1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include "compat.h" 27 #include "hash.h" 28 #include "ctree.h" 29 #include "disk-io.h" 30 #include "print-tree.h" 31 #include "transaction.h" 32 #include "volumes.h" 33 #include "locking.h" 34 #include "free-space-cache.h" 35 36 /* control flags for do_chunk_alloc's force field 37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 38 * if we really need one. 39 * 40 * CHUNK_ALLOC_FORCE means it must try to allocate one 41 * 42 * CHUNK_ALLOC_LIMITED means to only try and allocate one 43 * if we have very few chunks already allocated. This is 44 * used as part of the clustering code to help make sure 45 * we have a good pool of storage to cluster in, without 46 * filling the FS with empty chunks 47 * 48 */ 49 enum { 50 CHUNK_ALLOC_NO_FORCE = 0, 51 CHUNK_ALLOC_FORCE = 1, 52 CHUNK_ALLOC_LIMITED = 2, 53 }; 54 55 static int update_block_group(struct btrfs_trans_handle *trans, 56 struct btrfs_root *root, 57 u64 bytenr, u64 num_bytes, int alloc); 58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 59 struct btrfs_root *root, 60 u64 bytenr, u64 num_bytes, u64 parent, 61 u64 root_objectid, u64 owner_objectid, 62 u64 owner_offset, int refs_to_drop, 63 struct btrfs_delayed_extent_op *extra_op); 64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 65 struct extent_buffer *leaf, 66 struct btrfs_extent_item *ei); 67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 68 struct btrfs_root *root, 69 u64 parent, u64 root_objectid, 70 u64 flags, u64 owner, u64 offset, 71 struct btrfs_key *ins, int ref_mod); 72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 73 struct btrfs_root *root, 74 u64 parent, u64 root_objectid, 75 u64 flags, struct btrfs_disk_key *key, 76 int level, struct btrfs_key *ins); 77 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 78 struct btrfs_root *extent_root, u64 alloc_bytes, 79 u64 flags, int force); 80 static int find_next_key(struct btrfs_path *path, int level, 81 struct btrfs_key *key); 82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 83 int dump_block_groups); 84 85 static noinline int 86 block_group_cache_done(struct btrfs_block_group_cache *cache) 87 { 88 smp_mb(); 89 return cache->cached == BTRFS_CACHE_FINISHED; 90 } 91 92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 93 { 94 return (cache->flags & bits) == bits; 95 } 96 97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 98 { 99 atomic_inc(&cache->count); 100 } 101 102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 103 { 104 if (atomic_dec_and_test(&cache->count)) { 105 WARN_ON(cache->pinned > 0); 106 WARN_ON(cache->reserved > 0); 107 WARN_ON(cache->reserved_pinned > 0); 108 kfree(cache->free_space_ctl); 109 kfree(cache); 110 } 111 } 112 113 /* 114 * this adds the block group to the fs_info rb tree for the block group 115 * cache 116 */ 117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 118 struct btrfs_block_group_cache *block_group) 119 { 120 struct rb_node **p; 121 struct rb_node *parent = NULL; 122 struct btrfs_block_group_cache *cache; 123 124 spin_lock(&info->block_group_cache_lock); 125 p = &info->block_group_cache_tree.rb_node; 126 127 while (*p) { 128 parent = *p; 129 cache = rb_entry(parent, struct btrfs_block_group_cache, 130 cache_node); 131 if (block_group->key.objectid < cache->key.objectid) { 132 p = &(*p)->rb_left; 133 } else if (block_group->key.objectid > cache->key.objectid) { 134 p = &(*p)->rb_right; 135 } else { 136 spin_unlock(&info->block_group_cache_lock); 137 return -EEXIST; 138 } 139 } 140 141 rb_link_node(&block_group->cache_node, parent, p); 142 rb_insert_color(&block_group->cache_node, 143 &info->block_group_cache_tree); 144 spin_unlock(&info->block_group_cache_lock); 145 146 return 0; 147 } 148 149 /* 150 * This will return the block group at or after bytenr if contains is 0, else 151 * it will return the block group that contains the bytenr 152 */ 153 static struct btrfs_block_group_cache * 154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 155 int contains) 156 { 157 struct btrfs_block_group_cache *cache, *ret = NULL; 158 struct rb_node *n; 159 u64 end, start; 160 161 spin_lock(&info->block_group_cache_lock); 162 n = info->block_group_cache_tree.rb_node; 163 164 while (n) { 165 cache = rb_entry(n, struct btrfs_block_group_cache, 166 cache_node); 167 end = cache->key.objectid + cache->key.offset - 1; 168 start = cache->key.objectid; 169 170 if (bytenr < start) { 171 if (!contains && (!ret || start < ret->key.objectid)) 172 ret = cache; 173 n = n->rb_left; 174 } else if (bytenr > start) { 175 if (contains && bytenr <= end) { 176 ret = cache; 177 break; 178 } 179 n = n->rb_right; 180 } else { 181 ret = cache; 182 break; 183 } 184 } 185 if (ret) 186 btrfs_get_block_group(ret); 187 spin_unlock(&info->block_group_cache_lock); 188 189 return ret; 190 } 191 192 static int add_excluded_extent(struct btrfs_root *root, 193 u64 start, u64 num_bytes) 194 { 195 u64 end = start + num_bytes - 1; 196 set_extent_bits(&root->fs_info->freed_extents[0], 197 start, end, EXTENT_UPTODATE, GFP_NOFS); 198 set_extent_bits(&root->fs_info->freed_extents[1], 199 start, end, EXTENT_UPTODATE, GFP_NOFS); 200 return 0; 201 } 202 203 static void free_excluded_extents(struct btrfs_root *root, 204 struct btrfs_block_group_cache *cache) 205 { 206 u64 start, end; 207 208 start = cache->key.objectid; 209 end = start + cache->key.offset - 1; 210 211 clear_extent_bits(&root->fs_info->freed_extents[0], 212 start, end, EXTENT_UPTODATE, GFP_NOFS); 213 clear_extent_bits(&root->fs_info->freed_extents[1], 214 start, end, EXTENT_UPTODATE, GFP_NOFS); 215 } 216 217 static int exclude_super_stripes(struct btrfs_root *root, 218 struct btrfs_block_group_cache *cache) 219 { 220 u64 bytenr; 221 u64 *logical; 222 int stripe_len; 223 int i, nr, ret; 224 225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 227 cache->bytes_super += stripe_len; 228 ret = add_excluded_extent(root, cache->key.objectid, 229 stripe_len); 230 BUG_ON(ret); 231 } 232 233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 234 bytenr = btrfs_sb_offset(i); 235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 236 cache->key.objectid, bytenr, 237 0, &logical, &nr, &stripe_len); 238 BUG_ON(ret); 239 240 while (nr--) { 241 cache->bytes_super += stripe_len; 242 ret = add_excluded_extent(root, logical[nr], 243 stripe_len); 244 BUG_ON(ret); 245 } 246 247 kfree(logical); 248 } 249 return 0; 250 } 251 252 static struct btrfs_caching_control * 253 get_caching_control(struct btrfs_block_group_cache *cache) 254 { 255 struct btrfs_caching_control *ctl; 256 257 spin_lock(&cache->lock); 258 if (cache->cached != BTRFS_CACHE_STARTED) { 259 spin_unlock(&cache->lock); 260 return NULL; 261 } 262 263 /* We're loading it the fast way, so we don't have a caching_ctl. */ 264 if (!cache->caching_ctl) { 265 spin_unlock(&cache->lock); 266 return NULL; 267 } 268 269 ctl = cache->caching_ctl; 270 atomic_inc(&ctl->count); 271 spin_unlock(&cache->lock); 272 return ctl; 273 } 274 275 static void put_caching_control(struct btrfs_caching_control *ctl) 276 { 277 if (atomic_dec_and_test(&ctl->count)) 278 kfree(ctl); 279 } 280 281 /* 282 * this is only called by cache_block_group, since we could have freed extents 283 * we need to check the pinned_extents for any extents that can't be used yet 284 * since their free space will be released as soon as the transaction commits. 285 */ 286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 287 struct btrfs_fs_info *info, u64 start, u64 end) 288 { 289 u64 extent_start, extent_end, size, total_added = 0; 290 int ret; 291 292 while (start < end) { 293 ret = find_first_extent_bit(info->pinned_extents, start, 294 &extent_start, &extent_end, 295 EXTENT_DIRTY | EXTENT_UPTODATE); 296 if (ret) 297 break; 298 299 if (extent_start <= start) { 300 start = extent_end + 1; 301 } else if (extent_start > start && extent_start < end) { 302 size = extent_start - start; 303 total_added += size; 304 ret = btrfs_add_free_space(block_group, start, 305 size); 306 BUG_ON(ret); 307 start = extent_end + 1; 308 } else { 309 break; 310 } 311 } 312 313 if (start < end) { 314 size = end - start; 315 total_added += size; 316 ret = btrfs_add_free_space(block_group, start, size); 317 BUG_ON(ret); 318 } 319 320 return total_added; 321 } 322 323 static noinline void caching_thread(struct btrfs_work *work) 324 { 325 struct btrfs_block_group_cache *block_group; 326 struct btrfs_fs_info *fs_info; 327 struct btrfs_caching_control *caching_ctl; 328 struct btrfs_root *extent_root; 329 struct btrfs_path *path; 330 struct extent_buffer *leaf; 331 struct btrfs_key key; 332 u64 total_found = 0; 333 u64 last = 0; 334 u32 nritems; 335 int ret = 0; 336 337 caching_ctl = container_of(work, struct btrfs_caching_control, work); 338 block_group = caching_ctl->block_group; 339 fs_info = block_group->fs_info; 340 extent_root = fs_info->extent_root; 341 342 path = btrfs_alloc_path(); 343 if (!path) 344 goto out; 345 346 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 347 348 /* 349 * We don't want to deadlock with somebody trying to allocate a new 350 * extent for the extent root while also trying to search the extent 351 * root to add free space. So we skip locking and search the commit 352 * root, since its read-only 353 */ 354 path->skip_locking = 1; 355 path->search_commit_root = 1; 356 path->reada = 1; 357 358 key.objectid = last; 359 key.offset = 0; 360 key.type = BTRFS_EXTENT_ITEM_KEY; 361 again: 362 mutex_lock(&caching_ctl->mutex); 363 /* need to make sure the commit_root doesn't disappear */ 364 down_read(&fs_info->extent_commit_sem); 365 366 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 367 if (ret < 0) 368 goto err; 369 370 leaf = path->nodes[0]; 371 nritems = btrfs_header_nritems(leaf); 372 373 while (1) { 374 if (btrfs_fs_closing(fs_info) > 1) { 375 last = (u64)-1; 376 break; 377 } 378 379 if (path->slots[0] < nritems) { 380 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 381 } else { 382 ret = find_next_key(path, 0, &key); 383 if (ret) 384 break; 385 386 if (need_resched() || 387 btrfs_next_leaf(extent_root, path)) { 388 caching_ctl->progress = last; 389 btrfs_release_path(path); 390 up_read(&fs_info->extent_commit_sem); 391 mutex_unlock(&caching_ctl->mutex); 392 cond_resched(); 393 goto again; 394 } 395 leaf = path->nodes[0]; 396 nritems = btrfs_header_nritems(leaf); 397 continue; 398 } 399 400 if (key.objectid < block_group->key.objectid) { 401 path->slots[0]++; 402 continue; 403 } 404 405 if (key.objectid >= block_group->key.objectid + 406 block_group->key.offset) 407 break; 408 409 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 410 total_found += add_new_free_space(block_group, 411 fs_info, last, 412 key.objectid); 413 last = key.objectid + key.offset; 414 415 if (total_found > (1024 * 1024 * 2)) { 416 total_found = 0; 417 wake_up(&caching_ctl->wait); 418 } 419 } 420 path->slots[0]++; 421 } 422 ret = 0; 423 424 total_found += add_new_free_space(block_group, fs_info, last, 425 block_group->key.objectid + 426 block_group->key.offset); 427 caching_ctl->progress = (u64)-1; 428 429 spin_lock(&block_group->lock); 430 block_group->caching_ctl = NULL; 431 block_group->cached = BTRFS_CACHE_FINISHED; 432 spin_unlock(&block_group->lock); 433 434 err: 435 btrfs_free_path(path); 436 up_read(&fs_info->extent_commit_sem); 437 438 free_excluded_extents(extent_root, block_group); 439 440 mutex_unlock(&caching_ctl->mutex); 441 out: 442 wake_up(&caching_ctl->wait); 443 444 put_caching_control(caching_ctl); 445 btrfs_put_block_group(block_group); 446 } 447 448 static int cache_block_group(struct btrfs_block_group_cache *cache, 449 struct btrfs_trans_handle *trans, 450 struct btrfs_root *root, 451 int load_cache_only) 452 { 453 struct btrfs_fs_info *fs_info = cache->fs_info; 454 struct btrfs_caching_control *caching_ctl; 455 int ret = 0; 456 457 smp_mb(); 458 if (cache->cached != BTRFS_CACHE_NO) 459 return 0; 460 461 /* 462 * We can't do the read from on-disk cache during a commit since we need 463 * to have the normal tree locking. Also if we are currently trying to 464 * allocate blocks for the tree root we can't do the fast caching since 465 * we likely hold important locks. 466 */ 467 if (trans && (!trans->transaction->in_commit) && 468 (root && root != root->fs_info->tree_root)) { 469 spin_lock(&cache->lock); 470 if (cache->cached != BTRFS_CACHE_NO) { 471 spin_unlock(&cache->lock); 472 return 0; 473 } 474 cache->cached = BTRFS_CACHE_STARTED; 475 spin_unlock(&cache->lock); 476 477 ret = load_free_space_cache(fs_info, cache); 478 479 spin_lock(&cache->lock); 480 if (ret == 1) { 481 cache->cached = BTRFS_CACHE_FINISHED; 482 cache->last_byte_to_unpin = (u64)-1; 483 } else { 484 cache->cached = BTRFS_CACHE_NO; 485 } 486 spin_unlock(&cache->lock); 487 if (ret == 1) { 488 free_excluded_extents(fs_info->extent_root, cache); 489 return 0; 490 } 491 } 492 493 if (load_cache_only) 494 return 0; 495 496 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 497 BUG_ON(!caching_ctl); 498 499 INIT_LIST_HEAD(&caching_ctl->list); 500 mutex_init(&caching_ctl->mutex); 501 init_waitqueue_head(&caching_ctl->wait); 502 caching_ctl->block_group = cache; 503 caching_ctl->progress = cache->key.objectid; 504 /* one for caching kthread, one for caching block group list */ 505 atomic_set(&caching_ctl->count, 2); 506 caching_ctl->work.func = caching_thread; 507 508 spin_lock(&cache->lock); 509 if (cache->cached != BTRFS_CACHE_NO) { 510 spin_unlock(&cache->lock); 511 kfree(caching_ctl); 512 return 0; 513 } 514 cache->caching_ctl = caching_ctl; 515 cache->cached = BTRFS_CACHE_STARTED; 516 spin_unlock(&cache->lock); 517 518 down_write(&fs_info->extent_commit_sem); 519 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 520 up_write(&fs_info->extent_commit_sem); 521 522 btrfs_get_block_group(cache); 523 524 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 525 526 return ret; 527 } 528 529 /* 530 * return the block group that starts at or after bytenr 531 */ 532 static struct btrfs_block_group_cache * 533 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 534 { 535 struct btrfs_block_group_cache *cache; 536 537 cache = block_group_cache_tree_search(info, bytenr, 0); 538 539 return cache; 540 } 541 542 /* 543 * return the block group that contains the given bytenr 544 */ 545 struct btrfs_block_group_cache *btrfs_lookup_block_group( 546 struct btrfs_fs_info *info, 547 u64 bytenr) 548 { 549 struct btrfs_block_group_cache *cache; 550 551 cache = block_group_cache_tree_search(info, bytenr, 1); 552 553 return cache; 554 } 555 556 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 557 u64 flags) 558 { 559 struct list_head *head = &info->space_info; 560 struct btrfs_space_info *found; 561 562 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | 563 BTRFS_BLOCK_GROUP_METADATA; 564 565 rcu_read_lock(); 566 list_for_each_entry_rcu(found, head, list) { 567 if (found->flags & flags) { 568 rcu_read_unlock(); 569 return found; 570 } 571 } 572 rcu_read_unlock(); 573 return NULL; 574 } 575 576 /* 577 * after adding space to the filesystem, we need to clear the full flags 578 * on all the space infos. 579 */ 580 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 581 { 582 struct list_head *head = &info->space_info; 583 struct btrfs_space_info *found; 584 585 rcu_read_lock(); 586 list_for_each_entry_rcu(found, head, list) 587 found->full = 0; 588 rcu_read_unlock(); 589 } 590 591 static u64 div_factor(u64 num, int factor) 592 { 593 if (factor == 10) 594 return num; 595 num *= factor; 596 do_div(num, 10); 597 return num; 598 } 599 600 static u64 div_factor_fine(u64 num, int factor) 601 { 602 if (factor == 100) 603 return num; 604 num *= factor; 605 do_div(num, 100); 606 return num; 607 } 608 609 u64 btrfs_find_block_group(struct btrfs_root *root, 610 u64 search_start, u64 search_hint, int owner) 611 { 612 struct btrfs_block_group_cache *cache; 613 u64 used; 614 u64 last = max(search_hint, search_start); 615 u64 group_start = 0; 616 int full_search = 0; 617 int factor = 9; 618 int wrapped = 0; 619 again: 620 while (1) { 621 cache = btrfs_lookup_first_block_group(root->fs_info, last); 622 if (!cache) 623 break; 624 625 spin_lock(&cache->lock); 626 last = cache->key.objectid + cache->key.offset; 627 used = btrfs_block_group_used(&cache->item); 628 629 if ((full_search || !cache->ro) && 630 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 631 if (used + cache->pinned + cache->reserved < 632 div_factor(cache->key.offset, factor)) { 633 group_start = cache->key.objectid; 634 spin_unlock(&cache->lock); 635 btrfs_put_block_group(cache); 636 goto found; 637 } 638 } 639 spin_unlock(&cache->lock); 640 btrfs_put_block_group(cache); 641 cond_resched(); 642 } 643 if (!wrapped) { 644 last = search_start; 645 wrapped = 1; 646 goto again; 647 } 648 if (!full_search && factor < 10) { 649 last = search_start; 650 full_search = 1; 651 factor = 10; 652 goto again; 653 } 654 found: 655 return group_start; 656 } 657 658 /* simple helper to search for an existing extent at a given offset */ 659 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 660 { 661 int ret; 662 struct btrfs_key key; 663 struct btrfs_path *path; 664 665 path = btrfs_alloc_path(); 666 if (!path) 667 return -ENOMEM; 668 669 key.objectid = start; 670 key.offset = len; 671 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 672 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 673 0, 0); 674 btrfs_free_path(path); 675 return ret; 676 } 677 678 /* 679 * helper function to lookup reference count and flags of extent. 680 * 681 * the head node for delayed ref is used to store the sum of all the 682 * reference count modifications queued up in the rbtree. the head 683 * node may also store the extent flags to set. This way you can check 684 * to see what the reference count and extent flags would be if all of 685 * the delayed refs are not processed. 686 */ 687 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 688 struct btrfs_root *root, u64 bytenr, 689 u64 num_bytes, u64 *refs, u64 *flags) 690 { 691 struct btrfs_delayed_ref_head *head; 692 struct btrfs_delayed_ref_root *delayed_refs; 693 struct btrfs_path *path; 694 struct btrfs_extent_item *ei; 695 struct extent_buffer *leaf; 696 struct btrfs_key key; 697 u32 item_size; 698 u64 num_refs; 699 u64 extent_flags; 700 int ret; 701 702 path = btrfs_alloc_path(); 703 if (!path) 704 return -ENOMEM; 705 706 key.objectid = bytenr; 707 key.type = BTRFS_EXTENT_ITEM_KEY; 708 key.offset = num_bytes; 709 if (!trans) { 710 path->skip_locking = 1; 711 path->search_commit_root = 1; 712 } 713 again: 714 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 715 &key, path, 0, 0); 716 if (ret < 0) 717 goto out_free; 718 719 if (ret == 0) { 720 leaf = path->nodes[0]; 721 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 722 if (item_size >= sizeof(*ei)) { 723 ei = btrfs_item_ptr(leaf, path->slots[0], 724 struct btrfs_extent_item); 725 num_refs = btrfs_extent_refs(leaf, ei); 726 extent_flags = btrfs_extent_flags(leaf, ei); 727 } else { 728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 729 struct btrfs_extent_item_v0 *ei0; 730 BUG_ON(item_size != sizeof(*ei0)); 731 ei0 = btrfs_item_ptr(leaf, path->slots[0], 732 struct btrfs_extent_item_v0); 733 num_refs = btrfs_extent_refs_v0(leaf, ei0); 734 /* FIXME: this isn't correct for data */ 735 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 736 #else 737 BUG(); 738 #endif 739 } 740 BUG_ON(num_refs == 0); 741 } else { 742 num_refs = 0; 743 extent_flags = 0; 744 ret = 0; 745 } 746 747 if (!trans) 748 goto out; 749 750 delayed_refs = &trans->transaction->delayed_refs; 751 spin_lock(&delayed_refs->lock); 752 head = btrfs_find_delayed_ref_head(trans, bytenr); 753 if (head) { 754 if (!mutex_trylock(&head->mutex)) { 755 atomic_inc(&head->node.refs); 756 spin_unlock(&delayed_refs->lock); 757 758 btrfs_release_path(path); 759 760 /* 761 * Mutex was contended, block until it's released and try 762 * again 763 */ 764 mutex_lock(&head->mutex); 765 mutex_unlock(&head->mutex); 766 btrfs_put_delayed_ref(&head->node); 767 goto again; 768 } 769 if (head->extent_op && head->extent_op->update_flags) 770 extent_flags |= head->extent_op->flags_to_set; 771 else 772 BUG_ON(num_refs == 0); 773 774 num_refs += head->node.ref_mod; 775 mutex_unlock(&head->mutex); 776 } 777 spin_unlock(&delayed_refs->lock); 778 out: 779 WARN_ON(num_refs == 0); 780 if (refs) 781 *refs = num_refs; 782 if (flags) 783 *flags = extent_flags; 784 out_free: 785 btrfs_free_path(path); 786 return ret; 787 } 788 789 /* 790 * Back reference rules. Back refs have three main goals: 791 * 792 * 1) differentiate between all holders of references to an extent so that 793 * when a reference is dropped we can make sure it was a valid reference 794 * before freeing the extent. 795 * 796 * 2) Provide enough information to quickly find the holders of an extent 797 * if we notice a given block is corrupted or bad. 798 * 799 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 800 * maintenance. This is actually the same as #2, but with a slightly 801 * different use case. 802 * 803 * There are two kinds of back refs. The implicit back refs is optimized 804 * for pointers in non-shared tree blocks. For a given pointer in a block, 805 * back refs of this kind provide information about the block's owner tree 806 * and the pointer's key. These information allow us to find the block by 807 * b-tree searching. The full back refs is for pointers in tree blocks not 808 * referenced by their owner trees. The location of tree block is recorded 809 * in the back refs. Actually the full back refs is generic, and can be 810 * used in all cases the implicit back refs is used. The major shortcoming 811 * of the full back refs is its overhead. Every time a tree block gets 812 * COWed, we have to update back refs entry for all pointers in it. 813 * 814 * For a newly allocated tree block, we use implicit back refs for 815 * pointers in it. This means most tree related operations only involve 816 * implicit back refs. For a tree block created in old transaction, the 817 * only way to drop a reference to it is COW it. So we can detect the 818 * event that tree block loses its owner tree's reference and do the 819 * back refs conversion. 820 * 821 * When a tree block is COW'd through a tree, there are four cases: 822 * 823 * The reference count of the block is one and the tree is the block's 824 * owner tree. Nothing to do in this case. 825 * 826 * The reference count of the block is one and the tree is not the 827 * block's owner tree. In this case, full back refs is used for pointers 828 * in the block. Remove these full back refs, add implicit back refs for 829 * every pointers in the new block. 830 * 831 * The reference count of the block is greater than one and the tree is 832 * the block's owner tree. In this case, implicit back refs is used for 833 * pointers in the block. Add full back refs for every pointers in the 834 * block, increase lower level extents' reference counts. The original 835 * implicit back refs are entailed to the new block. 836 * 837 * The reference count of the block is greater than one and the tree is 838 * not the block's owner tree. Add implicit back refs for every pointer in 839 * the new block, increase lower level extents' reference count. 840 * 841 * Back Reference Key composing: 842 * 843 * The key objectid corresponds to the first byte in the extent, 844 * The key type is used to differentiate between types of back refs. 845 * There are different meanings of the key offset for different types 846 * of back refs. 847 * 848 * File extents can be referenced by: 849 * 850 * - multiple snapshots, subvolumes, or different generations in one subvol 851 * - different files inside a single subvolume 852 * - different offsets inside a file (bookend extents in file.c) 853 * 854 * The extent ref structure for the implicit back refs has fields for: 855 * 856 * - Objectid of the subvolume root 857 * - objectid of the file holding the reference 858 * - original offset in the file 859 * - how many bookend extents 860 * 861 * The key offset for the implicit back refs is hash of the first 862 * three fields. 863 * 864 * The extent ref structure for the full back refs has field for: 865 * 866 * - number of pointers in the tree leaf 867 * 868 * The key offset for the implicit back refs is the first byte of 869 * the tree leaf 870 * 871 * When a file extent is allocated, The implicit back refs is used. 872 * the fields are filled in: 873 * 874 * (root_key.objectid, inode objectid, offset in file, 1) 875 * 876 * When a file extent is removed file truncation, we find the 877 * corresponding implicit back refs and check the following fields: 878 * 879 * (btrfs_header_owner(leaf), inode objectid, offset in file) 880 * 881 * Btree extents can be referenced by: 882 * 883 * - Different subvolumes 884 * 885 * Both the implicit back refs and the full back refs for tree blocks 886 * only consist of key. The key offset for the implicit back refs is 887 * objectid of block's owner tree. The key offset for the full back refs 888 * is the first byte of parent block. 889 * 890 * When implicit back refs is used, information about the lowest key and 891 * level of the tree block are required. These information are stored in 892 * tree block info structure. 