1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include "compat.h" 27 #include "hash.h" 28 #include "ctree.h" 29 #include "disk-io.h" 30 #include "print-tree.h" 31 #include "transaction.h" 32 #include "volumes.h" 33 #include "locking.h" 34 #include "free-space-cache.h" 35 36 static int update_block_group(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 u64 bytenr, u64 num_bytes, int alloc); 39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 40 u64 num_bytes, int reserve, int sinfo); 41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 42 struct btrfs_root *root, 43 u64 bytenr, u64 num_bytes, u64 parent, 44 u64 root_objectid, u64 owner_objectid, 45 u64 owner_offset, int refs_to_drop, 46 struct btrfs_delayed_extent_op *extra_op); 47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 48 struct extent_buffer *leaf, 49 struct btrfs_extent_item *ei); 50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_root *root, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_root *root, 57 u64 parent, u64 root_objectid, 58 u64 flags, struct btrfs_disk_key *key, 59 int level, struct btrfs_key *ins); 60 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 61 struct btrfs_root *extent_root, u64 alloc_bytes, 62 u64 flags, int force); 63 static int find_next_key(struct btrfs_path *path, int level, 64 struct btrfs_key *key); 65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 66 int dump_block_groups); 67 68 static noinline int 69 block_group_cache_done(struct btrfs_block_group_cache *cache) 70 { 71 smp_mb(); 72 return cache->cached == BTRFS_CACHE_FINISHED; 73 } 74 75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 76 { 77 return (cache->flags & bits) == bits; 78 } 79 80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 81 { 82 atomic_inc(&cache->count); 83 } 84 85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 86 { 87 if (atomic_dec_and_test(&cache->count)) { 88 WARN_ON(cache->pinned > 0); 89 WARN_ON(cache->reserved > 0); 90 WARN_ON(cache->reserved_pinned > 0); 91 kfree(cache); 92 } 93 } 94 95 /* 96 * this adds the block group to the fs_info rb tree for the block group 97 * cache 98 */ 99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 100 struct btrfs_block_group_cache *block_group) 101 { 102 struct rb_node **p; 103 struct rb_node *parent = NULL; 104 struct btrfs_block_group_cache *cache; 105 106 spin_lock(&info->block_group_cache_lock); 107 p = &info->block_group_cache_tree.rb_node; 108 109 while (*p) { 110 parent = *p; 111 cache = rb_entry(parent, struct btrfs_block_group_cache, 112 cache_node); 113 if (block_group->key.objectid < cache->key.objectid) { 114 p = &(*p)->rb_left; 115 } else if (block_group->key.objectid > cache->key.objectid) { 116 p = &(*p)->rb_right; 117 } else { 118 spin_unlock(&info->block_group_cache_lock); 119 return -EEXIST; 120 } 121 } 122 123 rb_link_node(&block_group->cache_node, parent, p); 124 rb_insert_color(&block_group->cache_node, 125 &info->block_group_cache_tree); 126 spin_unlock(&info->block_group_cache_lock); 127 128 return 0; 129 } 130 131 /* 132 * This will return the block group at or after bytenr if contains is 0, else 133 * it will return the block group that contains the bytenr 134 */ 135 static struct btrfs_block_group_cache * 136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 137 int contains) 138 { 139 struct btrfs_block_group_cache *cache, *ret = NULL; 140 struct rb_node *n; 141 u64 end, start; 142 143 spin_lock(&info->block_group_cache_lock); 144 n = info->block_group_cache_tree.rb_node; 145 146 while (n) { 147 cache = rb_entry(n, struct btrfs_block_group_cache, 148 cache_node); 149 end = cache->key.objectid + cache->key.offset - 1; 150 start = cache->key.objectid; 151 152 if (bytenr < start) { 153 if (!contains && (!ret || start < ret->key.objectid)) 154 ret = cache; 155 n = n->rb_left; 156 } else if (bytenr > start) { 157 if (contains && bytenr <= end) { 158 ret = cache; 159 break; 160 } 161 n = n->rb_right; 162 } else { 163 ret = cache; 164 break; 165 } 166 } 167 if (ret) 168 btrfs_get_block_group(ret); 169 spin_unlock(&info->block_group_cache_lock); 170 171 return ret; 172 } 173 174 static int add_excluded_extent(struct btrfs_root *root, 175 u64 start, u64 num_bytes) 176 { 177 u64 end = start + num_bytes - 1; 178 set_extent_bits(&root->fs_info->freed_extents[0], 179 start, end, EXTENT_UPTODATE, GFP_NOFS); 180 set_extent_bits(&root->fs_info->freed_extents[1], 181 start, end, EXTENT_UPTODATE, GFP_NOFS); 182 return 0; 183 } 184 185 static void free_excluded_extents(struct btrfs_root *root, 186 struct btrfs_block_group_cache *cache) 187 { 188 u64 start, end; 189 190 start = cache->key.objectid; 191 end = start + cache->key.offset - 1; 192 193 clear_extent_bits(&root->fs_info->freed_extents[0], 194 start, end, EXTENT_UPTODATE, GFP_NOFS); 195 clear_extent_bits(&root->fs_info->freed_extents[1], 196 start, end, EXTENT_UPTODATE, GFP_NOFS); 197 } 198 199 static int exclude_super_stripes(struct btrfs_root *root, 200 struct btrfs_block_group_cache *cache) 201 { 202 u64 bytenr; 203 u64 *logical; 204 int stripe_len; 205 int i, nr, ret; 206 207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 209 cache->bytes_super += stripe_len; 210 ret = add_excluded_extent(root, cache->key.objectid, 211 stripe_len); 212 BUG_ON(ret); 213 } 214 215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 216 bytenr = btrfs_sb_offset(i); 217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 218 cache->key.objectid, bytenr, 219 0, &logical, &nr, &stripe_len); 220 BUG_ON(ret); 221 222 while (nr--) { 223 cache->bytes_super += stripe_len; 224 ret = add_excluded_extent(root, logical[nr], 225 stripe_len); 226 BUG_ON(ret); 227 } 228 229 kfree(logical); 230 } 231 return 0; 232 } 233 234 static struct btrfs_caching_control * 235 get_caching_control(struct btrfs_block_group_cache *cache) 236 { 237 struct btrfs_caching_control *ctl; 238 239 spin_lock(&cache->lock); 240 if (cache->cached != BTRFS_CACHE_STARTED) { 241 spin_unlock(&cache->lock); 242 return NULL; 243 } 244 245 ctl = cache->caching_ctl; 246 atomic_inc(&ctl->count); 247 spin_unlock(&cache->lock); 248 return ctl; 249 } 250 251 static void put_caching_control(struct btrfs_caching_control *ctl) 252 { 253 if (atomic_dec_and_test(&ctl->count)) 254 kfree(ctl); 255 } 256 257 /* 258 * this is only called by cache_block_group, since we could have freed extents 259 * we need to check the pinned_extents for any extents that can't be used yet 260 * since their free space will be released as soon as the transaction commits. 261 */ 262 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 263 struct btrfs_fs_info *info, u64 start, u64 end) 264 { 265 u64 extent_start, extent_end, size, total_added = 0; 266 int ret; 267 268 while (start < end) { 269 ret = find_first_extent_bit(info->pinned_extents, start, 270 &extent_start, &extent_end, 271 EXTENT_DIRTY | EXTENT_UPTODATE); 272 if (ret) 273 break; 274 275 if (extent_start <= start) { 276 start = extent_end + 1; 277 } else if (extent_start > start && extent_start < end) { 278 size = extent_start - start; 279 total_added += size; 280 ret = btrfs_add_free_space(block_group, start, 281 size); 282 BUG_ON(ret); 283 start = extent_end + 1; 284 } else { 285 break; 286 } 287 } 288 289 if (start < end) { 290 size = end - start; 291 total_added += size; 292 ret = btrfs_add_free_space(block_group, start, size); 293 BUG_ON(ret); 294 } 295 296 return total_added; 297 } 298 299 static int caching_kthread(void *data) 300 { 301 struct btrfs_block_group_cache *block_group = data; 302 struct btrfs_fs_info *fs_info = block_group->fs_info; 303 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl; 304 struct btrfs_root *extent_root = fs_info->extent_root; 305 struct btrfs_path *path; 306 struct extent_buffer *leaf; 307 struct btrfs_key key; 308 u64 total_found = 0; 309 u64 last = 0; 310 u32 nritems; 311 int ret = 0; 312 313 path = btrfs_alloc_path(); 314 if (!path) 315 return -ENOMEM; 316 317 exclude_super_stripes(extent_root, block_group); 318 spin_lock(&block_group->space_info->lock); 319 block_group->space_info->bytes_readonly += block_group->bytes_super; 320 spin_unlock(&block_group->space_info->lock); 321 322 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 323 324 /* 325 * We don't want to deadlock with somebody trying to allocate a new 326 * extent for the extent root while also trying to search the extent 327 * root to add free space. So we skip locking and search the commit 328 * root, since its read-only 329 */ 330 path->skip_locking = 1; 331 path->search_commit_root = 1; 332 path->reada = 2; 333 334 key.objectid = last; 335 key.offset = 0; 336 key.type = BTRFS_EXTENT_ITEM_KEY; 337 again: 338 mutex_lock(&caching_ctl->mutex); 339 /* need to make sure the commit_root doesn't disappear */ 340 down_read(&fs_info->extent_commit_sem); 341 342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 343 if (ret < 0) 344 goto err; 345 346 leaf = path->nodes[0]; 347 nritems = btrfs_header_nritems(leaf); 348 349 while (1) { 350 smp_mb(); 351 if (fs_info->closing > 1) { 352 last = (u64)-1; 353 break; 354 } 355 356 if (path->slots[0] < nritems) { 357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 358 } else { 359 ret = find_next_key(path, 0, &key); 360 if (ret) 361 break; 362 363 caching_ctl->progress = last; 364 btrfs_release_path(extent_root, path); 365 up_read(&fs_info->extent_commit_sem); 366 mutex_unlock(&caching_ctl->mutex); 367 if (btrfs_transaction_in_commit(fs_info)) 368 schedule_timeout(1); 369 else 370 cond_resched(); 371 goto again; 372 } 373 374 if (key.objectid < block_group->key.objectid) { 375 path->slots[0]++; 376 continue; 377 } 378 379 if (key.objectid >= block_group->key.objectid + 380 block_group->key.offset) 381 break; 382 383 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 384 total_found += add_new_free_space(block_group, 385 fs_info, last, 386 key.objectid); 387 last = key.objectid + key.offset; 388 389 if (total_found > (1024 * 1024 * 2)) { 390 total_found = 0; 391 wake_up(&caching_ctl->wait); 392 } 393 } 394 path->slots[0]++; 395 } 396 ret = 0; 397 398 total_found += add_new_free_space(block_group, fs_info, last, 399 block_group->key.objectid + 400 block_group->key.offset); 401 caching_ctl->progress = (u64)-1; 402 403 spin_lock(&block_group->lock); 404 block_group->caching_ctl = NULL; 405 block_group->cached = BTRFS_CACHE_FINISHED; 406 spin_unlock(&block_group->lock); 407 408 err: 409 btrfs_free_path(path); 410 up_read(&fs_info->extent_commit_sem); 411 412 free_excluded_extents(extent_root, block_group); 413 414 mutex_unlock(&caching_ctl->mutex); 415 wake_up(&caching_ctl->wait); 416 417 put_caching_control(caching_ctl); 418 atomic_dec(&block_group->space_info->caching_threads); 419 btrfs_put_block_group(block_group); 420 421 return 0; 422 } 423 424 static int cache_block_group(struct btrfs_block_group_cache *cache) 425 { 426 struct btrfs_fs_info *fs_info = cache->fs_info; 427 struct btrfs_caching_control *caching_ctl; 428 struct task_struct *tsk; 429 int ret = 0; 430 431 smp_mb(); 432 if (cache->cached != BTRFS_CACHE_NO) 433 return 0; 434 435 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL); 436 BUG_ON(!caching_ctl); 437 438 INIT_LIST_HEAD(&caching_ctl->list); 439 mutex_init(&caching_ctl->mutex); 440 init_waitqueue_head(&caching_ctl->wait); 441 caching_ctl->block_group = cache; 442 caching_ctl->progress = cache->key.objectid; 443 /* one for caching kthread, one for caching block group list */ 444 atomic_set(&caching_ctl->count, 2); 445 446 spin_lock(&cache->lock); 447 if (cache->cached != BTRFS_CACHE_NO) { 448 spin_unlock(&cache->lock); 449 kfree(caching_ctl); 450 return 0; 451 } 452 cache->caching_ctl = caching_ctl; 453 cache->cached = BTRFS_CACHE_STARTED; 454 spin_unlock(&cache->lock); 455 456 down_write(&fs_info->extent_commit_sem); 457 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 458 up_write(&fs_info->extent_commit_sem); 459 460 atomic_inc(&cache->space_info->caching_threads); 461 btrfs_get_block_group(cache); 462 463 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n", 464 cache->key.objectid); 465 if (IS_ERR(tsk)) { 466 ret = PTR_ERR(tsk); 467 printk(KERN_ERR "error running thread %d\n", ret); 468 BUG(); 469 } 470 471 return ret; 472 } 473 474 /* 475 * return the block group that starts at or after bytenr 476 */ 477 static struct btrfs_block_group_cache * 478 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 479 { 480 struct btrfs_block_group_cache *cache; 481 482 cache = block_group_cache_tree_search(info, bytenr, 0); 483 484 return cache; 485 } 486 487 /* 488 * return the block group that contains the given bytenr 489 */ 490 struct btrfs_block_group_cache *btrfs_lookup_block_group( 491 struct btrfs_fs_info *info, 492 u64 bytenr) 493 { 494 struct btrfs_block_group_cache *cache; 495 496 cache = block_group_cache_tree_search(info, bytenr, 1); 497 498 return cache; 499 } 500 501 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 502 u64 flags) 503 { 504 struct list_head *head = &info->space_info; 505 struct btrfs_space_info *found; 506 507 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM | 508 BTRFS_BLOCK_GROUP_METADATA; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(found, head, list) { 512 if (found->flags == flags) { 513 rcu_read_unlock(); 514 return found; 515 } 516 } 517 rcu_read_unlock(); 518 return NULL; 519 } 520 521 /* 522 * after adding space to the filesystem, we need to clear the full flags 523 * on all the space infos. 524 */ 525 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 526 { 527 struct list_head *head = &info->space_info; 528 struct btrfs_space_info *found; 529 530 rcu_read_lock(); 531 list_for_each_entry_rcu(found, head, list) 532 found->full = 0; 533 rcu_read_unlock(); 534 } 535 536 static u64 div_factor(u64 num, int factor) 537 { 538 if (factor == 10) 539 return num; 540 num *= factor; 541 do_div(num, 10); 542 return num; 543 } 544 545 u64 btrfs_find_block_group(struct btrfs_root *root, 546 u64 search_start, u64 search_hint, int owner) 547 { 548 struct btrfs_block_group_cache *cache; 549 u64 used; 550 u64 last = max(search_hint, search_start); 551 u64 group_start = 0; 552 int full_search = 0; 553 int factor = 9; 554 int wrapped = 0; 555 again: 556 while (1) { 557 cache = btrfs_lookup_first_block_group(root->fs_info, last); 558 if (!cache) 559 break; 560 561 spin_lock(&cache->lock); 562 last = cache->key.objectid + cache->key.offset; 563 used = btrfs_block_group_used(&cache->item); 564 565 if ((full_search || !cache->ro) && 566 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 567 if (used + cache->pinned + cache->reserved < 568 div_factor(cache->key.offset, factor)) { 569 group_start = cache->key.objectid; 570 spin_unlock(&cache->lock); 571 btrfs_put_block_group(cache); 572 goto found; 573 } 574 } 575 spin_unlock(&cache->lock); 576 btrfs_put_block_group(cache); 577 cond_resched(); 578 } 579 if (!wrapped) { 580 last = search_start; 581 wrapped = 1; 582 goto again; 583 } 584 if (!full_search && factor < 10) { 585 last = search_start; 586 full_search = 1; 587 factor = 10; 588 goto again; 589 } 590 found: 591 return group_start; 592 } 593 594 /* simple helper to search for an existing extent at a given offset */ 595 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 596 { 597 int ret; 598 struct btrfs_key key; 599 struct btrfs_path *path; 600 601 path = btrfs_alloc_path(); 602 BUG_ON(!path); 603 key.objectid = start; 604 key.offset = len; 605 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 606 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 607 0, 0); 608 btrfs_free_path(path); 609 return ret; 610 } 611 612 /* 613 * helper function to lookup reference count and flags of extent. 614 * 615 * the head node for delayed ref is used to store the sum of all the 616 * reference count modifications queued up in the rbtree. the head 617 * node may also store the extent flags to set. This way you can check 618 * to see what the reference count and extent flags would be if all of 619 * the delayed refs are not processed. 620 */ 621 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 622 struct btrfs_root *root, u64 bytenr, 623 u64 num_bytes, u64 *refs, u64 *flags) 624 { 625 struct btrfs_delayed_ref_head *head; 626 struct btrfs_delayed_ref_root *delayed_refs; 627 struct btrfs_path *path; 628 struct btrfs_extent_item *ei; 629 struct extent_buffer *leaf; 630 struct btrfs_key key; 631 u32 item_size; 632 u64 num_refs; 633 u64 extent_flags; 634 int ret; 635 636 path = btrfs_alloc_path(); 637 if (!path) 638 return -ENOMEM; 639 640 key.objectid = bytenr; 641 key.type = BTRFS_EXTENT_ITEM_KEY; 642 key.offset = num_bytes; 643 if (!trans) { 644 path->skip_locking = 1; 645 path->search_commit_root = 1; 646 } 647 again: 648 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 649 &key, path, 0, 0); 650 if (ret < 0) 651 goto out_free; 652 653 if (ret == 0) { 654 leaf = path->nodes[0]; 655 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 656 if (item_size >= sizeof(*ei)) { 657 ei = btrfs_item_ptr(leaf, path->slots[0], 658 struct btrfs_extent_item); 659 num_refs = btrfs_extent_refs(leaf, ei); 660 extent_flags = btrfs_extent_flags(leaf, ei); 661 } else { 662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 663 struct btrfs_extent_item_v0 *ei0; 664 BUG_ON(item_size != sizeof(*ei0)); 665 ei0 = btrfs_item_ptr(leaf, path->slots[0], 666 struct btrfs_extent_item_v0); 667 num_refs = btrfs_extent_refs_v0(leaf, ei0); 668 /* FIXME: this isn't correct for data */ 669 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 670 #else 671 BUG(); 672 #endif 673 } 674 BUG_ON(num_refs == 0); 675 } else { 676 num_refs = 0; 677 extent_flags = 0; 678 ret = 0; 679 } 680 681 if (!trans) 682 goto out; 683 684 delayed_refs = &trans->transaction->delayed_refs; 685 spin_lock(&delayed_refs->lock); 686 head = btrfs_find_delayed_ref_head(trans, bytenr); 687 if (head) { 688 if (!mutex_trylock(&head->mutex)) { 689 atomic_inc(&head->node.refs); 690 spin_unlock(&delayed_refs->lock); 691 692 btrfs_release_path(root->fs_info->extent_root, path); 693 694 mutex_lock(&head->mutex); 695 mutex_unlock(&head->mutex); 696 btrfs_put_delayed_ref(&head->node); 697 goto again; 698 } 699 if (head->extent_op && head->extent_op->update_flags) 700 extent_flags |= head->extent_op->flags_to_set; 701 else 702 BUG_ON(num_refs == 0); 703 704 num_refs += head->node.ref_mod; 705 mutex_unlock(&head->mutex); 706 } 707 spin_unlock(&delayed_refs->lock); 708 out: 709 WARN_ON(num_refs == 0); 710 if (refs) 711 *refs = num_refs; 712 if (flags) 713 *flags = extent_flags; 714 out_free: 715 btrfs_free_path(path); 716 return ret; 717 } 718 719 /* 720 * Back reference rules. Back refs have three main goals: 721 * 722 * 1) differentiate between all holders of references to an extent so that 723 * when a reference is dropped we can make sure it was a valid reference 724 * before freeing the extent. 725 * 726 * 2) Provide enough information to quickly find the holders of an extent 727 * if we notice a given block is corrupted or bad. 728 * 729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 730 * maintenance. This is actually the same as #2, but with a slightly 731 * different use case. 732 * 733 * There are two kinds of back refs. The implicit back refs is optimized 734 * for pointers in non-shared tree blocks. For a given pointer in a block, 735 * back refs of this kind provide information about the block's owner tree 736 * and the pointer's key. These information allow us to find the block by 737 * b-tree searching. The full back refs is for pointers in tree blocks not 738 * referenced by their owner trees. The location of tree block is recorded 739 * in the back refs. Actually the full back refs is generic, and can be 740 * used in all cases the implicit back refs is used. The major shortcoming 741 * of the full back refs is its overhead. Every time a tree block gets 742 * COWed, we have to update back refs entry for all pointers in it. 743 * 744 * For a newly allocated tree block, we use implicit back refs for 745 * pointers in it. This means most tree related operations only involve 746 * implicit back refs. For a tree block created in old transaction, the 747 * only way to drop a reference to it is COW it. So we can detect the 748 * event that tree block loses its owner tree's reference and do the 749 * back refs conversion. 750 * 751 * When a tree block is COW'd through a tree, there are four cases: 752 * 753 * The reference count of the block is one and the tree is the block's 754 * owner tree. Nothing to do in this case. 755 * 756 * The reference count of the block is one and the tree is not the 757 * block's owner tree. In this case, full back refs is used for pointers 758 * in the block. Remove these full back refs, add implicit back refs for 759 * every pointers in the new block. 760 * 761 * The reference count of the block is greater than one and the tree is 762 * the block's owner tree. In this case, implicit back refs is used for 763 * pointers in the block. Add full back refs for every pointers in the 764 * block, increase lower level extents' reference counts. The original 765 * implicit back refs are entailed to the new block. 766 * 767 * The reference count of the block is greater than one and the tree is 768 * not the block's owner tree. Add implicit back refs for every pointer in 769 * the new block, increase lower level extents' reference count. 770 * 771 * Back Reference Key composing: 772 * 773 * The key objectid corresponds to the first byte in the extent, 774 * The key type is used to differentiate between types of back refs. 775 * There are different meanings of the key offset for different types 776 * of back refs. 777 * 778 * File extents can be referenced by: 779 * 780 * - multiple snapshots, subvolumes, or different generations in one subvol 781 * - different files inside a single subvolume 782 * - different offsets inside a file (bookend extents in file.c) 783 * 784 * The extent ref structure for the implicit back refs has fields for: 785 * 786 * - Objectid of the subvolume root 787 * - objectid of the file holding the reference 788 * - original offset in the file 789 * - how many bookend extents 790 * 791 * The key offset for the implicit back refs is hash of the first 792 * three fields. 793 * 794 * The extent ref structure for the full back refs has field for: 795 * 796 * - number of pointers in the tree leaf 797 * 798 * The key offset for the implicit back refs is the first byte of 799 * the tree leaf 800 * 801 * When a file extent is allocated, The implicit back refs is used. 802 * the fields are filled in: 803 * 804 * (root_key.objectid, inode objectid, offset in file, 1) 805 * 806 * When a file extent is removed file truncation, we find the 807 * corresponding implicit back refs and check the following fields: 808 * 809 * (btrfs_header_owner(leaf), inode objectid, offset in file) 810 * 811 * Btree extents can be referenced by: 812 * 813 * - Different subvolumes 814 * 815 * Both the implicit back refs and the full back refs for tree blocks 816 * only consist of key. The key offset for the implicit back refs is 817 * objectid of block's owner tree. The key offset for the full back refs 818 * is the first byte of parent block. 819 * 820 * When implicit back refs is used, information about the lowest key and 821 * level of the tree block are required. These information are stored in 822 * tree block info structure. 823 */ 824 825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 826 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 827 struct btrfs_root *root, 828 struct btrfs_path *path, 829 u64 owner, u32 extra_size) 830 { 831 struct btrfs_extent_item *item; 832 struct btrfs_extent_item_v0 *ei0; 833 struct btrfs_extent_ref_v0 *ref0; 834 struct btrfs_tree_block_info *bi; 835 struct extent_buffer *leaf; 836 struct btrfs_key key; 837 struct btrfs_key found_key; 838 u32 new_size = sizeof(*item); 839 u64 refs; 840 int ret; 841 842 leaf = path->nodes[0]; 843 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 844 845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 846 ei0 = btrfs_item_ptr(leaf, path->slots[0], 847 struct btrfs_extent_item_v0); 848 refs = btrfs_extent_refs_v0(leaf, ei0); 849 850 if (owner == (u64)-1) { 851 while (1) { 852 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 853 ret = btrfs_next_leaf(root, path); 854 if (ret < 0) 855 return ret; 856 BUG_ON(ret > 0); 857 leaf = path->nodes[0]; 858 } 859 btrfs_item_key_to_cpu(leaf, &found_key, 860 path->slots[0]); 861 BUG_ON(key.objectid != found_key.objectid); 862 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 863 path->slots[0]++; 864 continue; 865 } 866 ref0 = btrfs_item_ptr(leaf, path->slots[0], 867 struct btrfs_extent_ref_v0); 868 owner = btrfs_ref_objectid_v0(leaf, ref0); 869 break; 870 } 871 } 872 btrfs_release_path(root, path); 873 874 if (owner < BTRFS_FIRST_FREE_OBJECTID) 875 new_size += sizeof(*bi); 876 877 new_size -= sizeof(*ei0); 878 ret = btrfs_search_slot(trans, root, &key, path, 879 new_size + extra_size, 1); 880 if (ret < 0) 881 return ret; 882 BUG_ON(ret); 883 884 ret = btrfs_extend_item(trans, root, path, new_size); 885 BUG_ON(ret); 886 887 leaf = path->nodes[0]; 888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 889 btrfs_set_extent_refs(leaf, item, refs); 890 /* FIXME: get real generation */ 891 btrfs_set_extent_generation(leaf, item, 0); 892 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 893 btrfs_set_extent_flags(leaf, item, 894 BTRFS_EXTENT_FLAG_TREE_BLOCK | 895 BTRFS_BLOCK_FLAG_FULL_BACKREF); 896 bi = (struct btrfs_tree_block_info *)(item + 1); 897 /* FIXME: get first key of the block */ 898 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 899 btrfs_set_tree_block_level(leaf, bi, (int)owner); 900 } else { 901 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 902 } 903 btrfs_mark_buffer_dirty(leaf); 904 return 0; 905 } 906 #endif 907 908 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 909 { 910 u32 high_crc = ~(u32)0; 911 u32 low_crc = ~(u32)0; 912 __le64 lenum; 913 914 lenum = cpu_to_le64(root_objectid); 915 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 916 lenum = cpu_to_le64(owner); 917 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 918 lenum = cpu_to_le64(offset); 919 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 920 921 return ((u64)high_crc << 31) ^ (u64)low_crc; 922 } 923 924 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 925 struct btrfs_extent_data_ref *ref) 926 { 927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 928 btrfs_extent_data_ref_objectid(leaf, ref), 929 btrfs_extent_data_ref_offset(leaf, ref)); 930 } 931 932 static int match_extent_data_ref(struct extent_buffer *leaf, 933 struct btrfs_extent_data_ref *ref, 934 u64 root_objectid, u64 owner, u64 offset) 935 { 936 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 937 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 938 btrfs_extent_data_ref_offset(leaf, ref) != offset) 939 return 0; 940 return 1; 941 } 942 943 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 944 struct btrfs_root *root, 945 struct btrfs_path *path, 946 u64 bytenr, u64 parent, 947 u64 root_objectid, 948 u64 owner, u64 offset) 949 { 950 struct btrfs_key key; 951 struct btrfs_extent_data_ref *ref; 952 struct extent_buffer *leaf; 953 u32 nritems; 954 int ret; 955 int recow; 956 int err = -ENOENT; 957 958 key.objectid = bytenr; 959 if (parent) { 960 key.type = BTRFS_SHARED_DATA_REF_KEY; 961 key.offset = parent; 962 } else { 963 key.type = BTRFS_EXTENT_DATA_REF_KEY; 964 key.offset = hash_extent_data_ref(root_objectid, 965 owner, offset); 966 } 967 again: 968 recow = 0; 969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 970 if (ret < 0) { 971 err = ret; 972 goto fail; 973 } 974 975 if (parent) { 976 if (!ret) 977 return 0; 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 key.type = BTRFS_EXTENT_REF_V0_KEY; 980 btrfs_release_path(root, path); 981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 982 if (ret < 0) { 983 err = ret; 984 goto fail; 985 } 986 if (!ret) 987 return 0; 988 #endif 989 goto fail; 990 } 991 992 leaf = path->nodes[0]; 993 nritems = btrfs_header_nritems(leaf); 994 while (1) { 995 if (path->slots[0] >= nritems) { 996 ret = btrfs_next_leaf(root, path); 997 if (ret < 0) 998 err = ret; 999 if (ret) 1000 goto fail; 1001 1002 leaf = path->nodes[0]; 1003 nritems = btrfs_header_nritems(leaf); 1004 recow = 1; 1005 } 1006 1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1008 if (key.objectid != bytenr || 1009 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1010 goto fail; 1011 1012 ref = btrfs_item_ptr(leaf, path->slots[0], 1013 struct btrfs_extent_data_ref); 1014 1015 if (match_extent_data_ref(leaf, ref, root_objectid, 1016 owner, offset)) { 1017 if (recow) { 1018 btrfs_release_path(root, path); 1019 goto again; 1020 } 1021 err = 0; 1022 break; 1023 } 1024 path->slots[0]++; 1025 } 1026 fail: 1027 return err; 1028 } 1029 1030 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1031 struct btrfs_root *root, 1032 struct btrfs_path *path, 1033 u64 bytenr, u64 parent, 1034 u64 root_objectid, u64 owner, 1035 u64 offset, int refs_to_add) 1036 { 1037 struct btrfs_key key; 1038 struct extent_buffer *leaf; 1039 u32 size; 1040 u32 num_refs; 1041 int ret; 1042 1043 key.objectid = bytenr; 1044 if (parent) { 1045 key.type = BTRFS_SHARED_DATA_REF_KEY; 1046 key.offset = parent; 1047 size = sizeof(struct btrfs_shared_data_ref); 1048 } else { 1049 