xref: /linux/fs/btrfs/extent-tree.c (revision 460ea8980511c01c1551012b9a6ec6a06d02da59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
73 			      u64 start, u64 num_bytes)
74 {
75 	u64 end = start + num_bytes - 1;
76 	set_extent_bit(&fs_info->excluded_extents, start, end,
77 		       EXTENT_UPTODATE, NULL);
78 	return 0;
79 }
80 
81 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
82 {
83 	struct btrfs_fs_info *fs_info = cache->fs_info;
84 	u64 start, end;
85 
86 	start = cache->start;
87 	end = start + cache->length - 1;
88 
89 	clear_extent_bits(&fs_info->excluded_extents, start, end,
90 			  EXTENT_UPTODATE);
91 }
92 
93 /* simple helper to search for an existing data extent at a given offset */
94 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
95 {
96 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
97 	int ret;
98 	struct btrfs_key key;
99 	struct btrfs_path *path;
100 
101 	path = btrfs_alloc_path();
102 	if (!path)
103 		return -ENOMEM;
104 
105 	key.objectid = start;
106 	key.offset = len;
107 	key.type = BTRFS_EXTENT_ITEM_KEY;
108 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109 	btrfs_free_path(path);
110 	return ret;
111 }
112 
113 /*
114  * helper function to lookup reference count and flags of a tree block.
115  *
116  * the head node for delayed ref is used to store the sum of all the
117  * reference count modifications queued up in the rbtree. the head
118  * node may also store the extent flags to set. This way you can check
119  * to see what the reference count and extent flags would be if all of
120  * the delayed refs are not processed.
121  */
122 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
123 			     struct btrfs_fs_info *fs_info, u64 bytenr,
124 			     u64 offset, int metadata, u64 *refs, u64 *flags)
125 {
126 	struct btrfs_root *extent_root;
127 	struct btrfs_delayed_ref_head *head;
128 	struct btrfs_delayed_ref_root *delayed_refs;
129 	struct btrfs_path *path;
130 	struct btrfs_extent_item *ei;
131 	struct extent_buffer *leaf;
132 	struct btrfs_key key;
133 	u32 item_size;
134 	u64 num_refs;
135 	u64 extent_flags;
136 	int ret;
137 
138 	/*
139 	 * If we don't have skinny metadata, don't bother doing anything
140 	 * different
141 	 */
142 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
143 		offset = fs_info->nodesize;
144 		metadata = 0;
145 	}
146 
147 	path = btrfs_alloc_path();
148 	if (!path)
149 		return -ENOMEM;
150 
151 	if (!trans) {
152 		path->skip_locking = 1;
153 		path->search_commit_root = 1;
154 	}
155 
156 search_again:
157 	key.objectid = bytenr;
158 	key.offset = offset;
159 	if (metadata)
160 		key.type = BTRFS_METADATA_ITEM_KEY;
161 	else
162 		key.type = BTRFS_EXTENT_ITEM_KEY;
163 
164 	extent_root = btrfs_extent_root(fs_info, bytenr);
165 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
166 	if (ret < 0)
167 		goto out_free;
168 
169 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
170 		if (path->slots[0]) {
171 			path->slots[0]--;
172 			btrfs_item_key_to_cpu(path->nodes[0], &key,
173 					      path->slots[0]);
174 			if (key.objectid == bytenr &&
175 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
176 			    key.offset == fs_info->nodesize)
177 				ret = 0;
178 		}
179 	}
180 
181 	if (ret == 0) {
182 		leaf = path->nodes[0];
183 		item_size = btrfs_item_size(leaf, path->slots[0]);
184 		if (item_size >= sizeof(*ei)) {
185 			ei = btrfs_item_ptr(leaf, path->slots[0],
186 					    struct btrfs_extent_item);
187 			num_refs = btrfs_extent_refs(leaf, ei);
188 			extent_flags = btrfs_extent_flags(leaf, ei);
189 		} else {
190 			ret = -EINVAL;
191 			btrfs_print_v0_err(fs_info);
192 			if (trans)
193 				btrfs_abort_transaction(trans, ret);
194 			else
195 				btrfs_handle_fs_error(fs_info, ret, NULL);
196 
197 			goto out_free;
198 		}
199 
200 		BUG_ON(num_refs == 0);
201 	} else {
202 		num_refs = 0;
203 		extent_flags = 0;
204 		ret = 0;
205 	}
206 
207 	if (!trans)
208 		goto out;
209 
210 	delayed_refs = &trans->transaction->delayed_refs;
211 	spin_lock(&delayed_refs->lock);
212 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
213 	if (head) {
214 		if (!mutex_trylock(&head->mutex)) {
215 			refcount_inc(&head->refs);
216 			spin_unlock(&delayed_refs->lock);
217 
218 			btrfs_release_path(path);
219 
220 			/*
221 			 * Mutex was contended, block until it's released and try
222 			 * again
223 			 */
224 			mutex_lock(&head->mutex);
225 			mutex_unlock(&head->mutex);
226 			btrfs_put_delayed_ref_head(head);
227 			goto search_again;
228 		}
229 		spin_lock(&head->lock);
230 		if (head->extent_op && head->extent_op->update_flags)
231 			extent_flags |= head->extent_op->flags_to_set;
232 		else
233 			BUG_ON(num_refs == 0);
234 
235 		num_refs += head->ref_mod;
236 		spin_unlock(&head->lock);
237 		mutex_unlock(&head->mutex);
238 	}
239 	spin_unlock(&delayed_refs->lock);
240 out:
241 	WARN_ON(num_refs == 0);
242 	if (refs)
243 		*refs = num_refs;
244 	if (flags)
245 		*flags = extent_flags;
246 out_free:
247 	btrfs_free_path(path);
248 	return ret;
249 }
250 
251 /*
252  * Back reference rules.  Back refs have three main goals:
253  *
254  * 1) differentiate between all holders of references to an extent so that
255  *    when a reference is dropped we can make sure it was a valid reference
256  *    before freeing the extent.
257  *
258  * 2) Provide enough information to quickly find the holders of an extent
259  *    if we notice a given block is corrupted or bad.
260  *
261  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
262  *    maintenance.  This is actually the same as #2, but with a slightly
263  *    different use case.
264  *
265  * There are two kinds of back refs. The implicit back refs is optimized
266  * for pointers in non-shared tree blocks. For a given pointer in a block,
267  * back refs of this kind provide information about the block's owner tree
268  * and the pointer's key. These information allow us to find the block by
269  * b-tree searching. The full back refs is for pointers in tree blocks not
270  * referenced by their owner trees. The location of tree block is recorded
271  * in the back refs. Actually the full back refs is generic, and can be
272  * used in all cases the implicit back refs is used. The major shortcoming
273  * of the full back refs is its overhead. Every time a tree block gets
274  * COWed, we have to update back refs entry for all pointers in it.
275  *
276  * For a newly allocated tree block, we use implicit back refs for
277  * pointers in it. This means most tree related operations only involve
278  * implicit back refs. For a tree block created in old transaction, the
279  * only way to drop a reference to it is COW it. So we can detect the
280  * event that tree block loses its owner tree's reference and do the
281  * back refs conversion.
282  *
283  * When a tree block is COWed through a tree, there are four cases:
284  *
285  * The reference count of the block is one and the tree is the block's
286  * owner tree. Nothing to do in this case.
287  *
288  * The reference count of the block is one and the tree is not the
289  * block's owner tree. In this case, full back refs is used for pointers
290  * in the block. Remove these full back refs, add implicit back refs for
291  * every pointers in the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * the block's owner tree. In this case, implicit back refs is used for
295  * pointers in the block. Add full back refs for every pointers in the
296  * block, increase lower level extents' reference counts. The original
297  * implicit back refs are entailed to the new block.
298  *
299  * The reference count of the block is greater than one and the tree is
300  * not the block's owner tree. Add implicit back refs for every pointer in
301  * the new block, increase lower level extents' reference count.
302  *
303  * Back Reference Key composing:
304  *
305  * The key objectid corresponds to the first byte in the extent,
306  * The key type is used to differentiate between types of back refs.
307  * There are different meanings of the key offset for different types
308  * of back refs.
309  *
310  * File extents can be referenced by:
311  *
312  * - multiple snapshots, subvolumes, or different generations in one subvol
313  * - different files inside a single subvolume
314  * - different offsets inside a file (bookend extents in file.c)
315  *
316  * The extent ref structure for the implicit back refs has fields for:
317  *
318  * - Objectid of the subvolume root
319  * - objectid of the file holding the reference
320  * - original offset in the file
321  * - how many bookend extents
322  *
323  * The key offset for the implicit back refs is hash of the first
324  * three fields.
325  *
326  * The extent ref structure for the full back refs has field for:
327  *
328  * - number of pointers in the tree leaf
329  *
330  * The key offset for the implicit back refs is the first byte of
331  * the tree leaf
332  *
333  * When a file extent is allocated, The implicit back refs is used.
334  * the fields are filled in:
335  *
336  *     (root_key.objectid, inode objectid, offset in file, 1)
337  *
338  * When a file extent is removed file truncation, we find the
339  * corresponding implicit back refs and check the following fields:
340  *
341  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
342  *
343  * Btree extents can be referenced by:
344  *
345  * - Different subvolumes
346  *
347  * Both the implicit back refs and the full back refs for tree blocks
348  * only consist of key. The key offset for the implicit back refs is
349  * objectid of block's owner tree. The key offset for the full back refs
350  * is the first byte of parent block.
351  *
352  * When implicit back refs is used, information about the lowest key and
353  * level of the tree block are required. These information are stored in
354  * tree block info structure.
355  */
356 
357 /*
358  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
359  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
360  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
361  */
362 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
363 				     struct btrfs_extent_inline_ref *iref,
364 				     enum btrfs_inline_ref_type is_data)
365 {
366 	int type = btrfs_extent_inline_ref_type(eb, iref);
367 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
368 
369 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
370 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
371 	    type == BTRFS_SHARED_DATA_REF_KEY ||
372 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
373 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
374 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
375 				return type;
376 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
377 				ASSERT(eb->fs_info);
378 				/*
379 				 * Every shared one has parent tree block,
380 				 * which must be aligned to sector size.
381 				 */
382 				if (offset &&
383 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
384 					return type;
385 			}
386 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
387 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
388 				return type;
389 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
390 				ASSERT(eb->fs_info);
391 				/*
392 				 * Every shared one has parent tree block,
393 				 * which must be aligned to sector size.
394 				 */
395 				if (offset &&
396 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
397 					return type;
398 			}
399 		} else {
400 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
401 			return type;
402 		}
403 	}
404 
405 	btrfs_print_leaf(eb);
406 	btrfs_err(eb->fs_info,
407 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
408 		  eb->start, (unsigned long)iref, type);
409 	WARN_ON(1);
410 
411 	return BTRFS_REF_TYPE_INVALID;
412 }
413 
414 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
415 {
416 	u32 high_crc = ~(u32)0;
417 	u32 low_crc = ~(u32)0;
418 	__le64 lenum;
419 
420 	lenum = cpu_to_le64(root_objectid);
421 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
422 	lenum = cpu_to_le64(owner);
423 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
424 	lenum = cpu_to_le64(offset);
425 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
426 
427 	return ((u64)high_crc << 31) ^ (u64)low_crc;
428 }
429 
430 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
431 				     struct btrfs_extent_data_ref *ref)
432 {
433 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
434 				    btrfs_extent_data_ref_objectid(leaf, ref),
435 				    btrfs_extent_data_ref_offset(leaf, ref));
436 }
437 
438 static int match_extent_data_ref(struct extent_buffer *leaf,
439 				 struct btrfs_extent_data_ref *ref,
440 				 u64 root_objectid, u64 owner, u64 offset)
441 {
442 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
443 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
444 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
445 		return 0;
446 	return 1;
447 }
448 
449 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
450 					   struct btrfs_path *path,
451 					   u64 bytenr, u64 parent,
452 					   u64 root_objectid,
453 					   u64 owner, u64 offset)
454 {
455 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
456 	struct btrfs_key key;
457 	struct btrfs_extent_data_ref *ref;
458 	struct extent_buffer *leaf;
459 	u32 nritems;
460 	int ret;
461 	int recow;
462 	int err = -ENOENT;
463 
464 	key.objectid = bytenr;
465 	if (parent) {
466 		key.type = BTRFS_SHARED_DATA_REF_KEY;
467 		key.offset = parent;
468 	} else {
469 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
470 		key.offset = hash_extent_data_ref(root_objectid,
471 						  owner, offset);
472 	}
473 again:
474 	recow = 0;
475 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
476 	if (ret < 0) {
477 		err = ret;
478 		goto fail;
479 	}
480 
481 	if (parent) {
482 		if (!ret)
483 			return 0;
484 		goto fail;
485 	}
486 
487 	leaf = path->nodes[0];
488 	nritems = btrfs_header_nritems(leaf);
489 	while (1) {
490 		if (path->slots[0] >= nritems) {
491 			ret = btrfs_next_leaf(root, path);
492 			if (ret < 0)
493 				err = ret;
494 			if (ret)
495 				goto fail;
496 
497 			leaf = path->nodes[0];
498 			nritems = btrfs_header_nritems(leaf);
499 			recow = 1;
500 		}
501 
502 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
503 		if (key.objectid != bytenr ||
504 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
505 			goto fail;
506 
507 		ref = btrfs_item_ptr(leaf, path->slots[0],
508 				     struct btrfs_extent_data_ref);
509 
510 		if (match_extent_data_ref(leaf, ref, root_objectid,
511 					  owner, offset)) {
512 			if (recow) {
513 				btrfs_release_path(path);
514 				goto again;
515 			}
516 			err = 0;
517 			break;
518 		}
519 		path->slots[0]++;
520 	}
521 fail:
522 	return err;
523 }
524 
525 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
526 					   struct btrfs_path *path,
527 					   u64 bytenr, u64 parent,
528 					   u64 root_objectid, u64 owner,
529 					   u64 offset, int refs_to_add)
530 {
531 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
532 	struct btrfs_key key;
533 	struct extent_buffer *leaf;
534 	u32 size;
535 	u32 num_refs;
536 	int ret;
537 
538 	key.objectid = bytenr;
539 	if (parent) {
540 		key.type = BTRFS_SHARED_DATA_REF_KEY;
541 		key.offset = parent;
542 		size = sizeof(struct btrfs_shared_data_ref);
543 	} else {
544 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
545 		key.offset = hash_extent_data_ref(root_objectid,
546 						  owner, offset);
547 		size = sizeof(struct btrfs_extent_data_ref);
548 	}
549 
550 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
551 	if (ret && ret != -EEXIST)
552 		goto fail;
553 
554 	leaf = path->nodes[0];
555 	if (parent) {
556 		struct btrfs_shared_data_ref *ref;
557 		ref = btrfs_item_ptr(leaf, path->slots[0],
558 				     struct btrfs_shared_data_ref);
559 		if (ret == 0) {
560 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
561 		} else {
562 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
563 			num_refs += refs_to_add;
564 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
565 		}
566 	} else {
567 		struct btrfs_extent_data_ref *ref;
568 		while (ret == -EEXIST) {
569 			ref = btrfs_item_ptr(leaf, path->slots[0],
570 					     struct btrfs_extent_data_ref);
571 			if (match_extent_data_ref(leaf, ref, root_objectid,
572 						  owner, offset))
573 				break;
574 			btrfs_release_path(path);
575 			key.offset++;
576 			ret = btrfs_insert_empty_item(trans, root, path, &key,
577 						      size);
578 			if (ret && ret != -EEXIST)
579 				goto fail;
580 
581 			leaf = path->nodes[0];
582 		}
583 		ref = btrfs_item_ptr(leaf, path->slots[0],
584 				     struct btrfs_extent_data_ref);
585 		if (ret == 0) {
586 			btrfs_set_extent_data_ref_root(leaf, ref,
587 						       root_objectid);
588 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
589 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
590 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
591 		} else {
592 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
593 			num_refs += refs_to_add;
594 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
595 		}
596 	}
597 	btrfs_mark_buffer_dirty(leaf);
598 	ret = 0;
599 fail:
600 	btrfs_release_path(path);
601 	return ret;
602 }
603 
604 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
605 					   struct btrfs_root *root,
606 					   struct btrfs_path *path,
607 					   int refs_to_drop)
608 {
609 	struct btrfs_key key;
610 	struct btrfs_extent_data_ref *ref1 = NULL;
611 	struct btrfs_shared_data_ref *ref2 = NULL;
612 	struct extent_buffer *leaf;
613 	u32 num_refs = 0;
614 	int ret = 0;
615 
616 	leaf = path->nodes[0];
617 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
618 
619 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
620 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
621 				      struct btrfs_extent_data_ref);
622 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
623 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
624 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
625 				      struct btrfs_shared_data_ref);
626 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
627 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
628 		btrfs_print_v0_err(trans->fs_info);
629 		btrfs_abort_transaction(trans, -EINVAL);
630 		return -EINVAL;
631 	} else {
632 		BUG();
633 	}
634 
635 	BUG_ON(num_refs < refs_to_drop);
636 	num_refs -= refs_to_drop;
637 
638 	if (num_refs == 0) {
639 		ret = btrfs_del_item(trans, root, path);
640 	} else {
641 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
642 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
643 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
644 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
645 		btrfs_mark_buffer_dirty(leaf);
646 	}
647 	return ret;
648 }
649 
650 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
651 					  struct btrfs_extent_inline_ref *iref)
652 {
653 	struct btrfs_key key;
654 	struct extent_buffer *leaf;
655 	struct btrfs_extent_data_ref *ref1;
656 	struct btrfs_shared_data_ref *ref2;
657 	u32 num_refs = 0;
658 	int type;
659 
660 	leaf = path->nodes[0];
661 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
662 
663 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
664 	if (iref) {
665 		/*
666 		 * If type is invalid, we should have bailed out earlier than
667 		 * this call.
668 		 */
669 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
670 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
671 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
672 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
673 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
674 		} else {
675 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
676 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 		}
678 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
679 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
680 				      struct btrfs_extent_data_ref);
681 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
682 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
683 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
684 				      struct btrfs_shared_data_ref);
685 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
686 	} else {
687 		WARN_ON(1);
688 	}
689 	return num_refs;
690 }
691 
692 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
693 					  struct btrfs_path *path,
694 					  u64 bytenr, u64 parent,
695 					  u64 root_objectid)
696 {
697 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
698 	struct btrfs_key key;
699 	int ret;
700 
701 	key.objectid = bytenr;
702 	if (parent) {
703 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
704 		key.offset = parent;
705 	} else {
706 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
707 		key.offset = root_objectid;
708 	}
709 
710 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
711 	if (ret > 0)
712 		ret = -ENOENT;
713 	return ret;
714 }
715 
716 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
735 	btrfs_release_path(path);
736 	return ret;
737 }
738 
739 static inline int extent_ref_type(u64 parent, u64 owner)
740 {
741 	int type;
742 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
743 		if (parent > 0)
744 			type = BTRFS_SHARED_BLOCK_REF_KEY;
745 		else
746 			type = BTRFS_TREE_BLOCK_REF_KEY;
747 	} else {
748 		if (parent > 0)
749 			type = BTRFS_SHARED_DATA_REF_KEY;
750 		else
751 			type = BTRFS_EXTENT_DATA_REF_KEY;
752 	}
753 	return type;
754 }
755 
756 static int find_next_key(struct btrfs_path *path, int level,
757 			 struct btrfs_key *key)
758 
759 {
760 	for (; level < BTRFS_MAX_LEVEL; level++) {
761 		if (!path->nodes[level])
762 			break;
763 		if (path->slots[level] + 1 >=
764 		    btrfs_header_nritems(path->nodes[level]))
765 			continue;
766 		if (level == 0)
767 			btrfs_item_key_to_cpu(path->nodes[level], key,
768 					      path->slots[level] + 1);
769 		else
770 			btrfs_node_key_to_cpu(path->nodes[level], key,
771 					      path->slots[level] + 1);
772 		return 0;
773 	}
774 	return 1;
775 }
776 
777 /*
778  * look for inline back ref. if back ref is found, *ref_ret is set
779  * to the address of inline back ref, and 0 is returned.
780  *
781  * if back ref isn't found, *ref_ret is set to the address where it
782  * should be inserted, and -ENOENT is returned.
783  *
784  * if insert is true and there are too many inline back refs, the path
785  * points to the extent item, and -EAGAIN is returned.
786  *
787  * NOTE: inline back refs are ordered in the same way that back ref
788  *	 items in the tree are ordered.
789  */
790 static noinline_for_stack
791 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
792 				 struct btrfs_path *path,
793 				 struct btrfs_extent_inline_ref **ref_ret,
794 				 u64 bytenr, u64 num_bytes,
795 				 u64 parent, u64 root_objectid,
796 				 u64 owner, u64 offset, int insert)
797 {
798 	struct btrfs_fs_info *fs_info = trans->fs_info;
799 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
800 	struct btrfs_key key;
801 	struct extent_buffer *leaf;
802 	struct btrfs_extent_item *ei;
803 	struct btrfs_extent_inline_ref *iref;
804 	u64 flags;
805 	u64 item_size;
806 	unsigned long ptr;
807 	unsigned long end;
808 	int extra_size;
809 	int type;
810 	int want;
811 	int ret;
812 	int err = 0;
813 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
814 	int needed;
815 
816 	key.objectid = bytenr;
817 	key.type = BTRFS_EXTENT_ITEM_KEY;
818 	key.offset = num_bytes;
819 
820 	want = extent_ref_type(parent, owner);
821 	if (insert) {
822 		extra_size = btrfs_extent_inline_ref_size(want);
823 		path->search_for_extension = 1;
824 		path->keep_locks = 1;
825 	} else
826 		extra_size = -1;
827 
828 	/*
829 	 * Owner is our level, so we can just add one to get the level for the
830 	 * block we are interested in.
831 	 */
832 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
833 		key.type = BTRFS_METADATA_ITEM_KEY;
834 		key.offset = owner;
835 	}
836 
837 again:
838 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
839 	if (ret < 0) {
840 		err = ret;
841 		goto out;
842 	}
843 
844 	/*
845 	 * We may be a newly converted file system which still has the old fat
846 	 * extent entries for metadata, so try and see if we have one of those.
