xref: /linux/fs/btrfs/extent-tree.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35 
36 /* control flags for do_chunk_alloc's force field
37  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38  * if we really need one.
39  *
40  * CHUNK_ALLOC_FORCE means it must try to allocate one
41  *
42  * CHUNK_ALLOC_LIMITED means to only try and allocate one
43  * if we have very few chunks already allocated.  This is
44  * used as part of the clustering code to help make sure
45  * we have a good pool of storage to cluster in, without
46  * filling the FS with empty chunks
47  *
48  */
49 enum {
50 	CHUNK_ALLOC_NO_FORCE = 0,
51 	CHUNK_ALLOC_FORCE = 1,
52 	CHUNK_ALLOC_LIMITED = 2,
53 };
54 
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 			      struct btrfs_root *root,
57 			      u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 				struct btrfs_root *root,
60 				u64 bytenr, u64 num_bytes, u64 parent,
61 				u64 root_objectid, u64 owner_objectid,
62 				u64 owner_offset, int refs_to_drop,
63 				struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 				    struct extent_buffer *leaf,
66 				    struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 				      struct btrfs_root *root,
69 				      u64 parent, u64 root_objectid,
70 				      u64 flags, u64 owner, u64 offset,
71 				      struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 				     struct btrfs_root *root,
74 				     u64 parent, u64 root_objectid,
75 				     u64 flags, struct btrfs_disk_key *key,
76 				     int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 			  struct btrfs_root *extent_root, u64 alloc_bytes,
79 			  u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 			 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 			    int dump_block_groups);
84 
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 	smp_mb();
89 	return cache->cached == BTRFS_CACHE_FINISHED;
90 }
91 
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
93 {
94 	return (cache->flags & bits) == bits;
95 }
96 
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
98 {
99 	atomic_inc(&cache->count);
100 }
101 
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
103 {
104 	if (atomic_dec_and_test(&cache->count)) {
105 		WARN_ON(cache->pinned > 0);
106 		WARN_ON(cache->reserved > 0);
107 		WARN_ON(cache->reserved_pinned > 0);
108 		kfree(cache->free_space_ctl);
109 		kfree(cache);
110 	}
111 }
112 
113 /*
114  * this adds the block group to the fs_info rb tree for the block group
115  * cache
116  */
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 				struct btrfs_block_group_cache *block_group)
119 {
120 	struct rb_node **p;
121 	struct rb_node *parent = NULL;
122 	struct btrfs_block_group_cache *cache;
123 
124 	spin_lock(&info->block_group_cache_lock);
125 	p = &info->block_group_cache_tree.rb_node;
126 
127 	while (*p) {
128 		parent = *p;
129 		cache = rb_entry(parent, struct btrfs_block_group_cache,
130 				 cache_node);
131 		if (block_group->key.objectid < cache->key.objectid) {
132 			p = &(*p)->rb_left;
133 		} else if (block_group->key.objectid > cache->key.objectid) {
134 			p = &(*p)->rb_right;
135 		} else {
136 			spin_unlock(&info->block_group_cache_lock);
137 			return -EEXIST;
138 		}
139 	}
140 
141 	rb_link_node(&block_group->cache_node, parent, p);
142 	rb_insert_color(&block_group->cache_node,
143 			&info->block_group_cache_tree);
144 	spin_unlock(&info->block_group_cache_lock);
145 
146 	return 0;
147 }
148 
149 /*
150  * This will return the block group at or after bytenr if contains is 0, else
151  * it will return the block group that contains the bytenr
152  */
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 			      int contains)
156 {
157 	struct btrfs_block_group_cache *cache, *ret = NULL;
158 	struct rb_node *n;
159 	u64 end, start;
160 
161 	spin_lock(&info->block_group_cache_lock);
162 	n = info->block_group_cache_tree.rb_node;
163 
164 	while (n) {
165 		cache = rb_entry(n, struct btrfs_block_group_cache,
166 				 cache_node);
167 		end = cache->key.objectid + cache->key.offset - 1;
168 		start = cache->key.objectid;
169 
170 		if (bytenr < start) {
171 			if (!contains && (!ret || start < ret->key.objectid))
172 				ret = cache;
173 			n = n->rb_left;
174 		} else if (bytenr > start) {
175 			if (contains && bytenr <= end) {
176 				ret = cache;
177 				break;
178 			}
179 			n = n->rb_right;
180 		} else {
181 			ret = cache;
182 			break;
183 		}
184 	}
185 	if (ret)
186 		btrfs_get_block_group(ret);
187 	spin_unlock(&info->block_group_cache_lock);
188 
189 	return ret;
190 }
191 
192 static int add_excluded_extent(struct btrfs_root *root,
193 			       u64 start, u64 num_bytes)
194 {
195 	u64 end = start + num_bytes - 1;
196 	set_extent_bits(&root->fs_info->freed_extents[0],
197 			start, end, EXTENT_UPTODATE, GFP_NOFS);
198 	set_extent_bits(&root->fs_info->freed_extents[1],
199 			start, end, EXTENT_UPTODATE, GFP_NOFS);
200 	return 0;
201 }
202 
203 static void free_excluded_extents(struct btrfs_root *root,
204 				  struct btrfs_block_group_cache *cache)
205 {
206 	u64 start, end;
207 
208 	start = cache->key.objectid;
209 	end = start + cache->key.offset - 1;
210 
211 	clear_extent_bits(&root->fs_info->freed_extents[0],
212 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
213 	clear_extent_bits(&root->fs_info->freed_extents[1],
214 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
215 }
216 
217 static int exclude_super_stripes(struct btrfs_root *root,
218 				 struct btrfs_block_group_cache *cache)
219 {
220 	u64 bytenr;
221 	u64 *logical;
222 	int stripe_len;
223 	int i, nr, ret;
224 
225 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 		cache->bytes_super += stripe_len;
228 		ret = add_excluded_extent(root, cache->key.objectid,
229 					  stripe_len);
230 		BUG_ON(ret);
231 	}
232 
233 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 		bytenr = btrfs_sb_offset(i);
235 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 				       cache->key.objectid, bytenr,
237 				       0, &logical, &nr, &stripe_len);
238 		BUG_ON(ret);
239 
240 		while (nr--) {
241 			cache->bytes_super += stripe_len;
242 			ret = add_excluded_extent(root, logical[nr],
243 						  stripe_len);
244 			BUG_ON(ret);
245 		}
246 
247 		kfree(logical);
248 	}
249 	return 0;
250 }
251 
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
254 {
255 	struct btrfs_caching_control *ctl;
256 
257 	spin_lock(&cache->lock);
258 	if (cache->cached != BTRFS_CACHE_STARTED) {
259 		spin_unlock(&cache->lock);
260 		return NULL;
261 	}
262 
263 	/* We're loading it the fast way, so we don't have a caching_ctl. */
264 	if (!cache->caching_ctl) {
265 		spin_unlock(&cache->lock);
266 		return NULL;
267 	}
268 
269 	ctl = cache->caching_ctl;
270 	atomic_inc(&ctl->count);
271 	spin_unlock(&cache->lock);
272 	return ctl;
273 }
274 
275 static void put_caching_control(struct btrfs_caching_control *ctl)
276 {
277 	if (atomic_dec_and_test(&ctl->count))
278 		kfree(ctl);
279 }
280 
281 /*
282  * this is only called by cache_block_group, since we could have freed extents
283  * we need to check the pinned_extents for any extents that can't be used yet
284  * since their free space will be released as soon as the transaction commits.
285  */
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 			      struct btrfs_fs_info *info, u64 start, u64 end)
288 {
289 	u64 extent_start, extent_end, size, total_added = 0;
290 	int ret;
291 
292 	while (start < end) {
293 		ret = find_first_extent_bit(info->pinned_extents, start,
294 					    &extent_start, &extent_end,
295 					    EXTENT_DIRTY | EXTENT_UPTODATE);
296 		if (ret)
297 			break;
298 
299 		if (extent_start <= start) {
300 			start = extent_end + 1;
301 		} else if (extent_start > start && extent_start < end) {
302 			size = extent_start - start;
303 			total_added += size;
304 			ret = btrfs_add_free_space(block_group, start,
305 						   size);
306 			BUG_ON(ret);
307 			start = extent_end + 1;
308 		} else {
309 			break;
310 		}
311 	}
312 
313 	if (start < end) {
314 		size = end - start;
315 		total_added += size;
316 		ret = btrfs_add_free_space(block_group, start, size);
317 		BUG_ON(ret);
318 	}
319 
320 	return total_added;
321 }
322 
323 static noinline void caching_thread(struct btrfs_work *work)
324 {
325 	struct btrfs_block_group_cache *block_group;
326 	struct btrfs_fs_info *fs_info;
327 	struct btrfs_caching_control *caching_ctl;
328 	struct btrfs_root *extent_root;
329 	struct btrfs_path *path;
330 	struct extent_buffer *leaf;
331 	struct btrfs_key key;
332 	u64 total_found = 0;
333 	u64 last = 0;
334 	u32 nritems;
335 	int ret = 0;
336 
337 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
338 	block_group = caching_ctl->block_group;
339 	fs_info = block_group->fs_info;
340 	extent_root = fs_info->extent_root;
341 
342 	path = btrfs_alloc_path();
343 	if (!path)
344 		goto out;
345 
346 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
347 
348 	/*
349 	 * We don't want to deadlock with somebody trying to allocate a new
350 	 * extent for the extent root while also trying to search the extent
351 	 * root to add free space.  So we skip locking and search the commit
352 	 * root, since its read-only
353 	 */
354 	path->skip_locking = 1;
355 	path->search_commit_root = 1;
356 	path->reada = 1;
357 
358 	key.objectid = last;
359 	key.offset = 0;
360 	key.type = BTRFS_EXTENT_ITEM_KEY;
361 again:
362 	mutex_lock(&caching_ctl->mutex);
363 	/* need to make sure the commit_root doesn't disappear */
364 	down_read(&fs_info->extent_commit_sem);
365 
366 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
367 	if (ret < 0)
368 		goto err;
369 
370 	leaf = path->nodes[0];
371 	nritems = btrfs_header_nritems(leaf);
372 
373 	while (1) {
374 		if (btrfs_fs_closing(fs_info) > 1) {
375 			last = (u64)-1;
376 			break;
377 		}
378 
379 		if (path->slots[0] < nritems) {
380 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
381 		} else {
382 			ret = find_next_key(path, 0, &key);
383 			if (ret)
384 				break;
385 
386 			if (need_resched() ||
387 			    btrfs_next_leaf(extent_root, path)) {
388 				caching_ctl->progress = last;
389 				btrfs_release_path(path);
390 				up_read(&fs_info->extent_commit_sem);
391 				mutex_unlock(&caching_ctl->mutex);
392 				cond_resched();
393 				goto again;
394 			}
395 			leaf = path->nodes[0];
396 			nritems = btrfs_header_nritems(leaf);
397 			continue;
398 		}
399 
400 		if (key.objectid < block_group->key.objectid) {
401 			path->slots[0]++;
402 			continue;
403 		}
404 
405 		if (key.objectid >= block_group->key.objectid +
406 		    block_group->key.offset)
407 			break;
408 
409 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
410 			total_found += add_new_free_space(block_group,
411 							  fs_info, last,
412 							  key.objectid);
413 			last = key.objectid + key.offset;
414 
415 			if (total_found > (1024 * 1024 * 2)) {
416 				total_found = 0;
417 				wake_up(&caching_ctl->wait);
418 			}
419 		}
420 		path->slots[0]++;
421 	}
422 	ret = 0;
423 
424 	total_found += add_new_free_space(block_group, fs_info, last,
425 					  block_group->key.objectid +
426 					  block_group->key.offset);
427 	caching_ctl->progress = (u64)-1;
428 
429 	spin_lock(&block_group->lock);
430 	block_group->caching_ctl = NULL;
431 	block_group->cached = BTRFS_CACHE_FINISHED;
432 	spin_unlock(&block_group->lock);
433 
434 err:
435 	btrfs_free_path(path);
436 	up_read(&fs_info->extent_commit_sem);
437 
438 	free_excluded_extents(extent_root, block_group);
439 
440 	mutex_unlock(&caching_ctl->mutex);
441 out:
442 	wake_up(&caching_ctl->wait);
443 
444 	put_caching_control(caching_ctl);
445 	btrfs_put_block_group(block_group);
446 }
447 
448 static int cache_block_group(struct btrfs_block_group_cache *cache,
449 			     struct btrfs_trans_handle *trans,
450 			     struct btrfs_root *root,
451 			     int load_cache_only)
452 {
453 	struct btrfs_fs_info *fs_info = cache->fs_info;
454 	struct btrfs_caching_control *caching_ctl;
455 	int ret = 0;
456 
457 	smp_mb();
458 	if (cache->cached != BTRFS_CACHE_NO)
459 		return 0;
460 
461 	/*
462 	 * We can't do the read from on-disk cache during a commit since we need
463 	 * to have the normal tree locking.  Also if we are currently trying to
464 	 * allocate blocks for the tree root we can't do the fast caching since
465 	 * we likely hold important locks.
466 	 */
467 	if (trans && (!trans->transaction->in_commit) &&
468 	    (root && root != root->fs_info->tree_root)) {
469 		spin_lock(&cache->lock);
470 		if (cache->cached != BTRFS_CACHE_NO) {
471 			spin_unlock(&cache->lock);
472 			return 0;
473 		}
474 		cache->cached = BTRFS_CACHE_STARTED;
475 		spin_unlock(&cache->lock);
476 
477 		ret = load_free_space_cache(fs_info, cache);
478 
479 		spin_lock(&cache->lock);
480 		if (ret == 1) {
481 			cache->cached = BTRFS_CACHE_FINISHED;
482 			cache->last_byte_to_unpin = (u64)-1;
483 		} else {
484 			cache->cached = BTRFS_CACHE_NO;
485 		}
486 		spin_unlock(&cache->lock);
487 		if (ret == 1) {
488 			free_excluded_extents(fs_info->extent_root, cache);
489 			return 0;
490 		}
491 	}
492 
493 	if (load_cache_only)
494 		return 0;
495 
496 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
497 	BUG_ON(!caching_ctl);
498 
499 	INIT_LIST_HEAD(&caching_ctl->list);
500 	mutex_init(&caching_ctl->mutex);
501 	init_waitqueue_head(&caching_ctl->wait);
502 	caching_ctl->block_group = cache;
503 	caching_ctl->progress = cache->key.objectid;
504 	/* one for caching kthread, one for caching block group list */
505 	atomic_set(&caching_ctl->count, 2);
506 	caching_ctl->work.func = caching_thread;
507 
508 	spin_lock(&cache->lock);
509 	if (cache->cached != BTRFS_CACHE_NO) {
510 		spin_unlock(&cache->lock);
511 		kfree(caching_ctl);
512 		return 0;
513 	}
514 	cache->caching_ctl = caching_ctl;
515 	cache->cached = BTRFS_CACHE_STARTED;
516 	spin_unlock(&cache->lock);
517 
518 	down_write(&fs_info->extent_commit_sem);
519 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
520 	up_write(&fs_info->extent_commit_sem);
521 
522 	btrfs_get_block_group(cache);
523 
524 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
525 
526 	return ret;
527 }
528 
529 /*
530  * return the block group that starts at or after bytenr
531  */
532 static struct btrfs_block_group_cache *
533 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
534 {
535 	struct btrfs_block_group_cache *cache;
536 
537 	cache = block_group_cache_tree_search(info, bytenr, 0);
538 
539 	return cache;
540 }
541 
542 /*
543  * return the block group that contains the given bytenr
544  */
545 struct btrfs_block_group_cache *btrfs_lookup_block_group(
546 						 struct btrfs_fs_info *info,
547 						 u64 bytenr)
548 {
549 	struct btrfs_block_group_cache *cache;
550 
551 	cache = block_group_cache_tree_search(info, bytenr, 1);
552 
553 	return cache;
554 }
555 
556 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
557 						  u64 flags)
558 {
559 	struct list_head *head = &info->space_info;
560 	struct btrfs_space_info *found;
561 
562 	flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
563 		 BTRFS_BLOCK_GROUP_METADATA;
564 
565 	rcu_read_lock();
566 	list_for_each_entry_rcu(found, head, list) {
567 		if (found->flags & flags) {
568 			rcu_read_unlock();
569 			return found;
570 		}
571 	}
572 	rcu_read_unlock();
573 	return NULL;
574 }
575 
576 /*
577  * after adding space to the filesystem, we need to clear the full flags
578  * on all the space infos.
579  */
580 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
581 {
582 	struct list_head *head = &info->space_info;
583 	struct btrfs_space_info *found;
584 
585 	rcu_read_lock();
586 	list_for_each_entry_rcu(found, head, list)
587 		found->full = 0;
588 	rcu_read_unlock();
589 }
590 
591 static u64 div_factor(u64 num, int factor)
592 {
593 	if (factor == 10)
594 		return num;
595 	num *= factor;
596 	do_div(num, 10);
597 	return num;
598 }
599 
600 static u64 div_factor_fine(u64 num, int factor)
601 {
602 	if (factor == 100)
603 		return num;
604 	num *= factor;
605 	do_div(num, 100);
606 	return num;
607 }
608 
609 u64 btrfs_find_block_group(struct btrfs_root *root,
610 			   u64 search_start, u64 search_hint, int owner)
611 {
612 	struct btrfs_block_group_cache *cache;
613 	u64 used;
614 	u64 last = max(search_hint, search_start);
615 	u64 group_start = 0;
616 	int full_search = 0;
617 	int factor = 9;
618 	int wrapped = 0;
619 again:
620 	while (1) {
621 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
622 		if (!cache)
623 			break;
624 
625 		spin_lock(&cache->lock);
626 		last = cache->key.objectid + cache->key.offset;
627 		used = btrfs_block_group_used(&cache->item);
628 
629 		if ((full_search || !cache->ro) &&
630 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
631 			if (used + cache->pinned + cache->reserved <
632 			    div_factor(cache->key.offset, factor)) {
633 				group_start = cache->key.objectid;
634 				spin_unlock(&cache->lock);
635 				btrfs_put_block_group(cache);
636 				goto found;
637 			}
638 		}
639 		spin_unlock(&cache->lock);
640 		btrfs_put_block_group(cache);
641 		cond_resched();
642 	}
643 	if (!wrapped) {
644 		last = search_start;
645 		wrapped = 1;
646 		goto again;
647 	}
648 	if (!full_search && factor < 10) {
649 		last = search_start;
650 		full_search = 1;
651 		factor = 10;
652 		goto again;
653 	}
654 found:
655 	return group_start;
656 }
657 
658 /* simple helper to search for an existing extent at a given offset */
659 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
660 {
661 	int ret;
662 	struct btrfs_key key;
663 	struct btrfs_path *path;
664 
665 	path = btrfs_alloc_path();
666 	if (!path)
667 		return -ENOMEM;
668 
669 	key.objectid = start;
670 	key.offset = len;
671 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
672 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
673 				0, 0);
674 	btrfs_free_path(path);
675 	return ret;
676 }
677 
678 /*
679  * helper function to lookup reference count and flags of extent.
680  *
681  * the head node for delayed ref is used to store the sum of all the
682  * reference count modifications queued up in the rbtree. the head
683  * node may also store the extent flags to set. This way you can check
684  * to see what the reference count and extent flags would be if all of
685  * the delayed refs are not processed.
686  */
687 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
688 			     struct btrfs_root *root, u64 bytenr,
689 			     u64 num_bytes, u64 *refs, u64 *flags)
690 {
691 	struct btrfs_delayed_ref_head *head;
692 	struct btrfs_delayed_ref_root *delayed_refs;
693 	struct btrfs_path *path;
694 	struct btrfs_extent_item *ei;
695 	struct extent_buffer *leaf;
696 	struct btrfs_key key;
697 	u32 item_size;
698 	u64 num_refs;
699 	u64 extent_flags;
700 	int ret;
701 
702 	path = btrfs_alloc_path();
703 	if (!path)
704 		return -ENOMEM;
705 
706 	key.objectid = bytenr;
707 	key.type = BTRFS_EXTENT_ITEM_KEY;
708 	key.offset = num_bytes;
709 	if (!trans) {
710 		path->skip_locking = 1;
711 		path->search_commit_root = 1;
712 	}
713 again:
714 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
715 				&key, path, 0, 0);
716 	if (ret < 0)
717 		goto out_free;
718 
719 	if (ret == 0) {
720 		leaf = path->nodes[0];
721 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
722 		if (item_size >= sizeof(*ei)) {
723 			ei = btrfs_item_ptr(leaf, path->slots[0],
724 					    struct btrfs_extent_item);
725 			num_refs = btrfs_extent_refs(leaf, ei);
726 			extent_flags = btrfs_extent_flags(leaf, ei);
727 		} else {
728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
729 			struct btrfs_extent_item_v0 *ei0;
730 			BUG_ON(item_size != sizeof(*ei0));
731 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
732 					     struct btrfs_extent_item_v0);
733 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
734 			/* FIXME: this isn't correct for data */
735 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
736 #else
737 			BUG();
738 #endif
739 		}
740 		BUG_ON(num_refs == 0);
741 	} else {
742 		num_refs = 0;
743 		extent_flags = 0;
744 		ret = 0;
745 	}
746 
747 	if (!trans)
748 		goto out;
749 
750 	delayed_refs = &trans->transaction->delayed_refs;
751 	spin_lock(&delayed_refs->lock);
752 	head = btrfs_find_delayed_ref_head(trans, bytenr);
753 	if (head) {
754 		if (!mutex_trylock(&head->mutex)) {
755 			atomic_inc(&head->node.refs);
756 			spin_unlock(&delayed_refs->lock);
757 
758 			btrfs_release_path(path);
759 
760 			/*
761 			 * Mutex was contended, block until it's released and try
762 			 * again
763 			 */
764 			mutex_lock(&head->mutex);
765 			mutex_unlock(&head->mutex);
766 			btrfs_put_delayed_ref(&head->node);
767 			goto again;
768 		}
769 		if (head->extent_op && head->extent_op->update_flags)
770 			extent_flags |= head->extent_op->flags_to_set;
771 		else
772 			BUG_ON(num_refs == 0);
773 
774 		num_refs += head->node.ref_mod;
775 		mutex_unlock(&head->mutex);
776 	}
777 	spin_unlock(&delayed_refs->lock);
778 out:
779 	WARN_ON(num_refs == 0);
780 	if (refs)
781 		*refs = num_refs;
782 	if (flags)
783 		*flags = extent_flags;
784 out_free:
785 	btrfs_free_path(path);
786 	return ret;
787 }
788 
789 /*
790  * Back reference rules.  Back refs have three main goals:
791  *
792  * 1) differentiate between all holders of references to an extent so that
793  *    when a reference is dropped we can make sure it was a valid reference
794  *    before freeing the extent.
795  *
796  * 2) Provide enough information to quickly find the holders of an extent
797  *    if we notice a given block is corrupted or bad.
798  *
799  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
800  *    maintenance.  This is actually the same as #2, but with a slightly
801  *    different use case.
802  *
803  * There are two kinds of back refs. The implicit back refs is optimized
804  * for pointers in non-shared tree blocks. For a given pointer in a block,
805  * back refs of this kind provide information about the block's owner tree
806  * and the pointer's key. These information allow us to find the block by
807  * b-tree searching. The full back refs is for pointers in tree blocks not
808  * referenced by their owner trees. The location of tree block is recorded
809  * in the back refs. Actually the full back refs is generic, and can be
810  * used in all cases the implicit back refs is used. The major shortcoming
811  * of the full back refs is its overhead. Every time a tree block gets
812  * COWed, we have to update back refs entry for all pointers in it.
813  *
814  * For a newly allocated tree block, we use implicit back refs for
815  * pointers in it. This means most tree related operations only involve
816  * implicit back refs. For a tree block created in old transaction, the
817  * only way to drop a reference to it is COW it. So we can detect the
818  * event that tree block loses its owner tree's reference and do the
819  * back refs conversion.
820  *
821  * When a tree block is COW'd through a tree, there are four cases:
822  *
823  * The reference count of the block is one and the tree is the block's
824  * owner tree. Nothing to do in this case.
825  *
826  * The reference count of the block is one and the tree is not the
827  * block's owner tree. In this case, full back refs is used for pointers
828  * in the block. Remove these full back refs, add implicit back refs for
829  * every pointers in the new block.
830  *
831  * The reference count of the block is greater than one and the tree is
832  * the block's owner tree. In this case, implicit back refs is used for
833  * pointers in the block. Add full back refs for every pointers in the
834  * block, increase lower level extents' reference counts. The original
835  * implicit back refs are entailed to the new block.
836  *
837  * The reference count of the block is greater than one and the tree is
838  * not the block's owner tree. Add implicit back refs for every pointer in
839  * the new block, increase lower level extents' reference count.
840  *
841  * Back Reference Key composing:
842  *
843  * The key objectid corresponds to the first byte in the extent,
844  * The key type is used to differentiate between types of back refs.
845  * There are different meanings of the key offset for different types
846  * of back refs.
847  *
848  * File extents can be referenced by:
849  *
850  * - multiple snapshots, subvolumes, or different generations in one subvol
851  * - different files inside a single subvolume
852  * - different offsets inside a file (bookend extents in file.c)
853  *
854  * The extent ref structure for the implicit back refs has fields for:
855  *
856  * - Objectid of the subvolume root
857  * - objectid of the file holding the reference
858  * - original offset in the file
859  * - how many bookend extents
860  *
861  * The key offset for the implicit back refs is hash of the first
862  * three fields.
863  *
864  * The extent ref structure for the full back refs has field for:
865  *
866  * - number of pointers in the tree leaf
867  *
868  * The key offset for the implicit back refs is the first byte of
869  * the tree leaf
870  *
871  * When a file extent is allocated, The implicit back refs is used.
872  * the fields are filled in:
873  *
874  *     (root_key.objectid, inode objectid, offset in file, 1)
875  *
876  * When a file extent is removed file truncation, we find the
877  * corresponding implicit back refs and check the following fields:
878  *
879  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
880  *
881  * Btree extents can be referenced by:
882  *
883  * - Different subvolumes
884  *
885  * Both the implicit back refs and the full back refs for tree blocks
886  * only consist of key. The key offset for the implicit back refs is
887  * objectid of block's owner tree. The key offset for the full back refs
888  * is the first byte of parent block.
889  *
890  * When implicit back refs is used, information about the lowest key and
891  * level of the tree block are required. These information are stored in
892  * tree block info structure.
