1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 struct btrfs_delayed_ref_node *node, 50 struct btrfs_delayed_extent_op *extra_op); 51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 52 struct extent_buffer *leaf, 53 struct btrfs_extent_item *ei); 54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 55 u64 parent, u64 root_objectid, 56 u64 flags, u64 owner, u64 offset, 57 struct btrfs_key *ins, int ref_mod, u64 oref_root); 58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 59 struct btrfs_delayed_ref_node *node, 60 struct btrfs_delayed_extent_op *extent_op); 61 static int find_next_key(struct btrfs_path *path, int level, 62 struct btrfs_key *key); 63 64 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 65 { 66 return (cache->flags & bits) == bits; 67 } 68 69 /* simple helper to search for an existing data extent at a given offset */ 70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 71 { 72 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 73 int ret; 74 struct btrfs_key key; 75 struct btrfs_path *path; 76 77 path = btrfs_alloc_path(); 78 if (!path) 79 return -ENOMEM; 80 81 key.objectid = start; 82 key.offset = len; 83 key.type = BTRFS_EXTENT_ITEM_KEY; 84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 85 btrfs_free_path(path); 86 return ret; 87 } 88 89 /* 90 * helper function to lookup reference count and flags of a tree block. 91 * 92 * the head node for delayed ref is used to store the sum of all the 93 * reference count modifications queued up in the rbtree. the head 94 * node may also store the extent flags to set. This way you can check 95 * to see what the reference count and extent flags would be if all of 96 * the delayed refs are not processed. 97 */ 98 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 99 struct btrfs_fs_info *fs_info, u64 bytenr, 100 u64 offset, int metadata, u64 *refs, u64 *flags, 101 u64 *owning_root) 102 { 103 struct btrfs_root *extent_root; 104 struct btrfs_delayed_ref_head *head; 105 struct btrfs_delayed_ref_root *delayed_refs; 106 struct btrfs_path *path; 107 struct btrfs_key key; 108 u64 num_refs; 109 u64 extent_flags; 110 u64 owner = 0; 111 int ret; 112 113 /* 114 * If we don't have skinny metadata, don't bother doing anything 115 * different 116 */ 117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 118 offset = fs_info->nodesize; 119 metadata = 0; 120 } 121 122 path = btrfs_alloc_path(); 123 if (!path) 124 return -ENOMEM; 125 126 search_again: 127 key.objectid = bytenr; 128 key.offset = offset; 129 if (metadata) 130 key.type = BTRFS_METADATA_ITEM_KEY; 131 else 132 key.type = BTRFS_EXTENT_ITEM_KEY; 133 134 extent_root = btrfs_extent_root(fs_info, bytenr); 135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 136 if (ret < 0) 137 goto out_free; 138 139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 140 if (path->slots[0]) { 141 path->slots[0]--; 142 btrfs_item_key_to_cpu(path->nodes[0], &key, 143 path->slots[0]); 144 if (key.objectid == bytenr && 145 key.type == BTRFS_EXTENT_ITEM_KEY && 146 key.offset == fs_info->nodesize) 147 ret = 0; 148 } 149 } 150 151 if (ret == 0) { 152 struct extent_buffer *leaf = path->nodes[0]; 153 struct btrfs_extent_item *ei; 154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 155 156 if (unlikely(item_size < sizeof(*ei))) { 157 ret = -EUCLEAN; 158 btrfs_err(fs_info, 159 "unexpected extent item size, has %u expect >= %zu", 160 item_size, sizeof(*ei)); 161 btrfs_abort_transaction(trans, ret); 162 goto out_free; 163 } 164 165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 if (unlikely(num_refs == 0)) { 168 ret = -EUCLEAN; 169 btrfs_err(fs_info, 170 "unexpected zero reference count for extent item (%llu %u %llu)", 171 key.objectid, key.type, key.offset); 172 btrfs_abort_transaction(trans, ret); 173 goto out_free; 174 } 175 extent_flags = btrfs_extent_flags(leaf, ei); 176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 177 } else { 178 num_refs = 0; 179 extent_flags = 0; 180 ret = 0; 181 } 182 183 delayed_refs = &trans->transaction->delayed_refs; 184 spin_lock(&delayed_refs->lock); 185 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 186 if (head) { 187 if (!mutex_trylock(&head->mutex)) { 188 refcount_inc(&head->refs); 189 spin_unlock(&delayed_refs->lock); 190 191 btrfs_release_path(path); 192 193 /* 194 * Mutex was contended, block until it's released and try 195 * again 196 */ 197 mutex_lock(&head->mutex); 198 mutex_unlock(&head->mutex); 199 btrfs_put_delayed_ref_head(head); 200 goto search_again; 201 } 202 spin_lock(&head->lock); 203 if (head->extent_op && head->extent_op->update_flags) 204 extent_flags |= head->extent_op->flags_to_set; 205 206 num_refs += head->ref_mod; 207 spin_unlock(&head->lock); 208 mutex_unlock(&head->mutex); 209 } 210 spin_unlock(&delayed_refs->lock); 211 212 WARN_ON(num_refs == 0); 213 if (refs) 214 *refs = num_refs; 215 if (flags) 216 *flags = extent_flags; 217 if (owning_root) 218 *owning_root = owner; 219 out_free: 220 btrfs_free_path(path); 221 return ret; 222 } 223 224 /* 225 * Back reference rules. Back refs have three main goals: 226 * 227 * 1) differentiate between all holders of references to an extent so that 228 * when a reference is dropped we can make sure it was a valid reference 229 * before freeing the extent. 230 * 231 * 2) Provide enough information to quickly find the holders of an extent 232 * if we notice a given block is corrupted or bad. 233 * 234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 235 * maintenance. This is actually the same as #2, but with a slightly 236 * different use case. 237 * 238 * There are two kinds of back refs. The implicit back refs is optimized 239 * for pointers in non-shared tree blocks. For a given pointer in a block, 240 * back refs of this kind provide information about the block's owner tree 241 * and the pointer's key. These information allow us to find the block by 242 * b-tree searching. The full back refs is for pointers in tree blocks not 243 * referenced by their owner trees. The location of tree block is recorded 244 * in the back refs. Actually the full back refs is generic, and can be 245 * used in all cases the implicit back refs is used. The major shortcoming 246 * of the full back refs is its overhead. Every time a tree block gets 247 * COWed, we have to update back refs entry for all pointers in it. 248 * 249 * For a newly allocated tree block, we use implicit back refs for 250 * pointers in it. This means most tree related operations only involve 251 * implicit back refs. For a tree block created in old transaction, the 252 * only way to drop a reference to it is COW it. So we can detect the 253 * event that tree block loses its owner tree's reference and do the 254 * back refs conversion. 255 * 256 * When a tree block is COWed through a tree, there are four cases: 257 * 258 * The reference count of the block is one and the tree is the block's 259 * owner tree. Nothing to do in this case. 260 * 261 * The reference count of the block is one and the tree is not the 262 * block's owner tree. In this case, full back refs is used for pointers 263 * in the block. Remove these full back refs, add implicit back refs for 264 * every pointers in the new block. 265 * 266 * The reference count of the block is greater than one and the tree is 267 * the block's owner tree. In this case, implicit back refs is used for 268 * pointers in the block. Add full back refs for every pointers in the 269 * block, increase lower level extents' reference counts. The original 270 * implicit back refs are entailed to the new block. 271 * 272 * The reference count of the block is greater than one and the tree is 273 * not the block's owner tree. Add implicit back refs for every pointer in 274 * the new block, increase lower level extents' reference count. 275 * 276 * Back Reference Key composing: 277 * 278 * The key objectid corresponds to the first byte in the extent, 279 * The key type is used to differentiate between types of back refs. 280 * There are different meanings of the key offset for different types 281 * of back refs. 282 * 283 * File extents can be referenced by: 284 * 285 * - multiple snapshots, subvolumes, or different generations in one subvol 286 * - different files inside a single subvolume 287 * - different offsets inside a file (bookend extents in file.c) 288 * 289 * The extent ref structure for the implicit back refs has fields for: 290 * 291 * - Objectid of the subvolume root 292 * - objectid of the file holding the reference 293 * - original offset in the file 294 * - how many bookend extents 295 * 296 * The key offset for the implicit back refs is hash of the first 297 * three fields. 298 * 299 * The extent ref structure for the full back refs has field for: 300 * 301 * - number of pointers in the tree leaf 302 * 303 * The key offset for the implicit back refs is the first byte of 304 * the tree leaf 305 * 306 * When a file extent is allocated, The implicit back refs is used. 307 * the fields are filled in: 308 * 309 * (root_key.objectid, inode objectid, offset in file, 1) 310 * 311 * When a file extent is removed file truncation, we find the 312 * corresponding implicit back refs and check the following fields: 313 * 314 * (btrfs_header_owner(leaf), inode objectid, offset in file) 315 * 316 * Btree extents can be referenced by: 317 * 318 * - Different subvolumes 319 * 320 * Both the implicit back refs and the full back refs for tree blocks 321 * only consist of key. The key offset for the implicit back refs is 322 * objectid of block's owner tree. The key offset for the full back refs 323 * is the first byte of parent block. 324 * 325 * When implicit back refs is used, information about the lowest key and 326 * level of the tree block are required. These information are stored in 327 * tree block info structure. 328 */ 329 330 /* 331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 334 */ 335 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 336 struct btrfs_extent_inline_ref *iref, 337 enum btrfs_inline_ref_type is_data) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 int type = btrfs_extent_inline_ref_type(eb, iref); 341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 342 343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 345 return type; 346 } 347 348 if (type == BTRFS_TREE_BLOCK_REF_KEY || 349 type == BTRFS_SHARED_BLOCK_REF_KEY || 350 type == BTRFS_SHARED_DATA_REF_KEY || 351 type == BTRFS_EXTENT_DATA_REF_KEY) { 352 if (is_data == BTRFS_REF_TYPE_BLOCK) { 353 if (type == BTRFS_TREE_BLOCK_REF_KEY) 354 return type; 355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 356 ASSERT(fs_info); 357 /* 358 * Every shared one has parent tree block, 359 * which must be aligned to sector size. 360 */ 361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 362 return type; 363 } 364 } else if (is_data == BTRFS_REF_TYPE_DATA) { 365 if (type == BTRFS_EXTENT_DATA_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_DATA_REF_KEY) { 368 ASSERT(fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, fs_info->sectorsize)) 375 return type; 376 } 377 } else { 378 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 379 return type; 380 } 381 } 382 383 WARN_ON(1); 384 btrfs_print_leaf(eb); 385 btrfs_err(fs_info, 386 "eb %llu iref 0x%lx invalid extent inline ref type %d", 387 eb->start, (unsigned long)iref, type); 388 389 return BTRFS_REF_TYPE_INVALID; 390 } 391 392 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 393 { 394 u32 high_crc = ~(u32)0; 395 u32 low_crc = ~(u32)0; 396 __le64 lenum; 397 398 lenum = cpu_to_le64(root_objectid); 399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 400 lenum = cpu_to_le64(owner); 401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 402 lenum = cpu_to_le64(offset); 403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 404 405 return ((u64)high_crc << 31) ^ (u64)low_crc; 406 } 407 408 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 409 struct btrfs_extent_data_ref *ref) 410 { 411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 412 btrfs_extent_data_ref_objectid(leaf, ref), 413 btrfs_extent_data_ref_offset(leaf, ref)); 414 } 415 416 static int match_extent_data_ref(struct extent_buffer *leaf, 417 struct btrfs_extent_data_ref *ref, 418 u64 root_objectid, u64 owner, u64 offset) 419 { 420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 421 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 422 btrfs_extent_data_ref_offset(leaf, ref) != offset) 423 return 0; 424 return 1; 425 } 426 427 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 428 struct btrfs_path *path, 429 u64 bytenr, u64 parent, 430 u64 root_objectid, 431 u64 owner, u64 offset) 432 { 433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 434 struct btrfs_key key; 435 struct btrfs_extent_data_ref *ref; 436 struct extent_buffer *leaf; 437 u32 nritems; 438 int recow; 439 int ret; 440 441 key.objectid = bytenr; 442 if (parent) { 443 key.type = BTRFS_SHARED_DATA_REF_KEY; 444 key.offset = parent; 445 } else { 446 key.type = BTRFS_EXTENT_DATA_REF_KEY; 447 key.offset = hash_extent_data_ref(root_objectid, 448 owner, offset); 449 } 450 again: 451 recow = 0; 452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 453 if (ret < 0) 454 return ret; 455 456 if (parent) { 457 if (ret) 458 return -ENOENT; 459 return 0; 460 } 461 462 ret = -ENOENT; 463 leaf = path->nodes[0]; 464 nritems = btrfs_header_nritems(leaf); 465 while (1) { 466 if (path->slots[0] >= nritems) { 467 ret = btrfs_next_leaf(root, path); 468 if (ret) { 469 if (ret > 0) 470 return -ENOENT; 471 return ret; 472 } 473 474 leaf = path->nodes[0]; 475 nritems = btrfs_header_nritems(leaf); 476 recow = 1; 477 } 478 479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 480 if (key.objectid != bytenr || 481 key.type != BTRFS_EXTENT_DATA_REF_KEY) 482 goto fail; 483 484 ref = btrfs_item_ptr(leaf, path->slots[0], 485 struct btrfs_extent_data_ref); 486 487 if (match_extent_data_ref(leaf, ref, root_objectid, 488 owner, offset)) { 489 if (recow) { 490 btrfs_release_path(path); 491 goto again; 492 } 493 ret = 0; 494 break; 495 } 496 path->slots[0]++; 497 } 498 fail: 499 return ret; 500 } 501 502 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 503 struct btrfs_path *path, 504 struct btrfs_delayed_ref_node *node, 505 u64 bytenr) 506 { 507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 508 struct btrfs_key key; 509 struct extent_buffer *leaf; 510 u64 owner = btrfs_delayed_ref_owner(node); 511 u64 offset = btrfs_delayed_ref_offset(node); 512 u32 size; 513 u32 num_refs; 514 int ret; 515 516 key.objectid = bytenr; 517 if (node->parent) { 518 key.type = BTRFS_SHARED_DATA_REF_KEY; 519 key.offset = node->parent; 520 size = sizeof(struct btrfs_shared_data_ref); 521 } else { 522 key.type = BTRFS_EXTENT_DATA_REF_KEY; 523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 524 size = sizeof(struct btrfs_extent_data_ref); 525 } 526 527 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 528 if (ret && ret != -EEXIST) 529 goto fail; 530 531 leaf = path->nodes[0]; 532 if (node->parent) { 533 struct btrfs_shared_data_ref *ref; 534 ref = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_shared_data_ref); 536 if (ret == 0) { 537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 538 } else { 539 num_refs = btrfs_shared_data_ref_count(leaf, ref); 540 num_refs += node->ref_mod; 541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 542 } 543 } else { 544 struct btrfs_extent_data_ref *ref; 545 while (ret == -EEXIST) { 546 ref = btrfs_item_ptr(leaf, path->slots[0], 547 struct btrfs_extent_data_ref); 548 if (match_extent_data_ref(leaf, ref, node->ref_root, 549 owner, offset)) 550 break; 551 btrfs_release_path(path); 552 key.offset++; 553 ret = btrfs_insert_empty_item(trans, root, path, &key, 554 size); 555 if (ret && ret != -EEXIST) 556 goto fail; 557 558 leaf = path->nodes[0]; 559 } 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (ret == 0) { 563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 565 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 567 } else { 568 num_refs = btrfs_extent_data_ref_count(leaf, ref); 569 num_refs += node->ref_mod; 570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 571 } 572 } 573 btrfs_mark_buffer_dirty(trans, leaf); 574 ret = 0; 575 fail: 576 btrfs_release_path(path); 577 return ret; 578 } 579 580 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 int refs_to_drop) 584 { 585 struct btrfs_key key; 586 struct btrfs_extent_data_ref *ref1 = NULL; 587 struct btrfs_shared_data_ref *ref2 = NULL; 588 struct extent_buffer *leaf; 589 u32 num_refs = 0; 590 int ret = 0; 591 592 leaf = path->nodes[0]; 593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 594 595 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 596 ref1 = btrfs_item_ptr(leaf, path->slots[0], 597 struct btrfs_extent_data_ref); 598 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 599 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 600 ref2 = btrfs_item_ptr(leaf, path->slots[0], 601 struct btrfs_shared_data_ref); 602 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 603 } else { 604 btrfs_err(trans->fs_info, 605 "unrecognized backref key (%llu %u %llu)", 606 key.objectid, key.type, key.offset); 607 btrfs_abort_transaction(trans, -EUCLEAN); 608 return -EUCLEAN; 609 } 610 611 BUG_ON(num_refs < refs_to_drop); 612 num_refs -= refs_to_drop; 613 614 if (num_refs == 0) { 615 ret = btrfs_del_item(trans, root, path); 616 } else { 617 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 618 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 619 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 620 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 621 btrfs_mark_buffer_dirty(trans, leaf); 622 } 623 return ret; 624 } 625 626 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 627 struct btrfs_extent_inline_ref *iref) 628 { 629 struct btrfs_key key; 630 struct extent_buffer *leaf; 631 struct btrfs_extent_data_ref *ref1; 632 struct btrfs_shared_data_ref *ref2; 633 u32 num_refs = 0; 634 int type; 635 636 leaf = path->nodes[0]; 637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 638 639 if (iref) { 640 /* 641 * If type is invalid, we should have bailed out earlier than 642 * this call. 643 */ 644 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 645 ASSERT(type != BTRFS_REF_TYPE_INVALID); 646 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 647 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 648 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 649 } else { 650 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 651 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 652 } 653 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 654 ref1 = btrfs_item_ptr(leaf, path->slots[0], 655 struct btrfs_extent_data_ref); 656 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 657 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 658 ref2 = btrfs_item_ptr(leaf, path->slots[0], 659 struct btrfs_shared_data_ref); 660 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 661 } else { 662 WARN_ON(1); 663 } 664 return num_refs; 665 } 666 667 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 668 struct btrfs_path *path, 669 u64 bytenr, u64 parent, 670 u64 root_objectid) 671 { 672 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 673 struct btrfs_key key; 674 int ret; 675 676 key.objectid = bytenr; 677 if (parent) { 678 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 679 key.offset = parent; 680 } else { 681 key.type = BTRFS_TREE_BLOCK_REF_KEY; 682 key.offset = root_objectid; 683 } 684 685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 686 if (ret > 0) 687 ret = -ENOENT; 688 return ret; 689 } 690 691 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 692 struct btrfs_path *path, 693 struct btrfs_delayed_ref_node *node, 694 u64 bytenr) 695 { 696 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 697 struct btrfs_key key; 698 int ret; 699 700 key.objectid = bytenr; 701 if (node->parent) { 702 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 703 key.offset = node->parent; 704 } else { 705 key.type = BTRFS_TREE_BLOCK_REF_KEY; 706 key.offset = node->ref_root; 707 } 708 709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 710 btrfs_release_path(path); 711 return ret; 712 } 713 714 static inline int extent_ref_type(u64 parent, u64 owner) 715 { 716 int type; 717 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 718 if (parent > 0) 719 type = BTRFS_SHARED_BLOCK_REF_KEY; 720 else 721 type = BTRFS_TREE_BLOCK_REF_KEY; 722 } else { 723 if (parent > 0) 724 type = BTRFS_SHARED_DATA_REF_KEY; 725 else 726 type = BTRFS_EXTENT_DATA_REF_KEY; 727 } 728 return type; 729 } 730 731 static int find_next_key(struct btrfs_path *path, int level, 732 struct btrfs_key *key) 733 734 { 735 for (; level < BTRFS_MAX_LEVEL; level++) { 736 if (!path->nodes[level]) 737 break; 738 if (path->slots[level] + 1 >= 739 btrfs_header_nritems(path->nodes[level])) 740 continue; 741 if (level == 0) 742 btrfs_item_key_to_cpu(path->nodes[level], key, 743 path->slots[level] + 1); 744 else 745 btrfs_node_key_to_cpu(path->nodes[level], key, 746 path->slots[level] + 1); 747 return 0; 748 } 749 return 1; 750 } 751 752 /* 753 * look for inline back ref. if back ref is found, *ref_ret is set 754 * to the address of inline back ref, and 0 is returned. 755 * 756 * if back ref isn't found, *ref_ret is set to the address where it 757 * should be inserted, and -ENOENT is returned. 758 * 759 * if insert is true and there are too many inline back refs, the path 760 * points to the extent item, and -EAGAIN is returned. 761 * 762 * NOTE: inline back refs are ordered in the same way that back ref 763 * items in the tree are ordered. 764 */ 765 static noinline_for_stack 766 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 767 struct btrfs_path *path, 768 struct btrfs_extent_inline_ref **ref_ret, 769 u64 bytenr, u64 num_bytes, 770 u64 parent, u64 root_objectid, 771 u64 owner, u64 offset, int insert) 772 { 773 struct btrfs_fs_info *fs_info = trans->fs_info; 774 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 775 struct btrfs_key key; 776 struct extent_buffer *leaf; 777 struct btrfs_extent_item *ei; 778 struct btrfs_extent_inline_ref *iref; 779 u64 flags; 780 u64 item_size; 781 unsigned long ptr; 782 unsigned long end; 783 int extra_size; 784 int type; 785 int want; 786 int ret; 787 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 788 int needed; 789 790 key.objectid = bytenr; 791 key.type = BTRFS_EXTENT_ITEM_KEY; 792 key.offset = num_bytes; 793 794 want = extent_ref_type(parent, owner); 795 if (insert) { 796 extra_size = btrfs_extent_inline_ref_size(want); 797 path->search_for_extension = 1; 798 path->keep_locks = 1; 799 } else 800 extra_size = -1; 801 802 /* 803 * Owner is our level, so we can just add one to get the level for the 804 * block we are interested in. 805 */ 806 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 807 key.type = BTRFS_METADATA_ITEM_KEY; 808 key.offset = owner; 809 } 810 811 again: 812 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 813 if (ret < 0) 814 goto out; 815 816 /* 817 * We may be a newly converted file system which still has the old fat 818 * extent entries for metadata, so try and see if we have one of those. 