847 	 */
848 	if (ret > 0 && skinny_metadata) {
849 		skinny_metadata = false;
850 		if (path->slots[0]) {
851 			path->slots[0]--;
852 			btrfs_item_key_to_cpu(path->nodes[0], &key,
853 					      path->slots[0]);
854 			if (key.objectid == bytenr &&
855 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
856 			    key.offset == num_bytes)
857 				ret = 0;
858 		}
859 		if (ret) {
860 			key.objectid = bytenr;
861 			key.type = BTRFS_EXTENT_ITEM_KEY;
862 			key.offset = num_bytes;
863 			btrfs_release_path(path);
864 			goto again;
865 		}
866 	}
867 
868 	if (ret && !insert) {
869 		err = -ENOENT;
870 		goto out;
871 	} else if (WARN_ON(ret)) {
872 		err = -EIO;
873 		goto out;
874 	}
875 
876 	leaf = path->nodes[0];
877 	item_size = btrfs_item_size(leaf, path->slots[0]);
878 	if (unlikely(item_size < sizeof(*ei))) {
879 		err = -EINVAL;
880 		btrfs_print_v0_err(fs_info);
881 		btrfs_abort_transaction(trans, err);
882 		goto out;
883 	}
884 
885 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
886 	flags = btrfs_extent_flags(leaf, ei);
887 
888 	ptr = (unsigned long)(ei + 1);
889 	end = (unsigned long)ei + item_size;
890 
891 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
892 		ptr += sizeof(struct btrfs_tree_block_info);
893 		BUG_ON(ptr > end);
894 	}
895 
896 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
897 		needed = BTRFS_REF_TYPE_DATA;
898 	else
899 		needed = BTRFS_REF_TYPE_BLOCK;
900 
901 	err = -ENOENT;
902 	while (1) {
903 		if (ptr >= end) {
904 			if (ptr > end) {
905 				err = -EUCLEAN;
906 				btrfs_print_leaf(path->nodes[0]);
907 				btrfs_crit(fs_info,
908 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
909 					path->slots[0], root_objectid, owner, offset, parent);
910 			}
911 			break;
912 		}
913 		iref = (struct btrfs_extent_inline_ref *)ptr;
914 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
915 		if (type == BTRFS_REF_TYPE_INVALID) {
916 			err = -EUCLEAN;
917 			goto out;
918 		}
919 
920 		if (want < type)
921 			break;
922 		if (want > type) {
923 			ptr += btrfs_extent_inline_ref_size(type);
924 			continue;
925 		}
926 
927 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
928 			struct btrfs_extent_data_ref *dref;
929 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
930 			if (match_extent_data_ref(leaf, dref, root_objectid,
931 						  owner, offset)) {
932 				err = 0;
933 				break;
934 			}
935 			if (hash_extent_data_ref_item(leaf, dref) <
936 			    hash_extent_data_ref(root_objectid, owner, offset))
937 				break;
938 		} else {
939 			u64 ref_offset;
940 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
941 			if (parent > 0) {
942 				if (parent == ref_offset) {
943 					err = 0;
944 					break;
945 				}
946 				if (ref_offset < parent)
947 					break;
948 			} else {
949 				if (root_objectid == ref_offset) {
950 					err = 0;
951 					break;
952 				}
953 				if (ref_offset < root_objectid)
954 					break;
955 			}
956 		}
957 		ptr += btrfs_extent_inline_ref_size(type);
958 	}
959 	if (err == -ENOENT && insert) {
960 		if (item_size + extra_size >=
961 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
962 			err = -EAGAIN;
963 			goto out;
964 		}
965 		/*
966 		 * To add new inline back ref, we have to make sure
967 		 * there is no corresponding back ref item.
968 		 * For simplicity, we just do not add new inline back
969 		 * ref if there is any kind of item for this block
970 		 */
971 		if (find_next_key(path, 0, &key) == 0 &&
972 		    key.objectid == bytenr &&
973 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
974 			err = -EAGAIN;
975 			goto out;
976 		}
977 	}
978 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
979 out:
980 	if (insert) {
981 		path->keep_locks = 0;
982 		path->search_for_extension = 0;
983 		btrfs_unlock_up_safe(path, 1);
984 	}
985 	return err;
986 }
987 
988 /*
989  * helper to add new inline back ref
990  */
991 static noinline_for_stack
992 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
993 				 struct btrfs_path *path,
994 				 struct btrfs_extent_inline_ref *iref,
995 				 u64 parent, u64 root_objectid,
996 				 u64 owner, u64 offset, int refs_to_add,
997 				 struct btrfs_delayed_extent_op *extent_op)
998 {
999 	struct extent_buffer *leaf;
1000 	struct btrfs_extent_item *ei;
1001 	unsigned long ptr;
1002 	unsigned long end;
1003 	unsigned long item_offset;
1004 	u64 refs;
1005 	int size;
1006 	int type;
1007 
1008 	leaf = path->nodes[0];
1009 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1010 	item_offset = (unsigned long)iref - (unsigned long)ei;
1011 
1012 	type = extent_ref_type(parent, owner);
1013 	size = btrfs_extent_inline_ref_size(type);
1014 
1015 	btrfs_extend_item(path, size);
1016 
1017 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 	refs = btrfs_extent_refs(leaf, ei);
1019 	refs += refs_to_add;
1020 	btrfs_set_extent_refs(leaf, ei, refs);
1021 	if (extent_op)
1022 		__run_delayed_extent_op(extent_op, leaf, ei);
1023 
1024 	ptr = (unsigned long)ei + item_offset;
1025 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1026 	if (ptr < end - size)
1027 		memmove_extent_buffer(leaf, ptr + size, ptr,
1028 				      end - size - ptr);
1029 
1030 	iref = (struct btrfs_extent_inline_ref *)ptr;
1031 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1032 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1033 		struct btrfs_extent_data_ref *dref;
1034 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1035 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1036 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1037 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1038 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1039 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1040 		struct btrfs_shared_data_ref *sref;
1041 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1042 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1048 	}
1049 	btrfs_mark_buffer_dirty(leaf);
1050 }
1051 
1052 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1053 				 struct btrfs_path *path,
1054 				 struct btrfs_extent_inline_ref **ref_ret,
1055 				 u64 bytenr, u64 num_bytes, u64 parent,
1056 				 u64 root_objectid, u64 owner, u64 offset)
1057 {
1058 	int ret;
1059 
1060 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1061 					   num_bytes, parent, root_objectid,
1062 					   owner, offset, 0);
1063 	if (ret != -ENOENT)
1064 		return ret;
1065 
1066 	btrfs_release_path(path);
1067 	*ref_ret = NULL;
1068 
1069 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1070 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1071 					    root_objectid);
1072 	} else {
1073 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1074 					     root_objectid, owner, offset);
1075 	}
1076 	return ret;
1077 }
1078 
1079 /*
1080  * helper to update/remove inline back ref
1081  */
1082 static noinline_for_stack
1083 void update_inline_extent_backref(struct btrfs_path *path,
1084 				  struct btrfs_extent_inline_ref *iref,
1085 				  int refs_to_mod,
1086 				  struct btrfs_delayed_extent_op *extent_op)
1087 {
1088 	struct extent_buffer *leaf = path->nodes[0];
1089 	struct btrfs_extent_item *ei;
1090 	struct btrfs_extent_data_ref *dref = NULL;
1091 	struct btrfs_shared_data_ref *sref = NULL;
1092 	unsigned long ptr;
1093 	unsigned long end;
1094 	u32 item_size;
1095 	int size;
1096 	int type;
1097 	u64 refs;
1098 
1099 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 	refs = btrfs_extent_refs(leaf, ei);
1101 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1102 	refs += refs_to_mod;
1103 	btrfs_set_extent_refs(leaf, ei, refs);
1104 	if (extent_op)
1105 		__run_delayed_extent_op(extent_op, leaf, ei);
1106 
1107 	/*
1108 	 * If type is invalid, we should have bailed out after
1109 	 * lookup_inline_extent_backref().
1110 	 */
1111 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1112 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1113 
1114 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1115 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1116 		refs = btrfs_extent_data_ref_count(leaf, dref);
1117 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1118 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1119 		refs = btrfs_shared_data_ref_count(leaf, sref);
1120 	} else {
1121 		refs = 1;
1122 		BUG_ON(refs_to_mod != -1);
1123 	}
1124 
1125 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1126 	refs += refs_to_mod;
1127 
1128 	if (refs > 0) {
1129 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1130 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1131 		else
1132 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1133 	} else {
1134 		size =  btrfs_extent_inline_ref_size(type);
1135 		item_size = btrfs_item_size(leaf, path->slots[0]);
1136 		ptr = (unsigned long)iref;
1137 		end = (unsigned long)ei + item_size;
1138 		if (ptr + size < end)
1139 			memmove_extent_buffer(leaf, ptr, ptr + size,
1140 					      end - ptr - size);
1141 		item_size -= size;
1142 		btrfs_truncate_item(path, item_size, 1);
1143 	}
1144 	btrfs_mark_buffer_dirty(leaf);
1145 }
1146 
1147 static noinline_for_stack
1148 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1149 				 struct btrfs_path *path,
1150 				 u64 bytenr, u64 num_bytes, u64 parent,
1151 				 u64 root_objectid, u64 owner,
1152 				 u64 offset, int refs_to_add,
1153 				 struct btrfs_delayed_extent_op *extent_op)
1154 {
1155 	struct btrfs_extent_inline_ref *iref;
1156 	int ret;
1157 
1158 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1159 					   num_bytes, parent, root_objectid,
1160 					   owner, offset, 1);
1161 	if (ret == 0) {
1162 		/*
1163 		 * We're adding refs to a tree block we already own, this
1164 		 * should not happen at all.
1165 		 */
1166 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1167 			btrfs_print_leaf(path->nodes[0]);
1168 			btrfs_crit(trans->fs_info,
1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1170 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1171 			return -EUCLEAN;
1172 		}
1173 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1174 	} else if (ret == -ENOENT) {
1175 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1176 					    root_objectid, owner, offset,
1177 					    refs_to_add, extent_op);
1178 		ret = 0;
1179 	}
1180 	return ret;
1181 }
1182 
1183 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1184 				 struct btrfs_root *root,
1185 				 struct btrfs_path *path,
1186 				 struct btrfs_extent_inline_ref *iref,
1187 				 int refs_to_drop, int is_data)
1188 {
1189 	int ret = 0;
1190 
1191 	BUG_ON(!is_data && refs_to_drop != 1);
1192 	if (iref)
1193 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1194 	else if (is_data)
1195 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1196 	else
1197 		ret = btrfs_del_item(trans, root, path);
1198 	return ret;
1199 }
1200 
1201 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1202 			       u64 *discarded_bytes)
1203 {
1204 	int j, ret = 0;
1205 	u64 bytes_left, end;
1206 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1207 
1208 	if (WARN_ON(start != aligned_start)) {
1209 		len -= aligned_start - start;
1210 		len = round_down(len, 1 << SECTOR_SHIFT);
1211 		start = aligned_start;
1212 	}
1213 
1214 	*discarded_bytes = 0;
1215 
1216 	if (!len)
1217 		return 0;
1218 
1219 	end = start + len;
1220 	bytes_left = len;
1221 
1222 	/* Skip any superblocks on this device. */
1223 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1224 		u64 sb_start = btrfs_sb_offset(j);
1225 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1226 		u64 size = sb_start - start;
1227 
1228 		if (!in_range(sb_start, start, bytes_left) &&
1229 		    !in_range(sb_end, start, bytes_left) &&
1230 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1231 			continue;
1232 
1233 		/*
1234 		 * Superblock spans beginning of range.  Adjust start and
1235 		 * try again.
1236 		 */
1237 		if (sb_start <= start) {
1238 			start += sb_end - start;
1239 			if (start > end) {
1240 				bytes_left = 0;
1241 				break;
1242 			}
1243 			bytes_left = end - start;
1244 			continue;
1245 		}
1246 
1247 		if (size) {
1248 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1249 						   size >> SECTOR_SHIFT,
1250 						   GFP_NOFS);
1251 			if (!ret)
1252 				*discarded_bytes += size;
1253 			else if (ret != -EOPNOTSUPP)
1254 				return ret;
1255 		}
1256 
1257 		start = sb_end;
1258 		if (start > end) {
1259 			bytes_left = 0;
1260 			break;
1261 		}
1262 		bytes_left = end - start;
1263 	}
1264 
1265 	if (bytes_left) {
1266 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1267 					   bytes_left >> SECTOR_SHIFT,
1268 					   GFP_NOFS);
1269 		if (!ret)
1270 			*discarded_bytes += bytes_left;
1271 	}
1272 	return ret;
1273 }
1274 
1275 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1276 {
1277 	struct btrfs_device *dev = stripe->dev;
1278 	struct btrfs_fs_info *fs_info = dev->fs_info;
1279 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1280 	u64 phys = stripe->physical;
1281 	u64 len = stripe->length;
1282 	u64 discarded = 0;
1283 	int ret = 0;
1284 
1285 	/* Zone reset on a zoned filesystem */
1286 	if (btrfs_can_zone_reset(dev, phys, len)) {
1287 		u64 src_disc;
1288 
1289 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1290 		if (ret)
1291 			goto out;
1292 
1293 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1294 		    dev != dev_replace->srcdev)
1295 			goto out;
1296 
1297 		src_disc = discarded;
1298 
1299 		/* Send to replace target as well */
1300 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1301 					      &discarded);
1302 		discarded += src_disc;
1303 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1304 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1305 	} else {
1306 		ret = 0;
1307 		*bytes = 0;
1308 	}
1309 
1310 out:
1311 	*bytes = discarded;
1312 	return ret;
1313 }
1314 
1315 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1316 			 u64 num_bytes, u64 *actual_bytes)
1317 {
1318 	int ret = 0;
1319 	u64 discarded_bytes = 0;
1320 	u64 end = bytenr + num_bytes;
1321 	u64 cur = bytenr;
1322 
1323 	/*
1324 	 * Avoid races with device replace and make sure the devices in the
1325 	 * stripes don't go away while we are discarding.
1326 	 */
1327 	btrfs_bio_counter_inc_blocked(fs_info);
1328 	while (cur < end) {
1329 		struct btrfs_discard_stripe *stripes;
1330 		unsigned int num_stripes;
1331 		int i;
1332 
1333 		num_bytes = end - cur;
1334 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1335 		if (IS_ERR(stripes)) {
1336 			ret = PTR_ERR(stripes);
1337 			if (ret == -EOPNOTSUPP)
1338 				ret = 0;
1339 			break;
1340 		}
1341 
1342 		for (i = 0; i < num_stripes; i++) {
1343 			struct btrfs_discard_stripe *stripe = stripes + i;
1344 			u64 bytes;
1345 
1346 			if (!stripe->dev->bdev) {
1347 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1348 				continue;
1349 			}
1350 
1351 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1352 					&stripe->dev->dev_state))
1353 				continue;
1354 
1355 			ret = do_discard_extent(stripe, &bytes);
1356 			if (ret) {
1357 				/*
1358 				 * Keep going if discard is not supported by the
1359 				 * device.
1360 				 */
1361 				if (ret != -EOPNOTSUPP)
1362 					break;
1363 				ret = 0;
1364 			} else {
1365 				discarded_bytes += bytes;
1366 			}
1367 		}
1368 		kfree(stripes);
1369 		if (ret)
1370 			break;
1371 		cur += num_bytes;
1372 	}
1373 	btrfs_bio_counter_dec(fs_info);
1374 	if (actual_bytes)
1375 		*actual_bytes = discarded_bytes;
1376 	return ret;
1377 }
1378 
1379 /* Can return -ENOMEM */
1380 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1381 			 struct btrfs_ref *generic_ref)
1382 {
1383 	struct btrfs_fs_info *fs_info = trans->fs_info;
1384 	int ret;
1385 
1386 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1387 	       generic_ref->action);
1388 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1389 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1390 
1391 	if (generic_ref->type == BTRFS_REF_METADATA)
1392 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1393 	else
1394 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1395 
1396 	btrfs_ref_tree_mod(fs_info, generic_ref);
1397 
1398 	return ret;
1399 }
1400 
1401 /*
1402  * __btrfs_inc_extent_ref - insert backreference for a given extent
1403  *
1404  * The counterpart is in __btrfs_free_extent(), with examples and more details
1405  * how it works.
1406  *
1407  * @trans:	    Handle of transaction
1408  *
1409  * @node:	    The delayed ref node used to get the bytenr/length for
1410  *		    extent whose references are incremented.
1411  *
1412  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1413  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1414  *		    bytenr of the parent block. Since new extents are always
1415  *		    created with indirect references, this will only be the case
1416  *		    when relocating a shared extent. In that case, root_objectid
1417  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1418  *		    be 0
1419  *
1420  * @root_objectid:  The id of the root where this modification has originated,
1421  *		    this can be either one of the well-known metadata trees or
1422  *		    the subvolume id which references this extent.
1423  *
1424  * @owner:	    For data extents it is the inode number of the owning file.
1425  *		    For metadata extents this parameter holds the level in the
1426  *		    tree of the extent.
1427  *
1428  * @offset:	    For metadata extents the offset is ignored and is currently
1429  *		    always passed as 0. For data extents it is the fileoffset
1430  *		    this extent belongs to.
1431  *
1432  * @refs_to_add     Number of references to add
1433  *
1434  * @extent_op       Pointer to a structure, holding information necessary when
1435  *                  updating a tree block's flags
1436  *
1437  */
1438 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1439 				  struct btrfs_delayed_ref_node *node,
1440 				  u64 parent, u64 root_objectid,
1441 				  u64 owner, u64 offset, int refs_to_add,
1442 				  struct btrfs_delayed_extent_op *extent_op)
1443 {
1444 	struct btrfs_path *path;
1445 	struct extent_buffer *leaf;
1446 	struct btrfs_extent_item *item;
1447 	struct btrfs_key key;
1448 	u64 bytenr = node->bytenr;
1449 	u64 num_bytes = node->num_bytes;
1450 	u64 refs;
1451 	int ret;
1452 
1453 	path = btrfs_alloc_path();
1454 	if (!path)
1455 		return -ENOMEM;
1456 
1457 	/* this will setup the path even if it fails to insert the back ref */
1458 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1459 					   parent, root_objectid, owner,
1460 					   offset, refs_to_add, extent_op);
1461 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1462 		goto out;
1463 
1464 	/*
1465 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1466 	 * inline extent ref, so just update the reference count and add a
1467 	 * normal backref.
1468 	 */
1469 	leaf = path->nodes[0];
1470 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1471 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1472 	refs = btrfs_extent_refs(leaf, item);
1473 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1474 	if (extent_op)
1475 		__run_delayed_extent_op(extent_op, leaf, item);
1476 
1477 	btrfs_mark_buffer_dirty(leaf);
1478 	btrfs_release_path(path);
1479 
1480 	/* now insert the actual backref */
1481 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1482 		BUG_ON(refs_to_add != 1);
1483 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1484 					    root_objectid);
1485 	} else {
1486 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1487 					     root_objectid, owner, offset,
1488 					     refs_to_add);
1489 	}
1490 	if (ret)
1491 		btrfs_abort_transaction(trans, ret);
1492 out:
1493 	btrfs_free_path(path);
1494 	return ret;
1495 }
1496 
1497 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1498 				struct btrfs_delayed_ref_node *node,
1499 				struct btrfs_delayed_extent_op *extent_op,
1500 				bool insert_reserved)
1501 {
1502 	int ret = 0;
1503 	struct btrfs_delayed_data_ref *ref;
1504 	struct btrfs_key ins;
1505 	u64 parent = 0;
1506 	u64 ref_root = 0;
1507 	u64 flags = 0;
1508 
1509 	ins.objectid = node->bytenr;
1510 	ins.offset = node->num_bytes;
1511 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1512 
1513 	ref = btrfs_delayed_node_to_data_ref(node);
1514 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1515 
1516 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1517 		parent = ref->parent;
1518 	ref_root = ref->root;
1519 
1520 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1521 		if (extent_op)
1522 			flags |= extent_op->flags_to_set;
1523 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1524 						 flags, ref->objectid,
1525 						 ref->offset, &ins,
1526 						 node->ref_mod);
1527 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1528 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1529 					     ref->objectid, ref->offset,
1530 					     node->ref_mod, extent_op);
1531 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1532 		ret = __btrfs_free_extent(trans, node, parent,
1533 					  ref_root, ref->objectid,
1534 					  ref->offset, node->ref_mod,
1535 					  extent_op);
1536 	} else {
1537 		BUG();
1538 	}
1539 	return ret;
1540 }
1541 
1542 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1543 				    struct extent_buffer *leaf,
1544 				    struct btrfs_extent_item *ei)
1545 {
1546 	u64 flags = btrfs_extent_flags(leaf, ei);
1547 	if (extent_op->update_flags) {
1548 		flags |= extent_op->flags_to_set;
1549 		btrfs_set_extent_flags(leaf, ei, flags);
1550 	}
1551 
1552 	if (extent_op->update_key) {
1553 		struct btrfs_tree_block_info *bi;
1554 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1555 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1556 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1557 	}
1558 }
1559 
1560 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1561 				 struct btrfs_delayed_ref_head *head,
1562 				 struct btrfs_delayed_extent_op *extent_op)
1563 {
1564 	struct btrfs_fs_info *fs_info = trans->fs_info;
1565 	struct btrfs_root *root;
1566 	struct btrfs_key key;
1567 	struct btrfs_path *path;
1568 	struct btrfs_extent_item *ei;
1569 	struct extent_buffer *leaf;
1570 	u32 item_size;
1571 	int ret;
1572 	int err = 0;
1573 	int metadata = 1;
1574 
1575 	if (TRANS_ABORTED(trans))
1576 		return 0;
1577 
1578 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1579 		metadata = 0;
1580 
1581 	path = btrfs_alloc_path();
1582 	if (!path)
1583 		return -ENOMEM;
1584 
1585 	key.objectid = head->bytenr;
1586 
1587 	if (metadata) {
1588 		key.type = BTRFS_METADATA_ITEM_KEY;
1589 		key.offset = extent_op->level;
1590 	} else {
1591 		key.type = BTRFS_EXTENT_ITEM_KEY;
1592 		key.offset = head->num_bytes;
1593 	}
1594 
1595 	root = btrfs_extent_root(fs_info, key.objectid);
1596 again:
1597 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1598 	if (ret < 0) {
1599 		err = ret;
1600 		goto out;
1601 	}
1602 	if (ret > 0) {
1603 		if (metadata) {
1604 			if (path->slots[0] > 0) {
1605 				path->slots[0]--;
1606 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 						      path->slots[0]);
1608 				if (key.objectid == head->bytenr &&
1609 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 				    key.offset == head->num_bytes)
1611 					ret = 0;
1612 			}
1613 			if (ret > 0) {
1614 				btrfs_release_path(path);
1615 				metadata = 0;
1616 
1617 				key.objectid = head->bytenr;
1618 				key.offset = head->num_bytes;
1619 				key.type = BTRFS_EXTENT_ITEM_KEY;
1620 				goto again;
1621 			}
1622 		} else {
1623 			err = -EIO;
1624 			goto out;
1625 		}
1626 	}
1627 
1628 	leaf = path->nodes[0];
1629 	item_size = btrfs_item_size(leaf, path->slots[0]);
1630 
1631 	if (unlikely(item_size < sizeof(*ei))) {
1632 		err = -EINVAL;
1633 		btrfs_print_v0_err(fs_info);
1634 		btrfs_abort_transaction(trans, err);
1635 		goto out;
1636 	}
1637 
1638 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 	__run_delayed_extent_op(extent_op, leaf, ei);
1640 
1641 	btrfs_mark_buffer_dirty(leaf);
1642 out:
1643 	btrfs_free_path(path);
1644 	return err;
1645 }
1646 
1647 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1648 				struct btrfs_delayed_ref_node *node,
1649 				struct btrfs_delayed_extent_op *extent_op,
1650 				bool insert_reserved)
1651 {
1652 	int ret = 0;
1653 	struct btrfs_delayed_tree_ref *ref;
1654 	u64 parent = 0;
1655 	u64 ref_root = 0;
1656 
1657 	ref = btrfs_delayed_node_to_tree_ref(node);
1658 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1659 
1660 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1661 		parent = ref->parent;
1662 	ref_root = ref->root;
1663 
1664 	if (node->ref_mod != 1) {
1665 		btrfs_err(trans->fs_info,
1666 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1667 			  node->bytenr, node->ref_mod, node->action, ref_root,
1668 			  parent);
1669 		return -EIO;
1670 	}
1671 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1672 		BUG_ON(!extent_op || !extent_op->update_flags);
1673 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1674 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1675 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1676 					     ref->level, 0, 1, extent_op);
1677 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1678 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1679 					  ref->level, 0, 1, extent_op);
1680 	} else {
1681 		BUG();
1682 	}
1683 	return ret;
1684 }
1685 
1686 /* helper function to actually process a single delayed ref entry */
1687 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1688 			       struct btrfs_delayed_ref_node *node,
1689 			       struct btrfs_delayed_extent_op *extent_op,
1690 			       bool insert_reserved)
1691 {
1692 	int ret = 0;
1693 
1694 	if (TRANS_ABORTED(trans)) {
1695 		if (insert_reserved)
1696 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1697 		return 0;
1698 	}
1699 
1700 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1701 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1702 		ret = run_delayed_tree_ref(trans, node, extent_op,
1703 					   insert_reserved);
1704 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1705 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1706 		ret = run_delayed_data_ref(trans, node, extent_op,
1707 					   insert_reserved);
1708 	else
1709 		BUG();
1710 	if (ret && insert_reserved)
1711 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1712 	if (ret < 0)
1713 		btrfs_err(trans->fs_info,
1714 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1715 			  node->bytenr, node->num_bytes, node->type,
1716 			  node->action, node->ref_mod, ret);
1717 	return ret;
1718 }
1719 
1720 static inline struct btrfs_delayed_ref_node *
1721 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1722 {
1723 	struct btrfs_delayed_ref_node *ref;
1724 
1725 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1726 		return NULL;
1727 
1728 	/*
1729 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1730 	 * This is to prevent a ref count from going down to zero, which deletes
1731 	 * the extent item from the extent tree, when there still are references
1732 	 * to add, which would fail because they would not find the extent item.
