1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_fs_info *fs_info, 56 struct btrfs_delayed_ref_node *node, u64 parent, 57 u64 root_objectid, u64 owner_objectid, 58 u64 owner_offset, int refs_to_drop, 59 struct btrfs_delayed_extent_op *extra_op); 60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 61 struct extent_buffer *leaf, 62 struct btrfs_extent_item *ei); 63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, 65 u64 parent, u64 root_objectid, 66 u64 flags, u64 owner, u64 offset, 67 struct btrfs_key *ins, int ref_mod); 68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 69 struct btrfs_delayed_ref_node *node, 70 struct btrfs_delayed_extent_op *extent_op); 71 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 72 struct btrfs_fs_info *fs_info, u64 flags, 73 int force); 74 static int find_next_key(struct btrfs_path *path, int level, 75 struct btrfs_key *key); 76 static void dump_space_info(struct btrfs_fs_info *fs_info, 77 struct btrfs_space_info *info, u64 bytes, 78 int dump_block_groups); 79 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 80 u64 num_bytes); 81 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 82 struct btrfs_space_info *space_info, 83 u64 num_bytes); 84 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 85 struct btrfs_space_info *space_info, 86 u64 num_bytes); 87 88 static noinline int 89 block_group_cache_done(struct btrfs_block_group_cache *cache) 90 { 91 smp_mb(); 92 return cache->cached == BTRFS_CACHE_FINISHED || 93 cache->cached == BTRFS_CACHE_ERROR; 94 } 95 96 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 97 { 98 return (cache->flags & bits) == bits; 99 } 100 101 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 102 { 103 atomic_inc(&cache->count); 104 } 105 106 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 107 { 108 if (atomic_dec_and_test(&cache->count)) { 109 WARN_ON(cache->pinned > 0); 110 WARN_ON(cache->reserved > 0); 111 112 /* 113 * If not empty, someone is still holding mutex of 114 * full_stripe_lock, which can only be released by caller. 115 * And it will definitely cause use-after-free when caller 116 * tries to release full stripe lock. 117 * 118 * No better way to resolve, but only to warn. 119 */ 120 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 121 kfree(cache->free_space_ctl); 122 kfree(cache); 123 } 124 } 125 126 /* 127 * this adds the block group to the fs_info rb tree for the block group 128 * cache 129 */ 130 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 131 struct btrfs_block_group_cache *block_group) 132 { 133 struct rb_node **p; 134 struct rb_node *parent = NULL; 135 struct btrfs_block_group_cache *cache; 136 137 spin_lock(&info->block_group_cache_lock); 138 p = &info->block_group_cache_tree.rb_node; 139 140 while (*p) { 141 parent = *p; 142 cache = rb_entry(parent, struct btrfs_block_group_cache, 143 cache_node); 144 if (block_group->key.objectid < cache->key.objectid) { 145 p = &(*p)->rb_left; 146 } else if (block_group->key.objectid > cache->key.objectid) { 147 p = &(*p)->rb_right; 148 } else { 149 spin_unlock(&info->block_group_cache_lock); 150 return -EEXIST; 151 } 152 } 153 154 rb_link_node(&block_group->cache_node, parent, p); 155 rb_insert_color(&block_group->cache_node, 156 &info->block_group_cache_tree); 157 158 if (info->first_logical_byte > block_group->key.objectid) 159 info->first_logical_byte = block_group->key.objectid; 160 161 spin_unlock(&info->block_group_cache_lock); 162 163 return 0; 164 } 165 166 /* 167 * This will return the block group at or after bytenr if contains is 0, else 168 * it will return the block group that contains the bytenr 169 */ 170 static struct btrfs_block_group_cache * 171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 172 int contains) 173 { 174 struct btrfs_block_group_cache *cache, *ret = NULL; 175 struct rb_node *n; 176 u64 end, start; 177 178 spin_lock(&info->block_group_cache_lock); 179 n = info->block_group_cache_tree.rb_node; 180 181 while (n) { 182 cache = rb_entry(n, struct btrfs_block_group_cache, 183 cache_node); 184 end = cache->key.objectid + cache->key.offset - 1; 185 start = cache->key.objectid; 186 187 if (bytenr < start) { 188 if (!contains && (!ret || start < ret->key.objectid)) 189 ret = cache; 190 n = n->rb_left; 191 } else if (bytenr > start) { 192 if (contains && bytenr <= end) { 193 ret = cache; 194 break; 195 } 196 n = n->rb_right; 197 } else { 198 ret = cache; 199 break; 200 } 201 } 202 if (ret) { 203 btrfs_get_block_group(ret); 204 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 205 info->first_logical_byte = ret->key.objectid; 206 } 207 spin_unlock(&info->block_group_cache_lock); 208 209 return ret; 210 } 211 212 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 213 u64 start, u64 num_bytes) 214 { 215 u64 end = start + num_bytes - 1; 216 set_extent_bits(&fs_info->freed_extents[0], 217 start, end, EXTENT_UPTODATE); 218 set_extent_bits(&fs_info->freed_extents[1], 219 start, end, EXTENT_UPTODATE); 220 return 0; 221 } 222 223 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 224 struct btrfs_block_group_cache *cache) 225 { 226 u64 start, end; 227 228 start = cache->key.objectid; 229 end = start + cache->key.offset - 1; 230 231 clear_extent_bits(&fs_info->freed_extents[0], 232 start, end, EXTENT_UPTODATE); 233 clear_extent_bits(&fs_info->freed_extents[1], 234 start, end, EXTENT_UPTODATE); 235 } 236 237 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 bytenr; 241 u64 *logical; 242 int stripe_len; 243 int i, nr, ret; 244 245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 247 cache->bytes_super += stripe_len; 248 ret = add_excluded_extent(fs_info, cache->key.objectid, 249 stripe_len); 250 if (ret) 251 return ret; 252 } 253 254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 255 bytenr = btrfs_sb_offset(i); 256 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 257 bytenr, &logical, &nr, &stripe_len); 258 if (ret) 259 return ret; 260 261 while (nr--) { 262 u64 start, len; 263 264 if (logical[nr] > cache->key.objectid + 265 cache->key.offset) 266 continue; 267 268 if (logical[nr] + stripe_len <= cache->key.objectid) 269 continue; 270 271 start = logical[nr]; 272 if (start < cache->key.objectid) { 273 start = cache->key.objectid; 274 len = (logical[nr] + stripe_len) - start; 275 } else { 276 len = min_t(u64, stripe_len, 277 cache->key.objectid + 278 cache->key.offset - start); 279 } 280 281 cache->bytes_super += len; 282 ret = add_excluded_extent(fs_info, start, len); 283 if (ret) { 284 kfree(logical); 285 return ret; 286 } 287 } 288 289 kfree(logical); 290 } 291 return 0; 292 } 293 294 static struct btrfs_caching_control * 295 get_caching_control(struct btrfs_block_group_cache *cache) 296 { 297 struct btrfs_caching_control *ctl; 298 299 spin_lock(&cache->lock); 300 if (!cache->caching_ctl) { 301 spin_unlock(&cache->lock); 302 return NULL; 303 } 304 305 ctl = cache->caching_ctl; 306 refcount_inc(&ctl->count); 307 spin_unlock(&cache->lock); 308 return ctl; 309 } 310 311 static void put_caching_control(struct btrfs_caching_control *ctl) 312 { 313 if (refcount_dec_and_test(&ctl->count)) 314 kfree(ctl); 315 } 316 317 #ifdef CONFIG_BTRFS_DEBUG 318 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 319 { 320 struct btrfs_fs_info *fs_info = block_group->fs_info; 321 u64 start = block_group->key.objectid; 322 u64 len = block_group->key.offset; 323 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 324 fs_info->nodesize : fs_info->sectorsize; 325 u64 step = chunk << 1; 326 327 while (len > chunk) { 328 btrfs_remove_free_space(block_group, start, chunk); 329 start += step; 330 if (len < step) 331 len = 0; 332 else 333 len -= step; 334 } 335 } 336 #endif 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 u64 start, u64 end) 345 { 346 struct btrfs_fs_info *info = block_group->fs_info; 347 u64 extent_start, extent_end, size, total_added = 0; 348 int ret; 349 350 while (start < end) { 351 ret = find_first_extent_bit(info->pinned_extents, start, 352 &extent_start, &extent_end, 353 EXTENT_DIRTY | EXTENT_UPTODATE, 354 NULL); 355 if (ret) 356 break; 357 358 if (extent_start <= start) { 359 start = extent_end + 1; 360 } else if (extent_start > start && extent_start < end) { 361 size = extent_start - start; 362 total_added += size; 363 ret = btrfs_add_free_space(block_group, start, 364 size); 365 BUG_ON(ret); /* -ENOMEM or logic error */ 366 start = extent_end + 1; 367 } else { 368 break; 369 } 370 } 371 372 if (start < end) { 373 size = end - start; 374 total_added += size; 375 ret = btrfs_add_free_space(block_group, start, size); 376 BUG_ON(ret); /* -ENOMEM or logic error */ 377 } 378 379 return total_added; 380 } 381 382 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 383 { 384 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 385 struct btrfs_fs_info *fs_info = block_group->fs_info; 386 struct btrfs_root *extent_root = fs_info->extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret; 394 bool wakeup = true; 395 396 path = btrfs_alloc_path(); 397 if (!path) 398 return -ENOMEM; 399 400 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 401 402 #ifdef CONFIG_BTRFS_DEBUG 403 /* 404 * If we're fragmenting we don't want to make anybody think we can 405 * allocate from this block group until we've had a chance to fragment 406 * the free space. 407 */ 408 if (btrfs_should_fragment_free_space(block_group)) 409 wakeup = false; 410 #endif 411 /* 412 * We don't want to deadlock with somebody trying to allocate a new 413 * extent for the extent root while also trying to search the extent 414 * root to add free space. So we skip locking and search the commit 415 * root, since its read-only 416 */ 417 path->skip_locking = 1; 418 path->search_commit_root = 1; 419 path->reada = READA_FORWARD; 420 421 key.objectid = last; 422 key.offset = 0; 423 key.type = BTRFS_EXTENT_ITEM_KEY; 424 425 next: 426 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 427 if (ret < 0) 428 goto out; 429 430 leaf = path->nodes[0]; 431 nritems = btrfs_header_nritems(leaf); 432 433 while (1) { 434 if (btrfs_fs_closing(fs_info) > 1) { 435 last = (u64)-1; 436 break; 437 } 438 439 if (path->slots[0] < nritems) { 440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 441 } else { 442 ret = find_next_key(path, 0, &key); 443 if (ret) 444 break; 445 446 if (need_resched() || 447 rwsem_is_contended(&fs_info->commit_root_sem)) { 448 if (wakeup) 449 caching_ctl->progress = last; 450 btrfs_release_path(path); 451 up_read(&fs_info->commit_root_sem); 452 mutex_unlock(&caching_ctl->mutex); 453 cond_resched(); 454 mutex_lock(&caching_ctl->mutex); 455 down_read(&fs_info->commit_root_sem); 456 goto next; 457 } 458 459 ret = btrfs_next_leaf(extent_root, path); 460 if (ret < 0) 461 goto out; 462 if (ret) 463 break; 464 leaf = path->nodes[0]; 465 nritems = btrfs_header_nritems(leaf); 466 continue; 467 } 468 469 if (key.objectid < last) { 470 key.objectid = last; 471 key.offset = 0; 472 key.type = BTRFS_EXTENT_ITEM_KEY; 473 474 if (wakeup) 475 caching_ctl->progress = last; 476 btrfs_release_path(path); 477 goto next; 478 } 479 480 if (key.objectid < block_group->key.objectid) { 481 path->slots[0]++; 482 continue; 483 } 484 485 if (key.objectid >= block_group->key.objectid + 486 block_group->key.offset) 487 break; 488 489 if (key.type == BTRFS_EXTENT_ITEM_KEY || 490 key.type == BTRFS_METADATA_ITEM_KEY) { 491 total_found += add_new_free_space(block_group, last, 492 key.objectid); 493 if (key.type == BTRFS_METADATA_ITEM_KEY) 494 last = key.objectid + 495 fs_info->nodesize; 496 else 497 last = key.objectid + key.offset; 498 499 if (total_found > CACHING_CTL_WAKE_UP) { 500 total_found = 0; 501 if (wakeup) 502 wake_up(&caching_ctl->wait); 503 } 504 } 505 path->slots[0]++; 506 } 507 ret = 0; 508 509 total_found += add_new_free_space(block_group, last, 510 block_group->key.objectid + 511 block_group->key.offset); 512 caching_ctl->progress = (u64)-1; 513 514 out: 515 btrfs_free_path(path); 516 return ret; 517 } 518 519 static noinline void caching_thread(struct btrfs_work *work) 520 { 521 struct btrfs_block_group_cache *block_group; 522 struct btrfs_fs_info *fs_info; 523 struct btrfs_caching_control *caching_ctl; 524 int ret; 525 526 caching_ctl = container_of(work, struct btrfs_caching_control, work); 527 block_group = caching_ctl->block_group; 528 fs_info = block_group->fs_info; 529 530 mutex_lock(&caching_ctl->mutex); 531 down_read(&fs_info->commit_root_sem); 532 533 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 534 ret = load_free_space_tree(caching_ctl); 535 else 536 ret = load_extent_tree_free(caching_ctl); 537 538 spin_lock(&block_group->lock); 539 block_group->caching_ctl = NULL; 540 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 541 spin_unlock(&block_group->lock); 542 543 #ifdef CONFIG_BTRFS_DEBUG 544 if (btrfs_should_fragment_free_space(block_group)) { 545 u64 bytes_used; 546 547 spin_lock(&block_group->space_info->lock); 548 spin_lock(&block_group->lock); 549 bytes_used = block_group->key.offset - 550 btrfs_block_group_used(&block_group->item); 551 block_group->space_info->bytes_used += bytes_used >> 1; 552 spin_unlock(&block_group->lock); 553 spin_unlock(&block_group->space_info->lock); 554 fragment_free_space(block_group); 555 } 556 #endif 557 558 caching_ctl->progress = (u64)-1; 559 560 up_read(&fs_info->commit_root_sem); 561 free_excluded_extents(fs_info, block_group); 562 mutex_unlock(&caching_ctl->mutex); 563 564 wake_up(&caching_ctl->wait); 565 566 put_caching_control(caching_ctl); 567 btrfs_put_block_group(block_group); 568 } 569 570 static int cache_block_group(struct btrfs_block_group_cache *cache, 571 int load_cache_only) 572 { 573 DEFINE_WAIT(wait); 574 struct btrfs_fs_info *fs_info = cache->fs_info; 575 struct btrfs_caching_control *caching_ctl; 576 int ret = 0; 577 578 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 579 if (!caching_ctl) 580 return -ENOMEM; 581 582 INIT_LIST_HEAD(&caching_ctl->list); 583 mutex_init(&caching_ctl->mutex); 584 init_waitqueue_head(&caching_ctl->wait); 585 caching_ctl->block_group = cache; 586 caching_ctl->progress = cache->key.objectid; 587 refcount_set(&caching_ctl->count, 1); 588 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 589 caching_thread, NULL, NULL); 590 591 spin_lock(&cache->lock); 592 /* 593 * This should be a rare occasion, but this could happen I think in the 594 * case where one thread starts to load the space cache info, and then 595 * some other thread starts a transaction commit which tries to do an 596 * allocation while the other thread is still loading the space cache 597 * info. The previous loop should have kept us from choosing this block 598 * group, but if we've moved to the state where we will wait on caching 599 * block groups we need to first check if we're doing a fast load here, 600 * so we can wait for it to finish, otherwise we could end up allocating 601 * from a block group who's cache gets evicted for one reason or 602 * another. 603 */ 604 while (cache->cached == BTRFS_CACHE_FAST) { 605 struct btrfs_caching_control *ctl; 606 607 ctl = cache->caching_ctl; 608 refcount_inc(&ctl->count); 609 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 610 spin_unlock(&cache->lock); 611 612 schedule(); 613 614 finish_wait(&ctl->wait, &wait); 615 put_caching_control(ctl); 616 spin_lock(&cache->lock); 617 } 618 619 if (cache->cached != BTRFS_CACHE_NO) { 620 spin_unlock(&cache->lock); 621 kfree(caching_ctl); 622 return 0; 623 } 624 WARN_ON(cache->caching_ctl); 625 cache->caching_ctl = caching_ctl; 626 cache->cached = BTRFS_CACHE_FAST; 627 spin_unlock(&cache->lock); 628 629 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 630 mutex_lock(&caching_ctl->mutex); 631 ret = load_free_space_cache(fs_info, cache); 632 633 spin_lock(&cache->lock); 634 if (ret == 1) { 635 cache->caching_ctl = NULL; 636 cache->cached = BTRFS_CACHE_FINISHED; 637 cache->last_byte_to_unpin = (u64)-1; 638 caching_ctl->progress = (u64)-1; 639 } else { 640 if (load_cache_only) { 641 cache->caching_ctl = NULL; 642 cache->cached = BTRFS_CACHE_NO; 643 } else { 644 cache->cached = BTRFS_CACHE_STARTED; 645 cache->has_caching_ctl = 1; 646 } 647 } 648 spin_unlock(&cache->lock); 649 #ifdef CONFIG_BTRFS_DEBUG 650 if (ret == 1 && 651 btrfs_should_fragment_free_space(cache)) { 652 u64 bytes_used; 653 654 spin_lock(&cache->space_info->lock); 655 spin_lock(&cache->lock); 656 bytes_used = cache->key.offset - 657 btrfs_block_group_used(&cache->item); 658 cache->space_info->bytes_used += bytes_used >> 1; 659 spin_unlock(&cache->lock); 660 spin_unlock(&cache->space_info->lock); 661 fragment_free_space(cache); 662 } 663 #endif 664 mutex_unlock(&caching_ctl->mutex); 665 666 wake_up(&caching_ctl->wait); 667 if (ret == 1) { 668 put_caching_control(caching_ctl); 669 free_excluded_extents(fs_info, cache); 670 return 0; 671 } 672 } else { 673 /* 674 * We're either using the free space tree or no caching at all. 675 * Set cached to the appropriate value and wakeup any waiters. 676 */ 677 spin_lock(&cache->lock); 678 if (load_cache_only) { 679 cache->caching_ctl = NULL; 680 cache->cached = BTRFS_CACHE_NO; 681 } else { 682 cache->cached = BTRFS_CACHE_STARTED; 683 cache->has_caching_ctl = 1; 684 } 685 spin_unlock(&cache->lock); 686 wake_up(&caching_ctl->wait); 687 } 688 689 if (load_cache_only) { 690 put_caching_control(caching_ctl); 691 return 0; 692 } 693 694 down_write(&fs_info->commit_root_sem); 695 refcount_inc(&caching_ctl->count); 696 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 697 up_write(&fs_info->commit_root_sem); 698 699 btrfs_get_block_group(cache); 700 701 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 702 703 return ret; 704 } 705 706 /* 707 * return the block group that starts at or after bytenr 708 */ 709 static struct btrfs_block_group_cache * 710 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 711 { 712 return block_group_cache_tree_search(info, bytenr, 0); 713 } 714 715 /* 716 * return the block group that contains the given bytenr 717 */ 718 struct btrfs_block_group_cache *btrfs_lookup_block_group( 719 struct btrfs_fs_info *info, 720 u64 bytenr) 721 { 722 return block_group_cache_tree_search(info, bytenr, 1); 723 } 724 725 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 726 u64 flags) 727 { 728 struct list_head *head = &info->space_info; 729 struct btrfs_space_info *found; 730 731 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 732 733 rcu_read_lock(); 734 list_for_each_entry_rcu(found, head, list) { 735 if (found->flags & flags) { 736 rcu_read_unlock(); 737 return found; 738 } 739 } 740 rcu_read_unlock(); 741 return NULL; 742 } 743 744 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 745 bool metadata, u64 root_objectid) 746 { 747 struct btrfs_space_info *space_info; 748 u64 flags; 749 750 if (metadata) { 751 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 752 flags = BTRFS_BLOCK_GROUP_SYSTEM; 753 else 754 flags = BTRFS_BLOCK_GROUP_METADATA; 755 } else { 756 flags = BTRFS_BLOCK_GROUP_DATA; 757 } 758 759 space_info = __find_space_info(fs_info, flags); 760 ASSERT(space_info); 761 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 762 } 763 764 /* 765 * after adding space to the filesystem, we need to clear the full flags 766 * on all the space infos. 767 */ 768 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 769 { 770 struct list_head *head = &info->space_info; 771 struct btrfs_space_info *found; 772 773 rcu_read_lock(); 774 list_for_each_entry_rcu(found, head, list) 775 found->full = 0; 776 rcu_read_unlock(); 777 } 778 779 /* simple helper to search for an existing data extent at a given offset */ 780 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 781 { 782 int ret; 783 struct btrfs_key key; 784 struct btrfs_path *path; 785 786 path = btrfs_alloc_path(); 787 if (!path) 788 return -ENOMEM; 789 790 key.objectid = start; 791 key.offset = len; 792 key.type = BTRFS_EXTENT_ITEM_KEY; 793 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 794 btrfs_free_path(path); 795 return ret; 796 } 797 798 /* 799 * helper function to lookup reference count and flags of a tree block. 800 * 801 * the head node for delayed ref is used to store the sum of all the 802 * reference count modifications queued up in the rbtree. the head 803 * node may also store the extent flags to set. This way you can check 804 * to see what the reference count and extent flags would be if all of 805 * the delayed refs are not processed. 806 */ 807 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 808 struct btrfs_fs_info *fs_info, u64 bytenr, 809 u64 offset, int metadata, u64 *refs, u64 *flags) 810 { 811 struct btrfs_delayed_ref_head *head; 812 struct btrfs_delayed_ref_root *delayed_refs; 813 struct btrfs_path *path; 814 struct btrfs_extent_item *ei; 815 struct extent_buffer *leaf; 816 struct btrfs_key key; 817 u32 item_size; 818 u64 num_refs; 819 u64 extent_flags; 820 int ret; 821 822 /* 823 * If we don't have skinny metadata, don't bother doing anything 824 * different 825 */ 826 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 827 offset = fs_info->nodesize; 828 metadata = 0; 829 } 830 831 path = btrfs_alloc_path(); 832 if (!path) 833 return -ENOMEM; 834 835 if (!trans) { 836 path->skip_locking = 1; 837 path->search_commit_root = 1; 838 } 839 840 search_again: 841 key.objectid = bytenr; 842 key.offset = offset; 843 if (metadata) 844 key.type = BTRFS_METADATA_ITEM_KEY; 845 else 846 key.type = BTRFS_EXTENT_ITEM_KEY; 847 848 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 849 if (ret < 0) 850 goto out_free; 851 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 853 if (path->slots[0]) { 854 path->slots[0]--; 855 btrfs_item_key_to_cpu(path->nodes[0], &key, 856 path->slots[0]); 857 if (key.objectid == bytenr && 858 key.type == BTRFS_EXTENT_ITEM_KEY && 859 key.offset == fs_info->nodesize) 860 ret = 0; 861 } 862 } 863 864 if (ret == 0) { 865 leaf = path->nodes[0]; 866 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 867 if (item_size >= sizeof(*ei)) { 868 ei = btrfs_item_ptr(leaf, path->slots[0], 869 struct btrfs_extent_item); 870 num_refs = btrfs_extent_refs(leaf, ei); 871 extent_flags = btrfs_extent_flags(leaf, ei); 872 } else { 873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 874 struct btrfs_extent_item_v0 *ei0; 875 BUG_ON(item_size != sizeof(*ei0)); 876 ei0 = btrfs_item_ptr(leaf, path->slots[0], 877 struct btrfs_extent_item_v0); 878 num_refs = btrfs_extent_refs_v0(leaf, ei0); 879 /* FIXME: this isn't correct for data */ 880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 881 #else 882 BUG(); 883 #endif 884 } 885 BUG_ON(num_refs == 0); 886 } else { 887 num_refs = 0; 888 extent_flags = 0; 889 ret = 0; 890 } 891 892 if (!trans) 893 goto out; 894 895 delayed_refs = &trans->transaction->delayed_refs; 896 spin_lock(&delayed_refs->lock); 897 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 898 if (head) { 899 if (!mutex_trylock(&head->mutex)) { 900 refcount_inc(&head->refs); 901 spin_unlock(&delayed_refs->lock); 902 903 btrfs_release_path(path); 904 905 /* 906 * Mutex was contended, block until it's released and try 907 * again 908 */ 909 mutex_lock(&head->mutex); 910 mutex_unlock(&head->mutex); 911 btrfs_put_delayed_ref_head(head); 912 goto search_again; 913 } 914 spin_lock(&head->lock); 915 if (head->extent_op && head->extent_op->update_flags) 916 extent_flags |= head->extent_op->flags_to_set; 917 else 918 BUG_ON(num_refs == 0); 919 920 num_refs += head->ref_mod; 921 spin_unlock(&head->lock); 922 mutex_unlock(&head->mutex); 923 } 924 spin_unlock(&delayed_refs->lock); 925 out: 926 WARN_ON(num_refs == 0); 927 if (refs) 928 *refs = num_refs; 929 if (flags) 930 *flags = extent_flags; 931 out_free: 932 btrfs_free_path(path); 933 return ret; 934 } 935 936 /* 937 * Back reference rules. Back refs have three main goals: 938 * 939 * 1) differentiate between all holders of references to an extent so that 940 * when a reference is dropped we can make sure it was a valid reference 941 * before freeing the extent. 942 * 943 * 2) Provide enough information to quickly find the holders of an extent 944 * if we notice a given block is corrupted or bad. 945 * 946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 947 * maintenance. This is actually the same as #2, but with a slightly 948 * different use case. 949 * 950 * There are two kinds of back refs. The implicit back refs is optimized 951 * for pointers in non-shared tree blocks. For a given pointer in a block, 952 * back refs of this kind provide information about the block's owner tree 953 * and the pointer's key. These information allow us to find the block by 954 * b-tree searching. The full back refs is for pointers in tree blocks not 955 * referenced by their owner trees. The location of tree block is recorded 956 * in the back refs. Actually the full back refs is generic, and can be 957 * used in all cases the implicit back refs is used. The major shortcoming 958 * of the full back refs is its overhead. Every time a tree block gets 959 * COWed, we have to update back refs entry for all pointers in it. 960 * 961 * For a newly allocated tree block, we use implicit back refs for 962 * pointers in it. This means most tree related operations only involve 963 * implicit back refs. For a tree block created in old transaction, the 964 * only way to drop a reference to it is COW it. So we can detect the 965 * event that tree block loses its owner tree's reference and do the 966 * back refs conversion. 967 * 968 * When a tree block is COWed through a tree, there are four cases: 969 * 970 * The reference count of the block is one and the tree is the block's 971 * owner tree. Nothing to do in this case. 972 * 973 * The reference count of the block is one and the tree is not the 974 * block's owner tree. In this case, full back refs is used for pointers 975 * in the block. Remove these full back refs, add implicit back refs for 976 * every pointers in the new block. 977 * 978 * The reference count of the block is greater than one and the tree is 979 * the block's owner tree. In this case, implicit back refs is used for 980 * pointers in the block. Add full back refs for every pointers in the 981 * block, increase lower level extents' reference counts. The original 982 * implicit back refs are entailed to the new block. 983 * 984 * The reference count of the block is greater than one and the tree is 985 * not the block's owner tree. Add implicit back refs for every pointer in 986 * the new block, increase lower level extents' reference count. 987 * 988 * Back Reference Key composing: 989 * 990 * The key objectid corresponds to the first byte in the extent, 991 * The key type is used to differentiate between types of back refs. 992 * There are different meanings of the key offset for different types 993 * of back refs. 994 * 995 * File extents can be referenced by: 996 * 997 * - multiple snapshots, subvolumes, or different generations in one subvol 998 * - different files inside a single subvolume 999 * - different offsets inside a file (bookend extents in file.c) 1000 * 1001 * The extent ref structure for the implicit back refs has fields for: 1002 * 1003 * - Objectid of the subvolume root 1004 * - objectid of the file holding the reference 1005 * - original offset in the file 1006 * - how many bookend extents 1007 * 1008 * The key offset for the implicit back refs is hash of the first 1009 * three fields. 1010 * 1011 * The extent ref structure for the full back refs has field for: 1012 * 1013 * - number of pointers in the tree leaf 1014 * 1015 * The key offset for the implicit back refs is the first byte of 1016 * the tree leaf 1017 * 1018 * When a file extent is allocated, The implicit back refs is used. 1019 * the fields are filled in: 1020 * 1021 * (root_key.objectid, inode objectid, offset in file, 1) 1022 * 1023 * When a file extent is removed file truncation, we find the 1024 * corresponding implicit back refs and check the following fields: 1025 * 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1027 * 1028 * Btree extents can be referenced by: 1029 * 1030 * - Different subvolumes 1031 * 1032 * Both the implicit back refs and the full back refs for tree blocks 1033 * only consist of key. The key offset for the implicit back refs is 1034 * objectid of block's owner tree. The key offset for the full back refs 1035 * is the first byte of parent block. 1036 * 1037 * When implicit back refs is used, information about the lowest key and 1038 * level of the tree block are required. These information are stored in 1039 * tree block info structure. 1040 */ 1041 1042 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1043 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1044 struct btrfs_fs_info *fs_info, 1045 struct btrfs_path *path, 1046 u64 owner, u32 extra_size) 1047 { 1048 struct btrfs_root *root = fs_info->extent_root; 1049 struct btrfs_extent_item *item; 1050 struct btrfs_extent_item_v0 *ei0; 1051 struct btrfs_extent_ref_v0 *ref0; 1052 struct btrfs_tree_block_info *bi; 1053 struct extent_buffer *leaf; 1054 struct btrfs_key key; 1055 struct btrfs_key found_key; 1056 u32 new_size = sizeof(*item); 1057 u64 refs; 1058 int ret; 1059 1060 leaf = path->nodes[0]; 1061 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1062 1063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1064 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1065 struct btrfs_extent_item_v0); 1066 refs = btrfs_extent_refs_v0(leaf, ei0); 1067 1068 if (owner == (u64)-1) { 1069 while (1) { 1070 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1071 ret = btrfs_next_leaf(root, path); 1072 if (ret < 0) 1073 return ret; 1074 BUG_ON(ret > 0); /* Corruption */ 1075 leaf = path->nodes[0]; 1076 } 1077 btrfs_item_key_to_cpu(leaf, &found_key, 1078 path->slots[0]); 1079 BUG_ON(key.objectid != found_key.objectid); 1080 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1081 path->slots[0]++; 1082 continue; 1083 } 1084 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1085 struct btrfs_extent_ref_v0); 1086 owner = btrfs_ref_objectid_v0(leaf, ref0); 1087 break; 1088 } 1089 } 1090 btrfs_release_path(path); 1091 1092 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1093 new_size += sizeof(*bi); 1094 1095 new_size -= sizeof(*ei0); 1096 ret = btrfs_search_slot(trans, root, &key, path, 1097 new_size + extra_size, 1); 1098 if (ret < 0) 1099 return ret; 1100 BUG_ON(ret); /* Corruption */ 1101 1102 btrfs_extend_item(fs_info, path, new_size); 1103 1104 leaf = path->nodes[0]; 1105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1106 btrfs_set_extent_refs(leaf, item, refs); 1107 /* FIXME: get real generation */ 1108 btrfs_set_extent_generation(leaf, item, 0); 1109 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1110 btrfs_set_extent_flags(leaf, item, 1111 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1112 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1113 bi = (struct btrfs_tree_block_info *)(item + 1); 1114 /* FIXME: get first key of the block */ 1115 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1116 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1117 } else { 1118 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1119 } 1120 btrfs_mark_buffer_dirty(leaf); 1121 return 0; 1122 } 1123 #endif 1124 1125 /* 1126 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1127 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1128 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1129 */ 1130 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1131 struct btrfs_extent_inline_ref *iref, 1132 enum btrfs_inline_ref_type is_data) 1133 { 1134 int type = btrfs_extent_inline_ref_type(eb, iref); 1135 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1136 1137 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1138 type == BTRFS_SHARED_BLOCK_REF_KEY || 1139 type == BTRFS_SHARED_DATA_REF_KEY || 1140 type == BTRFS_EXTENT_DATA_REF_KEY) { 1141 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1142 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1143 return type; 1144 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1145 ASSERT(eb->fs_info); 1146 /* 1147 * Every shared one has parent tree 1148 * block, which must be aligned to 1149 * nodesize. 1150 */ 1151 if (offset && 1152 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1153 return type; 1154 } 1155 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1156 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1157 return type; 1158 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1159 ASSERT(eb->fs_info); 1160 /* 1161 * Every shared one has parent tree 1162 * block, which must be aligned to 1163 * nodesize. 1164 */ 1165 if (offset && 1166 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1167 return type; 1168 } 1169 } else { 1170 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1171 return type; 1172 } 1173 } 1174 1175 btrfs_print_leaf((struct extent_buffer *)eb); 1176 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1177 eb->start, type); 1178 WARN_ON(1); 1179 1180 return BTRFS_REF_TYPE_INVALID; 1181 } 1182 1183 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1184 { 1185 u32 high_crc = ~(u32)0; 1186 u32 low_crc = ~(u32)0; 1187 __le64 lenum; 1188 1189 lenum = cpu_to_le64(root_objectid); 1190 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1191 lenum = cpu_to_le64(owner); 1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1193 lenum = cpu_to_le64(offset); 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1195 1196 return ((u64)high_crc << 31) ^ (u64)low_crc; 1197 } 1198 1199 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1200 struct btrfs_extent_data_ref *ref) 1201 { 1202 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1203 btrfs_extent_data_ref_objectid(leaf, ref), 1204 btrfs_extent_data_ref_offset(leaf, ref)); 1205 } 1206 1207 static int match_extent_data_ref(struct extent_buffer *leaf, 1208 struct btrfs_extent_data_ref *ref, 1209 u64 root_objectid, u64 owner, u64 offset) 1210 { 1211 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1212 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1213 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1214 return 0; 1215 return 1; 1216 } 1217 1218 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1219 struct btrfs_fs_info *fs_info, 1220 struct btrfs_path *path, 1221 u64 bytenr, u64 parent, 1222 u64 root_objectid, 1223 u64 owner, u64 offset) 1224 { 1225 struct btrfs_root *root = fs_info->extent_root; 1226 struct btrfs_key key; 1227 struct btrfs_extent_data_ref *ref; 1228 struct extent_buffer *leaf; 1229 u32 nritems; 1230 int ret; 1231 int recow; 1232 int err = -ENOENT; 1233 1234 key.objectid = bytenr; 1235 if (parent) { 1236 key.type = BTRFS_SHARED_DATA_REF_KEY; 1237 key.offset = parent; 1238 } else { 1239 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1240 key.offset = hash_extent_data_ref(root_objectid, 1241 owner, offset); 1242 } 1243 again: 1244 recow = 0; 1245 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1246 if (ret < 0) { 1247 err = ret; 1248 goto fail; 1249 } 1250 1251 if (parent) { 1252 if (!ret) 1253 return 0; 1254 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1255 key.type = BTRFS_EXTENT_REF_V0_KEY; 1256 btrfs_release_path(path); 1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1258 if (ret < 0) { 1259 err = ret; 1260 goto fail; 1261 } 1262 if (!ret) 1263 return 0; 1264 #endif 1265 goto fail; 1266 } 1267 1268 leaf = path->nodes[0]; 1269 nritems = btrfs_header_nritems(leaf); 1270 while (1) { 1271 if (path->slots[0] >= nritems) { 1272 ret = btrfs_next_leaf(root, path); 1273 if (ret < 0) 1274 err = ret; 1275 if (ret) 1276 goto fail; 1277 1278 leaf = path->nodes[0]; 1279 nritems = btrfs_header_nritems(leaf); 1280 recow = 1; 1281 } 1282 1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1284 if (key.objectid != bytenr || 1285 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1286 goto fail; 1287 1288 ref = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_extent_data_ref); 1290 1291 if (match_extent_data_ref(leaf, ref, root_objectid, 1292 owner, offset)) { 1293 if (recow) { 1294 btrfs_release_path(path); 1295 goto again; 1296 } 1297 err = 0; 1298 break; 1299 } 1300 path->slots[0]++; 1301 } 1302 fail: 1303 return err; 1304 } 1305 1306 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1307 struct btrfs_fs_info *fs_info, 1308 struct btrfs_path *path, 1309 u64 bytenr, u64 parent, 1310 u64 root_objectid, u64 owner, 1311 u64 offset, int refs_to_add) 1312 { 1313 struct btrfs_root *root = fs_info->extent_root; 1314 struct btrfs_key key; 1315 struct extent_buffer *leaf; 1316 u32 size; 1317 u32 num_refs; 1318 int ret; 1319 1320 key.objectid = bytenr; 1321 if (parent) { 1322 key.type = BTRFS_SHARED_DATA_REF_KEY; 1323 key.offset = parent; 1324 size = sizeof(struct btrfs_shared_data_ref); 1325 } else { 1326 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1327 key.offset = hash_extent_data_ref(root_objectid, 1328 owner, offset); 1329 size = sizeof(struct btrfs_extent_data_ref); 1330 } 1331 1332 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1333 if (ret && ret != -EEXIST) 1334 goto fail; 1335 1336 leaf = path->nodes[0]; 1337 if (parent) { 1338 struct btrfs_shared_data_ref *ref; 1339 ref = btrfs_item_ptr(leaf, path->slots[0], 1340 struct btrfs_shared_data_ref); 1341 if (ret == 0) { 1342 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1343 } else { 1344 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1345 num_refs += refs_to_add; 1346 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1347 } 1348 } else { 1349 struct btrfs_extent_data_ref *ref; 1350 while (ret == -EEXIST) { 1351 ref = btrfs_item_ptr(leaf, path->slots[0], 1352 struct btrfs_extent_data_ref); 1353 if (match_extent_data_ref(leaf, ref, root_objectid, 1354 owner, offset)) 1355 break; 1356 btrfs_release_path(path); 1357 key.offset++; 1358 ret = btrfs_insert_empty_item(trans, root, path, &key, 1359 size); 1360 if (ret && ret != -EEXIST) 1361 goto fail; 1362 1363 leaf = path->nodes[0]; 1364 } 1365 ref = btrfs_item_ptr(leaf, path->slots[0], 1366 struct btrfs_extent_data_ref); 1367 if (ret == 0) { 1368 btrfs_set_extent_data_ref_root(leaf, ref, 1369 root_objectid); 1370 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1371 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1372 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1373 } else { 1374 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1375 num_refs += refs_to_add; 1376 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1377 } 1378 } 1379 btrfs_mark_buffer_dirty(leaf); 1380 ret = 0; 1381 fail: 1382 btrfs_release_path(path); 1383 return ret; 1384 } 1385 1386 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1387 struct btrfs_fs_info *fs_info, 1388 struct btrfs_path *path, 1389 int refs_to_drop, int *last_ref) 1390 { 1391 struct btrfs_key key; 1392 struct btrfs_extent_data_ref *ref1 = NULL; 1393 struct btrfs_shared_data_ref *ref2 = NULL; 1394 struct extent_buffer *leaf; 1395 u32 num_refs = 0; 1396 int ret = 0; 1397 1398 leaf = path->nodes[0]; 1399 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1400 1401 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1402 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1403 struct btrfs_extent_data_ref); 1404 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1405 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1406 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1407 struct btrfs_shared_data_ref); 1408 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1410 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1411 struct btrfs_extent_ref_v0 *ref0; 1412 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1413 struct btrfs_extent_ref_v0); 1414 num_refs = btrfs_ref_count_v0(leaf, ref0); 1415 #endif 1416 } else { 1417 BUG(); 1418 } 1419 1420 BUG_ON(num_refs < refs_to_drop); 1421 num_refs -= refs_to_drop; 1422 1423 if (num_refs == 0) { 1424 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1425 *last_ref = 1; 1426 } else { 1427 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1428 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1429 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1430 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1431 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1432 else { 1433 struct btrfs_extent_ref_v0 *ref0; 1434 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1435 struct btrfs_extent_ref_v0); 1436 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1437 } 1438 #endif 1439 btrfs_mark_buffer_dirty(leaf); 1440 } 1441 return ret; 1442 } 1443 1444 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1445 struct btrfs_extent_inline_ref *iref) 1446 { 1447 struct btrfs_key key; 1448 struct extent_buffer *leaf; 1449 struct btrfs_extent_data_ref *ref1; 1450 struct btrfs_shared_data_ref *ref2; 1451 u32 num_refs = 0; 1452 int type; 1453 1454 leaf = path->nodes[0]; 1455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1456 if (iref) { 1457 /* 1458 * If type is invalid, we should have bailed out earlier than 1459 * this call. 1460 */ 1461 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1462 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1463 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1464 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1465 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1466 } else { 1467 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1468 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1469 } 1470 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1471 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1472 struct btrfs_extent_data_ref); 1473 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1474 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1475 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1476 struct btrfs_shared_data_ref); 1477 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1478 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1479 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1480 struct btrfs_extent_ref_v0 *ref0; 1481 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1482 struct btrfs_extent_ref_v0); 1483 num_refs = btrfs_ref_count_v0(leaf, ref0); 1484 #endif 1485 } else { 1486 WARN_ON(1); 1487 } 1488 return num_refs; 1489 } 1490 1491 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1492 struct btrfs_fs_info *fs_info, 1493 struct btrfs_path *path, 1494 u64 bytenr, u64 parent, 1495 u64 root_objectid) 1496 { 1497 struct btrfs_root *root = fs_info->extent_root; 1498 struct btrfs_key key; 1499 int ret; 1500 1501 key.objectid = bytenr; 1502 if (parent) { 1503 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1504 key.offset = parent; 1505 } else { 1506 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1507 key.offset = root_objectid; 1508 } 1509 1510 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1511 if (ret > 0) 1512 ret = -ENOENT; 1513 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1514 if (ret == -ENOENT && parent) { 1515 btrfs_release_path(path); 1516 key.type = BTRFS_EXTENT_REF_V0_KEY; 1517 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1518 if (ret > 0) 1519 ret = -ENOENT; 1520 } 1521 #endif 1522 return ret; 1523 } 1524 1525 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1526 struct btrfs_fs_info *fs_info, 1527 struct btrfs_path *path, 1528 u64 bytenr, u64 parent, 1529 u64 root_objectid) 1530 { 1531 struct btrfs_key key; 1532 int ret; 1533 1534 key.objectid = bytenr; 1535 if (parent) { 1536 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1537 key.offset = parent; 1538 } else { 1539 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1540 key.offset = root_objectid; 1541 } 1542 1543 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1544 path, &key, 0); 1545 btrfs_release_path(path); 1546 return ret; 1547 } 1548 1549 static inline int extent_ref_type(u64 parent, u64 owner) 1550 { 1551 int type; 1552 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1553 if (parent > 0) 1554 type = BTRFS_SHARED_BLOCK_REF_KEY; 1555 else 1556 type = BTRFS_TREE_BLOCK_REF_KEY; 1557 } else { 1558 if (parent > 0) 1559 type = BTRFS_SHARED_DATA_REF_KEY; 1560 else 1561 type = BTRFS_EXTENT_DATA_REF_KEY; 1562 } 1563 return type; 1564 } 1565 1566 static int find_next_key(struct btrfs_path *path, int level, 1567 struct btrfs_key *key) 1568 1569 { 1570 for (; level < BTRFS_MAX_LEVEL; level++) { 1571 if (!path->nodes[level]) 1572 break; 1573 if (path->slots[level] + 1 >= 1574 btrfs_header_nritems(path->nodes[level])) 1575 continue; 1576 if (level == 0) 1577 btrfs_item_key_to_cpu(path->nodes[level], key, 1578 path->slots[level] + 1); 1579 else 1580 btrfs_node_key_to_cpu(path->nodes[level], key, 1581 path->slots[level] + 1); 1582 return 0; 1583 } 1584 return 1; 1585 } 1586 1587 /* 1588 * look for inline back ref. if back ref is found, *ref_ret is set 1589 * to the address of inline back ref, and 0 is returned. 