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1050 key.offset = hash_extent_data_ref(root_objectid, 1051 owner, offset); 1052 size = sizeof(struct btrfs_extent_data_ref); 1053 } 1054 1055 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1056 if (ret && ret != -EEXIST) 1057 goto fail; 1058 1059 leaf = path->nodes[0]; 1060 if (parent) { 1061 struct btrfs_shared_data_ref *ref; 1062 ref = btrfs_item_ptr(leaf, path->slots[0], 1063 struct btrfs_shared_data_ref); 1064 if (ret == 0) { 1065 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1066 } else { 1067 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1068 num_refs += refs_to_add; 1069 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1070 } 1071 } else { 1072 struct btrfs_extent_data_ref *ref; 1073 while (ret == -EEXIST) { 1074 ref = btrfs_item_ptr(leaf, path->slots[0], 1075 struct btrfs_extent_data_ref); 1076 if (match_extent_data_ref(leaf, ref, root_objectid, 1077 owner, offset)) 1078 break; 1079 btrfs_release_path(root, path); 1080 key.offset++; 1081 ret = btrfs_insert_empty_item(trans, root, path, &key, 1082 size); 1083 if (ret && ret != -EEXIST) 1084 goto fail; 1085 1086 leaf = path->nodes[0]; 1087 } 1088 ref = btrfs_item_ptr(leaf, path->slots[0], 1089 struct btrfs_extent_data_ref); 1090 if (ret == 0) { 1091 btrfs_set_extent_data_ref_root(leaf, ref, 1092 root_objectid); 1093 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1094 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1095 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1096 } else { 1097 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1098 num_refs += refs_to_add; 1099 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1100 } 1101 } 1102 btrfs_mark_buffer_dirty(leaf); 1103 ret = 0; 1104 fail: 1105 btrfs_release_path(root, path); 1106 return ret; 1107 } 1108 1109 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1110 struct btrfs_root *root, 1111 struct btrfs_path *path, 1112 int refs_to_drop) 1113 { 1114 struct btrfs_key key; 1115 struct btrfs_extent_data_ref *ref1 = NULL; 1116 struct btrfs_shared_data_ref *ref2 = NULL; 1117 struct extent_buffer *leaf; 1118 u32 num_refs = 0; 1119 int ret = 0; 1120 1121 leaf = path->nodes[0]; 1122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1123 1124 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1125 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1126 struct btrfs_extent_data_ref); 1127 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1128 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1129 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1130 struct btrfs_shared_data_ref); 1131 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1133 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1134 struct btrfs_extent_ref_v0 *ref0; 1135 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1136 struct btrfs_extent_ref_v0); 1137 num_refs = btrfs_ref_count_v0(leaf, ref0); 1138 #endif 1139 } else { 1140 BUG(); 1141 } 1142 1143 BUG_ON(num_refs < refs_to_drop); 1144 num_refs -= refs_to_drop; 1145 1146 if (num_refs == 0) { 1147 ret = btrfs_del_item(trans, root, path); 1148 } else { 1149 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1150 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1151 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1152 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1154 else { 1155 struct btrfs_extent_ref_v0 *ref0; 1156 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1157 struct btrfs_extent_ref_v0); 1158 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1159 } 1160 #endif 1161 btrfs_mark_buffer_dirty(leaf); 1162 } 1163 return ret; 1164 } 1165 1166 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1167 struct btrfs_path *path, 1168 struct btrfs_extent_inline_ref *iref) 1169 { 1170 struct btrfs_key key; 1171 struct extent_buffer *leaf; 1172 struct btrfs_extent_data_ref *ref1; 1173 struct btrfs_shared_data_ref *ref2; 1174 u32 num_refs = 0; 1175 1176 leaf = path->nodes[0]; 1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1178 if (iref) { 1179 if (btrfs_extent_inline_ref_type(leaf, iref) == 1180 BTRFS_EXTENT_DATA_REF_KEY) { 1181 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1182 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1183 } else { 1184 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1185 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1186 } 1187 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1188 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1189 struct btrfs_extent_data_ref); 1190 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1191 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1192 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_shared_data_ref); 1194 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1196 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1197 struct btrfs_extent_ref_v0 *ref0; 1198 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1199 struct btrfs_extent_ref_v0); 1200 num_refs = btrfs_ref_count_v0(leaf, ref0); 1201 #endif 1202 } else { 1203 WARN_ON(1); 1204 } 1205 return num_refs; 1206 } 1207 1208 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1209 struct btrfs_root *root, 1210 struct btrfs_path *path, 1211 u64 bytenr, u64 parent, 1212 u64 root_objectid) 1213 { 1214 struct btrfs_key key; 1215 int ret; 1216 1217 key.objectid = bytenr; 1218 if (parent) { 1219 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1220 key.offset = parent; 1221 } else { 1222 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1223 key.offset = root_objectid; 1224 } 1225 1226 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1227 if (ret > 0) 1228 ret = -ENOENT; 1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1230 if (ret == -ENOENT && parent) { 1231 btrfs_release_path(root, path); 1232 key.type = BTRFS_EXTENT_REF_V0_KEY; 1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1234 if (ret > 0) 1235 ret = -ENOENT; 1236 } 1237 #endif 1238 return ret; 1239 } 1240 1241 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1242 struct btrfs_root *root, 1243 struct btrfs_path *path, 1244 u64 bytenr, u64 parent, 1245 u64 root_objectid) 1246 { 1247 struct btrfs_key key; 1248 int ret; 1249 1250 key.objectid = bytenr; 1251 if (parent) { 1252 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1253 key.offset = parent; 1254 } else { 1255 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1256 key.offset = root_objectid; 1257 } 1258 1259 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1260 btrfs_release_path(root, path); 1261 return ret; 1262 } 1263 1264 static inline int extent_ref_type(u64 parent, u64 owner) 1265 { 1266 int type; 1267 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1268 if (parent > 0) 1269 type = BTRFS_SHARED_BLOCK_REF_KEY; 1270 else 1271 type = BTRFS_TREE_BLOCK_REF_KEY; 1272 } else { 1273 if (parent > 0) 1274 type = BTRFS_SHARED_DATA_REF_KEY; 1275 else 1276 type = BTRFS_EXTENT_DATA_REF_KEY; 1277 } 1278 return type; 1279 } 1280 1281 static int find_next_key(struct btrfs_path *path, int level, 1282 struct btrfs_key *key) 1283 1284 { 1285 for (; level < BTRFS_MAX_LEVEL; level++) { 1286 if (!path->nodes[level]) 1287 break; 1288 if (path->slots[level] + 1 >= 1289 btrfs_header_nritems(path->nodes[level])) 1290 continue; 1291 if (level == 0) 1292 btrfs_item_key_to_cpu(path->nodes[level], key, 1293 path->slots[level] + 1); 1294 else 1295 btrfs_node_key_to_cpu(path->nodes[level], key, 1296 path->slots[level] + 1); 1297 return 0; 1298 } 1299 return 1; 1300 } 1301 1302 /* 1303 * look for inline back ref. if back ref is found, *ref_ret is set 1304 * to the address of inline back ref, and 0 is returned. 1305 * 1306 * if back ref isn't found, *ref_ret is set to the address where it 1307 * should be inserted, and -ENOENT is returned. 1308 * 1309 * if insert is true and there are too many inline back refs, the path 1310 * points to the extent item, and -EAGAIN is returned. 1311 * 1312 * NOTE: inline back refs are ordered in the same way that back ref 1313 * items in the tree are ordered. 1314 */ 1315 static noinline_for_stack 1316 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1317 struct btrfs_root *root, 1318 struct btrfs_path *path, 1319 struct btrfs_extent_inline_ref **ref_ret, 1320 u64 bytenr, u64 num_bytes, 1321 u64 parent, u64 root_objectid, 1322 u64 owner, u64 offset, int insert) 1323 { 1324 struct btrfs_key key; 1325 struct extent_buffer *leaf; 1326 struct btrfs_extent_item *ei; 1327 struct btrfs_extent_inline_ref *iref; 1328 u64 flags; 1329 u64 item_size; 1330 unsigned long ptr; 1331 unsigned long end; 1332 int extra_size; 1333 int type; 1334 int want; 1335 int ret; 1336 int err = 0; 1337 1338 key.objectid = bytenr; 1339 key.type = BTRFS_EXTENT_ITEM_KEY; 1340 key.offset = num_bytes; 1341 1342 want = extent_ref_type(parent, owner); 1343 if (insert) { 1344 extra_size = btrfs_extent_inline_ref_size(want); 1345 path->keep_locks = 1; 1346 } else 1347 extra_size = -1; 1348 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1349 if (ret < 0) { 1350 err = ret; 1351 goto out; 1352 } 1353 BUG_ON(ret); 1354 1355 leaf = path->nodes[0]; 1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 if (item_size < sizeof(*ei)) { 1359 if (!insert) { 1360 err = -ENOENT; 1361 goto out; 1362 } 1363 ret = convert_extent_item_v0(trans, root, path, owner, 1364 extra_size); 1365 if (ret < 0) { 1366 err = ret; 1367 goto out; 1368 } 1369 leaf = path->nodes[0]; 1370 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1371 } 1372 #endif 1373 BUG_ON(item_size < sizeof(*ei)); 1374 1375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1376 flags = btrfs_extent_flags(leaf, ei); 1377 1378 ptr = (unsigned long)(ei + 1); 1379 end = (unsigned long)ei + item_size; 1380 1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1382 ptr += sizeof(struct btrfs_tree_block_info); 1383 BUG_ON(ptr > end); 1384 } else { 1385 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1386 } 1387 1388 err = -ENOENT; 1389 while (1) { 1390 if (ptr >= end) { 1391 WARN_ON(ptr > end); 1392 break; 1393 } 1394 iref = (struct btrfs_extent_inline_ref *)ptr; 1395 type = btrfs_extent_inline_ref_type(leaf, iref); 1396 if (want < type) 1397 break; 1398 if (want > type) { 1399 ptr += btrfs_extent_inline_ref_size(type); 1400 continue; 1401 } 1402 1403 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1404 struct btrfs_extent_data_ref *dref; 1405 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1406 if (match_extent_data_ref(leaf, dref, root_objectid, 1407 owner, offset)) { 1408 err = 0; 1409 break; 1410 } 1411 if (hash_extent_data_ref_item(leaf, dref) < 1412 hash_extent_data_ref(root_objectid, owner, offset)) 1413 break; 1414 } else { 1415 u64 ref_offset; 1416 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1417 if (parent > 0) { 1418 if (parent == ref_offset) { 1419 err = 0; 1420 break; 1421 } 1422 if (ref_offset < parent) 1423 break; 1424 } else { 1425 if (root_objectid == ref_offset) { 1426 err = 0; 1427 break; 1428 } 1429 if (ref_offset < root_objectid) 1430 break; 1431 } 1432 } 1433 ptr += btrfs_extent_inline_ref_size(type); 1434 } 1435 if (err == -ENOENT && insert) { 1436 if (item_size + extra_size >= 1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1438 err = -EAGAIN; 1439 goto out; 1440 } 1441 /* 1442 * To add new inline back ref, we have to make sure 1443 * there is no corresponding back ref item. 1444 * For simplicity, we just do not add new inline back 1445 * ref if there is any kind of item for this block 1446 */ 1447 if (find_next_key(path, 0, &key) == 0 && 1448 key.objectid == bytenr && 1449 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1450 err = -EAGAIN; 1451 goto out; 1452 } 1453 } 1454 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1455 out: 1456 if (insert) { 1457 path->keep_locks = 0; 1458 btrfs_unlock_up_safe(path, 1); 1459 } 1460 return err; 1461 } 1462 1463 /* 1464 * helper to add new inline back ref 1465 */ 1466 static noinline_for_stack 1467 int setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1468 struct btrfs_root *root, 1469 struct btrfs_path *path, 1470 struct btrfs_extent_inline_ref *iref, 1471 u64 parent, u64 root_objectid, 1472 u64 owner, u64 offset, int refs_to_add, 1473 struct btrfs_delayed_extent_op *extent_op) 1474 { 1475 struct extent_buffer *leaf; 1476 struct btrfs_extent_item *ei; 1477 unsigned long ptr; 1478 unsigned long end; 1479 unsigned long item_offset; 1480 u64 refs; 1481 int size; 1482 int type; 1483 int ret; 1484 1485 leaf = path->nodes[0]; 1486 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1487 item_offset = (unsigned long)iref - (unsigned long)ei; 1488 1489 type = extent_ref_type(parent, owner); 1490 size = btrfs_extent_inline_ref_size(type); 1491 1492 ret = btrfs_extend_item(trans, root, path, size); 1493 BUG_ON(ret); 1494 1495 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1496 refs = btrfs_extent_refs(leaf, ei); 1497 refs += refs_to_add; 1498 btrfs_set_extent_refs(leaf, ei, refs); 1499 if (extent_op) 1500 __run_delayed_extent_op(extent_op, leaf, ei); 1501 1502 ptr = (unsigned long)ei + item_offset; 1503 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1504 if (ptr < end - size) 1505 memmove_extent_buffer(leaf, ptr + size, ptr, 1506 end - size - ptr); 1507 1508 iref = (struct btrfs_extent_inline_ref *)ptr; 1509 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1510 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1511 struct btrfs_extent_data_ref *dref; 1512 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1513 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1514 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1515 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1516 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1517 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1518 struct btrfs_shared_data_ref *sref; 1519 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1520 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1521 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1522 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1523 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1524 } else { 1525 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1526 } 1527 btrfs_mark_buffer_dirty(leaf); 1528 return 0; 1529 } 1530 1531 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1532 struct btrfs_root *root, 1533 struct btrfs_path *path, 1534 struct btrfs_extent_inline_ref **ref_ret, 1535 u64 bytenr, u64 num_bytes, u64 parent, 1536 u64 root_objectid, u64 owner, u64 offset) 1537 { 1538 int ret; 1539 1540 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1541 bytenr, num_bytes, parent, 1542 root_objectid, owner, offset, 0); 1543 if (ret != -ENOENT) 1544 return ret; 1545 1546 btrfs_release_path(root, path); 1547 *ref_ret = NULL; 1548 1549 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1550 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1551 root_objectid); 1552 } else { 1553 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1554 root_objectid, owner, offset); 1555 } 1556 return ret; 1557 } 1558 1559 /* 1560 * helper to update/remove inline back ref 1561 */ 1562 static noinline_for_stack 1563 int update_inline_extent_backref(struct btrfs_trans_handle *trans, 1564 struct btrfs_root *root, 1565 struct btrfs_path *path, 1566 struct btrfs_extent_inline_ref *iref, 1567 int refs_to_mod, 1568 struct btrfs_delayed_extent_op *extent_op) 1569 { 1570 struct extent_buffer *leaf; 1571 struct btrfs_extent_item *ei; 1572 struct btrfs_extent_data_ref *dref = NULL; 1573 struct btrfs_shared_data_ref *sref = NULL; 1574 unsigned long ptr; 1575 unsigned long end; 1576 u32 item_size; 1577 int size; 1578 int type; 1579 int ret; 1580 u64 refs; 1581 1582 leaf = path->nodes[0]; 1583 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1584 refs = btrfs_extent_refs(leaf, ei); 1585 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1586 refs += refs_to_mod; 1587 btrfs_set_extent_refs(leaf, ei, refs); 1588 if (extent_op) 1589 __run_delayed_extent_op(extent_op, leaf, ei); 1590 1591 type = btrfs_extent_inline_ref_type(leaf, iref); 1592 1593 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1594 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1595 refs = btrfs_extent_data_ref_count(leaf, dref); 1596 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1597 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1598 refs = btrfs_shared_data_ref_count(leaf, sref); 1599 } else { 1600 refs = 1; 1601 BUG_ON(refs_to_mod != -1); 1602 } 1603 1604 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1605 refs += refs_to_mod; 1606 1607 if (refs > 0) { 1608 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1609 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1610 else 1611 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1612 } else { 1613 size = btrfs_extent_inline_ref_size(type); 1614 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1615 ptr = (unsigned long)iref; 1616 end = (unsigned long)ei + item_size; 1617 if (ptr + size < end) 1618 memmove_extent_buffer(leaf, ptr, ptr + size, 1619 end - ptr - size); 1620 item_size -= size; 1621 ret = btrfs_truncate_item(trans, root, path, item_size, 1); 1622 BUG_ON(ret); 1623 } 1624 btrfs_mark_buffer_dirty(leaf); 1625 return 0; 1626 } 1627 1628 static noinline_for_stack 1629 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1630 struct btrfs_root *root, 1631 struct btrfs_path *path, 1632 u64 bytenr, u64 num_bytes, u64 parent, 1633 u64 root_objectid, u64 owner, 1634 u64 offset, int refs_to_add, 1635 struct btrfs_delayed_extent_op *extent_op) 1636 { 1637 struct btrfs_extent_inline_ref *iref; 1638 int ret; 1639 1640 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1641 bytenr, num_bytes, parent, 1642 root_objectid, owner, offset, 1); 1643 if (ret == 0) { 1644 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1645 ret = update_inline_extent_backref(trans, root, path, iref, 1646 refs_to_add, extent_op); 1647 } else if (ret == -ENOENT) { 1648 ret = setup_inline_extent_backref(trans, root, path, iref, 1649 parent, root_objectid, 1650 owner, offset, refs_to_add, 1651 extent_op); 1652 } 1653 return ret; 1654 } 1655 1656 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1657 struct btrfs_root *root, 1658 struct btrfs_path *path, 1659 u64 bytenr, u64 parent, u64 root_objectid, 1660 u64 owner, u64 offset, int refs_to_add) 1661 { 1662 int ret; 1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1664 BUG_ON(refs_to_add != 1); 1665 ret = insert_tree_block_ref(trans, root, path, bytenr, 1666 parent, root_objectid); 1667 } else { 1668 ret = insert_extent_data_ref(trans, root, path, bytenr, 1669 parent, root_objectid, 1670 owner, offset, refs_to_add); 1671 } 1672 return ret; 1673 } 1674 1675 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1676 struct btrfs_root *root, 1677 struct btrfs_path *path, 1678 struct btrfs_extent_inline_ref *iref, 1679 int refs_to_drop, int is_data) 1680 { 1681 int ret; 1682 1683 BUG_ON(!is_data && refs_to_drop != 1); 1684 if (iref) { 1685 ret = update_inline_extent_backref(trans, root, path, iref, 1686 -refs_to_drop, NULL); 1687 } else if (is_data) { 1688 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1689 } else { 1690 ret = btrfs_del_item(trans, root, path); 1691 } 1692 return ret; 1693 } 1694 1695 static void btrfs_issue_discard(struct block_device *bdev, 1696 u64 start, u64 len) 1697 { 1698 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0); 1699 } 1700 1701 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1702 u64 num_bytes) 1703 { 1704 int ret; 1705 u64 map_length = num_bytes; 1706 struct btrfs_multi_bio *multi = NULL; 1707 1708 if (!btrfs_test_opt(root, DISCARD)) 1709 return 0; 1710 1711 /* Tell the block device(s) that the sectors can be discarded */ 1712 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ, 1713 bytenr, &map_length, &multi, 0); 1714 if (!ret) { 1715 struct btrfs_bio_stripe *stripe = multi->stripes; 1716 int i; 1717 1718 if (map_length > num_bytes) 1719 map_length = num_bytes; 1720 1721 for (i = 0; i < multi->num_stripes; i++, stripe++) { 1722 btrfs_issue_discard(stripe->dev->bdev, 1723 stripe->physical, 1724 map_length); 1725 } 1726 kfree(multi); 1727 } 1728 1729 return ret; 1730 } 1731 1732 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1733 struct btrfs_root *root, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1739 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1740 1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1742 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 1743 parent, root_objectid, (int)owner, 1744 BTRFS_ADD_DELAYED_REF, NULL); 1745 } else { 1746 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 1747 parent, root_objectid, owner, offset, 1748 BTRFS_ADD_DELAYED_REF, NULL); 1749 } 1750 return ret; 1751 } 1752 1753 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1754 struct btrfs_root *root, 1755 u64 bytenr, u64 num_bytes, 1756 u64 parent, u64 root_objectid, 1757 u64 owner, u64 offset, int refs_to_add, 1758 struct btrfs_delayed_extent_op *extent_op) 1759 { 1760 struct btrfs_path *path; 1761 struct extent_buffer *leaf; 1762 struct btrfs_extent_item *item; 1763 u64 refs; 1764 int ret; 1765 int err = 0; 1766 1767 path = btrfs_alloc_path(); 1768 if (!path) 1769 return -ENOMEM; 1770 1771 path->reada = 1; 1772 path->leave_spinning = 1; 1773 /* this will setup the path even if it fails to insert the back ref */ 1774 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1775 path, bytenr, num_bytes, parent, 1776 root_objectid, owner, offset, 1777 refs_to_add, extent_op); 1778 if (ret == 0) 1779 goto out; 1780 1781 if (ret != -EAGAIN) { 1782 err = ret; 1783 goto out; 1784 } 1785 1786 leaf = path->nodes[0]; 1787 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1788 refs = btrfs_extent_refs(leaf, item); 1789 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1790 if (extent_op) 1791 __run_delayed_extent_op(extent_op, leaf, item); 1792 1793 btrfs_mark_buffer_dirty(leaf); 1794 btrfs_release_path(root->fs_info->extent_root, path); 1795 1796 path->reada = 1; 1797 path->leave_spinning = 1; 1798 1799 /* now insert the actual backref */ 1800 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1801 path, bytenr, parent, root_objectid, 1802 owner, offset, refs_to_add); 1803 BUG_ON(ret); 1804 out: 1805 btrfs_free_path(path); 1806 return err; 1807 } 1808 1809 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1810 struct btrfs_root *root, 1811 struct btrfs_delayed_ref_node *node, 1812 struct btrfs_delayed_extent_op *extent_op, 1813 int insert_reserved) 1814 { 1815 int ret = 0; 1816 struct btrfs_delayed_data_ref *ref; 1817 struct btrfs_key ins; 1818 u64 parent = 0; 1819 u64 ref_root = 0; 1820 u64 flags = 0; 1821 1822 ins.objectid = node->bytenr; 1823 ins.offset = node->num_bytes; 1824 ins.type = BTRFS_EXTENT_ITEM_KEY; 1825 1826 ref = btrfs_delayed_node_to_data_ref(node); 1827 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1828 parent = ref->parent; 1829 else 1830 ref_root = ref->root; 1831 1832 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1833 if (extent_op) { 1834 BUG_ON(extent_op->update_key); 1835 flags |= extent_op->flags_to_set; 1836 } 1837 ret = alloc_reserved_file_extent(trans, root, 1838 parent, ref_root, flags, 1839 ref->objectid, ref->offset, 1840 &ins, node->ref_mod); 1841 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1842 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1843 node->num_bytes, parent, 1844 ref_root, ref->objectid, 1845 ref->offset, node->ref_mod, 1846 extent_op); 1847 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1848 ret = __btrfs_free_extent(trans, root, node->bytenr, 1849 node->num_bytes, parent, 1850 ref_root, ref->objectid, 1851 ref->offset, node->ref_mod, 1852 extent_op); 1853 } else { 1854 BUG(); 1855 } 1856 return ret; 1857 } 1858 1859 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1860 struct extent_buffer *leaf, 1861 struct btrfs_extent_item *ei) 1862 { 1863 u64 flags = btrfs_extent_flags(leaf, ei); 1864 if (extent_op->update_flags) { 1865 flags |= extent_op->flags_to_set; 1866 btrfs_set_extent_flags(leaf, ei, flags); 1867 } 1868 1869 if (extent_op->update_key) { 1870 struct btrfs_tree_block_info *bi; 1871 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1872 bi = (struct btrfs_tree_block_info *)(ei + 1); 1873 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1874 } 1875 } 1876 1877 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1878 struct btrfs_root *root, 1879 struct btrfs_delayed_ref_node *node, 1880 struct btrfs_delayed_extent_op *extent_op) 1881 { 1882 struct btrfs_key key; 1883 struct btrfs_path *path; 1884 struct btrfs_extent_item *ei; 1885 struct extent_buffer *leaf; 1886 u32 item_size; 1887 int ret; 1888 int err = 0; 1889 1890 path = btrfs_alloc_path(); 1891 if (!path) 1892 return -ENOMEM; 1893 1894 key.objectid = node->bytenr; 1895 key.type = BTRFS_EXTENT_ITEM_KEY; 1896 key.offset = node->num_bytes; 1897 1898 path->reada = 1; 1899 path->leave_spinning = 1; 1900 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 1901 path, 0, 1); 1902 if (ret < 0) { 1903 err = ret; 1904 goto out; 1905 } 1906 if (ret > 0) { 1907 err = -EIO; 1908 goto out; 1909 } 1910 1911 leaf = path->nodes[0]; 1912 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1913 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1914 if (item_size < sizeof(*ei)) { 1915 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 1916 path, (u64)-1, 0); 1917 if (ret < 0) { 1918 err = ret; 1919 goto out; 1920 } 1921 leaf = path->nodes[0]; 1922 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1923 } 1924 #endif 1925 BUG_ON(item_size < sizeof(*ei)); 1926 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1927 __run_delayed_extent_op(extent_op, leaf, ei); 1928 1929 btrfs_mark_buffer_dirty(leaf); 1930 out: 1931 btrfs_free_path(path); 1932 return err; 1933 } 1934 1935 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1936 struct btrfs_root *root, 1937 struct btrfs_delayed_ref_node *node, 1938 struct btrfs_delayed_extent_op *extent_op, 1939 int insert_reserved) 1940 { 1941 int ret = 0; 1942 struct btrfs_delayed_tree_ref *ref; 1943 struct btrfs_key ins; 1944 u64 parent = 0; 1945 u64 ref_root = 0; 1946 1947 ins.objectid = node->bytenr; 1948 ins.offset = node->num_bytes; 1949 ins.type = BTRFS_EXTENT_ITEM_KEY; 1950 1951 ref = btrfs_delayed_node_to_tree_ref(node); 1952 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1953 parent = ref->parent; 1954 else 1955 ref_root = ref->root; 1956 1957 BUG_ON(node->ref_mod != 1); 1958 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1959 BUG_ON(!extent_op || !extent_op->update_flags || 1960 !extent_op->update_key); 1961 ret = alloc_reserved_tree_block(trans, root, 1962 parent, ref_root, 1963 extent_op->flags_to_set, 1964 &extent_op->key, 1965 ref->level, &ins); 1966 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1967 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1968 node->num_bytes, parent, ref_root, 1969 ref->level, 0, 1, extent_op); 1970 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1971 ret = __btrfs_free_extent(trans, root, node->bytenr, 1972 node->num_bytes, parent, ref_root, 1973 ref->level, 0, 1, extent_op); 1974 } else { 1975 BUG(); 1976 } 1977 return ret; 1978 } 1979 1980 /* helper function to actually process a single delayed ref entry */ 1981 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1982 struct btrfs_root *root, 1983 struct btrfs_delayed_ref_node *node, 1984 struct btrfs_delayed_extent_op *extent_op, 1985 int insert_reserved) 1986 { 1987 int ret; 1988 if (btrfs_delayed_ref_is_head(node)) { 1989 struct btrfs_delayed_ref_head *head; 1990 /* 1991 * we've hit the end of the chain and we were supposed 1992 * to insert this extent into the tree. But, it got 1993 * deleted before we ever needed to insert it, so all 1994 * we have to do is clean up the accounting 1995 */ 1996 BUG_ON(extent_op); 1997 head = btrfs_delayed_node_to_head(node); 1998 if (insert_reserved) { 1999 btrfs_pin_extent(root, node->bytenr, 2000 node->num_bytes, 1); 2001 if (head->is_data) { 2002 ret = btrfs_del_csums(trans, root, 2003 node->bytenr, 2004 node->num_bytes); 2005 BUG_ON(ret); 2006 } 2007 } 2008 mutex_unlock(&head->mutex); 2009 return 0; 2010 } 2011 2012 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2013 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2014 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2015 insert_reserved); 2016 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2017 node->type == BTRFS_SHARED_DATA_REF_KEY) 2018 ret = run_delayed_data_ref(trans, root, node, extent_op, 2019 insert_reserved); 2020 else 2021 BUG(); 2022 return ret; 2023 } 2024 2025 static noinline struct btrfs_delayed_ref_node * 2026 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2027 { 2028 struct rb_node *node; 2029 struct btrfs_delayed_ref_node *ref; 2030 int action = BTRFS_ADD_DELAYED_REF; 2031 again: 2032 /* 2033 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2034 * this prevents ref count from going down to zero when 2035 * there still are pending delayed ref. 2036 */ 2037 node = rb_prev(&head->node.rb_node); 2038 while (1) { 2039 if (!node) 2040 break; 2041 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2042 rb_node); 2043 if (ref->bytenr != head->node.bytenr) 2044 break; 2045 if (ref->action == action) 2046 return ref; 2047 node = rb_prev(node); 2048 } 2049 if (action == BTRFS_ADD_DELAYED_REF) { 2050 action = BTRFS_DROP_DELAYED_REF; 2051 goto again; 2052 } 2053 return NULL; 2054 } 2055 2056 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2057 struct btrfs_root *root, 2058 struct list_head *cluster) 2059 { 2060 struct btrfs_delayed_ref_root *delayed_refs; 2061 struct btrfs_delayed_ref_node *ref; 2062 struct btrfs_delayed_ref_head *locked_ref = NULL; 2063 struct btrfs_delayed_extent_op *extent_op; 2064 int ret; 2065 int count = 0; 2066 int must_insert_reserved = 0; 2067 2068 delayed_refs = &trans->transaction->delayed_refs; 2069 while (1) { 2070 if (!locked_ref) { 2071 /* pick a new head ref from the cluster list */ 2072 if (list_empty(cluster)) 2073 break; 2074 2075 locked_ref = list_entry(cluster->next, 2076 struct btrfs_delayed_ref_head, cluster); 2077 2078 /* grab the lock that says we are going to process 2079 * all the refs for this head */ 2080 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2081 2082 /* 2083 * we may have dropped the spin lock to get the head 2084 * mutex lock, and that might have given someone else 2085 * time to free the head. If that's true, it has been 2086 * removed from our list and we can move on. 2087 */ 2088 if (ret == -EAGAIN) { 2089 locked_ref = NULL; 2090 count++; 2091 continue; 2092 } 2093 } 2094 2095 /* 2096 * record the must insert reserved flag before we 2097 * drop the spin lock. 2098 */ 2099 must_insert_reserved = locked_ref->must_insert_reserved; 2100 locked_ref->must_insert_reserved = 0; 2101 2102 extent_op = locked_ref->extent_op; 2103 locked_ref->extent_op = NULL; 2104 2105 /* 2106 * locked_ref is the head node, so we have to go one 2107 * node back for any delayed ref updates 2108 */ 2109 ref = select_delayed_ref(locked_ref); 2110 if (!ref) { 2111 /* All delayed refs have been processed, Go ahead 2112 * and send the head node to run_one_delayed_ref, 2113 * so that any accounting fixes can happen 2114 */ 2115 ref = &locked_ref->node; 2116 2117 if (extent_op && must_insert_reserved) { 2118 kfree(extent_op); 2119 extent_op = NULL; 2120 } 2121 2122 if (extent_op) { 2123 spin_unlock(&delayed_refs->lock); 2124 2125 ret = run_delayed_extent_op(trans, root, 2126 ref, extent_op); 2127 BUG_ON(ret); 2128 kfree(extent_op); 2129 2130 cond_resched(); 2131 spin_lock(&delayed_refs->lock); 2132 continue; 2133 } 2134 2135 list_del_init(&locked_ref->cluster); 2136 locked_ref = NULL; 2137 } 2138 2139 ref->in_tree = 0; 2140 rb_erase(&ref->rb_node, &delayed_refs->root); 2141 delayed_refs->num_entries--; 2142 2143 spin_unlock(&delayed_refs->lock); 2144 2145 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2146 must_insert_reserved); 2147 BUG_ON(ret); 2148 2149 btrfs_put_delayed_ref(ref); 2150 kfree(extent_op); 2151 count++; 2152 2153 cond_resched(); 2154 spin_lock(&delayed_refs->lock); 2155 } 2156 return count; 2157 } 2158 2159 /* 2160 * this starts processing the delayed reference count updates and 2161 * extent insertions we have queued up so far. count can be 2162 * 0, which means to process everything in the tree at the start 2163 * of the run (but not newly added entries), or it can be some target 2164 * number you'd like to process. 