893  */
894 
895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
896 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
897 				  struct btrfs_root *root,
898 				  struct btrfs_path *path,
899 				  u64 owner, u32 extra_size)
900 {
901 	struct btrfs_extent_item *item;
902 	struct btrfs_extent_item_v0 *ei0;
903 	struct btrfs_extent_ref_v0 *ref0;
904 	struct btrfs_tree_block_info *bi;
905 	struct extent_buffer *leaf;
906 	struct btrfs_key key;
907 	struct btrfs_key found_key;
908 	u32 new_size = sizeof(*item);
909 	u64 refs;
910 	int ret;
911 
912 	leaf = path->nodes[0];
913 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
914 
915 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
916 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
917 			     struct btrfs_extent_item_v0);
918 	refs = btrfs_extent_refs_v0(leaf, ei0);
919 
920 	if (owner == (u64)-1) {
921 		while (1) {
922 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
923 				ret = btrfs_next_leaf(root, path);
924 				if (ret < 0)
925 					return ret;
926 				BUG_ON(ret > 0);
927 				leaf = path->nodes[0];
928 			}
929 			btrfs_item_key_to_cpu(leaf, &found_key,
930 					      path->slots[0]);
931 			BUG_ON(key.objectid != found_key.objectid);
932 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
933 				path->slots[0]++;
934 				continue;
935 			}
936 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
937 					      struct btrfs_extent_ref_v0);
938 			owner = btrfs_ref_objectid_v0(leaf, ref0);
939 			break;
940 		}
941 	}
942 	btrfs_release_path(path);
943 
944 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
945 		new_size += sizeof(*bi);
946 
947 	new_size -= sizeof(*ei0);
948 	ret = btrfs_search_slot(trans, root, &key, path,
949 				new_size + extra_size, 1);
950 	if (ret < 0)
951 		return ret;
952 	BUG_ON(ret);
953 
954 	ret = btrfs_extend_item(trans, root, path, new_size);
955 
956 	leaf = path->nodes[0];
957 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
958 	btrfs_set_extent_refs(leaf, item, refs);
959 	/* FIXME: get real generation */
960 	btrfs_set_extent_generation(leaf, item, 0);
961 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
962 		btrfs_set_extent_flags(leaf, item,
963 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
964 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
965 		bi = (struct btrfs_tree_block_info *)(item + 1);
966 		/* FIXME: get first key of the block */
967 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
968 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
969 	} else {
970 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
971 	}
972 	btrfs_mark_buffer_dirty(leaf);
973 	return 0;
974 }
975 #endif
976 
977 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
978 {
979 	u32 high_crc = ~(u32)0;
980 	u32 low_crc = ~(u32)0;
981 	__le64 lenum;
982 
983 	lenum = cpu_to_le64(root_objectid);
984 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
985 	lenum = cpu_to_le64(owner);
986 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
987 	lenum = cpu_to_le64(offset);
988 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989 
990 	return ((u64)high_crc << 31) ^ (u64)low_crc;
991 }
992 
993 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
994 				     struct btrfs_extent_data_ref *ref)
995 {
996 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
997 				    btrfs_extent_data_ref_objectid(leaf, ref),
998 				    btrfs_extent_data_ref_offset(leaf, ref));
999 }
1000 
1001 static int match_extent_data_ref(struct extent_buffer *leaf,
1002 				 struct btrfs_extent_data_ref *ref,
1003 				 u64 root_objectid, u64 owner, u64 offset)
1004 {
1005 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1006 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1007 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1008 		return 0;
1009 	return 1;
1010 }
1011 
1012 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1013 					   struct btrfs_root *root,
1014 					   struct btrfs_path *path,
1015 					   u64 bytenr, u64 parent,
1016 					   u64 root_objectid,
1017 					   u64 owner, u64 offset)
1018 {
1019 	struct btrfs_key key;
1020 	struct btrfs_extent_data_ref *ref;
1021 	struct extent_buffer *leaf;
1022 	u32 nritems;
1023 	int ret;
1024 	int recow;
1025 	int err = -ENOENT;
1026 
1027 	key.objectid = bytenr;
1028 	if (parent) {
1029 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1030 		key.offset = parent;
1031 	} else {
1032 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1033 		key.offset = hash_extent_data_ref(root_objectid,
1034 						  owner, offset);
1035 	}
1036 again:
1037 	recow = 0;
1038 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039 	if (ret < 0) {
1040 		err = ret;
1041 		goto fail;
1042 	}
1043 
1044 	if (parent) {
1045 		if (!ret)
1046 			return 0;
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1049 		btrfs_release_path(path);
1050 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 		if (ret < 0) {
1052 			err = ret;
1053 			goto fail;
1054 		}
1055 		if (!ret)
1056 			return 0;
1057 #endif
1058 		goto fail;
1059 	}
1060 
1061 	leaf = path->nodes[0];
1062 	nritems = btrfs_header_nritems(leaf);
1063 	while (1) {
1064 		if (path->slots[0] >= nritems) {
1065 			ret = btrfs_next_leaf(root, path);
1066 			if (ret < 0)
1067 				err = ret;
1068 			if (ret)
1069 				goto fail;
1070 
1071 			leaf = path->nodes[0];
1072 			nritems = btrfs_header_nritems(leaf);
1073 			recow = 1;
1074 		}
1075 
1076 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1077 		if (key.objectid != bytenr ||
1078 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1079 			goto fail;
1080 
1081 		ref = btrfs_item_ptr(leaf, path->slots[0],
1082 				     struct btrfs_extent_data_ref);
1083 
1084 		if (match_extent_data_ref(leaf, ref, root_objectid,
1085 					  owner, offset)) {
1086 			if (recow) {
1087 				btrfs_release_path(path);
1088 				goto again;
1089 			}
1090 			err = 0;
1091 			break;
1092 		}
1093 		path->slots[0]++;
1094 	}
1095 fail:
1096 	return err;
1097 }
1098 
1099 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1100 					   struct btrfs_root *root,
1101 					   struct btrfs_path *path,
1102 					   u64 bytenr, u64 parent,
1103 					   u64 root_objectid, u64 owner,
1104 					   u64 offset, int refs_to_add)
1105 {
1106 	struct btrfs_key key;
1107 	struct extent_buffer *leaf;
1108 	u32 size;
1109 	u32 num_refs;
1110 	int ret;
1111 
1112 	key.objectid = bytenr;
1113 	if (parent) {
1114 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1115 		key.offset = parent;
1116 		size = sizeof(struct btrfs_shared_data_ref);
1117 	} else {
1118 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1119 		key.offset = hash_extent_data_ref(root_objectid,
1120 						  owner, offset);
1121 		size = sizeof(struct btrfs_extent_data_ref);
1122 	}
1123 
1124 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1125 	if (ret && ret != -EEXIST)
1126 		goto fail;
1127 
1128 	leaf = path->nodes[0];
1129 	if (parent) {
1130 		struct btrfs_shared_data_ref *ref;
1131 		ref = btrfs_item_ptr(leaf, path->slots[0],
1132 				     struct btrfs_shared_data_ref);
1133 		if (ret == 0) {
1134 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1135 		} else {
1136 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1137 			num_refs += refs_to_add;
1138 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1139 		}
1140 	} else {
1141 		struct btrfs_extent_data_ref *ref;
1142 		while (ret == -EEXIST) {
1143 			ref = btrfs_item_ptr(leaf, path->slots[0],
1144 					     struct btrfs_extent_data_ref);
1145 			if (match_extent_data_ref(leaf, ref, root_objectid,
1146 						  owner, offset))
1147 				break;
1148 			btrfs_release_path(path);
1149 			key.offset++;
1150 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1151 						      size);
1152 			if (ret && ret != -EEXIST)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 		}
1157 		ref = btrfs_item_ptr(leaf, path->slots[0],
1158 				     struct btrfs_extent_data_ref);
1159 		if (ret == 0) {
1160 			btrfs_set_extent_data_ref_root(leaf, ref,
1161 						       root_objectid);
1162 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1163 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1164 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1165 		} else {
1166 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1167 			num_refs += refs_to_add;
1168 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1169 		}
1170 	}
1171 	btrfs_mark_buffer_dirty(leaf);
1172 	ret = 0;
1173 fail:
1174 	btrfs_release_path(path);
1175 	return ret;
1176 }
1177 
1178 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1179 					   struct btrfs_root *root,
1180 					   struct btrfs_path *path,
1181 					   int refs_to_drop)
1182 {
1183 	struct btrfs_key key;
1184 	struct btrfs_extent_data_ref *ref1 = NULL;
1185 	struct btrfs_shared_data_ref *ref2 = NULL;
1186 	struct extent_buffer *leaf;
1187 	u32 num_refs = 0;
1188 	int ret = 0;
1189 
1190 	leaf = path->nodes[0];
1191 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1192 
1193 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1194 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1195 				      struct btrfs_extent_data_ref);
1196 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1197 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1198 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1199 				      struct btrfs_shared_data_ref);
1200 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1203 		struct btrfs_extent_ref_v0 *ref0;
1204 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1205 				      struct btrfs_extent_ref_v0);
1206 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1207 #endif
1208 	} else {
1209 		BUG();
1210 	}
1211 
1212 	BUG_ON(num_refs < refs_to_drop);
1213 	num_refs -= refs_to_drop;
1214 
1215 	if (num_refs == 0) {
1216 		ret = btrfs_del_item(trans, root, path);
1217 	} else {
1218 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1219 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1220 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1221 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 		else {
1224 			struct btrfs_extent_ref_v0 *ref0;
1225 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1226 					struct btrfs_extent_ref_v0);
1227 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1228 		}
1229 #endif
1230 		btrfs_mark_buffer_dirty(leaf);
1231 	}
1232 	return ret;
1233 }
1234 
1235 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1236 					  struct btrfs_path *path,
1237 					  struct btrfs_extent_inline_ref *iref)
1238 {
1239 	struct btrfs_key key;
1240 	struct extent_buffer *leaf;
1241 	struct btrfs_extent_data_ref *ref1;
1242 	struct btrfs_shared_data_ref *ref2;
1243 	u32 num_refs = 0;
1244 
1245 	leaf = path->nodes[0];
1246 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1247 	if (iref) {
1248 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1249 		    BTRFS_EXTENT_DATA_REF_KEY) {
1250 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1251 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1252 		} else {
1253 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1254 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1255 		}
1256 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1257 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1258 				      struct btrfs_extent_data_ref);
1259 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1260 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1261 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1262 				      struct btrfs_shared_data_ref);
1263 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1266 		struct btrfs_extent_ref_v0 *ref0;
1267 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1268 				      struct btrfs_extent_ref_v0);
1269 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1270 #endif
1271 	} else {
1272 		WARN_ON(1);
1273 	}
1274 	return num_refs;
1275 }
1276 
1277 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1278 					  struct btrfs_root *root,
1279 					  struct btrfs_path *path,
1280 					  u64 bytenr, u64 parent,
1281 					  u64 root_objectid)
1282 {
1283 	struct btrfs_key key;
1284 	int ret;
1285 
1286 	key.objectid = bytenr;
1287 	if (parent) {
1288 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1289 		key.offset = parent;
1290 	} else {
1291 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1292 		key.offset = root_objectid;
1293 	}
1294 
1295 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1296 	if (ret > 0)
1297 		ret = -ENOENT;
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 	if (ret == -ENOENT && parent) {
1300 		btrfs_release_path(path);
1301 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1302 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1303 		if (ret > 0)
1304 			ret = -ENOENT;
1305 	}
1306 #endif
1307 	return ret;
1308 }
1309 
1310 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1311 					  struct btrfs_root *root,
1312 					  struct btrfs_path *path,
1313 					  u64 bytenr, u64 parent,
1314 					  u64 root_objectid)
1315 {
1316 	struct btrfs_key key;
1317 	int ret;
1318 
1319 	key.objectid = bytenr;
1320 	if (parent) {
1321 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1322 		key.offset = parent;
1323 	} else {
1324 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1325 		key.offset = root_objectid;
1326 	}
1327 
1328 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1329 	btrfs_release_path(path);
1330 	return ret;
1331 }
1332 
1333 static inline int extent_ref_type(u64 parent, u64 owner)
1334 {
1335 	int type;
1336 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1337 		if (parent > 0)
1338 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1339 		else
1340 			type = BTRFS_TREE_BLOCK_REF_KEY;
1341 	} else {
1342 		if (parent > 0)
1343 			type = BTRFS_SHARED_DATA_REF_KEY;
1344 		else
1345 			type = BTRFS_EXTENT_DATA_REF_KEY;
1346 	}
1347 	return type;
1348 }
1349 
1350 static int find_next_key(struct btrfs_path *path, int level,
1351 			 struct btrfs_key *key)
1352 
1353 {
1354 	for (; level < BTRFS_MAX_LEVEL; level++) {
1355 		if (!path->nodes[level])
1356 			break;
1357 		if (path->slots[level] + 1 >=
1358 		    btrfs_header_nritems(path->nodes[level]))
1359 			continue;
1360 		if (level == 0)
1361 			btrfs_item_key_to_cpu(path->nodes[level], key,
1362 					      path->slots[level] + 1);
1363 		else
1364 			btrfs_node_key_to_cpu(path->nodes[level], key,
1365 					      path->slots[level] + 1);
1366 		return 0;
1367 	}
1368 	return 1;
1369 }
1370 
1371 /*
1372  * look for inline back ref. if back ref is found, *ref_ret is set
1373  * to the address of inline back ref, and 0 is returned.
1374  *
1375  * if back ref isn't found, *ref_ret is set to the address where it
1376  * should be inserted, and -ENOENT is returned.
1377  *
1378  * if insert is true and there are too many inline back refs, the path
1379  * points to the extent item, and -EAGAIN is returned.
1380  *
1381  * NOTE: inline back refs are ordered in the same way that back ref
1382  *	 items in the tree are ordered.
1383  */
1384 static noinline_for_stack
1385 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1386 				 struct btrfs_root *root,
1387 				 struct btrfs_path *path,
1388 				 struct btrfs_extent_inline_ref **ref_ret,
1389 				 u64 bytenr, u64 num_bytes,
1390 				 u64 parent, u64 root_objectid,
1391 				 u64 owner, u64 offset, int insert)
1392 {
1393 	struct btrfs_key key;
1394 	struct extent_buffer *leaf;
1395 	struct btrfs_extent_item *ei;
1396 	struct btrfs_extent_inline_ref *iref;
1397 	u64 flags;
1398 	u64 item_size;
1399 	unsigned long ptr;
1400 	unsigned long end;
1401 	int extra_size;
1402 	int type;
1403 	int want;
1404 	int ret;
1405 	int err = 0;
1406 
1407 	key.objectid = bytenr;
1408 	key.type = BTRFS_EXTENT_ITEM_KEY;
1409 	key.offset = num_bytes;
1410 
1411 	want = extent_ref_type(parent, owner);
1412 	if (insert) {
1413 		extra_size = btrfs_extent_inline_ref_size(want);
1414 		path->keep_locks = 1;
1415 	} else
1416 		extra_size = -1;
1417 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1418 	if (ret < 0) {
1419 		err = ret;
1420 		goto out;
1421 	}
1422 	BUG_ON(ret);
1423 
1424 	leaf = path->nodes[0];
1425 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 	if (item_size < sizeof(*ei)) {
1428 		if (!insert) {
1429 			err = -ENOENT;
1430 			goto out;
1431 		}
1432 		ret = convert_extent_item_v0(trans, root, path, owner,
1433 					     extra_size);
1434 		if (ret < 0) {
1435 			err = ret;
1436 			goto out;
1437 		}
1438 		leaf = path->nodes[0];
1439 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1440 	}
1441 #endif
1442 	BUG_ON(item_size < sizeof(*ei));
1443 
1444 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1445 	flags = btrfs_extent_flags(leaf, ei);
1446 
1447 	ptr = (unsigned long)(ei + 1);
1448 	end = (unsigned long)ei + item_size;
1449 
1450 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1451 		ptr += sizeof(struct btrfs_tree_block_info);
1452 		BUG_ON(ptr > end);
1453 	} else {
1454 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1455 	}
1456 
1457 	err = -ENOENT;
1458 	while (1) {
1459 		if (ptr >= end) {
1460 			WARN_ON(ptr > end);
1461 			break;
1462 		}
1463 		iref = (struct btrfs_extent_inline_ref *)ptr;
1464 		type = btrfs_extent_inline_ref_type(leaf, iref);
1465 		if (want < type)
1466 			break;
1467 		if (want > type) {
1468 			ptr += btrfs_extent_inline_ref_size(type);
1469 			continue;
1470 		}
1471 
1472 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 			struct btrfs_extent_data_ref *dref;
1474 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1475 			if (match_extent_data_ref(leaf, dref, root_objectid,
1476 						  owner, offset)) {
1477 				err = 0;
1478 				break;
1479 			}
1480 			if (hash_extent_data_ref_item(leaf, dref) <
1481 			    hash_extent_data_ref(root_objectid, owner, offset))
1482 				break;
1483 		} else {
1484 			u64 ref_offset;
1485 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1486 			if (parent > 0) {
1487 				if (parent == ref_offset) {
1488 					err = 0;
1489 					break;
1490 				}
1491 				if (ref_offset < parent)
1492 					break;
1493 			} else {
1494 				if (root_objectid == ref_offset) {
1495 					err = 0;
1496 					break;
1497 				}
1498 				if (ref_offset < root_objectid)
1499 					break;
1500 			}
1501 		}
1502 		ptr += btrfs_extent_inline_ref_size(type);
1503 	}
1504 	if (err == -ENOENT && insert) {
1505 		if (item_size + extra_size >=
1506 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1507 			err = -EAGAIN;
1508 			goto out;
1509 		}
1510 		/*
1511 		 * To add new inline back ref, we have to make sure
1512 		 * there is no corresponding back ref item.
1513 		 * For simplicity, we just do not add new inline back
1514 		 * ref if there is any kind of item for this block
1515 		 */
1516 		if (find_next_key(path, 0, &key) == 0 &&
1517 		    key.objectid == bytenr &&
1518 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1519 			err = -EAGAIN;
1520 			goto out;
1521 		}
1522 	}
1523 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1524 out:
1525 	if (insert) {
1526 		path->keep_locks = 0;
1527 		btrfs_unlock_up_safe(path, 1);
1528 	}
1529 	return err;
1530 }
1531 
1532 /*
1533  * helper to add new inline back ref
1534  */
1535 static noinline_for_stack
1536 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1537 				struct btrfs_root *root,
1538 				struct btrfs_path *path,
1539 				struct btrfs_extent_inline_ref *iref,
1540 				u64 parent, u64 root_objectid,
1541 				u64 owner, u64 offset, int refs_to_add,
1542 				struct btrfs_delayed_extent_op *extent_op)
1543 {
1544 	struct extent_buffer *leaf;
1545 	struct btrfs_extent_item *ei;
1546 	unsigned long ptr;
1547 	unsigned long end;
1548 	unsigned long item_offset;
1549 	u64 refs;
1550 	int size;
1551 	int type;
1552 	int ret;
1553 
1554 	leaf = path->nodes[0];
1555 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1556 	item_offset = (unsigned long)iref - (unsigned long)ei;
1557 
1558 	type = extent_ref_type(parent, owner);
1559 	size = btrfs_extent_inline_ref_size(type);
1560 
1561 	ret = btrfs_extend_item(trans, root, path, size);
1562 
1563 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1564 	refs = btrfs_extent_refs(leaf, ei);
1565 	refs += refs_to_add;
1566 	btrfs_set_extent_refs(leaf, ei, refs);
1567 	if (extent_op)
1568 		__run_delayed_extent_op(extent_op, leaf, ei);
1569 
1570 	ptr = (unsigned long)ei + item_offset;
1571 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1572 	if (ptr < end - size)
1573 		memmove_extent_buffer(leaf, ptr + size, ptr,
1574 				      end - size - ptr);
1575 
1576 	iref = (struct btrfs_extent_inline_ref *)ptr;
1577 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1578 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1579 		struct btrfs_extent_data_ref *dref;
1580 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1581 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1582 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1583 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1584 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1585 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1586 		struct btrfs_shared_data_ref *sref;
1587 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1588 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1589 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1590 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1591 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592 	} else {
1593 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1594 	}
1595 	btrfs_mark_buffer_dirty(leaf);
1596 	return 0;
1597 }
1598 
1599 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1600 				 struct btrfs_root *root,
1601 				 struct btrfs_path *path,
1602 				 struct btrfs_extent_inline_ref **ref_ret,
1603 				 u64 bytenr, u64 num_bytes, u64 parent,
1604 				 u64 root_objectid, u64 owner, u64 offset)
1605 {
1606 	int ret;
1607 
1608 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1609 					   bytenr, num_bytes, parent,
1610 					   root_objectid, owner, offset, 0);
1611 	if (ret != -ENOENT)
1612 		return ret;
1613 
1614 	btrfs_release_path(path);
1615 	*ref_ret = NULL;
1616 
1617 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1618 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1619 					    root_objectid);
1620 	} else {
1621 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1622 					     root_objectid, owner, offset);
1623 	}
1624 	return ret;
1625 }
1626 
1627 /*
1628  * helper to update/remove inline back ref
1629  */
1630 static noinline_for_stack
1631 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1632 				 struct btrfs_root *root,
1633 				 struct btrfs_path *path,
1634 				 struct btrfs_extent_inline_ref *iref,
1635 				 int refs_to_mod,
1636 				 struct btrfs_delayed_extent_op *extent_op)
1637 {
1638 	struct extent_buffer *leaf;
1639 	struct btrfs_extent_item *ei;
1640 	struct btrfs_extent_data_ref *dref = NULL;
1641 	struct btrfs_shared_data_ref *sref = NULL;
1642 	unsigned long ptr;
1643 	unsigned long end;
1644 	u32 item_size;
1645 	int size;
1646 	int type;
1647 	int ret;
1648 	u64 refs;
1649 
1650 	leaf = path->nodes[0];
1651 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1652 	refs = btrfs_extent_refs(leaf, ei);
1653 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1654 	refs += refs_to_mod;
1655 	btrfs_set_extent_refs(leaf, ei, refs);
1656 	if (extent_op)
1657 		__run_delayed_extent_op(extent_op, leaf, ei);
1658 
1659 	type = btrfs_extent_inline_ref_type(leaf, iref);
1660 
1661 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 		refs = btrfs_extent_data_ref_count(leaf, dref);
1664 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1665 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1666 		refs = btrfs_shared_data_ref_count(leaf, sref);
1667 	} else {
1668 		refs = 1;
1669 		BUG_ON(refs_to_mod != -1);
1670 	}
1671 
1672 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1673 	refs += refs_to_mod;
1674 
1675 	if (refs > 0) {
1676 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1677 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1678 		else
1679 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1680 	} else {
1681 		size =  btrfs_extent_inline_ref_size(type);
1682 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1683 		ptr = (unsigned long)iref;
1684 		end = (unsigned long)ei + item_size;
1685 		if (ptr + size < end)
1686 			memmove_extent_buffer(leaf, ptr, ptr + size,
1687 					      end - ptr - size);
1688 		item_size -= size;
1689 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1690 	}
1691 	btrfs_mark_buffer_dirty(leaf);
1692 	return 0;
1693 }
1694 
1695 static noinline_for_stack
1696 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1697 				 struct btrfs_root *root,
1698 				 struct btrfs_path *path,
1699 				 u64 bytenr, u64 num_bytes, u64 parent,
1700 				 u64 root_objectid, u64 owner,
1701 				 u64 offset, int refs_to_add,
1702 				 struct btrfs_delayed_extent_op *extent_op)
1703 {
1704 	struct btrfs_extent_inline_ref *iref;
1705 	int ret;
1706 
1707 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1708 					   bytenr, num_bytes, parent,
1709 					   root_objectid, owner, offset, 1);
1710 	if (ret == 0) {
1711 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1712 		ret = update_inline_extent_backref(trans, root, path, iref,
1713 						   refs_to_add, extent_op);
1714 	} else if (ret == -ENOENT) {
1715 		ret = setup_inline_extent_backref(trans, root, path, iref,
1716 						  parent, root_objectid,
1717 						  owner, offset, refs_to_add,
1718 						  extent_op);
1719 	}
1720 	return ret;
1721 }
1722 
1723 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 u64 bytenr, u64 parent, u64 root_objectid,
1727 				 u64 owner, u64 offset, int refs_to_add)
1728 {
1729 	int ret;
1730 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1731 		BUG_ON(refs_to_add != 1);
1732 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1733 					    parent, root_objectid);
1734 	} else {
1735 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1736 					     parent, root_objectid,
1737 					     owner, offset, refs_to_add);
1738 	}
1739 	return ret;
1740 }
1741 
1742 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1743 				 struct btrfs_root *root,
1744 				 struct btrfs_path *path,
1745 				 struct btrfs_extent_inline_ref *iref,
1746 				 int refs_to_drop, int is_data)
1747 {
1748 	int ret;
1749 
1750 	BUG_ON(!is_data && refs_to_drop != 1);
1751 	if (iref) {
1752 		ret = update_inline_extent_backref(trans, root, path, iref,
1753 						   -refs_to_drop, NULL);
1754 	} else if (is_data) {
1755 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1756 	} else {
1757 		ret = btrfs_del_item(trans, root, path);
1758 	}
1759 	return ret;
1760 }
1761 
1762 static int btrfs_issue_discard(struct block_device *bdev,
1763 				u64 start, u64 len)
1764 {
1765 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1766 }
1767 
1768 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1769 				u64 num_bytes, u64 *actual_bytes)
1770 {
1771 	int ret;
1772 	u64 discarded_bytes = 0;
1773 	struct btrfs_multi_bio *multi = NULL;
1774 
1775 
1776 	/* Tell the block device(s) that the sectors can be discarded */
1777 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1778 			      bytenr, &num_bytes, &multi, 0);
1779 	if (!ret) {
1780 		struct btrfs_bio_stripe *stripe = multi->stripes;
1781 		int i;
1782 
1783 
1784 		for (i = 0; i < multi->num_stripes; i++, stripe++) {
1785 			if (!stripe->dev->can_discard)
1786 				continue;
1787 
1788 			ret = btrfs_issue_discard(stripe->dev->bdev,
1789 						  stripe->physical,
1790 						  stripe->length);
1791 			if (!ret)
1792 				discarded_bytes += stripe->length;
1793 			else if (ret != -EOPNOTSUPP)
1794 				break;
1795 
1796 			/*
1797 			 * Just in case we get back EOPNOTSUPP for some reason,
1798 			 * just ignore the return value so we don't screw up
1799 			 * people calling discard_extent.
1800 			 */
1801 			ret = 0;
1802 		}
1803 		kfree(multi);
1804 	}
1805 
1806 	if (actual_bytes)
1807 		*actual_bytes = discarded_bytes;
1808 
1809 
1810 	return ret;
1811 }
1812 
1813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1814 			 struct btrfs_root *root,
1815 			 u64 bytenr, u64 num_bytes, u64 parent,
1816 			 u64 root_objectid, u64 owner, u64 offset)
1817 {
1818 	int ret;
1819 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1820 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1821 
1822 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1823 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1824 					parent, root_objectid, (int)owner,
1825 					BTRFS_ADD_DELAYED_REF, NULL);
1826 	} else {
1827 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1828 					parent, root_objectid, owner, offset,
1829 					BTRFS_ADD_DELAYED_REF, NULL);
1830 	}
1831 	return ret;
1832 }
1833 
1834 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1835 				  struct btrfs_root *root,
1836 				  u64 bytenr, u64 num_bytes,
1837 				  u64 parent, u64 root_objectid,
1838 				  u64 owner, u64 offset, int refs_to_add,
1839 				  struct btrfs_delayed_extent_op *extent_op)
1840 {
1841 	struct btrfs_path *path;
1842 	struct extent_buffer *leaf;
1843 	struct btrfs_extent_item *item;
1844 	u64 refs;
1845 	int ret;
1846 	int err = 0;
1847 
1848 	path = btrfs_alloc_path();
1849 	if (!path)
1850 		return -ENOMEM;
1851 
1852 	path->reada = 1;
1853 	path->leave_spinning = 1;
1854 	/* this will setup the path even if it fails to insert the back ref */
1855 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1856 					   path, bytenr, num_bytes, parent,
1857 					   root_objectid, owner, offset,
1858 					   refs_to_add, extent_op);
1859 	if (ret == 0)
1860 		goto out;
1861 
1862 	if (ret != -EAGAIN) {
1863 		err = ret;
1864 		goto out;
1865 	}
1866 
1867 	leaf = path->nodes[0];
1868 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 	refs = btrfs_extent_refs(leaf, item);
1870 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1871 	if (extent_op)
1872 		__run_delayed_extent_op(extent_op, leaf, item);
1873 
1874 	btrfs_mark_buffer_dirty(leaf);
1875 	btrfs_release_path(path);
1876 
1877 	path->reada = 1;
1878 	path->leave_spinning = 1;
1879 
1880 	/* now insert the actual backref */
1881 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1882 				    path, bytenr, parent, root_objectid,
1883 				    owner, offset, refs_to_add);
1884 	BUG_ON(ret);
1885 out:
1886 	btrfs_free_path(path);
1887 	return err;
1888 }
1889 
1890 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1891 				struct btrfs_root *root,
1892 				struct btrfs_delayed_ref_node *node,
1893 				struct btrfs_delayed_extent_op *extent_op,
1894 				int insert_reserved)
1895 {
1896 	int ret = 0;
1897 	struct btrfs_delayed_data_ref *ref;
1898 	struct btrfs_key ins;
1899 	u64 parent = 0;
1900 	u64 ref_root = 0;
1901 	u64 flags = 0;
1902 
1903 	ins.objectid = node->bytenr;
1904 	ins.offset = node->num_bytes;
1905 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1906 
1907 	ref = btrfs_delayed_node_to_data_ref(node);
1908 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1909 		parent = ref->parent;
1910 	else
1911 		ref_root = ref->root;
1912 
1913 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1914 		if (extent_op) {
1915 			BUG_ON(extent_op->update_key);
1916 			flags |= extent_op->flags_to_set;
1917 		}
1918 		ret = alloc_reserved_file_extent(trans, root,
1919 						 parent, ref_root, flags,
1920 						 ref->objectid, ref->offset,
1921 						 &ins, node->ref_mod);
1922 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1923 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1924 					     node->num_bytes, parent,
1925 					     ref_root, ref->objectid,
1926 					     ref->offset, node->ref_mod,
1927 					     extent_op);
1928 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1929 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1930 					  node->num_bytes, parent,
1931 					  ref_root, ref->objectid,
1932 					  ref->offset, node->ref_mod,
1933 					  extent_op);
1934 	} else {
1935 		BUG();
1936 	}
1937 	return ret;
1938 }
1939 
1940 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1941 				    struct extent_buffer *leaf,
1942 				    struct btrfs_extent_item *ei)
1943 {
1944 	u64 flags = btrfs_extent_flags(leaf, ei);
1945 	if (extent_op->update_flags) {
1946 		flags |= extent_op->flags_to_set;
1947 		btrfs_set_extent_flags(leaf, ei, flags);
1948 	}
1949 
1950 	if (extent_op->update_key) {
1951 		struct btrfs_tree_block_info *bi;
1952 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1953 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1954 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1955 	}
1956 }
1957 
1958 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1959 				 struct btrfs_root *root,
1960 				 struct btrfs_delayed_ref_node *node,
1961 				 struct btrfs_delayed_extent_op *extent_op)
1962 {
1963 	struct btrfs_key key;
1964 	struct btrfs_path *path;
1965 	struct btrfs_extent_item *ei;
1966 	struct extent_buffer *leaf;
1967 	u32 item_size;
1968 	int ret;
1969 	int err = 0;
1970 
1971 	path = btrfs_alloc_path();
1972 	if (!path)
1973 		return -ENOMEM;
1974 
1975 	key.objectid = node->bytenr;
1976 	key.type = BTRFS_EXTENT_ITEM_KEY;
1977 	key.offset = node->num_bytes;
1978 
1979 	path->reada = 1;
1980 	path->leave_spinning = 1;
1981 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1982 				path, 0, 1);
1983 	if (ret < 0) {
1984 		err = ret;
1985 		goto out;
1986 	}
1987 	if (ret > 0) {
1988 		err = -EIO;
1989 		goto out;
1990 	}
1991 
1992 	leaf = path->nodes[0];
1993 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1995 	if (item_size < sizeof(*ei)) {
1996 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1997 					     path, (u64)-1, 0);
1998 		if (ret < 0) {
1999 			err = ret;
2000 			goto out;
2001 		}
2002 		leaf = path->nodes[0];
2003 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2004 	}
2005 #endif
2006 	BUG_ON(item_size < sizeof(*ei));
2007 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2008 	__run_delayed_extent_op(extent_op, leaf, ei);
2009 
2010 	btrfs_mark_buffer_dirty(leaf);
2011 out:
2012 	btrfs_free_path(path);
2013 	return err;
2014 }
2015 
2016 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2017 				struct btrfs_root *root,
2018 				struct btrfs_delayed_ref_node *node,
2019 				struct btrfs_delayed_extent_op *extent_op,
2020 				int insert_reserved)
2021 {
2022 	int ret = 0;
2023 	struct btrfs_delayed_tree_ref *ref;
2024 	struct btrfs_key ins;
2025 	u64 parent = 0;
2026 	u64 ref_root = 0;
2027 
2028 	ins.objectid = node->bytenr;
2029 	ins.offset = node->num_bytes;
2030 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2031 
2032 	ref = btrfs_delayed_node_to_tree_ref(node);
2033 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2034 		parent = ref->parent;
2035 	else
2036 		ref_root = ref->root;
2037 
2038 	BUG_ON(node->ref_mod != 1);
2039 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2040 		BUG_ON(!extent_op || !extent_op->update_flags ||
2041 		       !extent_op->update_key);
2042 		ret = alloc_reserved_tree_block(trans, root,
2043 						parent, ref_root,
2044 						extent_op->flags_to_set,
2045 						&extent_op->key,
2046 						ref->level, &ins);
2047 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2048 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2049 					     node->num_bytes, parent, ref_root,
2050 					     ref->level, 0, 1, extent_op);
2051 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2052 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2053 					  node->num_bytes, parent, ref_root,
2054 					  ref->level, 0, 1, extent_op);
2055 	} else {
2056 		BUG();
2057 	}
2058 	return ret;
2059 }
2060 
2061 /* helper function to actually process a single delayed ref entry */
2062 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2063 			       struct btrfs_root *root,
2064 			       struct btrfs_delayed_ref_node *node,
2065 			       struct btrfs_delayed_extent_op *extent_op,
2066 			       int insert_reserved)
2067 {
2068 	int ret;
2069 	if (btrfs_delayed_ref_is_head(node)) {
2070 		struct btrfs_delayed_ref_head *head;
2071 		/*
2072 		 * we've hit the end of the chain and we were supposed
2073 		 * to insert this extent into the tree.  But, it got
2074 		 * deleted before we ever needed to insert it, so all
2075 		 * we have to do is clean up the accounting
2076 		 */
2077 		BUG_ON(extent_op);
2078 		head = btrfs_delayed_node_to_head(node);
2079 		if (insert_reserved) {
2080 			btrfs_pin_extent(root, node->bytenr,
2081 					 node->num_bytes, 1);
2082 			if (head->is_data) {
2083 				ret = btrfs_del_csums(trans, root,
2084 						      node->bytenr,
2085 						      node->num_bytes);
2086 				BUG_ON(ret);
2087 			}
2088 		}
2089 		mutex_unlock(&head->mutex);
2090 		return 0;
2091 	}
2092 
2093 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2094 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2095 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2096 					   insert_reserved);
2097 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2098 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2099 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2100 					   insert_reserved);
2101 	else
2102 		BUG();
2103 	return ret;
2104 }
2105 
2106 static noinline struct btrfs_delayed_ref_node *
2107 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2108 {
2109 	struct rb_node *node;
2110 	struct btrfs_delayed_ref_node *ref;
2111 	int action = BTRFS_ADD_DELAYED_REF;
2112 again:
2113 	/*
2114 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2115 	 * this prevents ref count from going down to zero when
2116 	 * there still are pending delayed ref.