1590 * 1591 * if back ref isn't found, *ref_ret is set to the address where it 1592 * should be inserted, and -ENOENT is returned. 1593 * 1594 * if insert is true and there are too many inline back refs, the path 1595 * points to the extent item, and -EAGAIN is returned. 1596 * 1597 * NOTE: inline back refs are ordered in the same way that back ref 1598 * items in the tree are ordered. 1599 */ 1600 static noinline_for_stack 1601 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1602 struct btrfs_fs_info *fs_info, 1603 struct btrfs_path *path, 1604 struct btrfs_extent_inline_ref **ref_ret, 1605 u64 bytenr, u64 num_bytes, 1606 u64 parent, u64 root_objectid, 1607 u64 owner, u64 offset, int insert) 1608 { 1609 struct btrfs_root *root = fs_info->extent_root; 1610 struct btrfs_key key; 1611 struct extent_buffer *leaf; 1612 struct btrfs_extent_item *ei; 1613 struct btrfs_extent_inline_ref *iref; 1614 u64 flags; 1615 u64 item_size; 1616 unsigned long ptr; 1617 unsigned long end; 1618 int extra_size; 1619 int type; 1620 int want; 1621 int ret; 1622 int err = 0; 1623 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1624 int needed; 1625 1626 key.objectid = bytenr; 1627 key.type = BTRFS_EXTENT_ITEM_KEY; 1628 key.offset = num_bytes; 1629 1630 want = extent_ref_type(parent, owner); 1631 if (insert) { 1632 extra_size = btrfs_extent_inline_ref_size(want); 1633 path->keep_locks = 1; 1634 } else 1635 extra_size = -1; 1636 1637 /* 1638 * Owner is our parent level, so we can just add one to get the level 1639 * for the block we are interested in. 1640 */ 1641 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1642 key.type = BTRFS_METADATA_ITEM_KEY; 1643 key.offset = owner; 1644 } 1645 1646 again: 1647 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1648 if (ret < 0) { 1649 err = ret; 1650 goto out; 1651 } 1652 1653 /* 1654 * We may be a newly converted file system which still has the old fat 1655 * extent entries for metadata, so try and see if we have one of those. 1656 */ 1657 if (ret > 0 && skinny_metadata) { 1658 skinny_metadata = false; 1659 if (path->slots[0]) { 1660 path->slots[0]--; 1661 btrfs_item_key_to_cpu(path->nodes[0], &key, 1662 path->slots[0]); 1663 if (key.objectid == bytenr && 1664 key.type == BTRFS_EXTENT_ITEM_KEY && 1665 key.offset == num_bytes) 1666 ret = 0; 1667 } 1668 if (ret) { 1669 key.objectid = bytenr; 1670 key.type = BTRFS_EXTENT_ITEM_KEY; 1671 key.offset = num_bytes; 1672 btrfs_release_path(path); 1673 goto again; 1674 } 1675 } 1676 1677 if (ret && !insert) { 1678 err = -ENOENT; 1679 goto out; 1680 } else if (WARN_ON(ret)) { 1681 err = -EIO; 1682 goto out; 1683 } 1684 1685 leaf = path->nodes[0]; 1686 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1687 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1688 if (item_size < sizeof(*ei)) { 1689 if (!insert) { 1690 err = -ENOENT; 1691 goto out; 1692 } 1693 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1694 extra_size); 1695 if (ret < 0) { 1696 err = ret; 1697 goto out; 1698 } 1699 leaf = path->nodes[0]; 1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1701 } 1702 #endif 1703 BUG_ON(item_size < sizeof(*ei)); 1704 1705 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1706 flags = btrfs_extent_flags(leaf, ei); 1707 1708 ptr = (unsigned long)(ei + 1); 1709 end = (unsigned long)ei + item_size; 1710 1711 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1712 ptr += sizeof(struct btrfs_tree_block_info); 1713 BUG_ON(ptr > end); 1714 } 1715 1716 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1717 needed = BTRFS_REF_TYPE_DATA; 1718 else 1719 needed = BTRFS_REF_TYPE_BLOCK; 1720 1721 err = -ENOENT; 1722 while (1) { 1723 if (ptr >= end) { 1724 WARN_ON(ptr > end); 1725 break; 1726 } 1727 iref = (struct btrfs_extent_inline_ref *)ptr; 1728 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1729 if (type == BTRFS_REF_TYPE_INVALID) { 1730 err = -EINVAL; 1731 goto out; 1732 } 1733 1734 if (want < type) 1735 break; 1736 if (want > type) { 1737 ptr += btrfs_extent_inline_ref_size(type); 1738 continue; 1739 } 1740 1741 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1742 struct btrfs_extent_data_ref *dref; 1743 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1744 if (match_extent_data_ref(leaf, dref, root_objectid, 1745 owner, offset)) { 1746 err = 0; 1747 break; 1748 } 1749 if (hash_extent_data_ref_item(leaf, dref) < 1750 hash_extent_data_ref(root_objectid, owner, offset)) 1751 break; 1752 } else { 1753 u64 ref_offset; 1754 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1755 if (parent > 0) { 1756 if (parent == ref_offset) { 1757 err = 0; 1758 break; 1759 } 1760 if (ref_offset < parent) 1761 break; 1762 } else { 1763 if (root_objectid == ref_offset) { 1764 err = 0; 1765 break; 1766 } 1767 if (ref_offset < root_objectid) 1768 break; 1769 } 1770 } 1771 ptr += btrfs_extent_inline_ref_size(type); 1772 } 1773 if (err == -ENOENT && insert) { 1774 if (item_size + extra_size >= 1775 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1776 err = -EAGAIN; 1777 goto out; 1778 } 1779 /* 1780 * To add new inline back ref, we have to make sure 1781 * there is no corresponding back ref item. 1782 * For simplicity, we just do not add new inline back 1783 * ref if there is any kind of item for this block 1784 */ 1785 if (find_next_key(path, 0, &key) == 0 && 1786 key.objectid == bytenr && 1787 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1788 err = -EAGAIN; 1789 goto out; 1790 } 1791 } 1792 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1793 out: 1794 if (insert) { 1795 path->keep_locks = 0; 1796 btrfs_unlock_up_safe(path, 1); 1797 } 1798 return err; 1799 } 1800 1801 /* 1802 * helper to add new inline back ref 1803 */ 1804 static noinline_for_stack 1805 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1806 struct btrfs_path *path, 1807 struct btrfs_extent_inline_ref *iref, 1808 u64 parent, u64 root_objectid, 1809 u64 owner, u64 offset, int refs_to_add, 1810 struct btrfs_delayed_extent_op *extent_op) 1811 { 1812 struct extent_buffer *leaf; 1813 struct btrfs_extent_item *ei; 1814 unsigned long ptr; 1815 unsigned long end; 1816 unsigned long item_offset; 1817 u64 refs; 1818 int size; 1819 int type; 1820 1821 leaf = path->nodes[0]; 1822 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1823 item_offset = (unsigned long)iref - (unsigned long)ei; 1824 1825 type = extent_ref_type(parent, owner); 1826 size = btrfs_extent_inline_ref_size(type); 1827 1828 btrfs_extend_item(fs_info, path, size); 1829 1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1831 refs = btrfs_extent_refs(leaf, ei); 1832 refs += refs_to_add; 1833 btrfs_set_extent_refs(leaf, ei, refs); 1834 if (extent_op) 1835 __run_delayed_extent_op(extent_op, leaf, ei); 1836 1837 ptr = (unsigned long)ei + item_offset; 1838 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1839 if (ptr < end - size) 1840 memmove_extent_buffer(leaf, ptr + size, ptr, 1841 end - size - ptr); 1842 1843 iref = (struct btrfs_extent_inline_ref *)ptr; 1844 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1845 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1846 struct btrfs_extent_data_ref *dref; 1847 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1848 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1849 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1850 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1851 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1853 struct btrfs_shared_data_ref *sref; 1854 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1855 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1856 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1857 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1859 } else { 1860 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1861 } 1862 btrfs_mark_buffer_dirty(leaf); 1863 } 1864 1865 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1866 struct btrfs_fs_info *fs_info, 1867 struct btrfs_path *path, 1868 struct btrfs_extent_inline_ref **ref_ret, 1869 u64 bytenr, u64 num_bytes, u64 parent, 1870 u64 root_objectid, u64 owner, u64 offset) 1871 { 1872 int ret; 1873 1874 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1875 bytenr, num_bytes, parent, 1876 root_objectid, owner, offset, 0); 1877 if (ret != -ENOENT) 1878 return ret; 1879 1880 btrfs_release_path(path); 1881 *ref_ret = NULL; 1882 1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1884 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1885 parent, root_objectid); 1886 } else { 1887 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1888 parent, root_objectid, owner, 1889 offset); 1890 } 1891 return ret; 1892 } 1893 1894 /* 1895 * helper to update/remove inline back ref 1896 */ 1897 static noinline_for_stack 1898 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1899 struct btrfs_path *path, 1900 struct btrfs_extent_inline_ref *iref, 1901 int refs_to_mod, 1902 struct btrfs_delayed_extent_op *extent_op, 1903 int *last_ref) 1904 { 1905 struct extent_buffer *leaf; 1906 struct btrfs_extent_item *ei; 1907 struct btrfs_extent_data_ref *dref = NULL; 1908 struct btrfs_shared_data_ref *sref = NULL; 1909 unsigned long ptr; 1910 unsigned long end; 1911 u32 item_size; 1912 int size; 1913 int type; 1914 u64 refs; 1915 1916 leaf = path->nodes[0]; 1917 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1918 refs = btrfs_extent_refs(leaf, ei); 1919 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1920 refs += refs_to_mod; 1921 btrfs_set_extent_refs(leaf, ei, refs); 1922 if (extent_op) 1923 __run_delayed_extent_op(extent_op, leaf, ei); 1924 1925 /* 1926 * If type is invalid, we should have bailed out after 1927 * lookup_inline_extent_backref(). 1928 */ 1929 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1930 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1931 1932 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1933 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1934 refs = btrfs_extent_data_ref_count(leaf, dref); 1935 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1936 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1937 refs = btrfs_shared_data_ref_count(leaf, sref); 1938 } else { 1939 refs = 1; 1940 BUG_ON(refs_to_mod != -1); 1941 } 1942 1943 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1944 refs += refs_to_mod; 1945 1946 if (refs > 0) { 1947 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1948 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1949 else 1950 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1951 } else { 1952 *last_ref = 1; 1953 size = btrfs_extent_inline_ref_size(type); 1954 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1955 ptr = (unsigned long)iref; 1956 end = (unsigned long)ei + item_size; 1957 if (ptr + size < end) 1958 memmove_extent_buffer(leaf, ptr, ptr + size, 1959 end - ptr - size); 1960 item_size -= size; 1961 btrfs_truncate_item(fs_info, path, item_size, 1); 1962 } 1963 btrfs_mark_buffer_dirty(leaf); 1964 } 1965 1966 static noinline_for_stack 1967 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1968 struct btrfs_fs_info *fs_info, 1969 struct btrfs_path *path, 1970 u64 bytenr, u64 num_bytes, u64 parent, 1971 u64 root_objectid, u64 owner, 1972 u64 offset, int refs_to_add, 1973 struct btrfs_delayed_extent_op *extent_op) 1974 { 1975 struct btrfs_extent_inline_ref *iref; 1976 int ret; 1977 1978 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1979 bytenr, num_bytes, parent, 1980 root_objectid, owner, offset, 1); 1981 if (ret == 0) { 1982 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1983 update_inline_extent_backref(fs_info, path, iref, 1984 refs_to_add, extent_op, NULL); 1985 } else if (ret == -ENOENT) { 1986 setup_inline_extent_backref(fs_info, path, iref, parent, 1987 root_objectid, owner, offset, 1988 refs_to_add, extent_op); 1989 ret = 0; 1990 } 1991 return ret; 1992 } 1993 1994 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1995 struct btrfs_fs_info *fs_info, 1996 struct btrfs_path *path, 1997 u64 bytenr, u64 parent, u64 root_objectid, 1998 u64 owner, u64 offset, int refs_to_add) 1999 { 2000 int ret; 2001 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2002 BUG_ON(refs_to_add != 1); 2003 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2004 parent, root_objectid); 2005 } else { 2006 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2007 parent, root_objectid, 2008 owner, offset, refs_to_add); 2009 } 2010 return ret; 2011 } 2012 2013 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2014 struct btrfs_fs_info *fs_info, 2015 struct btrfs_path *path, 2016 struct btrfs_extent_inline_ref *iref, 2017 int refs_to_drop, int is_data, int *last_ref) 2018 { 2019 int ret = 0; 2020 2021 BUG_ON(!is_data && refs_to_drop != 1); 2022 if (iref) { 2023 update_inline_extent_backref(fs_info, path, iref, 2024 -refs_to_drop, NULL, last_ref); 2025 } else if (is_data) { 2026 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2027 last_ref); 2028 } else { 2029 *last_ref = 1; 2030 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2031 } 2032 return ret; 2033 } 2034 2035 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2036 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2037 u64 *discarded_bytes) 2038 { 2039 int j, ret = 0; 2040 u64 bytes_left, end; 2041 u64 aligned_start = ALIGN(start, 1 << 9); 2042 2043 if (WARN_ON(start != aligned_start)) { 2044 len -= aligned_start - start; 2045 len = round_down(len, 1 << 9); 2046 start = aligned_start; 2047 } 2048 2049 *discarded_bytes = 0; 2050 2051 if (!len) 2052 return 0; 2053 2054 end = start + len; 2055 bytes_left = len; 2056 2057 /* Skip any superblocks on this device. */ 2058 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2059 u64 sb_start = btrfs_sb_offset(j); 2060 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2061 u64 size = sb_start - start; 2062 2063 if (!in_range(sb_start, start, bytes_left) && 2064 !in_range(sb_end, start, bytes_left) && 2065 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2066 continue; 2067 2068 /* 2069 * Superblock spans beginning of range. Adjust start and 2070 * try again. 2071 */ 2072 if (sb_start <= start) { 2073 start += sb_end - start; 2074 if (start > end) { 2075 bytes_left = 0; 2076 break; 2077 } 2078 bytes_left = end - start; 2079 continue; 2080 } 2081 2082 if (size) { 2083 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2084 GFP_NOFS, 0); 2085 if (!ret) 2086 *discarded_bytes += size; 2087 else if (ret != -EOPNOTSUPP) 2088 return ret; 2089 } 2090 2091 start = sb_end; 2092 if (start > end) { 2093 bytes_left = 0; 2094 break; 2095 } 2096 bytes_left = end - start; 2097 } 2098 2099 if (bytes_left) { 2100 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2101 GFP_NOFS, 0); 2102 if (!ret) 2103 *discarded_bytes += bytes_left; 2104 } 2105 return ret; 2106 } 2107 2108 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2109 u64 num_bytes, u64 *actual_bytes) 2110 { 2111 int ret; 2112 u64 discarded_bytes = 0; 2113 struct btrfs_bio *bbio = NULL; 2114 2115 2116 /* 2117 * Avoid races with device replace and make sure our bbio has devices 2118 * associated to its stripes that don't go away while we are discarding. 2119 */ 2120 btrfs_bio_counter_inc_blocked(fs_info); 2121 /* Tell the block device(s) that the sectors can be discarded */ 2122 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2123 &bbio, 0); 2124 /* Error condition is -ENOMEM */ 2125 if (!ret) { 2126 struct btrfs_bio_stripe *stripe = bbio->stripes; 2127 int i; 2128 2129 2130 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2131 u64 bytes; 2132 struct request_queue *req_q; 2133 2134 if (!stripe->dev->bdev) { 2135 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2136 continue; 2137 } 2138 req_q = bdev_get_queue(stripe->dev->bdev); 2139 if (!blk_queue_discard(req_q)) 2140 continue; 2141 2142 ret = btrfs_issue_discard(stripe->dev->bdev, 2143 stripe->physical, 2144 stripe->length, 2145 &bytes); 2146 if (!ret) 2147 discarded_bytes += bytes; 2148 else if (ret != -EOPNOTSUPP) 2149 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2150 2151 /* 2152 * Just in case we get back EOPNOTSUPP for some reason, 2153 * just ignore the return value so we don't screw up 2154 * people calling discard_extent. 2155 */ 2156 ret = 0; 2157 } 2158 btrfs_put_bbio(bbio); 2159 } 2160 btrfs_bio_counter_dec(fs_info); 2161 2162 if (actual_bytes) 2163 *actual_bytes = discarded_bytes; 2164 2165 2166 if (ret == -EOPNOTSUPP) 2167 ret = 0; 2168 return ret; 2169 } 2170 2171 /* Can return -ENOMEM */ 2172 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2173 struct btrfs_root *root, 2174 u64 bytenr, u64 num_bytes, u64 parent, 2175 u64 root_objectid, u64 owner, u64 offset) 2176 { 2177 struct btrfs_fs_info *fs_info = root->fs_info; 2178 int old_ref_mod, new_ref_mod; 2179 int ret; 2180 2181 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2182 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2183 2184 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2185 owner, offset, BTRFS_ADD_DELAYED_REF); 2186 2187 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2188 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2189 num_bytes, parent, 2190 root_objectid, (int)owner, 2191 BTRFS_ADD_DELAYED_REF, NULL, 2192 &old_ref_mod, &new_ref_mod); 2193 } else { 2194 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2195 num_bytes, parent, 2196 root_objectid, owner, offset, 2197 0, BTRFS_ADD_DELAYED_REF, 2198 &old_ref_mod, &new_ref_mod); 2199 } 2200 2201 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) { 2202 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 2203 2204 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid); 2205 } 2206 2207 return ret; 2208 } 2209 2210 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2211 struct btrfs_fs_info *fs_info, 2212 struct btrfs_delayed_ref_node *node, 2213 u64 parent, u64 root_objectid, 2214 u64 owner, u64 offset, int refs_to_add, 2215 struct btrfs_delayed_extent_op *extent_op) 2216 { 2217 struct btrfs_path *path; 2218 struct extent_buffer *leaf; 2219 struct btrfs_extent_item *item; 2220 struct btrfs_key key; 2221 u64 bytenr = node->bytenr; 2222 u64 num_bytes = node->num_bytes; 2223 u64 refs; 2224 int ret; 2225 2226 path = btrfs_alloc_path(); 2227 if (!path) 2228 return -ENOMEM; 2229 2230 path->reada = READA_FORWARD; 2231 path->leave_spinning = 1; 2232 /* this will setup the path even if it fails to insert the back ref */ 2233 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2234 num_bytes, parent, root_objectid, 2235 owner, offset, 2236 refs_to_add, extent_op); 2237 if ((ret < 0 && ret != -EAGAIN) || !ret) 2238 goto out; 2239 2240 /* 2241 * Ok we had -EAGAIN which means we didn't have space to insert and 2242 * inline extent ref, so just update the reference count and add a 2243 * normal backref. 2244 */ 2245 leaf = path->nodes[0]; 2246 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2247 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2248 refs = btrfs_extent_refs(leaf, item); 2249 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2250 if (extent_op) 2251 __run_delayed_extent_op(extent_op, leaf, item); 2252 2253 btrfs_mark_buffer_dirty(leaf); 2254 btrfs_release_path(path); 2255 2256 path->reada = READA_FORWARD; 2257 path->leave_spinning = 1; 2258 /* now insert the actual backref */ 2259 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2260 root_objectid, owner, offset, refs_to_add); 2261 if (ret) 2262 btrfs_abort_transaction(trans, ret); 2263 out: 2264 btrfs_free_path(path); 2265 return ret; 2266 } 2267 2268 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2269 struct btrfs_fs_info *fs_info, 2270 struct btrfs_delayed_ref_node *node, 2271 struct btrfs_delayed_extent_op *extent_op, 2272 int insert_reserved) 2273 { 2274 int ret = 0; 2275 struct btrfs_delayed_data_ref *ref; 2276 struct btrfs_key ins; 2277 u64 parent = 0; 2278 u64 ref_root = 0; 2279 u64 flags = 0; 2280 2281 ins.objectid = node->bytenr; 2282 ins.offset = node->num_bytes; 2283 ins.type = BTRFS_EXTENT_ITEM_KEY; 2284 2285 ref = btrfs_delayed_node_to_data_ref(node); 2286 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2287 2288 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2289 parent = ref->parent; 2290 ref_root = ref->root; 2291 2292 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2293 if (extent_op) 2294 flags |= extent_op->flags_to_set; 2295 ret = alloc_reserved_file_extent(trans, fs_info, 2296 parent, ref_root, flags, 2297 ref->objectid, ref->offset, 2298 &ins, node->ref_mod); 2299 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2300 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2301 ref_root, ref->objectid, 2302 ref->offset, node->ref_mod, 2303 extent_op); 2304 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2305 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2306 ref_root, ref->objectid, 2307 ref->offset, node->ref_mod, 2308 extent_op); 2309 } else { 2310 BUG(); 2311 } 2312 return ret; 2313 } 2314 2315 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2316 struct extent_buffer *leaf, 2317 struct btrfs_extent_item *ei) 2318 { 2319 u64 flags = btrfs_extent_flags(leaf, ei); 2320 if (extent_op->update_flags) { 2321 flags |= extent_op->flags_to_set; 2322 btrfs_set_extent_flags(leaf, ei, flags); 2323 } 2324 2325 if (extent_op->update_key) { 2326 struct btrfs_tree_block_info *bi; 2327 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2328 bi = (struct btrfs_tree_block_info *)(ei + 1); 2329 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2330 } 2331 } 2332 2333 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2334 struct btrfs_fs_info *fs_info, 2335 struct btrfs_delayed_ref_head *head, 2336 struct btrfs_delayed_extent_op *extent_op) 2337 { 2338 struct btrfs_key key; 2339 struct btrfs_path *path; 2340 struct btrfs_extent_item *ei; 2341 struct extent_buffer *leaf; 2342 u32 item_size; 2343 int ret; 2344 int err = 0; 2345 int metadata = !extent_op->is_data; 2346 2347 if (trans->aborted) 2348 return 0; 2349 2350 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2351 metadata = 0; 2352 2353 path = btrfs_alloc_path(); 2354 if (!path) 2355 return -ENOMEM; 2356 2357 key.objectid = head->bytenr; 2358 2359 if (metadata) { 2360 key.type = BTRFS_METADATA_ITEM_KEY; 2361 key.offset = extent_op->level; 2362 } else { 2363 key.type = BTRFS_EXTENT_ITEM_KEY; 2364 key.offset = head->num_bytes; 2365 } 2366 2367 again: 2368 path->reada = READA_FORWARD; 2369 path->leave_spinning = 1; 2370 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2371 if (ret < 0) { 2372 err = ret; 2373 goto out; 2374 } 2375 if (ret > 0) { 2376 if (metadata) { 2377 if (path->slots[0] > 0) { 2378 path->slots[0]--; 2379 btrfs_item_key_to_cpu(path->nodes[0], &key, 2380 path->slots[0]); 2381 if (key.objectid == head->bytenr && 2382 key.type == BTRFS_EXTENT_ITEM_KEY && 2383 key.offset == head->num_bytes) 2384 ret = 0; 2385 } 2386 if (ret > 0) { 2387 btrfs_release_path(path); 2388 metadata = 0; 2389 2390 key.objectid = head->bytenr; 2391 key.offset = head->num_bytes; 2392 key.type = BTRFS_EXTENT_ITEM_KEY; 2393 goto again; 2394 } 2395 } else { 2396 err = -EIO; 2397 goto out; 2398 } 2399 } 2400 2401 leaf = path->nodes[0]; 2402 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2403 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2404 if (item_size < sizeof(*ei)) { 2405 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2406 if (ret < 0) { 2407 err = ret; 2408 goto out; 2409 } 2410 leaf = path->nodes[0]; 2411 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2412 } 2413 #endif 2414 BUG_ON(item_size < sizeof(*ei)); 2415 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2416 __run_delayed_extent_op(extent_op, leaf, ei); 2417 2418 btrfs_mark_buffer_dirty(leaf); 2419 out: 2420 btrfs_free_path(path); 2421 return err; 2422 } 2423 2424 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2425 struct btrfs_fs_info *fs_info, 2426 struct btrfs_delayed_ref_node *node, 2427 struct btrfs_delayed_extent_op *extent_op, 2428 int insert_reserved) 2429 { 2430 int ret = 0; 2431 struct btrfs_delayed_tree_ref *ref; 2432 u64 parent = 0; 2433 u64 ref_root = 0; 2434 2435 ref = btrfs_delayed_node_to_tree_ref(node); 2436 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2437 2438 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2439 parent = ref->parent; 2440 ref_root = ref->root; 2441 2442 if (node->ref_mod != 1) { 2443 btrfs_err(fs_info, 2444 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2445 node->bytenr, node->ref_mod, node->action, ref_root, 2446 parent); 2447 return -EIO; 2448 } 2449 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2450 BUG_ON(!extent_op || !extent_op->update_flags); 2451 ret = alloc_reserved_tree_block(trans, node, extent_op); 2452 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2453 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2454 parent, ref_root, 2455 ref->level, 0, 1, 2456 extent_op); 2457 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2458 ret = __btrfs_free_extent(trans, fs_info, node, 2459 parent, ref_root, 2460 ref->level, 0, 1, extent_op); 2461 } else { 2462 BUG(); 2463 } 2464 return ret; 2465 } 2466 2467 /* helper function to actually process a single delayed ref entry */ 2468 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2469 struct btrfs_fs_info *fs_info, 2470 struct btrfs_delayed_ref_node *node, 2471 struct btrfs_delayed_extent_op *extent_op, 2472 int insert_reserved) 2473 { 2474 int ret = 0; 2475 2476 if (trans->aborted) { 2477 if (insert_reserved) 2478 btrfs_pin_extent(fs_info, node->bytenr, 2479 node->num_bytes, 1); 2480 return 0; 2481 } 2482 2483 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2484 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2485 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2486 insert_reserved); 2487 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2488 node->type == BTRFS_SHARED_DATA_REF_KEY) 2489 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2490 insert_reserved); 2491 else 2492 BUG(); 2493 return ret; 2494 } 2495 2496 static inline struct btrfs_delayed_ref_node * 2497 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2498 { 2499 struct btrfs_delayed_ref_node *ref; 2500 2501 if (RB_EMPTY_ROOT(&head->ref_tree)) 2502 return NULL; 2503 2504 /* 2505 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2506 * This is to prevent a ref count from going down to zero, which deletes 2507 * the extent item from the extent tree, when there still are references 2508 * to add, which would fail because they would not find the extent item. 2509 */ 2510 if (!list_empty(&head->ref_add_list)) 2511 return list_first_entry(&head->ref_add_list, 2512 struct btrfs_delayed_ref_node, add_list); 2513 2514 ref = rb_entry(rb_first(&head->ref_tree), 2515 struct btrfs_delayed_ref_node, ref_node); 2516 ASSERT(list_empty(&ref->add_list)); 2517 return ref; 2518 } 2519 2520 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2521 struct btrfs_delayed_ref_head *head) 2522 { 2523 spin_lock(&delayed_refs->lock); 2524 head->processing = 0; 2525 delayed_refs->num_heads_ready++; 2526 spin_unlock(&delayed_refs->lock); 2527 btrfs_delayed_ref_unlock(head); 2528 } 2529 2530 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2531 struct btrfs_fs_info *fs_info, 2532 struct btrfs_delayed_ref_head *head) 2533 { 2534 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2535 int ret; 2536 2537 if (!extent_op) 2538 return 0; 2539 head->extent_op = NULL; 2540 if (head->must_insert_reserved) { 2541 btrfs_free_delayed_extent_op(extent_op); 2542 return 0; 2543 } 2544 spin_unlock(&head->lock); 2545 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2546 btrfs_free_delayed_extent_op(extent_op); 2547 return ret ? ret : 1; 2548 } 2549 2550 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2551 struct btrfs_fs_info *fs_info, 2552 struct btrfs_delayed_ref_head *head) 2553 { 2554 struct btrfs_delayed_ref_root *delayed_refs; 2555 int ret; 2556 2557 delayed_refs = &trans->transaction->delayed_refs; 2558 2559 ret = cleanup_extent_op(trans, fs_info, head); 2560 if (ret < 0) { 2561 unselect_delayed_ref_head(delayed_refs, head); 2562 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2563 return ret; 2564 } else if (ret) { 2565 return ret; 2566 } 2567 2568 /* 2569 * Need to drop our head ref lock and re-acquire the delayed ref lock 2570 * and then re-check to make sure nobody got added. 2571 */ 2572 spin_unlock(&head->lock); 2573 spin_lock(&delayed_refs->lock); 2574 spin_lock(&head->lock); 2575 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2576 spin_unlock(&head->lock); 2577 spin_unlock(&delayed_refs->lock); 2578 return 1; 2579 } 2580 delayed_refs->num_heads--; 2581 rb_erase(&head->href_node, &delayed_refs->href_root); 2582 RB_CLEAR_NODE(&head->href_node); 2583 spin_unlock(&head->lock); 2584 spin_unlock(&delayed_refs->lock); 2585 atomic_dec(&delayed_refs->num_entries); 2586 2587 trace_run_delayed_ref_head(fs_info, head, 0); 2588 2589 if (head->total_ref_mod < 0) { 2590 struct btrfs_space_info *space_info; 2591 u64 flags; 2592 2593 if (head->is_data) 2594 flags = BTRFS_BLOCK_GROUP_DATA; 2595 else if (head->is_system) 2596 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2597 else 2598 flags = BTRFS_BLOCK_GROUP_METADATA; 2599 space_info = __find_space_info(fs_info, flags); 2600 ASSERT(space_info); 2601 percpu_counter_add(&space_info->total_bytes_pinned, 2602 -head->num_bytes); 2603 2604 if (head->is_data) { 2605 spin_lock(&delayed_refs->lock); 2606 delayed_refs->pending_csums -= head->num_bytes; 2607 spin_unlock(&delayed_refs->lock); 2608 } 2609 } 2610 2611 if (head->must_insert_reserved) { 2612 btrfs_pin_extent(fs_info, head->bytenr, 2613 head->num_bytes, 1); 2614 if (head->is_data) { 2615 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2616 head->num_bytes); 2617 } 2618 } 2619 2620 /* Also free its reserved qgroup space */ 2621 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2622 head->qgroup_reserved); 2623 btrfs_delayed_ref_unlock(head); 2624 btrfs_put_delayed_ref_head(head); 2625 return 0; 2626 } 2627 2628 /* 2629 * Returns 0 on success or if called with an already aborted transaction. 2630 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2631 */ 2632 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2633 unsigned long nr) 2634 { 2635 struct btrfs_fs_info *fs_info = trans->fs_info; 2636 struct btrfs_delayed_ref_root *delayed_refs; 2637 struct btrfs_delayed_ref_node *ref; 2638 struct btrfs_delayed_ref_head *locked_ref = NULL; 2639 struct btrfs_delayed_extent_op *extent_op; 2640 ktime_t start = ktime_get(); 2641 int ret; 2642 unsigned long count = 0; 2643 unsigned long actual_count = 0; 2644 int must_insert_reserved = 0; 2645 2646 delayed_refs = &trans->transaction->delayed_refs; 2647 while (1) { 2648 if (!locked_ref) { 2649 if (count >= nr) 2650 break; 2651 2652 spin_lock(&delayed_refs->lock); 2653 locked_ref = btrfs_select_ref_head(trans); 2654 if (!locked_ref) { 2655 spin_unlock(&delayed_refs->lock); 2656 break; 2657 } 2658 2659 /* grab the lock that says we are going to process 2660 * all the refs for this head */ 2661 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2662 spin_unlock(&delayed_refs->lock); 2663 /* 2664 * we may have dropped the spin lock to get the head 2665 * mutex lock, and that might have given someone else 2666 * time to free the head. If that's true, it has been 2667 * removed from our list and we can move on. 2668 */ 2669 if (ret == -EAGAIN) { 2670 locked_ref = NULL; 2671 count++; 2672 continue; 2673 } 2674 } 2675 2676 /* 2677 * We need to try and merge add/drops of the same ref since we 2678 * can run into issues with relocate dropping the implicit ref 2679 * and then it being added back again before the drop can 2680 * finish. If we merged anything we need to re-loop so we can 2681 * get a good ref. 2682 * Or we can get node references of the same type that weren't 2683 * merged when created due to bumps in the tree mod seq, and 2684 * we need to merge them to prevent adding an inline extent 2685 * backref before dropping it (triggering a BUG_ON at 2686 * insert_inline_extent_backref()). 2687 */ 2688 spin_lock(&locked_ref->lock); 2689 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2690 2691 ref = select_delayed_ref(locked_ref); 2692 2693 if (ref && ref->seq && 2694 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2695 spin_unlock(&locked_ref->lock); 2696 unselect_delayed_ref_head(delayed_refs, locked_ref); 2697 locked_ref = NULL; 2698 cond_resched(); 2699 count++; 2700 continue; 2701 } 2702 2703 /* 2704 * We're done processing refs in this ref_head, clean everything 2705 * up and move on to the next ref_head. 2706 */ 2707 if (!ref) { 2708 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2709 if (ret > 0 ) { 2710 /* We dropped our lock, we need to loop. */ 2711 ret = 0; 2712 continue; 2713 } else if (ret) { 2714 return ret; 2715 } 2716 locked_ref = NULL; 2717 count++; 2718 continue; 2719 } 2720 2721 actual_count++; 2722 ref->in_tree = 0; 2723 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2724 RB_CLEAR_NODE(&ref->ref_node); 2725 if (!list_empty(&ref->add_list)) 2726 list_del(&ref->add_list); 2727 /* 2728 * When we play the delayed ref, also correct the ref_mod on 2729 * head 2730 */ 2731 switch (ref->action) { 2732 case BTRFS_ADD_DELAYED_REF: 2733 case BTRFS_ADD_DELAYED_EXTENT: 2734 locked_ref->ref_mod -= ref->ref_mod; 2735 break; 2736 case BTRFS_DROP_DELAYED_REF: 2737 locked_ref->ref_mod += ref->ref_mod; 2738 break; 2739 default: 2740 WARN_ON(1); 2741 } 2742 atomic_dec(&delayed_refs->num_entries); 2743 2744 /* 2745 * Record the must-insert_reserved flag before we drop the spin 2746 * lock. 2747 */ 2748 must_insert_reserved = locked_ref->must_insert_reserved; 2749 locked_ref->must_insert_reserved = 0; 2750 2751 extent_op = locked_ref->extent_op; 2752 locked_ref->extent_op = NULL; 2753 spin_unlock(&locked_ref->lock); 2754 2755 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2756 must_insert_reserved); 2757 2758 btrfs_free_delayed_extent_op(extent_op); 2759 if (ret) { 2760 unselect_delayed_ref_head(delayed_refs, locked_ref); 2761 btrfs_put_delayed_ref(ref); 2762 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2763 ret); 2764 return ret; 2765 } 2766 2767 btrfs_put_delayed_ref(ref); 2768 count++; 2769 cond_resched(); 2770 } 2771 2772 /* 2773 * We don't want to include ref heads since we can have empty ref heads 2774 * and those will drastically skew our runtime down since we just do 2775 * accounting, no actual extent tree updates. 2776 */ 2777 if (actual_count > 0) { 2778 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2779 u64 avg; 2780 2781 /* 2782 * We weigh the current average higher than our current runtime 2783 * to avoid large swings in the average. 2784 */ 2785 spin_lock(&delayed_refs->lock); 2786 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2787 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2788 spin_unlock(&delayed_refs->lock); 2789 } 2790 return 0; 2791 } 2792 2793 #ifdef SCRAMBLE_DELAYED_REFS 2794 /* 2795 * Normally delayed refs get processed in ascending bytenr order. This 2796 * correlates in most cases to the order added. To expose dependencies on this 2797 * order, we start to process the tree in the middle instead of the beginning 2798 */ 2799 static u64 find_middle(struct rb_root *root) 2800 { 2801 struct rb_node *n = root->rb_node; 2802 struct btrfs_delayed_ref_node *entry; 2803 int alt = 1; 2804 u64 middle; 2805 u64 first = 0, last = 0; 2806 2807 n = rb_first(root); 2808 if (n) { 2809 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2810 first = entry->bytenr; 2811 } 2812 n = rb_last(root); 2813 if (n) { 2814 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2815 last = entry->bytenr; 2816 } 2817 n = root->rb_node; 2818 2819 while (n) { 2820 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2821 WARN_ON(!entry->in_tree); 2822 2823 middle = entry->bytenr; 2824 2825 if (alt) 2826 n = n->rb_left; 2827 else 2828 n = n->rb_right; 2829 2830 alt = 1 - alt; 2831 } 2832 return middle; 2833 } 2834 #endif 2835 2836 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2837 { 2838 u64 num_bytes; 2839 2840 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2841 sizeof(struct btrfs_extent_inline_ref)); 2842 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2843 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2844 2845 /* 2846 * We don't ever fill up leaves all the way so multiply by 2 just to be 2847 * closer to what we're really going to want to use. 2848 */ 2849 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2850 } 2851 2852 /* 2853 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2854 * would require to store the csums for that many bytes. 