893 */ 894 895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 896 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 897 struct btrfs_root *root, 898 struct btrfs_path *path, 899 u64 owner, u32 extra_size) 900 { 901 struct btrfs_extent_item *item; 902 struct btrfs_extent_item_v0 *ei0; 903 struct btrfs_extent_ref_v0 *ref0; 904 struct btrfs_tree_block_info *bi; 905 struct extent_buffer *leaf; 906 struct btrfs_key key; 907 struct btrfs_key found_key; 908 u32 new_size = sizeof(*item); 909 u64 refs; 910 int ret; 911 912 leaf = path->nodes[0]; 913 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 914 915 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 916 ei0 = btrfs_item_ptr(leaf, path->slots[0], 917 struct btrfs_extent_item_v0); 918 refs = btrfs_extent_refs_v0(leaf, ei0); 919 920 if (owner == (u64)-1) { 921 while (1) { 922 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 923 ret = btrfs_next_leaf(root, path); 924 if (ret < 0) 925 return ret; 926 BUG_ON(ret > 0); 927 leaf = path->nodes[0]; 928 } 929 btrfs_item_key_to_cpu(leaf, &found_key, 930 path->slots[0]); 931 BUG_ON(key.objectid != found_key.objectid); 932 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 933 path->slots[0]++; 934 continue; 935 } 936 ref0 = btrfs_item_ptr(leaf, path->slots[0], 937 struct btrfs_extent_ref_v0); 938 owner = btrfs_ref_objectid_v0(leaf, ref0); 939 break; 940 } 941 } 942 btrfs_release_path(path); 943 944 if (owner < BTRFS_FIRST_FREE_OBJECTID) 945 new_size += sizeof(*bi); 946 947 new_size -= sizeof(*ei0); 948 ret = btrfs_search_slot(trans, root, &key, path, 949 new_size + extra_size, 1); 950 if (ret < 0) 951 return ret; 952 BUG_ON(ret); 953 954 ret = btrfs_extend_item(trans, root, path, new_size); 955 956 leaf = path->nodes[0]; 957 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 958 btrfs_set_extent_refs(leaf, item, refs); 959 /* FIXME: get real generation */ 960 btrfs_set_extent_generation(leaf, item, 0); 961 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 962 btrfs_set_extent_flags(leaf, item, 963 BTRFS_EXTENT_FLAG_TREE_BLOCK | 964 BTRFS_BLOCK_FLAG_FULL_BACKREF); 965 bi = (struct btrfs_tree_block_info *)(item + 1); 966 /* FIXME: get first key of the block */ 967 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 968 btrfs_set_tree_block_level(leaf, bi, (int)owner); 969 } else { 970 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 971 } 972 btrfs_mark_buffer_dirty(leaf); 973 return 0; 974 } 975 #endif 976 977 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 978 { 979 u32 high_crc = ~(u32)0; 980 u32 low_crc = ~(u32)0; 981 __le64 lenum; 982 983 lenum = cpu_to_le64(root_objectid); 984 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 985 lenum = cpu_to_le64(owner); 986 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 987 lenum = cpu_to_le64(offset); 988 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 989 990 return ((u64)high_crc << 31) ^ (u64)low_crc; 991 } 992 993 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 994 struct btrfs_extent_data_ref *ref) 995 { 996 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 997 btrfs_extent_data_ref_objectid(leaf, ref), 998 btrfs_extent_data_ref_offset(leaf, ref)); 999 } 1000 1001 static int match_extent_data_ref(struct extent_buffer *leaf, 1002 struct btrfs_extent_data_ref *ref, 1003 u64 root_objectid, u64 owner, u64 offset) 1004 { 1005 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1006 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1007 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1008 return 0; 1009 return 1; 1010 } 1011 1012 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1013 struct btrfs_root *root, 1014 struct btrfs_path *path, 1015 u64 bytenr, u64 parent, 1016 u64 root_objectid, 1017 u64 owner, u64 offset) 1018 { 1019 struct btrfs_key key; 1020 struct btrfs_extent_data_ref *ref; 1021 struct extent_buffer *leaf; 1022 u32 nritems; 1023 int ret; 1024 int recow; 1025 int err = -ENOENT; 1026 1027 key.objectid = bytenr; 1028 if (parent) { 1029 key.type = BTRFS_SHARED_DATA_REF_KEY; 1030 key.offset = parent; 1031 } else { 1032 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1033 key.offset = hash_extent_data_ref(root_objectid, 1034 owner, offset); 1035 } 1036 again: 1037 recow = 0; 1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1039 if (ret < 0) { 1040 err = ret; 1041 goto fail; 1042 } 1043 1044 if (parent) { 1045 if (!ret) 1046 return 0; 1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1048 key.type = BTRFS_EXTENT_REF_V0_KEY; 1049 btrfs_release_path(path); 1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1051 if (ret < 0) { 1052 err = ret; 1053 goto fail; 1054 } 1055 if (!ret) 1056 return 0; 1057 #endif 1058 goto fail; 1059 } 1060 1061 leaf = path->nodes[0]; 1062 nritems = btrfs_header_nritems(leaf); 1063 while (1) { 1064 if (path->slots[0] >= nritems) { 1065 ret = btrfs_next_leaf(root, path); 1066 if (ret < 0) 1067 err = ret; 1068 if (ret) 1069 goto fail; 1070 1071 leaf = path->nodes[0]; 1072 nritems = btrfs_header_nritems(leaf); 1073 recow = 1; 1074 } 1075 1076 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1077 if (key.objectid != bytenr || 1078 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1079 goto fail; 1080 1081 ref = btrfs_item_ptr(leaf, path->slots[0], 1082 struct btrfs_extent_data_ref); 1083 1084 if (match_extent_data_ref(leaf, ref, root_objectid, 1085 owner, offset)) { 1086 if (recow) { 1087 btrfs_release_path(path); 1088 goto again; 1089 } 1090 err = 0; 1091 break; 1092 } 1093 path->slots[0]++; 1094 } 1095 fail: 1096 return err; 1097 } 1098 1099 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1100 struct btrfs_root *root, 1101 struct btrfs_path *path, 1102 u64 bytenr, u64 parent, 1103 u64 root_objectid, u64 owner, 1104 u64 offset, int refs_to_add) 1105 { 1106 struct btrfs_key key; 1107 struct extent_buffer *leaf; 1108 u32 size; 1109 u32 num_refs; 1110 int ret; 1111 1112 key.objectid = bytenr; 1113 if (parent) { 1114 key.type = BTRFS_SHARED_DATA_REF_KEY; 1115 key.offset = parent; 1116 size = sizeof(struct btrfs_shared_data_ref); 1117 } else { 1118 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1119 key.offset = hash_extent_data_ref(root_objectid, 1120 owner, offset); 1121 size = sizeof(struct btrfs_extent_data_ref); 1122 } 1123 1124 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1125 if (ret && ret != -EEXIST) 1126 goto fail; 1127 1128 leaf = path->nodes[0]; 1129 if (parent) { 1130 struct btrfs_shared_data_ref *ref; 1131 ref = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_shared_data_ref); 1133 if (ret == 0) { 1134 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1135 } else { 1136 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1137 num_refs += refs_to_add; 1138 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1139 } 1140 } else { 1141 struct btrfs_extent_data_ref *ref; 1142 while (ret == -EEXIST) { 1143 ref = btrfs_item_ptr(leaf, path->slots[0], 1144 struct btrfs_extent_data_ref); 1145 if (match_extent_data_ref(leaf, ref, root_objectid, 1146 owner, offset)) 1147 break; 1148 btrfs_release_path(path); 1149 key.offset++; 1150 ret = btrfs_insert_empty_item(trans, root, path, &key, 1151 size); 1152 if (ret && ret != -EEXIST) 1153 goto fail; 1154 1155 leaf = path->nodes[0]; 1156 } 1157 ref = btrfs_item_ptr(leaf, path->slots[0], 1158 struct btrfs_extent_data_ref); 1159 if (ret == 0) { 1160 btrfs_set_extent_data_ref_root(leaf, ref, 1161 root_objectid); 1162 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1163 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1164 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1165 } else { 1166 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1167 num_refs += refs_to_add; 1168 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1169 } 1170 } 1171 btrfs_mark_buffer_dirty(leaf); 1172 ret = 0; 1173 fail: 1174 btrfs_release_path(path); 1175 return ret; 1176 } 1177 1178 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1179 struct btrfs_root *root, 1180 struct btrfs_path *path, 1181 int refs_to_drop) 1182 { 1183 struct btrfs_key key; 1184 struct btrfs_extent_data_ref *ref1 = NULL; 1185 struct btrfs_shared_data_ref *ref2 = NULL; 1186 struct extent_buffer *leaf; 1187 u32 num_refs = 0; 1188 int ret = 0; 1189 1190 leaf = path->nodes[0]; 1191 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1192 1193 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1194 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1195 struct btrfs_extent_data_ref); 1196 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1197 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1198 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1199 struct btrfs_shared_data_ref); 1200 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1202 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1203 struct btrfs_extent_ref_v0 *ref0; 1204 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_extent_ref_v0); 1206 num_refs = btrfs_ref_count_v0(leaf, ref0); 1207 #endif 1208 } else { 1209 BUG(); 1210 } 1211 1212 BUG_ON(num_refs < refs_to_drop); 1213 num_refs -= refs_to_drop; 1214 1215 if (num_refs == 0) { 1216 ret = btrfs_del_item(trans, root, path); 1217 } else { 1218 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1219 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1220 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1221 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1223 else { 1224 struct btrfs_extent_ref_v0 *ref0; 1225 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1226 struct btrfs_extent_ref_v0); 1227 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1228 } 1229 #endif 1230 btrfs_mark_buffer_dirty(leaf); 1231 } 1232 return ret; 1233 } 1234 1235 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1236 struct btrfs_path *path, 1237 struct btrfs_extent_inline_ref *iref) 1238 { 1239 struct btrfs_key key; 1240 struct extent_buffer *leaf; 1241 struct btrfs_extent_data_ref *ref1; 1242 struct btrfs_shared_data_ref *ref2; 1243 u32 num_refs = 0; 1244 1245 leaf = path->nodes[0]; 1246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1247 if (iref) { 1248 if (btrfs_extent_inline_ref_type(leaf, iref) == 1249 BTRFS_EXTENT_DATA_REF_KEY) { 1250 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1251 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1252 } else { 1253 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1254 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1255 } 1256 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1257 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1258 struct btrfs_extent_data_ref); 1259 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1260 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1261 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1262 struct btrfs_shared_data_ref); 1263 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1265 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1266 struct btrfs_extent_ref_v0 *ref0; 1267 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1268 struct btrfs_extent_ref_v0); 1269 num_refs = btrfs_ref_count_v0(leaf, ref0); 1270 #endif 1271 } else { 1272 WARN_ON(1); 1273 } 1274 return num_refs; 1275 } 1276 1277 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1278 struct btrfs_root *root, 1279 struct btrfs_path *path, 1280 u64 bytenr, u64 parent, 1281 u64 root_objectid) 1282 { 1283 struct btrfs_key key; 1284 int ret; 1285 1286 key.objectid = bytenr; 1287 if (parent) { 1288 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1289 key.offset = parent; 1290 } else { 1291 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1292 key.offset = root_objectid; 1293 } 1294 1295 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1296 if (ret > 0) 1297 ret = -ENOENT; 1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1299 if (ret == -ENOENT && parent) { 1300 btrfs_release_path(path); 1301 key.type = BTRFS_EXTENT_REF_V0_KEY; 1302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1303 if (ret > 0) 1304 ret = -ENOENT; 1305 } 1306 #endif 1307 return ret; 1308 } 1309 1310 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1311 struct btrfs_root *root, 1312 struct btrfs_path *path, 1313 u64 bytenr, u64 parent, 1314 u64 root_objectid) 1315 { 1316 struct btrfs_key key; 1317 int ret; 1318 1319 key.objectid = bytenr; 1320 if (parent) { 1321 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1322 key.offset = parent; 1323 } else { 1324 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1325 key.offset = root_objectid; 1326 } 1327 1328 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1329 btrfs_release_path(path); 1330 return ret; 1331 } 1332 1333 static inline int extent_ref_type(u64 parent, u64 owner) 1334 { 1335 int type; 1336 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1337 if (parent > 0) 1338 type = BTRFS_SHARED_BLOCK_REF_KEY; 1339 else 1340 type = BTRFS_TREE_BLOCK_REF_KEY; 1341 } else { 1342 if (parent > 0) 1343 type = BTRFS_SHARED_DATA_REF_KEY; 1344 else 1345 type = BTRFS_EXTENT_DATA_REF_KEY; 1346 } 1347 return type; 1348 } 1349 1350 static int find_next_key(struct btrfs_path *path, int level, 1351 struct btrfs_key *key) 1352 1353 { 1354 for (; level < BTRFS_MAX_LEVEL; level++) { 1355 if (!path->nodes[level]) 1356 break; 1357 if (path->slots[level] + 1 >= 1358 btrfs_header_nritems(path->nodes[level])) 1359 continue; 1360 if (level == 0) 1361 btrfs_item_key_to_cpu(path->nodes[level], key, 1362 path->slots[level] + 1); 1363 else 1364 btrfs_node_key_to_cpu(path->nodes[level], key, 1365 path->slots[level] + 1); 1366 return 0; 1367 } 1368 return 1; 1369 } 1370 1371 /* 1372 * look for inline back ref. if back ref is found, *ref_ret is set 1373 * to the address of inline back ref, and 0 is returned. 1374 * 1375 * if back ref isn't found, *ref_ret is set to the address where it 1376 * should be inserted, and -ENOENT is returned. 1377 * 1378 * if insert is true and there are too many inline back refs, the path 1379 * points to the extent item, and -EAGAIN is returned. 1380 * 1381 * NOTE: inline back refs are ordered in the same way that back ref 1382 * items in the tree are ordered. 1383 */ 1384 static noinline_for_stack 1385 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1386 struct btrfs_root *root, 1387 struct btrfs_path *path, 1388 struct btrfs_extent_inline_ref **ref_ret, 1389 u64 bytenr, u64 num_bytes, 1390 u64 parent, u64 root_objectid, 1391 u64 owner, u64 offset, int insert) 1392 { 1393 struct btrfs_key key; 1394 struct extent_buffer *leaf; 1395 struct btrfs_extent_item *ei; 1396 struct btrfs_extent_inline_ref *iref; 1397 u64 flags; 1398 u64 item_size; 1399 unsigned long ptr; 1400 unsigned long end; 1401 int extra_size; 1402 int type; 1403 int want; 1404 int ret; 1405 int err = 0; 1406 1407 key.objectid = bytenr; 1408 key.type = BTRFS_EXTENT_ITEM_KEY; 1409 key.offset = num_bytes; 1410 1411 want = extent_ref_type(parent, owner); 1412 if (insert) { 1413 extra_size = btrfs_extent_inline_ref_size(want); 1414 path->keep_locks = 1; 1415 } else 1416 extra_size = -1; 1417 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1418 if (ret < 0) { 1419 err = ret; 1420 goto out; 1421 } 1422 BUG_ON(ret); 1423 1424 leaf = path->nodes[0]; 1425 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1427 if (item_size < sizeof(*ei)) { 1428 if (!insert) { 1429 err = -ENOENT; 1430 goto out; 1431 } 1432 ret = convert_extent_item_v0(trans, root, path, owner, 1433 extra_size); 1434 if (ret < 0) { 1435 err = ret; 1436 goto out; 1437 } 1438 leaf = path->nodes[0]; 1439 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1440 } 1441 #endif 1442 BUG_ON(item_size < sizeof(*ei)); 1443 1444 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1445 flags = btrfs_extent_flags(leaf, ei); 1446 1447 ptr = (unsigned long)(ei + 1); 1448 end = (unsigned long)ei + item_size; 1449 1450 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1451 ptr += sizeof(struct btrfs_tree_block_info); 1452 BUG_ON(ptr > end); 1453 } else { 1454 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1455 } 1456 1457 err = -ENOENT; 1458 while (1) { 1459 if (ptr >= end) { 1460 WARN_ON(ptr > end); 1461 break; 1462 } 1463 iref = (struct btrfs_extent_inline_ref *)ptr; 1464 type = btrfs_extent_inline_ref_type(leaf, iref); 1465 if (want < type) 1466 break; 1467 if (want > type) { 1468 ptr += btrfs_extent_inline_ref_size(type); 1469 continue; 1470 } 1471 1472 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1473 struct btrfs_extent_data_ref *dref; 1474 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1475 if (match_extent_data_ref(leaf, dref, root_objectid, 1476 owner, offset)) { 1477 err = 0; 1478 break; 1479 } 1480 if (hash_extent_data_ref_item(leaf, dref) < 1481 hash_extent_data_ref(root_objectid, owner, offset)) 1482 break; 1483 } else { 1484 u64 ref_offset; 1485 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1486 if (parent > 0) { 1487 if (parent == ref_offset) { 1488 err = 0; 1489 break; 1490 } 1491 if (ref_offset < parent) 1492 break; 1493 } else { 1494 if (root_objectid == ref_offset) { 1495 err = 0; 1496 break; 1497 } 1498 if (ref_offset < root_objectid) 1499 break; 1500 } 1501 } 1502 ptr += btrfs_extent_inline_ref_size(type); 1503 } 1504 if (err == -ENOENT && insert) { 1505 if (item_size + extra_size >= 1506 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1507 err = -EAGAIN; 1508 goto out; 1509 } 1510 /* 1511 * To add new inline back ref, we have to make sure 1512 * there is no corresponding back ref item. 1513 * For simplicity, we just do not add new inline back 1514 * ref if there is any kind of item for this block 1515 */ 1516 if (find_next_key(path, 0, &key) == 0 && 1517 key.objectid == bytenr && 1518 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1519 err = -EAGAIN; 1520 goto out; 1521 } 1522 } 1523 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1524 out: 1525 if (insert) { 1526 path->keep_locks = 0; 1527 btrfs_unlock_up_safe(path, 1); 1528 } 1529 return err; 1530 } 1531 1532 /* 1533 * helper to add new inline back ref 1534 */ 1535 static noinline_for_stack 1536 int setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1537 struct btrfs_root *root, 1538 struct btrfs_path *path, 1539 struct btrfs_extent_inline_ref *iref, 1540 u64 parent, u64 root_objectid, 1541 u64 owner, u64 offset, int refs_to_add, 1542 struct btrfs_delayed_extent_op *extent_op) 1543 { 1544 struct extent_buffer *leaf; 1545 struct btrfs_extent_item *ei; 1546 unsigned long ptr; 1547 unsigned long end; 1548 unsigned long item_offset; 1549 u64 refs; 1550 int size; 1551 int type; 1552 int ret; 1553 1554 leaf = path->nodes[0]; 1555 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1556 item_offset = (unsigned long)iref - (unsigned long)ei; 1557 1558 type = extent_ref_type(parent, owner); 1559 size = btrfs_extent_inline_ref_size(type); 1560 1561 ret = btrfs_extend_item(trans, root, path, size); 1562 1563 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1564 refs = btrfs_extent_refs(leaf, ei); 1565 refs += refs_to_add; 1566 btrfs_set_extent_refs(leaf, ei, refs); 1567 if (extent_op) 1568 __run_delayed_extent_op(extent_op, leaf, ei); 1569 1570 ptr = (unsigned long)ei + item_offset; 1571 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1572 if (ptr < end - size) 1573 memmove_extent_buffer(leaf, ptr + size, ptr, 1574 end - size - ptr); 1575 1576 iref = (struct btrfs_extent_inline_ref *)ptr; 1577 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1578 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1579 struct btrfs_extent_data_ref *dref; 1580 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1581 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1582 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1583 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1584 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1585 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1586 struct btrfs_shared_data_ref *sref; 1587 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1588 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1589 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1590 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1591 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1592 } else { 1593 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1594 } 1595 btrfs_mark_buffer_dirty(leaf); 1596 return 0; 1597 } 1598 1599 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1600 struct btrfs_root *root, 1601 struct btrfs_path *path, 1602 struct btrfs_extent_inline_ref **ref_ret, 1603 u64 bytenr, u64 num_bytes, u64 parent, 1604 u64 root_objectid, u64 owner, u64 offset) 1605 { 1606 int ret; 1607 1608 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1609 bytenr, num_bytes, parent, 1610 root_objectid, owner, offset, 0); 1611 if (ret != -ENOENT) 1612 return ret; 1613 1614 btrfs_release_path(path); 1615 *ref_ret = NULL; 1616 1617 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1618 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1619 root_objectid); 1620 } else { 1621 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1622 root_objectid, owner, offset); 1623 } 1624 return ret; 1625 } 1626 1627 /* 1628 * helper to update/remove inline back ref 1629 */ 1630 static noinline_for_stack 1631 int update_inline_extent_backref(struct btrfs_trans_handle *trans, 1632 struct btrfs_root *root, 1633 struct btrfs_path *path, 1634 struct btrfs_extent_inline_ref *iref, 1635 int refs_to_mod, 1636 struct btrfs_delayed_extent_op *extent_op) 1637 { 1638 struct extent_buffer *leaf; 1639 struct btrfs_extent_item *ei; 1640 struct btrfs_extent_data_ref *dref = NULL; 1641 struct btrfs_shared_data_ref *sref = NULL; 1642 unsigned long ptr; 1643 unsigned long end; 1644 u32 item_size; 1645 int size; 1646 int type; 1647 int ret; 1648 u64 refs; 1649 1650 leaf = path->nodes[0]; 1651 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1652 refs = btrfs_extent_refs(leaf, ei); 1653 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1654 refs += refs_to_mod; 1655 btrfs_set_extent_refs(leaf, ei, refs); 1656 if (extent_op) 1657 __run_delayed_extent_op(extent_op, leaf, ei); 1658 1659 type = btrfs_extent_inline_ref_type(leaf, iref); 1660 1661 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1662 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1663 refs = btrfs_extent_data_ref_count(leaf, dref); 1664 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1665 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1666 refs = btrfs_shared_data_ref_count(leaf, sref); 1667 } else { 1668 refs = 1; 1669 BUG_ON(refs_to_mod != -1); 1670 } 1671 1672 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1673 refs += refs_to_mod; 1674 1675 if (refs > 0) { 1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1677 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1678 else 1679 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1680 } else { 1681 size = btrfs_extent_inline_ref_size(type); 1682 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1683 ptr = (unsigned long)iref; 1684 end = (unsigned long)ei + item_size; 1685 if (ptr + size < end) 1686 memmove_extent_buffer(leaf, ptr, ptr + size, 1687 end - ptr - size); 1688 item_size -= size; 1689 ret = btrfs_truncate_item(trans, root, path, item_size, 1); 1690 } 1691 btrfs_mark_buffer_dirty(leaf); 1692 return 0; 1693 } 1694 1695 static noinline_for_stack 1696 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1697 struct btrfs_root *root, 1698 struct btrfs_path *path, 1699 u64 bytenr, u64 num_bytes, u64 parent, 1700 u64 root_objectid, u64 owner, 1701 u64 offset, int refs_to_add, 1702 struct btrfs_delayed_extent_op *extent_op) 1703 { 1704 struct btrfs_extent_inline_ref *iref; 1705 int ret; 1706 1707 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1708 bytenr, num_bytes, parent, 1709 root_objectid, owner, offset, 1); 1710 if (ret == 0) { 1711 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1712 ret = update_inline_extent_backref(trans, root, path, iref, 1713 refs_to_add, extent_op); 1714 } else if (ret == -ENOENT) { 1715 ret = setup_inline_extent_backref(trans, root, path, iref, 1716 parent, root_objectid, 1717 owner, offset, refs_to_add, 1718 extent_op); 1719 } 1720 return ret; 1721 } 1722 1723 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 u64 bytenr, u64 parent, u64 root_objectid, 1727 u64 owner, u64 offset, int refs_to_add) 1728 { 1729 int ret; 1730 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1731 BUG_ON(refs_to_add != 1); 1732 ret = insert_tree_block_ref(trans, root, path, bytenr, 1733 parent, root_objectid); 1734 } else { 1735 ret = insert_extent_data_ref(trans, root, path, bytenr, 1736 parent, root_objectid, 1737 owner, offset, refs_to_add); 1738 } 1739 return ret; 1740 } 1741 1742 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1743 struct btrfs_root *root, 1744 struct btrfs_path *path, 1745 struct btrfs_extent_inline_ref *iref, 1746 int refs_to_drop, int is_data) 1747 { 1748 int ret; 1749 1750 BUG_ON(!is_data && refs_to_drop != 1); 1751 if (iref) { 1752 ret = update_inline_extent_backref(trans, root, path, iref, 1753 -refs_to_drop, NULL); 1754 } else if (is_data) { 1755 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1756 } else { 1757 ret = btrfs_del_item(trans, root, path); 1758 } 1759 return ret; 1760 } 1761 1762 static int btrfs_issue_discard(struct block_device *bdev, 1763 u64 start, u64 len) 1764 { 1765 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1766 } 1767 1768 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1769 u64 num_bytes, u64 *actual_bytes) 1770 { 1771 int ret; 1772 u64 discarded_bytes = 0; 1773 struct btrfs_multi_bio *multi = NULL; 1774 1775 1776 /* Tell the block device(s) that the sectors can be discarded */ 1777 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1778 bytenr, &num_bytes, &multi, 0); 1779 if (!ret) { 1780 struct btrfs_bio_stripe *stripe = multi->stripes; 1781 int i; 1782 1783 1784 for (i = 0; i < multi->num_stripes; i++, stripe++) { 1785 if (!stripe->dev->can_discard) 1786 continue; 1787 1788 ret = btrfs_issue_discard(stripe->dev->bdev, 1789 stripe->physical, 1790 stripe->length); 1791 if (!ret) 1792 discarded_bytes += stripe->length; 1793 else if (ret != -EOPNOTSUPP) 1794 break; 1795 1796 /* 1797 * Just in case we get back EOPNOTSUPP for some reason, 1798 * just ignore the return value so we don't screw up 1799 * people calling discard_extent. 