1733 	 */
1734 	if (!list_empty(&head->ref_add_list))
1735 		return list_first_entry(&head->ref_add_list,
1736 				struct btrfs_delayed_ref_node, add_list);
1737 
1738 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1739 		       struct btrfs_delayed_ref_node, ref_node);
1740 	ASSERT(list_empty(&ref->add_list));
1741 	return ref;
1742 }
1743 
1744 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1745 				      struct btrfs_delayed_ref_head *head)
1746 {
1747 	spin_lock(&delayed_refs->lock);
1748 	head->processing = false;
1749 	delayed_refs->num_heads_ready++;
1750 	spin_unlock(&delayed_refs->lock);
1751 	btrfs_delayed_ref_unlock(head);
1752 }
1753 
1754 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1755 				struct btrfs_delayed_ref_head *head)
1756 {
1757 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1758 
1759 	if (!extent_op)
1760 		return NULL;
1761 
1762 	if (head->must_insert_reserved) {
1763 		head->extent_op = NULL;
1764 		btrfs_free_delayed_extent_op(extent_op);
1765 		return NULL;
1766 	}
1767 	return extent_op;
1768 }
1769 
1770 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1771 				     struct btrfs_delayed_ref_head *head)
1772 {
1773 	struct btrfs_delayed_extent_op *extent_op;
1774 	int ret;
1775 
1776 	extent_op = cleanup_extent_op(head);
1777 	if (!extent_op)
1778 		return 0;
1779 	head->extent_op = NULL;
1780 	spin_unlock(&head->lock);
1781 	ret = run_delayed_extent_op(trans, head, extent_op);
1782 	btrfs_free_delayed_extent_op(extent_op);
1783 	return ret ? ret : 1;
1784 }
1785 
1786 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1787 				  struct btrfs_delayed_ref_root *delayed_refs,
1788 				  struct btrfs_delayed_ref_head *head)
1789 {
1790 	int nr_items = 1;	/* Dropping this ref head update. */
1791 
1792 	/*
1793 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1794 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1795 	 */
1796 	if (head->total_ref_mod < 0 && head->is_data) {
1797 		spin_lock(&delayed_refs->lock);
1798 		delayed_refs->pending_csums -= head->num_bytes;
1799 		spin_unlock(&delayed_refs->lock);
1800 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1801 	}
1802 
1803 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1804 }
1805 
1806 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1807 			    struct btrfs_delayed_ref_head *head)
1808 {
1809 
1810 	struct btrfs_fs_info *fs_info = trans->fs_info;
1811 	struct btrfs_delayed_ref_root *delayed_refs;
1812 	int ret;
1813 
1814 	delayed_refs = &trans->transaction->delayed_refs;
1815 
1816 	ret = run_and_cleanup_extent_op(trans, head);
1817 	if (ret < 0) {
1818 		unselect_delayed_ref_head(delayed_refs, head);
1819 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1820 		return ret;
1821 	} else if (ret) {
1822 		return ret;
1823 	}
1824 
1825 	/*
1826 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1827 	 * and then re-check to make sure nobody got added.
1828 	 */
1829 	spin_unlock(&head->lock);
1830 	spin_lock(&delayed_refs->lock);
1831 	spin_lock(&head->lock);
1832 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1833 		spin_unlock(&head->lock);
1834 		spin_unlock(&delayed_refs->lock);
1835 		return 1;
1836 	}
1837 	btrfs_delete_ref_head(delayed_refs, head);
1838 	spin_unlock(&head->lock);
1839 	spin_unlock(&delayed_refs->lock);
1840 
1841 	if (head->must_insert_reserved) {
1842 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1843 		if (head->is_data) {
1844 			struct btrfs_root *csum_root;
1845 
1846 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1847 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1848 					      head->num_bytes);
1849 		}
1850 	}
1851 
1852 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1853 
1854 	trace_run_delayed_ref_head(fs_info, head, 0);
1855 	btrfs_delayed_ref_unlock(head);
1856 	btrfs_put_delayed_ref_head(head);
1857 	return ret;
1858 }
1859 
1860 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1861 					struct btrfs_trans_handle *trans)
1862 {
1863 	struct btrfs_delayed_ref_root *delayed_refs =
1864 		&trans->transaction->delayed_refs;
1865 	struct btrfs_delayed_ref_head *head = NULL;
1866 	int ret;
1867 
1868 	spin_lock(&delayed_refs->lock);
1869 	head = btrfs_select_ref_head(delayed_refs);
1870 	if (!head) {
1871 		spin_unlock(&delayed_refs->lock);
1872 		return head;
1873 	}
1874 
1875 	/*
1876 	 * Grab the lock that says we are going to process all the refs for
1877 	 * this head
1878 	 */
1879 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1880 	spin_unlock(&delayed_refs->lock);
1881 
1882 	/*
1883 	 * We may have dropped the spin lock to get the head mutex lock, and
1884 	 * that might have given someone else time to free the head.  If that's
1885 	 * true, it has been removed from our list and we can move on.
1886 	 */
1887 	if (ret == -EAGAIN)
1888 		head = ERR_PTR(-EAGAIN);
1889 
1890 	return head;
1891 }
1892 
1893 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1894 					   struct btrfs_delayed_ref_head *locked_ref)
1895 {
1896 	struct btrfs_fs_info *fs_info = trans->fs_info;
1897 	struct btrfs_delayed_ref_root *delayed_refs;
1898 	struct btrfs_delayed_extent_op *extent_op;
1899 	struct btrfs_delayed_ref_node *ref;
1900 	bool must_insert_reserved;
1901 	int ret;
1902 
1903 	delayed_refs = &trans->transaction->delayed_refs;
1904 
1905 	lockdep_assert_held(&locked_ref->mutex);
1906 	lockdep_assert_held(&locked_ref->lock);
1907 
1908 	while ((ref = select_delayed_ref(locked_ref))) {
1909 		if (ref->seq &&
1910 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1911 			spin_unlock(&locked_ref->lock);
1912 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1913 			return -EAGAIN;
1914 		}
1915 
1916 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1917 		RB_CLEAR_NODE(&ref->ref_node);
1918 		if (!list_empty(&ref->add_list))
1919 			list_del(&ref->add_list);
1920 		/*
1921 		 * When we play the delayed ref, also correct the ref_mod on
1922 		 * head
1923 		 */
1924 		switch (ref->action) {
1925 		case BTRFS_ADD_DELAYED_REF:
1926 		case BTRFS_ADD_DELAYED_EXTENT:
1927 			locked_ref->ref_mod -= ref->ref_mod;
1928 			break;
1929 		case BTRFS_DROP_DELAYED_REF:
1930 			locked_ref->ref_mod += ref->ref_mod;
1931 			break;
1932 		default:
1933 			WARN_ON(1);
1934 		}
1935 		atomic_dec(&delayed_refs->num_entries);
1936 
1937 		/*
1938 		 * Record the must_insert_reserved flag before we drop the
1939 		 * spin lock.
1940 		 */
1941 		must_insert_reserved = locked_ref->must_insert_reserved;
1942 		locked_ref->must_insert_reserved = false;
1943 
1944 		extent_op = locked_ref->extent_op;
1945 		locked_ref->extent_op = NULL;
1946 		spin_unlock(&locked_ref->lock);
1947 
1948 		ret = run_one_delayed_ref(trans, ref, extent_op,
1949 					  must_insert_reserved);
1950 
1951 		btrfs_free_delayed_extent_op(extent_op);
1952 		if (ret) {
1953 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1954 			btrfs_put_delayed_ref(ref);
1955 			return ret;
1956 		}
1957 
1958 		btrfs_put_delayed_ref(ref);
1959 		cond_resched();
1960 
1961 		spin_lock(&locked_ref->lock);
1962 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 /*
1969  * Returns 0 on success or if called with an already aborted transaction.
1970  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1971  */
1972 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1973 					     unsigned long nr)
1974 {
1975 	struct btrfs_fs_info *fs_info = trans->fs_info;
1976 	struct btrfs_delayed_ref_root *delayed_refs;
1977 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1978 	int ret;
1979 	unsigned long count = 0;
1980 
1981 	delayed_refs = &trans->transaction->delayed_refs;
1982 	do {
1983 		if (!locked_ref) {
1984 			locked_ref = btrfs_obtain_ref_head(trans);
1985 			if (IS_ERR_OR_NULL(locked_ref)) {
1986 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1987 					continue;
1988 				} else {
1989 					break;
1990 				}
1991 			}
1992 			count++;
1993 		}
1994 		/*
1995 		 * We need to try and merge add/drops of the same ref since we
1996 		 * can run into issues with relocate dropping the implicit ref
1997 		 * and then it being added back again before the drop can
1998 		 * finish.  If we merged anything we need to re-loop so we can
1999 		 * get a good ref.
2000 		 * Or we can get node references of the same type that weren't
2001 		 * merged when created due to bumps in the tree mod seq, and
2002 		 * we need to merge them to prevent adding an inline extent
2003 		 * backref before dropping it (triggering a BUG_ON at
2004 		 * insert_inline_extent_backref()).
2005 		 */
2006 		spin_lock(&locked_ref->lock);
2007 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2008 
2009 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2010 		if (ret < 0 && ret != -EAGAIN) {
2011 			/*
2012 			 * Error, btrfs_run_delayed_refs_for_head already
2013 			 * unlocked everything so just bail out
2014 			 */
2015 			return ret;
2016 		} else if (!ret) {
2017 			/*
2018 			 * Success, perform the usual cleanup of a processed
2019 			 * head
2020 			 */
2021 			ret = cleanup_ref_head(trans, locked_ref);
2022 			if (ret > 0 ) {
2023 				/* We dropped our lock, we need to loop. */
2024 				ret = 0;
2025 				continue;
2026 			} else if (ret) {
2027 				return ret;
2028 			}
2029 		}
2030 
2031 		/*
2032 		 * Either success case or btrfs_run_delayed_refs_for_head
2033 		 * returned -EAGAIN, meaning we need to select another head
2034 		 */
2035 
2036 		locked_ref = NULL;
2037 		cond_resched();
2038 	} while ((nr != -1 && count < nr) || locked_ref);
2039 
2040 	return 0;
2041 }
2042 
2043 #ifdef SCRAMBLE_DELAYED_REFS
2044 /*
2045  * Normally delayed refs get processed in ascending bytenr order. This
2046  * correlates in most cases to the order added. To expose dependencies on this
2047  * order, we start to process the tree in the middle instead of the beginning
2048  */
2049 static u64 find_middle(struct rb_root *root)
2050 {
2051 	struct rb_node *n = root->rb_node;
2052 	struct btrfs_delayed_ref_node *entry;
2053 	int alt = 1;
2054 	u64 middle;
2055 	u64 first = 0, last = 0;
2056 
2057 	n = rb_first(root);
2058 	if (n) {
2059 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2060 		first = entry->bytenr;
2061 	}
2062 	n = rb_last(root);
2063 	if (n) {
2064 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2065 		last = entry->bytenr;
2066 	}
2067 	n = root->rb_node;
2068 
2069 	while (n) {
2070 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2071 		WARN_ON(!entry->in_tree);
2072 
2073 		middle = entry->bytenr;
2074 
2075 		if (alt)
2076 			n = n->rb_left;
2077 		else
2078 			n = n->rb_right;
2079 
2080 		alt = 1 - alt;
2081 	}
2082 	return middle;
2083 }
2084 #endif
2085 
2086 /*
2087  * this starts processing the delayed reference count updates and
2088  * extent insertions we have queued up so far.  count can be
2089  * 0, which means to process everything in the tree at the start
2090  * of the run (but not newly added entries), or it can be some target
2091  * number you'd like to process.
2092  *
2093  * Returns 0 on success or if called with an aborted transaction
2094  * Returns <0 on error and aborts the transaction
2095  */
2096 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2097 			   unsigned long count)
2098 {
2099 	struct btrfs_fs_info *fs_info = trans->fs_info;
2100 	struct rb_node *node;
2101 	struct btrfs_delayed_ref_root *delayed_refs;
2102 	struct btrfs_delayed_ref_head *head;
2103 	int ret;
2104 	int run_all = count == (unsigned long)-1;
2105 
2106 	/* We'll clean this up in btrfs_cleanup_transaction */
2107 	if (TRANS_ABORTED(trans))
2108 		return 0;
2109 
2110 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2111 		return 0;
2112 
2113 	delayed_refs = &trans->transaction->delayed_refs;
2114 	if (count == 0)
2115 		count = delayed_refs->num_heads_ready;
2116 
2117 again:
2118 #ifdef SCRAMBLE_DELAYED_REFS
2119 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2120 #endif
2121 	ret = __btrfs_run_delayed_refs(trans, count);
2122 	if (ret < 0) {
2123 		btrfs_abort_transaction(trans, ret);
2124 		return ret;
2125 	}
2126 
2127 	if (run_all) {
2128 		btrfs_create_pending_block_groups(trans);
2129 
2130 		spin_lock(&delayed_refs->lock);
2131 		node = rb_first_cached(&delayed_refs->href_root);
2132 		if (!node) {
2133 			spin_unlock(&delayed_refs->lock);
2134 			goto out;
2135 		}
2136 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2137 				href_node);
2138 		refcount_inc(&head->refs);
2139 		spin_unlock(&delayed_refs->lock);
2140 
2141 		/* Mutex was contended, block until it's released and retry. */
2142 		mutex_lock(&head->mutex);
2143 		mutex_unlock(&head->mutex);
2144 
2145 		btrfs_put_delayed_ref_head(head);
2146 		cond_resched();
2147 		goto again;
2148 	}
2149 out:
2150 	return 0;
2151 }
2152 
2153 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2154 				struct extent_buffer *eb, u64 flags)
2155 {
2156 	struct btrfs_delayed_extent_op *extent_op;
2157 	int level = btrfs_header_level(eb);
2158 	int ret;
2159 
2160 	extent_op = btrfs_alloc_delayed_extent_op();
2161 	if (!extent_op)
2162 		return -ENOMEM;
2163 
2164 	extent_op->flags_to_set = flags;
2165 	extent_op->update_flags = true;
2166 	extent_op->update_key = false;
2167 	extent_op->level = level;
2168 
2169 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2170 	if (ret)
2171 		btrfs_free_delayed_extent_op(extent_op);
2172 	return ret;
2173 }
2174 
2175 static noinline int check_delayed_ref(struct btrfs_root *root,
2176 				      struct btrfs_path *path,
2177 				      u64 objectid, u64 offset, u64 bytenr)
2178 {
2179 	struct btrfs_delayed_ref_head *head;
2180 	struct btrfs_delayed_ref_node *ref;
2181 	struct btrfs_delayed_data_ref *data_ref;
2182 	struct btrfs_delayed_ref_root *delayed_refs;
2183 	struct btrfs_transaction *cur_trans;
2184 	struct rb_node *node;
2185 	int ret = 0;
2186 
2187 	spin_lock(&root->fs_info->trans_lock);
2188 	cur_trans = root->fs_info->running_transaction;
2189 	if (cur_trans)
2190 		refcount_inc(&cur_trans->use_count);
2191 	spin_unlock(&root->fs_info->trans_lock);
2192 	if (!cur_trans)
2193 		return 0;
2194 
2195 	delayed_refs = &cur_trans->delayed_refs;
2196 	spin_lock(&delayed_refs->lock);
2197 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2198 	if (!head) {
2199 		spin_unlock(&delayed_refs->lock);
2200 		btrfs_put_transaction(cur_trans);
2201 		return 0;
2202 	}
2203 
2204 	if (!mutex_trylock(&head->mutex)) {
2205 		if (path->nowait) {
2206 			spin_unlock(&delayed_refs->lock);
2207 			btrfs_put_transaction(cur_trans);
2208 			return -EAGAIN;
2209 		}
2210 
2211 		refcount_inc(&head->refs);
2212 		spin_unlock(&delayed_refs->lock);
2213 
2214 		btrfs_release_path(path);
2215 
2216 		/*
2217 		 * Mutex was contended, block until it's released and let
2218 		 * caller try again
2219 		 */
2220 		mutex_lock(&head->mutex);
2221 		mutex_unlock(&head->mutex);
2222 		btrfs_put_delayed_ref_head(head);
2223 		btrfs_put_transaction(cur_trans);
2224 		return -EAGAIN;
2225 	}
2226 	spin_unlock(&delayed_refs->lock);
2227 
2228 	spin_lock(&head->lock);
2229 	/*
2230 	 * XXX: We should replace this with a proper search function in the
2231 	 * future.
2232 	 */
2233 	for (node = rb_first_cached(&head->ref_tree); node;
2234 	     node = rb_next(node)) {
2235 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2236 		/* If it's a shared ref we know a cross reference exists */
2237 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2238 			ret = 1;
2239 			break;
2240 		}
2241 
2242 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2243 
2244 		/*
2245 		 * If our ref doesn't match the one we're currently looking at
2246 		 * then we have a cross reference.
2247 		 */
2248 		if (data_ref->root != root->root_key.objectid ||
2249 		    data_ref->objectid != objectid ||
2250 		    data_ref->offset != offset) {
2251 			ret = 1;
2252 			break;
2253 		}
2254 	}
2255 	spin_unlock(&head->lock);
2256 	mutex_unlock(&head->mutex);
2257 	btrfs_put_transaction(cur_trans);
2258 	return ret;
2259 }
2260 
2261 static noinline int check_committed_ref(struct btrfs_root *root,
2262 					struct btrfs_path *path,
2263 					u64 objectid, u64 offset, u64 bytenr,
2264 					bool strict)
2265 {
2266 	struct btrfs_fs_info *fs_info = root->fs_info;
2267 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2268 	struct extent_buffer *leaf;
2269 	struct btrfs_extent_data_ref *ref;
2270 	struct btrfs_extent_inline_ref *iref;
2271 	struct btrfs_extent_item *ei;
2272 	struct btrfs_key key;
2273 	u32 item_size;
2274 	int type;
2275 	int ret;
2276 
2277 	key.objectid = bytenr;
2278 	key.offset = (u64)-1;
2279 	key.type = BTRFS_EXTENT_ITEM_KEY;
2280 
2281 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2282 	if (ret < 0)
2283 		goto out;
2284 	BUG_ON(ret == 0); /* Corruption */
2285 
2286 	ret = -ENOENT;
2287 	if (path->slots[0] == 0)
2288 		goto out;
2289 
2290 	path->slots[0]--;
2291 	leaf = path->nodes[0];
2292 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2293 
2294 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2295 		goto out;
2296 
2297 	ret = 1;
2298 	item_size = btrfs_item_size(leaf, path->slots[0]);
2299 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2300 
2301 	/* If extent item has more than 1 inline ref then it's shared */
2302 	if (item_size != sizeof(*ei) +
2303 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2304 		goto out;
2305 
2306 	/*
2307 	 * If extent created before last snapshot => it's shared unless the
2308 	 * snapshot has been deleted. Use the heuristic if strict is false.