2855 */ 2856 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2857 { 2858 u64 csum_size; 2859 u64 num_csums_per_leaf; 2860 u64 num_csums; 2861 2862 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2863 num_csums_per_leaf = div64_u64(csum_size, 2864 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2865 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2866 num_csums += num_csums_per_leaf - 1; 2867 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2868 return num_csums; 2869 } 2870 2871 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2872 struct btrfs_fs_info *fs_info) 2873 { 2874 struct btrfs_block_rsv *global_rsv; 2875 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2876 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2877 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2878 u64 num_bytes, num_dirty_bgs_bytes; 2879 int ret = 0; 2880 2881 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2882 num_heads = heads_to_leaves(fs_info, num_heads); 2883 if (num_heads > 1) 2884 num_bytes += (num_heads - 1) * fs_info->nodesize; 2885 num_bytes <<= 1; 2886 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2887 fs_info->nodesize; 2888 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2889 num_dirty_bgs); 2890 global_rsv = &fs_info->global_block_rsv; 2891 2892 /* 2893 * If we can't allocate any more chunks lets make sure we have _lots_ of 2894 * wiggle room since running delayed refs can create more delayed refs. 2895 */ 2896 if (global_rsv->space_info->full) { 2897 num_dirty_bgs_bytes <<= 1; 2898 num_bytes <<= 1; 2899 } 2900 2901 spin_lock(&global_rsv->lock); 2902 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2903 ret = 1; 2904 spin_unlock(&global_rsv->lock); 2905 return ret; 2906 } 2907 2908 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2909 struct btrfs_fs_info *fs_info) 2910 { 2911 u64 num_entries = 2912 atomic_read(&trans->transaction->delayed_refs.num_entries); 2913 u64 avg_runtime; 2914 u64 val; 2915 2916 smp_mb(); 2917 avg_runtime = fs_info->avg_delayed_ref_runtime; 2918 val = num_entries * avg_runtime; 2919 if (val >= NSEC_PER_SEC) 2920 return 1; 2921 if (val >= NSEC_PER_SEC / 2) 2922 return 2; 2923 2924 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2925 } 2926 2927 struct async_delayed_refs { 2928 struct btrfs_root *root; 2929 u64 transid; 2930 int count; 2931 int error; 2932 int sync; 2933 struct completion wait; 2934 struct btrfs_work work; 2935 }; 2936 2937 static inline struct async_delayed_refs * 2938 to_async_delayed_refs(struct btrfs_work *work) 2939 { 2940 return container_of(work, struct async_delayed_refs, work); 2941 } 2942 2943 static void delayed_ref_async_start(struct btrfs_work *work) 2944 { 2945 struct async_delayed_refs *async = to_async_delayed_refs(work); 2946 struct btrfs_trans_handle *trans; 2947 struct btrfs_fs_info *fs_info = async->root->fs_info; 2948 int ret; 2949 2950 /* if the commit is already started, we don't need to wait here */ 2951 if (btrfs_transaction_blocked(fs_info)) 2952 goto done; 2953 2954 trans = btrfs_join_transaction(async->root); 2955 if (IS_ERR(trans)) { 2956 async->error = PTR_ERR(trans); 2957 goto done; 2958 } 2959 2960 /* 2961 * trans->sync means that when we call end_transaction, we won't 2962 * wait on delayed refs 2963 */ 2964 trans->sync = true; 2965 2966 /* Don't bother flushing if we got into a different transaction */ 2967 if (trans->transid > async->transid) 2968 goto end; 2969 2970 ret = btrfs_run_delayed_refs(trans, async->count); 2971 if (ret) 2972 async->error = ret; 2973 end: 2974 ret = btrfs_end_transaction(trans); 2975 if (ret && !async->error) 2976 async->error = ret; 2977 done: 2978 if (async->sync) 2979 complete(&async->wait); 2980 else 2981 kfree(async); 2982 } 2983 2984 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2985 unsigned long count, u64 transid, int wait) 2986 { 2987 struct async_delayed_refs *async; 2988 int ret; 2989 2990 async = kmalloc(sizeof(*async), GFP_NOFS); 2991 if (!async) 2992 return -ENOMEM; 2993 2994 async->root = fs_info->tree_root; 2995 async->count = count; 2996 async->error = 0; 2997 async->transid = transid; 2998 if (wait) 2999 async->sync = 1; 3000 else 3001 async->sync = 0; 3002 init_completion(&async->wait); 3003 3004 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3005 delayed_ref_async_start, NULL, NULL); 3006 3007 btrfs_queue_work(fs_info->extent_workers, &async->work); 3008 3009 if (wait) { 3010 wait_for_completion(&async->wait); 3011 ret = async->error; 3012 kfree(async); 3013 return ret; 3014 } 3015 return 0; 3016 } 3017 3018 /* 3019 * this starts processing the delayed reference count updates and 3020 * extent insertions we have queued up so far. count can be 3021 * 0, which means to process everything in the tree at the start 3022 * of the run (but not newly added entries), or it can be some target 3023 * number you'd like to process. 3024 * 3025 * Returns 0 on success or if called with an aborted transaction 3026 * Returns <0 on error and aborts the transaction 3027 */ 3028 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3029 unsigned long count) 3030 { 3031 struct btrfs_fs_info *fs_info = trans->fs_info; 3032 struct rb_node *node; 3033 struct btrfs_delayed_ref_root *delayed_refs; 3034 struct btrfs_delayed_ref_head *head; 3035 int ret; 3036 int run_all = count == (unsigned long)-1; 3037 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3038 3039 /* We'll clean this up in btrfs_cleanup_transaction */ 3040 if (trans->aborted) 3041 return 0; 3042 3043 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3044 return 0; 3045 3046 delayed_refs = &trans->transaction->delayed_refs; 3047 if (count == 0) 3048 count = atomic_read(&delayed_refs->num_entries) * 2; 3049 3050 again: 3051 #ifdef SCRAMBLE_DELAYED_REFS 3052 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3053 #endif 3054 trans->can_flush_pending_bgs = false; 3055 ret = __btrfs_run_delayed_refs(trans, count); 3056 if (ret < 0) { 3057 btrfs_abort_transaction(trans, ret); 3058 return ret; 3059 } 3060 3061 if (run_all) { 3062 if (!list_empty(&trans->new_bgs)) 3063 btrfs_create_pending_block_groups(trans); 3064 3065 spin_lock(&delayed_refs->lock); 3066 node = rb_first(&delayed_refs->href_root); 3067 if (!node) { 3068 spin_unlock(&delayed_refs->lock); 3069 goto out; 3070 } 3071 head = rb_entry(node, struct btrfs_delayed_ref_head, 3072 href_node); 3073 refcount_inc(&head->refs); 3074 spin_unlock(&delayed_refs->lock); 3075 3076 /* Mutex was contended, block until it's released and retry. */ 3077 mutex_lock(&head->mutex); 3078 mutex_unlock(&head->mutex); 3079 3080 btrfs_put_delayed_ref_head(head); 3081 cond_resched(); 3082 goto again; 3083 } 3084 out: 3085 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3086 return 0; 3087 } 3088 3089 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3090 struct btrfs_fs_info *fs_info, 3091 u64 bytenr, u64 num_bytes, u64 flags, 3092 int level, int is_data) 3093 { 3094 struct btrfs_delayed_extent_op *extent_op; 3095 int ret; 3096 3097 extent_op = btrfs_alloc_delayed_extent_op(); 3098 if (!extent_op) 3099 return -ENOMEM; 3100 3101 extent_op->flags_to_set = flags; 3102 extent_op->update_flags = true; 3103 extent_op->update_key = false; 3104 extent_op->is_data = is_data ? true : false; 3105 extent_op->level = level; 3106 3107 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3108 num_bytes, extent_op); 3109 if (ret) 3110 btrfs_free_delayed_extent_op(extent_op); 3111 return ret; 3112 } 3113 3114 static noinline int check_delayed_ref(struct btrfs_root *root, 3115 struct btrfs_path *path, 3116 u64 objectid, u64 offset, u64 bytenr) 3117 { 3118 struct btrfs_delayed_ref_head *head; 3119 struct btrfs_delayed_ref_node *ref; 3120 struct btrfs_delayed_data_ref *data_ref; 3121 struct btrfs_delayed_ref_root *delayed_refs; 3122 struct btrfs_transaction *cur_trans; 3123 struct rb_node *node; 3124 int ret = 0; 3125 3126 spin_lock(&root->fs_info->trans_lock); 3127 cur_trans = root->fs_info->running_transaction; 3128 if (cur_trans) 3129 refcount_inc(&cur_trans->use_count); 3130 spin_unlock(&root->fs_info->trans_lock); 3131 if (!cur_trans) 3132 return 0; 3133 3134 delayed_refs = &cur_trans->delayed_refs; 3135 spin_lock(&delayed_refs->lock); 3136 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3137 if (!head) { 3138 spin_unlock(&delayed_refs->lock); 3139 btrfs_put_transaction(cur_trans); 3140 return 0; 3141 } 3142 3143 if (!mutex_trylock(&head->mutex)) { 3144 refcount_inc(&head->refs); 3145 spin_unlock(&delayed_refs->lock); 3146 3147 btrfs_release_path(path); 3148 3149 /* 3150 * Mutex was contended, block until it's released and let 3151 * caller try again 3152 */ 3153 mutex_lock(&head->mutex); 3154 mutex_unlock(&head->mutex); 3155 btrfs_put_delayed_ref_head(head); 3156 btrfs_put_transaction(cur_trans); 3157 return -EAGAIN; 3158 } 3159 spin_unlock(&delayed_refs->lock); 3160 3161 spin_lock(&head->lock); 3162 /* 3163 * XXX: We should replace this with a proper search function in the 3164 * future. 3165 */ 3166 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3167 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3168 /* If it's a shared ref we know a cross reference exists */ 3169 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3170 ret = 1; 3171 break; 3172 } 3173 3174 data_ref = btrfs_delayed_node_to_data_ref(ref); 3175 3176 /* 3177 * If our ref doesn't match the one we're currently looking at 3178 * then we have a cross reference. 3179 */ 3180 if (data_ref->root != root->root_key.objectid || 3181 data_ref->objectid != objectid || 3182 data_ref->offset != offset) { 3183 ret = 1; 3184 break; 3185 } 3186 } 3187 spin_unlock(&head->lock); 3188 mutex_unlock(&head->mutex); 3189 btrfs_put_transaction(cur_trans); 3190 return ret; 3191 } 3192 3193 static noinline int check_committed_ref(struct btrfs_root *root, 3194 struct btrfs_path *path, 3195 u64 objectid, u64 offset, u64 bytenr) 3196 { 3197 struct btrfs_fs_info *fs_info = root->fs_info; 3198 struct btrfs_root *extent_root = fs_info->extent_root; 3199 struct extent_buffer *leaf; 3200 struct btrfs_extent_data_ref *ref; 3201 struct btrfs_extent_inline_ref *iref; 3202 struct btrfs_extent_item *ei; 3203 struct btrfs_key key; 3204 u32 item_size; 3205 int type; 3206 int ret; 3207 3208 key.objectid = bytenr; 3209 key.offset = (u64)-1; 3210 key.type = BTRFS_EXTENT_ITEM_KEY; 3211 3212 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3213 if (ret < 0) 3214 goto out; 3215 BUG_ON(ret == 0); /* Corruption */ 3216 3217 ret = -ENOENT; 3218 if (path->slots[0] == 0) 3219 goto out; 3220 3221 path->slots[0]--; 3222 leaf = path->nodes[0]; 3223 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3224 3225 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3226 goto out; 3227 3228 ret = 1; 3229 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3230 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3231 if (item_size < sizeof(*ei)) { 3232 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3233 goto out; 3234 } 3235 #endif 3236 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3237 3238 if (item_size != sizeof(*ei) + 3239 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3240 goto out; 3241 3242 if (btrfs_extent_generation(leaf, ei) <= 3243 btrfs_root_last_snapshot(&root->root_item)) 3244 goto out; 3245 3246 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3247 3248 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3249 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3250 goto out; 3251 3252 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3253 if (btrfs_extent_refs(leaf, ei) != 3254 btrfs_extent_data_ref_count(leaf, ref) || 3255 btrfs_extent_data_ref_root(leaf, ref) != 3256 root->root_key.objectid || 3257 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3258 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3259 goto out; 3260 3261 ret = 0; 3262 out: 3263 return ret; 3264 } 3265 3266 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3267 u64 bytenr) 3268 { 3269 struct btrfs_path *path; 3270 int ret; 3271 int ret2; 3272 3273 path = btrfs_alloc_path(); 3274 if (!path) 3275 return -ENOMEM; 3276 3277 do { 3278 ret = check_committed_ref(root, path, objectid, 3279 offset, bytenr); 3280 if (ret && ret != -ENOENT) 3281 goto out; 3282 3283 ret2 = check_delayed_ref(root, path, objectid, 3284 offset, bytenr); 3285 } while (ret2 == -EAGAIN); 3286 3287 if (ret2 && ret2 != -ENOENT) { 3288 ret = ret2; 3289 goto out; 3290 } 3291 3292 if (ret != -ENOENT || ret2 != -ENOENT) 3293 ret = 0; 3294 out: 3295 btrfs_free_path(path); 3296 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3297 WARN_ON(ret > 0); 3298 return ret; 3299 } 3300 3301 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3302 struct btrfs_root *root, 3303 struct extent_buffer *buf, 3304 int full_backref, int inc) 3305 { 3306 struct btrfs_fs_info *fs_info = root->fs_info; 3307 u64 bytenr; 3308 u64 num_bytes; 3309 u64 parent; 3310 u64 ref_root; 3311 u32 nritems; 3312 struct btrfs_key key; 3313 struct btrfs_file_extent_item *fi; 3314 int i; 3315 int level; 3316 int ret = 0; 3317 int (*process_func)(struct btrfs_trans_handle *, 3318 struct btrfs_root *, 3319 u64, u64, u64, u64, u64, u64); 3320 3321 3322 if (btrfs_is_testing(fs_info)) 3323 return 0; 3324 3325 ref_root = btrfs_header_owner(buf); 3326 nritems = btrfs_header_nritems(buf); 3327 level = btrfs_header_level(buf); 3328 3329 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3330 return 0; 3331 3332 if (inc) 3333 process_func = btrfs_inc_extent_ref; 3334 else 3335 process_func = btrfs_free_extent; 3336 3337 if (full_backref) 3338 parent = buf->start; 3339 else 3340 parent = 0; 3341 3342 for (i = 0; i < nritems; i++) { 3343 if (level == 0) { 3344 btrfs_item_key_to_cpu(buf, &key, i); 3345 if (key.type != BTRFS_EXTENT_DATA_KEY) 3346 continue; 3347 fi = btrfs_item_ptr(buf, i, 3348 struct btrfs_file_extent_item); 3349 if (btrfs_file_extent_type(buf, fi) == 3350 BTRFS_FILE_EXTENT_INLINE) 3351 continue; 3352 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3353 if (bytenr == 0) 3354 continue; 3355 3356 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3357 key.offset -= btrfs_file_extent_offset(buf, fi); 3358 ret = process_func(trans, root, bytenr, num_bytes, 3359 parent, ref_root, key.objectid, 3360 key.offset); 3361 if (ret) 3362 goto fail; 3363 } else { 3364 bytenr = btrfs_node_blockptr(buf, i); 3365 num_bytes = fs_info->nodesize; 3366 ret = process_func(trans, root, bytenr, num_bytes, 3367 parent, ref_root, level - 1, 0); 3368 if (ret) 3369 goto fail; 3370 } 3371 } 3372 return 0; 3373 fail: 3374 return ret; 3375 } 3376 3377 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3378 struct extent_buffer *buf, int full_backref) 3379 { 3380 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3381 } 3382 3383 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3384 struct extent_buffer *buf, int full_backref) 3385 { 3386 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3387 } 3388 3389 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3390 struct btrfs_fs_info *fs_info, 3391 struct btrfs_path *path, 3392 struct btrfs_block_group_cache *cache) 3393 { 3394 int ret; 3395 struct btrfs_root *extent_root = fs_info->extent_root; 3396 unsigned long bi; 3397 struct extent_buffer *leaf; 3398 3399 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3400 if (ret) { 3401 if (ret > 0) 3402 ret = -ENOENT; 3403 goto fail; 3404 } 3405 3406 leaf = path->nodes[0]; 3407 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3408 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3409 btrfs_mark_buffer_dirty(leaf); 3410 fail: 3411 btrfs_release_path(path); 3412 return ret; 3413 3414 } 3415 3416 static struct btrfs_block_group_cache * 3417 next_block_group(struct btrfs_fs_info *fs_info, 3418 struct btrfs_block_group_cache *cache) 3419 { 3420 struct rb_node *node; 3421 3422 spin_lock(&fs_info->block_group_cache_lock); 3423 3424 /* If our block group was removed, we need a full search. */ 3425 if (RB_EMPTY_NODE(&cache->cache_node)) { 3426 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3427 3428 spin_unlock(&fs_info->block_group_cache_lock); 3429 btrfs_put_block_group(cache); 3430 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3431 } 3432 node = rb_next(&cache->cache_node); 3433 btrfs_put_block_group(cache); 3434 if (node) { 3435 cache = rb_entry(node, struct btrfs_block_group_cache, 3436 cache_node); 3437 btrfs_get_block_group(cache); 3438 } else 3439 cache = NULL; 3440 spin_unlock(&fs_info->block_group_cache_lock); 3441 return cache; 3442 } 3443 3444 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3445 struct btrfs_trans_handle *trans, 3446 struct btrfs_path *path) 3447 { 3448 struct btrfs_fs_info *fs_info = block_group->fs_info; 3449 struct btrfs_root *root = fs_info->tree_root; 3450 struct inode *inode = NULL; 3451 struct extent_changeset *data_reserved = NULL; 3452 u64 alloc_hint = 0; 3453 int dcs = BTRFS_DC_ERROR; 3454 u64 num_pages = 0; 3455 int retries = 0; 3456 int ret = 0; 3457 3458 /* 3459 * If this block group is smaller than 100 megs don't bother caching the 3460 * block group. 3461 */ 3462 if (block_group->key.offset < (100 * SZ_1M)) { 3463 spin_lock(&block_group->lock); 3464 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3465 spin_unlock(&block_group->lock); 3466 return 0; 3467 } 3468 3469 if (trans->aborted) 3470 return 0; 3471 again: 3472 inode = lookup_free_space_inode(fs_info, block_group, path); 3473 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3474 ret = PTR_ERR(inode); 3475 btrfs_release_path(path); 3476 goto out; 3477 } 3478 3479 if (IS_ERR(inode)) { 3480 BUG_ON(retries); 3481 retries++; 3482 3483 if (block_group->ro) 3484 goto out_free; 3485 3486 ret = create_free_space_inode(fs_info, trans, block_group, 3487 path); 3488 if (ret) 3489 goto out_free; 3490 goto again; 3491 } 3492 3493 /* 3494 * We want to set the generation to 0, that way if anything goes wrong 3495 * from here on out we know not to trust this cache when we load up next 3496 * time. 3497 */ 3498 BTRFS_I(inode)->generation = 0; 3499 ret = btrfs_update_inode(trans, root, inode); 3500 if (ret) { 3501 /* 3502 * So theoretically we could recover from this, simply set the 3503 * super cache generation to 0 so we know to invalidate the 3504 * cache, but then we'd have to keep track of the block groups 3505 * that fail this way so we know we _have_ to reset this cache 3506 * before the next commit or risk reading stale cache. So to 3507 * limit our exposure to horrible edge cases lets just abort the 3508 * transaction, this only happens in really bad situations 3509 * anyway. 3510 */ 3511 btrfs_abort_transaction(trans, ret); 3512 goto out_put; 3513 } 3514 WARN_ON(ret); 3515 3516 /* We've already setup this transaction, go ahead and exit */ 3517 if (block_group->cache_generation == trans->transid && 3518 i_size_read(inode)) { 3519 dcs = BTRFS_DC_SETUP; 3520 goto out_put; 3521 } 3522 3523 if (i_size_read(inode) > 0) { 3524 ret = btrfs_check_trunc_cache_free_space(fs_info, 3525 &fs_info->global_block_rsv); 3526 if (ret) 3527 goto out_put; 3528 3529 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3530 if (ret) 3531 goto out_put; 3532 } 3533 3534 spin_lock(&block_group->lock); 3535 if (block_group->cached != BTRFS_CACHE_FINISHED || 3536 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3537 /* 3538 * don't bother trying to write stuff out _if_ 3539 * a) we're not cached, 3540 * b) we're with nospace_cache mount option, 3541 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3542 */ 3543 dcs = BTRFS_DC_WRITTEN; 3544 spin_unlock(&block_group->lock); 3545 goto out_put; 3546 } 3547 spin_unlock(&block_group->lock); 3548 3549 /* 3550 * We hit an ENOSPC when setting up the cache in this transaction, just 3551 * skip doing the setup, we've already cleared the cache so we're safe. 3552 */ 3553 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3554 ret = -ENOSPC; 3555 goto out_put; 3556 } 3557 3558 /* 3559 * Try to preallocate enough space based on how big the block group is. 3560 * Keep in mind this has to include any pinned space which could end up 3561 * taking up quite a bit since it's not folded into the other space 3562 * cache. 3563 */ 3564 num_pages = div_u64(block_group->key.offset, SZ_256M); 3565 if (!num_pages) 3566 num_pages = 1; 3567 3568 num_pages *= 16; 3569 num_pages *= PAGE_SIZE; 3570 3571 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3572 if (ret) 3573 goto out_put; 3574 3575 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3576 num_pages, num_pages, 3577 &alloc_hint); 3578 /* 3579 * Our cache requires contiguous chunks so that we don't modify a bunch 3580 * of metadata or split extents when writing the cache out, which means 3581 * we can enospc if we are heavily fragmented in addition to just normal 3582 * out of space conditions. So if we hit this just skip setting up any 3583 * other block groups for this transaction, maybe we'll unpin enough 3584 * space the next time around. 3585 */ 3586 if (!ret) 3587 dcs = BTRFS_DC_SETUP; 3588 else if (ret == -ENOSPC) 3589 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3590 3591 out_put: 3592 iput(inode); 3593 out_free: 3594 btrfs_release_path(path); 3595 out: 3596 spin_lock(&block_group->lock); 3597 if (!ret && dcs == BTRFS_DC_SETUP) 3598 block_group->cache_generation = trans->transid; 3599 block_group->disk_cache_state = dcs; 3600 spin_unlock(&block_group->lock); 3601 3602 extent_changeset_free(data_reserved); 3603 return ret; 3604 } 3605 3606 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3607 struct btrfs_fs_info *fs_info) 3608 { 3609 struct btrfs_block_group_cache *cache, *tmp; 3610 struct btrfs_transaction *cur_trans = trans->transaction; 3611 struct btrfs_path *path; 3612 3613 if (list_empty(&cur_trans->dirty_bgs) || 3614 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3615 return 0; 3616 3617 path = btrfs_alloc_path(); 3618 if (!path) 3619 return -ENOMEM; 3620 3621 /* Could add new block groups, use _safe just in case */ 3622 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3623 dirty_list) { 3624 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3625 cache_save_setup(cache, trans, path); 3626 } 3627 3628 btrfs_free_path(path); 3629 return 0; 3630 } 3631 3632 /* 3633 * transaction commit does final block group cache writeback during a 3634 * critical section where nothing is allowed to change the FS. This is 3635 * required in order for the cache to actually match the block group, 3636 * but can introduce a lot of latency into the commit. 3637 * 3638 * So, btrfs_start_dirty_block_groups is here to kick off block group 3639 * cache IO. There's a chance we'll have to redo some of it if the 3640 * block group changes again during the commit, but it greatly reduces 3641 * the commit latency by getting rid of the easy block groups while 3642 * we're still allowing others to join the commit. 3643 */ 3644 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3645 { 3646 struct btrfs_fs_info *fs_info = trans->fs_info; 3647 struct btrfs_block_group_cache *cache; 3648 struct btrfs_transaction *cur_trans = trans->transaction; 3649 int ret = 0; 3650 int should_put; 3651 struct btrfs_path *path = NULL; 3652 LIST_HEAD(dirty); 3653 struct list_head *io = &cur_trans->io_bgs; 3654 int num_started = 0; 3655 int loops = 0; 3656 3657 spin_lock(&cur_trans->dirty_bgs_lock); 3658 if (list_empty(&cur_trans->dirty_bgs)) { 3659 spin_unlock(&cur_trans->dirty_bgs_lock); 3660 return 0; 3661 } 3662 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3663 spin_unlock(&cur_trans->dirty_bgs_lock); 3664 3665 again: 3666 /* 3667 * make sure all the block groups on our dirty list actually 3668 * exist 3669 */ 3670 btrfs_create_pending_block_groups(trans); 3671 3672 if (!path) { 3673 path = btrfs_alloc_path(); 3674 if (!path) 3675 return -ENOMEM; 3676 } 3677 3678 /* 3679 * cache_write_mutex is here only to save us from balance or automatic 3680 * removal of empty block groups deleting this block group while we are 3681 * writing out the cache 3682 */ 3683 mutex_lock(&trans->transaction->cache_write_mutex); 3684 while (!list_empty(&dirty)) { 3685 cache = list_first_entry(&dirty, 3686 struct btrfs_block_group_cache, 3687 dirty_list); 3688 /* 3689 * this can happen if something re-dirties a block 3690 * group that is already under IO. Just wait for it to 3691 * finish and then do it all again 3692 */ 3693 if (!list_empty(&cache->io_list)) { 3694 list_del_init(&cache->io_list); 3695 btrfs_wait_cache_io(trans, cache, path); 3696 btrfs_put_block_group(cache); 3697 } 3698 3699 3700 /* 3701 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3702 * if it should update the cache_state. Don't delete 3703 * until after we wait. 3704 * 3705 * Since we're not running in the commit critical section 3706 * we need the dirty_bgs_lock to protect from update_block_group 3707 */ 3708 spin_lock(&cur_trans->dirty_bgs_lock); 3709 list_del_init(&cache->dirty_list); 3710 spin_unlock(&cur_trans->dirty_bgs_lock); 3711 3712 should_put = 1; 3713 3714 cache_save_setup(cache, trans, path); 3715 3716 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3717 cache->io_ctl.inode = NULL; 3718 ret = btrfs_write_out_cache(fs_info, trans, 3719 cache, path); 3720 if (ret == 0 && cache->io_ctl.inode) { 3721 num_started++; 3722 should_put = 0; 3723 3724 /* 3725 * The cache_write_mutex is protecting the 3726 * io_list, also refer to the definition of 3727 * btrfs_transaction::io_bgs for more details 3728 */ 3729 list_add_tail(&cache->io_list, io); 3730 } else { 3731 /* 3732 * if we failed to write the cache, the 3733 * generation will be bad and life goes on 3734 */ 3735 ret = 0; 3736 } 3737 } 3738 if (!ret) { 3739 ret = write_one_cache_group(trans, fs_info, 3740 path, cache); 3741 /* 3742 * Our block group might still be attached to the list 3743 * of new block groups in the transaction handle of some 3744 * other task (struct btrfs_trans_handle->new_bgs). This 3745 * means its block group item isn't yet in the extent 3746 * tree. If this happens ignore the error, as we will 3747 * try again later in the critical section of the 3748 * transaction commit. 3749 */ 3750 if (ret == -ENOENT) { 3751 ret = 0; 3752 spin_lock(&cur_trans->dirty_bgs_lock); 3753 if (list_empty(&cache->dirty_list)) { 3754 list_add_tail(&cache->dirty_list, 3755 &cur_trans->dirty_bgs); 3756 btrfs_get_block_group(cache); 3757 } 3758 spin_unlock(&cur_trans->dirty_bgs_lock); 3759 } else if (ret) { 3760 btrfs_abort_transaction(trans, ret); 3761 } 3762 } 3763 3764 /* if its not on the io list, we need to put the block group */ 3765 if (should_put) 3766 btrfs_put_block_group(cache); 3767 3768 if (ret) 3769 break; 3770 3771 /* 3772 * Avoid blocking other tasks for too long. It might even save 3773 * us from writing caches for block groups that are going to be 3774 * removed. 3775 */ 3776 mutex_unlock(&trans->transaction->cache_write_mutex); 3777 mutex_lock(&trans->transaction->cache_write_mutex); 3778 } 3779 mutex_unlock(&trans->transaction->cache_write_mutex); 3780 3781 /* 3782 * go through delayed refs for all the stuff we've just kicked off 3783 * and then loop back (just once) 3784 */ 3785 ret = btrfs_run_delayed_refs(trans, 0); 3786 if (!ret && loops == 0) { 3787 loops++; 3788 spin_lock(&cur_trans->dirty_bgs_lock); 3789 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3790 /* 3791 * dirty_bgs_lock protects us from concurrent block group 3792 * deletes too (not just cache_write_mutex). 3793 */ 3794 if (!list_empty(&dirty)) { 3795 spin_unlock(&cur_trans->dirty_bgs_lock); 3796 goto again; 3797 } 3798 spin_unlock(&cur_trans->dirty_bgs_lock); 3799 } else if (ret < 0) { 3800 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3801 } 3802 3803 btrfs_free_path(path); 3804 return ret; 3805 } 3806 3807 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3808 struct btrfs_fs_info *fs_info) 3809 { 3810 struct btrfs_block_group_cache *cache; 3811 struct btrfs_transaction *cur_trans = trans->transaction; 3812 int ret = 0; 3813 int should_put; 3814 struct btrfs_path *path; 3815 struct list_head *io = &cur_trans->io_bgs; 3816 int num_started = 0; 3817 3818 path = btrfs_alloc_path(); 3819 if (!path) 3820 return -ENOMEM; 3821 3822 /* 3823 * Even though we are in the critical section of the transaction commit, 3824 * we can still have concurrent tasks adding elements to this 3825 * transaction's list of dirty block groups. These tasks correspond to 3826 * endio free space workers started when writeback finishes for a 3827 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3828 * allocate new block groups as a result of COWing nodes of the root 3829 * tree when updating the free space inode. The writeback for the space 3830 * caches is triggered by an earlier call to 3831 * btrfs_start_dirty_block_groups() and iterations of the following 3832 * loop. 3833 * Also we want to do the cache_save_setup first and then run the 3834 * delayed refs to make sure we have the best chance at doing this all 3835 * in one shot. 3836 */ 3837 spin_lock(&cur_trans->dirty_bgs_lock); 3838 while (!list_empty(&cur_trans->dirty_bgs)) { 3839 cache = list_first_entry(&cur_trans->dirty_bgs, 3840 struct btrfs_block_group_cache, 3841 dirty_list); 3842 3843 /* 3844 * this can happen if cache_save_setup re-dirties a block 3845 * group that is already under IO. Just wait for it to 3846 * finish and then do it all again 3847 */ 3848 if (!list_empty(&cache->io_list)) { 3849 spin_unlock(&cur_trans->dirty_bgs_lock); 3850 list_del_init(&cache->io_list); 3851 btrfs_wait_cache_io(trans, cache, path); 3852 btrfs_put_block_group(cache); 3853 spin_lock(&cur_trans->dirty_bgs_lock); 3854 } 3855 3856 /* 3857 * don't remove from the dirty list until after we've waited 3858 * on any pending IO 3859 */ 3860 list_del_init(&cache->dirty_list); 3861 spin_unlock(&cur_trans->dirty_bgs_lock); 3862 should_put = 1; 3863 3864 cache_save_setup(cache, trans, path); 3865 3866 if (!ret) 3867 ret = btrfs_run_delayed_refs(trans, 3868 (unsigned long) -1); 3869 3870 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3871 cache->io_ctl.inode = NULL; 3872 ret = btrfs_write_out_cache(fs_info, trans, 3873 cache, path); 3874 if (ret == 0 && cache->io_ctl.inode) { 3875 num_started++; 3876 should_put = 0; 3877 list_add_tail(&cache->io_list, io); 3878 } else { 3879 /* 3880 * if we failed to write the cache, the 3881 * generation will be bad and life goes on 3882 */ 3883 ret = 0; 3884 } 3885 } 3886 if (!ret) { 3887 ret = write_one_cache_group(trans, fs_info, 3888 path, cache); 3889 /* 3890 * One of the free space endio workers might have 3891 * created a new block group while updating a free space 3892 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3893 * and hasn't released its transaction handle yet, in 3894 * which case the new block group is still attached to 3895 * its transaction handle and its creation has not 3896 * finished yet (no block group item in the extent tree 3897 * yet, etc). If this is the case, wait for all free 3898 * space endio workers to finish and retry. This is a 3899 * a very rare case so no need for a more efficient and 3900 * complex approach. 3901 */ 3902 if (ret == -ENOENT) { 3903 wait_event(cur_trans->writer_wait, 3904 atomic_read(&cur_trans->num_writers) == 1); 3905 ret = write_one_cache_group(trans, fs_info, 3906 path, cache); 3907 } 3908 if (ret) 3909 btrfs_abort_transaction(trans, ret); 3910 } 3911 3912 /* if its not on the io list, we need to put the block group */ 3913 if (should_put) 3914 btrfs_put_block_group(cache); 3915 spin_lock(&cur_trans->dirty_bgs_lock); 3916 } 3917 spin_unlock(&cur_trans->dirty_bgs_lock); 3918 3919 /* 3920 * Refer to the definition of io_bgs member for details why it's safe 3921 * to use it without any locking 3922 */ 3923 while (!list_empty(io)) { 3924 cache = list_first_entry(io, struct btrfs_block_group_cache, 3925 io_list); 3926 list_del_init(&cache->io_list); 3927 btrfs_wait_cache_io(trans, cache, path); 3928 btrfs_put_block_group(cache); 3929 } 3930 3931 btrfs_free_path(path); 3932 return ret; 3933 } 3934 3935 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3936 { 3937 struct btrfs_block_group_cache *block_group; 3938 int readonly = 0; 3939 3940 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3941 if (!block_group || block_group->ro) 3942 readonly = 1; 3943 if (block_group) 3944 btrfs_put_block_group(block_group); 3945 return readonly; 3946 } 3947 3948 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3949 { 3950 struct btrfs_block_group_cache *bg; 3951 bool ret = true; 3952 3953 bg = btrfs_lookup_block_group(fs_info, bytenr); 3954 if (!bg) 3955 return false; 3956 3957 spin_lock(&bg->lock); 3958 if (bg->ro) 3959 ret = false; 3960 else 3961 atomic_inc(&bg->nocow_writers); 3962 spin_unlock(&bg->lock); 3963 3964 /* no put on block group, done by btrfs_dec_nocow_writers */ 3965 if (!ret) 3966 btrfs_put_block_group(bg); 3967 3968 return ret; 3969 3970 } 3971 3972 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3973 { 3974 struct btrfs_block_group_cache *bg; 3975 3976 bg = btrfs_lookup_block_group(fs_info, bytenr); 3977 ASSERT(bg); 3978 if (atomic_dec_and_test(&bg->nocow_writers)) 3979 wake_up_var(&bg->nocow_writers); 3980 /* 3981 * Once for our lookup and once for the lookup done by a previous call 3982 * to btrfs_inc_nocow_writers() 3983 */ 3984 btrfs_put_block_group(bg); 3985 btrfs_put_block_group(bg); 3986 } 3987 3988 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3989 { 3990 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 3991 } 3992 3993 static const char *alloc_name(u64 flags) 3994 { 3995 switch (flags) { 3996 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3997 return "mixed"; 3998 case BTRFS_BLOCK_GROUP_METADATA: 3999 return "metadata"; 4000 case BTRFS_BLOCK_GROUP_DATA: 4001 return "data"; 4002 case BTRFS_BLOCK_GROUP_SYSTEM: 4003 return "system"; 4004 default: 4005 WARN_ON(1); 4006 return "invalid-combination"; 4007 }; 4008 } 4009 4010 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 4011 { 4012 4013 struct btrfs_space_info *space_info; 4014 int i; 4015 int ret; 4016 4017 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4018 if (!space_info) 4019 return -ENOMEM; 4020 4021 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4022 GFP_KERNEL); 4023 if (ret) { 4024 kfree(space_info); 4025 return ret; 4026 } 4027 4028 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4029 INIT_LIST_HEAD(&space_info->block_groups[i]); 4030 init_rwsem(&space_info->groups_sem); 4031 spin_lock_init(&space_info->lock); 4032 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4033 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4034 init_waitqueue_head(&space_info->wait); 4035 INIT_LIST_HEAD(&space_info->ro_bgs); 4036 INIT_LIST_HEAD(&space_info->tickets); 4037 INIT_LIST_HEAD(&space_info->priority_tickets); 4038 4039 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4040 info->space_info_kobj, "%s", 4041 alloc_name(space_info->flags)); 4042 if (ret) { 4043 percpu_counter_destroy(&space_info->total_bytes_pinned); 4044 kfree(space_info); 4045 return ret; 4046 } 4047 4048 list_add_rcu(&space_info->list, &info->space_info); 4049 if (flags & BTRFS_BLOCK_GROUP_DATA) 4050 info->data_sinfo = space_info; 4051 4052 return ret; 4053 } 4054 4055 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4056 u64 total_bytes, u64 bytes_used, 4057 u64 bytes_readonly, 4058 struct btrfs_space_info **space_info) 4059 { 4060 struct btrfs_space_info *found; 4061 int factor; 4062 4063 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4064 BTRFS_BLOCK_GROUP_RAID10)) 4065 factor = 2; 4066 else 4067 factor = 1; 4068 4069 found = __find_space_info(info, flags); 4070 ASSERT(found); 4071 spin_lock(&found->lock); 4072 found->total_bytes += total_bytes; 4073 found->disk_total += total_bytes * factor; 4074 found->bytes_used += bytes_used; 4075 found->disk_used += bytes_used * factor; 4076 found->bytes_readonly += bytes_readonly; 4077 if (total_bytes > 0) 4078 found->full = 0; 4079 space_info_add_new_bytes(info, found, total_bytes - 4080 bytes_used - bytes_readonly); 4081 spin_unlock(&found->lock); 4082 *space_info = found; 4083 } 4084 4085 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4086 { 4087 u64 extra_flags = chunk_to_extended(flags) & 4088 BTRFS_EXTENDED_PROFILE_MASK; 4089 4090 write_seqlock(&fs_info->profiles_lock); 4091 if (flags & BTRFS_BLOCK_GROUP_DATA) 4092 fs_info->avail_data_alloc_bits |= extra_flags; 4093 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4094 fs_info->avail_metadata_alloc_bits |= extra_flags; 4095 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4096 fs_info->avail_system_alloc_bits |= extra_flags; 4097 write_sequnlock(&fs_info->profiles_lock); 4098 } 4099 4100 /* 4101 * returns target flags in extended format or 0 if restripe for this 4102 * chunk_type is not in progress 4103 * 4104 * should be called with balance_lock held 4105 */ 4106 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4107 { 4108 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4109 u64 target = 0; 4110 4111 if (!bctl) 4112 return 0; 4113 4114 if (flags & BTRFS_BLOCK_GROUP_DATA && 4115 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4116 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4117 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4118 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4119 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4120 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4121 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4122 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4123 } 4124 4125 return target; 4126 } 4127 4128 /* 4129 * @flags: available profiles in extended format (see ctree.h) 4130 * 4131 * Returns reduced profile in chunk format. If profile changing is in 4132 * progress (either running or paused) picks the target profile (if it's 4133 * already available), otherwise falls back to plain reducing. 4134 */ 4135 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4136 { 4137 u64 num_devices = fs_info->fs_devices->rw_devices; 4138 u64 target; 4139 u64 raid_type; 4140 u64 allowed = 0; 4141 4142 /* 4143 * see if restripe for this chunk_type is in progress, if so 4144 * try to reduce to the target profile 4145 */ 4146 spin_lock(&fs_info->balance_lock); 4147 target = get_restripe_target(fs_info, flags); 4148 if (target) { 4149 /* pick target profile only if it's already available */ 4150 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4151 spin_unlock(&fs_info->balance_lock); 4152 return extended_to_chunk(target); 4153 } 4154 } 4155 spin_unlock(&fs_info->balance_lock); 4156 4157 /* First, mask out the RAID levels which aren't possible */ 4158 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4159 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4160 allowed |= btrfs_raid_array[raid_type].bg_flag; 4161 } 4162 allowed &= flags; 4163 4164 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4165 allowed = BTRFS_BLOCK_GROUP_RAID6; 4166 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4167 allowed = BTRFS_BLOCK_GROUP_RAID5; 4168 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4169 allowed = BTRFS_BLOCK_GROUP_RAID10; 4170 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4171 allowed = BTRFS_BLOCK_GROUP_RAID1; 4172 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4173 allowed = BTRFS_BLOCK_GROUP_RAID0; 4174 4175 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4176 4177 return extended_to_chunk(flags | allowed); 4178 } 4179 4180 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4181 { 4182 unsigned seq; 4183 u64 flags; 4184 4185 do { 4186 flags = orig_flags; 4187 seq = read_seqbegin(&fs_info->profiles_lock); 4188 4189 if (flags & BTRFS_BLOCK_GROUP_DATA) 4190 flags |= fs_info->avail_data_alloc_bits; 4191 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4192 flags |= fs_info->avail_system_alloc_bits; 4193 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4194 flags |= fs_info->avail_metadata_alloc_bits; 4195 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4196 4197 return btrfs_reduce_alloc_profile(fs_info, flags); 4198 } 4199 4200 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4201 { 4202 struct btrfs_fs_info *fs_info = root->fs_info; 4203 u64 flags; 4204 u64 ret; 4205 4206 if (data) 4207 flags = BTRFS_BLOCK_GROUP_DATA; 4208 else if (root == fs_info->chunk_root) 4209 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4210 else 4211 flags = BTRFS_BLOCK_GROUP_METADATA; 4212 4213 ret = get_alloc_profile(fs_info, flags); 4214 return ret; 4215 } 4216 4217 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4218 { 4219 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4220 } 4221 4222 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4223 { 4224 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4225 } 4226 4227 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4228 { 4229 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4230 } 4231 4232 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4233 bool may_use_included) 4234 { 4235 ASSERT(s_info); 4236 return s_info->bytes_used + s_info->bytes_reserved + 4237 s_info->bytes_pinned + s_info->bytes_readonly + 4238 (may_use_included ? s_info->bytes_may_use : 0); 4239 } 4240 4241 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4242 { 4243 struct btrfs_root *root = inode->root; 4244 struct btrfs_fs_info *fs_info = root->fs_info; 4245 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4246 u64 used; 4247 int ret = 0; 4248 int need_commit = 2; 4249 int have_pinned_space; 4250 4251 /* make sure bytes are sectorsize aligned */ 4252 bytes = ALIGN(bytes, fs_info->sectorsize); 4253 4254 if (btrfs_is_free_space_inode(inode)) { 4255 need_commit = 0; 4256 ASSERT(current->journal_info); 4257 } 4258 4259 again: 4260 /* make sure we have enough space to handle the data first */ 4261 spin_lock(&data_sinfo->lock); 4262 used = btrfs_space_info_used(data_sinfo, true); 4263 4264 if (used + bytes > data_sinfo->total_bytes) { 4265 struct btrfs_trans_handle *trans; 4266 4267 /* 4268 * if we don't have enough free bytes in this space then we need 4269 * to alloc a new chunk. 