 			}
5747 
5748 			if (!is_reloc_root)
5749 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5750 
5751 			btrfs_end_transaction_throttle(trans);
5752 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5753 				btrfs_debug(fs_info,
5754 					    "drop snapshot early exit");
5755 				err = -EAGAIN;
5756 				goto out_free;
5757 			}
5758 
5759 		       /*
5760 			* Use join to avoid potential EINTR from transaction
5761 			* start. See wait_reserve_ticket and the whole
5762 			* reservation callchain.
5763 			*/
5764 			if (for_reloc)
5765 				trans = btrfs_join_transaction(tree_root);
5766 			else
5767 				trans = btrfs_start_transaction(tree_root, 0);
5768 			if (IS_ERR(trans)) {
5769 				err = PTR_ERR(trans);
5770 				goto out_free;
5771 			}
5772 		}
5773 	}
5774 	btrfs_release_path(path);
5775 	if (err)
5776 		goto out_end_trans;
5777 
5778 	ret = btrfs_del_root(trans, &root->root_key);
5779 	if (ret) {
5780 		btrfs_abort_transaction(trans, ret);
5781 		err = ret;
5782 		goto out_end_trans;
5783 	}
5784 
5785 	if (!is_reloc_root) {
5786 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5787 				      NULL, NULL);
5788 		if (ret < 0) {
5789 			btrfs_abort_transaction(trans, ret);
5790 			err = ret;
5791 			goto out_end_trans;
5792 		} else if (ret > 0) {
5793 			/* if we fail to delete the orphan item this time
5794 			 * around, it'll get picked up the next time.
5795 			 *
5796 			 * The most common failure here is just -ENOENT.
5797 			 */
5798 			btrfs_del_orphan_item(trans, tree_root,
5799 					      root->root_key.objectid);
5800 		}
5801 	}
5802 
5803 	/*
5804 	 * This subvolume is going to be completely dropped, and won't be
5805 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5806 	 * commit transaction time.  So free it here manually.
5807 	 */
5808 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5809 	btrfs_qgroup_free_meta_all_pertrans(root);
5810 
5811 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5812 		btrfs_add_dropped_root(trans, root);
5813 	else
5814 		btrfs_put_root(root);
5815 	root_dropped = true;
5816 out_end_trans:
5817 	if (!is_reloc_root)
5818 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5819 
5820 	btrfs_end_transaction_throttle(trans);
5821 out_free:
5822 	kfree(wc);
5823 	btrfs_free_path(path);
5824 out:
5825 	/*
5826 	 * We were an unfinished drop root, check to see if there are any
5827 	 * pending, and if not clear and wake up any waiters.
5828 	 */
5829 	if (!err && unfinished_drop)
5830 		btrfs_maybe_wake_unfinished_drop(fs_info);
5831 
5832 	/*
5833 	 * So if we need to stop dropping the snapshot for whatever reason we
5834 	 * need to make sure to add it back to the dead root list so that we
5835 	 * keep trying to do the work later.  This also cleans up roots if we
5836 	 * don't have it in the radix (like when we recover after a power fail
5837 	 * or unmount) so we don't leak memory.
5838 	 */
5839 	if (!for_reloc && !root_dropped)
5840 		btrfs_add_dead_root(root);
5841 	return err;
5842 }
5843 
5844 /*
5845  * drop subtree rooted at tree block 'node'.