819 */ 820 if (ret > 0 && skinny_metadata) { 821 skinny_metadata = false; 822 if (path->slots[0]) { 823 path->slots[0]--; 824 btrfs_item_key_to_cpu(path->nodes[0], &key, 825 path->slots[0]); 826 if (key.objectid == bytenr && 827 key.type == BTRFS_EXTENT_ITEM_KEY && 828 key.offset == num_bytes) 829 ret = 0; 830 } 831 if (ret) { 832 key.objectid = bytenr; 833 key.type = BTRFS_EXTENT_ITEM_KEY; 834 key.offset = num_bytes; 835 btrfs_release_path(path); 836 goto again; 837 } 838 } 839 840 if (ret && !insert) { 841 ret = -ENOENT; 842 goto out; 843 } else if (WARN_ON(ret)) { 844 btrfs_print_leaf(path->nodes[0]); 845 btrfs_err(fs_info, 846 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 847 bytenr, num_bytes, parent, root_objectid, owner, 848 offset); 849 ret = -EUCLEAN; 850 goto out; 851 } 852 853 leaf = path->nodes[0]; 854 item_size = btrfs_item_size(leaf, path->slots[0]); 855 if (unlikely(item_size < sizeof(*ei))) { 856 ret = -EUCLEAN; 857 btrfs_err(fs_info, 858 "unexpected extent item size, has %llu expect >= %zu", 859 item_size, sizeof(*ei)); 860 btrfs_abort_transaction(trans, ret); 861 goto out; 862 } 863 864 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 865 flags = btrfs_extent_flags(leaf, ei); 866 867 ptr = (unsigned long)(ei + 1); 868 end = (unsigned long)ei + item_size; 869 870 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 871 ptr += sizeof(struct btrfs_tree_block_info); 872 BUG_ON(ptr > end); 873 } 874 875 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 876 needed = BTRFS_REF_TYPE_DATA; 877 else 878 needed = BTRFS_REF_TYPE_BLOCK; 879 880 ret = -ENOENT; 881 while (ptr < end) { 882 iref = (struct btrfs_extent_inline_ref *)ptr; 883 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 884 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 885 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 886 ptr += btrfs_extent_inline_ref_size(type); 887 continue; 888 } 889 if (type == BTRFS_REF_TYPE_INVALID) { 890 ret = -EUCLEAN; 891 goto out; 892 } 893 894 if (want < type) 895 break; 896 if (want > type) { 897 ptr += btrfs_extent_inline_ref_size(type); 898 continue; 899 } 900 901 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 902 struct btrfs_extent_data_ref *dref; 903 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 904 if (match_extent_data_ref(leaf, dref, root_objectid, 905 owner, offset)) { 906 ret = 0; 907 break; 908 } 909 if (hash_extent_data_ref_item(leaf, dref) < 910 hash_extent_data_ref(root_objectid, owner, offset)) 911 break; 912 } else { 913 u64 ref_offset; 914 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 915 if (parent > 0) { 916 if (parent == ref_offset) { 917 ret = 0; 918 break; 919 } 920 if (ref_offset < parent) 921 break; 922 } else { 923 if (root_objectid == ref_offset) { 924 ret = 0; 925 break; 926 } 927 if (ref_offset < root_objectid) 928 break; 929 } 930 } 931 ptr += btrfs_extent_inline_ref_size(type); 932 } 933 934 if (unlikely(ptr > end)) { 935 ret = -EUCLEAN; 936 btrfs_print_leaf(path->nodes[0]); 937 btrfs_crit(fs_info, 938 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 939 path->slots[0], root_objectid, owner, offset, parent); 940 goto out; 941 } 942 943 if (ret == -ENOENT && insert) { 944 if (item_size + extra_size >= 945 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 946 ret = -EAGAIN; 947 goto out; 948 } 949 /* 950 * To add new inline back ref, we have to make sure 951 * there is no corresponding back ref item. 952 * For simplicity, we just do not add new inline back 953 * ref if there is any kind of item for this block 954 */ 955 if (find_next_key(path, 0, &key) == 0 && 956 key.objectid == bytenr && 957 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 958 ret = -EAGAIN; 959 goto out; 960 } 961 } 962 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 963 out: 964 if (insert) { 965 path->keep_locks = 0; 966 path->search_for_extension = 0; 967 btrfs_unlock_up_safe(path, 1); 968 } 969 return ret; 970 } 971 972 /* 973 * helper to add new inline back ref 974 */ 975 static noinline_for_stack 976 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 977 struct btrfs_path *path, 978 struct btrfs_extent_inline_ref *iref, 979 u64 parent, u64 root_objectid, 980 u64 owner, u64 offset, int refs_to_add, 981 struct btrfs_delayed_extent_op *extent_op) 982 { 983 struct extent_buffer *leaf; 984 struct btrfs_extent_item *ei; 985 unsigned long ptr; 986 unsigned long end; 987 unsigned long item_offset; 988 u64 refs; 989 int size; 990 int type; 991 992 leaf = path->nodes[0]; 993 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 994 item_offset = (unsigned long)iref - (unsigned long)ei; 995 996 type = extent_ref_type(parent, owner); 997 size = btrfs_extent_inline_ref_size(type); 998 999 btrfs_extend_item(trans, path, size); 1000 1001 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1002 refs = btrfs_extent_refs(leaf, ei); 1003 refs += refs_to_add; 1004 btrfs_set_extent_refs(leaf, ei, refs); 1005 if (extent_op) 1006 __run_delayed_extent_op(extent_op, leaf, ei); 1007 1008 ptr = (unsigned long)ei + item_offset; 1009 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1010 if (ptr < end - size) 1011 memmove_extent_buffer(leaf, ptr + size, ptr, 1012 end - size - ptr); 1013 1014 iref = (struct btrfs_extent_inline_ref *)ptr; 1015 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1016 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1017 struct btrfs_extent_data_ref *dref; 1018 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1019 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1020 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1021 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1022 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1023 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1024 struct btrfs_shared_data_ref *sref; 1025 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1026 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1027 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1028 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1029 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1030 } else { 1031 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1032 } 1033 btrfs_mark_buffer_dirty(trans, leaf); 1034 } 1035 1036 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1037 struct btrfs_path *path, 1038 struct btrfs_extent_inline_ref **ref_ret, 1039 u64 bytenr, u64 num_bytes, u64 parent, 1040 u64 root_objectid, u64 owner, u64 offset) 1041 { 1042 int ret; 1043 1044 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1045 num_bytes, parent, root_objectid, 1046 owner, offset, 0); 1047 if (ret != -ENOENT) 1048 return ret; 1049 1050 btrfs_release_path(path); 1051 *ref_ret = NULL; 1052 1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1054 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1055 root_objectid); 1056 } else { 1057 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1058 root_objectid, owner, offset); 1059 } 1060 return ret; 1061 } 1062 1063 /* 1064 * helper to update/remove inline back ref 1065 */ 1066 static noinline_for_stack int update_inline_extent_backref( 1067 struct btrfs_trans_handle *trans, 1068 struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op) 1072 { 1073 struct extent_buffer *leaf = path->nodes[0]; 1074 struct btrfs_fs_info *fs_info = leaf->fs_info; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1088 struct btrfs_key key; 1089 u32 extent_size; 1090 1091 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1092 if (key.type == BTRFS_METADATA_ITEM_KEY) 1093 extent_size = fs_info->nodesize; 1094 else 1095 extent_size = key.offset; 1096 btrfs_print_leaf(leaf); 1097 btrfs_err(fs_info, 1098 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1099 key.objectid, extent_size, refs_to_mod, refs); 1100 return -EUCLEAN; 1101 } 1102 refs += refs_to_mod; 1103 btrfs_set_extent_refs(leaf, ei, refs); 1104 if (extent_op) 1105 __run_delayed_extent_op(extent_op, leaf, ei); 1106 1107 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1108 /* 1109 * Function btrfs_get_extent_inline_ref_type() has already printed 1110 * error messages. 1111 */ 1112 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1113 return -EUCLEAN; 1114 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1116 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1117 refs = btrfs_extent_data_ref_count(leaf, dref); 1118 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1119 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1120 refs = btrfs_shared_data_ref_count(leaf, sref); 1121 } else { 1122 refs = 1; 1123 /* 1124 * For tree blocks we can only drop one ref for it, and tree 1125 * blocks should not have refs > 1. 1126 * 1127 * Furthermore if we're inserting a new inline backref, we 1128 * won't reach this path either. That would be 1129 * setup_inline_extent_backref(). 1130 */ 1131 if (unlikely(refs_to_mod != -1)) { 1132 struct btrfs_key key; 1133 1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1135 1136 btrfs_print_leaf(leaf); 1137 btrfs_err(fs_info, 1138 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1139 key.objectid, refs_to_mod); 1140 return -EUCLEAN; 1141 } 1142 } 1143 1144 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1145 struct btrfs_key key; 1146 u32 extent_size; 1147 1148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1149 if (key.type == BTRFS_METADATA_ITEM_KEY) 1150 extent_size = fs_info->nodesize; 1151 else 1152 extent_size = key.offset; 1153 btrfs_print_leaf(leaf); 1154 btrfs_err(fs_info, 1155 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1156 (unsigned long)iref, key.objectid, extent_size, 1157 refs_to_mod, refs); 1158 return -EUCLEAN; 1159 } 1160 refs += refs_to_mod; 1161 1162 if (refs > 0) { 1163 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1164 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1165 else 1166 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1167 } else { 1168 size = btrfs_extent_inline_ref_size(type); 1169 item_size = btrfs_item_size(leaf, path->slots[0]); 1170 ptr = (unsigned long)iref; 1171 end = (unsigned long)ei + item_size; 1172 if (ptr + size < end) 1173 memmove_extent_buffer(leaf, ptr, ptr + size, 1174 end - ptr - size); 1175 item_size -= size; 1176 btrfs_truncate_item(trans, path, item_size, 1); 1177 } 1178 btrfs_mark_buffer_dirty(trans, leaf); 1179 return 0; 1180 } 1181 1182 static noinline_for_stack 1183 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 num_bytes, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add, 1188 struct btrfs_delayed_extent_op *extent_op) 1189 { 1190 struct btrfs_extent_inline_ref *iref; 1191 int ret; 1192 1193 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1194 num_bytes, parent, root_objectid, 1195 owner, offset, 1); 1196 if (ret == 0) { 1197 /* 1198 * We're adding refs to a tree block we already own, this 1199 * should not happen at all. 1200 */ 1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1202 btrfs_print_leaf(path->nodes[0]); 1203 btrfs_crit(trans->fs_info, 1204 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1205 bytenr, num_bytes, root_objectid, path->slots[0]); 1206 return -EUCLEAN; 1207 } 1208 ret = update_inline_extent_backref(trans, path, iref, 1209 refs_to_add, extent_op); 1210 } else if (ret == -ENOENT) { 1211 setup_inline_extent_backref(trans, path, iref, parent, 1212 root_objectid, owner, offset, 1213 refs_to_add, extent_op); 1214 ret = 0; 1215 } 1216 return ret; 1217 } 1218 1219 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root, 1221 struct btrfs_path *path, 1222 struct btrfs_extent_inline_ref *iref, 1223 int refs_to_drop, int is_data) 1224 { 1225 int ret = 0; 1226 1227 BUG_ON(!is_data && refs_to_drop != 1); 1228 if (iref) 1229 ret = update_inline_extent_backref(trans, path, iref, 1230 -refs_to_drop, NULL); 1231 else if (is_data) 1232 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1233 else 1234 ret = btrfs_del_item(trans, root, path); 1235 return ret; 1236 } 1237 1238 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1239 u64 *discarded_bytes) 1240 { 1241 int j, ret = 0; 1242 u64 bytes_left, end; 1243 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1244 1245 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1246 if (start != aligned_start) { 1247 len -= aligned_start - start; 1248 len = round_down(len, 1 << SECTOR_SHIFT); 1249 start = aligned_start; 1250 } 1251 1252 *discarded_bytes = 0; 1253 1254 if (!len) 1255 return 0; 1256 1257 end = start + len; 1258 bytes_left = len; 1259 1260 /* Skip any superblocks on this device. */ 1261 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1262 u64 sb_start = btrfs_sb_offset(j); 1263 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1264 u64 size = sb_start - start; 1265 1266 if (!in_range(sb_start, start, bytes_left) && 1267 !in_range(sb_end, start, bytes_left) && 1268 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1269 continue; 1270 1271 /* 1272 * Superblock spans beginning of range. Adjust start and 1273 * try again. 1274 */ 1275 if (sb_start <= start) { 1276 start += sb_end - start; 1277 if (start > end) { 1278 bytes_left = 0; 1279 break; 1280 } 1281 bytes_left = end - start; 1282 continue; 1283 } 1284 1285 if (size) { 1286 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1287 size >> SECTOR_SHIFT, 1288 GFP_NOFS); 1289 if (!ret) 1290 *discarded_bytes += size; 1291 else if (ret != -EOPNOTSUPP) 1292 return ret; 1293 } 1294 1295 start = sb_end; 1296 if (start > end) { 1297 bytes_left = 0; 1298 break; 1299 } 1300 bytes_left = end - start; 1301 } 1302 1303 if (bytes_left) { 1304 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1305 bytes_left >> SECTOR_SHIFT, 1306 GFP_NOFS); 1307 if (!ret) 1308 *discarded_bytes += bytes_left; 1309 } 1310 return ret; 1311 } 1312 1313 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1314 { 1315 struct btrfs_device *dev = stripe->dev; 1316 struct btrfs_fs_info *fs_info = dev->fs_info; 1317 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1318 u64 phys = stripe->physical; 1319 u64 len = stripe->length; 1320 u64 discarded = 0; 1321 int ret = 0; 1322 1323 /* Zone reset on a zoned filesystem */ 1324 if (btrfs_can_zone_reset(dev, phys, len)) { 1325 u64 src_disc; 1326 1327 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1328 if (ret) 1329 goto out; 1330 1331 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1332 dev != dev_replace->srcdev) 1333 goto out; 1334 1335 src_disc = discarded; 1336 1337 /* Send to replace target as well */ 1338 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1339 &discarded); 1340 discarded += src_disc; 1341 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1342 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1343 } else { 1344 ret = 0; 1345 *bytes = 0; 1346 } 1347 1348 out: 1349 *bytes = discarded; 1350 return ret; 1351 } 1352 1353 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1354 u64 num_bytes, u64 *actual_bytes) 1355 { 1356 int ret = 0; 1357 u64 discarded_bytes = 0; 1358 u64 end = bytenr + num_bytes; 1359 u64 cur = bytenr; 1360 1361 /* 1362 * Avoid races with device replace and make sure the devices in the 1363 * stripes don't go away while we are discarding. 1364 */ 1365 btrfs_bio_counter_inc_blocked(fs_info); 1366 while (cur < end) { 1367 struct btrfs_discard_stripe *stripes; 1368 unsigned int num_stripes; 1369 int i; 1370 1371 num_bytes = end - cur; 1372 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1373 if (IS_ERR(stripes)) { 1374 ret = PTR_ERR(stripes); 1375 if (ret == -EOPNOTSUPP) 1376 ret = 0; 1377 break; 1378 } 1379 1380 for (i = 0; i < num_stripes; i++) { 1381 struct btrfs_discard_stripe *stripe = stripes + i; 1382 u64 bytes; 1383 1384 if (!stripe->dev->bdev) { 1385 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1386 continue; 1387 } 1388 1389 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1390 &stripe->dev->dev_state)) 1391 continue; 1392 1393 ret = do_discard_extent(stripe, &bytes); 1394 if (ret) { 1395 /* 1396 * Keep going if discard is not supported by the 1397 * device. 1398 */ 1399 if (ret != -EOPNOTSUPP) 1400 break; 1401 ret = 0; 1402 } else { 1403 discarded_bytes += bytes; 1404 } 1405 } 1406 kfree(stripes); 1407 if (ret) 1408 break; 1409 cur += num_bytes; 1410 } 1411 btrfs_bio_counter_dec(fs_info); 1412 if (actual_bytes) 1413 *actual_bytes = discarded_bytes; 1414 return ret; 1415 } 1416 1417 /* Can return -ENOMEM */ 1418 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1419 struct btrfs_ref *generic_ref) 1420 { 1421 struct btrfs_fs_info *fs_info = trans->fs_info; 1422 int ret; 1423 1424 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1425 generic_ref->action); 1426 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1427 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1428 1429 if (generic_ref->type == BTRFS_REF_METADATA) 1430 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1431 else 1432 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1433 1434 btrfs_ref_tree_mod(fs_info, generic_ref); 1435 1436 return ret; 1437 } 1438 1439 /* 1440 * Insert backreference for a given extent. 1441 * 1442 * The counterpart is in __btrfs_free_extent(), with examples and more details 1443 * how it works. 1444 * 1445 * @trans: Handle of transaction 1446 * 1447 * @node: The delayed ref node used to get the bytenr/length for 1448 * extent whose references are incremented. 1449 * 1450 * @extent_op Pointer to a structure, holding information necessary when 1451 * updating a tree block's flags 1452 * 1453 */ 1454 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1455 struct btrfs_delayed_ref_node *node, 1456 struct btrfs_delayed_extent_op *extent_op) 1457 { 1458 struct btrfs_path *path; 1459 struct extent_buffer *leaf; 1460 struct btrfs_extent_item *item; 1461 struct btrfs_key key; 1462 u64 bytenr = node->bytenr; 1463 u64 num_bytes = node->num_bytes; 1464 u64 owner = btrfs_delayed_ref_owner(node); 1465 u64 offset = btrfs_delayed_ref_offset(node); 1466 u64 refs; 1467 int refs_to_add = node->ref_mod; 1468 int ret; 1469 1470 path = btrfs_alloc_path(); 1471 if (!path) 1472 return -ENOMEM; 1473 1474 /* this will setup the path even if it fails to insert the back ref */ 1475 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1476 node->parent, node->ref_root, owner, 1477 offset, refs_to_add, extent_op); 1478 if ((ret < 0 && ret != -EAGAIN) || !ret) 1479 goto out; 1480 1481 /* 1482 * Ok we had -EAGAIN which means we didn't have space to insert and 1483 * inline extent ref, so just update the reference count and add a 1484 * normal backref. 1485 */ 1486 leaf = path->nodes[0]; 1487 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1488 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1489 refs = btrfs_extent_refs(leaf, item); 1490 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1491 if (extent_op) 1492 __run_delayed_extent_op(extent_op, leaf, item); 1493 1494 btrfs_mark_buffer_dirty(trans, leaf); 1495 btrfs_release_path(path); 1496 1497 /* now insert the actual backref */ 1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1499 ret = insert_tree_block_ref(trans, path, node, bytenr); 1500 else 1501 ret = insert_extent_data_ref(trans, path, node, bytenr); 1502 1503 if (ret) 1504 btrfs_abort_transaction(trans, ret); 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1511 struct btrfs_delayed_ref_head *href) 1512 { 1513 u64 root = href->owning_root; 1514 1515 /* 1516 * Don't check must_insert_reserved, as this is called from contexts 1517 * where it has already been unset. 1518 */ 1519 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1520 !href->is_data || !is_fstree(root)) 1521 return; 1522 1523 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1524 BTRFS_QGROUP_RSV_DATA); 1525 } 1526 1527 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_delayed_ref_head *href, 1529 struct btrfs_delayed_ref_node *node, 1530 struct btrfs_delayed_extent_op *extent_op, 1531 bool insert_reserved) 1532 { 1533 int ret = 0; 1534 u64 parent = 0; 1535 u64 flags = 0; 1536 1537 trace_run_delayed_data_ref(trans->fs_info, node); 1538 1539 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1540 parent = node->parent; 1541 1542 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1543 struct btrfs_key key; 1544 struct btrfs_squota_delta delta = { 1545 .root = href->owning_root, 1546 .num_bytes = node->num_bytes, 1547 .is_data = true, 1548 .is_inc = true, 1549 .generation = trans->transid, 1550 }; 1551 u64 owner = btrfs_delayed_ref_owner(node); 1552 u64 offset = btrfs_delayed_ref_offset(node); 1553 1554 if (extent_op) 1555 flags |= extent_op->flags_to_set; 1556 1557 key.objectid = node->bytenr; 1558 key.type = BTRFS_EXTENT_ITEM_KEY; 1559 key.offset = node->num_bytes; 1560 1561 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1562 flags, owner, offset, &key, 1563 node->ref_mod, 1564 href->owning_root); 1565 free_head_ref_squota_rsv(trans->fs_info, href); 1566 if (!ret) 1567 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1568 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1569 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1570 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1571 ret = __btrfs_free_extent(trans, href, node, extent_op); 1572 } else { 1573 BUG(); 1574 } 1575 return ret; 1576 } 1577 1578 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1579 struct extent_buffer *leaf, 1580 struct btrfs_extent_item *ei) 1581 { 1582 u64 flags = btrfs_extent_flags(leaf, ei); 1583 if (extent_op->update_flags) { 1584 flags |= extent_op->flags_to_set; 1585 btrfs_set_extent_flags(leaf, ei, flags); 1586 } 1587 1588 if (extent_op->update_key) { 1589 struct btrfs_tree_block_info *bi; 1590 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1591 bi = (struct btrfs_tree_block_info *)(ei + 1); 1592 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1593 } 1594 } 1595 1596 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1597 struct btrfs_delayed_ref_head *head, 1598 struct btrfs_delayed_extent_op *extent_op) 1599 { 1600 struct btrfs_fs_info *fs_info = trans->fs_info; 1601 struct btrfs_root *root; 1602 struct btrfs_key key; 1603 struct btrfs_path *path; 1604 struct btrfs_extent_item *ei; 1605 struct extent_buffer *leaf; 1606 u32 item_size; 1607 int ret; 1608 int metadata = 1; 1609 1610 if (TRANS_ABORTED(trans)) 1611 return 0; 1612 1613 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1614 metadata = 0; 1615 1616 path = btrfs_alloc_path(); 1617 if (!path) 1618 return -ENOMEM; 1619 1620 key.objectid = head->bytenr; 1621 1622 if (metadata) { 1623 key.type = BTRFS_METADATA_ITEM_KEY; 1624 key.offset = head->level; 1625 } else { 1626 key.type = BTRFS_EXTENT_ITEM_KEY; 1627 key.offset = head->num_bytes; 1628 } 1629 1630 root = btrfs_extent_root(fs_info, key.objectid); 1631 again: 1632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1633 if (ret < 0) { 1634 goto out; 1635 } else if (ret > 0) { 1636 if (metadata) { 1637 if (path->slots[0] > 0) { 1638 path->slots[0]--; 1639 btrfs_item_key_to_cpu(path->nodes[0], &key, 1640 path->slots[0]); 1641 if (key.objectid == head->bytenr && 1642 key.type == BTRFS_EXTENT_ITEM_KEY && 1643 key.offset == head->num_bytes) 1644 ret = 0; 1645 } 1646 if (ret > 0) { 1647 btrfs_release_path(path); 1648 metadata = 0; 1649 1650 key.objectid = head->bytenr; 1651 key.offset = head->num_bytes; 1652 key.type = BTRFS_EXTENT_ITEM_KEY; 1653 goto again; 1654 } 1655 } else { 1656 ret = -EUCLEAN; 1657 btrfs_err(fs_info, 1658 "missing extent item for extent %llu num_bytes %llu level %d", 1659 head->bytenr, head->num_bytes, head->level); 1660 goto out; 1661 } 1662 } 1663 1664 leaf = path->nodes[0]; 1665 item_size = btrfs_item_size(leaf, path->slots[0]); 1666 1667 if (unlikely(item_size < sizeof(*ei))) { 1668 ret = -EUCLEAN; 1669 btrfs_err(fs_info, 1670 "unexpected extent item size, has %u expect >= %zu", 1671 item_size, sizeof(*ei)); 1672 btrfs_abort_transaction(trans, ret); 1673 goto out; 1674 } 1675 1676 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1677 __run_delayed_extent_op(extent_op, leaf, ei); 1678 1679 btrfs_mark_buffer_dirty(trans, leaf); 1680 out: 1681 btrfs_free_path(path); 1682 return ret; 1683 } 1684 1685 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1686 struct btrfs_delayed_ref_head *href, 1687 struct btrfs_delayed_ref_node *node, 1688 struct btrfs_delayed_extent_op *extent_op, 1689 bool insert_reserved) 1690 { 1691 int ret = 0; 1692 struct btrfs_fs_info *fs_info = trans->fs_info; 1693 u64 parent = 0; 1694 u64 ref_root = 0; 1695 1696 trace_run_delayed_tree_ref(trans->fs_info, node); 1697 1698 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1699 parent = node->parent; 1700 ref_root = node->ref_root; 1701 1702 if (unlikely(node->ref_mod != 1)) { 1703 btrfs_err(trans->fs_info, 1704 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1705 node->bytenr, node->ref_mod, node->action, ref_root, 1706 parent); 1707 return -EUCLEAN; 1708 } 1709 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1710 struct btrfs_squota_delta delta = { 1711 .root = href->owning_root, 1712 .num_bytes = fs_info->nodesize, 1713 .is_data = false, 1714 .is_inc = true, 1715 .generation = trans->transid, 1716 }; 1717 1718 ret = alloc_reserved_tree_block(trans, node, extent_op); 1719 if (!ret) 1720 btrfs_record_squota_delta(fs_info, &delta); 1721 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1722 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1723 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1724 ret = __btrfs_free_extent(trans, href, node, extent_op); 1725 } else { 1726 BUG(); 1727 } 1728 return ret; 1729 } 1730 1731 /* helper function to actually process a single