4270 */ 4271 if (!data_sinfo->full) { 4272 u64 alloc_target; 4273 4274 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4275 spin_unlock(&data_sinfo->lock); 4276 4277 alloc_target = btrfs_data_alloc_profile(fs_info); 4278 /* 4279 * It is ugly that we don't call nolock join 4280 * transaction for the free space inode case here. 4281 * But it is safe because we only do the data space 4282 * reservation for the free space cache in the 4283 * transaction context, the common join transaction 4284 * just increase the counter of the current transaction 4285 * handler, doesn't try to acquire the trans_lock of 4286 * the fs. 4287 */ 4288 trans = btrfs_join_transaction(root); 4289 if (IS_ERR(trans)) 4290 return PTR_ERR(trans); 4291 4292 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4293 CHUNK_ALLOC_NO_FORCE); 4294 btrfs_end_transaction(trans); 4295 if (ret < 0) { 4296 if (ret != -ENOSPC) 4297 return ret; 4298 else { 4299 have_pinned_space = 1; 4300 goto commit_trans; 4301 } 4302 } 4303 4304 goto again; 4305 } 4306 4307 /* 4308 * If we don't have enough pinned space to deal with this 4309 * allocation, and no removed chunk in current transaction, 4310 * don't bother committing the transaction. 4311 */ 4312 have_pinned_space = percpu_counter_compare( 4313 &data_sinfo->total_bytes_pinned, 4314 used + bytes - data_sinfo->total_bytes); 4315 spin_unlock(&data_sinfo->lock); 4316 4317 /* commit the current transaction and try again */ 4318 commit_trans: 4319 if (need_commit) { 4320 need_commit--; 4321 4322 if (need_commit > 0) { 4323 btrfs_start_delalloc_roots(fs_info, -1); 4324 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4325 (u64)-1); 4326 } 4327 4328 trans = btrfs_join_transaction(root); 4329 if (IS_ERR(trans)) 4330 return PTR_ERR(trans); 4331 if (have_pinned_space >= 0 || 4332 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4333 &trans->transaction->flags) || 4334 need_commit > 0) { 4335 ret = btrfs_commit_transaction(trans); 4336 if (ret) 4337 return ret; 4338 /* 4339 * The cleaner kthread might still be doing iput 4340 * operations. Wait for it to finish so that 4341 * more space is released. 4342 */ 4343 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4344 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4345 goto again; 4346 } else { 4347 btrfs_end_transaction(trans); 4348 } 4349 } 4350 4351 trace_btrfs_space_reservation(fs_info, 4352 "space_info:enospc", 4353 data_sinfo->flags, bytes, 1); 4354 return -ENOSPC; 4355 } 4356 data_sinfo->bytes_may_use += bytes; 4357 trace_btrfs_space_reservation(fs_info, "space_info", 4358 data_sinfo->flags, bytes, 1); 4359 spin_unlock(&data_sinfo->lock); 4360 4361 return ret; 4362 } 4363 4364 int btrfs_check_data_free_space(struct inode *inode, 4365 struct extent_changeset **reserved, u64 start, u64 len) 4366 { 4367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4368 int ret; 4369 4370 /* align the range */ 4371 len = round_up(start + len, fs_info->sectorsize) - 4372 round_down(start, fs_info->sectorsize); 4373 start = round_down(start, fs_info->sectorsize); 4374 4375 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4376 if (ret < 0) 4377 return ret; 4378 4379 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4380 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4381 if (ret < 0) 4382 btrfs_free_reserved_data_space_noquota(inode, start, len); 4383 else 4384 ret = 0; 4385 return ret; 4386 } 4387 4388 /* 4389 * Called if we need to clear a data reservation for this inode 4390 * Normally in a error case. 4391 * 4392 * This one will *NOT* use accurate qgroup reserved space API, just for case 4393 * which we can't sleep and is sure it won't affect qgroup reserved space. 4394 * Like clear_bit_hook(). 4395 */ 4396 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4397 u64 len) 4398 { 4399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4400 struct btrfs_space_info *data_sinfo; 4401 4402 /* Make sure the range is aligned to sectorsize */ 4403 len = round_up(start + len, fs_info->sectorsize) - 4404 round_down(start, fs_info->sectorsize); 4405 start = round_down(start, fs_info->sectorsize); 4406 4407 data_sinfo = fs_info->data_sinfo; 4408 spin_lock(&data_sinfo->lock); 4409 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4410 data_sinfo->bytes_may_use = 0; 4411 else 4412 data_sinfo->bytes_may_use -= len; 4413 trace_btrfs_space_reservation(fs_info, "space_info", 4414 data_sinfo->flags, len, 0); 4415 spin_unlock(&data_sinfo->lock); 4416 } 4417 4418 /* 4419 * Called if we need to clear a data reservation for this inode 4420 * Normally in a error case. 4421 * 4422 * This one will handle the per-inode data rsv map for accurate reserved 4423 * space framework. 4424 */ 4425 void btrfs_free_reserved_data_space(struct inode *inode, 4426 struct extent_changeset *reserved, u64 start, u64 len) 4427 { 4428 struct btrfs_root *root = BTRFS_I(inode)->root; 4429 4430 /* Make sure the range is aligned to sectorsize */ 4431 len = round_up(start + len, root->fs_info->sectorsize) - 4432 round_down(start, root->fs_info->sectorsize); 4433 start = round_down(start, root->fs_info->sectorsize); 4434 4435 btrfs_free_reserved_data_space_noquota(inode, start, len); 4436 btrfs_qgroup_free_data(inode, reserved, start, len); 4437 } 4438 4439 static void force_metadata_allocation(struct btrfs_fs_info *info) 4440 { 4441 struct list_head *head = &info->space_info; 4442 struct btrfs_space_info *found; 4443 4444 rcu_read_lock(); 4445 list_for_each_entry_rcu(found, head, list) { 4446 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4447 found->force_alloc = CHUNK_ALLOC_FORCE; 4448 } 4449 rcu_read_unlock(); 4450 } 4451 4452 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4453 { 4454 return (global->size << 1); 4455 } 4456 4457 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4458 struct btrfs_space_info *sinfo, int force) 4459 { 4460 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4461 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4462 u64 thresh; 4463 4464 if (force == CHUNK_ALLOC_FORCE) 4465 return 1; 4466 4467 /* 4468 * We need to take into account the global rsv because for all intents 4469 * and purposes it's used space. Don't worry about locking the 4470 * global_rsv, it doesn't change except when the transaction commits. 4471 */ 4472 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4473 bytes_used += calc_global_rsv_need_space(global_rsv); 4474 4475 /* 4476 * in limited mode, we want to have some free space up to 4477 * about 1% of the FS size. 4478 */ 4479 if (force == CHUNK_ALLOC_LIMITED) { 4480 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4481 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4482 4483 if (sinfo->total_bytes - bytes_used < thresh) 4484 return 1; 4485 } 4486 4487 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4488 return 0; 4489 return 1; 4490 } 4491 4492 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4493 { 4494 u64 num_dev; 4495 4496 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4497 BTRFS_BLOCK_GROUP_RAID0 | 4498 BTRFS_BLOCK_GROUP_RAID5 | 4499 BTRFS_BLOCK_GROUP_RAID6)) 4500 num_dev = fs_info->fs_devices->rw_devices; 4501 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4502 num_dev = 2; 4503 else 4504 num_dev = 1; /* DUP or single */ 4505 4506 return num_dev; 4507 } 4508 4509 /* 4510 * If @is_allocation is true, reserve space in the system space info necessary 4511 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4512 * removing a chunk. 4513 */ 4514 void check_system_chunk(struct btrfs_trans_handle *trans, 4515 struct btrfs_fs_info *fs_info, u64 type) 4516 { 4517 struct btrfs_space_info *info; 4518 u64 left; 4519 u64 thresh; 4520 int ret = 0; 4521 u64 num_devs; 4522 4523 /* 4524 * Needed because we can end up allocating a system chunk and for an 4525 * atomic and race free space reservation in the chunk block reserve. 4526 */ 4527 lockdep_assert_held(&fs_info->chunk_mutex); 4528 4529 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4530 spin_lock(&info->lock); 4531 left = info->total_bytes - btrfs_space_info_used(info, true); 4532 spin_unlock(&info->lock); 4533 4534 num_devs = get_profile_num_devs(fs_info, type); 4535 4536 /* num_devs device items to update and 1 chunk item to add or remove */ 4537 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4538 btrfs_calc_trans_metadata_size(fs_info, 1); 4539 4540 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4541 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4542 left, thresh, type); 4543 dump_space_info(fs_info, info, 0, 0); 4544 } 4545 4546 if (left < thresh) { 4547 u64 flags = btrfs_system_alloc_profile(fs_info); 4548 4549 /* 4550 * Ignore failure to create system chunk. We might end up not 4551 * needing it, as we might not need to COW all nodes/leafs from 4552 * the paths we visit in the chunk tree (they were already COWed 4553 * or created in the current transaction for example). 4554 */ 4555 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4556 } 4557 4558 if (!ret) { 4559 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4560 &fs_info->chunk_block_rsv, 4561 thresh, BTRFS_RESERVE_NO_FLUSH); 4562 if (!ret) 4563 trans->chunk_bytes_reserved += thresh; 4564 } 4565 } 4566 4567 /* 4568 * If force is CHUNK_ALLOC_FORCE: 4569 * - return 1 if it successfully allocates a chunk, 4570 * - return errors including -ENOSPC otherwise. 4571 * If force is NOT CHUNK_ALLOC_FORCE: 4572 * - return 0 if it doesn't need to allocate a new chunk, 4573 * - return 1 if it successfully allocates a chunk, 4574 * - return errors including -ENOSPC otherwise. 4575 */ 4576 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4577 struct btrfs_fs_info *fs_info, u64 flags, int force) 4578 { 4579 struct btrfs_space_info *space_info; 4580 int wait_for_alloc = 0; 4581 int ret = 0; 4582 4583 /* Don't re-enter if we're already allocating a chunk */ 4584 if (trans->allocating_chunk) 4585 return -ENOSPC; 4586 4587 space_info = __find_space_info(fs_info, flags); 4588 ASSERT(space_info); 4589 4590 again: 4591 spin_lock(&space_info->lock); 4592 if (force < space_info->force_alloc) 4593 force = space_info->force_alloc; 4594 if (space_info->full) { 4595 if (should_alloc_chunk(fs_info, space_info, force)) 4596 ret = -ENOSPC; 4597 else 4598 ret = 0; 4599 spin_unlock(&space_info->lock); 4600 return ret; 4601 } 4602 4603 if (!should_alloc_chunk(fs_info, space_info, force)) { 4604 spin_unlock(&space_info->lock); 4605 return 0; 4606 } else if (space_info->chunk_alloc) { 4607 wait_for_alloc = 1; 4608 } else { 4609 space_info->chunk_alloc = 1; 4610 } 4611 4612 spin_unlock(&space_info->lock); 4613 4614 mutex_lock(&fs_info->chunk_mutex); 4615 4616 /* 4617 * The chunk_mutex is held throughout the entirety of a chunk 4618 * allocation, so once we've acquired the chunk_mutex we know that the 4619 * other guy is done and we need to recheck and see if we should 4620 * allocate. 4621 */ 4622 if (wait_for_alloc) { 4623 mutex_unlock(&fs_info->chunk_mutex); 4624 wait_for_alloc = 0; 4625 cond_resched(); 4626 goto again; 4627 } 4628 4629 trans->allocating_chunk = true; 4630 4631 /* 4632 * If we have mixed data/metadata chunks we want to make sure we keep 4633 * allocating mixed chunks instead of individual chunks. 4634 */ 4635 if (btrfs_mixed_space_info(space_info)) 4636 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4637 4638 /* 4639 * if we're doing a data chunk, go ahead and make sure that 4640 * we keep a reasonable number of metadata chunks allocated in the 4641 * FS as well. 4642 */ 4643 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4644 fs_info->data_chunk_allocations++; 4645 if (!(fs_info->data_chunk_allocations % 4646 fs_info->metadata_ratio)) 4647 force_metadata_allocation(fs_info); 4648 } 4649 4650 /* 4651 * Check if we have enough space in SYSTEM chunk because we may need 4652 * to update devices. 4653 */ 4654 check_system_chunk(trans, fs_info, flags); 4655 4656 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4657 trans->allocating_chunk = false; 4658 4659 spin_lock(&space_info->lock); 4660 if (ret < 0) { 4661 if (ret == -ENOSPC) 4662 space_info->full = 1; 4663 else 4664 goto out; 4665 } else { 4666 ret = 1; 4667 } 4668 4669 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4670 out: 4671 space_info->chunk_alloc = 0; 4672 spin_unlock(&space_info->lock); 4673 mutex_unlock(&fs_info->chunk_mutex); 4674 /* 4675 * When we allocate a new chunk we reserve space in the chunk block 4676 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4677 * add new nodes/leafs to it if we end up needing to do it when 4678 * inserting the chunk item and updating device items as part of the 4679 * second phase of chunk allocation, performed by 4680 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4681 * large number of new block groups to create in our transaction 4682 * handle's new_bgs list to avoid exhausting the chunk block reserve 4683 * in extreme cases - like having a single transaction create many new 4684 * block groups when starting to write out the free space caches of all 4685 * the block groups that were made dirty during the lifetime of the 4686 * transaction. 4687 */ 4688 if (trans->can_flush_pending_bgs && 4689 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4690 btrfs_create_pending_block_groups(trans); 4691 btrfs_trans_release_chunk_metadata(trans); 4692 } 4693 return ret; 4694 } 4695 4696 static int can_overcommit(struct btrfs_fs_info *fs_info, 4697 struct btrfs_space_info *space_info, u64 bytes, 4698 enum btrfs_reserve_flush_enum flush, 4699 bool system_chunk) 4700 { 4701 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4702 u64 profile; 4703 u64 space_size; 4704 u64 avail; 4705 u64 used; 4706 4707 /* Don't overcommit when in mixed mode. */ 4708 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4709 return 0; 4710 4711 if (system_chunk) 4712 profile = btrfs_system_alloc_profile(fs_info); 4713 else 4714 profile = btrfs_metadata_alloc_profile(fs_info); 4715 4716 used = btrfs_space_info_used(space_info, false); 4717 4718 /* 4719 * We only want to allow over committing if we have lots of actual space 4720 * free, but if we don't have enough space to handle the global reserve 4721 * space then we could end up having a real enospc problem when trying 4722 * to allocate a chunk or some other such important allocation. 4723 */ 4724 spin_lock(&global_rsv->lock); 4725 space_size = calc_global_rsv_need_space(global_rsv); 4726 spin_unlock(&global_rsv->lock); 4727 if (used + space_size >= space_info->total_bytes) 4728 return 0; 4729 4730 used += space_info->bytes_may_use; 4731 4732 avail = atomic64_read(&fs_info->free_chunk_space); 4733 4734 /* 4735 * If we have dup, raid1 or raid10 then only half of the free 4736 * space is actually useable. For raid56, the space info used 4737 * doesn't include the parity drive, so we don't have to 4738 * change the math 4739 */ 4740 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4741 BTRFS_BLOCK_GROUP_RAID1 | 4742 BTRFS_BLOCK_GROUP_RAID10)) 4743 avail >>= 1; 4744 4745 /* 4746 * If we aren't flushing all things, let us overcommit up to 4747 * 1/2th of the space. If we can flush, don't let us overcommit 4748 * too much, let it overcommit up to 1/8 of the space. 4749 */ 4750 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4751 avail >>= 3; 4752 else 4753 avail >>= 1; 4754 4755 if (used + bytes < space_info->total_bytes + avail) 4756 return 1; 4757 return 0; 4758 } 4759 4760 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4761 unsigned long nr_pages, int nr_items) 4762 { 4763 struct super_block *sb = fs_info->sb; 4764 4765 if (down_read_trylock(&sb->s_umount)) { 4766 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4767 up_read(&sb->s_umount); 4768 } else { 4769 /* 4770 * We needn't worry the filesystem going from r/w to r/o though 4771 * we don't acquire ->s_umount mutex, because the filesystem 4772 * should guarantee the delalloc inodes list be empty after 4773 * the filesystem is readonly(all dirty pages are written to 4774 * the disk). 4775 */ 4776 btrfs_start_delalloc_roots(fs_info, nr_items); 4777 if (!current->journal_info) 4778 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4779 } 4780 } 4781 4782 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4783 u64 to_reclaim) 4784 { 4785 u64 bytes; 4786 u64 nr; 4787 4788 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4789 nr = div64_u64(to_reclaim, bytes); 4790 if (!nr) 4791 nr = 1; 4792 return nr; 4793 } 4794 4795 #define EXTENT_SIZE_PER_ITEM SZ_256K 4796 4797 /* 4798 * shrink metadata reservation for delalloc 4799 */ 4800 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4801 u64 orig, bool wait_ordered) 4802 { 4803 struct btrfs_space_info *space_info; 4804 struct btrfs_trans_handle *trans; 4805 u64 delalloc_bytes; 4806 u64 max_reclaim; 4807 u64 items; 4808 long time_left; 4809 unsigned long nr_pages; 4810 int loops; 4811 4812 /* Calc the number of the pages we need flush for space reservation */ 4813 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4814 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4815 4816 trans = (struct btrfs_trans_handle *)current->journal_info; 4817 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4818 4819 delalloc_bytes = percpu_counter_sum_positive( 4820 &fs_info->delalloc_bytes); 4821 if (delalloc_bytes == 0) { 4822 if (trans) 4823 return; 4824 if (wait_ordered) 4825 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4826 return; 4827 } 4828 4829 loops = 0; 4830 while (delalloc_bytes && loops < 3) { 4831 max_reclaim = min(delalloc_bytes, to_reclaim); 4832 nr_pages = max_reclaim >> PAGE_SHIFT; 4833 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4834 /* 4835 * We need to wait for the async pages to actually start before 4836 * we do anything. 4837 */ 4838 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4839 if (!max_reclaim) 4840 goto skip_async; 4841 4842 if (max_reclaim <= nr_pages) 4843 max_reclaim = 0; 4844 else 4845 max_reclaim -= nr_pages; 4846 4847 wait_event(fs_info->async_submit_wait, 4848 atomic_read(&fs_info->async_delalloc_pages) <= 4849 (int)max_reclaim); 4850 skip_async: 4851 spin_lock(&space_info->lock); 4852 if (list_empty(&space_info->tickets) && 4853 list_empty(&space_info->priority_tickets)) { 4854 spin_unlock(&space_info->lock); 4855 break; 4856 } 4857 spin_unlock(&space_info->lock); 4858 4859 loops++; 4860 if (wait_ordered && !trans) { 4861 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4862 } else { 4863 time_left = schedule_timeout_killable(1); 4864 if (time_left) 4865 break; 4866 } 4867 delalloc_bytes = percpu_counter_sum_positive( 4868 &fs_info->delalloc_bytes); 4869 } 4870 } 4871 4872 struct reserve_ticket { 4873 u64 bytes; 4874 int error; 4875 struct list_head list; 4876 wait_queue_head_t wait; 4877 }; 4878 4879 /** 4880 * maybe_commit_transaction - possibly commit the transaction if its ok to 4881 * @root - the root we're allocating for 4882 * @bytes - the number of bytes we want to reserve 4883 * @force - force the commit 4884 * 4885 * This will check to make sure that committing the transaction will actually 4886 * get us somewhere and then commit the transaction if it does. Otherwise it 4887 * will return -ENOSPC. 4888 */ 4889 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4890 struct btrfs_space_info *space_info) 4891 { 4892 struct reserve_ticket *ticket = NULL; 4893 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4894 struct btrfs_trans_handle *trans; 4895 u64 bytes; 4896 4897 trans = (struct btrfs_trans_handle *)current->journal_info; 4898 if (trans) 4899 return -EAGAIN; 4900 4901 spin_lock(&space_info->lock); 4902 if (!list_empty(&space_info->priority_tickets)) 4903 ticket = list_first_entry(&space_info->priority_tickets, 4904 struct reserve_ticket, list); 4905 else if (!list_empty(&space_info->tickets)) 4906 ticket = list_first_entry(&space_info->tickets, 4907 struct reserve_ticket, list); 4908 bytes = (ticket) ? ticket->bytes : 0; 4909 spin_unlock(&space_info->lock); 4910 4911 if (!bytes) 4912 return 0; 4913 4914 /* See if there is enough pinned space to make this reservation */ 4915 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4916 bytes) >= 0) 4917 goto commit; 4918 4919 /* 4920 * See if there is some space in the delayed insertion reservation for 4921 * this reservation. 4922 */ 4923 if (space_info != delayed_rsv->space_info) 4924 return -ENOSPC; 4925 4926 spin_lock(&delayed_rsv->lock); 4927 if (delayed_rsv->size > bytes) 4928 bytes = 0; 4929 else 4930 bytes -= delayed_rsv->size; 4931 spin_unlock(&delayed_rsv->lock); 4932 4933 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4934 bytes) < 0) { 4935 return -ENOSPC; 4936 } 4937 4938 commit: 4939 trans = btrfs_join_transaction(fs_info->extent_root); 4940 if (IS_ERR(trans)) 4941 return -ENOSPC; 4942 4943 return btrfs_commit_transaction(trans); 4944 } 4945 4946 /* 4947 * Try to flush some data based on policy set by @state. This is only advisory 4948 * and may fail for various reasons. The caller is supposed to examine the 4949 * state of @space_info to detect the outcome. 4950 */ 4951 static void flush_space(struct btrfs_fs_info *fs_info, 4952 struct btrfs_space_info *space_info, u64 num_bytes, 4953 int state) 4954 { 4955 struct btrfs_root *root = fs_info->extent_root; 4956 struct btrfs_trans_handle *trans; 4957 int nr; 4958 int ret = 0; 4959 4960 switch (state) { 4961 case FLUSH_DELAYED_ITEMS_NR: 4962 case FLUSH_DELAYED_ITEMS: 4963 if (state == FLUSH_DELAYED_ITEMS_NR) 4964 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4965 else 4966 nr = -1; 4967 4968 trans = btrfs_join_transaction(root); 4969 if (IS_ERR(trans)) { 4970 ret = PTR_ERR(trans); 4971 break; 4972 } 4973 ret = btrfs_run_delayed_items_nr(trans, nr); 4974 btrfs_end_transaction(trans); 4975 break; 4976 case FLUSH_DELALLOC: 4977 case FLUSH_DELALLOC_WAIT: 4978 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4979 state == FLUSH_DELALLOC_WAIT); 4980 break; 4981 case ALLOC_CHUNK: 4982 trans = btrfs_join_transaction(root); 4983 if (IS_ERR(trans)) { 4984 ret = PTR_ERR(trans); 4985 break; 4986 } 4987 ret = do_chunk_alloc(trans, fs_info, 4988 btrfs_metadata_alloc_profile(fs_info), 4989 CHUNK_ALLOC_NO_FORCE); 4990 btrfs_end_transaction(trans); 4991 if (ret > 0 || ret == -ENOSPC) 4992 ret = 0; 4993 break; 4994 case COMMIT_TRANS: 4995 ret = may_commit_transaction(fs_info, space_info); 4996 break; 4997 default: 4998 ret = -ENOSPC; 4999 break; 5000 } 5001 5002 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5003 ret); 5004 return; 5005 } 5006 5007 static inline u64 5008 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5009 struct btrfs_space_info *space_info, 5010 bool system_chunk) 5011 { 5012 struct reserve_ticket *ticket; 5013 u64 used; 5014 u64 expected; 5015 u64 to_reclaim = 0; 5016 5017 list_for_each_entry(ticket, &space_info->tickets, list) 5018 to_reclaim += ticket->bytes; 5019 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5020 to_reclaim += ticket->bytes; 5021 if (to_reclaim) 5022 return to_reclaim; 5023 5024 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5025 if (can_overcommit(fs_info, space_info, to_reclaim, 5026 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5027 return 0; 5028 5029 used = btrfs_space_info_used(space_info, true); 5030 5031 if (can_overcommit(fs_info, space_info, SZ_1M, 5032 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5033 expected = div_factor_fine(space_info->total_bytes, 95); 5034 else 5035 expected = div_factor_fine(space_info->total_bytes, 90); 5036 5037 if (used > expected) 5038 to_reclaim = used - expected; 5039 else 5040 to_reclaim = 0; 5041 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5042 space_info->bytes_reserved); 5043 return to_reclaim; 5044 } 5045 5046 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5047 struct btrfs_space_info *space_info, 5048 u64 used, bool system_chunk) 5049 { 5050 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5051 5052 /* If we're just plain full then async reclaim just slows us down. */ 5053 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5054 return 0; 5055 5056 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5057 system_chunk)) 5058 return 0; 5059 5060 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5061 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5062 } 5063 5064 static void wake_all_tickets(struct list_head *head) 5065 { 5066 struct reserve_ticket *ticket; 5067 5068 while (!list_empty(head)) { 5069 ticket = list_first_entry(head, struct reserve_ticket, list); 5070 list_del_init(&ticket->list); 5071 ticket->error = -ENOSPC; 5072 wake_up(&ticket->wait); 5073 } 5074 } 5075 5076 /* 5077 * This is for normal flushers, we can wait all goddamned day if we want to. We 5078 * will loop and continuously try to flush as long as we are making progress. 5079 * We count progress as clearing off tickets each time we have to loop. 5080 */ 5081 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5082 { 5083 struct btrfs_fs_info *fs_info; 5084 struct btrfs_space_info *space_info; 5085 u64 to_reclaim; 5086 int flush_state; 5087 int commit_cycles = 0; 5088 u64 last_tickets_id; 5089 5090 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5091 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5092 5093 spin_lock(&space_info->lock); 5094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5095 false); 5096 if (!to_reclaim) { 5097 space_info->flush = 0; 5098 spin_unlock(&space_info->lock); 5099 return; 5100 } 5101 last_tickets_id = space_info->tickets_id; 5102 spin_unlock(&space_info->lock); 5103 5104 flush_state = FLUSH_DELAYED_ITEMS_NR; 5105 do { 5106 flush_space(fs_info, space_info, to_reclaim, flush_state); 5107 spin_lock(&space_info->lock); 5108 if (list_empty(&space_info->tickets)) { 5109 space_info->flush = 0; 5110 spin_unlock(&space_info->lock); 5111 return; 5112 } 5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5114 space_info, 5115 false); 5116 if (last_tickets_id == space_info->tickets_id) { 5117 flush_state++; 5118 } else { 5119 last_tickets_id = space_info->tickets_id; 5120 flush_state = FLUSH_DELAYED_ITEMS_NR; 5121 if (commit_cycles) 5122 commit_cycles--; 5123 } 5124 5125 if (flush_state > COMMIT_TRANS) { 5126 commit_cycles++; 5127 if (commit_cycles > 2) { 5128 wake_all_tickets(&space_info->tickets); 5129 space_info->flush = 0; 5130 } else { 5131 flush_state = FLUSH_DELAYED_ITEMS_NR; 5132 } 5133 } 5134 spin_unlock(&space_info->lock); 5135 } while (flush_state <= COMMIT_TRANS); 5136 } 5137 5138 void btrfs_init_async_reclaim_work(struct work_struct *work) 5139 { 5140 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5141 } 5142 5143 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5144 struct btrfs_space_info *space_info, 5145 struct reserve_ticket *ticket) 5146 { 5147 u64 to_reclaim; 5148 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5149 5150 spin_lock(&space_info->lock); 5151 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5152 false); 5153 if (!to_reclaim) { 5154 spin_unlock(&space_info->lock); 5155 return; 5156 } 5157 spin_unlock(&space_info->lock); 5158 5159 do { 5160 flush_space(fs_info, space_info, to_reclaim, flush_state); 5161 flush_state++; 5162 spin_lock(&space_info->lock); 5163 if (ticket->bytes == 0) { 5164 spin_unlock(&space_info->lock); 5165 return; 5166 } 5167 spin_unlock(&space_info->lock); 5168 5169 /* 5170 * Priority flushers can't wait on delalloc without 5171 * deadlocking. 5172 */ 5173 if (flush_state == FLUSH_DELALLOC || 5174 flush_state == FLUSH_DELALLOC_WAIT) 5175 flush_state = ALLOC_CHUNK; 5176 } while (flush_state < COMMIT_TRANS); 5177 } 5178 5179 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5180 struct btrfs_space_info *space_info, 5181 struct reserve_ticket *ticket, u64 orig_bytes) 5182 5183 { 5184 DEFINE_WAIT(wait); 5185 int ret = 0; 5186 5187 spin_lock(&space_info->lock); 5188 while (ticket->bytes > 0 && ticket->error == 0) { 5189 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5190 if (ret) { 5191 ret = -EINTR; 5192 break; 5193 } 5194 spin_unlock(&space_info->lock); 5195 5196 schedule(); 5197 5198 finish_wait(&ticket->wait, &wait); 5199 spin_lock(&space_info->lock); 5200 } 5201 if (!ret) 5202 ret = ticket->error; 5203 if (!list_empty(&ticket->list)) 5204 list_del_init(&ticket->list); 5205 if (ticket->bytes && ticket->bytes < orig_bytes) { 5206 u64 num_bytes = orig_bytes - ticket->bytes; 5207 space_info->bytes_may_use -= num_bytes; 5208 trace_btrfs_space_reservation(fs_info, "space_info", 5209 space_info->flags, num_bytes, 0); 5210 } 5211 spin_unlock(&space_info->lock); 5212 5213 return ret; 5214 } 5215 5216 /** 5217 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5218 * @root - the root we're allocating for 5219 * @space_info - the space info we want to allocate from 5220 * @orig_bytes - the number of bytes we want 5221 * @flush - whether or not we can flush to make our reservation 5222 * 5223 * This will reserve orig_bytes number of bytes from the space info associated 5224 * with the block_rsv. If there is not enough space it will make an attempt to 5225 * flush out space to make room. It will do this by flushing delalloc if 5226 * possible or committing the transaction. If flush is 0 then no attempts to 5227 * regain reservations will be made and this will fail if there is not enough 5228 * space already. 5229 */ 5230 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5231 struct btrfs_space_info *space_info, 5232 u64 orig_bytes, 5233 enum btrfs_reserve_flush_enum flush, 5234 bool system_chunk) 5235 { 5236 struct reserve_ticket ticket; 5237 u64 used; 5238 int ret = 0; 5239 5240 ASSERT(orig_bytes); 5241 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5242 5243 spin_lock(&space_info->lock); 5244 ret = -ENOSPC; 5245 used = btrfs_space_info_used(space_info, true); 5246 5247 /* 5248 * If we have enough space then hooray, make our reservation and carry 5249 * on. If not see if we can overcommit, and if we can, hooray carry on. 5250 * If not things get more complicated. 5251 */ 5252 if (used + orig_bytes <= space_info->total_bytes) { 5253 space_info->bytes_may_use += orig_bytes; 5254 trace_btrfs_space_reservation(fs_info, "space_info", 5255 space_info->flags, orig_bytes, 1); 5256 ret = 0; 5257 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5258 system_chunk)) { 5259 space_info->bytes_may_use += orig_bytes; 5260 trace_btrfs_space_reservation(fs_info, "space_info", 5261 space_info->flags, orig_bytes, 1); 5262 ret = 0; 5263 } 5264 5265 /* 5266 * If we couldn't make a reservation then setup our reservation ticket 5267 * and kick the async worker if it's not already running. 5268 * 5269 * If we are a priority flusher then we just need to add our ticket to 5270 * the list and we will do our own flushing further down. 5271 */ 5272 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5273 ticket.bytes = orig_bytes; 5274 ticket.error = 0; 5275 init_waitqueue_head(&ticket.wait); 5276 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5277 list_add_tail(&ticket.list, &space_info->tickets); 5278 if (!space_info->flush) { 5279 space_info->flush = 1; 5280 trace_btrfs_trigger_flush(fs_info, 5281 space_info->flags, 5282 orig_bytes, flush, 5283 "enospc"); 5284 queue_work(system_unbound_wq, 5285 &fs_info->async_reclaim_work); 5286 } 5287 } else { 5288 list_add_tail(&ticket.list, 5289 &space_info->priority_tickets); 5290 } 5291 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5292 used += orig_bytes; 5293 /* 5294 * We will do the space reservation dance during log replay, 5295 * which means we won't have fs_info->fs_root set, so don't do 5296 * the async reclaim as we will panic. 5297 */ 5298 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5299 need_do_async_reclaim(fs_info, space_info, 5300 used, system_chunk) && 5301 !work_busy(&fs_info->async_reclaim_work)) { 5302 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5303 orig_bytes, flush, "preempt"); 5304 queue_work(system_unbound_wq, 5305 &fs_info->async_reclaim_work); 5306 } 5307 } 5308 spin_unlock(&space_info->lock); 5309 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5310 return ret; 5311 5312 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5313 return wait_reserve_ticket(fs_info, space_info, &ticket, 5314 orig_bytes); 5315 5316 ret = 0; 5317 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5318 spin_lock(&space_info->lock); 5319 if (ticket.bytes) { 5320 if (ticket.bytes < orig_bytes) { 5321 u64 num_bytes = orig_bytes - ticket.bytes; 5322 space_info->bytes_may_use -= num_bytes; 5323 trace_btrfs_space_reservation(fs_info, "space_info", 5324 space_info->flags, 5325 num_bytes, 0); 5326 5327 } 5328 list_del_init(&ticket.list); 5329 ret = -ENOSPC; 5330 } 5331 spin_unlock(&space_info->lock); 5332 ASSERT(list_empty(&ticket.list)); 5333 return ret; 5334 } 5335 5336 /** 5337 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5338 * @root - the root we're allocating for 5339 * @block_rsv - the block_rsv we're allocating for 5340 * @orig_bytes - the number of bytes we want 5341 * @flush - whether or not we can flush to make our reservation 5342 * 5343 * This will reserve orgi_bytes number of bytes from the space info associated 5344 * with the block_rsv. If there is not enough space it will make an attempt to 5345 * flush out space to make room. It will do this by flushing delalloc if 5346 * possible or committing the transaction. If flush is 0 then no attempts to 5347 * regain reservations will be made and this will fail if there is not enough 5348 * space already. 5349 */ 5350 static int reserve_metadata_bytes(struct btrfs_root *root, 5351 struct btrfs_block_rsv *block_rsv, 5352 u64 orig_bytes, 5353 enum btrfs_reserve_flush_enum flush) 5354 { 5355 struct btrfs_fs_info *fs_info = root->fs_info; 5356 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5357 int ret; 5358 bool system_chunk = (root == fs_info->chunk_root); 5359 5360 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5361 orig_bytes, flush, system_chunk); 5362 if (ret == -ENOSPC && 5363 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5364 if (block_rsv != global_rsv && 5365 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5366 ret = 0; 5367 } 5368 if (ret == -ENOSPC) { 5369 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5370 block_rsv->space_info->flags, 5371 orig_bytes, 1); 5372 5373 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5374 dump_space_info(fs_info, block_rsv->space_info, 5375 orig_bytes, 0); 5376 } 5377 return ret; 5378 } 5379 5380 static struct btrfs_block_rsv *get_block_rsv( 5381 const struct btrfs_trans_handle *trans, 5382 const struct btrfs_root *root) 5383 { 5384 struct btrfs_fs_info *fs_info = root->fs_info; 5385 struct btrfs_block_rsv *block_rsv = NULL; 5386 5387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5388 (root == fs_info->csum_root && trans->adding_csums) || 5389 (root == fs_info->uuid_root)) 5390 block_rsv = trans->block_rsv; 5391 5392 if (!block_rsv) 5393 block_rsv = root->block_rsv; 5394 5395 if (!block_rsv) 5396 block_rsv = &fs_info->empty_block_rsv; 5397 5398 return block_rsv; 5399 } 5400 5401 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5402 u64 num_bytes) 5403 { 5404 int ret = -ENOSPC; 5405 spin_lock(&block_rsv->lock); 5406 if (block_rsv->reserved >= num_bytes) { 5407 block_rsv->reserved -= num_bytes; 5408 if (block_rsv->reserved < block_rsv->size) 5409 block_rsv->full = 0; 5410 ret = 0; 5411 } 5412 spin_unlock(&block_rsv->lock); 5413 return ret; 5414 } 5415 5416 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5417 u64 num_bytes, int update_size) 5418 { 5419 spin_lock(&block_rsv->lock); 5420 block_rsv->reserved += num_bytes; 5421 if (update_size) 5422 block_rsv->size += num_bytes; 5423 else if (block_rsv->reserved >= block_rsv->size) 5424 block_rsv->full = 1; 5425 spin_unlock(&block_rsv->lock); 5426 } 5427 5428 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5429 struct btrfs_block_rsv *dest, u64 num_bytes, 5430 int min_factor) 5431 { 5432 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5433 u64 min_bytes; 5434 5435 if (global_rsv->space_info != dest->space_info) 5436 return -ENOSPC; 5437 5438 spin_lock(&global_rsv->lock); 5439 min_bytes = div_factor(global_rsv->size, min_factor); 5440 if (global_rsv->reserved < min_bytes + num_bytes) { 5441 spin_unlock(&global_rsv->lock); 5442 return -ENOSPC; 5443 } 5444 global_rsv->reserved -= num_bytes; 5445 if (global_rsv->reserved < global_rsv->size) 5446 global_rsv->full = 0; 5447 spin_unlock(&global_rsv->lock); 5448 5449 block_rsv_add_bytes(dest, num_bytes, 1); 5450 return 0; 5451 } 5452 5453 /* 5454 * This is for space we already have accounted in space_info->bytes_may_use, so 5455 * basically when we're returning space from block_rsv's. 5456 */ 5457 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5458 struct btrfs_space_info *space_info, 5459 u64 num_bytes) 5460 { 5461 struct reserve_ticket *ticket; 5462 struct list_head *head; 5463 u64 used; 5464 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5465 bool check_overcommit = false; 5466 5467 spin_lock(&space_info->lock); 5468 head = &space_info->priority_tickets; 5469 5470 /* 5471 * If we are over our limit then we need to check and see if we can 5472 * overcommit, and if we can't then we just need to free up our space 5473 * and not satisfy any requests. 5474 */ 5475 used = btrfs_space_info_used(space_info, true); 5476 if (used - num_bytes >= space_info->total_bytes) 5477 check_overcommit = true; 5478 again: 5479 while (!list_empty(head) && num_bytes) { 5480 ticket = list_first_entry(head, struct reserve_ticket, 5481 list); 5482 /* 5483 * We use 0 bytes because this space is already reserved, so 5484 * adding the ticket space would be a double count. 5485 */ 5486 if (check_overcommit && 5487 !can_overcommit(fs_info, space_info, 0, flush, false)) 5488 break; 5489 if (num_bytes >= ticket->bytes) { 5490 list_del_init(&ticket->list); 5491 num_bytes -= ticket->bytes; 5492 ticket->bytes = 0; 5493 space_info->tickets_id++; 5494 wake_up(&ticket->wait); 5495 } else { 5496 ticket->bytes -= num_bytes; 5497 num_bytes = 0; 5498 } 5499 } 5500 5501 if (num_bytes && head == &space_info->priority_tickets) { 5502 head = &space_info->tickets; 5503 flush = BTRFS_RESERVE_FLUSH_ALL; 5504 goto again; 5505 } 5506 space_info->bytes_may_use -= num_bytes; 5507 trace_btrfs_space_reservation(fs_info, "space_info", 5508 space_info->flags, num_bytes, 0); 5509 spin_unlock(&space_info->lock); 5510 } 5511 5512 /* 5513 * This is for newly allocated space that isn't accounted in 5514 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5515 * we use this helper. 5516 */ 5517 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5518 struct btrfs_space_info *space_info, 5519 u64 num_bytes) 5520 { 5521 struct reserve_ticket *ticket; 5522 struct list_head *head = &space_info->priority_tickets; 5523 5524 again: 5525 while (!list_empty(head) && num_bytes) { 5526 ticket = list_first_entry(head, struct reserve_ticket, 5527 list); 5528 if (num_bytes >= ticket->bytes) { 5529 trace_btrfs_space_reservation(fs_info, "space_info", 5530 space_info->flags, 5531 ticket->bytes, 1); 5532 list_del_init(&ticket->list); 5533 num_bytes -= ticket->bytes; 5534 space_info->bytes_may_use += ticket->bytes; 5535 ticket->bytes = 0; 5536 space_info->tickets_id++; 5537 wake_up(&ticket->wait); 5538 } else { 5539 trace_btrfs_space_reservation(fs_info, "space_info", 5540 space_info->flags, 5541 num_bytes, 1); 5542 space_info->bytes_may_use += num_bytes; 5543 ticket->bytes -= num_bytes; 5544 num_bytes = 0; 5545 } 5546 } 5547 5548 if (num_bytes && head == &space_info->priority_tickets) { 5549 head = &space_info->tickets; 5550 goto again; 5551 } 5552 } 5553 5554 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5555 struct btrfs_block_rsv *block_rsv, 5556 struct btrfs_block_rsv *dest, u64 num_bytes, 5557 u64 *qgroup_to_release_ret) 5558 { 5559 struct btrfs_space_info *space_info = block_rsv->space_info; 5560 u64 qgroup_to_release = 0; 5561 u64 ret; 5562 5563 spin_lock(&block_rsv->lock); 5564 if (num_bytes == (u64)-1) { 5565 num_bytes = block_rsv->size; 5566 qgroup_to_release = block_rsv->qgroup_rsv_size; 5567 } 5568 block_rsv->size -= num_bytes; 5569 if (block_rsv->reserved >= block_rsv->size) { 5570 num_bytes = block_rsv->reserved - block_rsv->size; 5571 block_rsv->reserved = block_rsv->size; 5572 block_rsv->full = 1; 5573 } else { 5574 num_bytes = 0; 5575 } 5576 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 5577 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 5578 block_rsv->qgroup_rsv_size; 5579 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 5580 } else { 5581 qgroup_to_release = 0; 5582 } 5583 spin_unlock(&block_rsv->lock); 5584 5585 ret = num_bytes; 5586 if (num_bytes > 0) { 5587 if (dest) { 5588 spin_lock(&dest->lock); 5589 if (!dest->full) { 5590 u64 bytes_to_add; 5591 5592 bytes_to_add = dest->size - dest->reserved; 5593 bytes_to_add = min(num_bytes, bytes_to_add); 5594 dest->reserved += bytes_to_add; 5595 if (dest->reserved >= dest->size) 5596 dest->full = 1; 5597 num_bytes -= bytes_to_add; 5598 } 5599 spin_unlock(&dest->lock); 5600 } 5601 if (num_bytes) 5602 space_info_add_old_bytes(fs_info, space_info, 5603 num_bytes); 5604 } 5605 if (qgroup_to_release_ret) 5606 *qgroup_to_release_ret = qgroup_to_release; 5607 return ret; 5608 } 5609 5610 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5611 struct btrfs_block_rsv *dst, u64 num_bytes, 5612 int update_size) 5613 { 5614 int ret; 5615 5616 ret = block_rsv_use_bytes(src, num_bytes); 5617 if (ret) 5618 return ret; 5619 5620 block_rsv_add_bytes(dst, num_bytes, update_size); 5621 return 0; 5622 } 5623 5624 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5625 { 5626 memset(rsv, 0, sizeof(*rsv)); 5627 spin_lock_init(&rsv->lock); 5628 rsv->type = type; 5629 } 5630 5631 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5632 struct btrfs_block_rsv *rsv, 5633 unsigned short type) 5634 { 5635 btrfs_init_block_rsv(rsv, type); 5636 rsv->space_info = __find_space_info(fs_info, 5637 BTRFS_BLOCK_GROUP_METADATA); 5638 } 5639 5640 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5641 unsigned short type) 5642 { 5643 struct btrfs_block_rsv *block_rsv; 5644 5645 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5646 if (!block_rsv) 5647 return NULL; 5648 5649 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5650 return block_rsv; 5651 } 5652 5653 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5654 struct btrfs_block_rsv *rsv) 5655 { 5656 if (!rsv) 5657 return; 5658 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5659 kfree(rsv); 5660 } 5661 5662 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5663 { 5664 kfree(rsv); 5665 } 5666 5667 int btrfs_block_rsv_add(struct btrfs_root *root, 5668 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5669 enum btrfs_reserve_flush_enum flush) 5670 { 5671 int ret; 5672 5673 if (num_bytes == 0) 5674 return 0; 5675 5676 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5677 if (!ret) { 5678 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5679 return 0; 5680 } 5681 5682 return ret; 5683 } 5684 5685 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5686 { 5687 u64 num_bytes = 0; 5688 int ret = -ENOSPC; 5689 5690 if (!block_rsv) 5691 return 0; 5692 5693 spin_lock(&block_rsv->lock); 5694 num_bytes = div_factor(block_rsv->size, min_factor); 5695 if (block_rsv->reserved >= num_bytes) 5696 ret = 0; 5697 spin_unlock(&block_rsv->lock); 5698 5699 return ret; 5700 } 5701 5702 int btrfs_block_rsv_refill(struct btrfs_root *root, 5703 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5704 enum btrfs_reserve_flush_enum flush) 5705 { 5706 u64 num_bytes = 0; 5707 int ret = -ENOSPC; 5708 5709 if (!block_rsv) 5710 return 0; 5711 5712 spin_lock(&block_rsv->lock); 5713 num_bytes = min_reserved; 5714 if (block_rsv->reserved >= num_bytes) 5715 ret = 0; 5716 else 5717 num_bytes -= block_rsv->reserved; 5718 spin_unlock(&block_rsv->lock); 5719 5720 if (!ret) 5721 return 0; 5722 5723 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5724 if (!ret) { 5725 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5726 return 0; 5727 } 5728 5729 return ret; 5730 } 5731 5732 /** 5733 * btrfs_inode_rsv_refill - refill the inode block rsv. 5734 * @inode - the inode we are refilling. 