2309 	 */
2310 	if (!strict &&
2311 	    (btrfs_extent_generation(leaf, ei) <=
2312 	     btrfs_root_last_snapshot(&root->root_item)))
2313 		goto out;
2314 
2315 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2316 
2317 	/* If this extent has SHARED_DATA_REF then it's shared */
2318 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2319 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2320 		goto out;
2321 
2322 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2323 	if (btrfs_extent_refs(leaf, ei) !=
2324 	    btrfs_extent_data_ref_count(leaf, ref) ||
2325 	    btrfs_extent_data_ref_root(leaf, ref) !=
2326 	    root->root_key.objectid ||
2327 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2328 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2329 		goto out;
2330 
2331 	ret = 0;
2332 out:
2333 	return ret;
2334 }
2335 
2336 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2337 			  u64 bytenr, bool strict, struct btrfs_path *path)
2338 {
2339 	int ret;
2340 
2341 	do {
2342 		ret = check_committed_ref(root, path, objectid,
2343 					  offset, bytenr, strict);
2344 		if (ret && ret != -ENOENT)
2345 			goto out;
2346 
2347 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2348 	} while (ret == -EAGAIN);
2349 
2350 out:
2351 	btrfs_release_path(path);
2352 	if (btrfs_is_data_reloc_root(root))
2353 		WARN_ON(ret > 0);
2354 	return ret;
2355 }
2356 
2357 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2358 			   struct btrfs_root *root,
2359 			   struct extent_buffer *buf,
2360 			   int full_backref, int inc)
2361 {
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	u64 bytenr;
2364 	u64 num_bytes;
2365 	u64 parent;
2366 	u64 ref_root;
2367 	u32 nritems;
2368 	struct btrfs_key key;
2369 	struct btrfs_file_extent_item *fi;
2370 	struct btrfs_ref generic_ref = { 0 };
2371 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2372 	int i;
2373 	int action;
2374 	int level;
2375 	int ret = 0;
2376 
2377 	if (btrfs_is_testing(fs_info))
2378 		return 0;
2379 
2380 	ref_root = btrfs_header_owner(buf);
2381 	nritems = btrfs_header_nritems(buf);
2382 	level = btrfs_header_level(buf);
2383 
2384 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2385 		return 0;
2386 
2387 	if (full_backref)
2388 		parent = buf->start;
2389 	else
2390 		parent = 0;
2391 	if (inc)
2392 		action = BTRFS_ADD_DELAYED_REF;
2393 	else
2394 		action = BTRFS_DROP_DELAYED_REF;
2395 
2396 	for (i = 0; i < nritems; i++) {
2397 		if (level == 0) {
2398 			btrfs_item_key_to_cpu(buf, &key, i);
2399 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2400 				continue;
2401 			fi = btrfs_item_ptr(buf, i,
2402 					    struct btrfs_file_extent_item);
2403 			if (btrfs_file_extent_type(buf, fi) ==
2404 			    BTRFS_FILE_EXTENT_INLINE)
2405 				continue;
2406 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2407 			if (bytenr == 0)
2408 				continue;
2409 
2410 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2411 			key.offset -= btrfs_file_extent_offset(buf, fi);
2412 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2413 					       num_bytes, parent);
2414 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2415 					    key.offset, root->root_key.objectid,
2416 					    for_reloc);
2417 			if (inc)
2418 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2419 			else
2420 				ret = btrfs_free_extent(trans, &generic_ref);
2421 			if (ret)
2422 				goto fail;
2423 		} else {
2424 			bytenr = btrfs_node_blockptr(buf, i);
2425 			num_bytes = fs_info->nodesize;
2426 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2427 					       num_bytes, parent);
2428 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2429 					    root->root_key.objectid, for_reloc);
2430 			if (inc)
2431 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2432 			else
2433 				ret = btrfs_free_extent(trans, &generic_ref);
2434 			if (ret)
2435 				goto fail;
2436 		}
2437 	}
2438 	return 0;
2439 fail:
2440 	return ret;
2441 }
2442 
2443 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2444 		  struct extent_buffer *buf, int full_backref)
2445 {
2446 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2447 }
2448 
2449 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2450 		  struct extent_buffer *buf, int full_backref)
2451 {
2452 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2453 }
2454 
2455 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2456 {
2457 	struct btrfs_fs_info *fs_info = root->fs_info;
2458 	u64 flags;
2459 	u64 ret;
2460 
2461 	if (data)
2462 		flags = BTRFS_BLOCK_GROUP_DATA;
2463 	else if (root == fs_info->chunk_root)
2464 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2465 	else
2466 		flags = BTRFS_BLOCK_GROUP_METADATA;
2467 
2468 	ret = btrfs_get_alloc_profile(fs_info, flags);
2469 	return ret;
2470 }
2471 
2472 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2473 {
2474 	struct rb_node *leftmost;
2475 	u64 bytenr = 0;
2476 
2477 	read_lock(&fs_info->block_group_cache_lock);
2478 	/* Get the block group with the lowest logical start address. */
2479 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2480 	if (leftmost) {
2481 		struct btrfs_block_group *bg;
2482 
2483 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2484 		bytenr = bg->start;
2485 	}
2486 	read_unlock(&fs_info->block_group_cache_lock);
2487 
2488 	return bytenr;
2489 }
2490 
2491 static int pin_down_extent(struct btrfs_trans_handle *trans,
2492 			   struct btrfs_block_group *cache,
2493 			   u64 bytenr, u64 num_bytes, int reserved)
2494 {
2495 	struct btrfs_fs_info *fs_info = cache->fs_info;
2496 
2497 	spin_lock(&cache->space_info->lock);
2498 	spin_lock(&cache->lock);
2499 	cache->pinned += num_bytes;
2500 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2501 					     num_bytes);
2502 	if (reserved) {
2503 		cache->reserved -= num_bytes;
2504 		cache->space_info->bytes_reserved -= num_bytes;
2505 	}
2506 	spin_unlock(&cache->lock);
2507 	spin_unlock(&cache->space_info->lock);
2508 
2509 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2510 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2511 	return 0;
2512 }
2513 
2514 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2515 		     u64 bytenr, u64 num_bytes, int reserved)
2516 {
2517 	struct btrfs_block_group *cache;
2518 
2519 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2520 	BUG_ON(!cache); /* Logic error */
2521 
2522 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2523 
2524 	btrfs_put_block_group(cache);
2525 	return 0;
2526 }
2527 
2528 /*
2529  * this function must be called within transaction
2530  */
2531 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2532 				    u64 bytenr, u64 num_bytes)
2533 {
2534 	struct btrfs_block_group *cache;
2535 	int ret;
2536 
2537 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2538 	if (!cache)
2539 		return -EINVAL;
2540 
2541 	/*
2542 	 * Fully cache the free space first so that our pin removes the free space
2543 	 * from the cache.
2544 	 */
2545 	ret = btrfs_cache_block_group(cache, true);
2546 	if (ret)
2547 		goto out;
2548 
2549 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2550 
2551 	/* remove us from the free space cache (if we're there at all) */
2552 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2553 out:
2554 	btrfs_put_block_group(cache);
2555 	return ret;
2556 }
2557 
2558 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2559 				   u64 start, u64 num_bytes)
2560 {
2561 	int ret;
2562 	struct btrfs_block_group *block_group;
2563 
2564 	block_group = btrfs_lookup_block_group(fs_info, start);
2565 	if (!block_group)
2566 		return -EINVAL;
2567 
2568 	ret = btrfs_cache_block_group(block_group, true);
2569 	if (ret)
2570 		goto out;
2571 
2572 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2573 out:
2574 	btrfs_put_block_group(block_group);
2575 	return ret;
2576 }
2577 
2578 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2579 {
2580 	struct btrfs_fs_info *fs_info = eb->fs_info;
2581 	struct btrfs_file_extent_item *item;
2582 	struct btrfs_key key;
2583 	int found_type;
2584 	int i;
2585 	int ret = 0;
2586 
2587 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2588 		return 0;
2589 
2590 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2591 		btrfs_item_key_to_cpu(eb, &key, i);
2592 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2593 			continue;
2594 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2595 		found_type = btrfs_file_extent_type(eb, item);
2596 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2597 			continue;
2598 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2599 			continue;
2600 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2601 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2602 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2603 		if (ret)
2604 			break;
2605 	}
2606 
2607 	return ret;
2608 }
2609 
2610 static void
2611 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2612 {
2613 	atomic_inc(&bg->reservations);
2614 }
2615 
2616 /*
2617  * Returns the free cluster for the given space info and sets empty_cluster to
2618  * what it should be based on the mount options.
2619  */
2620 static struct btrfs_free_cluster *
2621 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2622 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2623 {
2624 	struct btrfs_free_cluster *ret = NULL;
2625 
2626 	*empty_cluster = 0;
2627 	if (btrfs_mixed_space_info(space_info))
2628 		return ret;
2629 
2630 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2631 		ret = &fs_info->meta_alloc_cluster;
2632 		if (btrfs_test_opt(fs_info, SSD))
2633 			*empty_cluster = SZ_2M;
2634 		else
2635 			*empty_cluster = SZ_64K;
2636 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2637 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2638 		*empty_cluster = SZ_2M;
2639 		ret = &fs_info->data_alloc_cluster;
2640 	}
2641 
2642 	return ret;
2643 }
2644 
2645 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2646 			      u64 start, u64 end,
2647 			      const bool return_free_space)
2648 {
2649 	struct btrfs_block_group *cache = NULL;
2650 	struct btrfs_space_info *space_info;
2651 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2652 	struct btrfs_free_cluster *cluster = NULL;
2653 	u64 len;
2654 	u64 total_unpinned = 0;
2655 	u64 empty_cluster = 0;
2656 	bool readonly;
2657 
2658 	while (start <= end) {
2659 		readonly = false;
2660 		if (!cache ||
2661 		    start >= cache->start + cache->length) {
2662 			if (cache)
2663 				btrfs_put_block_group(cache);
2664 			total_unpinned = 0;
2665 			cache = btrfs_lookup_block_group(fs_info, start);
2666 			BUG_ON(!cache); /* Logic error */
2667 
2668 			cluster = fetch_cluster_info(fs_info,
2669 						     cache->space_info,
2670 						     &empty_cluster);
2671 			empty_cluster <<= 1;
2672 		}
2673 
2674 		len = cache->start + cache->length - start;
2675 		len = min(len, end + 1 - start);
2676 
2677 		if (return_free_space)
2678 			btrfs_add_free_space(cache, start, len);
2679 
2680 		start += len;
2681 		total_unpinned += len;
2682 		space_info = cache->space_info;
2683 
2684 		/*
2685 		 * If this space cluster has been marked as fragmented and we've
2686 		 * unpinned enough in this block group to potentially allow a
2687 		 * cluster to be created inside of it go ahead and clear the
2688 		 * fragmented check.
2689 		 */
2690 		if (cluster && cluster->fragmented &&
2691 		    total_unpinned > empty_cluster) {
2692 			spin_lock(&cluster->lock);
2693 			cluster->fragmented = 0;
2694 			spin_unlock(&cluster->lock);
2695 		}
2696 
2697 		spin_lock(&space_info->lock);
2698 		spin_lock(&cache->lock);
2699 		cache->pinned -= len;
2700 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2701 		space_info->max_extent_size = 0;
2702 		if (cache->ro) {
2703 			space_info->bytes_readonly += len;
2704 			readonly = true;
2705 		} else if (btrfs_is_zoned(fs_info)) {
2706 			/* Need reset before reusing in a zoned block group */
2707 			space_info->bytes_zone_unusable += len;
2708 			readonly = true;
2709 		}
2710 		spin_unlock(&cache->lock);
2711 		if (!readonly && return_free_space &&
2712 		    global_rsv->space_info == space_info) {
2713 			spin_lock(&global_rsv->lock);
2714 			if (!global_rsv->full) {
2715 				u64 to_add = min(len, global_rsv->size -
2716 						      global_rsv->reserved);
2717 
2718 				global_rsv->reserved += to_add;
2719 				btrfs_space_info_update_bytes_may_use(fs_info,
2720 						space_info, to_add);
2721 				if (global_rsv->reserved >= global_rsv->size)
2722 					global_rsv->full = 1;
2723 				len -= to_add;
2724 			}
2725 			spin_unlock(&global_rsv->lock);
2726 		}
2727 		/* Add to any tickets we may have */
2728 		if (!readonly && return_free_space && len)
2729 			btrfs_try_granting_tickets(fs_info, space_info);
2730 		spin_unlock(&space_info->lock);
2731 	}
2732 
2733 	if (cache)
2734 		btrfs_put_block_group(cache);
2735 	return 0;
2736 }
2737 
2738 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2739 {
2740 	struct btrfs_fs_info *fs_info = trans->fs_info;
2741 	struct btrfs_block_group *block_group, *tmp;
2742 	struct list_head *deleted_bgs;
2743 	struct extent_io_tree *unpin;
2744 	u64 start;
2745 	u64 end;
2746 	int ret;
2747 
2748 	unpin = &trans->transaction->pinned_extents;
2749 
2750 	while (!TRANS_ABORTED(trans)) {
2751 		struct extent_state *cached_state = NULL;
2752 
2753 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2754 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2755 					    EXTENT_DIRTY, &cached_state);
2756 		if (ret) {
2757 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2758 			break;
2759 		}
2760 
2761 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2762 			ret = btrfs_discard_extent(fs_info, start,
2763 						   end + 1 - start, NULL);
2764 
2765 		clear_extent_dirty(unpin, start, end, &cached_state);
2766 		unpin_extent_range(fs_info, start, end, true);
2767 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2768 		free_extent_state(cached_state);
2769 		cond_resched();
2770 	}
2771 
2772 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2773 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2774 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2775 	}
2776 
2777 	/*
2778 	 * Transaction is finished.  We don't need the lock anymore.  We
2779 	 * do need to clean up the block groups in case of a transaction
2780 	 * abort.
2781 	 */
2782 	deleted_bgs = &trans->transaction->deleted_bgs;
2783 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2784 		u64 trimmed = 0;
2785 
2786 		ret = -EROFS;
2787 		if (!TRANS_ABORTED(trans))
2788 			ret = btrfs_discard_extent(fs_info,
2789 						   block_group->start,
2790 						   block_group->length,
2791 						   &trimmed);
2792 
2793 		list_del_init(&block_group->bg_list);
2794 		btrfs_unfreeze_block_group(block_group);
2795 		btrfs_put_block_group(block_group);
2796 
2797 		if (ret) {
2798 			const char *errstr = btrfs_decode_error(ret);
2799 			btrfs_warn(fs_info,
2800 			   "discard failed while removing blockgroup: errno=%d %s",
2801 				   ret, errstr);
2802 		}
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2809 				     u64 bytenr, u64 num_bytes, bool is_data)
2810 {
2811 	int ret;
2812 
2813 	if (is_data) {
2814 		struct btrfs_root *csum_root;
2815 
2816 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2817 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2818 		if (ret) {
2819 			btrfs_abort_transaction(trans, ret);
2820 			return ret;
2821 		}
2822 	}
2823 
2824 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2825 	if (ret) {
2826 		btrfs_abort_transaction(trans, ret);
2827 		return ret;
2828 	}
2829 
2830 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2831 	if (ret)
2832 		btrfs_abort_transaction(trans, ret);
2833 
2834 	return ret;
2835 }
2836 
2837 #define abort_and_dump(trans, path, fmt, args...)	\
2838 ({							\
2839 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2840 	btrfs_print_leaf(path->nodes[0]);		\
2841 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2842 })
2843 
2844 /*
2845  * Drop one or more refs of @node.
2846  *
2847  * 1. Locate the extent refs.
2848  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2849  *    Locate it, then reduce the refs number or remove the ref line completely.
2850  *
2851  * 2. Update the refs count in EXTENT/METADATA_ITEM
2852  *
2853  * Inline backref case:
2854  *
2855  * in extent tree we have:
2856  *
2857  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2858  *		refs 2 gen 6 flags DATA
2859  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2860  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2861  *
2862  * This function gets called with:
2863  *
2864  *    node->bytenr = 13631488
2865  *    node->num_bytes = 1048576
2866  *    root_objectid = FS_TREE
2867  *    owner_objectid = 257
2868  *    owner_offset = 0
2869  *    refs_to_drop = 1
2870  *
2871  * Then we should get some like:
2872  *
2873  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2874  *		refs 1 gen 6 flags DATA
2875  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2876  *
2877  * Keyed backref case:
2878  *
2879  * in extent tree we have:
2880  *
2881  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2882  *		refs 754 gen 6 flags DATA
2883  *	[...]
2884  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2885  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2886  *
2887  * This function get called with:
2888  *
2889  *    node->bytenr = 13631488
2890  *    node->num_bytes = 1048576
2891  *    root_objectid = FS_TREE
2892  *    owner_objectid = 866
2893  *    owner_offset = 0
2894  *    refs_to_drop = 1
2895  *
2896  * Then we should get some like:
2897  *
2898  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2899  *		refs 753 gen 6 flags DATA
2900  *
2901  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2902  */
2903 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2904 			       struct btrfs_delayed_ref_node *node, u64 parent,
2905 			       u64 root_objectid, u64 owner_objectid,
2906 			       u64 owner_offset, int refs_to_drop,
2907 			       struct btrfs_delayed_extent_op *extent_op)
2908 {
2909 	struct btrfs_fs_info *info = trans->fs_info;
2910 	struct btrfs_key key;
2911 	struct btrfs_path *path;
2912 	struct btrfs_root *extent_root;
2913 	struct extent_buffer *leaf;
2914 	struct btrfs_extent_item *ei;
2915 	struct btrfs_extent_inline_ref *iref;
2916 	int ret;
2917 	int is_data;
2918 	int extent_slot = 0;
2919 	int found_extent = 0;
2920 	int num_to_del = 1;
2921 	u32 item_size;
2922 	u64 refs;
2923 	u64 bytenr = node->bytenr;
2924 	u64 num_bytes = node->num_bytes;
2925 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2926 
2927 	extent_root = btrfs_extent_root(info, bytenr);
2928 	ASSERT(extent_root);
2929 
2930 	path = btrfs_alloc_path();
2931 	if (!path)
2932 		return -ENOMEM;
2933 
2934 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2935 
2936 	if (!is_data && refs_to_drop != 1) {
2937 		btrfs_crit(info,
2938 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2939 			   node->bytenr, refs_to_drop);
2940 		ret = -EINVAL;
2941 		btrfs_abort_transaction(trans, ret);
2942 		goto out;
2943 	}
2944 
2945 	if (is_data)
2946 		skinny_metadata = false;
2947 
2948 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2949 				    parent, root_objectid, owner_objectid,
2950 				    owner_offset);
2951 	if (ret == 0) {
2952 		/*
2953 		 * Either the inline backref or the SHARED_DATA_REF/
2954 		 * SHARED_BLOCK_REF is found
2955 		 *
2956 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2957 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2958 		 */
2959 		extent_slot = path->slots[0];
2960 		while (extent_slot >= 0) {
2961 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2962 					      extent_slot);
2963 			if (key.objectid != bytenr)
2964 				break;
2965 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2966 			    key.offset == num_bytes) {
2967 				found_extent = 1;
2968 				break;
2969 			}
2970 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2971 			    key.offset == owner_objectid) {
2972 				found_extent = 1;
2973 				break;
2974 			}
2975 
2976 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2977 			if (path->slots[0] - extent_slot > 5)
2978 				break;
2979 			extent_slot--;
2980 		}
2981 
2982 		if (!found_extent) {
2983 			if (iref) {
2984 				abort_and_dump(trans, path,
2985 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
2986 					   path->slots[0]);
2987 				ret = -EUCLEAN;
2988 				goto out;
2989 			}
2990 			/* Must be SHARED_* item, remove the backref first */
2991 			ret = remove_extent_backref(trans, extent_root, path,
2992 						    NULL, refs_to_drop, is_data);
2993 			if (ret) {
2994 				btrfs_abort_transaction(trans, ret);
2995 				goto out;
2996 			}
2997 			btrfs_release_path(path);
2998 
2999 			/* Slow path to locate EXTENT/METADATA_ITEM */
3000 			key.objectid = bytenr;
3001 			key.type = BTRFS_EXTENT_ITEM_KEY;
3002 			key.offset = num_bytes;
3003 
3004 			if (!is_data && skinny_metadata) {
3005 				key.type = BTRFS_METADATA_ITEM_KEY;
3006 				key.offset = owner_objectid;
3007 			}
3008 
3009 			ret = btrfs_search_slot(trans, extent_root,
3010 						&key, path, -1, 1);
3011 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3012 				/*
3013 				 * Couldn't find our skinny metadata item,
3014 				 * see if we have ye olde extent item.
3015 				 */
3016 				path->slots[0]--;
3017 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3018 						      path->slots[0]);
3019 				if (key.objectid == bytenr &&
3020 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3021 				    key.offset == num_bytes)
3022 					ret = 0;
3023 			}
3024 
3025 			if (ret > 0 && skinny_metadata) {
3026 				skinny_metadata = false;
3027 				key.objectid = bytenr;
3028 				key.type = BTRFS_EXTENT_ITEM_KEY;
3029 				key.offset = num_bytes;
3030 				btrfs_release_path(path);
3031 				ret = btrfs_search_slot(trans, extent_root,
3032 							&key, path, -1, 1);
3033 			}
3034 
3035 			if (ret) {
3036 				if (ret > 0)
3037 					btrfs_print_leaf(path->nodes[0]);
3038 				btrfs_err(info,
3039 			"umm, got %d back from search, was looking for %llu, slot %d",
3040 					  ret, bytenr, path->slots[0]);
3041 			}
3042 			if (ret < 0) {
3043 				btrfs_abort_transaction(trans, ret);
3044 				goto out;
3045 			}
3046 			extent_slot = path->slots[0];
3047 		}
3048 	} else if (WARN_ON(ret == -ENOENT)) {
3049 		abort_and_dump(trans, path,
3050 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3051 			       bytenr, parent, root_objectid, owner_objectid,
3052 			       owner_offset, path->slots[0]);
3053 		goto out;
3054 	} else {
3055 		btrfs_abort_transaction(trans, ret);
3056 		goto out;
3057 	}
3058 
3059 	leaf = path->nodes[0];
3060 	item_size = btrfs_item_size(leaf, extent_slot);
3061 	if (unlikely(item_size < sizeof(*ei))) {
3062 		ret = -EINVAL;
3063 		btrfs_print_v0_err(info);
3064 		btrfs_abort_transaction(trans, ret);
3065 		goto out;
3066 	}
3067 	ei = btrfs_item_ptr(leaf, extent_slot,
3068 			    struct btrfs_extent_item);
3069 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3070 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3071 		struct btrfs_tree_block_info *bi;
3072 
3073 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3074 			abort_and_dump(trans, path,
3075 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3076 				       key.objectid, key.type, key.offset,
3077 				       path->slots[0], owner_objectid, item_size,
3078 				       sizeof(*ei) + sizeof(*bi));
3079 			ret = -EUCLEAN;
3080 			goto out;
3081 		}
3082 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3083 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3084 	}
3085 
3086 	refs = btrfs_extent_refs(leaf, ei);
3087 	if (refs < refs_to_drop) {
3088 		abort_and_dump(trans, path,
3089 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3090 			       refs_to_drop, refs, bytenr, path->slots[0]);
3091 		ret = -EUCLEAN;
3092 		goto out;
3093 	}
3094 	refs -= refs_to_drop;
3095 
3096 	if (refs > 0) {
3097 		if (extent_op)
3098 			__run_delayed_extent_op(extent_op, leaf, ei);
3099 		/*
3100 		 * In the case of inline back ref, reference count will
3101 		 * be updated by remove_extent_backref
3102 		 */
3103 		if (iref) {
3104 			if (!found_extent) {
3105 				abort_and_dump(trans, path,
3106 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3107 					       path->slots[0]);
3108 				ret = -EUCLEAN;
3109 				goto out;
3110 			}
3111 		} else {
3112 			btrfs_set_extent_refs(leaf, ei, refs);
3113 			btrfs_mark_buffer_dirty(leaf);
3114 		}
3115 		if (found_extent) {
3116 			ret = remove_extent_backref(trans, extent_root, path,
3117 						    iref, refs_to_drop, is_data);
3118 			if (ret) {
3119 				btrfs_abort_transaction(trans, ret);
3120 				goto out;
3121 			}
3122 		}
3123 	} else {
3124 		/* In this branch refs == 1 */
3125 		if (found_extent) {
3126 			if (is_data && refs_to_drop !=
3127 			    extent_data_ref_count(path, iref)) {
3128 				abort_and_dump(trans, path,
3129 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3130 					       extent_data_ref_count(path, iref),
3131 					       refs_to_drop, path->slots[0]);
3132 				ret = -EUCLEAN;
3133 				goto out;
3134 			}
3135 			if (iref) {
3136 				if (path->slots[0] != extent_slot) {
3137 					abort_and_dump(trans, path,
3138 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3139 						       key.objectid, key.type,
3140 						       key.offset, path->slots[0]);
3141 					ret = -EUCLEAN;
3142 					goto out;
3143 				}
3144 			} else {
3145 				/*
3146 				 * No inline ref, we must be at SHARED_* item,
3147 				 * And it's single ref, it must be:
3148 				 * |	extent_slot	  ||extent_slot + 1|
3149 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3150 				 */
3151 				if (path->slots[0] != extent_slot + 1) {
3152 					abort_and_dump(trans, path,
3153 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3154 						       path->slots[0]);
3155 					ret = -EUCLEAN;
3156 					goto out;
3157 				}
3158 				path->slots[0] = extent_slot;
3159 				num_to_del = 2;
3160 			}
3161 		}
3162 
3163 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3164 				      num_to_del);
3165 		if (ret) {
3166 			btrfs_abort_transaction(trans, ret);
3167 			goto out;
3168 		}
3169 		btrfs_release_path(path);
3170 
3171 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3172 	}
3173 	btrfs_release_path(path);
3174 
3175 out:
3176 	btrfs_free_path(path);
3177 	return ret;
3178 }
3179 
3180 /*
3181  * when we free an block, it is possible (and likely) that we free the last
3182  * delayed ref for that extent as well.  This searches the delayed ref tree for
3183  * a given extent, and if there are no other delayed refs to be processed, it
3184  * removes it from the tree.