1800 */ 1801 ret = 0; 1802 } 1803 kfree(multi); 1804 } 1805 1806 if (actual_bytes) 1807 *actual_bytes = discarded_bytes; 1808 1809 1810 return ret; 1811 } 1812 1813 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1814 struct btrfs_root *root, 1815 u64 bytenr, u64 num_bytes, u64 parent, 1816 u64 root_objectid, u64 owner, u64 offset) 1817 { 1818 int ret; 1819 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1820 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1821 1822 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1823 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 1824 parent, root_objectid, (int)owner, 1825 BTRFS_ADD_DELAYED_REF, NULL); 1826 } else { 1827 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 1828 parent, root_objectid, owner, offset, 1829 BTRFS_ADD_DELAYED_REF, NULL); 1830 } 1831 return ret; 1832 } 1833 1834 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1835 struct btrfs_root *root, 1836 u64 bytenr, u64 num_bytes, 1837 u64 parent, u64 root_objectid, 1838 u64 owner, u64 offset, int refs_to_add, 1839 struct btrfs_delayed_extent_op *extent_op) 1840 { 1841 struct btrfs_path *path; 1842 struct extent_buffer *leaf; 1843 struct btrfs_extent_item *item; 1844 u64 refs; 1845 int ret; 1846 int err = 0; 1847 1848 path = btrfs_alloc_path(); 1849 if (!path) 1850 return -ENOMEM; 1851 1852 path->reada = 1; 1853 path->leave_spinning = 1; 1854 /* this will setup the path even if it fails to insert the back ref */ 1855 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1856 path, bytenr, num_bytes, parent, 1857 root_objectid, owner, offset, 1858 refs_to_add, extent_op); 1859 if (ret == 0) 1860 goto out; 1861 1862 if (ret != -EAGAIN) { 1863 err = ret; 1864 goto out; 1865 } 1866 1867 leaf = path->nodes[0]; 1868 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1869 refs = btrfs_extent_refs(leaf, item); 1870 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1871 if (extent_op) 1872 __run_delayed_extent_op(extent_op, leaf, item); 1873 1874 btrfs_mark_buffer_dirty(leaf); 1875 btrfs_release_path(path); 1876 1877 path->reada = 1; 1878 path->leave_spinning = 1; 1879 1880 /* now insert the actual backref */ 1881 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1882 path, bytenr, parent, root_objectid, 1883 owner, offset, refs_to_add); 1884 BUG_ON(ret); 1885 out: 1886 btrfs_free_path(path); 1887 return err; 1888 } 1889 1890 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1891 struct btrfs_root *root, 1892 struct btrfs_delayed_ref_node *node, 1893 struct btrfs_delayed_extent_op *extent_op, 1894 int insert_reserved) 1895 { 1896 int ret = 0; 1897 struct btrfs_delayed_data_ref *ref; 1898 struct btrfs_key ins; 1899 u64 parent = 0; 1900 u64 ref_root = 0; 1901 u64 flags = 0; 1902 1903 ins.objectid = node->bytenr; 1904 ins.offset = node->num_bytes; 1905 ins.type = BTRFS_EXTENT_ITEM_KEY; 1906 1907 ref = btrfs_delayed_node_to_data_ref(node); 1908 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1909 parent = ref->parent; 1910 else 1911 ref_root = ref->root; 1912 1913 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1914 if (extent_op) { 1915 BUG_ON(extent_op->update_key); 1916 flags |= extent_op->flags_to_set; 1917 } 1918 ret = alloc_reserved_file_extent(trans, root, 1919 parent, ref_root, flags, 1920 ref->objectid, ref->offset, 1921 &ins, node->ref_mod); 1922 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1923 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1924 node->num_bytes, parent, 1925 ref_root, ref->objectid, 1926 ref->offset, node->ref_mod, 1927 extent_op); 1928 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1929 ret = __btrfs_free_extent(trans, root, node->bytenr, 1930 node->num_bytes, parent, 1931 ref_root, ref->objectid, 1932 ref->offset, node->ref_mod, 1933 extent_op); 1934 } else { 1935 BUG(); 1936 } 1937 return ret; 1938 } 1939 1940 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1941 struct extent_buffer *leaf, 1942 struct btrfs_extent_item *ei) 1943 { 1944 u64 flags = btrfs_extent_flags(leaf, ei); 1945 if (extent_op->update_flags) { 1946 flags |= extent_op->flags_to_set; 1947 btrfs_set_extent_flags(leaf, ei, flags); 1948 } 1949 1950 if (extent_op->update_key) { 1951 struct btrfs_tree_block_info *bi; 1952 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1953 bi = (struct btrfs_tree_block_info *)(ei + 1); 1954 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1955 } 1956 } 1957 1958 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1959 struct btrfs_root *root, 1960 struct btrfs_delayed_ref_node *node, 1961 struct btrfs_delayed_extent_op *extent_op) 1962 { 1963 struct btrfs_key key; 1964 struct btrfs_path *path; 1965 struct btrfs_extent_item *ei; 1966 struct extent_buffer *leaf; 1967 u32 item_size; 1968 int ret; 1969 int err = 0; 1970 1971 path = btrfs_alloc_path(); 1972 if (!path) 1973 return -ENOMEM; 1974 1975 key.objectid = node->bytenr; 1976 key.type = BTRFS_EXTENT_ITEM_KEY; 1977 key.offset = node->num_bytes; 1978 1979 path->reada = 1; 1980 path->leave_spinning = 1; 1981 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 1982 path, 0, 1); 1983 if (ret < 0) { 1984 err = ret; 1985 goto out; 1986 } 1987 if (ret > 0) { 1988 err = -EIO; 1989 goto out; 1990 } 1991 1992 leaf = path->nodes[0]; 1993 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1995 if (item_size < sizeof(*ei)) { 1996 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 1997 path, (u64)-1, 0); 1998 if (ret < 0) { 1999 err = ret; 2000 goto out; 2001 } 2002 leaf = path->nodes[0]; 2003 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2004 } 2005 #endif 2006 BUG_ON(item_size < sizeof(*ei)); 2007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2008 __run_delayed_extent_op(extent_op, leaf, ei); 2009 2010 btrfs_mark_buffer_dirty(leaf); 2011 out: 2012 btrfs_free_path(path); 2013 return err; 2014 } 2015 2016 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2017 struct btrfs_root *root, 2018 struct btrfs_delayed_ref_node *node, 2019 struct btrfs_delayed_extent_op *extent_op, 2020 int insert_reserved) 2021 { 2022 int ret = 0; 2023 struct btrfs_delayed_tree_ref *ref; 2024 struct btrfs_key ins; 2025 u64 parent = 0; 2026 u64 ref_root = 0; 2027 2028 ins.objectid = node->bytenr; 2029 ins.offset = node->num_bytes; 2030 ins.type = BTRFS_EXTENT_ITEM_KEY; 2031 2032 ref = btrfs_delayed_node_to_tree_ref(node); 2033 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2034 parent = ref->parent; 2035 else 2036 ref_root = ref->root; 2037 2038 BUG_ON(node->ref_mod != 1); 2039 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2040 BUG_ON(!extent_op || !extent_op->update_flags || 2041 !extent_op->update_key); 2042 ret = alloc_reserved_tree_block(trans, root, 2043 parent, ref_root, 2044 extent_op->flags_to_set, 2045 &extent_op->key, 2046 ref->level, &ins); 2047 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2048 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2049 node->num_bytes, parent, ref_root, 2050 ref->level, 0, 1, extent_op); 2051 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2052 ret = __btrfs_free_extent(trans, root, node->bytenr, 2053 node->num_bytes, parent, ref_root, 2054 ref->level, 0, 1, extent_op); 2055 } else { 2056 BUG(); 2057 } 2058 return ret; 2059 } 2060 2061 /* helper function to actually process a single delayed ref entry */ 2062 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2063 struct btrfs_root *root, 2064 struct btrfs_delayed_ref_node *node, 2065 struct btrfs_delayed_extent_op *extent_op, 2066 int insert_reserved) 2067 { 2068 int ret; 2069 if (btrfs_delayed_ref_is_head(node)) { 2070 struct btrfs_delayed_ref_head *head; 2071 /* 2072 * we've hit the end of the chain and we were supposed 2073 * to insert this extent into the tree. But, it got 2074 * deleted before we ever needed to insert it, so all 2075 * we have to do is clean up the accounting 2076 */ 2077 BUG_ON(extent_op); 2078 head = btrfs_delayed_node_to_head(node); 2079 if (insert_reserved) { 2080 btrfs_pin_extent(root, node->bytenr, 2081 node->num_bytes, 1); 2082 if (head->is_data) { 2083 ret = btrfs_del_csums(trans, root, 2084 node->bytenr, 2085 node->num_bytes); 2086 BUG_ON(ret); 2087 } 2088 } 2089 mutex_unlock(&head->mutex); 2090 return 0; 2091 } 2092 2093 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2094 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2095 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2096 insert_reserved); 2097 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2098 node->type == BTRFS_SHARED_DATA_REF_KEY) 2099 ret = run_delayed_data_ref(trans, root, node, extent_op, 2100 insert_reserved); 2101 else 2102 BUG(); 2103 return ret; 2104 } 2105 2106 static noinline struct btrfs_delayed_ref_node * 2107 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2108 { 2109 struct rb_node *node; 2110 struct btrfs_delayed_ref_node *ref; 2111 int action = BTRFS_ADD_DELAYED_REF; 2112 again: 2113 /* 2114 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2115 * this prevents ref count from going down to zero when 2116 * there still are pending delayed ref. 2117 */ 2118 node = rb_prev(&head->node.rb_node); 2119 while (1) { 2120 if (!node) 2121 break; 2122 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2123 rb_node); 2124 if (ref->bytenr != head->node.bytenr) 2125 break; 2126 if (ref->action == action) 2127 return ref; 2128 node = rb_prev(node); 2129 } 2130 if (action == BTRFS_ADD_DELAYED_REF) { 2131 action = BTRFS_DROP_DELAYED_REF; 2132 goto again; 2133 } 2134 return NULL; 2135 } 2136 2137 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2138 struct btrfs_root *root, 2139 struct list_head *cluster) 2140 { 2141 struct btrfs_delayed_ref_root *delayed_refs; 2142 struct btrfs_delayed_ref_node *ref; 2143 struct btrfs_delayed_ref_head *locked_ref = NULL; 2144 struct btrfs_delayed_extent_op *extent_op; 2145 int ret; 2146 int count = 0; 2147 int must_insert_reserved = 0; 2148 2149 delayed_refs = &trans->transaction->delayed_refs; 2150 while (1) { 2151 if (!locked_ref) { 2152 /* pick a new head ref from the cluster list */ 2153 if (list_empty(cluster)) 2154 break; 2155 2156 locked_ref = list_entry(cluster->next, 2157 struct btrfs_delayed_ref_head, cluster); 2158 2159 /* grab the lock that says we are going to process 2160 * all the refs for this head */ 2161 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2162 2163 /* 2164 * we may have dropped the spin lock to get the head 2165 * mutex lock, and that might have given someone else 2166 * time to free the head. If that's true, it has been 2167 * removed from our list and we can move on. 2168 */ 2169 if (ret == -EAGAIN) { 2170 locked_ref = NULL; 2171 count++; 2172 continue; 2173 } 2174 } 2175 2176 /* 2177 * record the must insert reserved flag before we 2178 * drop the spin lock. 2179 */ 2180 must_insert_reserved = locked_ref->must_insert_reserved; 2181 locked_ref->must_insert_reserved = 0; 2182 2183 extent_op = locked_ref->extent_op; 2184 locked_ref->extent_op = NULL; 2185 2186 /* 2187 * locked_ref is the head node, so we have to go one 2188 * node back for any delayed ref updates 2189 */ 2190 ref = select_delayed_ref(locked_ref); 2191 if (!ref) { 2192 /* All delayed refs have been processed, Go ahead 2193 * and send the head node to run_one_delayed_ref, 2194 * so that any accounting fixes can happen 2195 */ 2196 ref = &locked_ref->node; 2197 2198 if (extent_op && must_insert_reserved) { 2199 kfree(extent_op); 2200 extent_op = NULL; 2201 } 2202 2203 if (extent_op) { 2204 spin_unlock(&delayed_refs->lock); 2205 2206 ret = run_delayed_extent_op(trans, root, 2207 ref, extent_op); 2208 BUG_ON(ret); 2209 kfree(extent_op); 2210 2211 cond_resched(); 2212 spin_lock(&delayed_refs->lock); 2213 continue; 2214 } 2215 2216 list_del_init(&locked_ref->cluster); 2217 locked_ref = NULL; 2218 } 2219 2220 ref->in_tree = 0; 2221 rb_erase(&ref->rb_node, &delayed_refs->root); 2222 delayed_refs->num_entries--; 2223 2224 spin_unlock(&delayed_refs->lock); 2225 2226 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2227 must_insert_reserved); 2228 BUG_ON(ret); 2229 2230 btrfs_put_delayed_ref(ref); 2231 kfree(extent_op); 2232 count++; 2233 2234 cond_resched(); 2235 spin_lock(&delayed_refs->lock); 2236 } 2237 return count; 2238 } 2239 2240 /* 2241 * this starts processing the delayed reference count updates and 2242 * extent insertions we have queued up so far. count can be 2243 * 0, which means to process everything in the tree at the start 2244 * of the run (but not newly added entries), or it can be some target 2245 * number you'd like to process. 2246 */ 2247 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2248 struct btrfs_root *root, unsigned long count) 2249 { 2250 struct rb_node *node; 2251 struct btrfs_delayed_ref_root *delayed_refs; 2252 struct btrfs_delayed_ref_node *ref; 2253 struct list_head cluster; 2254 int ret; 2255 int run_all = count == (unsigned long)-1; 2256 int run_most = 0; 2257 2258 if (root == root->fs_info->extent_root) 2259 root = root->fs_info->tree_root; 2260 2261 delayed_refs = &trans->transaction->delayed_refs; 2262 INIT_LIST_HEAD(&cluster); 2263 again: 2264 spin_lock(&delayed_refs->lock); 2265 if (count == 0) { 2266 count = delayed_refs->num_entries * 2; 2267 run_most = 1; 2268 } 2269 while (1) { 2270 if (!(run_all || run_most) && 2271 delayed_refs->num_heads_ready < 64) 2272 break; 2273 2274 /* 2275 * go find something we can process in the rbtree. We start at 2276 * the beginning of the tree, and then build a cluster 2277 * of refs to process starting at the first one we are able to 2278 * lock 2279 */ 2280 ret = btrfs_find_ref_cluster(trans, &cluster, 2281 delayed_refs->run_delayed_start); 2282 if (ret) 2283 break; 2284 2285 ret = run_clustered_refs(trans, root, &cluster); 2286 BUG_ON(ret < 0); 2287 2288 count -= min_t(unsigned long, ret, count); 2289 2290 if (count == 0) 2291 break; 2292 } 2293 2294 if (run_all) { 2295 node = rb_first(&delayed_refs->root); 2296 if (!node) 2297 goto out; 2298 count = (unsigned long)-1; 2299 2300 while (node) { 2301 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2302 rb_node); 2303 if (btrfs_delayed_ref_is_head(ref)) { 2304 struct btrfs_delayed_ref_head *head; 2305 2306 head = btrfs_delayed_node_to_head(ref); 2307 atomic_inc(&ref->refs); 2308 2309 spin_unlock(&delayed_refs->lock); 2310 /* 2311 * Mutex was contended, block until it's 2312 * released and try again 2313 */ 2314 mutex_lock(&head->mutex); 2315 mutex_unlock(&head->mutex); 2316 2317 btrfs_put_delayed_ref(ref); 2318 cond_resched(); 2319 goto again; 2320 } 2321 node = rb_next(node); 2322 } 2323 spin_unlock(&delayed_refs->lock); 2324 schedule_timeout(1); 2325 goto again; 2326 } 2327 out: 2328 spin_unlock(&delayed_refs->lock); 2329 return 0; 2330 } 2331 2332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2333 struct btrfs_root *root, 2334 u64 bytenr, u64 num_bytes, u64 flags, 2335 int is_data) 2336 { 2337 struct btrfs_delayed_extent_op *extent_op; 2338 int ret; 2339 2340 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2341 if (!extent_op) 2342 return -ENOMEM; 2343 2344 extent_op->flags_to_set = flags; 2345 extent_op->update_flags = 1; 2346 extent_op->update_key = 0; 2347 extent_op->is_data = is_data ? 1 : 0; 2348 2349 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2350 if (ret) 2351 kfree(extent_op); 2352 return ret; 2353 } 2354 2355 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2356 struct btrfs_root *root, 2357 struct btrfs_path *path, 2358 u64 objectid, u64 offset, u64 bytenr) 2359 { 2360 struct btrfs_delayed_ref_head *head; 2361 struct btrfs_delayed_ref_node *ref; 2362 struct btrfs_delayed_data_ref *data_ref; 2363 struct btrfs_delayed_ref_root *delayed_refs; 2364 struct rb_node *node; 2365 int ret = 0; 2366 2367 ret = -ENOENT; 2368 delayed_refs = &trans->transaction->delayed_refs; 2369 spin_lock(&delayed_refs->lock); 2370 head = btrfs_find_delayed_ref_head(trans, bytenr); 2371 if (!head) 2372 goto out; 2373 2374 if (!mutex_trylock(&head->mutex)) { 2375 atomic_inc(&head->node.refs); 2376 spin_unlock(&delayed_refs->lock); 2377 2378 btrfs_release_path(path); 2379 2380 /* 2381 * Mutex was contended, block until it's released and let 2382 * caller try again 2383 */ 2384 mutex_lock(&head->mutex); 2385 mutex_unlock(&head->mutex); 2386 btrfs_put_delayed_ref(&head->node); 2387 return -EAGAIN; 2388 } 2389 2390 node = rb_prev(&head->node.rb_node); 2391 if (!node) 2392 goto out_unlock; 2393 2394 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2395 2396 if (ref->bytenr != bytenr) 2397 goto out_unlock; 2398 2399 ret = 1; 2400 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2401 goto out_unlock; 2402 2403 data_ref = btrfs_delayed_node_to_data_ref(ref); 2404 2405 node = rb_prev(node); 2406 if (node) { 2407 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2408 if (ref->bytenr == bytenr) 2409 goto out_unlock; 2410 } 2411 2412 if (data_ref->root != root->root_key.objectid || 2413 data_ref->objectid != objectid || data_ref->offset != offset) 2414 goto out_unlock; 2415 2416 ret = 0; 2417 out_unlock: 2418 mutex_unlock(&head->mutex); 2419 out: 2420 spin_unlock(&delayed_refs->lock); 2421 return ret; 2422 } 2423 2424 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2425 struct btrfs_root *root, 2426 struct btrfs_path *path, 2427 u64 objectid, u64 offset, u64 bytenr) 2428 { 2429 struct btrfs_root *extent_root = root->fs_info->extent_root; 2430 struct extent_buffer *leaf; 2431 struct btrfs_extent_data_ref *ref; 2432 struct btrfs_extent_inline_ref *iref; 2433 struct btrfs_extent_item *ei; 2434 struct btrfs_key key; 2435 u32 item_size; 2436 int ret; 2437 2438 key.objectid = bytenr; 2439 key.offset = (u64)-1; 2440 key.type = BTRFS_EXTENT_ITEM_KEY; 2441 2442 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2443 if (ret < 0) 2444 goto out; 2445 BUG_ON(ret == 0); 2446 2447 ret = -ENOENT; 2448 if (path->slots[0] == 0) 2449 goto out; 2450 2451 path->slots[0]--; 2452 leaf = path->nodes[0]; 2453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2454 2455 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2456 goto out; 2457 2458 ret = 1; 2459 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2461 if (item_size < sizeof(*ei)) { 2462 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2463 goto out; 2464 } 2465 #endif 2466 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2467 2468 if (item_size != sizeof(*ei) + 2469 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2470 goto out; 2471 2472 if (btrfs_extent_generation(leaf, ei) <= 2473 btrfs_root_last_snapshot(&root->root_item)) 2474 goto out; 2475 2476 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2477 if (btrfs_extent_inline_ref_type(leaf, iref) != 2478 BTRFS_EXTENT_DATA_REF_KEY) 2479 goto out; 2480 2481 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2482 if (btrfs_extent_refs(leaf, ei) != 2483 btrfs_extent_data_ref_count(leaf, ref) || 2484 btrfs_extent_data_ref_root(leaf, ref) != 2485 root->root_key.objectid || 2486 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2487 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2488 goto out; 2489 2490 ret = 0; 2491 out: 2492 return ret; 2493 } 2494 2495 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2496 struct btrfs_root *root, 2497 u64 objectid, u64 offset, u64 bytenr) 2498 { 2499 struct btrfs_path *path; 2500 int ret; 2501 int ret2; 2502 2503 path = btrfs_alloc_path(); 2504 if (!path) 2505 return -ENOENT; 2506 2507 do { 2508 ret = check_committed_ref(trans, root, path, objectid, 2509 offset, bytenr); 2510 if (ret && ret != -ENOENT) 2511 goto out; 2512 2513 ret2 = check_delayed_ref(trans, root, path, objectid, 2514 offset, bytenr); 2515 } while (ret2 == -EAGAIN); 2516 2517 if (ret2 && ret2 != -ENOENT) { 2518 ret = ret2; 2519 goto out; 2520 } 2521 2522 if (ret != -ENOENT || ret2 != -ENOENT) 2523 ret = 0; 2524 out: 2525 btrfs_free_path(path); 2526 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2527 WARN_ON(ret > 0); 2528 return ret; 2529 } 2530 2531 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2532 struct btrfs_root *root, 2533 struct extent_buffer *buf, 2534 int full_backref, int inc) 2535 { 2536 u64 bytenr; 2537 u64 num_bytes; 2538 u64 parent; 2539 u64 ref_root; 2540 u32 nritems; 2541 struct btrfs_key key; 2542 struct btrfs_file_extent_item *fi; 2543 int i; 2544 int level; 2545 int ret = 0; 2546 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2547 u64, u64, u64, u64, u64, u64); 2548 2549 ref_root = btrfs_header_owner(buf); 2550 nritems = btrfs_header_nritems(buf); 2551 level = btrfs_header_level(buf); 2552 2553 if (!root->ref_cows && level == 0) 2554 return 0; 2555 2556 if (inc) 2557 process_func = btrfs_inc_extent_ref; 2558 else 2559 process_func = btrfs_free_extent; 2560 2561 if (full_backref) 2562 parent = buf->start; 2563 else 2564 parent = 0; 2565 2566 for (i = 0; i < nritems; i++) { 2567 if (level == 0) { 2568 btrfs_item_key_to_cpu(buf, &key, i); 2569 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2570 continue; 2571 fi = btrfs_item_ptr(buf, i, 2572 struct btrfs_file_extent_item); 2573 if (btrfs_file_extent_type(buf, fi) == 2574 BTRFS_FILE_EXTENT_INLINE) 2575 continue; 2576 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2577 if (bytenr == 0) 2578 continue; 2579 2580 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2581 key.offset -= btrfs_file_extent_offset(buf, fi); 2582 ret = process_func(trans, root, bytenr, num_bytes, 2583 parent, ref_root, key.objectid, 2584 key.offset); 2585 if (ret) 2586 goto fail; 2587 } else { 2588 bytenr = btrfs_node_blockptr(buf, i); 2589 num_bytes = btrfs_level_size(root, level - 1); 2590 ret = process_func(trans, root, bytenr, num_bytes, 2591 parent, ref_root, level - 1, 0); 2592 if (ret) 2593 goto fail; 2594 } 2595 } 2596 return 0; 2597 fail: 2598 BUG(); 2599 return ret; 2600 } 2601 2602 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2603 struct extent_buffer *buf, int full_backref) 2604 { 2605 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2606 } 2607 2608 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2609 struct extent_buffer *buf, int full_backref) 2610 { 2611 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2612 } 2613 2614 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2615 struct btrfs_root *root, 2616 struct btrfs_path *path, 2617 struct btrfs_block_group_cache *cache) 2618 { 2619 int ret; 2620 struct btrfs_root *extent_root = root->fs_info->extent_root; 2621 unsigned long bi; 2622 struct extent_buffer *leaf; 2623 2624 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2625 if (ret < 0) 2626 goto fail; 2627 BUG_ON(ret); 2628 2629 leaf = path->nodes[0]; 2630 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2631 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2632 btrfs_mark_buffer_dirty(leaf); 2633 btrfs_release_path(path); 2634 fail: 2635 if (ret) 2636 return ret; 2637 return 0; 2638 2639 } 2640 2641 static struct btrfs_block_group_cache * 2642 next_block_group(struct btrfs_root *root, 2643 struct btrfs_block_group_cache *cache) 2644 { 2645 struct rb_node *node; 2646 spin_lock(&root->fs_info->block_group_cache_lock); 2647 node = rb_next(&cache->cache_node); 2648 btrfs_put_block_group(cache); 2649 if (node) { 2650 cache = rb_entry(node, struct btrfs_block_group_cache, 2651 cache_node); 2652 btrfs_get_block_group(cache); 2653 } else 2654 cache = NULL; 2655 spin_unlock(&root->fs_info->block_group_cache_lock); 2656 return cache; 2657 } 2658 2659 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2660 struct btrfs_trans_handle *trans, 2661 struct btrfs_path *path) 2662 { 2663 struct btrfs_root *root = block_group->fs_info->tree_root; 2664 struct inode *inode = NULL; 2665 u64 alloc_hint = 0; 2666 int dcs = BTRFS_DC_ERROR; 2667 int num_pages = 0; 2668 int retries = 0; 2669 int ret = 0; 2670 2671 /* 2672 * If this block group is smaller than 100 megs don't bother caching the 2673 * block group. 2674 */ 2675 if (block_group->key.offset < (100 * 1024 * 1024)) { 2676 spin_lock(&block_group->lock); 2677 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2678 spin_unlock(&block_group->lock); 2679 return 0; 2680 } 2681 2682 again: 2683 inode = lookup_free_space_inode(root, block_group, path); 2684 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2685 ret = PTR_ERR(inode); 2686 btrfs_release_path(path); 2687 goto out; 2688 } 2689 2690 if (IS_ERR(inode)) { 2691 BUG_ON(retries); 2692 retries++; 2693 2694 if (block_group->ro) 2695 goto out_free; 2696 2697 ret = create_free_space_inode(root, trans, block_group, path); 2698 if (ret) 2699 goto out_free; 2700 goto again; 2701 } 2702 2703 /* 2704 * We want to set the generation to 0, that way if anything goes wrong 2705 * from here on out we know not to trust this cache when we load up next 2706 * time. 2707 */ 2708 BTRFS_I(inode)->generation = 0; 2709 ret = btrfs_update_inode(trans, root, inode); 2710 WARN_ON(ret); 2711 2712 if (i_size_read(inode) > 0) { 2713 ret = btrfs_truncate_free_space_cache(root, trans, path, 2714 inode); 2715 if (ret) 2716 goto out_put; 2717 } 2718 2719 spin_lock(&block_group->lock); 2720 if (block_group->cached != BTRFS_CACHE_FINISHED) { 2721 /* We're not cached, don't bother trying to write stuff out */ 2722 dcs = BTRFS_DC_WRITTEN; 2723 spin_unlock(&block_group->lock); 2724 goto out_put; 2725 } 2726 spin_unlock(&block_group->lock); 2727 2728 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 2729 if (!num_pages) 2730 num_pages = 1; 2731 2732 /* 2733 * Just to make absolutely sure we have enough space, we're going to 2734 * preallocate 12 pages worth of space for each block group. In 2735 * practice we ought to use at most 8, but we need extra space so we can 2736 * add our header and have a terminator between the extents and the 2737 * bitmaps. 2738 */ 2739 num_pages *= 16; 2740 num_pages *= PAGE_CACHE_SIZE; 2741 2742 ret = btrfs_check_data_free_space(inode, num_pages); 2743 if (ret) 2744 goto out_put; 2745 2746 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2747 num_pages, num_pages, 2748 &alloc_hint); 2749 if (!ret) 2750 dcs = BTRFS_DC_SETUP; 2751 btrfs_free_reserved_data_space(inode, num_pages); 2752 out_put: 2753 iput(inode); 2754 out_free: 2755 btrfs_release_path(path); 2756 out: 2757 spin_lock(&block_group->lock); 2758 block_group->disk_cache_state = dcs; 2759 spin_unlock(&block_group->lock); 2760 2761 return ret; 2762 } 2763 2764 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2765 struct btrfs_root *root) 2766 { 2767 struct btrfs_block_group_cache *cache; 2768 int err = 0; 2769 struct btrfs_path *path; 2770 u64 last = 0; 2771 2772 path = btrfs_alloc_path(); 2773 if (!path) 2774 return -ENOMEM; 2775 2776 again: 2777 while (1) { 2778 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2779 while (cache) { 2780 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2781 break; 2782 cache = next_block_group(root, cache); 2783 } 2784 if (!cache) { 2785 if (last == 0) 2786 break; 2787 last = 0; 2788 continue; 2789 } 2790 err = cache_save_setup(cache, trans, path); 2791 last = cache->key.objectid + cache->key.offset; 2792 btrfs_put_block_group(cache); 2793 } 2794 2795 while (1) { 2796 if (last == 0) { 2797 err = btrfs_run_delayed_refs(trans, root, 2798 (unsigned long)-1); 2799 BUG_ON(err); 2800 } 2801 2802 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2803 while (cache) { 2804 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 2805 btrfs_put_block_group(cache); 2806 goto again; 2807 } 2808 2809 if (cache->dirty) 2810 break; 2811 cache = next_block_group(root, cache); 2812 } 2813 if (!cache) { 2814 if (last == 0) 2815 break; 2816 last = 0; 2817 continue; 2818 } 2819 2820 if (cache->disk_cache_state == BTRFS_DC_SETUP) 2821 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 2822 cache->dirty = 0; 2823 last = cache->key.objectid + cache->key.offset; 2824 2825 err = write_one_cache_group(trans, root, path, cache); 2826 BUG_ON(err); 2827 btrfs_put_block_group(cache); 2828 } 2829 2830 while (1) { 2831 /* 2832 * I don't think this is needed since we're just marking our 2833 * preallocated extent as written, but just in case it can't 2834 * hurt. 2835 */ 2836 if (last == 0) { 2837 err = btrfs_run_delayed_refs(trans, root, 2838 (unsigned long)-1); 2839 BUG_ON(err); 2840 } 2841 2842 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2843 while (cache) { 2844 /* 2845 * Really this shouldn't happen, but it could if we 2846 * couldn't write the entire preallocated extent and 2847 * splitting the extent resulted in a new block. 