delayed ref entry */ 1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1733 struct btrfs_delayed_ref_head *href, 1734 struct btrfs_delayed_ref_node *node, 1735 struct btrfs_delayed_extent_op *extent_op, 1736 bool insert_reserved) 1737 { 1738 int ret = 0; 1739 1740 if (TRANS_ABORTED(trans)) { 1741 if (insert_reserved) { 1742 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1743 free_head_ref_squota_rsv(trans->fs_info, href); 1744 } 1745 return 0; 1746 } 1747 1748 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1749 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1750 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1751 insert_reserved); 1752 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1753 node->type == BTRFS_SHARED_DATA_REF_KEY) 1754 ret = run_delayed_data_ref(trans, href, node, extent_op, 1755 insert_reserved); 1756 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1757 ret = 0; 1758 else 1759 BUG(); 1760 if (ret && insert_reserved) 1761 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1762 if (ret < 0) 1763 btrfs_err(trans->fs_info, 1764 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1765 node->bytenr, node->num_bytes, node->type, 1766 node->action, node->ref_mod, ret); 1767 return ret; 1768 } 1769 1770 static inline struct btrfs_delayed_ref_node * 1771 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1772 { 1773 struct btrfs_delayed_ref_node *ref; 1774 1775 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1776 return NULL; 1777 1778 /* 1779 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1780 * This is to prevent a ref count from going down to zero, which deletes 1781 * the extent item from the extent tree, when there still are references 1782 * to add, which would fail because they would not find the extent item. 1783 */ 1784 if (!list_empty(&head->ref_add_list)) 1785 return list_first_entry(&head->ref_add_list, 1786 struct btrfs_delayed_ref_node, add_list); 1787 1788 ref = rb_entry(rb_first_cached(&head->ref_tree), 1789 struct btrfs_delayed_ref_node, ref_node); 1790 ASSERT(list_empty(&ref->add_list)); 1791 return ref; 1792 } 1793 1794 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1795 struct btrfs_delayed_ref_head *head) 1796 { 1797 spin_lock(&delayed_refs->lock); 1798 head->processing = false; 1799 delayed_refs->num_heads_ready++; 1800 spin_unlock(&delayed_refs->lock); 1801 btrfs_delayed_ref_unlock(head); 1802 } 1803 1804 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1805 struct btrfs_delayed_ref_head *head) 1806 { 1807 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1808 1809 if (!extent_op) 1810 return NULL; 1811 1812 if (head->must_insert_reserved) { 1813 head->extent_op = NULL; 1814 btrfs_free_delayed_extent_op(extent_op); 1815 return NULL; 1816 } 1817 return extent_op; 1818 } 1819 1820 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1821 struct btrfs_delayed_ref_head *head) 1822 { 1823 struct btrfs_delayed_extent_op *extent_op; 1824 int ret; 1825 1826 extent_op = cleanup_extent_op(head); 1827 if (!extent_op) 1828 return 0; 1829 head->extent_op = NULL; 1830 spin_unlock(&head->lock); 1831 ret = run_delayed_extent_op(trans, head, extent_op); 1832 btrfs_free_delayed_extent_op(extent_op); 1833 return ret ? ret : 1; 1834 } 1835 1836 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1837 struct btrfs_delayed_ref_root *delayed_refs, 1838 struct btrfs_delayed_ref_head *head) 1839 { 1840 u64 ret = 0; 1841 1842 /* 1843 * We had csum deletions accounted for in our delayed refs rsv, we need 1844 * to drop the csum leaves for this update from our delayed_refs_rsv. 1845 */ 1846 if (head->total_ref_mod < 0 && head->is_data) { 1847 int nr_csums; 1848 1849 spin_lock(&delayed_refs->lock); 1850 delayed_refs->pending_csums -= head->num_bytes; 1851 spin_unlock(&delayed_refs->lock); 1852 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1853 1854 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1855 1856 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1857 } 1858 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1859 if (head->must_insert_reserved) 1860 free_head_ref_squota_rsv(fs_info, head); 1861 1862 return ret; 1863 } 1864 1865 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1866 struct btrfs_delayed_ref_head *head, 1867 u64 *bytes_released) 1868 { 1869 1870 struct btrfs_fs_info *fs_info = trans->fs_info; 1871 struct btrfs_delayed_ref_root *delayed_refs; 1872 int ret; 1873 1874 delayed_refs = &trans->transaction->delayed_refs; 1875 1876 ret = run_and_cleanup_extent_op(trans, head); 1877 if (ret < 0) { 1878 unselect_delayed_ref_head(delayed_refs, head); 1879 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1880 return ret; 1881 } else if (ret) { 1882 return ret; 1883 } 1884 1885 /* 1886 * Need to drop our head ref lock and re-acquire the delayed ref lock 1887 * and then re-check to make sure nobody got added. 1888 */ 1889 spin_unlock(&head->lock); 1890 spin_lock(&delayed_refs->lock); 1891 spin_lock(&head->lock); 1892 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1893 spin_unlock(&head->lock); 1894 spin_unlock(&delayed_refs->lock); 1895 return 1; 1896 } 1897 btrfs_delete_ref_head(delayed_refs, head); 1898 spin_unlock(&head->lock); 1899 spin_unlock(&delayed_refs->lock); 1900 1901 if (head->must_insert_reserved) { 1902 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1903 if (head->is_data) { 1904 struct btrfs_root *csum_root; 1905 1906 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1907 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1908 head->num_bytes); 1909 } 1910 } 1911 1912 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1913 1914 trace_run_delayed_ref_head(fs_info, head, 0); 1915 btrfs_delayed_ref_unlock(head); 1916 btrfs_put_delayed_ref_head(head); 1917 return ret; 1918 } 1919 1920 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1921 struct btrfs_trans_handle *trans) 1922 { 1923 struct btrfs_delayed_ref_root *delayed_refs = 1924 &trans->transaction->delayed_refs; 1925 struct btrfs_delayed_ref_head *head = NULL; 1926 int ret; 1927 1928 spin_lock(&delayed_refs->lock); 1929 head = btrfs_select_ref_head(delayed_refs); 1930 if (!head) { 1931 spin_unlock(&delayed_refs->lock); 1932 return head; 1933 } 1934 1935 /* 1936 * Grab the lock that says we are going to process all the refs for 1937 * this head 1938 */ 1939 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1940 spin_unlock(&delayed_refs->lock); 1941 1942 /* 1943 * We may have dropped the spin lock to get the head mutex lock, and 1944 * that might have given someone else time to free the head. If that's 1945 * true, it has been removed from our list and we can move on. 1946 */ 1947 if (ret == -EAGAIN) 1948 head = ERR_PTR(-EAGAIN); 1949 1950 return head; 1951 } 1952 1953 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1954 struct btrfs_delayed_ref_head *locked_ref, 1955 u64 *bytes_released) 1956 { 1957 struct btrfs_fs_info *fs_info = trans->fs_info; 1958 struct btrfs_delayed_ref_root *delayed_refs; 1959 struct btrfs_delayed_extent_op *extent_op; 1960 struct btrfs_delayed_ref_node *ref; 1961 bool must_insert_reserved; 1962 int ret; 1963 1964 delayed_refs = &trans->transaction->delayed_refs; 1965 1966 lockdep_assert_held(&locked_ref->mutex); 1967 lockdep_assert_held(&locked_ref->lock); 1968 1969 while ((ref = select_delayed_ref(locked_ref))) { 1970 if (ref->seq && 1971 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1972 spin_unlock(&locked_ref->lock); 1973 unselect_delayed_ref_head(delayed_refs, locked_ref); 1974 return -EAGAIN; 1975 } 1976 1977 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1978 RB_CLEAR_NODE(&ref->ref_node); 1979 if (!list_empty(&ref->add_list)) 1980 list_del(&ref->add_list); 1981 /* 1982 * When we play the delayed ref, also correct the ref_mod on 1983 * head 1984 */ 1985 switch (ref->action) { 1986 case BTRFS_ADD_DELAYED_REF: 1987 case BTRFS_ADD_DELAYED_EXTENT: 1988 locked_ref->ref_mod -= ref->ref_mod; 1989 break; 1990 case BTRFS_DROP_DELAYED_REF: 1991 locked_ref->ref_mod += ref->ref_mod; 1992 break; 1993 default: 1994 WARN_ON(1); 1995 } 1996 atomic_dec(&delayed_refs->num_entries); 1997 1998 /* 1999 * Record the must_insert_reserved flag before we drop the 2000 * spin lock. 2001 */ 2002 must_insert_reserved = locked_ref->must_insert_reserved; 2003 /* 2004 * Unsetting this on the head ref relinquishes ownership of 2005 * the rsv_bytes, so it is critical that every possible code 2006 * path from here forward frees all reserves including qgroup 2007 * reserve. 2008 */ 2009 locked_ref->must_insert_reserved = false; 2010 2011 extent_op = locked_ref->extent_op; 2012 locked_ref->extent_op = NULL; 2013 spin_unlock(&locked_ref->lock); 2014 2015 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2016 must_insert_reserved); 2017 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2018 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2019 2020 btrfs_free_delayed_extent_op(extent_op); 2021 if (ret) { 2022 unselect_delayed_ref_head(delayed_refs, locked_ref); 2023 btrfs_put_delayed_ref(ref); 2024 return ret; 2025 } 2026 2027 btrfs_put_delayed_ref(ref); 2028 cond_resched(); 2029 2030 spin_lock(&locked_ref->lock); 2031 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2032 } 2033 2034 return 0; 2035 } 2036 2037 /* 2038 * Returns 0 on success or if called with an already aborted transaction. 2039 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2040 */ 2041 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2042 u64 min_bytes) 2043 { 2044 struct btrfs_fs_info *fs_info = trans->fs_info; 2045 struct btrfs_delayed_ref_root *delayed_refs; 2046 struct btrfs_delayed_ref_head *locked_ref = NULL; 2047 int ret; 2048 unsigned long count = 0; 2049 unsigned long max_count = 0; 2050 u64 bytes_processed = 0; 2051 2052 delayed_refs = &trans->transaction->delayed_refs; 2053 if (min_bytes == 0) { 2054 max_count = delayed_refs->num_heads_ready; 2055 min_bytes = U64_MAX; 2056 } 2057 2058 do { 2059 if (!locked_ref) { 2060 locked_ref = btrfs_obtain_ref_head(trans); 2061 if (IS_ERR_OR_NULL(locked_ref)) { 2062 if (PTR_ERR(locked_ref) == -EAGAIN) { 2063 continue; 2064 } else { 2065 break; 2066 } 2067 } 2068 count++; 2069 } 2070 /* 2071 * We need to try and merge add/drops of the same ref since we 2072 * can run into issues with relocate dropping the implicit ref 2073 * and then it being added back again before the drop can 2074 * finish. If we merged anything we need to re-loop so we can 2075 * get a good ref. 2076 * Or we can get node references of the same type that weren't 2077 * merged when created due to bumps in the tree mod seq, and 2078 * we need to merge them to prevent adding an inline extent 2079 * backref before dropping it (triggering a BUG_ON at 2080 * insert_inline_extent_backref()). 2081 */ 2082 spin_lock(&locked_ref->lock); 2083 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2084 2085 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2086 if (ret < 0 && ret != -EAGAIN) { 2087 /* 2088 * Error, btrfs_run_delayed_refs_for_head already 2089 * unlocked everything so just bail out 2090 */ 2091 return ret; 2092 } else if (!ret) { 2093 /* 2094 * Success, perform the usual cleanup of a processed 2095 * head 2096 */ 2097 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2098 if (ret > 0 ) { 2099 /* We dropped our lock, we need to loop. */ 2100 ret = 0; 2101 continue; 2102 } else if (ret) { 2103 return ret; 2104 } 2105 } 2106 2107 /* 2108 * Either success case or btrfs_run_delayed_refs_for_head 2109 * returned -EAGAIN, meaning we need to select another head 2110 */ 2111 2112 locked_ref = NULL; 2113 cond_resched(); 2114 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2115 (max_count > 0 && count < max_count) || 2116 locked_ref); 2117 2118 return 0; 2119 } 2120 2121 #ifdef SCRAMBLE_DELAYED_REFS 2122 /* 2123 * Normally delayed refs get processed in ascending bytenr order. This 2124 * correlates in most cases to the order added. To expose dependencies on this 2125 * order, we start to process the tree in the middle instead of the beginning 2126 */ 2127 static u64 find_middle(struct rb_root *root) 2128 { 2129 struct rb_node *n = root->rb_node; 2130 struct btrfs_delayed_ref_node *entry; 2131 int alt = 1; 2132 u64 middle; 2133 u64 first = 0, last = 0; 2134 2135 n = rb_first(root); 2136 if (n) { 2137 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2138 first = entry->bytenr; 2139 } 2140 n = rb_last(root); 2141 if (n) { 2142 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2143 last = entry->bytenr; 2144 } 2145 n = root->rb_node; 2146 2147 while (n) { 2148 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2149 WARN_ON(!entry->in_tree); 2150 2151 middle = entry->bytenr; 2152 2153 if (alt) 2154 n = n->rb_left; 2155 else 2156 n = n->rb_right; 2157 2158 alt = 1 - alt; 2159 } 2160 return middle; 2161 } 2162 #endif 2163 2164 /* 2165 * Start processing the delayed reference count updates and extent insertions 2166 * we have queued up so far. 2167 * 2168 * @trans: Transaction handle. 2169 * @min_bytes: How many bytes of delayed references to process. After this 2170 * many bytes we stop processing delayed references if there are 2171 * any more. If 0 it means to run all existing delayed references, 2172 * but not new ones added after running all existing ones. 2173 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2174 * plus any new ones that are added. 2175 * 2176 * Returns 0 on success or if called with an aborted transaction 2177 * Returns <0 on error and aborts the transaction 2178 */ 2179 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2180 { 2181 struct btrfs_fs_info *fs_info = trans->fs_info; 2182 struct btrfs_delayed_ref_root *delayed_refs; 2183 int ret; 2184 2185 /* We'll clean this up in btrfs_cleanup_transaction */ 2186 if (TRANS_ABORTED(trans)) 2187 return 0; 2188 2189 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2190 return 0; 2191 2192 delayed_refs = &trans->transaction->delayed_refs; 2193 again: 2194 #ifdef SCRAMBLE_DELAYED_REFS 2195 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2196 #endif 2197 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2198 if (ret < 0) { 2199 btrfs_abort_transaction(trans, ret); 2200 return ret; 2201 } 2202 2203 if (min_bytes == U64_MAX) { 2204 btrfs_create_pending_block_groups(trans); 2205 2206 spin_lock(&delayed_refs->lock); 2207 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2208 spin_unlock(&delayed_refs->lock); 2209 return 0; 2210 } 2211 spin_unlock(&delayed_refs->lock); 2212 2213 cond_resched(); 2214 goto again; 2215 } 2216 2217 return 0; 2218 } 2219 2220 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2221 struct extent_buffer *eb, u64 flags) 2222 { 2223 struct btrfs_delayed_extent_op *extent_op; 2224 int ret; 2225 2226 extent_op = btrfs_alloc_delayed_extent_op(); 2227 if (!extent_op) 2228 return -ENOMEM; 2229 2230 extent_op->flags_to_set = flags; 2231 extent_op->update_flags = true; 2232 extent_op->update_key = false; 2233 2234 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2235 btrfs_header_level(eb), extent_op); 2236 if (ret) 2237 btrfs_free_delayed_extent_op(extent_op); 2238 return ret; 2239 } 2240 2241 static noinline int check_delayed_ref(struct btrfs_root *root, 2242 struct btrfs_path *path, 2243 u64 objectid, u64 offset, u64 bytenr) 2244 { 2245 struct btrfs_delayed_ref_head *head; 2246 struct btrfs_delayed_ref_node *ref; 2247 struct btrfs_delayed_ref_root *delayed_refs; 2248 struct btrfs_transaction *cur_trans; 2249 struct rb_node *node; 2250 int ret = 0; 2251 2252 spin_lock(&root->fs_info->trans_lock); 2253 cur_trans = root->fs_info->running_transaction; 2254 if (cur_trans) 2255 refcount_inc(&cur_trans->use_count); 2256 spin_unlock(&root->fs_info->trans_lock); 2257 if (!cur_trans) 2258 return 0; 2259 2260 delayed_refs = &cur_trans->delayed_refs; 2261 spin_lock(&delayed_refs->lock); 2262 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2263 if (!head) { 2264 spin_unlock(&delayed_refs->lock); 2265 btrfs_put_transaction(cur_trans); 2266 return 0; 2267 } 2268 2269 if (!mutex_trylock(&head->mutex)) { 2270 if (path->nowait) { 2271 spin_unlock(&delayed_refs->lock); 2272 btrfs_put_transaction(cur_trans); 2273 return -EAGAIN; 2274 } 2275 2276 refcount_inc(&head->refs); 2277 spin_unlock(&delayed_refs->lock); 2278 2279 btrfs_release_path(path); 2280 2281 /* 2282 * Mutex was contended, block until it's released and let 2283 * caller try again 2284 */ 2285 mutex_lock(&head->mutex); 2286 mutex_unlock(&head->mutex); 2287 btrfs_put_delayed_ref_head(head); 2288 btrfs_put_transaction(cur_trans); 2289 return -EAGAIN; 2290 } 2291 spin_unlock(&delayed_refs->lock); 2292 2293 spin_lock(&head->lock); 2294 /* 2295 * XXX: We should replace this with a proper search function in the 2296 * future. 2297 */ 2298 for (node = rb_first_cached(&head->ref_tree); node; 2299 node = rb_next(node)) { 2300 u64 ref_owner; 2301 u64 ref_offset; 2302 2303 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2304 /* If it's a shared ref we know a cross reference exists */ 2305 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2306 ret = 1; 2307 break; 2308 } 2309 2310 ref_owner = btrfs_delayed_ref_owner(ref); 2311 ref_offset = btrfs_delayed_ref_offset(ref); 2312 2313 /* 2314 * If our ref doesn't match the one we're currently looking at 2315 * then we have a cross reference. 2316 */ 2317 if (ref->ref_root != btrfs_root_id(root) || 2318 ref_owner != objectid || ref_offset != offset) { 2319 ret = 1; 2320 break; 2321 } 2322 } 2323 spin_unlock(&head->lock); 2324 mutex_unlock(&head->mutex); 2325 btrfs_put_transaction(cur_trans); 2326 return ret; 2327 } 2328 2329 static noinline int check_committed_ref(struct btrfs_root *root, 2330 struct btrfs_path *path, 2331 u64 objectid, u64 offset, u64 bytenr, 2332 bool strict) 2333 { 2334 struct btrfs_fs_info *fs_info = root->fs_info; 2335 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2336 struct extent_buffer *leaf; 2337 struct btrfs_extent_data_ref *ref; 2338 struct btrfs_extent_inline_ref *iref; 2339 struct btrfs_extent_item *ei; 2340 struct btrfs_key key; 2341 u32 item_size; 2342 u32 expected_size; 2343 int type; 2344 int ret; 2345 2346 key.objectid = bytenr; 2347 key.offset = (u64)-1; 2348 key.type = BTRFS_EXTENT_ITEM_KEY; 2349 2350 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2351 if (ret < 0) 2352 goto out; 2353 if (ret == 0) { 2354 /* 2355 * Key with offset -1 found, there would have to exist an extent 2356 * item with such offset, but this is out of the valid range. 2357 */ 2358 ret = -EUCLEAN; 2359 goto out; 2360 } 2361 2362 ret = -ENOENT; 2363 if (path->slots[0] == 0) 2364 goto out; 2365 2366 path->slots[0]--; 2367 leaf = path->nodes[0]; 2368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2369 2370 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2371 goto out; 2372 2373 ret = 1; 2374 item_size = btrfs_item_size(leaf, path->slots[0]); 2375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2376 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2377 2378 /* No inline refs; we need to bail before checking for owner ref. */ 2379 if (item_size == sizeof(*ei)) 2380 goto out; 2381 2382 /* Check for an owner ref; skip over it to the real inline refs. */ 2383 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2384 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2385 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2386 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2387 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2388 } 2389 2390 /* If extent item has more than 1 inline ref then it's shared */ 2391 if (item_size != expected_size) 2392 goto out; 2393 2394 /* 2395 * If extent created before last snapshot => it's shared unless the 2396 * snapshot has been deleted. Use the heuristic if strict is false. 2397 */ 2398 if (!strict && 2399 (btrfs_extent_generation(leaf, ei) <= 2400 btrfs_root_last_snapshot(&root->root_item))) 2401 goto out; 2402 2403 /* If this extent has SHARED_DATA_REF then it's shared */ 2404 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2405 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2406 goto out; 2407 2408 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2409 if (btrfs_extent_refs(leaf, ei) != 2410 btrfs_extent_data_ref_count(leaf, ref) || 2411 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2412 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2413 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2414 goto out; 2415 2416 ret = 0; 2417 out: 2418 return ret; 2419 } 2420 2421 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2422 u64 bytenr, bool strict, struct btrfs_path *path) 2423 { 2424 int ret; 2425 2426 do { 2427 ret = check_committed_ref(root, path, objectid, 2428 offset, bytenr, strict); 2429 if (ret && ret != -ENOENT) 2430 goto out; 2431 2432 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2433 } while (ret == -EAGAIN); 2434 2435 out: 2436 btrfs_release_path(path); 2437 if (btrfs_is_data_reloc_root(root)) 2438 WARN_ON(ret > 0); 2439 return ret; 2440 } 2441 2442 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2443 struct btrfs_root *root, 2444 struct extent_buffer *buf, 2445 int full_backref, int inc) 2446 { 2447 struct btrfs_fs_info *fs_info = root->fs_info; 2448 u64 parent; 2449 u64 ref_root; 2450 u32 nritems; 2451 struct btrfs_key key; 2452 struct btrfs_file_extent_item *fi; 2453 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2454 int i; 2455 int action; 2456 int level; 2457 int ret = 0; 2458 2459 if (btrfs_is_testing(fs_info)) 2460 return 0; 2461 2462 ref_root = btrfs_header_owner(buf); 2463 nritems = btrfs_header_nritems(buf); 2464 level = btrfs_header_level(buf); 2465 2466 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2467 return 0; 2468 2469 if (full_backref) 2470 parent = buf->start; 2471 else 2472 parent = 0; 2473 if (inc) 2474 action = BTRFS_ADD_DELAYED_REF; 2475 else 2476 action = BTRFS_DROP_DELAYED_REF; 2477 2478 for (i = 0; i < nritems; i++) { 2479 struct btrfs_ref ref = { 2480 .action = action, 2481 .parent = parent, 2482 .ref_root = ref_root, 2483 }; 2484 2485 if (level == 0) { 2486 btrfs_item_key_to_cpu(buf, &key, i); 2487 if (key.type != BTRFS_EXTENT_DATA_KEY) 2488 continue; 2489 fi = btrfs_item_ptr(buf, i, 2490 struct btrfs_file_extent_item); 2491 if (btrfs_file_extent_type(buf, fi) == 2492 BTRFS_FILE_EXTENT_INLINE) 2493 continue; 2494 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2495 if (ref.bytenr == 0) 2496 continue; 2497 2498 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2499 ref.owning_root = ref_root; 2500 2501 key.offset -= btrfs_file_extent_offset(buf, fi); 2502 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2503 btrfs_root_id(root), for_reloc); 2504 if (inc) 2505 ret = btrfs_inc_extent_ref(trans, &ref); 2506 else 2507 ret = btrfs_free_extent(trans, &ref); 2508 if (ret) 2509 goto fail; 2510 } else { 2511 /* We don't know the owning_root, leave as 0. */ 2512 ref.bytenr = btrfs_node_blockptr(buf, i); 2513 ref.num_bytes = fs_info->nodesize; 2514 2515 btrfs_init_tree_ref(&ref, level - 1, 2516 btrfs_root_id(root), for_reloc); 2517 if (inc) 2518 ret = btrfs_inc_extent_ref(trans, &ref); 2519 else 2520 ret = btrfs_free_extent(trans, &ref); 2521 if (ret) 2522 goto fail; 2523 } 2524 } 2525 return 0; 2526 fail: 2527 return ret; 2528 } 2529 2530 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2531 struct extent_buffer *buf, int full_backref) 2532 { 2533 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2534 } 2535 2536 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2537 struct extent_buffer *buf, int full_backref) 2538 { 2539 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2540 } 2541 2542 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2543 { 2544 struct btrfs_fs_info *fs_info = root->fs_info; 2545 u64 flags; 2546 u64 ret; 2547 2548 if (data) 2549 flags = BTRFS_BLOCK_GROUP_DATA; 2550 else if (root == fs_info->chunk_root) 2551 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2552 else 2553 flags = BTRFS_BLOCK_GROUP_METADATA; 2554 2555 ret = btrfs_get_alloc_profile(fs_info, flags); 2556 return ret; 2557 } 2558 2559 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2560 { 2561 struct rb_node *leftmost; 2562 u64 bytenr = 0; 2563 2564 read_lock(&fs_info->block_group_cache_lock); 2565 /* Get the block group with the lowest logical start address. */ 2566 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2567 if (leftmost) { 2568 struct btrfs_block_group *bg; 2569 2570 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2571 bytenr = bg->start; 2572 } 2573 read_unlock(&fs_info->block_group_cache_lock); 2574 2575 return bytenr; 2576 } 2577 2578 static int pin_down_extent(struct btrfs_trans_handle *trans, 2579 struct btrfs_block_group *cache, 2580 u64 bytenr, u64 num_bytes, int reserved) 2581 { 2582 struct btrfs_fs_info *fs_info = cache->fs_info; 2583 2584 spin_lock(&cache->space_info->lock); 2585 spin_lock(&cache->lock); 2586 cache->pinned += num_bytes; 2587 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2588 num_bytes); 2589 if (reserved) { 2590 cache->reserved -= num_bytes; 2591 cache->space_info->bytes_reserved -= num_bytes; 2592 } 2593 spin_unlock(&cache->lock); 2594 spin_unlock(&cache->space_info->lock); 2595 2596 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2597 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2598 return 0; 2599 } 2600 2601 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2602 u64 bytenr, u64 num_bytes, int reserved) 2603 { 2604 struct btrfs_block_group *cache; 2605 2606 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2607 BUG_ON(!cache); /* Logic error */ 2608 2609 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2610 2611 btrfs_put_block_group(cache); 2612 return 0; 2613 } 2614 2615 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2616 const struct extent_buffer *eb) 2617 { 2618 struct btrfs_block_group *cache; 2619 int ret; 2620 2621 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2622 if (!cache) 2623 return -EINVAL; 2624 2625 /* 2626 * Fully cache the free space first so that our pin removes the free space 2627 * from the cache. 