2165 */ 2166 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2167 struct btrfs_root *root, unsigned long count) 2168 { 2169 struct rb_node *node; 2170 struct btrfs_delayed_ref_root *delayed_refs; 2171 struct btrfs_delayed_ref_node *ref; 2172 struct list_head cluster; 2173 int ret; 2174 int run_all = count == (unsigned long)-1; 2175 int run_most = 0; 2176 2177 if (root == root->fs_info->extent_root) 2178 root = root->fs_info->tree_root; 2179 2180 delayed_refs = &trans->transaction->delayed_refs; 2181 INIT_LIST_HEAD(&cluster); 2182 again: 2183 spin_lock(&delayed_refs->lock); 2184 if (count == 0) { 2185 count = delayed_refs->num_entries * 2; 2186 run_most = 1; 2187 } 2188 while (1) { 2189 if (!(run_all || run_most) && 2190 delayed_refs->num_heads_ready < 64) 2191 break; 2192 2193 /* 2194 * go find something we can process in the rbtree. We start at 2195 * the beginning of the tree, and then build a cluster 2196 * of refs to process starting at the first one we are able to 2197 * lock 2198 */ 2199 ret = btrfs_find_ref_cluster(trans, &cluster, 2200 delayed_refs->run_delayed_start); 2201 if (ret) 2202 break; 2203 2204 ret = run_clustered_refs(trans, root, &cluster); 2205 BUG_ON(ret < 0); 2206 2207 count -= min_t(unsigned long, ret, count); 2208 2209 if (count == 0) 2210 break; 2211 } 2212 2213 if (run_all) { 2214 node = rb_first(&delayed_refs->root); 2215 if (!node) 2216 goto out; 2217 count = (unsigned long)-1; 2218 2219 while (node) { 2220 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2221 rb_node); 2222 if (btrfs_delayed_ref_is_head(ref)) { 2223 struct btrfs_delayed_ref_head *head; 2224 2225 head = btrfs_delayed_node_to_head(ref); 2226 atomic_inc(&ref->refs); 2227 2228 spin_unlock(&delayed_refs->lock); 2229 mutex_lock(&head->mutex); 2230 mutex_unlock(&head->mutex); 2231 2232 btrfs_put_delayed_ref(ref); 2233 cond_resched(); 2234 goto again; 2235 } 2236 node = rb_next(node); 2237 } 2238 spin_unlock(&delayed_refs->lock); 2239 schedule_timeout(1); 2240 goto again; 2241 } 2242 out: 2243 spin_unlock(&delayed_refs->lock); 2244 return 0; 2245 } 2246 2247 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2248 struct btrfs_root *root, 2249 u64 bytenr, u64 num_bytes, u64 flags, 2250 int is_data) 2251 { 2252 struct btrfs_delayed_extent_op *extent_op; 2253 int ret; 2254 2255 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2256 if (!extent_op) 2257 return -ENOMEM; 2258 2259 extent_op->flags_to_set = flags; 2260 extent_op->update_flags = 1; 2261 extent_op->update_key = 0; 2262 extent_op->is_data = is_data ? 1 : 0; 2263 2264 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2265 if (ret) 2266 kfree(extent_op); 2267 return ret; 2268 } 2269 2270 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2271 struct btrfs_root *root, 2272 struct btrfs_path *path, 2273 u64 objectid, u64 offset, u64 bytenr) 2274 { 2275 struct btrfs_delayed_ref_head *head; 2276 struct btrfs_delayed_ref_node *ref; 2277 struct btrfs_delayed_data_ref *data_ref; 2278 struct btrfs_delayed_ref_root *delayed_refs; 2279 struct rb_node *node; 2280 int ret = 0; 2281 2282 ret = -ENOENT; 2283 delayed_refs = &trans->transaction->delayed_refs; 2284 spin_lock(&delayed_refs->lock); 2285 head = btrfs_find_delayed_ref_head(trans, bytenr); 2286 if (!head) 2287 goto out; 2288 2289 if (!mutex_trylock(&head->mutex)) { 2290 atomic_inc(&head->node.refs); 2291 spin_unlock(&delayed_refs->lock); 2292 2293 btrfs_release_path(root->fs_info->extent_root, path); 2294 2295 mutex_lock(&head->mutex); 2296 mutex_unlock(&head->mutex); 2297 btrfs_put_delayed_ref(&head->node); 2298 return -EAGAIN; 2299 } 2300 2301 node = rb_prev(&head->node.rb_node); 2302 if (!node) 2303 goto out_unlock; 2304 2305 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2306 2307 if (ref->bytenr != bytenr) 2308 goto out_unlock; 2309 2310 ret = 1; 2311 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2312 goto out_unlock; 2313 2314 data_ref = btrfs_delayed_node_to_data_ref(ref); 2315 2316 node = rb_prev(node); 2317 if (node) { 2318 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2319 if (ref->bytenr == bytenr) 2320 goto out_unlock; 2321 } 2322 2323 if (data_ref->root != root->root_key.objectid || 2324 data_ref->objectid != objectid || data_ref->offset != offset) 2325 goto out_unlock; 2326 2327 ret = 0; 2328 out_unlock: 2329 mutex_unlock(&head->mutex); 2330 out: 2331 spin_unlock(&delayed_refs->lock); 2332 return ret; 2333 } 2334 2335 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2336 struct btrfs_root *root, 2337 struct btrfs_path *path, 2338 u64 objectid, u64 offset, u64 bytenr) 2339 { 2340 struct btrfs_root *extent_root = root->fs_info->extent_root; 2341 struct extent_buffer *leaf; 2342 struct btrfs_extent_data_ref *ref; 2343 struct btrfs_extent_inline_ref *iref; 2344 struct btrfs_extent_item *ei; 2345 struct btrfs_key key; 2346 u32 item_size; 2347 int ret; 2348 2349 key.objectid = bytenr; 2350 key.offset = (u64)-1; 2351 key.type = BTRFS_EXTENT_ITEM_KEY; 2352 2353 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2354 if (ret < 0) 2355 goto out; 2356 BUG_ON(ret == 0); 2357 2358 ret = -ENOENT; 2359 if (path->slots[0] == 0) 2360 goto out; 2361 2362 path->slots[0]--; 2363 leaf = path->nodes[0]; 2364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2365 2366 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2367 goto out; 2368 2369 ret = 1; 2370 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2371 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2372 if (item_size < sizeof(*ei)) { 2373 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2374 goto out; 2375 } 2376 #endif 2377 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2378 2379 if (item_size != sizeof(*ei) + 2380 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2381 goto out; 2382 2383 if (btrfs_extent_generation(leaf, ei) <= 2384 btrfs_root_last_snapshot(&root->root_item)) 2385 goto out; 2386 2387 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2388 if (btrfs_extent_inline_ref_type(leaf, iref) != 2389 BTRFS_EXTENT_DATA_REF_KEY) 2390 goto out; 2391 2392 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2393 if (btrfs_extent_refs(leaf, ei) != 2394 btrfs_extent_data_ref_count(leaf, ref) || 2395 btrfs_extent_data_ref_root(leaf, ref) != 2396 root->root_key.objectid || 2397 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2398 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2399 goto out; 2400 2401 ret = 0; 2402 out: 2403 return ret; 2404 } 2405 2406 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2407 struct btrfs_root *root, 2408 u64 objectid, u64 offset, u64 bytenr) 2409 { 2410 struct btrfs_path *path; 2411 int ret; 2412 int ret2; 2413 2414 path = btrfs_alloc_path(); 2415 if (!path) 2416 return -ENOENT; 2417 2418 do { 2419 ret = check_committed_ref(trans, root, path, objectid, 2420 offset, bytenr); 2421 if (ret && ret != -ENOENT) 2422 goto out; 2423 2424 ret2 = check_delayed_ref(trans, root, path, objectid, 2425 offset, bytenr); 2426 } while (ret2 == -EAGAIN); 2427 2428 if (ret2 && ret2 != -ENOENT) { 2429 ret = ret2; 2430 goto out; 2431 } 2432 2433 if (ret != -ENOENT || ret2 != -ENOENT) 2434 ret = 0; 2435 out: 2436 btrfs_free_path(path); 2437 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2438 WARN_ON(ret > 0); 2439 return ret; 2440 } 2441 2442 #if 0 2443 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2444 struct extent_buffer *buf, u32 nr_extents) 2445 { 2446 struct btrfs_key key; 2447 struct btrfs_file_extent_item *fi; 2448 u64 root_gen; 2449 u32 nritems; 2450 int i; 2451 int level; 2452 int ret = 0; 2453 int shared = 0; 2454 2455 if (!root->ref_cows) 2456 return 0; 2457 2458 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2459 shared = 0; 2460 root_gen = root->root_key.offset; 2461 } else { 2462 shared = 1; 2463 root_gen = trans->transid - 1; 2464 } 2465 2466 level = btrfs_header_level(buf); 2467 nritems = btrfs_header_nritems(buf); 2468 2469 if (level == 0) { 2470 struct btrfs_leaf_ref *ref; 2471 struct btrfs_extent_info *info; 2472 2473 ref = btrfs_alloc_leaf_ref(root, nr_extents); 2474 if (!ref) { 2475 ret = -ENOMEM; 2476 goto out; 2477 } 2478 2479 ref->root_gen = root_gen; 2480 ref->bytenr = buf->start; 2481 ref->owner = btrfs_header_owner(buf); 2482 ref->generation = btrfs_header_generation(buf); 2483 ref->nritems = nr_extents; 2484 info = ref->extents; 2485 2486 for (i = 0; nr_extents > 0 && i < nritems; i++) { 2487 u64 disk_bytenr; 2488 btrfs_item_key_to_cpu(buf, &key, i); 2489 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2490 continue; 2491 fi = btrfs_item_ptr(buf, i, 2492 struct btrfs_file_extent_item); 2493 if (btrfs_file_extent_type(buf, fi) == 2494 BTRFS_FILE_EXTENT_INLINE) 2495 continue; 2496 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2497 if (disk_bytenr == 0) 2498 continue; 2499 2500 info->bytenr = disk_bytenr; 2501 info->num_bytes = 2502 btrfs_file_extent_disk_num_bytes(buf, fi); 2503 info->objectid = key.objectid; 2504 info->offset = key.offset; 2505 info++; 2506 } 2507 2508 ret = btrfs_add_leaf_ref(root, ref, shared); 2509 if (ret == -EEXIST && shared) { 2510 struct btrfs_leaf_ref *old; 2511 old = btrfs_lookup_leaf_ref(root, ref->bytenr); 2512 BUG_ON(!old); 2513 btrfs_remove_leaf_ref(root, old); 2514 btrfs_free_leaf_ref(root, old); 2515 ret = btrfs_add_leaf_ref(root, ref, shared); 2516 } 2517 WARN_ON(ret); 2518 btrfs_free_leaf_ref(root, ref); 2519 } 2520 out: 2521 return ret; 2522 } 2523 2524 /* when a block goes through cow, we update the reference counts of 2525 * everything that block points to. The internal pointers of the block 2526 * can be in just about any order, and it is likely to have clusters of 2527 * things that are close together and clusters of things that are not. 2528 * 2529 * To help reduce the seeks that come with updating all of these reference 2530 * counts, sort them by byte number before actual updates are done. 2531 * 2532 * struct refsort is used to match byte number to slot in the btree block. 2533 * we sort based on the byte number and then use the slot to actually 2534 * find the item. 2535 * 2536 * struct refsort is smaller than strcut btrfs_item and smaller than 2537 * struct btrfs_key_ptr. Since we're currently limited to the page size 2538 * for a btree block, there's no way for a kmalloc of refsorts for a 2539 * single node to be bigger than a page. 2540 */ 2541 struct refsort { 2542 u64 bytenr; 2543 u32 slot; 2544 }; 2545 2546 /* 2547 * for passing into sort() 2548 */ 2549 static int refsort_cmp(const void *a_void, const void *b_void) 2550 { 2551 const struct refsort *a = a_void; 2552 const struct refsort *b = b_void; 2553 2554 if (a->bytenr < b->bytenr) 2555 return -1; 2556 if (a->bytenr > b->bytenr) 2557 return 1; 2558 return 0; 2559 } 2560 #endif 2561 2562 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2563 struct btrfs_root *root, 2564 struct extent_buffer *buf, 2565 int full_backref, int inc) 2566 { 2567 u64 bytenr; 2568 u64 num_bytes; 2569 u64 parent; 2570 u64 ref_root; 2571 u32 nritems; 2572 struct btrfs_key key; 2573 struct btrfs_file_extent_item *fi; 2574 int i; 2575 int level; 2576 int ret = 0; 2577 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2578 u64, u64, u64, u64, u64, u64); 2579 2580 ref_root = btrfs_header_owner(buf); 2581 nritems = btrfs_header_nritems(buf); 2582 level = btrfs_header_level(buf); 2583 2584 if (!root->ref_cows && level == 0) 2585 return 0; 2586 2587 if (inc) 2588 process_func = btrfs_inc_extent_ref; 2589 else 2590 process_func = btrfs_free_extent; 2591 2592 if (full_backref) 2593 parent = buf->start; 2594 else 2595 parent = 0; 2596 2597 for (i = 0; i < nritems; i++) { 2598 if (level == 0) { 2599 btrfs_item_key_to_cpu(buf, &key, i); 2600 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2601 continue; 2602 fi = btrfs_item_ptr(buf, i, 2603 struct btrfs_file_extent_item); 2604 if (btrfs_file_extent_type(buf, fi) == 2605 BTRFS_FILE_EXTENT_INLINE) 2606 continue; 2607 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2608 if (bytenr == 0) 2609 continue; 2610 2611 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2612 key.offset -= btrfs_file_extent_offset(buf, fi); 2613 ret = process_func(trans, root, bytenr, num_bytes, 2614 parent, ref_root, key.objectid, 2615 key.offset); 2616 if (ret) 2617 goto fail; 2618 } else { 2619 bytenr = btrfs_node_blockptr(buf, i); 2620 num_bytes = btrfs_level_size(root, level - 1); 2621 ret = process_func(trans, root, bytenr, num_bytes, 2622 parent, ref_root, level - 1, 0); 2623 if (ret) 2624 goto fail; 2625 } 2626 } 2627 return 0; 2628 fail: 2629 BUG(); 2630 return ret; 2631 } 2632 2633 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2634 struct extent_buffer *buf, int full_backref) 2635 { 2636 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2637 } 2638 2639 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2640 struct extent_buffer *buf, int full_backref) 2641 { 2642 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2643 } 2644 2645 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2646 struct btrfs_root *root, 2647 struct btrfs_path *path, 2648 struct btrfs_block_group_cache *cache) 2649 { 2650 int ret; 2651 struct btrfs_root *extent_root = root->fs_info->extent_root; 2652 unsigned long bi; 2653 struct extent_buffer *leaf; 2654 2655 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2656 if (ret < 0) 2657 goto fail; 2658 BUG_ON(ret); 2659 2660 leaf = path->nodes[0]; 2661 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2662 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2663 btrfs_mark_buffer_dirty(leaf); 2664 btrfs_release_path(extent_root, path); 2665 fail: 2666 if (ret) 2667 return ret; 2668 return 0; 2669 2670 } 2671 2672 static struct btrfs_block_group_cache * 2673 next_block_group(struct btrfs_root *root, 2674 struct btrfs_block_group_cache *cache) 2675 { 2676 struct rb_node *node; 2677 spin_lock(&root->fs_info->block_group_cache_lock); 2678 node = rb_next(&cache->cache_node); 2679 btrfs_put_block_group(cache); 2680 if (node) { 2681 cache = rb_entry(node, struct btrfs_block_group_cache, 2682 cache_node); 2683 btrfs_get_block_group(cache); 2684 } else 2685 cache = NULL; 2686 spin_unlock(&root->fs_info->block_group_cache_lock); 2687 return cache; 2688 } 2689 2690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2691 struct btrfs_root *root) 2692 { 2693 struct btrfs_block_group_cache *cache; 2694 int err = 0; 2695 struct btrfs_path *path; 2696 u64 last = 0; 2697 2698 path = btrfs_alloc_path(); 2699 if (!path) 2700 return -ENOMEM; 2701 2702 while (1) { 2703 if (last == 0) { 2704 err = btrfs_run_delayed_refs(trans, root, 2705 (unsigned long)-1); 2706 BUG_ON(err); 2707 } 2708 2709 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2710 while (cache) { 2711 if (cache->dirty) 2712 break; 2713 cache = next_block_group(root, cache); 2714 } 2715 if (!cache) { 2716 if (last == 0) 2717 break; 2718 last = 0; 2719 continue; 2720 } 2721 2722 cache->dirty = 0; 2723 last = cache->key.objectid + cache->key.offset; 2724 2725 err = write_one_cache_group(trans, root, path, cache); 2726 BUG_ON(err); 2727 btrfs_put_block_group(cache); 2728 } 2729 2730 btrfs_free_path(path); 2731 return 0; 2732 } 2733 2734 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 2735 { 2736 struct btrfs_block_group_cache *block_group; 2737 int readonly = 0; 2738 2739 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 2740 if (!block_group || block_group->ro) 2741 readonly = 1; 2742 if (block_group) 2743 btrfs_put_block_group(block_group); 2744 return readonly; 2745 } 2746 2747 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 2748 u64 total_bytes, u64 bytes_used, 2749 struct btrfs_space_info **space_info) 2750 { 2751 struct btrfs_space_info *found; 2752 int i; 2753 int factor; 2754 2755 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 2756 BTRFS_BLOCK_GROUP_RAID10)) 2757 factor = 2; 2758 else 2759 factor = 1; 2760 2761 found = __find_space_info(info, flags); 2762 if (found) { 2763 spin_lock(&found->lock); 2764 found->total_bytes += total_bytes; 2765 found->bytes_used += bytes_used; 2766 found->disk_used += bytes_used * factor; 2767 found->full = 0; 2768 spin_unlock(&found->lock); 2769 *space_info = found; 2770 return 0; 2771 } 2772 found = kzalloc(sizeof(*found), GFP_NOFS); 2773 if (!found) 2774 return -ENOMEM; 2775 2776 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 2777 INIT_LIST_HEAD(&found->block_groups[i]); 2778 init_rwsem(&found->groups_sem); 2779 spin_lock_init(&found->lock); 2780 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA | 2781 BTRFS_BLOCK_GROUP_SYSTEM | 2782 BTRFS_BLOCK_GROUP_METADATA); 2783 found->total_bytes = total_bytes; 2784 found->bytes_used = bytes_used; 2785 found->disk_used = bytes_used * factor; 2786 found->bytes_pinned = 0; 2787 found->bytes_reserved = 0; 2788 found->bytes_readonly = 0; 2789 found->bytes_may_use = 0; 2790 found->full = 0; 2791 found->force_alloc = 0; 2792 *space_info = found; 2793 list_add_rcu(&found->list, &info->space_info); 2794 atomic_set(&found->caching_threads, 0); 2795 return 0; 2796 } 2797 2798 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 2799 { 2800 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 | 2801 BTRFS_BLOCK_GROUP_RAID1 | 2802 BTRFS_BLOCK_GROUP_RAID10 | 2803 BTRFS_BLOCK_GROUP_DUP); 2804 if (extra_flags) { 2805 if (flags & BTRFS_BLOCK_GROUP_DATA) 2806 fs_info->avail_data_alloc_bits |= extra_flags; 2807 if (flags & BTRFS_BLOCK_GROUP_METADATA) 2808 fs_info->avail_metadata_alloc_bits |= extra_flags; 2809 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2810 fs_info->avail_system_alloc_bits |= extra_flags; 2811 } 2812 } 2813 2814 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 2815 { 2816 u64 num_devices = root->fs_info->fs_devices->rw_devices; 2817 2818 if (num_devices == 1) 2819 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 2820 if (num_devices < 4) 2821 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 2822 2823 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 2824 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 2825 BTRFS_BLOCK_GROUP_RAID10))) { 2826 flags &= ~BTRFS_BLOCK_GROUP_DUP; 2827 } 2828 2829 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 2830 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 2831 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 2832 } 2833 2834 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 2835 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 2836 (flags & BTRFS_BLOCK_GROUP_RAID10) | 2837 (flags & BTRFS_BLOCK_GROUP_DUP))) 2838 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 2839 return flags; 2840 } 2841 2842 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 2843 { 2844 if (flags & BTRFS_BLOCK_GROUP_DATA) 2845 flags |= root->fs_info->avail_data_alloc_bits & 2846 root->fs_info->data_alloc_profile; 2847 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 2848 flags |= root->fs_info->avail_system_alloc_bits & 2849 root->fs_info->system_alloc_profile; 2850 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 2851 flags |= root->fs_info->avail_metadata_alloc_bits & 2852 root->fs_info->metadata_alloc_profile; 2853 return btrfs_reduce_alloc_profile(root, flags); 2854 } 2855 2856 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 2857 { 2858 u64 flags; 2859 2860 if (data) 2861 flags = BTRFS_BLOCK_GROUP_DATA; 2862 else if (root == root->fs_info->chunk_root) 2863 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2864 else 2865 flags = BTRFS_BLOCK_GROUP_METADATA; 2866 2867 return get_alloc_profile(root, flags); 2868 } 2869 2870 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 2871 { 2872 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 2873 BTRFS_BLOCK_GROUP_DATA); 2874 } 2875 2876 /* 2877 * This will check the space that the inode allocates from to make sure we have 2878 * enough space for bytes. 2879 */ 2880 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 2881 { 2882 struct btrfs_space_info *data_sinfo; 2883 struct btrfs_root *root = BTRFS_I(inode)->root; 2884 u64 used; 2885 int ret = 0, committed = 0; 2886 2887 /* make sure bytes are sectorsize aligned */ 2888 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 2889 2890 data_sinfo = BTRFS_I(inode)->space_info; 2891 if (!data_sinfo) 2892 goto alloc; 2893 2894 again: 2895 /* make sure we have enough space to handle the data first */ 2896 spin_lock(&data_sinfo->lock); 2897 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 2898 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 2899 data_sinfo->bytes_may_use; 2900 2901 if (used + bytes > data_sinfo->total_bytes) { 2902 struct btrfs_trans_handle *trans; 2903 2904 /* 2905 * if we don't have enough free bytes in this space then we need 2906 * to alloc a new chunk. 2907 */ 2908 if (!data_sinfo->full) { 2909 u64 alloc_target; 2910 2911 data_sinfo->force_alloc = 1; 2912 spin_unlock(&data_sinfo->lock); 2913 alloc: 2914 alloc_target = btrfs_get_alloc_profile(root, 1); 2915 trans = btrfs_join_transaction(root, 1); 2916 if (IS_ERR(trans)) 2917 return PTR_ERR(trans); 2918 2919 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 2920 bytes + 2 * 1024 * 1024, 2921 alloc_target, 0); 2922 btrfs_end_transaction(trans, root); 2923 if (ret < 0) 2924 return ret; 2925 2926 if (!data_sinfo) { 2927 btrfs_set_inode_space_info(root, inode); 2928 data_sinfo = BTRFS_I(inode)->space_info; 2929 } 2930 goto again; 2931 } 2932 spin_unlock(&data_sinfo->lock); 2933 2934 /* commit the current transaction and try again */ 2935 if (!committed && !root->fs_info->open_ioctl_trans) { 2936 committed = 1; 2937 trans = btrfs_join_transaction(root, 1); 2938 if (IS_ERR(trans)) 2939 return PTR_ERR(trans); 2940 ret = btrfs_commit_transaction(trans, root); 2941 if (ret) 2942 return ret; 2943 goto again; 2944 } 2945 2946 #if 0 /* I hope we never need this code again, just in case */ 2947 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, " 2948 "%llu bytes_reserved, " "%llu bytes_pinned, " 2949 "%llu bytes_readonly, %llu may use %llu total\n", 2950 (unsigned long long)bytes, 2951 (unsigned long long)data_sinfo->bytes_used, 2952 (unsigned long long)data_sinfo->bytes_reserved, 2953 (unsigned long long)data_sinfo->bytes_pinned, 2954 (unsigned long long)data_sinfo->bytes_readonly, 2955 (unsigned long long)data_sinfo->bytes_may_use, 2956 (unsigned long long)data_sinfo->total_bytes); 2957 #endif 2958 return -ENOSPC; 2959 } 2960 data_sinfo->bytes_may_use += bytes; 2961 BTRFS_I(inode)->reserved_bytes += bytes; 2962 spin_unlock(&data_sinfo->lock); 2963 2964 return 0; 2965 } 2966 2967 /* 2968 * called when we are clearing an delalloc extent from the 2969 * inode's io_tree or there was an error for whatever reason 2970 * after calling btrfs_check_data_free_space 2971 */ 2972 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 2973 { 2974 struct btrfs_root *root = BTRFS_I(inode)->root; 2975 struct btrfs_space_info *data_sinfo; 2976 2977 /* make sure bytes are sectorsize aligned */ 2978 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 2979 2980 data_sinfo = BTRFS_I(inode)->space_info; 2981 spin_lock(&data_sinfo->lock); 2982 data_sinfo->bytes_may_use -= bytes; 2983 BTRFS_I(inode)->reserved_bytes -= bytes; 2984 spin_unlock(&data_sinfo->lock); 2985 } 2986 2987 static void force_metadata_allocation(struct btrfs_fs_info *info) 2988 { 2989 struct list_head *head = &info->space_info; 2990 struct btrfs_space_info *found; 2991 2992 rcu_read_lock(); 2993 list_for_each_entry_rcu(found, head, list) { 2994 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 2995 found->force_alloc = 1; 2996 } 2997 rcu_read_unlock(); 2998 } 2999 3000 static int should_alloc_chunk(struct btrfs_space_info *sinfo, 3001 u64 alloc_bytes) 3002 { 3003 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3004 3005 if (sinfo->bytes_used + sinfo->bytes_reserved + 3006 alloc_bytes + 256 * 1024 * 1024 < num_bytes) 3007 return 0; 3008 3009 if (sinfo->bytes_used + sinfo->bytes_reserved + 3010 alloc_bytes < div_factor(num_bytes, 8)) 3011 return 0; 3012 3013 return 1; 3014 } 3015 3016 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3017 struct btrfs_root *extent_root, u64 alloc_bytes, 3018 u64 flags, int force) 3019 { 3020 struct btrfs_space_info *space_info; 3021 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3022 int ret = 0; 3023 3024 mutex_lock(&fs_info->chunk_mutex); 3025 3026 flags = btrfs_reduce_alloc_profile(extent_root, flags); 3027 3028 space_info = __find_space_info(extent_root->fs_info, flags); 3029 if (!space_info) { 3030 ret = update_space_info(extent_root->fs_info, flags, 3031 0, 0, &space_info); 3032 BUG_ON(ret); 3033 } 3034 BUG_ON(!space_info); 3035 3036 spin_lock(&space_info->lock); 3037 if (space_info->force_alloc) 3038 force = 1; 3039 if (space_info->full) { 3040 spin_unlock(&space_info->lock); 3041 goto out; 3042 } 3043 3044 if (!force && !should_alloc_chunk(space_info, alloc_bytes)) { 3045 spin_unlock(&space_info->lock); 3046 goto out; 3047 } 3048 spin_unlock(&space_info->lock); 3049 3050 /* 3051 * if we're doing a data chunk, go ahead and make sure that 3052 * we keep a reasonable number of metadata chunks allocated in the 3053 * FS as well. 3054 */ 3055 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3056 fs_info->data_chunk_allocations++; 3057 if (!(fs_info->data_chunk_allocations % 3058 fs_info->metadata_ratio)) 3059 force_metadata_allocation(fs_info); 3060 } 3061 3062 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3063 spin_lock(&space_info->lock); 3064 if (ret) 3065 space_info->full = 1; 3066 else 3067 ret = 1; 3068 space_info->force_alloc = 0; 3069 spin_unlock(&space_info->lock); 3070 out: 3071 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3072 return ret; 3073 } 3074 3075 static int maybe_allocate_chunk(struct btrfs_trans_handle *trans, 3076 struct btrfs_root *root, 3077 struct btrfs_space_info *sinfo, u64 num_bytes) 3078 { 3079 int ret; 3080 int end_trans = 0; 3081 3082 if (sinfo->full) 3083 return 0; 3084 3085 spin_lock(&sinfo->lock); 3086 ret = should_alloc_chunk(sinfo, num_bytes + 2 * 1024 * 1024); 3087 spin_unlock(&sinfo->lock); 3088 if (!ret) 3089 return 0; 3090 3091 if (!trans) { 3092 trans = btrfs_join_transaction(root, 1); 3093 BUG_ON(IS_ERR(trans)); 3094 end_trans = 1; 3095 } 3096 3097 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3098 num_bytes + 2 * 1024 * 1024, 3099 get_alloc_profile(root, sinfo->flags), 0); 3100 3101 if (end_trans) 3102 btrfs_end_transaction(trans, root); 3103 3104 return ret == 1 ? 