2117 	 */
2118 	node = rb_prev(&head->node.rb_node);
2119 	while (1) {
2120 		if (!node)
2121 			break;
2122 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2123 				rb_node);
2124 		if (ref->bytenr != head->node.bytenr)
2125 			break;
2126 		if (ref->action == action)
2127 			return ref;
2128 		node = rb_prev(node);
2129 	}
2130 	if (action == BTRFS_ADD_DELAYED_REF) {
2131 		action = BTRFS_DROP_DELAYED_REF;
2132 		goto again;
2133 	}
2134 	return NULL;
2135 }
2136 
2137 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2138 				       struct btrfs_root *root,
2139 				       struct list_head *cluster)
2140 {
2141 	struct btrfs_delayed_ref_root *delayed_refs;
2142 	struct btrfs_delayed_ref_node *ref;
2143 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2144 	struct btrfs_delayed_extent_op *extent_op;
2145 	int ret;
2146 	int count = 0;
2147 	int must_insert_reserved = 0;
2148 
2149 	delayed_refs = &trans->transaction->delayed_refs;
2150 	while (1) {
2151 		if (!locked_ref) {
2152 			/* pick a new head ref from the cluster list */
2153 			if (list_empty(cluster))
2154 				break;
2155 
2156 			locked_ref = list_entry(cluster->next,
2157 				     struct btrfs_delayed_ref_head, cluster);
2158 
2159 			/* grab the lock that says we are going to process
2160 			 * all the refs for this head */
2161 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2162 
2163 			/*
2164 			 * we may have dropped the spin lock to get the head
2165 			 * mutex lock, and that might have given someone else
2166 			 * time to free the head.  If that's true, it has been
2167 			 * removed from our list and we can move on.
2168 			 */
2169 			if (ret == -EAGAIN) {
2170 				locked_ref = NULL;
2171 				count++;
2172 				continue;
2173 			}
2174 		}
2175 
2176 		/*
2177 		 * record the must insert reserved flag before we
2178 		 * drop the spin lock.
2179 		 */
2180 		must_insert_reserved = locked_ref->must_insert_reserved;
2181 		locked_ref->must_insert_reserved = 0;
2182 
2183 		extent_op = locked_ref->extent_op;
2184 		locked_ref->extent_op = NULL;
2185 
2186 		/*
2187 		 * locked_ref is the head node, so we have to go one
2188 		 * node back for any delayed ref updates
2189 		 */
2190 		ref = select_delayed_ref(locked_ref);
2191 		if (!ref) {
2192 			/* All delayed refs have been processed, Go ahead
2193 			 * and send the head node to run_one_delayed_ref,
2194 			 * so that any accounting fixes can happen
2195 			 */
2196 			ref = &locked_ref->node;
2197 
2198 			if (extent_op && must_insert_reserved) {
2199 				kfree(extent_op);
2200 				extent_op = NULL;
2201 			}
2202 
2203 			if (extent_op) {
2204 				spin_unlock(&delayed_refs->lock);
2205 
2206 				ret = run_delayed_extent_op(trans, root,
2207 							    ref, extent_op);
2208 				BUG_ON(ret);
2209 				kfree(extent_op);
2210 
2211 				cond_resched();
2212 				spin_lock(&delayed_refs->lock);
2213 				continue;
2214 			}
2215 
2216 			list_del_init(&locked_ref->cluster);
2217 			locked_ref = NULL;
2218 		}
2219 
2220 		ref->in_tree = 0;
2221 		rb_erase(&ref->rb_node, &delayed_refs->root);
2222 		delayed_refs->num_entries--;
2223 
2224 		spin_unlock(&delayed_refs->lock);
2225 
2226 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2227 					  must_insert_reserved);
2228 		BUG_ON(ret);
2229 
2230 		btrfs_put_delayed_ref(ref);
2231 		kfree(extent_op);
2232 		count++;
2233 
2234 		cond_resched();
2235 		spin_lock(&delayed_refs->lock);
2236 	}
2237 	return count;
2238 }
2239 
2240 /*
2241  * this starts processing the delayed reference count updates and
2242  * extent insertions we have queued up so far.  count can be
2243  * 0, which means to process everything in the tree at the start
2244  * of the run (but not newly added entries), or it can be some target
2245  * number you'd like to process.
2246  */
2247 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2248 			   struct btrfs_root *root, unsigned long count)
2249 {
2250 	struct rb_node *node;
2251 	struct btrfs_delayed_ref_root *delayed_refs;
2252 	struct btrfs_delayed_ref_node *ref;
2253 	struct list_head cluster;
2254 	int ret;
2255 	int run_all = count == (unsigned long)-1;
2256 	int run_most = 0;
2257 
2258 	if (root == root->fs_info->extent_root)
2259 		root = root->fs_info->tree_root;
2260 
2261 	delayed_refs = &trans->transaction->delayed_refs;
2262 	INIT_LIST_HEAD(&cluster);
2263 again:
2264 	spin_lock(&delayed_refs->lock);
2265 	if (count == 0) {
2266 		count = delayed_refs->num_entries * 2;
2267 		run_most = 1;
2268 	}
2269 	while (1) {
2270 		if (!(run_all || run_most) &&
2271 		    delayed_refs->num_heads_ready < 64)
2272 			break;
2273 
2274 		/*
2275 		 * go find something we can process in the rbtree.  We start at
2276 		 * the beginning of the tree, and then build a cluster
2277 		 * of refs to process starting at the first one we are able to
2278 		 * lock
2279 		 */
2280 		ret = btrfs_find_ref_cluster(trans, &cluster,
2281 					     delayed_refs->run_delayed_start);
2282 		if (ret)
2283 			break;
2284 
2285 		ret = run_clustered_refs(trans, root, &cluster);
2286 		BUG_ON(ret < 0);
2287 
2288 		count -= min_t(unsigned long, ret, count);
2289 
2290 		if (count == 0)
2291 			break;
2292 	}
2293 
2294 	if (run_all) {
2295 		node = rb_first(&delayed_refs->root);
2296 		if (!node)
2297 			goto out;
2298 		count = (unsigned long)-1;
2299 
2300 		while (node) {
2301 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 				       rb_node);
2303 			if (btrfs_delayed_ref_is_head(ref)) {
2304 				struct btrfs_delayed_ref_head *head;
2305 
2306 				head = btrfs_delayed_node_to_head(ref);
2307 				atomic_inc(&ref->refs);
2308 
2309 				spin_unlock(&delayed_refs->lock);
2310 				/*
2311 				 * Mutex was contended, block until it's
2312 				 * released and try again
2313 				 */
2314 				mutex_lock(&head->mutex);
2315 				mutex_unlock(&head->mutex);
2316 
2317 				btrfs_put_delayed_ref(ref);
2318 				cond_resched();
2319 				goto again;
2320 			}
2321 			node = rb_next(node);
2322 		}
2323 		spin_unlock(&delayed_refs->lock);
2324 		schedule_timeout(1);
2325 		goto again;
2326 	}
2327 out:
2328 	spin_unlock(&delayed_refs->lock);
2329 	return 0;
2330 }
2331 
2332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2333 				struct btrfs_root *root,
2334 				u64 bytenr, u64 num_bytes, u64 flags,
2335 				int is_data)
2336 {
2337 	struct btrfs_delayed_extent_op *extent_op;
2338 	int ret;
2339 
2340 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2341 	if (!extent_op)
2342 		return -ENOMEM;
2343 
2344 	extent_op->flags_to_set = flags;
2345 	extent_op->update_flags = 1;
2346 	extent_op->update_key = 0;
2347 	extent_op->is_data = is_data ? 1 : 0;
2348 
2349 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2350 	if (ret)
2351 		kfree(extent_op);
2352 	return ret;
2353 }
2354 
2355 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2356 				      struct btrfs_root *root,
2357 				      struct btrfs_path *path,
2358 				      u64 objectid, u64 offset, u64 bytenr)
2359 {
2360 	struct btrfs_delayed_ref_head *head;
2361 	struct btrfs_delayed_ref_node *ref;
2362 	struct btrfs_delayed_data_ref *data_ref;
2363 	struct btrfs_delayed_ref_root *delayed_refs;
2364 	struct rb_node *node;
2365 	int ret = 0;
2366 
2367 	ret = -ENOENT;
2368 	delayed_refs = &trans->transaction->delayed_refs;
2369 	spin_lock(&delayed_refs->lock);
2370 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2371 	if (!head)
2372 		goto out;
2373 
2374 	if (!mutex_trylock(&head->mutex)) {
2375 		atomic_inc(&head->node.refs);
2376 		spin_unlock(&delayed_refs->lock);
2377 
2378 		btrfs_release_path(path);
2379 
2380 		/*
2381 		 * Mutex was contended, block until it's released and let
2382 		 * caller try again
2383 		 */
2384 		mutex_lock(&head->mutex);
2385 		mutex_unlock(&head->mutex);
2386 		btrfs_put_delayed_ref(&head->node);
2387 		return -EAGAIN;
2388 	}
2389 
2390 	node = rb_prev(&head->node.rb_node);
2391 	if (!node)
2392 		goto out_unlock;
2393 
2394 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2395 
2396 	if (ref->bytenr != bytenr)
2397 		goto out_unlock;
2398 
2399 	ret = 1;
2400 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2401 		goto out_unlock;
2402 
2403 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2404 
2405 	node = rb_prev(node);
2406 	if (node) {
2407 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2408 		if (ref->bytenr == bytenr)
2409 			goto out_unlock;
2410 	}
2411 
2412 	if (data_ref->root != root->root_key.objectid ||
2413 	    data_ref->objectid != objectid || data_ref->offset != offset)
2414 		goto out_unlock;
2415 
2416 	ret = 0;
2417 out_unlock:
2418 	mutex_unlock(&head->mutex);
2419 out:
2420 	spin_unlock(&delayed_refs->lock);
2421 	return ret;
2422 }
2423 
2424 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2425 					struct btrfs_root *root,
2426 					struct btrfs_path *path,
2427 					u64 objectid, u64 offset, u64 bytenr)
2428 {
2429 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2430 	struct extent_buffer *leaf;
2431 	struct btrfs_extent_data_ref *ref;
2432 	struct btrfs_extent_inline_ref *iref;
2433 	struct btrfs_extent_item *ei;
2434 	struct btrfs_key key;
2435 	u32 item_size;
2436 	int ret;
2437 
2438 	key.objectid = bytenr;
2439 	key.offset = (u64)-1;
2440 	key.type = BTRFS_EXTENT_ITEM_KEY;
2441 
2442 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2443 	if (ret < 0)
2444 		goto out;
2445 	BUG_ON(ret == 0);
2446 
2447 	ret = -ENOENT;
2448 	if (path->slots[0] == 0)
2449 		goto out;
2450 
2451 	path->slots[0]--;
2452 	leaf = path->nodes[0];
2453 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2454 
2455 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2456 		goto out;
2457 
2458 	ret = 1;
2459 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2461 	if (item_size < sizeof(*ei)) {
2462 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2463 		goto out;
2464 	}
2465 #endif
2466 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2467 
2468 	if (item_size != sizeof(*ei) +
2469 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2470 		goto out;
2471 
2472 	if (btrfs_extent_generation(leaf, ei) <=
2473 	    btrfs_root_last_snapshot(&root->root_item))
2474 		goto out;
2475 
2476 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2477 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2478 	    BTRFS_EXTENT_DATA_REF_KEY)
2479 		goto out;
2480 
2481 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2482 	if (btrfs_extent_refs(leaf, ei) !=
2483 	    btrfs_extent_data_ref_count(leaf, ref) ||
2484 	    btrfs_extent_data_ref_root(leaf, ref) !=
2485 	    root->root_key.objectid ||
2486 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2487 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2488 		goto out;
2489 
2490 	ret = 0;
2491 out:
2492 	return ret;
2493 }
2494 
2495 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2496 			  struct btrfs_root *root,
2497 			  u64 objectid, u64 offset, u64 bytenr)
2498 {
2499 	struct btrfs_path *path;
2500 	int ret;
2501 	int ret2;
2502 
2503 	path = btrfs_alloc_path();
2504 	if (!path)
2505 		return -ENOENT;
2506 
2507 	do {
2508 		ret = check_committed_ref(trans, root, path, objectid,
2509 					  offset, bytenr);
2510 		if (ret && ret != -ENOENT)
2511 			goto out;
2512 
2513 		ret2 = check_delayed_ref(trans, root, path, objectid,
2514 					 offset, bytenr);
2515 	} while (ret2 == -EAGAIN);
2516 
2517 	if (ret2 && ret2 != -ENOENT) {
2518 		ret = ret2;
2519 		goto out;
2520 	}
2521 
2522 	if (ret != -ENOENT || ret2 != -ENOENT)
2523 		ret = 0;
2524 out:
2525 	btrfs_free_path(path);
2526 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2527 		WARN_ON(ret > 0);
2528 	return ret;
2529 }
2530 
2531 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2532 			   struct btrfs_root *root,
2533 			   struct extent_buffer *buf,
2534 			   int full_backref, int inc)
2535 {
2536 	u64 bytenr;
2537 	u64 num_bytes;
2538 	u64 parent;
2539 	u64 ref_root;
2540 	u32 nritems;
2541 	struct btrfs_key key;
2542 	struct btrfs_file_extent_item *fi;
2543 	int i;
2544 	int level;
2545 	int ret = 0;
2546 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2547 			    u64, u64, u64, u64, u64, u64);
2548 
2549 	ref_root = btrfs_header_owner(buf);
2550 	nritems = btrfs_header_nritems(buf);
2551 	level = btrfs_header_level(buf);
2552 
2553 	if (!root->ref_cows && level == 0)
2554 		return 0;
2555 
2556 	if (inc)
2557 		process_func = btrfs_inc_extent_ref;
2558 	else
2559 		process_func = btrfs_free_extent;
2560 
2561 	if (full_backref)
2562 		parent = buf->start;
2563 	else
2564 		parent = 0;
2565 
2566 	for (i = 0; i < nritems; i++) {
2567 		if (level == 0) {
2568 			btrfs_item_key_to_cpu(buf, &key, i);
2569 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2570 				continue;
2571 			fi = btrfs_item_ptr(buf, i,
2572 					    struct btrfs_file_extent_item);
2573 			if (btrfs_file_extent_type(buf, fi) ==
2574 			    BTRFS_FILE_EXTENT_INLINE)
2575 				continue;
2576 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2577 			if (bytenr == 0)
2578 				continue;
2579 
2580 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2581 			key.offset -= btrfs_file_extent_offset(buf, fi);
2582 			ret = process_func(trans, root, bytenr, num_bytes,
2583 					   parent, ref_root, key.objectid,
2584 					   key.offset);
2585 			if (ret)
2586 				goto fail;
2587 		} else {
2588 			bytenr = btrfs_node_blockptr(buf, i);
2589 			num_bytes = btrfs_level_size(root, level - 1);
2590 			ret = process_func(trans, root, bytenr, num_bytes,
2591 					   parent, ref_root, level - 1, 0);
2592 			if (ret)
2593 				goto fail;
2594 		}
2595 	}
2596 	return 0;
2597 fail:
2598 	BUG();
2599 	return ret;
2600 }
2601 
2602 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2603 		  struct extent_buffer *buf, int full_backref)
2604 {
2605 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2606 }
2607 
2608 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2609 		  struct extent_buffer *buf, int full_backref)
2610 {
2611 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2612 }
2613 
2614 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2615 				 struct btrfs_root *root,
2616 				 struct btrfs_path *path,
2617 				 struct btrfs_block_group_cache *cache)
2618 {
2619 	int ret;
2620 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2621 	unsigned long bi;
2622 	struct extent_buffer *leaf;
2623 
2624 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2625 	if (ret < 0)
2626 		goto fail;
2627 	BUG_ON(ret);
2628 
2629 	leaf = path->nodes[0];
2630 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2631 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2632 	btrfs_mark_buffer_dirty(leaf);
2633 	btrfs_release_path(path);
2634 fail:
2635 	if (ret)
2636 		return ret;
2637 	return 0;
2638 
2639 }
2640 
2641 static struct btrfs_block_group_cache *
2642 next_block_group(struct btrfs_root *root,
2643 		 struct btrfs_block_group_cache *cache)
2644 {
2645 	struct rb_node *node;
2646 	spin_lock(&root->fs_info->block_group_cache_lock);
2647 	node = rb_next(&cache->cache_node);
2648 	btrfs_put_block_group(cache);
2649 	if (node) {
2650 		cache = rb_entry(node, struct btrfs_block_group_cache,
2651 				 cache_node);
2652 		btrfs_get_block_group(cache);
2653 	} else
2654 		cache = NULL;
2655 	spin_unlock(&root->fs_info->block_group_cache_lock);
2656 	return cache;
2657 }
2658 
2659 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2660 			    struct btrfs_trans_handle *trans,
2661 			    struct btrfs_path *path)
2662 {
2663 	struct btrfs_root *root = block_group->fs_info->tree_root;
2664 	struct inode *inode = NULL;
2665 	u64 alloc_hint = 0;
2666 	int dcs = BTRFS_DC_ERROR;
2667 	int num_pages = 0;
2668 	int retries = 0;
2669 	int ret = 0;
2670 
2671 	/*
2672 	 * If this block group is smaller than 100 megs don't bother caching the
2673 	 * block group.
2674 	 */
2675 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2676 		spin_lock(&block_group->lock);
2677 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2678 		spin_unlock(&block_group->lock);
2679 		return 0;
2680 	}
2681 
2682 again:
2683 	inode = lookup_free_space_inode(root, block_group, path);
2684 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2685 		ret = PTR_ERR(inode);
2686 		btrfs_release_path(path);
2687 		goto out;
2688 	}
2689 
2690 	if (IS_ERR(inode)) {
2691 		BUG_ON(retries);
2692 		retries++;
2693 
2694 		if (block_group->ro)
2695 			goto out_free;
2696 
2697 		ret = create_free_space_inode(root, trans, block_group, path);
2698 		if (ret)
2699 			goto out_free;
2700 		goto again;
2701 	}
2702 
2703 	/*
2704 	 * We want to set the generation to 0, that way if anything goes wrong
2705 	 * from here on out we know not to trust this cache when we load up next
2706 	 * time.
2707 	 */
2708 	BTRFS_I(inode)->generation = 0;
2709 	ret = btrfs_update_inode(trans, root, inode);
2710 	WARN_ON(ret);
2711 
2712 	if (i_size_read(inode) > 0) {
2713 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2714 						      inode);
2715 		if (ret)
2716 			goto out_put;
2717 	}
2718 
2719 	spin_lock(&block_group->lock);
2720 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2721 		/* We're not cached, don't bother trying to write stuff out */
2722 		dcs = BTRFS_DC_WRITTEN;
2723 		spin_unlock(&block_group->lock);
2724 		goto out_put;
2725 	}
2726 	spin_unlock(&block_group->lock);
2727 
2728 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2729 	if (!num_pages)
2730 		num_pages = 1;
2731 
2732 	/*
2733 	 * Just to make absolutely sure we have enough space, we're going to
2734 	 * preallocate 12 pages worth of space for each block group.  In
2735 	 * practice we ought to use at most 8, but we need extra space so we can
2736 	 * add our header and have a terminator between the extents and the
2737 	 * bitmaps.
2738 	 */
2739 	num_pages *= 16;
2740 	num_pages *= PAGE_CACHE_SIZE;
2741 
2742 	ret = btrfs_check_data_free_space(inode, num_pages);
2743 	if (ret)
2744 		goto out_put;
2745 
2746 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2747 					      num_pages, num_pages,
2748 					      &alloc_hint);
2749 	if (!ret)
2750 		dcs = BTRFS_DC_SETUP;
2751 	btrfs_free_reserved_data_space(inode, num_pages);
2752 out_put:
2753 	iput(inode);
2754 out_free:
2755 	btrfs_release_path(path);
2756 out:
2757 	spin_lock(&block_group->lock);
2758 	block_group->disk_cache_state = dcs;
2759 	spin_unlock(&block_group->lock);
2760 
2761 	return ret;
2762 }
2763 
2764 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2765 				   struct btrfs_root *root)
2766 {
2767 	struct btrfs_block_group_cache *cache;
2768 	int err = 0;
2769 	struct btrfs_path *path;
2770 	u64 last = 0;
2771 
2772 	path = btrfs_alloc_path();
2773 	if (!path)
2774 		return -ENOMEM;
2775 
2776 again:
2777 	while (1) {
2778 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2779 		while (cache) {
2780 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2781 				break;
2782 			cache = next_block_group(root, cache);
2783 		}
2784 		if (!cache) {
2785 			if (last == 0)
2786 				break;
2787 			last = 0;
2788 			continue;
2789 		}
2790 		err = cache_save_setup(cache, trans, path);
2791 		last = cache->key.objectid + cache->key.offset;
2792 		btrfs_put_block_group(cache);
2793 	}
2794 
2795 	while (1) {
2796 		if (last == 0) {
2797 			err = btrfs_run_delayed_refs(trans, root,
2798 						     (unsigned long)-1);
2799 			BUG_ON(err);
2800 		}
2801 
2802 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2803 		while (cache) {
2804 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2805 				btrfs_put_block_group(cache);
2806 				goto again;
2807 			}
2808 
2809 			if (cache->dirty)
2810 				break;
2811 			cache = next_block_group(root, cache);
2812 		}
2813 		if (!cache) {
2814 			if (last == 0)
2815 				break;
2816 			last = 0;
2817 			continue;
2818 		}
2819 
2820 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2821 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2822 		cache->dirty = 0;
2823 		last = cache->key.objectid + cache->key.offset;
2824 
2825 		err = write_one_cache_group(trans, root, path, cache);
2826 		BUG_ON(err);
2827 		btrfs_put_block_group(cache);
2828 	}
2829 
2830 	while (1) {
2831 		/*
2832 		 * I don't think this is needed since we're just marking our
2833 		 * preallocated extent as written, but just in case it can't
2834 		 * hurt.
2835 		 */
2836 		if (last == 0) {
2837 			err = btrfs_run_delayed_refs(trans, root,
2838 						     (unsigned long)-1);
2839 			BUG_ON(err);
2840 		}
2841 
2842 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2843 		while (cache) {
2844 			/*
2845 			 * Really this shouldn't happen, but it could if we
2846 			 * couldn't write the entire preallocated extent and
2847 			 * splitting the extent resulted in a new block.
2848 			 */
2849 			if (cache->dirty) {
2850 				btrfs_put_block_group(cache);
2851 				goto again;
2852 			}
2853 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2854 				break;
2855 			cache = next_block_group(root, cache);
2856 		}
2857 		if (!cache) {
2858 			if (last == 0)
2859 				break;
2860 			last = 0;
2861 			continue;
2862 		}
2863 
2864 		btrfs_write_out_cache(root, trans, cache, path);
2865 
2866 		/*
2867 		 * If we didn't have an error then the cache state is still
2868 		 * NEED_WRITE, so we can set it to WRITTEN.
2869 		 */
2870 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2871 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
2872 		last = cache->key.objectid + cache->key.offset;
2873 		btrfs_put_block_group(cache);
2874 	}
2875 
2876 	btrfs_free_path(path);
2877 	return 0;
2878 }
2879 
2880 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2881 {
2882 	struct btrfs_block_group_cache *block_group;
2883 	int readonly = 0;
2884 
2885 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2886 	if (!block_group || block_group->ro)
2887 		readonly = 1;
2888 	if (block_group)
2889 		btrfs_put_block_group(block_group);
2890 	return readonly;
2891 }
2892 
2893 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2894 			     u64 total_bytes, u64 bytes_used,
2895 			     struct btrfs_space_info **space_info)
2896 {
2897 	struct btrfs_space_info *found;
2898 	int i;
2899 	int factor;
2900 
2901 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2902 		     BTRFS_BLOCK_GROUP_RAID10))
2903 		factor = 2;
2904 	else
2905 		factor = 1;
2906 
2907 	found = __find_space_info(info, flags);
2908 	if (found) {
2909 		spin_lock(&found->lock);
2910 		found->total_bytes += total_bytes;
2911 		found->disk_total += total_bytes * factor;
2912 		found->bytes_used += bytes_used;
2913 		found->disk_used += bytes_used * factor;
2914 		found->full = 0;
2915 		spin_unlock(&found->lock);
2916 		*space_info = found;
2917 		return 0;
2918 	}
2919 	found = kzalloc(sizeof(*found), GFP_NOFS);
2920 	if (!found)
2921 		return -ENOMEM;
2922 
2923 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2924 		INIT_LIST_HEAD(&found->block_groups[i]);
2925 	init_rwsem(&found->groups_sem);
2926 	spin_lock_init(&found->lock);
2927 	found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2928 				BTRFS_BLOCK_GROUP_SYSTEM |
2929 				BTRFS_BLOCK_GROUP_METADATA);
2930 	found->total_bytes = total_bytes;
2931 	found->disk_total = total_bytes * factor;
2932 	found->bytes_used = bytes_used;
2933 	found->disk_used = bytes_used * factor;
2934 	found->bytes_pinned = 0;
2935 	found->bytes_reserved = 0;
2936 	found->bytes_readonly = 0;
2937 	found->bytes_may_use = 0;
2938 	found->full = 0;
2939 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2940 	found->chunk_alloc = 0;
2941 	found->flush = 0;
2942 	init_waitqueue_head(&found->wait);
2943 	*space_info = found;
2944 	list_add_rcu(&found->list, &info->space_info);
2945 	return 0;
2946 }
2947 
2948 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2949 {
2950 	u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2951 				   BTRFS_BLOCK_GROUP_RAID1 |
2952 				   BTRFS_BLOCK_GROUP_RAID10 |
2953 				   BTRFS_BLOCK_GROUP_DUP);
2954 	if (extra_flags) {
2955 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2956 			fs_info->avail_data_alloc_bits |= extra_flags;
2957 		if (flags & BTRFS_BLOCK_GROUP_METADATA)
2958 			fs_info->avail_metadata_alloc_bits |= extra_flags;
2959 		if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2960 			fs_info->avail_system_alloc_bits |= extra_flags;
2961 	}
2962 }
2963 
2964 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2965 {
2966 	/*
2967 	 * we add in the count of missing devices because we want
2968 	 * to make sure that any RAID levels on a degraded FS
2969 	 * continue to be honored.