2628 */ 2629 ret = btrfs_cache_block_group(cache, true); 2630 if (ret) 2631 goto out; 2632 2633 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2634 2635 /* remove us from the free space cache (if we're there at all) */ 2636 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2637 out: 2638 btrfs_put_block_group(cache); 2639 return ret; 2640 } 2641 2642 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2643 u64 start, u64 num_bytes) 2644 { 2645 int ret; 2646 struct btrfs_block_group *block_group; 2647 2648 block_group = btrfs_lookup_block_group(fs_info, start); 2649 if (!block_group) 2650 return -EINVAL; 2651 2652 ret = btrfs_cache_block_group(block_group, true); 2653 if (ret) 2654 goto out; 2655 2656 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2657 out: 2658 btrfs_put_block_group(block_group); 2659 return ret; 2660 } 2661 2662 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2663 { 2664 struct btrfs_fs_info *fs_info = eb->fs_info; 2665 struct btrfs_file_extent_item *item; 2666 struct btrfs_key key; 2667 int found_type; 2668 int i; 2669 int ret = 0; 2670 2671 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2672 return 0; 2673 2674 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2675 btrfs_item_key_to_cpu(eb, &key, i); 2676 if (key.type != BTRFS_EXTENT_DATA_KEY) 2677 continue; 2678 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2679 found_type = btrfs_file_extent_type(eb, item); 2680 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2681 continue; 2682 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2683 continue; 2684 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2685 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2686 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2687 if (ret) 2688 break; 2689 } 2690 2691 return ret; 2692 } 2693 2694 static void 2695 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2696 { 2697 atomic_inc(&bg->reservations); 2698 } 2699 2700 /* 2701 * Returns the free cluster for the given space info and sets empty_cluster to 2702 * what it should be based on the mount options. 2703 */ 2704 static struct btrfs_free_cluster * 2705 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2706 struct btrfs_space_info *space_info, u64 *empty_cluster) 2707 { 2708 struct btrfs_free_cluster *ret = NULL; 2709 2710 *empty_cluster = 0; 2711 if (btrfs_mixed_space_info(space_info)) 2712 return ret; 2713 2714 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2715 ret = &fs_info->meta_alloc_cluster; 2716 if (btrfs_test_opt(fs_info, SSD)) 2717 *empty_cluster = SZ_2M; 2718 else 2719 *empty_cluster = SZ_64K; 2720 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2721 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2722 *empty_cluster = SZ_2M; 2723 ret = &fs_info->data_alloc_cluster; 2724 } 2725 2726 return ret; 2727 } 2728 2729 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2730 u64 start, u64 end, 2731 const bool return_free_space) 2732 { 2733 struct btrfs_block_group *cache = NULL; 2734 struct btrfs_space_info *space_info; 2735 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2736 struct btrfs_free_cluster *cluster = NULL; 2737 u64 len; 2738 u64 total_unpinned = 0; 2739 u64 empty_cluster = 0; 2740 bool readonly; 2741 int ret = 0; 2742 2743 while (start <= end) { 2744 readonly = false; 2745 if (!cache || 2746 start >= cache->start + cache->length) { 2747 if (cache) 2748 btrfs_put_block_group(cache); 2749 total_unpinned = 0; 2750 cache = btrfs_lookup_block_group(fs_info, start); 2751 if (cache == NULL) { 2752 /* Logic error, something removed the block group. */ 2753 ret = -EUCLEAN; 2754 goto out; 2755 } 2756 2757 cluster = fetch_cluster_info(fs_info, 2758 cache->space_info, 2759 &empty_cluster); 2760 empty_cluster <<= 1; 2761 } 2762 2763 len = cache->start + cache->length - start; 2764 len = min(len, end + 1 - start); 2765 2766 if (return_free_space) 2767 btrfs_add_free_space(cache, start, len); 2768 2769 start += len; 2770 total_unpinned += len; 2771 space_info = cache->space_info; 2772 2773 /* 2774 * If this space cluster has been marked as fragmented and we've 2775 * unpinned enough in this block group to potentially allow a 2776 * cluster to be created inside of it go ahead and clear the 2777 * fragmented check. 2778 */ 2779 if (cluster && cluster->fragmented && 2780 total_unpinned > empty_cluster) { 2781 spin_lock(&cluster->lock); 2782 cluster->fragmented = 0; 2783 spin_unlock(&cluster->lock); 2784 } 2785 2786 spin_lock(&space_info->lock); 2787 spin_lock(&cache->lock); 2788 cache->pinned -= len; 2789 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2790 space_info->max_extent_size = 0; 2791 if (cache->ro) { 2792 space_info->bytes_readonly += len; 2793 readonly = true; 2794 } else if (btrfs_is_zoned(fs_info)) { 2795 /* Need reset before reusing in a zoned block group */ 2796 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info, 2797 len); 2798 readonly = true; 2799 } 2800 spin_unlock(&cache->lock); 2801 if (!readonly && return_free_space && 2802 global_rsv->space_info == space_info) { 2803 spin_lock(&global_rsv->lock); 2804 if (!global_rsv->full) { 2805 u64 to_add = min(len, global_rsv->size - 2806 global_rsv->reserved); 2807 2808 global_rsv->reserved += to_add; 2809 btrfs_space_info_update_bytes_may_use(fs_info, 2810 space_info, to_add); 2811 if (global_rsv->reserved >= global_rsv->size) 2812 global_rsv->full = 1; 2813 len -= to_add; 2814 } 2815 spin_unlock(&global_rsv->lock); 2816 } 2817 /* Add to any tickets we may have */ 2818 if (!readonly && return_free_space && len) 2819 btrfs_try_granting_tickets(fs_info, space_info); 2820 spin_unlock(&space_info->lock); 2821 } 2822 2823 if (cache) 2824 btrfs_put_block_group(cache); 2825 out: 2826 return ret; 2827 } 2828 2829 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2830 { 2831 struct btrfs_fs_info *fs_info = trans->fs_info; 2832 struct btrfs_block_group *block_group, *tmp; 2833 struct list_head *deleted_bgs; 2834 struct extent_io_tree *unpin; 2835 u64 start; 2836 u64 end; 2837 int ret; 2838 2839 unpin = &trans->transaction->pinned_extents; 2840 2841 while (!TRANS_ABORTED(trans)) { 2842 struct extent_state *cached_state = NULL; 2843 2844 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2845 if (!find_first_extent_bit(unpin, 0, &start, &end, 2846 EXTENT_DIRTY, &cached_state)) { 2847 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2848 break; 2849 } 2850 2851 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2852 ret = btrfs_discard_extent(fs_info, start, 2853 end + 1 - start, NULL); 2854 2855 clear_extent_dirty(unpin, start, end, &cached_state); 2856 ret = unpin_extent_range(fs_info, start, end, true); 2857 BUG_ON(ret); 2858 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2859 free_extent_state(cached_state); 2860 cond_resched(); 2861 } 2862 2863 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2864 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2865 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2866 } 2867 2868 /* 2869 * Transaction is finished. We don't need the lock anymore. We 2870 * do need to clean up the block groups in case of a transaction 2871 * abort. 2872 */ 2873 deleted_bgs = &trans->transaction->deleted_bgs; 2874 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2875 u64 trimmed = 0; 2876 2877 ret = -EROFS; 2878 if (!TRANS_ABORTED(trans)) 2879 ret = btrfs_discard_extent(fs_info, 2880 block_group->start, 2881 block_group->length, 2882 &trimmed); 2883 2884 list_del_init(&block_group->bg_list); 2885 btrfs_unfreeze_block_group(block_group); 2886 btrfs_put_block_group(block_group); 2887 2888 if (ret) { 2889 const char *errstr = btrfs_decode_error(ret); 2890 btrfs_warn(fs_info, 2891 "discard failed while removing blockgroup: errno=%d %s", 2892 ret, errstr); 2893 } 2894 } 2895 2896 return 0; 2897 } 2898 2899 /* 2900 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2901 * 2902 * @fs_info: the btrfs_fs_info for this mount 2903 * @leaf: a leaf in the extent tree containing the extent item 2904 * @slot: the slot in the leaf where the extent item is found 2905 * 2906 * Returns the objectid of the root that originally allocated the extent item 2907 * if the inline owner ref is expected and present, otherwise 0. 2908 * 2909 * If an extent item has an owner ref item, it will be the first inline ref 2910 * item. Therefore the logic is to check whether there are any inline ref 2911 * items, then check the type of the first one. 2912 */ 2913 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2914 struct extent_buffer *leaf, int slot) 2915 { 2916 struct btrfs_extent_item *ei; 2917 struct btrfs_extent_inline_ref *iref; 2918 struct btrfs_extent_owner_ref *oref; 2919 unsigned long ptr; 2920 unsigned long end; 2921 int type; 2922 2923 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2924 return 0; 2925 2926 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2927 ptr = (unsigned long)(ei + 1); 2928 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2929 2930 /* No inline ref items of any kind, can't check type. */ 2931 if (ptr == end) 2932 return 0; 2933 2934 iref = (struct btrfs_extent_inline_ref *)ptr; 2935 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2936 2937 /* We found an owner ref, get the root out of it. */ 2938 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2939 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2940 return btrfs_extent_owner_ref_root_id(leaf, oref); 2941 } 2942 2943 /* We have inline refs, but not an owner ref. */ 2944 return 0; 2945 } 2946 2947 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2948 u64 bytenr, struct btrfs_squota_delta *delta) 2949 { 2950 int ret; 2951 u64 num_bytes = delta->num_bytes; 2952 2953 if (delta->is_data) { 2954 struct btrfs_root *csum_root; 2955 2956 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2957 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2958 if (ret) { 2959 btrfs_abort_transaction(trans, ret); 2960 return ret; 2961 } 2962 2963 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2964 if (ret) { 2965 btrfs_abort_transaction(trans, ret); 2966 return ret; 2967 } 2968 } 2969 2970 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2971 if (ret) { 2972 btrfs_abort_transaction(trans, ret); 2973 return ret; 2974 } 2975 2976 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2977 if (ret) { 2978 btrfs_abort_transaction(trans, ret); 2979 return ret; 2980 } 2981 2982 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2983 if (ret) 2984 btrfs_abort_transaction(trans, ret); 2985 2986 return ret; 2987 } 2988 2989 #define abort_and_dump(trans, path, fmt, args...) \ 2990 ({ \ 2991 btrfs_abort_transaction(trans, -EUCLEAN); \ 2992 btrfs_print_leaf(path->nodes[0]); \ 2993 btrfs_crit(trans->fs_info, fmt, ##args); \ 2994 }) 2995 2996 /* 2997 * Drop one or more refs of @node. 2998 * 2999 * 1. Locate the extent refs. 3000 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3001 * Locate it, then reduce the refs number or remove the ref line completely. 3002 * 3003 * 2. Update the refs count in EXTENT/METADATA_ITEM 3004 * 3005 * Inline backref case: 3006 * 3007 * in extent tree we have: 3008 * 3009 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3010 * refs 2 gen 6 flags DATA 3011 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3012 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3013 * 3014 * This function gets called with: 3015 * 3016 * node->bytenr = 13631488 3017 * node->num_bytes = 1048576 3018 * root_objectid = FS_TREE 3019 * owner_objectid = 257 3020 * owner_offset = 0 3021 * refs_to_drop = 1 3022 * 3023 * Then we should get some like: 3024 * 3025 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3026 * refs 1 gen 6 flags DATA 3027 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3028 * 3029 * Keyed backref case: 3030 * 3031 * in extent tree we have: 3032 * 3033 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3034 * refs 754 gen 6 flags DATA 3035 * [...] 3036 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3037 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3038 * 3039 * This function get called with: 3040 * 3041 * node->bytenr = 13631488 3042 * node->num_bytes = 1048576 3043 * root_objectid = FS_TREE 3044 * owner_objectid = 866 3045 * owner_offset = 0 3046 * refs_to_drop = 1 3047 * 3048 * Then we should get some like: 3049 * 3050 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3051 * refs 753 gen 6 flags DATA 3052 * 3053 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3054 */ 3055 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3056 struct btrfs_delayed_ref_head *href, 3057 struct btrfs_delayed_ref_node *node, 3058 struct btrfs_delayed_extent_op *extent_op) 3059 { 3060 struct btrfs_fs_info *info = trans->fs_info; 3061 struct btrfs_key key; 3062 struct btrfs_path *path; 3063 struct btrfs_root *extent_root; 3064 struct extent_buffer *leaf; 3065 struct btrfs_extent_item *ei; 3066 struct btrfs_extent_inline_ref *iref; 3067 int ret; 3068 int is_data; 3069 int extent_slot = 0; 3070 int found_extent = 0; 3071 int num_to_del = 1; 3072 int refs_to_drop = node->ref_mod; 3073 u32 item_size; 3074 u64 refs; 3075 u64 bytenr = node->bytenr; 3076 u64 num_bytes = node->num_bytes; 3077 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3078 u64 owner_offset = btrfs_delayed_ref_offset(node); 3079 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3080 u64 delayed_ref_root = href->owning_root; 3081 3082 extent_root = btrfs_extent_root(info, bytenr); 3083 ASSERT(extent_root); 3084 3085 path = btrfs_alloc_path(); 3086 if (!path) 3087 return -ENOMEM; 3088 3089 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3090 3091 if (!is_data && refs_to_drop != 1) { 3092 btrfs_crit(info, 3093 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3094 node->bytenr, refs_to_drop); 3095 ret = -EINVAL; 3096 btrfs_abort_transaction(trans, ret); 3097 goto out; 3098 } 3099 3100 if (is_data) 3101 skinny_metadata = false; 3102 3103 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3104 node->parent, node->ref_root, owner_objectid, 3105 owner_offset); 3106 if (ret == 0) { 3107 /* 3108 * Either the inline backref or the SHARED_DATA_REF/ 3109 * SHARED_BLOCK_REF is found 3110 * 3111 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3112 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3113 */ 3114 extent_slot = path->slots[0]; 3115 while (extent_slot >= 0) { 3116 btrfs_item_key_to_cpu(path->nodes[0], &key, 3117 extent_slot); 3118 if (key.objectid != bytenr) 3119 break; 3120 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3121 key.offset == num_bytes) { 3122 found_extent = 1; 3123 break; 3124 } 3125 if (key.type == BTRFS_METADATA_ITEM_KEY && 3126 key.offset == owner_objectid) { 3127 found_extent = 1; 3128 break; 3129 } 3130 3131 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3132 if (path->slots[0] - extent_slot > 5) 3133 break; 3134 extent_slot--; 3135 } 3136 3137 if (!found_extent) { 3138 if (iref) { 3139 abort_and_dump(trans, path, 3140 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3141 path->slots[0]); 3142 ret = -EUCLEAN; 3143 goto out; 3144 } 3145 /* Must be SHARED_* item, remove the backref first */ 3146 ret = remove_extent_backref(trans, extent_root, path, 3147 NULL, refs_to_drop, is_data); 3148 if (ret) { 3149 btrfs_abort_transaction(trans, ret); 3150 goto out; 3151 } 3152 btrfs_release_path(path); 3153 3154 /* Slow path to locate EXTENT/METADATA_ITEM */ 3155 key.objectid = bytenr; 3156 key.type = BTRFS_EXTENT_ITEM_KEY; 3157 key.offset = num_bytes; 3158 3159 if (!is_data && skinny_metadata) { 3160 key.type = BTRFS_METADATA_ITEM_KEY; 3161 key.offset = owner_objectid; 3162 } 3163 3164 ret = btrfs_search_slot(trans, extent_root, 3165 &key, path, -1, 1); 3166 if (ret > 0 && skinny_metadata && path->slots[0]) { 3167 /* 3168 * Couldn't find our skinny metadata item, 3169 * see if we have ye olde extent item. 3170 */ 3171 path->slots[0]--; 3172 btrfs_item_key_to_cpu(path->nodes[0], &key, 3173 path->slots[0]); 3174 if (key.objectid == bytenr && 3175 key.type == BTRFS_EXTENT_ITEM_KEY && 3176 key.offset == num_bytes) 3177 ret = 0; 3178 } 3179 3180 if (ret > 0 && skinny_metadata) { 3181 skinny_metadata = false; 3182 key.objectid = bytenr; 3183 key.type = BTRFS_EXTENT_ITEM_KEY; 3184 key.offset = num_bytes; 3185 btrfs_release_path(path); 3186 ret = btrfs_search_slot(trans, extent_root, 3187 &key, path, -1, 1); 3188 } 3189 3190 if (ret) { 3191 if (ret > 0) 3192 btrfs_print_leaf(path->nodes[0]); 3193 btrfs_err(info, 3194 "umm, got %d back from search, was looking for %llu, slot %d", 3195 ret, bytenr, path->slots[0]); 3196 } 3197 if (ret < 0) { 3198 btrfs_abort_transaction(trans, ret); 3199 goto out; 3200 } 3201 extent_slot = path->slots[0]; 3202 } 3203 } else if (WARN_ON(ret == -ENOENT)) { 3204 abort_and_dump(trans, path, 3205 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3206 bytenr, node->parent, node->ref_root, owner_objectid, 3207 owner_offset, path->slots[0]); 3208 goto out; 3209 } else { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 3214 leaf = path->nodes[0]; 3215 item_size = btrfs_item_size(leaf, extent_slot); 3216 if (unlikely(item_size < sizeof(*ei))) { 3217 ret = -EUCLEAN; 3218 btrfs_err(trans->fs_info, 3219 "unexpected extent item size, has %u expect >= %zu", 3220 item_size, sizeof(*ei)); 3221 btrfs_abort_transaction(trans, ret); 3222 goto out; 3223 } 3224 ei = btrfs_item_ptr(leaf, extent_slot, 3225 struct btrfs_extent_item); 3226 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3227 key.type == BTRFS_EXTENT_ITEM_KEY) { 3228 struct btrfs_tree_block_info *bi; 3229 3230 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3231 abort_and_dump(trans, path, 3232 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3233 key.objectid, key.type, key.offset, 3234 path->slots[0], owner_objectid, item_size, 3235 sizeof(*ei) + sizeof(*bi)); 3236 ret = -EUCLEAN; 3237 goto out; 3238 } 3239 bi = (struct btrfs_tree_block_info *)(ei + 1); 3240 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3241 } 3242 3243 refs = btrfs_extent_refs(leaf, ei); 3244 if (refs < refs_to_drop) { 3245 abort_and_dump(trans, path, 3246 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3247 refs_to_drop, refs, bytenr, path->slots[0]); 3248 ret = -EUCLEAN; 3249 goto out; 3250 } 3251 refs -= refs_to_drop; 3252 3253 if (refs > 0) { 3254 if (extent_op) 3255 __run_delayed_extent_op(extent_op, leaf, ei); 3256 /* 3257 * In the case of inline back ref, reference count will 3258 * be updated by remove_extent_backref 3259 */ 3260 if (iref) { 3261 if (!found_extent) { 3262 abort_and_dump(trans, path, 3263 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3264 path->slots[0]); 3265 ret = -EUCLEAN; 3266 goto out; 3267 } 3268 } else { 3269 btrfs_set_extent_refs(leaf, ei, refs); 3270 btrfs_mark_buffer_dirty(trans, leaf); 3271 } 3272 if (found_extent) { 3273 ret = remove_extent_backref(trans, extent_root, path, 3274 iref, refs_to_drop, is_data); 3275 if (ret) { 3276 btrfs_abort_transaction(trans, ret); 3277 goto out; 3278 } 3279 } 3280 } else { 3281 struct btrfs_squota_delta delta = { 3282 .root = delayed_ref_root, 3283 .num_bytes = num_bytes, 3284 .is_data = is_data, 3285 .is_inc = false, 3286 .generation = btrfs_extent_generation(leaf, ei), 3287 }; 3288 3289 /* In this branch refs == 1 */ 3290 if (found_extent) { 3291 if (is_data && refs_to_drop != 3292 extent_data_ref_count(path, iref)) { 3293 abort_and_dump(trans, path, 3294 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3295 extent_data_ref_count(path, iref), 3296 refs_to_drop, path->slots[0]); 3297 ret = -EUCLEAN; 3298 goto out; 3299 } 3300 if (iref) { 3301 if (path->slots[0] != extent_slot) { 3302 abort_and_dump(trans, path, 3303 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3304 key.objectid, key.type, 3305 key.offset, path->slots[0]); 3306 ret = -EUCLEAN; 3307 goto out; 3308 } 3309 } else { 3310 /* 3311 * No inline ref, we must be at SHARED_* item, 3312 * And it's single ref, it must be: 3313 * | extent_slot ||extent_slot + 1| 3314 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3315 */ 3316 if (path->slots[0] != extent_slot + 1) { 3317 abort_and_dump(trans, path, 3318 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3319 path->slots[0]); 3320 ret = -EUCLEAN; 3321 goto out; 3322 } 3323 path->slots[0] = extent_slot; 3324 num_to_del = 2; 3325 } 3326 } 3327 /* 3328 * We can't infer the data owner from the delayed ref, so we need 3329 * to try to get it from the owning ref item. 3330 * 3331 * If it is not present, then that extent was not written under 3332 * simple quotas mode, so we don't need to account for its deletion. 3333 */ 3334 if (is_data) 3335 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3336 leaf, extent_slot); 3337 3338 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3339 num_to_del); 3340 if (ret) { 3341 btrfs_abort_transaction(trans, ret); 3342 goto out; 3343 } 3344 btrfs_release_path(path); 3345 3346 ret = do_free_extent_accounting(trans, bytenr, &delta); 3347 } 3348 btrfs_release_path(path); 3349 3350 out: 3351 btrfs_free_path(path); 3352 return ret; 3353 } 3354 3355 /* 3356 * when we free an block, it is possible (and likely) that we free the last 3357 * delayed ref for that extent as well. This searches the delayed ref tree for 3358 * a given extent, and if there are no other delayed refs to be processed, it 3359 * removes it from the tree. 3360 */ 3361 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3362 u64 bytenr) 3363 { 3364 struct btrfs_delayed_ref_head *head; 3365 struct btrfs_delayed_ref_root *delayed_refs; 3366 int ret = 0; 3367 3368 delayed_refs = &trans->transaction->delayed_refs; 3369 spin_lock(&delayed_refs->lock); 3370 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3371 if (!head) 3372 goto out_delayed_unlock; 3373 3374 spin_lock(&head->lock); 3375 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3376 goto out; 3377 3378 if (cleanup_extent_op(head) != NULL) 3379 goto out; 3380 3381 /* 3382 * waiting for the lock here would deadlock. If someone else has it 3383 * locked they are already in the process of dropping it anyway 3384 */ 3385 if (!mutex_trylock(&head->mutex)) 3386 goto out; 3387 3388 btrfs_delete_ref_head(delayed_refs, head); 3389 head->processing = false; 3390 3391 spin_unlock(&head->lock); 3392 spin_unlock(&delayed_refs->lock); 3393 3394 BUG_ON(head->extent_op); 3395 if (head->must_insert_reserved) 3396 ret = 1; 3397 3398 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3399 mutex_unlock(&head->mutex); 3400 btrfs_put_delayed_ref_head(head); 3401 return ret; 3402 out: 3403 spin_unlock(&head->lock); 3404 3405 out_delayed_unlock: 3406 spin_unlock(&delayed_refs->lock); 3407 return 0; 3408 } 3409 3410 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3411 u64 root_id, 3412 struct extent_buffer *buf, 3413 u64 parent, int last_ref) 3414 { 3415 struct btrfs_fs_info *fs_info = trans->fs_info; 3416 struct btrfs_block_group *bg; 3417 int ret; 3418 3419 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3420 struct btrfs_ref generic_ref = { 3421 .action = BTRFS_DROP_DELAYED_REF, 3422 .bytenr = buf->start, 3423 .num_bytes = buf->len, 3424 .parent = parent, 3425 .owning_root = btrfs_header_owner(buf), 3426 .ref_root = root_id, 3427 }; 3428 3429 /* 3430 * Assert that the extent buffer is not cleared due to 3431 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3432 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3433 * detail. 