1 : 0; 3105 } 3106 3107 /* 3108 * shrink metadata reservation for delalloc 3109 */ 3110 static int shrink_delalloc(struct btrfs_trans_handle *trans, 3111 struct btrfs_root *root, u64 to_reclaim) 3112 { 3113 struct btrfs_block_rsv *block_rsv; 3114 u64 reserved; 3115 u64 max_reclaim; 3116 u64 reclaimed = 0; 3117 int pause = 1; 3118 int ret; 3119 3120 block_rsv = &root->fs_info->delalloc_block_rsv; 3121 spin_lock(&block_rsv->lock); 3122 reserved = block_rsv->reserved; 3123 spin_unlock(&block_rsv->lock); 3124 3125 if (reserved == 0) 3126 return 0; 3127 3128 max_reclaim = min(reserved, to_reclaim); 3129 3130 while (1) { 3131 ret = btrfs_start_one_delalloc_inode(root, trans ? 1 : 0); 3132 if (!ret) { 3133 __set_current_state(TASK_INTERRUPTIBLE); 3134 schedule_timeout(pause); 3135 pause <<= 1; 3136 if (pause > HZ / 10) 3137 pause = HZ / 10; 3138 } else { 3139 pause = 1; 3140 } 3141 3142 spin_lock(&block_rsv->lock); 3143 if (reserved > block_rsv->reserved) 3144 reclaimed = reserved - block_rsv->reserved; 3145 reserved = block_rsv->reserved; 3146 spin_unlock(&block_rsv->lock); 3147 3148 if (reserved == 0 || reclaimed >= max_reclaim) 3149 break; 3150 3151 if (trans && trans->transaction->blocked) 3152 return -EAGAIN; 3153 } 3154 return reclaimed >= to_reclaim; 3155 } 3156 3157 static int should_retry_reserve(struct btrfs_trans_handle *trans, 3158 struct btrfs_root *root, 3159 struct btrfs_block_rsv *block_rsv, 3160 u64 num_bytes, int *retries) 3161 { 3162 struct btrfs_space_info *space_info = block_rsv->space_info; 3163 int ret; 3164 3165 if ((*retries) > 2) 3166 return -ENOSPC; 3167 3168 ret = maybe_allocate_chunk(trans, root, space_info, num_bytes); 3169 if (ret) 3170 return 1; 3171 3172 if (trans && trans->transaction->in_commit) 3173 return -ENOSPC; 3174 3175 ret = shrink_delalloc(trans, root, num_bytes); 3176 if (ret) 3177 return ret; 3178 3179 spin_lock(&space_info->lock); 3180 if (space_info->bytes_pinned < num_bytes) 3181 ret = 1; 3182 spin_unlock(&space_info->lock); 3183 if (ret) 3184 return -ENOSPC; 3185 3186 (*retries)++; 3187 3188 if (trans) 3189 return -EAGAIN; 3190 3191 trans = btrfs_join_transaction(root, 1); 3192 BUG_ON(IS_ERR(trans)); 3193 ret = btrfs_commit_transaction(trans, root); 3194 BUG_ON(ret); 3195 3196 return 1; 3197 } 3198 3199 static int reserve_metadata_bytes(struct btrfs_block_rsv *block_rsv, 3200 u64 num_bytes) 3201 { 3202 struct btrfs_space_info *space_info = block_rsv->space_info; 3203 u64 unused; 3204 int ret = -ENOSPC; 3205 3206 spin_lock(&space_info->lock); 3207 unused = space_info->bytes_used + space_info->bytes_reserved + 3208 space_info->bytes_pinned + space_info->bytes_readonly; 3209 3210 if (unused < space_info->total_bytes) 3211 unused = space_info->total_bytes - unused; 3212 else 3213 unused = 0; 3214 3215 if (unused >= num_bytes) { 3216 if (block_rsv->priority >= 10) { 3217 space_info->bytes_reserved += num_bytes; 3218 ret = 0; 3219 } else { 3220 if ((unused + block_rsv->reserved) * 3221 block_rsv->priority >= 3222 (num_bytes + block_rsv->reserved) * 10) { 3223 space_info->bytes_reserved += num_bytes; 3224 ret = 0; 3225 } 3226 } 3227 } 3228 spin_unlock(&space_info->lock); 3229 3230 return ret; 3231 } 3232 3233 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, 3234 struct btrfs_root *root) 3235 { 3236 struct btrfs_block_rsv *block_rsv; 3237 if (root->ref_cows) 3238 block_rsv = trans->block_rsv; 3239 else 3240 block_rsv = root->block_rsv; 3241 3242 if (!block_rsv) 3243 block_rsv = &root->fs_info->empty_block_rsv; 3244 3245 return block_rsv; 3246 } 3247 3248 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3249 u64 num_bytes) 3250 { 3251 int ret = -ENOSPC; 3252 spin_lock(&block_rsv->lock); 3253 if (block_rsv->reserved >= num_bytes) { 3254 block_rsv->reserved -= num_bytes; 3255 if (block_rsv->reserved < block_rsv->size) 3256 block_rsv->full = 0; 3257 ret = 0; 3258 } 3259 spin_unlock(&block_rsv->lock); 3260 return ret; 3261 } 3262 3263 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3264 u64 num_bytes, int update_size) 3265 { 3266 spin_lock(&block_rsv->lock); 3267 block_rsv->reserved += num_bytes; 3268 if (update_size) 3269 block_rsv->size += num_bytes; 3270 else if (block_rsv->reserved >= block_rsv->size) 3271 block_rsv->full = 1; 3272 spin_unlock(&block_rsv->lock); 3273 } 3274 3275 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv, 3276 struct btrfs_block_rsv *dest, u64 num_bytes) 3277 { 3278 struct btrfs_space_info *space_info = block_rsv->space_info; 3279 3280 spin_lock(&block_rsv->lock); 3281 if (num_bytes == (u64)-1) 3282 num_bytes = block_rsv->size; 3283 block_rsv->size -= num_bytes; 3284 if (block_rsv->reserved >= block_rsv->size) { 3285 num_bytes = block_rsv->reserved - block_rsv->size; 3286 block_rsv->reserved = block_rsv->size; 3287 block_rsv->full = 1; 3288 } else { 3289 num_bytes = 0; 3290 } 3291 spin_unlock(&block_rsv->lock); 3292 3293 if (num_bytes > 0) { 3294 if (dest) { 3295 block_rsv_add_bytes(dest, num_bytes, 0); 3296 } else { 3297 spin_lock(&space_info->lock); 3298 space_info->bytes_reserved -= num_bytes; 3299 spin_unlock(&space_info->lock); 3300 } 3301 } 3302 } 3303 3304 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 3305 struct btrfs_block_rsv *dst, u64 num_bytes) 3306 { 3307 int ret; 3308 3309 ret = block_rsv_use_bytes(src, num_bytes); 3310 if (ret) 3311 return ret; 3312 3313 block_rsv_add_bytes(dst, num_bytes, 1); 3314 return 0; 3315 } 3316 3317 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 3318 { 3319 memset(rsv, 0, sizeof(*rsv)); 3320 spin_lock_init(&rsv->lock); 3321 atomic_set(&rsv->usage, 1); 3322 rsv->priority = 6; 3323 INIT_LIST_HEAD(&rsv->list); 3324 } 3325 3326 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 3327 { 3328 struct btrfs_block_rsv *block_rsv; 3329 struct btrfs_fs_info *fs_info = root->fs_info; 3330 u64 alloc_target; 3331 3332 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 3333 if (!block_rsv) 3334 return NULL; 3335 3336 btrfs_init_block_rsv(block_rsv); 3337 3338 alloc_target = btrfs_get_alloc_profile(root, 0); 3339 block_rsv->space_info = __find_space_info(fs_info, 3340 BTRFS_BLOCK_GROUP_METADATA); 3341 3342 return block_rsv; 3343 } 3344 3345 void btrfs_free_block_rsv(struct btrfs_root *root, 3346 struct btrfs_block_rsv *rsv) 3347 { 3348 if (rsv && atomic_dec_and_test(&rsv->usage)) { 3349 btrfs_block_rsv_release(root, rsv, (u64)-1); 3350 if (!rsv->durable) 3351 kfree(rsv); 3352 } 3353 } 3354 3355 /* 3356 * make the block_rsv struct be able to capture freed space. 3357 * the captured space will re-add to the the block_rsv struct 3358 * after transaction commit 3359 */ 3360 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info, 3361 struct btrfs_block_rsv *block_rsv) 3362 { 3363 block_rsv->durable = 1; 3364 mutex_lock(&fs_info->durable_block_rsv_mutex); 3365 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list); 3366 mutex_unlock(&fs_info->durable_block_rsv_mutex); 3367 } 3368 3369 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans, 3370 struct btrfs_root *root, 3371 struct btrfs_block_rsv *block_rsv, 3372 u64 num_bytes, int *retries) 3373 { 3374 int ret; 3375 3376 if (num_bytes == 0) 3377 return 0; 3378 again: 3379 ret = reserve_metadata_bytes(block_rsv, num_bytes); 3380 if (!ret) { 3381 block_rsv_add_bytes(block_rsv, num_bytes, 1); 3382 return 0; 3383 } 3384 3385 ret = should_retry_reserve(trans, root, block_rsv, num_bytes, retries); 3386 if (ret > 0) 3387 goto again; 3388 3389 return ret; 3390 } 3391 3392 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans, 3393 struct btrfs_root *root, 3394 struct btrfs_block_rsv *block_rsv, 3395 u64 min_reserved, int min_factor) 3396 { 3397 u64 num_bytes = 0; 3398 int commit_trans = 0; 3399 int ret = -ENOSPC; 3400 3401 if (!block_rsv) 3402 return 0; 3403 3404 spin_lock(&block_rsv->lock); 3405 if (min_factor > 0) 3406 num_bytes = div_factor(block_rsv->size, min_factor); 3407 if (min_reserved > num_bytes) 3408 num_bytes = min_reserved; 3409 3410 if (block_rsv->reserved >= num_bytes) { 3411 ret = 0; 3412 } else { 3413 num_bytes -= block_rsv->reserved; 3414 if (block_rsv->durable && 3415 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes) 3416 commit_trans = 1; 3417 } 3418 spin_unlock(&block_rsv->lock); 3419 if (!ret) 3420 return 0; 3421 3422 if (block_rsv->refill_used) { 3423 ret = reserve_metadata_bytes(block_rsv, num_bytes); 3424 if (!ret) { 3425 block_rsv_add_bytes(block_rsv, num_bytes, 0); 3426 return 0; 3427 } 3428 } 3429 3430 if (commit_trans) { 3431 if (trans) 3432 return -EAGAIN; 3433 3434 trans = btrfs_join_transaction(root, 1); 3435 BUG_ON(IS_ERR(trans)); 3436 ret = btrfs_commit_transaction(trans, root); 3437 return 0; 3438 } 3439 3440 WARN_ON(1); 3441 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n", 3442 block_rsv->size, block_rsv->reserved, 3443 block_rsv->freed[0], block_rsv->freed[1]); 3444 3445 return -ENOSPC; 3446 } 3447 3448 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3449 struct btrfs_block_rsv *dst_rsv, 3450 u64 num_bytes) 3451 { 3452 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3453 } 3454 3455 void btrfs_block_rsv_release(struct btrfs_root *root, 3456 struct btrfs_block_rsv *block_rsv, 3457 u64 num_bytes) 3458 { 3459 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3460 if (global_rsv->full || global_rsv == block_rsv || 3461 block_rsv->space_info != global_rsv->space_info) 3462 global_rsv = NULL; 3463 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes); 3464 } 3465 3466 /* 3467 * helper to calculate size of global block reservation. 3468 * the desired value is sum of space used by extent tree, 3469 * checksum tree and root tree 3470 */ 3471 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 3472 { 3473 struct btrfs_space_info *sinfo; 3474 u64 num_bytes; 3475 u64 meta_used; 3476 u64 data_used; 3477 int csum_size = btrfs_super_csum_size(&fs_info->super_copy); 3478 #if 0 3479 /* 3480 * per tree used space accounting can be inaccuracy, so we 3481 * can't rely on it. 3482 */ 3483 spin_lock(&fs_info->extent_root->accounting_lock); 3484 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item); 3485 spin_unlock(&fs_info->extent_root->accounting_lock); 3486 3487 spin_lock(&fs_info->csum_root->accounting_lock); 3488 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item); 3489 spin_unlock(&fs_info->csum_root->accounting_lock); 3490 3491 spin_lock(&fs_info->tree_root->accounting_lock); 3492 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item); 3493 spin_unlock(&fs_info->tree_root->accounting_lock); 3494 #endif 3495 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 3496 spin_lock(&sinfo->lock); 3497 data_used = sinfo->bytes_used; 3498 spin_unlock(&sinfo->lock); 3499 3500 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3501 spin_lock(&sinfo->lock); 3502 meta_used = sinfo->bytes_used; 3503 spin_unlock(&sinfo->lock); 3504 3505 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 3506 csum_size * 2; 3507 num_bytes += div64_u64(data_used + meta_used, 50); 3508 3509 if (num_bytes * 3 > meta_used) 3510 num_bytes = div64_u64(meta_used, 3); 3511 3512 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 3513 } 3514 3515 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 3516 { 3517 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3518 struct btrfs_space_info *sinfo = block_rsv->space_info; 3519 u64 num_bytes; 3520 3521 num_bytes = calc_global_metadata_size(fs_info); 3522 3523 spin_lock(&block_rsv->lock); 3524 spin_lock(&sinfo->lock); 3525 3526 block_rsv->size = num_bytes; 3527 3528 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 3529 sinfo->bytes_reserved + sinfo->bytes_readonly; 3530 3531 if (sinfo->total_bytes > num_bytes) { 3532 num_bytes = sinfo->total_bytes - num_bytes; 3533 block_rsv->reserved += num_bytes; 3534 sinfo->bytes_reserved += num_bytes; 3535 } 3536 3537 if (block_rsv->reserved >= block_rsv->size) { 3538 num_bytes = block_rsv->reserved - block_rsv->size; 3539 sinfo->bytes_reserved -= num_bytes; 3540 block_rsv->reserved = block_rsv->size; 3541 block_rsv->full = 1; 3542 } 3543 #if 0 3544 printk(KERN_INFO"global block rsv size %llu reserved %llu\n", 3545 block_rsv->size, block_rsv->reserved); 3546 #endif 3547 spin_unlock(&sinfo->lock); 3548 spin_unlock(&block_rsv->lock); 3549 } 3550 3551 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 3552 { 3553 struct btrfs_space_info *space_info; 3554 3555 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3556 fs_info->chunk_block_rsv.space_info = space_info; 3557 fs_info->chunk_block_rsv.priority = 10; 3558 3559 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 3560 fs_info->global_block_rsv.space_info = space_info; 3561 fs_info->global_block_rsv.priority = 10; 3562 fs_info->global_block_rsv.refill_used = 1; 3563 fs_info->delalloc_block_rsv.space_info = space_info; 3564 fs_info->trans_block_rsv.space_info = space_info; 3565 fs_info->empty_block_rsv.space_info = space_info; 3566 fs_info->empty_block_rsv.priority = 10; 3567 3568 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 3569 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 3570 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 3571 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 3572 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 3573 3574 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv); 3575 3576 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv); 3577 3578 update_global_block_rsv(fs_info); 3579 } 3580 3581 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 3582 { 3583 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1); 3584 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 3585 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 3586 WARN_ON(fs_info->trans_block_rsv.size > 0); 3587 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 3588 WARN_ON(fs_info->chunk_block_rsv.size > 0); 3589 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 3590 } 3591 3592 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items) 3593 { 3594 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3595 3 * num_items; 3596 } 3597 3598 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans, 3599 struct btrfs_root *root, 3600 int num_items, int *retries) 3601 { 3602 u64 num_bytes; 3603 int ret; 3604 3605 if (num_items == 0 || root->fs_info->chunk_root == root) 3606 return 0; 3607 3608 num_bytes = calc_trans_metadata_size(root, num_items); 3609 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv, 3610 num_bytes, retries); 3611 if (!ret) { 3612 trans->bytes_reserved += num_bytes; 3613 trans->block_rsv = &root->fs_info->trans_block_rsv; 3614 } 3615 return ret; 3616 } 3617 3618 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3619 struct btrfs_root *root) 3620 { 3621 if (!trans->bytes_reserved) 3622 return; 3623 3624 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv); 3625 btrfs_block_rsv_release(root, trans->block_rsv, 3626 trans->bytes_reserved); 3627 trans->bytes_reserved = 0; 3628 } 3629 3630 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3631 struct inode *inode) 3632 { 3633 struct btrfs_root *root = BTRFS_I(inode)->root; 3634 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3635 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 3636 3637 /* 3638 * one for deleting orphan item, one for updating inode and 3639 * two for calling btrfs_truncate_inode_items. 3640 * 3641 * btrfs_truncate_inode_items is a delete operation, it frees 3642 * more space than it uses in most cases. So two units of 3643 * metadata space should be enough for calling it many times. 3644 * If all of the metadata space is used, we can commit 3645 * transaction and use space it freed. 3646 */ 3647 u64 num_bytes = calc_trans_metadata_size(root, 4); 3648 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3649 } 3650 3651 void btrfs_orphan_release_metadata(struct inode *inode) 3652 { 3653 struct btrfs_root *root = BTRFS_I(inode)->root; 3654 u64 num_bytes = calc_trans_metadata_size(root, 4); 3655 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 3656 } 3657 3658 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 3659 struct btrfs_pending_snapshot *pending) 3660 { 3661 struct btrfs_root *root = pending->root; 3662 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 3663 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 3664 /* 3665 * two for root back/forward refs, two for directory entries 3666 * and one for root of the snapshot. 3667 */ 3668 u64 num_bytes = calc_trans_metadata_size(root, 5); 3669 dst_rsv->space_info = src_rsv->space_info; 3670 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 3671 } 3672 3673 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes) 3674 { 3675 return num_bytes >>= 3; 3676 } 3677 3678 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 3679 { 3680 struct btrfs_root *root = BTRFS_I(inode)->root; 3681 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 3682 u64 to_reserve; 3683 int nr_extents; 3684 int retries = 0; 3685 int ret; 3686 3687 if (btrfs_transaction_in_commit(root->fs_info)) 3688 schedule_timeout(1); 3689 3690 num_bytes = ALIGN(num_bytes, root->sectorsize); 3691 again: 3692 spin_lock(&BTRFS_I(inode)->accounting_lock); 3693 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1; 3694 if (nr_extents > BTRFS_I(inode)->reserved_extents) { 3695 nr_extents -= BTRFS_I(inode)->reserved_extents; 3696 to_reserve = calc_trans_metadata_size(root, nr_extents); 3697 } else { 3698 nr_extents = 0; 3699 to_reserve = 0; 3700 } 3701 3702 to_reserve += calc_csum_metadata_size(inode, num_bytes); 3703 ret = reserve_metadata_bytes(block_rsv, to_reserve); 3704 if (ret) { 3705 spin_unlock(&BTRFS_I(inode)->accounting_lock); 3706 ret = should_retry_reserve(NULL, root, block_rsv, to_reserve, 3707 &retries); 3708 if (ret > 0) 3709 goto again; 3710 return ret; 3711 } 3712 3713 BTRFS_I(inode)->reserved_extents += nr_extents; 3714 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 3715 spin_unlock(&BTRFS_I(inode)->accounting_lock); 3716 3717 block_rsv_add_bytes(block_rsv, to_reserve, 1); 3718 3719 if (block_rsv->size > 512 * 1024 * 1024) 3720 shrink_delalloc(NULL, root, to_reserve); 3721 3722 return 0; 3723 } 3724 3725 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 3726 { 3727 struct btrfs_root *root = BTRFS_I(inode)->root; 3728 u64 to_free; 3729 int nr_extents; 3730 3731 num_bytes = ALIGN(num_bytes, root->sectorsize); 3732 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 3733 3734 spin_lock(&BTRFS_I(inode)->accounting_lock); 3735 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents); 3736 if (nr_extents < BTRFS_I(inode)->reserved_extents) { 3737 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents; 3738 BTRFS_I(inode)->reserved_extents -= nr_extents; 3739 } else { 3740 nr_extents = 0; 3741 } 3742 spin_unlock(&BTRFS_I(inode)->accounting_lock); 3743 3744 to_free = calc_csum_metadata_size(inode, num_bytes); 3745 if (nr_extents > 0) 3746 to_free += calc_trans_metadata_size(root, nr_extents); 3747 3748 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 3749 to_free); 3750 } 3751 3752 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 3753 { 3754 int ret; 3755 3756 ret = btrfs_check_data_free_space(inode, num_bytes); 3757 if (ret) 3758 return ret; 3759 3760 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 3761 if (ret) { 3762 btrfs_free_reserved_data_space(inode, num_bytes); 3763 return ret; 3764 } 3765 3766 return 0; 3767 } 3768 3769 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 3770 { 3771 btrfs_delalloc_release_metadata(inode, num_bytes); 3772 btrfs_free_reserved_data_space(inode, num_bytes); 3773 } 3774 3775 static int update_block_group(struct btrfs_trans_handle *trans, 3776 struct btrfs_root *root, 3777 u64 bytenr, u64 num_bytes, int alloc) 3778 { 3779 struct btrfs_block_group_cache *cache; 3780 struct btrfs_fs_info *info = root->fs_info; 3781 int factor; 3782 u64 total = num_bytes; 3783 u64 old_val; 3784 u64 byte_in_group; 3785 3786 /* block accounting for super block */ 3787 spin_lock(&info->delalloc_lock); 3788 old_val = btrfs_super_bytes_used(&info->super_copy); 3789 if (alloc) 3790 old_val += num_bytes; 3791 else 3792 old_val -= num_bytes; 3793 btrfs_set_super_bytes_used(&info->super_copy, old_val); 3794 spin_unlock(&info->delalloc_lock); 3795 3796 while (total) { 3797 cache = btrfs_lookup_block_group(info, bytenr); 3798 if (!cache) 3799 return -1; 3800 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 3801 BTRFS_BLOCK_GROUP_RAID1 | 3802 BTRFS_BLOCK_GROUP_RAID10)) 3803 factor = 2; 3804 else 3805 factor = 1; 3806 byte_in_group = bytenr - cache->key.objectid; 3807 WARN_ON(byte_in_group > cache->key.offset); 3808 3809 spin_lock(&cache->space_info->lock); 3810 spin_lock(&cache->lock); 3811 cache->dirty = 1; 3812 old_val = btrfs_block_group_used(&cache->item); 3813 num_bytes = min(total, cache->key.offset - byte_in_group); 3814 if (alloc) { 3815 old_val += num_bytes; 3816 btrfs_set_block_group_used(&cache->item, old_val); 3817 cache->reserved -= num_bytes; 3818 cache->space_info->bytes_reserved -= num_bytes; 3819 cache->space_info->bytes_used += num_bytes; 3820 cache->space_info->disk_used += num_bytes * factor; 3821 spin_unlock(&cache->lock); 3822 spin_unlock(&cache->space_info->lock); 3823 } else { 3824 old_val -= num_bytes; 3825 btrfs_set_block_group_used(&cache->item, old_val); 3826 cache->pinned += num_bytes; 3827 cache->space_info->bytes_pinned += num_bytes; 3828 cache->space_info->bytes_used -= num_bytes; 3829 cache->space_info->disk_used -= num_bytes * factor; 3830 spin_unlock(&cache->lock); 3831 spin_unlock(&cache->space_info->lock); 3832 3833 set_extent_dirty(info->pinned_extents, 3834 bytenr, bytenr + num_bytes - 1, 3835 GFP_NOFS | __GFP_NOFAIL); 3836 } 3837 btrfs_put_block_group(cache); 3838 total -= num_bytes; 3839 bytenr += num_bytes; 3840 } 3841 return 0; 3842 } 3843 3844 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 3845 { 3846 struct btrfs_block_group_cache *cache; 3847 u64 bytenr; 3848 3849 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 3850 if (!cache) 3851 return 0; 3852 3853 bytenr = cache->key.objectid; 3854 btrfs_put_block_group(cache); 3855 3856 return bytenr; 3857 } 3858 3859 static int pin_down_extent(struct btrfs_root *root, 3860 struct btrfs_block_group_cache *cache, 3861 u64 bytenr, u64 num_bytes, int reserved) 3862 { 3863 spin_lock(&cache->space_info->lock); 3864 spin_lock(&cache->lock); 3865 cache->pinned += num_bytes; 3866 cache->space_info->bytes_pinned += num_bytes; 3867 if (reserved) { 3868 cache->reserved -= num_bytes; 3869 cache->space_info->bytes_reserved -= num_bytes; 3870 } 3871 spin_unlock(&cache->lock); 3872 spin_unlock(&cache->space_info->lock); 3873 3874 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 3875 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 3876 return 0; 3877 } 3878 3879 /* 3880 * this function must be called within transaction 3881 */ 3882 int btrfs_pin_extent(struct btrfs_root *root, 3883 u64 bytenr, u64 num_bytes, int reserved) 3884 { 3885 struct btrfs_block_group_cache *cache; 3886 3887 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 3888 BUG_ON(!cache); 3889 3890 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 3891 3892 btrfs_put_block_group(cache); 3893 return 0; 3894 } 3895 3896 /* 3897 * update size of reserved extents. this function may return -EAGAIN 3898 * if 'reserve' is true or 'sinfo' is false. 3899 */ 3900 static int update_reserved_bytes(struct btrfs_block_group_cache *cache, 3901 u64 num_bytes, int reserve, int sinfo) 3902 { 3903 int ret = 0; 3904 if (sinfo) { 3905 struct btrfs_space_info *space_info = cache->space_info; 3906 spin_lock(&space_info->lock); 3907 spin_lock(&cache->lock); 3908 if (reserve) { 3909 if (cache->ro) { 3910 ret = -EAGAIN; 3911 } else { 3912 cache->reserved += num_bytes; 3913 space_info->bytes_reserved += num_bytes; 3914 } 3915 } else { 3916 if (cache->ro) 3917 space_info->bytes_readonly += num_bytes; 3918 cache->reserved -= num_bytes; 3919 space_info->bytes_reserved -= num_bytes; 3920 } 3921 spin_unlock(&cache->lock); 3922 spin_unlock(&space_info->lock); 3923 } else { 3924 spin_lock(&cache->lock); 3925 if (cache->ro) { 3926 ret = -EAGAIN; 3927 } else { 3928 if (reserve) 3929 cache->reserved += num_bytes; 3930 else 3931 cache->reserved -= num_bytes; 3932 } 3933 spin_unlock(&cache->lock); 3934 } 3935 return ret; 3936 } 3937 3938 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 3939 struct btrfs_root *root) 3940 { 3941 struct btrfs_fs_info *fs_info = root->fs_info; 3942 struct btrfs_caching_control *next; 3943 struct btrfs_caching_control *caching_ctl; 3944 struct btrfs_block_group_cache *cache; 3945 3946 down_write(&fs_info->extent_commit_sem); 3947 3948 list_for_each_entry_safe(caching_ctl, next, 3949 &fs_info->caching_block_groups, list) { 3950 cache = caching_ctl->block_group; 3951 if (block_group_cache_done(cache)) { 3952 cache->last_byte_to_unpin = (u64)-1; 3953 list_del_init(&caching_ctl->list); 3954 put_caching_control(caching_ctl); 3955 } else { 3956 cache->last_byte_to_unpin = caching_ctl->progress; 3957 } 3958 } 3959 3960 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 3961 fs_info->pinned_extents = &fs_info->freed_extents[1]; 3962 else 3963 fs_info->pinned_extents = &fs_info->freed_extents[0]; 3964 3965 up_write(&fs_info->extent_commit_sem); 3966 3967 update_global_block_rsv(fs_info); 3968 return 0; 3969 } 3970 3971 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 3972 { 3973 struct btrfs_fs_info *fs_info = root->fs_info; 3974 struct btrfs_block_group_cache *cache = NULL; 3975 u64 len; 3976 3977 while (start <= end) { 3978 if (!cache || 3979 start >= cache->key.objectid + cache->key.offset) { 3980 if (cache) 3981 btrfs_put_block_group(cache); 3982 cache = btrfs_lookup_block_group(fs_info, start); 3983 BUG_ON(!cache); 3984 } 3985 3986 len = cache->key.objectid + cache->key.offset - start; 3987 len = min(len, end + 1 - start); 3988 3989 if (start < cache->last_byte_to_unpin) { 3990 len = min(len, cache->last_byte_to_unpin - start); 3991 btrfs_add_free_space(cache, start, len); 3992 } 3993 3994 start += len; 3995 3996 spin_lock(&cache->space_info->lock); 3997 spin_lock(&cache->lock); 3998 cache->pinned -= len; 3999 cache->space_info->bytes_pinned -= len; 4000 if (cache->ro) { 4001 cache->space_info->bytes_readonly += len; 4002 } else if (cache->reserved_pinned > 0) { 4003 len = min(len, cache->reserved_pinned); 4004 cache->reserved_pinned -= len; 4005 cache->space_info->bytes_reserved += len; 4006 } 4007 spin_unlock(&cache->lock); 4008 spin_unlock(&cache->space_info->lock); 4009 } 4010 4011 if (cache) 4012 btrfs_put_block_group(cache); 4013 return 0; 4014 } 4015 4016 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4017 struct btrfs_root *root) 4018 { 4019 struct btrfs_fs_info *fs_info = root->fs_info; 4020 struct extent_io_tree *unpin; 4021 struct btrfs_block_rsv *block_rsv; 4022 struct btrfs_block_rsv *next_rsv; 4023 u64 start; 4024 u64 end; 4025 int idx; 4026 int ret; 4027 4028 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4029 unpin = &fs_info->freed_extents[1]; 4030 else 4031 unpin = &fs_info->freed_extents[0]; 4032 4033 while (1) { 4034 ret = find_first_extent_bit(unpin, 0, &start, &end, 4035 EXTENT_DIRTY); 4036 if (ret) 4037 break; 4038 4039 ret = btrfs_discard_extent(root, start, end + 1 - start); 4040 4041 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4042 unpin_extent_range(root, start, end); 4043 cond_resched(); 4044 } 4045 4046 mutex_lock(&fs_info->durable_block_rsv_mutex); 4047 list_for_each_entry_safe(block_rsv, next_rsv, 4048 &fs_info->durable_block_rsv_list, list) { 4049 4050 idx = trans->transid & 0x1; 4051 if (block_rsv->freed[idx] > 0) { 4052 block_rsv_add_bytes(block_rsv, 4053 block_rsv->freed[idx], 0); 4054 block_rsv->freed[idx] = 0; 4055 } 4056 if (atomic_read(&block_rsv->usage) == 0) { 4057 btrfs_block_rsv_release(root, block_rsv, (u64)-1); 4058 4059 if (block_rsv->freed[0] == 0 && 4060 block_rsv->freed[1] == 0) { 4061 list_del_init(&block_rsv->list); 4062 kfree(block_rsv); 4063 } 4064 } else { 4065 btrfs_block_rsv_release(root, block_rsv, 0); 4066 } 4067 } 4068 mutex_unlock(&fs_info->durable_block_rsv_mutex); 4069 4070 return 0; 4071 } 4072 4073 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4074 struct btrfs_root *root, 4075 u64 bytenr, u64 num_bytes, u64 parent, 4076 u64 root_objectid, u64 owner_objectid, 4077 u64 owner_offset, int refs_to_drop, 4078 struct btrfs_delayed_extent_op *extent_op) 4079 { 4080 struct btrfs_key key; 4081 struct btrfs_path *path; 4082 struct btrfs_fs_info *info = root->fs_info; 4083 struct btrfs_root *extent_root = info->extent_root; 4084 struct extent_buffer *leaf; 4085 struct btrfs_extent_item *ei; 4086 struct btrfs_extent_inline_ref *iref; 4087 int ret; 4088 int is_data; 4089 int extent_slot = 0; 4090 int found_extent = 0; 4091 int num_to_del = 1; 4092 u32 item_size; 4093 u64 refs; 4094 4095 path = btrfs_alloc_path(); 4096 if (!path) 4097 return -ENOMEM; 4098 4099 path->reada = 1; 4100 path->leave_spinning = 1; 4101 4102 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4103 BUG_ON(!is_data && refs_to_drop != 1); 4104 4105 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4106 bytenr, num_bytes, parent, 4107 root_objectid, owner_objectid, 4108 owner_offset); 4109 if (ret == 0) { 4110 extent_slot = path->slots[0]; 4111 while (extent_slot >= 0) { 4112 btrfs_item_key_to_cpu(path->nodes[0], &key, 