2970 	 */
2971 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
2972 		root->fs_info->fs_devices->missing_devices;
2973 
2974 	if (num_devices == 1)
2975 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2976 	if (num_devices < 4)
2977 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2978 
2979 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2980 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2981 		      BTRFS_BLOCK_GROUP_RAID10))) {
2982 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
2983 	}
2984 
2985 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2986 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2987 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2988 	}
2989 
2990 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2991 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2992 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
2993 	     (flags & BTRFS_BLOCK_GROUP_DUP)))
2994 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2995 	return flags;
2996 }
2997 
2998 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2999 {
3000 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3001 		flags |= root->fs_info->avail_data_alloc_bits &
3002 			 root->fs_info->data_alloc_profile;
3003 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3004 		flags |= root->fs_info->avail_system_alloc_bits &
3005 			 root->fs_info->system_alloc_profile;
3006 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3007 		flags |= root->fs_info->avail_metadata_alloc_bits &
3008 			 root->fs_info->metadata_alloc_profile;
3009 	return btrfs_reduce_alloc_profile(root, flags);
3010 }
3011 
3012 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3013 {
3014 	u64 flags;
3015 
3016 	if (data)
3017 		flags = BTRFS_BLOCK_GROUP_DATA;
3018 	else if (root == root->fs_info->chunk_root)
3019 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3020 	else
3021 		flags = BTRFS_BLOCK_GROUP_METADATA;
3022 
3023 	return get_alloc_profile(root, flags);
3024 }
3025 
3026 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3027 {
3028 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3029 						       BTRFS_BLOCK_GROUP_DATA);
3030 }
3031 
3032 /*
3033  * This will check the space that the inode allocates from to make sure we have
3034  * enough space for bytes.
3035  */
3036 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3037 {
3038 	struct btrfs_space_info *data_sinfo;
3039 	struct btrfs_root *root = BTRFS_I(inode)->root;
3040 	u64 used;
3041 	int ret = 0, committed = 0, alloc_chunk = 1;
3042 
3043 	/* make sure bytes are sectorsize aligned */
3044 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3045 
3046 	if (root == root->fs_info->tree_root ||
3047 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3048 		alloc_chunk = 0;
3049 		committed = 1;
3050 	}
3051 
3052 	data_sinfo = BTRFS_I(inode)->space_info;
3053 	if (!data_sinfo)
3054 		goto alloc;
3055 
3056 again:
3057 	/* make sure we have enough space to handle the data first */
3058 	spin_lock(&data_sinfo->lock);
3059 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3060 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3061 		data_sinfo->bytes_may_use;
3062 
3063 	if (used + bytes > data_sinfo->total_bytes) {
3064 		struct btrfs_trans_handle *trans;
3065 
3066 		/*
3067 		 * if we don't have enough free bytes in this space then we need
3068 		 * to alloc a new chunk.
3069 		 */
3070 		if (!data_sinfo->full && alloc_chunk) {
3071 			u64 alloc_target;
3072 
3073 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3074 			spin_unlock(&data_sinfo->lock);
3075 alloc:
3076 			alloc_target = btrfs_get_alloc_profile(root, 1);
3077 			trans = btrfs_join_transaction(root);
3078 			if (IS_ERR(trans))
3079 				return PTR_ERR(trans);
3080 
3081 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3082 					     bytes + 2 * 1024 * 1024,
3083 					     alloc_target,
3084 					     CHUNK_ALLOC_NO_FORCE);
3085 			btrfs_end_transaction(trans, root);
3086 			if (ret < 0) {
3087 				if (ret != -ENOSPC)
3088 					return ret;
3089 				else
3090 					goto commit_trans;
3091 			}
3092 
3093 			if (!data_sinfo) {
3094 				btrfs_set_inode_space_info(root, inode);
3095 				data_sinfo = BTRFS_I(inode)->space_info;
3096 			}
3097 			goto again;
3098 		}
3099 
3100 		/*
3101 		 * If we have less pinned bytes than we want to allocate then
3102 		 * don't bother committing the transaction, it won't help us.
3103 		 */
3104 		if (data_sinfo->bytes_pinned < bytes)
3105 			committed = 1;
3106 		spin_unlock(&data_sinfo->lock);
3107 
3108 		/* commit the current transaction and try again */
3109 commit_trans:
3110 		if (!committed &&
3111 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3112 			committed = 1;
3113 			trans = btrfs_join_transaction(root);
3114 			if (IS_ERR(trans))
3115 				return PTR_ERR(trans);
3116 			ret = btrfs_commit_transaction(trans, root);
3117 			if (ret)
3118 				return ret;
3119 			goto again;
3120 		}
3121 
3122 		return -ENOSPC;
3123 	}
3124 	data_sinfo->bytes_may_use += bytes;
3125 	BTRFS_I(inode)->reserved_bytes += bytes;
3126 	spin_unlock(&data_sinfo->lock);
3127 
3128 	return 0;
3129 }
3130 
3131 /*
3132  * called when we are clearing an delalloc extent from the
3133  * inode's io_tree or there was an error for whatever reason
3134  * after calling btrfs_check_data_free_space
3135  */
3136 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3137 {
3138 	struct btrfs_root *root = BTRFS_I(inode)->root;
3139 	struct btrfs_space_info *data_sinfo;
3140 
3141 	/* make sure bytes are sectorsize aligned */
3142 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3143 
3144 	data_sinfo = BTRFS_I(inode)->space_info;
3145 	spin_lock(&data_sinfo->lock);
3146 	data_sinfo->bytes_may_use -= bytes;
3147 	BTRFS_I(inode)->reserved_bytes -= bytes;
3148 	spin_unlock(&data_sinfo->lock);
3149 }
3150 
3151 static void force_metadata_allocation(struct btrfs_fs_info *info)
3152 {
3153 	struct list_head *head = &info->space_info;
3154 	struct btrfs_space_info *found;
3155 
3156 	rcu_read_lock();
3157 	list_for_each_entry_rcu(found, head, list) {
3158 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3159 			found->force_alloc = CHUNK_ALLOC_FORCE;
3160 	}
3161 	rcu_read_unlock();
3162 }
3163 
3164 static int should_alloc_chunk(struct btrfs_root *root,
3165 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3166 			      int force)
3167 {
3168 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3169 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3170 	u64 thresh;
3171 
3172 	if (force == CHUNK_ALLOC_FORCE)
3173 		return 1;
3174 
3175 	/*
3176 	 * in limited mode, we want to have some free space up to
3177 	 * about 1% of the FS size.
3178 	 */
3179 	if (force == CHUNK_ALLOC_LIMITED) {
3180 		thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3181 		thresh = max_t(u64, 64 * 1024 * 1024,
3182 			       div_factor_fine(thresh, 1));
3183 
3184 		if (num_bytes - num_allocated < thresh)
3185 			return 1;
3186 	}
3187 
3188 	/*
3189 	 * we have two similar checks here, one based on percentage
3190 	 * and once based on a hard number of 256MB.  The idea
3191 	 * is that if we have a good amount of free
3192 	 * room, don't allocate a chunk.  A good mount is
3193 	 * less than 80% utilized of the chunks we have allocated,
3194 	 * or more than 256MB free
3195 	 */
3196 	if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3197 		return 0;
3198 
3199 	if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3200 		return 0;
3201 
3202 	thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3203 
3204 	/* 256MB or 5% of the FS */
3205 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3206 
3207 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3208 		return 0;
3209 	return 1;
3210 }
3211 
3212 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3213 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3214 			  u64 flags, int force)
3215 {
3216 	struct btrfs_space_info *space_info;
3217 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3218 	int wait_for_alloc = 0;
3219 	int ret = 0;
3220 
3221 	flags = btrfs_reduce_alloc_profile(extent_root, flags);
3222 
3223 	space_info = __find_space_info(extent_root->fs_info, flags);
3224 	if (!space_info) {
3225 		ret = update_space_info(extent_root->fs_info, flags,
3226 					0, 0, &space_info);
3227 		BUG_ON(ret);
3228 	}
3229 	BUG_ON(!space_info);
3230 
3231 again:
3232 	spin_lock(&space_info->lock);
3233 	if (space_info->force_alloc)
3234 		force = space_info->force_alloc;
3235 	if (space_info->full) {
3236 		spin_unlock(&space_info->lock);
3237 		return 0;
3238 	}
3239 
3240 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3241 		spin_unlock(&space_info->lock);
3242 		return 0;
3243 	} else if (space_info->chunk_alloc) {
3244 		wait_for_alloc = 1;
3245 	} else {
3246 		space_info->chunk_alloc = 1;
3247 	}
3248 
3249 	spin_unlock(&space_info->lock);
3250 
3251 	mutex_lock(&fs_info->chunk_mutex);
3252 
3253 	/*
3254 	 * The chunk_mutex is held throughout the entirety of a chunk
3255 	 * allocation, so once we've acquired the chunk_mutex we know that the
3256 	 * other guy is done and we need to recheck and see if we should
3257 	 * allocate.
3258 	 */
3259 	if (wait_for_alloc) {
3260 		mutex_unlock(&fs_info->chunk_mutex);
3261 		wait_for_alloc = 0;
3262 		goto again;
3263 	}
3264 
3265 	/*
3266 	 * If we have mixed data/metadata chunks we want to make sure we keep
3267 	 * allocating mixed chunks instead of individual chunks.
3268 	 */
3269 	if (btrfs_mixed_space_info(space_info))
3270 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3271 
3272 	/*
3273 	 * if we're doing a data chunk, go ahead and make sure that
3274 	 * we keep a reasonable number of metadata chunks allocated in the
3275 	 * FS as well.
3276 	 */
3277 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3278 		fs_info->data_chunk_allocations++;
3279 		if (!(fs_info->data_chunk_allocations %
3280 		      fs_info->metadata_ratio))
3281 			force_metadata_allocation(fs_info);
3282 	}
3283 
3284 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3285 	if (ret < 0 && ret != -ENOSPC)
3286 		goto out;
3287 
3288 	spin_lock(&space_info->lock);
3289 	if (ret)
3290 		space_info->full = 1;
3291 	else
3292 		ret = 1;
3293 
3294 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3295 	space_info->chunk_alloc = 0;
3296 	spin_unlock(&space_info->lock);
3297 out:
3298 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3299 	return ret;
3300 }
3301 
3302 /*
3303  * shrink metadata reservation for delalloc
3304  */
3305 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3306 			   struct btrfs_root *root, u64 to_reclaim, int sync)
3307 {
3308 	struct btrfs_block_rsv *block_rsv;
3309 	struct btrfs_space_info *space_info;
3310 	u64 reserved;
3311 	u64 max_reclaim;
3312 	u64 reclaimed = 0;
3313 	long time_left;
3314 	int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3315 	int loops = 0;
3316 	unsigned long progress;
3317 
3318 	block_rsv = &root->fs_info->delalloc_block_rsv;
3319 	space_info = block_rsv->space_info;
3320 
3321 	smp_mb();
3322 	reserved = space_info->bytes_reserved;
3323 	progress = space_info->reservation_progress;
3324 
3325 	if (reserved == 0)
3326 		return 0;
3327 
3328 	smp_mb();
3329 	if (root->fs_info->delalloc_bytes == 0) {
3330 		if (trans)
3331 			return 0;
3332 		btrfs_wait_ordered_extents(root, 0, 0);
3333 		return 0;
3334 	}
3335 
3336 	max_reclaim = min(reserved, to_reclaim);
3337 
3338 	while (loops < 1024) {
3339 		/* have the flusher threads jump in and do some IO */
3340 		smp_mb();
3341 		nr_pages = min_t(unsigned long, nr_pages,
3342 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3343 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3344 
3345 		spin_lock(&space_info->lock);
3346 		if (reserved > space_info->bytes_reserved)
3347 			reclaimed += reserved - space_info->bytes_reserved;
3348 		reserved = space_info->bytes_reserved;
3349 		spin_unlock(&space_info->lock);
3350 
3351 		loops++;
3352 
3353 		if (reserved == 0 || reclaimed >= max_reclaim)
3354 			break;
3355 
3356 		if (trans && trans->transaction->blocked)
3357 			return -EAGAIN;
3358 
3359 		time_left = schedule_timeout_interruptible(1);
3360 
3361 		/* We were interrupted, exit */
3362 		if (time_left)
3363 			break;
3364 
3365 		/* we've kicked the IO a few times, if anything has been freed,
3366 		 * exit.  There is no sense in looping here for a long time
3367 		 * when we really need to commit the transaction, or there are
3368 		 * just too many writers without enough free space
3369 		 */
3370 
3371 		if (loops > 3) {
3372 			smp_mb();
3373 			if (progress != space_info->reservation_progress)
3374 				break;
3375 		}
3376 
3377 	}
3378 	if (reclaimed >= to_reclaim && !trans)
3379 		btrfs_wait_ordered_extents(root, 0, 0);
3380 	return reclaimed >= to_reclaim;
3381 }
3382 
3383 /*
3384  * Retries tells us how many times we've called reserve_metadata_bytes.  The
3385  * idea is if this is the first call (retries == 0) then we will add to our
3386  * reserved count if we can't make the allocation in order to hold our place
3387  * while we go and try and free up space.  That way for retries > 1 we don't try
3388  * and add space, we just check to see if the amount of unused space is >= the
3389  * total space, meaning that our reservation is valid.
3390  *
3391  * However if we don't intend to retry this reservation, pass -1 as retries so
3392  * that it short circuits this logic.
3393  */
3394 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3395 				  struct btrfs_root *root,
3396 				  struct btrfs_block_rsv *block_rsv,
3397 				  u64 orig_bytes, int flush)
3398 {
3399 	struct btrfs_space_info *space_info = block_rsv->space_info;
3400 	u64 unused;
3401 	u64 num_bytes = orig_bytes;
3402 	int retries = 0;
3403 	int ret = 0;
3404 	bool committed = false;
3405 	bool flushing = false;
3406 
3407 again:
3408 	ret = 0;
3409 	spin_lock(&space_info->lock);
3410 	/*
3411 	 * We only want to wait if somebody other than us is flushing and we are
3412 	 * actually alloed to flush.
3413 	 */
3414 	while (flush && !flushing && space_info->flush) {
3415 		spin_unlock(&space_info->lock);
3416 		/*
3417 		 * If we have a trans handle we can't wait because the flusher
3418 		 * may have to commit the transaction, which would mean we would
3419 		 * deadlock since we are waiting for the flusher to finish, but
3420 		 * hold the current transaction open.
3421 		 */
3422 		if (trans)
3423 			return -EAGAIN;
3424 		ret = wait_event_interruptible(space_info->wait,
3425 					       !space_info->flush);
3426 		/* Must have been interrupted, return */
3427 		if (ret)
3428 			return -EINTR;
3429 
3430 		spin_lock(&space_info->lock);
3431 	}
3432 
3433 	ret = -ENOSPC;
3434 	unused = space_info->bytes_used + space_info->bytes_reserved +
3435 		 space_info->bytes_pinned + space_info->bytes_readonly +
3436 		 space_info->bytes_may_use;
3437 
3438 	/*
3439 	 * The idea here is that we've not already over-reserved the block group
3440 	 * then we can go ahead and save our reservation first and then start
3441 	 * flushing if we need to.  Otherwise if we've already overcommitted
3442 	 * lets start flushing stuff first and then come back and try to make
3443 	 * our reservation.
3444 	 */
3445 	if (unused <= space_info->total_bytes) {
3446 		unused = space_info->total_bytes - unused;
3447 		if (unused >= num_bytes) {
3448 			space_info->bytes_reserved += orig_bytes;
3449 			ret = 0;
3450 		} else {
3451 			/*
3452 			 * Ok set num_bytes to orig_bytes since we aren't
3453 			 * overocmmitted, this way we only try and reclaim what
3454 			 * we need.
3455 			 */
3456 			num_bytes = orig_bytes;
3457 		}
3458 	} else {
3459 		/*
3460 		 * Ok we're over committed, set num_bytes to the overcommitted
3461 		 * amount plus the amount of bytes that we need for this
3462 		 * reservation.
3463 		 */
3464 		num_bytes = unused - space_info->total_bytes +
3465 			(orig_bytes * (retries + 1));
3466 	}
3467 
3468 	/*
3469 	 * Couldn't make our reservation, save our place so while we're trying
3470 	 * to reclaim space we can actually use it instead of somebody else
3471 	 * stealing it from us.
3472 	 */
3473 	if (ret && flush) {
3474 		flushing = true;
3475 		space_info->flush = 1;
3476 	}
3477 
3478 	spin_unlock(&space_info->lock);
3479 
3480 	if (!ret || !flush)
3481 		goto out;
3482 
3483 	/*
3484 	 * We do synchronous shrinking since we don't actually unreserve
3485 	 * metadata until after the IO is completed.
3486 	 */
3487 	ret = shrink_delalloc(trans, root, num_bytes, 1);
3488 	if (ret < 0)
3489 		goto out;
3490 
3491 	ret = 0;
3492 
3493 	/*
3494 	 * So if we were overcommitted it's possible that somebody else flushed
3495 	 * out enough space and we simply didn't have enough space to reclaim,
3496 	 * so go back around and try again.
3497 	 */
3498 	if (retries < 2) {
3499 		retries++;
3500 		goto again;
3501 	}
3502 
3503 	/*
3504 	 * Not enough space to be reclaimed, don't bother committing the
3505 	 * transaction.
3506 	 */
3507 	spin_lock(&space_info->lock);
3508 	if (space_info->bytes_pinned < orig_bytes)
3509 		ret = -ENOSPC;
3510 	spin_unlock(&space_info->lock);
3511 	if (ret)
3512 		goto out;
3513 
3514 	ret = -EAGAIN;
3515 	if (trans)
3516 		goto out;
3517 
3518 	ret = -ENOSPC;
3519 	if (committed)
3520 		goto out;
3521 
3522 	trans = btrfs_join_transaction(root);
3523 	if (IS_ERR(trans))
3524 		goto out;
3525 	ret = btrfs_commit_transaction(trans, root);
3526 	if (!ret) {
3527 		trans = NULL;
3528 		committed = true;
3529 		goto again;
3530 	}
3531 
3532 out:
3533 	if (flushing) {
3534 		spin_lock(&space_info->lock);
3535 		space_info->flush = 0;
3536 		wake_up_all(&space_info->wait);
3537 		spin_unlock(&space_info->lock);
3538 	}
3539 	return ret;
3540 }
3541 
3542 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3543 					     struct btrfs_root *root)
3544 {
3545 	struct btrfs_block_rsv *block_rsv;
3546 	if (root->ref_cows)
3547 		block_rsv = trans->block_rsv;
3548 	else
3549 		block_rsv = root->block_rsv;
3550 
3551 	if (!block_rsv)
3552 		block_rsv = &root->fs_info->empty_block_rsv;
3553 
3554 	return block_rsv;
3555 }
3556 
3557 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3558 			       u64 num_bytes)
3559 {
3560 	int ret = -ENOSPC;
3561 	spin_lock(&block_rsv->lock);
3562 	if (block_rsv->reserved >= num_bytes) {
3563 		block_rsv->reserved -= num_bytes;
3564 		if (block_rsv->reserved < block_rsv->size)
3565 			block_rsv->full = 0;
3566 		ret = 0;
3567 	}
3568 	spin_unlock(&block_rsv->lock);
3569 	return ret;
3570 }
3571 
3572 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3573 				u64 num_bytes, int update_size)
3574 {
3575 	spin_lock(&block_rsv->lock);
3576 	block_rsv->reserved += num_bytes;
3577 	if (update_size)
3578 		block_rsv->size += num_bytes;
3579 	else if (block_rsv->reserved >= block_rsv->size)
3580 		block_rsv->full = 1;
3581 	spin_unlock(&block_rsv->lock);
3582 }
3583 
3584 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3585 				    struct btrfs_block_rsv *dest, u64 num_bytes)
3586 {
3587 	struct btrfs_space_info *space_info = block_rsv->space_info;
3588 
3589 	spin_lock(&block_rsv->lock);
3590 	if (num_bytes == (u64)-1)
3591 		num_bytes = block_rsv->size;
3592 	block_rsv->size -= num_bytes;
3593 	if (block_rsv->reserved >= block_rsv->size) {
3594 		num_bytes = block_rsv->reserved - block_rsv->size;
3595 		block_rsv->reserved = block_rsv->size;
3596 		block_rsv->full = 1;
3597 	} else {
3598 		num_bytes = 0;
3599 	}
3600 	spin_unlock(&block_rsv->lock);
3601 
3602 	if (num_bytes > 0) {
3603 		if (dest) {
3604 			spin_lock(&dest->lock);
3605 			if (!dest->full) {
3606 				u64 bytes_to_add;
3607 
3608 				bytes_to_add = dest->size - dest->reserved;
3609 				bytes_to_add = min(num_bytes, bytes_to_add);
3610 				dest->reserved += bytes_to_add;
3611 				if (dest->reserved >= dest->size)
3612 					dest->full = 1;
3613 				num_bytes -= bytes_to_add;
3614 			}
3615 			spin_unlock(&dest->lock);
3616 		}
3617 		if (num_bytes) {
3618 			spin_lock(&space_info->lock);
3619 			space_info->bytes_reserved -= num_bytes;
3620 			space_info->reservation_progress++;
3621 			spin_unlock(&space_info->lock);
3622 		}
3623 	}
3624 }
3625 
3626 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3627 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3628 {
3629 	int ret;
3630 
3631 	ret = block_rsv_use_bytes(src, num_bytes);
3632 	if (ret)
3633 		return ret;
3634 
3635 	block_rsv_add_bytes(dst, num_bytes, 1);
3636 	return 0;
3637 }
3638 
3639 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3640 {
3641 	memset(rsv, 0, sizeof(*rsv));
3642 	spin_lock_init(&rsv->lock);
3643 	atomic_set(&rsv->usage, 1);
3644 	rsv->priority = 6;
3645 	INIT_LIST_HEAD(&rsv->list);
3646 }
3647 
3648 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3649 {
3650 	struct btrfs_block_rsv *block_rsv;
3651 	struct btrfs_fs_info *fs_info = root->fs_info;
3652 
3653 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3654 	if (!block_rsv)
3655 		return NULL;
3656 
3657 	btrfs_init_block_rsv(block_rsv);
3658 	block_rsv->space_info = __find_space_info(fs_info,
3659 						  BTRFS_BLOCK_GROUP_METADATA);
3660 	return block_rsv;
3661 }
3662 
3663 void btrfs_free_block_rsv(struct btrfs_root *root,
3664 			  struct btrfs_block_rsv *rsv)
3665 {
3666 	if (rsv && atomic_dec_and_test(&rsv->usage)) {
3667 		btrfs_block_rsv_release(root, rsv, (u64)-1);
3668 		if (!rsv->durable)
3669 			kfree(rsv);
3670 	}
3671 }
3672 
3673 /*
3674  * make the block_rsv struct be able to capture freed space.
3675  * the captured space will re-add to the the block_rsv struct
3676  * after transaction commit
3677  */
3678 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3679 				 struct btrfs_block_rsv *block_rsv)
3680 {
3681 	block_rsv->durable = 1;
3682 	mutex_lock(&fs_info->durable_block_rsv_mutex);
3683 	list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3684 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
3685 }
3686 
3687 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3688 			struct btrfs_root *root,
3689 			struct btrfs_block_rsv *block_rsv,
3690 			u64 num_bytes)
3691 {
3692 	int ret;
3693 
3694 	if (num_bytes == 0)
3695 		return 0;
3696 
3697 	ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3698 	if (!ret) {
3699 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3700 		return 0;
3701 	}
3702 
3703 	return ret;
3704 }
3705 
3706 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3707 			  struct btrfs_root *root,
3708 			  struct btrfs_block_rsv *block_rsv,
3709 			  u64 min_reserved, int min_factor)
3710 {
3711 	u64 num_bytes = 0;
3712 	int commit_trans = 0;
3713 	int ret = -ENOSPC;
3714 
3715 	if (!block_rsv)
3716 		return 0;
3717 
3718 	spin_lock(&block_rsv->lock);
3719 	if (min_factor > 0)
3720 		num_bytes = div_factor(block_rsv->size, min_factor);
3721 	if (min_reserved > num_bytes)
3722 		num_bytes = min_reserved;
3723 
3724 	if (block_rsv->reserved >= num_bytes) {
3725 		ret = 0;
3726 	} else {
3727 		num_bytes -= block_rsv->reserved;
3728 		if (block_rsv->durable &&
3729 		    block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3730 			commit_trans = 1;
3731 	}
3732 	spin_unlock(&block_rsv->lock);
3733 	if (!ret)
3734 		return 0;
3735 
3736 	if (block_rsv->refill_used) {
3737 		ret = reserve_metadata_bytes(trans, root, block_rsv,
3738 					     num_bytes, 0);
3739 		if (!ret) {
3740 			block_rsv_add_bytes(block_rsv, num_bytes, 0);
3741 			return 0;
3742 		}
3743 	}
3744 
3745 	if (commit_trans) {
3746 		if (trans)
3747 			return -EAGAIN;
3748 		trans = btrfs_join_transaction(root);
3749 		BUG_ON(IS_ERR(trans));
3750 		ret = btrfs_commit_transaction(trans, root);
3751 		return 0;
3752 	}
3753 
3754 	return -ENOSPC;
3755 }
3756 
3757 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3758 			    struct btrfs_block_rsv *dst_rsv,
3759 			    u64 num_bytes)
3760 {
3761 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3762 }
3763 
3764 void btrfs_block_rsv_release(struct btrfs_root *root,
3765 			     struct btrfs_block_rsv *block_rsv,
3766 			     u64 num_bytes)
3767 {
3768 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3769 	if (global_rsv->full || global_rsv == block_rsv ||
3770 	    block_rsv->space_info != global_rsv->space_info)
3771 		global_rsv = NULL;
3772 	block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3773 }
3774 
3775 /*
3776  * helper to calculate size of global block reservation.
3777  * the desired value is sum of space used by extent tree,
3778  * checksum tree and root tree
3779  */
3780 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3781 {
3782 	struct btrfs_space_info *sinfo;
3783 	u64 num_bytes;
3784 	u64 meta_used;
3785 	u64 data_used;
3786 	int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3787 
3788 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3789 	spin_lock(&sinfo->lock);
3790 	data_used = sinfo->bytes_used;
3791 	spin_unlock(&sinfo->lock);
3792 
3793 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3794 	spin_lock(&sinfo->lock);
3795 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3796 		data_used = 0;
3797 	meta_used = sinfo->bytes_used;
3798 	spin_unlock(&sinfo->lock);
3799 
3800 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3801 		    csum_size * 2;
3802 	num_bytes += div64_u64(data_used + meta_used, 50);
3803 
3804 	if (num_bytes * 3 > meta_used)
3805 		num_bytes = div64_u64(meta_used, 3);
3806 
3807 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3808 }
3809 
3810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3811 {
3812 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3813 	struct btrfs_space_info *sinfo = block_rsv->space_info;
3814 	u64 num_bytes;
3815 
3816 	num_bytes = calc_global_metadata_size(fs_info);
3817 
3818 	spin_lock(&block_rsv->lock);
3819 	spin_lock(&sinfo->lock);
3820 
3821 	block_rsv->size = num_bytes;
3822 
3823 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3824 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
3825 		    sinfo->bytes_may_use;
3826 
3827 	if (sinfo->total_bytes > num_bytes) {
3828 		num_bytes = sinfo->total_bytes - num_bytes;
3829 		block_rsv->reserved += num_bytes;
3830 		sinfo->bytes_reserved += num_bytes;
3831 	}
3832 
3833 	if (block_rsv->reserved >= block_rsv->size) {
3834 		num_bytes = block_rsv->reserved - block_rsv->size;
3835 		sinfo->bytes_reserved -= num_bytes;
3836 		sinfo->reservation_progress++;
3837 		block_rsv->reserved = block_rsv->size;
3838 		block_rsv->full = 1;
3839 	}
3840 
3841 	spin_unlock(&sinfo->lock);
3842 	spin_unlock(&block_rsv->lock);
3843 }
3844 
3845 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3846 {
3847 	struct btrfs_space_info *space_info;
3848 
3849 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3850 	fs_info->chunk_block_rsv.space_info = space_info;
3851 	fs_info->chunk_block_rsv.priority = 10;
3852 
3853 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3854 	fs_info->global_block_rsv.space_info = space_info;
3855 	fs_info->global_block_rsv.priority = 10;
3856 	fs_info->global_block_rsv.refill_used = 1;
3857 	fs_info->delalloc_block_rsv.space_info = space_info;
3858 	fs_info->trans_block_rsv.space_info = space_info;
3859 	fs_info->empty_block_rsv.space_info = space_info;
3860 	fs_info->empty_block_rsv.priority = 10;
3861 
3862 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3863 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3864 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3865 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3866 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3867 
3868 	btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3869 
3870 	btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3871 
3872 	update_global_block_rsv(fs_info);
3873 }
3874 
3875 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3876 {
3877 	block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3878 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3879 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3880 	WARN_ON(fs_info->trans_block_rsv.size > 0);
3881 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3882 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
3883 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3884 }
3885 
3886 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3887 				    struct btrfs_root *root,
3888 				    struct btrfs_block_rsv *rsv)
3889 {
3890 	struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3891 	u64 num_bytes;
3892 	int ret;
3893 
3894 	/*
3895 	 * Truncate should be freeing data, but give us 2 items just in case it
3896 	 * needs to use some space.  We may want to be smarter about this in the
3897 	 * future.