3434 */ 3435 ASSERT(btrfs_header_bytenr(buf) != 0); 3436 3437 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3438 btrfs_ref_tree_mod(fs_info, &generic_ref); 3439 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3440 if (ret < 0) 3441 return ret; 3442 } 3443 3444 if (!last_ref) 3445 return 0; 3446 3447 if (btrfs_header_generation(buf) != trans->transid) 3448 goto out; 3449 3450 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3451 ret = check_ref_cleanup(trans, buf->start); 3452 if (!ret) 3453 goto out; 3454 } 3455 3456 bg = btrfs_lookup_block_group(fs_info, buf->start); 3457 3458 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3459 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3460 btrfs_put_block_group(bg); 3461 goto out; 3462 } 3463 3464 /* 3465 * If there are tree mod log users we may have recorded mod log 3466 * operations for this node. If we re-allocate this node we 3467 * could replay operations on this node that happened when it 3468 * existed in a completely different root. For example if it 3469 * was part of root A, then was reallocated to root B, and we 3470 * are doing a btrfs_old_search_slot(root b), we could replay 3471 * operations that happened when the block was part of root A, 3472 * giving us an inconsistent view of the btree. 3473 * 3474 * We are safe from races here because at this point no other 3475 * node or root points to this extent buffer, so if after this 3476 * check a new tree mod log user joins we will not have an 3477 * existing log of operations on this node that we have to 3478 * contend with. 3479 */ 3480 3481 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3482 || btrfs_is_zoned(fs_info)) { 3483 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3484 btrfs_put_block_group(bg); 3485 goto out; 3486 } 3487 3488 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3489 3490 btrfs_add_free_space(bg, buf->start, buf->len); 3491 btrfs_free_reserved_bytes(bg, buf->len, 0); 3492 btrfs_put_block_group(bg); 3493 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3494 3495 out: 3496 3497 /* 3498 * Deleting the buffer, clear the corrupt flag since it doesn't 3499 * matter anymore. 3500 */ 3501 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3502 return 0; 3503 } 3504 3505 /* Can return -ENOMEM */ 3506 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3507 { 3508 struct btrfs_fs_info *fs_info = trans->fs_info; 3509 int ret; 3510 3511 if (btrfs_is_testing(fs_info)) 3512 return 0; 3513 3514 /* 3515 * tree log blocks never actually go into the extent allocation 3516 * tree, just update pinning info and exit early. 3517 */ 3518 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3519 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); 3520 ret = 0; 3521 } else if (ref->type == BTRFS_REF_METADATA) { 3522 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3523 } else { 3524 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3525 } 3526 3527 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3528 btrfs_ref_tree_mod(fs_info, ref); 3529 3530 return ret; 3531 } 3532 3533 enum btrfs_loop_type { 3534 /* 3535 * Start caching block groups but do not wait for progress or for them 3536 * to be done. 3537 */ 3538 LOOP_CACHING_NOWAIT, 3539 3540 /* 3541 * Wait for the block group free_space >= the space we're waiting for if 3542 * the block group isn't cached. 3543 */ 3544 LOOP_CACHING_WAIT, 3545 3546 /* 3547 * Allow allocations to happen from block groups that do not yet have a 3548 * size classification. 3549 */ 3550 LOOP_UNSET_SIZE_CLASS, 3551 3552 /* 3553 * Allocate a chunk and then retry the allocation. 3554 */ 3555 LOOP_ALLOC_CHUNK, 3556 3557 /* 3558 * Ignore the size class restrictions for this allocation. 3559 */ 3560 LOOP_WRONG_SIZE_CLASS, 3561 3562 /* 3563 * Ignore the empty size, only try to allocate the number of bytes 3564 * needed for this allocation. 3565 */ 3566 LOOP_NO_EMPTY_SIZE, 3567 }; 3568 3569 static inline void 3570 btrfs_lock_block_group(struct btrfs_block_group *cache, 3571 int delalloc) 3572 { 3573 if (delalloc) 3574 down_read(&cache->data_rwsem); 3575 } 3576 3577 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3578 int delalloc) 3579 { 3580 btrfs_get_block_group(cache); 3581 if (delalloc) 3582 down_read(&cache->data_rwsem); 3583 } 3584 3585 static struct btrfs_block_group *btrfs_lock_cluster( 3586 struct btrfs_block_group *block_group, 3587 struct btrfs_free_cluster *cluster, 3588 int delalloc) 3589 __acquires(&cluster->refill_lock) 3590 { 3591 struct btrfs_block_group *used_bg = NULL; 3592 3593 spin_lock(&cluster->refill_lock); 3594 while (1) { 3595 used_bg = cluster->block_group; 3596 if (!used_bg) 3597 return NULL; 3598 3599 if (used_bg == block_group) 3600 return used_bg; 3601 3602 btrfs_get_block_group(used_bg); 3603 3604 if (!delalloc) 3605 return used_bg; 3606 3607 if (down_read_trylock(&used_bg->data_rwsem)) 3608 return used_bg; 3609 3610 spin_unlock(&cluster->refill_lock); 3611 3612 /* We should only have one-level nested. */ 3613 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3614 3615 spin_lock(&cluster->refill_lock); 3616 if (used_bg == cluster->block_group) 3617 return used_bg; 3618 3619 up_read(&used_bg->data_rwsem); 3620 btrfs_put_block_group(used_bg); 3621 } 3622 } 3623 3624 static inline void 3625 btrfs_release_block_group(struct btrfs_block_group *cache, 3626 int delalloc) 3627 { 3628 if (delalloc) 3629 up_read(&cache->data_rwsem); 3630 btrfs_put_block_group(cache); 3631 } 3632 3633 /* 3634 * Helper function for find_free_extent(). 3635 * 3636 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3637 * Return >0 to inform caller that we find nothing 3638 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3639 */ 3640 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3641 struct find_free_extent_ctl *ffe_ctl, 3642 struct btrfs_block_group **cluster_bg_ret) 3643 { 3644 struct btrfs_block_group *cluster_bg; 3645 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3646 u64 aligned_cluster; 3647 u64 offset; 3648 int ret; 3649 3650 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3651 if (!cluster_bg) 3652 goto refill_cluster; 3653 if (cluster_bg != bg && (cluster_bg->ro || 3654 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3655 goto release_cluster; 3656 3657 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3658 ffe_ctl->num_bytes, cluster_bg->start, 3659 &ffe_ctl->max_extent_size); 3660 if (offset) { 3661 /* We have a block, we're done */ 3662 spin_unlock(&last_ptr->refill_lock); 3663 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3664 *cluster_bg_ret = cluster_bg; 3665 ffe_ctl->found_offset = offset; 3666 return 0; 3667 } 3668 WARN_ON(last_ptr->block_group != cluster_bg); 3669 3670 release_cluster: 3671 /* 3672 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3673 * lets just skip it and let the allocator find whatever block it can 3674 * find. If we reach this point, we will have tried the cluster 3675 * allocator plenty of times and not have found anything, so we are 3676 * likely way too fragmented for the clustering stuff to find anything. 3677 * 3678 * However, if the cluster is taken from the current block group, 3679 * release the cluster first, so that we stand a better chance of 3680 * succeeding in the unclustered allocation. 3681 */ 3682 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3683 spin_unlock(&last_ptr->refill_lock); 3684 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3685 return -ENOENT; 3686 } 3687 3688 /* This cluster didn't work out, free it and start over */ 3689 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3690 3691 if (cluster_bg != bg) 3692 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3693 3694 refill_cluster: 3695 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3696 spin_unlock(&last_ptr->refill_lock); 3697 return -ENOENT; 3698 } 3699 3700 aligned_cluster = max_t(u64, 3701 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3702 bg->full_stripe_len); 3703 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3704 ffe_ctl->num_bytes, aligned_cluster); 3705 if (ret == 0) { 3706 /* Now pull our allocation out of this cluster */ 3707 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3708 ffe_ctl->num_bytes, ffe_ctl->search_start, 3709 &ffe_ctl->max_extent_size); 3710 if (offset) { 3711 /* We found one, proceed */ 3712 spin_unlock(&last_ptr->refill_lock); 3713 ffe_ctl->found_offset = offset; 3714 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3715 return 0; 3716 } 3717 } 3718 /* 3719 * At this point we either didn't find a cluster or we weren't able to 3720 * allocate a block from our cluster. Free the cluster we've been 3721 * trying to use, and go to the next block group. 3722 */ 3723 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3724 spin_unlock(&last_ptr->refill_lock); 3725 return 1; 3726 } 3727 3728 /* 3729 * Return >0 to inform caller that we find nothing 3730 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3731 */ 3732 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3733 struct find_free_extent_ctl *ffe_ctl) 3734 { 3735 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3736 u64 offset; 3737 3738 /* 3739 * We are doing an unclustered allocation, set the fragmented flag so 3740 * we don't bother trying to setup a cluster again until we get more 3741 * space. 3742 */ 3743 if (unlikely(last_ptr)) { 3744 spin_lock(&last_ptr->lock); 3745 last_ptr->fragmented = 1; 3746 spin_unlock(&last_ptr->lock); 3747 } 3748 if (ffe_ctl->cached) { 3749 struct btrfs_free_space_ctl *free_space_ctl; 3750 3751 free_space_ctl = bg->free_space_ctl; 3752 spin_lock(&free_space_ctl->tree_lock); 3753 if (free_space_ctl->free_space < 3754 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3755 ffe_ctl->empty_size) { 3756 ffe_ctl->total_free_space = max_t(u64, 3757 ffe_ctl->total_free_space, 3758 free_space_ctl->free_space); 3759 spin_unlock(&free_space_ctl->tree_lock); 3760 return 1; 3761 } 3762 spin_unlock(&free_space_ctl->tree_lock); 3763 } 3764 3765 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3766 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3767 &ffe_ctl->max_extent_size); 3768 if (!offset) 3769 return 1; 3770 ffe_ctl->found_offset = offset; 3771 return 0; 3772 } 3773 3774 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3775 struct find_free_extent_ctl *ffe_ctl, 3776 struct btrfs_block_group **bg_ret) 3777 { 3778 int ret; 3779 3780 /* We want to try and use the cluster allocator, so lets look there */ 3781 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3782 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3783 if (ret >= 0) 3784 return ret; 3785 /* ret == -ENOENT case falls through */ 3786 } 3787 3788 return find_free_extent_unclustered(block_group, ffe_ctl); 3789 } 3790 3791 /* 3792 * Tree-log block group locking 3793 * ============================ 3794 * 3795 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3796 * indicates the starting address of a block group, which is reserved only 3797 * for tree-log metadata. 3798 * 3799 * Lock nesting 3800 * ============ 3801 * 3802 * space_info::lock 3803 * block_group::lock 3804 * fs_info::treelog_bg_lock 3805 */ 3806 3807 /* 3808 * Simple allocator for sequential-only block group. It only allows sequential 3809 * allocation. No need to play with trees. This function also reserves the 3810 * bytes as in btrfs_add_reserved_bytes. 3811 */ 3812 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3813 struct find_free_extent_ctl *ffe_ctl, 3814 struct btrfs_block_group **bg_ret) 3815 { 3816 struct btrfs_fs_info *fs_info = block_group->fs_info; 3817 struct btrfs_space_info *space_info = block_group->space_info; 3818 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3819 u64 start = block_group->start; 3820 u64 num_bytes = ffe_ctl->num_bytes; 3821 u64 avail; 3822 u64 bytenr = block_group->start; 3823 u64 log_bytenr; 3824 u64 data_reloc_bytenr; 3825 int ret = 0; 3826 bool skip = false; 3827 3828 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3829 3830 /* 3831 * Do not allow non-tree-log blocks in the dedicated tree-log block 3832 * group, and vice versa. 3833 */ 3834 spin_lock(&fs_info->treelog_bg_lock); 3835 log_bytenr = fs_info->treelog_bg; 3836 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3837 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3838 skip = true; 3839 spin_unlock(&fs_info->treelog_bg_lock); 3840 if (skip) 3841 return 1; 3842 3843 /* 3844 * Do not allow non-relocation blocks in the dedicated relocation block 3845 * group, and vice versa. 3846 */ 3847 spin_lock(&fs_info->relocation_bg_lock); 3848 data_reloc_bytenr = fs_info->data_reloc_bg; 3849 if (data_reloc_bytenr && 3850 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3851 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3852 skip = true; 3853 spin_unlock(&fs_info->relocation_bg_lock); 3854 if (skip) 3855 return 1; 3856 3857 /* Check RO and no space case before trying to activate it */ 3858 spin_lock(&block_group->lock); 3859 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3860 ret = 1; 3861 /* 3862 * May need to clear fs_info->{treelog,data_reloc}_bg. 3863 * Return the error after taking the locks. 3864 */ 3865 } 3866 spin_unlock(&block_group->lock); 3867 3868 /* Metadata block group is activated at write time. */ 3869 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3870 !btrfs_zone_activate(block_group)) { 3871 ret = 1; 3872 /* 3873 * May need to clear fs_info->{treelog,data_reloc}_bg. 3874 * Return the error after taking the locks. 3875 */ 3876 } 3877 3878 spin_lock(&space_info->lock); 3879 spin_lock(&block_group->lock); 3880 spin_lock(&fs_info->treelog_bg_lock); 3881 spin_lock(&fs_info->relocation_bg_lock); 3882 3883 if (ret) 3884 goto out; 3885 3886 ASSERT(!ffe_ctl->for_treelog || 3887 block_group->start == fs_info->treelog_bg || 3888 fs_info->treelog_bg == 0); 3889 ASSERT(!ffe_ctl->for_data_reloc || 3890 block_group->start == fs_info->data_reloc_bg || 3891 fs_info->data_reloc_bg == 0); 3892 3893 if (block_group->ro || 3894 (!ffe_ctl->for_data_reloc && 3895 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3896 ret = 1; 3897 goto out; 3898 } 3899 3900 /* 3901 * Do not allow currently using block group to be tree-log dedicated 3902 * block group. 3903 */ 3904 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3905 (block_group->used || block_group->reserved)) { 3906 ret = 1; 3907 goto out; 3908 } 3909 3910 /* 3911 * Do not allow currently used block group to be the data relocation 3912 * dedicated block group. 3913 */ 3914 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3915 (block_group->used || block_group->reserved)) { 3916 ret = 1; 3917 goto out; 3918 } 3919 3920 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3921 avail = block_group->zone_capacity - block_group->alloc_offset; 3922 if (avail < num_bytes) { 3923 if (ffe_ctl->max_extent_size < avail) { 3924 /* 3925 * With sequential allocator, free space is always 3926 * contiguous 3927 */ 3928 ffe_ctl->max_extent_size = avail; 3929 ffe_ctl->total_free_space = avail; 3930 } 3931 ret = 1; 3932 goto out; 3933 } 3934 3935 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3936 fs_info->treelog_bg = block_group->start; 3937 3938 if (ffe_ctl->for_data_reloc) { 3939 if (!fs_info->data_reloc_bg) 3940 fs_info->data_reloc_bg = block_group->start; 3941 /* 3942 * Do not allow allocations from this block group, unless it is 3943 * for data relocation. Compared to increasing the ->ro, setting 3944 * the ->zoned_data_reloc_ongoing flag still allows nocow 3945 * writers to come in. See btrfs_inc_nocow_writers(). 3946 * 3947 * We need to disable an allocation to avoid an allocation of 3948 * regular (non-relocation data) extent. With mix of relocation 3949 * extents and regular extents, we can dispatch WRITE commands 3950 * (for relocation extents) and ZONE APPEND commands (for 3951 * regular extents) at the same time to the same zone, which 3952 * easily break the write pointer. 3953 * 3954 * Also, this flag avoids this block group to be zone finished. 3955 */ 3956 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3957 } 3958 3959 ffe_ctl->found_offset = start + block_group->alloc_offset; 3960 block_group->alloc_offset += num_bytes; 3961 spin_lock(&ctl->tree_lock); 3962 ctl->free_space -= num_bytes; 3963 spin_unlock(&ctl->tree_lock); 3964 3965 /* 3966 * We do not check if found_offset is aligned to stripesize. The 3967 * address is anyway rewritten when using zone append writing. 3968 */ 3969 3970 ffe_ctl->search_start = ffe_ctl->found_offset; 3971 3972 out: 3973 if (ret && ffe_ctl->for_treelog) 3974 fs_info->treelog_bg = 0; 3975 if (ret && ffe_ctl->for_data_reloc) 3976 fs_info->data_reloc_bg = 0; 3977 spin_unlock(&fs_info->relocation_bg_lock); 3978 spin_unlock(&fs_info->treelog_bg_lock); 3979 spin_unlock(&block_group->lock); 3980 spin_unlock(&space_info->lock); 3981 return ret; 3982 } 3983 3984 static int do_allocation(struct btrfs_block_group *block_group, 3985 struct find_free_extent_ctl *ffe_ctl, 3986 struct btrfs_block_group **bg_ret) 3987 { 3988 switch (ffe_ctl->policy) { 3989 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3990 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3991 case BTRFS_EXTENT_ALLOC_ZONED: 3992 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3993 default: 3994 BUG(); 3995 } 3996 } 3997 3998 static void release_block_group(struct btrfs_block_group *block_group, 3999 struct find_free_extent_ctl *ffe_ctl, 4000 int delalloc) 4001 { 4002 switch (ffe_ctl->policy) { 4003 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4004 ffe_ctl->retry_uncached = false; 4005 break; 4006 case BTRFS_EXTENT_ALLOC_ZONED: 4007 /* Nothing to do */ 4008 break; 4009 default: 4010 BUG(); 4011 } 4012 4013 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4014 ffe_ctl->index); 4015 btrfs_release_block_group(block_group, delalloc); 4016 } 4017 4018 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4019 struct btrfs_key *ins) 4020 { 4021 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4022 4023 if (!ffe_ctl->use_cluster && last_ptr) { 4024 spin_lock(&last_ptr->lock); 4025 last_ptr->window_start = ins->objectid; 4026 spin_unlock(&last_ptr->lock); 4027 } 4028 } 4029 4030 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4031 struct btrfs_key *ins) 4032 { 4033 switch (ffe_ctl->policy) { 4034 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4035 found_extent_clustered(ffe_ctl, ins); 4036 break; 4037 case BTRFS_EXTENT_ALLOC_ZONED: 4038 /* Nothing to do */ 4039 break; 4040 default: 4041 BUG(); 4042 } 4043 } 4044 4045 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4046 struct find_free_extent_ctl *ffe_ctl) 4047 { 4048 /* Block group's activeness is not a requirement for METADATA block groups. */ 4049 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4050 return 0; 4051 4052 /* If we can activate new zone, just allocate a chunk and use it */ 4053 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4054 return 0; 4055 4056 /* 4057 * We already reached the max active zones. Try to finish one block 4058 * group to make a room for a new block group. This is only possible 4059 * for a data block group because btrfs_zone_finish() may need to wait 4060 * for a running transaction which can cause a deadlock for metadata 4061 * allocation. 4062 */ 4063 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4064 int ret = btrfs_zone_finish_one_bg(fs_info); 4065 4066 if (ret == 1) 4067 return 0; 4068 else if (ret < 0) 4069 return ret; 4070 } 4071 4072 /* 4073 * If we have enough free space left in an already active block group 4074 * and we can't activate any other zone now, do not allow allocating a 4075 * new chunk and let find_free_extent() retry with a smaller size. 4076 */ 4077 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4078 return -ENOSPC; 4079 4080 /* 4081 * Even min_alloc_size is not left in any block groups. Since we cannot 4082 * activate a new block group, allocating it may not help. Let's tell a 4083 * caller to try again and hope it progress something by writing some 4084 * parts of the region. That is only possible for data block groups, 4085 * where a part of the region can be written. 4086 */ 4087 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4088 return -EAGAIN; 4089 4090 /* 4091 * We cannot activate a new block group and no enough space left in any 4092 * block groups. So, allocating a new block group may not help. But, 4093 * there is nothing to do anyway, so let's go with it. 4094 */ 4095 return 0; 4096 } 4097 4098 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4099 struct find_free_extent_ctl *ffe_ctl) 4100 { 4101 switch (ffe_ctl->policy) { 4102 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4103 return 0; 4104 case BTRFS_EXTENT_ALLOC_ZONED: 4105 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4106 default: 4107 BUG(); 4108 } 4109 } 4110 4111 /* 4112 * Return >0 means caller needs to re-search for free extent 4113 * Return 0 means we have the needed free extent. 4114 * Return <0 means we failed to locate any free extent. 4115 */ 4116 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4117 struct btrfs_key *ins, 4118 struct find_free_extent_ctl *ffe_ctl, 4119 bool full_search) 4120 { 4121 struct btrfs_root *root = fs_info->chunk_root; 4122 int ret; 4123 4124 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4125 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4126 ffe_ctl->orig_have_caching_bg = true; 4127 4128 if (ins->objectid) { 4129 found_extent(ffe_ctl, ins); 4130 return 0; 4131 } 4132 4133 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4134 return 1; 4135 4136 ffe_ctl->index++; 4137 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4138 return 1; 4139 4140 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4141 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4142 ffe_ctl->index = 0; 4143 /* 4144 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4145 * any uncached bgs and we've already done a full search 4146 * through. 4147 */ 4148 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4149 (!ffe_ctl->orig_have_caching_bg && full_search)) 4150 ffe_ctl->loop++; 4151 ffe_ctl->loop++; 4152 4153 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4154 struct btrfs_trans_handle *trans; 4155 int exist = 0; 4156 4157 /* Check if allocation policy allows to create a new chunk */ 4158 ret = can_allocate_chunk(fs_info, ffe_ctl); 4159 if (ret) 4160 return ret; 4161 4162 trans = current->journal_info; 4163 if (trans) 4164 exist = 1; 4165 else 4166 trans = btrfs_join_transaction(root); 4167 4168 if (IS_ERR(trans)) { 4169 ret = PTR_ERR(trans); 4170 return ret; 4171 } 4172 4173 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4174 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4175 4176 /* Do not bail out on ENOSPC since we can do more. */ 4177 if (ret == -ENOSPC) { 4178 ret = 0; 4179 ffe_ctl->loop++; 4180 } 4181 else if (ret < 0) 4182 btrfs_abort_transaction(trans, ret); 4183 else 4184 ret = 0; 4185 if (!exist) 4186 btrfs_end_transaction(trans); 4187 if (ret) 4188 return ret; 4189 } 4190 4191 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4192 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4193 return -ENOSPC; 4194 4195 /* 4196 * Don't loop again if we already have no empty_size and 4197 * no empty_cluster. 