5735 * @flush - the flusing restriction. 5736 * 5737 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5738 * block_rsv->size as the minimum size. We'll either refill the missing amount 5739 * or return if we already have enough space. This will also handle the resreve 5740 * tracepoint for the reserved amount. 5741 */ 5742 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5743 enum btrfs_reserve_flush_enum flush) 5744 { 5745 struct btrfs_root *root = inode->root; 5746 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5747 u64 num_bytes = 0; 5748 u64 qgroup_num_bytes = 0; 5749 int ret = -ENOSPC; 5750 5751 spin_lock(&block_rsv->lock); 5752 if (block_rsv->reserved < block_rsv->size) 5753 num_bytes = block_rsv->size - block_rsv->reserved; 5754 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) 5755 qgroup_num_bytes = block_rsv->qgroup_rsv_size - 5756 block_rsv->qgroup_rsv_reserved; 5757 spin_unlock(&block_rsv->lock); 5758 5759 if (num_bytes == 0) 5760 return 0; 5761 5762 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); 5763 if (ret) 5764 return ret; 5765 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5766 if (!ret) { 5767 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5768 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5769 btrfs_ino(inode), num_bytes, 1); 5770 5771 /* Don't forget to increase qgroup_rsv_reserved */ 5772 spin_lock(&block_rsv->lock); 5773 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; 5774 spin_unlock(&block_rsv->lock); 5775 } else 5776 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5777 return ret; 5778 } 5779 5780 /** 5781 * btrfs_inode_rsv_release - release any excessive reservation. 5782 * @inode - the inode we need to release from. 5783 * @qgroup_free - free or convert qgroup meta. 5784 * Unlike normal operation, qgroup meta reservation needs to know if we are 5785 * freeing qgroup reservation or just converting it into per-trans. Normally 5786 * @qgroup_free is true for error handling, and false for normal release. 5787 * 5788 * This is the same as btrfs_block_rsv_release, except that it handles the 5789 * tracepoint for the reservation. 5790 */ 5791 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5792 { 5793 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5794 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5795 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5796 u64 released = 0; 5797 u64 qgroup_to_release = 0; 5798 5799 /* 5800 * Since we statically set the block_rsv->size we just want to say we 5801 * are releasing 0 bytes, and then we'll just get the reservation over 5802 * the size free'd. 5803 */ 5804 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, 5805 &qgroup_to_release); 5806 if (released > 0) 5807 trace_btrfs_space_reservation(fs_info, "delalloc", 5808 btrfs_ino(inode), released, 0); 5809 if (qgroup_free) 5810 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 5811 else 5812 btrfs_qgroup_convert_reserved_meta(inode->root, 5813 qgroup_to_release); 5814 } 5815 5816 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5817 struct btrfs_block_rsv *block_rsv, 5818 u64 num_bytes) 5819 { 5820 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5821 5822 if (global_rsv == block_rsv || 5823 block_rsv->space_info != global_rsv->space_info) 5824 global_rsv = NULL; 5825 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); 5826 } 5827 5828 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5829 { 5830 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5831 struct btrfs_space_info *sinfo = block_rsv->space_info; 5832 u64 num_bytes; 5833 5834 /* 5835 * The global block rsv is based on the size of the extent tree, the 5836 * checksum tree and the root tree. If the fs is empty we want to set 5837 * it to a minimal amount for safety. 5838 */ 5839 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5840 btrfs_root_used(&fs_info->csum_root->root_item) + 5841 btrfs_root_used(&fs_info->tree_root->root_item); 5842 num_bytes = max_t(u64, num_bytes, SZ_16M); 5843 5844 spin_lock(&sinfo->lock); 5845 spin_lock(&block_rsv->lock); 5846 5847 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5848 5849 if (block_rsv->reserved < block_rsv->size) { 5850 num_bytes = btrfs_space_info_used(sinfo, true); 5851 if (sinfo->total_bytes > num_bytes) { 5852 num_bytes = sinfo->total_bytes - num_bytes; 5853 num_bytes = min(num_bytes, 5854 block_rsv->size - block_rsv->reserved); 5855 block_rsv->reserved += num_bytes; 5856 sinfo->bytes_may_use += num_bytes; 5857 trace_btrfs_space_reservation(fs_info, "space_info", 5858 sinfo->flags, num_bytes, 5859 1); 5860 } 5861 } else if (block_rsv->reserved > block_rsv->size) { 5862 num_bytes = block_rsv->reserved - block_rsv->size; 5863 sinfo->bytes_may_use -= num_bytes; 5864 trace_btrfs_space_reservation(fs_info, "space_info", 5865 sinfo->flags, num_bytes, 0); 5866 block_rsv->reserved = block_rsv->size; 5867 } 5868 5869 if (block_rsv->reserved == block_rsv->size) 5870 block_rsv->full = 1; 5871 else 5872 block_rsv->full = 0; 5873 5874 spin_unlock(&block_rsv->lock); 5875 spin_unlock(&sinfo->lock); 5876 } 5877 5878 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5879 { 5880 struct btrfs_space_info *space_info; 5881 5882 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5883 fs_info->chunk_block_rsv.space_info = space_info; 5884 5885 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5886 fs_info->global_block_rsv.space_info = space_info; 5887 fs_info->trans_block_rsv.space_info = space_info; 5888 fs_info->empty_block_rsv.space_info = space_info; 5889 fs_info->delayed_block_rsv.space_info = space_info; 5890 5891 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5892 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5893 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5894 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5895 if (fs_info->quota_root) 5896 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5897 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5898 5899 update_global_block_rsv(fs_info); 5900 } 5901 5902 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5903 { 5904 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5905 (u64)-1, NULL); 5906 WARN_ON(fs_info->trans_block_rsv.size > 0); 5907 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5908 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5909 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5910 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5911 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5912 } 5913 5914 5915 /* 5916 * To be called after all the new block groups attached to the transaction 5917 * handle have been created (btrfs_create_pending_block_groups()). 5918 */ 5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5920 { 5921 struct btrfs_fs_info *fs_info = trans->fs_info; 5922 5923 if (!trans->chunk_bytes_reserved) 5924 return; 5925 5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5927 5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5929 trans->chunk_bytes_reserved, NULL); 5930 trans->chunk_bytes_reserved = 0; 5931 } 5932 5933 /* 5934 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5935 * root: the root of the parent directory 5936 * rsv: block reservation 5937 * items: the number of items that we need do reservation 5938 * qgroup_reserved: used to return the reserved size in qgroup 5939 * 5940 * This function is used to reserve the space for snapshot/subvolume 5941 * creation and deletion. Those operations are different with the 5942 * common file/directory operations, they change two fs/file trees 5943 * and root tree, the number of items that the qgroup reserves is 5944 * different with the free space reservation. So we can not use 5945 * the space reservation mechanism in start_transaction(). 5946 */ 5947 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5948 struct btrfs_block_rsv *rsv, 5949 int items, 5950 bool use_global_rsv) 5951 { 5952 u64 num_bytes; 5953 int ret; 5954 struct btrfs_fs_info *fs_info = root->fs_info; 5955 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5956 5957 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5958 /* One for parent inode, two for dir entries */ 5959 num_bytes = 3 * fs_info->nodesize; 5960 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 5961 if (ret) 5962 return ret; 5963 } else { 5964 num_bytes = 0; 5965 } 5966 5967 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5968 rsv->space_info = __find_space_info(fs_info, 5969 BTRFS_BLOCK_GROUP_METADATA); 5970 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5971 BTRFS_RESERVE_FLUSH_ALL); 5972 5973 if (ret == -ENOSPC && use_global_rsv) 5974 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5975 5976 if (ret && num_bytes) 5977 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 5978 5979 return ret; 5980 } 5981 5982 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5983 struct btrfs_block_rsv *rsv) 5984 { 5985 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5986 } 5987 5988 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 5989 struct btrfs_inode *inode) 5990 { 5991 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5992 u64 reserve_size = 0; 5993 u64 qgroup_rsv_size = 0; 5994 u64 csum_leaves; 5995 unsigned outstanding_extents; 5996 5997 lockdep_assert_held(&inode->lock); 5998 outstanding_extents = inode->outstanding_extents; 5999 if (outstanding_extents) 6000 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6001 outstanding_extents + 1); 6002 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6003 inode->csum_bytes); 6004 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6005 csum_leaves); 6006 /* 6007 * For qgroup rsv, the calculation is very simple: 6008 * account one nodesize for each outstanding extent 6009 * 6010 * This is overestimating in most cases. 6011 */ 6012 qgroup_rsv_size = outstanding_extents * fs_info->nodesize; 6013 6014 spin_lock(&block_rsv->lock); 6015 block_rsv->size = reserve_size; 6016 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 6017 spin_unlock(&block_rsv->lock); 6018 } 6019 6020 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6021 { 6022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6023 unsigned nr_extents; 6024 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6025 int ret = 0; 6026 bool delalloc_lock = true; 6027 6028 /* If we are a free space inode we need to not flush since we will be in 6029 * the middle of a transaction commit. We also don't need the delalloc 6030 * mutex since we won't race with anybody. We need this mostly to make 6031 * lockdep shut its filthy mouth. 6032 * 6033 * If we have a transaction open (can happen if we call truncate_block 6034 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6035 */ 6036 if (btrfs_is_free_space_inode(inode)) { 6037 flush = BTRFS_RESERVE_NO_FLUSH; 6038 delalloc_lock = false; 6039 } else { 6040 if (current->journal_info) 6041 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6042 6043 if (btrfs_transaction_in_commit(fs_info)) 6044 schedule_timeout(1); 6045 } 6046 6047 if (delalloc_lock) 6048 mutex_lock(&inode->delalloc_mutex); 6049 6050 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6051 6052 /* Add our new extents and calculate the new rsv size. */ 6053 spin_lock(&inode->lock); 6054 nr_extents = count_max_extents(num_bytes); 6055 btrfs_mod_outstanding_extents(inode, nr_extents); 6056 inode->csum_bytes += num_bytes; 6057 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6058 spin_unlock(&inode->lock); 6059 6060 ret = btrfs_inode_rsv_refill(inode, flush); 6061 if (unlikely(ret)) 6062 goto out_fail; 6063 6064 if (delalloc_lock) 6065 mutex_unlock(&inode->delalloc_mutex); 6066 return 0; 6067 6068 out_fail: 6069 spin_lock(&inode->lock); 6070 nr_extents = count_max_extents(num_bytes); 6071 btrfs_mod_outstanding_extents(inode, -nr_extents); 6072 inode->csum_bytes -= num_bytes; 6073 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6074 spin_unlock(&inode->lock); 6075 6076 btrfs_inode_rsv_release(inode, true); 6077 if (delalloc_lock) 6078 mutex_unlock(&inode->delalloc_mutex); 6079 return ret; 6080 } 6081 6082 /** 6083 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6084 * @inode: the inode to release the reservation for. 6085 * @num_bytes: the number of bytes we are releasing. 6086 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6087 * 6088 * This will release the metadata reservation for an inode. This can be called 6089 * once we complete IO for a given set of bytes to release their metadata 6090 * reservations, or on error for the same reason. 6091 */ 6092 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6093 bool qgroup_free) 6094 { 6095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6096 6097 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6098 spin_lock(&inode->lock); 6099 inode->csum_bytes -= num_bytes; 6100 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6101 spin_unlock(&inode->lock); 6102 6103 if (btrfs_is_testing(fs_info)) 6104 return; 6105 6106 btrfs_inode_rsv_release(inode, qgroup_free); 6107 } 6108 6109 /** 6110 * btrfs_delalloc_release_extents - release our outstanding_extents 6111 * @inode: the inode to balance the reservation for. 6112 * @num_bytes: the number of bytes we originally reserved with 6113 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6114 * 6115 * When we reserve space we increase outstanding_extents for the extents we may 6116 * add. Once we've set the range as delalloc or created our ordered extents we 6117 * have outstanding_extents to track the real usage, so we use this to free our 6118 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6119 * with btrfs_delalloc_reserve_metadata. 6120 */ 6121 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6122 bool qgroup_free) 6123 { 6124 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6125 unsigned num_extents; 6126 6127 spin_lock(&inode->lock); 6128 num_extents = count_max_extents(num_bytes); 6129 btrfs_mod_outstanding_extents(inode, -num_extents); 6130 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6131 spin_unlock(&inode->lock); 6132 6133 if (btrfs_is_testing(fs_info)) 6134 return; 6135 6136 btrfs_inode_rsv_release(inode, qgroup_free); 6137 } 6138 6139 /** 6140 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6141 * delalloc 6142 * @inode: inode we're writing to 6143 * @start: start range we are writing to 6144 * @len: how long the range we are writing to 6145 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6146 * current reservation. 6147 * 6148 * This will do the following things 6149 * 6150 * o reserve space in data space info for num bytes 6151 * and reserve precious corresponding qgroup space 6152 * (Done in check_data_free_space) 6153 * 6154 * o reserve space for metadata space, based on the number of outstanding 6155 * extents and how much csums will be needed 6156 * also reserve metadata space in a per root over-reserve method. 6157 * o add to the inodes->delalloc_bytes 6158 * o add it to the fs_info's delalloc inodes list. 6159 * (Above 3 all done in delalloc_reserve_metadata) 6160 * 6161 * Return 0 for success 6162 * Return <0 for error(-ENOSPC or -EQUOT) 6163 */ 6164 int btrfs_delalloc_reserve_space(struct inode *inode, 6165 struct extent_changeset **reserved, u64 start, u64 len) 6166 { 6167 int ret; 6168 6169 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6170 if (ret < 0) 6171 return ret; 6172 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6173 if (ret < 0) 6174 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6175 return ret; 6176 } 6177 6178 /** 6179 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6180 * @inode: inode we're releasing space for 6181 * @start: start position of the space already reserved 6182 * @len: the len of the space already reserved 6183 * @release_bytes: the len of the space we consumed or didn't use 6184 * 6185 * This function will release the metadata space that was not used and will 6186 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6187 * list if there are no delalloc bytes left. 6188 * Also it will handle the qgroup reserved space. 6189 */ 6190 void btrfs_delalloc_release_space(struct inode *inode, 6191 struct extent_changeset *reserved, 6192 u64 start, u64 len, bool qgroup_free) 6193 { 6194 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6195 btrfs_free_reserved_data_space(inode, reserved, start, len); 6196 } 6197 6198 static int update_block_group(struct btrfs_trans_handle *trans, 6199 struct btrfs_fs_info *info, u64 bytenr, 6200 u64 num_bytes, int alloc) 6201 { 6202 struct btrfs_block_group_cache *cache = NULL; 6203 u64 total = num_bytes; 6204 u64 old_val; 6205 u64 byte_in_group; 6206 int factor; 6207 6208 /* block accounting for super block */ 6209 spin_lock(&info->delalloc_root_lock); 6210 old_val = btrfs_super_bytes_used(info->super_copy); 6211 if (alloc) 6212 old_val += num_bytes; 6213 else 6214 old_val -= num_bytes; 6215 btrfs_set_super_bytes_used(info->super_copy, old_val); 6216 spin_unlock(&info->delalloc_root_lock); 6217 6218 while (total) { 6219 cache = btrfs_lookup_block_group(info, bytenr); 6220 if (!cache) 6221 return -ENOENT; 6222 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6223 BTRFS_BLOCK_GROUP_RAID1 | 6224 BTRFS_BLOCK_GROUP_RAID10)) 6225 factor = 2; 6226 else 6227 factor = 1; 6228 /* 6229 * If this block group has free space cache written out, we 6230 * need to make sure to load it if we are removing space. This 6231 * is because we need the unpinning stage to actually add the 6232 * space back to the block group, otherwise we will leak space. 6233 */ 6234 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6235 cache_block_group(cache, 1); 6236 6237 byte_in_group = bytenr - cache->key.objectid; 6238 WARN_ON(byte_in_group > cache->key.offset); 6239 6240 spin_lock(&cache->space_info->lock); 6241 spin_lock(&cache->lock); 6242 6243 if (btrfs_test_opt(info, SPACE_CACHE) && 6244 cache->disk_cache_state < BTRFS_DC_CLEAR) 6245 cache->disk_cache_state = BTRFS_DC_CLEAR; 6246 6247 old_val = btrfs_block_group_used(&cache->item); 6248 num_bytes = min(total, cache->key.offset - byte_in_group); 6249 if (alloc) { 6250 old_val += num_bytes; 6251 btrfs_set_block_group_used(&cache->item, old_val); 6252 cache->reserved -= num_bytes; 6253 cache->space_info->bytes_reserved -= num_bytes; 6254 cache->space_info->bytes_used += num_bytes; 6255 cache->space_info->disk_used += num_bytes * factor; 6256 spin_unlock(&cache->lock); 6257 spin_unlock(&cache->space_info->lock); 6258 } else { 6259 old_val -= num_bytes; 6260 btrfs_set_block_group_used(&cache->item, old_val); 6261 cache->pinned += num_bytes; 6262 cache->space_info->bytes_pinned += num_bytes; 6263 cache->space_info->bytes_used -= num_bytes; 6264 cache->space_info->disk_used -= num_bytes * factor; 6265 spin_unlock(&cache->lock); 6266 spin_unlock(&cache->space_info->lock); 6267 6268 trace_btrfs_space_reservation(info, "pinned", 6269 cache->space_info->flags, 6270 num_bytes, 1); 6271 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6272 num_bytes); 6273 set_extent_dirty(info->pinned_extents, 6274 bytenr, bytenr + num_bytes - 1, 6275 GFP_NOFS | __GFP_NOFAIL); 6276 } 6277 6278 spin_lock(&trans->transaction->dirty_bgs_lock); 6279 if (list_empty(&cache->dirty_list)) { 6280 list_add_tail(&cache->dirty_list, 6281 &trans->transaction->dirty_bgs); 6282 trans->transaction->num_dirty_bgs++; 6283 btrfs_get_block_group(cache); 6284 } 6285 spin_unlock(&trans->transaction->dirty_bgs_lock); 6286 6287 /* 6288 * No longer have used bytes in this block group, queue it for 6289 * deletion. We do this after adding the block group to the 6290 * dirty list to avoid races between cleaner kthread and space 6291 * cache writeout. 6292 */ 6293 if (!alloc && old_val == 0) { 6294 spin_lock(&info->unused_bgs_lock); 6295 if (list_empty(&cache->bg_list)) { 6296 btrfs_get_block_group(cache); 6297 trace_btrfs_add_unused_block_group(cache); 6298 list_add_tail(&cache->bg_list, 6299 &info->unused_bgs); 6300 } 6301 spin_unlock(&info->unused_bgs_lock); 6302 } 6303 6304 btrfs_put_block_group(cache); 6305 total -= num_bytes; 6306 bytenr += num_bytes; 6307 } 6308 return 0; 6309 } 6310 6311 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6312 { 6313 struct btrfs_block_group_cache *cache; 6314 u64 bytenr; 6315 6316 spin_lock(&fs_info->block_group_cache_lock); 6317 bytenr = fs_info->first_logical_byte; 6318 spin_unlock(&fs_info->block_group_cache_lock); 6319 6320 if (bytenr < (u64)-1) 6321 return bytenr; 6322 6323 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6324 if (!cache) 6325 return 0; 6326 6327 bytenr = cache->key.objectid; 6328 btrfs_put_block_group(cache); 6329 6330 return bytenr; 6331 } 6332 6333 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6334 struct btrfs_block_group_cache *cache, 6335 u64 bytenr, u64 num_bytes, int reserved) 6336 { 6337 spin_lock(&cache->space_info->lock); 6338 spin_lock(&cache->lock); 6339 cache->pinned += num_bytes; 6340 cache->space_info->bytes_pinned += num_bytes; 6341 if (reserved) { 6342 cache->reserved -= num_bytes; 6343 cache->space_info->bytes_reserved -= num_bytes; 6344 } 6345 spin_unlock(&cache->lock); 6346 spin_unlock(&cache->space_info->lock); 6347 6348 trace_btrfs_space_reservation(fs_info, "pinned", 6349 cache->space_info->flags, num_bytes, 1); 6350 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6351 set_extent_dirty(fs_info->pinned_extents, bytenr, 6352 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6353 return 0; 6354 } 6355 6356 /* 6357 * this function must be called within transaction 6358 */ 6359 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6360 u64 bytenr, u64 num_bytes, int reserved) 6361 { 6362 struct btrfs_block_group_cache *cache; 6363 6364 cache = btrfs_lookup_block_group(fs_info, bytenr); 6365 BUG_ON(!cache); /* Logic error */ 6366 6367 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6368 6369 btrfs_put_block_group(cache); 6370 return 0; 6371 } 6372 6373 /* 6374 * this function must be called within transaction 6375 */ 6376 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6377 u64 bytenr, u64 num_bytes) 6378 { 6379 struct btrfs_block_group_cache *cache; 6380 int ret; 6381 6382 cache = btrfs_lookup_block_group(fs_info, bytenr); 6383 if (!cache) 6384 return -EINVAL; 6385 6386 /* 6387 * pull in the free space cache (if any) so that our pin 6388 * removes the free space from the cache. We have load_only set 6389 * to one because the slow code to read in the free extents does check 6390 * the pinned extents. 6391 */ 6392 cache_block_group(cache, 1); 6393 6394 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6395 6396 /* remove us from the free space cache (if we're there at all) */ 6397 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6398 btrfs_put_block_group(cache); 6399 return ret; 6400 } 6401 6402 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6403 u64 start, u64 num_bytes) 6404 { 6405 int ret; 6406 struct btrfs_block_group_cache *block_group; 6407 struct btrfs_caching_control *caching_ctl; 6408 6409 block_group = btrfs_lookup_block_group(fs_info, start); 6410 if (!block_group) 6411 return -EINVAL; 6412 6413 cache_block_group(block_group, 0); 6414 caching_ctl = get_caching_control(block_group); 6415 6416 if (!caching_ctl) { 6417 /* Logic error */ 6418 BUG_ON(!block_group_cache_done(block_group)); 6419 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6420 } else { 6421 mutex_lock(&caching_ctl->mutex); 6422 6423 if (start >= caching_ctl->progress) { 6424 ret = add_excluded_extent(fs_info, start, num_bytes); 6425 } else if (start + num_bytes <= caching_ctl->progress) { 6426 ret = btrfs_remove_free_space(block_group, 6427 start, num_bytes); 6428 } else { 6429 num_bytes = caching_ctl->progress - start; 6430 ret = btrfs_remove_free_space(block_group, 6431 start, num_bytes); 6432 if (ret) 6433 goto out_lock; 6434 6435 num_bytes = (start + num_bytes) - 6436 caching_ctl->progress; 6437 start = caching_ctl->progress; 6438 ret = add_excluded_extent(fs_info, start, num_bytes); 6439 } 6440 out_lock: 6441 mutex_unlock(&caching_ctl->mutex); 6442 put_caching_control(caching_ctl); 6443 } 6444 btrfs_put_block_group(block_group); 6445 return ret; 6446 } 6447 6448 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6449 struct extent_buffer *eb) 6450 { 6451 struct btrfs_file_extent_item *item; 6452 struct btrfs_key key; 6453 int found_type; 6454 int i; 6455 int ret = 0; 6456 6457 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6458 return 0; 6459 6460 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6461 btrfs_item_key_to_cpu(eb, &key, i); 6462 if (key.type != BTRFS_EXTENT_DATA_KEY) 6463 continue; 6464 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6465 found_type = btrfs_file_extent_type(eb, item); 6466 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6467 continue; 6468 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6469 continue; 6470 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6471 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6472 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 6473 if (ret) 6474 break; 6475 } 6476 6477 return ret; 6478 } 6479 6480 static void 6481 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6482 { 6483 atomic_inc(&bg->reservations); 6484 } 6485 6486 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6487 const u64 start) 6488 { 6489 struct btrfs_block_group_cache *bg; 6490 6491 bg = btrfs_lookup_block_group(fs_info, start); 6492 ASSERT(bg); 6493 if (atomic_dec_and_test(&bg->reservations)) 6494 wake_up_var(&bg->reservations); 6495 btrfs_put_block_group(bg); 6496 } 6497 6498 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6499 { 6500 struct btrfs_space_info *space_info = bg->space_info; 6501 6502 ASSERT(bg->ro); 6503 6504 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6505 return; 6506 6507 /* 6508 * Our block group is read only but before we set it to read only, 6509 * some task might have had allocated an extent from it already, but it 6510 * has not yet created a respective ordered extent (and added it to a 6511 * root's list of ordered extents). 6512 * Therefore wait for any task currently allocating extents, since the 6513 * block group's reservations counter is incremented while a read lock 6514 * on the groups' semaphore is held and decremented after releasing 6515 * the read access on that semaphore and creating the ordered extent. 6516 */ 6517 down_write(&space_info->groups_sem); 6518 up_write(&space_info->groups_sem); 6519 6520 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6521 } 6522 6523 /** 6524 * btrfs_add_reserved_bytes - update the block_group and space info counters 6525 * @cache: The cache we are manipulating 6526 * @ram_bytes: The number of bytes of file content, and will be same to 6527 * @num_bytes except for the compress path. 6528 * @num_bytes: The number of bytes in question 6529 * @delalloc: The blocks are allocated for the delalloc write 6530 * 6531 * This is called by the allocator when it reserves space. If this is a 6532 * reservation and the block group has become read only we cannot make the 6533 * reservation and return -EAGAIN, otherwise this function always succeeds. 6534 */ 6535 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6536 u64 ram_bytes, u64 num_bytes, int delalloc) 6537 { 6538 struct btrfs_space_info *space_info = cache->space_info; 6539 int ret = 0; 6540 6541 spin_lock(&space_info->lock); 6542 spin_lock(&cache->lock); 6543 if (cache->ro) { 6544 ret = -EAGAIN; 6545 } else { 6546 cache->reserved += num_bytes; 6547 space_info->bytes_reserved += num_bytes; 6548 6549 trace_btrfs_space_reservation(cache->fs_info, 6550 "space_info", space_info->flags, 6551 ram_bytes, 0); 6552 space_info->bytes_may_use -= ram_bytes; 6553 if (delalloc) 6554 cache->delalloc_bytes += num_bytes; 6555 } 6556 spin_unlock(&cache->lock); 6557 spin_unlock(&space_info->lock); 6558 return ret; 6559 } 6560 6561 /** 6562 * btrfs_free_reserved_bytes - update the block_group and space info counters 6563 * @cache: The cache we are manipulating 6564 * @num_bytes: The number of bytes in question 6565 * @delalloc: The blocks are allocated for the delalloc write 6566 * 6567 * This is called by somebody who is freeing space that was never actually used 6568 * on disk. For example if you reserve some space for a new leaf in transaction 6569 * A and before transaction A commits you free that leaf, you call this with 6570 * reserve set to 0 in order to clear the reservation. 6571 */ 6572 6573 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6574 u64 num_bytes, int delalloc) 6575 { 6576 struct btrfs_space_info *space_info = cache->space_info; 6577 int ret = 0; 6578 6579 spin_lock(&space_info->lock); 6580 spin_lock(&cache->lock); 6581 if (cache->ro) 6582 space_info->bytes_readonly += num_bytes; 6583 cache->reserved -= num_bytes; 6584 space_info->bytes_reserved -= num_bytes; 6585 6586 if (delalloc) 6587 cache->delalloc_bytes -= num_bytes; 6588 spin_unlock(&cache->lock); 6589 spin_unlock(&space_info->lock); 6590 return ret; 6591 } 6592 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6593 { 6594 struct btrfs_caching_control *next; 6595 struct btrfs_caching_control *caching_ctl; 6596 struct btrfs_block_group_cache *cache; 6597 6598 down_write(&fs_info->commit_root_sem); 6599 6600 list_for_each_entry_safe(caching_ctl, next, 6601 &fs_info->caching_block_groups, list) { 6602 cache = caching_ctl->block_group; 6603 if (block_group_cache_done(cache)) { 6604 cache->last_byte_to_unpin = (u64)-1; 6605 list_del_init(&caching_ctl->list); 6606 put_caching_control(caching_ctl); 6607 } else { 6608 cache->last_byte_to_unpin = caching_ctl->progress; 6609 } 6610 } 6611 6612 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6613 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6614 else 6615 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6616 6617 up_write(&fs_info->commit_root_sem); 6618 6619 update_global_block_rsv(fs_info); 6620 } 6621 6622 /* 6623 * Returns the free cluster for the given space info and sets empty_cluster to 6624 * what it should be based on the mount options. 6625 */ 6626 static struct btrfs_free_cluster * 6627 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6628 struct btrfs_space_info *space_info, u64 *empty_cluster) 6629 { 6630 struct btrfs_free_cluster *ret = NULL; 6631 6632 *empty_cluster = 0; 6633 if (btrfs_mixed_space_info(space_info)) 6634 return ret; 6635 6636 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6637 ret = &fs_info->meta_alloc_cluster; 6638 if (btrfs_test_opt(fs_info, SSD)) 6639 *empty_cluster = SZ_2M; 6640 else 6641 *empty_cluster = SZ_64K; 6642 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6643 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6644 *empty_cluster = SZ_2M; 6645 ret = &fs_info->data_alloc_cluster; 6646 } 6647 6648 return ret; 6649 } 6650 6651 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6652 u64 start, u64 end, 6653 const bool return_free_space) 6654 { 6655 struct btrfs_block_group_cache *cache = NULL; 6656 struct btrfs_space_info *space_info; 6657 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6658 struct btrfs_free_cluster *cluster = NULL; 6659 u64 len; 6660 u64 total_unpinned = 0; 6661 u64 empty_cluster = 0; 6662 bool readonly; 6663 6664 while (start <= end) { 6665 readonly = false; 6666 if (!cache || 6667 start >= cache->key.objectid + cache->key.offset) { 6668 if (cache) 6669 btrfs_put_block_group(cache); 6670 total_unpinned = 0; 6671 cache = btrfs_lookup_block_group(fs_info, start); 6672 BUG_ON(!cache); /* Logic error */ 6673 6674 cluster = fetch_cluster_info(fs_info, 6675 cache->space_info, 6676 &empty_cluster); 6677 empty_cluster <<= 1; 6678 } 6679 6680 len = cache->key.objectid + cache->key.offset - start; 6681 len = min(len, end + 1 - start); 6682 6683 if (start < cache->last_byte_to_unpin) { 6684 len = min(len, cache->last_byte_to_unpin - start); 6685 if (return_free_space) 6686 btrfs_add_free_space(cache, start, len); 6687 } 6688 6689 start += len; 6690 total_unpinned += len; 6691 space_info = cache->space_info; 6692 6693 /* 6694 * If this space cluster has been marked as fragmented and we've 6695 * unpinned enough in this block group to potentially allow a 6696 * cluster to be created inside of it go ahead and clear the 6697 * fragmented check. 6698 */ 6699 if (cluster && cluster->fragmented && 6700 total_unpinned > empty_cluster) { 6701 spin_lock(&cluster->lock); 6702 cluster->fragmented = 0; 6703 spin_unlock(&cluster->lock); 6704 } 6705 6706 spin_lock(&space_info->lock); 6707 spin_lock(&cache->lock); 6708 cache->pinned -= len; 6709 space_info->bytes_pinned -= len; 6710 6711 trace_btrfs_space_reservation(fs_info, "pinned", 6712 space_info->flags, len, 0); 6713 space_info->max_extent_size = 0; 6714 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6715 if (cache->ro) { 6716 space_info->bytes_readonly += len; 6717 readonly = true; 6718 } 6719 spin_unlock(&cache->lock); 6720 if (!readonly && return_free_space && 6721 global_rsv->space_info == space_info) { 6722 u64 to_add = len; 6723 6724 spin_lock(&global_rsv->lock); 6725 if (!global_rsv->full) { 6726 to_add = min(len, global_rsv->size - 6727 global_rsv->reserved); 6728 global_rsv->reserved += to_add; 6729 space_info->bytes_may_use += to_add; 6730 if (global_rsv->reserved >= global_rsv->size) 6731 global_rsv->full = 1; 6732 trace_btrfs_space_reservation(fs_info, 6733 "space_info", 6734 space_info->flags, 6735 to_add, 1); 6736 len -= to_add; 6737 } 6738 spin_unlock(&global_rsv->lock); 6739 /* Add to any tickets we may have */ 6740 if (len) 6741 space_info_add_new_bytes(fs_info, space_info, 6742 len); 6743 } 6744 spin_unlock(&space_info->lock); 6745 } 6746 6747 if (cache) 6748 btrfs_put_block_group(cache); 6749 return 0; 6750 } 6751 6752 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6753 { 6754 struct btrfs_fs_info *fs_info = trans->fs_info; 6755 struct btrfs_block_group_cache *block_group, *tmp; 6756 struct list_head *deleted_bgs; 6757 struct extent_io_tree *unpin; 6758 u64 start; 6759 u64 end; 6760 int ret; 6761 6762 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6763 unpin = &fs_info->freed_extents[1]; 6764 else 6765 unpin = &fs_info->freed_extents[0]; 6766 6767 while (!trans->aborted) { 6768 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6769 ret = find_first_extent_bit(unpin, 0, &start, &end, 6770 EXTENT_DIRTY, NULL); 6771 if (ret) { 6772 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6773 break; 6774 } 6775 6776 if (btrfs_test_opt(fs_info, DISCARD)) 6777 ret = btrfs_discard_extent(fs_info, start, 6778 end + 1 - start, NULL); 6779 6780 clear_extent_dirty(unpin, start, end); 6781 unpin_extent_range(fs_info, start, end, true); 6782 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6783 cond_resched(); 6784 } 6785 6786 /* 6787 * Transaction is finished. We don't need the lock anymore. We 6788 * do need to clean up the block groups in case of a transaction 6789 * abort. 