3898 	 */
3899 	num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3900 
3901 	/* We already have enough bytes, just return */
3902 	if (rsv->reserved >= num_bytes)
3903 		return 0;
3904 
3905 	num_bytes -= rsv->reserved;
3906 
3907 	/*
3908 	 * You should have reserved enough space before hand to do this, so this
3909 	 * should not fail.
3910 	 */
3911 	ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3912 	BUG_ON(ret);
3913 
3914 	return 0;
3915 }
3916 
3917 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3918 				  struct btrfs_root *root)
3919 {
3920 	if (!trans->bytes_reserved)
3921 		return;
3922 
3923 	BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3924 	btrfs_block_rsv_release(root, trans->block_rsv,
3925 				trans->bytes_reserved);
3926 	trans->bytes_reserved = 0;
3927 }
3928 
3929 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3930 				  struct inode *inode)
3931 {
3932 	struct btrfs_root *root = BTRFS_I(inode)->root;
3933 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3934 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3935 
3936 	/*
3937 	 * We need to hold space in order to delete our orphan item once we've
3938 	 * added it, so this takes the reservation so we can release it later
3939 	 * when we are truly done with the orphan item.
3940 	 */
3941 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3942 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3943 }
3944 
3945 void btrfs_orphan_release_metadata(struct inode *inode)
3946 {
3947 	struct btrfs_root *root = BTRFS_I(inode)->root;
3948 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3949 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3950 }
3951 
3952 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3953 				struct btrfs_pending_snapshot *pending)
3954 {
3955 	struct btrfs_root *root = pending->root;
3956 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3957 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3958 	/*
3959 	 * two for root back/forward refs, two for directory entries
3960 	 * and one for root of the snapshot.
3961 	 */
3962 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3963 	dst_rsv->space_info = src_rsv->space_info;
3964 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3965 }
3966 
3967 static unsigned drop_outstanding_extent(struct inode *inode)
3968 {
3969 	unsigned dropped_extents = 0;
3970 
3971 	spin_lock(&BTRFS_I(inode)->lock);
3972 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3973 	BTRFS_I(inode)->outstanding_extents--;
3974 
3975 	/*
3976 	 * If we have more or the same amount of outsanding extents than we have
3977 	 * reserved then we need to leave the reserved extents count alone.
3978 	 */
3979 	if (BTRFS_I(inode)->outstanding_extents >=
3980 	    BTRFS_I(inode)->reserved_extents)
3981 		goto out;
3982 
3983 	dropped_extents = BTRFS_I(inode)->reserved_extents -
3984 		BTRFS_I(inode)->outstanding_extents;
3985 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
3986 out:
3987 	spin_unlock(&BTRFS_I(inode)->lock);
3988 	return dropped_extents;
3989 }
3990 
3991 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3992 {
3993 	return num_bytes >>= 3;
3994 }
3995 
3996 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3997 {
3998 	struct btrfs_root *root = BTRFS_I(inode)->root;
3999 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4000 	u64 to_reserve = 0;
4001 	unsigned nr_extents = 0;
4002 	int ret;
4003 
4004 	if (btrfs_transaction_in_commit(root->fs_info))
4005 		schedule_timeout(1);
4006 
4007 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4008 
4009 	spin_lock(&BTRFS_I(inode)->lock);
4010 	BTRFS_I(inode)->outstanding_extents++;
4011 
4012 	if (BTRFS_I(inode)->outstanding_extents >
4013 	    BTRFS_I(inode)->reserved_extents) {
4014 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4015 			BTRFS_I(inode)->reserved_extents;
4016 		BTRFS_I(inode)->reserved_extents += nr_extents;
4017 
4018 		to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4019 	}
4020 	spin_unlock(&BTRFS_I(inode)->lock);
4021 
4022 	to_reserve += calc_csum_metadata_size(inode, num_bytes);
4023 	ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4024 	if (ret) {
4025 		unsigned dropped;
4026 		/*
4027 		 * We don't need the return value since our reservation failed,
4028 		 * we just need to clean up our counter.
4029 		 */
4030 		dropped = drop_outstanding_extent(inode);
4031 		WARN_ON(dropped > 1);
4032 		return ret;
4033 	}
4034 
4035 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4036 
4037 	return 0;
4038 }
4039 
4040 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4041 {
4042 	struct btrfs_root *root = BTRFS_I(inode)->root;
4043 	u64 to_free = 0;
4044 	unsigned dropped;
4045 
4046 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4047 	dropped = drop_outstanding_extent(inode);
4048 
4049 	to_free = calc_csum_metadata_size(inode, num_bytes);
4050 	if (dropped > 0)
4051 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4052 
4053 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4054 				to_free);
4055 }
4056 
4057 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4058 {
4059 	int ret;
4060 
4061 	ret = btrfs_check_data_free_space(inode, num_bytes);
4062 	if (ret)
4063 		return ret;
4064 
4065 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4066 	if (ret) {
4067 		btrfs_free_reserved_data_space(inode, num_bytes);
4068 		return ret;
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4075 {
4076 	btrfs_delalloc_release_metadata(inode, num_bytes);
4077 	btrfs_free_reserved_data_space(inode, num_bytes);
4078 }
4079 
4080 static int update_block_group(struct btrfs_trans_handle *trans,
4081 			      struct btrfs_root *root,
4082 			      u64 bytenr, u64 num_bytes, int alloc)
4083 {
4084 	struct btrfs_block_group_cache *cache = NULL;
4085 	struct btrfs_fs_info *info = root->fs_info;
4086 	u64 total = num_bytes;
4087 	u64 old_val;
4088 	u64 byte_in_group;
4089 	int factor;
4090 
4091 	/* block accounting for super block */
4092 	spin_lock(&info->delalloc_lock);
4093 	old_val = btrfs_super_bytes_used(&info->super_copy);
4094 	if (alloc)
4095 		old_val += num_bytes;
4096 	else
4097 		old_val -= num_bytes;
4098 	btrfs_set_super_bytes_used(&info->super_copy, old_val);
4099 	spin_unlock(&info->delalloc_lock);
4100 
4101 	while (total) {
4102 		cache = btrfs_lookup_block_group(info, bytenr);
4103 		if (!cache)
4104 			return -1;
4105 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4106 				    BTRFS_BLOCK_GROUP_RAID1 |
4107 				    BTRFS_BLOCK_GROUP_RAID10))
4108 			factor = 2;
4109 		else
4110 			factor = 1;
4111 		/*
4112 		 * If this block group has free space cache written out, we
4113 		 * need to make sure to load it if we are removing space.  This
4114 		 * is because we need the unpinning stage to actually add the
4115 		 * space back to the block group, otherwise we will leak space.
4116 		 */
4117 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4118 			cache_block_group(cache, trans, NULL, 1);
4119 
4120 		byte_in_group = bytenr - cache->key.objectid;
4121 		WARN_ON(byte_in_group > cache->key.offset);
4122 
4123 		spin_lock(&cache->space_info->lock);
4124 		spin_lock(&cache->lock);
4125 
4126 		if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4127 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4128 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4129 
4130 		cache->dirty = 1;
4131 		old_val = btrfs_block_group_used(&cache->item);
4132 		num_bytes = min(total, cache->key.offset - byte_in_group);
4133 		if (alloc) {
4134 			old_val += num_bytes;
4135 			btrfs_set_block_group_used(&cache->item, old_val);
4136 			cache->reserved -= num_bytes;
4137 			cache->space_info->bytes_reserved -= num_bytes;
4138 			cache->space_info->reservation_progress++;
4139 			cache->space_info->bytes_used += num_bytes;
4140 			cache->space_info->disk_used += num_bytes * factor;
4141 			spin_unlock(&cache->lock);
4142 			spin_unlock(&cache->space_info->lock);
4143 		} else {
4144 			old_val -= num_bytes;
4145 			btrfs_set_block_group_used(&cache->item, old_val);
4146 			cache->pinned += num_bytes;
4147 			cache->space_info->bytes_pinned += num_bytes;
4148 			cache->space_info->bytes_used -= num_bytes;
4149 			cache->space_info->disk_used -= num_bytes * factor;
4150 			spin_unlock(&cache->lock);
4151 			spin_unlock(&cache->space_info->lock);
4152 
4153 			set_extent_dirty(info->pinned_extents,
4154 					 bytenr, bytenr + num_bytes - 1,
4155 					 GFP_NOFS | __GFP_NOFAIL);
4156 		}
4157 		btrfs_put_block_group(cache);
4158 		total -= num_bytes;
4159 		bytenr += num_bytes;
4160 	}
4161 	return 0;
4162 }
4163 
4164 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4165 {
4166 	struct btrfs_block_group_cache *cache;
4167 	u64 bytenr;
4168 
4169 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4170 	if (!cache)
4171 		return 0;
4172 
4173 	bytenr = cache->key.objectid;
4174 	btrfs_put_block_group(cache);
4175 
4176 	return bytenr;
4177 }
4178 
4179 static int pin_down_extent(struct btrfs_root *root,
4180 			   struct btrfs_block_group_cache *cache,
4181 			   u64 bytenr, u64 num_bytes, int reserved)
4182 {
4183 	spin_lock(&cache->space_info->lock);
4184 	spin_lock(&cache->lock);
4185 	cache->pinned += num_bytes;
4186 	cache->space_info->bytes_pinned += num_bytes;
4187 	if (reserved) {
4188 		cache->reserved -= num_bytes;
4189 		cache->space_info->bytes_reserved -= num_bytes;
4190 		cache->space_info->reservation_progress++;
4191 	}
4192 	spin_unlock(&cache->lock);
4193 	spin_unlock(&cache->space_info->lock);
4194 
4195 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4196 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4197 	return 0;
4198 }
4199 
4200 /*
4201  * this function must be called within transaction
4202  */
4203 int btrfs_pin_extent(struct btrfs_root *root,
4204 		     u64 bytenr, u64 num_bytes, int reserved)
4205 {
4206 	struct btrfs_block_group_cache *cache;
4207 
4208 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4209 	BUG_ON(!cache);
4210 
4211 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4212 
4213 	btrfs_put_block_group(cache);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * update size of reserved extents. this function may return -EAGAIN
4219  * if 'reserve' is true or 'sinfo' is false.
4220  */
4221 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4222 				u64 num_bytes, int reserve, int sinfo)
4223 {
4224 	int ret = 0;
4225 	if (sinfo) {
4226 		struct btrfs_space_info *space_info = cache->space_info;
4227 		spin_lock(&space_info->lock);
4228 		spin_lock(&cache->lock);
4229 		if (reserve) {
4230 			if (cache->ro) {
4231 				ret = -EAGAIN;
4232 			} else {
4233 				cache->reserved += num_bytes;
4234 				space_info->bytes_reserved += num_bytes;
4235 			}
4236 		} else {
4237 			if (cache->ro)
4238 				space_info->bytes_readonly += num_bytes;
4239 			cache->reserved -= num_bytes;
4240 			space_info->bytes_reserved -= num_bytes;
4241 			space_info->reservation_progress++;
4242 		}
4243 		spin_unlock(&cache->lock);
4244 		spin_unlock(&space_info->lock);
4245 	} else {
4246 		spin_lock(&cache->lock);
4247 		if (cache->ro) {
4248 			ret = -EAGAIN;
4249 		} else {
4250 			if (reserve)
4251 				cache->reserved += num_bytes;
4252 			else
4253 				cache->reserved -= num_bytes;
4254 		}
4255 		spin_unlock(&cache->lock);
4256 	}
4257 	return ret;
4258 }
4259 
4260 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4261 				struct btrfs_root *root)
4262 {
4263 	struct btrfs_fs_info *fs_info = root->fs_info;
4264 	struct btrfs_caching_control *next;
4265 	struct btrfs_caching_control *caching_ctl;
4266 	struct btrfs_block_group_cache *cache;
4267 
4268 	down_write(&fs_info->extent_commit_sem);
4269 
4270 	list_for_each_entry_safe(caching_ctl, next,
4271 				 &fs_info->caching_block_groups, list) {
4272 		cache = caching_ctl->block_group;
4273 		if (block_group_cache_done(cache)) {
4274 			cache->last_byte_to_unpin = (u64)-1;
4275 			list_del_init(&caching_ctl->list);
4276 			put_caching_control(caching_ctl);
4277 		} else {
4278 			cache->last_byte_to_unpin = caching_ctl->progress;
4279 		}
4280 	}
4281 
4282 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4283 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4284 	else
4285 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4286 
4287 	up_write(&fs_info->extent_commit_sem);
4288 
4289 	update_global_block_rsv(fs_info);
4290 	return 0;
4291 }
4292 
4293 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4294 {
4295 	struct btrfs_fs_info *fs_info = root->fs_info;
4296 	struct btrfs_block_group_cache *cache = NULL;
4297 	u64 len;
4298 
4299 	while (start <= end) {
4300 		if (!cache ||
4301 		    start >= cache->key.objectid + cache->key.offset) {
4302 			if (cache)
4303 				btrfs_put_block_group(cache);
4304 			cache = btrfs_lookup_block_group(fs_info, start);
4305 			BUG_ON(!cache);
4306 		}
4307 
4308 		len = cache->key.objectid + cache->key.offset - start;
4309 		len = min(len, end + 1 - start);
4310 
4311 		if (start < cache->last_byte_to_unpin) {
4312 			len = min(len, cache->last_byte_to_unpin - start);
4313 			btrfs_add_free_space(cache, start, len);
4314 		}
4315 
4316 		start += len;
4317 
4318 		spin_lock(&cache->space_info->lock);
4319 		spin_lock(&cache->lock);
4320 		cache->pinned -= len;
4321 		cache->space_info->bytes_pinned -= len;
4322 		if (cache->ro) {
4323 			cache->space_info->bytes_readonly += len;
4324 		} else if (cache->reserved_pinned > 0) {
4325 			len = min(len, cache->reserved_pinned);
4326 			cache->reserved_pinned -= len;
4327 			cache->space_info->bytes_reserved += len;
4328 		}
4329 		spin_unlock(&cache->lock);
4330 		spin_unlock(&cache->space_info->lock);
4331 	}
4332 
4333 	if (cache)
4334 		btrfs_put_block_group(cache);
4335 	return 0;
4336 }
4337 
4338 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4339 			       struct btrfs_root *root)
4340 {
4341 	struct btrfs_fs_info *fs_info = root->fs_info;
4342 	struct extent_io_tree *unpin;
4343 	struct btrfs_block_rsv *block_rsv;
4344 	struct btrfs_block_rsv *next_rsv;
4345 	u64 start;
4346 	u64 end;
4347 	int idx;
4348 	int ret;
4349 
4350 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4351 		unpin = &fs_info->freed_extents[1];
4352 	else
4353 		unpin = &fs_info->freed_extents[0];
4354 
4355 	while (1) {
4356 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4357 					    EXTENT_DIRTY);
4358 		if (ret)
4359 			break;
4360 
4361 		if (btrfs_test_opt(root, DISCARD))
4362 			ret = btrfs_discard_extent(root, start,
4363 						   end + 1 - start, NULL);
4364 
4365 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4366 		unpin_extent_range(root, start, end);
4367 		cond_resched();
4368 	}
4369 
4370 	mutex_lock(&fs_info->durable_block_rsv_mutex);
4371 	list_for_each_entry_safe(block_rsv, next_rsv,
4372 				 &fs_info->durable_block_rsv_list, list) {
4373 
4374 		idx = trans->transid & 0x1;
4375 		if (block_rsv->freed[idx] > 0) {
4376 			block_rsv_add_bytes(block_rsv,
4377 					    block_rsv->freed[idx], 0);
4378 			block_rsv->freed[idx] = 0;
4379 		}
4380 		if (atomic_read(&block_rsv->usage) == 0) {
4381 			btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4382 
4383 			if (block_rsv->freed[0] == 0 &&
4384 			    block_rsv->freed[1] == 0) {
4385 				list_del_init(&block_rsv->list);
4386 				kfree(block_rsv);
4387 			}
4388 		} else {
4389 			btrfs_block_rsv_release(root, block_rsv, 0);
4390 		}
4391 	}
4392 	mutex_unlock(&fs_info->durable_block_rsv_mutex);
4393 
4394 	return 0;
4395 }
4396 
4397 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4398 				struct btrfs_root *root,
4399 				u64 bytenr, u64 num_bytes, u64 parent,
4400 				u64 root_objectid, u64 owner_objectid,
4401 				u64 owner_offset, int refs_to_drop,
4402 				struct btrfs_delayed_extent_op *extent_op)
4403 {
4404 	struct btrfs_key key;
4405 	struct btrfs_path *path;
4406 	struct btrfs_fs_info *info = root->fs_info;
4407 	struct btrfs_root *extent_root = info->extent_root;
4408 	struct extent_buffer *leaf;
4409 	struct btrfs_extent_item *ei;
4410 	struct btrfs_extent_inline_ref *iref;
4411 	int ret;
4412 	int is_data;
4413 	int extent_slot = 0;
4414 	int found_extent = 0;
4415 	int num_to_del = 1;
4416 	u32 item_size;
4417 	u64 refs;
4418 
4419 	path = btrfs_alloc_path();
4420 	if (!path)
4421 		return -ENOMEM;
4422 
4423 	path->reada = 1;
4424 	path->leave_spinning = 1;
4425 
4426 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4427 	BUG_ON(!is_data && refs_to_drop != 1);
4428 
4429 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4430 				    bytenr, num_bytes, parent,
4431 				    root_objectid, owner_objectid,
4432 				    owner_offset);
4433 	if (ret == 0) {
4434 		extent_slot = path->slots[0];
4435 		while (extent_slot >= 0) {
4436 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4437 					      extent_slot);
4438 			if (key.objectid != bytenr)
4439 				break;
4440 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4441 			    key.offset == num_bytes) {
4442 				found_extent = 1;
4443 				break;
4444 			}
4445 			if (path->slots[0] - extent_slot > 5)
4446 				break;
4447 			extent_slot--;
4448 		}
4449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4450 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4451 		if (found_extent && item_size < sizeof(*ei))
4452 			found_extent = 0;
4453 #endif
4454 		if (!found_extent) {
4455 			BUG_ON(iref);
4456 			ret = remove_extent_backref(trans, extent_root, path,
4457 						    NULL, refs_to_drop,
4458 						    is_data);
4459 			BUG_ON(ret);
4460 			btrfs_release_path(path);
4461 			path->leave_spinning = 1;
4462 
4463 			key.objectid = bytenr;
4464 			key.type = BTRFS_EXTENT_ITEM_KEY;
4465 			key.offset = num_bytes;
4466 
4467 			ret = btrfs_search_slot(trans, extent_root,
4468 						&key, path, -1, 1);
4469 			if (ret) {
4470 				printk(KERN_ERR "umm, got %d back from search"
4471 				       ", was looking for %llu\n", ret,
4472 				       (unsigned long long)bytenr);
4473 				if (ret > 0)
4474 					btrfs_print_leaf(extent_root,
4475 							 path->nodes[0]);
4476 			}
4477 			BUG_ON(ret);
4478 			extent_slot = path->slots[0];
4479 		}
4480 	} else {
4481 		btrfs_print_leaf(extent_root, path->nodes[0]);
4482 		WARN_ON(1);
4483 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4484 		       "parent %llu root %llu  owner %llu offset %llu\n",
4485 		       (unsigned long long)bytenr,
4486 		       (unsigned long long)parent,
4487 		       (unsigned long long)root_objectid,
4488 		       (unsigned long long)owner_objectid,
4489 		       (unsigned long long)owner_offset);
4490 	}
4491 
4492 	leaf = path->nodes[0];
4493 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4495 	if (item_size < sizeof(*ei)) {
4496 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4497 		ret = convert_extent_item_v0(trans, extent_root, path,
4498 					     owner_objectid, 0);
4499 		BUG_ON(ret < 0);
4500 
4501 		btrfs_release_path(path);
4502 		path->leave_spinning = 1;
4503 
4504 		key.objectid = bytenr;
4505 		key.type = BTRFS_EXTENT_ITEM_KEY;
4506 		key.offset = num_bytes;
4507 
4508 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4509 					-1, 1);
4510 		if (ret) {
4511 			printk(KERN_ERR "umm, got %d back from search"
4512 			       ", was looking for %llu\n", ret,
4513 			       (unsigned long long)bytenr);
4514 			btrfs_print_leaf(extent_root, path->nodes[0]);
4515 		}
4516 		BUG_ON(ret);
4517 		extent_slot = path->slots[0];
4518 		leaf = path->nodes[0];
4519 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4520 	}
4521 #endif
4522 	BUG_ON(item_size < sizeof(*ei));
4523 	ei = btrfs_item_ptr(leaf, extent_slot,
4524 			    struct btrfs_extent_item);
4525 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4526 		struct btrfs_tree_block_info *bi;
4527 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4528 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4529 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4530 	}
4531 
4532 	refs = btrfs_extent_refs(leaf, ei);
4533 	BUG_ON(refs < refs_to_drop);
4534 	refs -= refs_to_drop;
4535 
4536 	if (refs > 0) {
4537 		if (extent_op)
4538 			__run_delayed_extent_op(extent_op, leaf, ei);
4539 		/*
4540 		 * In the case of inline back ref, reference count will
4541 		 * be updated by remove_extent_backref
4542 		 */
4543 		if (iref) {
4544 			BUG_ON(!found_extent);
4545 		} else {
4546 			btrfs_set_extent_refs(leaf, ei, refs);
4547 			btrfs_mark_buffer_dirty(leaf);
4548 		}
4549 		if (found_extent) {
4550 			ret = remove_extent_backref(trans, extent_root, path,
4551 						    iref, refs_to_drop,
4552 						    is_data);
4553 			BUG_ON(ret);
4554 		}
4555 	} else {
4556 		if (found_extent) {
4557 			BUG_ON(is_data && refs_to_drop !=
4558 			       extent_data_ref_count(root, path, iref));
4559 			if (iref) {
4560 				BUG_ON(path->slots[0] != extent_slot);
4561 			} else {
4562 				BUG_ON(path->slots[0] != extent_slot + 1);
4563 				path->slots[0] = extent_slot;
4564 				num_to_del = 2;
4565 			}
4566 		}
4567 
4568 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4569 				      num_to_del);
4570 		BUG_ON(ret);
4571 		btrfs_release_path(path);
4572 
4573 		if (is_data) {
4574 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4575 			BUG_ON(ret);
4576 		} else {
4577 			invalidate_mapping_pages(info->btree_inode->i_mapping,
4578 			     bytenr >> PAGE_CACHE_SHIFT,
4579 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4580 		}
4581 
4582 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4583 		BUG_ON(ret);
4584 	}
4585 	btrfs_free_path(path);
4586 	return ret;
4587 }
4588 
4589 /*
4590  * when we free an block, it is possible (and likely) that we free the last
4591  * delayed ref for that extent as well.  This searches the delayed ref tree for
4592  * a given extent, and if there are no other delayed refs to be processed, it
4593  * removes it from the tree.
4594  */
4595 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4596 				      struct btrfs_root *root, u64 bytenr)
4597 {
4598 	struct btrfs_delayed_ref_head *head;
4599 	struct btrfs_delayed_ref_root *delayed_refs;
4600 	struct btrfs_delayed_ref_node *ref;
4601 	struct rb_node *node;
4602 	int ret = 0;
4603 
4604 	delayed_refs = &trans->transaction->delayed_refs;
4605 	spin_lock(&delayed_refs->lock);
4606 	head = btrfs_find_delayed_ref_head(trans, bytenr);
4607 	if (!head)
4608 		goto out;
4609 
4610 	node = rb_prev(&head->node.rb_node);
4611 	if (!node)
4612 		goto out;
4613 
4614 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4615 
4616 	/* there are still entries for this ref, we can't drop it */
4617 	if (ref->bytenr == bytenr)
4618 		goto out;
4619 
4620 	if (head->extent_op) {
4621 		if (!head->must_insert_reserved)
4622 			goto out;
4623 		kfree(head->extent_op);
4624 		head->extent_op = NULL;
4625 	}
4626 
4627 	/*
4628 	 * waiting for the lock here would deadlock.  If someone else has it
4629 	 * locked they are already in the process of dropping it anyway
4630 	 */
4631 	if (!mutex_trylock(&head->mutex))
4632 		goto out;
4633 
4634 	/*
4635 	 * at this point we have a head with no other entries.  Go
4636 	 * ahead and process it.
4637 	 */
4638 	head->node.in_tree = 0;
4639 	rb_erase(&head->node.rb_node, &delayed_refs->root);
4640 
4641 	delayed_refs->num_entries--;
4642 
4643 	/*
4644 	 * we don't take a ref on the node because we're removing it from the
4645 	 * tree, so we just steal the ref the tree was holding.
4646 	 */
4647 	delayed_refs->num_heads--;
4648 	if (list_empty(&head->cluster))
4649 		delayed_refs->num_heads_ready--;
4650 
4651 	list_del_init(&head->cluster);
4652 	spin_unlock(&delayed_refs->lock);
4653 
4654 	BUG_ON(head->extent_op);
4655 	if (head->must_insert_reserved)
4656 		ret = 1;
4657 
4658 	mutex_unlock(&head->mutex);
4659 	btrfs_put_delayed_ref(&head->node);
4660 	return ret;
4661 out:
4662 	spin_unlock(&delayed_refs->lock);
4663 	return 0;
4664 }
4665 
4666 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4667 			   struct btrfs_root *root,
4668 			   struct extent_buffer *buf,
4669 			   u64 parent, int last_ref)
4670 {
4671 	struct btrfs_block_rsv *block_rsv;
4672 	struct btrfs_block_group_cache *cache = NULL;
4673 	int ret;
4674 
4675 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4676 		ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4677 						parent, root->root_key.objectid,
4678 						btrfs_header_level(buf),
4679 						BTRFS_DROP_DELAYED_REF, NULL);
4680 		BUG_ON(ret);
4681 	}
4682 
4683 	if (!last_ref)
4684 		return;
4685 
4686 	block_rsv = get_block_rsv(trans, root);
4687 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4688 	if (block_rsv->space_info != cache->space_info)
4689 		goto out;
4690 
4691 	if (btrfs_header_generation(buf) == trans->transid) {
4692 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4693 			ret = check_ref_cleanup(trans, root, buf->start);
4694 			if (!ret)
4695 				goto pin;
4696 		}
4697 
4698 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4699 			pin_down_extent(root, cache, buf->start, buf->len, 1);
4700 			goto pin;
4701 		}
4702 
4703 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4704 
4705 		btrfs_add_free_space(cache, buf->start, buf->len);
4706 		ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4707 		if (ret == -EAGAIN) {
4708 			/* block group became read-only */
4709 			btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4710 			goto out;
4711 		}
4712 
4713 		ret = 1;
4714 		spin_lock(&block_rsv->lock);
4715 		if (block_rsv->reserved < block_rsv->size) {
4716 			block_rsv->reserved += buf->len;
4717 			ret = 0;
4718 		}
4719 		spin_unlock(&block_rsv->lock);
4720 
4721 		if (ret) {
4722 			spin_lock(&cache->space_info->lock);
4723 			cache->space_info->bytes_reserved -= buf->len;
4724 			cache->space_info->reservation_progress++;
4725 			spin_unlock(&cache->space_info->lock);
4726 		}
4727 		goto out;
4728 	}
4729 pin:
4730 	if (block_rsv->durable && !cache->ro) {
4731 		ret = 0;
4732 		spin_lock(&cache->lock);
4733 		if (!cache->ro) {
4734 			cache->reserved_pinned += buf->len;
4735 			ret = 1;
4736 		}
4737 		spin_unlock(&cache->lock);
4738 
4739 		if (ret) {
4740 			spin_lock(&block_rsv->lock);
4741 			block_rsv->freed[trans->transid & 0x1] += buf->len;
4742 			spin_unlock(&block_rsv->lock);
4743 		}
4744 	}
4745 out:
4746 	/*
4747 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4748 	 * anymore.