2848 */ 2849 if (cache->dirty) { 2850 btrfs_put_block_group(cache); 2851 goto again; 2852 } 2853 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2854 break; 2855 cache = next_block_group(root, cache); 2856 } 2857 if (!cache) { 2858 if (last == 0) 2859 break; 2860 last = 0; 2861 continue; 2862 } 2863 2864 btrfs_write_out_cache(root, trans, cache, path); 2865 2866 /* 2867 * If we didn't have an error then the cache state is still 2868 * NEED_WRITE, so we can set it to WRITTEN. 2869 */ 2870 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 2871 cache->disk_cache_state = BTRFS_DC_WRITTEN; 2872 last = cache->key.objectid + cache->key.offset; 2873 btrfs_put_block_group(cache); 2874 } 2875 2876 btrfs_free_path(path); 2877 return 0; 2878 } 2879 2880 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 2881 { 2882 struct btrfs_block_group_cache *block_group; 2883 int readonly = 0; 2884 2885 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 2886 if (!block_group || block_group->ro) 2887 readonly = 1; 2888 if (block_group) 2889 btrfs_put_block_group(block_group); 2890 return readonly; 2891 } 2892 2893 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 2894 u64 total_bytes, u64 bytes_used, 2895 struct btrfs_space_info **space_info) 2896 { 2897 struct btrfs_space_info *found; 2898 int i; 2899 int factor; 2900 2901 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2902 BTRFS_BLOCK_GROUP_RAID10)) 2903 factor = 2; 2904 else 2905 factor = 1; 2906 2907 found = __find_space_info(info, flags); 2908 if (found) { 2909 spin_lock(&found->lock); 2910 found->total_bytes += total_bytes; 2911 found->disk_total += total_bytes * factor; 2912 found->bytes_used += bytes_used; 2913 found->disk_used += bytes_used * factor; 2914 found->full = 0; 2915 spin_unlock(&found->lock); 2916 *space_info = found; 2917 return 0; 2918 } 2919 found = kzalloc(sizeof(*found), GFP_NOFS); 2920 if (!found) 2921 return -ENOMEM; 2922 2923 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 2924 INIT_LIST_HEAD(&found->block_groups[i]); 2925 init_rwsem(&found->groups_sem); 2926 spin_lock_init(&found->lock); 2927 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | 2928 BTRFS_BLOCK_GROUP_SYSTEM | 2929 BTRFS_BLOCK_GROUP_METADATA); 2930 found->total_bytes = total_bytes; 2931 found->disk_total = total_bytes * factor; 2932 found->bytes_used = bytes_used; 2933 found->disk_used = bytes_used * factor; 2934 found->bytes_pinned = 0; 2935 found->bytes_reserved = 0; 2936 found->bytes_readonly = 0; 2937 found->bytes_may_use = 0; 2938 found->full = 0; 2939 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 2940 found->chunk_alloc = 0; 2941 found->flush = 0; 2942 init_waitqueue_head(&found->wait); 2943 *space_info = found; 2944 list_add_rcu(&found->list, &info->space_info); 2945 return 0; 2946 } 2947 2948 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2949 { 2950 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 2951 BTRFS_BLOCK_GROUP_RAID1 | 2952 BTRFS_BLOCK_GROUP_RAID10 | 2953 BTRFS_BLOCK_GROUP_DUP); 2954 if (extra_flags) { 2955 if (flags & BTRFS_BLOCK_GROUP_DATA) 2956 fs_info->avail_data_alloc_bits |= extra_flags; 2957 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2958 fs_info->avail_metadata_alloc_bits |= extra_flags; 2959 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2960 fs_info->avail_system_alloc_bits |= extra_flags; 2961 } 2962 } 2963 2964 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 2965 { 2966 /* 2967 * we add in the count of missing devices because we want 2968 * to make sure that any RAID levels on a degraded FS 2969 * continue to be honored. 2970 */ 2971 u64 num_devices = root->fs_info->fs_devices->rw_devices + 2972 root->fs_info->fs_devices->missing_devices; 2973 2974 if (num_devices == 1) 2975 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 2976 if (num_devices < 4) 2977 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 2978 2979 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 2980 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 2981 BTRFS_BLOCK_GROUP_RAID10))) { 2982 flags &= ~BTRFS_BLOCK_GROUP_DUP; 2983 } 2984 2985 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 2986 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 2987 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 2988 } 2989 2990 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 2991 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 2992 (flags & BTRFS_BLOCK_GROUP_RAID10) | 2993 (flags & BTRFS_BLOCK_GROUP_DUP))) 2994 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 2995 return flags; 2996 } 2997 2998 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 2999 { 3000 if (flags & BTRFS_BLOCK_GROUP_DATA) 3001 flags |= root->fs_info->avail_data_alloc_bits & 3002 root->fs_info->data_alloc_profile; 3003 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3004 flags |= root->fs_info->avail_system_alloc_bits & 3005 root->fs_info->system_alloc_profile; 3006 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3007 flags |= root->fs_info->avail_metadata_alloc_bits & 3008 root->fs_info->metadata_alloc_profile; 3009 return btrfs_reduce_alloc_profile(root, flags); 3010 } 3011 3012 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3013 { 3014 u64 flags; 3015 3016 if (data) 3017 flags = BTRFS_BLOCK_GROUP_DATA; 3018 else if (root == root->fs_info->chunk_root) 3019 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3020 else 3021 flags = BTRFS_BLOCK_GROUP_METADATA; 3022 3023 return get_alloc_profile(root, flags); 3024 } 3025 3026 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 3027 { 3028 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 3029 BTRFS_BLOCK_GROUP_DATA); 3030 } 3031 3032 /* 3033 * This will check the space that the inode allocates from to make sure we have 3034 * enough space for bytes. 3035 */ 3036 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3037 { 3038 struct btrfs_space_info *data_sinfo; 3039 struct btrfs_root *root = BTRFS_I(inode)->root; 3040 u64 used; 3041 int ret = 0, committed = 0, alloc_chunk = 1; 3042 3043 /* make sure bytes are sectorsize aligned */ 3044 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3045 3046 if (root == root->fs_info->tree_root || 3047 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3048 alloc_chunk = 0; 3049 committed = 1; 3050 } 3051 3052 data_sinfo = BTRFS_I(inode)->space_info; 3053 if (!data_sinfo) 3054 goto alloc; 3055 3056 again: 3057 /* make sure we have enough space to handle the data first */ 3058 spin_lock(&data_sinfo->lock); 3059 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3060 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3061 data_sinfo->bytes_may_use; 3062 3063 if (used + bytes > data_sinfo->total_bytes) { 3064 struct btrfs_trans_handle *trans; 3065 3066 /* 3067 * if we don't have enough free bytes in this space then we need 3068 * to alloc a new chunk. 3069 */ 3070 if (!data_sinfo->full && alloc_chunk) { 3071 u64 alloc_target; 3072 3073 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3074 spin_unlock(&data_sinfo->lock); 3075 alloc: 3076 alloc_target = btrfs_get_alloc_profile(root, 1); 3077 trans = btrfs_join_transaction(root); 3078 if (IS_ERR(trans)) 3079 return PTR_ERR(trans); 3080 3081 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3082 bytes + 2 * 1024 * 1024, 3083 alloc_target, 3084 CHUNK_ALLOC_NO_FORCE); 3085 btrfs_end_transaction(trans, root); 3086 if (ret < 0) { 3087 if (ret != -ENOSPC) 3088 return ret; 3089 else 3090 goto commit_trans; 3091 } 3092 3093 if (!data_sinfo) { 3094 btrfs_set_inode_space_info(root, inode); 3095 data_sinfo = BTRFS_I(inode)->space_info; 3096 } 3097 goto again; 3098 } 3099 3100 /* 3101 * If we have less pinned bytes than we want to allocate then 3102 * don't bother committing the transaction, it won't help us. 3103 */ 3104 if (data_sinfo->bytes_pinned < bytes) 3105 committed = 1; 3106 spin_unlock(&data_sinfo->lock); 3107 3108 /* commit the current transaction and try again */ 3109 commit_trans: 3110 if (!committed && 3111 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3112 committed = 1; 3113 trans = btrfs_join_transaction(root); 3114 if (IS_ERR(trans)) 3115 return PTR_ERR(trans); 3116 ret = btrfs_commit_transaction(trans, root); 3117 if (ret) 3118 return ret; 3119 goto again; 3120 } 3121 3122 return -ENOSPC; 3123 } 3124 data_sinfo->bytes_may_use += bytes; 3125 BTRFS_I(inode)->reserved_bytes += bytes; 3126 spin_unlock(&data_sinfo->lock); 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * called when we are clearing an delalloc extent from the 3133 * inode's io_tree or there was an error for whatever reason 3134 * after calling btrfs_check_data_free_space 3135 */ 3136 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3137 { 3138 struct btrfs_root *root = BTRFS_I(inode)->root; 3139 struct btrfs_space_info *data_sinfo; 3140 3141 /* make sure bytes are sectorsize aligned */ 3142 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3143 3144 data_sinfo = BTRFS_I(inode)->space_info; 3145 spin_lock(&data_sinfo->lock); 3146 data_sinfo->bytes_may_use -= bytes; 3147 BTRFS_I(inode)->reserved_bytes -= bytes; 3148 spin_unlock(&data_sinfo->lock); 3149 } 3150 3151 static void force_metadata_allocation(struct btrfs_fs_info *info) 3152 { 3153 struct list_head *head = &info->space_info; 3154 struct btrfs_space_info *found; 3155 3156 rcu_read_lock(); 3157 list_for_each_entry_rcu(found, head, list) { 3158 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3159 found->force_alloc = CHUNK_ALLOC_FORCE; 3160 } 3161 rcu_read_unlock(); 3162 } 3163 3164 static int should_alloc_chunk(struct btrfs_root *root, 3165 struct btrfs_space_info *sinfo, u64 alloc_bytes, 3166 int force) 3167 { 3168 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3169 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3170 u64 thresh; 3171 3172 if (force == CHUNK_ALLOC_FORCE) 3173 return 1; 3174 3175 /* 3176 * in limited mode, we want to have some free space up to 3177 * about 1% of the FS size. 3178 */ 3179 if (force == CHUNK_ALLOC_LIMITED) { 3180 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy); 3181 thresh = max_t(u64, 64 * 1024 * 1024, 3182 div_factor_fine(thresh, 1)); 3183 3184 if (num_bytes - num_allocated < thresh) 3185 return 1; 3186 } 3187 3188 /* 3189 * we have two similar checks here, one based on percentage 3190 * and once based on a hard number of 256MB. The idea 3191 * is that if we have a good amount of free 3192 * room, don't allocate a chunk. A good mount is 3193 * less than 80% utilized of the chunks we have allocated, 3194 * or more than 256MB free 3195 */ 3196 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes) 3197 return 0; 3198 3199 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8)) 3200 return 0; 3201 3202 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy); 3203 3204 /* 256MB or 5% of the FS */ 3205 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5)); 3206 3207 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3)) 3208 return 0; 3209 return 1; 3210 } 3211 3212 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3213 struct btrfs_root *extent_root, u64 alloc_bytes, 3214 u64 flags, int force) 3215 { 3216 struct btrfs_space_info *space_info; 3217 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3218 int wait_for_alloc = 0; 3219 int ret = 0; 3220 3221 flags = btrfs_reduce_alloc_profile(extent_root, flags); 3222 3223 space_info = __find_space_info(extent_root->fs_info, flags); 3224 if (!space_info) { 3225 ret = update_space_info(extent_root->fs_info, flags, 3226 0, 0, &space_info); 3227 BUG_ON(ret); 3228 } 3229 BUG_ON(!space_info); 3230 3231 again: 3232 spin_lock(&space_info->lock); 3233 if (space_info->force_alloc) 3234 force = space_info->force_alloc; 3235 if (space_info->full) { 3236 spin_unlock(&space_info->lock); 3237 return 0; 3238 } 3239 3240 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { 3241 spin_unlock(&space_info->lock); 3242 return 0; 3243 } else if (space_info->chunk_alloc) { 3244 wait_for_alloc = 1; 3245 } else { 3246 space_info->chunk_alloc = 1; 3247 } 3248 3249 spin_unlock(&space_info->lock); 3250 3251 mutex_lock(&fs_info->chunk_mutex); 3252 3253 /* 3254 * The chunk_mutex is held throughout the entirety of a chunk 3255 * allocation, so once we've acquired the chunk_mutex we know that the 3256 * other guy is done and we need to recheck and see if we should 3257 * allocate. 3258 */ 3259 if (wait_for_alloc) { 3260 mutex_unlock(&fs_info->chunk_mutex); 3261 wait_for_alloc = 0; 3262 goto again; 3263 } 3264 3265 /* 3266 * If we have mixed data/metadata chunks we want to make sure we keep 3267 * allocating mixed chunks instead of individual chunks. 3268 */ 3269 if (btrfs_mixed_space_info(space_info)) 3270 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3271 3272 /* 3273 * if we're doing a data chunk, go ahead and make sure that 3274 * we keep a reasonable number of metadata chunks allocated in the 3275 * FS as well. 3276 */ 3277 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3278 fs_info->data_chunk_allocations++; 3279 if (!(fs_info->data_chunk_allocations % 3280 fs_info->metadata_ratio)) 3281 force_metadata_allocation(fs_info); 3282 } 3283 3284 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3285 if (ret < 0 && ret != -ENOSPC) 3286 goto out; 3287 3288 spin_lock(&space_info->lock); 3289 if (ret) 3290 space_info->full = 1; 3291 else 3292 ret = 1; 3293 3294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3295 space_info->chunk_alloc = 0; 3296 spin_unlock(&space_info->lock); 3297 out: 3298 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3299 return ret; 3300 } 3301 3302 /* 3303 * shrink metadata reservation for delalloc 3304 */ 3305 static int shrink_delalloc(struct btrfs_trans_handle *trans, 3306 struct btrfs_root *root, u64 to_reclaim, int sync) 3307 { 3308 struct btrfs_block_rsv *block_rsv; 3309 struct btrfs_space_info *space_info; 3310 u64 reserved; 3311 u64 max_reclaim; 3312 u64 reclaimed = 0; 3313 long time_left; 3314 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3315 int loops = 0; 3316 unsigned long progress; 3317 3318 block_rsv = &root->fs_info->delalloc_block_rsv; 3319 space_info = block_rsv->space_info; 3320 3321 smp_mb(); 3322 reserved = space_info->bytes_reserved; 3323 progress = space_info->reservation_progress; 3324 3325 if (reserved == 0) 3326 return 0; 3327 3328 smp_mb(); 3329 if (root->fs_info->delalloc_bytes == 0) { 3330 if (trans) 3331 return 0; 3332 btrfs_wait_ordered_extents(root, 0, 0); 3333 return 0; 3334 } 3335 3336 max_reclaim = min(reserved, to_reclaim); 3337 3338 while (loops < 1024) { 3339 /* have the flusher threads jump in and do some IO */ 3340 smp_mb(); 3341 nr_pages = min_t(unsigned long, nr_pages, 3342 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); 3343 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages); 3344 3345 spin_lock(&space_info->lock); 3346 if (reserved > space_info->bytes_reserved) 3347 reclaimed += reserved - space_info->bytes_reserved; 3348 reserved = space_info->bytes_reserved; 3349 spin_unlock(&space_info->lock); 3350 3351 loops++; 3352 3353 if (reserved == 0 || reclaimed >= max_reclaim) 3354 break; 3355 3356 if (trans && trans->transaction->blocked) 3357 return -EAGAIN; 3358 3359 time_left = schedule_timeout_interruptible(1); 3360 3361 /* We were interrupted, exit */ 3362 if (time_left) 3363 break; 3364 3365 /* we've kicked the IO a few times, if anything has been freed, 3366 * exit. There is no sense in looping here for a long time 3367 * when we really need to commit the transaction, or there are 3368 * just too many writers without enough free space 3369 */ 3370 3371 if (loops > 3) { 3372 smp_mb(); 3373 if (progress != space_info->reservation_progress) 3374 break; 3375 } 3376 3377 } 3378 if (reclaimed >= to_reclaim && !trans) 3379 btrfs_wait_ordered_extents(root, 0, 0); 3380 return reclaimed >= to_reclaim; 3381 } 3382 3383 /* 3384 * Retries tells us how many times we've called reserve_metadata_bytes. The 3385 * idea is if this is the first call (retries == 0) then we will add to our 3386 * reserved count if we can't make the allocation in order to hold our place 3387 * while we go and try and free up space. That way for retries > 1 we don't try 3388 * and add space, we just check to see if the amount of unused space is >= the 3389 * total space, meaning that our reservation is valid. 3390 * 3391 * However if we don't intend to retry this reservation, pass -1 as retries so 3392 * that it short circuits this logic. 3393 */ 3394 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans, 3395 struct btrfs_root *root, 3396 struct btrfs_block_rsv *block_rsv, 3397 u64 orig_bytes, int flush) 3398 { 3399 struct btrfs_space_info *space_info = block_rsv->space_info; 3400 u64 unused; 3401 u64 num_bytes = orig_bytes; 3402 int retries = 0; 3403 int ret = 0; 3404 bool committed = false; 3405 bool flushing = false; 3406 3407 again: 3408 ret = 0; 3409 spin_lock(&space_info->lock); 3410 /* 3411 * We only want to wait if somebody other than us is flushing and we are 3412 * actually alloed to flush. 3413 */ 3414 while (flush && !flushing && space_info->flush) { 3415 spin_unlock(&space_info->lock); 3416 /* 3417 * If we have a trans handle we can't wait because the flusher 3418 * may have to commit the transaction, which would mean we would 3419 * deadlock since we are waiting for the flusher to finish, but 3420 * hold the current transaction open. 3421 */ 3422 if (trans) 3423 return -EAGAIN; 3424 ret = wait_event_interruptible(space_info->wait, 3425 !space_info->flush); 3426 /* Must have been interrupted, return */ 3427 if (ret) 3428 return -EINTR; 3429 3430 spin_lock(&space_info->lock); 3431 } 3432 3433 ret = -ENOSPC; 3434 unused = space_info->bytes_used + space_info->bytes_reserved + 3435 space_info->bytes_pinned + space_info->bytes_readonly + 3436 space_info->bytes_may_use; 3437 3438 /* 3439 * The idea here is that we've not already over-reserved the block group 3440 * then we can go ahead and save our reservation first and then start 3441 * flushing if we need to. Otherwise if we've already overcommitted 3442 * lets start flushing stuff first and then come back and try to make 3443 * our reservation. 3444 */ 3445 if (unused <= space_info->total_bytes) { 3446 unused = space_info->total_bytes - unused; 3447 if (unused >= num_bytes) { 3448 space_info->bytes_reserved += orig_bytes; 3449 ret = 0; 3450 } else { 3451 /* 3452 * Ok set num_bytes to orig_bytes since we aren't 3453 * overocmmitted, this way we only try and reclaim what 3454 * we need. 3455 */ 3456 num_bytes = orig_bytes; 3457 } 3458 } else { 3459 /* 3460 * Ok we're over committed, set num_bytes to the overcommitted 3461 * amount plus the amount of bytes that we need for this 3462 * reservation. 3463 */ 3464 num_bytes = unused - space_info->total_bytes + 3465 (orig_bytes * (retries + 1)); 3466 } 3467 3468 /* 3469 * Couldn't make our reservation, save our place so while we're trying 3470 * to reclaim space we can actually use it instead of somebody else 3471 * stealing it from us. 3472 */ 3473 if (ret && flush) { 3474 flushing = true; 3475 space_info->flush = 1; 3476 } 3477 3478 spin_unlock(&space_info->lock); 3479 3480 if (!ret || !flush) 3481 goto out; 3482 3483 /* 3484 * We do synchronous shrinking since we don't actually unreserve 3485 * metadata until after the IO is completed. 3486 */ 3487 ret = shrink_delalloc(trans, root, num_bytes, 1); 3488 if (ret < 0) 3489 goto out; 3490 3491 ret = 0; 3492 3493 /* 3494 * So if we were overcommitted it's possible that somebody else flushed 3495 * out enough space and we simply didn't have enough space to reclaim, 3496 * so go back around and try again. 3497 */ 3498 if (retries < 2) { 3499 retries++; 3500 goto again; 3501 } 3502 3503 /* 3504 * Not enough space to be reclaimed, don't bother committing the 3505 * transaction. 3506 */ 3507 spin_lock(&space_info->lock); 3508 if (space_info->bytes_pinned < orig_bytes) 3509 ret = -ENOSPC; 3510 spin_unlock(&space_info->lock); 3511 if (ret) 3512 goto out; 3513 3514 ret = -EAGAIN; 3515 if (trans) 3516 goto out; 3517 3518 ret = -ENOSPC; 3519 if (committed) 3520 goto out; 3521 3522 trans = btrfs_join_transaction(root); 3523 if (IS_ERR(trans)) 3524 goto out; 3525 ret = btrfs_commit_transaction(trans, root); 3526 if (!ret) { 3527 trans = NULL; 3528 committed = true; 3529 goto again; 3530 } 3531 3532 out: 3533 if (flushing) { 3534 spin_lock(&space_info->lock); 3535 space_info->flush = 0; 3536 wake_up_all(&space_info->wait); 3537 spin_unlock(&space_info->lock); 3538 } 3539 return ret; 3540 } 3541 3542 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, 3543 struct btrfs_root *root) 3544 { 3545 struct btrfs_block_rsv *block_rsv; 3546 if (root->ref_cows) 3547 block_rsv = trans->block_rsv; 3548 else 3549 block_rsv = root->block_rsv; 3550 3551 if (!block_rsv) 3552 block_rsv = &root->fs_info->empty_block_rsv; 3553 3554 return block_rsv; 3555 } 3556 3557 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3558 u64 num_bytes) 3559 { 3560 int ret = -ENOSPC; 3561 spin_lock(&block_rsv->lock); 3562 if (block_rsv->reserved >= num_bytes) { 3563 block_rsv->reserved -= num_bytes; 3564 if (block_rsv->reserved < block_rsv->size) 3565 block_rsv->full = 0; 3566 ret = 0; 3567 } 3568 spin_unlock(&block_rsv->lock); 3569 return ret; 3570 } 3571 3572 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3573 u64 num_bytes, int update_size) 3574 { 3575 spin_lock(&block_rsv->lock); 3576 block_rsv->reserved += num_bytes; 3577 if (update_size) 3578 block_rsv->size += num_bytes; 3579 else if (block_rsv->reserved >= block_rsv->size) 3580 block_rsv->full = 1; 3581 spin_unlock(&block_rsv->lock); 3582 } 3583 3584 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, 3585 struct btrfs_block_rsv *dest, u64 num_bytes) 3586 { 3587 struct btrfs_space_info *space_info = block_rsv->space_info; 3588 3589 spin_lock(&block_rsv->lock); 3590 if (num_bytes == (u64)-1) 3591 num_bytes = block_rsv->size; 3592 block_rsv->size -= num_bytes; 3593 if (block_rsv->reserved >= block_rsv->size) { 3594 num_bytes = block_rsv->reserved - block_rsv->size; 3595 block_rsv->reserved = block_rsv->size; 3596 block_rsv->full = 1; 3597 } else { 3598 num_bytes = 0; 3599 } 3600 spin_unlock(&block_rsv->lock); 3601 3602 if (num_bytes > 0) { 3603 if (dest) { 3604 spin_lock(&dest->lock); 3605 if (!dest->full) { 3606 u64 bytes_to_add; 3607 3608 bytes_to_add = dest->size - dest->reserved; 3609 bytes_to_add = min(num_bytes, bytes_to_add); 3610 dest->reserved += bytes_to_add; 3611 if (dest->reserved >= dest->size) 3612 dest->full = 1; 3613 num_bytes -= bytes_to_add; 3614 } 3615 spin_unlock(&dest->lock); 3616 } 3617 if (num_bytes) { 3618 spin_lock(&space_info->lock); 3619 space_info->bytes_reserved -= num_bytes; 3620 space_info->reservation_progress++; 3621 spin_unlock(&space_info->lock); 3622 } 3623 } 3624 } 3625 3626 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 3627 struct btrfs_block_rsv *dst, u64 num_bytes) 3628 { 3629 int ret; 3630 3631 ret = block_rsv_use_bytes(src, num_bytes); 3632 if (ret) 3633 return ret; 3634 3635 block_rsv_add_bytes(dst, num_bytes, 1); 3636 return 0; 3637 } 3638 3639 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 3640 { 3641 memset(rsv, 0, sizeof(*rsv)); 3642 spin_lock_init(&rsv->lock); 3643 atomic_set(&rsv->usage, 1); 3644 rsv->priority = 6; 3645 INIT_LIST_HEAD(&rsv->list); 3646 } 3647 3648 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 3649 { 3650 struct btrfs_block_rsv *block_rsv; 3651 struct btrfs_fs_info *fs_info = root->fs_info; 3652 3653 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 3654 if (!block_rsv) 3655 return NULL; 3656 3657 btrfs_init_block_rsv(block_rsv); 3658 block_rsv->space_info = __find_space_info(fs_info, 3659 BTRFS_BLOCK_GROUP_METADATA); 3660 return block_rsv; 3661 } 3662 3663 void btrfs_free_block_rsv(struct btrfs_root *root, 3664 struct btrfs_block_rsv *rsv) 3665 { 3666 if (rsv && atomic_dec_and_test(&rsv->usage)) { 3667 btrfs_block_rsv_release(root, rsv, (u64)-1); 3668 if (!rsv->durable) 3669 kfree(rsv); 3670 } 3671 } 3672 3673 /* 3674 * make the block_rsv struct be able to capture freed space. 3675 * the captured space will re-add to the the block_rsv struct 3676 * after transaction commit 3677 */ 3678 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info, 3679 struct btrfs_block_rsv *block_rsv) 3680 { 3681 block_rsv->durable = 1; 3682 mutex_lock(&fs_info->durable_block_rsv_mutex); 3683 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list); 3684 mutex_unlock(&fs_info->durable_block_rsv_mutex); 3685 } 3686 3687 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans, 3688 struct btrfs_root *root, 3689 struct btrfs_block_rsv *block_rsv, 3690 u64 num_bytes) 3691 { 3692 int ret; 3693 3694 if (num_bytes == 0) 3695 return 0; 3696 3697 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1); 3698 if (!ret) { 3699 block_rsv_add_bytes(block_rsv, num_bytes, 1); 3700 return 0; 3701 } 3702 3703 return ret; 3704 } 3705 3706 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans, 3707 struct btrfs_root *root, 3708 struct btrfs_block_rsv *block_rsv, 3709 u64 min_reserved, int min_factor) 3710 { 3711 u64 num_bytes = 0; 3712 int commit_trans = 0; 3713 int ret = -ENOSPC; 3714 3715 if (!block_rsv) 3716 return 0; 3717 3718 spin_lock(&block_rsv->lock); 3719 if (min_factor > 0) 3720 num_bytes = div_factor(block_rsv->size, min_factor); 3721 if (min_reserved > num_bytes) 3722 num_bytes = min_reserved; 3723 3724 if (block_rsv->reserved >= num_bytes) { 3725 ret = 0; 3726 } else { 3727 num_bytes -= block_rsv->reserved; 3728 if (block_rsv->durable && 3729 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes) 3730 commit_trans = 1; 3731 } 3732 spin_unlock(&block_rsv->lock); 3733 if (!ret) 3734 return 0; 3735 3736 if (block_rsv->refill_used) { 3737 ret = reserve_metadata_bytes(trans, root, block_rsv, 3738 num_bytes, 0); 3739 if (!ret) { 3740 block_rsv_add_bytes(block_rsv, num_bytes, 0); 3741 return 0; 3742 } 3743 } 3744 3745 if (commit_trans) { 3746 if (trans) 3747 return -EAGAIN; 3748 trans = btrfs_join_transaction(root); 3749 BUG_ON(IS_ERR(trans)); 3750 ret = btrfs_commit_transaction(trans, root); 3751 return 0; 3752 } 3753 3754 return -ENOSPC; 3755 } 3756 3757 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3758 struct btrfs_block_rsv *dst_rsv, 3759 u64 num_bytes) 3760 { 3761 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3762 } 3763 3764 void btrfs_block_rsv_release(struct btrfs_root *root, 3765 struct btrfs_block_rsv *block_rsv, 3766 u64 num_bytes) 3767 { 3768 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3769 if (global_rsv->full || global_rsv == block_rsv || 3770 block_rsv->space_info != global_rsv->space_info) 3771 global_rsv = NULL; 3772 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); 3773 } 3774 3775 /* 3776 * helper to calculate size of global block reservation. 