6790 */ 6791 deleted_bgs = &trans->transaction->deleted_bgs; 6792 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6793 u64 trimmed = 0; 6794 6795 ret = -EROFS; 6796 if (!trans->aborted) 6797 ret = btrfs_discard_extent(fs_info, 6798 block_group->key.objectid, 6799 block_group->key.offset, 6800 &trimmed); 6801 6802 list_del_init(&block_group->bg_list); 6803 btrfs_put_block_group_trimming(block_group); 6804 btrfs_put_block_group(block_group); 6805 6806 if (ret) { 6807 const char *errstr = btrfs_decode_error(ret); 6808 btrfs_warn(fs_info, 6809 "discard failed while removing blockgroup: errno=%d %s", 6810 ret, errstr); 6811 } 6812 } 6813 6814 return 0; 6815 } 6816 6817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6818 struct btrfs_fs_info *info, 6819 struct btrfs_delayed_ref_node *node, u64 parent, 6820 u64 root_objectid, u64 owner_objectid, 6821 u64 owner_offset, int refs_to_drop, 6822 struct btrfs_delayed_extent_op *extent_op) 6823 { 6824 struct btrfs_key key; 6825 struct btrfs_path *path; 6826 struct btrfs_root *extent_root = info->extent_root; 6827 struct extent_buffer *leaf; 6828 struct btrfs_extent_item *ei; 6829 struct btrfs_extent_inline_ref *iref; 6830 int ret; 6831 int is_data; 6832 int extent_slot = 0; 6833 int found_extent = 0; 6834 int num_to_del = 1; 6835 u32 item_size; 6836 u64 refs; 6837 u64 bytenr = node->bytenr; 6838 u64 num_bytes = node->num_bytes; 6839 int last_ref = 0; 6840 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6841 6842 path = btrfs_alloc_path(); 6843 if (!path) 6844 return -ENOMEM; 6845 6846 path->reada = READA_FORWARD; 6847 path->leave_spinning = 1; 6848 6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6850 BUG_ON(!is_data && refs_to_drop != 1); 6851 6852 if (is_data) 6853 skinny_metadata = false; 6854 6855 ret = lookup_extent_backref(trans, info, path, &iref, 6856 bytenr, num_bytes, parent, 6857 root_objectid, owner_objectid, 6858 owner_offset); 6859 if (ret == 0) { 6860 extent_slot = path->slots[0]; 6861 while (extent_slot >= 0) { 6862 btrfs_item_key_to_cpu(path->nodes[0], &key, 6863 extent_slot); 6864 if (key.objectid != bytenr) 6865 break; 6866 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6867 key.offset == num_bytes) { 6868 found_extent = 1; 6869 break; 6870 } 6871 if (key.type == BTRFS_METADATA_ITEM_KEY && 6872 key.offset == owner_objectid) { 6873 found_extent = 1; 6874 break; 6875 } 6876 if (path->slots[0] - extent_slot > 5) 6877 break; 6878 extent_slot--; 6879 } 6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6882 if (found_extent && item_size < sizeof(*ei)) 6883 found_extent = 0; 6884 #endif 6885 if (!found_extent) { 6886 BUG_ON(iref); 6887 ret = remove_extent_backref(trans, info, path, NULL, 6888 refs_to_drop, 6889 is_data, &last_ref); 6890 if (ret) { 6891 btrfs_abort_transaction(trans, ret); 6892 goto out; 6893 } 6894 btrfs_release_path(path); 6895 path->leave_spinning = 1; 6896 6897 key.objectid = bytenr; 6898 key.type = BTRFS_EXTENT_ITEM_KEY; 6899 key.offset = num_bytes; 6900 6901 if (!is_data && skinny_metadata) { 6902 key.type = BTRFS_METADATA_ITEM_KEY; 6903 key.offset = owner_objectid; 6904 } 6905 6906 ret = btrfs_search_slot(trans, extent_root, 6907 &key, path, -1, 1); 6908 if (ret > 0 && skinny_metadata && path->slots[0]) { 6909 /* 6910 * Couldn't find our skinny metadata item, 6911 * see if we have ye olde extent item. 6912 */ 6913 path->slots[0]--; 6914 btrfs_item_key_to_cpu(path->nodes[0], &key, 6915 path->slots[0]); 6916 if (key.objectid == bytenr && 6917 key.type == BTRFS_EXTENT_ITEM_KEY && 6918 key.offset == num_bytes) 6919 ret = 0; 6920 } 6921 6922 if (ret > 0 && skinny_metadata) { 6923 skinny_metadata = false; 6924 key.objectid = bytenr; 6925 key.type = BTRFS_EXTENT_ITEM_KEY; 6926 key.offset = num_bytes; 6927 btrfs_release_path(path); 6928 ret = btrfs_search_slot(trans, extent_root, 6929 &key, path, -1, 1); 6930 } 6931 6932 if (ret) { 6933 btrfs_err(info, 6934 "umm, got %d back from search, was looking for %llu", 6935 ret, bytenr); 6936 if (ret > 0) 6937 btrfs_print_leaf(path->nodes[0]); 6938 } 6939 if (ret < 0) { 6940 btrfs_abort_transaction(trans, ret); 6941 goto out; 6942 } 6943 extent_slot = path->slots[0]; 6944 } 6945 } else if (WARN_ON(ret == -ENOENT)) { 6946 btrfs_print_leaf(path->nodes[0]); 6947 btrfs_err(info, 6948 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6949 bytenr, parent, root_objectid, owner_objectid, 6950 owner_offset); 6951 btrfs_abort_transaction(trans, ret); 6952 goto out; 6953 } else { 6954 btrfs_abort_transaction(trans, ret); 6955 goto out; 6956 } 6957 6958 leaf = path->nodes[0]; 6959 item_size = btrfs_item_size_nr(leaf, extent_slot); 6960 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6961 if (item_size < sizeof(*ei)) { 6962 BUG_ON(found_extent || extent_slot != path->slots[0]); 6963 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6964 0); 6965 if (ret < 0) { 6966 btrfs_abort_transaction(trans, ret); 6967 goto out; 6968 } 6969 6970 btrfs_release_path(path); 6971 path->leave_spinning = 1; 6972 6973 key.objectid = bytenr; 6974 key.type = BTRFS_EXTENT_ITEM_KEY; 6975 key.offset = num_bytes; 6976 6977 ret = btrfs_search_slot(trans, extent_root, &key, path, 6978 -1, 1); 6979 if (ret) { 6980 btrfs_err(info, 6981 "umm, got %d back from search, was looking for %llu", 6982 ret, bytenr); 6983 btrfs_print_leaf(path->nodes[0]); 6984 } 6985 if (ret < 0) { 6986 btrfs_abort_transaction(trans, ret); 6987 goto out; 6988 } 6989 6990 extent_slot = path->slots[0]; 6991 leaf = path->nodes[0]; 6992 item_size = btrfs_item_size_nr(leaf, extent_slot); 6993 } 6994 #endif 6995 BUG_ON(item_size < sizeof(*ei)); 6996 ei = btrfs_item_ptr(leaf, extent_slot, 6997 struct btrfs_extent_item); 6998 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6999 key.type == BTRFS_EXTENT_ITEM_KEY) { 7000 struct btrfs_tree_block_info *bi; 7001 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7002 bi = (struct btrfs_tree_block_info *)(ei + 1); 7003 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7004 } 7005 7006 refs = btrfs_extent_refs(leaf, ei); 7007 if (refs < refs_to_drop) { 7008 btrfs_err(info, 7009 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7010 refs_to_drop, refs, bytenr); 7011 ret = -EINVAL; 7012 btrfs_abort_transaction(trans, ret); 7013 goto out; 7014 } 7015 refs -= refs_to_drop; 7016 7017 if (refs > 0) { 7018 if (extent_op) 7019 __run_delayed_extent_op(extent_op, leaf, ei); 7020 /* 7021 * In the case of inline back ref, reference count will 7022 * be updated by remove_extent_backref 7023 */ 7024 if (iref) { 7025 BUG_ON(!found_extent); 7026 } else { 7027 btrfs_set_extent_refs(leaf, ei, refs); 7028 btrfs_mark_buffer_dirty(leaf); 7029 } 7030 if (found_extent) { 7031 ret = remove_extent_backref(trans, info, path, 7032 iref, refs_to_drop, 7033 is_data, &last_ref); 7034 if (ret) { 7035 btrfs_abort_transaction(trans, ret); 7036 goto out; 7037 } 7038 } 7039 } else { 7040 if (found_extent) { 7041 BUG_ON(is_data && refs_to_drop != 7042 extent_data_ref_count(path, iref)); 7043 if (iref) { 7044 BUG_ON(path->slots[0] != extent_slot); 7045 } else { 7046 BUG_ON(path->slots[0] != extent_slot + 1); 7047 path->slots[0] = extent_slot; 7048 num_to_del = 2; 7049 } 7050 } 7051 7052 last_ref = 1; 7053 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7054 num_to_del); 7055 if (ret) { 7056 btrfs_abort_transaction(trans, ret); 7057 goto out; 7058 } 7059 btrfs_release_path(path); 7060 7061 if (is_data) { 7062 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7063 if (ret) { 7064 btrfs_abort_transaction(trans, ret); 7065 goto out; 7066 } 7067 } 7068 7069 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 7070 if (ret) { 7071 btrfs_abort_transaction(trans, ret); 7072 goto out; 7073 } 7074 7075 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7076 if (ret) { 7077 btrfs_abort_transaction(trans, ret); 7078 goto out; 7079 } 7080 } 7081 btrfs_release_path(path); 7082 7083 out: 7084 btrfs_free_path(path); 7085 return ret; 7086 } 7087 7088 /* 7089 * when we free an block, it is possible (and likely) that we free the last 7090 * delayed ref for that extent as well. This searches the delayed ref tree for 7091 * a given extent, and if there are no other delayed refs to be processed, it 7092 * removes it from the tree. 7093 */ 7094 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7095 u64 bytenr) 7096 { 7097 struct btrfs_delayed_ref_head *head; 7098 struct btrfs_delayed_ref_root *delayed_refs; 7099 int ret = 0; 7100 7101 delayed_refs = &trans->transaction->delayed_refs; 7102 spin_lock(&delayed_refs->lock); 7103 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7104 if (!head) 7105 goto out_delayed_unlock; 7106 7107 spin_lock(&head->lock); 7108 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7109 goto out; 7110 7111 if (head->extent_op) { 7112 if (!head->must_insert_reserved) 7113 goto out; 7114 btrfs_free_delayed_extent_op(head->extent_op); 7115 head->extent_op = NULL; 7116 } 7117 7118 /* 7119 * waiting for the lock here would deadlock. If someone else has it 7120 * locked they are already in the process of dropping it anyway 7121 */ 7122 if (!mutex_trylock(&head->mutex)) 7123 goto out; 7124 7125 /* 7126 * at this point we have a head with no other entries. Go 7127 * ahead and process it. 7128 */ 7129 rb_erase(&head->href_node, &delayed_refs->href_root); 7130 RB_CLEAR_NODE(&head->href_node); 7131 atomic_dec(&delayed_refs->num_entries); 7132 7133 /* 7134 * we don't take a ref on the node because we're removing it from the 7135 * tree, so we just steal the ref the tree was holding. 7136 */ 7137 delayed_refs->num_heads--; 7138 if (head->processing == 0) 7139 delayed_refs->num_heads_ready--; 7140 head->processing = 0; 7141 spin_unlock(&head->lock); 7142 spin_unlock(&delayed_refs->lock); 7143 7144 BUG_ON(head->extent_op); 7145 if (head->must_insert_reserved) 7146 ret = 1; 7147 7148 mutex_unlock(&head->mutex); 7149 btrfs_put_delayed_ref_head(head); 7150 return ret; 7151 out: 7152 spin_unlock(&head->lock); 7153 7154 out_delayed_unlock: 7155 spin_unlock(&delayed_refs->lock); 7156 return 0; 7157 } 7158 7159 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7160 struct btrfs_root *root, 7161 struct extent_buffer *buf, 7162 u64 parent, int last_ref) 7163 { 7164 struct btrfs_fs_info *fs_info = root->fs_info; 7165 int pin = 1; 7166 int ret; 7167 7168 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7169 int old_ref_mod, new_ref_mod; 7170 7171 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7172 root->root_key.objectid, 7173 btrfs_header_level(buf), 0, 7174 BTRFS_DROP_DELAYED_REF); 7175 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7176 buf->len, parent, 7177 root->root_key.objectid, 7178 btrfs_header_level(buf), 7179 BTRFS_DROP_DELAYED_REF, NULL, 7180 &old_ref_mod, &new_ref_mod); 7181 BUG_ON(ret); /* -ENOMEM */ 7182 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7183 } 7184 7185 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7186 struct btrfs_block_group_cache *cache; 7187 7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7189 ret = check_ref_cleanup(trans, buf->start); 7190 if (!ret) 7191 goto out; 7192 } 7193 7194 pin = 0; 7195 cache = btrfs_lookup_block_group(fs_info, buf->start); 7196 7197 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7198 pin_down_extent(fs_info, cache, buf->start, 7199 buf->len, 1); 7200 btrfs_put_block_group(cache); 7201 goto out; 7202 } 7203 7204 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7205 7206 btrfs_add_free_space(cache, buf->start, buf->len); 7207 btrfs_free_reserved_bytes(cache, buf->len, 0); 7208 btrfs_put_block_group(cache); 7209 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7210 } 7211 out: 7212 if (pin) 7213 add_pinned_bytes(fs_info, buf->len, true, 7214 root->root_key.objectid); 7215 7216 if (last_ref) { 7217 /* 7218 * Deleting the buffer, clear the corrupt flag since it doesn't 7219 * matter anymore. 7220 */ 7221 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7222 } 7223 } 7224 7225 /* Can return -ENOMEM */ 7226 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7227 struct btrfs_root *root, 7228 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7229 u64 owner, u64 offset) 7230 { 7231 struct btrfs_fs_info *fs_info = root->fs_info; 7232 int old_ref_mod, new_ref_mod; 7233 int ret; 7234 7235 if (btrfs_is_testing(fs_info)) 7236 return 0; 7237 7238 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7239 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7240 root_objectid, owner, offset, 7241 BTRFS_DROP_DELAYED_REF); 7242 7243 /* 7244 * tree log blocks never actually go into the extent allocation 7245 * tree, just update pinning info and exit early. 7246 */ 7247 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7248 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7249 /* unlocks the pinned mutex */ 7250 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7251 old_ref_mod = new_ref_mod = 0; 7252 ret = 0; 7253 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7254 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7255 num_bytes, parent, 7256 root_objectid, (int)owner, 7257 BTRFS_DROP_DELAYED_REF, NULL, 7258 &old_ref_mod, &new_ref_mod); 7259 } else { 7260 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7261 num_bytes, parent, 7262 root_objectid, owner, offset, 7263 0, BTRFS_DROP_DELAYED_REF, 7264 &old_ref_mod, &new_ref_mod); 7265 } 7266 7267 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) { 7268 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 7269 7270 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid); 7271 } 7272 7273 return ret; 7274 } 7275 7276 /* 7277 * when we wait for progress in the block group caching, its because 7278 * our allocation attempt failed at least once. So, we must sleep 7279 * and let some progress happen before we try again. 7280 * 7281 * This function will sleep at least once waiting for new free space to 7282 * show up, and then it will check the block group free space numbers 7283 * for our min num_bytes. Another option is to have it go ahead 7284 * and look in the rbtree for a free extent of a given size, but this 7285 * is a good start. 7286 * 7287 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7288 * any of the information in this block group. 7289 */ 7290 static noinline void 7291 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7292 u64 num_bytes) 7293 { 7294 struct btrfs_caching_control *caching_ctl; 7295 7296 caching_ctl = get_caching_control(cache); 7297 if (!caching_ctl) 7298 return; 7299 7300 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7301 (cache->free_space_ctl->free_space >= num_bytes)); 7302 7303 put_caching_control(caching_ctl); 7304 } 7305 7306 static noinline int 7307 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7308 { 7309 struct btrfs_caching_control *caching_ctl; 7310 int ret = 0; 7311 7312 caching_ctl = get_caching_control(cache); 7313 if (!caching_ctl) 7314 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7315 7316 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7317 if (cache->cached == BTRFS_CACHE_ERROR) 7318 ret = -EIO; 7319 put_caching_control(caching_ctl); 7320 return ret; 7321 } 7322 7323 enum btrfs_loop_type { 7324 LOOP_CACHING_NOWAIT = 0, 7325 LOOP_CACHING_WAIT = 1, 7326 LOOP_ALLOC_CHUNK = 2, 7327 LOOP_NO_EMPTY_SIZE = 3, 7328 }; 7329 7330 static inline void 7331 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7332 int delalloc) 7333 { 7334 if (delalloc) 7335 down_read(&cache->data_rwsem); 7336 } 7337 7338 static inline void 7339 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7340 int delalloc) 7341 { 7342 btrfs_get_block_group(cache); 7343 if (delalloc) 7344 down_read(&cache->data_rwsem); 7345 } 7346 7347 static struct btrfs_block_group_cache * 7348 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7349 struct btrfs_free_cluster *cluster, 7350 int delalloc) 7351 { 7352 struct btrfs_block_group_cache *used_bg = NULL; 7353 7354 spin_lock(&cluster->refill_lock); 7355 while (1) { 7356 used_bg = cluster->block_group; 7357 if (!used_bg) 7358 return NULL; 7359 7360 if (used_bg == block_group) 7361 return used_bg; 7362 7363 btrfs_get_block_group(used_bg); 7364 7365 if (!delalloc) 7366 return used_bg; 7367 7368 if (down_read_trylock(&used_bg->data_rwsem)) 7369 return used_bg; 7370 7371 spin_unlock(&cluster->refill_lock); 7372 7373 /* We should only have one-level nested. */ 7374 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7375 7376 spin_lock(&cluster->refill_lock); 7377 if (used_bg == cluster->block_group) 7378 return used_bg; 7379 7380 up_read(&used_bg->data_rwsem); 7381 btrfs_put_block_group(used_bg); 7382 } 7383 } 7384 7385 static inline void 7386 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7387 int delalloc) 7388 { 7389 if (delalloc) 7390 up_read(&cache->data_rwsem); 7391 btrfs_put_block_group(cache); 7392 } 7393 7394 /* 7395 * walks the btree of allocated extents and find a hole of a given size. 7396 * The key ins is changed to record the hole: 7397 * ins->objectid == start position 7398 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7399 * ins->offset == the size of the hole. 7400 * Any available blocks before search_start are skipped. 7401 * 7402 * If there is no suitable free space, we will record the max size of 7403 * the free space extent currently. 7404 */ 7405 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7406 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7407 u64 hint_byte, struct btrfs_key *ins, 7408 u64 flags, int delalloc) 7409 { 7410 int ret = 0; 7411 struct btrfs_root *root = fs_info->extent_root; 7412 struct btrfs_free_cluster *last_ptr = NULL; 7413 struct btrfs_block_group_cache *block_group = NULL; 7414 u64 search_start = 0; 7415 u64 max_extent_size = 0; 7416 u64 empty_cluster = 0; 7417 struct btrfs_space_info *space_info; 7418 int loop = 0; 7419 int index = btrfs_bg_flags_to_raid_index(flags); 7420 bool failed_cluster_refill = false; 7421 bool failed_alloc = false; 7422 bool use_cluster = true; 7423 bool have_caching_bg = false; 7424 bool orig_have_caching_bg = false; 7425 bool full_search = false; 7426 7427 WARN_ON(num_bytes < fs_info->sectorsize); 7428 ins->type = BTRFS_EXTENT_ITEM_KEY; 7429 ins->objectid = 0; 7430 ins->offset = 0; 7431 7432 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7433 7434 space_info = __find_space_info(fs_info, flags); 7435 if (!space_info) { 7436 btrfs_err(fs_info, "No space info for %llu", flags); 7437 return -ENOSPC; 7438 } 7439 7440 /* 7441 * If our free space is heavily fragmented we may not be able to make 7442 * big contiguous allocations, so instead of doing the expensive search 7443 * for free space, simply return ENOSPC with our max_extent_size so we 7444 * can go ahead and search for a more manageable chunk. 7445 * 7446 * If our max_extent_size is large enough for our allocation simply 7447 * disable clustering since we will likely not be able to find enough 7448 * space to create a cluster and induce latency trying. 7449 */ 7450 if (unlikely(space_info->max_extent_size)) { 7451 spin_lock(&space_info->lock); 7452 if (space_info->max_extent_size && 7453 num_bytes > space_info->max_extent_size) { 7454 ins->offset = space_info->max_extent_size; 7455 spin_unlock(&space_info->lock); 7456 return -ENOSPC; 7457 } else if (space_info->max_extent_size) { 7458 use_cluster = false; 7459 } 7460 spin_unlock(&space_info->lock); 7461 } 7462 7463 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7464 if (last_ptr) { 7465 spin_lock(&last_ptr->lock); 7466 if (last_ptr->block_group) 7467 hint_byte = last_ptr->window_start; 7468 if (last_ptr->fragmented) { 7469 /* 7470 * We still set window_start so we can keep track of the 7471 * last place we found an allocation to try and save 7472 * some time. 7473 */ 7474 hint_byte = last_ptr->window_start; 7475 use_cluster = false; 7476 } 7477 spin_unlock(&last_ptr->lock); 7478 } 7479 7480 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7481 search_start = max(search_start, hint_byte); 7482 if (search_start == hint_byte) { 7483 block_group = btrfs_lookup_block_group(fs_info, search_start); 7484 /* 7485 * we don't want to use the block group if it doesn't match our 7486 * allocation bits, or if its not cached. 7487 * 7488 * However if we are re-searching with an ideal block group 7489 * picked out then we don't care that the block group is cached. 7490 */ 7491 if (block_group && block_group_bits(block_group, flags) && 7492 block_group->cached != BTRFS_CACHE_NO) { 7493 down_read(&space_info->groups_sem); 7494 if (list_empty(&block_group->list) || 7495 block_group->ro) { 7496 /* 7497 * someone is removing this block group, 7498 * we can't jump into the have_block_group 7499 * target because our list pointers are not 7500 * valid 7501 */ 7502 btrfs_put_block_group(block_group); 7503 up_read(&space_info->groups_sem); 7504 } else { 7505 index = btrfs_bg_flags_to_raid_index( 7506 block_group->flags); 7507 btrfs_lock_block_group(block_group, delalloc); 7508 goto have_block_group; 7509 } 7510 } else if (block_group) { 7511 btrfs_put_block_group(block_group); 7512 } 7513 } 7514 search: 7515 have_caching_bg = false; 7516 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7517 full_search = true; 7518 down_read(&space_info->groups_sem); 7519 list_for_each_entry(block_group, &space_info->block_groups[index], 7520 list) { 7521 u64 offset; 7522 int cached; 7523 7524 /* If the block group is read-only, we can skip it entirely. */ 7525 if (unlikely(block_group->ro)) 7526 continue; 7527 7528 btrfs_grab_block_group(block_group, delalloc); 7529 search_start = block_group->key.objectid; 7530 7531 /* 7532 * this can happen if we end up cycling through all the 7533 * raid types, but we want to make sure we only allocate 7534 * for the proper type. 7535 */ 7536 if (!block_group_bits(block_group, flags)) { 7537 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7538 BTRFS_BLOCK_GROUP_RAID1 | 7539 BTRFS_BLOCK_GROUP_RAID5 | 7540 BTRFS_BLOCK_GROUP_RAID6 | 7541 BTRFS_BLOCK_GROUP_RAID10; 7542 7543 /* 7544 * if they asked for extra copies and this block group 7545 * doesn't provide them, bail. This does allow us to 7546 * fill raid0 from raid1. 7547 */ 7548 if ((flags & extra) && !(block_group->flags & extra)) 7549 goto loop; 7550 } 7551 7552 have_block_group: 7553 cached = block_group_cache_done(block_group); 7554 if (unlikely(!cached)) { 7555 have_caching_bg = true; 7556 ret = cache_block_group(block_group, 0); 7557 BUG_ON(ret < 0); 7558 ret = 0; 7559 } 7560 7561 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7562 goto loop; 7563 7564 /* 7565 * Ok we want to try and use the cluster allocator, so 7566 * lets look there 7567 */ 7568 if (last_ptr && use_cluster) { 7569 struct btrfs_block_group_cache *used_block_group; 7570 unsigned long aligned_cluster; 7571 /* 7572 * the refill lock keeps out other 7573 * people trying to start a new cluster 7574 */ 7575 used_block_group = btrfs_lock_cluster(block_group, 7576 last_ptr, 7577 delalloc); 7578 if (!used_block_group) 7579 goto refill_cluster; 7580 7581 if (used_block_group != block_group && 7582 (used_block_group->ro || 7583 !block_group_bits(used_block_group, flags))) 7584 goto release_cluster; 7585 7586 offset = btrfs_alloc_from_cluster(used_block_group, 7587 last_ptr, 7588 num_bytes, 7589 used_block_group->key.objectid, 7590 &max_extent_size); 7591 if (offset) { 7592 /* we have a block, we're done */ 7593 spin_unlock(&last_ptr->refill_lock); 7594 trace_btrfs_reserve_extent_cluster( 7595 used_block_group, 7596 search_start, num_bytes); 7597 if (used_block_group != block_group) { 7598 btrfs_release_block_group(block_group, 7599 delalloc); 7600 block_group = used_block_group; 7601 } 7602 goto checks; 7603 } 7604 7605 WARN_ON(last_ptr->block_group != used_block_group); 7606 release_cluster: 7607 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7608 * set up a new clusters, so lets just skip it 7609 * and let the allocator find whatever block 7610 * it can find. If we reach this point, we 7611 * will have tried the cluster allocator 7612 * plenty of times and not have found 7613 * anything, so we are likely way too 7614 * fragmented for the clustering stuff to find 7615 * anything. 7616 * 7617 * However, if the cluster is taken from the 7618 * current block group, release the cluster 7619 * first, so that we stand a better chance of 7620 * succeeding in the unclustered 7621 * allocation. */ 7622 if (loop >= LOOP_NO_EMPTY_SIZE && 7623 used_block_group != block_group) { 7624 spin_unlock(&last_ptr->refill_lock); 7625 btrfs_release_block_group(used_block_group, 7626 delalloc); 7627 goto unclustered_alloc; 7628 } 7629 7630 /* 7631 * this cluster didn't work out, free it and 7632 * start over 7633 */ 7634 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7635 7636 if (used_block_group != block_group) 7637 btrfs_release_block_group(used_block_group, 7638 delalloc); 7639 refill_cluster: 7640 if (loop >= LOOP_NO_EMPTY_SIZE) { 7641 spin_unlock(&last_ptr->refill_lock); 7642 goto unclustered_alloc; 7643 } 7644 7645 aligned_cluster = max_t(unsigned long, 7646 empty_cluster + empty_size, 7647 block_group->full_stripe_len); 7648 7649 /* allocate a cluster in this block group */ 7650 ret = btrfs_find_space_cluster(fs_info, block_group, 7651 last_ptr, search_start, 7652 num_bytes, 7653 aligned_cluster); 7654 if (ret == 0) { 7655 /* 7656 * now pull our allocation out of this 7657 * cluster 7658 */ 7659 offset = btrfs_alloc_from_cluster(block_group, 7660 last_ptr, 7661 num_bytes, 7662 search_start, 7663 &max_extent_size); 7664 if (offset) { 7665 /* we found one, proceed */ 7666 spin_unlock(&last_ptr->refill_lock); 7667 trace_btrfs_reserve_extent_cluster( 7668 block_group, search_start, 7669 num_bytes); 7670 goto checks; 7671 } 7672 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7673 && !failed_cluster_refill) { 7674 spin_unlock(&last_ptr->refill_lock); 7675 7676 failed_cluster_refill = true; 7677 wait_block_group_cache_progress(block_group, 7678 num_bytes + empty_cluster + empty_size); 7679 goto have_block_group; 7680 } 7681 7682 /* 7683 * at this point we either didn't find a cluster 7684 * or we weren't able to allocate a block from our 7685 * cluster. Free the cluster we've been trying 7686 * to use, and go to the next block group 7687 */ 7688 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7689 spin_unlock(&last_ptr->refill_lock); 7690 goto loop; 7691 } 7692 7693 unclustered_alloc: 7694 /* 7695 * We are doing an unclustered alloc, set the fragmented flag so 7696 * we don't bother trying to setup a cluster again until we get 7697 * more space. 7698 */ 7699 if (unlikely(last_ptr)) { 7700 spin_lock(&last_ptr->lock); 7701 last_ptr->fragmented = 1; 7702 spin_unlock(&last_ptr->lock); 7703 } 7704 if (cached) { 7705 struct btrfs_free_space_ctl *ctl = 7706 block_group->free_space_ctl; 7707 7708 spin_lock(&ctl->tree_lock); 7709 if (ctl->free_space < 7710 num_bytes + empty_cluster + empty_size) { 7711 if (ctl->free_space > max_extent_size) 7712 max_extent_size = ctl->free_space; 7713 spin_unlock(&ctl->tree_lock); 7714 goto loop; 7715 } 7716 spin_unlock(&ctl->tree_lock); 7717 } 7718 7719 offset = btrfs_find_space_for_alloc(block_group, search_start, 7720 num_bytes, empty_size, 7721 &max_extent_size); 7722 /* 7723 * If we didn't find a chunk, and we haven't failed on this 7724 * block group before, and this block group is in the middle of 7725 * caching and we are ok with waiting, then go ahead and wait 7726 * for progress to be made, and set failed_alloc to true. 7727 * 7728 * If failed_alloc is true then we've already waited on this 7729 * block group once and should move on to the next block group. 7730 */ 7731 if (!offset && !failed_alloc && !cached && 7732 loop > LOOP_CACHING_NOWAIT) { 7733 wait_block_group_cache_progress(block_group, 7734 num_bytes + empty_size); 7735 failed_alloc = true; 7736 goto have_block_group; 7737 } else if (!offset) { 7738 goto loop; 7739 } 7740 checks: 7741 search_start = ALIGN(offset, fs_info->stripesize); 7742 7743 /* move on to the next group */ 7744 if (search_start + num_bytes > 7745 block_group->key.objectid + block_group->key.offset) { 7746 btrfs_add_free_space(block_group, offset, num_bytes); 7747 goto loop; 7748 } 7749 7750 if (offset < search_start) 7751 btrfs_add_free_space(block_group, offset, 7752 search_start - offset); 7753 BUG_ON(offset > search_start); 7754 7755 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7756 num_bytes, delalloc); 7757 if (ret == -EAGAIN) { 7758 btrfs_add_free_space(block_group, offset, num_bytes); 7759 goto loop; 7760 } 7761 btrfs_inc_block_group_reservations(block_group); 7762 7763 /* we are all good, lets return */ 7764 ins->objectid = search_start; 7765 ins->offset = num_bytes; 7766 7767 trace_btrfs_reserve_extent(block_group, search_start, num_bytes); 7768 btrfs_release_block_group(block_group, delalloc); 7769 break; 7770 loop: 7771 failed_cluster_refill = false; 7772 failed_alloc = false; 7773 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7774 index); 7775 btrfs_release_block_group(block_group, delalloc); 7776 cond_resched(); 7777 } 7778 up_read(&space_info->groups_sem); 7779 7780 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7781 && !orig_have_caching_bg) 7782 orig_have_caching_bg = true; 7783 7784 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7785 goto search; 7786 7787 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7788 goto search; 7789 7790 /* 7791 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7792 * caching kthreads as we move along 7793 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7794 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7795 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7796 * again 7797 */ 7798 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7799 index = 0; 7800 if (loop == LOOP_CACHING_NOWAIT) { 7801 /* 7802 * We want to skip the LOOP_CACHING_WAIT step if we 7803 * don't have any uncached bgs and we've already done a 7804 * full search through. 7805 */ 7806 if (orig_have_caching_bg || !full_search) 7807 loop = LOOP_CACHING_WAIT; 7808 else 7809 loop = LOOP_ALLOC_CHUNK; 7810 } else { 7811 loop++; 7812 } 7813 7814 if (loop == LOOP_ALLOC_CHUNK) { 7815 struct btrfs_trans_handle *trans; 7816 int exist = 0; 7817 7818 trans = current->journal_info; 7819 if (trans) 7820 exist = 1; 7821 else 7822 trans = btrfs_join_transaction(root); 7823 7824 if (IS_ERR(trans)) { 7825 ret = PTR_ERR(trans); 7826 goto out; 7827 } 7828 7829 ret = do_chunk_alloc(trans, fs_info, flags, 7830 CHUNK_ALLOC_FORCE); 7831 7832 /* 7833 * If we can't allocate a new chunk we've already looped 7834 * through at least once, move on to the NO_EMPTY_SIZE 7835 * case. 7836 */ 7837 if (ret == -ENOSPC) 7838 loop = LOOP_NO_EMPTY_SIZE; 7839 7840 /* 7841 * Do not bail out on ENOSPC since we 7842 * can do more things. 7843 */ 7844 if (ret < 0 && ret != -ENOSPC) 7845 btrfs_abort_transaction(trans, ret); 7846 else 7847 ret = 0; 7848 if (!exist) 7849 btrfs_end_transaction(trans); 7850 if (ret) 7851 goto out; 7852 } 7853 7854 if (loop == LOOP_NO_EMPTY_SIZE) { 7855 /* 7856 * Don't loop again if we already have no empty_size and 7857 * no empty_cluster. 7858 */ 7859 if (empty_size == 0 && 7860 empty_cluster == 0) { 7861 ret = -ENOSPC; 7862 goto out; 7863 } 7864 empty_size = 0; 7865 empty_cluster = 0; 7866 } 7867 7868 goto search; 7869 } else if (!ins->objectid) { 7870 ret = -ENOSPC; 7871 } else if (ins->objectid) { 7872 if (!use_cluster && last_ptr) { 7873 spin_lock(&last_ptr->lock); 7874 last_ptr->window_start = ins->objectid; 7875 spin_unlock(&last_ptr->lock); 7876 } 7877 ret = 0; 7878 } 7879 out: 7880 if (ret == -ENOSPC) { 7881 spin_lock(&space_info->lock); 7882 space_info->max_extent_size = max_extent_size; 7883 spin_unlock(&space_info->lock); 7884 ins->offset = max_extent_size; 7885 } 7886 return ret; 7887 } 7888 7889 static void dump_space_info(struct btrfs_fs_info *fs_info, 7890 struct btrfs_space_info *info, u64 bytes, 7891 int dump_block_groups) 7892 { 7893 struct btrfs_block_group_cache *cache; 7894 int index = 0; 7895 7896 spin_lock(&info->lock); 7897 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7898 info->flags, 7899 info->total_bytes - btrfs_space_info_used(info, true), 7900 info->full ? "" : "not "); 7901 btrfs_info(fs_info, 7902 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7903 info->total_bytes, info->bytes_used, info->bytes_pinned, 7904 info->bytes_reserved, info->bytes_may_use, 7905 info->bytes_readonly); 7906 spin_unlock(&info->lock); 7907 7908 if (!dump_block_groups) 7909 return; 7910 7911 down_read(&info->groups_sem); 7912 again: 7913 list_for_each_entry(cache, &info->block_groups[index], list) { 7914 spin_lock(&cache->lock); 7915 btrfs_info(fs_info, 7916 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7917 cache->key.objectid, cache->key.offset, 7918 btrfs_block_group_used(&cache->item), cache->pinned, 7919 cache->reserved, cache->ro ? "[readonly]" : ""); 7920 btrfs_dump_free_space(cache, bytes); 7921 spin_unlock(&cache->lock); 7922 } 7923 if (++index < BTRFS_NR_RAID_TYPES) 7924 goto again; 7925 up_read(&info->groups_sem); 7926 } 7927 7928 /* 7929 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7930 * hole that is at least as big as @num_bytes. 7931 * 7932 * @root - The root that will contain this extent 7933 * 7934 * @ram_bytes - The amount of space in ram that @num_bytes take. This 7935 * is used for accounting purposes. This value differs 7936 * from @num_bytes only in the case of compressed extents. 7937 * 7938 * @num_bytes - Number of bytes to allocate on-disk. 7939 * 7940 * @min_alloc_size - Indicates the minimum amount of space that the 7941 * allocator should try to satisfy. In some cases 7942 * @num_bytes may be larger than what is required and if 7943 * the filesystem is fragmented then allocation fails. 7944 * However, the presence of @min_alloc_size gives a 7945 * chance to try and satisfy the smaller allocation. 7946 * 7947 * @empty_size - A hint that you plan on doing more COW. This is the 7948 * size in bytes the allocator should try to find free 7949 * next to the block it returns. This is just a hint and 7950 * may be ignored by the allocator. 7951 * 7952 * @hint_byte - Hint to the allocator to start searching above the byte 7953 * address passed. It might be ignored. 7954 * 7955 * @ins - This key is modified to record the found hole. It will 7956 * have the following values: 7957 * ins->objectid == start position 7958 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7959 * ins->offset == the size of the hole. 7960 * 7961 * @is_data - Boolean flag indicating whether an extent is 7962 * allocated for data (true) or metadata (false) 7963 * 7964 * @delalloc - Boolean flag indicating whether this allocation is for 7965 * delalloc or not. If 'true' data_rwsem of block groups 7966 * is going to be acquired. 7967 * 7968 * 7969 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 7970 * case -ENOSPC is returned then @ins->offset will contain the size of the 7971 * largest available hole the allocator managed to find. 7972 */ 7973 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7974 u64 num_bytes, u64 min_alloc_size, 7975 u64 empty_size, u64 hint_byte, 7976 struct btrfs_key *ins, int is_data, int delalloc) 7977 { 7978 struct btrfs_fs_info *fs_info = root->fs_info; 7979 bool final_tried = num_bytes == min_alloc_size; 7980 u64 flags; 7981 int ret; 7982 7983 flags = get_alloc_profile_by_root(root, is_data); 7984 again: 7985 WARN_ON(num_bytes < fs_info->sectorsize); 7986 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 7987 hint_byte, ins, flags, delalloc); 7988 if (!ret && !is_data) { 7989 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 7990 } else if (ret == -ENOSPC) { 7991 if (!final_tried && ins->offset) { 7992 num_bytes = min(num_bytes >> 1, ins->offset); 7993 num_bytes = round_down(num_bytes, 7994 fs_info->sectorsize); 7995 num_bytes = max(num_bytes, min_alloc_size); 7996 ram_bytes = num_bytes; 7997 if (num_bytes == min_alloc_size) 7998 final_tried = true; 7999 goto again; 8000 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8001 struct btrfs_space_info *sinfo; 8002 8003 sinfo = __find_space_info(fs_info, flags); 8004 btrfs_err(fs_info, 8005 "allocation failed flags %llu, wanted %llu", 8006 flags, num_bytes); 8007 if (sinfo) 8008 dump_space_info(fs_info, sinfo, num_bytes, 1); 8009 } 8010 } 8011 8012 return ret; 8013 } 8014 8015 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8016 u64 start, u64 len, 8017 int pin, int delalloc) 8018 { 8019 struct btrfs_block_group_cache *cache; 8020 int ret = 0; 8021 8022 cache = btrfs_lookup_block_group(fs_info, start); 8023 if (!cache) { 8024 btrfs_err(fs_info, "Unable to find block group for %llu", 8025 start); 8026 return -ENOSPC; 8027 } 8028 8029 if (pin) 8030 pin_down_extent(fs_info, cache, start, len, 1); 8031 else { 8032 if (btrfs_test_opt(fs_info, DISCARD)) 8033 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8034 btrfs_add_free_space(cache, start, len); 8035 btrfs_free_reserved_bytes(cache, len, delalloc); 8036 trace_btrfs_reserved_extent_free(fs_info, start, len); 8037 } 8038 8039 btrfs_put_block_group(cache); 8040 return ret; 8041 } 8042 8043 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8044 u64 start, u64 len, int delalloc) 8045 { 8046 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8047 } 8048 8049 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8050 u64 start, u64 len) 8051 { 8052 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8053 } 8054 8055 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8056 struct btrfs_fs_info *fs_info, 8057 u64 parent, u64 root_objectid, 8058 u64 flags, u64 owner, u64 offset, 8059 struct btrfs_key *ins, int ref_mod) 8060 { 8061 int ret; 8062 struct btrfs_extent_item *extent_item; 8063 struct btrfs_extent_inline_ref *iref; 8064 struct btrfs_path *path; 8065 struct extent_buffer *leaf; 8066 int type; 8067 u32 size; 8068 8069 if (parent > 0) 8070 type = BTRFS_SHARED_DATA_REF_KEY; 8071 else 8072 type = BTRFS_EXTENT_DATA_REF_KEY; 8073 8074 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8075 8076 path = btrfs_alloc_path(); 8077 if (!path) 8078 return -ENOMEM; 8079 8080 path->leave_spinning = 1; 8081 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8082 ins, size); 8083 if (ret) { 8084 btrfs_free_path(path); 8085 return ret; 8086 } 8087 8088 leaf = path->nodes[0]; 8089 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8090 struct btrfs_extent_item); 8091 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8092 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8093 btrfs_set_extent_flags(leaf, extent_item, 8094 flags | BTRFS_EXTENT_FLAG_DATA); 8095 8096 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8097 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8098 if (parent > 0) { 8099 struct btrfs_shared_data_ref *ref; 8100 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8101 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8102 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8103 } else { 8104 struct btrfs_extent_data_ref *ref; 8105 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8106 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8107 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8108 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8109 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8110 } 8111 8112 btrfs_mark_buffer_dirty(path->nodes[0]); 8113 btrfs_free_path(path); 8114 8115 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 8116 if (ret) 8117 return ret; 8118 8119 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8120 if (ret) { /* -ENOENT, logic error */ 8121 btrfs_err(fs_info, "update block group failed for %llu %llu", 8122 ins->objectid, ins->offset); 8123 BUG(); 8124 } 8125 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8126 return ret; 8127 } 8128 8129 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8130 struct btrfs_delayed_ref_node *node, 8131 struct btrfs_delayed_extent_op *extent_op) 8132 { 8133 struct btrfs_fs_info *fs_info = trans->fs_info; 8134 int ret; 8135 struct btrfs_extent_item *extent_item; 8136 struct btrfs_key extent_key; 8137 struct btrfs_tree_block_info *block_info; 8138 struct btrfs_extent_inline_ref *iref; 8139 struct btrfs_path *path; 8140 struct extent_buffer *leaf; 8141 struct btrfs_delayed_tree_ref *ref; 8142 u32 size = sizeof(*extent_item) + sizeof(*iref); 8143 u64 num_bytes; 8144 u64 flags = extent_op->flags_to_set; 8145 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8146 8147 ref = btrfs_delayed_node_to_tree_ref(node); 8148 8149 extent_key.objectid = node->bytenr; 8150 if (skinny_metadata) { 8151 extent_key.offset = ref->level; 8152 extent_key.type = BTRFS_METADATA_ITEM_KEY; 8153 num_bytes = fs_info->nodesize; 8154 } else { 8155 extent_key.offset = node->num_bytes; 8156 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 8157 size += sizeof(*block_info); 8158 num_bytes = node->num_bytes; 8159 } 8160 8161 path = btrfs_alloc_path(); 8162 if (!path) { 8163 btrfs_free_and_pin_reserved_extent(fs_info, 8164 extent_key.objectid, 8165 fs_info->nodesize); 8166 return -ENOMEM; 8167 } 8168 8169 path->leave_spinning = 1; 8170 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8171 &extent_key, size); 8172 if (ret) { 8173 btrfs_free_path(path); 8174 btrfs_free_and_pin_reserved_extent(fs_info, 8175 extent_key.objectid, 8176 fs_info->nodesize); 8177 return ret; 8178 } 8179 8180 leaf = path->nodes[0]; 8181 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8182 struct btrfs_extent_item); 8183 btrfs_set_extent_refs(leaf, extent_item, 1); 8184 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8185 btrfs_set_extent_flags(leaf, extent_item, 8186 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8187 8188 if (skinny_metadata) { 8189 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8190 } else { 8191 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8192 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 8193 btrfs_set_tree_block_level(leaf, block_info, ref->level); 8194 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8195 } 8196 8197 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 8198 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8199 btrfs_set_extent_inline_ref_type(leaf, iref, 8200 BTRFS_SHARED_BLOCK_REF_KEY); 8201 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 8202 } else { 8203 btrfs_set_extent_inline_ref_type(leaf, iref, 8204 BTRFS_TREE_BLOCK_REF_KEY); 8205 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 8206 } 8207 8208 btrfs_mark_buffer_dirty(leaf); 8209 btrfs_free_path(path); 8210 8211 ret = remove_from_free_space_tree(trans, extent_key.objectid, 8212 num_bytes); 8213 if (ret) 8214 return ret; 8215 8216 ret = update_block_group(trans, fs_info, extent_key.objectid, 8217 fs_info->nodesize, 1); 8218 if (ret) { /* -ENOENT, logic error */ 8219 btrfs_err(fs_info, "update block group failed for %llu %llu", 8220 extent_key.objectid, extent_key.offset); 8221 BUG(); 8222 } 8223 8224 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 8225 fs_info->nodesize); 8226 return ret; 8227 } 8228 8229 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8230 struct btrfs_root *root, u64 owner, 8231 u64 offset, u64 ram_bytes, 8232 struct btrfs_key *ins) 8233 { 8234 struct btrfs_fs_info *fs_info = root->fs_info; 8235 int ret; 8236 8237 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8238 8239 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8240 root->root_key.objectid, owner, offset, 8241 BTRFS_ADD_DELAYED_EXTENT); 8242 8243 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8244 ins->offset, 0, 8245 root->root_key.objectid, owner, 8246 offset, ram_bytes, 8247 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8248 return ret; 8249 } 8250 8251 /* 8252 * this is used by the tree logging recovery code. It records that 8253 * an extent has been allocated and makes sure to clear the free 8254 * space cache bits as well 8255 */ 8256 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8257 struct btrfs_fs_info *fs_info, 8258 u64 root_objectid, u64 owner, u64 offset, 8259 struct btrfs_key *ins) 8260 { 8261 int ret; 8262 struct btrfs_block_group_cache *block_group; 8263 struct btrfs_space_info *space_info; 8264 8265 /* 8266 * Mixed block groups will exclude before processing the log so we only 8267 * need to do the exclude dance if this fs isn't mixed. 8268 */ 8269 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8270 ret = __exclude_logged_extent(fs_info, ins->objectid, 8271 ins->offset); 8272 if (ret) 8273 return ret; 8274 } 8275 8276 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8277 if (!block_group) 8278 return -EINVAL; 8279 8280 space_info = block_group->space_info; 8281 spin_lock(&space_info->lock); 8282 spin_lock(&block_group->lock); 8283 space_info->bytes_reserved += ins->offset; 8284 block_group->reserved += ins->offset; 8285 spin_unlock(&block_group->lock); 8286 spin_unlock(&space_info->lock); 8287 8288 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8289 0, owner, offset, ins, 1); 8290 btrfs_put_block_group(block_group); 8291 return ret; 8292 } 8293 8294 static struct extent_buffer * 8295 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8296 u64 bytenr, int level) 8297 { 8298 struct btrfs_fs_info *fs_info = root->fs_info; 8299 struct extent_buffer *buf; 8300 8301 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8302 if (IS_ERR(buf)) 8303 return buf; 8304 8305 btrfs_set_header_generation(buf, trans->transid); 8306 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8307 btrfs_tree_lock(buf); 8308 clean_tree_block(fs_info, buf); 8309 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8310 8311 btrfs_set_lock_blocking(buf); 8312 set_extent_buffer_uptodate(buf); 8313 8314 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8315 buf->log_index = root->log_transid % 2; 8316 /* 8317 * we allow two log transactions at a time, use different 8318 * EXENT bit to differentiate dirty pages. 