4113 extent_slot); 4114 if (key.objectid != bytenr) 4115 break; 4116 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4117 key.offset == num_bytes) { 4118 found_extent = 1; 4119 break; 4120 } 4121 if (path->slots[0] - extent_slot > 5) 4122 break; 4123 extent_slot--; 4124 } 4125 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4126 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4127 if (found_extent && item_size < sizeof(*ei)) 4128 found_extent = 0; 4129 #endif 4130 if (!found_extent) { 4131 BUG_ON(iref); 4132 ret = remove_extent_backref(trans, extent_root, path, 4133 NULL, refs_to_drop, 4134 is_data); 4135 BUG_ON(ret); 4136 btrfs_release_path(extent_root, path); 4137 path->leave_spinning = 1; 4138 4139 key.objectid = bytenr; 4140 key.type = BTRFS_EXTENT_ITEM_KEY; 4141 key.offset = num_bytes; 4142 4143 ret = btrfs_search_slot(trans, extent_root, 4144 &key, path, -1, 1); 4145 if (ret) { 4146 printk(KERN_ERR "umm, got %d back from search" 4147 ", was looking for %llu\n", ret, 4148 (unsigned long long)bytenr); 4149 btrfs_print_leaf(extent_root, path->nodes[0]); 4150 } 4151 BUG_ON(ret); 4152 extent_slot = path->slots[0]; 4153 } 4154 } else { 4155 btrfs_print_leaf(extent_root, path->nodes[0]); 4156 WARN_ON(1); 4157 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 4158 "parent %llu root %llu owner %llu offset %llu\n", 4159 (unsigned long long)bytenr, 4160 (unsigned long long)parent, 4161 (unsigned long long)root_objectid, 4162 (unsigned long long)owner_objectid, 4163 (unsigned long long)owner_offset); 4164 } 4165 4166 leaf = path->nodes[0]; 4167 item_size = btrfs_item_size_nr(leaf, extent_slot); 4168 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4169 if (item_size < sizeof(*ei)) { 4170 BUG_ON(found_extent || extent_slot != path->slots[0]); 4171 ret = convert_extent_item_v0(trans, extent_root, path, 4172 owner_objectid, 0); 4173 BUG_ON(ret < 0); 4174 4175 btrfs_release_path(extent_root, path); 4176 path->leave_spinning = 1; 4177 4178 key.objectid = bytenr; 4179 key.type = BTRFS_EXTENT_ITEM_KEY; 4180 key.offset = num_bytes; 4181 4182 ret = btrfs_search_slot(trans, extent_root, &key, path, 4183 -1, 1); 4184 if (ret) { 4185 printk(KERN_ERR "umm, got %d back from search" 4186 ", was looking for %llu\n", ret, 4187 (unsigned long long)bytenr); 4188 btrfs_print_leaf(extent_root, path->nodes[0]); 4189 } 4190 BUG_ON(ret); 4191 extent_slot = path->slots[0]; 4192 leaf = path->nodes[0]; 4193 item_size = btrfs_item_size_nr(leaf, extent_slot); 4194 } 4195 #endif 4196 BUG_ON(item_size < sizeof(*ei)); 4197 ei = btrfs_item_ptr(leaf, extent_slot, 4198 struct btrfs_extent_item); 4199 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4200 struct btrfs_tree_block_info *bi; 4201 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 4202 bi = (struct btrfs_tree_block_info *)(ei + 1); 4203 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 4204 } 4205 4206 refs = btrfs_extent_refs(leaf, ei); 4207 BUG_ON(refs < refs_to_drop); 4208 refs -= refs_to_drop; 4209 4210 if (refs > 0) { 4211 if (extent_op) 4212 __run_delayed_extent_op(extent_op, leaf, ei); 4213 /* 4214 * In the case of inline back ref, reference count will 4215 * be updated by remove_extent_backref 4216 */ 4217 if (iref) { 4218 BUG_ON(!found_extent); 4219 } else { 4220 btrfs_set_extent_refs(leaf, ei, refs); 4221 btrfs_mark_buffer_dirty(leaf); 4222 } 4223 if (found_extent) { 4224 ret = remove_extent_backref(trans, extent_root, path, 4225 iref, refs_to_drop, 4226 is_data); 4227 BUG_ON(ret); 4228 } 4229 } else { 4230 if (found_extent) { 4231 BUG_ON(is_data && refs_to_drop != 4232 extent_data_ref_count(root, path, iref)); 4233 if (iref) { 4234 BUG_ON(path->slots[0] != extent_slot); 4235 } else { 4236 BUG_ON(path->slots[0] != extent_slot + 1); 4237 path->slots[0] = extent_slot; 4238 num_to_del = 2; 4239 } 4240 } 4241 4242 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 4243 num_to_del); 4244 BUG_ON(ret); 4245 btrfs_release_path(extent_root, path); 4246 4247 if (is_data) { 4248 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 4249 BUG_ON(ret); 4250 } else { 4251 invalidate_mapping_pages(info->btree_inode->i_mapping, 4252 bytenr >> PAGE_CACHE_SHIFT, 4253 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 4254 } 4255 4256 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 4257 BUG_ON(ret); 4258 } 4259 btrfs_free_path(path); 4260 return ret; 4261 } 4262 4263 /* 4264 * when we free an block, it is possible (and likely) that we free the last 4265 * delayed ref for that extent as well. This searches the delayed ref tree for 4266 * a given extent, and if there are no other delayed refs to be processed, it 4267 * removes it from the tree. 4268 */ 4269 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 4270 struct btrfs_root *root, u64 bytenr) 4271 { 4272 struct btrfs_delayed_ref_head *head; 4273 struct btrfs_delayed_ref_root *delayed_refs; 4274 struct btrfs_delayed_ref_node *ref; 4275 struct rb_node *node; 4276 int ret = 0; 4277 4278 delayed_refs = &trans->transaction->delayed_refs; 4279 spin_lock(&delayed_refs->lock); 4280 head = btrfs_find_delayed_ref_head(trans, bytenr); 4281 if (!head) 4282 goto out; 4283 4284 node = rb_prev(&head->node.rb_node); 4285 if (!node) 4286 goto out; 4287 4288 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 4289 4290 /* there are still entries for this ref, we can't drop it */ 4291 if (ref->bytenr == bytenr) 4292 goto out; 4293 4294 if (head->extent_op) { 4295 if (!head->must_insert_reserved) 4296 goto out; 4297 kfree(head->extent_op); 4298 head->extent_op = NULL; 4299 } 4300 4301 /* 4302 * waiting for the lock here would deadlock. If someone else has it 4303 * locked they are already in the process of dropping it anyway 4304 */ 4305 if (!mutex_trylock(&head->mutex)) 4306 goto out; 4307 4308 /* 4309 * at this point we have a head with no other entries. Go 4310 * ahead and process it. 4311 */ 4312 head->node.in_tree = 0; 4313 rb_erase(&head->node.rb_node, &delayed_refs->root); 4314 4315 delayed_refs->num_entries--; 4316 4317 /* 4318 * we don't take a ref on the node because we're removing it from the 4319 * tree, so we just steal the ref the tree was holding. 4320 */ 4321 delayed_refs->num_heads--; 4322 if (list_empty(&head->cluster)) 4323 delayed_refs->num_heads_ready--; 4324 4325 list_del_init(&head->cluster); 4326 spin_unlock(&delayed_refs->lock); 4327 4328 BUG_ON(head->extent_op); 4329 if (head->must_insert_reserved) 4330 ret = 1; 4331 4332 mutex_unlock(&head->mutex); 4333 btrfs_put_delayed_ref(&head->node); 4334 return ret; 4335 out: 4336 spin_unlock(&delayed_refs->lock); 4337 return 0; 4338 } 4339 4340 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 4341 struct btrfs_root *root, 4342 struct extent_buffer *buf, 4343 u64 parent, int last_ref) 4344 { 4345 struct btrfs_block_rsv *block_rsv; 4346 struct btrfs_block_group_cache *cache = NULL; 4347 int ret; 4348 4349 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4350 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len, 4351 parent, root->root_key.objectid, 4352 btrfs_header_level(buf), 4353 BTRFS_DROP_DELAYED_REF, NULL); 4354 BUG_ON(ret); 4355 } 4356 4357 if (!last_ref) 4358 return; 4359 4360 block_rsv = get_block_rsv(trans, root); 4361 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 4362 if (block_rsv->space_info != cache->space_info) 4363 goto out; 4364 4365 if (btrfs_header_generation(buf) == trans->transid) { 4366 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4367 ret = check_ref_cleanup(trans, root, buf->start); 4368 if (!ret) 4369 goto pin; 4370 } 4371 4372 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 4373 pin_down_extent(root, cache, buf->start, buf->len, 1); 4374 goto pin; 4375 } 4376 4377 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 4378 4379 btrfs_add_free_space(cache, buf->start, buf->len); 4380 ret = update_reserved_bytes(cache, buf->len, 0, 0); 4381 if (ret == -EAGAIN) { 4382 /* block group became read-only */ 4383 update_reserved_bytes(cache, buf->len, 0, 1); 4384 goto out; 4385 } 4386 4387 ret = 1; 4388 spin_lock(&block_rsv->lock); 4389 if (block_rsv->reserved < block_rsv->size) { 4390 block_rsv->reserved += buf->len; 4391 ret = 0; 4392 } 4393 spin_unlock(&block_rsv->lock); 4394 4395 if (ret) { 4396 spin_lock(&cache->space_info->lock); 4397 cache->space_info->bytes_reserved -= buf->len; 4398 spin_unlock(&cache->space_info->lock); 4399 } 4400 goto out; 4401 } 4402 pin: 4403 if (block_rsv->durable && !cache->ro) { 4404 ret = 0; 4405 spin_lock(&cache->lock); 4406 if (!cache->ro) { 4407 cache->reserved_pinned += buf->len; 4408 ret = 1; 4409 } 4410 spin_unlock(&cache->lock); 4411 4412 if (ret) { 4413 spin_lock(&block_rsv->lock); 4414 block_rsv->freed[trans->transid & 0x1] += buf->len; 4415 spin_unlock(&block_rsv->lock); 4416 } 4417 } 4418 out: 4419 btrfs_put_block_group(cache); 4420 } 4421 4422 int btrfs_free_extent(struct btrfs_trans_handle *trans, 4423 struct btrfs_root *root, 4424 u64 bytenr, u64 num_bytes, u64 parent, 4425 u64 root_objectid, u64 owner, u64 offset) 4426 { 4427 int ret; 4428 4429 /* 4430 * tree log blocks never actually go into the extent allocation 4431 * tree, just update pinning info and exit early. 4432 */ 4433 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 4434 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 4435 /* unlocks the pinned mutex */ 4436 btrfs_pin_extent(root, bytenr, num_bytes, 1); 4437 ret = 0; 4438 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 4439 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes, 4440 parent, root_objectid, (int)owner, 4441 BTRFS_DROP_DELAYED_REF, NULL); 4442 BUG_ON(ret); 4443 } else { 4444 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes, 4445 parent, root_objectid, owner, 4446 offset, BTRFS_DROP_DELAYED_REF, NULL); 4447 BUG_ON(ret); 4448 } 4449 return ret; 4450 } 4451 4452 static u64 stripe_align(struct btrfs_root *root, u64 val) 4453 { 4454 u64 mask = ((u64)root->stripesize - 1); 4455 u64 ret = (val + mask) & ~mask; 4456 return ret; 4457 } 4458 4459 /* 4460 * when we wait for progress in the block group caching, its because 4461 * our allocation attempt failed at least once. So, we must sleep 4462 * and let some progress happen before we try again. 4463 * 4464 * This function will sleep at least once waiting for new free space to 4465 * show up, and then it will check the block group free space numbers 4466 * for our min num_bytes. Another option is to have it go ahead 4467 * and look in the rbtree for a free extent of a given size, but this 4468 * is a good start. 4469 */ 4470 static noinline int 4471 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 4472 u64 num_bytes) 4473 { 4474 struct btrfs_caching_control *caching_ctl; 4475 DEFINE_WAIT(wait); 4476 4477 caching_ctl = get_caching_control(cache); 4478 if (!caching_ctl) 4479 return 0; 4480 4481 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 4482 (cache->free_space >= num_bytes)); 4483 4484 put_caching_control(caching_ctl); 4485 return 0; 4486 } 4487 4488 static noinline int 4489 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 4490 { 4491 struct btrfs_caching_control *caching_ctl; 4492 DEFINE_WAIT(wait); 4493 4494 caching_ctl = get_caching_control(cache); 4495 if (!caching_ctl) 4496 return 0; 4497 4498 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 4499 4500 put_caching_control(caching_ctl); 4501 return 0; 4502 } 4503 4504 static int get_block_group_index(struct btrfs_block_group_cache *cache) 4505 { 4506 int index; 4507 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) 4508 index = 0; 4509 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) 4510 index = 1; 4511 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) 4512 index = 2; 4513 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) 4514 index = 3; 4515 else 4516 index = 4; 4517 return index; 4518 } 4519 4520 enum btrfs_loop_type { 4521 LOOP_FIND_IDEAL = 0, 4522 LOOP_CACHING_NOWAIT = 1, 4523 LOOP_CACHING_WAIT = 2, 4524 LOOP_ALLOC_CHUNK = 3, 4525 LOOP_NO_EMPTY_SIZE = 4, 4526 }; 4527 4528 /* 4529 * walks the btree of allocated extents and find a hole of a given size. 4530 * The key ins is changed to record the hole: 4531 * ins->objectid == block start 4532 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4533 * ins->offset == number of blocks 4534 * Any available blocks before search_start are skipped. 4535 */ 4536 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 4537 struct btrfs_root *orig_root, 4538 u64 num_bytes, u64 empty_size, 4539 u64 search_start, u64 search_end, 4540 u64 hint_byte, struct btrfs_key *ins, 4541 int data) 4542 { 4543 int ret = 0; 4544 struct btrfs_root *root = orig_root->fs_info->extent_root; 4545 struct btrfs_free_cluster *last_ptr = NULL; 4546 struct btrfs_block_group_cache *block_group = NULL; 4547 int empty_cluster = 2 * 1024 * 1024; 4548 int allowed_chunk_alloc = 0; 4549 int done_chunk_alloc = 0; 4550 struct btrfs_space_info *space_info; 4551 int last_ptr_loop = 0; 4552 int loop = 0; 4553 int index = 0; 4554 bool found_uncached_bg = false; 4555 bool failed_cluster_refill = false; 4556 bool failed_alloc = false; 4557 u64 ideal_cache_percent = 0; 4558 u64 ideal_cache_offset = 0; 4559 4560 WARN_ON(num_bytes < root->sectorsize); 4561 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 4562 ins->objectid = 0; 4563 ins->offset = 0; 4564 4565 space_info = __find_space_info(root->fs_info, data); 4566 if (!space_info) { 4567 printk(KERN_ERR "No space info for %d\n", data); 4568 return -ENOSPC; 4569 } 4570 4571 if (orig_root->ref_cows || empty_size) 4572 allowed_chunk_alloc = 1; 4573 4574 if (data & BTRFS_BLOCK_GROUP_METADATA) { 4575 last_ptr = &root->fs_info->meta_alloc_cluster; 4576 if (!btrfs_test_opt(root, SSD)) 4577 empty_cluster = 64 * 1024; 4578 } 4579 4580 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) { 4581 last_ptr = &root->fs_info->data_alloc_cluster; 4582 } 4583 4584 if (last_ptr) { 4585 spin_lock(&last_ptr->lock); 4586 if (last_ptr->block_group) 4587 hint_byte = last_ptr->window_start; 4588 spin_unlock(&last_ptr->lock); 4589 } 4590 4591 search_start = max(search_start, first_logical_byte(root, 0)); 4592 search_start = max(search_start, hint_byte); 4593 4594 if (!last_ptr) 4595 empty_cluster = 0; 4596 4597 if (search_start == hint_byte) { 4598 ideal_cache: 4599 block_group = btrfs_lookup_block_group(root->fs_info, 4600 search_start); 4601 /* 4602 * we don't want to use the block group if it doesn't match our 4603 * allocation bits, or if its not cached. 4604 * 4605 * However if we are re-searching with an ideal block group 4606 * picked out then we don't care that the block group is cached. 4607 */ 4608 if (block_group && block_group_bits(block_group, data) && 4609 (block_group->cached != BTRFS_CACHE_NO || 4610 search_start == ideal_cache_offset)) { 4611 down_read(&space_info->groups_sem); 4612 if (list_empty(&block_group->list) || 4613 block_group->ro) { 4614 /* 4615 * someone is removing this block group, 4616 * we can't jump into the have_block_group 4617 * target because our list pointers are not 4618 * valid 4619 */ 4620 btrfs_put_block_group(block_group); 4621 up_read(&space_info->groups_sem); 4622 } else { 4623 index = get_block_group_index(block_group); 4624 goto have_block_group; 4625 } 4626 } else if (block_group) { 4627 btrfs_put_block_group(block_group); 4628 } 4629 } 4630 search: 4631 down_read(&space_info->groups_sem); 4632 list_for_each_entry(block_group, &space_info->block_groups[index], 4633 list) { 4634 u64 offset; 4635 int cached; 4636 4637 btrfs_get_block_group(block_group); 4638 search_start = block_group->key.objectid; 4639 4640 have_block_group: 4641 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) { 4642 u64 free_percent; 4643 4644 free_percent = btrfs_block_group_used(&block_group->item); 4645 free_percent *= 100; 4646 free_percent = div64_u64(free_percent, 4647 block_group->key.offset); 4648 free_percent = 100 - free_percent; 4649 if (free_percent > ideal_cache_percent && 4650 likely(!block_group->ro)) { 4651 ideal_cache_offset = block_group->key.objectid; 4652 ideal_cache_percent = free_percent; 4653 } 4654 4655 /* 4656 * We only want to start kthread caching if we are at 4657 * the point where we will wait for caching to make 4658 * progress, or if our ideal search is over and we've 4659 * found somebody to start caching. 4660 */ 4661 if (loop > LOOP_CACHING_NOWAIT || 4662 (loop > LOOP_FIND_IDEAL && 4663 atomic_read(&space_info->caching_threads) < 2)) { 4664 ret = cache_block_group(block_group); 4665 BUG_ON(ret); 4666 } 4667 found_uncached_bg = true; 4668 4669 /* 4670 * If loop is set for cached only, try the next block 4671 * group. 4672 */ 4673 if (loop == LOOP_FIND_IDEAL) 4674 goto loop; 4675 } 4676 4677 cached = block_group_cache_done(block_group); 4678 if (unlikely(!cached)) 4679 found_uncached_bg = true; 4680 4681 if (unlikely(block_group->ro)) 4682 goto loop; 4683 4684 /* 4685 * Ok we want to try and use the cluster allocator, so lets look 4686 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will 4687 * have tried the cluster allocator plenty of times at this 4688 * point and not have found anything, so we are likely way too 4689 * fragmented for the clustering stuff to find anything, so lets 4690 * just skip it and let the allocator find whatever block it can 4691 * find 4692 */ 4693 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) { 4694 /* 4695 * the refill lock keeps out other 4696 * people trying to start a new cluster 4697 */ 4698 spin_lock(&last_ptr->refill_lock); 4699 if (last_ptr->block_group && 4700 (last_ptr->block_group->ro || 4701 !block_group_bits(last_ptr->block_group, data))) { 4702 offset = 0; 4703 goto refill_cluster; 4704 } 4705 4706 offset = btrfs_alloc_from_cluster(block_group, last_ptr, 4707 num_bytes, search_start); 4708 if (offset) { 4709 /* we have a block, we're done */ 4710 spin_unlock(&last_ptr->refill_lock); 4711 goto checks; 4712 } 4713 4714 spin_lock(&last_ptr->lock); 4715 /* 4716 * whoops, this cluster doesn't actually point to 4717 * this block group. Get a ref on the block 4718 * group is does point to and try again 4719 */ 4720 if (!last_ptr_loop && last_ptr->block_group && 4721 last_ptr->block_group != block_group) { 4722 4723 btrfs_put_block_group(block_group); 4724 block_group = last_ptr->block_group; 4725 btrfs_get_block_group(block_group); 4726 spin_unlock(&last_ptr->lock); 4727 spin_unlock(&last_ptr->refill_lock); 4728 4729 last_ptr_loop = 1; 4730 search_start = block_group->key.objectid; 4731 /* 4732 * we know this block group is properly 4733 * in the list because 4734 * btrfs_remove_block_group, drops the 4735 * cluster before it removes the block 4736 * group from the list 4737 */ 4738 goto have_block_group; 4739 } 4740 spin_unlock(&last_ptr->lock); 4741 refill_cluster: 4742 /* 4743 * this cluster didn't work out, free it and 4744 * start over 4745 */ 4746 btrfs_return_cluster_to_free_space(NULL, last_ptr); 4747 4748 last_ptr_loop = 0; 4749 4750 /* allocate a cluster in this block group */ 4751 ret = btrfs_find_space_cluster(trans, root, 4752 block_group, last_ptr, 4753 offset, num_bytes, 4754 empty_cluster + empty_size); 4755 if (ret == 0) { 4756 /* 4757 * now pull our allocation out of this 4758 * cluster 4759 */ 4760 offset = btrfs_alloc_from_cluster(block_group, 4761 last_ptr, num_bytes, 4762 search_start); 4763 if (offset) { 4764 /* we found one, proceed */ 4765 spin_unlock(&last_ptr->refill_lock); 4766 goto checks; 4767 } 4768 } else if (!cached && loop > LOOP_CACHING_NOWAIT 4769 && !failed_cluster_refill) { 4770 spin_unlock(&last_ptr->refill_lock); 4771 4772 failed_cluster_refill = true; 4773 wait_block_group_cache_progress(block_group, 4774 num_bytes + empty_cluster + empty_size); 4775 goto have_block_group; 4776 } 4777 4778 /* 4779 * at this point we either didn't find a cluster 4780 * or we weren't able to allocate a block from our 4781 * cluster. Free the cluster we've been trying 4782 * to use, and go to the next block group 4783 */ 4784 btrfs_return_cluster_to_free_space(NULL, last_ptr); 4785 spin_unlock(&last_ptr->refill_lock); 4786 goto loop; 4787 } 4788 4789 offset = btrfs_find_space_for_alloc(block_group, search_start, 4790 num_bytes, empty_size); 4791 /* 4792 * If we didn't find a chunk, and we haven't failed on this 4793 * block group before, and this block group is in the middle of 4794 * caching and we are ok with waiting, then go ahead and wait 4795 * for progress to be made, and set failed_alloc to true. 4796 * 4797 * If failed_alloc is true then we've already waited on this 4798 * block group once and should move on to the next block group. 4799 */ 4800 if (!offset && !failed_alloc && !cached && 4801 loop > LOOP_CACHING_NOWAIT) { 4802 wait_block_group_cache_progress(block_group, 4803 num_bytes + empty_size); 4804 failed_alloc = true; 4805 goto have_block_group; 4806 } else if (!offset) { 4807 goto loop; 4808 } 4809 checks: 4810 search_start = stripe_align(root, offset); 4811 /* move on to the next group */ 4812 if (search_start + num_bytes >= search_end) { 4813 btrfs_add_free_space(block_group, offset, num_bytes); 4814 goto loop; 4815 } 4816 4817 /* move on to the next group */ 4818 if (search_start + num_bytes > 4819 block_group->key.objectid + block_group->key.offset) { 4820 btrfs_add_free_space(block_group, offset, num_bytes); 4821 goto loop; 4822 } 4823 4824 ins->objectid = search_start; 4825 ins->offset = num_bytes; 4826 4827 if (offset < search_start) 4828 btrfs_add_free_space(block_group, offset, 4829 search_start - offset); 4830 BUG_ON(offset > search_start); 4831 4832 ret = update_reserved_bytes(block_group, num_bytes, 1, 4833 (data & BTRFS_BLOCK_GROUP_DATA)); 4834 if (ret == -EAGAIN) { 4835 btrfs_add_free_space(block_group, offset, num_bytes); 4836 goto loop; 4837 } 4838 4839 /* we are all good, lets return */ 4840 ins->objectid = search_start; 4841 ins->offset = num_bytes; 4842 4843 if (offset < search_start) 4844 btrfs_add_free_space(block_group, offset, 4845 search_start - offset); 4846 BUG_ON(offset > search_start); 4847 break; 4848 loop: 4849 failed_cluster_refill = false; 4850 failed_alloc = false; 4851 BUG_ON(index != get_block_group_index(block_group)); 4852 btrfs_put_block_group(block_group); 4853 } 4854 up_read(&space_info->groups_sem); 4855 4856 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 4857 goto search; 4858 4859 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for 4860 * for them to make caching progress. Also 4861 * determine the best possible bg to cache 4862 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4863 * caching kthreads as we move along 4864 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4865 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4866 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4867 * again 4868 */ 4869 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE && 4870 (found_uncached_bg || empty_size || empty_cluster || 4871 allowed_chunk_alloc)) { 4872 index = 0; 4873 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { 4874 found_uncached_bg = false; 4875 loop++; 4876 if (!ideal_cache_percent && 4877 atomic_read(&space_info->caching_threads)) 4878 goto search; 4879 4880 /* 4881 * 1 of the following 2 things have happened so far 4882 * 4883 * 1) We found an ideal block group for caching that 4884 * is mostly full and will cache quickly, so we might 4885 * as well wait for it. 4886 * 4887 * 2) We searched for cached only and we didn't find 4888 * anything, and we didn't start any caching kthreads 4889 * either, so chances are we will loop through and 4890 * start a couple caching kthreads, and then come back 4891 * around and just wait for them. This will be slower 4892 * because we will have 2 caching kthreads reading at 4893 * the same time when we could have just started one 4894 * and waited for it to get far enough to give us an 4895 * allocation, so go ahead and go to the wait caching 4896 * loop. 4897 */ 4898 loop = LOOP_CACHING_WAIT; 4899 search_start = ideal_cache_offset; 4900 ideal_cache_percent = 0; 4901 goto ideal_cache; 4902 } else if (loop == LOOP_FIND_IDEAL) { 4903 /* 4904 * Didn't find a uncached bg, wait on anything we find 4905 * next. 4906 */ 4907 loop = LOOP_CACHING_WAIT; 4908 goto search; 4909 } 4910 4911 if (loop < LOOP_CACHING_WAIT) { 4912 loop++; 4913 goto search; 4914 } 4915 4916 if (loop == LOOP_ALLOC_CHUNK) { 4917 empty_size = 0; 4918 empty_cluster = 0; 4919 } 4920 4921 if (allowed_chunk_alloc) { 4922 ret = do_chunk_alloc(trans, root, num_bytes + 4923 2 * 1024 * 1024, data, 1); 4924 allowed_chunk_alloc = 0; 4925 done_chunk_alloc = 1; 4926 } else if (!done_chunk_alloc) { 4927 space_info->force_alloc = 1; 4928 } 4929 4930 if (loop < LOOP_NO_EMPTY_SIZE) { 4931 loop++; 4932 goto search; 4933 } 4934 ret = -ENOSPC; 4935 } else if (!ins->objectid) { 4936 ret = -ENOSPC; 4937 } 4938 4939 /* we found what we needed */ 4940 if (ins->objectid) { 4941 if (!(data & BTRFS_BLOCK_GROUP_DATA)) 4942 trans->block_group = block_group->key.objectid; 4943 4944 btrfs_put_block_group(block_group); 4945 ret = 0; 4946 } 4947 4948 return ret; 4949 } 4950 4951 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 4952 int dump_block_groups) 4953 { 4954 struct btrfs_block_group_cache *cache; 4955 int index = 0; 4956 4957 spin_lock(&info->lock); 4958 printk(KERN_INFO "space_info has %llu free, is %sfull\n", 4959 (unsigned long long)(info->total_bytes - info->bytes_used - 4960 info->bytes_pinned - info->bytes_reserved - 4961 info->bytes_readonly), 4962 (info->full) ? "" : "not "); 4963 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 4964 "reserved=%llu, may_use=%llu, readonly=%llu\n", 4965 (unsigned long long)info->total_bytes, 4966 (unsigned long long)info->bytes_used, 4967 (unsigned long long)info->bytes_pinned, 4968 (unsigned long long)info->bytes_reserved, 4969 (unsigned long long)info->bytes_may_use, 4970 (unsigned long long)info->bytes_readonly); 4971 spin_unlock(&info->lock); 4972 4973 if (!dump_block_groups) 4974 return; 4975 4976 down_read(&info->groups_sem); 4977 again: 4978 list_for_each_entry(cache, &info->block_groups[index], list) { 4979 spin_lock(&cache->lock); 4980 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 4981 "%llu pinned %llu reserved\n", 4982 (unsigned long long)cache->key.objectid, 4983 (unsigned long long)cache->key.offset, 4984 (unsigned long long)btrfs_block_group_used(&cache->item), 4985 (unsigned long long)cache->pinned, 4986 (unsigned long long)cache->reserved); 4987 btrfs_dump_free_space(cache, bytes); 4988 spin_unlock(&cache->lock); 4989 } 4990 if (++index < BTRFS_NR_RAID_TYPES) 4991 goto again; 4992 up_read(&info->groups_sem); 4993 } 4994 4995 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 4996 struct btrfs_root *root, 4997 u64 num_bytes, u64 min_alloc_size, 4998 u64 empty_size, u64 hint_byte, 4999 u64 search_end, struct btrfs_key *ins, 5000 u64 data) 5001 { 5002 int ret; 5003 u64 search_start = 0; 5004 5005 data = btrfs_get_alloc_profile(root, data); 5006 again: 5007 /* 5008 * the only place that sets empty_size is btrfs_realloc_node, which 5009 * is not called recursively on allocations 5010 */ 5011 if (empty_size || root->ref_cows) 5012 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5013 num_bytes + 2 * 1024 * 1024, data, 0); 5014 5015 WARN_ON(num_bytes < root->sectorsize); 5016 ret = find_free_extent(trans, root, num_bytes, empty_size, 5017 search_start, search_end, hint_byte, 5018 ins, data); 5019 5020 if (ret == -ENOSPC && num_bytes > min_alloc_size) { 5021 num_bytes = num_bytes >> 1; 5022 num_bytes = num_bytes & ~(root->sectorsize - 1); 5023 num_bytes = max(num_bytes, min_alloc_size); 5024 do_chunk_alloc(trans, root->fs_info->extent_root, 5025 num_bytes, data, 1); 5026 goto again; 5027 } 5028 if (ret == -ENOSPC) { 5029 struct btrfs_space_info *sinfo; 5030 5031 sinfo = __find_space_info(root->fs_info, data); 5032 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5033 "wanted %llu\n", (unsigned long long)data, 5034 (unsigned long long)num_bytes); 5035 dump_space_info(sinfo, num_bytes, 1); 5036 } 5037 5038 return ret; 5039 } 5040 5041 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len) 5042 { 5043 struct btrfs_block_group_cache *cache; 5044 int ret = 0; 5045 5046 cache = btrfs_lookup_block_group(root->fs_info, start); 5047 if (!cache) { 5048 printk(KERN_ERR "Unable to find block group for %llu\n", 5049 (unsigned long long)start); 5050 return -ENOSPC; 5051 } 5052 5053 ret = btrfs_discard_extent(root, start, len); 5054 5055 btrfs_add_free_space(cache, start, len); 5056 update_reserved_bytes(cache, len, 0, 1); 5057 btrfs_put_block_group(cache); 5058 5059 return ret; 5060 } 5061 5062 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5063 struct btrfs_root *root, 5064 u64 parent, u64 root_objectid, 5065 u64 flags, u64 owner, u64 offset, 5066 struct btrfs_key *ins, int ref_mod) 5067 { 5068 int ret; 5069 struct btrfs_fs_info *fs_info = root->fs_info; 5070 struct btrfs_extent_item *extent_item; 5071 struct btrfs_extent_inline_ref *iref; 5072 struct btrfs_path *path; 5073 struct extent_buffer *leaf; 5074 int type; 5075 u32 size; 5076 5077 if (parent > 0) 5078 type = BTRFS_SHARED_DATA_REF_KEY; 5079 else 5080 type = BTRFS_EXTENT_DATA_REF_KEY; 5081 5082 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5083 5084 path = btrfs_alloc_path(); 5085 BUG_ON(!path); 5086 5087 path->leave_spinning = 1; 5088 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5089 ins, size); 5090 BUG_ON(ret); 5091 5092 leaf = path->nodes[0]; 5093 