3777 * the desired value is sum of space used by extent tree, 3778 * checksum tree and root tree 3779 */ 3780 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 3781 { 3782 struct btrfs_space_info *sinfo; 3783 u64 num_bytes; 3784 u64 meta_used; 3785 u64 data_used; 3786 int csum_size = btrfs_super_csum_size(&fs_info->super_copy); 3787 3788 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 3789 spin_lock(&sinfo->lock); 3790 data_used = sinfo->bytes_used; 3791 spin_unlock(&sinfo->lock); 3792 3793 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3794 spin_lock(&sinfo->lock); 3795 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 3796 data_used = 0; 3797 meta_used = sinfo->bytes_used; 3798 spin_unlock(&sinfo->lock); 3799 3800 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 3801 csum_size * 2; 3802 num_bytes += div64_u64(data_used + meta_used, 50); 3803 3804 if (num_bytes * 3 > meta_used) 3805 num_bytes = div64_u64(meta_used, 3); 3806 3807 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 3808 } 3809 3810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 3811 { 3812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3813 struct btrfs_space_info *sinfo = block_rsv->space_info; 3814 u64 num_bytes; 3815 3816 num_bytes = calc_global_metadata_size(fs_info); 3817 3818 spin_lock(&block_rsv->lock); 3819 spin_lock(&sinfo->lock); 3820 3821 block_rsv->size = num_bytes; 3822 3823 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 3824 sinfo->bytes_reserved + sinfo->bytes_readonly + 3825 sinfo->bytes_may_use; 3826 3827 if (sinfo->total_bytes > num_bytes) { 3828 num_bytes = sinfo->total_bytes - num_bytes; 3829 block_rsv->reserved += num_bytes; 3830 sinfo->bytes_reserved += num_bytes; 3831 } 3832 3833 if (block_rsv->reserved >= block_rsv->size) { 3834 num_bytes = block_rsv->reserved - block_rsv->size; 3835 sinfo->bytes_reserved -= num_bytes; 3836 sinfo->reservation_progress++; 3837 block_rsv->reserved = block_rsv->size; 3838 block_rsv->full = 1; 3839 } 3840 3841 spin_unlock(&sinfo->lock); 3842 spin_unlock(&block_rsv->lock); 3843 } 3844 3845 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 3846 { 3847 struct btrfs_space_info *space_info; 3848 3849 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3850 fs_info->chunk_block_rsv.space_info = space_info; 3851 fs_info->chunk_block_rsv.priority = 10; 3852 3853 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3854 fs_info->global_block_rsv.space_info = space_info; 3855 fs_info->global_block_rsv.priority = 10; 3856 fs_info->global_block_rsv.refill_used = 1; 3857 fs_info->delalloc_block_rsv.space_info = space_info; 3858 fs_info->trans_block_rsv.space_info = space_info; 3859 fs_info->empty_block_rsv.space_info = space_info; 3860 fs_info->empty_block_rsv.priority = 10; 3861 3862 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 3863 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 3864 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 3865 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 3866 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 3867 3868 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv); 3869 3870 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv); 3871 3872 update_global_block_rsv(fs_info); 3873 } 3874 3875 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 3876 { 3877 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); 3878 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 3879 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 3880 WARN_ON(fs_info->trans_block_rsv.size > 0); 3881 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 3882 WARN_ON(fs_info->chunk_block_rsv.size > 0); 3883 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 3884 } 3885 3886 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans, 3887 struct btrfs_root *root, 3888 struct btrfs_block_rsv *rsv) 3889 { 3890 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv; 3891 u64 num_bytes; 3892 int ret; 3893 3894 /* 3895 * Truncate should be freeing data, but give us 2 items just in case it 3896 * needs to use some space. We may want to be smarter about this in the 3897 * future. 3898 */ 3899 num_bytes = btrfs_calc_trans_metadata_size(root, 2); 3900 3901 /* We already have enough bytes, just return */ 3902 if (rsv->reserved >= num_bytes) 3903 return 0; 3904 3905 num_bytes -= rsv->reserved; 3906 3907 /* 3908 * You should have reserved enough space before hand to do this, so this 3909 * should not fail. 3910 */ 3911 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes); 3912 BUG_ON(ret); 3913 3914 return 0; 3915 } 3916 3917 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3918 struct btrfs_root *root) 3919 { 3920 if (!trans->bytes_reserved) 3921 return; 3922 3923 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv); 3924 btrfs_block_rsv_release(root, trans->block_rsv, 3925 trans->bytes_reserved); 3926 trans->bytes_reserved = 0; 3927 } 3928 3929 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3930 struct inode *inode) 3931 { 3932 struct btrfs_root *root = BTRFS_I(inode)->root; 3933 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3934 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 3935 3936 /* 3937 * We need to hold space in order to delete our orphan item once we've 3938 * added it, so this takes the reservation so we can release it later 3939 * when we are truly done with the orphan item. 3940 */ 3941 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 3942 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3943 } 3944 3945 void btrfs_orphan_release_metadata(struct inode *inode) 3946 { 3947 struct btrfs_root *root = BTRFS_I(inode)->root; 3948 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 3949 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 3950 } 3951 3952 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 3953 struct btrfs_pending_snapshot *pending) 3954 { 3955 struct btrfs_root *root = pending->root; 3956 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3957 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 3958 /* 3959 * two for root back/forward refs, two for directory entries 3960 * and one for root of the snapshot. 3961 */ 3962 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3963 dst_rsv->space_info = src_rsv->space_info; 3964 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3965 } 3966 3967 static unsigned drop_outstanding_extent(struct inode *inode) 3968 { 3969 unsigned dropped_extents = 0; 3970 3971 spin_lock(&BTRFS_I(inode)->lock); 3972 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 3973 BTRFS_I(inode)->outstanding_extents--; 3974 3975 /* 3976 * If we have more or the same amount of outsanding extents than we have 3977 * reserved then we need to leave the reserved extents count alone. 3978 */ 3979 if (BTRFS_I(inode)->outstanding_extents >= 3980 BTRFS_I(inode)->reserved_extents) 3981 goto out; 3982 3983 dropped_extents = BTRFS_I(inode)->reserved_extents - 3984 BTRFS_I(inode)->outstanding_extents; 3985 BTRFS_I(inode)->reserved_extents -= dropped_extents; 3986 out: 3987 spin_unlock(&BTRFS_I(inode)->lock); 3988 return dropped_extents; 3989 } 3990 3991 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes) 3992 { 3993 return num_bytes >>= 3; 3994 } 3995 3996 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 3997 { 3998 struct btrfs_root *root = BTRFS_I(inode)->root; 3999 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4000 u64 to_reserve = 0; 4001 unsigned nr_extents = 0; 4002 int ret; 4003 4004 if (btrfs_transaction_in_commit(root->fs_info)) 4005 schedule_timeout(1); 4006 4007 num_bytes = ALIGN(num_bytes, root->sectorsize); 4008 4009 spin_lock(&BTRFS_I(inode)->lock); 4010 BTRFS_I(inode)->outstanding_extents++; 4011 4012 if (BTRFS_I(inode)->outstanding_extents > 4013 BTRFS_I(inode)->reserved_extents) { 4014 nr_extents = BTRFS_I(inode)->outstanding_extents - 4015 BTRFS_I(inode)->reserved_extents; 4016 BTRFS_I(inode)->reserved_extents += nr_extents; 4017 4018 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4019 } 4020 spin_unlock(&BTRFS_I(inode)->lock); 4021 4022 to_reserve += calc_csum_metadata_size(inode, num_bytes); 4023 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1); 4024 if (ret) { 4025 unsigned dropped; 4026 /* 4027 * We don't need the return value since our reservation failed, 4028 * we just need to clean up our counter. 4029 */ 4030 dropped = drop_outstanding_extent(inode); 4031 WARN_ON(dropped > 1); 4032 return ret; 4033 } 4034 4035 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4036 4037 return 0; 4038 } 4039 4040 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4041 { 4042 struct btrfs_root *root = BTRFS_I(inode)->root; 4043 u64 to_free = 0; 4044 unsigned dropped; 4045 4046 num_bytes = ALIGN(num_bytes, root->sectorsize); 4047 dropped = drop_outstanding_extent(inode); 4048 4049 to_free = calc_csum_metadata_size(inode, num_bytes); 4050 if (dropped > 0) 4051 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4052 4053 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4054 to_free); 4055 } 4056 4057 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4058 { 4059 int ret; 4060 4061 ret = btrfs_check_data_free_space(inode, num_bytes); 4062 if (ret) 4063 return ret; 4064 4065 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4066 if (ret) { 4067 btrfs_free_reserved_data_space(inode, num_bytes); 4068 return ret; 4069 } 4070 4071 return 0; 4072 } 4073 4074 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4075 { 4076 btrfs_delalloc_release_metadata(inode, num_bytes); 4077 btrfs_free_reserved_data_space(inode, num_bytes); 4078 } 4079 4080 static int update_block_group(struct btrfs_trans_handle *trans, 4081 struct btrfs_root *root, 4082 u64 bytenr, u64 num_bytes, int alloc) 4083 { 4084 struct btrfs_block_group_cache *cache = NULL; 4085 struct btrfs_fs_info *info = root->fs_info; 4086 u64 total = num_bytes; 4087 u64 old_val; 4088 u64 byte_in_group; 4089 int factor; 4090 4091 /* block accounting for super block */ 4092 spin_lock(&info->delalloc_lock); 4093 old_val = btrfs_super_bytes_used(&info->super_copy); 4094 if (alloc) 4095 old_val += num_bytes; 4096 else 4097 old_val -= num_bytes; 4098 btrfs_set_super_bytes_used(&info->super_copy, old_val); 4099 spin_unlock(&info->delalloc_lock); 4100 4101 while (total) { 4102 cache = btrfs_lookup_block_group(info, bytenr); 4103 if (!cache) 4104 return -1; 4105 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4106 BTRFS_BLOCK_GROUP_RAID1 | 4107 BTRFS_BLOCK_GROUP_RAID10)) 4108 factor = 2; 4109 else 4110 factor = 1; 4111 /* 4112 * If this block group has free space cache written out, we 4113 * need to make sure to load it if we are removing space. This 4114 * is because we need the unpinning stage to actually add the 4115 * space back to the block group, otherwise we will leak space. 4116 */ 4117 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4118 cache_block_group(cache, trans, NULL, 1); 4119 4120 byte_in_group = bytenr - cache->key.objectid; 4121 WARN_ON(byte_in_group > cache->key.offset); 4122 4123 spin_lock(&cache->space_info->lock); 4124 spin_lock(&cache->lock); 4125 4126 if (btrfs_super_cache_generation(&info->super_copy) != 0 && 4127 cache->disk_cache_state < BTRFS_DC_CLEAR) 4128 cache->disk_cache_state = BTRFS_DC_CLEAR; 4129 4130 cache->dirty = 1; 4131 old_val = btrfs_block_group_used(&cache->item); 4132 num_bytes = min(total, cache->key.offset - byte_in_group); 4133 if (alloc) { 4134 old_val += num_bytes; 4135 btrfs_set_block_group_used(&cache->item, old_val); 4136 cache->reserved -= num_bytes; 4137 cache->space_info->bytes_reserved -= num_bytes; 4138 cache->space_info->reservation_progress++; 4139 cache->space_info->bytes_used += num_bytes; 4140 cache->space_info->disk_used += num_bytes * factor; 4141 spin_unlock(&cache->lock); 4142 spin_unlock(&cache->space_info->lock); 4143 } else { 4144 old_val -= num_bytes; 4145 btrfs_set_block_group_used(&cache->item, old_val); 4146 cache->pinned += num_bytes; 4147 cache->space_info->bytes_pinned += num_bytes; 4148 cache->space_info->bytes_used -= num_bytes; 4149 cache->space_info->disk_used -= num_bytes * factor; 4150 spin_unlock(&cache->lock); 4151 spin_unlock(&cache->space_info->lock); 4152 4153 set_extent_dirty(info->pinned_extents, 4154 bytenr, bytenr + num_bytes - 1, 4155 GFP_NOFS | __GFP_NOFAIL); 4156 } 4157 btrfs_put_block_group(cache); 4158 total -= num_bytes; 4159 bytenr += num_bytes; 4160 } 4161 return 0; 4162 } 4163 4164 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4165 { 4166 struct btrfs_block_group_cache *cache; 4167 u64 bytenr; 4168 4169 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4170 if (!cache) 4171 return 0; 4172 4173 bytenr = cache->key.objectid; 4174 btrfs_put_block_group(cache); 4175 4176 return bytenr; 4177 } 4178 4179 static int pin_down_extent(struct btrfs_root *root, 4180 struct btrfs_block_group_cache *cache, 4181 u64 bytenr, u64 num_bytes, int reserved) 4182 { 4183 spin_lock(&cache->space_info->lock); 4184 spin_lock(&cache->lock); 4185 cache->pinned += num_bytes; 4186 cache->space_info->bytes_pinned += num_bytes; 4187 if (reserved) { 4188 cache->reserved -= num_bytes; 4189 cache->space_info->bytes_reserved -= num_bytes; 4190 cache->space_info->reservation_progress++; 4191 } 4192 spin_unlock(&cache->lock); 4193 spin_unlock(&cache->space_info->lock); 4194 4195 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4196 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4197 return 0; 4198 } 4199 4200 /* 4201 * this function must be called within transaction 4202 */ 4203 int btrfs_pin_extent(struct btrfs_root *root, 4204 u64 bytenr, u64 num_bytes, int reserved) 4205 { 4206 struct btrfs_block_group_cache *cache; 4207 4208 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4209 BUG_ON(!cache); 4210 4211 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4212 4213 btrfs_put_block_group(cache); 4214 return 0; 4215 } 4216 4217 /* 4218 * update size of reserved extents. this function may return -EAGAIN 4219 * if 'reserve' is true or 'sinfo' is false. 4220 */ 4221 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4222 u64 num_bytes, int reserve, int sinfo) 4223 { 4224 int ret = 0; 4225 if (sinfo) { 4226 struct btrfs_space_info *space_info = cache->space_info; 4227 spin_lock(&space_info->lock); 4228 spin_lock(&cache->lock); 4229 if (reserve) { 4230 if (cache->ro) { 4231 ret = -EAGAIN; 4232 } else { 4233 cache->reserved += num_bytes; 4234 space_info->bytes_reserved += num_bytes; 4235 } 4236 } else { 4237 if (cache->ro) 4238 space_info->bytes_readonly += num_bytes; 4239 cache->reserved -= num_bytes; 4240 space_info->bytes_reserved -= num_bytes; 4241 space_info->reservation_progress++; 4242 } 4243 spin_unlock(&cache->lock); 4244 spin_unlock(&space_info->lock); 4245 } else { 4246 spin_lock(&cache->lock); 4247 if (cache->ro) { 4248 ret = -EAGAIN; 4249 } else { 4250 if (reserve) 4251 cache->reserved += num_bytes; 4252 else 4253 cache->reserved -= num_bytes; 4254 } 4255 spin_unlock(&cache->lock); 4256 } 4257 return ret; 4258 } 4259 4260 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4261 struct btrfs_root *root) 4262 { 4263 struct btrfs_fs_info *fs_info = root->fs_info; 4264 struct btrfs_caching_control *next; 4265 struct btrfs_caching_control *caching_ctl; 4266 struct btrfs_block_group_cache *cache; 4267 4268 down_write(&fs_info->extent_commit_sem); 4269 4270 list_for_each_entry_safe(caching_ctl, next, 4271 &fs_info->caching_block_groups, list) { 4272 cache = caching_ctl->block_group; 4273 if (block_group_cache_done(cache)) { 4274 cache->last_byte_to_unpin = (u64)-1; 4275 list_del_init(&caching_ctl->list); 4276 put_caching_control(caching_ctl); 4277 } else { 4278 cache->last_byte_to_unpin = caching_ctl->progress; 4279 } 4280 } 4281 4282 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4283 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4284 else 4285 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4286 4287 up_write(&fs_info->extent_commit_sem); 4288 4289 update_global_block_rsv(fs_info); 4290 return 0; 4291 } 4292 4293 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4294 { 4295 struct btrfs_fs_info *fs_info = root->fs_info; 4296 struct btrfs_block_group_cache *cache = NULL; 4297 u64 len; 4298 4299 while (start <= end) { 4300 if (!cache || 4301 start >= cache->key.objectid + cache->key.offset) { 4302 if (cache) 4303 btrfs_put_block_group(cache); 4304 cache = btrfs_lookup_block_group(fs_info, start); 4305 BUG_ON(!cache); 4306 } 4307 4308 len = cache->key.objectid + cache->key.offset - start; 4309 len = min(len, end + 1 - start); 4310 4311 if (start < cache->last_byte_to_unpin) { 4312 len = min(len, cache->last_byte_to_unpin - start); 4313 btrfs_add_free_space(cache, start, len); 4314 } 4315 4316 start += len; 4317 4318 spin_lock(&cache->space_info->lock); 4319 spin_lock(&cache->lock); 4320 cache->pinned -= len; 4321 cache->space_info->bytes_pinned -= len; 4322 if (cache->ro) { 4323 cache->space_info->bytes_readonly += len; 4324 } else if (cache->reserved_pinned > 0) { 4325 len = min(len, cache->reserved_pinned); 4326 cache->reserved_pinned -= len; 4327 cache->space_info->bytes_reserved += len; 4328 } 4329 spin_unlock(&cache->lock); 4330 spin_unlock(&cache->space_info->lock); 4331 } 4332 4333 if (cache) 4334 btrfs_put_block_group(cache); 4335 return 0; 4336 } 4337 4338 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4339 struct btrfs_root *root) 4340 { 4341 struct btrfs_fs_info *fs_info = root->fs_info; 4342 struct extent_io_tree *unpin; 4343 struct btrfs_block_rsv *block_rsv; 4344 struct btrfs_block_rsv *next_rsv; 4345 u64 start; 4346 u64 end; 4347 int idx; 4348 int ret; 4349 4350 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4351 unpin = &fs_info->freed_extents[1]; 4352 else 4353 unpin = &fs_info->freed_extents[0]; 4354 4355 while (1) { 4356 ret = find_first_extent_bit(unpin, 0, &start, &end, 4357 EXTENT_DIRTY); 4358 if (ret) 4359 break; 4360 4361 if (btrfs_test_opt(root, DISCARD)) 4362 ret = btrfs_discard_extent(root, start, 4363 end + 1 - start, NULL); 4364 4365 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4366 unpin_extent_range(root, start, end); 4367 cond_resched(); 4368 } 4369 4370 mutex_lock(&fs_info->durable_block_rsv_mutex); 4371 list_for_each_entry_safe(block_rsv, next_rsv, 4372 &fs_info->durable_block_rsv_list, list) { 4373 4374 idx = trans->transid & 0x1; 4375 if (block_rsv->freed[idx] > 0) { 4376 block_rsv_add_bytes(block_rsv, 4377 block_rsv->freed[idx], 0); 4378 block_rsv->freed[idx] = 0; 4379 } 4380 if (atomic_read(&block_rsv->usage) == 0) { 4381 btrfs_block_rsv_release(root, block_rsv, (u64)-1); 4382 4383 if (block_rsv->freed[0] == 0 && 4384 block_rsv->freed[1] == 0) { 4385 list_del_init(&block_rsv->list); 4386 kfree(block_rsv); 4387 } 4388 } else { 4389 btrfs_block_rsv_release(root, block_rsv, 0); 4390 } 4391 } 4392 mutex_unlock(&fs_info->durable_block_rsv_mutex); 4393 4394 return 0; 4395 } 4396 4397 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4398 struct btrfs_root *root, 4399 u64 bytenr, u64 num_bytes, u64 parent, 4400 u64 root_objectid, u64 owner_objectid, 4401 u64 owner_offset, int refs_to_drop, 4402 struct btrfs_delayed_extent_op *extent_op) 4403 { 4404 struct btrfs_key key; 4405 struct btrfs_path *path; 4406 struct btrfs_fs_info *info = root->fs_info; 4407 struct btrfs_root *extent_root = info->extent_root; 4408 struct extent_buffer *leaf; 4409 struct btrfs_extent_item *ei; 4410 struct btrfs_extent_inline_ref *iref; 4411 int ret; 4412 int is_data; 4413 int extent_slot = 0; 4414 int found_extent = 0; 4415 int num_to_del = 1; 4416 u32 item_size; 4417 u64 refs; 4418 4419 path = btrfs_alloc_path(); 4420 if (!path) 4421 return -ENOMEM; 4422 4423 path->reada = 1; 4424 path->leave_spinning = 1; 4425 4426 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4427 BUG_ON(!is_data && refs_to_drop != 1); 4428 4429 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4430 bytenr, num_bytes, parent, 4431 root_objectid, owner_objectid, 4432 owner_offset); 4433 if (ret == 0) { 4434 extent_slot = path->slots[0]; 4435 while (extent_slot >= 0) { 4436 btrfs_item_key_to_cpu(path->nodes[0], &key, 4437 extent_slot); 4438 if (key.objectid != bytenr) 4439 break; 4440 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4441 key.offset == num_bytes) { 4442 found_extent = 1; 4443 break; 4444 } 4445 if (path->slots[0] - extent_slot > 5) 4446 break; 4447 extent_slot--; 4448 } 4449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4450 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4451 if (found_extent && item_size < sizeof(*ei)) 4452 found_extent = 0; 4453 #endif 4454 if (!found_extent) { 4455 BUG_ON(iref); 4456 ret = remove_extent_backref(trans, extent_root, path, 4457 NULL, refs_to_drop, 4458 is_data); 4459 BUG_ON(ret); 4460 btrfs_release_path(path); 4461 path->leave_spinning = 1; 4462 4463 key.objectid = bytenr; 4464 key.type = BTRFS_EXTENT_ITEM_KEY; 4465 key.offset = num_bytes; 4466 4467 ret = btrfs_search_slot(trans, extent_root, 4468 &key, path, -1, 1); 4469 if (ret) { 4470 printk(KERN_ERR "umm, got %d back from search" 4471 ", was looking for %llu\n", ret, 4472 (unsigned long long)bytenr); 4473 if (ret > 0) 4474 btrfs_print_leaf(extent_root, 4475 path->nodes[0]); 4476 } 4477 BUG_ON(ret); 4478 extent_slot = path->slots[0]; 4479 } 4480 } else { 4481 btrfs_print_leaf(extent_root, path->nodes[0]); 4482 WARN_ON(1); 4483 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 4484 "parent %llu root %llu owner %llu offset %llu\n", 4485 (unsigned long long)bytenr, 4486 (unsigned long long)parent, 4487 (unsigned long long)root_objectid, 4488 (unsigned long long)owner_objectid, 4489 (unsigned long long)owner_offset); 4490 } 4491 4492 leaf = path->nodes[0]; 4493 item_size = btrfs_item_size_nr(leaf, extent_slot); 4494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4495 if (item_size < sizeof(*ei)) { 4496 BUG_ON(found_extent || extent_slot != path->slots[0]); 4497 ret = convert_extent_item_v0(trans, extent_root, path, 4498 owner_objectid, 0); 4499 BUG_ON(ret < 0); 4500 4501 btrfs_release_path(path); 4502 path->leave_spinning = 1; 4503 4504 key.objectid = bytenr; 4505 key.type = BTRFS_EXTENT_ITEM_KEY; 4506 key.offset = num_bytes; 4507 4508 ret = btrfs_search_slot(trans, extent_root, &key, path, 4509 -1, 1); 4510 if (ret) { 4511 printk(KERN_ERR "umm, got %d back from search" 4512 ", was looking for %llu\n", ret, 4513 (unsigned long long)bytenr); 4514 btrfs_print_leaf(extent_root, path->nodes[0]); 4515 } 4516 BUG_ON(ret); 4517 extent_slot = path->slots[0]; 4518 leaf = path->nodes[0]; 4519 item_size = btrfs_item_size_nr(leaf, extent_slot); 4520 } 4521 #endif 4522 BUG_ON(item_size < sizeof(*ei)); 4523 ei = btrfs_item_ptr(leaf, extent_slot, 4524 struct btrfs_extent_item); 4525 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4526 struct btrfs_tree_block_info *bi; 4527 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 4528 bi = (struct btrfs_tree_block_info *)(ei + 1); 4529 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 4530 } 4531 4532 refs = btrfs_extent_refs(leaf, ei); 4533 BUG_ON(refs < refs_to_drop); 4534 refs -= refs_to_drop; 4535 4536 if (refs > 0) { 4537 if (extent_op) 4538 __run_delayed_extent_op(extent_op, leaf, ei); 4539 /* 4540 * In the case of inline back ref, reference count will 4541 * be updated by remove_extent_backref 4542 */ 4543 if (iref) { 4544 BUG_ON(!found_extent); 4545 } else { 4546 btrfs_set_extent_refs(leaf, ei, refs); 4547 btrfs_mark_buffer_dirty(leaf); 4548 } 4549 if (found_extent) { 4550 ret = remove_extent_backref(trans, extent_root, path, 4551 iref, refs_to_drop, 4552 is_data); 4553 BUG_ON(ret); 4554 } 4555 } else { 4556 if (found_extent) { 4557 BUG_ON(is_data && refs_to_drop != 4558 extent_data_ref_count(root, path, iref)); 4559 if (iref) { 4560 BUG_ON(path->slots[0] != extent_slot); 4561 } else { 4562 BUG_ON(path->slots[0] != extent_slot + 1); 4563 path->slots[0] = extent_slot; 4564 num_to_del = 2; 4565 } 4566 } 4567 4568 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 4569 num_to_del); 4570 BUG_ON(ret); 4571 btrfs_release_path(path); 4572 4573 if (is_data) { 4574 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 4575 BUG_ON(ret); 4576 } else { 4577 invalidate_mapping_pages(info->btree_inode->i_mapping, 4578 bytenr >> PAGE_CACHE_SHIFT, 4579 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 4580 } 4581 4582 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 4583 BUG_ON(ret); 4584 } 4585 btrfs_free_path(path); 4586 return ret; 4587 } 4588 4589 /* 4590 * when we free an block, it is possible (and likely) that we free the last 4591 * delayed ref for that extent as well. This searches the delayed ref tree for 4592 * a given extent, and if there are no other delayed refs to be processed, it 4593 * removes it from the tree. 4594 */ 4595 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 4596 struct btrfs_root *root, u64 bytenr) 4597 { 4598 struct btrfs_delayed_ref_head *head; 4599 struct btrfs_delayed_ref_root *delayed_refs; 4600 struct btrfs_delayed_ref_node *ref; 4601 struct rb_node *node; 4602 int ret = 0; 4603 4604 delayed_refs = &trans->transaction->delayed_refs; 4605 spin_lock(&delayed_refs->lock); 4606 head = btrfs_find_delayed_ref_head(trans, bytenr); 4607 if (!head) 4608 goto out; 4609 4610 node = rb_prev(&head->node.rb_node); 4611 if (!node) 4612 goto out; 4613 4614 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 4615 4616 /* there are still entries for this ref, we can't drop it */ 4617 if (ref->bytenr == bytenr) 4618 goto out; 4619 4620 if (head->extent_op) { 4621 if (!head->must_insert_reserved) 4622 goto out; 4623 kfree(head->extent_op); 4624 head->extent_op = NULL; 4625 } 4626 4627 /* 4628 * waiting for the lock here would deadlock. If someone else has it 4629 * locked they are already in the process of dropping it anyway 4630 */ 4631 if (!mutex_trylock(&head->mutex)) 4632 goto out; 4633 4634 /* 4635 * at this point we have a head with no other entries. Go 4636 * ahead and process it. 4637 */ 4638 head->node.in_tree = 0; 4639 rb_erase(&head->node.rb_node, &delayed_refs->root); 4640 4641 delayed_refs->num_entries--; 4642 4643 /* 4644 * we don't take a ref on the node because we're removing it from the 4645 * tree, so we just steal the ref the tree was holding. 