4749 	 */
4750 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4751 	btrfs_put_block_group(cache);
4752 }
4753 
4754 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4755 		      struct btrfs_root *root,
4756 		      u64 bytenr, u64 num_bytes, u64 parent,
4757 		      u64 root_objectid, u64 owner, u64 offset)
4758 {
4759 	int ret;
4760 
4761 	/*
4762 	 * tree log blocks never actually go into the extent allocation
4763 	 * tree, just update pinning info and exit early.
4764 	 */
4765 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4766 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4767 		/* unlocks the pinned mutex */
4768 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
4769 		ret = 0;
4770 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4771 		ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4772 					parent, root_objectid, (int)owner,
4773 					BTRFS_DROP_DELAYED_REF, NULL);
4774 		BUG_ON(ret);
4775 	} else {
4776 		ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4777 					parent, root_objectid, owner,
4778 					offset, BTRFS_DROP_DELAYED_REF, NULL);
4779 		BUG_ON(ret);
4780 	}
4781 	return ret;
4782 }
4783 
4784 static u64 stripe_align(struct btrfs_root *root, u64 val)
4785 {
4786 	u64 mask = ((u64)root->stripesize - 1);
4787 	u64 ret = (val + mask) & ~mask;
4788 	return ret;
4789 }
4790 
4791 /*
4792  * when we wait for progress in the block group caching, its because
4793  * our allocation attempt failed at least once.  So, we must sleep
4794  * and let some progress happen before we try again.
4795  *
4796  * This function will sleep at least once waiting for new free space to
4797  * show up, and then it will check the block group free space numbers
4798  * for our min num_bytes.  Another option is to have it go ahead
4799  * and look in the rbtree for a free extent of a given size, but this
4800  * is a good start.
4801  */
4802 static noinline int
4803 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4804 				u64 num_bytes)
4805 {
4806 	struct btrfs_caching_control *caching_ctl;
4807 	DEFINE_WAIT(wait);
4808 
4809 	caching_ctl = get_caching_control(cache);
4810 	if (!caching_ctl)
4811 		return 0;
4812 
4813 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4814 		   (cache->free_space_ctl->free_space >= num_bytes));
4815 
4816 	put_caching_control(caching_ctl);
4817 	return 0;
4818 }
4819 
4820 static noinline int
4821 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4822 {
4823 	struct btrfs_caching_control *caching_ctl;
4824 	DEFINE_WAIT(wait);
4825 
4826 	caching_ctl = get_caching_control(cache);
4827 	if (!caching_ctl)
4828 		return 0;
4829 
4830 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
4831 
4832 	put_caching_control(caching_ctl);
4833 	return 0;
4834 }
4835 
4836 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4837 {
4838 	int index;
4839 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4840 		index = 0;
4841 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4842 		index = 1;
4843 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4844 		index = 2;
4845 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4846 		index = 3;
4847 	else
4848 		index = 4;
4849 	return index;
4850 }
4851 
4852 enum btrfs_loop_type {
4853 	LOOP_FIND_IDEAL = 0,
4854 	LOOP_CACHING_NOWAIT = 1,
4855 	LOOP_CACHING_WAIT = 2,
4856 	LOOP_ALLOC_CHUNK = 3,
4857 	LOOP_NO_EMPTY_SIZE = 4,
4858 };
4859 
4860 /*
4861  * walks the btree of allocated extents and find a hole of a given size.
4862  * The key ins is changed to record the hole:
4863  * ins->objectid == block start
4864  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4865  * ins->offset == number of blocks
4866  * Any available blocks before search_start are skipped.
4867  */
4868 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4869 				     struct btrfs_root *orig_root,
4870 				     u64 num_bytes, u64 empty_size,
4871 				     u64 search_start, u64 search_end,
4872 				     u64 hint_byte, struct btrfs_key *ins,
4873 				     u64 data)
4874 {
4875 	int ret = 0;
4876 	struct btrfs_root *root = orig_root->fs_info->extent_root;
4877 	struct btrfs_free_cluster *last_ptr = NULL;
4878 	struct btrfs_block_group_cache *block_group = NULL;
4879 	int empty_cluster = 2 * 1024 * 1024;
4880 	int allowed_chunk_alloc = 0;
4881 	int done_chunk_alloc = 0;
4882 	struct btrfs_space_info *space_info;
4883 	int last_ptr_loop = 0;
4884 	int loop = 0;
4885 	int index = 0;
4886 	bool found_uncached_bg = false;
4887 	bool failed_cluster_refill = false;
4888 	bool failed_alloc = false;
4889 	bool use_cluster = true;
4890 	u64 ideal_cache_percent = 0;
4891 	u64 ideal_cache_offset = 0;
4892 
4893 	WARN_ON(num_bytes < root->sectorsize);
4894 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4895 	ins->objectid = 0;
4896 	ins->offset = 0;
4897 
4898 	space_info = __find_space_info(root->fs_info, data);
4899 	if (!space_info) {
4900 		printk(KERN_ERR "No space info for %llu\n", data);
4901 		return -ENOSPC;
4902 	}
4903 
4904 	/*
4905 	 * If the space info is for both data and metadata it means we have a
4906 	 * small filesystem and we can't use the clustering stuff.
4907 	 */
4908 	if (btrfs_mixed_space_info(space_info))
4909 		use_cluster = false;
4910 
4911 	if (orig_root->ref_cows || empty_size)
4912 		allowed_chunk_alloc = 1;
4913 
4914 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4915 		last_ptr = &root->fs_info->meta_alloc_cluster;
4916 		if (!btrfs_test_opt(root, SSD))
4917 			empty_cluster = 64 * 1024;
4918 	}
4919 
4920 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4921 	    btrfs_test_opt(root, SSD)) {
4922 		last_ptr = &root->fs_info->data_alloc_cluster;
4923 	}
4924 
4925 	if (last_ptr) {
4926 		spin_lock(&last_ptr->lock);
4927 		if (last_ptr->block_group)
4928 			hint_byte = last_ptr->window_start;
4929 		spin_unlock(&last_ptr->lock);
4930 	}
4931 
4932 	search_start = max(search_start, first_logical_byte(root, 0));
4933 	search_start = max(search_start, hint_byte);
4934 
4935 	if (!last_ptr)
4936 		empty_cluster = 0;
4937 
4938 	if (search_start == hint_byte) {
4939 ideal_cache:
4940 		block_group = btrfs_lookup_block_group(root->fs_info,
4941 						       search_start);
4942 		/*
4943 		 * we don't want to use the block group if it doesn't match our
4944 		 * allocation bits, or if its not cached.
4945 		 *
4946 		 * However if we are re-searching with an ideal block group
4947 		 * picked out then we don't care that the block group is cached.
4948 		 */
4949 		if (block_group && block_group_bits(block_group, data) &&
4950 		    (block_group->cached != BTRFS_CACHE_NO ||
4951 		     search_start == ideal_cache_offset)) {
4952 			down_read(&space_info->groups_sem);
4953 			if (list_empty(&block_group->list) ||
4954 			    block_group->ro) {
4955 				/*
4956 				 * someone is removing this block group,
4957 				 * we can't jump into the have_block_group
4958 				 * target because our list pointers are not
4959 				 * valid
4960 				 */
4961 				btrfs_put_block_group(block_group);
4962 				up_read(&space_info->groups_sem);
4963 			} else {
4964 				index = get_block_group_index(block_group);
4965 				goto have_block_group;
4966 			}
4967 		} else if (block_group) {
4968 			btrfs_put_block_group(block_group);
4969 		}
4970 	}
4971 search:
4972 	down_read(&space_info->groups_sem);
4973 	list_for_each_entry(block_group, &space_info->block_groups[index],
4974 			    list) {
4975 		u64 offset;
4976 		int cached;
4977 
4978 		btrfs_get_block_group(block_group);
4979 		search_start = block_group->key.objectid;
4980 
4981 		/*
4982 		 * this can happen if we end up cycling through all the
4983 		 * raid types, but we want to make sure we only allocate
4984 		 * for the proper type.
4985 		 */
4986 		if (!block_group_bits(block_group, data)) {
4987 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
4988 				BTRFS_BLOCK_GROUP_RAID1 |
4989 				BTRFS_BLOCK_GROUP_RAID10;
4990 
4991 			/*
4992 			 * if they asked for extra copies and this block group
4993 			 * doesn't provide them, bail.  This does allow us to
4994 			 * fill raid0 from raid1.
4995 			 */
4996 			if ((data & extra) && !(block_group->flags & extra))
4997 				goto loop;
4998 		}
4999 
5000 have_block_group:
5001 		if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
5002 			u64 free_percent;
5003 
5004 			ret = cache_block_group(block_group, trans,
5005 						orig_root, 1);
5006 			if (block_group->cached == BTRFS_CACHE_FINISHED)
5007 				goto have_block_group;
5008 
5009 			free_percent = btrfs_block_group_used(&block_group->item);
5010 			free_percent *= 100;
5011 			free_percent = div64_u64(free_percent,
5012 						 block_group->key.offset);
5013 			free_percent = 100 - free_percent;
5014 			if (free_percent > ideal_cache_percent &&
5015 			    likely(!block_group->ro)) {
5016 				ideal_cache_offset = block_group->key.objectid;
5017 				ideal_cache_percent = free_percent;
5018 			}
5019 
5020 			/*
5021 			 * The caching workers are limited to 2 threads, so we
5022 			 * can queue as much work as we care to.
5023 			 */
5024 			if (loop > LOOP_FIND_IDEAL) {
5025 				ret = cache_block_group(block_group, trans,
5026 							orig_root, 0);
5027 				BUG_ON(ret);
5028 			}
5029 			found_uncached_bg = true;
5030 
5031 			/*
5032 			 * If loop is set for cached only, try the next block
5033 			 * group.
5034 			 */
5035 			if (loop == LOOP_FIND_IDEAL)
5036 				goto loop;
5037 		}
5038 
5039 		cached = block_group_cache_done(block_group);
5040 		if (unlikely(!cached))
5041 			found_uncached_bg = true;
5042 
5043 		if (unlikely(block_group->ro))
5044 			goto loop;
5045 
5046 		spin_lock(&block_group->free_space_ctl->tree_lock);
5047 		if (cached &&
5048 		    block_group->free_space_ctl->free_space <
5049 		    num_bytes + empty_size) {
5050 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5051 			goto loop;
5052 		}
5053 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5054 
5055 		/*
5056 		 * Ok we want to try and use the cluster allocator, so lets look
5057 		 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5058 		 * have tried the cluster allocator plenty of times at this
5059 		 * point and not have found anything, so we are likely way too
5060 		 * fragmented for the clustering stuff to find anything, so lets
5061 		 * just skip it and let the allocator find whatever block it can
5062 		 * find
5063 		 */
5064 		if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5065 			/*
5066 			 * the refill lock keeps out other
5067 			 * people trying to start a new cluster
5068 			 */
5069 			spin_lock(&last_ptr->refill_lock);
5070 			if (last_ptr->block_group &&
5071 			    (last_ptr->block_group->ro ||
5072 			    !block_group_bits(last_ptr->block_group, data))) {
5073 				offset = 0;
5074 				goto refill_cluster;
5075 			}
5076 
5077 			offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5078 						 num_bytes, search_start);
5079 			if (offset) {
5080 				/* we have a block, we're done */
5081 				spin_unlock(&last_ptr->refill_lock);
5082 				goto checks;
5083 			}
5084 
5085 			spin_lock(&last_ptr->lock);
5086 			/*
5087 			 * whoops, this cluster doesn't actually point to
5088 			 * this block group.  Get a ref on the block
5089 			 * group is does point to and try again
5090 			 */
5091 			if (!last_ptr_loop && last_ptr->block_group &&
5092 			    last_ptr->block_group != block_group &&
5093 			    index <=
5094 				 get_block_group_index(last_ptr->block_group)) {
5095 
5096 				btrfs_put_block_group(block_group);
5097 				block_group = last_ptr->block_group;
5098 				btrfs_get_block_group(block_group);
5099 				spin_unlock(&last_ptr->lock);
5100 				spin_unlock(&last_ptr->refill_lock);
5101 
5102 				last_ptr_loop = 1;
5103 				search_start = block_group->key.objectid;
5104 				/*
5105 				 * we know this block group is properly
5106 				 * in the list because
5107 				 * btrfs_remove_block_group, drops the
5108 				 * cluster before it removes the block
5109 				 * group from the list
5110 				 */
5111 				goto have_block_group;
5112 			}
5113 			spin_unlock(&last_ptr->lock);
5114 refill_cluster:
5115 			/*
5116 			 * this cluster didn't work out, free it and
5117 			 * start over
5118 			 */
5119 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5120 
5121 			last_ptr_loop = 0;
5122 
5123 			/* allocate a cluster in this block group */
5124 			ret = btrfs_find_space_cluster(trans, root,
5125 					       block_group, last_ptr,
5126 					       offset, num_bytes,
5127 					       empty_cluster + empty_size);
5128 			if (ret == 0) {
5129 				/*
5130 				 * now pull our allocation out of this
5131 				 * cluster
5132 				 */
5133 				offset = btrfs_alloc_from_cluster(block_group,
5134 						  last_ptr, num_bytes,
5135 						  search_start);
5136 				if (offset) {
5137 					/* we found one, proceed */
5138 					spin_unlock(&last_ptr->refill_lock);
5139 					goto checks;
5140 				}
5141 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5142 				   && !failed_cluster_refill) {
5143 				spin_unlock(&last_ptr->refill_lock);
5144 
5145 				failed_cluster_refill = true;
5146 				wait_block_group_cache_progress(block_group,
5147 				       num_bytes + empty_cluster + empty_size);
5148 				goto have_block_group;
5149 			}
5150 
5151 			/*
5152 			 * at this point we either didn't find a cluster
5153 			 * or we weren't able to allocate a block from our
5154 			 * cluster.  Free the cluster we've been trying
5155 			 * to use, and go to the next block group
5156 			 */
5157 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5158 			spin_unlock(&last_ptr->refill_lock);
5159 			goto loop;
5160 		}
5161 
5162 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5163 						    num_bytes, empty_size);
5164 		/*
5165 		 * If we didn't find a chunk, and we haven't failed on this
5166 		 * block group before, and this block group is in the middle of
5167 		 * caching and we are ok with waiting, then go ahead and wait
5168 		 * for progress to be made, and set failed_alloc to true.
5169 		 *
5170 		 * If failed_alloc is true then we've already waited on this
5171 		 * block group once and should move on to the next block group.
5172 		 */
5173 		if (!offset && !failed_alloc && !cached &&
5174 		    loop > LOOP_CACHING_NOWAIT) {
5175 			wait_block_group_cache_progress(block_group,
5176 						num_bytes + empty_size);
5177 			failed_alloc = true;
5178 			goto have_block_group;
5179 		} else if (!offset) {
5180 			goto loop;
5181 		}
5182 checks:
5183 		search_start = stripe_align(root, offset);
5184 		/* move on to the next group */
5185 		if (search_start + num_bytes >= search_end) {
5186 			btrfs_add_free_space(block_group, offset, num_bytes);
5187 			goto loop;
5188 		}
5189 
5190 		/* move on to the next group */
5191 		if (search_start + num_bytes >
5192 		    block_group->key.objectid + block_group->key.offset) {
5193 			btrfs_add_free_space(block_group, offset, num_bytes);
5194 			goto loop;
5195 		}
5196 
5197 		ins->objectid = search_start;
5198 		ins->offset = num_bytes;
5199 
5200 		if (offset < search_start)
5201 			btrfs_add_free_space(block_group, offset,
5202 					     search_start - offset);
5203 		BUG_ON(offset > search_start);
5204 
5205 		ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5206 					    (data & BTRFS_BLOCK_GROUP_DATA));
5207 		if (ret == -EAGAIN) {
5208 			btrfs_add_free_space(block_group, offset, num_bytes);
5209 			goto loop;
5210 		}
5211 
5212 		/* we are all good, lets return */
5213 		ins->objectid = search_start;
5214 		ins->offset = num_bytes;
5215 
5216 		if (offset < search_start)
5217 			btrfs_add_free_space(block_group, offset,
5218 					     search_start - offset);
5219 		BUG_ON(offset > search_start);
5220 		btrfs_put_block_group(block_group);
5221 		break;
5222 loop:
5223 		failed_cluster_refill = false;
5224 		failed_alloc = false;
5225 		BUG_ON(index != get_block_group_index(block_group));
5226 		btrfs_put_block_group(block_group);
5227 	}
5228 	up_read(&space_info->groups_sem);
5229 
5230 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5231 		goto search;
5232 
5233 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5234 	 *			for them to make caching progress.  Also
5235 	 *			determine the best possible bg to cache
5236 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5237 	 *			caching kthreads as we move along
5238 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5239 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5240 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5241 	 *			again
5242 	 */
5243 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5244 		index = 0;
5245 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5246 			found_uncached_bg = false;
5247 			loop++;
5248 			if (!ideal_cache_percent)
5249 				goto search;
5250 
5251 			/*
5252 			 * 1 of the following 2 things have happened so far
5253 			 *
5254 			 * 1) We found an ideal block group for caching that
5255 			 * is mostly full and will cache quickly, so we might
5256 			 * as well wait for it.
5257 			 *
5258 			 * 2) We searched for cached only and we didn't find
5259 			 * anything, and we didn't start any caching kthreads
5260 			 * either, so chances are we will loop through and
5261 			 * start a couple caching kthreads, and then come back
5262 			 * around and just wait for them.  This will be slower
5263 			 * because we will have 2 caching kthreads reading at
5264 			 * the same time when we could have just started one
5265 			 * and waited for it to get far enough to give us an
5266 			 * allocation, so go ahead and go to the wait caching
5267 			 * loop.
5268 			 */
5269 			loop = LOOP_CACHING_WAIT;
5270 			search_start = ideal_cache_offset;
5271 			ideal_cache_percent = 0;
5272 			goto ideal_cache;
5273 		} else if (loop == LOOP_FIND_IDEAL) {
5274 			/*
5275 			 * Didn't find a uncached bg, wait on anything we find
5276 			 * next.
5277 			 */
5278 			loop = LOOP_CACHING_WAIT;
5279 			goto search;
5280 		}
5281 
5282 		loop++;
5283 
5284 		if (loop == LOOP_ALLOC_CHUNK) {
5285 		       if (allowed_chunk_alloc) {
5286 				ret = do_chunk_alloc(trans, root, num_bytes +
5287 						     2 * 1024 * 1024, data,
5288 						     CHUNK_ALLOC_LIMITED);
5289 				allowed_chunk_alloc = 0;
5290 				if (ret == 1)
5291 					done_chunk_alloc = 1;
5292 			} else if (!done_chunk_alloc &&
5293 				   space_info->force_alloc ==
5294 				   CHUNK_ALLOC_NO_FORCE) {
5295 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5296 			}
5297 
5298 		       /*
5299 			* We didn't allocate a chunk, go ahead and drop the
5300 			* empty size and loop again.
5301 			*/
5302 		       if (!done_chunk_alloc)
5303 			       loop = LOOP_NO_EMPTY_SIZE;
5304 		}
5305 
5306 		if (loop == LOOP_NO_EMPTY_SIZE) {
5307 			empty_size = 0;
5308 			empty_cluster = 0;
5309 		}
5310 
5311 		goto search;
5312 	} else if (!ins->objectid) {
5313 		ret = -ENOSPC;
5314 	} else if (ins->objectid) {
5315 		ret = 0;
5316 	}
5317 
5318 	return ret;
5319 }
5320 
5321 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5322 			    int dump_block_groups)
5323 {
5324 	struct btrfs_block_group_cache *cache;
5325 	int index = 0;
5326 
5327 	spin_lock(&info->lock);
5328 	printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5329 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5330 				    info->bytes_pinned - info->bytes_reserved -
5331 				    info->bytes_readonly),
5332 	       (info->full) ? "" : "not ");
5333 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5334 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5335 	       (unsigned long long)info->total_bytes,
5336 	       (unsigned long long)info->bytes_used,
5337 	       (unsigned long long)info->bytes_pinned,
5338 	       (unsigned long long)info->bytes_reserved,
5339 	       (unsigned long long)info->bytes_may_use,
5340 	       (unsigned long long)info->bytes_readonly);
5341 	spin_unlock(&info->lock);
5342 
5343 	if (!dump_block_groups)
5344 		return;
5345 
5346 	down_read(&info->groups_sem);
5347 again:
5348 	list_for_each_entry(cache, &info->block_groups[index], list) {
5349 		spin_lock(&cache->lock);
5350 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5351 		       "%llu pinned %llu reserved\n",
5352 		       (unsigned long long)cache->key.objectid,
5353 		       (unsigned long long)cache->key.offset,
5354 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5355 		       (unsigned long long)cache->pinned,
5356 		       (unsigned long long)cache->reserved);
5357 		btrfs_dump_free_space(cache, bytes);
5358 		spin_unlock(&cache->lock);
5359 	}
5360 	if (++index < BTRFS_NR_RAID_TYPES)
5361 		goto again;
5362 	up_read(&info->groups_sem);
5363 }
5364 
5365 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5366 			 struct btrfs_root *root,
5367 			 u64 num_bytes, u64 min_alloc_size,
5368 			 u64 empty_size, u64 hint_byte,
5369 			 u64 search_end, struct btrfs_key *ins,
5370 			 u64 data)
5371 {
5372 	int ret;
5373 	u64 search_start = 0;
5374 
5375 	data = btrfs_get_alloc_profile(root, data);
5376 again:
5377 	/*
5378 	 * the only place that sets empty_size is btrfs_realloc_node, which
5379 	 * is not called recursively on allocations
5380 	 */
5381 	if (empty_size || root->ref_cows)
5382 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5383 				     num_bytes + 2 * 1024 * 1024, data,
5384 				     CHUNK_ALLOC_NO_FORCE);
5385 
5386 	WARN_ON(num_bytes < root->sectorsize);
5387 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5388 			       search_start, search_end, hint_byte,
5389 			       ins, data);
5390 
5391 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5392 		num_bytes = num_bytes >> 1;
5393 		num_bytes = num_bytes & ~(root->sectorsize - 1);
5394 		num_bytes = max(num_bytes, min_alloc_size);
5395 		do_chunk_alloc(trans, root->fs_info->extent_root,
5396 			       num_bytes, data, CHUNK_ALLOC_FORCE);
5397 		goto again;
5398 	}
5399 	if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5400 		struct btrfs_space_info *sinfo;
5401 
5402 		sinfo = __find_space_info(root->fs_info, data);
5403 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5404 		       "wanted %llu\n", (unsigned long long)data,
5405 		       (unsigned long long)num_bytes);
5406 		dump_space_info(sinfo, num_bytes, 1);
5407 	}
5408 
5409 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5410 
5411 	return ret;
5412 }
5413 
5414 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5415 {
5416 	struct btrfs_block_group_cache *cache;
5417 	int ret = 0;
5418 
5419 	cache = btrfs_lookup_block_group(root->fs_info, start);
5420 	if (!cache) {
5421 		printk(KERN_ERR "Unable to find block group for %llu\n",
5422 		       (unsigned long long)start);
5423 		return -ENOSPC;
5424 	}
5425 
5426 	if (btrfs_test_opt(root, DISCARD))
5427 		ret = btrfs_discard_extent(root, start, len, NULL);
5428 
5429 	btrfs_add_free_space(cache, start, len);
5430 	btrfs_update_reserved_bytes(cache, len, 0, 1);
5431 	btrfs_put_block_group(cache);
5432 
5433 	trace_btrfs_reserved_extent_free(root, start, len);
5434 
5435 	return ret;
5436 }
5437 
5438 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5439 				      struct btrfs_root *root,
5440 				      u64 parent, u64 root_objectid,
5441 				      u64 flags, u64 owner, u64 offset,
5442 				      struct btrfs_key *ins, int ref_mod)
5443 {
5444 	int ret;
5445 	struct btrfs_fs_info *fs_info = root->fs_info;
5446 	struct btrfs_extent_item *extent_item;
5447 	struct btrfs_extent_inline_ref *iref;
5448 	struct btrfs_path *path;
5449 	struct extent_buffer *leaf;
5450 	int type;
5451 	u32 size;
5452 
5453 	if (parent > 0)
5454 		type = BTRFS_SHARED_DATA_REF_KEY;
5455 	else
5456 		type = BTRFS_EXTENT_DATA_REF_KEY;
5457 
5458 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5459 
5460 	path = btrfs_alloc_path();
5461 	if (!path)
5462 		return -ENOMEM;
5463 
5464 	path->leave_spinning = 1;
5465 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5466 				      ins, size);
5467 	BUG_ON(ret);
5468 
5469 	leaf = path->nodes[0];
5470 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5471 				     struct btrfs_extent_item);
5472 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5473 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5474 	btrfs_set_extent_flags(leaf, extent_item,
5475 			       flags | BTRFS_EXTENT_FLAG_DATA);
5476 
5477 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5478 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5479 	if (parent > 0) {
5480 		struct btrfs_shared_data_ref *ref;
5481 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5482 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5483 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5484 	} else {
5485 		struct btrfs_extent_data_ref *ref;
5486 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5487 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5488 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5489 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5490 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5491 	}
5492 
5493 	btrfs_mark_buffer_dirty(path->nodes[0]);
5494 	btrfs_free_path(path);
5495 
5496 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5497 	if (ret) {
5498 		printk(KERN_ERR "btrfs update block group failed for %llu "
5499 		       "%llu\n", (unsigned long long)ins->objectid,
5500 		       (unsigned long long)ins->offset);
5501 		BUG();
5502 	}
5503 	return ret;
5504 }
5505 
5506 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5507 				     struct btrfs_root *root,
5508 				     u64 parent, u64 root_objectid,
5509 				     u64 flags, struct btrfs_disk_key *key,
5510 				     int level, struct btrfs_key *ins)
5511 {
5512 	int ret;
5513 	struct btrfs_fs_info *fs_info = root->fs_info;
5514 	struct btrfs_extent_item *extent_item;
5515 	struct btrfs_tree_block_info *block_info;
5516 	struct btrfs_extent_inline_ref *iref;
5517 	struct btrfs_path *path;
5518 	struct extent_buffer *leaf;
5519 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5520 
5521 	path = btrfs_alloc_path();
5522 	if (!path)
5523 		return -ENOMEM;
5524 
5525 	path->leave_spinning = 1;
5526 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5527 				      ins, size);
5528 	BUG_ON(ret);
5529 
5530 	leaf = path->nodes[0];
5531 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5532 				     struct btrfs_extent_item);
5533 	btrfs_set_extent_refs(leaf, extent_item, 1);
5534 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5535 	btrfs_set_extent_flags(leaf, extent_item,
5536 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5537 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5538 
5539 	btrfs_set_tree_block_key(leaf, block_info, key);
5540 	btrfs_set_tree_block_level(leaf, block_info, level);
5541 
5542 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5543 	if (parent > 0) {
5544 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5545 		btrfs_set_extent_inline_ref_type(leaf, iref,
5546 						 BTRFS_SHARED_BLOCK_REF_KEY);
5547 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5548 	} else {
5549 		btrfs_set_extent_inline_ref_type(leaf, iref,
5550 						 BTRFS_TREE_BLOCK_REF_KEY);
5551 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5552 	}
5553 
5554 	btrfs_mark_buffer_dirty(leaf);
5555 	btrfs_free_path(path);
5556 
5557 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5558 	if (ret) {
5559 		printk(KERN_ERR "btrfs update block group failed for %llu "
5560 		       "%llu\n", (unsigned long long)ins->objectid,
5561 		       (unsigned long long)ins->offset);
5562 		BUG();
5563 	}
5564 	return ret;
5565 }
5566 
5567 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5568 				     struct btrfs_root *root,
5569 				     u64 root_objectid, u64 owner,
5570 				     u64 offset, struct btrfs_key *ins)
5571 {
5572 	int ret;
5573 
5574 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5575 
5576 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5577 					 0, root_objectid, owner, offset,
5578 					 BTRFS_ADD_DELAYED_EXTENT, NULL);
5579 	return ret;
5580 }
5581 
5582 /*
5583  * this is used by the tree logging recovery code.  It records that
5584  * an extent has been allocated and makes sure to clear the free
5585  * space cache bits as well
5586  */
5587 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5588 				   struct btrfs_root *root,
5589 				   u64 root_objectid, u64 owner, u64 offset,
5590 				   struct btrfs_key *ins)
5591 {
5592 	int ret;
5593 	struct btrfs_block_group_cache *block_group;
5594 	struct btrfs_caching_control *caching_ctl;
5595 	u64 start = ins->objectid;
5596 	u64 num_bytes = ins->offset;
5597 
5598 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5599 	cache_block_group(block_group, trans, NULL, 0);
5600 	caching_ctl = get_caching_control(block_group);
5601 
5602 	if (!caching_ctl) {
5603 		BUG_ON(!block_group_cache_done(block_group));
5604 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5605 		BUG_ON(ret);
5606 	} else {
5607 		mutex_lock(&caching_ctl->mutex);
5608 
5609 		if (start >= caching_ctl->progress) {
5610 			ret = add_excluded_extent(root, start, num_bytes);
5611 			BUG_ON(ret);
5612 		} else if (start + num_bytes <= caching_ctl->progress) {
5613 			ret = btrfs_remove_free_space(block_group,
5614 						      start, num_bytes);
5615 			BUG_ON(ret);
5616 		} else {
5617 			num_bytes = caching_ctl->progress - start;
5618 			ret = btrfs_remove_free_space(block_group,
5619 						      start, num_bytes);
5620 			BUG_ON(ret);
5621 
5622 			start = caching_ctl->progress;
5623 			num_bytes = ins->objectid + ins->offset -
5624 				    caching_ctl->progress;
5625 			ret = add_excluded_extent(root, start, num_bytes);
5626 			BUG_ON(ret);
5627 		}
5628 
5629 		mutex_unlock(&caching_ctl->mutex);
5630 		put_caching_control(caching_ctl);
5631 	}
5632 
5633 	ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5634 	BUG_ON(ret);
5635 	btrfs_put_block_group(block_group);
5636 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5637 					 0, owner, offset, ins, 1);
5638 	return ret;
5639 }
5640 
5641 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5642 					    struct btrfs_root *root,
5643 					    u64 bytenr, u32 blocksize,
5644 					    int level)
5645 {
5646 	struct extent_buffer *buf;
5647 
5648 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5649 	if (!buf)
5650 		return ERR_PTR(-ENOMEM);
5651 	btrfs_set_header_generation(buf, trans->transid);
5652 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5653 	btrfs_tree_lock(buf);
5654 	clean_tree_block(trans, root, buf);
5655 
5656 	btrfs_set_lock_blocking(buf);
5657 	btrfs_set_buffer_uptodate(buf);
5658 
5659 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5660 		/*
5661 		 * we allow two log transactions at a time, use different
5662 		 * EXENT bit to differentiate dirty pages.