8319 */ 8320 if (buf->log_index == 0) 8321 set_extent_dirty(&root->dirty_log_pages, buf->start, 8322 buf->start + buf->len - 1, GFP_NOFS); 8323 else 8324 set_extent_new(&root->dirty_log_pages, buf->start, 8325 buf->start + buf->len - 1); 8326 } else { 8327 buf->log_index = -1; 8328 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8329 buf->start + buf->len - 1, GFP_NOFS); 8330 } 8331 trans->dirty = true; 8332 /* this returns a buffer locked for blocking */ 8333 return buf; 8334 } 8335 8336 static struct btrfs_block_rsv * 8337 use_block_rsv(struct btrfs_trans_handle *trans, 8338 struct btrfs_root *root, u32 blocksize) 8339 { 8340 struct btrfs_fs_info *fs_info = root->fs_info; 8341 struct btrfs_block_rsv *block_rsv; 8342 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8343 int ret; 8344 bool global_updated = false; 8345 8346 block_rsv = get_block_rsv(trans, root); 8347 8348 if (unlikely(block_rsv->size == 0)) 8349 goto try_reserve; 8350 again: 8351 ret = block_rsv_use_bytes(block_rsv, blocksize); 8352 if (!ret) 8353 return block_rsv; 8354 8355 if (block_rsv->failfast) 8356 return ERR_PTR(ret); 8357 8358 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8359 global_updated = true; 8360 update_global_block_rsv(fs_info); 8361 goto again; 8362 } 8363 8364 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8365 static DEFINE_RATELIMIT_STATE(_rs, 8366 DEFAULT_RATELIMIT_INTERVAL * 10, 8367 /*DEFAULT_RATELIMIT_BURST*/ 1); 8368 if (__ratelimit(&_rs)) 8369 WARN(1, KERN_DEBUG 8370 "BTRFS: block rsv returned %d\n", ret); 8371 } 8372 try_reserve: 8373 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8374 BTRFS_RESERVE_NO_FLUSH); 8375 if (!ret) 8376 return block_rsv; 8377 /* 8378 * If we couldn't reserve metadata bytes try and use some from 8379 * the global reserve if its space type is the same as the global 8380 * reservation. 8381 */ 8382 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8383 block_rsv->space_info == global_rsv->space_info) { 8384 ret = block_rsv_use_bytes(global_rsv, blocksize); 8385 if (!ret) 8386 return global_rsv; 8387 } 8388 return ERR_PTR(ret); 8389 } 8390 8391 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8392 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8393 { 8394 block_rsv_add_bytes(block_rsv, blocksize, 0); 8395 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); 8396 } 8397 8398 /* 8399 * finds a free extent and does all the dirty work required for allocation 8400 * returns the tree buffer or an ERR_PTR on error. 8401 */ 8402 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8403 struct btrfs_root *root, 8404 u64 parent, u64 root_objectid, 8405 const struct btrfs_disk_key *key, 8406 int level, u64 hint, 8407 u64 empty_size) 8408 { 8409 struct btrfs_fs_info *fs_info = root->fs_info; 8410 struct btrfs_key ins; 8411 struct btrfs_block_rsv *block_rsv; 8412 struct extent_buffer *buf; 8413 struct btrfs_delayed_extent_op *extent_op; 8414 u64 flags = 0; 8415 int ret; 8416 u32 blocksize = fs_info->nodesize; 8417 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8418 8419 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8420 if (btrfs_is_testing(fs_info)) { 8421 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8422 level); 8423 if (!IS_ERR(buf)) 8424 root->alloc_bytenr += blocksize; 8425 return buf; 8426 } 8427 #endif 8428 8429 block_rsv = use_block_rsv(trans, root, blocksize); 8430 if (IS_ERR(block_rsv)) 8431 return ERR_CAST(block_rsv); 8432 8433 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8434 empty_size, hint, &ins, 0, 0); 8435 if (ret) 8436 goto out_unuse; 8437 8438 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8439 if (IS_ERR(buf)) { 8440 ret = PTR_ERR(buf); 8441 goto out_free_reserved; 8442 } 8443 8444 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8445 if (parent == 0) 8446 parent = ins.objectid; 8447 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8448 } else 8449 BUG_ON(parent > 0); 8450 8451 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8452 extent_op = btrfs_alloc_delayed_extent_op(); 8453 if (!extent_op) { 8454 ret = -ENOMEM; 8455 goto out_free_buf; 8456 } 8457 if (key) 8458 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8459 else 8460 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8461 extent_op->flags_to_set = flags; 8462 extent_op->update_key = skinny_metadata ? false : true; 8463 extent_op->update_flags = true; 8464 extent_op->is_data = false; 8465 extent_op->level = level; 8466 8467 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8468 root_objectid, level, 0, 8469 BTRFS_ADD_DELAYED_EXTENT); 8470 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8471 ins.offset, parent, 8472 root_objectid, level, 8473 BTRFS_ADD_DELAYED_EXTENT, 8474 extent_op, NULL, NULL); 8475 if (ret) 8476 goto out_free_delayed; 8477 } 8478 return buf; 8479 8480 out_free_delayed: 8481 btrfs_free_delayed_extent_op(extent_op); 8482 out_free_buf: 8483 free_extent_buffer(buf); 8484 out_free_reserved: 8485 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8486 out_unuse: 8487 unuse_block_rsv(fs_info, block_rsv, blocksize); 8488 return ERR_PTR(ret); 8489 } 8490 8491 struct walk_control { 8492 u64 refs[BTRFS_MAX_LEVEL]; 8493 u64 flags[BTRFS_MAX_LEVEL]; 8494 struct btrfs_key update_progress; 8495 int stage; 8496 int level; 8497 int shared_level; 8498 int update_ref; 8499 int keep_locks; 8500 int reada_slot; 8501 int reada_count; 8502 int for_reloc; 8503 }; 8504 8505 #define DROP_REFERENCE 1 8506 #define UPDATE_BACKREF 2 8507 8508 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8509 struct btrfs_root *root, 8510 struct walk_control *wc, 8511 struct btrfs_path *path) 8512 { 8513 struct btrfs_fs_info *fs_info = root->fs_info; 8514 u64 bytenr; 8515 u64 generation; 8516 u64 refs; 8517 u64 flags; 8518 u32 nritems; 8519 struct btrfs_key key; 8520 struct extent_buffer *eb; 8521 int ret; 8522 int slot; 8523 int nread = 0; 8524 8525 if (path->slots[wc->level] < wc->reada_slot) { 8526 wc->reada_count = wc->reada_count * 2 / 3; 8527 wc->reada_count = max(wc->reada_count, 2); 8528 } else { 8529 wc->reada_count = wc->reada_count * 3 / 2; 8530 wc->reada_count = min_t(int, wc->reada_count, 8531 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8532 } 8533 8534 eb = path->nodes[wc->level]; 8535 nritems = btrfs_header_nritems(eb); 8536 8537 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8538 if (nread >= wc->reada_count) 8539 break; 8540 8541 cond_resched(); 8542 bytenr = btrfs_node_blockptr(eb, slot); 8543 generation = btrfs_node_ptr_generation(eb, slot); 8544 8545 if (slot == path->slots[wc->level]) 8546 goto reada; 8547 8548 if (wc->stage == UPDATE_BACKREF && 8549 generation <= root->root_key.offset) 8550 continue; 8551 8552 /* We don't lock the tree block, it's OK to be racy here */ 8553 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8554 wc->level - 1, 1, &refs, 8555 &flags); 8556 /* We don't care about errors in readahead. */ 8557 if (ret < 0) 8558 continue; 8559 BUG_ON(refs == 0); 8560 8561 if (wc->stage == DROP_REFERENCE) { 8562 if (refs == 1) 8563 goto reada; 8564 8565 if (wc->level == 1 && 8566 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8567 continue; 8568 if (!wc->update_ref || 8569 generation <= root->root_key.offset) 8570 continue; 8571 btrfs_node_key_to_cpu(eb, &key, slot); 8572 ret = btrfs_comp_cpu_keys(&key, 8573 &wc->update_progress); 8574 if (ret < 0) 8575 continue; 8576 } else { 8577 if (wc->level == 1 && 8578 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8579 continue; 8580 } 8581 reada: 8582 readahead_tree_block(fs_info, bytenr); 8583 nread++; 8584 } 8585 wc->reada_slot = slot; 8586 } 8587 8588 /* 8589 * helper to process tree block while walking down the tree. 8590 * 8591 * when wc->stage == UPDATE_BACKREF, this function updates 8592 * back refs for pointers in the block. 8593 * 8594 * NOTE: return value 1 means we should stop walking down. 8595 */ 8596 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8597 struct btrfs_root *root, 8598 struct btrfs_path *path, 8599 struct walk_control *wc, int lookup_info) 8600 { 8601 struct btrfs_fs_info *fs_info = root->fs_info; 8602 int level = wc->level; 8603 struct extent_buffer *eb = path->nodes[level]; 8604 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8605 int ret; 8606 8607 if (wc->stage == UPDATE_BACKREF && 8608 btrfs_header_owner(eb) != root->root_key.objectid) 8609 return 1; 8610 8611 /* 8612 * when reference count of tree block is 1, it won't increase 8613 * again. once full backref flag is set, we never clear it. 8614 */ 8615 if (lookup_info && 8616 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8617 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8618 BUG_ON(!path->locks[level]); 8619 ret = btrfs_lookup_extent_info(trans, fs_info, 8620 eb->start, level, 1, 8621 &wc->refs[level], 8622 &wc->flags[level]); 8623 BUG_ON(ret == -ENOMEM); 8624 if (ret) 8625 return ret; 8626 BUG_ON(wc->refs[level] == 0); 8627 } 8628 8629 if (wc->stage == DROP_REFERENCE) { 8630 if (wc->refs[level] > 1) 8631 return 1; 8632 8633 if (path->locks[level] && !wc->keep_locks) { 8634 btrfs_tree_unlock_rw(eb, path->locks[level]); 8635 path->locks[level] = 0; 8636 } 8637 return 0; 8638 } 8639 8640 /* wc->stage == UPDATE_BACKREF */ 8641 if (!(wc->flags[level] & flag)) { 8642 BUG_ON(!path->locks[level]); 8643 ret = btrfs_inc_ref(trans, root, eb, 1); 8644 BUG_ON(ret); /* -ENOMEM */ 8645 ret = btrfs_dec_ref(trans, root, eb, 0); 8646 BUG_ON(ret); /* -ENOMEM */ 8647 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8648 eb->len, flag, 8649 btrfs_header_level(eb), 0); 8650 BUG_ON(ret); /* -ENOMEM */ 8651 wc->flags[level] |= flag; 8652 } 8653 8654 /* 8655 * the block is shared by multiple trees, so it's not good to 8656 * keep the tree lock 8657 */ 8658 if (path->locks[level] && level > 0) { 8659 btrfs_tree_unlock_rw(eb, path->locks[level]); 8660 path->locks[level] = 0; 8661 } 8662 return 0; 8663 } 8664 8665 /* 8666 * helper to process tree block pointer. 8667 * 8668 * when wc->stage == DROP_REFERENCE, this function checks 8669 * reference count of the block pointed to. if the block 8670 * is shared and we need update back refs for the subtree 8671 * rooted at the block, this function changes wc->stage to 8672 * UPDATE_BACKREF. if the block is shared and there is no 8673 * need to update back, this function drops the reference 8674 * to the block. 8675 * 8676 * NOTE: return value 1 means we should stop walking down. 8677 */ 8678 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8679 struct btrfs_root *root, 8680 struct btrfs_path *path, 8681 struct walk_control *wc, int *lookup_info) 8682 { 8683 struct btrfs_fs_info *fs_info = root->fs_info; 8684 u64 bytenr; 8685 u64 generation; 8686 u64 parent; 8687 u32 blocksize; 8688 struct btrfs_key key; 8689 struct btrfs_key first_key; 8690 struct extent_buffer *next; 8691 int level = wc->level; 8692 int reada = 0; 8693 int ret = 0; 8694 bool need_account = false; 8695 8696 generation = btrfs_node_ptr_generation(path->nodes[level], 8697 path->slots[level]); 8698 /* 8699 * if the lower level block was created before the snapshot 8700 * was created, we know there is no need to update back refs 8701 * for the subtree 8702 */ 8703 if (wc->stage == UPDATE_BACKREF && 8704 generation <= root->root_key.offset) { 8705 *lookup_info = 1; 8706 return 1; 8707 } 8708 8709 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8710 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8711 path->slots[level]); 8712 blocksize = fs_info->nodesize; 8713 8714 next = find_extent_buffer(fs_info, bytenr); 8715 if (!next) { 8716 next = btrfs_find_create_tree_block(fs_info, bytenr); 8717 if (IS_ERR(next)) 8718 return PTR_ERR(next); 8719 8720 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8721 level - 1); 8722 reada = 1; 8723 } 8724 btrfs_tree_lock(next); 8725 btrfs_set_lock_blocking(next); 8726 8727 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8728 &wc->refs[level - 1], 8729 &wc->flags[level - 1]); 8730 if (ret < 0) 8731 goto out_unlock; 8732 8733 if (unlikely(wc->refs[level - 1] == 0)) { 8734 btrfs_err(fs_info, "Missing references."); 8735 ret = -EIO; 8736 goto out_unlock; 8737 } 8738 *lookup_info = 0; 8739 8740 if (wc->stage == DROP_REFERENCE) { 8741 if (wc->refs[level - 1] > 1) { 8742 need_account = true; 8743 if (level == 1 && 8744 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8745 goto skip; 8746 8747 if (!wc->update_ref || 8748 generation <= root->root_key.offset) 8749 goto skip; 8750 8751 btrfs_node_key_to_cpu(path->nodes[level], &key, 8752 path->slots[level]); 8753 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8754 if (ret < 0) 8755 goto skip; 8756 8757 wc->stage = UPDATE_BACKREF; 8758 wc->shared_level = level - 1; 8759 } 8760 } else { 8761 if (level == 1 && 8762 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8763 goto skip; 8764 } 8765 8766 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8767 btrfs_tree_unlock(next); 8768 free_extent_buffer(next); 8769 next = NULL; 8770 *lookup_info = 1; 8771 } 8772 8773 if (!next) { 8774 if (reada && level == 1) 8775 reada_walk_down(trans, root, wc, path); 8776 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8777 &first_key); 8778 if (IS_ERR(next)) { 8779 return PTR_ERR(next); 8780 } else if (!extent_buffer_uptodate(next)) { 8781 free_extent_buffer(next); 8782 return -EIO; 8783 } 8784 btrfs_tree_lock(next); 8785 btrfs_set_lock_blocking(next); 8786 } 8787 8788 level--; 8789 ASSERT(level == btrfs_header_level(next)); 8790 if (level != btrfs_header_level(next)) { 8791 btrfs_err(root->fs_info, "mismatched level"); 8792 ret = -EIO; 8793 goto out_unlock; 8794 } 8795 path->nodes[level] = next; 8796 path->slots[level] = 0; 8797 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8798 wc->level = level; 8799 if (wc->level == 1) 8800 wc->reada_slot = 0; 8801 return 0; 8802 skip: 8803 wc->refs[level - 1] = 0; 8804 wc->flags[level - 1] = 0; 8805 if (wc->stage == DROP_REFERENCE) { 8806 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8807 parent = path->nodes[level]->start; 8808 } else { 8809 ASSERT(root->root_key.objectid == 8810 btrfs_header_owner(path->nodes[level])); 8811 if (root->root_key.objectid != 8812 btrfs_header_owner(path->nodes[level])) { 8813 btrfs_err(root->fs_info, 8814 "mismatched block owner"); 8815 ret = -EIO; 8816 goto out_unlock; 8817 } 8818 parent = 0; 8819 } 8820 8821 if (need_account) { 8822 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8823 generation, level - 1); 8824 if (ret) { 8825 btrfs_err_rl(fs_info, 8826 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8827 ret); 8828 } 8829 } 8830 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8831 parent, root->root_key.objectid, 8832 level - 1, 0); 8833 if (ret) 8834 goto out_unlock; 8835 } 8836 8837 *lookup_info = 1; 8838 ret = 1; 8839 8840 out_unlock: 8841 btrfs_tree_unlock(next); 8842 free_extent_buffer(next); 8843 8844 return ret; 8845 } 8846 8847 /* 8848 * helper to process tree block while walking up the tree. 8849 * 8850 * when wc->stage == DROP_REFERENCE, this function drops 8851 * reference count on the block. 8852 * 8853 * when wc->stage == UPDATE_BACKREF, this function changes 8854 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8855 * to UPDATE_BACKREF previously while processing the block. 8856 * 8857 * NOTE: return value 1 means we should stop walking up. 8858 */ 8859 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8860 struct btrfs_root *root, 8861 struct btrfs_path *path, 8862 struct walk_control *wc) 8863 { 8864 struct btrfs_fs_info *fs_info = root->fs_info; 8865 int ret; 8866 int level = wc->level; 8867 struct extent_buffer *eb = path->nodes[level]; 8868 u64 parent = 0; 8869 8870 if (wc->stage == UPDATE_BACKREF) { 8871 BUG_ON(wc->shared_level < level); 8872 if (level < wc->shared_level) 8873 goto out; 8874 8875 ret = find_next_key(path, level + 1, &wc->update_progress); 8876 if (ret > 0) 8877 wc->update_ref = 0; 8878 8879 wc->stage = DROP_REFERENCE; 8880 wc->shared_level = -1; 8881 path->slots[level] = 0; 8882 8883 /* 8884 * check reference count again if the block isn't locked. 8885 * we should start walking down the tree again if reference 8886 * count is one. 8887 */ 8888 if (!path->locks[level]) { 8889 BUG_ON(level == 0); 8890 btrfs_tree_lock(eb); 8891 btrfs_set_lock_blocking(eb); 8892 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8893 8894 ret = btrfs_lookup_extent_info(trans, fs_info, 8895 eb->start, level, 1, 8896 &wc->refs[level], 8897 &wc->flags[level]); 8898 if (ret < 0) { 8899 btrfs_tree_unlock_rw(eb, path->locks[level]); 8900 path->locks[level] = 0; 8901 return ret; 8902 } 8903 BUG_ON(wc->refs[level] == 0); 8904 if (wc->refs[level] == 1) { 8905 btrfs_tree_unlock_rw(eb, path->locks[level]); 8906 path->locks[level] = 0; 8907 return 1; 8908 } 8909 } 8910 } 8911 8912 /* wc->stage == DROP_REFERENCE */ 8913 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8914 8915 if (wc->refs[level] == 1) { 8916 if (level == 0) { 8917 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8918 ret = btrfs_dec_ref(trans, root, eb, 1); 8919 else 8920 ret = btrfs_dec_ref(trans, root, eb, 0); 8921 BUG_ON(ret); /* -ENOMEM */ 8922 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8923 if (ret) { 8924 btrfs_err_rl(fs_info, 8925 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8926 ret); 8927 } 8928 } 8929 /* make block locked assertion in clean_tree_block happy */ 8930 if (!path->locks[level] && 8931 btrfs_header_generation(eb) == trans->transid) { 8932 btrfs_tree_lock(eb); 8933 btrfs_set_lock_blocking(eb); 8934 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8935 } 8936 clean_tree_block(fs_info, eb); 8937 } 8938 8939 if (eb == root->node) { 8940 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8941 parent = eb->start; 8942 else 8943 BUG_ON(root->root_key.objectid != 8944 btrfs_header_owner(eb)); 8945 } else { 8946 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8947 parent = path->nodes[level + 1]->start; 8948 else 8949 BUG_ON(root->root_key.objectid != 8950 btrfs_header_owner(path->nodes[level + 1])); 8951 } 8952 8953 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8954 out: 8955 wc->refs[level] = 0; 8956 wc->flags[level] = 0; 8957 return 0; 8958 } 8959 8960 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8961 struct btrfs_root *root, 8962 struct btrfs_path *path, 8963 struct walk_control *wc) 8964 { 8965 int level = wc->level; 8966 int lookup_info = 1; 8967 int ret; 8968 8969 while (level >= 0) { 8970 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8971 if (ret > 0) 8972 break; 8973 8974 if (level == 0) 8975 break; 8976 8977 if (path->slots[level] >= 8978 btrfs_header_nritems(path->nodes[level])) 8979 break; 8980 8981 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8982 if (ret > 0) { 8983 path->slots[level]++; 8984 continue; 8985 } else if (ret < 0) 8986 return ret; 8987 level = wc->level; 8988 } 8989 return 0; 8990 } 8991 8992 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8993 struct btrfs_root *root, 8994 struct btrfs_path *path, 8995 struct walk_control *wc, int max_level) 8996 { 8997 int level = wc->level; 8998 int ret; 8999 9000 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9001 while (level < max_level && path->nodes[level]) { 9002 wc->level = level; 9003 if (path->slots[level] + 1 < 9004 btrfs_header_nritems(path->nodes[level])) { 9005 path->slots[level]++; 9006 return 0; 9007 } else { 9008 ret = walk_up_proc(trans, root, path, wc); 9009 if (ret > 0) 9010 return 0; 9011 9012 if (path->locks[level]) { 9013 btrfs_tree_unlock_rw(path->nodes[level], 9014 path->locks[level]); 9015 path->locks[level] = 0; 9016 } 9017 free_extent_buffer(path->nodes[level]); 9018 path->nodes[level] = NULL; 9019 level++; 9020 } 9021 } 9022 return 1; 9023 } 9024 9025 /* 9026 * drop a subvolume tree. 9027 * 9028 * this function traverses the tree freeing any blocks that only 9029 * referenced by the tree. 9030 * 9031 * when a shared tree block is found. this function decreases its 9032 * reference count by one. if update_ref is true, this function 9033 * also make sure backrefs for the shared block and all lower level 9034 * blocks are properly updated. 9035 * 9036 * If called with for_reloc == 0, may exit early with -EAGAIN 9037 */ 9038 int btrfs_drop_snapshot(struct btrfs_root *root, 9039 struct btrfs_block_rsv *block_rsv, int update_ref, 9040 int for_reloc) 9041 { 9042 struct btrfs_fs_info *fs_info = root->fs_info; 9043 struct btrfs_path *path; 9044 struct btrfs_trans_handle *trans; 9045 struct btrfs_root *tree_root = fs_info->tree_root; 9046 struct btrfs_root_item *root_item = &root->root_item; 9047 struct walk_control *wc; 9048 struct btrfs_key key; 9049 int err = 0; 9050 int ret; 9051 int level; 9052 bool root_dropped = false; 9053 9054 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9055 9056 path = btrfs_alloc_path(); 9057 if (!path) { 9058 err = -ENOMEM; 9059 goto out; 9060 } 9061 9062 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9063 if (!wc) { 9064 btrfs_free_path(path); 9065 err = -ENOMEM; 9066 goto out; 9067 } 9068 9069 trans = btrfs_start_transaction(tree_root, 0); 9070 if (IS_ERR(trans)) { 9071 err = PTR_ERR(trans); 9072 goto out_free; 9073 } 9074 9075 if (block_rsv) 9076 trans->block_rsv = block_rsv; 9077 9078 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9079 level = btrfs_header_level(root->node); 9080 path->nodes[level] = btrfs_lock_root_node(root); 9081 btrfs_set_lock_blocking(path->nodes[level]); 9082 path->slots[level] = 0; 9083 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9084 memset(&wc->update_progress, 0, 9085 sizeof(wc->update_progress)); 9086 } else { 9087 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9088 memcpy(&wc->update_progress, &key, 9089 sizeof(wc->update_progress)); 9090 9091 level = root_item->drop_level; 9092 BUG_ON(level == 0); 9093 path->lowest_level = level; 9094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9095 path->lowest_level = 0; 9096 if (ret < 0) { 9097 err = ret; 9098 goto out_end_trans; 9099 } 9100 WARN_ON(ret > 0); 9101 9102 /* 9103 * unlock our path, this is safe because only this 9104 * function is allowed to delete this snapshot 9105 */ 9106 btrfs_unlock_up_safe(path, 0); 9107 9108 level = btrfs_header_level(root->node); 9109 while (1) { 9110 btrfs_tree_lock(path->nodes[level]); 9111 btrfs_set_lock_blocking(path->nodes[level]); 9112 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9113 9114 ret = btrfs_lookup_extent_info(trans, fs_info, 9115 path->nodes[level]->start, 9116 level, 1, &wc->refs[level], 9117 &wc->flags[level]); 9118 if (ret < 0) { 9119 err = ret; 9120 goto out_end_trans; 9121 } 9122 BUG_ON(wc->refs[level] == 0); 9123 9124 if (level == root_item->drop_level) 9125 break; 9126 9127 btrfs_tree_unlock(path->nodes[level]); 9128 path->locks[level] = 0; 9129 WARN_ON(wc->refs[level] != 1); 9130 level--; 9131 } 9132 } 9133 9134 wc->level = level; 9135 wc->shared_level = -1; 9136 wc->stage = DROP_REFERENCE; 9137 wc->update_ref = update_ref; 9138 wc->keep_locks = 0; 9139 wc->for_reloc = for_reloc; 9140 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9141 9142 while (1) { 9143 9144 ret = walk_down_tree(trans, root, path, wc); 9145 if (ret < 0) { 9146 err = ret; 9147 break; 9148 } 9149 9150 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9151 if (ret < 0) { 9152 err = ret; 9153 break; 9154 } 9155 9156 if (ret > 0) { 9157 BUG_ON(wc->stage != DROP_REFERENCE); 9158 break; 9159 } 9160 9161 if (wc->stage == DROP_REFERENCE) { 9162 level = wc->level; 9163 btrfs_node_key(path->nodes[level], 9164 &root_item->drop_progress, 9165 path->slots[level]); 9166 root_item->drop_level = level; 9167 } 9168 9169 BUG_ON(wc->level == 0); 9170 if (btrfs_should_end_transaction(trans) || 9171 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9172 ret = btrfs_update_root(trans, tree_root, 9173 &root->root_key, 9174 root_item); 9175 if (ret) { 9176 btrfs_abort_transaction(trans, ret); 9177 err = ret; 9178 goto out_end_trans; 9179 } 9180 9181 btrfs_end_transaction_throttle(trans); 9182 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9183 btrfs_debug(fs_info, 9184 "drop snapshot early exit"); 9185 err = -EAGAIN; 9186 goto out_free; 9187 } 9188 9189 trans = btrfs_start_transaction(tree_root, 0); 9190 if (IS_ERR(trans)) { 9191 err = PTR_ERR(trans); 9192 goto out_free; 9193 } 9194 if (block_rsv) 9195 trans->block_rsv = block_rsv; 9196 } 9197 } 9198 btrfs_release_path(path); 9199 if (err) 9200 goto out_end_trans; 9201 9202 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9203 if (ret) { 9204 btrfs_abort_transaction(trans, ret); 9205 err = ret; 9206 goto out_end_trans; 9207 } 9208 9209 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9210 ret = btrfs_find_root(tree_root, &root->root_key, path, 9211 NULL, NULL); 9212 if (ret < 0) { 9213 btrfs_abort_transaction(trans, ret); 9214 err = ret; 9215 goto out_end_trans; 9216 } else if (ret > 0) { 9217 /* if we fail to delete the orphan item this time 9218 * around, it'll get picked up the next time. 9219 * 9220 * The most common failure here is just -ENOENT. 9221 */ 9222 btrfs_del_orphan_item(trans, tree_root, 9223 root->root_key.objectid); 9224 } 9225 } 9226 9227 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9228 btrfs_add_dropped_root(trans, root); 9229 } else { 9230 free_extent_buffer(root->node); 9231 free_extent_buffer(root->commit_root); 9232 btrfs_put_fs_root(root); 9233 } 9234 root_dropped = true; 9235 out_end_trans: 9236 btrfs_end_transaction_throttle(trans); 9237 out_free: 9238 kfree(wc); 9239 btrfs_free_path(path); 9240 out: 9241 /* 9242 * So if we need to stop dropping the snapshot for whatever reason we 9243 * need to make sure to add it back to the dead root list so that we 9244 * keep trying to do the work later. This also cleans up roots if we 9245 * don't have it in the radix (like when we recover after a power fail 9246 * or unmount) so we don't leak memory. 9247 */ 9248 if (!for_reloc && !root_dropped) 9249 btrfs_add_dead_root(root); 9250 if (err && err != -EAGAIN) 9251 btrfs_handle_fs_error(fs_info, err, NULL); 9252 return err; 9253 } 9254 9255 /* 9256 * drop subtree rooted at tree block 'node'. 9257 * 9258 * NOTE: this function will unlock and release tree block 'node' 9259 * only used by relocation code 9260 */ 9261 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9262 struct btrfs_root *root, 9263 struct extent_buffer *node, 9264 struct extent_buffer *parent) 9265 { 9266 struct btrfs_fs_info *fs_info = root->fs_info; 9267 struct btrfs_path *path; 9268 struct walk_control *wc; 9269 int level; 9270 int parent_level; 9271 int ret = 0; 9272 int wret; 9273 9274 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9275 9276 path = btrfs_alloc_path(); 9277 if (!path) 9278 return -ENOMEM; 9279 9280 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9281 if (!wc) { 9282 btrfs_free_path(path); 9283 return -ENOMEM; 9284 } 9285 9286 btrfs_assert_tree_locked(parent); 9287 parent_level = btrfs_header_level(parent); 9288 extent_buffer_get(parent); 9289 path->nodes[parent_level] = parent; 9290 path->slots[parent_level] = btrfs_header_nritems(parent); 9291 9292 btrfs_assert_tree_locked(node); 9293 level = btrfs_header_level(node); 9294 path->nodes[level] = node; 9295 path->slots[level] = 0; 9296 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9297 9298 wc->refs[parent_level] = 1; 9299 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9300 wc->level = level; 9301 wc->shared_level = -1; 9302 wc->stage = DROP_REFERENCE; 9303 wc->update_ref = 0; 9304 wc->keep_locks = 1; 9305 wc->for_reloc = 1; 9306 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9307 9308 while (1) { 9309 wret = walk_down_tree(trans, root, path, wc); 9310 if (wret < 0) { 9311 ret = wret; 9312 break; 9313 } 9314 9315 wret = walk_up_tree(trans, root, path, wc, parent_level); 9316 if (wret < 0) 9317 ret = wret; 9318 if (wret != 0) 9319 break; 9320 } 9321 9322 kfree(wc); 9323 btrfs_free_path(path); 9324 return ret; 9325 } 9326 9327 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9328 { 9329 u64 num_devices; 9330 u64 stripped; 9331 9332 /* 9333 * if restripe for this chunk_type is on pick target profile and 9334 * return, otherwise do the usual balance 9335 */ 9336 stripped = get_restripe_target(fs_info, flags); 9337 if (stripped) 9338 return extended_to_chunk(stripped); 9339 9340 num_devices = fs_info->fs_devices->rw_devices; 9341 9342 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9343 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9344 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9345 9346 if (num_devices == 1) { 9347 stripped |= BTRFS_BLOCK_GROUP_DUP; 9348 stripped = flags & ~stripped; 9349 9350 /* turn raid0 into single device chunks */ 9351 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9352 return stripped; 9353 9354 /* turn mirroring into duplication */ 9355 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9356 BTRFS_BLOCK_GROUP_RAID10)) 9357 return stripped | BTRFS_BLOCK_GROUP_DUP; 9358 } else { 9359 /* they already had raid on here, just return */ 9360 if (flags & stripped) 9361 return flags; 9362 9363 stripped |= BTRFS_BLOCK_GROUP_DUP; 9364 stripped = flags & ~stripped; 9365 9366 /* switch duplicated blocks with raid1 */ 9367 if (flags & BTRFS_BLOCK_GROUP_DUP) 9368 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9369 9370 /* this is drive concat, leave it alone */ 9371 } 9372 9373 return flags; 9374 } 9375 9376 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9377 { 9378 struct btrfs_space_info *sinfo = cache->space_info; 9379 u64 num_bytes; 9380 u64 min_allocable_bytes; 9381 int ret = -ENOSPC; 9382 9383 /* 9384 * We need some metadata space and system metadata space for 9385 * allocating chunks in some corner cases until we force to set 9386 * it to be readonly. 9387 */ 9388 if ((sinfo->flags & 9389 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9390 !force) 9391 min_allocable_bytes = SZ_1M; 9392 else 9393 min_allocable_bytes = 0; 9394 9395 spin_lock(&sinfo->lock); 9396 spin_lock(&cache->lock); 9397 9398 if (cache->ro) { 9399 cache->ro++; 9400 ret = 0; 9401 goto out; 9402 } 9403 9404 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9405 cache->bytes_super - btrfs_block_group_used(&cache->item); 9406 9407 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9408 min_allocable_bytes <= sinfo->total_bytes) { 9409 sinfo->bytes_readonly += num_bytes; 9410 cache->ro++; 9411 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9412 ret = 0; 9413 } 9414 out: 9415 spin_unlock(&cache->lock); 9416 spin_unlock(&sinfo->lock); 9417 return ret; 9418 } 9419 9420 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9421 struct btrfs_block_group_cache *cache) 9422 9423 { 9424 struct btrfs_trans_handle *trans; 9425 u64 alloc_flags; 9426 int ret; 9427 9428 again: 9429 trans = btrfs_join_transaction(fs_info->extent_root); 9430 if (IS_ERR(trans)) 9431 return PTR_ERR(trans); 9432 9433 /* 9434 * we're not allowed to set block groups readonly after the dirty 9435 * block groups cache has started writing. If it already started, 9436 * back off and let this transaction commit 9437 */ 9438 mutex_lock(&fs_info->ro_block_group_mutex); 9439 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9440 u64 transid = trans->transid; 9441 9442 mutex_unlock(&fs_info->ro_block_group_mutex); 9443 btrfs_end_transaction(trans); 9444 9445 ret = btrfs_wait_for_commit(fs_info, transid); 9446 if (ret) 9447 return ret; 9448 goto again; 9449 } 9450 9451 /* 9452 * if we are changing raid levels, try to allocate a corresponding 9453 * block group with the new raid level. 9454 */ 9455 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9456 if (alloc_flags != cache->flags) { 9457 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9458 CHUNK_ALLOC_FORCE); 9459 /* 9460 * ENOSPC is allowed here, we may have enough space 9461 * already allocated at the new raid level to 9462 * carry on 9463 */ 9464 if (ret == -ENOSPC) 9465 ret = 0; 9466 if (ret < 0) 9467 goto out; 9468 } 9469 9470 ret = inc_block_group_ro(cache, 0); 9471 if (!ret) 9472 goto out; 9473 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9474 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9475 CHUNK_ALLOC_FORCE); 9476 if (ret < 0) 9477 goto out; 9478 ret = inc_block_group_ro(cache, 0); 9479 out: 9480 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9481 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9482 mutex_lock(&fs_info->chunk_mutex); 9483 check_system_chunk(trans, fs_info, alloc_flags); 9484 mutex_unlock(&fs_info->chunk_mutex); 9485 } 9486 mutex_unlock(&fs_info->ro_block_group_mutex); 9487 9488 btrfs_end_transaction(trans); 9489 return ret; 9490 } 9491 9492 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9493 struct btrfs_fs_info *fs_info, u64 type) 9494 { 9495 u64 alloc_flags = get_alloc_profile(fs_info, type); 9496 9497 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9498 } 9499 9500 /* 9501 * helper to account the unused space of all the readonly block group in the 9502 * space_info. takes mirrors into account. 9503 */ 9504 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9505 { 9506 struct btrfs_block_group_cache *block_group; 9507 u64 free_bytes = 0; 9508 int factor; 9509 9510 /* It's df, we don't care if it's racy */ 9511 if (list_empty(&sinfo->ro_bgs)) 9512 return 0; 9513 9514 spin_lock(&sinfo->lock); 9515 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9516 spin_lock(&block_group->lock); 9517 9518 if (!block_group->ro) { 9519 spin_unlock(&block_group->lock); 9520 continue; 9521 } 9522 9523 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9524 BTRFS_BLOCK_GROUP_RAID10 | 9525 BTRFS_BLOCK_GROUP_DUP)) 9526 factor = 2; 9527 else 9528 factor = 1; 9529 9530 free_bytes += (block_group->key.offset - 9531 btrfs_block_group_used(&block_group->item)) * 9532 factor; 9533 9534 spin_unlock(&block_group->lock); 9535 } 9536 spin_unlock(&sinfo->lock); 9537 9538 return free_bytes; 9539 } 9540 9541 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9542 { 9543 struct btrfs_space_info *sinfo = cache->space_info; 9544 u64 num_bytes; 9545 9546 BUG_ON(!cache->ro); 9547 9548 spin_lock(&sinfo->lock); 9549 spin_lock(&cache->lock); 9550 if (!--cache->ro) { 9551 num_bytes = cache->key.offset - cache->reserved - 9552 cache->pinned - cache->bytes_super - 9553 btrfs_block_group_used(&cache->item); 9554 sinfo->bytes_readonly -= num_bytes; 9555 list_del_init(&cache->ro_list); 9556 } 9557 spin_unlock(&cache->lock); 9558 spin_unlock(&sinfo->lock); 9559 } 9560 9561 /* 9562 * checks to see if its even possible to relocate this block group. 9563 * 9564 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9565 * ok to go ahead and try. 9566 */ 9567 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9568 { 9569 struct btrfs_root *root = fs_info->extent_root; 9570 struct btrfs_block_group_cache *block_group; 9571 struct btrfs_space_info *space_info; 9572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9573 struct btrfs_device *device; 9574 struct btrfs_trans_handle *trans; 9575 u64 min_free; 9576 u64 dev_min = 1; 9577 u64 dev_nr = 0; 9578 u64 target; 9579 int debug; 9580 int index; 9581 int full = 0; 9582 int ret = 0; 9583 9584 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9585 9586 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9587 9588 /* odd, couldn't find the block group, leave it alone */ 9589 if (!block_group) { 9590 if (debug) 9591 btrfs_warn(fs_info, 9592 "can't find block group for bytenr %llu", 9593 bytenr); 9594 return -1; 9595 } 9596 9597 min_free = btrfs_block_group_used(&block_group->item); 9598 9599 /* no bytes used, we're good */ 9600 if (!min_free) 9601 goto out; 9602 9603 space_info = block_group->space_info; 9604 spin_lock(&space_info->lock); 9605 9606 full = space_info->full; 9607 9608 /* 9609 * if this is the last block group we have in this space, we can't 9610 * relocate it unless we're able to allocate a new chunk below. 9611 * 9612 * Otherwise, we need to make sure we have room in the space to handle 9613 * all of the extents from this block group. If we can, we're good 9614 */ 9615 if ((space_info->total_bytes != block_group->key.offset) && 9616 (btrfs_space_info_used(space_info, false) + min_free < 9617 space_info->total_bytes)) { 9618 spin_unlock(&space_info->lock); 9619 goto out; 9620 } 9621 spin_unlock(&space_info->lock); 9622 9623 /* 9624 * ok we don't have enough space, but maybe we have free space on our 9625 * devices to allocate new chunks for relocation, so loop through our 9626 * alloc devices and guess if we have enough space. if this block 9627 * group is going to be restriped, run checks against the target 9628 * profile instead of the current one. 9629 */ 9630 ret = -1; 9631 9632 /* 9633 * index: 9634 * 0: raid10 9635 * 1: raid1 9636 * 2: dup 9637 * 3: raid0 9638 * 4: single 9639 */ 9640 target = get_restripe_target(fs_info, block_group->flags); 9641 if (target) { 9642 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9643 } else { 9644 /* 9645 * this is just a balance, so if we were marked as full 9646 * we know there is no space for a new chunk 9647 */ 9648 if (full) { 9649 if (debug) 9650 btrfs_warn(fs_info, 9651 "no space to alloc new chunk for block group %llu", 9652 block_group->key.objectid); 9653 goto out; 9654 } 9655 9656 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9657 } 9658 9659 if (index == BTRFS_RAID_RAID10) { 9660 dev_min = 4; 9661 /* Divide by 2 */ 9662 min_free >>= 1; 9663 } else if (index == BTRFS_RAID_RAID1) { 9664 dev_min = 2; 9665 } else if (index == BTRFS_RAID_DUP) { 9666 /* Multiply by 2 */ 9667 min_free <<= 1; 9668 } else if (index == BTRFS_RAID_RAID0) { 9669 dev_min = fs_devices->rw_devices; 9670 min_free = div64_u64(min_free, dev_min); 9671 } 9672 9673 /* We need to do this so that we can look at pending chunks */ 9674 trans = btrfs_join_transaction(root); 9675 if (IS_ERR(trans)) { 9676 ret = PTR_ERR(trans); 9677 goto out; 9678 } 9679 9680 mutex_lock(&fs_info->chunk_mutex); 9681 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9682 u64 dev_offset; 9683 9684 /* 9685 * check to make sure we can actually find a chunk with enough 9686 * space to fit our block group in. 9687 */ 9688 if (device->total_bytes > device->bytes_used + min_free && 9689 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9690 ret = find_free_dev_extent(trans, device, min_free, 9691 &dev_offset, NULL); 9692 if (!ret) 9693 dev_nr++; 9694 9695 if (dev_nr >= dev_min) 9696 break; 9697 9698 ret = -1; 9699 } 9700 } 9701 if (debug && ret == -1) 9702 btrfs_warn(fs_info, 9703 "no space to allocate a new chunk for block group %llu", 9704 block_group->key.objectid); 9705 mutex_unlock(&fs_info->chunk_mutex); 9706 btrfs_end_transaction(trans); 9707 out: 9708 btrfs_put_block_group(block_group); 9709 return ret; 9710 } 9711 9712 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9713 struct btrfs_path *path, 9714 struct btrfs_key *key) 9715 { 9716 struct btrfs_root *root = fs_info->extent_root; 9717 int ret = 0; 9718 struct btrfs_key found_key; 9719 struct extent_buffer *leaf; 9720 int slot; 9721 9722 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9723 if (ret < 0) 9724 goto out; 9725 9726 while (1) { 9727 slot = path->slots[0]; 9728 leaf = path->nodes[0]; 9729 if (slot >= btrfs_header_nritems(leaf)) { 9730 ret = btrfs_next_leaf(root, path); 9731 if (ret == 0) 9732 continue; 9733 if (ret < 0) 9734 goto out; 9735 break; 9736 } 9737 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9738 9739 if (found_key.objectid >= key->objectid && 9740 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9741 struct extent_map_tree *em_tree; 9742 struct extent_map *em; 9743 9744 em_tree = &root->fs_info->mapping_tree.map_tree; 9745 read_lock(&em_tree->lock); 9746 em = lookup_extent_mapping(em_tree, found_key.objectid, 9747 found_key.offset); 9748 read_unlock(&em_tree->lock); 9749 if (!em) { 9750 btrfs_err(fs_info, 9751 "logical %llu len %llu found bg but no related chunk", 9752 found_key.objectid, found_key.offset); 9753 ret = -ENOENT; 9754 } else { 9755 ret = 0; 9756 } 9757 free_extent_map(em); 9758 goto out; 9759 } 9760 path->slots[0]++; 9761 } 9762 out: 9763 return ret; 9764 } 9765 9766 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9767 { 9768 struct btrfs_block_group_cache *block_group; 9769 u64 last = 0; 9770 9771 while (1) { 9772 struct inode *inode; 9773 9774 block_group = btrfs_lookup_first_block_group(info, last); 9775 while (block_group) { 9776 spin_lock(&block_group->lock); 9777 if (block_group->iref) 9778 break; 9779 spin_unlock(&block_group->lock); 9780 block_group = next_block_group(info, block_group); 9781 } 9782 if (!block_group) { 9783 if (last == 0) 9784 break; 9785 last = 0; 9786 continue; 9787 } 9788 9789 inode = block_group->inode; 9790 block_group->iref = 0; 9791 block_group->inode = NULL; 9792 spin_unlock(&block_group->lock); 9793 ASSERT(block_group->io_ctl.inode == NULL); 9794 iput(inode); 9795 last = block_group->key.objectid + block_group->key.offset; 9796 btrfs_put_block_group(block_group); 9797 } 9798 } 9799 9800 /* 9801 * Must be called only after stopping all workers, since we could have block 9802 * group caching kthreads running, and therefore they could race with us if we 9803 * freed the block groups before stopping them. 9804 */ 9805 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9806 { 9807 struct btrfs_block_group_cache *block_group; 9808 struct btrfs_space_info *space_info; 9809 struct btrfs_caching_control *caching_ctl; 9810 struct rb_node *n; 9811 9812 down_write(&info->commit_root_sem); 9813 while (!list_empty(&info->caching_block_groups)) { 9814 caching_ctl = list_entry(info->caching_block_groups.next, 9815 struct btrfs_caching_control, list); 9816 list_del(&caching_ctl->list); 9817 put_caching_control(caching_ctl); 9818 } 9819 up_write(&info->commit_root_sem); 9820 9821 spin_lock(&info->unused_bgs_lock); 9822 while (!list_empty(&info->unused_bgs)) { 9823 block_group = list_first_entry(&info->unused_bgs, 9824 struct btrfs_block_group_cache, 9825 bg_list); 9826 list_del_init(&block_group->bg_list); 9827 btrfs_put_block_group(block_group); 9828 } 9829 spin_unlock(&info->unused_bgs_lock); 9830 9831 spin_lock(&info->block_group_cache_lock); 9832 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9833 block_group = rb_entry(n, struct btrfs_block_group_cache, 9834 cache_node); 9835 rb_erase(&block_group->cache_node, 9836 &info->block_group_cache_tree); 9837 RB_CLEAR_NODE(&block_group->cache_node); 9838 spin_unlock(&info->block_group_cache_lock); 9839 9840 down_write(&block_group->space_info->groups_sem); 9841 list_del(&block_group->list); 9842 up_write(&block_group->space_info->groups_sem); 9843 9844 /* 9845 * We haven't cached this block group, which means we could 9846 * possibly have excluded extents on this block group. 