4646 */ 4647 delayed_refs->num_heads--; 4648 if (list_empty(&head->cluster)) 4649 delayed_refs->num_heads_ready--; 4650 4651 list_del_init(&head->cluster); 4652 spin_unlock(&delayed_refs->lock); 4653 4654 BUG_ON(head->extent_op); 4655 if (head->must_insert_reserved) 4656 ret = 1; 4657 4658 mutex_unlock(&head->mutex); 4659 btrfs_put_delayed_ref(&head->node); 4660 return ret; 4661 out: 4662 spin_unlock(&delayed_refs->lock); 4663 return 0; 4664 } 4665 4666 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 4667 struct btrfs_root *root, 4668 struct extent_buffer *buf, 4669 u64 parent, int last_ref) 4670 { 4671 struct btrfs_block_rsv *block_rsv; 4672 struct btrfs_block_group_cache *cache = NULL; 4673 int ret; 4674 4675 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4676 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, 4677 parent, root->root_key.objectid, 4678 btrfs_header_level(buf), 4679 BTRFS_DROP_DELAYED_REF, NULL); 4680 BUG_ON(ret); 4681 } 4682 4683 if (!last_ref) 4684 return; 4685 4686 block_rsv = get_block_rsv(trans, root); 4687 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 4688 if (block_rsv->space_info != cache->space_info) 4689 goto out; 4690 4691 if (btrfs_header_generation(buf) == trans->transid) { 4692 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4693 ret = check_ref_cleanup(trans, root, buf->start); 4694 if (!ret) 4695 goto pin; 4696 } 4697 4698 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 4699 pin_down_extent(root, cache, buf->start, buf->len, 1); 4700 goto pin; 4701 } 4702 4703 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 4704 4705 btrfs_add_free_space(cache, buf->start, buf->len); 4706 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0); 4707 if (ret == -EAGAIN) { 4708 /* block group became read-only */ 4709 btrfs_update_reserved_bytes(cache, buf->len, 0, 1); 4710 goto out; 4711 } 4712 4713 ret = 1; 4714 spin_lock(&block_rsv->lock); 4715 if (block_rsv->reserved < block_rsv->size) { 4716 block_rsv->reserved += buf->len; 4717 ret = 0; 4718 } 4719 spin_unlock(&block_rsv->lock); 4720 4721 if (ret) { 4722 spin_lock(&cache->space_info->lock); 4723 cache->space_info->bytes_reserved -= buf->len; 4724 cache->space_info->reservation_progress++; 4725 spin_unlock(&cache->space_info->lock); 4726 } 4727 goto out; 4728 } 4729 pin: 4730 if (block_rsv->durable && !cache->ro) { 4731 ret = 0; 4732 spin_lock(&cache->lock); 4733 if (!cache->ro) { 4734 cache->reserved_pinned += buf->len; 4735 ret = 1; 4736 } 4737 spin_unlock(&cache->lock); 4738 4739 if (ret) { 4740 spin_lock(&block_rsv->lock); 4741 block_rsv->freed[trans->transid & 0x1] += buf->len; 4742 spin_unlock(&block_rsv->lock); 4743 } 4744 } 4745 out: 4746 /* 4747 * Deleting the buffer, clear the corrupt flag since it doesn't matter 4748 * anymore. 4749 */ 4750 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 4751 btrfs_put_block_group(cache); 4752 } 4753 4754 int btrfs_free_extent(struct btrfs_trans_handle *trans, 4755 struct btrfs_root *root, 4756 u64 bytenr, u64 num_bytes, u64 parent, 4757 u64 root_objectid, u64 owner, u64 offset) 4758 { 4759 int ret; 4760 4761 /* 4762 * tree log blocks never actually go into the extent allocation 4763 * tree, just update pinning info and exit early. 4764 */ 4765 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 4766 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 4767 /* unlocks the pinned mutex */ 4768 btrfs_pin_extent(root, bytenr, num_bytes, 1); 4769 ret = 0; 4770 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 4771 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 4772 parent, root_objectid, (int)owner, 4773 BTRFS_DROP_DELAYED_REF, NULL); 4774 BUG_ON(ret); 4775 } else { 4776 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 4777 parent, root_objectid, owner, 4778 offset, BTRFS_DROP_DELAYED_REF, NULL); 4779 BUG_ON(ret); 4780 } 4781 return ret; 4782 } 4783 4784 static u64 stripe_align(struct btrfs_root *root, u64 val) 4785 { 4786 u64 mask = ((u64)root->stripesize - 1); 4787 u64 ret = (val + mask) & ~mask; 4788 return ret; 4789 } 4790 4791 /* 4792 * when we wait for progress in the block group caching, its because 4793 * our allocation attempt failed at least once. So, we must sleep 4794 * and let some progress happen before we try again. 4795 * 4796 * This function will sleep at least once waiting for new free space to 4797 * show up, and then it will check the block group free space numbers 4798 * for our min num_bytes. Another option is to have it go ahead 4799 * and look in the rbtree for a free extent of a given size, but this 4800 * is a good start. 4801 */ 4802 static noinline int 4803 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 4804 u64 num_bytes) 4805 { 4806 struct btrfs_caching_control *caching_ctl; 4807 DEFINE_WAIT(wait); 4808 4809 caching_ctl = get_caching_control(cache); 4810 if (!caching_ctl) 4811 return 0; 4812 4813 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 4814 (cache->free_space_ctl->free_space >= num_bytes)); 4815 4816 put_caching_control(caching_ctl); 4817 return 0; 4818 } 4819 4820 static noinline int 4821 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 4822 { 4823 struct btrfs_caching_control *caching_ctl; 4824 DEFINE_WAIT(wait); 4825 4826 caching_ctl = get_caching_control(cache); 4827 if (!caching_ctl) 4828 return 0; 4829 4830 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 4831 4832 put_caching_control(caching_ctl); 4833 return 0; 4834 } 4835 4836 static int get_block_group_index(struct btrfs_block_group_cache *cache) 4837 { 4838 int index; 4839 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) 4840 index = 0; 4841 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) 4842 index = 1; 4843 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) 4844 index = 2; 4845 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) 4846 index = 3; 4847 else 4848 index = 4; 4849 return index; 4850 } 4851 4852 enum btrfs_loop_type { 4853 LOOP_FIND_IDEAL = 0, 4854 LOOP_CACHING_NOWAIT = 1, 4855 LOOP_CACHING_WAIT = 2, 4856 LOOP_ALLOC_CHUNK = 3, 4857 LOOP_NO_EMPTY_SIZE = 4, 4858 }; 4859 4860 /* 4861 * walks the btree of allocated extents and find a hole of a given size. 4862 * The key ins is changed to record the hole: 4863 * ins->objectid == block start 4864 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4865 * ins->offset == number of blocks 4866 * Any available blocks before search_start are skipped. 4867 */ 4868 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 4869 struct btrfs_root *orig_root, 4870 u64 num_bytes, u64 empty_size, 4871 u64 search_start, u64 search_end, 4872 u64 hint_byte, struct btrfs_key *ins, 4873 u64 data) 4874 { 4875 int ret = 0; 4876 struct btrfs_root *root = orig_root->fs_info->extent_root; 4877 struct btrfs_free_cluster *last_ptr = NULL; 4878 struct btrfs_block_group_cache *block_group = NULL; 4879 int empty_cluster = 2 * 1024 * 1024; 4880 int allowed_chunk_alloc = 0; 4881 int done_chunk_alloc = 0; 4882 struct btrfs_space_info *space_info; 4883 int last_ptr_loop = 0; 4884 int loop = 0; 4885 int index = 0; 4886 bool found_uncached_bg = false; 4887 bool failed_cluster_refill = false; 4888 bool failed_alloc = false; 4889 bool use_cluster = true; 4890 u64 ideal_cache_percent = 0; 4891 u64 ideal_cache_offset = 0; 4892 4893 WARN_ON(num_bytes < root->sectorsize); 4894 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 4895 ins->objectid = 0; 4896 ins->offset = 0; 4897 4898 space_info = __find_space_info(root->fs_info, data); 4899 if (!space_info) { 4900 printk(KERN_ERR "No space info for %llu\n", data); 4901 return -ENOSPC; 4902 } 4903 4904 /* 4905 * If the space info is for both data and metadata it means we have a 4906 * small filesystem and we can't use the clustering stuff. 4907 */ 4908 if (btrfs_mixed_space_info(space_info)) 4909 use_cluster = false; 4910 4911 if (orig_root->ref_cows || empty_size) 4912 allowed_chunk_alloc = 1; 4913 4914 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 4915 last_ptr = &root->fs_info->meta_alloc_cluster; 4916 if (!btrfs_test_opt(root, SSD)) 4917 empty_cluster = 64 * 1024; 4918 } 4919 4920 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 4921 btrfs_test_opt(root, SSD)) { 4922 last_ptr = &root->fs_info->data_alloc_cluster; 4923 } 4924 4925 if (last_ptr) { 4926 spin_lock(&last_ptr->lock); 4927 if (last_ptr->block_group) 4928 hint_byte = last_ptr->window_start; 4929 spin_unlock(&last_ptr->lock); 4930 } 4931 4932 search_start = max(search_start, first_logical_byte(root, 0)); 4933 search_start = max(search_start, hint_byte); 4934 4935 if (!last_ptr) 4936 empty_cluster = 0; 4937 4938 if (search_start == hint_byte) { 4939 ideal_cache: 4940 block_group = btrfs_lookup_block_group(root->fs_info, 4941 search_start); 4942 /* 4943 * we don't want to use the block group if it doesn't match our 4944 * allocation bits, or if its not cached. 4945 * 4946 * However if we are re-searching with an ideal block group 4947 * picked out then we don't care that the block group is cached. 4948 */ 4949 if (block_group && block_group_bits(block_group, data) && 4950 (block_group->cached != BTRFS_CACHE_NO || 4951 search_start == ideal_cache_offset)) { 4952 down_read(&space_info->groups_sem); 4953 if (list_empty(&block_group->list) || 4954 block_group->ro) { 4955 /* 4956 * someone is removing this block group, 4957 * we can't jump into the have_block_group 4958 * target because our list pointers are not 4959 * valid 4960 */ 4961 btrfs_put_block_group(block_group); 4962 up_read(&space_info->groups_sem); 4963 } else { 4964 index = get_block_group_index(block_group); 4965 goto have_block_group; 4966 } 4967 } else if (block_group) { 4968 btrfs_put_block_group(block_group); 4969 } 4970 } 4971 search: 4972 down_read(&space_info->groups_sem); 4973 list_for_each_entry(block_group, &space_info->block_groups[index], 4974 list) { 4975 u64 offset; 4976 int cached; 4977 4978 btrfs_get_block_group(block_group); 4979 search_start = block_group->key.objectid; 4980 4981 /* 4982 * this can happen if we end up cycling through all the 4983 * raid types, but we want to make sure we only allocate 4984 * for the proper type. 4985 */ 4986 if (!block_group_bits(block_group, data)) { 4987 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4988 BTRFS_BLOCK_GROUP_RAID1 | 4989 BTRFS_BLOCK_GROUP_RAID10; 4990 4991 /* 4992 * if they asked for extra copies and this block group 4993 * doesn't provide them, bail. This does allow us to 4994 * fill raid0 from raid1. 4995 */ 4996 if ((data & extra) && !(block_group->flags & extra)) 4997 goto loop; 4998 } 4999 5000 have_block_group: 5001 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { 5002 u64 free_percent; 5003 5004 ret = cache_block_group(block_group, trans, 5005 orig_root, 1); 5006 if (block_group->cached == BTRFS_CACHE_FINISHED) 5007 goto have_block_group; 5008 5009 free_percent = btrfs_block_group_used(&block_group->item); 5010 free_percent *= 100; 5011 free_percent = div64_u64(free_percent, 5012 block_group->key.offset); 5013 free_percent = 100 - free_percent; 5014 if (free_percent > ideal_cache_percent && 5015 likely(!block_group->ro)) { 5016 ideal_cache_offset = block_group->key.objectid; 5017 ideal_cache_percent = free_percent; 5018 } 5019 5020 /* 5021 * The caching workers are limited to 2 threads, so we 5022 * can queue as much work as we care to. 5023 */ 5024 if (loop > LOOP_FIND_IDEAL) { 5025 ret = cache_block_group(block_group, trans, 5026 orig_root, 0); 5027 BUG_ON(ret); 5028 } 5029 found_uncached_bg = true; 5030 5031 /* 5032 * If loop is set for cached only, try the next block 5033 * group. 5034 */ 5035 if (loop == LOOP_FIND_IDEAL) 5036 goto loop; 5037 } 5038 5039 cached = block_group_cache_done(block_group); 5040 if (unlikely(!cached)) 5041 found_uncached_bg = true; 5042 5043 if (unlikely(block_group->ro)) 5044 goto loop; 5045 5046 spin_lock(&block_group->free_space_ctl->tree_lock); 5047 if (cached && 5048 block_group->free_space_ctl->free_space < 5049 num_bytes + empty_size) { 5050 spin_unlock(&block_group->free_space_ctl->tree_lock); 5051 goto loop; 5052 } 5053 spin_unlock(&block_group->free_space_ctl->tree_lock); 5054 5055 /* 5056 * Ok we want to try and use the cluster allocator, so lets look 5057 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will 5058 * have tried the cluster allocator plenty of times at this 5059 * point and not have found anything, so we are likely way too 5060 * fragmented for the clustering stuff to find anything, so lets 5061 * just skip it and let the allocator find whatever block it can 5062 * find 5063 */ 5064 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { 5065 /* 5066 * the refill lock keeps out other 5067 * people trying to start a new cluster 5068 */ 5069 spin_lock(&last_ptr->refill_lock); 5070 if (last_ptr->block_group && 5071 (last_ptr->block_group->ro || 5072 !block_group_bits(last_ptr->block_group, data))) { 5073 offset = 0; 5074 goto refill_cluster; 5075 } 5076 5077 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 5078 num_bytes, search_start); 5079 if (offset) { 5080 /* we have a block, we're done */ 5081 spin_unlock(&last_ptr->refill_lock); 5082 goto checks; 5083 } 5084 5085 spin_lock(&last_ptr->lock); 5086 /* 5087 * whoops, this cluster doesn't actually point to 5088 * this block group. Get a ref on the block 5089 * group is does point to and try again 5090 */ 5091 if (!last_ptr_loop && last_ptr->block_group && 5092 last_ptr->block_group != block_group && 5093 index <= 5094 get_block_group_index(last_ptr->block_group)) { 5095 5096 btrfs_put_block_group(block_group); 5097 block_group = last_ptr->block_group; 5098 btrfs_get_block_group(block_group); 5099 spin_unlock(&last_ptr->lock); 5100 spin_unlock(&last_ptr->refill_lock); 5101 5102 last_ptr_loop = 1; 5103 search_start = block_group->key.objectid; 5104 /* 5105 * we know this block group is properly 5106 * in the list because 5107 * btrfs_remove_block_group, drops the 5108 * cluster before it removes the block 5109 * group from the list 5110 */ 5111 goto have_block_group; 5112 } 5113 spin_unlock(&last_ptr->lock); 5114 refill_cluster: 5115 /* 5116 * this cluster didn't work out, free it and 5117 * start over 5118 */ 5119 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5120 5121 last_ptr_loop = 0; 5122 5123 /* allocate a cluster in this block group */ 5124 ret = btrfs_find_space_cluster(trans, root, 5125 block_group, last_ptr, 5126 offset, num_bytes, 5127 empty_cluster + empty_size); 5128 if (ret == 0) { 5129 /* 5130 * now pull our allocation out of this 5131 * cluster 5132 */ 5133 offset = btrfs_alloc_from_cluster(block_group, 5134 last_ptr, num_bytes, 5135 search_start); 5136 if (offset) { 5137 /* we found one, proceed */ 5138 spin_unlock(&last_ptr->refill_lock); 5139 goto checks; 5140 } 5141 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5142 && !failed_cluster_refill) { 5143 spin_unlock(&last_ptr->refill_lock); 5144 5145 failed_cluster_refill = true; 5146 wait_block_group_cache_progress(block_group, 5147 num_bytes + empty_cluster + empty_size); 5148 goto have_block_group; 5149 } 5150 5151 /* 5152 * at this point we either didn't find a cluster 5153 * or we weren't able to allocate a block from our 5154 * cluster. Free the cluster we've been trying 5155 * to use, and go to the next block group 5156 */ 5157 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5158 spin_unlock(&last_ptr->refill_lock); 5159 goto loop; 5160 } 5161 5162 offset = btrfs_find_space_for_alloc(block_group, search_start, 5163 num_bytes, empty_size); 5164 /* 5165 * If we didn't find a chunk, and we haven't failed on this 5166 * block group before, and this block group is in the middle of 5167 * caching and we are ok with waiting, then go ahead and wait 5168 * for progress to be made, and set failed_alloc to true. 5169 * 5170 * If failed_alloc is true then we've already waited on this 5171 * block group once and should move on to the next block group. 5172 */ 5173 if (!offset && !failed_alloc && !cached && 5174 loop > LOOP_CACHING_NOWAIT) { 5175 wait_block_group_cache_progress(block_group, 5176 num_bytes + empty_size); 5177 failed_alloc = true; 5178 goto have_block_group; 5179 } else if (!offset) { 5180 goto loop; 5181 } 5182 checks: 5183 search_start = stripe_align(root, offset); 5184 /* move on to the next group */ 5185 if (search_start + num_bytes >= search_end) { 5186 btrfs_add_free_space(block_group, offset, num_bytes); 5187 goto loop; 5188 } 5189 5190 /* move on to the next group */ 5191 if (search_start + num_bytes > 5192 block_group->key.objectid + block_group->key.offset) { 5193 btrfs_add_free_space(block_group, offset, num_bytes); 5194 goto loop; 5195 } 5196 5197 ins->objectid = search_start; 5198 ins->offset = num_bytes; 5199 5200 if (offset < search_start) 5201 btrfs_add_free_space(block_group, offset, 5202 search_start - offset); 5203 BUG_ON(offset > search_start); 5204 5205 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1, 5206 (data & BTRFS_BLOCK_GROUP_DATA)); 5207 if (ret == -EAGAIN) { 5208 btrfs_add_free_space(block_group, offset, num_bytes); 5209 goto loop; 5210 } 5211 5212 /* we are all good, lets return */ 5213 ins->objectid = search_start; 5214 ins->offset = num_bytes; 5215 5216 if (offset < search_start) 5217 btrfs_add_free_space(block_group, offset, 5218 search_start - offset); 5219 BUG_ON(offset > search_start); 5220 btrfs_put_block_group(block_group); 5221 break; 5222 loop: 5223 failed_cluster_refill = false; 5224 failed_alloc = false; 5225 BUG_ON(index != get_block_group_index(block_group)); 5226 btrfs_put_block_group(block_group); 5227 } 5228 up_read(&space_info->groups_sem); 5229 5230 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5231 goto search; 5232 5233 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for 5234 * for them to make caching progress. Also 5235 * determine the best possible bg to cache 5236 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5237 * caching kthreads as we move along 5238 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5239 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5240 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5241 * again 5242 */ 5243 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5244 index = 0; 5245 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { 5246 found_uncached_bg = false; 5247 loop++; 5248 if (!ideal_cache_percent) 5249 goto search; 5250 5251 /* 5252 * 1 of the following 2 things have happened so far 5253 * 5254 * 1) We found an ideal block group for caching that 5255 * is mostly full and will cache quickly, so we might 5256 * as well wait for it. 5257 * 5258 * 2) We searched for cached only and we didn't find 5259 * anything, and we didn't start any caching kthreads 5260 * either, so chances are we will loop through and 5261 * start a couple caching kthreads, and then come back 5262 * around and just wait for them. This will be slower 5263 * because we will have 2 caching kthreads reading at 5264 * the same time when we could have just started one 5265 * and waited for it to get far enough to give us an 5266 * allocation, so go ahead and go to the wait caching 5267 * loop. 5268 */ 5269 loop = LOOP_CACHING_WAIT; 5270 search_start = ideal_cache_offset; 5271 ideal_cache_percent = 0; 5272 goto ideal_cache; 5273 } else if (loop == LOOP_FIND_IDEAL) { 5274 /* 5275 * Didn't find a uncached bg, wait on anything we find 5276 * next. 5277 */ 5278 loop = LOOP_CACHING_WAIT; 5279 goto search; 5280 } 5281 5282 loop++; 5283 5284 if (loop == LOOP_ALLOC_CHUNK) { 5285 if (allowed_chunk_alloc) { 5286 ret = do_chunk_alloc(trans, root, num_bytes + 5287 2 * 1024 * 1024, data, 5288 CHUNK_ALLOC_LIMITED); 5289 allowed_chunk_alloc = 0; 5290 if (ret == 1) 5291 done_chunk_alloc = 1; 5292 } else if (!done_chunk_alloc && 5293 space_info->force_alloc == 5294 CHUNK_ALLOC_NO_FORCE) { 5295 space_info->force_alloc = CHUNK_ALLOC_LIMITED; 5296 } 5297 5298 /* 5299 * We didn't allocate a chunk, go ahead and drop the 5300 * empty size and loop again. 5301 */ 5302 if (!done_chunk_alloc) 5303 loop = LOOP_NO_EMPTY_SIZE; 5304 } 5305 5306 if (loop == LOOP_NO_EMPTY_SIZE) { 5307 empty_size = 0; 5308 empty_cluster = 0; 5309 } 5310 5311 goto search; 5312 } else if (!ins->objectid) { 5313 ret = -ENOSPC; 5314 } else if (ins->objectid) { 5315 ret = 0; 5316 } 5317 5318 return ret; 5319 } 5320 5321 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5322 int dump_block_groups) 5323 { 5324 struct btrfs_block_group_cache *cache; 5325 int index = 0; 5326 5327 spin_lock(&info->lock); 5328 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 5329 (unsigned long long)(info->total_bytes - info->bytes_used - 5330 info->bytes_pinned - info->bytes_reserved - 5331 info->bytes_readonly), 5332 (info->full) ? "" : "not "); 5333 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5334 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5335 (unsigned long long)info->total_bytes, 5336 (unsigned long long)info->bytes_used, 5337 (unsigned long long)info->bytes_pinned, 5338 (unsigned long long)info->bytes_reserved, 5339 (unsigned long long)info->bytes_may_use, 5340 (unsigned long long)info->bytes_readonly); 5341 spin_unlock(&info->lock); 5342 5343 if (!dump_block_groups) 5344 return; 5345 5346 down_read(&info->groups_sem); 5347 again: 5348 list_for_each_entry(cache, &info->block_groups[index], list) { 5349 spin_lock(&cache->lock); 5350 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 5351 "%llu pinned %llu reserved\n", 5352 (unsigned long long)cache->key.objectid, 5353 (unsigned long long)cache->key.offset, 5354 (unsigned long long)btrfs_block_group_used(&cache->item), 5355 (unsigned long long)cache->pinned, 5356 (unsigned long long)cache->reserved); 5357 btrfs_dump_free_space(cache, bytes); 5358 spin_unlock(&cache->lock); 5359 } 5360 if (++index < BTRFS_NR_RAID_TYPES) 5361 goto again; 5362 up_read(&info->groups_sem); 5363 } 5364 5365 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5366 struct btrfs_root *root, 5367 u64 num_bytes, u64 min_alloc_size, 5368 u64 empty_size, u64 hint_byte, 5369 u64 search_end, struct btrfs_key *ins, 5370 u64 data) 5371 { 5372 int ret; 5373 u64 search_start = 0; 5374 5375 data = btrfs_get_alloc_profile(root, data); 5376 again: 5377 /* 5378 * the only place that sets empty_size is btrfs_realloc_node, which 5379 * is not called recursively on allocations 5380 */ 5381 if (empty_size || root->ref_cows) 5382 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5383 num_bytes + 2 * 1024 * 1024, data, 5384 CHUNK_ALLOC_NO_FORCE); 5385 5386 WARN_ON(num_bytes < root->sectorsize); 5387 ret = find_free_extent(trans, root, num_bytes, empty_size, 5388 search_start, search_end, hint_byte, 5389 ins, data); 5390 5391 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 5392 num_bytes = num_bytes >> 1; 5393 num_bytes = num_bytes & ~(root->sectorsize - 1); 5394 num_bytes = max(num_bytes, min_alloc_size); 5395 do_chunk_alloc(trans, root->fs_info->extent_root, 5396 num_bytes, data, CHUNK_ALLOC_FORCE); 5397 goto again; 5398 } 5399 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) { 5400 struct btrfs_space_info *sinfo; 5401 5402 sinfo = __find_space_info(root->fs_info, data); 5403 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5404 "wanted %llu\n", (unsigned long long)data, 5405 (unsigned long long)num_bytes); 5406 dump_space_info(sinfo, num_bytes, 1); 5407 } 5408 5409 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5410 5411 return ret; 5412 } 5413 5414 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 5415 { 5416 struct btrfs_block_group_cache *cache; 5417 int ret = 0; 5418 5419 cache = btrfs_lookup_block_group(root->fs_info, start); 5420 if (!cache) { 5421 printk(KERN_ERR "Unable to find block group for %llu\n", 5422 (unsigned long long)start); 5423 return -ENOSPC; 5424 } 5425 5426 if (btrfs_test_opt(root, DISCARD)) 5427 ret = btrfs_discard_extent(root, start, len, NULL); 5428 5429 btrfs_add_free_space(cache, start, len); 5430 btrfs_update_reserved_bytes(cache, len, 0, 1); 5431 btrfs_put_block_group(cache); 5432 5433 trace_btrfs_reserved_extent_free(root, start, len); 5434 5435 return ret; 5436 } 5437 5438 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5439 struct btrfs_root *root, 5440 u64 parent, u64 root_objectid, 5441 u64 flags, u64 owner, u64 offset, 5442 struct btrfs_key *ins, int ref_mod) 5443 { 5444 int ret; 5445 struct btrfs_fs_info *fs_info = root->fs_info; 5446 struct btrfs_extent_item *extent_item; 5447 struct btrfs_extent_inline_ref *iref; 5448 struct btrfs_path *path; 5449 struct extent_buffer *leaf; 5450 int type; 5451 u32 size; 5452 5453 if (parent > 0) 5454 type = BTRFS_SHARED_DATA_REF_KEY; 5455 else 5456 type = BTRFS_EXTENT_DATA_REF_KEY; 5457 5458 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5459 5460 path = btrfs_alloc_path(); 5461 if (!path) 5462 return -ENOMEM; 5463 5464 path->leave_spinning = 1; 5465 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5466 ins, size); 5467 BUG_ON(ret); 5468 5469 leaf = path->nodes[0]; 5470 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5471 struct btrfs_extent_item); 5472 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5473 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5474 btrfs_set_extent_flags(leaf, extent_item, 5475 flags | BTRFS_EXTENT_FLAG_DATA); 5476 5477 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5478 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5479 if (parent > 0) { 5480 struct btrfs_shared_data_ref *ref; 5481 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5482 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5483 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5484 } else { 5485 struct btrfs_extent_data_ref *ref; 5486 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5487 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5488 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5489 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5490 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5491 } 5492 5493 btrfs_mark_buffer_dirty(path->nodes[0]); 5494 btrfs_free_path(path); 5495 5496 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5497 if (ret) { 5498 printk(KERN_ERR "btrfs update block group failed for %llu " 5499 "%llu\n", (unsigned long long)ins->objectid, 5500 (unsigned long long)ins->offset); 5501 BUG(); 5502 } 5503 return ret; 5504 } 5505 5506 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 5507 struct btrfs_root *root, 5508 u64 parent, u64 root_objectid, 5509 u64 flags, struct btrfs_disk_key *key, 5510 int level, struct btrfs_key *ins) 5511 { 5512 int ret; 5513 struct btrfs_fs_info *fs_info = root->fs_info; 5514 struct btrfs_extent_item *extent_item; 5515 struct btrfs_tree_block_info *block_info; 5516 struct btrfs_extent_inline_ref *iref; 5517 struct btrfs_path *path; 5518 struct extent_buffer *leaf; 5519 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 5520 5521 path = btrfs_alloc_path(); 5522 if (!path) 5523 return -ENOMEM; 5524 5525 path->leave_spinning = 1; 5526 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5527 ins, size); 5528 BUG_ON(ret); 5529 5530 leaf = path->nodes[0]; 5531 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5532 struct btrfs_extent_item); 5533 btrfs_set_extent_refs(leaf, extent_item, 1); 5534 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5535 btrfs_set_extent_flags(leaf, extent_item, 5536 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 5537 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 5538 5539 btrfs_set_tree_block_key(leaf, block_info, key); 5540 btrfs_set_tree_block_level(leaf, block_info, level); 5541 5542 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 5543 if (parent > 0) { 5544 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 5545 btrfs_set_extent_inline_ref_type(leaf, iref, 5546 BTRFS_SHARED_BLOCK_REF_KEY); 5547 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5548 } else { 5549 btrfs_set_extent_inline_ref_type(leaf, iref, 5550 BTRFS_TREE_BLOCK_REF_KEY); 5551 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 5552 } 5553 5554 btrfs_mark_buffer_dirty(leaf); 5555 btrfs_free_path(path); 5556 5557 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5558 if (ret) { 5559 printk(KERN_ERR "btrfs update block group failed for %llu " 5560 "%llu\n", (unsigned long long)ins->objectid, 5561 (unsigned long long)ins->offset); 5562 BUG(); 5563 } 5564 return ret; 5565 } 5566 5567 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5568 struct btrfs_root *root, 5569 u64 root_objectid, u64 owner, 5570 u64 offset, struct btrfs_key *ins) 5571 { 5572 int ret; 5573 5574 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 5575 5576 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, 5577 0, root_objectid, owner, offset, 5578 BTRFS_ADD_DELAYED_EXTENT, NULL); 5579 return ret; 5580 } 5581 5582 /* 5583 * this is used by the tree logging recovery code. It records that 5584 * an extent has been allocated and makes sure to clear the free 5585 * space cache bits as well 5586 */ 5587 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 5588 struct btrfs_root *root, 5589 u64 root_objectid, u64 owner, u64 offset, 5590 struct btrfs_key *ins) 5591 { 5592 int ret; 5593 struct btrfs_block_group_cache *block_group; 5594 struct btrfs_caching_control *caching_ctl; 5595 u64 start = ins->objectid; 5596 u64 num_bytes = ins->offset; 5597 5598 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 5599 cache_block_group(block_group, trans, NULL, 0); 5600 caching_ctl = get_caching_control(block_group); 5601 5602 if (!caching_ctl) { 5603 BUG_ON(!block_group_cache_done(block_group)); 5604 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5605 BUG_ON(ret); 5606 } else { 5607 mutex_lock(&caching_ctl->mutex); 5608 5609 if (start >= caching_ctl->progress) { 5610 ret = add_excluded_extent(root, start, num_bytes); 5611 BUG_ON(ret); 5612 } else if (start + num_bytes <= caching_ctl->progress) { 5613 ret = btrfs_remove_free_space(block_group, 5614 start, num_bytes); 5615 BUG_ON(ret); 5616 } else { 5617 num_bytes = caching_ctl->progress - start; 5618 ret = btrfs_remove_free_space(block_group, 5619 start, num_bytes); 5620 BUG_ON(ret); 5621 5622 start = caching_ctl->progress; 5623 num_bytes = ins->objectid + ins->offset - 5624 caching_ctl->progress; 5625 ret = add_excluded_extent(root, start, num_bytes); 5626 BUG_ON(ret); 5627 } 5628 5629 mutex_unlock(&caching_ctl->mutex); 5630 put_caching_control(caching_ctl); 5631 } 5632 5633 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1); 5634 BUG_ON(ret); 5635 btrfs_put_block_group(block_group); 5636 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 5637 0, owner, offset, ins, 1); 5638 return ret; 5639 } 5640 5641 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 5642 struct btrfs_root *root, 5643 u64 bytenr, u32 blocksize, 5644 int level) 5645 { 5646 struct extent_buffer *buf; 5647 5648 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 5649 if (!buf) 5650 return ERR_PTR(-ENOMEM); 5651 btrfs_set_header_generation(buf, trans->transid); 5652 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 5653 btrfs_tree_lock(buf); 5654 clean_tree_block(trans, root, buf); 5655 5656 btrfs_set_lock_blocking(buf); 5657 btrfs_set_buffer_uptodate(buf); 5658 5659 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5660 /* 5661 * we allow two log transactions at a time, use different 5662 * EXENT bit to differentiate dirty pages. 