5846  *
5847  * NOTE: this function will unlock and release tree block 'node'
5848  * only used by relocation code
5849  */
5850 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5851 			struct btrfs_root *root,
5852 			struct extent_buffer *node,
5853 			struct extent_buffer *parent)
5854 {
5855 	struct btrfs_fs_info *fs_info = root->fs_info;
5856 	struct btrfs_path *path;
5857 	struct walk_control *wc;
5858 	int level;
5859 	int parent_level;
5860 	int ret = 0;
5861 	int wret;
5862 
5863 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5864 
5865 	path = btrfs_alloc_path();
5866 	if (!path)
5867 		return -ENOMEM;
5868 
5869 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5870 	if (!wc) {
5871 		btrfs_free_path(path);
5872 		return -ENOMEM;
5873 	}
5874 
5875 	btrfs_assert_tree_write_locked(parent);
5876 	parent_level = btrfs_header_level(parent);
5877 	atomic_inc(&parent->refs);
5878 	path->nodes[parent_level] = parent;
5879 	path->slots[parent_level] = btrfs_header_nritems(parent);
5880 
5881 	btrfs_assert_tree_write_locked(node);
5882 	level = btrfs_header_level(node);
5883 	path->nodes[level] = node;
5884 	path->slots[level] = 0;
5885 	path->locks[level] = BTRFS_WRITE_LOCK;
5886 
5887 	wc->refs[parent_level] = 1;
5888 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5889 	wc->level = level;
5890 	wc->shared_level = -1;
5891 	wc->stage = DROP_REFERENCE;
5892 	wc->update_ref = 0;
5893 	wc->keep_locks = 1;
5894 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5895 
5896 	while (1) {
5897 		wret = walk_down_tree(trans, root, path, wc);
5898 		if (wret < 0) {
5899 			ret = wret;
5900 			break;
5901 		}
5902 
5903 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5904 		if (wret < 0)
5905 			ret = wret;
5906 		if (wret != 0)
5907 			break;
5908 	}
5909 
5910 	kfree(wc);
5911 	btrfs_free_path(path);
5912 	return ret;
5913 }
5914 
5915 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5916 				   u64 start, u64 end)
5917 {
5918 	return unpin_extent_range(fs_info, start, end, false);
5919 }
5920 
5921 /*
5922  * It used to be that old block groups would be left around forever.
5923  * Iterating over them would be enough to trim unused space.  Since we
5924  * now automatically remove them, we also need to iterate over unallocated
5925  * space.
5926  *
5927  * We don't want a transaction for this since the discard may take a
5928  * substantial amount of time.  We don't require that a transaction be
5929  * running, but we do need to take a running transaction into account
5930  * to ensure that we're not discarding chunks that were released or
5931  * allocated in the current transaction.
5932  *
5933  * Holding the chunks lock will prevent other threads from allocating
5934  * or releasing chunks, but it won't prevent a running transaction
5935  * from committing and releasing the memory that the pending chunks
5936  * list head uses.  For that, we need to take a reference to the
5937  * transaction and hold the commit root sem.  We only need to hold
5938  * it while performing the free space search since we have already
5939  * held back allocations.
5940  */
5941 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5942 {
5943 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5944 	int ret;
5945 
5946 	*trimmed = 0;
5947 
5948 	/* Discard not supported = nothing to do. */
5949 	if (!bdev_max_discard_sectors(device->bdev))
5950 		return 0;
5951 
5952 	/* Not writable = nothing to do. */
5953 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5954 		return 0;
5955 
5956 	/* No free space = nothing to do. */
5957 	if (device->total_bytes <= device->bytes_used)
5958 		return 0;
5959 
5960 	ret = 0;
5961 
5962 	while (1) {
5963 		struct btrfs_fs_info *fs_info = device->fs_info;
5964 		u64 bytes;
5965 
5966 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5967 		if (ret)
5968 			break;
5969 
5970 		find_first_clear_extent_bit(&device->alloc_state, start,
5971 					    &start, &end,
5972 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5973 
5974 		/* Check if there are any CHUNK_* bits left */
5975 		if (start > device->total_bytes) {
5976 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5977 			btrfs_warn_in_rcu(fs_info,
5978 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5979 					  start, end - start + 1,
5980 					  btrfs_dev_name(device),
5981 					  device->total_bytes);
5982 			mutex_unlock(&fs_info->chunk_mutex);
5983 			ret = 0;
5984 			break;
5985 		}
5986 
5987 		/* Ensure we skip the reserved space on each device. */
5988 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
5989 
5990 		/*
5991 		 * If find_first_clear_extent_bit find a range that spans the
5992 		 * end of the device it will set end to -1, in this case it's up
5993 		 * to the caller to trim the value to the size of the device.