3185  */
3186 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3187 				      u64 bytenr)
3188 {
3189 	struct btrfs_delayed_ref_head *head;
3190 	struct btrfs_delayed_ref_root *delayed_refs;
3191 	int ret = 0;
3192 
3193 	delayed_refs = &trans->transaction->delayed_refs;
3194 	spin_lock(&delayed_refs->lock);
3195 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3196 	if (!head)
3197 		goto out_delayed_unlock;
3198 
3199 	spin_lock(&head->lock);
3200 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3201 		goto out;
3202 
3203 	if (cleanup_extent_op(head) != NULL)
3204 		goto out;
3205 
3206 	/*
3207 	 * waiting for the lock here would deadlock.  If someone else has it
3208 	 * locked they are already in the process of dropping it anyway
3209 	 */
3210 	if (!mutex_trylock(&head->mutex))
3211 		goto out;
3212 
3213 	btrfs_delete_ref_head(delayed_refs, head);
3214 	head->processing = false;
3215 
3216 	spin_unlock(&head->lock);
3217 	spin_unlock(&delayed_refs->lock);
3218 
3219 	BUG_ON(head->extent_op);
3220 	if (head->must_insert_reserved)
3221 		ret = 1;
3222 
3223 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3224 	mutex_unlock(&head->mutex);
3225 	btrfs_put_delayed_ref_head(head);
3226 	return ret;
3227 out:
3228 	spin_unlock(&head->lock);
3229 
3230 out_delayed_unlock:
3231 	spin_unlock(&delayed_refs->lock);
3232 	return 0;
3233 }
3234 
3235 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3236 			   u64 root_id,
3237 			   struct extent_buffer *buf,
3238 			   u64 parent, int last_ref)
3239 {
3240 	struct btrfs_fs_info *fs_info = trans->fs_info;
3241 	struct btrfs_ref generic_ref = { 0 };
3242 	int ret;
3243 
3244 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3245 			       buf->start, buf->len, parent);
3246 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3247 			    root_id, 0, false);
3248 
3249 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3250 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3251 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3252 		BUG_ON(ret); /* -ENOMEM */
3253 	}
3254 
3255 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3256 		struct btrfs_block_group *cache;
3257 		bool must_pin = false;
3258 
3259 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3260 			ret = check_ref_cleanup(trans, buf->start);
3261 			if (!ret) {
3262 				btrfs_redirty_list_add(trans->transaction, buf);
3263 				goto out;
3264 			}
3265 		}
3266 
3267 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3268 
3269 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3270 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3271 			btrfs_put_block_group(cache);
3272 			goto out;
3273 		}
3274 
3275 		/*
3276 		 * If there are tree mod log users we may have recorded mod log
3277 		 * operations for this node.  If we re-allocate this node we
3278 		 * could replay operations on this node that happened when it
3279 		 * existed in a completely different root.  For example if it
3280 		 * was part of root A, then was reallocated to root B, and we
3281 		 * are doing a btrfs_old_search_slot(root b), we could replay
3282 		 * operations that happened when the block was part of root A,
3283 		 * giving us an inconsistent view of the btree.
3284 		 *
3285 		 * We are safe from races here because at this point no other
3286 		 * node or root points to this extent buffer, so if after this
3287 		 * check a new tree mod log user joins we will not have an
3288 		 * existing log of operations on this node that we have to
3289 		 * contend with.
3290 		 */
3291 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3292 			must_pin = true;
3293 
3294 		if (must_pin || btrfs_is_zoned(fs_info)) {
3295 			btrfs_redirty_list_add(trans->transaction, buf);
3296 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3297 			btrfs_put_block_group(cache);
3298 			goto out;
3299 		}
3300 
3301 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3302 
3303 		btrfs_add_free_space(cache, buf->start, buf->len);
3304 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3305 		btrfs_put_block_group(cache);
3306 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3307 	}
3308 out:
3309 	if (last_ref) {
3310 		/*
3311 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3312 		 * matter anymore.
3313 		 */
3314 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3315 	}
3316 }
3317 
3318 /* Can return -ENOMEM */
3319 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3320 {
3321 	struct btrfs_fs_info *fs_info = trans->fs_info;
3322 	int ret;
3323 
3324 	if (btrfs_is_testing(fs_info))
3325 		return 0;
3326 
3327 	/*
3328 	 * tree log blocks never actually go into the extent allocation
3329 	 * tree, just update pinning info and exit early.
3330 	 */
3331 	if ((ref->type == BTRFS_REF_METADATA &&
3332 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3333 	    (ref->type == BTRFS_REF_DATA &&
3334 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3335 		/* unlocks the pinned mutex */
3336 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3337 		ret = 0;
3338 	} else if (ref->type == BTRFS_REF_METADATA) {
3339 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3340 	} else {
3341 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3342 	}
3343 
3344 	if (!((ref->type == BTRFS_REF_METADATA &&
3345 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3346 	      (ref->type == BTRFS_REF_DATA &&
3347 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3348 		btrfs_ref_tree_mod(fs_info, ref);
3349 
3350 	return ret;
3351 }
3352 
3353 enum btrfs_loop_type {
3354 	LOOP_CACHING_NOWAIT,
3355 	LOOP_CACHING_WAIT,
3356 	LOOP_UNSET_SIZE_CLASS,
3357 	LOOP_ALLOC_CHUNK,
3358 	LOOP_WRONG_SIZE_CLASS,
3359 	LOOP_NO_EMPTY_SIZE,
3360 };
3361 
3362 static inline void
3363 btrfs_lock_block_group(struct btrfs_block_group *cache,
3364 		       int delalloc)
3365 {
3366 	if (delalloc)
3367 		down_read(&cache->data_rwsem);
3368 }
3369 
3370 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3371 		       int delalloc)
3372 {
3373 	btrfs_get_block_group(cache);
3374 	if (delalloc)
3375 		down_read(&cache->data_rwsem);
3376 }
3377 
3378 static struct btrfs_block_group *btrfs_lock_cluster(
3379 		   struct btrfs_block_group *block_group,
3380 		   struct btrfs_free_cluster *cluster,
3381 		   int delalloc)
3382 	__acquires(&cluster->refill_lock)
3383 {
3384 	struct btrfs_block_group *used_bg = NULL;
3385 
3386 	spin_lock(&cluster->refill_lock);
3387 	while (1) {
3388 		used_bg = cluster->block_group;
3389 		if (!used_bg)
3390 			return NULL;
3391 
3392 		if (used_bg == block_group)
3393 			return used_bg;
3394 
3395 		btrfs_get_block_group(used_bg);
3396 
3397 		if (!delalloc)
3398 			return used_bg;
3399 
3400 		if (down_read_trylock(&used_bg->data_rwsem))
3401 			return used_bg;
3402 
3403 		spin_unlock(&cluster->refill_lock);
3404 
3405 		/* We should only have one-level nested. */
3406 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3407 
3408 		spin_lock(&cluster->refill_lock);
3409 		if (used_bg == cluster->block_group)
3410 			return used_bg;
3411 
3412 		up_read(&used_bg->data_rwsem);
3413 		btrfs_put_block_group(used_bg);
3414 	}
3415 }
3416 
3417 static inline void
3418 btrfs_release_block_group(struct btrfs_block_group *cache,
3419 			 int delalloc)
3420 {
3421 	if (delalloc)
3422 		up_read(&cache->data_rwsem);
3423 	btrfs_put_block_group(cache);
3424 }
3425 
3426 /*
3427  * Helper function for find_free_extent().
3428  *
3429  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3430  * Return -EAGAIN to inform caller that we need to re-search this block group
3431  * Return >0 to inform caller that we find nothing
3432  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3433  */
3434 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3435 				      struct find_free_extent_ctl *ffe_ctl,
3436 				      struct btrfs_block_group **cluster_bg_ret)
3437 {
3438 	struct btrfs_block_group *cluster_bg;
3439 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3440 	u64 aligned_cluster;
3441 	u64 offset;
3442 	int ret;
3443 
3444 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3445 	if (!cluster_bg)
3446 		goto refill_cluster;
3447 	if (cluster_bg != bg && (cluster_bg->ro ||
3448 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3449 		goto release_cluster;
3450 
3451 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3452 			ffe_ctl->num_bytes, cluster_bg->start,
3453 			&ffe_ctl->max_extent_size);
3454 	if (offset) {
3455 		/* We have a block, we're done */
3456 		spin_unlock(&last_ptr->refill_lock);
3457 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3458 		*cluster_bg_ret = cluster_bg;
3459 		ffe_ctl->found_offset = offset;
3460 		return 0;
3461 	}
3462 	WARN_ON(last_ptr->block_group != cluster_bg);
3463 
3464 release_cluster:
3465 	/*
3466 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3467 	 * lets just skip it and let the allocator find whatever block it can
3468 	 * find. If we reach this point, we will have tried the cluster
3469 	 * allocator plenty of times and not have found anything, so we are
3470 	 * likely way too fragmented for the clustering stuff to find anything.
3471 	 *
3472 	 * However, if the cluster is taken from the current block group,
3473 	 * release the cluster first, so that we stand a better chance of
3474 	 * succeeding in the unclustered allocation.
3475 	 */
3476 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3477 		spin_unlock(&last_ptr->refill_lock);
3478 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3479 		return -ENOENT;
3480 	}
3481 
3482 	/* This cluster didn't work out, free it and start over */
3483 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3484 
3485 	if (cluster_bg != bg)
3486 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3487 
3488 refill_cluster:
3489 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3490 		spin_unlock(&last_ptr->refill_lock);
3491 		return -ENOENT;
3492 	}
3493 
3494 	aligned_cluster = max_t(u64,
3495 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3496 			bg->full_stripe_len);
3497 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3498 			ffe_ctl->num_bytes, aligned_cluster);
3499 	if (ret == 0) {
3500 		/* Now pull our allocation out of this cluster */
3501 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3502 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3503 				&ffe_ctl->max_extent_size);
3504 		if (offset) {
3505 			/* We found one, proceed */
3506 			spin_unlock(&last_ptr->refill_lock);
3507 			ffe_ctl->found_offset = offset;
3508 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3509 			return 0;
3510 		}
3511 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3512 		   !ffe_ctl->retry_clustered) {
3513 		spin_unlock(&last_ptr->refill_lock);
3514 
3515 		ffe_ctl->retry_clustered = true;
3516 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3517 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3518 		return -EAGAIN;
3519 	}
3520 	/*
3521 	 * At this point we either didn't find a cluster or we weren't able to
3522 	 * allocate a block from our cluster.  Free the cluster we've been
3523 	 * trying to use, and go to the next block group.
3524 	 */
3525 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3526 	spin_unlock(&last_ptr->refill_lock);
3527 	return 1;
3528 }
3529 
3530 /*
3531  * Return >0 to inform caller that we find nothing
3532  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3533  * Return -EAGAIN to inform caller that we need to re-search this block group
3534  */
3535 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3536 					struct find_free_extent_ctl *ffe_ctl)
3537 {
3538 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3539 	u64 offset;
3540 
3541 	/*
3542 	 * We are doing an unclustered allocation, set the fragmented flag so
3543 	 * we don't bother trying to setup a cluster again until we get more
3544 	 * space.
3545 	 */
3546 	if (unlikely(last_ptr)) {
3547 		spin_lock(&last_ptr->lock);
3548 		last_ptr->fragmented = 1;
3549 		spin_unlock(&last_ptr->lock);
3550 	}
3551 	if (ffe_ctl->cached) {
3552 		struct btrfs_free_space_ctl *free_space_ctl;
3553 
3554 		free_space_ctl = bg->free_space_ctl;
3555 		spin_lock(&free_space_ctl->tree_lock);
3556 		if (free_space_ctl->free_space <
3557 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3558 		    ffe_ctl->empty_size) {
3559 			ffe_ctl->total_free_space = max_t(u64,
3560 					ffe_ctl->total_free_space,
3561 					free_space_ctl->free_space);
3562 			spin_unlock(&free_space_ctl->tree_lock);
3563 			return 1;
3564 		}
3565 		spin_unlock(&free_space_ctl->tree_lock);
3566 	}
3567 
3568 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3569 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3570 			&ffe_ctl->max_extent_size);
3571 
3572 	/*
3573 	 * If we didn't find a chunk, and we haven't failed on this block group
3574 	 * before, and this block group is in the middle of caching and we are
3575 	 * ok with waiting, then go ahead and wait for progress to be made, and
3576 	 * set @retry_unclustered to true.
3577 	 *
3578 	 * If @retry_unclustered is true then we've already waited on this
3579 	 * block group once and should move on to the next block group.
3580 	 */
3581 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3582 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3583 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3584 						      ffe_ctl->empty_size);
3585 		ffe_ctl->retry_unclustered = true;
3586 		return -EAGAIN;
3587 	} else if (!offset) {
3588 		return 1;
3589 	}
3590 	ffe_ctl->found_offset = offset;
3591 	return 0;
3592 }
3593 
3594 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3595 				   struct find_free_extent_ctl *ffe_ctl,
3596 				   struct btrfs_block_group **bg_ret)
3597 {
3598 	int ret;
3599 
3600 	/* We want to try and use the cluster allocator, so lets look there */
3601 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3602 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3603 		if (ret >= 0 || ret == -EAGAIN)
3604 			return ret;
3605 		/* ret == -ENOENT case falls through */
3606 	}
3607 
3608 	return find_free_extent_unclustered(block_group, ffe_ctl);
3609 }
3610 
3611 /*
3612  * Tree-log block group locking
3613  * ============================
3614  *
3615  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3616  * indicates the starting address of a block group, which is reserved only
3617  * for tree-log metadata.
3618  *
3619  * Lock nesting
3620  * ============
3621  *
3622  * space_info::lock
3623  *   block_group::lock
3624  *     fs_info::treelog_bg_lock
3625  */
3626 
3627 /*
3628  * Simple allocator for sequential-only block group. It only allows sequential
3629  * allocation. No need to play with trees. This function also reserves the
3630  * bytes as in btrfs_add_reserved_bytes.
3631  */
3632 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3633 			       struct find_free_extent_ctl *ffe_ctl,
3634 			       struct btrfs_block_group **bg_ret)
3635 {
3636 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3637 	struct btrfs_space_info *space_info = block_group->space_info;
3638 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3639 	u64 start = block_group->start;
3640 	u64 num_bytes = ffe_ctl->num_bytes;
3641 	u64 avail;
3642 	u64 bytenr = block_group->start;
3643 	u64 log_bytenr;
3644 	u64 data_reloc_bytenr;
3645 	int ret = 0;
3646 	bool skip = false;
3647 
3648 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3649 
3650 	/*
3651 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3652 	 * group, and vice versa.
3653 	 */
3654 	spin_lock(&fs_info->treelog_bg_lock);
3655 	log_bytenr = fs_info->treelog_bg;
3656 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3657 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3658 		skip = true;
3659 	spin_unlock(&fs_info->treelog_bg_lock);
3660 	if (skip)
3661 		return 1;
3662 
3663 	/*
3664 	 * Do not allow non-relocation blocks in the dedicated relocation block
3665 	 * group, and vice versa.
3666 	 */
3667 	spin_lock(&fs_info->relocation_bg_lock);
3668 	data_reloc_bytenr = fs_info->data_reloc_bg;
3669 	if (data_reloc_bytenr &&
3670 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3671 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3672 		skip = true;
3673 	spin_unlock(&fs_info->relocation_bg_lock);
3674 	if (skip)
3675 		return 1;
3676 
3677 	/* Check RO and no space case before trying to activate it */
3678 	spin_lock(&block_group->lock);
3679 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3680 		ret = 1;
3681 		/*
3682 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3683 		 * Return the error after taking the locks.
3684 		 */
3685 	}
3686 	spin_unlock(&block_group->lock);
3687 
3688 	if (!ret && !btrfs_zone_activate(block_group)) {
3689 		ret = 1;
3690 		/*
3691 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3692 		 * Return the error after taking the locks.
3693 		 */
3694 	}
3695 
3696 	spin_lock(&space_info->lock);
3697 	spin_lock(&block_group->lock);
3698 	spin_lock(&fs_info->treelog_bg_lock);
3699 	spin_lock(&fs_info->relocation_bg_lock);
3700 
3701 	if (ret)
3702 		goto out;
3703 
3704 	ASSERT(!ffe_ctl->for_treelog ||
3705 	       block_group->start == fs_info->treelog_bg ||
3706 	       fs_info->treelog_bg == 0);
3707 	ASSERT(!ffe_ctl->for_data_reloc ||
3708 	       block_group->start == fs_info->data_reloc_bg ||
3709 	       fs_info->data_reloc_bg == 0);
3710 
3711 	if (block_group->ro ||
3712 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3713 		ret = 1;
3714 		goto out;
3715 	}
3716 
3717 	/*
3718 	 * Do not allow currently using block group to be tree-log dedicated
3719 	 * block group.
3720 	 */
3721 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3722 	    (block_group->used || block_group->reserved)) {
3723 		ret = 1;
3724 		goto out;
3725 	}
3726 
3727 	/*
3728 	 * Do not allow currently used block group to be the data relocation
3729 	 * dedicated block group.
3730 	 */
3731 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3732 	    (block_group->used || block_group->reserved)) {
3733 		ret = 1;
3734 		goto out;
3735 	}
3736 
3737 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3738 	avail = block_group->zone_capacity - block_group->alloc_offset;
3739 	if (avail < num_bytes) {
3740 		if (ffe_ctl->max_extent_size < avail) {
3741 			/*
3742 			 * With sequential allocator, free space is always
3743 			 * contiguous
3744 			 */
3745 			ffe_ctl->max_extent_size = avail;
3746 			ffe_ctl->total_free_space = avail;
3747 		}
3748 		ret = 1;
3749 		goto out;
3750 	}
3751 
3752 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3753 		fs_info->treelog_bg = block_group->start;
3754 
3755 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3756 		fs_info->data_reloc_bg = block_group->start;
3757 
3758 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3759 	block_group->alloc_offset += num_bytes;
3760 	spin_lock(&ctl->tree_lock);
3761 	ctl->free_space -= num_bytes;
3762 	spin_unlock(&ctl->tree_lock);
3763 
3764 	/*
3765 	 * We do not check if found_offset is aligned to stripesize. The
3766 	 * address is anyway rewritten when using zone append writing.
3767 	 */
3768 
3769 	ffe_ctl->search_start = ffe_ctl->found_offset;
3770 
3771 out:
3772 	if (ret && ffe_ctl->for_treelog)
3773 		fs_info->treelog_bg = 0;
3774 	if (ret && ffe_ctl->for_data_reloc &&
3775 	    fs_info->data_reloc_bg == block_group->start) {
3776 		/*
3777 		 * Do not allow further allocations from this block group.
3778 		 * Compared to increasing the ->ro, setting the
3779 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3780 		 *  writers to come in. See btrfs_inc_nocow_writers().
3781 		 *
3782 		 * We need to disable an allocation to avoid an allocation of
3783 		 * regular (non-relocation data) extent. With mix of relocation
3784 		 * extents and regular extents, we can dispatch WRITE commands
3785 		 * (for relocation extents) and ZONE APPEND commands (for
3786 		 * regular extents) at the same time to the same zone, which
3787 		 * easily break the write pointer.
3788 		 */
3789 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3790 		fs_info->data_reloc_bg = 0;
3791 	}
3792 	spin_unlock(&fs_info->relocation_bg_lock);
3793 	spin_unlock(&fs_info->treelog_bg_lock);
3794 	spin_unlock(&block_group->lock);
3795 	spin_unlock(&space_info->lock);
3796 	return ret;
3797 }
3798 
3799 static int do_allocation(struct btrfs_block_group *block_group,
3800 			 struct find_free_extent_ctl *ffe_ctl,
3801 			 struct btrfs_block_group **bg_ret)
3802 {
3803 	switch (ffe_ctl->policy) {
3804 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3805 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3806 	case BTRFS_EXTENT_ALLOC_ZONED:
3807 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3808 	default:
3809 		BUG();
3810 	}
3811 }
3812 
3813 static void release_block_group(struct btrfs_block_group *block_group,
3814 				struct find_free_extent_ctl *ffe_ctl,
3815 				int delalloc)
3816 {
3817 	switch (ffe_ctl->policy) {
3818 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3819 		ffe_ctl->retry_clustered = false;
3820 		ffe_ctl->retry_unclustered = false;
3821 		break;
3822 	case BTRFS_EXTENT_ALLOC_ZONED:
3823 		/* Nothing to do */
3824 		break;
3825 	default:
3826 		BUG();
3827 	}
3828 
3829 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3830 	       ffe_ctl->index);
3831 	btrfs_release_block_group(block_group, delalloc);
3832 }
3833 
3834 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3835 				   struct btrfs_key *ins)
3836 {
3837 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3838 
3839 	if (!ffe_ctl->use_cluster && last_ptr) {
3840 		spin_lock(&last_ptr->lock);
3841 		last_ptr->window_start = ins->objectid;
3842 		spin_unlock(&last_ptr->lock);
3843 	}
3844 }
3845 
3846 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3847 			 struct btrfs_key *ins)
3848 {
3849 	switch (ffe_ctl->policy) {
3850 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3851 		found_extent_clustered(ffe_ctl, ins);
3852 		break;
3853 	case BTRFS_EXTENT_ALLOC_ZONED:
3854 		/* Nothing to do */
3855 		break;
3856 	default:
3857 		BUG();
3858 	}
3859 }
3860 
3861 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3862 				    struct find_free_extent_ctl *ffe_ctl)
3863 {
3864 	/* If we can activate new zone, just allocate a chunk and use it */
3865 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3866 		return 0;
3867 
3868 	/*
3869 	 * We already reached the max active zones. Try to finish one block
3870 	 * group to make a room for a new block group. This is only possible
3871 	 * for a data block group because btrfs_zone_finish() may need to wait
3872 	 * for a running transaction which can cause a deadlock for metadata
3873 	 * allocation.
3874 	 */
3875 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3876 		int ret = btrfs_zone_finish_one_bg(fs_info);
3877 
3878 		if (ret == 1)
3879 			return 0;
3880 		else if (ret < 0)
3881 			return ret;
3882 	}
3883 
3884 	/*
3885 	 * If we have enough free space left in an already active block group
3886 	 * and we can't activate any other zone now, do not allow allocating a
3887 	 * new chunk and let find_free_extent() retry with a smaller size.
3888 	 */
3889 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3890 		return -ENOSPC;
3891 
3892 	/*
3893 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3894 	 * activate a new block group, allocating it may not help. Let's tell a
3895 	 * caller to try again and hope it progress something by writing some
3896 	 * parts of the region. That is only possible for data block groups,
3897 	 * where a part of the region can be written.
3898 	 */
3899 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3900 		return -EAGAIN;
3901 
3902 	/*
3903 	 * We cannot activate a new block group and no enough space left in any
3904 	 * block groups. So, allocating a new block group may not help. But,
3905 	 * there is nothing to do anyway, so let's go with it.