4198 */ 4199 if (ffe_ctl->empty_size == 0 && 4200 ffe_ctl->empty_cluster == 0) 4201 return -ENOSPC; 4202 ffe_ctl->empty_size = 0; 4203 ffe_ctl->empty_cluster = 0; 4204 } 4205 return 1; 4206 } 4207 return -ENOSPC; 4208 } 4209 4210 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4211 struct btrfs_block_group *bg) 4212 { 4213 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4214 return true; 4215 if (!btrfs_block_group_should_use_size_class(bg)) 4216 return true; 4217 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4218 return true; 4219 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4220 bg->size_class == BTRFS_BG_SZ_NONE) 4221 return true; 4222 return ffe_ctl->size_class == bg->size_class; 4223 } 4224 4225 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4226 struct find_free_extent_ctl *ffe_ctl, 4227 struct btrfs_space_info *space_info, 4228 struct btrfs_key *ins) 4229 { 4230 /* 4231 * If our free space is heavily fragmented we may not be able to make 4232 * big contiguous allocations, so instead of doing the expensive search 4233 * for free space, simply return ENOSPC with our max_extent_size so we 4234 * can go ahead and search for a more manageable chunk. 4235 * 4236 * If our max_extent_size is large enough for our allocation simply 4237 * disable clustering since we will likely not be able to find enough 4238 * space to create a cluster and induce latency trying. 4239 */ 4240 if (space_info->max_extent_size) { 4241 spin_lock(&space_info->lock); 4242 if (space_info->max_extent_size && 4243 ffe_ctl->num_bytes > space_info->max_extent_size) { 4244 ins->offset = space_info->max_extent_size; 4245 spin_unlock(&space_info->lock); 4246 return -ENOSPC; 4247 } else if (space_info->max_extent_size) { 4248 ffe_ctl->use_cluster = false; 4249 } 4250 spin_unlock(&space_info->lock); 4251 } 4252 4253 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4254 &ffe_ctl->empty_cluster); 4255 if (ffe_ctl->last_ptr) { 4256 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4257 4258 spin_lock(&last_ptr->lock); 4259 if (last_ptr->block_group) 4260 ffe_ctl->hint_byte = last_ptr->window_start; 4261 if (last_ptr->fragmented) { 4262 /* 4263 * We still set window_start so we can keep track of the 4264 * last place we found an allocation to try and save 4265 * some time. 4266 */ 4267 ffe_ctl->hint_byte = last_ptr->window_start; 4268 ffe_ctl->use_cluster = false; 4269 } 4270 spin_unlock(&last_ptr->lock); 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4277 struct find_free_extent_ctl *ffe_ctl) 4278 { 4279 if (ffe_ctl->for_treelog) { 4280 spin_lock(&fs_info->treelog_bg_lock); 4281 if (fs_info->treelog_bg) 4282 ffe_ctl->hint_byte = fs_info->treelog_bg; 4283 spin_unlock(&fs_info->treelog_bg_lock); 4284 } else if (ffe_ctl->for_data_reloc) { 4285 spin_lock(&fs_info->relocation_bg_lock); 4286 if (fs_info->data_reloc_bg) 4287 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4288 spin_unlock(&fs_info->relocation_bg_lock); 4289 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4290 struct btrfs_block_group *block_group; 4291 4292 spin_lock(&fs_info->zone_active_bgs_lock); 4293 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4294 /* 4295 * No lock is OK here because avail is monotinically 4296 * decreasing, and this is just a hint. 4297 */ 4298 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4299 4300 if (block_group_bits(block_group, ffe_ctl->flags) && 4301 avail >= ffe_ctl->num_bytes) { 4302 ffe_ctl->hint_byte = block_group->start; 4303 break; 4304 } 4305 } 4306 spin_unlock(&fs_info->zone_active_bgs_lock); 4307 } 4308 4309 return 0; 4310 } 4311 4312 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4313 struct find_free_extent_ctl *ffe_ctl, 4314 struct btrfs_space_info *space_info, 4315 struct btrfs_key *ins) 4316 { 4317 switch (ffe_ctl->policy) { 4318 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4319 return prepare_allocation_clustered(fs_info, ffe_ctl, 4320 space_info, ins); 4321 case BTRFS_EXTENT_ALLOC_ZONED: 4322 return prepare_allocation_zoned(fs_info, ffe_ctl); 4323 default: 4324 BUG(); 4325 } 4326 } 4327 4328 /* 4329 * walks the btree of allocated extents and find a hole of a given size. 4330 * The key ins is changed to record the hole: 4331 * ins->objectid == start position 4332 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4333 * ins->offset == the size of the hole. 4334 * Any available blocks before search_start are skipped. 4335 * 4336 * If there is no suitable free space, we will record the max size of 4337 * the free space extent currently. 4338 * 4339 * The overall logic and call chain: 4340 * 4341 * find_free_extent() 4342 * |- Iterate through all block groups 4343 * | |- Get a valid block group 4344 * | |- Try to do clustered allocation in that block group 4345 * | |- Try to do unclustered allocation in that block group 4346 * | |- Check if the result is valid 4347 * | | |- If valid, then exit 4348 * | |- Jump to next block group 4349 * | 4350 * |- Push harder to find free extents 4351 * |- If not found, re-iterate all block groups 4352 */ 4353 static noinline int find_free_extent(struct btrfs_root *root, 4354 struct btrfs_key *ins, 4355 struct find_free_extent_ctl *ffe_ctl) 4356 { 4357 struct btrfs_fs_info *fs_info = root->fs_info; 4358 int ret = 0; 4359 int cache_block_group_error = 0; 4360 struct btrfs_block_group *block_group = NULL; 4361 struct btrfs_space_info *space_info; 4362 bool full_search = false; 4363 4364 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4365 4366 ffe_ctl->search_start = 0; 4367 /* For clustered allocation */ 4368 ffe_ctl->empty_cluster = 0; 4369 ffe_ctl->last_ptr = NULL; 4370 ffe_ctl->use_cluster = true; 4371 ffe_ctl->have_caching_bg = false; 4372 ffe_ctl->orig_have_caching_bg = false; 4373 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4374 ffe_ctl->loop = 0; 4375 ffe_ctl->retry_uncached = false; 4376 ffe_ctl->cached = 0; 4377 ffe_ctl->max_extent_size = 0; 4378 ffe_ctl->total_free_space = 0; 4379 ffe_ctl->found_offset = 0; 4380 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4381 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4382 4383 if (btrfs_is_zoned(fs_info)) 4384 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4385 4386 ins->type = BTRFS_EXTENT_ITEM_KEY; 4387 ins->objectid = 0; 4388 ins->offset = 0; 4389 4390 trace_find_free_extent(root, ffe_ctl); 4391 4392 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4393 if (!space_info) { 4394 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4395 return -ENOSPC; 4396 } 4397 4398 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4399 if (ret < 0) 4400 return ret; 4401 4402 ffe_ctl->search_start = max(ffe_ctl->search_start, 4403 first_logical_byte(fs_info)); 4404 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4405 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4406 block_group = btrfs_lookup_block_group(fs_info, 4407 ffe_ctl->search_start); 4408 /* 4409 * we don't want to use the block group if it doesn't match our 4410 * allocation bits, or if its not cached. 4411 * 4412 * However if we are re-searching with an ideal block group 4413 * picked out then we don't care that the block group is cached. 4414 */ 4415 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4416 block_group->cached != BTRFS_CACHE_NO) { 4417 down_read(&space_info->groups_sem); 4418 if (list_empty(&block_group->list) || 4419 block_group->ro) { 4420 /* 4421 * someone is removing this block group, 4422 * we can't jump into the have_block_group 4423 * target because our list pointers are not 4424 * valid 4425 */ 4426 btrfs_put_block_group(block_group); 4427 up_read(&space_info->groups_sem); 4428 } else { 4429 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4430 block_group->flags); 4431 btrfs_lock_block_group(block_group, 4432 ffe_ctl->delalloc); 4433 ffe_ctl->hinted = true; 4434 goto have_block_group; 4435 } 4436 } else if (block_group) { 4437 btrfs_put_block_group(block_group); 4438 } 4439 } 4440 search: 4441 trace_find_free_extent_search_loop(root, ffe_ctl); 4442 ffe_ctl->have_caching_bg = false; 4443 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4444 ffe_ctl->index == 0) 4445 full_search = true; 4446 down_read(&space_info->groups_sem); 4447 list_for_each_entry(block_group, 4448 &space_info->block_groups[ffe_ctl->index], list) { 4449 struct btrfs_block_group *bg_ret; 4450 4451 ffe_ctl->hinted = false; 4452 /* If the block group is read-only, we can skip it entirely. */ 4453 if (unlikely(block_group->ro)) { 4454 if (ffe_ctl->for_treelog) 4455 btrfs_clear_treelog_bg(block_group); 4456 if (ffe_ctl->for_data_reloc) 4457 btrfs_clear_data_reloc_bg(block_group); 4458 continue; 4459 } 4460 4461 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4462 ffe_ctl->search_start = block_group->start; 4463 4464 /* 4465 * this can happen if we end up cycling through all the 4466 * raid types, but we want to make sure we only allocate 4467 * for the proper type. 4468 */ 4469 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4470 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4471 BTRFS_BLOCK_GROUP_RAID1_MASK | 4472 BTRFS_BLOCK_GROUP_RAID56_MASK | 4473 BTRFS_BLOCK_GROUP_RAID10; 4474 4475 /* 4476 * if they asked for extra copies and this block group 4477 * doesn't provide them, bail. This does allow us to 4478 * fill raid0 from raid1. 4479 */ 4480 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4481 goto loop; 4482 4483 /* 4484 * This block group has different flags than we want. 4485 * It's possible that we have MIXED_GROUP flag but no 4486 * block group is mixed. Just skip such block group. 4487 */ 4488 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4489 continue; 4490 } 4491 4492 have_block_group: 4493 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4494 ffe_ctl->cached = btrfs_block_group_done(block_group); 4495 if (unlikely(!ffe_ctl->cached)) { 4496 ffe_ctl->have_caching_bg = true; 4497 ret = btrfs_cache_block_group(block_group, false); 4498 4499 /* 4500 * If we get ENOMEM here or something else we want to 4501 * try other block groups, because it may not be fatal. 4502 * However if we can't find anything else we need to 4503 * save our return here so that we return the actual 4504 * error that caused problems, not ENOSPC. 4505 */ 4506 if (ret < 0) { 4507 if (!cache_block_group_error) 4508 cache_block_group_error = ret; 4509 ret = 0; 4510 goto loop; 4511 } 4512 ret = 0; 4513 } 4514 4515 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4516 if (!cache_block_group_error) 4517 cache_block_group_error = -EIO; 4518 goto loop; 4519 } 4520 4521 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4522 goto loop; 4523 4524 bg_ret = NULL; 4525 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4526 if (ret > 0) 4527 goto loop; 4528 4529 if (bg_ret && bg_ret != block_group) { 4530 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4531 block_group = bg_ret; 4532 } 4533 4534 /* Checks */ 4535 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4536 fs_info->stripesize); 4537 4538 /* move on to the next group */ 4539 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4540 block_group->start + block_group->length) { 4541 btrfs_add_free_space_unused(block_group, 4542 ffe_ctl->found_offset, 4543 ffe_ctl->num_bytes); 4544 goto loop; 4545 } 4546 4547 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4548 btrfs_add_free_space_unused(block_group, 4549 ffe_ctl->found_offset, 4550 ffe_ctl->search_start - ffe_ctl->found_offset); 4551 4552 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4553 ffe_ctl->num_bytes, 4554 ffe_ctl->delalloc, 4555 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4556 if (ret == -EAGAIN) { 4557 btrfs_add_free_space_unused(block_group, 4558 ffe_ctl->found_offset, 4559 ffe_ctl->num_bytes); 4560 goto loop; 4561 } 4562 btrfs_inc_block_group_reservations(block_group); 4563 4564 /* we are all good, lets return */ 4565 ins->objectid = ffe_ctl->search_start; 4566 ins->offset = ffe_ctl->num_bytes; 4567 4568 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4569 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4570 break; 4571 loop: 4572 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4573 !ffe_ctl->retry_uncached) { 4574 ffe_ctl->retry_uncached = true; 4575 btrfs_wait_block_group_cache_progress(block_group, 4576 ffe_ctl->num_bytes + 4577 ffe_ctl->empty_cluster + 4578 ffe_ctl->empty_size); 4579 goto have_block_group; 4580 } 4581 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4582 cond_resched(); 4583 } 4584 up_read(&space_info->groups_sem); 4585 4586 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4587 if (ret > 0) 4588 goto search; 4589 4590 if (ret == -ENOSPC && !cache_block_group_error) { 4591 /* 4592 * Use ffe_ctl->total_free_space as fallback if we can't find 4593 * any contiguous hole. 4594 */ 4595 if (!ffe_ctl->max_extent_size) 4596 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4597 spin_lock(&space_info->lock); 4598 space_info->max_extent_size = ffe_ctl->max_extent_size; 4599 spin_unlock(&space_info->lock); 4600 ins->offset = ffe_ctl->max_extent_size; 4601 } else if (ret == -ENOSPC) { 4602 ret = cache_block_group_error; 4603 } 4604 return ret; 4605 } 4606 4607 /* 4608 * Entry point to the extent allocator. Tries to find a hole that is at least 4609 * as big as @num_bytes. 4610 * 4611 * @root - The root that will contain this extent 4612 * 4613 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4614 * is used for accounting purposes. This value differs 4615 * from @num_bytes only in the case of compressed extents. 4616 * 4617 * @num_bytes - Number of bytes to allocate on-disk. 4618 * 4619 * @min_alloc_size - Indicates the minimum amount of space that the 4620 * allocator should try to satisfy. In some cases 4621 * @num_bytes may be larger than what is required and if 4622 * the filesystem is fragmented then allocation fails. 4623 * However, the presence of @min_alloc_size gives a 4624 * chance to try and satisfy the smaller allocation. 4625 * 4626 * @empty_size - A hint that you plan on doing more COW. This is the 4627 * size in bytes the allocator should try to find free 4628 * next to the block it returns. This is just a hint and 4629 * may be ignored by the allocator. 4630 * 4631 * @hint_byte - Hint to the allocator to start searching above the byte 4632 * address passed. It might be ignored. 4633 * 4634 * @ins - This key is modified to record the found hole. It will 4635 * have the following values: 4636 * ins->objectid == start position 4637 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4638 * ins->offset == the size of the hole. 4639 * 4640 * @is_data - Boolean flag indicating whether an extent is 4641 * allocated for data (true) or metadata (false) 4642 * 4643 * @delalloc - Boolean flag indicating whether this allocation is for 4644 * delalloc or not. If 'true' data_rwsem of block groups 4645 * is going to be acquired. 4646 * 4647 * 4648 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4649 * case -ENOSPC is returned then @ins->offset will contain the size of the 4650 * largest available hole the allocator managed to find. 4651 */ 4652 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4653 u64 num_bytes, u64 min_alloc_size, 4654 u64 empty_size, u64 hint_byte, 4655 struct btrfs_key *ins, int is_data, int delalloc) 4656 { 4657 struct btrfs_fs_info *fs_info = root->fs_info; 4658 struct find_free_extent_ctl ffe_ctl = {}; 4659 bool final_tried = num_bytes == min_alloc_size; 4660 u64 flags; 4661 int ret; 4662 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4663 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4664 4665 flags = get_alloc_profile_by_root(root, is_data); 4666 again: 4667 WARN_ON(num_bytes < fs_info->sectorsize); 4668 4669 ffe_ctl.ram_bytes = ram_bytes; 4670 ffe_ctl.num_bytes = num_bytes; 4671 ffe_ctl.min_alloc_size = min_alloc_size; 4672 ffe_ctl.empty_size = empty_size; 4673 ffe_ctl.flags = flags; 4674 ffe_ctl.delalloc = delalloc; 4675 ffe_ctl.hint_byte = hint_byte; 4676 ffe_ctl.for_treelog = for_treelog; 4677 ffe_ctl.for_data_reloc = for_data_reloc; 4678 4679 ret = find_free_extent(root, ins, &ffe_ctl); 4680 if (!ret && !is_data) { 4681 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4682 } else if (ret == -ENOSPC) { 4683 if (!final_tried && ins->offset) { 4684 num_bytes = min(num_bytes >> 1, ins->offset); 4685 num_bytes = round_down(num_bytes, 4686 fs_info->sectorsize); 4687 num_bytes = max(num_bytes, min_alloc_size); 4688 ram_bytes = num_bytes; 4689 if (num_bytes == min_alloc_size) 4690 final_tried = true; 4691 goto again; 4692 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4693 struct btrfs_space_info *sinfo; 4694 4695 sinfo = btrfs_find_space_info(fs_info, flags); 4696 btrfs_err(fs_info, 4697 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4698 flags, num_bytes, for_treelog, for_data_reloc); 4699 if (sinfo) 4700 btrfs_dump_space_info(fs_info, sinfo, 4701 num_bytes, 1); 4702 } 4703 } 4704 4705 return ret; 4706 } 4707 4708 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4709 u64 start, u64 len, int delalloc) 4710 { 4711 struct btrfs_block_group *cache; 4712 4713 cache = btrfs_lookup_block_group(fs_info, start); 4714 if (!cache) { 4715 btrfs_err(fs_info, "Unable to find block group for %llu", 4716 start); 4717 return -ENOSPC; 4718 } 4719 4720 btrfs_add_free_space(cache, start, len); 4721 btrfs_free_reserved_bytes(cache, len, delalloc); 4722 trace_btrfs_reserved_extent_free(fs_info, start, len); 4723 4724 btrfs_put_block_group(cache); 4725 return 0; 4726 } 4727 4728 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4729 const struct extent_buffer *eb) 4730 { 4731 struct btrfs_block_group *cache; 4732 int ret = 0; 4733 4734 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4735 if (!cache) { 4736 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4737 eb->start); 4738 return -ENOSPC; 4739 } 4740 4741 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4742 btrfs_put_block_group(cache); 4743 return ret; 4744 } 4745 4746 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4747 u64 num_bytes) 4748 { 4749 struct btrfs_fs_info *fs_info = trans->fs_info; 4750 int ret; 4751 4752 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4753 if (ret) 4754 return ret; 4755 4756 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4757 if (ret) { 4758 ASSERT(!ret); 4759 btrfs_err(fs_info, "update block group failed for %llu %llu", 4760 bytenr, num_bytes); 4761 return ret; 4762 } 4763 4764 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4765 return 0; 4766 } 4767 4768 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4769 u64 parent, u64 root_objectid, 4770 u64 flags, u64 owner, u64 offset, 4771 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4772 { 4773 struct btrfs_fs_info *fs_info = trans->fs_info; 4774 struct btrfs_root *extent_root; 4775 int ret; 4776 struct btrfs_extent_item *extent_item; 4777 struct btrfs_extent_owner_ref *oref; 4778 struct btrfs_extent_inline_ref *iref; 4779 struct btrfs_path *path; 4780 struct extent_buffer *leaf; 4781 int type; 4782 u32 size; 4783 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4784 4785 if (parent > 0) 4786 type = BTRFS_SHARED_DATA_REF_KEY; 4787 else 4788 type = BTRFS_EXTENT_DATA_REF_KEY; 4789 4790 size = sizeof(*extent_item); 4791 if (simple_quota) 4792 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4793 size += btrfs_extent_inline_ref_size(type); 4794 4795 path = btrfs_alloc_path(); 4796 if (!path) 4797 return -ENOMEM; 4798 4799 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4800 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4801 if (ret) { 4802 btrfs_free_path(path); 4803 return ret; 4804 } 4805 4806 leaf = path->nodes[0]; 4807 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4808 struct btrfs_extent_item); 4809 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4810 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4811 btrfs_set_extent_flags(leaf, extent_item, 4812 flags | BTRFS_EXTENT_FLAG_DATA); 4813 4814 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4815 if (simple_quota) { 4816 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4817 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4818 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4819 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4820 } 4821 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4822 4823 if (parent > 0) { 4824 struct btrfs_shared_data_ref *ref; 4825 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4826 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4827 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4828 } else { 4829 struct btrfs_extent_data_ref *ref; 4830 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4831 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4832 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4833 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4834 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4835 } 4836 4837 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4838 btrfs_free_path(path); 4839 4840 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4841 } 4842 4843 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4844 struct btrfs_delayed_ref_node *node, 4845 struct btrfs_delayed_extent_op *extent_op) 4846 { 4847 struct btrfs_fs_info *fs_info = trans->fs_info; 4848 struct btrfs_root *extent_root; 4849 int ret; 4850 struct btrfs_extent_item *extent_item; 4851 struct btrfs_key extent_key; 4852 struct btrfs_tree_block_info *block_info; 4853 struct btrfs_extent_inline_ref *iref; 4854 struct btrfs_path *path; 4855 struct extent_buffer *leaf; 4856 u32 size = sizeof(*extent_item) + sizeof(*iref); 4857 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4858 /* The owner of a tree block is the level. */ 4859 int level = btrfs_delayed_ref_owner(node); 4860 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4861 4862 extent_key.objectid = node->bytenr; 4863 if (skinny_metadata) { 4864 /* The owner of a tree block is the level. */ 4865 extent_key.offset = level; 4866 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4867 } else { 4868 extent_key.offset = node->num_bytes; 4869 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4870 size += sizeof(*block_info); 4871 } 4872 4873 path = btrfs_alloc_path(); 4874 if (!path) 4875 return -ENOMEM; 4876 4877 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4878 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4879 size); 4880 if (ret) { 4881 btrfs_free_path(path); 4882 return ret; 4883 } 4884 4885 leaf = path->nodes[0]; 4886 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4887 struct btrfs_extent_item); 4888 btrfs_set_extent_refs(leaf, extent_item, 1); 4889 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4890 btrfs_set_extent_flags(leaf, extent_item, 4891 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4892 4893 if (skinny_metadata) { 4894 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4895 } else { 4896 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4897 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4898 btrfs_set_tree_block_level(leaf, block_info, level); 4899 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4900 } 4901 4902 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4903 btrfs_set_extent_inline_ref_type(leaf, iref, 4904 BTRFS_SHARED_BLOCK_REF_KEY); 4905 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4906 } else { 4907 btrfs_set_extent_inline_ref_type(leaf, iref, 4908 BTRFS_TREE_BLOCK_REF_KEY); 4909 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4910 } 4911 4912 btrfs_mark_buffer_dirty(trans, leaf); 4913 btrfs_free_path(path); 4914 4915 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4916 } 4917 4918 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4919 struct btrfs_root *root, u64 owner, 4920 u64 offset, u64 ram_bytes, 4921 struct btrfs_key *ins) 4922 { 4923 struct btrfs_ref generic_ref = { 4924 .action = BTRFS_ADD_DELAYED_EXTENT, 4925 .bytenr = ins->objectid, 4926 .num_bytes = ins->offset, 4927 .owning_root = btrfs_root_id(root), 4928 .ref_root = btrfs_root_id(root), 4929 }; 4930 4931 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4932 4933 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4934 generic_ref.owning_root = root->relocation_src_root; 4935 4936 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4937 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4938 4939 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4940 } 4941 4942 /* 4943 * this is used by the tree logging recovery code. It records that 4944 * an extent has been allocated and makes sure to clear the free 4945 * space cache bits as well 4946 */ 4947 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4948 u64 root_objectid, u64 owner, u64 offset, 4949 struct btrfs_key *ins) 4950 { 4951 struct btrfs_fs_info *fs_info = trans->fs_info; 4952 int ret; 4953 struct btrfs_block_group *block_group; 4954 struct btrfs_space_info *space_info; 4955 struct btrfs_squota_delta delta = { 4956 .root = root_objectid, 4957 .num_bytes = ins->offset, 4958 .generation = trans->transid, 4959 .is_data = true, 4960 .is_inc = true, 4961 }; 4962 4963 /* 4964 * Mixed block groups will exclude before processing the log so we only 4965 * need to do the exclude dance if this fs isn't mixed. 