5663 		 */
5664 		if (root->log_transid % 2 == 0)
5665 			set_extent_dirty(&root->dirty_log_pages, buf->start,
5666 					buf->start + buf->len - 1, GFP_NOFS);
5667 		else
5668 			set_extent_new(&root->dirty_log_pages, buf->start,
5669 					buf->start + buf->len - 1, GFP_NOFS);
5670 	} else {
5671 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5672 			 buf->start + buf->len - 1, GFP_NOFS);
5673 	}
5674 	trans->blocks_used++;
5675 	/* this returns a buffer locked for blocking */
5676 	return buf;
5677 }
5678 
5679 static struct btrfs_block_rsv *
5680 use_block_rsv(struct btrfs_trans_handle *trans,
5681 	      struct btrfs_root *root, u32 blocksize)
5682 {
5683 	struct btrfs_block_rsv *block_rsv;
5684 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5685 	int ret;
5686 
5687 	block_rsv = get_block_rsv(trans, root);
5688 
5689 	if (block_rsv->size == 0) {
5690 		ret = reserve_metadata_bytes(trans, root, block_rsv,
5691 					     blocksize, 0);
5692 		/*
5693 		 * If we couldn't reserve metadata bytes try and use some from
5694 		 * the global reserve.
5695 		 */
5696 		if (ret && block_rsv != global_rsv) {
5697 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5698 			if (!ret)
5699 				return global_rsv;
5700 			return ERR_PTR(ret);
5701 		} else if (ret) {
5702 			return ERR_PTR(ret);
5703 		}
5704 		return block_rsv;
5705 	}
5706 
5707 	ret = block_rsv_use_bytes(block_rsv, blocksize);
5708 	if (!ret)
5709 		return block_rsv;
5710 	if (ret) {
5711 		WARN_ON(1);
5712 		ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5713 					     0);
5714 		if (!ret) {
5715 			spin_lock(&block_rsv->lock);
5716 			block_rsv->size += blocksize;
5717 			spin_unlock(&block_rsv->lock);
5718 			return block_rsv;
5719 		} else if (ret && block_rsv != global_rsv) {
5720 			ret = block_rsv_use_bytes(global_rsv, blocksize);
5721 			if (!ret)
5722 				return global_rsv;
5723 		}
5724 	}
5725 
5726 	return ERR_PTR(-ENOSPC);
5727 }
5728 
5729 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5730 {
5731 	block_rsv_add_bytes(block_rsv, blocksize, 0);
5732 	block_rsv_release_bytes(block_rsv, NULL, 0);
5733 }
5734 
5735 /*
5736  * finds a free extent and does all the dirty work required for allocation
5737  * returns the key for the extent through ins, and a tree buffer for
5738  * the first block of the extent through buf.
5739  *
5740  * returns the tree buffer or NULL.
5741  */
5742 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5743 					struct btrfs_root *root, u32 blocksize,
5744 					u64 parent, u64 root_objectid,
5745 					struct btrfs_disk_key *key, int level,
5746 					u64 hint, u64 empty_size)
5747 {
5748 	struct btrfs_key ins;
5749 	struct btrfs_block_rsv *block_rsv;
5750 	struct extent_buffer *buf;
5751 	u64 flags = 0;
5752 	int ret;
5753 
5754 
5755 	block_rsv = use_block_rsv(trans, root, blocksize);
5756 	if (IS_ERR(block_rsv))
5757 		return ERR_CAST(block_rsv);
5758 
5759 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5760 				   empty_size, hint, (u64)-1, &ins, 0);
5761 	if (ret) {
5762 		unuse_block_rsv(block_rsv, blocksize);
5763 		return ERR_PTR(ret);
5764 	}
5765 
5766 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5767 				    blocksize, level);
5768 	BUG_ON(IS_ERR(buf));
5769 
5770 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5771 		if (parent == 0)
5772 			parent = ins.objectid;
5773 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5774 	} else
5775 		BUG_ON(parent > 0);
5776 
5777 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5778 		struct btrfs_delayed_extent_op *extent_op;
5779 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5780 		BUG_ON(!extent_op);
5781 		if (key)
5782 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5783 		else
5784 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5785 		extent_op->flags_to_set = flags;
5786 		extent_op->update_key = 1;
5787 		extent_op->update_flags = 1;
5788 		extent_op->is_data = 0;
5789 
5790 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5791 					ins.offset, parent, root_objectid,
5792 					level, BTRFS_ADD_DELAYED_EXTENT,
5793 					extent_op);
5794 		BUG_ON(ret);
5795 	}
5796 	return buf;
5797 }
5798 
5799 struct walk_control {
5800 	u64 refs[BTRFS_MAX_LEVEL];
5801 	u64 flags[BTRFS_MAX_LEVEL];
5802 	struct btrfs_key update_progress;
5803 	int stage;
5804 	int level;
5805 	int shared_level;
5806 	int update_ref;
5807 	int keep_locks;
5808 	int reada_slot;
5809 	int reada_count;
5810 };
5811 
5812 #define DROP_REFERENCE	1
5813 #define UPDATE_BACKREF	2
5814 
5815 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5816 				     struct btrfs_root *root,
5817 				     struct walk_control *wc,
5818 				     struct btrfs_path *path)
5819 {
5820 	u64 bytenr;
5821 	u64 generation;
5822 	u64 refs;
5823 	u64 flags;
5824 	u32 nritems;
5825 	u32 blocksize;
5826 	struct btrfs_key key;
5827 	struct extent_buffer *eb;
5828 	int ret;
5829 	int slot;
5830 	int nread = 0;
5831 
5832 	if (path->slots[wc->level] < wc->reada_slot) {
5833 		wc->reada_count = wc->reada_count * 2 / 3;
5834 		wc->reada_count = max(wc->reada_count, 2);
5835 	} else {
5836 		wc->reada_count = wc->reada_count * 3 / 2;
5837 		wc->reada_count = min_t(int, wc->reada_count,
5838 					BTRFS_NODEPTRS_PER_BLOCK(root));
5839 	}
5840 
5841 	eb = path->nodes[wc->level];
5842 	nritems = btrfs_header_nritems(eb);
5843 	blocksize = btrfs_level_size(root, wc->level - 1);
5844 
5845 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5846 		if (nread >= wc->reada_count)
5847 			break;
5848 
5849 		cond_resched();
5850 		bytenr = btrfs_node_blockptr(eb, slot);
5851 		generation = btrfs_node_ptr_generation(eb, slot);
5852 
5853 		if (slot == path->slots[wc->level])
5854 			goto reada;
5855 
5856 		if (wc->stage == UPDATE_BACKREF &&
5857 		    generation <= root->root_key.offset)
5858 			continue;
5859 
5860 		/* We don't lock the tree block, it's OK to be racy here */
5861 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5862 					       &refs, &flags);
5863 		BUG_ON(ret);
5864 		BUG_ON(refs == 0);
5865 
5866 		if (wc->stage == DROP_REFERENCE) {
5867 			if (refs == 1)
5868 				goto reada;
5869 
5870 			if (wc->level == 1 &&
5871 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5872 				continue;
5873 			if (!wc->update_ref ||
5874 			    generation <= root->root_key.offset)
5875 				continue;
5876 			btrfs_node_key_to_cpu(eb, &key, slot);
5877 			ret = btrfs_comp_cpu_keys(&key,
5878 						  &wc->update_progress);
5879 			if (ret < 0)
5880 				continue;
5881 		} else {
5882 			if (wc->level == 1 &&
5883 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5884 				continue;
5885 		}
5886 reada:
5887 		ret = readahead_tree_block(root, bytenr, blocksize,
5888 					   generation);
5889 		if (ret)
5890 			break;
5891 		nread++;
5892 	}
5893 	wc->reada_slot = slot;
5894 }
5895 
5896 /*
5897  * hepler to process tree block while walking down the tree.
5898  *
5899  * when wc->stage == UPDATE_BACKREF, this function updates
5900  * back refs for pointers in the block.
5901  *
5902  * NOTE: return value 1 means we should stop walking down.
5903  */
5904 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5905 				   struct btrfs_root *root,
5906 				   struct btrfs_path *path,
5907 				   struct walk_control *wc, int lookup_info)
5908 {
5909 	int level = wc->level;
5910 	struct extent_buffer *eb = path->nodes[level];
5911 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5912 	int ret;
5913 
5914 	if (wc->stage == UPDATE_BACKREF &&
5915 	    btrfs_header_owner(eb) != root->root_key.objectid)
5916 		return 1;
5917 
5918 	/*
5919 	 * when reference count of tree block is 1, it won't increase
5920 	 * again. once full backref flag is set, we never clear it.
5921 	 */
5922 	if (lookup_info &&
5923 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5924 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5925 		BUG_ON(!path->locks[level]);
5926 		ret = btrfs_lookup_extent_info(trans, root,
5927 					       eb->start, eb->len,
5928 					       &wc->refs[level],
5929 					       &wc->flags[level]);
5930 		BUG_ON(ret);
5931 		BUG_ON(wc->refs[level] == 0);
5932 	}
5933 
5934 	if (wc->stage == DROP_REFERENCE) {
5935 		if (wc->refs[level] > 1)
5936 			return 1;
5937 
5938 		if (path->locks[level] && !wc->keep_locks) {
5939 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5940 			path->locks[level] = 0;
5941 		}
5942 		return 0;
5943 	}
5944 
5945 	/* wc->stage == UPDATE_BACKREF */
5946 	if (!(wc->flags[level] & flag)) {
5947 		BUG_ON(!path->locks[level]);
5948 		ret = btrfs_inc_ref(trans, root, eb, 1);
5949 		BUG_ON(ret);
5950 		ret = btrfs_dec_ref(trans, root, eb, 0);
5951 		BUG_ON(ret);
5952 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5953 						  eb->len, flag, 0);
5954 		BUG_ON(ret);
5955 		wc->flags[level] |= flag;
5956 	}
5957 
5958 	/*
5959 	 * the block is shared by multiple trees, so it's not good to
5960 	 * keep the tree lock
5961 	 */
5962 	if (path->locks[level] && level > 0) {
5963 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5964 		path->locks[level] = 0;
5965 	}
5966 	return 0;
5967 }
5968 
5969 /*
5970  * hepler to process tree block pointer.
5971  *
5972  * when wc->stage == DROP_REFERENCE, this function checks
5973  * reference count of the block pointed to. if the block
5974  * is shared and we need update back refs for the subtree
5975  * rooted at the block, this function changes wc->stage to
5976  * UPDATE_BACKREF. if the block is shared and there is no
5977  * need to update back, this function drops the reference
5978  * to the block.
5979  *
5980  * NOTE: return value 1 means we should stop walking down.
5981  */
5982 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5983 				 struct btrfs_root *root,
5984 				 struct btrfs_path *path,
5985 				 struct walk_control *wc, int *lookup_info)
5986 {
5987 	u64 bytenr;
5988 	u64 generation;
5989 	u64 parent;
5990 	u32 blocksize;
5991 	struct btrfs_key key;
5992 	struct extent_buffer *next;
5993 	int level = wc->level;
5994 	int reada = 0;
5995 	int ret = 0;
5996 
5997 	generation = btrfs_node_ptr_generation(path->nodes[level],
5998 					       path->slots[level]);
5999 	/*
6000 	 * if the lower level block was created before the snapshot
6001 	 * was created, we know there is no need to update back refs
6002 	 * for the subtree
6003 	 */
6004 	if (wc->stage == UPDATE_BACKREF &&
6005 	    generation <= root->root_key.offset) {
6006 		*lookup_info = 1;
6007 		return 1;
6008 	}
6009 
6010 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6011 	blocksize = btrfs_level_size(root, level - 1);
6012 
6013 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6014 	if (!next) {
6015 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6016 		if (!next)
6017 			return -ENOMEM;
6018 		reada = 1;
6019 	}
6020 	btrfs_tree_lock(next);
6021 	btrfs_set_lock_blocking(next);
6022 
6023 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6024 				       &wc->refs[level - 1],
6025 				       &wc->flags[level - 1]);
6026 	BUG_ON(ret);
6027 	BUG_ON(wc->refs[level - 1] == 0);
6028 	*lookup_info = 0;
6029 
6030 	if (wc->stage == DROP_REFERENCE) {
6031 		if (wc->refs[level - 1] > 1) {
6032 			if (level == 1 &&
6033 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6034 				goto skip;
6035 
6036 			if (!wc->update_ref ||
6037 			    generation <= root->root_key.offset)
6038 				goto skip;
6039 
6040 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6041 					      path->slots[level]);
6042 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6043 			if (ret < 0)
6044 				goto skip;
6045 
6046 			wc->stage = UPDATE_BACKREF;
6047 			wc->shared_level = level - 1;
6048 		}
6049 	} else {
6050 		if (level == 1 &&
6051 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6052 			goto skip;
6053 	}
6054 
6055 	if (!btrfs_buffer_uptodate(next, generation)) {
6056 		btrfs_tree_unlock(next);
6057 		free_extent_buffer(next);
6058 		next = NULL;
6059 		*lookup_info = 1;
6060 	}
6061 
6062 	if (!next) {
6063 		if (reada && level == 1)
6064 			reada_walk_down(trans, root, wc, path);
6065 		next = read_tree_block(root, bytenr, blocksize, generation);
6066 		if (!next)
6067 			return -EIO;
6068 		btrfs_tree_lock(next);
6069 		btrfs_set_lock_blocking(next);
6070 	}
6071 
6072 	level--;
6073 	BUG_ON(level != btrfs_header_level(next));
6074 	path->nodes[level] = next;
6075 	path->slots[level] = 0;
6076 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6077 	wc->level = level;
6078 	if (wc->level == 1)
6079 		wc->reada_slot = 0;
6080 	return 0;
6081 skip:
6082 	wc->refs[level - 1] = 0;
6083 	wc->flags[level - 1] = 0;
6084 	if (wc->stage == DROP_REFERENCE) {
6085 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6086 			parent = path->nodes[level]->start;
6087 		} else {
6088 			BUG_ON(root->root_key.objectid !=
6089 			       btrfs_header_owner(path->nodes[level]));
6090 			parent = 0;
6091 		}
6092 
6093 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6094 					root->root_key.objectid, level - 1, 0);
6095 		BUG_ON(ret);
6096 	}
6097 	btrfs_tree_unlock(next);
6098 	free_extent_buffer(next);
6099 	*lookup_info = 1;
6100 	return 1;
6101 }
6102 
6103 /*
6104  * hepler to process tree block while walking up the tree.
6105  *
6106  * when wc->stage == DROP_REFERENCE, this function drops
6107  * reference count on the block.
6108  *
6109  * when wc->stage == UPDATE_BACKREF, this function changes
6110  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6111  * to UPDATE_BACKREF previously while processing the block.
6112  *
6113  * NOTE: return value 1 means we should stop walking up.
6114  */
6115 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6116 				 struct btrfs_root *root,
6117 				 struct btrfs_path *path,
6118 				 struct walk_control *wc)
6119 {
6120 	int ret;
6121 	int level = wc->level;
6122 	struct extent_buffer *eb = path->nodes[level];
6123 	u64 parent = 0;
6124 
6125 	if (wc->stage == UPDATE_BACKREF) {
6126 		BUG_ON(wc->shared_level < level);
6127 		if (level < wc->shared_level)
6128 			goto out;
6129 
6130 		ret = find_next_key(path, level + 1, &wc->update_progress);
6131 		if (ret > 0)
6132 			wc->update_ref = 0;
6133 
6134 		wc->stage = DROP_REFERENCE;
6135 		wc->shared_level = -1;
6136 		path->slots[level] = 0;
6137 
6138 		/*
6139 		 * check reference count again if the block isn't locked.
6140 		 * we should start walking down the tree again if reference
6141 		 * count is one.
6142 		 */
6143 		if (!path->locks[level]) {
6144 			BUG_ON(level == 0);
6145 			btrfs_tree_lock(eb);
6146 			btrfs_set_lock_blocking(eb);
6147 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6148 
6149 			ret = btrfs_lookup_extent_info(trans, root,
6150 						       eb->start, eb->len,
6151 						       &wc->refs[level],
6152 						       &wc->flags[level]);
6153 			BUG_ON(ret);
6154 			BUG_ON(wc->refs[level] == 0);
6155 			if (wc->refs[level] == 1) {
6156 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6157 				return 1;
6158 			}
6159 		}
6160 	}
6161 
6162 	/* wc->stage == DROP_REFERENCE */
6163 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6164 
6165 	if (wc->refs[level] == 1) {
6166 		if (level == 0) {
6167 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 				ret = btrfs_dec_ref(trans, root, eb, 1);
6169 			else
6170 				ret = btrfs_dec_ref(trans, root, eb, 0);
6171 			BUG_ON(ret);
6172 		}
6173 		/* make block locked assertion in clean_tree_block happy */
6174 		if (!path->locks[level] &&
6175 		    btrfs_header_generation(eb) == trans->transid) {
6176 			btrfs_tree_lock(eb);
6177 			btrfs_set_lock_blocking(eb);
6178 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6179 		}
6180 		clean_tree_block(trans, root, eb);
6181 	}
6182 
6183 	if (eb == root->node) {
6184 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6185 			parent = eb->start;
6186 		else
6187 			BUG_ON(root->root_key.objectid !=
6188 			       btrfs_header_owner(eb));
6189 	} else {
6190 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6191 			parent = path->nodes[level + 1]->start;
6192 		else
6193 			BUG_ON(root->root_key.objectid !=
6194 			       btrfs_header_owner(path->nodes[level + 1]));
6195 	}
6196 
6197 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6198 out:
6199 	wc->refs[level] = 0;
6200 	wc->flags[level] = 0;
6201 	return 0;
6202 }
6203 
6204 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6205 				   struct btrfs_root *root,
6206 				   struct btrfs_path *path,
6207 				   struct walk_control *wc)
6208 {
6209 	int level = wc->level;
6210 	int lookup_info = 1;
6211 	int ret;
6212 
6213 	while (level >= 0) {
6214 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6215 		if (ret > 0)
6216 			break;
6217 
6218 		if (level == 0)
6219 			break;
6220 
6221 		if (path->slots[level] >=
6222 		    btrfs_header_nritems(path->nodes[level]))
6223 			break;
6224 
6225 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6226 		if (ret > 0) {
6227 			path->slots[level]++;
6228 			continue;
6229 		} else if (ret < 0)
6230 			return ret;
6231 		level = wc->level;
6232 	}
6233 	return 0;
6234 }
6235 
6236 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6237 				 struct btrfs_root *root,
6238 				 struct btrfs_path *path,
6239 				 struct walk_control *wc, int max_level)
6240 {
6241 	int level = wc->level;
6242 	int ret;
6243 
6244 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6245 	while (level < max_level && path->nodes[level]) {
6246 		wc->level = level;
6247 		if (path->slots[level] + 1 <
6248 		    btrfs_header_nritems(path->nodes[level])) {
6249 			path->slots[level]++;
6250 			return 0;
6251 		} else {
6252 			ret = walk_up_proc(trans, root, path, wc);
6253 			if (ret > 0)
6254 				return 0;
6255 
6256 			if (path->locks[level]) {
6257 				btrfs_tree_unlock_rw(path->nodes[level],
6258 						     path->locks[level]);
6259 				path->locks[level] = 0;
6260 			}
6261 			free_extent_buffer(path->nodes[level]);
6262 			path->nodes[level] = NULL;
6263 			level++;
6264 		}
6265 	}
6266 	return 1;
6267 }
6268 
6269 /*
6270  * drop a subvolume tree.
6271  *
6272  * this function traverses the tree freeing any blocks that only
6273  * referenced by the tree.
6274  *
6275  * when a shared tree block is found. this function decreases its
6276  * reference count by one. if update_ref is true, this function
6277  * also make sure backrefs for the shared block and all lower level
6278  * blocks are properly updated.
6279  */
6280 void btrfs_drop_snapshot(struct btrfs_root *root,
6281 			 struct btrfs_block_rsv *block_rsv, int update_ref)
6282 {
6283 	struct btrfs_path *path;
6284 	struct btrfs_trans_handle *trans;
6285 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6286 	struct btrfs_root_item *root_item = &root->root_item;
6287 	struct walk_control *wc;
6288 	struct btrfs_key key;
6289 	int err = 0;
6290 	int ret;
6291 	int level;
6292 
6293 	path = btrfs_alloc_path();
6294 	if (!path) {
6295 		err = -ENOMEM;
6296 		goto out;
6297 	}
6298 
6299 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6300 	if (!wc) {
6301 		btrfs_free_path(path);
6302 		err = -ENOMEM;
6303 		goto out;
6304 	}
6305 
6306 	trans = btrfs_start_transaction(tree_root, 0);
6307 	BUG_ON(IS_ERR(trans));
6308 
6309 	if (block_rsv)
6310 		trans->block_rsv = block_rsv;
6311 
6312 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6313 		level = btrfs_header_level(root->node);
6314 		path->nodes[level] = btrfs_lock_root_node(root);
6315 		btrfs_set_lock_blocking(path->nodes[level]);
6316 		path->slots[level] = 0;
6317 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6318 		memset(&wc->update_progress, 0,
6319 		       sizeof(wc->update_progress));
6320 	} else {
6321 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6322 		memcpy(&wc->update_progress, &key,
6323 		       sizeof(wc->update_progress));
6324 
6325 		level = root_item->drop_level;
6326 		BUG_ON(level == 0);
6327 		path->lowest_level = level;
6328 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6329 		path->lowest_level = 0;
6330 		if (ret < 0) {
6331 			err = ret;
6332 			goto out_free;
6333 		}
6334 		WARN_ON(ret > 0);
6335 
6336 		/*
6337 		 * unlock our path, this is safe because only this
6338 		 * function is allowed to delete this snapshot
6339 		 */
6340 		btrfs_unlock_up_safe(path, 0);
6341 
6342 		level = btrfs_header_level(root->node);
6343 		while (1) {
6344 			btrfs_tree_lock(path->nodes[level]);
6345 			btrfs_set_lock_blocking(path->nodes[level]);
6346 
6347 			ret = btrfs_lookup_extent_info(trans, root,
6348 						path->nodes[level]->start,
6349 						path->nodes[level]->len,
6350 						&wc->refs[level],
6351 						&wc->flags[level]);
6352 			BUG_ON(ret);
6353 			BUG_ON(wc->refs[level] == 0);
6354 
6355 			if (level == root_item->drop_level)
6356 				break;
6357 
6358 			btrfs_tree_unlock(path->nodes[level]);
6359 			WARN_ON(wc->refs[level] != 1);
6360 			level--;
6361 		}
6362 	}
6363 
6364 	wc->level = level;
6365 	wc->shared_level = -1;
6366 	wc->stage = DROP_REFERENCE;
6367 	wc->update_ref = update_ref;
6368 	wc->keep_locks = 0;
6369 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6370 
6371 	while (1) {
6372 		ret = walk_down_tree(trans, root, path, wc);
6373 		if (ret < 0) {
6374 			err = ret;
6375 			break;
6376 		}
6377 
6378 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6379 		if (ret < 0) {
6380 			err = ret;
6381 			break;
6382 		}
6383 
6384 		if (ret > 0) {
6385 			BUG_ON(wc->stage != DROP_REFERENCE);
6386 			break;
6387 		}
6388 
6389 		if (wc->stage == DROP_REFERENCE) {
6390 			level = wc->level;
6391 			btrfs_node_key(path->nodes[level],
6392 				       &root_item->drop_progress,
6393 				       path->slots[level]);
6394 			root_item->drop_level = level;
6395 		}
6396 
6397 		BUG_ON(wc->level == 0);
6398 		if (btrfs_should_end_transaction(trans, tree_root)) {
6399 			ret = btrfs_update_root(trans, tree_root,
6400 						&root->root_key,
6401 						root_item);
6402 			BUG_ON(ret);
6403 
6404 			btrfs_end_transaction_throttle(trans, tree_root);
6405 			trans = btrfs_start_transaction(tree_root, 0);
6406 			BUG_ON(IS_ERR(trans));
6407 			if (block_rsv)
6408 				trans->block_rsv = block_rsv;
6409 		}
6410 	}
6411 	btrfs_release_path(path);
6412 	BUG_ON(err);
6413 
6414 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6415 	BUG_ON(ret);
6416 
6417 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6418 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6419 					   NULL, NULL);
6420 		BUG_ON(ret < 0);
6421 		if (ret > 0) {
6422 			/* if we fail to delete the orphan item this time
6423 			 * around, it'll get picked up the next time.
6424 			 *
6425 			 * The most common failure here is just -ENOENT.
6426 			 */
6427 			btrfs_del_orphan_item(trans, tree_root,
6428 					      root->root_key.objectid);
6429 		}
6430 	}
6431 
6432 	if (root->in_radix) {
6433 		btrfs_free_fs_root(tree_root->fs_info, root);
6434 	} else {
6435 		free_extent_buffer(root->node);
6436 		free_extent_buffer(root->commit_root);
6437 		kfree(root);
6438 	}
6439 out_free:
6440 	btrfs_end_transaction_throttle(trans, tree_root);
6441 	kfree(wc);
6442 	btrfs_free_path(path);
6443 out:
6444 	if (err)
6445 		btrfs_std_error(root->fs_info, err);
6446 	return;
6447 }
6448 
6449 /*
6450  * drop subtree rooted at tree block 'node'.
6451  *
6452  * NOTE: this function will unlock and release tree block 'node'
6453  */
6454 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6455 			struct btrfs_root *root,
6456 			struct extent_buffer *node,
6457 			struct extent_buffer *parent)
6458 {
6459 	struct btrfs_path *path;
6460 	struct walk_control *wc;
6461 	int level;
6462 	int parent_level;
6463 	int ret = 0;
6464 	int wret;
6465 
6466 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6467 
6468 	path = btrfs_alloc_path();
6469 	if (!path)
6470 		return -ENOMEM;
6471 
6472 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6473 	if (!wc) {
6474 		btrfs_free_path(path);
6475 		return -ENOMEM;
6476 	}
6477 
6478 	btrfs_assert_tree_locked(parent);
6479 	parent_level = btrfs_header_level(parent);
6480 	extent_buffer_get(parent);
6481 	path->nodes[parent_level] = parent;
6482 	path->slots[parent_level] = btrfs_header_nritems(parent);
6483 
6484 	btrfs_assert_tree_locked(node);
6485 	level = btrfs_header_level(node);
6486 	path->nodes[level] = node;
6487 	path->slots[level] = 0;
6488 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6489 
6490 	wc->refs[parent_level] = 1;
6491 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6492 	wc->level = level;
6493 	wc->shared_level = -1;
6494 	wc->stage = DROP_REFERENCE;
6495 	wc->update_ref = 0;
6496 	wc->keep_locks = 1;
6497 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6498 
6499 	while (1) {
6500 		wret = walk_down_tree(trans, root, path, wc);
6501 		if (wret < 0) {
6502 			ret = wret;
6503 			break;
6504 		}
6505 
6506 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6507 		if (wret < 0)
6508 			ret = wret;
6509 		if (wret != 0)
6510 			break;
6511 	}
6512 
6513 	kfree(wc);
6514 	btrfs_free_path(path);
6515 	return ret;
6516 }
6517 
6518 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6519 {
6520 	u64 num_devices;
6521 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6522 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6523 
6524 	/*
6525 	 * we add in the count of missing devices because we want
6526 	 * to make sure that any RAID levels on a degraded FS
6527 	 * continue to be honored.