3906 	 */
3907 	return 0;
3908 }
3909 
3910 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3911 			      struct find_free_extent_ctl *ffe_ctl)
3912 {
3913 	switch (ffe_ctl->policy) {
3914 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3915 		return 0;
3916 	case BTRFS_EXTENT_ALLOC_ZONED:
3917 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3918 	default:
3919 		BUG();
3920 	}
3921 }
3922 
3923 /*
3924  * Return >0 means caller needs to re-search for free extent
3925  * Return 0 means we have the needed free extent.
3926  * Return <0 means we failed to locate any free extent.
3927  */
3928 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3929 					struct btrfs_key *ins,
3930 					struct find_free_extent_ctl *ffe_ctl,
3931 					bool full_search)
3932 {
3933 	struct btrfs_root *root = fs_info->chunk_root;
3934 	int ret;
3935 
3936 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3937 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3938 		ffe_ctl->orig_have_caching_bg = true;
3939 
3940 	if (ins->objectid) {
3941 		found_extent(ffe_ctl, ins);
3942 		return 0;
3943 	}
3944 
3945 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3946 		return 1;
3947 
3948 	ffe_ctl->index++;
3949 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3950 		return 1;
3951 
3952 	/*
3953 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3954 	 *			caching kthreads as we move along
3955 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3956 	 * LOOP_UNSET_SIZE_CLASS, allow unset size class
3957 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3958 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3959 	 *		       again
3960 	 */
3961 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3962 		ffe_ctl->index = 0;
3963 		/*
3964 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
3965 		 * any uncached bgs and we've already done a full search
3966 		 * through.
3967 		 */
3968 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
3969 		    (!ffe_ctl->orig_have_caching_bg && full_search))
3970 			ffe_ctl->loop++;
3971 		ffe_ctl->loop++;
3972 
3973 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3974 			struct btrfs_trans_handle *trans;
3975 			int exist = 0;
3976 
3977 			/* Check if allocation policy allows to create a new chunk */
3978 			ret = can_allocate_chunk(fs_info, ffe_ctl);
3979 			if (ret)
3980 				return ret;
3981 
3982 			trans = current->journal_info;
3983 			if (trans)
3984 				exist = 1;
3985 			else
3986 				trans = btrfs_join_transaction(root);
3987 
3988 			if (IS_ERR(trans)) {
3989 				ret = PTR_ERR(trans);
3990 				return ret;
3991 			}
3992 
3993 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3994 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
3995 
3996 			/* Do not bail out on ENOSPC since we can do more. */
3997 			if (ret == -ENOSPC) {
3998 				ret = 0;
3999 				ffe_ctl->loop++;
4000 			}
4001 			else if (ret < 0)
4002 				btrfs_abort_transaction(trans, ret);
4003 			else
4004 				ret = 0;
4005 			if (!exist)
4006 				btrfs_end_transaction(trans);
4007 			if (ret)
4008 				return ret;
4009 		}
4010 
4011 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4012 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4013 				return -ENOSPC;
4014 
4015 			/*
4016 			 * Don't loop again if we already have no empty_size and
4017 			 * no empty_cluster.
4018 			 */
4019 			if (ffe_ctl->empty_size == 0 &&
4020 			    ffe_ctl->empty_cluster == 0)
4021 				return -ENOSPC;
4022 			ffe_ctl->empty_size = 0;
4023 			ffe_ctl->empty_cluster = 0;
4024 		}
4025 		return 1;
4026 	}
4027 	return -ENOSPC;
4028 }
4029 
4030 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4031 					      struct btrfs_block_group *bg)
4032 {
4033 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4034 		return true;
4035 	if (!btrfs_block_group_should_use_size_class(bg))
4036 		return true;
4037 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4038 		return true;
4039 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4040 	    bg->size_class == BTRFS_BG_SZ_NONE)
4041 		return true;
4042 	return ffe_ctl->size_class == bg->size_class;
4043 }
4044 
4045 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4046 					struct find_free_extent_ctl *ffe_ctl,
4047 					struct btrfs_space_info *space_info,
4048 					struct btrfs_key *ins)
4049 {
4050 	/*
4051 	 * If our free space is heavily fragmented we may not be able to make
4052 	 * big contiguous allocations, so instead of doing the expensive search
4053 	 * for free space, simply return ENOSPC with our max_extent_size so we
4054 	 * can go ahead and search for a more manageable chunk.
4055 	 *
4056 	 * If our max_extent_size is large enough for our allocation simply
4057 	 * disable clustering since we will likely not be able to find enough
4058 	 * space to create a cluster and induce latency trying.
4059 	 */
4060 	if (space_info->max_extent_size) {
4061 		spin_lock(&space_info->lock);
4062 		if (space_info->max_extent_size &&
4063 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4064 			ins->offset = space_info->max_extent_size;
4065 			spin_unlock(&space_info->lock);
4066 			return -ENOSPC;
4067 		} else if (space_info->max_extent_size) {
4068 			ffe_ctl->use_cluster = false;
4069 		}
4070 		spin_unlock(&space_info->lock);
4071 	}
4072 
4073 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4074 					       &ffe_ctl->empty_cluster);
4075 	if (ffe_ctl->last_ptr) {
4076 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4077 
4078 		spin_lock(&last_ptr->lock);
4079 		if (last_ptr->block_group)
4080 			ffe_ctl->hint_byte = last_ptr->window_start;
4081 		if (last_ptr->fragmented) {
4082 			/*
4083 			 * We still set window_start so we can keep track of the
4084 			 * last place we found an allocation to try and save
4085 			 * some time.
4086 			 */
4087 			ffe_ctl->hint_byte = last_ptr->window_start;
4088 			ffe_ctl->use_cluster = false;
4089 		}
4090 		spin_unlock(&last_ptr->lock);
4091 	}
4092 
4093 	return 0;
4094 }
4095 
4096 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4097 			      struct find_free_extent_ctl *ffe_ctl,
4098 			      struct btrfs_space_info *space_info,
4099 			      struct btrfs_key *ins)
4100 {
4101 	switch (ffe_ctl->policy) {
4102 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4103 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4104 						    space_info, ins);
4105 	case BTRFS_EXTENT_ALLOC_ZONED:
4106 		if (ffe_ctl->for_treelog) {
4107 			spin_lock(&fs_info->treelog_bg_lock);
4108 			if (fs_info->treelog_bg)
4109 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4110 			spin_unlock(&fs_info->treelog_bg_lock);
4111 		}
4112 		if (ffe_ctl->for_data_reloc) {
4113 			spin_lock(&fs_info->relocation_bg_lock);
4114 			if (fs_info->data_reloc_bg)
4115 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4116 			spin_unlock(&fs_info->relocation_bg_lock);
4117 		}
4118 		return 0;
4119 	default:
4120 		BUG();
4121 	}
4122 }
4123 
4124 /*
4125  * walks the btree of allocated extents and find a hole of a given size.
4126  * The key ins is changed to record the hole:
4127  * ins->objectid == start position
4128  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4129  * ins->offset == the size of the hole.
4130  * Any available blocks before search_start are skipped.
4131  *
4132  * If there is no suitable free space, we will record the max size of
4133  * the free space extent currently.
4134  *
4135  * The overall logic and call chain:
4136  *
4137  * find_free_extent()
4138  * |- Iterate through all block groups
4139  * |  |- Get a valid block group
4140  * |  |- Try to do clustered allocation in that block group
4141  * |  |- Try to do unclustered allocation in that block group
4142  * |  |- Check if the result is valid
4143  * |  |  |- If valid, then exit
4144  * |  |- Jump to next block group
4145  * |
4146  * |- Push harder to find free extents
4147  *    |- If not found, re-iterate all block groups
4148  */
4149 static noinline int find_free_extent(struct btrfs_root *root,
4150 				     struct btrfs_key *ins,
4151 				     struct find_free_extent_ctl *ffe_ctl)
4152 {
4153 	struct btrfs_fs_info *fs_info = root->fs_info;
4154 	int ret = 0;
4155 	int cache_block_group_error = 0;
4156 	struct btrfs_block_group *block_group = NULL;
4157 	struct btrfs_space_info *space_info;
4158 	bool full_search = false;
4159 
4160 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4161 
4162 	ffe_ctl->search_start = 0;
4163 	/* For clustered allocation */
4164 	ffe_ctl->empty_cluster = 0;
4165 	ffe_ctl->last_ptr = NULL;
4166 	ffe_ctl->use_cluster = true;
4167 	ffe_ctl->have_caching_bg = false;
4168 	ffe_ctl->orig_have_caching_bg = false;
4169 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4170 	ffe_ctl->loop = 0;
4171 	/* For clustered allocation */
4172 	ffe_ctl->retry_clustered = false;
4173 	ffe_ctl->retry_unclustered = false;
4174 	ffe_ctl->cached = 0;
4175 	ffe_ctl->max_extent_size = 0;
4176 	ffe_ctl->total_free_space = 0;
4177 	ffe_ctl->found_offset = 0;
4178 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4179 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4180 
4181 	if (btrfs_is_zoned(fs_info))
4182 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4183 
4184 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4185 	ins->objectid = 0;
4186 	ins->offset = 0;
4187 
4188 	trace_find_free_extent(root, ffe_ctl);
4189 
4190 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4191 	if (!space_info) {
4192 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4193 		return -ENOSPC;
4194 	}
4195 
4196 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4197 	if (ret < 0)
4198 		return ret;
4199 
4200 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4201 				    first_logical_byte(fs_info));
4202 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4203 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4204 		block_group = btrfs_lookup_block_group(fs_info,
4205 						       ffe_ctl->search_start);
4206 		/*
4207 		 * we don't want to use the block group if it doesn't match our
4208 		 * allocation bits, or if its not cached.
4209 		 *
4210 		 * However if we are re-searching with an ideal block group
4211 		 * picked out then we don't care that the block group is cached.
4212 		 */
4213 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4214 		    block_group->cached != BTRFS_CACHE_NO) {
4215 			down_read(&space_info->groups_sem);
4216 			if (list_empty(&block_group->list) ||
4217 			    block_group->ro) {
4218 				/*
4219 				 * someone is removing this block group,
4220 				 * we can't jump into the have_block_group
4221 				 * target because our list pointers are not
4222 				 * valid
4223 				 */
4224 				btrfs_put_block_group(block_group);
4225 				up_read(&space_info->groups_sem);
4226 			} else {
4227 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4228 							block_group->flags);
4229 				btrfs_lock_block_group(block_group,
4230 						       ffe_ctl->delalloc);
4231 				ffe_ctl->hinted = true;
4232 				goto have_block_group;
4233 			}
4234 		} else if (block_group) {
4235 			btrfs_put_block_group(block_group);
4236 		}
4237 	}
4238 search:
4239 	trace_find_free_extent_search_loop(root, ffe_ctl);
4240 	ffe_ctl->have_caching_bg = false;
4241 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4242 	    ffe_ctl->index == 0)
4243 		full_search = true;
4244 	down_read(&space_info->groups_sem);
4245 	list_for_each_entry(block_group,
4246 			    &space_info->block_groups[ffe_ctl->index], list) {
4247 		struct btrfs_block_group *bg_ret;
4248 
4249 		ffe_ctl->hinted = false;
4250 		/* If the block group is read-only, we can skip it entirely. */
4251 		if (unlikely(block_group->ro)) {
4252 			if (ffe_ctl->for_treelog)
4253 				btrfs_clear_treelog_bg(block_group);
4254 			if (ffe_ctl->for_data_reloc)
4255 				btrfs_clear_data_reloc_bg(block_group);
4256 			continue;
4257 		}
4258 
4259 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4260 		ffe_ctl->search_start = block_group->start;
4261 
4262 		/*
4263 		 * this can happen if we end up cycling through all the
4264 		 * raid types, but we want to make sure we only allocate
4265 		 * for the proper type.
4266 		 */
4267 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4268 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4269 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4270 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4271 				BTRFS_BLOCK_GROUP_RAID10;
4272 
4273 			/*
4274 			 * if they asked for extra copies and this block group
4275 			 * doesn't provide them, bail.  This does allow us to
4276 			 * fill raid0 from raid1.
4277 			 */
4278 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4279 				goto loop;
4280 
4281 			/*
4282 			 * This block group has different flags than we want.
4283 			 * It's possible that we have MIXED_GROUP flag but no
4284 			 * block group is mixed.  Just skip such block group.
4285 			 */
4286 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4287 			continue;
4288 		}
4289 
4290 have_block_group:
4291 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4292 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4293 		if (unlikely(!ffe_ctl->cached)) {
4294 			ffe_ctl->have_caching_bg = true;
4295 			ret = btrfs_cache_block_group(block_group, false);
4296 
4297 			/*
4298 			 * If we get ENOMEM here or something else we want to
4299 			 * try other block groups, because it may not be fatal.
4300 			 * However if we can't find anything else we need to
4301 			 * save our return here so that we return the actual
4302 			 * error that caused problems, not ENOSPC.
4303 			 */
4304 			if (ret < 0) {
4305 				if (!cache_block_group_error)
4306 					cache_block_group_error = ret;
4307 				ret = 0;
4308 				goto loop;
4309 			}
4310 			ret = 0;
4311 		}
4312 
4313 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4314 			goto loop;
4315 
4316 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4317 			goto loop;
4318 
4319 		bg_ret = NULL;
4320 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4321 		if (ret == 0) {
4322 			if (bg_ret && bg_ret != block_group) {
4323 				btrfs_release_block_group(block_group,
4324 							  ffe_ctl->delalloc);
4325 				block_group = bg_ret;
4326 			}
4327 		} else if (ret == -EAGAIN) {
4328 			goto have_block_group;
4329 		} else if (ret > 0) {
4330 			goto loop;
4331 		}
4332 
4333 		/* Checks */
4334 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4335 						 fs_info->stripesize);
4336 
4337 		/* move on to the next group */
4338 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4339 		    block_group->start + block_group->length) {
4340 			btrfs_add_free_space_unused(block_group,
4341 					    ffe_ctl->found_offset,
4342 					    ffe_ctl->num_bytes);
4343 			goto loop;
4344 		}
4345 
4346 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4347 			btrfs_add_free_space_unused(block_group,
4348 					ffe_ctl->found_offset,
4349 					ffe_ctl->search_start - ffe_ctl->found_offset);
4350 
4351 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4352 					       ffe_ctl->num_bytes,
4353 					       ffe_ctl->delalloc,
4354 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4355 		if (ret == -EAGAIN) {
4356 			btrfs_add_free_space_unused(block_group,
4357 					ffe_ctl->found_offset,
4358 					ffe_ctl->num_bytes);
4359 			goto loop;
4360 		}
4361 		btrfs_inc_block_group_reservations(block_group);
4362 
4363 		/* we are all good, lets return */
4364 		ins->objectid = ffe_ctl->search_start;
4365 		ins->offset = ffe_ctl->num_bytes;
4366 
4367 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4368 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4369 		break;
4370 loop:
4371 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4372 		cond_resched();
4373 	}
4374 	up_read(&space_info->groups_sem);
4375 
4376 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4377 	if (ret > 0)
4378 		goto search;
4379 
4380 	if (ret == -ENOSPC && !cache_block_group_error) {
4381 		/*
4382 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4383 		 * any contiguous hole.
4384 		 */
4385 		if (!ffe_ctl->max_extent_size)
4386 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4387 		spin_lock(&space_info->lock);
4388 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4389 		spin_unlock(&space_info->lock);
4390 		ins->offset = ffe_ctl->max_extent_size;
4391 	} else if (ret == -ENOSPC) {
4392 		ret = cache_block_group_error;
4393 	}
4394 	return ret;
4395 }
4396 
4397 /*
4398  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4399  *			  hole that is at least as big as @num_bytes.
4400  *
4401  * @root           -	The root that will contain this extent
4402  *
4403  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4404  *			is used for accounting purposes. This value differs
4405  *			from @num_bytes only in the case of compressed extents.
4406  *
4407  * @num_bytes      -	Number of bytes to allocate on-disk.
4408  *
4409  * @min_alloc_size -	Indicates the minimum amount of space that the
4410  *			allocator should try to satisfy. In some cases
4411  *			@num_bytes may be larger than what is required and if
4412  *			the filesystem is fragmented then allocation fails.
4413  *			However, the presence of @min_alloc_size gives a
4414  *			chance to try and satisfy the smaller allocation.
4415  *
4416  * @empty_size     -	A hint that you plan on doing more COW. This is the
4417  *			size in bytes the allocator should try to find free
4418  *			next to the block it returns.  This is just a hint and
4419  *			may be ignored by the allocator.
4420  *
4421  * @hint_byte      -	Hint to the allocator to start searching above the byte
4422  *			address passed. It might be ignored.
4423  *
4424  * @ins            -	This key is modified to record the found hole. It will
4425  *			have the following values:
4426  *			ins->objectid == start position
4427  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4428  *			ins->offset == the size of the hole.
4429  *
4430  * @is_data        -	Boolean flag indicating whether an extent is
4431  *			allocated for data (true) or metadata (false)
4432  *
4433  * @delalloc       -	Boolean flag indicating whether this allocation is for
4434  *			delalloc or not. If 'true' data_rwsem of block groups
4435  *			is going to be acquired.
4436  *
4437  *
4438  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4439  * case -ENOSPC is returned then @ins->offset will contain the size of the
4440  * largest available hole the allocator managed to find.
4441  */
4442 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4443 			 u64 num_bytes, u64 min_alloc_size,
4444 			 u64 empty_size, u64 hint_byte,
4445 			 struct btrfs_key *ins, int is_data, int delalloc)
4446 {
4447 	struct btrfs_fs_info *fs_info = root->fs_info;
4448 	struct find_free_extent_ctl ffe_ctl = {};
4449 	bool final_tried = num_bytes == min_alloc_size;
4450 	u64 flags;
4451 	int ret;
4452 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4453 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4454 
4455 	flags = get_alloc_profile_by_root(root, is_data);
4456 again:
4457 	WARN_ON(num_bytes < fs_info->sectorsize);
4458 
4459 	ffe_ctl.ram_bytes = ram_bytes;
4460 	ffe_ctl.num_bytes = num_bytes;
4461 	ffe_ctl.min_alloc_size = min_alloc_size;
4462 	ffe_ctl.empty_size = empty_size;
4463 	ffe_ctl.flags = flags;
4464 	ffe_ctl.delalloc = delalloc;
4465 	ffe_ctl.hint_byte = hint_byte;
4466 	ffe_ctl.for_treelog = for_treelog;
4467 	ffe_ctl.for_data_reloc = for_data_reloc;
4468 
4469 	ret = find_free_extent(root, ins, &ffe_ctl);
4470 	if (!ret && !is_data) {
4471 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4472 	} else if (ret == -ENOSPC) {
4473 		if (!final_tried && ins->offset) {
4474 			num_bytes = min(num_bytes >> 1, ins->offset);
4475 			num_bytes = round_down(num_bytes,
4476 					       fs_info->sectorsize);
4477 			num_bytes = max(num_bytes, min_alloc_size);
4478 			ram_bytes = num_bytes;
4479 			if (num_bytes == min_alloc_size)
4480 				final_tried = true;
4481 			goto again;
4482 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4483 			struct btrfs_space_info *sinfo;
4484 
4485 			sinfo = btrfs_find_space_info(fs_info, flags);
4486 			btrfs_err(fs_info,
4487 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4488 				  flags, num_bytes, for_treelog, for_data_reloc);
4489 			if (sinfo)
4490 				btrfs_dump_space_info(fs_info, sinfo,
4491 						      num_bytes, 1);
4492 		}
4493 	}
4494 
4495 	return ret;
4496 }
4497 
4498 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4499 			       u64 start, u64 len, int delalloc)
4500 {
4501 	struct btrfs_block_group *cache;
4502 
4503 	cache = btrfs_lookup_block_group(fs_info, start);
4504 	if (!cache) {
4505 		btrfs_err(fs_info, "Unable to find block group for %llu",
4506 			  start);
4507 		return -ENOSPC;
4508 	}
4509 
4510 	btrfs_add_free_space(cache, start, len);
4511 	btrfs_free_reserved_bytes(cache, len, delalloc);
4512 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4513 
4514 	btrfs_put_block_group(cache);
4515 	return 0;
4516 }
4517 
4518 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4519 			      u64 len)
4520 {
4521 	struct btrfs_block_group *cache;
4522 	int ret = 0;
4523 
4524 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4525 	if (!cache) {
4526 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4527 			  start);
4528 		return -ENOSPC;
4529 	}
4530 
4531 	ret = pin_down_extent(trans, cache, start, len, 1);
4532 	btrfs_put_block_group(cache);
4533 	return ret;
4534 }
4535 
4536 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4537 				 u64 num_bytes)
4538 {
4539 	struct btrfs_fs_info *fs_info = trans->fs_info;
4540 	int ret;
4541 
4542 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4543 	if (ret)
4544 		return ret;
4545 
4546 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4547 	if (ret) {
4548 		ASSERT(!ret);
4549 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4550 			  bytenr, num_bytes);
4551 		return ret;
4552 	}
4553 
4554 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4555 	return 0;
4556 }
4557 
4558 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4559 				      u64 parent, u64 root_objectid,
4560 				      u64 flags, u64 owner, u64 offset,
4561 				      struct btrfs_key *ins, int ref_mod)
4562 {
4563 	struct btrfs_fs_info *fs_info = trans->fs_info;
4564 	struct btrfs_root *extent_root;
4565 	int ret;
4566 	struct btrfs_extent_item *extent_item;
4567 	struct btrfs_extent_inline_ref *iref;
4568 	struct btrfs_path *path;
4569 	struct extent_buffer *leaf;
4570 	int type;
4571 	u32 size;
4572 
4573 	if (parent > 0)
4574 		type = BTRFS_SHARED_DATA_REF_KEY;
4575 	else
4576 		type = BTRFS_EXTENT_DATA_REF_KEY;
4577 
4578 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4579 
4580 	path = btrfs_alloc_path();
4581 	if (!path)
4582 		return -ENOMEM;
4583 
4584 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4585 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4586 	if (ret) {
4587 		btrfs_free_path(path);
4588 		return ret;
4589 	}
4590 
4591 	leaf = path->nodes[0];
4592 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4593 				     struct btrfs_extent_item);
4594 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4595 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4596 	btrfs_set_extent_flags(leaf, extent_item,
4597 			       flags | BTRFS_EXTENT_FLAG_DATA);
4598 
4599 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4600 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4601 	if (parent > 0) {
4602 		struct btrfs_shared_data_ref *ref;
4603 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4604 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4605 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4606 	} else {
4607 		struct btrfs_extent_data_ref *ref;
4608 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4609 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4610 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4611 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4612 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4613 	}
4614 
4615 	btrfs_mark_buffer_dirty(path->nodes[0]);
4616 	btrfs_free_path(path);
4617 
4618 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4619 }
4620 
4621 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4622 				     struct btrfs_delayed_ref_node *node,
4623 				     struct btrfs_delayed_extent_op *extent_op)
4624 {
4625 	struct btrfs_fs_info *fs_info = trans->fs_info;
4626 	struct btrfs_root *extent_root;
4627 	int ret;
4628 	struct btrfs_extent_item *extent_item;
4629 	struct btrfs_key extent_key;
4630 	struct btrfs_tree_block_info *block_info;
4631 	struct btrfs_extent_inline_ref *iref;
4632 	struct btrfs_path *path;
4633 	struct extent_buffer *leaf;
4634 	struct btrfs_delayed_tree_ref *ref;
4635 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4636 	u64 flags = extent_op->flags_to_set;
4637 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4638 
4639 	ref = btrfs_delayed_node_to_tree_ref(node);
4640 
4641 	extent_key.objectid = node->bytenr;
4642 	if (skinny_metadata) {
4643 		extent_key.offset = ref->level;
4644 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4645 	} else {
4646 		extent_key.offset = node->num_bytes;
4647 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4648 		size += sizeof(*block_info);
4649 	}
4650 
4651 	path = btrfs_alloc_path();
4652 	if (!path)
4653 		return -ENOMEM;
4654 
4655 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4656 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4657 				      size);
4658 	if (ret) {
4659 		btrfs_free_path(path);
4660 		return ret;
4661 	}
4662 
4663 	leaf = path->nodes[0];
4664 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4665 				     struct btrfs_extent_item);
4666 	btrfs_set_extent_refs(leaf, extent_item, 1);
4667 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4668 	btrfs_set_extent_flags(leaf, extent_item,
4669 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4670 
4671 	if (skinny_metadata) {
4672 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4673 	} else {
4674 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4675 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4676 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4677 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4678 	}
4679 
4680 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4681 		btrfs_set_extent_inline_ref_type(leaf, iref,
4682 						 BTRFS_SHARED_BLOCK_REF_KEY);
4683 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4684 	} else {
4685 		btrfs_set_extent_inline_ref_type(leaf, iref,
4686 						 BTRFS_TREE_BLOCK_REF_KEY);
4687 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4688 	}
4689 
4690 	btrfs_mark_buffer_dirty(leaf);
4691 	btrfs_free_path(path);
4692 
4693 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4694 }
4695 
4696 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4697 				     struct btrfs_root *root, u64 owner,
4698 				     u64 offset, u64 ram_bytes,
4699 				     struct btrfs_key *ins)
4700 {
4701 	struct btrfs_ref generic_ref = { 0 };
4702 
4703 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4704 
4705 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4706 			       ins->objectid, ins->offset, 0);
4707 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4708 			    offset, 0, false);
4709 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4710 
4711 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4712 }
4713 
4714 /*
4715  * this is used by the tree logging recovery code.  It records that
4716  * an extent has been allocated and makes sure to clear the free
4717  * space cache bits as well
4718  */
4719 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4720 				   u64 root_objectid, u64 owner, u64 offset,
4721 				   struct btrfs_key *ins)
4722 {
4723 	struct btrfs_fs_info *fs_info = trans->fs_info;
4724 	int ret;
4725 	struct btrfs_block_group *block_group;
4726 	struct btrfs_space_info *space_info;
4727 
4728 	/*
4729 	 * Mixed block groups will exclude before processing the log so we only
4730 	 * need to do the exclude dance if this fs isn't mixed.