4966 */ 4967 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4968 ret = __exclude_logged_extent(fs_info, ins->objectid, 4969 ins->offset); 4970 if (ret) 4971 return ret; 4972 } 4973 4974 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4975 if (!block_group) 4976 return -EINVAL; 4977 4978 space_info = block_group->space_info; 4979 spin_lock(&space_info->lock); 4980 spin_lock(&block_group->lock); 4981 space_info->bytes_reserved += ins->offset; 4982 block_group->reserved += ins->offset; 4983 spin_unlock(&block_group->lock); 4984 spin_unlock(&space_info->lock); 4985 4986 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4987 offset, ins, 1, root_objectid); 4988 if (ret) 4989 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4990 ret = btrfs_record_squota_delta(fs_info, &delta); 4991 btrfs_put_block_group(block_group); 4992 return ret; 4993 } 4994 4995 #ifdef CONFIG_BTRFS_DEBUG 4996 /* 4997 * Extra safety check in case the extent tree is corrupted and extent allocator 4998 * chooses to use a tree block which is already used and locked. 4999 */ 5000 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5001 { 5002 if (eb->lock_owner == current->pid) { 5003 btrfs_err_rl(eb->fs_info, 5004 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5005 eb->start, btrfs_header_owner(eb), current->pid); 5006 return true; 5007 } 5008 return false; 5009 } 5010 #else 5011 static bool check_eb_lock_owner(struct extent_buffer *eb) 5012 { 5013 return false; 5014 } 5015 #endif 5016 5017 static struct extent_buffer * 5018 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5019 u64 bytenr, int level, u64 owner, 5020 enum btrfs_lock_nesting nest) 5021 { 5022 struct btrfs_fs_info *fs_info = root->fs_info; 5023 struct extent_buffer *buf; 5024 u64 lockdep_owner = owner; 5025 5026 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5027 if (IS_ERR(buf)) 5028 return buf; 5029 5030 if (check_eb_lock_owner(buf)) { 5031 free_extent_buffer(buf); 5032 return ERR_PTR(-EUCLEAN); 5033 } 5034 5035 /* 5036 * The reloc trees are just snapshots, so we need them to appear to be 5037 * just like any other fs tree WRT lockdep. 5038 * 5039 * The exception however is in replace_path() in relocation, where we 5040 * hold the lock on the original fs root and then search for the reloc 5041 * root. At that point we need to make sure any reloc root buffers are 5042 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5043 * lockdep happy. 5044 */ 5045 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5046 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5047 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5048 5049 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5050 btrfs_set_header_generation(buf, trans->transid); 5051 5052 /* 5053 * This needs to stay, because we could allocate a freed block from an 5054 * old tree into a new tree, so we need to make sure this new block is 5055 * set to the appropriate level and owner. 5056 */ 5057 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5058 5059 btrfs_tree_lock_nested(buf, nest); 5060 btrfs_clear_buffer_dirty(trans, buf); 5061 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5062 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5063 5064 set_extent_buffer_uptodate(buf); 5065 5066 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5067 btrfs_set_header_level(buf, level); 5068 btrfs_set_header_bytenr(buf, buf->start); 5069 btrfs_set_header_generation(buf, trans->transid); 5070 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5071 btrfs_set_header_owner(buf, owner); 5072 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5073 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5074 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5075 buf->log_index = root->log_transid % 2; 5076 /* 5077 * we allow two log transactions at a time, use different 5078 * EXTENT bit to differentiate dirty pages. 5079 */ 5080 if (buf->log_index == 0) 5081 set_extent_bit(&root->dirty_log_pages, buf->start, 5082 buf->start + buf->len - 1, 5083 EXTENT_DIRTY, NULL); 5084 else 5085 set_extent_bit(&root->dirty_log_pages, buf->start, 5086 buf->start + buf->len - 1, 5087 EXTENT_NEW, NULL); 5088 } else { 5089 buf->log_index = -1; 5090 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5091 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5092 } 5093 /* this returns a buffer locked for blocking */ 5094 return buf; 5095 } 5096 5097 /* 5098 * finds a free extent and does all the dirty work required for allocation 5099 * returns the tree buffer or an ERR_PTR on error. 5100 */ 5101 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5102 struct btrfs_root *root, 5103 u64 parent, u64 root_objectid, 5104 const struct btrfs_disk_key *key, 5105 int level, u64 hint, 5106 u64 empty_size, 5107 u64 reloc_src_root, 5108 enum btrfs_lock_nesting nest) 5109 { 5110 struct btrfs_fs_info *fs_info = root->fs_info; 5111 struct btrfs_key ins; 5112 struct btrfs_block_rsv *block_rsv; 5113 struct extent_buffer *buf; 5114 u64 flags = 0; 5115 int ret; 5116 u32 blocksize = fs_info->nodesize; 5117 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5118 u64 owning_root; 5119 5120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5121 if (btrfs_is_testing(fs_info)) { 5122 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5123 level, root_objectid, nest); 5124 if (!IS_ERR(buf)) 5125 root->alloc_bytenr += blocksize; 5126 return buf; 5127 } 5128 #endif 5129 5130 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5131 if (IS_ERR(block_rsv)) 5132 return ERR_CAST(block_rsv); 5133 5134 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5135 empty_size, hint, &ins, 0, 0); 5136 if (ret) 5137 goto out_unuse; 5138 5139 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5140 root_objectid, nest); 5141 if (IS_ERR(buf)) { 5142 ret = PTR_ERR(buf); 5143 goto out_free_reserved; 5144 } 5145 owning_root = btrfs_header_owner(buf); 5146 5147 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5148 if (parent == 0) 5149 parent = ins.objectid; 5150 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5151 owning_root = reloc_src_root; 5152 } else 5153 BUG_ON(parent > 0); 5154 5155 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5156 struct btrfs_delayed_extent_op *extent_op; 5157 struct btrfs_ref generic_ref = { 5158 .action = BTRFS_ADD_DELAYED_EXTENT, 5159 .bytenr = ins.objectid, 5160 .num_bytes = ins.offset, 5161 .parent = parent, 5162 .owning_root = owning_root, 5163 .ref_root = root_objectid, 5164 }; 5165 5166 if (!skinny_metadata || flags != 0) { 5167 extent_op = btrfs_alloc_delayed_extent_op(); 5168 if (!extent_op) { 5169 ret = -ENOMEM; 5170 goto out_free_buf; 5171 } 5172 if (key) 5173 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5174 else 5175 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5176 extent_op->flags_to_set = flags; 5177 extent_op->update_key = (skinny_metadata ? false : true); 5178 extent_op->update_flags = (flags != 0); 5179 } else { 5180 extent_op = NULL; 5181 } 5182 5183 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5184 btrfs_ref_tree_mod(fs_info, &generic_ref); 5185 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5186 if (ret) { 5187 btrfs_free_delayed_extent_op(extent_op); 5188 goto out_free_buf; 5189 } 5190 } 5191 return buf; 5192 5193 out_free_buf: 5194 btrfs_tree_unlock(buf); 5195 free_extent_buffer(buf); 5196 out_free_reserved: 5197 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5198 out_unuse: 5199 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5200 return ERR_PTR(ret); 5201 } 5202 5203 struct walk_control { 5204 u64 refs[BTRFS_MAX_LEVEL]; 5205 u64 flags[BTRFS_MAX_LEVEL]; 5206 struct btrfs_key update_progress; 5207 struct btrfs_key drop_progress; 5208 int drop_level; 5209 int stage; 5210 int level; 5211 int shared_level; 5212 int update_ref; 5213 int keep_locks; 5214 int reada_slot; 5215 int reada_count; 5216 int restarted; 5217 /* Indicate that extent info needs to be looked up when walking the tree. */ 5218 int lookup_info; 5219 }; 5220 5221 /* 5222 * This is our normal stage. We are traversing blocks the current snapshot owns 5223 * and we are dropping any of our references to any children we are able to, and 5224 * then freeing the block once we've processed all of the children. 5225 */ 5226 #define DROP_REFERENCE 1 5227 5228 /* 5229 * We enter this stage when we have to walk into a child block (meaning we can't 5230 * simply drop our reference to it from our current parent node) and there are 5231 * more than one reference on it. If we are the owner of any of the children 5232 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5233 * on them in order to drop our normal ref and add the shared ref. 5234 */ 5235 #define UPDATE_BACKREF 2 5236 5237 /* 5238 * Decide if we need to walk down into this node to adjust the references. 5239 * 5240 * @root: the root we are currently deleting 5241 * @wc: the walk control for this deletion 5242 * @eb: the parent eb that we're currently visiting 5243 * @refs: the number of refs for wc->level - 1 5244 * @flags: the flags for wc->level - 1 5245 * @slot: the slot in the eb that we're currently checking 5246 * 5247 * This is meant to be called when we're evaluating if a node we point to at 5248 * wc->level should be read and walked into, or if we can simply delete our 5249 * reference to it. We return true if we should walk into the node, false if we 5250 * can skip it. 5251 * 5252 * We have assertions in here to make sure this is called correctly. We assume 5253 * that sanity checking on the blocks read to this point has been done, so any 5254 * corrupted file systems must have been caught before calling this function. 5255 */ 5256 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5257 struct extent_buffer *eb, u64 refs, u64 flags, int slot) 5258 { 5259 struct btrfs_key key; 5260 u64 generation; 5261 int level = wc->level; 5262 5263 ASSERT(level > 0); 5264 ASSERT(wc->refs[level - 1] > 0); 5265 5266 /* 5267 * The update backref stage we only want to skip if we already have 5268 * FULL_BACKREF set, otherwise we need to read. 5269 */ 5270 if (wc->stage == UPDATE_BACKREF) { 5271 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5272 return false; 5273 return true; 5274 } 5275 5276 /* 5277 * We're the last ref on this block, we must walk into it and process 5278 * any refs it's pointing at. 5279 */ 5280 if (wc->refs[level - 1] == 1) 5281 return true; 5282 5283 /* 5284 * If we're already FULL_BACKREF then we know we can just drop our 5285 * current reference. 5286 */ 5287 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5288 return false; 5289 5290 /* 5291 * This block is older than our creation generation, we can drop our 5292 * reference to it. 5293 */ 5294 generation = btrfs_node_ptr_generation(eb, slot); 5295 if (!wc->update_ref || generation <= root->root_key.offset) 5296 return false; 5297 5298 /* 5299 * This block was processed from a previous snapshot deletion run, we 5300 * can skip it. 5301 */ 5302 btrfs_node_key_to_cpu(eb, &key, slot); 5303 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5304 return false; 5305 5306 /* All other cases we need to wander into the node. */ 5307 return true; 5308 } 5309 5310 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5311 struct btrfs_root *root, 5312 struct walk_control *wc, 5313 struct btrfs_path *path) 5314 { 5315 struct btrfs_fs_info *fs_info = root->fs_info; 5316 u64 bytenr; 5317 u64 generation; 5318 u64 refs; 5319 u64 flags; 5320 u32 nritems; 5321 struct extent_buffer *eb; 5322 int ret; 5323 int slot; 5324 int nread = 0; 5325 5326 if (path->slots[wc->level] < wc->reada_slot) { 5327 wc->reada_count = wc->reada_count * 2 / 3; 5328 wc->reada_count = max(wc->reada_count, 2); 5329 } else { 5330 wc->reada_count = wc->reada_count * 3 / 2; 5331 wc->reada_count = min_t(int, wc->reada_count, 5332 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5333 } 5334 5335 eb = path->nodes[wc->level]; 5336 nritems = btrfs_header_nritems(eb); 5337 5338 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5339 if (nread >= wc->reada_count) 5340 break; 5341 5342 cond_resched(); 5343 bytenr = btrfs_node_blockptr(eb, slot); 5344 generation = btrfs_node_ptr_generation(eb, slot); 5345 5346 if (slot == path->slots[wc->level]) 5347 goto reada; 5348 5349 if (wc->stage == UPDATE_BACKREF && 5350 generation <= root->root_key.offset) 5351 continue; 5352 5353 /* We don't lock the tree block, it's OK to be racy here */ 5354 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5355 wc->level - 1, 1, &refs, 5356 &flags, NULL); 5357 /* We don't care about errors in readahead. */ 5358 if (ret < 0) 5359 continue; 5360 5361 /* 5362 * This could be racey, it's conceivable that we raced and end 5363 * up with a bogus refs count, if that's the case just skip, if 5364 * we are actually corrupt we will notice when we look up 5365 * everything again with our locks. 5366 */ 5367 if (refs == 0) 5368 continue; 5369 5370 /* If we don't need to visit this node don't reada. */ 5371 if (!visit_node_for_delete(root, wc, eb, refs, flags, slot)) 5372 continue; 5373 reada: 5374 btrfs_readahead_node_child(eb, slot); 5375 nread++; 5376 } 5377 wc->reada_slot = slot; 5378 } 5379 5380 /* 5381 * helper to process tree block while walking down the tree. 5382 * 5383 * when wc->stage == UPDATE_BACKREF, this function updates 5384 * back refs for pointers in the block. 5385 * 5386 * NOTE: return value 1 means we should stop walking down. 5387 */ 5388 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5389 struct btrfs_root *root, 5390 struct btrfs_path *path, 5391 struct walk_control *wc) 5392 { 5393 struct btrfs_fs_info *fs_info = root->fs_info; 5394 int level = wc->level; 5395 struct extent_buffer *eb = path->nodes[level]; 5396 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5397 int ret; 5398 5399 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5400 return 1; 5401 5402 /* 5403 * when reference count of tree block is 1, it won't increase 5404 * again. once full backref flag is set, we never clear it. 5405 */ 5406 if (wc->lookup_info && 5407 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5408 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5409 ASSERT(path->locks[level]); 5410 ret = btrfs_lookup_extent_info(trans, fs_info, 5411 eb->start, level, 1, 5412 &wc->refs[level], 5413 &wc->flags[level], 5414 NULL); 5415 if (ret) 5416 return ret; 5417 if (unlikely(wc->refs[level] == 0)) { 5418 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5419 eb->start); 5420 return -EUCLEAN; 5421 } 5422 } 5423 5424 if (wc->stage == DROP_REFERENCE) { 5425 if (wc->refs[level] > 1) 5426 return 1; 5427 5428 if (path->locks[level] && !wc->keep_locks) { 5429 btrfs_tree_unlock_rw(eb, path->locks[level]); 5430 path->locks[level] = 0; 5431 } 5432 return 0; 5433 } 5434 5435 /* wc->stage == UPDATE_BACKREF */ 5436 if (!(wc->flags[level] & flag)) { 5437 ASSERT(path->locks[level]); 5438 ret = btrfs_inc_ref(trans, root, eb, 1); 5439 if (ret) { 5440 btrfs_abort_transaction(trans, ret); 5441 return ret; 5442 } 5443 ret = btrfs_dec_ref(trans, root, eb, 0); 5444 if (ret) { 5445 btrfs_abort_transaction(trans, ret); 5446 return ret; 5447 } 5448 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5449 if (ret) { 5450 btrfs_abort_transaction(trans, ret); 5451 return ret; 5452 } 5453 wc->flags[level] |= flag; 5454 } 5455 5456 /* 5457 * the block is shared by multiple trees, so it's not good to 5458 * keep the tree lock 5459 */ 5460 if (path->locks[level] && level > 0) { 5461 btrfs_tree_unlock_rw(eb, path->locks[level]); 5462 path->locks[level] = 0; 5463 } 5464 return 0; 5465 } 5466 5467 /* 5468 * This is used to verify a ref exists for this root to deal with a bug where we 5469 * would have a drop_progress key that hadn't been updated properly. 5470 */ 5471 static int check_ref_exists(struct btrfs_trans_handle *trans, 5472 struct btrfs_root *root, u64 bytenr, u64 parent, 5473 int level) 5474 { 5475 struct btrfs_delayed_ref_root *delayed_refs; 5476 struct btrfs_delayed_ref_head *head; 5477 struct btrfs_path *path; 5478 struct btrfs_extent_inline_ref *iref; 5479 int ret; 5480 bool exists = false; 5481 5482 path = btrfs_alloc_path(); 5483 if (!path) 5484 return -ENOMEM; 5485 again: 5486 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5487 root->fs_info->nodesize, parent, 5488 btrfs_root_id(root), level, 0); 5489 if (ret != -ENOENT) { 5490 /* 5491 * If we get 0 then we found our reference, return 1, else 5492 * return the error if it's not -ENOENT; 5493 */ 5494 btrfs_free_path(path); 5495 return (ret < 0 ) ? ret : 1; 5496 } 5497 5498 /* 5499 * We could have a delayed ref with this reference, so look it up while 5500 * we're holding the path open to make sure we don't race with the 5501 * delayed ref running. 5502 */ 5503 delayed_refs = &trans->transaction->delayed_refs; 5504 spin_lock(&delayed_refs->lock); 5505 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 5506 if (!head) 5507 goto out; 5508 if (!mutex_trylock(&head->mutex)) { 5509 /* 5510 * We're contended, means that the delayed ref is running, get a 5511 * reference and wait for the ref head to be complete and then 5512 * try again. 5513 */ 5514 refcount_inc(&head->refs); 5515 spin_unlock(&delayed_refs->lock); 5516 5517 btrfs_release_path(path); 5518 5519 mutex_lock(&head->mutex); 5520 mutex_unlock(&head->mutex); 5521 btrfs_put_delayed_ref_head(head); 5522 goto again; 5523 } 5524 5525 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent); 5526 mutex_unlock(&head->mutex); 5527 out: 5528 spin_unlock(&delayed_refs->lock); 5529 btrfs_free_path(path); 5530 return exists ? 1 : 0; 5531 } 5532 5533 /* 5534 * We may not have an uptodate block, so if we are going to walk down into this 5535 * block we need to drop the lock, read it off of the disk, re-lock it and 5536 * return to continue dropping the snapshot. 5537 */ 5538 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5539 struct btrfs_root *root, 5540 struct btrfs_path *path, 5541 struct walk_control *wc, 5542 struct extent_buffer *next) 5543 { 5544 struct btrfs_tree_parent_check check = { 0 }; 5545 u64 generation; 5546 int level = wc->level; 5547 int ret; 5548 5549 btrfs_assert_tree_write_locked(next); 5550 5551 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5552 5553 if (btrfs_buffer_uptodate(next, generation, 0)) 5554 return 0; 5555 5556 check.level = level - 1; 5557 check.transid = generation; 5558 check.owner_root = btrfs_root_id(root); 5559 check.has_first_key = true; 5560 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5561 5562 btrfs_tree_unlock(next); 5563 if (level == 1) 5564 reada_walk_down(trans, root, wc, path); 5565 ret = btrfs_read_extent_buffer(next, &check); 5566 if (ret) { 5567 free_extent_buffer(next); 5568 return ret; 5569 } 5570 btrfs_tree_lock(next); 5571 wc->lookup_info = 1; 5572 return 0; 5573 } 5574 5575 /* 5576 * If we determine that we don't have to visit wc->level - 1 then we need to 5577 * determine if we can drop our reference. 5578 * 5579 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5580 * 5581 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5582 * reference, skipping it if we dropped it from a previous incompleted drop, or 5583 * dropping it if we still have a reference to it. 5584 */ 5585 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5586 struct btrfs_path *path, struct walk_control *wc, 5587 struct extent_buffer *next, u64 owner_root) 5588 { 5589 struct btrfs_ref ref = { 5590 .action = BTRFS_DROP_DELAYED_REF, 5591 .bytenr = next->start, 5592 .num_bytes = root->fs_info->nodesize, 5593 .owning_root = owner_root, 5594 .ref_root = btrfs_root_id(root), 5595 }; 5596 int level = wc->level; 5597 int ret; 5598 5599 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5600 if (wc->stage == UPDATE_BACKREF) 5601 return 0; 5602 5603 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5604 ref.parent = path->nodes[level]->start; 5605 } else { 5606 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5607 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { 5608 btrfs_err(root->fs_info, "mismatched block owner"); 5609 return -EIO; 5610 } 5611 } 5612 5613 /* 5614 * If we had a drop_progress we need to verify the refs are set as 5615 * expected. If we find our ref then we know that from here on out 5616 * everything should be correct, and we can clear the 5617 * ->restarted flag. 5618 */ 5619 if (wc->restarted) { 5620 ret = check_ref_exists(trans, root, next->start, ref.parent, 5621 level - 1); 5622 if (ret <= 0) 5623 return ret; 5624 ret = 0; 5625 wc->restarted = 0; 5626 } 5627 5628 /* 5629 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5630 * accounted them at merge time (replace_path), thus we could skip 5631 * expensive subtree trace here. 5632 */ 5633 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5634 wc->refs[level - 1] > 1) { 5635 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5636 path->slots[level]); 5637 5638 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5639 if (ret) { 5640 btrfs_err_rl(root->fs_info, 5641 "error %d accounting shared subtree, quota is out of sync, rescan required", 5642 ret); 5643 } 5644 } 5645 5646 /* 5647 * We need to update the next key in our walk control so we can update 5648 * the drop_progress key accordingly. We don't care if find_next_key 5649 * doesn't find a key because that means we're at the end and are going 5650 * to clean up now. 5651 */ 5652 wc->drop_level = level; 5653 find_next_key(path, level, &wc->drop_progress); 5654 5655 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5656 return btrfs_free_extent(trans, &ref); 5657 } 5658 5659 /* 5660 * helper to process tree block pointer. 5661 * 5662 * when wc->stage == DROP_REFERENCE, this function checks 5663 * reference count of the block pointed to. if the block 5664 * is shared and we need update back refs for the subtree 5665 * rooted at the block, this function changes wc->stage to 5666 * UPDATE_BACKREF. if the block is shared and there is no 5667 * need to update back, this function drops the reference 5668 * to the block. 5669 * 5670 * NOTE: return value 1 means we should stop walking down. 5671 */ 5672 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5673 struct btrfs_root *root, 5674 struct btrfs_path *path, 5675 struct walk_control *wc) 5676 { 5677 struct btrfs_fs_info *fs_info = root->fs_info; 5678 u64 bytenr; 5679 u64 generation; 5680 u64 owner_root = 0; 5681 struct extent_buffer *next; 5682 int level = wc->level; 5683 int ret = 0; 5684 5685 generation = btrfs_node_ptr_generation(path->nodes[level], 5686 path->slots[level]); 5687 /* 5688 * if the lower level block was created before the snapshot 5689 * was created, we know there is no need to update back refs 5690 * for the subtree 5691 */ 5692 if (wc->stage == UPDATE_BACKREF && 5693 generation <= root->root_key.offset) { 5694 wc->lookup_info = 1; 5695 return 1; 5696 } 5697 5698 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5699 5700 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5701 level - 1); 5702 if (IS_ERR(next)) 5703 return PTR_ERR(next); 5704 5705 btrfs_tree_lock(next); 5706 5707 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5708 &wc->refs[level - 1], 5709 &wc->flags[level - 1], 5710 &owner_root); 5711 if (ret < 0) 5712 goto out_unlock; 5713 5714 if (unlikely(wc->refs[level - 1] == 0)) { 5715 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5716 bytenr); 5717 ret = -EUCLEAN; 5718 goto out_unlock; 5719 } 5720 wc->lookup_info = 0; 5721 5722 /* If we don't have to walk into this node skip it. */ 5723 if (!visit_node_for_delete(root, wc, path->nodes[level], 5724 wc->refs[level - 1], wc->flags[level - 1], 5725 path->slots[level])) 5726 goto skip; 5727 5728 /* 5729 * We have to walk down into this node, and if we're currently at the 5730 * DROP_REFERNCE stage and this block is shared then we need to switch 5731 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5732 */ 5733 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5734 wc->stage = UPDATE_BACKREF; 5735 wc->shared_level = level - 1; 5736 } 5737 5738 ret = check_next_block_uptodate(trans, root, path, wc, next); 5739 if (ret) 5740 return ret; 5741 5742 level--; 5743 ASSERT(level == btrfs_header_level(next)); 5744 if (level != btrfs_header_level(next)) { 5745 btrfs_err(root->fs_info, "mismatched level"); 5746 ret = -EIO; 5747 goto out_unlock; 5748 } 5749 path->nodes[level] = next; 5750 path->slots[level] = 0; 5751 path->locks[level] = BTRFS_WRITE_LOCK; 5752 wc->level = level; 5753 if (wc->level == 1) 5754 wc->reada_slot = 0; 5755 return 0; 5756 skip: 5757 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5758 if (ret) 5759 goto out_unlock; 5760 wc->refs[level - 1] = 0; 5761 wc->flags[level - 1] = 0; 5762 wc->lookup_info = 1; 5763 ret = 1; 5764 5765 out_unlock: 5766 btrfs_tree_unlock(next); 5767 free_extent_buffer(next); 5768 5769 return ret; 5770 } 5771 5772 /* 5773 * helper to process tree block while walking up the tree. 5774 * 5775 * when wc->stage == DROP_REFERENCE, this function drops 5776 * reference count on the block. 