5994 		 */
5995 		end = min(end, device->total_bytes - 1);
5996 
5997 		len = end - start + 1;
5998 
5999 		/* We didn't find any extents */
6000 		if (!len) {
6001 			mutex_unlock(&fs_info->chunk_mutex);
6002 			ret = 0;
6003 			break;
6004 		}
6005 
6006 		ret = btrfs_issue_discard(device->bdev, start, len,
6007 					  &bytes);
6008 		if (!ret)
6009 			set_extent_bits(&device->alloc_state, start,
6010 					start + bytes - 1,
6011 					CHUNK_TRIMMED);
6012 		mutex_unlock(&fs_info->chunk_mutex);
6013 
6014 		if (ret)
6015 			break;
6016 
6017 		start += len;
6018 		*trimmed += bytes;
6019 
6020 		if (fatal_signal_pending(current)) {
6021 			ret = -ERESTARTSYS;
6022 			break;
6023 		}
6024 
6025 		cond_resched();
6026 	}
6027 
6028 	return ret;
6029 }
6030 
6031 /*
6032  * Trim the whole filesystem by:
6033  * 1) trimming the free space in each block group
6034  * 2) trimming the unallocated space on each device
6035  *
6036  * This will also continue trimming even if a block group or device encounters
6037  * an error.  The return value will be the last error, or 0 if nothing bad
6038  * happens.
6039  */
6040 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6041 {
6042 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6043 	struct btrfs_block_group *cache = NULL;
6044 	struct btrfs_device *device;
6045 	u64 group_trimmed;
6046 	u64 range_end = U64_MAX;
6047 	u64 start;
6048 	u64 end;
6049 	u64 trimmed = 0;
6050 	u64 bg_failed = 0;
6051 	u64 dev_failed = 0;
6052 	int bg_ret = 0;
6053 	int dev_ret = 0;
6054 	int ret = 0;
6055 
6056 	if (range->start == U64_MAX)
6057 		return -EINVAL;
6058 
6059 	/*
6060 	 * Check range overflow if range->len is set.
6061 	 * The default range->len is U64_MAX.
6062 	 */
6063 	if (range->len != U64_MAX &&
6064 	    check_add_overflow(range->start, range->len, &range_end))
6065 		return -EINVAL;
6066 
6067 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6068 	for (; cache; cache = btrfs_next_block_group(cache)) {
6069 		if (cache->start >= range_end) {
6070 			btrfs_put_block_group(cache);
6071 			break;
6072 		}
6073 
6074 		start = max(range->start, cache->start);
6075 		end = min(range_end, cache->start + cache->length);
6076 
6077 		if (end - start >= range->minlen) {
6078 			if (!btrfs_block_group_done(cache)) {
6079 				ret = btrfs_cache_block_group(cache, true);
6080 				if (ret) {
6081 					bg_failed++;
6082 					bg_ret = ret;
6083 					continue;
6084 				}
6085 			}
6086 			ret = btrfs_trim_block_group(cache,
6087 						     &group_trimmed,
6088 						     start,
6089 						     end,
6090 						     range->minlen);
6091 
6092 			trimmed += group_trimmed;
6093 			if (ret) {
6094 				bg_failed++;
6095 				bg_ret = ret;
6096 				continue;
6097 			}
6098 		}
6099 	}
6100 
6101 	if (bg_failed)
6102 		btrfs_warn(fs_info,
6103 			"failed to trim %llu block group(s), last error %d",
6104 			bg_failed, bg_ret);
6105 
6106 	mutex_lock(&fs_devices->device_list_mutex);
6107 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6108 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6109 			continue;
6110 
6111 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6112 		if (ret) {
6113 			dev_failed++;
6114 			dev_ret = ret;
6115 			break;
6116 		}
6117 
6118 		trimmed += group_trimmed;
6119 	}
6120 	mutex_unlock(&fs_devices->device_list_mutex);
6121 
6122 	if (dev_failed)
6123 		btrfs_warn(fs_info,
6124 			"failed to trim %llu device(s), last error %d",
6125 			dev_failed, dev_ret);
6126 	range->len = trimmed;
6127 	if (bg_ret)
6128 		return bg_ret;
6129 	return dev_ret;
6130 }
6131