4731 	 */
4732 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4733 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4734 					      ins->offset);
4735 		if (ret)
4736 			return ret;
4737 	}
4738 
4739 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4740 	if (!block_group)
4741 		return -EINVAL;
4742 
4743 	space_info = block_group->space_info;
4744 	spin_lock(&space_info->lock);
4745 	spin_lock(&block_group->lock);
4746 	space_info->bytes_reserved += ins->offset;
4747 	block_group->reserved += ins->offset;
4748 	spin_unlock(&block_group->lock);
4749 	spin_unlock(&space_info->lock);
4750 
4751 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4752 					 offset, ins, 1);
4753 	if (ret)
4754 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4755 	btrfs_put_block_group(block_group);
4756 	return ret;
4757 }
4758 
4759 static struct extent_buffer *
4760 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4761 		      u64 bytenr, int level, u64 owner,
4762 		      enum btrfs_lock_nesting nest)
4763 {
4764 	struct btrfs_fs_info *fs_info = root->fs_info;
4765 	struct extent_buffer *buf;
4766 	u64 lockdep_owner = owner;
4767 
4768 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4769 	if (IS_ERR(buf))
4770 		return buf;
4771 
4772 	/*
4773 	 * Extra safety check in case the extent tree is corrupted and extent
4774 	 * allocator chooses to use a tree block which is already used and
4775 	 * locked.
4776 	 */
4777 	if (buf->lock_owner == current->pid) {
4778 		btrfs_err_rl(fs_info,
4779 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4780 			buf->start, btrfs_header_owner(buf), current->pid);
4781 		free_extent_buffer(buf);
4782 		return ERR_PTR(-EUCLEAN);
4783 	}
4784 
4785 	/*
4786 	 * The reloc trees are just snapshots, so we need them to appear to be
4787 	 * just like any other fs tree WRT lockdep.
4788 	 *
4789 	 * The exception however is in replace_path() in relocation, where we
4790 	 * hold the lock on the original fs root and then search for the reloc
4791 	 * root.  At that point we need to make sure any reloc root buffers are
4792 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4793 	 * lockdep happy.
4794 	 */
4795 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4796 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4797 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4798 
4799 	/* btrfs_clear_buffer_dirty() accesses generation field. */
4800 	btrfs_set_header_generation(buf, trans->transid);
4801 
4802 	/*
4803 	 * This needs to stay, because we could allocate a freed block from an
4804 	 * old tree into a new tree, so we need to make sure this new block is
4805 	 * set to the appropriate level and owner.
4806 	 */
4807 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4808 
4809 	__btrfs_tree_lock(buf, nest);
4810 	btrfs_clear_buffer_dirty(trans, buf);
4811 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4812 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4813 
4814 	set_extent_buffer_uptodate(buf);
4815 
4816 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4817 	btrfs_set_header_level(buf, level);
4818 	btrfs_set_header_bytenr(buf, buf->start);
4819 	btrfs_set_header_generation(buf, trans->transid);
4820 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4821 	btrfs_set_header_owner(buf, owner);
4822 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4823 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4824 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4825 		buf->log_index = root->log_transid % 2;
4826 		/*
4827 		 * we allow two log transactions at a time, use different
4828 		 * EXTENT bit to differentiate dirty pages.
4829 		 */
4830 		if (buf->log_index == 0)
4831 			set_extent_bit(&root->dirty_log_pages, buf->start,
4832 				       buf->start + buf->len - 1,
4833 				       EXTENT_DIRTY, NULL);
4834 		else
4835 			set_extent_bit(&root->dirty_log_pages, buf->start,
4836 				       buf->start + buf->len - 1,
4837 				       EXTENT_NEW, NULL);
4838 	} else {
4839 		buf->log_index = -1;
4840 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4841 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4842 	}
4843 	/* this returns a buffer locked for blocking */
4844 	return buf;
4845 }
4846 
4847 /*
4848  * finds a free extent and does all the dirty work required for allocation
4849  * returns the tree buffer or an ERR_PTR on error.
4850  */
4851 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4852 					     struct btrfs_root *root,
4853 					     u64 parent, u64 root_objectid,
4854 					     const struct btrfs_disk_key *key,
4855 					     int level, u64 hint,
4856 					     u64 empty_size,
4857 					     enum btrfs_lock_nesting nest)
4858 {
4859 	struct btrfs_fs_info *fs_info = root->fs_info;
4860 	struct btrfs_key ins;
4861 	struct btrfs_block_rsv *block_rsv;
4862 	struct extent_buffer *buf;
4863 	struct btrfs_delayed_extent_op *extent_op;
4864 	struct btrfs_ref generic_ref = { 0 };
4865 	u64 flags = 0;
4866 	int ret;
4867 	u32 blocksize = fs_info->nodesize;
4868 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4869 
4870 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4871 	if (btrfs_is_testing(fs_info)) {
4872 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4873 					    level, root_objectid, nest);
4874 		if (!IS_ERR(buf))
4875 			root->alloc_bytenr += blocksize;
4876 		return buf;
4877 	}
4878 #endif
4879 
4880 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4881 	if (IS_ERR(block_rsv))
4882 		return ERR_CAST(block_rsv);
4883 
4884 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4885 				   empty_size, hint, &ins, 0, 0);
4886 	if (ret)
4887 		goto out_unuse;
4888 
4889 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4890 				    root_objectid, nest);
4891 	if (IS_ERR(buf)) {
4892 		ret = PTR_ERR(buf);
4893 		goto out_free_reserved;
4894 	}
4895 
4896 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4897 		if (parent == 0)
4898 			parent = ins.objectid;
4899 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4900 	} else
4901 		BUG_ON(parent > 0);
4902 
4903 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4904 		extent_op = btrfs_alloc_delayed_extent_op();
4905 		if (!extent_op) {
4906 			ret = -ENOMEM;
4907 			goto out_free_buf;
4908 		}
4909 		if (key)
4910 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4911 		else
4912 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4913 		extent_op->flags_to_set = flags;
4914 		extent_op->update_key = skinny_metadata ? false : true;
4915 		extent_op->update_flags = true;
4916 		extent_op->level = level;
4917 
4918 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4919 				       ins.objectid, ins.offset, parent);
4920 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4921 				    root->root_key.objectid, false);
4922 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4923 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4924 		if (ret)
4925 			goto out_free_delayed;
4926 	}
4927 	return buf;
4928 
4929 out_free_delayed:
4930 	btrfs_free_delayed_extent_op(extent_op);
4931 out_free_buf:
4932 	btrfs_tree_unlock(buf);
4933 	free_extent_buffer(buf);
4934 out_free_reserved:
4935 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4936 out_unuse:
4937 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4938 	return ERR_PTR(ret);
4939 }
4940 
4941 struct walk_control {
4942 	u64 refs[BTRFS_MAX_LEVEL];
4943 	u64 flags[BTRFS_MAX_LEVEL];
4944 	struct btrfs_key update_progress;
4945 	struct btrfs_key drop_progress;
4946 	int drop_level;
4947 	int stage;
4948 	int level;
4949 	int shared_level;
4950 	int update_ref;
4951 	int keep_locks;
4952 	int reada_slot;
4953 	int reada_count;
4954 	int restarted;
4955 };
4956 
4957 #define DROP_REFERENCE	1
4958 #define UPDATE_BACKREF	2
4959 
4960 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4961 				     struct btrfs_root *root,
4962 				     struct walk_control *wc,
4963 				     struct btrfs_path *path)
4964 {
4965 	struct btrfs_fs_info *fs_info = root->fs_info;
4966 	u64 bytenr;
4967 	u64 generation;
4968 	u64 refs;
4969 	u64 flags;
4970 	u32 nritems;
4971 	struct btrfs_key key;
4972 	struct extent_buffer *eb;
4973 	int ret;
4974 	int slot;
4975 	int nread = 0;
4976 
4977 	if (path->slots[wc->level] < wc->reada_slot) {
4978 		wc->reada_count = wc->reada_count * 2 / 3;
4979 		wc->reada_count = max(wc->reada_count, 2);
4980 	} else {
4981 		wc->reada_count = wc->reada_count * 3 / 2;
4982 		wc->reada_count = min_t(int, wc->reada_count,
4983 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4984 	}
4985 
4986 	eb = path->nodes[wc->level];
4987 	nritems = btrfs_header_nritems(eb);
4988 
4989 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4990 		if (nread >= wc->reada_count)
4991 			break;
4992 
4993 		cond_resched();
4994 		bytenr = btrfs_node_blockptr(eb, slot);
4995 		generation = btrfs_node_ptr_generation(eb, slot);
4996 
4997 		if (slot == path->slots[wc->level])
4998 			goto reada;
4999 
5000 		if (wc->stage == UPDATE_BACKREF &&
5001 		    generation <= root->root_key.offset)
5002 			continue;
5003 
5004 		/* We don't lock the tree block, it's OK to be racy here */
5005 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5006 					       wc->level - 1, 1, &refs,
5007 					       &flags);
5008 		/* We don't care about errors in readahead. */
5009 		if (ret < 0)
5010 			continue;
5011 		BUG_ON(refs == 0);
5012 
5013 		if (wc->stage == DROP_REFERENCE) {
5014 			if (refs == 1)
5015 				goto reada;
5016 
5017 			if (wc->level == 1 &&
5018 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5019 				continue;
5020 			if (!wc->update_ref ||
5021 			    generation <= root->root_key.offset)
5022 				continue;
5023 			btrfs_node_key_to_cpu(eb, &key, slot);
5024 			ret = btrfs_comp_cpu_keys(&key,
5025 						  &wc->update_progress);
5026 			if (ret < 0)
5027 				continue;
5028 		} else {
5029 			if (wc->level == 1 &&
5030 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5031 				continue;
5032 		}
5033 reada:
5034 		btrfs_readahead_node_child(eb, slot);
5035 		nread++;
5036 	}
5037 	wc->reada_slot = slot;
5038 }
5039 
5040 /*
5041  * helper to process tree block while walking down the tree.
5042  *
5043  * when wc->stage == UPDATE_BACKREF, this function updates
5044  * back refs for pointers in the block.
5045  *
5046  * NOTE: return value 1 means we should stop walking down.
5047  */
5048 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5049 				   struct btrfs_root *root,
5050 				   struct btrfs_path *path,
5051 				   struct walk_control *wc, int lookup_info)
5052 {
5053 	struct btrfs_fs_info *fs_info = root->fs_info;
5054 	int level = wc->level;
5055 	struct extent_buffer *eb = path->nodes[level];
5056 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5057 	int ret;
5058 
5059 	if (wc->stage == UPDATE_BACKREF &&
5060 	    btrfs_header_owner(eb) != root->root_key.objectid)
5061 		return 1;
5062 
5063 	/*
5064 	 * when reference count of tree block is 1, it won't increase
5065 	 * again. once full backref flag is set, we never clear it.
5066 	 */
5067 	if (lookup_info &&
5068 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5069 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5070 		BUG_ON(!path->locks[level]);
5071 		ret = btrfs_lookup_extent_info(trans, fs_info,
5072 					       eb->start, level, 1,
5073 					       &wc->refs[level],
5074 					       &wc->flags[level]);
5075 		BUG_ON(ret == -ENOMEM);
5076 		if (ret)
5077 			return ret;
5078 		BUG_ON(wc->refs[level] == 0);
5079 	}
5080 
5081 	if (wc->stage == DROP_REFERENCE) {
5082 		if (wc->refs[level] > 1)
5083 			return 1;
5084 
5085 		if (path->locks[level] && !wc->keep_locks) {
5086 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5087 			path->locks[level] = 0;
5088 		}
5089 		return 0;
5090 	}
5091 
5092 	/* wc->stage == UPDATE_BACKREF */
5093 	if (!(wc->flags[level] & flag)) {
5094 		BUG_ON(!path->locks[level]);
5095 		ret = btrfs_inc_ref(trans, root, eb, 1);
5096 		BUG_ON(ret); /* -ENOMEM */
5097 		ret = btrfs_dec_ref(trans, root, eb, 0);
5098 		BUG_ON(ret); /* -ENOMEM */
5099 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5100 		BUG_ON(ret); /* -ENOMEM */
5101 		wc->flags[level] |= flag;
5102 	}
5103 
5104 	/*
5105 	 * the block is shared by multiple trees, so it's not good to
5106 	 * keep the tree lock
5107 	 */
5108 	if (path->locks[level] && level > 0) {
5109 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5110 		path->locks[level] = 0;
5111 	}
5112 	return 0;
5113 }
5114 
5115 /*
5116  * This is used to verify a ref exists for this root to deal with a bug where we
5117  * would have a drop_progress key that hadn't been updated properly.
5118  */
5119 static int check_ref_exists(struct btrfs_trans_handle *trans,
5120 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5121 			    int level)
5122 {
5123 	struct btrfs_path *path;
5124 	struct btrfs_extent_inline_ref *iref;
5125 	int ret;
5126 
5127 	path = btrfs_alloc_path();
5128 	if (!path)
5129 		return -ENOMEM;
5130 
5131 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5132 				    root->fs_info->nodesize, parent,
5133 				    root->root_key.objectid, level, 0);
5134 	btrfs_free_path(path);
5135 	if (ret == -ENOENT)
5136 		return 0;
5137 	if (ret < 0)
5138 		return ret;
5139 	return 1;
5140 }
5141 
5142 /*
5143  * helper to process tree block pointer.
5144  *
5145  * when wc->stage == DROP_REFERENCE, this function checks
5146  * reference count of the block pointed to. if the block
5147  * is shared and we need update back refs for the subtree
5148  * rooted at the block, this function changes wc->stage to
5149  * UPDATE_BACKREF. if the block is shared and there is no
5150  * need to update back, this function drops the reference
5151  * to the block.
5152  *
5153  * NOTE: return value 1 means we should stop walking down.
5154  */
5155 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5156 				 struct btrfs_root *root,
5157 				 struct btrfs_path *path,
5158 				 struct walk_control *wc, int *lookup_info)
5159 {
5160 	struct btrfs_fs_info *fs_info = root->fs_info;
5161 	u64 bytenr;
5162 	u64 generation;
5163 	u64 parent;
5164 	struct btrfs_tree_parent_check check = { 0 };
5165 	struct btrfs_key key;
5166 	struct btrfs_ref ref = { 0 };
5167 	struct extent_buffer *next;
5168 	int level = wc->level;
5169 	int reada = 0;
5170 	int ret = 0;
5171 	bool need_account = false;
5172 
5173 	generation = btrfs_node_ptr_generation(path->nodes[level],
5174 					       path->slots[level]);
5175 	/*
5176 	 * if the lower level block was created before the snapshot
5177 	 * was created, we know there is no need to update back refs
5178 	 * for the subtree
5179 	 */
5180 	if (wc->stage == UPDATE_BACKREF &&
5181 	    generation <= root->root_key.offset) {
5182 		*lookup_info = 1;
5183 		return 1;
5184 	}
5185 
5186 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5187 
5188 	check.level = level - 1;
5189 	check.transid = generation;
5190 	check.owner_root = root->root_key.objectid;
5191 	check.has_first_key = true;
5192 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5193 			      path->slots[level]);
5194 
5195 	next = find_extent_buffer(fs_info, bytenr);
5196 	if (!next) {
5197 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5198 				root->root_key.objectid, level - 1);
5199 		if (IS_ERR(next))
5200 			return PTR_ERR(next);
5201 		reada = 1;
5202 	}
5203 	btrfs_tree_lock(next);
5204 
5205 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5206 				       &wc->refs[level - 1],
5207 				       &wc->flags[level - 1]);
5208 	if (ret < 0)
5209 		goto out_unlock;
5210 
5211 	if (unlikely(wc->refs[level - 1] == 0)) {
5212 		btrfs_err(fs_info, "Missing references.");
5213 		ret = -EIO;
5214 		goto out_unlock;
5215 	}
5216 	*lookup_info = 0;
5217 
5218 	if (wc->stage == DROP_REFERENCE) {
5219 		if (wc->refs[level - 1] > 1) {
5220 			need_account = true;
5221 			if (level == 1 &&
5222 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5223 				goto skip;
5224 
5225 			if (!wc->update_ref ||
5226 			    generation <= root->root_key.offset)
5227 				goto skip;
5228 
5229 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5230 					      path->slots[level]);
5231 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5232 			if (ret < 0)
5233 				goto skip;
5234 
5235 			wc->stage = UPDATE_BACKREF;
5236 			wc->shared_level = level - 1;
5237 		}
5238 	} else {
5239 		if (level == 1 &&
5240 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5241 			goto skip;
5242 	}
5243 
5244 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5245 		btrfs_tree_unlock(next);
5246 		free_extent_buffer(next);
5247 		next = NULL;
5248 		*lookup_info = 1;
5249 	}
5250 
5251 	if (!next) {
5252 		if (reada && level == 1)
5253 			reada_walk_down(trans, root, wc, path);
5254 		next = read_tree_block(fs_info, bytenr, &check);
5255 		if (IS_ERR(next)) {
5256 			return PTR_ERR(next);
5257 		} else if (!extent_buffer_uptodate(next)) {
5258 			free_extent_buffer(next);
5259 			return -EIO;
5260 		}
5261 		btrfs_tree_lock(next);
5262 	}
5263 
5264 	level--;
5265 	ASSERT(level == btrfs_header_level(next));
5266 	if (level != btrfs_header_level(next)) {
5267 		btrfs_err(root->fs_info, "mismatched level");
5268 		ret = -EIO;
5269 		goto out_unlock;
5270 	}
5271 	path->nodes[level] = next;
5272 	path->slots[level] = 0;
5273 	path->locks[level] = BTRFS_WRITE_LOCK;
5274 	wc->level = level;
5275 	if (wc->level == 1)
5276 		wc->reada_slot = 0;
5277 	return 0;
5278 skip:
5279 	wc->refs[level - 1] = 0;
5280 	wc->flags[level - 1] = 0;
5281 	if (wc->stage == DROP_REFERENCE) {
5282 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5283 			parent = path->nodes[level]->start;
5284 		} else {
5285 			ASSERT(root->root_key.objectid ==
5286 			       btrfs_header_owner(path->nodes[level]));
5287 			if (root->root_key.objectid !=
5288 			    btrfs_header_owner(path->nodes[level])) {
5289 				btrfs_err(root->fs_info,
5290 						"mismatched block owner");
5291 				ret = -EIO;
5292 				goto out_unlock;
5293 			}
5294 			parent = 0;
5295 		}
5296 
5297 		/*
5298 		 * If we had a drop_progress we need to verify the refs are set
5299 		 * as expected.  If we find our ref then we know that from here
5300 		 * on out everything should be correct, and we can clear the
5301 		 * ->restarted flag.
5302 		 */
5303 		if (wc->restarted) {
5304 			ret = check_ref_exists(trans, root, bytenr, parent,
5305 					       level - 1);
5306 			if (ret < 0)
5307 				goto out_unlock;
5308 			if (ret == 0)
5309 				goto no_delete;
5310 			ret = 0;
5311 			wc->restarted = 0;
5312 		}
5313 
5314 		/*
5315 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5316 		 * already accounted them at merge time (replace_path),
5317 		 * thus we could skip expensive subtree trace here.
5318 		 */
5319 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5320 		    need_account) {
5321 			ret = btrfs_qgroup_trace_subtree(trans, next,
5322 							 generation, level - 1);
5323 			if (ret) {
5324 				btrfs_err_rl(fs_info,
5325 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5326 					     ret);
5327 			}
5328 		}
5329 
5330 		/*
5331 		 * We need to update the next key in our walk control so we can
5332 		 * update the drop_progress key accordingly.  We don't care if
5333 		 * find_next_key doesn't find a key because that means we're at
5334 		 * the end and are going to clean up now.
5335 		 */
5336 		wc->drop_level = level;
5337 		find_next_key(path, level, &wc->drop_progress);
5338 
5339 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5340 				       fs_info->nodesize, parent);
5341 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5342 				    0, false);
5343 		ret = btrfs_free_extent(trans, &ref);
5344 		if (ret)
5345 			goto out_unlock;
5346 	}
5347 no_delete:
5348 	*lookup_info = 1;
5349 	ret = 1;
5350 
5351 out_unlock:
5352 	btrfs_tree_unlock(next);
5353 	free_extent_buffer(next);
5354 
5355 	return ret;
5356 }
5357 
5358 /*
5359  * helper to process tree block while walking up the tree.