9847 */ 9848 if (block_group->cached == BTRFS_CACHE_NO || 9849 block_group->cached == BTRFS_CACHE_ERROR) 9850 free_excluded_extents(info, block_group); 9851 9852 btrfs_remove_free_space_cache(block_group); 9853 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9854 ASSERT(list_empty(&block_group->dirty_list)); 9855 ASSERT(list_empty(&block_group->io_list)); 9856 ASSERT(list_empty(&block_group->bg_list)); 9857 ASSERT(atomic_read(&block_group->count) == 1); 9858 btrfs_put_block_group(block_group); 9859 9860 spin_lock(&info->block_group_cache_lock); 9861 } 9862 spin_unlock(&info->block_group_cache_lock); 9863 9864 /* now that all the block groups are freed, go through and 9865 * free all the space_info structs. This is only called during 9866 * the final stages of unmount, and so we know nobody is 9867 * using them. We call synchronize_rcu() once before we start, 9868 * just to be on the safe side. 9869 */ 9870 synchronize_rcu(); 9871 9872 release_global_block_rsv(info); 9873 9874 while (!list_empty(&info->space_info)) { 9875 int i; 9876 9877 space_info = list_entry(info->space_info.next, 9878 struct btrfs_space_info, 9879 list); 9880 9881 /* 9882 * Do not hide this behind enospc_debug, this is actually 9883 * important and indicates a real bug if this happens. 9884 */ 9885 if (WARN_ON(space_info->bytes_pinned > 0 || 9886 space_info->bytes_reserved > 0 || 9887 space_info->bytes_may_use > 0)) 9888 dump_space_info(info, space_info, 0, 0); 9889 list_del(&space_info->list); 9890 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9891 struct kobject *kobj; 9892 kobj = space_info->block_group_kobjs[i]; 9893 space_info->block_group_kobjs[i] = NULL; 9894 if (kobj) { 9895 kobject_del(kobj); 9896 kobject_put(kobj); 9897 } 9898 } 9899 kobject_del(&space_info->kobj); 9900 kobject_put(&space_info->kobj); 9901 } 9902 return 0; 9903 } 9904 9905 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9906 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9907 { 9908 struct btrfs_space_info *space_info; 9909 struct raid_kobject *rkobj; 9910 LIST_HEAD(list); 9911 int index; 9912 int ret = 0; 9913 9914 spin_lock(&fs_info->pending_raid_kobjs_lock); 9915 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9916 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9917 9918 list_for_each_entry(rkobj, &list, list) { 9919 space_info = __find_space_info(fs_info, rkobj->flags); 9920 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9921 9922 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9923 "%s", get_raid_name(index)); 9924 if (ret) { 9925 kobject_put(&rkobj->kobj); 9926 break; 9927 } 9928 } 9929 if (ret) 9930 btrfs_warn(fs_info, 9931 "failed to add kobject for block cache, ignoring"); 9932 } 9933 9934 static void link_block_group(struct btrfs_block_group_cache *cache) 9935 { 9936 struct btrfs_space_info *space_info = cache->space_info; 9937 struct btrfs_fs_info *fs_info = cache->fs_info; 9938 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9939 bool first = false; 9940 9941 down_write(&space_info->groups_sem); 9942 if (list_empty(&space_info->block_groups[index])) 9943 first = true; 9944 list_add_tail(&cache->list, &space_info->block_groups[index]); 9945 up_write(&space_info->groups_sem); 9946 9947 if (first) { 9948 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9949 if (!rkobj) { 9950 btrfs_warn(cache->fs_info, 9951 "couldn't alloc memory for raid level kobject"); 9952 return; 9953 } 9954 rkobj->flags = cache->flags; 9955 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9956 9957 spin_lock(&fs_info->pending_raid_kobjs_lock); 9958 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 9959 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9960 space_info->block_group_kobjs[index] = &rkobj->kobj; 9961 } 9962 } 9963 9964 static struct btrfs_block_group_cache * 9965 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9966 u64 start, u64 size) 9967 { 9968 struct btrfs_block_group_cache *cache; 9969 9970 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9971 if (!cache) 9972 return NULL; 9973 9974 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9975 GFP_NOFS); 9976 if (!cache->free_space_ctl) { 9977 kfree(cache); 9978 return NULL; 9979 } 9980 9981 cache->key.objectid = start; 9982 cache->key.offset = size; 9983 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9984 9985 cache->fs_info = fs_info; 9986 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9987 set_free_space_tree_thresholds(cache); 9988 9989 atomic_set(&cache->count, 1); 9990 spin_lock_init(&cache->lock); 9991 init_rwsem(&cache->data_rwsem); 9992 INIT_LIST_HEAD(&cache->list); 9993 INIT_LIST_HEAD(&cache->cluster_list); 9994 INIT_LIST_HEAD(&cache->bg_list); 9995 INIT_LIST_HEAD(&cache->ro_list); 9996 INIT_LIST_HEAD(&cache->dirty_list); 9997 INIT_LIST_HEAD(&cache->io_list); 9998 btrfs_init_free_space_ctl(cache); 9999 atomic_set(&cache->trimming, 0); 10000 mutex_init(&cache->free_space_lock); 10001 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10002 10003 return cache; 10004 } 10005 10006 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10007 { 10008 struct btrfs_path *path; 10009 int ret; 10010 struct btrfs_block_group_cache *cache; 10011 struct btrfs_space_info *space_info; 10012 struct btrfs_key key; 10013 struct btrfs_key found_key; 10014 struct extent_buffer *leaf; 10015 int need_clear = 0; 10016 u64 cache_gen; 10017 u64 feature; 10018 int mixed; 10019 10020 feature = btrfs_super_incompat_flags(info->super_copy); 10021 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10022 10023 key.objectid = 0; 10024 key.offset = 0; 10025 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10026 path = btrfs_alloc_path(); 10027 if (!path) 10028 return -ENOMEM; 10029 path->reada = READA_FORWARD; 10030 10031 cache_gen = btrfs_super_cache_generation(info->super_copy); 10032 if (btrfs_test_opt(info, SPACE_CACHE) && 10033 btrfs_super_generation(info->super_copy) != cache_gen) 10034 need_clear = 1; 10035 if (btrfs_test_opt(info, CLEAR_CACHE)) 10036 need_clear = 1; 10037 10038 while (1) { 10039 ret = find_first_block_group(info, path, &key); 10040 if (ret > 0) 10041 break; 10042 if (ret != 0) 10043 goto error; 10044 10045 leaf = path->nodes[0]; 10046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10047 10048 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10049 found_key.offset); 10050 if (!cache) { 10051 ret = -ENOMEM; 10052 goto error; 10053 } 10054 10055 if (need_clear) { 10056 /* 10057 * When we mount with old space cache, we need to 10058 * set BTRFS_DC_CLEAR and set dirty flag. 10059 * 10060 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10061 * truncate the old free space cache inode and 10062 * setup a new one. 10063 * b) Setting 'dirty flag' makes sure that we flush 10064 * the new space cache info onto disk. 10065 */ 10066 if (btrfs_test_opt(info, SPACE_CACHE)) 10067 cache->disk_cache_state = BTRFS_DC_CLEAR; 10068 } 10069 10070 read_extent_buffer(leaf, &cache->item, 10071 btrfs_item_ptr_offset(leaf, path->slots[0]), 10072 sizeof(cache->item)); 10073 cache->flags = btrfs_block_group_flags(&cache->item); 10074 if (!mixed && 10075 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10076 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10077 btrfs_err(info, 10078 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10079 cache->key.objectid); 10080 ret = -EINVAL; 10081 goto error; 10082 } 10083 10084 key.objectid = found_key.objectid + found_key.offset; 10085 btrfs_release_path(path); 10086 10087 /* 10088 * We need to exclude the super stripes now so that the space 10089 * info has super bytes accounted for, otherwise we'll think 10090 * we have more space than we actually do. 10091 */ 10092 ret = exclude_super_stripes(info, cache); 10093 if (ret) { 10094 /* 10095 * We may have excluded something, so call this just in 10096 * case. 10097 */ 10098 free_excluded_extents(info, cache); 10099 btrfs_put_block_group(cache); 10100 goto error; 10101 } 10102 10103 /* 10104 * check for two cases, either we are full, and therefore 10105 * don't need to bother with the caching work since we won't 10106 * find any space, or we are empty, and we can just add all 10107 * the space in and be done with it. This saves us _alot_ of 10108 * time, particularly in the full case. 10109 */ 10110 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10111 cache->last_byte_to_unpin = (u64)-1; 10112 cache->cached = BTRFS_CACHE_FINISHED; 10113 free_excluded_extents(info, cache); 10114 } else if (btrfs_block_group_used(&cache->item) == 0) { 10115 cache->last_byte_to_unpin = (u64)-1; 10116 cache->cached = BTRFS_CACHE_FINISHED; 10117 add_new_free_space(cache, found_key.objectid, 10118 found_key.objectid + 10119 found_key.offset); 10120 free_excluded_extents(info, cache); 10121 } 10122 10123 ret = btrfs_add_block_group_cache(info, cache); 10124 if (ret) { 10125 btrfs_remove_free_space_cache(cache); 10126 btrfs_put_block_group(cache); 10127 goto error; 10128 } 10129 10130 trace_btrfs_add_block_group(info, cache, 0); 10131 update_space_info(info, cache->flags, found_key.offset, 10132 btrfs_block_group_used(&cache->item), 10133 cache->bytes_super, &space_info); 10134 10135 cache->space_info = space_info; 10136 10137 link_block_group(cache); 10138 10139 set_avail_alloc_bits(info, cache->flags); 10140 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10141 inc_block_group_ro(cache, 1); 10142 } else if (btrfs_block_group_used(&cache->item) == 0) { 10143 spin_lock(&info->unused_bgs_lock); 10144 /* Should always be true but just in case. */ 10145 if (list_empty(&cache->bg_list)) { 10146 btrfs_get_block_group(cache); 10147 trace_btrfs_add_unused_block_group(cache); 10148 list_add_tail(&cache->bg_list, 10149 &info->unused_bgs); 10150 } 10151 spin_unlock(&info->unused_bgs_lock); 10152 } 10153 } 10154 10155 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10156 if (!(get_alloc_profile(info, space_info->flags) & 10157 (BTRFS_BLOCK_GROUP_RAID10 | 10158 BTRFS_BLOCK_GROUP_RAID1 | 10159 BTRFS_BLOCK_GROUP_RAID5 | 10160 BTRFS_BLOCK_GROUP_RAID6 | 10161 BTRFS_BLOCK_GROUP_DUP))) 10162 continue; 10163 /* 10164 * avoid allocating from un-mirrored block group if there are 10165 * mirrored block groups. 10166 */ 10167 list_for_each_entry(cache, 10168 &space_info->block_groups[BTRFS_RAID_RAID0], 10169 list) 10170 inc_block_group_ro(cache, 1); 10171 list_for_each_entry(cache, 10172 &space_info->block_groups[BTRFS_RAID_SINGLE], 10173 list) 10174 inc_block_group_ro(cache, 1); 10175 } 10176 10177 btrfs_add_raid_kobjects(info); 10178 init_global_block_rsv(info); 10179 ret = 0; 10180 error: 10181 btrfs_free_path(path); 10182 return ret; 10183 } 10184 10185 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10186 { 10187 struct btrfs_fs_info *fs_info = trans->fs_info; 10188 struct btrfs_block_group_cache *block_group, *tmp; 10189 struct btrfs_root *extent_root = fs_info->extent_root; 10190 struct btrfs_block_group_item item; 10191 struct btrfs_key key; 10192 int ret = 0; 10193 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10194 10195 trans->can_flush_pending_bgs = false; 10196 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10197 if (ret) 10198 goto next; 10199 10200 spin_lock(&block_group->lock); 10201 memcpy(&item, &block_group->item, sizeof(item)); 10202 memcpy(&key, &block_group->key, sizeof(key)); 10203 spin_unlock(&block_group->lock); 10204 10205 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10206 sizeof(item)); 10207 if (ret) 10208 btrfs_abort_transaction(trans, ret); 10209 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10210 key.offset); 10211 if (ret) 10212 btrfs_abort_transaction(trans, ret); 10213 add_block_group_free_space(trans, block_group); 10214 /* already aborted the transaction if it failed. */ 10215 next: 10216 list_del_init(&block_group->bg_list); 10217 } 10218 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10219 } 10220 10221 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10222 struct btrfs_fs_info *fs_info, u64 bytes_used, 10223 u64 type, u64 chunk_offset, u64 size) 10224 { 10225 struct btrfs_block_group_cache *cache; 10226 int ret; 10227 10228 btrfs_set_log_full_commit(fs_info, trans); 10229 10230 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10231 if (!cache) 10232 return -ENOMEM; 10233 10234 btrfs_set_block_group_used(&cache->item, bytes_used); 10235 btrfs_set_block_group_chunk_objectid(&cache->item, 10236 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10237 btrfs_set_block_group_flags(&cache->item, type); 10238 10239 cache->flags = type; 10240 cache->last_byte_to_unpin = (u64)-1; 10241 cache->cached = BTRFS_CACHE_FINISHED; 10242 cache->needs_free_space = 1; 10243 ret = exclude_super_stripes(fs_info, cache); 10244 if (ret) { 10245 /* 10246 * We may have excluded something, so call this just in 10247 * case. 10248 */ 10249 free_excluded_extents(fs_info, cache); 10250 btrfs_put_block_group(cache); 10251 return ret; 10252 } 10253 10254 add_new_free_space(cache, chunk_offset, chunk_offset + size); 10255 10256 free_excluded_extents(fs_info, cache); 10257 10258 #ifdef CONFIG_BTRFS_DEBUG 10259 if (btrfs_should_fragment_free_space(cache)) { 10260 u64 new_bytes_used = size - bytes_used; 10261 10262 bytes_used += new_bytes_used >> 1; 10263 fragment_free_space(cache); 10264 } 10265 #endif 10266 /* 10267 * Ensure the corresponding space_info object is created and 10268 * assigned to our block group. We want our bg to be added to the rbtree 10269 * with its ->space_info set. 10270 */ 10271 cache->space_info = __find_space_info(fs_info, cache->flags); 10272 ASSERT(cache->space_info); 10273 10274 ret = btrfs_add_block_group_cache(fs_info, cache); 10275 if (ret) { 10276 btrfs_remove_free_space_cache(cache); 10277 btrfs_put_block_group(cache); 10278 return ret; 10279 } 10280 10281 /* 10282 * Now that our block group has its ->space_info set and is inserted in 10283 * the rbtree, update the space info's counters. 10284 */ 10285 trace_btrfs_add_block_group(fs_info, cache, 1); 10286 update_space_info(fs_info, cache->flags, size, bytes_used, 10287 cache->bytes_super, &cache->space_info); 10288 update_global_block_rsv(fs_info); 10289 10290 link_block_group(cache); 10291 10292 list_add_tail(&cache->bg_list, &trans->new_bgs); 10293 10294 set_avail_alloc_bits(fs_info, type); 10295 return 0; 10296 } 10297 10298 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10299 { 10300 u64 extra_flags = chunk_to_extended(flags) & 10301 BTRFS_EXTENDED_PROFILE_MASK; 10302 10303 write_seqlock(&fs_info->profiles_lock); 10304 if (flags & BTRFS_BLOCK_GROUP_DATA) 10305 fs_info->avail_data_alloc_bits &= ~extra_flags; 10306 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10307 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10308 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10309 fs_info->avail_system_alloc_bits &= ~extra_flags; 10310 write_sequnlock(&fs_info->profiles_lock); 10311 } 10312 10313 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10314 struct btrfs_fs_info *fs_info, u64 group_start, 10315 struct extent_map *em) 10316 { 10317 struct btrfs_root *root = fs_info->extent_root; 10318 struct btrfs_path *path; 10319 struct btrfs_block_group_cache *block_group; 10320 struct btrfs_free_cluster *cluster; 10321 struct btrfs_root *tree_root = fs_info->tree_root; 10322 struct btrfs_key key; 10323 struct inode *inode; 10324 struct kobject *kobj = NULL; 10325 int ret; 10326 int index; 10327 int factor; 10328 struct btrfs_caching_control *caching_ctl = NULL; 10329 bool remove_em; 10330 10331 block_group = btrfs_lookup_block_group(fs_info, group_start); 10332 BUG_ON(!block_group); 10333 BUG_ON(!block_group->ro); 10334 10335 trace_btrfs_remove_block_group(block_group); 10336 /* 10337 * Free the reserved super bytes from this block group before 10338 * remove it. 10339 */ 10340 free_excluded_extents(fs_info, block_group); 10341 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10342 block_group->key.offset); 10343 10344 memcpy(&key, &block_group->key, sizeof(key)); 10345 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10346 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10347 BTRFS_BLOCK_GROUP_RAID1 | 10348 BTRFS_BLOCK_GROUP_RAID10)) 10349 factor = 2; 10350 else 10351 factor = 1; 10352 10353 /* make sure this block group isn't part of an allocation cluster */ 10354 cluster = &fs_info->data_alloc_cluster; 10355 spin_lock(&cluster->refill_lock); 10356 btrfs_return_cluster_to_free_space(block_group, cluster); 10357 spin_unlock(&cluster->refill_lock); 10358 10359 /* 10360 * make sure this block group isn't part of a metadata 10361 * allocation cluster 10362 */ 10363 cluster = &fs_info->meta_alloc_cluster; 10364 spin_lock(&cluster->refill_lock); 10365 btrfs_return_cluster_to_free_space(block_group, cluster); 10366 spin_unlock(&cluster->refill_lock); 10367 10368 path = btrfs_alloc_path(); 10369 if (!path) { 10370 ret = -ENOMEM; 10371 goto out; 10372 } 10373 10374 /* 10375 * get the inode first so any iput calls done for the io_list 10376 * aren't the final iput (no unlinks allowed now) 10377 */ 10378 inode = lookup_free_space_inode(fs_info, block_group, path); 10379 10380 mutex_lock(&trans->transaction->cache_write_mutex); 10381 /* 10382 * make sure our free spache cache IO is done before remove the 10383 * free space inode 10384 */ 10385 spin_lock(&trans->transaction->dirty_bgs_lock); 10386 if (!list_empty(&block_group->io_list)) { 10387 list_del_init(&block_group->io_list); 10388 10389 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10390 10391 spin_unlock(&trans->transaction->dirty_bgs_lock); 10392 btrfs_wait_cache_io(trans, block_group, path); 10393 btrfs_put_block_group(block_group); 10394 spin_lock(&trans->transaction->dirty_bgs_lock); 10395 } 10396 10397 if (!list_empty(&block_group->dirty_list)) { 10398 list_del_init(&block_group->dirty_list); 10399 btrfs_put_block_group(block_group); 10400 } 10401 spin_unlock(&trans->transaction->dirty_bgs_lock); 10402 mutex_unlock(&trans->transaction->cache_write_mutex); 10403 10404 if (!IS_ERR(inode)) { 10405 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10406 if (ret) { 10407 btrfs_add_delayed_iput(inode); 10408 goto out; 10409 } 10410 clear_nlink(inode); 10411 /* One for the block groups ref */ 10412 spin_lock(&block_group->lock); 10413 if (block_group->iref) { 10414 block_group->iref = 0; 10415 block_group->inode = NULL; 10416 spin_unlock(&block_group->lock); 10417 iput(inode); 10418 } else { 10419 spin_unlock(&block_group->lock); 10420 } 10421 /* One for our lookup ref */ 10422 btrfs_add_delayed_iput(inode); 10423 } 10424 10425 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10426 key.offset = block_group->key.objectid; 10427 key.type = 0; 10428 10429 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10430 if (ret < 0) 10431 goto out; 10432 if (ret > 0) 10433 btrfs_release_path(path); 10434 if (ret == 0) { 10435 ret = btrfs_del_item(trans, tree_root, path); 10436 if (ret) 10437 goto out; 10438 btrfs_release_path(path); 10439 } 10440 10441 spin_lock(&fs_info->block_group_cache_lock); 10442 rb_erase(&block_group->cache_node, 10443 &fs_info->block_group_cache_tree); 10444 RB_CLEAR_NODE(&block_group->cache_node); 10445 10446 if (fs_info->first_logical_byte == block_group->key.objectid) 10447 fs_info->first_logical_byte = (u64)-1; 10448 spin_unlock(&fs_info->block_group_cache_lock); 10449 10450 down_write(&block_group->space_info->groups_sem); 10451 /* 10452 * we must use list_del_init so people can check to see if they 10453 * are still on the list after taking the semaphore 10454 */ 10455 list_del_init(&block_group->list); 10456 if (list_empty(&block_group->space_info->block_groups[index])) { 10457 kobj = block_group->space_info->block_group_kobjs[index]; 10458 block_group->space_info->block_group_kobjs[index] = NULL; 10459 clear_avail_alloc_bits(fs_info, block_group->flags); 10460 } 10461 up_write(&block_group->space_info->groups_sem); 10462 if (kobj) { 10463 kobject_del(kobj); 10464 kobject_put(kobj); 10465 } 10466 10467 if (block_group->has_caching_ctl) 10468 caching_ctl = get_caching_control(block_group); 10469 if (block_group->cached == BTRFS_CACHE_STARTED) 10470 wait_block_group_cache_done(block_group); 10471 if (block_group->has_caching_ctl) { 10472 down_write(&fs_info->commit_root_sem); 10473 if (!caching_ctl) { 10474 struct btrfs_caching_control *ctl; 10475 10476 list_for_each_entry(ctl, 10477 &fs_info->caching_block_groups, list) 10478 if (ctl->block_group == block_group) { 10479 caching_ctl = ctl; 10480 refcount_inc(&caching_ctl->count); 10481 break; 10482 } 10483 } 10484 if (caching_ctl) 10485 list_del_init(&caching_ctl->list); 10486 up_write(&fs_info->commit_root_sem); 10487 if (caching_ctl) { 10488 /* Once for the caching bgs list and once for us. */ 10489 put_caching_control(caching_ctl); 10490 put_caching_control(caching_ctl); 10491 } 10492 } 10493 10494 spin_lock(&trans->transaction->dirty_bgs_lock); 10495 if (!list_empty(&block_group->dirty_list)) { 10496 WARN_ON(1); 10497 } 10498 if (!list_empty(&block_group->io_list)) { 10499 WARN_ON(1); 10500 } 10501 spin_unlock(&trans->transaction->dirty_bgs_lock); 10502 btrfs_remove_free_space_cache(block_group); 10503 10504 spin_lock(&block_group->space_info->lock); 10505 list_del_init(&block_group->ro_list); 10506 10507 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10508 WARN_ON(block_group->space_info->total_bytes 10509 < block_group->key.offset); 10510 WARN_ON(block_group->space_info->bytes_readonly 10511 < block_group->key.offset); 10512 WARN_ON(block_group->space_info->disk_total 10513 < block_group->key.offset * factor); 10514 } 10515 block_group->space_info->total_bytes -= block_group->key.offset; 10516 block_group->space_info->bytes_readonly -= block_group->key.offset; 10517 block_group->space_info->disk_total -= block_group->key.offset * factor; 10518 10519 spin_unlock(&block_group->space_info->lock); 10520 10521 memcpy(&key, &block_group->key, sizeof(key)); 10522 10523 mutex_lock(&fs_info->chunk_mutex); 10524 if (!list_empty(&em->list)) { 10525 /* We're in the transaction->pending_chunks list. */ 10526 free_extent_map(em); 10527 } 10528 spin_lock(&block_group->lock); 10529 block_group->removed = 1; 10530 /* 10531 * At this point trimming can't start on this block group, because we 10532 * removed the block group from the tree fs_info->block_group_cache_tree 10533 * so no one can't find it anymore and even if someone already got this 10534 * block group before we removed it from the rbtree, they have already 10535 * incremented block_group->trimming - if they didn't, they won't find 10536 * any free space entries because we already removed them all when we 10537 * called btrfs_remove_free_space_cache(). 10538 * 10539 * And we must not remove the extent map from the fs_info->mapping_tree 10540 * to prevent the same logical address range and physical device space 10541 * ranges from being reused for a new block group. This is because our 10542 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10543 * completely transactionless, so while it is trimming a range the 10544 * currently running transaction might finish and a new one start, 10545 * allowing for new block groups to be created that can reuse the same 10546 * physical device locations unless we take this special care. 10547 * 10548 * There may also be an implicit trim operation if the file system 10549 * is mounted with -odiscard. The same protections must remain 10550 * in place until the extents have been discarded completely when 10551 * the transaction commit has completed. 10552 */ 10553 remove_em = (atomic_read(&block_group->trimming) == 0); 10554 /* 10555 * Make sure a trimmer task always sees the em in the pinned_chunks list 10556 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10557 * before checking block_group->removed). 10558 */ 10559 if (!remove_em) { 10560 /* 10561 * Our em might be in trans->transaction->pending_chunks which 10562 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10563 * and so is the fs_info->pinned_chunks list. 10564 * 10565 * So at this point we must be holding the chunk_mutex to avoid 10566 * any races with chunk allocation (more specifically at 10567 * volumes.c:contains_pending_extent()), to ensure it always 10568 * sees the em, either in the pending_chunks list or in the 10569 * pinned_chunks list. 10570 */ 10571 list_move_tail(&em->list, &fs_info->pinned_chunks); 10572 } 10573 spin_unlock(&block_group->lock); 10574 10575 if (remove_em) { 10576 struct extent_map_tree *em_tree; 10577 10578 em_tree = &fs_info->mapping_tree.map_tree; 10579 write_lock(&em_tree->lock); 10580 /* 10581 * The em might be in the pending_chunks list, so make sure the 10582 * chunk mutex is locked, since remove_extent_mapping() will 10583 * delete us from that list. 10584 */ 10585 remove_extent_mapping(em_tree, em); 10586 write_unlock(&em_tree->lock); 10587 /* once for the tree */ 10588 free_extent_map(em); 10589 } 10590 10591 mutex_unlock(&fs_info->chunk_mutex); 10592 10593 ret = remove_block_group_free_space(trans, block_group); 10594 if (ret) 10595 goto out; 10596 10597 btrfs_put_block_group(block_group); 10598 btrfs_put_block_group(block_group); 10599 10600 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10601 if (ret > 0) 10602 ret = -EIO; 10603 if (ret < 0) 10604 goto out; 10605 10606 ret = btrfs_del_item(trans, root, path); 10607 out: 10608 btrfs_free_path(path); 10609 return ret; 10610 } 10611 10612 struct btrfs_trans_handle * 10613 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10614 const u64 chunk_offset) 10615 { 10616 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10617 struct extent_map *em; 10618 struct map_lookup *map; 10619 unsigned int num_items; 10620 10621 read_lock(&em_tree->lock); 10622 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10623 read_unlock(&em_tree->lock); 10624 ASSERT(em && em->start == chunk_offset); 10625 10626 /* 10627 * We need to reserve 3 + N units from the metadata space info in order 10628 * to remove a block group (done at btrfs_remove_chunk() and at 10629 * btrfs_remove_block_group()), which are used for: 10630 * 10631 * 1 unit for adding the free space inode's orphan (located in the tree 10632 * of tree roots). 10633 * 1 unit for deleting the block group item (located in the extent 10634 * tree). 10635 * 1 unit for deleting the free space item (located in tree of tree 10636 * roots). 10637 * N units for deleting N device extent items corresponding to each 10638 * stripe (located in the device tree). 10639 * 10640 * In order to remove a block group we also need to reserve units in the 10641 * system space info in order to update the chunk tree (update one or 10642 * more device items and remove one chunk item), but this is done at 10643 * btrfs_remove_chunk() through a call to check_system_chunk(). 10644 */ 10645 map = em->map_lookup; 10646 num_items = 3 + map->num_stripes; 10647 free_extent_map(em); 10648 10649 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10650 num_items, 1); 10651 } 10652 10653 /* 10654 * Process the unused_bgs list and remove any that don't have any allocated 10655 * space inside of them. 10656 */ 10657 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10658 { 10659 struct btrfs_block_group_cache *block_group; 10660 struct btrfs_space_info *space_info; 10661 struct btrfs_trans_handle *trans; 10662 int ret = 0; 10663 10664 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10665 return; 10666 10667 spin_lock(&fs_info->unused_bgs_lock); 10668 while (!list_empty(&fs_info->unused_bgs)) { 10669 u64 start, end; 10670 int trimming; 10671 10672 block_group = list_first_entry(&fs_info->unused_bgs, 10673 struct btrfs_block_group_cache, 10674 bg_list); 10675 list_del_init(&block_group->bg_list); 10676 10677 space_info = block_group->space_info; 10678 10679 if (ret || btrfs_mixed_space_info(space_info)) { 10680 btrfs_put_block_group(block_group); 10681 continue; 10682 } 10683 spin_unlock(&fs_info->unused_bgs_lock); 10684 10685 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10686 10687 /* Don't want to race with allocators so take the groups_sem */ 10688 down_write(&space_info->groups_sem); 10689 spin_lock(&block_group->lock); 10690 if (block_group->reserved || 10691 btrfs_block_group_used(&block_group->item) || 10692 block_group->ro || 10693 list_is_singular(&block_group->list)) { 10694 /* 10695 * We want to bail if we made new allocations or have 10696 * outstanding allocations in this block group. We do 10697 * the ro check in case balance is currently acting on 10698 * this block group. 10699 */ 10700 trace_btrfs_skip_unused_block_group(block_group); 10701 spin_unlock(&block_group->lock); 10702 up_write(&space_info->groups_sem); 10703 goto next; 10704 } 10705 spin_unlock(&block_group->lock); 10706 10707 /* We don't want to force the issue, only flip if it's ok. */ 10708 ret = inc_block_group_ro(block_group, 0); 10709 up_write(&space_info->groups_sem); 10710 if (ret < 0) { 10711 ret = 0; 10712 goto next; 10713 } 10714 10715 /* 10716 * Want to do this before we do anything else so we can recover 10717 * properly if we fail to join the transaction. 10718 */ 10719 trans = btrfs_start_trans_remove_block_group(fs_info, 10720 block_group->key.objectid); 10721 if (IS_ERR(trans)) { 10722 btrfs_dec_block_group_ro(block_group); 10723 ret = PTR_ERR(trans); 10724 goto next; 10725 } 10726 10727 /* 10728 * We could have pending pinned extents for this block group, 10729 * just delete them, we don't care about them anymore. 10730 */ 10731 start = block_group->key.objectid; 10732 end = start + block_group->key.offset - 1; 10733 /* 10734 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10735 * btrfs_finish_extent_commit(). If we are at transaction N, 10736 * another task might be running finish_extent_commit() for the 10737 * previous transaction N - 1, and have seen a range belonging 10738 * to the block group in freed_extents[] before we were able to 10739 * clear the whole block group range from freed_extents[]. This 10740 * means that task can lookup for the block group after we 10741 * unpinned it from freed_extents[] and removed it, leading to 10742 * a BUG_ON() at btrfs_unpin_extent_range(). 10743 */ 10744 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10745 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10746 EXTENT_DIRTY); 10747 if (ret) { 10748 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10749 btrfs_dec_block_group_ro(block_group); 10750 goto end_trans; 10751 } 10752 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10753 EXTENT_DIRTY); 10754 if (ret) { 10755 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10756 btrfs_dec_block_group_ro(block_group); 10757 goto end_trans; 10758 } 10759 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10760 10761 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10762 spin_lock(&space_info->lock); 10763 spin_lock(&block_group->lock); 10764 10765 space_info->bytes_pinned -= block_group->pinned; 10766 space_info->bytes_readonly += block_group->pinned; 10767 percpu_counter_add(&space_info->total_bytes_pinned, 10768 -block_group->pinned); 10769 block_group->pinned = 0; 10770 10771 spin_unlock(&block_group->lock); 10772 spin_unlock(&space_info->lock); 10773 10774 /* DISCARD can flip during remount */ 10775 trimming = btrfs_test_opt(fs_info, DISCARD); 10776 10777 /* Implicit trim during transaction commit. */ 10778 if (trimming) 10779 btrfs_get_block_group_trimming(block_group); 10780 10781 /* 10782 * Btrfs_remove_chunk will abort the transaction if things go 10783 * horribly wrong. 10784 */ 10785 ret = btrfs_remove_chunk(trans, fs_info, 10786 block_group->key.objectid); 10787 10788 if (ret) { 10789 if (trimming) 10790 btrfs_put_block_group_trimming(block_group); 10791 goto end_trans; 10792 } 10793 10794 /* 10795 * If we're not mounted with -odiscard, we can just forget 10796 * about this block group. Otherwise we'll need to wait 10797 * until transaction commit to do the actual discard. 10798 */ 10799 if (trimming) { 10800 spin_lock(&fs_info->unused_bgs_lock); 10801 /* 10802 * A concurrent scrub might have added us to the list 10803 * fs_info->unused_bgs, so use a list_move operation 10804 * to add the block group to the deleted_bgs list. 10805 */ 10806 list_move(&block_group->bg_list, 10807 &trans->transaction->deleted_bgs); 10808 spin_unlock(&fs_info->unused_bgs_lock); 10809 btrfs_get_block_group(block_group); 10810 } 10811 end_trans: 10812 btrfs_end_transaction(trans); 10813 next: 10814 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10815 btrfs_put_block_group(block_group); 10816 spin_lock(&fs_info->unused_bgs_lock); 10817 } 10818 spin_unlock(&fs_info->unused_bgs_lock); 10819 } 10820 10821 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10822 { 10823 struct btrfs_super_block *disk_super; 10824 u64 features; 10825 u64 flags; 10826 int mixed = 0; 10827 int ret; 10828 10829 disk_super = fs_info->super_copy; 10830 if (!btrfs_super_root(disk_super)) 10831 return -EINVAL; 10832 10833 features = btrfs_super_incompat_flags(disk_super); 10834 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10835 mixed = 1; 10836 10837 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10838 ret = create_space_info(fs_info, flags); 10839 if (ret) 10840 goto out; 10841 10842 if (mixed) { 10843 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10844 ret = create_space_info(fs_info, flags); 10845 } else { 10846 flags = BTRFS_BLOCK_GROUP_METADATA; 10847 ret = create_space_info(fs_info, flags); 10848 if (ret) 10849 goto out; 10850 10851 flags = BTRFS_BLOCK_GROUP_DATA; 10852 ret = create_space_info(fs_info, flags); 10853 } 10854 out: 10855 return ret; 10856 } 10857 10858 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10859 u64 start, u64 end) 10860 { 10861 return unpin_extent_range(fs_info, start, end, false); 10862 } 10863 10864 /* 10865 * It used to be that old block groups would be left around forever. 10866 * Iterating over them would be enough to trim unused space. Since we 10867 * now automatically remove them, we also need to iterate over unallocated 10868 * space. 10869 * 10870 * We don't want a transaction for this since the discard may take a 10871 * substantial amount of time. We don't require that a transaction be 10872 * running, but we do need to take a running transaction into account 10873 * to ensure that we're not discarding chunks that were released in 10874 * the current transaction. 10875 * 10876 * Holding the chunks lock will prevent other threads from allocating 10877 * or releasing chunks, but it won't prevent a running transaction 10878 * from committing and releasing the memory that the pending chunks 10879 * list head uses. For that, we need to take a reference to the 10880 * transaction. 10881 */ 10882 static int btrfs_trim_free_extents(struct btrfs_device *device, 10883 u64 minlen, u64 *trimmed) 10884 { 10885 u64 start = 0, len = 0; 10886 int ret; 10887 10888 *trimmed = 0; 10889 10890 /* Not writeable = nothing to do. */ 10891 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10892 return 0; 10893 10894 /* No free space = nothing to do. */ 10895 if (device->total_bytes <= device->bytes_used) 10896 return 0; 10897 10898 ret = 0; 10899 10900 while (1) { 10901 struct btrfs_fs_info *fs_info = device->fs_info; 10902 struct btrfs_transaction *trans; 10903 u64 bytes; 10904 10905 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10906 if (ret) 10907 return ret; 10908 10909 down_read(&fs_info->commit_root_sem); 10910 10911 spin_lock(&fs_info->trans_lock); 10912 trans = fs_info->running_transaction; 10913 if (trans) 10914 refcount_inc(&trans->use_count); 10915 spin_unlock(&fs_info->trans_lock); 10916 10917 ret = find_free_dev_extent_start(trans, device, minlen, start, 10918 &start, &len); 10919 if (trans) 10920 btrfs_put_transaction(trans); 10921 10922 if (ret) { 10923 up_read(&fs_info->commit_root_sem); 10924 mutex_unlock(&fs_info->chunk_mutex); 10925 if (ret == -ENOSPC) 10926 ret = 0; 10927 break; 10928 } 10929 10930 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10931 up_read(&fs_info->commit_root_sem); 10932 mutex_unlock(&fs_info->chunk_mutex); 10933 10934 if (ret) 10935 break; 10936 10937 start += len; 10938 *trimmed += bytes; 10939 10940 if (fatal_signal_pending(current)) { 10941 ret = -ERESTARTSYS; 10942 break; 10943 } 10944 10945 cond_resched(); 10946 } 10947 10948 return ret; 10949 } 10950 10951 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10952 { 10953 struct btrfs_block_group_cache *cache = NULL; 10954 struct btrfs_device *device; 10955 struct list_head *devices; 10956 u64 group_trimmed; 10957 u64 start; 10958 u64 end; 10959 u64 trimmed = 0; 10960 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10961 int ret = 0; 10962 10963 /* 10964 * try to trim all FS space, our block group may start from non-zero. 10965 */ 10966 if (range->len == total_bytes) 10967 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10968 else 10969 cache = btrfs_lookup_block_group(fs_info, range->start); 10970 10971 while (cache) { 10972 if (cache->key.objectid >= (range->start + range->len)) { 10973 btrfs_put_block_group(cache); 10974 break; 10975 } 10976 10977 start = max(range->start, cache->key.objectid); 10978 end = min(range->start + range->len, 10979 cache->key.objectid + cache->key.offset); 10980 10981 if (end - start >= range->minlen) { 10982 if (!block_group_cache_done(cache)) { 10983 ret = cache_block_group(cache, 0); 10984 if (ret) { 10985 btrfs_put_block_group(cache); 10986 break; 10987 } 10988 ret = wait_block_group_cache_done(cache); 10989 if (ret) { 10990 btrfs_put_block_group(cache); 10991 break; 10992 } 10993 } 10994 ret = btrfs_trim_block_group(cache, 10995 &group_trimmed, 10996 start, 10997 end, 10998 range->minlen); 10999 11000 trimmed += group_trimmed; 11001 if (ret) { 11002 btrfs_put_block_group(cache); 11003 break; 11004 } 11005 } 11006 11007 cache = next_block_group(fs_info, cache); 11008 } 11009 11010 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11011 devices = &fs_info->fs_devices->alloc_list; 11012 list_for_each_entry(device, devices, dev_alloc_list) { 11013 ret = btrfs_trim_free_extents(device, range->minlen, 11014 &group_trimmed); 11015 if (ret) 11016 break; 11017 11018 trimmed += group_trimmed; 11019 } 11020 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11021 11022 range->len = trimmed; 11023 return ret; 11024 } 11025 11026 /* 11027 * btrfs_{start,end}_write_no_snapshotting() are similar to 11028 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11029 * data into the page cache through nocow before the subvolume is snapshoted, 11030 * but flush the data into disk after the snapshot creation, or to prevent 11031 * operations while snapshotting is ongoing and that cause the snapshot to be 11032 * inconsistent (writes followed by expanding truncates for example). 11033 */ 11034 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11035 { 11036 percpu_counter_dec(&root->subv_writers->counter); 11037 cond_wake_up(&root->subv_writers->wait); 11038 } 11039 11040 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11041 { 11042 if (atomic_read(&root->will_be_snapshotted)) 11043 return 0; 11044 11045 percpu_counter_inc(&root->subv_writers->counter); 11046 /* 11047 * Make sure counter is updated before we check for snapshot creation. 11048 */ 11049 smp_mb(); 11050 if (atomic_read(&root->will_be_snapshotted)) { 11051 btrfs_end_write_no_snapshotting(root); 11052 return 0; 11053 } 11054 return 1; 11055 } 11056 11057 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11058 { 11059 while (true) { 11060 int ret; 11061 11062 ret = btrfs_start_write_no_snapshotting(root); 11063 if (ret) 11064 break; 11065 wait_var_event(&root->will_be_snapshotted, 11066 !atomic_read(&root->will_be_snapshotted)); 11067 } 11068 } 11069