5663 */ 5664 if (root->log_transid % 2 == 0) 5665 set_extent_dirty(&root->dirty_log_pages, buf->start, 5666 buf->start + buf->len - 1, GFP_NOFS); 5667 else 5668 set_extent_new(&root->dirty_log_pages, buf->start, 5669 buf->start + buf->len - 1, GFP_NOFS); 5670 } else { 5671 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 5672 buf->start + buf->len - 1, GFP_NOFS); 5673 } 5674 trans->blocks_used++; 5675 /* this returns a buffer locked for blocking */ 5676 return buf; 5677 } 5678 5679 static struct btrfs_block_rsv * 5680 use_block_rsv(struct btrfs_trans_handle *trans, 5681 struct btrfs_root *root, u32 blocksize) 5682 { 5683 struct btrfs_block_rsv *block_rsv; 5684 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5685 int ret; 5686 5687 block_rsv = get_block_rsv(trans, root); 5688 5689 if (block_rsv->size == 0) { 5690 ret = reserve_metadata_bytes(trans, root, block_rsv, 5691 blocksize, 0); 5692 /* 5693 * If we couldn't reserve metadata bytes try and use some from 5694 * the global reserve. 5695 */ 5696 if (ret && block_rsv != global_rsv) { 5697 ret = block_rsv_use_bytes(global_rsv, blocksize); 5698 if (!ret) 5699 return global_rsv; 5700 return ERR_PTR(ret); 5701 } else if (ret) { 5702 return ERR_PTR(ret); 5703 } 5704 return block_rsv; 5705 } 5706 5707 ret = block_rsv_use_bytes(block_rsv, blocksize); 5708 if (!ret) 5709 return block_rsv; 5710 if (ret) { 5711 WARN_ON(1); 5712 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize, 5713 0); 5714 if (!ret) { 5715 spin_lock(&block_rsv->lock); 5716 block_rsv->size += blocksize; 5717 spin_unlock(&block_rsv->lock); 5718 return block_rsv; 5719 } else if (ret && block_rsv != global_rsv) { 5720 ret = block_rsv_use_bytes(global_rsv, blocksize); 5721 if (!ret) 5722 return global_rsv; 5723 } 5724 } 5725 5726 return ERR_PTR(-ENOSPC); 5727 } 5728 5729 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) 5730 { 5731 block_rsv_add_bytes(block_rsv, blocksize, 0); 5732 block_rsv_release_bytes(block_rsv, NULL, 0); 5733 } 5734 5735 /* 5736 * finds a free extent and does all the dirty work required for allocation 5737 * returns the key for the extent through ins, and a tree buffer for 5738 * the first block of the extent through buf. 5739 * 5740 * returns the tree buffer or NULL. 5741 */ 5742 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 5743 struct btrfs_root *root, u32 blocksize, 5744 u64 parent, u64 root_objectid, 5745 struct btrfs_disk_key *key, int level, 5746 u64 hint, u64 empty_size) 5747 { 5748 struct btrfs_key ins; 5749 struct btrfs_block_rsv *block_rsv; 5750 struct extent_buffer *buf; 5751 u64 flags = 0; 5752 int ret; 5753 5754 5755 block_rsv = use_block_rsv(trans, root, blocksize); 5756 if (IS_ERR(block_rsv)) 5757 return ERR_CAST(block_rsv); 5758 5759 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 5760 empty_size, hint, (u64)-1, &ins, 0); 5761 if (ret) { 5762 unuse_block_rsv(block_rsv, blocksize); 5763 return ERR_PTR(ret); 5764 } 5765 5766 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 5767 blocksize, level); 5768 BUG_ON(IS_ERR(buf)); 5769 5770 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5771 if (parent == 0) 5772 parent = ins.objectid; 5773 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5774 } else 5775 BUG_ON(parent > 0); 5776 5777 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5778 struct btrfs_delayed_extent_op *extent_op; 5779 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 5780 BUG_ON(!extent_op); 5781 if (key) 5782 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5783 else 5784 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5785 extent_op->flags_to_set = flags; 5786 extent_op->update_key = 1; 5787 extent_op->update_flags = 1; 5788 extent_op->is_data = 0; 5789 5790 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, 5791 ins.offset, parent, root_objectid, 5792 level, BTRFS_ADD_DELAYED_EXTENT, 5793 extent_op); 5794 BUG_ON(ret); 5795 } 5796 return buf; 5797 } 5798 5799 struct walk_control { 5800 u64 refs[BTRFS_MAX_LEVEL]; 5801 u64 flags[BTRFS_MAX_LEVEL]; 5802 struct btrfs_key update_progress; 5803 int stage; 5804 int level; 5805 int shared_level; 5806 int update_ref; 5807 int keep_locks; 5808 int reada_slot; 5809 int reada_count; 5810 }; 5811 5812 #define DROP_REFERENCE 1 5813 #define UPDATE_BACKREF 2 5814 5815 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5816 struct btrfs_root *root, 5817 struct walk_control *wc, 5818 struct btrfs_path *path) 5819 { 5820 u64 bytenr; 5821 u64 generation; 5822 u64 refs; 5823 u64 flags; 5824 u32 nritems; 5825 u32 blocksize; 5826 struct btrfs_key key; 5827 struct extent_buffer *eb; 5828 int ret; 5829 int slot; 5830 int nread = 0; 5831 5832 if (path->slots[wc->level] < wc->reada_slot) { 5833 wc->reada_count = wc->reada_count * 2 / 3; 5834 wc->reada_count = max(wc->reada_count, 2); 5835 } else { 5836 wc->reada_count = wc->reada_count * 3 / 2; 5837 wc->reada_count = min_t(int, wc->reada_count, 5838 BTRFS_NODEPTRS_PER_BLOCK(root)); 5839 } 5840 5841 eb = path->nodes[wc->level]; 5842 nritems = btrfs_header_nritems(eb); 5843 blocksize = btrfs_level_size(root, wc->level - 1); 5844 5845 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5846 if (nread >= wc->reada_count) 5847 break; 5848 5849 cond_resched(); 5850 bytenr = btrfs_node_blockptr(eb, slot); 5851 generation = btrfs_node_ptr_generation(eb, slot); 5852 5853 if (slot == path->slots[wc->level]) 5854 goto reada; 5855 5856 if (wc->stage == UPDATE_BACKREF && 5857 generation <= root->root_key.offset) 5858 continue; 5859 5860 /* We don't lock the tree block, it's OK to be racy here */ 5861 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5862 &refs, &flags); 5863 BUG_ON(ret); 5864 BUG_ON(refs == 0); 5865 5866 if (wc->stage == DROP_REFERENCE) { 5867 if (refs == 1) 5868 goto reada; 5869 5870 if (wc->level == 1 && 5871 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5872 continue; 5873 if (!wc->update_ref || 5874 generation <= root->root_key.offset) 5875 continue; 5876 btrfs_node_key_to_cpu(eb, &key, slot); 5877 ret = btrfs_comp_cpu_keys(&key, 5878 &wc->update_progress); 5879 if (ret < 0) 5880 continue; 5881 } else { 5882 if (wc->level == 1 && 5883 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5884 continue; 5885 } 5886 reada: 5887 ret = readahead_tree_block(root, bytenr, blocksize, 5888 generation); 5889 if (ret) 5890 break; 5891 nread++; 5892 } 5893 wc->reada_slot = slot; 5894 } 5895 5896 /* 5897 * hepler to process tree block while walking down the tree. 5898 * 5899 * when wc->stage == UPDATE_BACKREF, this function updates 5900 * back refs for pointers in the block. 5901 * 5902 * NOTE: return value 1 means we should stop walking down. 5903 */ 5904 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5905 struct btrfs_root *root, 5906 struct btrfs_path *path, 5907 struct walk_control *wc, int lookup_info) 5908 { 5909 int level = wc->level; 5910 struct extent_buffer *eb = path->nodes[level]; 5911 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5912 int ret; 5913 5914 if (wc->stage == UPDATE_BACKREF && 5915 btrfs_header_owner(eb) != root->root_key.objectid) 5916 return 1; 5917 5918 /* 5919 * when reference count of tree block is 1, it won't increase 5920 * again. once full backref flag is set, we never clear it. 5921 */ 5922 if (lookup_info && 5923 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5924 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5925 BUG_ON(!path->locks[level]); 5926 ret = btrfs_lookup_extent_info(trans, root, 5927 eb->start, eb->len, 5928 &wc->refs[level], 5929 &wc->flags[level]); 5930 BUG_ON(ret); 5931 BUG_ON(wc->refs[level] == 0); 5932 } 5933 5934 if (wc->stage == DROP_REFERENCE) { 5935 if (wc->refs[level] > 1) 5936 return 1; 5937 5938 if (path->locks[level] && !wc->keep_locks) { 5939 btrfs_tree_unlock_rw(eb, path->locks[level]); 5940 path->locks[level] = 0; 5941 } 5942 return 0; 5943 } 5944 5945 /* wc->stage == UPDATE_BACKREF */ 5946 if (!(wc->flags[level] & flag)) { 5947 BUG_ON(!path->locks[level]); 5948 ret = btrfs_inc_ref(trans, root, eb, 1); 5949 BUG_ON(ret); 5950 ret = btrfs_dec_ref(trans, root, eb, 0); 5951 BUG_ON(ret); 5952 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 5953 eb->len, flag, 0); 5954 BUG_ON(ret); 5955 wc->flags[level] |= flag; 5956 } 5957 5958 /* 5959 * the block is shared by multiple trees, so it's not good to 5960 * keep the tree lock 5961 */ 5962 if (path->locks[level] && level > 0) { 5963 btrfs_tree_unlock_rw(eb, path->locks[level]); 5964 path->locks[level] = 0; 5965 } 5966 return 0; 5967 } 5968 5969 /* 5970 * hepler to process tree block pointer. 5971 * 5972 * when wc->stage == DROP_REFERENCE, this function checks 5973 * reference count of the block pointed to. if the block 5974 * is shared and we need update back refs for the subtree 5975 * rooted at the block, this function changes wc->stage to 5976 * UPDATE_BACKREF. if the block is shared and there is no 5977 * need to update back, this function drops the reference 5978 * to the block. 5979 * 5980 * NOTE: return value 1 means we should stop walking down. 5981 */ 5982 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5983 struct btrfs_root *root, 5984 struct btrfs_path *path, 5985 struct walk_control *wc, int *lookup_info) 5986 { 5987 u64 bytenr; 5988 u64 generation; 5989 u64 parent; 5990 u32 blocksize; 5991 struct btrfs_key key; 5992 struct extent_buffer *next; 5993 int level = wc->level; 5994 int reada = 0; 5995 int ret = 0; 5996 5997 generation = btrfs_node_ptr_generation(path->nodes[level], 5998 path->slots[level]); 5999 /* 6000 * if the lower level block was created before the snapshot 6001 * was created, we know there is no need to update back refs 6002 * for the subtree 6003 */ 6004 if (wc->stage == UPDATE_BACKREF && 6005 generation <= root->root_key.offset) { 6006 *lookup_info = 1; 6007 return 1; 6008 } 6009 6010 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6011 blocksize = btrfs_level_size(root, level - 1); 6012 6013 next = btrfs_find_tree_block(root, bytenr, blocksize); 6014 if (!next) { 6015 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6016 if (!next) 6017 return -ENOMEM; 6018 reada = 1; 6019 } 6020 btrfs_tree_lock(next); 6021 btrfs_set_lock_blocking(next); 6022 6023 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6024 &wc->refs[level - 1], 6025 &wc->flags[level - 1]); 6026 BUG_ON(ret); 6027 BUG_ON(wc->refs[level - 1] == 0); 6028 *lookup_info = 0; 6029 6030 if (wc->stage == DROP_REFERENCE) { 6031 if (wc->refs[level - 1] > 1) { 6032 if (level == 1 && 6033 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6034 goto skip; 6035 6036 if (!wc->update_ref || 6037 generation <= root->root_key.offset) 6038 goto skip; 6039 6040 btrfs_node_key_to_cpu(path->nodes[level], &key, 6041 path->slots[level]); 6042 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6043 if (ret < 0) 6044 goto skip; 6045 6046 wc->stage = UPDATE_BACKREF; 6047 wc->shared_level = level - 1; 6048 } 6049 } else { 6050 if (level == 1 && 6051 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6052 goto skip; 6053 } 6054 6055 if (!btrfs_buffer_uptodate(next, generation)) { 6056 btrfs_tree_unlock(next); 6057 free_extent_buffer(next); 6058 next = NULL; 6059 *lookup_info = 1; 6060 } 6061 6062 if (!next) { 6063 if (reada && level == 1) 6064 reada_walk_down(trans, root, wc, path); 6065 next = read_tree_block(root, bytenr, blocksize, generation); 6066 if (!next) 6067 return -EIO; 6068 btrfs_tree_lock(next); 6069 btrfs_set_lock_blocking(next); 6070 } 6071 6072 level--; 6073 BUG_ON(level != btrfs_header_level(next)); 6074 path->nodes[level] = next; 6075 path->slots[level] = 0; 6076 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6077 wc->level = level; 6078 if (wc->level == 1) 6079 wc->reada_slot = 0; 6080 return 0; 6081 skip: 6082 wc->refs[level - 1] = 0; 6083 wc->flags[level - 1] = 0; 6084 if (wc->stage == DROP_REFERENCE) { 6085 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6086 parent = path->nodes[level]->start; 6087 } else { 6088 BUG_ON(root->root_key.objectid != 6089 btrfs_header_owner(path->nodes[level])); 6090 parent = 0; 6091 } 6092 6093 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6094 root->root_key.objectid, level - 1, 0); 6095 BUG_ON(ret); 6096 } 6097 btrfs_tree_unlock(next); 6098 free_extent_buffer(next); 6099 *lookup_info = 1; 6100 return 1; 6101 } 6102 6103 /* 6104 * hepler to process tree block while walking up the tree. 6105 * 6106 * when wc->stage == DROP_REFERENCE, this function drops 6107 * reference count on the block. 6108 * 6109 * when wc->stage == UPDATE_BACKREF, this function changes 6110 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6111 * to UPDATE_BACKREF previously while processing the block. 6112 * 6113 * NOTE: return value 1 means we should stop walking up. 6114 */ 6115 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6116 struct btrfs_root *root, 6117 struct btrfs_path *path, 6118 struct walk_control *wc) 6119 { 6120 int ret; 6121 int level = wc->level; 6122 struct extent_buffer *eb = path->nodes[level]; 6123 u64 parent = 0; 6124 6125 if (wc->stage == UPDATE_BACKREF) { 6126 BUG_ON(wc->shared_level < level); 6127 if (level < wc->shared_level) 6128 goto out; 6129 6130 ret = find_next_key(path, level + 1, &wc->update_progress); 6131 if (ret > 0) 6132 wc->update_ref = 0; 6133 6134 wc->stage = DROP_REFERENCE; 6135 wc->shared_level = -1; 6136 path->slots[level] = 0; 6137 6138 /* 6139 * check reference count again if the block isn't locked. 6140 * we should start walking down the tree again if reference 6141 * count is one. 6142 */ 6143 if (!path->locks[level]) { 6144 BUG_ON(level == 0); 6145 btrfs_tree_lock(eb); 6146 btrfs_set_lock_blocking(eb); 6147 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6148 6149 ret = btrfs_lookup_extent_info(trans, root, 6150 eb->start, eb->len, 6151 &wc->refs[level], 6152 &wc->flags[level]); 6153 BUG_ON(ret); 6154 BUG_ON(wc->refs[level] == 0); 6155 if (wc->refs[level] == 1) { 6156 btrfs_tree_unlock_rw(eb, path->locks[level]); 6157 return 1; 6158 } 6159 } 6160 } 6161 6162 /* wc->stage == DROP_REFERENCE */ 6163 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6164 6165 if (wc->refs[level] == 1) { 6166 if (level == 0) { 6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6168 ret = btrfs_dec_ref(trans, root, eb, 1); 6169 else 6170 ret = btrfs_dec_ref(trans, root, eb, 0); 6171 BUG_ON(ret); 6172 } 6173 /* make block locked assertion in clean_tree_block happy */ 6174 if (!path->locks[level] && 6175 btrfs_header_generation(eb) == trans->transid) { 6176 btrfs_tree_lock(eb); 6177 btrfs_set_lock_blocking(eb); 6178 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6179 } 6180 clean_tree_block(trans, root, eb); 6181 } 6182 6183 if (eb == root->node) { 6184 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6185 parent = eb->start; 6186 else 6187 BUG_ON(root->root_key.objectid != 6188 btrfs_header_owner(eb)); 6189 } else { 6190 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6191 parent = path->nodes[level + 1]->start; 6192 else 6193 BUG_ON(root->root_key.objectid != 6194 btrfs_header_owner(path->nodes[level + 1])); 6195 } 6196 6197 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6198 out: 6199 wc->refs[level] = 0; 6200 wc->flags[level] = 0; 6201 return 0; 6202 } 6203 6204 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6205 struct btrfs_root *root, 6206 struct btrfs_path *path, 6207 struct walk_control *wc) 6208 { 6209 int level = wc->level; 6210 int lookup_info = 1; 6211 int ret; 6212 6213 while (level >= 0) { 6214 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6215 if (ret > 0) 6216 break; 6217 6218 if (level == 0) 6219 break; 6220 6221 if (path->slots[level] >= 6222 btrfs_header_nritems(path->nodes[level])) 6223 break; 6224 6225 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6226 if (ret > 0) { 6227 path->slots[level]++; 6228 continue; 6229 } else if (ret < 0) 6230 return ret; 6231 level = wc->level; 6232 } 6233 return 0; 6234 } 6235 6236 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6237 struct btrfs_root *root, 6238 struct btrfs_path *path, 6239 struct walk_control *wc, int max_level) 6240 { 6241 int level = wc->level; 6242 int ret; 6243 6244 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6245 while (level < max_level && path->nodes[level]) { 6246 wc->level = level; 6247 if (path->slots[level] + 1 < 6248 btrfs_header_nritems(path->nodes[level])) { 6249 path->slots[level]++; 6250 return 0; 6251 } else { 6252 ret = walk_up_proc(trans, root, path, wc); 6253 if (ret > 0) 6254 return 0; 6255 6256 if (path->locks[level]) { 6257 btrfs_tree_unlock_rw(path->nodes[level], 6258 path->locks[level]); 6259 path->locks[level] = 0; 6260 } 6261 free_extent_buffer(path->nodes[level]); 6262 path->nodes[level] = NULL; 6263 level++; 6264 } 6265 } 6266 return 1; 6267 } 6268 6269 /* 6270 * drop a subvolume tree. 6271 * 6272 * this function traverses the tree freeing any blocks that only 6273 * referenced by the tree. 6274 * 6275 * when a shared tree block is found. this function decreases its 6276 * reference count by one. if update_ref is true, this function 6277 * also make sure backrefs for the shared block and all lower level 6278 * blocks are properly updated. 6279 */ 6280 void btrfs_drop_snapshot(struct btrfs_root *root, 6281 struct btrfs_block_rsv *block_rsv, int update_ref) 6282 { 6283 struct btrfs_path *path; 6284 struct btrfs_trans_handle *trans; 6285 struct btrfs_root *tree_root = root->fs_info->tree_root; 6286 struct btrfs_root_item *root_item = &root->root_item; 6287 struct walk_control *wc; 6288 struct btrfs_key key; 6289 int err = 0; 6290 int ret; 6291 int level; 6292 6293 path = btrfs_alloc_path(); 6294 if (!path) { 6295 err = -ENOMEM; 6296 goto out; 6297 } 6298 6299 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6300 if (!wc) { 6301 btrfs_free_path(path); 6302 err = -ENOMEM; 6303 goto out; 6304 } 6305 6306 trans = btrfs_start_transaction(tree_root, 0); 6307 BUG_ON(IS_ERR(trans)); 6308 6309 if (block_rsv) 6310 trans->block_rsv = block_rsv; 6311 6312 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6313 level = btrfs_header_level(root->node); 6314 path->nodes[level] = btrfs_lock_root_node(root); 6315 btrfs_set_lock_blocking(path->nodes[level]); 6316 path->slots[level] = 0; 6317 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6318 memset(&wc->update_progress, 0, 6319 sizeof(wc->update_progress)); 6320 } else { 6321 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6322 memcpy(&wc->update_progress, &key, 6323 sizeof(wc->update_progress)); 6324 6325 level = root_item->drop_level; 6326 BUG_ON(level == 0); 6327 path->lowest_level = level; 6328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6329 path->lowest_level = 0; 6330 if (ret < 0) { 6331 err = ret; 6332 goto out_free; 6333 } 6334 WARN_ON(ret > 0); 6335 6336 /* 6337 * unlock our path, this is safe because only this 6338 * function is allowed to delete this snapshot 6339 */ 6340 btrfs_unlock_up_safe(path, 0); 6341 6342 level = btrfs_header_level(root->node); 6343 while (1) { 6344 btrfs_tree_lock(path->nodes[level]); 6345 btrfs_set_lock_blocking(path->nodes[level]); 6346 6347 ret = btrfs_lookup_extent_info(trans, root, 6348 path->nodes[level]->start, 6349 path->nodes[level]->len, 6350 &wc->refs[level], 6351 &wc->flags[level]); 6352 BUG_ON(ret); 6353 BUG_ON(wc->refs[level] == 0); 6354 6355 if (level == root_item->drop_level) 6356 break; 6357 6358 btrfs_tree_unlock(path->nodes[level]); 6359 WARN_ON(wc->refs[level] != 1); 6360 level--; 6361 } 6362 } 6363 6364 wc->level = level; 6365 wc->shared_level = -1; 6366 wc->stage = DROP_REFERENCE; 6367 wc->update_ref = update_ref; 6368 wc->keep_locks = 0; 6369 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6370 6371 while (1) { 6372 ret = walk_down_tree(trans, root, path, wc); 6373 if (ret < 0) { 6374 err = ret; 6375 break; 6376 } 6377 6378 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6379 if (ret < 0) { 6380 err = ret; 6381 break; 6382 } 6383 6384 if (ret > 0) { 6385 BUG_ON(wc->stage != DROP_REFERENCE); 6386 break; 6387 } 6388 6389 if (wc->stage == DROP_REFERENCE) { 6390 level = wc->level; 6391 btrfs_node_key(path->nodes[level], 6392 &root_item->drop_progress, 6393 path->slots[level]); 6394 root_item->drop_level = level; 6395 } 6396 6397 BUG_ON(wc->level == 0); 6398 if (btrfs_should_end_transaction(trans, tree_root)) { 6399 ret = btrfs_update_root(trans, tree_root, 6400 &root->root_key, 6401 root_item); 6402 BUG_ON(ret); 6403 6404 btrfs_end_transaction_throttle(trans, tree_root); 6405 trans = btrfs_start_transaction(tree_root, 0); 6406 BUG_ON(IS_ERR(trans)); 6407 if (block_rsv) 6408 trans->block_rsv = block_rsv; 6409 } 6410 } 6411 btrfs_release_path(path); 6412 BUG_ON(err); 6413 6414 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6415 BUG_ON(ret); 6416 6417 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6418 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6419 NULL, NULL); 6420 BUG_ON(ret < 0); 6421 if (ret > 0) { 6422 /* if we fail to delete the orphan item this time 6423 * around, it'll get picked up the next time. 6424 * 6425 * The most common failure here is just -ENOENT. 6426 */ 6427 btrfs_del_orphan_item(trans, tree_root, 6428 root->root_key.objectid); 6429 } 6430 } 6431 6432 if (root->in_radix) { 6433 btrfs_free_fs_root(tree_root->fs_info, root); 6434 } else { 6435 free_extent_buffer(root->node); 6436 free_extent_buffer(root->commit_root); 6437 kfree(root); 6438 } 6439 out_free: 6440 btrfs_end_transaction_throttle(trans, tree_root); 6441 kfree(wc); 6442 btrfs_free_path(path); 6443 out: 6444 if (err) 6445 btrfs_std_error(root->fs_info, err); 6446 return; 6447 } 6448 6449 /* 6450 * drop subtree rooted at tree block 'node'. 6451 * 6452 * NOTE: this function will unlock and release tree block 'node' 6453 */ 6454 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6455 struct btrfs_root *root, 6456 struct extent_buffer *node, 6457 struct extent_buffer *parent) 6458 { 6459 struct btrfs_path *path; 6460 struct walk_control *wc; 6461 int level; 6462 int parent_level; 6463 int ret = 0; 6464 int wret; 6465 6466 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6467 6468 path = btrfs_alloc_path(); 6469 if (!path) 6470 return -ENOMEM; 6471 6472 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6473 if (!wc) { 6474 btrfs_free_path(path); 6475 return -ENOMEM; 6476 } 6477 6478 btrfs_assert_tree_locked(parent); 6479 parent_level = btrfs_header_level(parent); 6480 extent_buffer_get(parent); 6481 path->nodes[parent_level] = parent; 6482 path->slots[parent_level] = btrfs_header_nritems(parent); 6483 6484 btrfs_assert_tree_locked(node); 6485 level = btrfs_header_level(node); 6486 path->nodes[level] = node; 6487 path->slots[level] = 0; 6488 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6489 6490 wc->refs[parent_level] = 1; 6491 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6492 wc->level = level; 6493 wc->shared_level = -1; 6494 wc->stage = DROP_REFERENCE; 6495 wc->update_ref = 0; 6496 wc->keep_locks = 1; 6497 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6498 6499 while (1) { 6500 wret = walk_down_tree(trans, root, path, wc); 6501 if (wret < 0) { 6502 ret = wret; 6503 break; 6504 } 6505 6506 wret = walk_up_tree(trans, root, path, wc, parent_level); 6507 if (wret < 0) 6508 ret = wret; 6509 if (wret != 0) 6510 break; 6511 } 6512 6513 kfree(wc); 6514 btrfs_free_path(path); 6515 return ret; 6516 } 6517 6518 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 6519 { 6520 u64 num_devices; 6521 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 6522 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 6523 6524 /* 6525 * we add in the count of missing devices because we want 6526 * to make sure that any RAID levels on a degraded FS 6527 * continue to be honored. 