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5094 struct btrfs_extent_item); 5095 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5096 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5097 btrfs_set_extent_flags(leaf, extent_item, 5098 flags | BTRFS_EXTENT_FLAG_DATA); 5099 5100 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5101 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5102 if (parent > 0) { 5103 struct btrfs_shared_data_ref *ref; 5104 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5105 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5106 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5107 } else { 5108 struct btrfs_extent_data_ref *ref; 5109 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5110 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5111 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5112 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5113 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5114 } 5115 5116 btrfs_mark_buffer_dirty(path->nodes[0]); 5117 btrfs_free_path(path); 5118 5119 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5120 if (ret) { 5121 printk(KERN_ERR "btrfs update block group failed for %llu " 5122 "%llu\n", (unsigned long long)ins->objectid, 5123 (unsigned long long)ins->offset); 5124 BUG(); 5125 } 5126 return ret; 5127 } 5128 5129 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 5130 struct btrfs_root *root, 5131 u64 parent, u64 root_objectid, 5132 u64 flags, struct btrfs_disk_key *key, 5133 int level, struct btrfs_key *ins) 5134 { 5135 int ret; 5136 struct btrfs_fs_info *fs_info = root->fs_info; 5137 struct btrfs_extent_item *extent_item; 5138 struct btrfs_tree_block_info *block_info; 5139 struct btrfs_extent_inline_ref *iref; 5140 struct btrfs_path *path; 5141 struct extent_buffer *leaf; 5142 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 5143 5144 path = btrfs_alloc_path(); 5145 BUG_ON(!path); 5146 5147 path->leave_spinning = 1; 5148 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5149 ins, size); 5150 BUG_ON(ret); 5151 5152 leaf = path->nodes[0]; 5153 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5154 struct btrfs_extent_item); 5155 btrfs_set_extent_refs(leaf, extent_item, 1); 5156 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5157 btrfs_set_extent_flags(leaf, extent_item, 5158 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 5159 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 5160 5161 btrfs_set_tree_block_key(leaf, block_info, key); 5162 btrfs_set_tree_block_level(leaf, block_info, level); 5163 5164 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 5165 if (parent > 0) { 5166 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 5167 btrfs_set_extent_inline_ref_type(leaf, iref, 5168 BTRFS_SHARED_BLOCK_REF_KEY); 5169 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5170 } else { 5171 btrfs_set_extent_inline_ref_type(leaf, iref, 5172 BTRFS_TREE_BLOCK_REF_KEY); 5173 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 5174 } 5175 5176 btrfs_mark_buffer_dirty(leaf); 5177 btrfs_free_path(path); 5178 5179 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5180 if (ret) { 5181 printk(KERN_ERR "btrfs update block group failed for %llu " 5182 "%llu\n", (unsigned long long)ins->objectid, 5183 (unsigned long long)ins->offset); 5184 BUG(); 5185 } 5186 return ret; 5187 } 5188 5189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5190 struct btrfs_root *root, 5191 u64 root_objectid, u64 owner, 5192 u64 offset, struct btrfs_key *ins) 5193 { 5194 int ret; 5195 5196 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 5197 5198 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset, 5199 0, root_objectid, owner, offset, 5200 BTRFS_ADD_DELAYED_EXTENT, NULL); 5201 return ret; 5202 } 5203 5204 /* 5205 * this is used by the tree logging recovery code. It records that 5206 * an extent has been allocated and makes sure to clear the free 5207 * space cache bits as well 5208 */ 5209 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 5210 struct btrfs_root *root, 5211 u64 root_objectid, u64 owner, u64 offset, 5212 struct btrfs_key *ins) 5213 { 5214 int ret; 5215 struct btrfs_block_group_cache *block_group; 5216 struct btrfs_caching_control *caching_ctl; 5217 u64 start = ins->objectid; 5218 u64 num_bytes = ins->offset; 5219 5220 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 5221 cache_block_group(block_group); 5222 caching_ctl = get_caching_control(block_group); 5223 5224 if (!caching_ctl) { 5225 BUG_ON(!block_group_cache_done(block_group)); 5226 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5227 BUG_ON(ret); 5228 } else { 5229 mutex_lock(&caching_ctl->mutex); 5230 5231 if (start >= caching_ctl->progress) { 5232 ret = add_excluded_extent(root, start, num_bytes); 5233 BUG_ON(ret); 5234 } else if (start + num_bytes <= caching_ctl->progress) { 5235 ret = btrfs_remove_free_space(block_group, 5236 start, num_bytes); 5237 BUG_ON(ret); 5238 } else { 5239 num_bytes = caching_ctl->progress - start; 5240 ret = btrfs_remove_free_space(block_group, 5241 start, num_bytes); 5242 BUG_ON(ret); 5243 5244 start = caching_ctl->progress; 5245 num_bytes = ins->objectid + ins->offset - 5246 caching_ctl->progress; 5247 ret = add_excluded_extent(root, start, num_bytes); 5248 BUG_ON(ret); 5249 } 5250 5251 mutex_unlock(&caching_ctl->mutex); 5252 put_caching_control(caching_ctl); 5253 } 5254 5255 ret = update_reserved_bytes(block_group, ins->offset, 1, 1); 5256 BUG_ON(ret); 5257 btrfs_put_block_group(block_group); 5258 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 5259 0, owner, offset, ins, 1); 5260 return ret; 5261 } 5262 5263 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 5264 struct btrfs_root *root, 5265 u64 bytenr, u32 blocksize, 5266 int level) 5267 { 5268 struct extent_buffer *buf; 5269 5270 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 5271 if (!buf) 5272 return ERR_PTR(-ENOMEM); 5273 btrfs_set_header_generation(buf, trans->transid); 5274 btrfs_set_buffer_lockdep_class(buf, level); 5275 btrfs_tree_lock(buf); 5276 clean_tree_block(trans, root, buf); 5277 5278 btrfs_set_lock_blocking(buf); 5279 btrfs_set_buffer_uptodate(buf); 5280 5281 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5282 /* 5283 * we allow two log transactions at a time, use different 5284 * EXENT bit to differentiate dirty pages. 5285 */ 5286 if (root->log_transid % 2 == 0) 5287 set_extent_dirty(&root->dirty_log_pages, buf->start, 5288 buf->start + buf->len - 1, GFP_NOFS); 5289 else 5290 set_extent_new(&root->dirty_log_pages, buf->start, 5291 buf->start + buf->len - 1, GFP_NOFS); 5292 } else { 5293 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 5294 buf->start + buf->len - 1, GFP_NOFS); 5295 } 5296 trans->blocks_used++; 5297 /* this returns a buffer locked for blocking */ 5298 return buf; 5299 } 5300 5301 static struct btrfs_block_rsv * 5302 use_block_rsv(struct btrfs_trans_handle *trans, 5303 struct btrfs_root *root, u32 blocksize) 5304 { 5305 struct btrfs_block_rsv *block_rsv; 5306 int ret; 5307 5308 block_rsv = get_block_rsv(trans, root); 5309 5310 if (block_rsv->size == 0) { 5311 ret = reserve_metadata_bytes(block_rsv, blocksize); 5312 if (ret) 5313 return ERR_PTR(ret); 5314 return block_rsv; 5315 } 5316 5317 ret = block_rsv_use_bytes(block_rsv, blocksize); 5318 if (!ret) 5319 return block_rsv; 5320 5321 WARN_ON(1); 5322 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n", 5323 block_rsv->size, block_rsv->reserved, 5324 block_rsv->freed[0], block_rsv->freed[1]); 5325 5326 return ERR_PTR(-ENOSPC); 5327 } 5328 5329 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize) 5330 { 5331 block_rsv_add_bytes(block_rsv, blocksize, 0); 5332 block_rsv_release_bytes(block_rsv, NULL, 0); 5333 } 5334 5335 /* 5336 * finds a free extent and does all the dirty work required for allocation 5337 * returns the key for the extent through ins, and a tree buffer for 5338 * the first block of the extent through buf. 5339 * 5340 * returns the tree buffer or NULL. 5341 */ 5342 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 5343 struct btrfs_root *root, u32 blocksize, 5344 u64 parent, u64 root_objectid, 5345 struct btrfs_disk_key *key, int level, 5346 u64 hint, u64 empty_size) 5347 { 5348 struct btrfs_key ins; 5349 struct btrfs_block_rsv *block_rsv; 5350 struct extent_buffer *buf; 5351 u64 flags = 0; 5352 int ret; 5353 5354 5355 block_rsv = use_block_rsv(trans, root, blocksize); 5356 if (IS_ERR(block_rsv)) 5357 return ERR_CAST(block_rsv); 5358 5359 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 5360 empty_size, hint, (u64)-1, &ins, 0); 5361 if (ret) { 5362 unuse_block_rsv(block_rsv, blocksize); 5363 return ERR_PTR(ret); 5364 } 5365 5366 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 5367 blocksize, level); 5368 BUG_ON(IS_ERR(buf)); 5369 5370 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5371 if (parent == 0) 5372 parent = ins.objectid; 5373 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5374 } else 5375 BUG_ON(parent > 0); 5376 5377 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5378 struct btrfs_delayed_extent_op *extent_op; 5379 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 5380 BUG_ON(!extent_op); 5381 if (key) 5382 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5383 else 5384 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5385 extent_op->flags_to_set = flags; 5386 extent_op->update_key = 1; 5387 extent_op->update_flags = 1; 5388 extent_op->is_data = 0; 5389 5390 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, 5391 ins.offset, parent, root_objectid, 5392 level, BTRFS_ADD_DELAYED_EXTENT, 5393 extent_op); 5394 BUG_ON(ret); 5395 } 5396 return buf; 5397 } 5398 5399 struct walk_control { 5400 u64 refs[BTRFS_MAX_LEVEL]; 5401 u64 flags[BTRFS_MAX_LEVEL]; 5402 struct btrfs_key update_progress; 5403 int stage; 5404 int level; 5405 int shared_level; 5406 int update_ref; 5407 int keep_locks; 5408 int reada_slot; 5409 int reada_count; 5410 }; 5411 5412 #define DROP_REFERENCE 1 5413 #define UPDATE_BACKREF 2 5414 5415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5416 struct btrfs_root *root, 5417 struct walk_control *wc, 5418 struct btrfs_path *path) 5419 { 5420 u64 bytenr; 5421 u64 generation; 5422 u64 refs; 5423 u64 flags; 5424 u64 last = 0; 5425 u32 nritems; 5426 u32 blocksize; 5427 struct btrfs_key key; 5428 struct extent_buffer *eb; 5429 int ret; 5430 int slot; 5431 int nread = 0; 5432 5433 if (path->slots[wc->level] < wc->reada_slot) { 5434 wc->reada_count = wc->reada_count * 2 / 3; 5435 wc->reada_count = max(wc->reada_count, 2); 5436 } else { 5437 wc->reada_count = wc->reada_count * 3 / 2; 5438 wc->reada_count = min_t(int, wc->reada_count, 5439 BTRFS_NODEPTRS_PER_BLOCK(root)); 5440 } 5441 5442 eb = path->nodes[wc->level]; 5443 nritems = btrfs_header_nritems(eb); 5444 blocksize = btrfs_level_size(root, wc->level - 1); 5445 5446 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5447 if (nread >= wc->reada_count) 5448 break; 5449 5450 cond_resched(); 5451 bytenr = btrfs_node_blockptr(eb, slot); 5452 generation = btrfs_node_ptr_generation(eb, slot); 5453 5454 if (slot == path->slots[wc->level]) 5455 goto reada; 5456 5457 if (wc->stage == UPDATE_BACKREF && 5458 generation <= root->root_key.offset) 5459 continue; 5460 5461 /* We don't lock the tree block, it's OK to be racy here */ 5462 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5463 &refs, &flags); 5464 BUG_ON(ret); 5465 BUG_ON(refs == 0); 5466 5467 if (wc->stage == DROP_REFERENCE) { 5468 if (refs == 1) 5469 goto reada; 5470 5471 if (wc->level == 1 && 5472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5473 continue; 5474 if (!wc->update_ref || 5475 generation <= root->root_key.offset) 5476 continue; 5477 btrfs_node_key_to_cpu(eb, &key, slot); 5478 ret = btrfs_comp_cpu_keys(&key, 5479 &wc->update_progress); 5480 if (ret < 0) 5481 continue; 5482 } else { 5483 if (wc->level == 1 && 5484 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5485 continue; 5486 } 5487 reada: 5488 ret = readahead_tree_block(root, bytenr, blocksize, 5489 generation); 5490 if (ret) 5491 break; 5492 last = bytenr + blocksize; 5493 nread++; 5494 } 5495 wc->reada_slot = slot; 5496 } 5497 5498 /* 5499 * hepler to process tree block while walking down the tree. 5500 * 5501 * when wc->stage == UPDATE_BACKREF, this function updates 5502 * back refs for pointers in the block. 5503 * 5504 * NOTE: return value 1 means we should stop walking down. 5505 */ 5506 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5507 struct btrfs_root *root, 5508 struct btrfs_path *path, 5509 struct walk_control *wc, int lookup_info) 5510 { 5511 int level = wc->level; 5512 struct extent_buffer *eb = path->nodes[level]; 5513 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5514 int ret; 5515 5516 if (wc->stage == UPDATE_BACKREF && 5517 btrfs_header_owner(eb) != root->root_key.objectid) 5518 return 1; 5519 5520 /* 5521 * when reference count of tree block is 1, it won't increase 5522 * again. once full backref flag is set, we never clear it. 5523 */ 5524 if (lookup_info && 5525 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5526 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5527 BUG_ON(!path->locks[level]); 5528 ret = btrfs_lookup_extent_info(trans, root, 5529 eb->start, eb->len, 5530 &wc->refs[level], 5531 &wc->flags[level]); 5532 BUG_ON(ret); 5533 BUG_ON(wc->refs[level] == 0); 5534 } 5535 5536 if (wc->stage == DROP_REFERENCE) { 5537 if (wc->refs[level] > 1) 5538 return 1; 5539 5540 if (path->locks[level] && !wc->keep_locks) { 5541 btrfs_tree_unlock(eb); 5542 path->locks[level] = 0; 5543 } 5544 return 0; 5545 } 5546 5547 /* wc->stage == UPDATE_BACKREF */ 5548 if (!(wc->flags[level] & flag)) { 5549 BUG_ON(!path->locks[level]); 5550 ret = btrfs_inc_ref(trans, root, eb, 1); 5551 BUG_ON(ret); 5552 ret = btrfs_dec_ref(trans, root, eb, 0); 5553 BUG_ON(ret); 5554 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 5555 eb->len, flag, 0); 5556 BUG_ON(ret); 5557 wc->flags[level] |= flag; 5558 } 5559 5560 /* 5561 * the block is shared by multiple trees, so it's not good to 5562 * keep the tree lock 5563 */ 5564 if (path->locks[level] && level > 0) { 5565 btrfs_tree_unlock(eb); 5566 path->locks[level] = 0; 5567 } 5568 return 0; 5569 } 5570 5571 /* 5572 * hepler to process tree block pointer. 5573 * 5574 * when wc->stage == DROP_REFERENCE, this function checks 5575 * reference count of the block pointed to. if the block 5576 * is shared and we need update back refs for the subtree 5577 * rooted at the block, this function changes wc->stage to 5578 * UPDATE_BACKREF. if the block is shared and there is no 5579 * need to update back, this function drops the reference 5580 * to the block. 5581 * 5582 * NOTE: return value 1 means we should stop walking down. 5583 */ 5584 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5585 struct btrfs_root *root, 5586 struct btrfs_path *path, 5587 struct walk_control *wc, int *lookup_info) 5588 { 5589 u64 bytenr; 5590 u64 generation; 5591 u64 parent; 5592 u32 blocksize; 5593 struct btrfs_key key; 5594 struct extent_buffer *next; 5595 int level = wc->level; 5596 int reada = 0; 5597 int ret = 0; 5598 5599 generation = btrfs_node_ptr_generation(path->nodes[level], 5600 path->slots[level]); 5601 /* 5602 * if the lower level block was created before the snapshot 5603 * was created, we know there is no need to update back refs 5604 * for the subtree 5605 */ 5606 if (wc->stage == UPDATE_BACKREF && 5607 generation <= root->root_key.offset) { 5608 *lookup_info = 1; 5609 return 1; 5610 } 5611 5612 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5613 blocksize = btrfs_level_size(root, level - 1); 5614 5615 next = btrfs_find_tree_block(root, bytenr, blocksize); 5616 if (!next) { 5617 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 5618 if (!next) 5619 return -ENOMEM; 5620 reada = 1; 5621 } 5622 btrfs_tree_lock(next); 5623 btrfs_set_lock_blocking(next); 5624 5625 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 5626 &wc->refs[level - 1], 5627 &wc->flags[level - 1]); 5628 BUG_ON(ret); 5629 BUG_ON(wc->refs[level - 1] == 0); 5630 *lookup_info = 0; 5631 5632 if (wc->stage == DROP_REFERENCE) { 5633 if (wc->refs[level - 1] > 1) { 5634 if (level == 1 && 5635 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5636 goto skip; 5637 5638 if (!wc->update_ref || 5639 generation <= root->root_key.offset) 5640 goto skip; 5641 5642 btrfs_node_key_to_cpu(path->nodes[level], &key, 5643 path->slots[level]); 5644 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5645 if (ret < 0) 5646 goto skip; 5647 5648 wc->stage = UPDATE_BACKREF; 5649 wc->shared_level = level - 1; 5650 } 5651 } else { 5652 if (level == 1 && 5653 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5654 goto skip; 5655 } 5656 5657 if (!btrfs_buffer_uptodate(next, generation)) { 5658 btrfs_tree_unlock(next); 5659 free_extent_buffer(next); 5660 next = NULL; 5661 *lookup_info = 1; 5662 } 5663 5664 if (!next) { 5665 if (reada && level == 1) 5666 reada_walk_down(trans, root, wc, path); 5667 next = read_tree_block(root, bytenr, blocksize, generation); 5668 btrfs_tree_lock(next); 5669 btrfs_set_lock_blocking(next); 5670 } 5671 5672 level--; 5673 BUG_ON(level != btrfs_header_level(next)); 5674 path->nodes[level] = next; 5675 path->slots[level] = 0; 5676 path->locks[level] = 1; 5677 wc->level = level; 5678 if (wc->level == 1) 5679 wc->reada_slot = 0; 5680 return 0; 5681 skip: 5682 wc->refs[level - 1] = 0; 5683 wc->flags[level - 1] = 0; 5684 if (wc->stage == DROP_REFERENCE) { 5685 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5686 parent = path->nodes[level]->start; 5687 } else { 5688 BUG_ON(root->root_key.objectid != 5689 btrfs_header_owner(path->nodes[level])); 5690 parent = 0; 5691 } 5692 5693 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 5694 root->root_key.objectid, level - 1, 0); 5695 BUG_ON(ret); 5696 } 5697 btrfs_tree_unlock(next); 5698 free_extent_buffer(next); 5699 *lookup_info = 1; 5700 return 1; 5701 } 5702 5703 /* 5704 * hepler to process tree block while walking up the tree. 5705 * 5706 * when wc->stage == DROP_REFERENCE, this function drops 5707 * reference count on the block. 5708 * 5709 * when wc->stage == UPDATE_BACKREF, this function changes 5710 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5711 * to UPDATE_BACKREF previously while processing the block. 5712 * 5713 * NOTE: return value 1 means we should stop walking up. 5714 */ 5715 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5716 struct btrfs_root *root, 5717 struct btrfs_path *path, 5718 struct walk_control *wc) 5719 { 5720 int ret; 5721 int level = wc->level; 5722 struct extent_buffer *eb = path->nodes[level]; 5723 u64 parent = 0; 5724 5725 if (wc->stage == UPDATE_BACKREF) { 5726 BUG_ON(wc->shared_level < level); 5727 if (level < wc->shared_level) 5728 goto out; 5729 5730 ret = find_next_key(path, level + 1, &wc->update_progress); 5731 if (ret > 0) 5732 wc->update_ref = 0; 5733 5734 wc->stage = DROP_REFERENCE; 5735 wc->shared_level = -1; 5736 path->slots[level] = 0; 5737 5738 /* 5739 * check reference count again if the block isn't locked. 5740 * we should start walking down the tree again if reference 5741 * count is one. 5742 */ 5743 if (!path->locks[level]) { 5744 BUG_ON(level == 0); 5745 btrfs_tree_lock(eb); 5746 btrfs_set_lock_blocking(eb); 5747 path->locks[level] = 1; 5748 5749 ret = btrfs_lookup_extent_info(trans, root, 5750 eb->start, eb->len, 5751 &wc->refs[level], 5752 &wc->flags[level]); 5753 BUG_ON(ret); 5754 BUG_ON(wc->refs[level] == 0); 5755 if (wc->refs[level] == 1) { 5756 btrfs_tree_unlock(eb); 5757 path->locks[level] = 0; 5758 return 1; 5759 } 5760 } 5761 } 5762 5763 /* wc->stage == DROP_REFERENCE */ 5764 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5765 5766 if (wc->refs[level] == 1) { 5767 if (level == 0) { 5768 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5769 ret = btrfs_dec_ref(trans, root, eb, 1); 5770 else 5771 ret = btrfs_dec_ref(trans, root, eb, 0); 5772 BUG_ON(ret); 5773 } 5774 /* make block locked assertion in clean_tree_block happy */ 5775 if (!path->locks[level] && 5776 btrfs_header_generation(eb) == trans->transid) { 5777 btrfs_tree_lock(eb); 5778 btrfs_set_lock_blocking(eb); 5779 path->locks[level] = 1; 5780 } 5781 clean_tree_block(trans, root, eb); 5782 } 5783 5784 if (eb == root->node) { 5785 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5786 parent = eb->start; 5787 else 5788 BUG_ON(root->root_key.objectid != 5789 btrfs_header_owner(eb)); 5790 } else { 5791 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5792 parent = path->nodes[level + 1]->start; 5793 else 5794 BUG_ON(root->root_key.objectid != 5795 btrfs_header_owner(path->nodes[level + 1])); 5796 } 5797 5798 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5799 out: 5800 wc->refs[level] = 0; 5801 wc->flags[level] = 0; 5802 return 0; 5803 } 5804 5805 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5806 struct btrfs_root *root, 5807 struct btrfs_path *path, 5808 struct walk_control *wc) 5809 { 5810 int level = wc->level; 5811 int lookup_info = 1; 5812 int ret; 5813 5814 while (level >= 0) { 5815 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5816 if (ret > 0) 5817 break; 5818 5819 if (level == 0) 5820 break; 5821 5822 if (path->slots[level] >= 5823 btrfs_header_nritems(path->nodes[level])) 5824 break; 5825 5826 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5827 if (ret > 0) { 5828 path->slots[level]++; 5829 continue; 5830 } else if (ret < 0) 5831 return ret; 5832 level = wc->level; 5833 } 5834 return 0; 5835 } 5836 5837 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5838 struct btrfs_root *root, 5839 struct btrfs_path *path, 5840 struct walk_control *wc, int max_level) 5841 { 5842 int level = wc->level; 5843 int ret; 5844 5845 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5846 while (level < max_level && path->nodes[level]) { 5847 wc->level = level; 5848 if (path->slots[level] + 1 < 5849 btrfs_header_nritems(path->nodes[level])) { 5850 path->slots[level]++; 5851 return 0; 5852 } else { 5853 ret = walk_up_proc(trans, root, path, wc); 5854 if (ret > 0) 5855 return 0; 5856 5857 if (path->locks[level]) { 5858 btrfs_tree_unlock(path->nodes[level]); 5859 path->locks[level] = 0; 5860 } 5861 free_extent_buffer(path->nodes[level]); 5862 path->nodes[level] = NULL; 5863 level++; 5864 } 5865 } 5866 return 1; 5867 } 5868 5869 /* 5870 * drop a subvolume tree. 5871 * 5872 * this function traverses the tree freeing any blocks that only 5873 * referenced by the tree. 5874 * 5875 * when a shared tree block is found. this function decreases its 5876 * reference count by one. if update_ref is true, this function 5877 * also make sure backrefs for the shared block and all lower level 5878 * blocks are properly updated. 5879 */ 5880 int btrfs_drop_snapshot(struct btrfs_root *root, 5881 struct btrfs_block_rsv *block_rsv, int update_ref) 5882 { 5883 struct btrfs_path *path; 5884 struct btrfs_trans_handle *trans; 5885 struct btrfs_root *tree_root = root->fs_info->tree_root; 5886 struct btrfs_root_item *root_item = &root->root_item; 5887 struct walk_control *wc; 5888 struct btrfs_key key; 5889 int err = 0; 5890 int ret; 5891 int level; 5892 5893 path = btrfs_alloc_path(); 5894 BUG_ON(!path); 5895 5896 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5897 BUG_ON(!wc); 5898 5899 trans = btrfs_start_transaction(tree_root, 0); 5900 if (block_rsv) 5901 trans->block_rsv = block_rsv; 5902 5903 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5904 level = btrfs_header_level(root->node); 5905 path->nodes[level] = btrfs_lock_root_node(root); 5906 btrfs_set_lock_blocking(path->nodes[level]); 5907 path->slots[level] = 0; 5908 path->locks[level] = 1; 5909 memset(&wc->update_progress, 0, 5910 sizeof(wc->update_progress)); 5911 } else { 5912 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5913 memcpy(&wc->update_progress, &key, 5914 sizeof(wc->update_progress)); 5915 5916 level = root_item->drop_level; 5917 BUG_ON(level == 0); 5918 path->lowest_level = level; 5919 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5920 path->lowest_level = 0; 5921 if (ret < 0) { 5922 err = ret; 5923 goto out; 5924 } 5925 WARN_ON(ret > 0); 5926 5927 /* 5928 * unlock our path, this is safe because only this 5929 * function is allowed to delete this snapshot 5930 */ 5931 btrfs_unlock_up_safe(path, 0); 5932 5933 level = btrfs_header_level(root->node); 5934 while (1) { 5935 btrfs_tree_lock(path->nodes[level]); 5936 btrfs_set_lock_blocking(path->nodes[level]); 5937 5938 ret = btrfs_lookup_extent_info(trans, root, 5939 path->nodes[level]->start, 5940 path->nodes[level]->len, 5941 &wc->refs[level], 5942 &wc->flags[level]); 5943 BUG_ON(ret); 5944 BUG_ON(wc->refs[level] == 0); 5945 5946 if (level == root_item->drop_level) 5947 break; 5948 5949 btrfs_tree_unlock(path->nodes[level]); 5950 WARN_ON(wc->refs[level] != 1); 5951 level--; 5952 } 5953 } 5954 5955 wc->level = level; 5956 wc->shared_level = -1; 5957 wc->stage = DROP_REFERENCE; 5958 wc->update_ref = update_ref; 5959 wc->keep_locks = 0; 5960 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 5961 5962 while (1) { 5963 ret = walk_down_tree(trans, root, path, wc); 5964 if (ret < 0) { 5965 err = ret; 5966 break; 5967 } 5968 5969 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5970 if (ret < 0) { 5971 err = ret; 5972 break; 5973 } 5974 5975 if (ret > 0) { 5976 BUG_ON(wc->stage != DROP_REFERENCE); 5977 break; 5978 } 5979 5980 if (wc->stage == DROP_REFERENCE) { 5981 level = wc->level; 5982 btrfs_node_key(path->nodes[level], 5983 &root_item->drop_progress, 5984 path->slots[level]); 5985 root_item->drop_level = level; 5986 } 5987 5988 BUG_ON(wc->level == 0); 5989 if (btrfs_should_end_transaction(trans, tree_root)) { 5990 ret = btrfs_update_root(trans, tree_root, 5991 &root->root_key, 5992 root_item); 5993 BUG_ON(ret); 5994 5995 btrfs_end_transaction_throttle(trans, tree_root); 5996 trans = btrfs_start_transaction(tree_root, 0); 5997 if (block_rsv) 5998 trans->block_rsv = block_rsv; 5999 } 6000 } 6001 btrfs_release_path(root, path); 6002 BUG_ON(err); 6003 6004 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6005 BUG_ON(ret); 6006 6007 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6008 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6009 NULL, NULL); 6010 BUG_ON(ret < 0); 6011 if (ret > 0) { 6012 ret = btrfs_del_orphan_item(trans, tree_root, 6013 root->root_key.objectid); 6014 BUG_ON(ret); 6015 } 6016 } 6017 6018 if (root->in_radix) { 6019 btrfs_free_fs_root(tree_root->fs_info, root); 6020 } else { 6021 free_extent_buffer(root->node); 6022 free_extent_buffer(root->commit_root); 6023 kfree(root); 6024 } 6025 out: 6026 btrfs_end_transaction_throttle(trans, tree_root); 6027 kfree(wc); 6028 btrfs_free_path(path); 6029 return err; 6030 } 6031 6032 /* 6033 * drop subtree rooted at tree block 'node'. 