5360  *
5361  * when wc->stage == DROP_REFERENCE, this function drops
5362  * reference count on the block.
5363  *
5364  * when wc->stage == UPDATE_BACKREF, this function changes
5365  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5366  * to UPDATE_BACKREF previously while processing the block.
5367  *
5368  * NOTE: return value 1 means we should stop walking up.
5369  */
5370 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5371 				 struct btrfs_root *root,
5372 				 struct btrfs_path *path,
5373 				 struct walk_control *wc)
5374 {
5375 	struct btrfs_fs_info *fs_info = root->fs_info;
5376 	int ret;
5377 	int level = wc->level;
5378 	struct extent_buffer *eb = path->nodes[level];
5379 	u64 parent = 0;
5380 
5381 	if (wc->stage == UPDATE_BACKREF) {
5382 		BUG_ON(wc->shared_level < level);
5383 		if (level < wc->shared_level)
5384 			goto out;
5385 
5386 		ret = find_next_key(path, level + 1, &wc->update_progress);
5387 		if (ret > 0)
5388 			wc->update_ref = 0;
5389 
5390 		wc->stage = DROP_REFERENCE;
5391 		wc->shared_level = -1;
5392 		path->slots[level] = 0;
5393 
5394 		/*
5395 		 * check reference count again if the block isn't locked.
5396 		 * we should start walking down the tree again if reference
5397 		 * count is one.
5398 		 */
5399 		if (!path->locks[level]) {
5400 			BUG_ON(level == 0);
5401 			btrfs_tree_lock(eb);
5402 			path->locks[level] = BTRFS_WRITE_LOCK;
5403 
5404 			ret = btrfs_lookup_extent_info(trans, fs_info,
5405 						       eb->start, level, 1,
5406 						       &wc->refs[level],
5407 						       &wc->flags[level]);
5408 			if (ret < 0) {
5409 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5410 				path->locks[level] = 0;
5411 				return ret;
5412 			}
5413 			BUG_ON(wc->refs[level] == 0);
5414 			if (wc->refs[level] == 1) {
5415 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5416 				path->locks[level] = 0;
5417 				return 1;
5418 			}
5419 		}
5420 	}
5421 
5422 	/* wc->stage == DROP_REFERENCE */
5423 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5424 
5425 	if (wc->refs[level] == 1) {
5426 		if (level == 0) {
5427 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5428 				ret = btrfs_dec_ref(trans, root, eb, 1);
5429 			else
5430 				ret = btrfs_dec_ref(trans, root, eb, 0);
5431 			BUG_ON(ret); /* -ENOMEM */
5432 			if (is_fstree(root->root_key.objectid)) {
5433 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5434 				if (ret) {
5435 					btrfs_err_rl(fs_info,
5436 	"error %d accounting leaf items, quota is out of sync, rescan required",
5437 					     ret);
5438 				}
5439 			}
5440 		}
5441 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5442 		if (!path->locks[level]) {
5443 			btrfs_tree_lock(eb);
5444 			path->locks[level] = BTRFS_WRITE_LOCK;
5445 		}
5446 		btrfs_clear_buffer_dirty(trans, eb);
5447 	}
5448 
5449 	if (eb == root->node) {
5450 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5451 			parent = eb->start;
5452 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5453 			goto owner_mismatch;
5454 	} else {
5455 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5456 			parent = path->nodes[level + 1]->start;
5457 		else if (root->root_key.objectid !=
5458 			 btrfs_header_owner(path->nodes[level + 1]))
5459 			goto owner_mismatch;
5460 	}
5461 
5462 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5463 			      wc->refs[level] == 1);
5464 out:
5465 	wc->refs[level] = 0;
5466 	wc->flags[level] = 0;
5467 	return 0;
5468 
5469 owner_mismatch:
5470 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5471 		     btrfs_header_owner(eb), root->root_key.objectid);
5472 	return -EUCLEAN;
5473 }
5474 
5475 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5476 				   struct btrfs_root *root,
5477 				   struct btrfs_path *path,
5478 				   struct walk_control *wc)
5479 {
5480 	int level = wc->level;
5481 	int lookup_info = 1;
5482 	int ret = 0;
5483 
5484 	while (level >= 0) {
5485 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5486 		if (ret)
5487 			break;
5488 
5489 		if (level == 0)
5490 			break;
5491 
5492 		if (path->slots[level] >=
5493 		    btrfs_header_nritems(path->nodes[level]))
5494 			break;
5495 
5496 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5497 		if (ret > 0) {
5498 			path->slots[level]++;
5499 			continue;
5500 		} else if (ret < 0)
5501 			break;
5502 		level = wc->level;
5503 	}
5504 	return (ret == 1) ? 0 : ret;
5505 }
5506 
5507 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5508 				 struct btrfs_root *root,
5509 				 struct btrfs_path *path,
5510 				 struct walk_control *wc, int max_level)
5511 {
5512 	int level = wc->level;
5513 	int ret;
5514 
5515 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5516 	while (level < max_level && path->nodes[level]) {
5517 		wc->level = level;
5518 		if (path->slots[level] + 1 <
5519 		    btrfs_header_nritems(path->nodes[level])) {
5520 			path->slots[level]++;
5521 			return 0;
5522 		} else {
5523 			ret = walk_up_proc(trans, root, path, wc);
5524 			if (ret > 0)
5525 				return 0;
5526 			if (ret < 0)
5527 				return ret;
5528 
5529 			if (path->locks[level]) {
5530 				btrfs_tree_unlock_rw(path->nodes[level],
5531 						     path->locks[level]);
5532 				path->locks[level] = 0;
5533 			}
5534 			free_extent_buffer(path->nodes[level]);
5535 			path->nodes[level] = NULL;
5536 			level++;
5537 		}
5538 	}
5539 	return 1;
5540 }
5541 
5542 /*
5543  * drop a subvolume tree.
5544  *
5545  * this function traverses the tree freeing any blocks that only
5546  * referenced by the tree.
5547  *
5548  * when a shared tree block is found. this function decreases its
5549  * reference count by one. if update_ref is true, this function
5550  * also make sure backrefs for the shared block and all lower level
5551  * blocks are properly updated.
5552  *
5553  * If called with for_reloc == 0, may exit early with -EAGAIN
5554  */
5555 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5556 {
5557 	const bool is_reloc_root = (root->root_key.objectid ==
5558 				    BTRFS_TREE_RELOC_OBJECTID);
5559 	struct btrfs_fs_info *fs_info = root->fs_info;
5560 	struct btrfs_path *path;
5561 	struct btrfs_trans_handle *trans;
5562 	struct btrfs_root *tree_root = fs_info->tree_root;
5563 	struct btrfs_root_item *root_item = &root->root_item;
5564 	struct walk_control *wc;
5565 	struct btrfs_key key;
5566 	int err = 0;
5567 	int ret;
5568 	int level;
5569 	bool root_dropped = false;
5570 	bool unfinished_drop = false;
5571 
5572 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5573 
5574 	path = btrfs_alloc_path();
5575 	if (!path) {
5576 		err = -ENOMEM;
5577 		goto out;
5578 	}
5579 
5580 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5581 	if (!wc) {
5582 		btrfs_free_path(path);
5583 		err = -ENOMEM;
5584 		goto out;
5585 	}
5586 
5587 	/*
5588 	 * Use join to avoid potential EINTR from transaction start. See
5589 	 * wait_reserve_ticket and the whole reservation callchain.
5590 	 */
5591 	if (for_reloc)
5592 		trans = btrfs_join_transaction(tree_root);
5593 	else
5594 		trans = btrfs_start_transaction(tree_root, 0);
5595 	if (IS_ERR(trans)) {
5596 		err = PTR_ERR(trans);
5597 		goto out_free;
5598 	}
5599 
5600 	err = btrfs_run_delayed_items(trans);
5601 	if (err)
5602 		goto out_end_trans;
5603 
5604 	/*
5605 	 * This will help us catch people modifying the fs tree while we're
5606 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5607 	 * dropped as we unlock the root node and parent nodes as we walk down
5608 	 * the tree, assuming nothing will change.  If something does change
5609 	 * then we'll have stale information and drop references to blocks we've
5610 	 * already dropped.
5611 	 */
5612 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5613 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5614 
5615 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5616 		level = btrfs_header_level(root->node);
5617 		path->nodes[level] = btrfs_lock_root_node(root);
5618 		path->slots[level] = 0;
5619 		path->locks[level] = BTRFS_WRITE_LOCK;
5620 		memset(&wc->update_progress, 0,
5621 		       sizeof(wc->update_progress));
5622 	} else {
5623 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5624 		memcpy(&wc->update_progress, &key,
5625 		       sizeof(wc->update_progress));
5626 
5627 		level = btrfs_root_drop_level(root_item);
5628 		BUG_ON(level == 0);
5629 		path->lowest_level = level;
5630 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 		path->lowest_level = 0;
5632 		if (ret < 0) {
5633 			err = ret;
5634 			goto out_end_trans;
5635 		}
5636 		WARN_ON(ret > 0);
5637 
5638 		/*
5639 		 * unlock our path, this is safe because only this
5640 		 * function is allowed to delete this snapshot
5641 		 */
5642 		btrfs_unlock_up_safe(path, 0);
5643 
5644 		level = btrfs_header_level(root->node);
5645 		while (1) {
5646 			btrfs_tree_lock(path->nodes[level]);
5647 			path->locks[level] = BTRFS_WRITE_LOCK;
5648 
5649 			ret = btrfs_lookup_extent_info(trans, fs_info,
5650 						path->nodes[level]->start,
5651 						level, 1, &wc->refs[level],
5652 						&wc->flags[level]);
5653 			if (ret < 0) {
5654 				err = ret;
5655 				goto out_end_trans;
5656 			}
5657 			BUG_ON(wc->refs[level] == 0);
5658 
5659 			if (level == btrfs_root_drop_level(root_item))
5660 				break;
5661 
5662 			btrfs_tree_unlock(path->nodes[level]);
5663 			path->locks[level] = 0;
5664 			WARN_ON(wc->refs[level] != 1);
5665 			level--;
5666 		}
5667 	}
5668 
5669 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5670 	wc->level = level;
5671 	wc->shared_level = -1;
5672 	wc->stage = DROP_REFERENCE;
5673 	wc->update_ref = update_ref;
5674 	wc->keep_locks = 0;
5675 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5676 
5677 	while (1) {
5678 
5679 		ret = walk_down_tree(trans, root, path, wc);
5680 		if (ret < 0) {
5681 			btrfs_abort_transaction(trans, ret);
5682 			err = ret;
5683 			break;
5684 		}
5685 
5686 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5687 		if (ret < 0) {
5688 			btrfs_abort_transaction(trans, ret);
5689 			err = ret;
5690 			break;
5691 		}
5692 
5693 		if (ret > 0) {
5694 			BUG_ON(wc->stage != DROP_REFERENCE);
5695 			break;
5696 		}
5697 
5698 		if (wc->stage == DROP_REFERENCE) {
5699 			wc->drop_level = wc->level;
5700 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5701 					      &wc->drop_progress,
5702 					      path->slots[wc->drop_level]);
5703 		}
5704 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5705 				      &wc->drop_progress);
5706 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5707 
5708 		BUG_ON(wc->level == 0);
5709 		if (btrfs_should_end_transaction(trans) ||
5710 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5711 			ret = btrfs_update_root(trans, tree_root,
5712 						&root->root_key,
5713 						root_item);
5714 			if (ret) {
5715 				btrfs_abort_transaction(trans, ret);
5716 				err = ret;
5717 				goto out_end_trans;
5718 			}
5719 
5720 			if (!is_reloc_root)
5721 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5722 
5723 			btrfs_end_transaction_throttle(trans);
5724 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5725 				btrfs_debug(fs_info,
5726 					    "drop snapshot early exit");
5727 				err = -EAGAIN;
5728 				goto out_free;
5729 			}
5730 
5731 		       /*
5732 			* Use join to avoid potential EINTR from transaction
5733 			* start. See wait_reserve_ticket and the whole
5734 			* reservation callchain.
5735 			*/
5736 			if (for_reloc)
5737 				trans = btrfs_join_transaction(tree_root);
5738 			else
5739 				trans = btrfs_start_transaction(tree_root, 0);
5740 			if (IS_ERR(trans)) {
5741 				err = PTR_ERR(trans);
5742 				goto out_free;
5743 			}
5744 		}
5745 	}
5746 	btrfs_release_path(path);
5747 	if (err)
5748 		goto out_end_trans;
5749 
5750 	ret = btrfs_del_root(trans, &root->root_key);
5751 	if (ret) {
5752 		btrfs_abort_transaction(trans, ret);
5753 		err = ret;
5754 		goto out_end_trans;
5755 	}
5756 
5757 	if (!is_reloc_root) {
5758 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5759 				      NULL, NULL);
5760 		if (ret < 0) {
5761 			btrfs_abort_transaction(trans, ret);
5762 			err = ret;
5763 			goto out_end_trans;
5764 		} else if (ret > 0) {
5765 			/* if we fail to delete the orphan item this time
5766 			 * around, it'll get picked up the next time.
5767 			 *
5768 			 * The most common failure here is just -ENOENT.
5769 			 */
5770 			btrfs_del_orphan_item(trans, tree_root,
5771 					      root->root_key.objectid);
5772 		}
5773 	}
5774 
5775 	/*
5776 	 * This subvolume is going to be completely dropped, and won't be
5777 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5778 	 * commit transaction time.  So free it here manually.
5779 	 */
5780 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5781 	btrfs_qgroup_free_meta_all_pertrans(root);
5782 
5783 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5784 		btrfs_add_dropped_root(trans, root);
5785 	else
5786 		btrfs_put_root(root);
5787 	root_dropped = true;
5788 out_end_trans:
5789 	if (!is_reloc_root)
5790 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5791 
5792 	btrfs_end_transaction_throttle(trans);
5793 out_free:
5794 	kfree(wc);
5795 	btrfs_free_path(path);
5796 out:
5797 	/*
5798 	 * We were an unfinished drop root, check to see if there are any
5799 	 * pending, and if not clear and wake up any waiters.
5800 	 */
5801 	if (!err && unfinished_drop)
5802 		btrfs_maybe_wake_unfinished_drop(fs_info);
5803 
5804 	/*
5805 	 * So if we need to stop dropping the snapshot for whatever reason we
5806 	 * need to make sure to add it back to the dead root list so that we
5807 	 * keep trying to do the work later.  This also cleans up roots if we
5808 	 * don't have it in the radix (like when we recover after a power fail
5809 	 * or unmount) so we don't leak memory.
5810 	 */
5811 	if (!for_reloc && !root_dropped)
5812 		btrfs_add_dead_root(root);
5813 	return err;
5814 }
5815 
5816 /*
5817  * drop subtree rooted at tree block 'node'.
5818  *
5819  * NOTE: this function will unlock and release tree block 'node'
5820  * only used by relocation code
5821  */
5822 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5823 			struct btrfs_root *root,
5824 			struct extent_buffer *node,
5825 			struct extent_buffer *parent)
5826 {
5827 	struct btrfs_fs_info *fs_info = root->fs_info;
5828 	struct btrfs_path *path;
5829 	struct walk_control *wc;
5830 	int level;
5831 	int parent_level;
5832 	int ret = 0;
5833 	int wret;
5834 
5835 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5836 
5837 	path = btrfs_alloc_path();
5838 	if (!path)
5839 		return -ENOMEM;
5840 
5841 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5842 	if (!wc) {
5843 		btrfs_free_path(path);
5844 		return -ENOMEM;
5845 	}
5846 
5847 	btrfs_assert_tree_write_locked(parent);
5848 	parent_level = btrfs_header_level(parent);
5849 	atomic_inc(&parent->refs);
5850 	path->nodes[parent_level] = parent;
5851 	path->slots[parent_level] = btrfs_header_nritems(parent);
5852 
5853 	btrfs_assert_tree_write_locked(node);
5854 	level = btrfs_header_level(node);
5855 	path->nodes[level] = node;
5856 	path->slots[level] = 0;
5857 	path->locks[level] = BTRFS_WRITE_LOCK;
5858 
5859 	wc->refs[parent_level] = 1;
5860 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5861 	wc->level = level;
5862 	wc->shared_level = -1;
5863 	wc->stage = DROP_REFERENCE;
5864 	wc->update_ref = 0;
5865 	wc->keep_locks = 1;
5866 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5867 
5868 	while (1) {
5869 		wret = walk_down_tree(trans, root, path, wc);
5870 		if (wret < 0) {
5871 			ret = wret;
5872 			break;
5873 		}
5874 
5875 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5876 		if (wret < 0)
5877 			ret = wret;
5878 		if (wret != 0)
5879 			break;
5880 	}
5881 
5882 	kfree(wc);
5883 	btrfs_free_path(path);
5884 	return ret;
5885 }
5886 
5887 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5888 				   u64 start, u64 end)
5889 {
5890 	return unpin_extent_range(fs_info, start, end, false);
5891 }
5892 
5893 /*
5894  * It used to be that old block groups would be left around forever.
5895  * Iterating over them would be enough to trim unused space.  Since we
5896  * now automatically remove them, we also need to iterate over unallocated
5897  * space.
5898  *
5899  * We don't want a transaction for this since the discard may take a
5900  * substantial amount of time.  We don't require that a transaction be
5901  * running, but we do need to take a running transaction into account
5902  * to ensure that we're not discarding chunks that were released or
5903  * allocated in the current transaction.
5904  *
5905  * Holding the chunks lock will prevent other threads from allocating
5906  * or releasing chunks, but it won't prevent a running transaction
5907  * from committing and releasing the memory that the pending chunks
5908  * list head uses.  For that, we need to take a reference to the
5909  * transaction and hold the commit root sem.  We only need to hold
5910  * it while performing the free space search since we have already
5911  * held back allocations.
5912  */
5913 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5914 {
5915 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5916 	int ret;
5917 
5918 	*trimmed = 0;
5919 
5920 	/* Discard not supported = nothing to do. */
5921 	if (!bdev_max_discard_sectors(device->bdev))
5922 		return 0;
5923 
5924 	/* Not writable = nothing to do. */
5925 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5926 		return 0;
5927 
5928 	/* No free space = nothing to do. */
5929 	if (device->total_bytes <= device->bytes_used)
5930 		return 0;
5931 
5932 	ret = 0;
5933 
5934 	while (1) {
5935 		struct btrfs_fs_info *fs_info = device->fs_info;
5936 		u64 bytes;
5937 
5938 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5939 		if (ret)
5940 			break;
5941 
5942 		find_first_clear_extent_bit(&device->alloc_state, start,
5943 					    &start, &end,
5944 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5945 
5946 		/* Check if there are any CHUNK_* bits left */
5947 		if (start > device->total_bytes) {
5948 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5949 			btrfs_warn_in_rcu(fs_info,
5950 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5951 					  start, end - start + 1,
5952 					  btrfs_dev_name(device),
5953 					  device->total_bytes);
5954 			mutex_unlock(&fs_info->chunk_mutex);
5955 			ret = 0;
5956 			break;
5957 		}
5958 
5959 		/* Ensure we skip the reserved space on each device. */
5960 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
5961 
5962 		/*
5963 		 * If find_first_clear_extent_bit find a range that spans the
5964 		 * end of the device it will set end to -1, in this case it's up
5965 		 * to the caller to trim the value to the size of the device.
5966 		 */
5967 		end = min(end, device->total_bytes - 1);
5968 
5969 		len = end - start + 1;
5970 
5971 		/* We didn't find any extents */
5972 		if (!len) {
5973 			mutex_unlock(&fs_info->chunk_mutex);
5974 			ret = 0;
5975 			break;
5976 		}
5977 
5978 		ret = btrfs_issue_discard(device->bdev, start, len,
5979 					  &bytes);
5980 		if (!ret)
5981 			set_extent_bit(&device->alloc_state, start,
5982 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
5983 		mutex_unlock(&fs_info->chunk_mutex);
5984 
5985 		if (ret)
5986 			break;
5987 
5988 		start += len;
5989 		*trimmed += bytes;
5990 
5991 		if (fatal_signal_pending(current)) {
5992 			ret = -ERESTARTSYS;
5993 			break;
5994 		}
5995 
5996 		cond_resched();
5997 	}
5998 
5999 	return ret;
6000 }
6001 
6002 /*
6003  * Trim the whole filesystem by:
6004  * 1) trimming the free space in each block group
6005  * 2) trimming the unallocated space on each device
6006  *
6007  * This will also continue trimming even if a block group or device encounters
6008  * an error.  The return value will be the last error, or 0 if nothing bad
6009  * happens.
6010  */
6011 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6012 {
6013 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6014 	struct btrfs_block_group *cache = NULL;
6015 	struct btrfs_device *device;
6016 	u64 group_trimmed;
6017 	u64 range_end = U64_MAX;
6018 	u64 start;
6019 	u64 end;
6020 	u64 trimmed = 0;
6021 	u64 bg_failed = 0;
6022 	u64 dev_failed = 0;
6023 	int bg_ret = 0;
6024 	int dev_ret = 0;
6025 	int ret = 0;
6026 
6027 	if (range->start == U64_MAX)
6028 		return -EINVAL;
6029 
6030 	/*
6031 	 * Check range overflow if range->len is set.
6032 	 * The default range->len is U64_MAX.
6033 	 */
6034 	if (range->len != U64_MAX &&
6035 	    check_add_overflow(range->start, range->len, &range_end))
6036 		return -EINVAL;
6037 
6038 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6039 	for (; cache; cache = btrfs_next_block_group(cache)) {
6040 		if (cache->start >= range_end) {
6041 			btrfs_put_block_group(cache);
6042 			break;
6043 		}
6044 
6045 		start = max(range->start, cache->start);
6046 		end = min(range_end, cache->start + cache->length);
6047 
6048 		if (end - start >= range->minlen) {
6049 			if (!btrfs_block_group_done(cache)) {
6050 				ret = btrfs_cache_block_group(cache, true);
6051 				if (ret) {
6052 					bg_failed++;
6053 					bg_ret = ret;
6054 					continue;
6055 				}
6056 			}
6057 			ret = btrfs_trim_block_group(cache,
6058 						     &group_trimmed,
6059 						     start,
6060 						     end,
6061 						     range->minlen);
6062 
6063 			trimmed += group_trimmed;
6064 			if (ret) {
6065 				bg_failed++;
6066 				bg_ret = ret;
6067 				continue;
6068 			}
6069 		}
6070 	}
6071 
6072 	if (bg_failed)
6073 		btrfs_warn(fs_info,
6074 			"failed to trim %llu block group(s), last error %d",
6075 			bg_failed, bg_ret);
6076 
6077 	mutex_lock(&fs_devices->device_list_mutex);
6078 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6079 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6080 			continue;
6081 
6082 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6083 		if (ret) {
6084 			dev_failed++;
6085 			dev_ret = ret;
6086 			break;
6087 		}
6088 
6089 		trimmed += group_trimmed;
6090 	}
6091 	mutex_unlock(&fs_devices->device_list_mutex);
6092 
6093 	if (dev_failed)
6094 		btrfs_warn(fs_info,
6095 			"failed to trim %llu device(s), last error %d",
6096 			dev_failed, dev_ret);
6097 	range->len = trimmed;
6098 	if (bg_ret)
6099 		return bg_ret;
6100 	return dev_ret;
6101 }
6102