5777 * 5778 * when wc->stage == UPDATE_BACKREF, this function changes 5779 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5780 * to UPDATE_BACKREF previously while processing the block. 5781 * 5782 * NOTE: return value 1 means we should stop walking up. 5783 */ 5784 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5785 struct btrfs_root *root, 5786 struct btrfs_path *path, 5787 struct walk_control *wc) 5788 { 5789 struct btrfs_fs_info *fs_info = root->fs_info; 5790 int ret = 0; 5791 int level = wc->level; 5792 struct extent_buffer *eb = path->nodes[level]; 5793 u64 parent = 0; 5794 5795 if (wc->stage == UPDATE_BACKREF) { 5796 ASSERT(wc->shared_level >= level); 5797 if (level < wc->shared_level) 5798 goto out; 5799 5800 ret = find_next_key(path, level + 1, &wc->update_progress); 5801 if (ret > 0) 5802 wc->update_ref = 0; 5803 5804 wc->stage = DROP_REFERENCE; 5805 wc->shared_level = -1; 5806 path->slots[level] = 0; 5807 5808 /* 5809 * check reference count again if the block isn't locked. 5810 * we should start walking down the tree again if reference 5811 * count is one. 5812 */ 5813 if (!path->locks[level]) { 5814 ASSERT(level > 0); 5815 btrfs_tree_lock(eb); 5816 path->locks[level] = BTRFS_WRITE_LOCK; 5817 5818 ret = btrfs_lookup_extent_info(trans, fs_info, 5819 eb->start, level, 1, 5820 &wc->refs[level], 5821 &wc->flags[level], 5822 NULL); 5823 if (ret < 0) { 5824 btrfs_tree_unlock_rw(eb, path->locks[level]); 5825 path->locks[level] = 0; 5826 return ret; 5827 } 5828 if (unlikely(wc->refs[level] == 0)) { 5829 btrfs_tree_unlock_rw(eb, path->locks[level]); 5830 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5831 eb->start); 5832 return -EUCLEAN; 5833 } 5834 if (wc->refs[level] == 1) { 5835 btrfs_tree_unlock_rw(eb, path->locks[level]); 5836 path->locks[level] = 0; 5837 return 1; 5838 } 5839 } 5840 } 5841 5842 /* wc->stage == DROP_REFERENCE */ 5843 ASSERT(path->locks[level] || wc->refs[level] == 1); 5844 5845 if (wc->refs[level] == 1) { 5846 if (level == 0) { 5847 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5848 ret = btrfs_dec_ref(trans, root, eb, 1); 5849 else 5850 ret = btrfs_dec_ref(trans, root, eb, 0); 5851 if (ret) { 5852 btrfs_abort_transaction(trans, ret); 5853 return ret; 5854 } 5855 if (is_fstree(btrfs_root_id(root))) { 5856 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5857 if (ret) { 5858 btrfs_err_rl(fs_info, 5859 "error %d accounting leaf items, quota is out of sync, rescan required", 5860 ret); 5861 } 5862 } 5863 } 5864 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5865 if (!path->locks[level]) { 5866 btrfs_tree_lock(eb); 5867 path->locks[level] = BTRFS_WRITE_LOCK; 5868 } 5869 btrfs_clear_buffer_dirty(trans, eb); 5870 } 5871 5872 if (eb == root->node) { 5873 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5874 parent = eb->start; 5875 else if (btrfs_root_id(root) != btrfs_header_owner(eb)) 5876 goto owner_mismatch; 5877 } else { 5878 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5879 parent = path->nodes[level + 1]->start; 5880 else if (btrfs_root_id(root) != 5881 btrfs_header_owner(path->nodes[level + 1])) 5882 goto owner_mismatch; 5883 } 5884 5885 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5886 wc->refs[level] == 1); 5887 if (ret < 0) 5888 btrfs_abort_transaction(trans, ret); 5889 out: 5890 wc->refs[level] = 0; 5891 wc->flags[level] = 0; 5892 return ret; 5893 5894 owner_mismatch: 5895 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5896 btrfs_header_owner(eb), btrfs_root_id(root)); 5897 return -EUCLEAN; 5898 } 5899 5900 /* 5901 * walk_down_tree consists of two steps. 5902 * 5903 * walk_down_proc(). Look up the reference count and reference of our current 5904 * wc->level. At this point path->nodes[wc->level] should be populated and 5905 * uptodate, and in most cases should already be locked. If we are in 5906 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5907 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5908 * FULL_BACKREF on this node if it's not already set, and then do the 5909 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5910 * the shared reference to all of this nodes children. 5911 * 5912 * do_walk_down(). This is where we actually start iterating on the children of 5913 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5914 * our reference to the children that return false from visit_node_for_delete(), 5915 * which has various conditions where we know we can just drop our reference 5916 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5917 * visit_node_for_delete() returns false for, only walking down when necessary. 5918 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5919 * snapshot deletion. 5920 */ 5921 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5922 struct btrfs_root *root, 5923 struct btrfs_path *path, 5924 struct walk_control *wc) 5925 { 5926 int level = wc->level; 5927 int ret = 0; 5928 5929 wc->lookup_info = 1; 5930 while (level >= 0) { 5931 ret = walk_down_proc(trans, root, path, wc); 5932 if (ret) 5933 break; 5934 5935 if (level == 0) 5936 break; 5937 5938 if (path->slots[level] >= 5939 btrfs_header_nritems(path->nodes[level])) 5940 break; 5941 5942 ret = do_walk_down(trans, root, path, wc); 5943 if (ret > 0) { 5944 path->slots[level]++; 5945 continue; 5946 } else if (ret < 0) 5947 break; 5948 level = wc->level; 5949 } 5950 return (ret == 1) ? 0 : ret; 5951 } 5952 5953 /* 5954 * walk_up_tree() is responsible for making sure we visit every slot on our 5955 * current node, and if we're at the end of that node then we call 5956 * walk_up_proc() on our current node which will do one of a few things based on 5957 * our stage. 5958 * 5959 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5960 * then we need to walk back up the tree, and then going back down into the 5961 * other slots via walk_down_tree to update any other children from our original 5962 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5963 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 5964 * 5965 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 5966 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 5967 * in our current leaf. After that we call btrfs_free_tree_block() on the 5968 * current node and walk up to the next node to walk down the next slot. 5969 */ 5970 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5971 struct btrfs_root *root, 5972 struct btrfs_path *path, 5973 struct walk_control *wc, int max_level) 5974 { 5975 int level = wc->level; 5976 int ret; 5977 5978 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5979 while (level < max_level && path->nodes[level]) { 5980 wc->level = level; 5981 if (path->slots[level] + 1 < 5982 btrfs_header_nritems(path->nodes[level])) { 5983 path->slots[level]++; 5984 return 0; 5985 } else { 5986 ret = walk_up_proc(trans, root, path, wc); 5987 if (ret > 0) 5988 return 0; 5989 if (ret < 0) 5990 return ret; 5991 5992 if (path->locks[level]) { 5993 btrfs_tree_unlock_rw(path->nodes[level], 5994 path->locks[level]); 5995 path->locks[level] = 0; 5996 } 5997 free_extent_buffer(path->nodes[level]); 5998 path->nodes[level] = NULL; 5999 level++; 6000 } 6001 } 6002 return 1; 6003 } 6004 6005 /* 6006 * drop a subvolume tree. 6007 * 6008 * this function traverses the tree freeing any blocks that only 6009 * referenced by the tree. 6010 * 6011 * when a shared tree block is found. this function decreases its 6012 * reference count by one. if update_ref is true, this function 6013 * also make sure backrefs for the shared block and all lower level 6014 * blocks are properly updated. 6015 * 6016 * If called with for_reloc == 0, may exit early with -EAGAIN 6017 */ 6018 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 6019 { 6020 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 6021 struct btrfs_fs_info *fs_info = root->fs_info; 6022 struct btrfs_path *path; 6023 struct btrfs_trans_handle *trans; 6024 struct btrfs_root *tree_root = fs_info->tree_root; 6025 struct btrfs_root_item *root_item = &root->root_item; 6026 struct walk_control *wc; 6027 struct btrfs_key key; 6028 const u64 rootid = btrfs_root_id(root); 6029 int ret = 0; 6030 int level; 6031 bool root_dropped = false; 6032 bool unfinished_drop = false; 6033 6034 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 6035 6036 path = btrfs_alloc_path(); 6037 if (!path) { 6038 ret = -ENOMEM; 6039 goto out; 6040 } 6041 6042 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6043 if (!wc) { 6044 btrfs_free_path(path); 6045 ret = -ENOMEM; 6046 goto out; 6047 } 6048 6049 /* 6050 * Use join to avoid potential EINTR from transaction start. See 6051 * wait_reserve_ticket and the whole reservation callchain. 6052 */ 6053 if (for_reloc) 6054 trans = btrfs_join_transaction(tree_root); 6055 else 6056 trans = btrfs_start_transaction(tree_root, 0); 6057 if (IS_ERR(trans)) { 6058 ret = PTR_ERR(trans); 6059 goto out_free; 6060 } 6061 6062 ret = btrfs_run_delayed_items(trans); 6063 if (ret) 6064 goto out_end_trans; 6065 6066 /* 6067 * This will help us catch people modifying the fs tree while we're 6068 * dropping it. It is unsafe to mess with the fs tree while it's being 6069 * dropped as we unlock the root node and parent nodes as we walk down 6070 * the tree, assuming nothing will change. If something does change 6071 * then we'll have stale information and drop references to blocks we've 6072 * already dropped. 6073 */ 6074 set_bit(BTRFS_ROOT_DELETING, &root->state); 6075 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6076 6077 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6078 level = btrfs_header_level(root->node); 6079 path->nodes[level] = btrfs_lock_root_node(root); 6080 path->slots[level] = 0; 6081 path->locks[level] = BTRFS_WRITE_LOCK; 6082 memset(&wc->update_progress, 0, 6083 sizeof(wc->update_progress)); 6084 } else { 6085 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6086 memcpy(&wc->update_progress, &key, 6087 sizeof(wc->update_progress)); 6088 6089 level = btrfs_root_drop_level(root_item); 6090 BUG_ON(level == 0); 6091 path->lowest_level = level; 6092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6093 path->lowest_level = 0; 6094 if (ret < 0) 6095 goto out_end_trans; 6096 6097 WARN_ON(ret > 0); 6098 ret = 0; 6099 6100 /* 6101 * unlock our path, this is safe because only this 6102 * function is allowed to delete this snapshot 6103 */ 6104 btrfs_unlock_up_safe(path, 0); 6105 6106 level = btrfs_header_level(root->node); 6107 while (1) { 6108 btrfs_tree_lock(path->nodes[level]); 6109 path->locks[level] = BTRFS_WRITE_LOCK; 6110 6111 /* 6112 * btrfs_lookup_extent_info() returns 0 for success, 6113 * or < 0 for error. 6114 */ 6115 ret = btrfs_lookup_extent_info(trans, fs_info, 6116 path->nodes[level]->start, 6117 level, 1, &wc->refs[level], 6118 &wc->flags[level], NULL); 6119 if (ret < 0) 6120 goto out_end_trans; 6121 6122 BUG_ON(wc->refs[level] == 0); 6123 6124 if (level == btrfs_root_drop_level(root_item)) 6125 break; 6126 6127 btrfs_tree_unlock(path->nodes[level]); 6128 path->locks[level] = 0; 6129 WARN_ON(wc->refs[level] != 1); 6130 level--; 6131 } 6132 } 6133 6134 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6135 wc->level = level; 6136 wc->shared_level = -1; 6137 wc->stage = DROP_REFERENCE; 6138 wc->update_ref = update_ref; 6139 wc->keep_locks = 0; 6140 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6141 6142 while (1) { 6143 6144 ret = walk_down_tree(trans, root, path, wc); 6145 if (ret < 0) { 6146 btrfs_abort_transaction(trans, ret); 6147 break; 6148 } 6149 6150 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6151 if (ret < 0) { 6152 btrfs_abort_transaction(trans, ret); 6153 break; 6154 } 6155 6156 if (ret > 0) { 6157 BUG_ON(wc->stage != DROP_REFERENCE); 6158 ret = 0; 6159 break; 6160 } 6161 6162 if (wc->stage == DROP_REFERENCE) { 6163 wc->drop_level = wc->level; 6164 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6165 &wc->drop_progress, 6166 path->slots[wc->drop_level]); 6167 } 6168 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6169 &wc->drop_progress); 6170 btrfs_set_root_drop_level(root_item, wc->drop_level); 6171 6172 BUG_ON(wc->level == 0); 6173 if (btrfs_should_end_transaction(trans) || 6174 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6175 ret = btrfs_update_root(trans, tree_root, 6176 &root->root_key, 6177 root_item); 6178 if (ret) { 6179 btrfs_abort_transaction(trans, ret); 6180 goto out_end_trans; 6181 } 6182 6183 if (!is_reloc_root) 6184 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6185 6186 btrfs_end_transaction_throttle(trans); 6187 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6188 btrfs_debug(fs_info, 6189 "drop snapshot early exit"); 6190 ret = -EAGAIN; 6191 goto out_free; 6192 } 6193 6194 /* 6195 * Use join to avoid potential EINTR from transaction 6196 * start. See wait_reserve_ticket and the whole 6197 * reservation callchain. 6198 */ 6199 if (for_reloc) 6200 trans = btrfs_join_transaction(tree_root); 6201 else 6202 trans = btrfs_start_transaction(tree_root, 0); 6203 if (IS_ERR(trans)) { 6204 ret = PTR_ERR(trans); 6205 goto out_free; 6206 } 6207 } 6208 } 6209 btrfs_release_path(path); 6210 if (ret) 6211 goto out_end_trans; 6212 6213 ret = btrfs_del_root(trans, &root->root_key); 6214 if (ret) { 6215 btrfs_abort_transaction(trans, ret); 6216 goto out_end_trans; 6217 } 6218 6219 if (!is_reloc_root) { 6220 ret = btrfs_find_root(tree_root, &root->root_key, path, 6221 NULL, NULL); 6222 if (ret < 0) { 6223 btrfs_abort_transaction(trans, ret); 6224 goto out_end_trans; 6225 } else if (ret > 0) { 6226 ret = 0; 6227 /* 6228 * If we fail to delete the orphan item this time 6229 * around, it'll get picked up the next time. 6230 * 6231 * The most common failure here is just -ENOENT. 6232 */ 6233 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6234 } 6235 } 6236 6237 /* 6238 * This subvolume is going to be completely dropped, and won't be 6239 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6240 * commit transaction time. So free it here manually. 6241 */ 6242 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6243 btrfs_qgroup_free_meta_all_pertrans(root); 6244 6245 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6246 btrfs_add_dropped_root(trans, root); 6247 else 6248 btrfs_put_root(root); 6249 root_dropped = true; 6250 out_end_trans: 6251 if (!is_reloc_root) 6252 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6253 6254 btrfs_end_transaction_throttle(trans); 6255 out_free: 6256 kfree(wc); 6257 btrfs_free_path(path); 6258 out: 6259 if (!ret && root_dropped) { 6260 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6261 if (ret < 0) 6262 btrfs_warn_rl(fs_info, 6263 "failed to cleanup qgroup 0/%llu: %d", 6264 rootid, ret); 6265 ret = 0; 6266 } 6267 /* 6268 * We were an unfinished drop root, check to see if there are any 6269 * pending, and if not clear and wake up any waiters. 6270 */ 6271 if (!ret && unfinished_drop) 6272 btrfs_maybe_wake_unfinished_drop(fs_info); 6273 6274 /* 6275 * So if we need to stop dropping the snapshot for whatever reason we 6276 * need to make sure to add it back to the dead root list so that we 6277 * keep trying to do the work later. This also cleans up roots if we 6278 * don't have it in the radix (like when we recover after a power fail 6279 * or unmount) so we don't leak memory. 6280 */ 6281 if (!for_reloc && !root_dropped) 6282 btrfs_add_dead_root(root); 6283 return ret; 6284 } 6285 6286 /* 6287 * drop subtree rooted at tree block 'node'. 6288 * 6289 * NOTE: this function will unlock and release tree block 'node' 6290 * only used by relocation code 6291 */ 6292 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6293 struct btrfs_root *root, 6294 struct extent_buffer *node, 6295 struct extent_buffer *parent) 6296 { 6297 struct btrfs_fs_info *fs_info = root->fs_info; 6298 struct btrfs_path *path; 6299 struct walk_control *wc; 6300 int level; 6301 int parent_level; 6302 int ret = 0; 6303 6304 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6305 6306 path = btrfs_alloc_path(); 6307 if (!path) 6308 return -ENOMEM; 6309 6310 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6311 if (!wc) { 6312 btrfs_free_path(path); 6313 return -ENOMEM; 6314 } 6315 6316 btrfs_assert_tree_write_locked(parent); 6317 parent_level = btrfs_header_level(parent); 6318 atomic_inc(&parent->refs); 6319 path->nodes[parent_level] = parent; 6320 path->slots[parent_level] = btrfs_header_nritems(parent); 6321 6322 btrfs_assert_tree_write_locked(node); 6323 level = btrfs_header_level(node); 6324 path->nodes[level] = node; 6325 path->slots[level] = 0; 6326 path->locks[level] = BTRFS_WRITE_LOCK; 6327 6328 wc->refs[parent_level] = 1; 6329 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6330 wc->level = level; 6331 wc->shared_level = -1; 6332 wc->stage = DROP_REFERENCE; 6333 wc->update_ref = 0; 6334 wc->keep_locks = 1; 6335 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6336 6337 while (1) { 6338 ret = walk_down_tree(trans, root, path, wc); 6339 if (ret < 0) 6340 break; 6341 6342 ret = walk_up_tree(trans, root, path, wc, parent_level); 6343 if (ret) { 6344 if (ret > 0) 6345 ret = 0; 6346 break; 6347 } 6348 } 6349 6350 kfree(wc); 6351 btrfs_free_path(path); 6352 return ret; 6353 } 6354 6355 /* 6356 * Unpin the extent range in an error context and don't add the space back. 6357 * Errors are not propagated further. 6358 */ 6359 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6360 { 6361 unpin_extent_range(fs_info, start, end, false); 6362 } 6363 6364 /* 6365 * It used to be that old block groups would be left around forever. 6366 * Iterating over them would be enough to trim unused space. Since we 6367 * now automatically remove them, we also need to iterate over unallocated 6368 * space. 6369 * 6370 * We don't want a transaction for this since the discard may take a 6371 * substantial amount of time. We don't require that a transaction be 6372 * running, but we do need to take a running transaction into account 6373 * to ensure that we're not discarding chunks that were released or 6374 * allocated in the current transaction. 6375 * 6376 * Holding the chunks lock will prevent other threads from allocating 6377 * or releasing chunks, but it won't prevent a running transaction 6378 * from committing and releasing the memory that the pending chunks 6379 * list head uses. For that, we need to take a reference to the 6380 * transaction and hold the commit root sem. We only need to hold 6381 * it while performing the free space search since we have already 6382 * held back allocations. 6383 */ 6384 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6385 { 6386 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6387 int ret; 6388 6389 *trimmed = 0; 6390 6391 /* Discard not supported = nothing to do. */ 6392 if (!bdev_max_discard_sectors(device->bdev)) 6393 return 0; 6394 6395 /* Not writable = nothing to do. */ 6396 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6397 return 0; 6398 6399 /* No free space = nothing to do. */ 6400 if (device->total_bytes <= device->bytes_used) 6401 return 0; 6402 6403 ret = 0; 6404 6405 while (1) { 6406 struct btrfs_fs_info *fs_info = device->fs_info; 6407 u64 bytes; 6408 6409 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6410 if (ret) 6411 break; 6412 6413 find_first_clear_extent_bit(&device->alloc_state, start, 6414 &start, &end, 6415 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6416 6417 /* Check if there are any CHUNK_* bits left */ 6418 if (start > device->total_bytes) { 6419 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6420 btrfs_warn_in_rcu(fs_info, 6421 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6422 start, end - start + 1, 6423 btrfs_dev_name(device), 6424 device->total_bytes); 6425 mutex_unlock(&fs_info->chunk_mutex); 6426 ret = 0; 6427 break; 6428 } 6429 6430 /* Ensure we skip the reserved space on each device. */ 6431 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6432 6433 /* 6434 * If find_first_clear_extent_bit find a range that spans the 6435 * end of the device it will set end to -1, in this case it's up 6436 * to the caller to trim the value to the size of the device. 6437 */ 6438 end = min(end, device->total_bytes - 1); 6439 6440 len = end - start + 1; 6441 6442 /* We didn't find any extents */ 6443 if (!len) { 6444 mutex_unlock(&fs_info->chunk_mutex); 6445 ret = 0; 6446 break; 6447 } 6448 6449 ret = btrfs_issue_discard(device->bdev, start, len, 6450 &bytes); 6451 if (!ret) 6452 set_extent_bit(&device->alloc_state, start, 6453 start + bytes - 1, CHUNK_TRIMMED, NULL); 6454 mutex_unlock(&fs_info->chunk_mutex); 6455 6456 if (ret) 6457 break; 6458 6459 start += len; 6460 *trimmed += bytes; 6461 6462 if (fatal_signal_pending(current)) { 6463 ret = -ERESTARTSYS; 6464 break; 6465 } 6466 6467 cond_resched(); 6468 } 6469 6470 return ret; 6471 } 6472 6473 /* 6474 * Trim the whole filesystem by: 6475 * 1) trimming the free space in each block group 6476 * 2) trimming the unallocated space on each device 6477 * 6478 * This will also continue trimming even if a block group or device encounters 6479 * an error. The return value will be the last error, or 0 if nothing bad 6480 * happens. 6481 */ 6482 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6483 { 6484 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6485 struct btrfs_block_group *cache = NULL; 6486 struct btrfs_device *device; 6487 u64 group_trimmed; 6488 u64 range_end = U64_MAX; 6489 u64 start; 6490 u64 end; 6491 u64 trimmed = 0; 6492 u64 bg_failed = 0; 6493 u64 dev_failed = 0; 6494 int bg_ret = 0; 6495 int dev_ret = 0; 6496 int ret = 0; 6497 6498 if (range->start == U64_MAX) 6499 return -EINVAL; 6500 6501 /* 6502 * Check range overflow if range->len is set. 6503 * The default range->len is U64_MAX. 6504 */ 6505 if (range->len != U64_MAX && 6506 check_add_overflow(range->start, range->len, &range_end)) 6507 return -EINVAL; 6508 6509 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6510 for (; cache; cache = btrfs_next_block_group(cache)) { 6511 if (cache->start >= range_end) { 6512 btrfs_put_block_group(cache); 6513 break; 6514 } 6515 6516 start = max(range->start, cache->start); 6517 end = min(range_end, cache->start + cache->length); 6518 6519 if (end - start >= range->minlen) { 6520 if (!btrfs_block_group_done(cache)) { 6521 ret = btrfs_cache_block_group(cache, true); 6522 if (ret) { 6523 bg_failed++; 6524 bg_ret = ret; 6525 continue; 6526 } 6527 } 6528 ret = btrfs_trim_block_group(cache, 6529 &group_trimmed, 6530 start, 6531 end, 6532 range->minlen); 6533 6534 trimmed += group_trimmed; 6535 if (ret) { 6536 bg_failed++; 6537 bg_ret = ret; 6538 continue; 6539 } 6540 } 6541 } 6542 6543 if (bg_failed) 6544 btrfs_warn(fs_info, 6545 "failed to trim %llu block group(s), last error %d", 6546 bg_failed, bg_ret); 6547 6548 mutex_lock(&fs_devices->device_list_mutex); 6549 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6550 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6551 continue; 6552 6553 ret = btrfs_trim_free_extents(device, &group_trimmed); 6554 if (ret) { 6555 dev_failed++; 6556 dev_ret = ret; 6557 break; 6558 } 6559 6560 trimmed += group_trimmed; 6561 } 6562 mutex_unlock(&fs_devices->device_list_mutex); 6563 6564 if (dev_failed) 6565 btrfs_warn(fs_info, 6566 "failed to trim %llu device(s), last error %d", 6567 dev_failed, dev_ret); 6568 range->len = trimmed; 6569 if (bg_ret) 6570 return bg_ret; 6571 return dev_ret; 6572 } 6573