6034 * 6035 * NOTE: this function will unlock and release tree block 'node' 6036 */ 6037 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6038 struct btrfs_root *root, 6039 struct extent_buffer *node, 6040 struct extent_buffer *parent) 6041 { 6042 struct btrfs_path *path; 6043 struct walk_control *wc; 6044 int level; 6045 int parent_level; 6046 int ret = 0; 6047 int wret; 6048 6049 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6050 6051 path = btrfs_alloc_path(); 6052 BUG_ON(!path); 6053 6054 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6055 BUG_ON(!wc); 6056 6057 btrfs_assert_tree_locked(parent); 6058 parent_level = btrfs_header_level(parent); 6059 extent_buffer_get(parent); 6060 path->nodes[parent_level] = parent; 6061 path->slots[parent_level] = btrfs_header_nritems(parent); 6062 6063 btrfs_assert_tree_locked(node); 6064 level = btrfs_header_level(node); 6065 path->nodes[level] = node; 6066 path->slots[level] = 0; 6067 path->locks[level] = 1; 6068 6069 wc->refs[parent_level] = 1; 6070 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6071 wc->level = level; 6072 wc->shared_level = -1; 6073 wc->stage = DROP_REFERENCE; 6074 wc->update_ref = 0; 6075 wc->keep_locks = 1; 6076 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6077 6078 while (1) { 6079 wret = walk_down_tree(trans, root, path, wc); 6080 if (wret < 0) { 6081 ret = wret; 6082 break; 6083 } 6084 6085 wret = walk_up_tree(trans, root, path, wc, parent_level); 6086 if (wret < 0) 6087 ret = wret; 6088 if (wret != 0) 6089 break; 6090 } 6091 6092 kfree(wc); 6093 btrfs_free_path(path); 6094 return ret; 6095 } 6096 6097 #if 0 6098 static unsigned long calc_ra(unsigned long start, unsigned long last, 6099 unsigned long nr) 6100 { 6101 return min(last, start + nr - 1); 6102 } 6103 6104 static noinline int relocate_inode_pages(struct inode *inode, u64 start, 6105 u64 len) 6106 { 6107 u64 page_start; 6108 u64 page_end; 6109 unsigned long first_index; 6110 unsigned long last_index; 6111 unsigned long i; 6112 struct page *page; 6113 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6114 struct file_ra_state *ra; 6115 struct btrfs_ordered_extent *ordered; 6116 unsigned int total_read = 0; 6117 unsigned int total_dirty = 0; 6118 int ret = 0; 6119 6120 ra = kzalloc(sizeof(*ra), GFP_NOFS); 6121 6122 mutex_lock(&inode->i_mutex); 6123 first_index = start >> PAGE_CACHE_SHIFT; 6124 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT; 6125 6126 /* make sure the dirty trick played by the caller work */ 6127 ret = invalidate_inode_pages2_range(inode->i_mapping, 6128 first_index, last_index); 6129 if (ret) 6130 goto out_unlock; 6131 6132 file_ra_state_init(ra, inode->i_mapping); 6133 6134 for (i = first_index ; i <= last_index; i++) { 6135 if (total_read % ra->ra_pages == 0) { 6136 btrfs_force_ra(inode->i_mapping, ra, NULL, i, 6137 calc_ra(i, last_index, ra->ra_pages)); 6138 } 6139 total_read++; 6140 again: 6141 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode)) 6142 BUG_ON(1); 6143 page = grab_cache_page(inode->i_mapping, i); 6144 if (!page) { 6145 ret = -ENOMEM; 6146 goto out_unlock; 6147 } 6148 if (!PageUptodate(page)) { 6149 btrfs_readpage(NULL, page); 6150 lock_page(page); 6151 if (!PageUptodate(page)) { 6152 unlock_page(page); 6153 page_cache_release(page); 6154 ret = -EIO; 6155 goto out_unlock; 6156 } 6157 } 6158 wait_on_page_writeback(page); 6159 6160 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 6161 page_end = page_start + PAGE_CACHE_SIZE - 1; 6162 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 6163 6164 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6165 if (ordered) { 6166 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6167 unlock_page(page); 6168 page_cache_release(page); 6169 btrfs_start_ordered_extent(inode, ordered, 1); 6170 btrfs_put_ordered_extent(ordered); 6171 goto again; 6172 } 6173 set_page_extent_mapped(page); 6174 6175 if (i == first_index) 6176 set_extent_bits(io_tree, page_start, page_end, 6177 EXTENT_BOUNDARY, GFP_NOFS); 6178 btrfs_set_extent_delalloc(inode, page_start, page_end); 6179 6180 set_page_dirty(page); 6181 total_dirty++; 6182 6183 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 6184 unlock_page(page); 6185 page_cache_release(page); 6186 } 6187 6188 out_unlock: 6189 kfree(ra); 6190 mutex_unlock(&inode->i_mutex); 6191 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty); 6192 return ret; 6193 } 6194 6195 static noinline int relocate_data_extent(struct inode *reloc_inode, 6196 struct btrfs_key *extent_key, 6197 u64 offset) 6198 { 6199 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6200 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree; 6201 struct extent_map *em; 6202 u64 start = extent_key->objectid - offset; 6203 u64 end = start + extent_key->offset - 1; 6204 6205 em = alloc_extent_map(GFP_NOFS); 6206 BUG_ON(!em || IS_ERR(em)); 6207 6208 em->start = start; 6209 em->len = extent_key->offset; 6210 em->block_len = extent_key->offset; 6211 em->block_start = extent_key->objectid; 6212 em->bdev = root->fs_info->fs_devices->latest_bdev; 6213 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6214 6215 /* setup extent map to cheat btrfs_readpage */ 6216 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6217 while (1) { 6218 int ret; 6219 write_lock(&em_tree->lock); 6220 ret = add_extent_mapping(em_tree, em); 6221 write_unlock(&em_tree->lock); 6222 if (ret != -EEXIST) { 6223 free_extent_map(em); 6224 break; 6225 } 6226 btrfs_drop_extent_cache(reloc_inode, start, end, 0); 6227 } 6228 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS); 6229 6230 return relocate_inode_pages(reloc_inode, start, extent_key->offset); 6231 } 6232 6233 struct btrfs_ref_path { 6234 u64 extent_start; 6235 u64 nodes[BTRFS_MAX_LEVEL]; 6236 u64 root_objectid; 6237 u64 root_generation; 6238 u64 owner_objectid; 6239 u32 num_refs; 6240 int lowest_level; 6241 int current_level; 6242 int shared_level; 6243 6244 struct btrfs_key node_keys[BTRFS_MAX_LEVEL]; 6245 u64 new_nodes[BTRFS_MAX_LEVEL]; 6246 }; 6247 6248 struct disk_extent { 6249 u64 ram_bytes; 6250 u64 disk_bytenr; 6251 u64 disk_num_bytes; 6252 u64 offset; 6253 u64 num_bytes; 6254 u8 compression; 6255 u8 encryption; 6256 u16 other_encoding; 6257 }; 6258 6259 static int is_cowonly_root(u64 root_objectid) 6260 { 6261 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 6262 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 6263 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 6264 root_objectid == BTRFS_DEV_TREE_OBJECTID || 6265 root_objectid == BTRFS_TREE_LOG_OBJECTID || 6266 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 6267 return 1; 6268 return 0; 6269 } 6270 6271 static noinline int __next_ref_path(struct btrfs_trans_handle *trans, 6272 struct btrfs_root *extent_root, 6273 struct btrfs_ref_path *ref_path, 6274 int first_time) 6275 { 6276 struct extent_buffer *leaf; 6277 struct btrfs_path *path; 6278 struct btrfs_extent_ref *ref; 6279 struct btrfs_key key; 6280 struct btrfs_key found_key; 6281 u64 bytenr; 6282 u32 nritems; 6283 int level; 6284 int ret = 1; 6285 6286 path = btrfs_alloc_path(); 6287 if (!path) 6288 return -ENOMEM; 6289 6290 if (first_time) { 6291 ref_path->lowest_level = -1; 6292 ref_path->current_level = -1; 6293 ref_path->shared_level = -1; 6294 goto walk_up; 6295 } 6296 walk_down: 6297 level = ref_path->current_level - 1; 6298 while (level >= -1) { 6299 u64 parent; 6300 if (level < ref_path->lowest_level) 6301 break; 6302 6303 if (level >= 0) 6304 bytenr = ref_path->nodes[level]; 6305 else 6306 bytenr = ref_path->extent_start; 6307 BUG_ON(bytenr == 0); 6308 6309 parent = ref_path->nodes[level + 1]; 6310 ref_path->nodes[level + 1] = 0; 6311 ref_path->current_level = level; 6312 BUG_ON(parent == 0); 6313 6314 key.objectid = bytenr; 6315 key.offset = parent + 1; 6316 key.type = BTRFS_EXTENT_REF_KEY; 6317 6318 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6319 if (ret < 0) 6320 goto out; 6321 BUG_ON(ret == 0); 6322 6323 leaf = path->nodes[0]; 6324 nritems = btrfs_header_nritems(leaf); 6325 if (path->slots[0] >= nritems) { 6326 ret = btrfs_next_leaf(extent_root, path); 6327 if (ret < 0) 6328 goto out; 6329 if (ret > 0) 6330 goto next; 6331 leaf = path->nodes[0]; 6332 } 6333 6334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6335 if (found_key.objectid == bytenr && 6336 found_key.type == BTRFS_EXTENT_REF_KEY) { 6337 if (level < ref_path->shared_level) 6338 ref_path->shared_level = level; 6339 goto found; 6340 } 6341 next: 6342 level--; 6343 btrfs_release_path(extent_root, path); 6344 cond_resched(); 6345 } 6346 /* reached lowest level */ 6347 ret = 1; 6348 goto out; 6349 walk_up: 6350 level = ref_path->current_level; 6351 while (level < BTRFS_MAX_LEVEL - 1) { 6352 u64 ref_objectid; 6353 6354 if (level >= 0) 6355 bytenr = ref_path->nodes[level]; 6356 else 6357 bytenr = ref_path->extent_start; 6358 6359 BUG_ON(bytenr == 0); 6360 6361 key.objectid = bytenr; 6362 key.offset = 0; 6363 key.type = BTRFS_EXTENT_REF_KEY; 6364 6365 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0); 6366 if (ret < 0) 6367 goto out; 6368 6369 leaf = path->nodes[0]; 6370 nritems = btrfs_header_nritems(leaf); 6371 if (path->slots[0] >= nritems) { 6372 ret = btrfs_next_leaf(extent_root, path); 6373 if (ret < 0) 6374 goto out; 6375 if (ret > 0) { 6376 /* the extent was freed by someone */ 6377 if (ref_path->lowest_level == level) 6378 goto out; 6379 btrfs_release_path(extent_root, path); 6380 goto walk_down; 6381 } 6382 leaf = path->nodes[0]; 6383 } 6384 6385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6386 if (found_key.objectid != bytenr || 6387 found_key.type != BTRFS_EXTENT_REF_KEY) { 6388 /* the extent was freed by someone */ 6389 if (ref_path->lowest_level == level) { 6390 ret = 1; 6391 goto out; 6392 } 6393 btrfs_release_path(extent_root, path); 6394 goto walk_down; 6395 } 6396 found: 6397 ref = btrfs_item_ptr(leaf, path->slots[0], 6398 struct btrfs_extent_ref); 6399 ref_objectid = btrfs_ref_objectid(leaf, ref); 6400 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) { 6401 if (first_time) { 6402 level = (int)ref_objectid; 6403 BUG_ON(level >= BTRFS_MAX_LEVEL); 6404 ref_path->lowest_level = level; 6405 ref_path->current_level = level; 6406 ref_path->nodes[level] = bytenr; 6407 } else { 6408 WARN_ON(ref_objectid != level); 6409 } 6410 } else { 6411 WARN_ON(level != -1); 6412 } 6413 first_time = 0; 6414 6415 if (ref_path->lowest_level == level) { 6416 ref_path->owner_objectid = ref_objectid; 6417 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref); 6418 } 6419 6420 /* 6421 * the block is tree root or the block isn't in reference 6422 * counted tree. 6423 */ 6424 if (found_key.objectid == found_key.offset || 6425 is_cowonly_root(btrfs_ref_root(leaf, ref))) { 6426 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6427 ref_path->root_generation = 6428 btrfs_ref_generation(leaf, ref); 6429 if (level < 0) { 6430 /* special reference from the tree log */ 6431 ref_path->nodes[0] = found_key.offset; 6432 ref_path->current_level = 0; 6433 } 6434 ret = 0; 6435 goto out; 6436 } 6437 6438 level++; 6439 BUG_ON(ref_path->nodes[level] != 0); 6440 ref_path->nodes[level] = found_key.offset; 6441 ref_path->current_level = level; 6442 6443 /* 6444 * the reference was created in the running transaction, 6445 * no need to continue walking up. 6446 */ 6447 if (btrfs_ref_generation(leaf, ref) == trans->transid) { 6448 ref_path->root_objectid = btrfs_ref_root(leaf, ref); 6449 ref_path->root_generation = 6450 btrfs_ref_generation(leaf, ref); 6451 ret = 0; 6452 goto out; 6453 } 6454 6455 btrfs_release_path(extent_root, path); 6456 cond_resched(); 6457 } 6458 /* reached max tree level, but no tree root found. */ 6459 BUG(); 6460 out: 6461 btrfs_free_path(path); 6462 return ret; 6463 } 6464 6465 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans, 6466 struct btrfs_root *extent_root, 6467 struct btrfs_ref_path *ref_path, 6468 u64 extent_start) 6469 { 6470 memset(ref_path, 0, sizeof(*ref_path)); 6471 ref_path->extent_start = extent_start; 6472 6473 return __next_ref_path(trans, extent_root, ref_path, 1); 6474 } 6475 6476 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans, 6477 struct btrfs_root *extent_root, 6478 struct btrfs_ref_path *ref_path) 6479 { 6480 return __next_ref_path(trans, extent_root, ref_path, 0); 6481 } 6482 6483 static noinline int get_new_locations(struct inode *reloc_inode, 6484 struct btrfs_key *extent_key, 6485 u64 offset, int no_fragment, 6486 struct disk_extent **extents, 6487 int *nr_extents) 6488 { 6489 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 6490 struct btrfs_path *path; 6491 struct btrfs_file_extent_item *fi; 6492 struct extent_buffer *leaf; 6493 struct disk_extent *exts = *extents; 6494 struct btrfs_key found_key; 6495 u64 cur_pos; 6496 u64 last_byte; 6497 u32 nritems; 6498 int nr = 0; 6499 int max = *nr_extents; 6500 int ret; 6501 6502 WARN_ON(!no_fragment && *extents); 6503 if (!exts) { 6504 max = 1; 6505 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS); 6506 if (!exts) 6507 return -ENOMEM; 6508 } 6509 6510 path = btrfs_alloc_path(); 6511 BUG_ON(!path); 6512 6513 cur_pos = extent_key->objectid - offset; 6514 last_byte = extent_key->objectid + extent_key->offset; 6515 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino, 6516 cur_pos, 0); 6517 if (ret < 0) 6518 goto out; 6519 if (ret > 0) { 6520 ret = -ENOENT; 6521 goto out; 6522 } 6523 6524 while (1) { 6525 leaf = path->nodes[0]; 6526 nritems = btrfs_header_nritems(leaf); 6527 if (path->slots[0] >= nritems) { 6528 ret = btrfs_next_leaf(root, path); 6529 if (ret < 0) 6530 goto out; 6531 if (ret > 0) 6532 break; 6533 leaf = path->nodes[0]; 6534 } 6535 6536 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6537 if (found_key.offset != cur_pos || 6538 found_key.type != BTRFS_EXTENT_DATA_KEY || 6539 found_key.objectid != reloc_inode->i_ino) 6540 break; 6541 6542 fi = btrfs_item_ptr(leaf, path->slots[0], 6543 struct btrfs_file_extent_item); 6544 if (btrfs_file_extent_type(leaf, fi) != 6545 BTRFS_FILE_EXTENT_REG || 6546 btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 6547 break; 6548 6549 if (nr == max) { 6550 struct disk_extent *old = exts; 6551 max *= 2; 6552 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS); 6553 memcpy(exts, old, sizeof(*exts) * nr); 6554 if (old != *extents) 6555 kfree(old); 6556 } 6557 6558 exts[nr].disk_bytenr = 6559 btrfs_file_extent_disk_bytenr(leaf, fi); 6560 exts[nr].disk_num_bytes = 6561 btrfs_file_extent_disk_num_bytes(leaf, fi); 6562 exts[nr].offset = btrfs_file_extent_offset(leaf, fi); 6563 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 6564 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6565 exts[nr].compression = btrfs_file_extent_compression(leaf, fi); 6566 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi); 6567 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf, 6568 fi); 6569 BUG_ON(exts[nr].offset > 0); 6570 BUG_ON(exts[nr].compression || exts[nr].encryption); 6571 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes); 6572 6573 cur_pos += exts[nr].num_bytes; 6574 nr++; 6575 6576 if (cur_pos + offset >= last_byte) 6577 break; 6578 6579 if (no_fragment) { 6580 ret = 1; 6581 goto out; 6582 } 6583 path->slots[0]++; 6584 } 6585 6586 BUG_ON(cur_pos + offset > last_byte); 6587 if (cur_pos + offset < last_byte) { 6588 ret = -ENOENT; 6589 goto out; 6590 } 6591 ret = 0; 6592 out: 6593 btrfs_free_path(path); 6594 if (ret) { 6595 if (exts != *extents) 6596 kfree(exts); 6597 } else { 6598 *extents = exts; 6599 *nr_extents = nr; 6600 } 6601 return ret; 6602 } 6603 6604 static noinline int replace_one_extent(struct btrfs_trans_handle *trans, 6605 struct btrfs_root *root, 6606 struct btrfs_path *path, 6607 struct btrfs_key *extent_key, 6608 struct btrfs_key *leaf_key, 6609 struct btrfs_ref_path *ref_path, 6610 struct disk_extent *new_extents, 6611 int nr_extents) 6612 { 6613 struct extent_buffer *leaf; 6614 struct btrfs_file_extent_item *fi; 6615 struct inode *inode = NULL; 6616 struct btrfs_key key; 6617 u64 lock_start = 0; 6618 u64 lock_end = 0; 6619 u64 num_bytes; 6620 u64 ext_offset; 6621 u64 search_end = (u64)-1; 6622 u32 nritems; 6623 int nr_scaned = 0; 6624 int extent_locked = 0; 6625 int extent_type; 6626 int ret; 6627 6628 memcpy(&key, leaf_key, sizeof(key)); 6629 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 6630 if (key.objectid < ref_path->owner_objectid || 6631 (key.objectid == ref_path->owner_objectid && 6632 key.type < BTRFS_EXTENT_DATA_KEY)) { 6633 key.objectid = ref_path->owner_objectid; 6634 key.type = BTRFS_EXTENT_DATA_KEY; 6635 key.offset = 0; 6636 } 6637 } 6638 6639 while (1) { 6640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 6641 if (ret < 0) 6642 goto out; 6643 6644 leaf = path->nodes[0]; 6645 nritems = btrfs_header_nritems(leaf); 6646 next: 6647 if (extent_locked && ret > 0) { 6648 /* 6649 * the file extent item was modified by someone 6650 * before the extent got locked. 6651 */ 6652 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 6653 lock_end, GFP_NOFS); 6654 extent_locked = 0; 6655 } 6656 6657 if (path->slots[0] >= nritems) { 6658 if (++nr_scaned > 2) 6659 break; 6660 6661 BUG_ON(extent_locked); 6662 ret = btrfs_next_leaf(root, path); 6663 if (ret < 0) 6664 goto out; 6665 if (ret > 0) 6666 break; 6667 leaf = path->nodes[0]; 6668 nritems = btrfs_header_nritems(leaf); 6669 } 6670 6671 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 6672 6673 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) { 6674 if ((key.objectid > ref_path->owner_objectid) || 6675 (key.objectid == ref_path->owner_objectid && 6676 key.type > BTRFS_EXTENT_DATA_KEY) || 6677 key.offset >= search_end) 6678 break; 6679 } 6680 6681 if (inode && key.objectid != inode->i_ino) { 6682 BUG_ON(extent_locked); 6683 btrfs_release_path(root, path); 6684 mutex_unlock(&inode->i_mutex); 6685 iput(inode); 6686 inode = NULL; 6687 continue; 6688 } 6689 6690 if (key.type != BTRFS_EXTENT_DATA_KEY) { 6691 path->slots[0]++; 6692 ret = 1; 6693 goto next; 6694 } 6695 fi = btrfs_item_ptr(leaf, path->slots[0], 6696 struct btrfs_file_extent_item); 6697 extent_type = btrfs_file_extent_type(leaf, fi); 6698 if ((extent_type != BTRFS_FILE_EXTENT_REG && 6699 extent_type != BTRFS_FILE_EXTENT_PREALLOC) || 6700 (btrfs_file_extent_disk_bytenr(leaf, fi) != 6701 extent_key->objectid)) { 6702 path->slots[0]++; 6703 ret = 1; 6704 goto next; 6705 } 6706 6707 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 6708 ext_offset = btrfs_file_extent_offset(leaf, fi); 6709 6710 if (search_end == (u64)-1) { 6711 search_end = key.offset - ext_offset + 6712 btrfs_file_extent_ram_bytes(leaf, fi); 6713 } 6714 6715 if (!extent_locked) { 6716 lock_start = key.offset; 6717 lock_end = lock_start + num_bytes - 1; 6718 } else { 6719 if (lock_start > key.offset || 6720 lock_end + 1 < key.offset + num_bytes) { 6721 unlock_extent(&BTRFS_I(inode)->io_tree, 6722 lock_start, lock_end, GFP_NOFS); 6723 extent_locked = 0; 6724 } 6725 } 6726 6727 if (!inode) { 6728 btrfs_release_path(root, path); 6729 6730 inode = btrfs_iget_locked(root->fs_info->sb, 6731 key.objectid, root); 6732 if (inode->i_state & I_NEW) { 6733 BTRFS_I(inode)->root = root; 6734 BTRFS_I(inode)->location.objectid = 6735 key.objectid; 6736 BTRFS_I(inode)->location.type = 6737 BTRFS_INODE_ITEM_KEY; 6738 BTRFS_I(inode)->location.offset = 0; 6739 btrfs_read_locked_inode(inode); 6740 unlock_new_inode(inode); 6741 } 6742 /* 6743 * some code call btrfs_commit_transaction while 6744 * holding the i_mutex, so we can't use mutex_lock 6745 * here. 6746 */ 6747 if (is_bad_inode(inode) || 6748 !mutex_trylock(&inode->i_mutex)) { 6749 iput(inode); 6750 inode = NULL; 6751 key.offset = (u64)-1; 6752 goto skip; 6753 } 6754 } 6755 6756 if (!extent_locked) { 6757 struct btrfs_ordered_extent *ordered; 6758 6759 btrfs_release_path(root, path); 6760 6761 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, 6762 lock_end, GFP_NOFS); 6763 ordered = btrfs_lookup_first_ordered_extent(inode, 6764 lock_end); 6765 if (ordered && 6766 ordered->file_offset <= lock_end && 6767 ordered->file_offset + ordered->len > lock_start) { 6768 unlock_extent(&BTRFS_I(inode)->io_tree, 6769 lock_start, lock_end, GFP_NOFS); 6770 btrfs_start_ordered_extent(inode, ordered, 1); 6771 btrfs_put_ordered_extent(ordered); 6772 key.offset += num_bytes; 6773 goto skip; 6774 } 6775 if (ordered) 6776 btrfs_put_ordered_extent(ordered); 6777 6778 extent_locked = 1; 6779 continue; 6780 } 6781 6782 if (nr_extents == 1) { 6783 /* update extent pointer in place */ 6784 btrfs_set_file_extent_disk_bytenr(leaf, fi, 6785 new_extents[0].disk_bytenr); 6786 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 6787 new_extents[0].disk_num_bytes); 6788 btrfs_mark_buffer_dirty(leaf); 6789 6790 btrfs_drop_extent_cache(inode, key.offset, 6791 key.offset + num_bytes - 1, 0); 6792 6793 ret = btrfs_inc_extent_ref(trans, root, 6794 new_extents[0].disk_bytenr, 6795 new_extents[0].disk_num_bytes, 6796 leaf->start, 6797 root->root_key.objectid, 6798 trans->transid, 6799 key.objectid); 6800 BUG_ON(ret); 6801 6802 ret = btrfs_free_extent(trans, root, 6803 extent_key->objectid, 6804 extent_key->offset, 6805 leaf->start, 6806 btrfs_header_owner(leaf), 6807 btrfs_header_generation(leaf), 6808 key.objectid, 0); 6809 BUG_ON(ret); 6810 6811 btrfs_release_path(root, path); 6812 key.offset += num_bytes; 6813 } else { 6814 BUG_ON(1); 6815 #if 0 6816 u64 alloc_hint; 6817 u64 extent_len; 6818 int i; 6819 /* 6820 * drop old extent pointer at first, then insert the 6821 * new pointers one bye one 6822 */ 6823 btrfs_release_path(root, path); 6824 ret = btrfs_drop_extents(trans, root, inode, key.offset, 6825 key.offset + num_bytes, 6826 key.offset, &alloc_hint); 6827 BUG_ON(ret); 6828 6829 for (i = 0; i < nr_extents; i++) { 6830 if (ext_offset >= new_extents[i].num_bytes) { 6831 ext_offset -= new_extents[i].num_bytes; 6832 continue; 6833 } 6834 extent_len = min(new_extents[i].num_bytes - 6835 ext_offset, num_bytes); 6836 6837 ret = btrfs_insert_empty_item(trans, root, 6838 path, &key, 6839 sizeof(*fi)); 6840 BUG_ON(ret); 6841 6842 leaf = path->nodes[0]; 6843 fi = btrfs_item_ptr(leaf, path->slots[0], 6844 struct btrfs_file_extent_item); 6845 btrfs_set_file_extent_generation(leaf, fi, 6846 trans->transid); 6847 btrfs_set_file_extent_type(leaf, fi, 6848 BTRFS_FILE_EXTENT_REG); 6849 btrfs_set_file_extent_disk_bytenr(leaf, fi, 6850 new_extents[i].disk_bytenr); 6851 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 6852 new_extents[i].disk_num_bytes); 6853 btrfs_set_file_extent_ram_bytes(leaf, fi, 6854 new_extents[i].ram_bytes); 6855 6856 btrfs_set_file_extent_compression(leaf, fi, 6857 new_extents[i].compression); 6858 btrfs_set_file_extent_encryption(leaf, fi, 6859 new_extents[i].encryption); 6860 btrfs_set_file_extent_other_encoding(leaf, fi, 6861 new_extents[i].other_encoding); 6862 6863 btrfs_set_file_extent_num_bytes(leaf, fi, 6864 extent_len); 6865 ext_offset += new_extents[i].offset; 6866 btrfs_set_file_extent_offset(leaf, fi, 6867 ext_offset); 6868 btrfs_mark_buffer_dirty(leaf); 6869 6870 btrfs_drop_extent_cache(inode, key.offset, 6871 key.offset + extent_len - 1, 0); 6872 6873 ret = btrfs_inc_extent_ref(trans, root, 6874 new_extents[i].disk_bytenr, 6875 new_extents[i].disk_num_bytes, 6876 leaf->start, 6877 root->root_key.objectid, 6878 trans->transid, key.objectid); 6879 BUG_ON(ret); 6880 btrfs_release_path(root, path); 6881 6882 inode_add_bytes(inode, extent_len); 6883 6884 ext_offset = 0; 6885 num_bytes -= extent_len; 6886 key.offset += extent_len; 6887 6888 if (num_bytes == 0) 6889 break; 6890 } 6891 BUG_ON(i >= nr_extents); 6892 #endif 6893 } 6894 6895 if (extent_locked) { 6896 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 6897 lock_end, GFP_NOFS); 6898 extent_locked = 0; 6899 } 6900 skip: 6901 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS && 6902 key.offset >= search_end) 6903 break; 6904 6905 cond_resched(); 6906 } 6907 ret = 0; 6908 out: 6909 btrfs_release_path(root, path); 6910 if (inode) { 6911 mutex_unlock(&inode->i_mutex); 6912 if (extent_locked) { 6913 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, 6914 lock_end, GFP_NOFS); 6915 } 6916 iput(inode); 6917 } 6918 return ret; 6919 } 6920 6921 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans, 6922 struct btrfs_root *root, 6923 struct extent_buffer *buf, u64 orig_start) 6924 { 6925 int level; 6926 int ret; 6927 6928 BUG_ON(btrfs_header_generation(buf) != trans->transid); 6929 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6930 6931 level = btrfs_header_level(buf); 6932 if (level == 0) { 6933 struct btrfs_leaf_ref *ref; 6934 struct btrfs_leaf_ref *orig_ref; 6935 6936 orig_ref = btrfs_lookup_leaf_ref(root, orig_start); 6937 if (!orig_ref) 6938 return -ENOENT; 6939 6940 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems); 6941 if (!ref) { 6942 btrfs_free_leaf_ref(root, orig_ref); 6943 return -ENOMEM; 6944 } 6945 6946 ref->nritems = orig_ref->nritems; 6947 memcpy(ref->extents, orig_ref->extents, 6948 sizeof(ref->extents[0]) * ref->nritems); 6949 6950 btrfs_free_leaf_ref(root, orig_ref); 6951 6952 ref->root_gen = trans->transid; 6953 ref->bytenr = buf->start; 6954 ref->owner = btrfs_header_owner(buf); 6955 ref->generation = btrfs_header_generation(buf); 6956 6957 ret = btrfs_add_leaf_ref(root, ref, 0); 6958 WARN_ON(ret); 6959 btrfs_free_leaf_ref(root, ref); 6960 } 6961 return 0; 6962 } 6963 6964 static noinline int invalidate_extent_cache(struct btrfs_root *root, 6965 struct extent_buffer *leaf, 6966 struct btrfs_block_group_cache *group, 6967 struct btrfs_root *target_root) 6968 { 6969 struct btrfs_key key; 6970 struct inode *inode = NULL; 6971 struct btrfs_file_extent_item *fi; 6972 struct extent_state *cached_state = NULL; 6973 u64 num_bytes; 6974 u64 skip_objectid = 0; 6975 u32 nritems; 6976 u32 i; 6977 6978 nritems = btrfs_header_nritems(leaf); 6979 for (i = 0; i < nritems; i++) { 6980 btrfs_item_key_to_cpu(leaf, &key, i); 6981 if (key.objectid == skip_objectid || 6982 key.type != BTRFS_EXTENT_DATA_KEY) 6983 continue; 6984 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 6985 if (btrfs_file_extent_type(leaf, fi) == 6986 BTRFS_FILE_EXTENT_INLINE) 6987 continue; 6988 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 6989 continue; 6990 if (!inode || inode->i_ino != key.objectid) { 6991 iput(inode); 6992 inode = btrfs_ilookup(target_root->fs_info->sb, 6993 key.objectid, target_root, 1); 6994 } 6995 if (!inode) { 6996 skip_objectid = key.objectid; 6997 continue; 6998 } 6999 num_bytes = btrfs_file_extent_num_bytes(leaf, fi); 7000 7001 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset, 7002 key.offset + num_bytes - 1, 0, &cached_state, 7003 GFP_NOFS); 7004 btrfs_drop_extent_cache(inode, key.offset, 7005 key.offset + num_bytes - 1, 1); 7006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset, 7007 key.offset + num_bytes - 1, &cached_state, 7008 GFP_NOFS); 7009 cond_resched(); 7010 } 7011 iput(inode); 7012 return 0; 7013 } 7014 7015 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans, 7016 struct btrfs_root *root, 7017 struct extent_buffer *leaf, 7018 struct btrfs_block_group_cache *group, 7019 struct inode *reloc_inode) 7020 { 7021 struct btrfs_key key; 7022 struct btrfs_key extent_key; 7023 struct btrfs_file_extent_item *fi; 7024 struct btrfs_leaf_ref *ref; 7025 struct disk_extent *new_extent; 7026 u64 bytenr; 7027 u64 num_bytes; 7028 u32 nritems; 7029 u32 i; 7030 int ext_index; 7031 int nr_extent; 7032 int ret; 7033 7034 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS); 7035 BUG_ON(!new_extent); 7036 7037 ref = btrfs_lookup_leaf_ref(root, leaf->start); 7038 BUG_ON(!ref); 7039 7040 ext_index = -1; 7041 nritems = btrfs_header_nritems(leaf); 7042 for (i = 0; i < nritems; i++) { 7043 btrfs_item_key_to_cpu(leaf, &key, i); 7044 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 7045 continue; 7046 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 7047 if (btrfs_file_extent_type(leaf, fi) == 7048 BTRFS_FILE_EXTENT_INLINE) 7049 continue; 7050 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7051 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 7052 if (bytenr == 0) 7053 continue; 7054 7055 ext_index++; 7056 if (bytenr >= group->key.objectid + group->key.offset || 7057 bytenr + num_bytes <= group->key.objectid) 7058 continue; 7059 7060 extent_key.objectid = bytenr; 7061 extent_key.offset = num_bytes; 7062 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 7063 nr_extent = 1; 7064 ret = get_new_locations(reloc_inode, &extent_key, 7065 group->key.objectid, 1, 7066 &new_extent, &nr_extent); 7067 if (ret > 0) 7068 continue; 7069 BUG_ON(ret < 0); 7070 7071 BUG_ON(ref->extents[ext_index].bytenr != bytenr); 7072 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes); 7073 ref->extents[ext_index].bytenr = new_extent->disk_bytenr; 7074 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes; 7075 7076 btrfs_set_file_extent_disk_bytenr(leaf, fi, 7077 new_extent->disk_bytenr); 7078 btrfs_set_file_extent_disk_num_bytes(leaf, fi, 7079 new_extent->disk_num_bytes); 7080 btrfs_mark_buffer_dirty(leaf); 7081 7082 ret = btrfs_inc_extent_ref(trans, root, 7083 new_extent->disk_bytenr, 7084 new_extent->disk_num_bytes, 7085 leaf->start, 7086 root->root_key.objectid, 7087 trans->transid, key.objectid); 7088 BUG_ON(ret); 7089 7090 ret = btrfs_free_extent(trans, root, 7091 bytenr, num_bytes, leaf->start, 7092 btrfs_header_owner(leaf), 7093 btrfs_header_generation(leaf), 7094 key.objectid, 0); 7095 BUG_ON(ret); 7096 cond_resched(); 7097 } 7098 kfree(new_extent); 7099 BUG_ON(ext_index + 1 != ref->nritems); 7100 btrfs_free_leaf_ref(root, ref); 7101 return 0; 7102 } 7103 7104 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans, 7105 struct btrfs_root *root) 7106 { 7107 struct btrfs_root *reloc_root; 7108 int ret; 7109 7110 if (root->reloc_root) { 7111 reloc_root = root->reloc_root; 7112 root->reloc_root = NULL; 7113 list_add(&reloc_root->dead_list, 7114 &root->fs_info->dead_reloc_roots); 7115 7116 btrfs_set_root_bytenr(&reloc_root->root_item, 7117 reloc_root->node->start); 7118 btrfs_set_root_level(&root->root_item, 7119 btrfs_header_level(reloc_root->node)); 7120 memset(&reloc_root->root_item.drop_progress, 0, 7121 sizeof(struct btrfs_disk_key)); 7122 reloc_root->root_item.drop_level = 0; 7123 7124 ret = btrfs_update_root(trans, root->fs_info->tree_root, 7125 &reloc_root->root_key, 7126 &reloc_root->root_item); 7127 BUG_ON(ret); 7128 } 7129 return 0; 7130 } 7131 7132 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root) 7133 { 7134 struct btrfs_trans_handle *trans; 7135 struct btrfs_root *reloc_root; 7136 struct btrfs_root *prev_root = NULL; 7137 struct list_head dead_roots; 7138 int ret; 7139 unsigned long nr; 7140 7141 INIT_LIST_HEAD(&dead_roots); 7142 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots); 7143 7144 while (!list_empty(&dead_roots)) { 7145 reloc_root = list_entry(dead_roots.prev, 7146 struct btrfs_root, dead_list); 7147 list_del_init(&reloc_root->dead_list); 7148 7149 BUG_ON(reloc_root->commit_root != NULL); 7150 while (1) { 7151 trans = btrfs_join_transaction(root, 1); 7152 BUG_ON(!trans); 7153 7154 mutex_lock(&root->fs_info->drop_mutex); 7155 ret = btrfs_drop_snapshot(trans, reloc_root); 7156 if (ret != -EAGAIN) 7157 break; 7158 mutex_unlock(&root->fs_info->drop_mutex); 7159 7160 nr = trans->blocks_used; 7161 ret = btrfs_end_transaction(trans, root); 7162 BUG_ON(ret); 7163 btrfs_btree_balance_dirty(root, nr); 7164 } 7165 7166 free_extent_buffer(reloc_root->node); 7167 7168 ret = btrfs_del_root(trans, root->fs_info->tree_root, 7169 &reloc_root->root_key); 7170 BUG_ON(ret); 7171 mutex_unlock(&root->fs_info->drop_mutex); 7172 7173 nr = trans->blocks_used; 7174 ret = btrfs_end_transaction(trans, root); 7175 BUG_ON(ret); 7176 btrfs_btree_balance_dirty(root, nr); 7177 7178 kfree(prev_root); 7179 prev_root = reloc_root; 7180 } 7181 if (prev_root) { 7182 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0); 7183 kfree(prev_root); 7184 } 7185 return 0; 7186 } 7187 7188 int btrfs_add_dead_reloc_root(struct btrfs_root *root) 7189 { 7190 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots); 7191 return 0; 7192 } 7193 7194 int btrfs_cleanup_reloc_trees(struct btrfs_root *root) 7195 { 7196 struct btrfs_root *reloc_root; 7197 struct btrfs_trans_handle *trans; 7198 struct btrfs_key location; 7199 int found; 7200 int ret; 7201 7202 mutex_lock(&root->fs_info->tree_reloc_mutex); 7203 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL); 7204 BUG_ON(ret); 7205 found = !list_empty(&root->fs_info->dead_reloc_roots); 7206 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7207 7208 if (found) { 7209 trans = btrfs_start_transaction(root, 1); 7210 BUG_ON(!trans); 7211 ret = btrfs_commit_transaction(trans, root); 7212 BUG_ON(ret); 7213 } 7214 7215 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 7216 location.offset = (u64)-1; 7217 location.type = BTRFS_ROOT_ITEM_KEY; 7218 7219 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 7220 BUG_ON(!reloc_root); 7221 btrfs_orphan_cleanup(reloc_root); 7222 return 0; 7223 } 7224 7225 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans, 7226 struct btrfs_root *root) 7227 { 7228 struct btrfs_root *reloc_root; 7229 struct extent_buffer *eb; 7230 struct btrfs_root_item *root_item; 7231 struct btrfs_key root_key; 7232 int ret; 7233 7234 BUG_ON(!root->ref_cows); 7235 if (root->reloc_root) 7236 return 0; 7237 7238 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 7239 BUG_ON(!root_item); 7240 7241 ret = btrfs_copy_root(trans, root, root->commit_root, 7242 &eb, BTRFS_TREE_RELOC_OBJECTID); 7243 BUG_ON(ret); 7244 7245 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 7246 root_key.offset = root->root_key.objectid; 7247 root_key.type = BTRFS_ROOT_ITEM_KEY; 7248 7249 memcpy(root_item, &root->root_item, sizeof(root_item)); 7250 btrfs_set_root_refs(root_item, 0); 7251 btrfs_set_root_bytenr(root_item, eb->start); 7252 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 7253 btrfs_set_root_generation(root_item, trans->transid); 7254 7255 btrfs_tree_unlock(eb); 7256 free_extent_buffer(eb); 7257 7258 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 7259 &root_key, root_item); 7260 BUG_ON(ret); 7261 kfree(root_item); 7262 7263 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 7264 &root_key); 7265 BUG_ON(!reloc_root); 7266 reloc_root->last_trans = trans->transid; 7267 reloc_root->commit_root = NULL; 7268 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree; 7269 7270 root->reloc_root = reloc_root; 7271 return 0; 7272 } 7273 7274 /* 7275 * Core function of space balance. 