6528 	 */
6529 	num_devices = root->fs_info->fs_devices->rw_devices +
6530 		root->fs_info->fs_devices->missing_devices;
6531 
6532 	if (num_devices == 1) {
6533 		stripped |= BTRFS_BLOCK_GROUP_DUP;
6534 		stripped = flags & ~stripped;
6535 
6536 		/* turn raid0 into single device chunks */
6537 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
6538 			return stripped;
6539 
6540 		/* turn mirroring into duplication */
6541 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6542 			     BTRFS_BLOCK_GROUP_RAID10))
6543 			return stripped | BTRFS_BLOCK_GROUP_DUP;
6544 		return flags;
6545 	} else {
6546 		/* they already had raid on here, just return */
6547 		if (flags & stripped)
6548 			return flags;
6549 
6550 		stripped |= BTRFS_BLOCK_GROUP_DUP;
6551 		stripped = flags & ~stripped;
6552 
6553 		/* switch duplicated blocks with raid1 */
6554 		if (flags & BTRFS_BLOCK_GROUP_DUP)
6555 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
6556 
6557 		/* turn single device chunks into raid0 */
6558 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
6559 	}
6560 	return flags;
6561 }
6562 
6563 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6564 {
6565 	struct btrfs_space_info *sinfo = cache->space_info;
6566 	u64 num_bytes;
6567 	u64 min_allocable_bytes;
6568 	int ret = -ENOSPC;
6569 
6570 
6571 	/*
6572 	 * We need some metadata space and system metadata space for
6573 	 * allocating chunks in some corner cases until we force to set
6574 	 * it to be readonly.
6575 	 */
6576 	if ((sinfo->flags &
6577 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6578 	    !force)
6579 		min_allocable_bytes = 1 * 1024 * 1024;
6580 	else
6581 		min_allocable_bytes = 0;
6582 
6583 	spin_lock(&sinfo->lock);
6584 	spin_lock(&cache->lock);
6585 
6586 	if (cache->ro) {
6587 		ret = 0;
6588 		goto out;
6589 	}
6590 
6591 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6592 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
6593 
6594 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6595 	    sinfo->bytes_may_use + sinfo->bytes_readonly +
6596 	    cache->reserved_pinned + num_bytes + min_allocable_bytes <=
6597 	    sinfo->total_bytes) {
6598 		sinfo->bytes_readonly += num_bytes;
6599 		sinfo->bytes_reserved += cache->reserved_pinned;
6600 		cache->reserved_pinned = 0;
6601 		cache->ro = 1;
6602 		ret = 0;
6603 	}
6604 out:
6605 	spin_unlock(&cache->lock);
6606 	spin_unlock(&sinfo->lock);
6607 	return ret;
6608 }
6609 
6610 int btrfs_set_block_group_ro(struct btrfs_root *root,
6611 			     struct btrfs_block_group_cache *cache)
6612 
6613 {
6614 	struct btrfs_trans_handle *trans;
6615 	u64 alloc_flags;
6616 	int ret;
6617 
6618 	BUG_ON(cache->ro);
6619 
6620 	trans = btrfs_join_transaction(root);
6621 	BUG_ON(IS_ERR(trans));
6622 
6623 	alloc_flags = update_block_group_flags(root, cache->flags);
6624 	if (alloc_flags != cache->flags)
6625 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6626 			       CHUNK_ALLOC_FORCE);
6627 
6628 	ret = set_block_group_ro(cache, 0);
6629 	if (!ret)
6630 		goto out;
6631 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6632 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6633 			     CHUNK_ALLOC_FORCE);
6634 	if (ret < 0)
6635 		goto out;
6636 	ret = set_block_group_ro(cache, 0);
6637 out:
6638 	btrfs_end_transaction(trans, root);
6639 	return ret;
6640 }
6641 
6642 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6643 			    struct btrfs_root *root, u64 type)
6644 {
6645 	u64 alloc_flags = get_alloc_profile(root, type);
6646 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6647 			      CHUNK_ALLOC_FORCE);
6648 }
6649 
6650 /*
6651  * helper to account the unused space of all the readonly block group in the
6652  * list. takes mirrors into account.
6653  */
6654 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6655 {
6656 	struct btrfs_block_group_cache *block_group;
6657 	u64 free_bytes = 0;
6658 	int factor;
6659 
6660 	list_for_each_entry(block_group, groups_list, list) {
6661 		spin_lock(&block_group->lock);
6662 
6663 		if (!block_group->ro) {
6664 			spin_unlock(&block_group->lock);
6665 			continue;
6666 		}
6667 
6668 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6669 					  BTRFS_BLOCK_GROUP_RAID10 |
6670 					  BTRFS_BLOCK_GROUP_DUP))
6671 			factor = 2;
6672 		else
6673 			factor = 1;
6674 
6675 		free_bytes += (block_group->key.offset -
6676 			       btrfs_block_group_used(&block_group->item)) *
6677 			       factor;
6678 
6679 		spin_unlock(&block_group->lock);
6680 	}
6681 
6682 	return free_bytes;
6683 }
6684 
6685 /*
6686  * helper to account the unused space of all the readonly block group in the
6687  * space_info. takes mirrors into account.
6688  */
6689 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6690 {
6691 	int i;
6692 	u64 free_bytes = 0;
6693 
6694 	spin_lock(&sinfo->lock);
6695 
6696 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6697 		if (!list_empty(&sinfo->block_groups[i]))
6698 			free_bytes += __btrfs_get_ro_block_group_free_space(
6699 						&sinfo->block_groups[i]);
6700 
6701 	spin_unlock(&sinfo->lock);
6702 
6703 	return free_bytes;
6704 }
6705 
6706 int btrfs_set_block_group_rw(struct btrfs_root *root,
6707 			      struct btrfs_block_group_cache *cache)
6708 {
6709 	struct btrfs_space_info *sinfo = cache->space_info;
6710 	u64 num_bytes;
6711 
6712 	BUG_ON(!cache->ro);
6713 
6714 	spin_lock(&sinfo->lock);
6715 	spin_lock(&cache->lock);
6716 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6717 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
6718 	sinfo->bytes_readonly -= num_bytes;
6719 	cache->ro = 0;
6720 	spin_unlock(&cache->lock);
6721 	spin_unlock(&sinfo->lock);
6722 	return 0;
6723 }
6724 
6725 /*
6726  * checks to see if its even possible to relocate this block group.
6727  *
6728  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6729  * ok to go ahead and try.
6730  */
6731 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6732 {
6733 	struct btrfs_block_group_cache *block_group;
6734 	struct btrfs_space_info *space_info;
6735 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6736 	struct btrfs_device *device;
6737 	u64 min_free;
6738 	u64 dev_min = 1;
6739 	u64 dev_nr = 0;
6740 	int index;
6741 	int full = 0;
6742 	int ret = 0;
6743 
6744 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6745 
6746 	/* odd, couldn't find the block group, leave it alone */
6747 	if (!block_group)
6748 		return -1;
6749 
6750 	min_free = btrfs_block_group_used(&block_group->item);
6751 
6752 	/* no bytes used, we're good */
6753 	if (!min_free)
6754 		goto out;
6755 
6756 	space_info = block_group->space_info;
6757 	spin_lock(&space_info->lock);
6758 
6759 	full = space_info->full;
6760 
6761 	/*
6762 	 * if this is the last block group we have in this space, we can't
6763 	 * relocate it unless we're able to allocate a new chunk below.
6764 	 *
6765 	 * Otherwise, we need to make sure we have room in the space to handle
6766 	 * all of the extents from this block group.  If we can, we're good
6767 	 */
6768 	if ((space_info->total_bytes != block_group->key.offset) &&
6769 	    (space_info->bytes_used + space_info->bytes_reserved +
6770 	     space_info->bytes_pinned + space_info->bytes_readonly +
6771 	     min_free < space_info->total_bytes)) {
6772 		spin_unlock(&space_info->lock);
6773 		goto out;
6774 	}
6775 	spin_unlock(&space_info->lock);
6776 
6777 	/*
6778 	 * ok we don't have enough space, but maybe we have free space on our
6779 	 * devices to allocate new chunks for relocation, so loop through our
6780 	 * alloc devices and guess if we have enough space.  However, if we
6781 	 * were marked as full, then we know there aren't enough chunks, and we
6782 	 * can just return.
6783 	 */
6784 	ret = -1;
6785 	if (full)
6786 		goto out;
6787 
6788 	/*
6789 	 * index:
6790 	 *      0: raid10
6791 	 *      1: raid1
6792 	 *      2: dup
6793 	 *      3: raid0
6794 	 *      4: single
6795 	 */
6796 	index = get_block_group_index(block_group);
6797 	if (index == 0) {
6798 		dev_min = 4;
6799 		/* Divide by 2 */
6800 		min_free >>= 1;
6801 	} else if (index == 1) {
6802 		dev_min = 2;
6803 	} else if (index == 2) {
6804 		/* Multiply by 2 */
6805 		min_free <<= 1;
6806 	} else if (index == 3) {
6807 		dev_min = fs_devices->rw_devices;
6808 		do_div(min_free, dev_min);
6809 	}
6810 
6811 	mutex_lock(&root->fs_info->chunk_mutex);
6812 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6813 		u64 dev_offset;
6814 
6815 		/*
6816 		 * check to make sure we can actually find a chunk with enough
6817 		 * space to fit our block group in.
6818 		 */
6819 		if (device->total_bytes > device->bytes_used + min_free) {
6820 			ret = find_free_dev_extent(NULL, device, min_free,
6821 						   &dev_offset, NULL);
6822 			if (!ret)
6823 				dev_nr++;
6824 
6825 			if (dev_nr >= dev_min)
6826 				break;
6827 
6828 			ret = -1;
6829 		}
6830 	}
6831 	mutex_unlock(&root->fs_info->chunk_mutex);
6832 out:
6833 	btrfs_put_block_group(block_group);
6834 	return ret;
6835 }
6836 
6837 static int find_first_block_group(struct btrfs_root *root,
6838 		struct btrfs_path *path, struct btrfs_key *key)
6839 {
6840 	int ret = 0;
6841 	struct btrfs_key found_key;
6842 	struct extent_buffer *leaf;
6843 	int slot;
6844 
6845 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6846 	if (ret < 0)
6847 		goto out;
6848 
6849 	while (1) {
6850 		slot = path->slots[0];
6851 		leaf = path->nodes[0];
6852 		if (slot >= btrfs_header_nritems(leaf)) {
6853 			ret = btrfs_next_leaf(root, path);
6854 			if (ret == 0)
6855 				continue;
6856 			if (ret < 0)
6857 				goto out;
6858 			break;
6859 		}
6860 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6861 
6862 		if (found_key.objectid >= key->objectid &&
6863 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6864 			ret = 0;
6865 			goto out;
6866 		}
6867 		path->slots[0]++;
6868 	}
6869 out:
6870 	return ret;
6871 }
6872 
6873 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6874 {
6875 	struct btrfs_block_group_cache *block_group;
6876 	u64 last = 0;
6877 
6878 	while (1) {
6879 		struct inode *inode;
6880 
6881 		block_group = btrfs_lookup_first_block_group(info, last);
6882 		while (block_group) {
6883 			spin_lock(&block_group->lock);
6884 			if (block_group->iref)
6885 				break;
6886 			spin_unlock(&block_group->lock);
6887 			block_group = next_block_group(info->tree_root,
6888 						       block_group);
6889 		}
6890 		if (!block_group) {
6891 			if (last == 0)
6892 				break;
6893 			last = 0;
6894 			continue;
6895 		}
6896 
6897 		inode = block_group->inode;
6898 		block_group->iref = 0;
6899 		block_group->inode = NULL;
6900 		spin_unlock(&block_group->lock);
6901 		iput(inode);
6902 		last = block_group->key.objectid + block_group->key.offset;
6903 		btrfs_put_block_group(block_group);
6904 	}
6905 }
6906 
6907 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6908 {
6909 	struct btrfs_block_group_cache *block_group;
6910 	struct btrfs_space_info *space_info;
6911 	struct btrfs_caching_control *caching_ctl;
6912 	struct rb_node *n;
6913 
6914 	down_write(&info->extent_commit_sem);
6915 	while (!list_empty(&info->caching_block_groups)) {
6916 		caching_ctl = list_entry(info->caching_block_groups.next,
6917 					 struct btrfs_caching_control, list);
6918 		list_del(&caching_ctl->list);
6919 		put_caching_control(caching_ctl);
6920 	}
6921 	up_write(&info->extent_commit_sem);
6922 
6923 	spin_lock(&info->block_group_cache_lock);
6924 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6925 		block_group = rb_entry(n, struct btrfs_block_group_cache,
6926 				       cache_node);
6927 		rb_erase(&block_group->cache_node,
6928 			 &info->block_group_cache_tree);
6929 		spin_unlock(&info->block_group_cache_lock);
6930 
6931 		down_write(&block_group->space_info->groups_sem);
6932 		list_del(&block_group->list);
6933 		up_write(&block_group->space_info->groups_sem);
6934 
6935 		if (block_group->cached == BTRFS_CACHE_STARTED)
6936 			wait_block_group_cache_done(block_group);
6937 
6938 		/*
6939 		 * We haven't cached this block group, which means we could
6940 		 * possibly have excluded extents on this block group.
6941 		 */
6942 		if (block_group->cached == BTRFS_CACHE_NO)
6943 			free_excluded_extents(info->extent_root, block_group);
6944 
6945 		btrfs_remove_free_space_cache(block_group);
6946 		btrfs_put_block_group(block_group);
6947 
6948 		spin_lock(&info->block_group_cache_lock);
6949 	}
6950 	spin_unlock(&info->block_group_cache_lock);
6951 
6952 	/* now that all the block groups are freed, go through and
6953 	 * free all the space_info structs.  This is only called during
6954 	 * the final stages of unmount, and so we know nobody is
6955 	 * using them.  We call synchronize_rcu() once before we start,
6956 	 * just to be on the safe side.
6957 	 */
6958 	synchronize_rcu();
6959 
6960 	release_global_block_rsv(info);
6961 
6962 	while(!list_empty(&info->space_info)) {
6963 		space_info = list_entry(info->space_info.next,
6964 					struct btrfs_space_info,
6965 					list);
6966 		if (space_info->bytes_pinned > 0 ||
6967 		    space_info->bytes_reserved > 0) {
6968 			WARN_ON(1);
6969 			dump_space_info(space_info, 0, 0);
6970 		}
6971 		list_del(&space_info->list);
6972 		kfree(space_info);
6973 	}
6974 	return 0;
6975 }
6976 
6977 static void __link_block_group(struct btrfs_space_info *space_info,
6978 			       struct btrfs_block_group_cache *cache)
6979 {
6980 	int index = get_block_group_index(cache);
6981 
6982 	down_write(&space_info->groups_sem);
6983 	list_add_tail(&cache->list, &space_info->block_groups[index]);
6984 	up_write(&space_info->groups_sem);
6985 }
6986 
6987 int btrfs_read_block_groups(struct btrfs_root *root)
6988 {
6989 	struct btrfs_path *path;
6990 	int ret;
6991 	struct btrfs_block_group_cache *cache;
6992 	struct btrfs_fs_info *info = root->fs_info;
6993 	struct btrfs_space_info *space_info;
6994 	struct btrfs_key key;
6995 	struct btrfs_key found_key;
6996 	struct extent_buffer *leaf;
6997 	int need_clear = 0;
6998 	u64 cache_gen;
6999 
7000 	root = info->extent_root;
7001 	key.objectid = 0;
7002 	key.offset = 0;
7003 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7004 	path = btrfs_alloc_path();
7005 	if (!path)
7006 		return -ENOMEM;
7007 	path->reada = 1;
7008 
7009 	cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
7010 	if (cache_gen != 0 &&
7011 	    btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
7012 		need_clear = 1;
7013 	if (btrfs_test_opt(root, CLEAR_CACHE))
7014 		need_clear = 1;
7015 	if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7016 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7017 
7018 	while (1) {
7019 		ret = find_first_block_group(root, path, &key);
7020 		if (ret > 0)
7021 			break;
7022 		if (ret != 0)
7023 			goto error;
7024 		leaf = path->nodes[0];
7025 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7026 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7027 		if (!cache) {
7028 			ret = -ENOMEM;
7029 			goto error;
7030 		}
7031 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7032 						GFP_NOFS);
7033 		if (!cache->free_space_ctl) {
7034 			kfree(cache);
7035 			ret = -ENOMEM;
7036 			goto error;
7037 		}
7038 
7039 		atomic_set(&cache->count, 1);
7040 		spin_lock_init(&cache->lock);
7041 		cache->fs_info = info;
7042 		INIT_LIST_HEAD(&cache->list);
7043 		INIT_LIST_HEAD(&cache->cluster_list);
7044 
7045 		if (need_clear)
7046 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7047 
7048 		read_extent_buffer(leaf, &cache->item,
7049 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7050 				   sizeof(cache->item));
7051 		memcpy(&cache->key, &found_key, sizeof(found_key));
7052 
7053 		key.objectid = found_key.objectid + found_key.offset;
7054 		btrfs_release_path(path);
7055 		cache->flags = btrfs_block_group_flags(&cache->item);
7056 		cache->sectorsize = root->sectorsize;
7057 
7058 		btrfs_init_free_space_ctl(cache);
7059 
7060 		/*
7061 		 * We need to exclude the super stripes now so that the space
7062 		 * info has super bytes accounted for, otherwise we'll think
7063 		 * we have more space than we actually do.
7064 		 */
7065 		exclude_super_stripes(root, cache);
7066 
7067 		/*
7068 		 * check for two cases, either we are full, and therefore
7069 		 * don't need to bother with the caching work since we won't
7070 		 * find any space, or we are empty, and we can just add all
7071 		 * the space in and be done with it.  This saves us _alot_ of
7072 		 * time, particularly in the full case.
7073 		 */
7074 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7075 			cache->last_byte_to_unpin = (u64)-1;
7076 			cache->cached = BTRFS_CACHE_FINISHED;
7077 			free_excluded_extents(root, cache);
7078 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7079 			cache->last_byte_to_unpin = (u64)-1;
7080 			cache->cached = BTRFS_CACHE_FINISHED;
7081 			add_new_free_space(cache, root->fs_info,
7082 					   found_key.objectid,
7083 					   found_key.objectid +
7084 					   found_key.offset);
7085 			free_excluded_extents(root, cache);
7086 		}
7087 
7088 		ret = update_space_info(info, cache->flags, found_key.offset,
7089 					btrfs_block_group_used(&cache->item),
7090 					&space_info);
7091 		BUG_ON(ret);
7092 		cache->space_info = space_info;
7093 		spin_lock(&cache->space_info->lock);
7094 		cache->space_info->bytes_readonly += cache->bytes_super;
7095 		spin_unlock(&cache->space_info->lock);
7096 
7097 		__link_block_group(space_info, cache);
7098 
7099 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7100 		BUG_ON(ret);
7101 
7102 		set_avail_alloc_bits(root->fs_info, cache->flags);
7103 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7104 			set_block_group_ro(cache, 1);
7105 	}
7106 
7107 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7108 		if (!(get_alloc_profile(root, space_info->flags) &
7109 		      (BTRFS_BLOCK_GROUP_RAID10 |
7110 		       BTRFS_BLOCK_GROUP_RAID1 |
7111 		       BTRFS_BLOCK_GROUP_DUP)))
7112 			continue;
7113 		/*
7114 		 * avoid allocating from un-mirrored block group if there are
7115 		 * mirrored block groups.
7116 		 */
7117 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7118 			set_block_group_ro(cache, 1);
7119 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7120 			set_block_group_ro(cache, 1);
7121 	}
7122 
7123 	init_global_block_rsv(info);
7124 	ret = 0;
7125 error:
7126 	btrfs_free_path(path);
7127 	return ret;
7128 }
7129 
7130 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7131 			   struct btrfs_root *root, u64 bytes_used,
7132 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7133 			   u64 size)
7134 {
7135 	int ret;
7136 	struct btrfs_root *extent_root;
7137 	struct btrfs_block_group_cache *cache;
7138 
7139 	extent_root = root->fs_info->extent_root;
7140 
7141 	root->fs_info->last_trans_log_full_commit = trans->transid;
7142 
7143 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7144 	if (!cache)
7145 		return -ENOMEM;
7146 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7147 					GFP_NOFS);
7148 	if (!cache->free_space_ctl) {
7149 		kfree(cache);
7150 		return -ENOMEM;
7151 	}
7152 
7153 	cache->key.objectid = chunk_offset;
7154 	cache->key.offset = size;
7155 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7156 	cache->sectorsize = root->sectorsize;
7157 	cache->fs_info = root->fs_info;
7158 
7159 	atomic_set(&cache->count, 1);
7160 	spin_lock_init(&cache->lock);
7161 	INIT_LIST_HEAD(&cache->list);
7162 	INIT_LIST_HEAD(&cache->cluster_list);
7163 
7164 	btrfs_init_free_space_ctl(cache);
7165 
7166 	btrfs_set_block_group_used(&cache->item, bytes_used);
7167 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7168 	cache->flags = type;
7169 	btrfs_set_block_group_flags(&cache->item, type);
7170 
7171 	cache->last_byte_to_unpin = (u64)-1;
7172 	cache->cached = BTRFS_CACHE_FINISHED;
7173 	exclude_super_stripes(root, cache);
7174 
7175 	add_new_free_space(cache, root->fs_info, chunk_offset,
7176 			   chunk_offset + size);
7177 
7178 	free_excluded_extents(root, cache);
7179 
7180 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7181 				&cache->space_info);
7182 	BUG_ON(ret);
7183 
7184 	spin_lock(&cache->space_info->lock);
7185 	cache->space_info->bytes_readonly += cache->bytes_super;
7186 	spin_unlock(&cache->space_info->lock);
7187 
7188 	__link_block_group(cache->space_info, cache);
7189 
7190 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7191 	BUG_ON(ret);
7192 
7193 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7194 				sizeof(cache->item));
7195 	BUG_ON(ret);
7196 
7197 	set_avail_alloc_bits(extent_root->fs_info, type);
7198 
7199 	return 0;
7200 }
7201 
7202 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7203 			     struct btrfs_root *root, u64 group_start)
7204 {
7205 	struct btrfs_path *path;
7206 	struct btrfs_block_group_cache *block_group;
7207 	struct btrfs_free_cluster *cluster;
7208 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7209 	struct btrfs_key key;
7210 	struct inode *inode;
7211 	int ret;
7212 	int factor;
7213 
7214 	root = root->fs_info->extent_root;
7215 
7216 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7217 	BUG_ON(!block_group);
7218 	BUG_ON(!block_group->ro);
7219 
7220 	/*
7221 	 * Free the reserved super bytes from this block group before
7222 	 * remove it.
7223 	 */
7224 	free_excluded_extents(root, block_group);
7225 
7226 	memcpy(&key, &block_group->key, sizeof(key));
7227 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7228 				  BTRFS_BLOCK_GROUP_RAID1 |
7229 				  BTRFS_BLOCK_GROUP_RAID10))
7230 		factor = 2;
7231 	else
7232 		factor = 1;
7233 
7234 	/* make sure this block group isn't part of an allocation cluster */
7235 	cluster = &root->fs_info->data_alloc_cluster;
7236 	spin_lock(&cluster->refill_lock);
7237 	btrfs_return_cluster_to_free_space(block_group, cluster);
7238 	spin_unlock(&cluster->refill_lock);
7239 
7240 	/*
7241 	 * make sure this block group isn't part of a metadata
7242 	 * allocation cluster
7243 	 */
7244 	cluster = &root->fs_info->meta_alloc_cluster;
7245 	spin_lock(&cluster->refill_lock);
7246 	btrfs_return_cluster_to_free_space(block_group, cluster);
7247 	spin_unlock(&cluster->refill_lock);
7248 
7249 	path = btrfs_alloc_path();
7250 	if (!path) {
7251 		ret = -ENOMEM;
7252 		goto out;
7253 	}
7254 
7255 	inode = lookup_free_space_inode(root, block_group, path);
7256 	if (!IS_ERR(inode)) {
7257 		ret = btrfs_orphan_add(trans, inode);
7258 		BUG_ON(ret);
7259 		clear_nlink(inode);
7260 		/* One for the block groups ref */
7261 		spin_lock(&block_group->lock);
7262 		if (block_group->iref) {
7263 			block_group->iref = 0;
7264 			block_group->inode = NULL;
7265 			spin_unlock(&block_group->lock);
7266 			iput(inode);
7267 		} else {
7268 			spin_unlock(&block_group->lock);
7269 		}
7270 		/* One for our lookup ref */
7271 		iput(inode);
7272 	}
7273 
7274 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7275 	key.offset = block_group->key.objectid;
7276 	key.type = 0;
7277 
7278 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7279 	if (ret < 0)
7280 		goto out;
7281 	if (ret > 0)
7282 		btrfs_release_path(path);
7283 	if (ret == 0) {
7284 		ret = btrfs_del_item(trans, tree_root, path);
7285 		if (ret)
7286 			goto out;
7287 		btrfs_release_path(path);
7288 	}
7289 
7290 	spin_lock(&root->fs_info->block_group_cache_lock);
7291 	rb_erase(&block_group->cache_node,
7292 		 &root->fs_info->block_group_cache_tree);
7293 	spin_unlock(&root->fs_info->block_group_cache_lock);
7294 
7295 	down_write(&block_group->space_info->groups_sem);
7296 	/*
7297 	 * we must use list_del_init so people can check to see if they
7298 	 * are still on the list after taking the semaphore
7299 	 */
7300 	list_del_init(&block_group->list);
7301 	up_write(&block_group->space_info->groups_sem);
7302 
7303 	if (block_group->cached == BTRFS_CACHE_STARTED)
7304 		wait_block_group_cache_done(block_group);
7305 
7306 	btrfs_remove_free_space_cache(block_group);
7307 
7308 	spin_lock(&block_group->space_info->lock);
7309 	block_group->space_info->total_bytes -= block_group->key.offset;
7310 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7311 	block_group->space_info->disk_total -= block_group->key.offset * factor;
7312 	spin_unlock(&block_group->space_info->lock);
7313 
7314 	memcpy(&key, &block_group->key, sizeof(key));
7315 
7316 	btrfs_clear_space_info_full(root->fs_info);
7317 
7318 	btrfs_put_block_group(block_group);
7319 	btrfs_put_block_group(block_group);
7320 
7321 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7322 	if (ret > 0)
7323 		ret = -EIO;
7324 	if (ret < 0)
7325 		goto out;
7326 
7327 	ret = btrfs_del_item(trans, root, path);
7328 out:
7329 	btrfs_free_path(path);
7330 	return ret;
7331 }
7332 
7333 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7334 {
7335 	struct btrfs_space_info *space_info;
7336 	struct btrfs_super_block *disk_super;
7337 	u64 features;
7338 	u64 flags;
7339 	int mixed = 0;
7340 	int ret;
7341 
7342 	disk_super = &fs_info->super_copy;
7343 	if (!btrfs_super_root(disk_super))
7344 		return 1;
7345 
7346 	features = btrfs_super_incompat_flags(disk_super);
7347 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7348 		mixed = 1;
7349 
7350 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7351 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7352 	if (ret)
7353 		goto out;
7354 
7355 	if (mixed) {
7356 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7357 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7358 	} else {
7359 		flags = BTRFS_BLOCK_GROUP_METADATA;
7360 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7361 		if (ret)
7362 			goto out;
7363 
7364 		flags = BTRFS_BLOCK_GROUP_DATA;
7365 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7366 	}
7367 out:
7368 	return ret;
7369 }
7370 
7371 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7372 {
7373 	return unpin_extent_range(root, start, end);
7374 }
7375 
7376 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7377 			       u64 num_bytes, u64 *actual_bytes)
7378 {
7379 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7380 }
7381 
7382 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7383 {
7384 	struct btrfs_fs_info *fs_info = root->fs_info;
7385 	struct btrfs_block_group_cache *cache = NULL;
7386 	u64 group_trimmed;
7387 	u64 start;
7388 	u64 end;
7389 	u64 trimmed = 0;
7390 	int ret = 0;
7391 
7392 	cache = btrfs_lookup_block_group(fs_info, range->start);
7393 
7394 	while (cache) {
7395 		if (cache->key.objectid >= (range->start + range->len)) {
7396 			btrfs_put_block_group(cache);
7397 			break;
7398 		}
7399 
7400 		start = max(range->start, cache->key.objectid);
7401 		end = min(range->start + range->len,
7402 				cache->key.objectid + cache->key.offset);
7403 
7404 		if (end - start >= range->minlen) {
7405 			if (!block_group_cache_done(cache)) {
7406 				ret = cache_block_group(cache, NULL, root, 0);
7407 				if (!ret)
7408 					wait_block_group_cache_done(cache);
7409 			}
7410 			ret = btrfs_trim_block_group(cache,
7411 						     &group_trimmed,
7412 						     start,
7413 						     end,
7414 						     range->minlen);
7415 
7416 			trimmed += group_trimmed;
7417 			if (ret) {
7418 				btrfs_put_block_group(cache);
7419 				break;
7420 			}
7421 		}
7422 
7423 		cache = next_block_group(fs_info->tree_root, cache);
7424 	}
7425 
7426 	range->len = trimmed;
7427 	return ret;
7428 }
7429