6528 */ 6529 num_devices = root->fs_info->fs_devices->rw_devices + 6530 root->fs_info->fs_devices->missing_devices; 6531 6532 if (num_devices == 1) { 6533 stripped |= BTRFS_BLOCK_GROUP_DUP; 6534 stripped = flags & ~stripped; 6535 6536 /* turn raid0 into single device chunks */ 6537 if (flags & BTRFS_BLOCK_GROUP_RAID0) 6538 return stripped; 6539 6540 /* turn mirroring into duplication */ 6541 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 6542 BTRFS_BLOCK_GROUP_RAID10)) 6543 return stripped | BTRFS_BLOCK_GROUP_DUP; 6544 return flags; 6545 } else { 6546 /* they already had raid on here, just return */ 6547 if (flags & stripped) 6548 return flags; 6549 6550 stripped |= BTRFS_BLOCK_GROUP_DUP; 6551 stripped = flags & ~stripped; 6552 6553 /* switch duplicated blocks with raid1 */ 6554 if (flags & BTRFS_BLOCK_GROUP_DUP) 6555 return stripped | BTRFS_BLOCK_GROUP_RAID1; 6556 6557 /* turn single device chunks into raid0 */ 6558 return stripped | BTRFS_BLOCK_GROUP_RAID0; 6559 } 6560 return flags; 6561 } 6562 6563 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 6564 { 6565 struct btrfs_space_info *sinfo = cache->space_info; 6566 u64 num_bytes; 6567 u64 min_allocable_bytes; 6568 int ret = -ENOSPC; 6569 6570 6571 /* 6572 * We need some metadata space and system metadata space for 6573 * allocating chunks in some corner cases until we force to set 6574 * it to be readonly. 6575 */ 6576 if ((sinfo->flags & 6577 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 6578 !force) 6579 min_allocable_bytes = 1 * 1024 * 1024; 6580 else 6581 min_allocable_bytes = 0; 6582 6583 spin_lock(&sinfo->lock); 6584 spin_lock(&cache->lock); 6585 6586 if (cache->ro) { 6587 ret = 0; 6588 goto out; 6589 } 6590 6591 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 6592 cache->bytes_super - btrfs_block_group_used(&cache->item); 6593 6594 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 6595 sinfo->bytes_may_use + sinfo->bytes_readonly + 6596 cache->reserved_pinned + num_bytes + min_allocable_bytes <= 6597 sinfo->total_bytes) { 6598 sinfo->bytes_readonly += num_bytes; 6599 sinfo->bytes_reserved += cache->reserved_pinned; 6600 cache->reserved_pinned = 0; 6601 cache->ro = 1; 6602 ret = 0; 6603 } 6604 out: 6605 spin_unlock(&cache->lock); 6606 spin_unlock(&sinfo->lock); 6607 return ret; 6608 } 6609 6610 int btrfs_set_block_group_ro(struct btrfs_root *root, 6611 struct btrfs_block_group_cache *cache) 6612 6613 { 6614 struct btrfs_trans_handle *trans; 6615 u64 alloc_flags; 6616 int ret; 6617 6618 BUG_ON(cache->ro); 6619 6620 trans = btrfs_join_transaction(root); 6621 BUG_ON(IS_ERR(trans)); 6622 6623 alloc_flags = update_block_group_flags(root, cache->flags); 6624 if (alloc_flags != cache->flags) 6625 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 6626 CHUNK_ALLOC_FORCE); 6627 6628 ret = set_block_group_ro(cache, 0); 6629 if (!ret) 6630 goto out; 6631 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 6632 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 6633 CHUNK_ALLOC_FORCE); 6634 if (ret < 0) 6635 goto out; 6636 ret = set_block_group_ro(cache, 0); 6637 out: 6638 btrfs_end_transaction(trans, root); 6639 return ret; 6640 } 6641 6642 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 6643 struct btrfs_root *root, u64 type) 6644 { 6645 u64 alloc_flags = get_alloc_profile(root, type); 6646 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 6647 CHUNK_ALLOC_FORCE); 6648 } 6649 6650 /* 6651 * helper to account the unused space of all the readonly block group in the 6652 * list. takes mirrors into account. 6653 */ 6654 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 6655 { 6656 struct btrfs_block_group_cache *block_group; 6657 u64 free_bytes = 0; 6658 int factor; 6659 6660 list_for_each_entry(block_group, groups_list, list) { 6661 spin_lock(&block_group->lock); 6662 6663 if (!block_group->ro) { 6664 spin_unlock(&block_group->lock); 6665 continue; 6666 } 6667 6668 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 6669 BTRFS_BLOCK_GROUP_RAID10 | 6670 BTRFS_BLOCK_GROUP_DUP)) 6671 factor = 2; 6672 else 6673 factor = 1; 6674 6675 free_bytes += (block_group->key.offset - 6676 btrfs_block_group_used(&block_group->item)) * 6677 factor; 6678 6679 spin_unlock(&block_group->lock); 6680 } 6681 6682 return free_bytes; 6683 } 6684 6685 /* 6686 * helper to account the unused space of all the readonly block group in the 6687 * space_info. takes mirrors into account. 6688 */ 6689 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 6690 { 6691 int i; 6692 u64 free_bytes = 0; 6693 6694 spin_lock(&sinfo->lock); 6695 6696 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 6697 if (!list_empty(&sinfo->block_groups[i])) 6698 free_bytes += __btrfs_get_ro_block_group_free_space( 6699 &sinfo->block_groups[i]); 6700 6701 spin_unlock(&sinfo->lock); 6702 6703 return free_bytes; 6704 } 6705 6706 int btrfs_set_block_group_rw(struct btrfs_root *root, 6707 struct btrfs_block_group_cache *cache) 6708 { 6709 struct btrfs_space_info *sinfo = cache->space_info; 6710 u64 num_bytes; 6711 6712 BUG_ON(!cache->ro); 6713 6714 spin_lock(&sinfo->lock); 6715 spin_lock(&cache->lock); 6716 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 6717 cache->bytes_super - btrfs_block_group_used(&cache->item); 6718 sinfo->bytes_readonly -= num_bytes; 6719 cache->ro = 0; 6720 spin_unlock(&cache->lock); 6721 spin_unlock(&sinfo->lock); 6722 return 0; 6723 } 6724 6725 /* 6726 * checks to see if its even possible to relocate this block group. 6727 * 6728 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 6729 * ok to go ahead and try. 6730 */ 6731 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 6732 { 6733 struct btrfs_block_group_cache *block_group; 6734 struct btrfs_space_info *space_info; 6735 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6736 struct btrfs_device *device; 6737 u64 min_free; 6738 u64 dev_min = 1; 6739 u64 dev_nr = 0; 6740 int index; 6741 int full = 0; 6742 int ret = 0; 6743 6744 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 6745 6746 /* odd, couldn't find the block group, leave it alone */ 6747 if (!block_group) 6748 return -1; 6749 6750 min_free = btrfs_block_group_used(&block_group->item); 6751 6752 /* no bytes used, we're good */ 6753 if (!min_free) 6754 goto out; 6755 6756 space_info = block_group->space_info; 6757 spin_lock(&space_info->lock); 6758 6759 full = space_info->full; 6760 6761 /* 6762 * if this is the last block group we have in this space, we can't 6763 * relocate it unless we're able to allocate a new chunk below. 6764 * 6765 * Otherwise, we need to make sure we have room in the space to handle 6766 * all of the extents from this block group. If we can, we're good 6767 */ 6768 if ((space_info->total_bytes != block_group->key.offset) && 6769 (space_info->bytes_used + space_info->bytes_reserved + 6770 space_info->bytes_pinned + space_info->bytes_readonly + 6771 min_free < space_info->total_bytes)) { 6772 spin_unlock(&space_info->lock); 6773 goto out; 6774 } 6775 spin_unlock(&space_info->lock); 6776 6777 /* 6778 * ok we don't have enough space, but maybe we have free space on our 6779 * devices to allocate new chunks for relocation, so loop through our 6780 * alloc devices and guess if we have enough space. However, if we 6781 * were marked as full, then we know there aren't enough chunks, and we 6782 * can just return. 6783 */ 6784 ret = -1; 6785 if (full) 6786 goto out; 6787 6788 /* 6789 * index: 6790 * 0: raid10 6791 * 1: raid1 6792 * 2: dup 6793 * 3: raid0 6794 * 4: single 6795 */ 6796 index = get_block_group_index(block_group); 6797 if (index == 0) { 6798 dev_min = 4; 6799 /* Divide by 2 */ 6800 min_free >>= 1; 6801 } else if (index == 1) { 6802 dev_min = 2; 6803 } else if (index == 2) { 6804 /* Multiply by 2 */ 6805 min_free <<= 1; 6806 } else if (index == 3) { 6807 dev_min = fs_devices->rw_devices; 6808 do_div(min_free, dev_min); 6809 } 6810 6811 mutex_lock(&root->fs_info->chunk_mutex); 6812 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 6813 u64 dev_offset; 6814 6815 /* 6816 * check to make sure we can actually find a chunk with enough 6817 * space to fit our block group in. 6818 */ 6819 if (device->total_bytes > device->bytes_used + min_free) { 6820 ret = find_free_dev_extent(NULL, device, min_free, 6821 &dev_offset, NULL); 6822 if (!ret) 6823 dev_nr++; 6824 6825 if (dev_nr >= dev_min) 6826 break; 6827 6828 ret = -1; 6829 } 6830 } 6831 mutex_unlock(&root->fs_info->chunk_mutex); 6832 out: 6833 btrfs_put_block_group(block_group); 6834 return ret; 6835 } 6836 6837 static int find_first_block_group(struct btrfs_root *root, 6838 struct btrfs_path *path, struct btrfs_key *key) 6839 { 6840 int ret = 0; 6841 struct btrfs_key found_key; 6842 struct extent_buffer *leaf; 6843 int slot; 6844 6845 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 6846 if (ret < 0) 6847 goto out; 6848 6849 while (1) { 6850 slot = path->slots[0]; 6851 leaf = path->nodes[0]; 6852 if (slot >= btrfs_header_nritems(leaf)) { 6853 ret = btrfs_next_leaf(root, path); 6854 if (ret == 0) 6855 continue; 6856 if (ret < 0) 6857 goto out; 6858 break; 6859 } 6860 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6861 6862 if (found_key.objectid >= key->objectid && 6863 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 6864 ret = 0; 6865 goto out; 6866 } 6867 path->slots[0]++; 6868 } 6869 out: 6870 return ret; 6871 } 6872 6873 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 6874 { 6875 struct btrfs_block_group_cache *block_group; 6876 u64 last = 0; 6877 6878 while (1) { 6879 struct inode *inode; 6880 6881 block_group = btrfs_lookup_first_block_group(info, last); 6882 while (block_group) { 6883 spin_lock(&block_group->lock); 6884 if (block_group->iref) 6885 break; 6886 spin_unlock(&block_group->lock); 6887 block_group = next_block_group(info->tree_root, 6888 block_group); 6889 } 6890 if (!block_group) { 6891 if (last == 0) 6892 break; 6893 last = 0; 6894 continue; 6895 } 6896 6897 inode = block_group->inode; 6898 block_group->iref = 0; 6899 block_group->inode = NULL; 6900 spin_unlock(&block_group->lock); 6901 iput(inode); 6902 last = block_group->key.objectid + block_group->key.offset; 6903 btrfs_put_block_group(block_group); 6904 } 6905 } 6906 6907 int btrfs_free_block_groups(struct btrfs_fs_info *info) 6908 { 6909 struct btrfs_block_group_cache *block_group; 6910 struct btrfs_space_info *space_info; 6911 struct btrfs_caching_control *caching_ctl; 6912 struct rb_node *n; 6913 6914 down_write(&info->extent_commit_sem); 6915 while (!list_empty(&info->caching_block_groups)) { 6916 caching_ctl = list_entry(info->caching_block_groups.next, 6917 struct btrfs_caching_control, list); 6918 list_del(&caching_ctl->list); 6919 put_caching_control(caching_ctl); 6920 } 6921 up_write(&info->extent_commit_sem); 6922 6923 spin_lock(&info->block_group_cache_lock); 6924 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 6925 block_group = rb_entry(n, struct btrfs_block_group_cache, 6926 cache_node); 6927 rb_erase(&block_group->cache_node, 6928 &info->block_group_cache_tree); 6929 spin_unlock(&info->block_group_cache_lock); 6930 6931 down_write(&block_group->space_info->groups_sem); 6932 list_del(&block_group->list); 6933 up_write(&block_group->space_info->groups_sem); 6934 6935 if (block_group->cached == BTRFS_CACHE_STARTED) 6936 wait_block_group_cache_done(block_group); 6937 6938 /* 6939 * We haven't cached this block group, which means we could 6940 * possibly have excluded extents on this block group. 6941 */ 6942 if (block_group->cached == BTRFS_CACHE_NO) 6943 free_excluded_extents(info->extent_root, block_group); 6944 6945 btrfs_remove_free_space_cache(block_group); 6946 btrfs_put_block_group(block_group); 6947 6948 spin_lock(&info->block_group_cache_lock); 6949 } 6950 spin_unlock(&info->block_group_cache_lock); 6951 6952 /* now that all the block groups are freed, go through and 6953 * free all the space_info structs. This is only called during 6954 * the final stages of unmount, and so we know nobody is 6955 * using them. We call synchronize_rcu() once before we start, 6956 * just to be on the safe side. 6957 */ 6958 synchronize_rcu(); 6959 6960 release_global_block_rsv(info); 6961 6962 while(!list_empty(&info->space_info)) { 6963 space_info = list_entry(info->space_info.next, 6964 struct btrfs_space_info, 6965 list); 6966 if (space_info->bytes_pinned > 0 || 6967 space_info->bytes_reserved > 0) { 6968 WARN_ON(1); 6969 dump_space_info(space_info, 0, 0); 6970 } 6971 list_del(&space_info->list); 6972 kfree(space_info); 6973 } 6974 return 0; 6975 } 6976 6977 static void __link_block_group(struct btrfs_space_info *space_info, 6978 struct btrfs_block_group_cache *cache) 6979 { 6980 int index = get_block_group_index(cache); 6981 6982 down_write(&space_info->groups_sem); 6983 list_add_tail(&cache->list, &space_info->block_groups[index]); 6984 up_write(&space_info->groups_sem); 6985 } 6986 6987 int btrfs_read_block_groups(struct btrfs_root *root) 6988 { 6989 struct btrfs_path *path; 6990 int ret; 6991 struct btrfs_block_group_cache *cache; 6992 struct btrfs_fs_info *info = root->fs_info; 6993 struct btrfs_space_info *space_info; 6994 struct btrfs_key key; 6995 struct btrfs_key found_key; 6996 struct extent_buffer *leaf; 6997 int need_clear = 0; 6998 u64 cache_gen; 6999 7000 root = info->extent_root; 7001 key.objectid = 0; 7002 key.offset = 0; 7003 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7004 path = btrfs_alloc_path(); 7005 if (!path) 7006 return -ENOMEM; 7007 path->reada = 1; 7008 7009 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy); 7010 if (cache_gen != 0 && 7011 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen) 7012 need_clear = 1; 7013 if (btrfs_test_opt(root, CLEAR_CACHE)) 7014 need_clear = 1; 7015 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen) 7016 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 7017 7018 while (1) { 7019 ret = find_first_block_group(root, path, &key); 7020 if (ret > 0) 7021 break; 7022 if (ret != 0) 7023 goto error; 7024 leaf = path->nodes[0]; 7025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7026 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7027 if (!cache) { 7028 ret = -ENOMEM; 7029 goto error; 7030 } 7031 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7032 GFP_NOFS); 7033 if (!cache->free_space_ctl) { 7034 kfree(cache); 7035 ret = -ENOMEM; 7036 goto error; 7037 } 7038 7039 atomic_set(&cache->count, 1); 7040 spin_lock_init(&cache->lock); 7041 cache->fs_info = info; 7042 INIT_LIST_HEAD(&cache->list); 7043 INIT_LIST_HEAD(&cache->cluster_list); 7044 7045 if (need_clear) 7046 cache->disk_cache_state = BTRFS_DC_CLEAR; 7047 7048 read_extent_buffer(leaf, &cache->item, 7049 btrfs_item_ptr_offset(leaf, path->slots[0]), 7050 sizeof(cache->item)); 7051 memcpy(&cache->key, &found_key, sizeof(found_key)); 7052 7053 key.objectid = found_key.objectid + found_key.offset; 7054 btrfs_release_path(path); 7055 cache->flags = btrfs_block_group_flags(&cache->item); 7056 cache->sectorsize = root->sectorsize; 7057 7058 btrfs_init_free_space_ctl(cache); 7059 7060 /* 7061 * We need to exclude the super stripes now so that the space 7062 * info has super bytes accounted for, otherwise we'll think 7063 * we have more space than we actually do. 7064 */ 7065 exclude_super_stripes(root, cache); 7066 7067 /* 7068 * check for two cases, either we are full, and therefore 7069 * don't need to bother with the caching work since we won't 7070 * find any space, or we are empty, and we can just add all 7071 * the space in and be done with it. This saves us _alot_ of 7072 * time, particularly in the full case. 7073 */ 7074 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7075 cache->last_byte_to_unpin = (u64)-1; 7076 cache->cached = BTRFS_CACHE_FINISHED; 7077 free_excluded_extents(root, cache); 7078 } else if (btrfs_block_group_used(&cache->item) == 0) { 7079 cache->last_byte_to_unpin = (u64)-1; 7080 cache->cached = BTRFS_CACHE_FINISHED; 7081 add_new_free_space(cache, root->fs_info, 7082 found_key.objectid, 7083 found_key.objectid + 7084 found_key.offset); 7085 free_excluded_extents(root, cache); 7086 } 7087 7088 ret = update_space_info(info, cache->flags, found_key.offset, 7089 btrfs_block_group_used(&cache->item), 7090 &space_info); 7091 BUG_ON(ret); 7092 cache->space_info = space_info; 7093 spin_lock(&cache->space_info->lock); 7094 cache->space_info->bytes_readonly += cache->bytes_super; 7095 spin_unlock(&cache->space_info->lock); 7096 7097 __link_block_group(space_info, cache); 7098 7099 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7100 BUG_ON(ret); 7101 7102 set_avail_alloc_bits(root->fs_info, cache->flags); 7103 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7104 set_block_group_ro(cache, 1); 7105 } 7106 7107 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7108 if (!(get_alloc_profile(root, space_info->flags) & 7109 (BTRFS_BLOCK_GROUP_RAID10 | 7110 BTRFS_BLOCK_GROUP_RAID1 | 7111 BTRFS_BLOCK_GROUP_DUP))) 7112 continue; 7113 /* 7114 * avoid allocating from un-mirrored block group if there are 7115 * mirrored block groups. 7116 */ 7117 list_for_each_entry(cache, &space_info->block_groups[3], list) 7118 set_block_group_ro(cache, 1); 7119 list_for_each_entry(cache, &space_info->block_groups[4], list) 7120 set_block_group_ro(cache, 1); 7121 } 7122 7123 init_global_block_rsv(info); 7124 ret = 0; 7125 error: 7126 btrfs_free_path(path); 7127 return ret; 7128 } 7129 7130 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7131 struct btrfs_root *root, u64 bytes_used, 7132 u64 type, u64 chunk_objectid, u64 chunk_offset, 7133 u64 size) 7134 { 7135 int ret; 7136 struct btrfs_root *extent_root; 7137 struct btrfs_block_group_cache *cache; 7138 7139 extent_root = root->fs_info->extent_root; 7140 7141 root->fs_info->last_trans_log_full_commit = trans->transid; 7142 7143 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7144 if (!cache) 7145 return -ENOMEM; 7146 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7147 GFP_NOFS); 7148 if (!cache->free_space_ctl) { 7149 kfree(cache); 7150 return -ENOMEM; 7151 } 7152 7153 cache->key.objectid = chunk_offset; 7154 cache->key.offset = size; 7155 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7156 cache->sectorsize = root->sectorsize; 7157 cache->fs_info = root->fs_info; 7158 7159 atomic_set(&cache->count, 1); 7160 spin_lock_init(&cache->lock); 7161 INIT_LIST_HEAD(&cache->list); 7162 INIT_LIST_HEAD(&cache->cluster_list); 7163 7164 btrfs_init_free_space_ctl(cache); 7165 7166 btrfs_set_block_group_used(&cache->item, bytes_used); 7167 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7168 cache->flags = type; 7169 btrfs_set_block_group_flags(&cache->item, type); 7170 7171 cache->last_byte_to_unpin = (u64)-1; 7172 cache->cached = BTRFS_CACHE_FINISHED; 7173 exclude_super_stripes(root, cache); 7174 7175 add_new_free_space(cache, root->fs_info, chunk_offset, 7176 chunk_offset + size); 7177 7178 free_excluded_extents(root, cache); 7179 7180 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7181 &cache->space_info); 7182 BUG_ON(ret); 7183 7184 spin_lock(&cache->space_info->lock); 7185 cache->space_info->bytes_readonly += cache->bytes_super; 7186 spin_unlock(&cache->space_info->lock); 7187 7188 __link_block_group(cache->space_info, cache); 7189 7190 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7191 BUG_ON(ret); 7192 7193 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 7194 sizeof(cache->item)); 7195 BUG_ON(ret); 7196 7197 set_avail_alloc_bits(extent_root->fs_info, type); 7198 7199 return 0; 7200 } 7201 7202 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7203 struct btrfs_root *root, u64 group_start) 7204 { 7205 struct btrfs_path *path; 7206 struct btrfs_block_group_cache *block_group; 7207 struct btrfs_free_cluster *cluster; 7208 struct btrfs_root *tree_root = root->fs_info->tree_root; 7209 struct btrfs_key key; 7210 struct inode *inode; 7211 int ret; 7212 int factor; 7213 7214 root = root->fs_info->extent_root; 7215 7216 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7217 BUG_ON(!block_group); 7218 BUG_ON(!block_group->ro); 7219 7220 /* 7221 * Free the reserved super bytes from this block group before 7222 * remove it. 7223 */ 7224 free_excluded_extents(root, block_group); 7225 7226 memcpy(&key, &block_group->key, sizeof(key)); 7227 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7228 BTRFS_BLOCK_GROUP_RAID1 | 7229 BTRFS_BLOCK_GROUP_RAID10)) 7230 factor = 2; 7231 else 7232 factor = 1; 7233 7234 /* make sure this block group isn't part of an allocation cluster */ 7235 cluster = &root->fs_info->data_alloc_cluster; 7236 spin_lock(&cluster->refill_lock); 7237 btrfs_return_cluster_to_free_space(block_group, cluster); 7238 spin_unlock(&cluster->refill_lock); 7239 7240 /* 7241 * make sure this block group isn't part of a metadata 7242 * allocation cluster 7243 */ 7244 cluster = &root->fs_info->meta_alloc_cluster; 7245 spin_lock(&cluster->refill_lock); 7246 btrfs_return_cluster_to_free_space(block_group, cluster); 7247 spin_unlock(&cluster->refill_lock); 7248 7249 path = btrfs_alloc_path(); 7250 if (!path) { 7251 ret = -ENOMEM; 7252 goto out; 7253 } 7254 7255 inode = lookup_free_space_inode(root, block_group, path); 7256 if (!IS_ERR(inode)) { 7257 ret = btrfs_orphan_add(trans, inode); 7258 BUG_ON(ret); 7259 clear_nlink(inode); 7260 /* One for the block groups ref */ 7261 spin_lock(&block_group->lock); 7262 if (block_group->iref) { 7263 block_group->iref = 0; 7264 block_group->inode = NULL; 7265 spin_unlock(&block_group->lock); 7266 iput(inode); 7267 } else { 7268 spin_unlock(&block_group->lock); 7269 } 7270 /* One for our lookup ref */ 7271 iput(inode); 7272 } 7273 7274 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7275 key.offset = block_group->key.objectid; 7276 key.type = 0; 7277 7278 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7279 if (ret < 0) 7280 goto out; 7281 if (ret > 0) 7282 btrfs_release_path(path); 7283 if (ret == 0) { 7284 ret = btrfs_del_item(trans, tree_root, path); 7285 if (ret) 7286 goto out; 7287 btrfs_release_path(path); 7288 } 7289 7290 spin_lock(&root->fs_info->block_group_cache_lock); 7291 rb_erase(&block_group->cache_node, 7292 &root->fs_info->block_group_cache_tree); 7293 spin_unlock(&root->fs_info->block_group_cache_lock); 7294 7295 down_write(&block_group->space_info->groups_sem); 7296 /* 7297 * we must use list_del_init so people can check to see if they 7298 * are still on the list after taking the semaphore 7299 */ 7300 list_del_init(&block_group->list); 7301 up_write(&block_group->space_info->groups_sem); 7302 7303 if (block_group->cached == BTRFS_CACHE_STARTED) 7304 wait_block_group_cache_done(block_group); 7305 7306 btrfs_remove_free_space_cache(block_group); 7307 7308 spin_lock(&block_group->space_info->lock); 7309 block_group->space_info->total_bytes -= block_group->key.offset; 7310 block_group->space_info->bytes_readonly -= block_group->key.offset; 7311 block_group->space_info->disk_total -= block_group->key.offset * factor; 7312 spin_unlock(&block_group->space_info->lock); 7313 7314 memcpy(&key, &block_group->key, sizeof(key)); 7315 7316 btrfs_clear_space_info_full(root->fs_info); 7317 7318 btrfs_put_block_group(block_group); 7319 btrfs_put_block_group(block_group); 7320 7321 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 7322 if (ret > 0) 7323 ret = -EIO; 7324 if (ret < 0) 7325 goto out; 7326 7327 ret = btrfs_del_item(trans, root, path); 7328 out: 7329 btrfs_free_path(path); 7330 return ret; 7331 } 7332 7333 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 7334 { 7335 struct btrfs_space_info *space_info; 7336 struct btrfs_super_block *disk_super; 7337 u64 features; 7338 u64 flags; 7339 int mixed = 0; 7340 int ret; 7341 7342 disk_super = &fs_info->super_copy; 7343 if (!btrfs_super_root(disk_super)) 7344 return 1; 7345 7346 features = btrfs_super_incompat_flags(disk_super); 7347 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 7348 mixed = 1; 7349 7350 flags = BTRFS_BLOCK_GROUP_SYSTEM; 7351 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7352 if (ret) 7353 goto out; 7354 7355 if (mixed) { 7356 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 7357 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7358 } else { 7359 flags = BTRFS_BLOCK_GROUP_METADATA; 7360 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7361 if (ret) 7362 goto out; 7363 7364 flags = BTRFS_BLOCK_GROUP_DATA; 7365 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7366 } 7367 out: 7368 return ret; 7369 } 7370 7371 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 7372 { 7373 return unpin_extent_range(root, start, end); 7374 } 7375 7376 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 7377 u64 num_bytes, u64 *actual_bytes) 7378 { 7379 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 7380 } 7381 7382 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 7383 { 7384 struct btrfs_fs_info *fs_info = root->fs_info; 7385 struct btrfs_block_group_cache *cache = NULL; 7386 u64 group_trimmed; 7387 u64 start; 7388 u64 end; 7389 u64 trimmed = 0; 7390 int ret = 0; 7391 7392 cache = btrfs_lookup_block_group(fs_info, range->start); 7393 7394 while (cache) { 7395 if (cache->key.objectid >= (range->start + range->len)) { 7396 btrfs_put_block_group(cache); 7397 break; 7398 } 7399 7400 start = max(range->start, cache->key.objectid); 7401 end = min(range->start + range->len, 7402 cache->key.objectid + cache->key.offset); 7403 7404 if (end - start >= range->minlen) { 7405 if (!block_group_cache_done(cache)) { 7406 ret = cache_block_group(cache, NULL, root, 0); 7407 if (!ret) 7408 wait_block_group_cache_done(cache); 7409 } 7410 ret = btrfs_trim_block_group(cache, 7411 &group_trimmed, 7412 start, 7413 end, 7414 range->minlen); 7415 7416 trimmed += group_trimmed; 7417 if (ret) { 7418 btrfs_put_block_group(cache); 7419 break; 7420 } 7421 } 7422 7423 cache = next_block_group(fs_info->tree_root, cache); 7424 } 7425 7426 range->len = trimmed; 7427 return ret; 7428 } 7429