7276 * 7277 * The idea is using reloc trees to relocate tree blocks in reference 7278 * counted roots. There is one reloc tree for each subvol, and all 7279 * reloc trees share same root key objectid. Reloc trees are snapshots 7280 * of the latest committed roots of subvols (root->commit_root). 7281 * 7282 * To relocate a tree block referenced by a subvol, there are two steps. 7283 * COW the block through subvol's reloc tree, then update block pointer 7284 * in the subvol to point to the new block. Since all reloc trees share 7285 * same root key objectid, doing special handing for tree blocks owned 7286 * by them is easy. Once a tree block has been COWed in one reloc tree, 7287 * we can use the resulting new block directly when the same block is 7288 * required to COW again through other reloc trees. By this way, relocated 7289 * tree blocks are shared between reloc trees, so they are also shared 7290 * between subvols. 7291 */ 7292 static noinline int relocate_one_path(struct btrfs_trans_handle *trans, 7293 struct btrfs_root *root, 7294 struct btrfs_path *path, 7295 struct btrfs_key *first_key, 7296 struct btrfs_ref_path *ref_path, 7297 struct btrfs_block_group_cache *group, 7298 struct inode *reloc_inode) 7299 { 7300 struct btrfs_root *reloc_root; 7301 struct extent_buffer *eb = NULL; 7302 struct btrfs_key *keys; 7303 u64 *nodes; 7304 int level; 7305 int shared_level; 7306 int lowest_level = 0; 7307 int ret; 7308 7309 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID) 7310 lowest_level = ref_path->owner_objectid; 7311 7312 if (!root->ref_cows) { 7313 path->lowest_level = lowest_level; 7314 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1); 7315 BUG_ON(ret < 0); 7316 path->lowest_level = 0; 7317 btrfs_release_path(root, path); 7318 return 0; 7319 } 7320 7321 mutex_lock(&root->fs_info->tree_reloc_mutex); 7322 ret = init_reloc_tree(trans, root); 7323 BUG_ON(ret); 7324 reloc_root = root->reloc_root; 7325 7326 shared_level = ref_path->shared_level; 7327 ref_path->shared_level = BTRFS_MAX_LEVEL - 1; 7328 7329 keys = ref_path->node_keys; 7330 nodes = ref_path->new_nodes; 7331 memset(&keys[shared_level + 1], 0, 7332 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7333 memset(&nodes[shared_level + 1], 0, 7334 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1)); 7335 7336 if (nodes[lowest_level] == 0) { 7337 path->lowest_level = lowest_level; 7338 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7339 0, 1); 7340 BUG_ON(ret); 7341 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) { 7342 eb = path->nodes[level]; 7343 if (!eb || eb == reloc_root->node) 7344 break; 7345 nodes[level] = eb->start; 7346 if (level == 0) 7347 btrfs_item_key_to_cpu(eb, &keys[level], 0); 7348 else 7349 btrfs_node_key_to_cpu(eb, &keys[level], 0); 7350 } 7351 if (nodes[0] && 7352 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7353 eb = path->nodes[0]; 7354 ret = replace_extents_in_leaf(trans, reloc_root, eb, 7355 group, reloc_inode); 7356 BUG_ON(ret); 7357 } 7358 btrfs_release_path(reloc_root, path); 7359 } else { 7360 ret = btrfs_merge_path(trans, reloc_root, keys, nodes, 7361 lowest_level); 7362 BUG_ON(ret); 7363 } 7364 7365 /* 7366 * replace tree blocks in the fs tree with tree blocks in 7367 * the reloc tree. 7368 */ 7369 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level); 7370 BUG_ON(ret < 0); 7371 7372 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7373 ret = btrfs_search_slot(trans, reloc_root, first_key, path, 7374 0, 0); 7375 BUG_ON(ret); 7376 extent_buffer_get(path->nodes[0]); 7377 eb = path->nodes[0]; 7378 btrfs_release_path(reloc_root, path); 7379 ret = invalidate_extent_cache(reloc_root, eb, group, root); 7380 BUG_ON(ret); 7381 free_extent_buffer(eb); 7382 } 7383 7384 mutex_unlock(&root->fs_info->tree_reloc_mutex); 7385 path->lowest_level = 0; 7386 return 0; 7387 } 7388 7389 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans, 7390 struct btrfs_root *root, 7391 struct btrfs_path *path, 7392 struct btrfs_key *first_key, 7393 struct btrfs_ref_path *ref_path) 7394 { 7395 int ret; 7396 7397 ret = relocate_one_path(trans, root, path, first_key, 7398 ref_path, NULL, NULL); 7399 BUG_ON(ret); 7400 7401 return 0; 7402 } 7403 7404 static noinline int del_extent_zero(struct btrfs_trans_handle *trans, 7405 struct btrfs_root *extent_root, 7406 struct btrfs_path *path, 7407 struct btrfs_key *extent_key) 7408 { 7409 int ret; 7410 7411 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1); 7412 if (ret) 7413 goto out; 7414 ret = btrfs_del_item(trans, extent_root, path); 7415 out: 7416 btrfs_release_path(extent_root, path); 7417 return ret; 7418 } 7419 7420 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info, 7421 struct btrfs_ref_path *ref_path) 7422 { 7423 struct btrfs_key root_key; 7424 7425 root_key.objectid = ref_path->root_objectid; 7426 root_key.type = BTRFS_ROOT_ITEM_KEY; 7427 if (is_cowonly_root(ref_path->root_objectid)) 7428 root_key.offset = 0; 7429 else 7430 root_key.offset = (u64)-1; 7431 7432 return btrfs_read_fs_root_no_name(fs_info, &root_key); 7433 } 7434 7435 static noinline int relocate_one_extent(struct btrfs_root *extent_root, 7436 struct btrfs_path *path, 7437 struct btrfs_key *extent_key, 7438 struct btrfs_block_group_cache *group, 7439 struct inode *reloc_inode, int pass) 7440 { 7441 struct btrfs_trans_handle *trans; 7442 struct btrfs_root *found_root; 7443 struct btrfs_ref_path *ref_path = NULL; 7444 struct disk_extent *new_extents = NULL; 7445 int nr_extents = 0; 7446 int loops; 7447 int ret; 7448 int level; 7449 struct btrfs_key first_key; 7450 u64 prev_block = 0; 7451 7452 7453 trans = btrfs_start_transaction(extent_root, 1); 7454 BUG_ON(!trans); 7455 7456 if (extent_key->objectid == 0) { 7457 ret = del_extent_zero(trans, extent_root, path, extent_key); 7458 goto out; 7459 } 7460 7461 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS); 7462 if (!ref_path) { 7463 ret = -ENOMEM; 7464 goto out; 7465 } 7466 7467 for (loops = 0; ; loops++) { 7468 if (loops == 0) { 7469 ret = btrfs_first_ref_path(trans, extent_root, ref_path, 7470 extent_key->objectid); 7471 } else { 7472 ret = btrfs_next_ref_path(trans, extent_root, ref_path); 7473 } 7474 if (ret < 0) 7475 goto out; 7476 if (ret > 0) 7477 break; 7478 7479 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID || 7480 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID) 7481 continue; 7482 7483 found_root = read_ref_root(extent_root->fs_info, ref_path); 7484 BUG_ON(!found_root); 7485 /* 7486 * for reference counted tree, only process reference paths 7487 * rooted at the latest committed root. 7488 */ 7489 if (found_root->ref_cows && 7490 ref_path->root_generation != found_root->root_key.offset) 7491 continue; 7492 7493 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7494 if (pass == 0) { 7495 /* 7496 * copy data extents to new locations 7497 */ 7498 u64 group_start = group->key.objectid; 7499 ret = relocate_data_extent(reloc_inode, 7500 extent_key, 7501 group_start); 7502 if (ret < 0) 7503 goto out; 7504 break; 7505 } 7506 level = 0; 7507 } else { 7508 level = ref_path->owner_objectid; 7509 } 7510 7511 if (prev_block != ref_path->nodes[level]) { 7512 struct extent_buffer *eb; 7513 u64 block_start = ref_path->nodes[level]; 7514 u64 block_size = btrfs_level_size(found_root, level); 7515 7516 eb = read_tree_block(found_root, block_start, 7517 block_size, 0); 7518 btrfs_tree_lock(eb); 7519 BUG_ON(level != btrfs_header_level(eb)); 7520 7521 if (level == 0) 7522 btrfs_item_key_to_cpu(eb, &first_key, 0); 7523 else 7524 btrfs_node_key_to_cpu(eb, &first_key, 0); 7525 7526 btrfs_tree_unlock(eb); 7527 free_extent_buffer(eb); 7528 prev_block = block_start; 7529 } 7530 7531 mutex_lock(&extent_root->fs_info->trans_mutex); 7532 btrfs_record_root_in_trans(found_root); 7533 mutex_unlock(&extent_root->fs_info->trans_mutex); 7534 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) { 7535 /* 7536 * try to update data extent references while 7537 * keeping metadata shared between snapshots. 7538 */ 7539 if (pass == 1) { 7540 ret = relocate_one_path(trans, found_root, 7541 path, &first_key, ref_path, 7542 group, reloc_inode); 7543 if (ret < 0) 7544 goto out; 7545 continue; 7546 } 7547 /* 7548 * use fallback method to process the remaining 7549 * references. 7550 */ 7551 if (!new_extents) { 7552 u64 group_start = group->key.objectid; 7553 new_extents = kmalloc(sizeof(*new_extents), 7554 GFP_NOFS); 7555 nr_extents = 1; 7556 ret = get_new_locations(reloc_inode, 7557 extent_key, 7558 group_start, 1, 7559 &new_extents, 7560 &nr_extents); 7561 if (ret) 7562 goto out; 7563 } 7564 ret = replace_one_extent(trans, found_root, 7565 path, extent_key, 7566 &first_key, ref_path, 7567 new_extents, nr_extents); 7568 } else { 7569 ret = relocate_tree_block(trans, found_root, path, 7570 &first_key, ref_path); 7571 } 7572 if (ret < 0) 7573 goto out; 7574 } 7575 ret = 0; 7576 out: 7577 btrfs_end_transaction(trans, extent_root); 7578 kfree(new_extents); 7579 kfree(ref_path); 7580 return ret; 7581 } 7582 #endif 7583 7584 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7585 { 7586 u64 num_devices; 7587 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7588 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7589 7590 num_devices = root->fs_info->fs_devices->rw_devices; 7591 if (num_devices == 1) { 7592 stripped |= BTRFS_BLOCK_GROUP_DUP; 7593 stripped = flags & ~stripped; 7594 7595 /* turn raid0 into single device chunks */ 7596 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7597 return stripped; 7598 7599 /* turn mirroring into duplication */ 7600 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7601 BTRFS_BLOCK_GROUP_RAID10)) 7602 return stripped | BTRFS_BLOCK_GROUP_DUP; 7603 return flags; 7604 } else { 7605 /* they already had raid on here, just return */ 7606 if (flags & stripped) 7607 return flags; 7608 7609 stripped |= BTRFS_BLOCK_GROUP_DUP; 7610 stripped = flags & ~stripped; 7611 7612 /* switch duplicated blocks with raid1 */ 7613 if (flags & BTRFS_BLOCK_GROUP_DUP) 7614 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7615 7616 /* turn single device chunks into raid0 */ 7617 return stripped | BTRFS_BLOCK_GROUP_RAID0; 7618 } 7619 return flags; 7620 } 7621 7622 static int set_block_group_ro(struct btrfs_block_group_cache *cache) 7623 { 7624 struct btrfs_space_info *sinfo = cache->space_info; 7625 u64 num_bytes; 7626 int ret = -ENOSPC; 7627 7628 if (cache->ro) 7629 return 0; 7630 7631 spin_lock(&sinfo->lock); 7632 spin_lock(&cache->lock); 7633 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7634 cache->bytes_super - btrfs_block_group_used(&cache->item); 7635 7636 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7637 sinfo->bytes_may_use + sinfo->bytes_readonly + 7638 cache->reserved_pinned + num_bytes < sinfo->total_bytes) { 7639 sinfo->bytes_readonly += num_bytes; 7640 sinfo->bytes_reserved += cache->reserved_pinned; 7641 cache->reserved_pinned = 0; 7642 cache->ro = 1; 7643 ret = 0; 7644 } 7645 spin_unlock(&cache->lock); 7646 spin_unlock(&sinfo->lock); 7647 return ret; 7648 } 7649 7650 int btrfs_set_block_group_ro(struct btrfs_root *root, 7651 struct btrfs_block_group_cache *cache) 7652 7653 { 7654 struct btrfs_trans_handle *trans; 7655 u64 alloc_flags; 7656 int ret; 7657 7658 BUG_ON(cache->ro); 7659 7660 trans = btrfs_join_transaction(root, 1); 7661 BUG_ON(IS_ERR(trans)); 7662 7663 alloc_flags = update_block_group_flags(root, cache->flags); 7664 if (alloc_flags != cache->flags) 7665 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 7666 7667 ret = set_block_group_ro(cache); 7668 if (!ret) 7669 goto out; 7670 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7671 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1); 7672 if (ret < 0) 7673 goto out; 7674 ret = set_block_group_ro(cache); 7675 out: 7676 btrfs_end_transaction(trans, root); 7677 return ret; 7678 } 7679 7680 int btrfs_set_block_group_rw(struct btrfs_root *root, 7681 struct btrfs_block_group_cache *cache) 7682 { 7683 struct btrfs_space_info *sinfo = cache->space_info; 7684 u64 num_bytes; 7685 7686 BUG_ON(!cache->ro); 7687 7688 spin_lock(&sinfo->lock); 7689 spin_lock(&cache->lock); 7690 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7691 cache->bytes_super - btrfs_block_group_used(&cache->item); 7692 sinfo->bytes_readonly -= num_bytes; 7693 cache->ro = 0; 7694 spin_unlock(&cache->lock); 7695 spin_unlock(&sinfo->lock); 7696 return 0; 7697 } 7698 7699 /* 7700 * checks to see if its even possible to relocate this block group. 7701 * 7702 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7703 * ok to go ahead and try. 7704 */ 7705 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7706 { 7707 struct btrfs_block_group_cache *block_group; 7708 struct btrfs_space_info *space_info; 7709 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7710 struct btrfs_device *device; 7711 int full = 0; 7712 int ret = 0; 7713 7714 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7715 7716 /* odd, couldn't find the block group, leave it alone */ 7717 if (!block_group) 7718 return -1; 7719 7720 /* no bytes used, we're good */ 7721 if (!btrfs_block_group_used(&block_group->item)) 7722 goto out; 7723 7724 space_info = block_group->space_info; 7725 spin_lock(&space_info->lock); 7726 7727 full = space_info->full; 7728 7729 /* 7730 * if this is the last block group we have in this space, we can't 7731 * relocate it unless we're able to allocate a new chunk below. 7732 * 7733 * Otherwise, we need to make sure we have room in the space to handle 7734 * all of the extents from this block group. If we can, we're good 7735 */ 7736 if ((space_info->total_bytes != block_group->key.offset) && 7737 (space_info->bytes_used + space_info->bytes_reserved + 7738 space_info->bytes_pinned + space_info->bytes_readonly + 7739 btrfs_block_group_used(&block_group->item) < 7740 space_info->total_bytes)) { 7741 spin_unlock(&space_info->lock); 7742 goto out; 7743 } 7744 spin_unlock(&space_info->lock); 7745 7746 /* 7747 * ok we don't have enough space, but maybe we have free space on our 7748 * devices to allocate new chunks for relocation, so loop through our 7749 * alloc devices and guess if we have enough space. However, if we 7750 * were marked as full, then we know there aren't enough chunks, and we 7751 * can just return. 7752 */ 7753 ret = -1; 7754 if (full) 7755 goto out; 7756 7757 mutex_lock(&root->fs_info->chunk_mutex); 7758 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7759 u64 min_free = btrfs_block_group_used(&block_group->item); 7760 u64 dev_offset, max_avail; 7761 7762 /* 7763 * check to make sure we can actually find a chunk with enough 7764 * space to fit our block group in. 7765 */ 7766 if (device->total_bytes > device->bytes_used + min_free) { 7767 ret = find_free_dev_extent(NULL, device, min_free, 7768 &dev_offset, &max_avail); 7769 if (!ret) 7770 break; 7771 ret = -1; 7772 } 7773 } 7774 mutex_unlock(&root->fs_info->chunk_mutex); 7775 out: 7776 btrfs_put_block_group(block_group); 7777 return ret; 7778 } 7779 7780 static int find_first_block_group(struct btrfs_root *root, 7781 struct btrfs_path *path, struct btrfs_key *key) 7782 { 7783 int ret = 0; 7784 struct btrfs_key found_key; 7785 struct extent_buffer *leaf; 7786 int slot; 7787 7788 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7789 if (ret < 0) 7790 goto out; 7791 7792 while (1) { 7793 slot = path->slots[0]; 7794 leaf = path->nodes[0]; 7795 if (slot >= btrfs_header_nritems(leaf)) { 7796 ret = btrfs_next_leaf(root, path); 7797 if (ret == 0) 7798 continue; 7799 if (ret < 0) 7800 goto out; 7801 break; 7802 } 7803 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7804 7805 if (found_key.objectid >= key->objectid && 7806 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7807 ret = 0; 7808 goto out; 7809 } 7810 path->slots[0]++; 7811 } 7812 out: 7813 return ret; 7814 } 7815 7816 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7817 { 7818 struct btrfs_block_group_cache *block_group; 7819 struct btrfs_space_info *space_info; 7820 struct btrfs_caching_control *caching_ctl; 7821 struct rb_node *n; 7822 7823 down_write(&info->extent_commit_sem); 7824 while (!list_empty(&info->caching_block_groups)) { 7825 caching_ctl = list_entry(info->caching_block_groups.next, 7826 struct btrfs_caching_control, list); 7827 list_del(&caching_ctl->list); 7828 put_caching_control(caching_ctl); 7829 } 7830 up_write(&info->extent_commit_sem); 7831 7832 spin_lock(&info->block_group_cache_lock); 7833 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7834 block_group = rb_entry(n, struct btrfs_block_group_cache, 7835 cache_node); 7836 rb_erase(&block_group->cache_node, 7837 &info->block_group_cache_tree); 7838 spin_unlock(&info->block_group_cache_lock); 7839 7840 down_write(&block_group->space_info->groups_sem); 7841 list_del(&block_group->list); 7842 up_write(&block_group->space_info->groups_sem); 7843 7844 if (block_group->cached == BTRFS_CACHE_STARTED) 7845 wait_block_group_cache_done(block_group); 7846 7847 btrfs_remove_free_space_cache(block_group); 7848 btrfs_put_block_group(block_group); 7849 7850 spin_lock(&info->block_group_cache_lock); 7851 } 7852 spin_unlock(&info->block_group_cache_lock); 7853 7854 /* now that all the block groups are freed, go through and 7855 * free all the space_info structs. This is only called during 7856 * the final stages of unmount, and so we know nobody is 7857 * using them. We call synchronize_rcu() once before we start, 7858 * just to be on the safe side. 7859 */ 7860 synchronize_rcu(); 7861 7862 release_global_block_rsv(info); 7863 7864 while(!list_empty(&info->space_info)) { 7865 space_info = list_entry(info->space_info.next, 7866 struct btrfs_space_info, 7867 list); 7868 if (space_info->bytes_pinned > 0 || 7869 space_info->bytes_reserved > 0) { 7870 WARN_ON(1); 7871 dump_space_info(space_info, 0, 0); 7872 } 7873 list_del(&space_info->list); 7874 kfree(space_info); 7875 } 7876 return 0; 7877 } 7878 7879 static void __link_block_group(struct btrfs_space_info *space_info, 7880 struct btrfs_block_group_cache *cache) 7881 { 7882 int index = get_block_group_index(cache); 7883 7884 down_write(&space_info->groups_sem); 7885 list_add_tail(&cache->list, &space_info->block_groups[index]); 7886 up_write(&space_info->groups_sem); 7887 } 7888 7889 int btrfs_read_block_groups(struct btrfs_root *root) 7890 { 7891 struct btrfs_path *path; 7892 int ret; 7893 struct btrfs_block_group_cache *cache; 7894 struct btrfs_fs_info *info = root->fs_info; 7895 struct btrfs_space_info *space_info; 7896 struct btrfs_key key; 7897 struct btrfs_key found_key; 7898 struct extent_buffer *leaf; 7899 7900 root = info->extent_root; 7901 key.objectid = 0; 7902 key.offset = 0; 7903 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7904 path = btrfs_alloc_path(); 7905 if (!path) 7906 return -ENOMEM; 7907 7908 while (1) { 7909 ret = find_first_block_group(root, path, &key); 7910 if (ret > 0) 7911 break; 7912 if (ret != 0) 7913 goto error; 7914 7915 leaf = path->nodes[0]; 7916 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7917 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7918 if (!cache) { 7919 ret = -ENOMEM; 7920 goto error; 7921 } 7922 7923 atomic_set(&cache->count, 1); 7924 spin_lock_init(&cache->lock); 7925 spin_lock_init(&cache->tree_lock); 7926 cache->fs_info = info; 7927 INIT_LIST_HEAD(&cache->list); 7928 INIT_LIST_HEAD(&cache->cluster_list); 7929 7930 /* 7931 * we only want to have 32k of ram per block group for keeping 7932 * track of free space, and if we pass 1/2 of that we want to 7933 * start converting things over to using bitmaps 7934 */ 7935 cache->extents_thresh = ((1024 * 32) / 2) / 7936 sizeof(struct btrfs_free_space); 7937 7938 read_extent_buffer(leaf, &cache->item, 7939 btrfs_item_ptr_offset(leaf, path->slots[0]), 7940 sizeof(cache->item)); 7941 memcpy(&cache->key, &found_key, sizeof(found_key)); 7942 7943 key.objectid = found_key.objectid + found_key.offset; 7944 btrfs_release_path(root, path); 7945 cache->flags = btrfs_block_group_flags(&cache->item); 7946 cache->sectorsize = root->sectorsize; 7947 7948 /* 7949 * check for two cases, either we are full, and therefore 7950 * don't need to bother with the caching work since we won't 7951 * find any space, or we are empty, and we can just add all 7952 * the space in and be done with it. This saves us _alot_ of 7953 * time, particularly in the full case. 7954 */ 7955 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7956 exclude_super_stripes(root, cache); 7957 cache->last_byte_to_unpin = (u64)-1; 7958 cache->cached = BTRFS_CACHE_FINISHED; 7959 free_excluded_extents(root, cache); 7960 } else if (btrfs_block_group_used(&cache->item) == 0) { 7961 exclude_super_stripes(root, cache); 7962 cache->last_byte_to_unpin = (u64)-1; 7963 cache->cached = BTRFS_CACHE_FINISHED; 7964 add_new_free_space(cache, root->fs_info, 7965 found_key.objectid, 7966 found_key.objectid + 7967 found_key.offset); 7968 free_excluded_extents(root, cache); 7969 } 7970 7971 ret = update_space_info(info, cache->flags, found_key.offset, 7972 btrfs_block_group_used(&cache->item), 7973 &space_info); 7974 BUG_ON(ret); 7975 cache->space_info = space_info; 7976 spin_lock(&cache->space_info->lock); 7977 cache->space_info->bytes_readonly += cache->bytes_super; 7978 spin_unlock(&cache->space_info->lock); 7979 7980 __link_block_group(space_info, cache); 7981 7982 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7983 BUG_ON(ret); 7984 7985 set_avail_alloc_bits(root->fs_info, cache->flags); 7986 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7987 set_block_group_ro(cache); 7988 } 7989 7990 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7991 if (!(get_alloc_profile(root, space_info->flags) & 7992 (BTRFS_BLOCK_GROUP_RAID10 | 7993 BTRFS_BLOCK_GROUP_RAID1 | 7994 BTRFS_BLOCK_GROUP_DUP))) 7995 continue; 7996 /* 7997 * avoid allocating from un-mirrored block group if there are 7998 * mirrored block groups. 7999 */ 8000 list_for_each_entry(cache, &space_info->block_groups[3], list) 8001 set_block_group_ro(cache); 8002 list_for_each_entry(cache, &space_info->block_groups[4], list) 8003 set_block_group_ro(cache); 8004 } 8005 8006 init_global_block_rsv(info); 8007 ret = 0; 8008 error: 8009 btrfs_free_path(path); 8010 return ret; 8011 } 8012 8013 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8014 struct btrfs_root *root, u64 bytes_used, 8015 u64 type, u64 chunk_objectid, u64 chunk_offset, 8016 u64 size) 8017 { 8018 int ret; 8019 struct btrfs_root *extent_root; 8020 struct btrfs_block_group_cache *cache; 8021 8022 extent_root = root->fs_info->extent_root; 8023 8024 root->fs_info->last_trans_log_full_commit = trans->transid; 8025 8026 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8027 if (!cache) 8028 return -ENOMEM; 8029 8030 cache->key.objectid = chunk_offset; 8031 cache->key.offset = size; 8032 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8033 cache->sectorsize = root->sectorsize; 8034 8035 /* 8036 * we only want to have 32k of ram per block group for keeping track 8037 * of free space, and if we pass 1/2 of that we want to start 8038 * converting things over to using bitmaps 8039 */ 8040 cache->extents_thresh = ((1024 * 32) / 2) / 8041 sizeof(struct btrfs_free_space); 8042 atomic_set(&cache->count, 1); 8043 spin_lock_init(&cache->lock); 8044 spin_lock_init(&cache->tree_lock); 8045 INIT_LIST_HEAD(&cache->list); 8046 INIT_LIST_HEAD(&cache->cluster_list); 8047 8048 btrfs_set_block_group_used(&cache->item, bytes_used); 8049 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8050 cache->flags = type; 8051 btrfs_set_block_group_flags(&cache->item, type); 8052 8053 cache->last_byte_to_unpin = (u64)-1; 8054 cache->cached = BTRFS_CACHE_FINISHED; 8055 exclude_super_stripes(root, cache); 8056 8057 add_new_free_space(cache, root->fs_info, chunk_offset, 8058 chunk_offset + size); 8059 8060 free_excluded_extents(root, cache); 8061 8062 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8063 &cache->space_info); 8064 BUG_ON(ret); 8065 8066 spin_lock(&cache->space_info->lock); 8067 cache->space_info->bytes_readonly += cache->bytes_super; 8068 spin_unlock(&cache->space_info->lock); 8069 8070 __link_block_group(cache->space_info, cache); 8071 8072 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8073 BUG_ON(ret); 8074 8075 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 8076 sizeof(cache->item)); 8077 BUG_ON(ret); 8078 8079 set_avail_alloc_bits(extent_root->fs_info, type); 8080 8081 return 0; 8082 } 8083 8084 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8085 struct btrfs_root *root, u64 group_start) 8086 { 8087 struct btrfs_path *path; 8088 struct btrfs_block_group_cache *block_group; 8089 struct btrfs_free_cluster *cluster; 8090 struct btrfs_key key; 8091 int ret; 8092 8093 root = root->fs_info->extent_root; 8094 8095 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8096 BUG_ON(!block_group); 8097 BUG_ON(!block_group->ro); 8098 8099 memcpy(&key, &block_group->key, sizeof(key)); 8100 8101 /* make sure this block group isn't part of an allocation cluster */ 8102 cluster = &root->fs_info->data_alloc_cluster; 8103 spin_lock(&cluster->refill_lock); 8104 btrfs_return_cluster_to_free_space(block_group, cluster); 8105 spin_unlock(&cluster->refill_lock); 8106 8107 /* 8108 * make sure this block group isn't part of a metadata 8109 * allocation cluster 8110 */ 8111 cluster = &root->fs_info->meta_alloc_cluster; 8112 spin_lock(&cluster->refill_lock); 8113 btrfs_return_cluster_to_free_space(block_group, cluster); 8114 spin_unlock(&cluster->refill_lock); 8115 8116 path = btrfs_alloc_path(); 8117 BUG_ON(!path); 8118 8119 spin_lock(&root->fs_info->block_group_cache_lock); 8120 rb_erase(&block_group->cache_node, 8121 &root->fs_info->block_group_cache_tree); 8122 spin_unlock(&root->fs_info->block_group_cache_lock); 8123 8124 down_write(&block_group->space_info->groups_sem); 8125 /* 8126 * we must use list_del_init so people can check to see if they 8127 * are still on the list after taking the semaphore 8128 */ 8129 list_del_init(&block_group->list); 8130 up_write(&block_group->space_info->groups_sem); 8131 8132 if (block_group->cached == BTRFS_CACHE_STARTED) 8133 wait_block_group_cache_done(block_group); 8134 8135 btrfs_remove_free_space_cache(block_group); 8136 8137 spin_lock(&block_group->space_info->lock); 8138 block_group->space_info->total_bytes -= block_group->key.offset; 8139 block_group->space_info->bytes_readonly -= block_group->key.offset; 8140 spin_unlock(&block_group->space_info->lock); 8141 8142 btrfs_clear_space_info_full(root->fs_info); 8143 8144 btrfs_put_block_group(block_group); 8145 btrfs_put_block_group(block_group); 8146 8147 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8148 if (ret > 0) 8149 ret = -EIO; 8150 if (ret < 0) 8151 goto out; 8152 8153 ret = btrfs_del_item(trans, root, path); 8154 out: 8155 btrfs_free_path(path); 8156 return ret; 8157 } 8158